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ABSTRACT

The rate of convergence of line search algorithms based on general

interpolating functions is derived, and is shown to be independent of the

particular interpolating function used. This result holds for the root

finding problem f(x) = 0 as well. We show how inverse interpolation can

be used in conjunction with the line search problem, and derive its rate of

convergence. Our analysis suggests that one-point line search algorithms

(in particular Newton's method) are inefficient in a sense. Two-point

algorithms using rational interpolating functions are recommended._
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1. INTRODUCTION

An essential part of multidimensional minimization algorithms is

a line search, i.e., a one-dimensional scheme for the solution of the

equation

(1) ft(x) = 0.

Most of the line search algorithms in common use are based on
polynomial interpolation of f. At iteration i, a polynomial Pn,s(x) (the

so-called hyperosculatory interpolation polynomial) which coincides with

f and its derivatives up to order s-1, at each of the n+1 interpolation

points xi, xi_1 .... Xi-n, is constructed. The new interpolation point

X i+1, is the solution of

(2) Pn~s (x1+1 )0.

In fact, to facilitate the solution of (2), a low degree polynomial

is fitted, i.e., r = s(n+1) is small; quadratic and cubic fit being most

commonly used.

In recent years, the possibility of using nonpolynomial interpolation

functions received some attention. One important situation arises in line

searches associated with n-dimensional constrained problems, solved by

barrier function methods. A fit by a polynomial cannot capture the

singular behavior of the barrier objective function at the boundary of the

feasible region. Wright [20] dealt with the case of the logarithmic barrier

function. She suggests using the interpolating functions

(3) ax + b + r log(x-c)

(4) ax2 + bx + c + r log (x-d).

1i
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Bjdrstad and Nocedal (31 analyze the rate of convergence of an

algorithm based on the interpolating function

2() ax + bx +. c

(dx + 1)

This function is the one-dimensional restriction of the "conic" model

function suggested by Davidon (5], who lists some important advantages of

the conic model over the quadratic one.

Independently, we suggested [1] another rational interpolating

function

2
(6) ax + bx + cdx-1

which we analyze in section 3.

Nonpolynomial interpolation was suggested much earlier for the root

finding problem

(7) f(x) = 0.

Ostrowski (13, p. 821 used in this conjunction the rational function 
ax + b
cx + d

which Jarratt and Nudds [81 and Jarratt [91 generalized to

(8) x- a

where Q(x) is a polynomial. Ben-Tal and Ben-Israel [2] describe nonpolynomial

interpolations by certain types of generalized convex functions.

We formally define the T s- interpolation algorithm as follows.

Let n,>O, s> >1 be fixed integers and let T be a family of s-1 times

differentiable functions T:ReR, depending on r = s(n+1) parameters. At



iteration i, the points xI, xi_1 , ., i n are given, and a function

T E T is chosen so as to satisfy the interpolation equations

(9) T(k)(xi-j  f(k)(xi-j) J = 0, ...n; k = 0, ..., s-1.

A new interpolation point is computed from

(10) TI(xi+l  0

and the oldest point xi n is deleted.

The practicality of using a particular class T depends to a great

extent on the degree of difficulty of solving the (generally nonlinear)system

of equations (9) and equation (10). In the case of the logarithmic functions

(3) and (4), equation (10) is easy to solve, but (9) is an Ill-conditioned

nonlinear system of equations. Wright [203 uses table look-ups, and applies

Newton's method after operating some transformations on these equations, in

order to solve them.

For the conic model studied by BJirstad and Nocedal (3], equations (9)

and (10) can be reduced to quadratic equations, while for the rational function

(6) discussed in section 3, equations (9) are reduced to a linear system, and

(10) is very easy to solve.

Note that in the polynomial case, (9) is a linear system. However,

(10) is difficult to solve unless T is a low degree polynomial. It will be

shown in section 4, that this difficulty can be circumvented by employing

inverse interpolation.

Note also, that for the function (8), the interpolation equations can

be reduced to a linear system, while the solution of T(xi+ I) 0 is simply

ii+1

i a.



In this paper we investigate the rate of convergence of these

minimization algorithms. Here we say that the rate of convergence of a

sequence {x I converging to a is p, if there exists a positive number C,

such that

Xi+l C

Ixj -alP

(see (19, pp. 1-131). Ortega and Rheinboldt (ii] refer to the rate p defined

above as the C-order of the sequence {xi. When it exists, it coincides with

their so-called Q- and R- orders (see [ii, section 9]).

Rate of convergence analysis is supplied by Bjdrstad and Nocedal [3]

for the conic function with s = 2, n = 1. The derivation, which uses a

symbol manipulation computer program, is quite elaborate. Moreover, the

analysis does not carry over naturally to the study of the convergence

properties of an algorithm using the same interpolation function, but with

different data say s = 1, