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ABSTRACT

L The rate of convergence of line search algorithms based on general
interpolating functions is derived, and is shown to be independent of the
particular interpolating function used. This result holds for the root
finding problem f(x) = 0 as well. We show how inverse interpolation can
be used in conjunction with the line search problem, and derive its rate of
convergence. Our analysis suggests that one-point line search algorithms
(in particular Newton's method) are inefficient in a semse. Two-point

algorithms using rational interpolating functions are recommended.\§
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1. INTRODUCTION
An essential part of multidimensional minimization algorithms is
a line search, i.e., a one-dimensional scheme for the solution of the

equation
(1) ft(x) = 0.

Most of the line search algorithms in common use are based on
polynomial interpolation of f. At iteration i, a polynomial Pn,s(x) (the
so-called hyperosculatory interpolation polynomial) which coincides with
f and its derivatives up to order s-1, at each of the n+1 interpolation

polnts X5, X is constructed. The new interpolation point

1-10 00 X

x1+1, is the solution of

(2) P (x
In fact, to facilitate the solution of (2), a low degree polynomial

is fitted, i.e., r = s(n+1) is small; quadratic and cubic fit being most

commonly used.

In recent years, the possibility of using nonpolynomial interpolation

functions received some attention. One important situation arises in line
searches associated with n-dimensional constrained problems, solved by
barrier function methods. A fit by a polynomial cannot capture the

singular behavior of the barrier objective function at the boundary of the
feasible region. Wright [20] dealt with the case of the logarithmic barrier

function. She suggests using the interpolating functions
(3) ax + b + r log(x-c)

(4) ax? 4+ bx + c 4T log (x-d).




Bjérstad and Nocedal (3] analyze the rate of convergence of an

algorithm based on the interpolating function

2
(5) ax + bx + ¢

(dx + 1)2

This function is the one-dimensional restriction of the "conic" model
function suggested by Davidon (5], who lists some important advantages of
the conic model over the quadratic one.

Independently, we suggested [1] another rational interpolating
function
(6) ax2 + bx + ¢

dx - 1 !

which we analyze in section 3.

Nonpolynomial interpolation was suggested much earlier for the root

finding problem

(7) f(x) = 0.

ax + b

Ostrowski [13, p. 82] used in this conjunction the rational function x <+ d’

which Jarratt and Nudds [8] and Jarratt [9] generalized to

X -a

® @

where Q(x) is a polynomial. Ben-Tal and Ben-Israel [2] describe nonpolynomial
interpolations by certain types of generalized convex functions.

We formally define the Tn s" interpolation algorithm as follows.
~ily

Let n>0, s> 1 be fixed integers and let g be a family of a-1 times

differentiable functions T:R+R, depending on r = s(n+1) parameters. At ﬂ
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iteration i, the points Xys Xy 92 cees X, 8TO given, and a function

T ¢ g'is chosen so as to satisfy the interpolation equations

(9) T(k)(xi*J) = f(k)(x j=0, ..n; k=0, ..., 8-1.

i-3)
A new interpolation point is computed from

(10 T(x,) =0 , ;

and the oldest point X n is deleted.

The practicality of using a particular class g depends to a great
extent on the degree of difficulty of solving the (generally nonlinear) system
of equations (9) and equation (10). In the case of the logarithmic functions
(3) and (4), equation (10) is easy to solve, but (9) is an ill-conditioned
nonlinear system of equations. Wright [20] uses table look-ups, and applies
Newton's method after operating some transformations on these equations, in
order to solve them.

For the conic model studied by Bjérstad and Nocedal (3], equations (9)
and (10) can be reduced to quadratic equations, while for the rational function
(6) discussed in section 3, equations (9) are reduced to a linear system, and
(10) is very easy to solve.

Note that in the polynomial case, (9) is a linear system. However,
(10) 1s difficult to solve unless T is a low degree polynomial. It will be

shown in section 4, that this difficulty can be circumvented by employing
inverse interpolation.

Note also, that for the function (8), the interpolation equations can
be reduced to a linear system, while the solution of T(x1+l) = 0 is simply

X a.,

1+l




In this paper we investigate the rate of convergence of these

minimization algorithms. Here we say that the rate of convergence of a

sequence {xi} converging to a 1s p, if there exists a positive number C,
such that

(see {19, pp. 1-131). Ortega and Rheinboldt [11] refer to the rate p defined
above as the C-order of the sequence {xi}. When it exists, it coincides with

their so-called Q- and R- orders (see [11, section 9]).

Rate of convergence analysis 1s supplied by Bjérstad and Nocedal [3]
for the conic function with s = 2, n= 1. The derivation, which uses a
symbol manipulation computer program, is quite elaborate. Moreover, the
analysis does not carry over gnaturally to the study of the convergence
properties of an algorithm using the same interpolation function, but with
different data say s = 1, n = 3.

Wright [20] gives no rate of convergence analysis for the algorithms
using the logarithmic interpolating functions (3) and (k).

An outline of the paper is as follows. In section 2 we prove rate of
convergence theorems for general gn,s'-interpolation methods. We show that the

rate of convergence is given by the unique positive root of the indicial

equation

n-1
(1) ™ et -s Y td =0
J=0

Since this equation depends on n and s only, the rate is independent of the class .




]

In section 3 we analyze the specific family of interpolating functions

(6) axg + bx + ¢ .

dx - 1

Inverse interpolation for minimization algorithms is introduced in
section 4. We show that the rate of convergence in this case is again given
as the positive root of (11).

Numerical examples illustrating the convergence theorems are given
in section 5.

In section 6 we discuss the implications of the rate of convergence

analysis to the design of algorithms.




2. RATES OF CONVERGENCE OF NONPOLYNOMIAL ALGORITHMS
Traub [19] studied the rate of convergence of algorithms that use

polynomials to interpolate f, or its inverse function for the root finding

problem (7). The naturalmodifications of these results for the minimization

problem are discussed by Tamir [17, 18] for the direct polynomial case, i.e.,

when the interpolation requirements are given by (9), T being a polynomial
of degree < r = s(ml).

The key result for this analysis is the product form formula of the
error incurred in hyperosculatory polynomial interpolation (e.g. (6, p. 67]).
Ostrowski [13, . 12] generalized this formula to the case where the
interpolating function is not necessarily a polynomial. However, no use of
this generalized formula has been made to extend the analysis of Traub and
Tamir to the nonpolynomial case. Using this formula, we will obtain a
difference equation which differs from the one obtained by Tamir in its
right hand side only. This implies that in the nonpolynomial case too,
the rate is given by the positive root of the indicial equation (11).

Tamir [17, 18] gives two separate proofs for the cases s =1, s > 1. We
will give a unified proof, and settle his conjectures in [17].

Stronger results than ours can evidently be obtained by relaxing
some of our assumptions (compare for example Brent [10] ). We have preferred,
however, to keep the presentation unobscured by these technicalities. For
the same reason, we have not stated explicitly the interval of (local)
convergence. This is done in great detail in [17] and repeated in [18].

We will denote by o & solution of (1), and by J the interval
J=1{x: |x - a| € L} for some positive L. The error x - o will be denoted

by e,, and the open interval determined by {al, cees am} will be denoted by




<8 esey & >,
n’ ’ m.>

The foilowing assumption will be used repeatedly.

Assumption 1 r = s(n+l) > 3; £ and T have continuous derivatives of
order r + 1in J for all T e T; f"(a) # 0 ; x; € J and X, # X for
J#kx, 1,j,k=0,1,2, ..., n; o # 0 for all k.

Note that if ey = 0 for some i, Xy is a solution of (1), and the
algorithm is terminated.

In order that the sequence {xi} defined by the algorithm be well
defined, the interpolation equations (9), as well as equation (10) for
X417 must have solutions. If ' is the class Pn,s of polynomials of degree
less than r = s(n+l), equations (9) have a solution if and only if
X # ) for k # . To quote Davis [6, p. 27], the hope that an interpolation
problem can always be solved providing the number of parameters equals
the number of conditions, is naive. T can be replaced by Pn,s in iterations
at which (9) has no solution, but in practice this case is rather unlikely.
We will assume henceforth that (9) has a solution for all i.

As for equation (10), we will prove that under Assumption 1, it has
a solution for all i, if L is small enough. We need the following difference

relation to prove this and other results.

Theorem 1 Under Assumption 1, if T" # 0 on J, then the errors e =X -

induced by the T _- interpolation algorithm, satisfy the recursion equation:

*n,s

e E e T e + N, e
1+1 i =0 i-k =0 i-J
j#k




where
r-1 r
M), @) (D s N, (1)) (-1)
U2 TG, ) SR T I CTCT) R
M. (x) = £y - 2P (y) (r+1) (r+1)
1 ’ Nl(x) =T (x) - T (x)

r! (r+1) 1

Ei(t), ni(t) e<t, X, X x and

1-1° 2 *4n”

o( Y e <a,

Xin X541”

Proof': The error in the interpolation (9) is given by (see {13, p. 12] )

)S

(r) (r) n
T - f
1) 1) = o) ¢ AL L - x

i-]
Differentiating (13) we have

(%) £1(8) = T7(e) + M (g, ()W (8) + W (n, (0) W(E)

n
where W(t) = (t - x

A )® and M), N, £ (t) and n, (t) are defined above

i-3

(for proof see [1, section § where we generalize Ralston's result [1k4, 15] on the

differentiation of the error term, to the hyperosculatory case). Substituting

t = a in (14) and using

T'(a) = T'(a) - T! (xi+1) = -e; .1 T"(G)(xi+l)) we obtain (12).




Under Assumption 1, f"(a) # 0. Since f'(a) = 0, fi must change its sign at
a. It follows by substituting t =« - L and t = a + L in (14), that T' also
has opposite signs at these two points (for a detailed proof see Appendix A

in [18]), if L is small enough. We summarize this result in

Theorem 2 Under Assumption 1, if L is small enough, there exists xi+l e J

satisfying equation (10).

Using Theorem 1 in [7, chapter 6, section 5], it follows immediately
from the difference equation (12), that if the initial errors eg, ..., e, are

small enough (i.e., L is small enough), the sequence e, tends to zero, establishing

i
the following local convergence result.

Theorem 3 Under Assumption 1, if L is small enough, the sequence {xi} converges
to the solution o of (1). o
Also note that if L is small enough, and if s > 1, we have by (12)
|ei+1| < Ieil , implying x, , # x;. For s = 1 however, we have to assume
X5,1 * % (ef. [16]).

We now replace (12) by a more useful difference equation.

Theorem 4 Under the assumptions of Theorem 3, and if the sequences {Mi] ,{Ni}

are bounded, then
(15) e, = Ay e

with (Ai} bounded.

Proof. By assumption, the sequences Mi’ N1 are bounded. If s > 2, (12) implies

e
(16) -—ii — ,
°1
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(i.e. superlinear convergence). 1f g = 1, we must have n > 2 since we assumed
r =s(n+l) > 3. For n = 2, (12) is the basic difference relation governing

the behavior of the Quadratic Fit algorithm, which is known to converge
superlinearly (see Theorem 3.4.1 in Brent [h]). It is evident from (12) that
the rate for n > 2 is not less than the rate for n = 2. Therefore, (16) holds
forall s 1, n >0 if r = (n+l)s > 3. Rewriting (12) in the form

M +M + N,e N
- -3 i =1 4 i1

s~-1
i

:i'.‘!

(17) ey - € .

3

we see by (16) that (15) holds with

+ N.e,_ .
A .

Remark 1In [17, Appendix C], Tamir conjectures that his apriory assumption

(17, Assumption 2] on the superlinear convergence of the sequence {e, } 15
redundant. Our proof shows that this assumption is indeed redundant.

We now state our main result.

Theorem 5 Under the assumptions of Theorem %, the sequence {xi} generated
by the Irgs' interpolation algorithm converges to the solution o of (1), with
Q- and R-rates of convergence at least p, where p 1is the unique positive

root of the equation
£ - (s-1)t? - sZt-’ =0
j=0

Proof Convergence of {xi} to o 1is proved in Theorem 3.

Tamir {17,18] proves, under the additional agsumption A, + A # 0,

i
that the C- (and therefore Q- and R-) rate is exactly p.




11.

Now Ai > A # 0 is the worst possible case, for if the sequence {Ai}
is bounded (not necessarily convergent), equation (15) implies Q=rate of con-
vergence at least p (even though the C-order may fail to exist).

Indeed, the proof in [17,18] is based on a similar result of Traub {19]
for the root finding problem. We will indicate the slight modifications necessary
in the proof, for the latter problem. First, it is evident that if the sequence
[ﬁi] of Theorem 3-1 in {19] is bounded above, so is the sequence {ai}. This
in turn implies that the sequence (Di} of Theorem 3-3 of [19] is bounded above,

e
or equivalently 1lim sup -—i:%r-< + o, hence the Q-order of the sequence {xi}

le, |
is at least p.

The assertion on the R-order follows from Theorem 9.3.2 in [11, section 9].

(|

to the parameters of T defined

Remark If the mapping from x ey X

i-n i
by (9) is continuous, the sequences {Mi} ’{Ni} are convergent, hence bounded,

as assumed in Theorem 5.

Corollary The rate of convergence of the sequence generated by the interpolation

algorithm does not depend on the class of interpolating functions T.

Remark It is evident from our analysis that the above corollary holds for
the root {inding problem, as well as for the case when the number of pieces of
information used at the interpolation point xi—J depends on j (e.g. the False
Position Method).

It follows from Theorem 5, that the rates of convergence of the interpola-

tion algorithms using the conic interpolating function (5) is p = 1.46 for s = 1,

n = 3 (4 interpolation points with no derivatives); p = 2 for s = 2,n =1

TS D S L I
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(f and f' used at two points) and p = 3 for s = 4, n =0 (f, £', f*, £"' used
at one interpolation point). Rates of convergence of algorithms using the
interpolating functions mentioned in the introduction, can be computed likewise.

The behavior of the rate p as a function of n, for fixed s, is summarized

in Theorem 6.

Theorem 6 For fixed s, p is an increasing function of n. Forn =0, p=s - 1,

2
while for n=1, p=s. As ntendstoinfinity,ptendsto%+ (-S—) +1
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Proof For n = 0, n= 1, the rate is obtained by solving the indicial equations

t - (s-1) = 0 and t° - (s-1)t - 8 = 0 respectively. The remaining assertions

are proved in Tamir {17, 18]. o

A few numerical values for p, are listed in Table 2.1.

TABLE 2.1
s n %
1 2 1.3
|

3 1.4 l
oo 1.6

2 1 2
2 2.3 4
L 2.4

3 0 2 |
1 3
o 3.3

8 0 8-l
1 8

8 8 2

% 5+ 5] * 1
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/ 2
Since %-+ (g) + 1 1is close to s even for small values of s

(see Table 1), Theorem 6 implies that algorithms using more than two interpolation
points (n > 1) are inefficient. However, two points algorithms are substantially
faster than one point (or memoryless) algorithms. Instead of making the last
statement precise by defining a measure of efficiency (chosen carefully to suit
the authors! purpose), we will note that the transition from n=0 to n=1
involves storage (but no computation) of s extra pieces of data. In addition to
this, the system of equations (9) will involve 2s instead of s unknowns.

However, this system is linear in the polynomial and rational cases (which are
the most important ones) and need to be solved once only for the class T. The
main difficulty is the solution of equation (10). This, in the case of s = 3,

n = 1 (Newton's Method with memory) with polynomial interpolation, is a polyno-
mial equation of degree Y. Solution of this equation can be avoided by using
inverse interpolation, to be discussed in section 4. On the other hand, for line
search algorithms, computation of f(k)(t) involves in fact computation of the

derivatives of a function on Rn (i.e., gradient vectors and Hessian matrices,)

making the extra effort worthwhile.




r—
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3. A CLASS OF RATIONAL INTERPOLATING FUNCTIONS

In this section we briefly discuss the four parameter rational interpolating

function
ax2+bx+c
(18) R(x) = 1
Writing (18) in the form
(19) (dx~1)R(x) = ax’ + bx + ¢ ,

differentiating (19) implicitly and then using the interpolation equations (9),
leads to a linear system of equations for the coefficients a,b,c,d. For ex-
ample, with data s=4, n=0, the equations are

2
(dxi-l)f(xi) = ax, + bxi + c

(dxi-l)f'(xi) + df(xi) = Zaxi +b

(dxi-l)f“ (xi) + 24f' (xi) = 2a

(dxi-l)f'" (xi) + 3df" (xi) =0,

Note that £f d=0, R(x) has no singularity. Therefore, it may be expected
that R(x) will provide a good fit to functions with regular or singular behavior.

We now turn our attention to the solution of (10) for x If d=0, R(x)

{+1 °

is a quadratic and (10) ylelds x 1™ -%. For d¥0, it is convenient to re-

i+
write R(x) in the form

(20) R(x)-ux+a+;_L6-

P
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b a c b a 1
where U‘=i’ p=gt<S, Y=g+t +—=, ==,
d d d2 d d2 d3 ’ d
Differentiating (20) we have
(21) R'(x) = a-—l—z_
(x-5)
(22) R" (x) = _.Z_L?
(x-8)

From (22) we see that R"(x) has exactly one change of sign at x=5. The

point x will be a minimum of £ if

1+1
(23) R'(x;,,) =0
(24) R"(x, ) >0.
From (21)-(24) we have
(25) X =8% /o
assuming
(26) ay >0 .

The two solutions in (25) correspond to the minimum point of the convex
branch of R, and the maximum point of the concave branch of R. Multiplying

(22) by (x-a)", we see that in order for (24) to hold, we must have vy(x

i+l

which combined with (25) yields

~8) > 0,

I
!
u
i
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-6+:Jyla, € =signy .

X+

Condition (26) will hold near the solution under the assumptions of Theorem 2.

Remarks. Rational interpolations are particularly useful in cases where f,
or its derivatives, have rapid changes, even when f has no singularities (see
section 5).

Use of rational functions other than (5) and (6) suggests itself, especially
when higher degree interpolation is needed, possibly combined with inverse interp-

olation (see section 4).
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4. INVERSE INTERPOLATION FOR LINE SEARCH

Inverse interpolation methods for the root finding problem f(x)=0 are
well known. Assuming that f' 1is nonzero and f (x) (x) 1is continuous on an
interval J mapped by f onto K, then f has an inverse F, and F(r)

is continuous on K. If T is a hyperosculatory interpolating function satis-

fying

T(k)(yi_j) = F(k)(yi_j) j=0,...,n3 k=0,...,8=-1,

@7)
Yiey = £0xy )
then
P )P @) n .
28)  F@®) =T + - T (ey, 0

3=0

with Oi(t) € (t,yi s Yioy e yi-n>' In the inverse interpolation algorithm
for the root finding problem, we approximate a=F(0) by X, +1=T(0).
The derivatives of the inverse function F can be expressed in terms of the

derivatives of f. Indeed, letting

Bk=F(k) ’ ak=f(k) s k=1,2,... ,
we have (see [12])
ne=k, -1 (2n-k,=2)! «(2n=k,~1) k k
(29) Bk =L(¢D) ' n!szk;i' T e | b °°‘22' T 'ann ’
n

where the summation is taken over all kl s k2 sevey kn satisfying

n n
Zk1=n-1, T 1k
i=1 i=1

1-2n-2, kizo.
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Let T be a polynomial Qn s of degree < r. By the above and since !
, ,
yi-j=f(xi-j) and F(yi-j) =x1'.’l . Qn,s can be expressed in terms of the
data xi-j and f(k) (xi-j)' If T is not a polynomial, we first construct
the interpolating polynomial Qn s satisfying (27), and proceed to solve the
’

system

1™, =™, 0 30 Km0, em1,

= f(x, ,) .

Vi3 1=}

Traub [19] shows that the rate of convergence of the polynomial inverse
interpolation algorithm is given by the positive root of the (root finding) !
indicial equation t:n+1 -8 E‘, t:j = (0, exactly as in the case of direct polynomial
interpolation. Similar tojzgr derivation in section 2, it can be shown that the
rate of convergence is independent of the interpolating class of functionms. !

Inverse interpolation has not been applied so far to the solution of line
search problems. We will define the ,'ljn’s-inverse interpolation algorithm, and §
prove that under the appropriate assumptions, its rate of convergence is given f
by the positive solution of the indicial equation (11). E

A difficulty in applying inverse interpolation to the line search problem
is that one cannot assume that f has an inverse near an extremum point «,
since necessarily £'(a) =0. Denoting, however, g=f' we can write equation
(1) as g(a) =0. Assuming that a 1is a simple zero of g, g has an inverse

G defined on a neighborhood of g(x). Since the solution o of (1) satisfies

g(a)=0, 1t is given by

(30) a = G(0) .




20

The assumption on the differentiability of g implies that G is differentiable.
Hence G 1s continuous and has a primitive function F (i.e., an indefinite in-

tegral of G), satisfying
31 F'(t) = G(t) .

Equation (31) determines F up to an additive constant. By (30) o 1is given in

terms of any solution F of (31) by
(32) a=F'() .

Now let F be any solution of (31), and let T be a hyperosculatory interpolating
function satisfying

) j=0,...,m3 k=0,...,8~-1,
(33)

The imverse interpolation process for the solution of (1) consists of approximating

a in (32) by

(34) x =T'(0) .

i+1

Evidently, x as defined by (34) is independent of the particular integration

i+1
constant associated with F. Let Qn,s be the interpolation polynomial of degree
< r satisfying (33). We will later express (34) in this case in terms of the data.
If T 1is not a polynomial, we can express equations (33) in terms of the data by
first constructing Qn,s (i.e., replace T by Qn,s in (33)) and then interpolate
Qn,s by T (i.e., replace F by Q“’8 in (33)).

In order to write (34) explicitly in the polynomial case, we can proceed to
construct Pn,s(x)’ the direct interpolating polynomial determined by (9), differ-

entiate it to obtain
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r=2 Kk
Pn’s(X) = k§0 ak(x-xi)

from which we obtain directly by [12] the inverse interpolation formula for

line search

(35) X

where Bk is given in terms of the ak's in (29).

Remark. If P(x) 1is a quadratic (which is the case for the classical Newton,

False Position and Quadratic Fit methods), P'(x) is a linear function, with

linear inverse, so that in this case the direct and inverse interpolation formulas
coincide.
The inverse interpolation formula for s=4, n=0 (with rate 3), will differ ‘

by the above argument from the direct interpolation formula for this case., It is

given by
2 ‘
fl (f|) f'" ?
(36) X4l = xi'f—'%-%_l—ﬁl’ ?
i )

Note that omitting the term with the third order derivative in (36) yields
Newton's method. Note also that the direct interpolation formula in this case is
given by the solution of the quadratic equation

' =
PO,3(xi+1) 0, where
P (k) = £, + (x=x,)£' + (x-x,)2€" + f(x=x,) £
0,3 1 i’%4 g/ L Te*) Yy

We now turn to the analysis of rate of convergence of this class of algorithms,

starting with the derivation of a basic difference equation.




B e S ——

22.

4
Theorem 7. Let £"#0 and let f(r 1), T(r+1) be continuous on an interval J.

Let the derivative G of F be the inverse of g=f', and let

= m!
Xjpgo Xgoces Xy € J, where Xn T'(0) and T satisfies (33). Then
37 14 " §'K1 ik i eg.3 * 1l " ®1.y
k=0 1~ §=0 j=0 13
J#k

where

= r " s-1 n " s
S R A OMESICHIND b CL O

3=0
j#k
L, = (DL (@) 1 £(e, )1°
i- 1\ 10 1-91
F(r)(x)-Térz(x) F(r+1)(x)-Tér:1)(x)
K, (x) = Y > L) = ) ! ,

gi(t) 3 T]i(t) € (t’yi £ Yi_l 2 vy yi-n> » and ei'j € <xi'j 1] Q') b

Proof. The proof is similar to the proof of Theorem 1 and will be omitted.

a

The interested reader can find the proof of Theorem 7 as well as the inverse

interpolation formulas for the cases n=1, s=2 and n=1, s=3 in [1].




The following theorem characterizes the behavior of the inverse interpolatory

process for the line search problem (1).

Theorem 8. Let f and T have continuous derivatives of order r+1, 1in the
interval J=(x: |x-a| <L}. Let f"(a)#0. If L is small enough, if

xo,..., x € J and the sequence {xil is constructed by the inverse interpolation
algorithm for line search (i.e. x1+1='r'(0), where T satisfies (27)), then

xi+1 € J. Furthermore, if the algorithm does not terminate, and the sequence [Ki]
defined in Theorem 7 is bounded, then xi + a with Q- and R-rates of convergence
at least p, where p 1is the unique positive root of

n~-1
(38) " e-tt-s Y ¢l =0,

=0
Proof. The proof is identical with the proof of Theorem 5.

Equation (38) is identical of course with equation (11) which is the indicial

equation of the derived difference equation (15).




5. NUMERICAL EXAMPLES

The purpose of this section is to illustrate that the theoretical rate of
convergence predicted by the preceding theorems, is well reflected in the actual
behavior of the various direct and inverse algorithms. Ten algorithms (without

safeguards) are applied to minimizing two functions:

f(x) = %x6-x3 + 2x
and
1
f(x) = x + o1 .
e -1

The first function, although nonsingular, behaves very much like a singular
one in the interval [0,2], due to rapid changes of f and its derivatives in
the interval. This in particular caused the cubic fit method to diverge.

The second functionm is highly singular at x=1. For this function, three
of the methods based on polynomial interpolation diverged. In contrast, all four
methods based on rational interpolation worked well.

The results are summarized in Tables 5.1, and 5.2. The Rational and Comic

2 2
functions referred to in these tables are ax _tbxic and ax_tbxtc respectively.
dx-1 (dx+1)2

Initial values used in Table 5.1 are {2}, {2,2.1}, {1.9,2,2.1), and {2,2.1,2.3,2.3)
according to the number of interpolation points. Initial values used in Table 5.2

are (1.75), (1.7,1.8}, {1.7,1.75,1.8}, and {1.7,1.73,1.77,1.8}. The Qp(x)‘s are the
*
T

*
”xi'x ”P

respectively.

*
quotients , where x  are the solutions 1.120742611 and 1.962423650

The algorithms were coded in APLSF-VOl on a Digital Equipment Corporation DEC-10
computer, using double precision arithmetic. We stopped when [f'(x)]| < 10'8, ex-
cept for the Quadratic Fit algorithm which was terminated after 12 steps on the first

function.
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The following theorem characterizes the behavior of the inverse interpolatory

process for the line search problem (1).

Theorem 8. Let f and T have continuous derivatives of order r+1, 1in the
interval J={x: |x=a| <L}. Let f"(a)#0. If L is small enough, if
Xgseoos X € J and the sequence {xi] is constructed by the inverse interpolation

algorithm for line search (i.e. x =T'(0), where T satisfies (27)), then

i+l

x € J. Furthermore, if the algorithm does not terminate, and the sequence [Ki}

1+1

defined in Theorem 7 is bounded, then Xy + o with Q- and R-rates of convergence
at least p, where p is the unique positive root of
n=-1

1-(3-1):".3 Py d-o.
3=0

(38) tn+

Proof. The proof is identical with the proof of Theorem 5.

Equation (38) is identical of course with equation (11) which is the indicial

equation of the derived difference equation (15).
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TABLE 5.1: Solution of f'(x) = 0, f(x) = %—xb-x + 2x 25.
Algorithm Iterations
No. £'(x) x-x* Qp(x)
0!l 2.961101000E1 | 9.792573887671 |
11 6.728546951E0 | 5.529105297¢71 |  5,684783867E"1
21 4,972863922E0 |  4,8463B64194E71 |  1.066328870€0
Polynomial 31 2.882038143E0 | 3,81%5942441E71 | 9.914324335E71
41  1.346951822E0 | 2.64791B769F"L | 9.487772154E7}
(Quadratic Fit) S1 7.684644291E71 | 1,9762446895E71 | 1,149025754E0
61 3,992147669E71 | 1.364989189F"1 | 1.169340571€0
pata: § 71 1.997530860E-1 | B.B876782058E72 | 1,241553450€0
: at 3 points Bl 1.00566468367E"1 | S.53%730732E72 | 1,369114301EQ
91 4.,718635448E"2 |  3.104070036E72 | 1.435060514€0
101 2,0343041728°2 |  1.523054207€72 | 1.515237702E0
Rate: 1.3 111 7.6133473509E~3 |  6,175096344E"3 | 1,577732360F0
120 2.,2103733460E~3 ) 1.,865705167E"3 |  1.576220344€0
Ol S5.,049343000E1 | 1,179257389E0 |
11 3.70909128960 | 4.277185647571 | 3.359004532E"1
. 21 2.281684841E0 | 3,422946382€71 | 1.188404178E0
Rational 31 1,040389540E0 | 2,320417711F71 | 1.116698663E0
41 3.936613400E71 | 1.353720412E71 |  1.151693577E0
51 1.2976096463E"1 | 4.43440548B6E72 | 1,24339225580
Data: £ at 4 points 61 S5.030661751E-2 | 3.267J36431“'? | 1.741620451€0
71 550631811E72 | 1 194494127672 | 1.797630915E0
Bl 3.,409830478E"3 | VB514697807E73 | 1.87553953160
91 4,1467734605E74 | 3,550433390qu I 1.905497807E0
Rate: 1.4 101 2.,060197138E"S | 1,739587929E"5 |  2,01224357080
111 2.394566790€~7 | 2,057134094E"7 |  1,89602681050
121 3.6165628%56E7101 3,10693748567101 1.959848404E0
Ol  2,200000000FE1 | 8,792573887671 |
Polynomial 11 6.B11135228E0 | 5.557279770E71 | 7.188366439E71
21 2,037118820E0 | 3,243497512E71 | 1.050241190F0
(Newton) 31 5.799609462E71 | 1,692501449E7) | 1,60879%474F0
Al 1,528615287E71 | 7.426608718E72 | 2,592581400E0
51 3, 407897860E 21 2.37587%/56ET2 | 4,307472124EQ
Data: f, f', f" at 61 4,649413295E73 |  3,852395563FE73 | 4.8246977%50E0
1 point 71 1.d465394J2F 4 1 1,326761876E74 | B,939870659EQ
. 81 1.945599880E~7 | 1,4671434406E77 |  9,495183683F0
Rate: 2 91 3.094629587E"131 2,458559137E7131 9.516289591FQ
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TABLE 5.1 (continued): Solution of £'(x) = 0 , f(x) = %-x6 -x3 + 2x
Algorithm Iterations
*
No. £'(x) X=X Qp(x)
Rational

0f 2.,961101000E1
11 2.,810902098E0

21 B.691731487E71
Data: f, f' at 2 points 3 1,523995812E"1
41 2,864145851€°2
. S1  2,435379612E"3
Rate: 2 61 3,036533579E75
71 4,411705579E~9

9.792573887E7 )
377236033571
2.111129278E71
7.411334%564€77
2.0508B4987E72
2.052034818E73
2.,607993338E"5
3.,790033105E79

l

I 3.933865033871
I 1,4B3503206E0
I 1,662902405%0
|
!
|
|

3.733777795€0
4.878677532€80
6.193517372€90
2037223444550

— i o - —— - —

"0l 2.941101000€1
Inverse Polynomial 11 5,486944138€0
21 1.,3952580946E
31 6,937587794F1
Data: f, f' at 2 points 41 1,185756774E7
91 2.169400795€E-2
61 B.943116552E™4
Rate: 2 71 1,74190904BE~¢
Bl 6.889045107E~12

P.792573887F71 |
Ge073A22766E71 }  5,2906029378E71
6.976612359E72 ) 2,7104567786 )
TA.193049971E71 | T8,46514713769F1
T2.000676860F7) ) T1,137933473€)

|

|

!

i

T1.399295964€ 74 T3.495873294E0
T1,216314003€71 T6.211929863€0
T1,207443531E7 “8.161602061€0
T1.,207424113E7) “8.28184132/€0

01 2.961101000E] ?.79257388787

| |

Conic 11 2,216090918E0 | 3,376086171F1 | 3.52062532667 ]
21 6,181358832E-1 | 1,753877494E71 |  1.5487646806C
, 31 9,276089320E72 | 5,2194363965°2 | 1.694778297E0
Data: £, f' at 2 points 41 1.397758065E72 | 1,086946678F72 | 3.989944315E0
S1 6.087564621E-4 |  5,203953377674 | 4.404543870E0
Rate: 2 6)  1,681494620E76 |  1,4445281515°6 |  5.334076214F v

| |

71 1.1267996085"11 2.680174431E7]12 4,639072635E9Q

Inverse Polynomial 0) 2.961101000€1 (| 9,792573887E71 |
11 2.B0309604380 | 3,7675339458~1 | 4,012052457E~1
Data: f,f', " 21 2.2350924670E71 | 9,5%0086875E72 | 1. 78581206160
at 2 points 31 9.894209873E73 | 7,900827329E"3 | 9,070675067E0
Rate: 3 41 1.778781896E76 |  1,528103896K76 | 3.098618810E0
S1 “8.673617380E7191 0 b0

01 2,200000000€E} 8.792573887671

i |
Inverse Polynomial 11 3.896702474%0 | 4,372031449671 | &.4318394876~1
21 6.374399616FE71 | 1,784081162671 | 2,134837259€0
Data: f,f',f",£" at 31 8.957458010E"2 | S5,087163547672 | 8.,958429431E0
1 point . 41  7.053276768E"3 |  5,74340794%€73 |  4,364257158361
SU 3.047780125€75 | 2,417652282675 | 1,38166%5441FD
Rate: 3 61 3.552651662E7121 3,05203256858 7121 [.7015836025E2
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T1.64798730% 716

“6.548581122€717

27.
, 1 6 3 :
TABLE 5.1 (continued): Solution of f£f'(x) = 0, £f(x) = gX =X + 2x
L o
Algorithm Iterations
*
No. £' (x) X =X Qp(x)
Rational 0l 2,200000000€1 | B8,792573887E~1 |
11 2,418567463E0 | 3,517994559€~1 | 5,175440627E71
21 2,478962995E71 | 1,019923738E71 | 2.342510081E0
Data: f,f',£' f™ at
B reint 31 1.858685452E72 | 1,405709876E°2 ) 1,324928972E1
41 1.651599944E4 | 1,416954968E°4 | 5,101160170€1
. i 2,300722529E7101 1,975517860E7101 6.947564682€1
Rate: 3
TABLE 5.2: Solutionof f'(x) =0, f(x) = x-rl/(ex~1-1)
Algorithm Iterations ) o
*
No. £'(x) X=X Qp(x)
_
0l ~"4.,817470946E-1 | ~1,624236501E1 |
Polynomial 11 "1.595324554€E71 | T4,425557875E72 | 7.,138022810F"1
(Quadratic Fit) 21 "6.,867413860E72 | ~2.931057487E72 | 1,112259825€0
. 31 T1.980314447€72 | ~“8,7353346800€E73 | 9,376484668E71
Data: f at 3 points 41 "3,136116528E"3 | “1,399442557€73 |  7.467562847E71
S1 "3.,604098014E"4 | ~1,611395109€4 | 9,727620112E™1
) 61 T1,616424827E"5 | ~7,228789794E76 |  7.4463321465671
Rate: 1.3 71 T2,7623846271€E77 | "1,235376457E77 |  7.,981553749E"1
81 ~2.808337059E~9 | ~1,255924503E"9 | 1,779843092€0
Rational 0l ~4,817470946E"1 | ~1,624236501E71 |
11 "1.,793141898E"4 | ~8,018257350E"5 | 1,150614171E-3
Data: f at 4 points 21 T4.,093437144E75 | T1.,830588290E75 | 1,842493943E1
31 "1.806096932E8 | ~8,077110%18E"9 | 7,083809281E~2
Rate: 1.4 41 "1.465487887E"121 ~6.553780955E"131 4,753184221E"1
"gly‘:“‘:“ Ol ~6.,967368901571 | ~2,124236501E71 |
(Newton 11 "1,623305337E71 | —6.527012224E"2 |  1,446467539E0
21 "1,470945849€E72 | ~4,511392281E"3 | 1,5284280B1E0
. ] U -
Data: f;in'tf' at one 31 "1.,480594988E74 | ~6,620735904E"5 | 1,561559526FE0
R 4 4) ~1,534158280F~8 | ~6.860964325E"9 | 1.565210065€0
ate: 2 I |

1,391159384€0




Rate: 3

28.
TABLE 5.2 {ccutinued): Solution of f'(x) = 0, f(x) = x+1/(e"'1_1)
Algorithm Iterations
*
No. £'(x) X =X Qp (x)
Rational 01 ~A.817670946E"1 | ~1.624236501E71 )
Data: f£,f' at 2points 11 T1.754343274E4 | ~7.BA44698287E75 |  2,973566893E73
Rate: 2 21 “2.441789574E"8 | ~1.092001475E78 | 1,774478474E€0
ate: 31 "1.864827737E717( O 1 0
Conic 0! ~4.817670946E71 | ~1.6242346501E71 )
Data: f,f' at2points 11 1,617959193E"2 |  7,318732791€73 | 2,774197391E71
Rare: 2 21 T1,324951426E74 | "H5,924813411E75 | 1.106121654€0
ate: 31 1.,862712947E-9 | B8,33030563BE7101 2.373075636€71
Inverse Polynomial Ol “6.967368901E"1 | ~2,124234501E71 |
Data: f£,£',£", £ 11 "5.067809765E~2 | ~2,1890485935"2 | 2,283740747EQ
at one point 21 “6.296381781E75 | "2,815703434E75 | 2,6B4236045E0
31 "1.36435%5677E"131 ~6.100762256FE7141 2,732897665€0
Rate: 3
Rational
Data: f£,£',£",£™ 01 ~4,967368901E"1 | "2,124236501E"1 | ] o
at ome point 11 "1.846146248E74 | ~8.255150214€E°% | 8.612245055€ =
21 "1.397579968E714) ~6.241968747E7151

1,109549416F" .




6. CONCLUDING REMARKS

Our analysis points to the inefficiency of interpolation algorithms based
on more than two interpolation points (or more than three points if function
values only are used). Two-point algorithms are significantly faster than one-
point algorithms, the latter are therefore useful only if computation of the
derivatives of f are relatively very cheap.

Use of inverse interpolation is recommended if equation (10) is difficult
to solve. Note that even in the Cubit Fit case where the interpolating function

is a cubic, solution of equation (10) involves computation of square roots (see

(10. p. 142]), 1in itself a relatively costly operation on the computer.

Moréover, our results allow the design of a one-dimensional minimization
algorithm without regard to the choice of the r-parameter family of interpolating
functions used. Special structure of the problem can be taken advantage of by
using appropriate r-parameter interpolants with the assurance that the rate of
convergence will not be impaired. Also, when combined with a safeguarding technique,
one might want to compute several guesses to the minimizer based upon different
r-parameter interpolation of the same data, and then use the "best" guess. This
can be used to great advantage, for example, when one guess is outside the interval
of uncertainty or undefined. Clearly, the rate of convergence will be unhampered
even though iterates may be selected from a (finite) number of r-parameter families
of interpolants.

Note that the procedure of safeguarding by bracketing as suggested in (10,
section 7.3], may severely affect the rate of convergence, since the basic difference
equations may be fundamentally changed by such modifications.

Assume, for example, that we modify the Quadratic Fit algorithm so that one of

the points (not necessarily xi_z) is dropped, in such a manner

Xi41 2 ¥4 X100 *400
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that the remaining points bracket the solution «. Then we may choose

i e, <0< e, < e and small enough L, such that equation (15) of Theorem 4 would

imply that, for M > 0, we have e >0 for all 1i. Hence, in the bracketing

i+l
' algorithm, one of the three interpolation points is fixed as X3, and in the
difference relation (15) one of the indexes should be replaced by 3, 1leading to

difference equation with an indicial equation different than (11).

Thus the statement in Tamir [17], that bracketing algorithms do not lend
themselves to the difference equation approach, and the conjecture made there
that the interpolation and the bracketing algorithms have the same rates of
convergence, are both false.

A bracketing procedure that aims at maintaining the rate of convergence of

the underlying interpolation, should coincide with it near the solution.

REFERENCES

{1] J. Barzilai and A. Ben-Tal, Nonpolynomial and inverse interpolation for

lime search: synthesis and convergence rates, Research Report 385, Center
for Cybernetic Studies, The University of Texas at Austin, 1980.

[2] A. Ben-Tal and A. Ben-Israel, F-convex functions: properties and applications, k

Generalized Concavity in Optimization and Economics, M. Avriel, S. Schaible
and W.T. Ziemba, eds., Academic Press, New York, 1981.

[3] P. Bj¢rstad and J. Nocedal, Analysis of a new algorithm for one-dimensional
minimization, Computing, 22(1979), pp. 93-100.

[4] R.P. Brent, Algorithms for Minimization without Derivatives, Prentice=-Hall,
Englewood Cliffs, N.J., 1973.

{5] Ww.C. Davidon, Conic approximations and collinear scalings for optimizers,
SIAM J. Numer. Anal., 17(1980), pp. 268-281.

[6] P.J. Davis, Interpolation and Approximation, Blaisdell Publishing Company,
a division of Ginn and Company, Waltham, Mass., 1963.

[7] E. Isaacson and H.B. Keller, Analysis of Numerical Methods, Wiley, New
York, 1966.

[8] P. Jarratt and D. Nudds, The use of rational functions in the iterative

solution of equations on a digital computer, Computer Journal, 8(1965), 1
pp. 62-65.




(91

(10]

11}

112}

{13}

(14}

[15]

[16]

(17]

(18]

(19]

{20}

31.

P. Jarratt, A rational iteration function for solving equations, Computer
Journal, 9(1966), pp. 304-307.

D.G. Luenberger, Introduction to Linear and Nonlinear Programming, Addison-
Wesley, Reading, Mass., 1973,

J.M. Ortega and W.C. Rheinboldt, Iterative Solution of Nonlinear Equations
in Several Variables, Academic Press, New York, 1970,

A .M. Ostrowski, La developpment de Taylor de fonction inverse, C.R. Acad.
Sci. Paris, 255(1962), pp. 238-240.

A.M. Ostrowski, Solution of Equations and Systems of Equations, 2nd ed.,
Academic Press, New York, 1966.

A. Ralston, On differentiating error terms, American Mathematical Monthly,
70(1963), pp. 187-188.

A. Ralston, A First Course in Numerical Analysis, McGraw Hill, New York,
1965.

i
S.M. Robinson, Quadratic interpolation is risky, SIAM J. Numer. Anal., ‘L
16(1979), pp. 377-379.

A Tamir, A one-dimensional search based on interpolating polynomials using
function values only, Management Science, 22(1976), pp. 576-586.

A Tamir, Rates of convergence of a one-dimensional search based on interp-
olating polynomials, Journal Opt. Theory Appl., 27(1979), pp. 187-203.

J.F. Traub, Iterative Methods for the Solution of Equations, Prentice-Hall,
Englewood Cliffs, N.J., 1964.

M.A.H. Wright, Numerical methods for nonlinearly constrained optimization,
Research Report STAN-CS-76-566, Stanford Univ., Stanford, CA, 1976.




Unclassified

SECURITY CLASSIFICATION OF THiS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE BEF O P T RM

[T REPORT NUMGER 7. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

ccs 409 AD-A10C E &Y
& TITLE (and Subtitte) 5. TYPE OF REPORT & PERIOD COVERED
NONPOLYNOMIAL AND INVERSE INTERPOLATION FOR Research
LINE SEARCH: SYNTHESIS AND CONVERGENCE RATES
€. PERFORMING CRG. REPORT NUMBER
cCS LR 7

7. AUTHOﬂ(l) B. CONTRACT OR GRANT NUMBER(s)

J..Barzilai, A. Ben—Tal N00014-75-~C-0569
N0O0014-80-C-0242 .

9 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELE“EN"T QHOJECT TASK
Center for Cybernmetic Studies, UT Austin AREA & WORICuMIT NumeE
Austin, Texas 78712

1. CONTROLLING OFF)CE NAME AND ADDRESS 12. REPORT DATE
Office of Naval Research (Code 434) July 1981
Washington, D.C. 13. ~3u§495n OF PAGES

5. SECURITY CLASS. (of this teport)

Unclassified

14 MONITORING AGENCY NAME 8 ADDRESS(If different from Controlling Oltice)

1Sa. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thia Report)

This document has been approved for public release and sale; its
distribution is unlimited.

17. DISTRIBUTION STATEMENT (ol the abatract entered In Block 20, .t difterent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse alde if necessary and Identify by Block number)

Nonpolynomial interpolation, inverse interpolation, convergence rates, line
search, root finding, mathematical programming

20. ABSTRACT (Continue on reverse side 'y and identity by block mumber)

The rate of convergence of line search algorithms based on general
interpolating functions is derived, and is shown to be independent of the
particular interpolating function used. This result holds for the root
finding problem f(x) = 0 as well. We show how inverse interpolation can be
used in conjunction with the line search problem, and derive its rate of con-
vergence. Our analysis suggests that one-point line search algorithms (in
particular Newton's method) are inefficient in a semse. Two-point (cont'd)

1 KOI1TION OF | NOV 68 18 OBSOLETE
w uAn n ‘73 '”: ;‘::’.0“_"“:| \ to v Unclassified

P dheteedmi e e e ey ved
SECURITY CLASSIFICATION OF THIS PAGE (When Dete Bntered)




Unclassified

LURITY CLASSIFICATION OF THIS PAGE(Whan Date Bntered)

20.

(cont'd) algorithms using rational interpolating functions are
recommended.

Unclassified

SECURITY CLASSIFICATION OF TS PAGE(When Date Entered)







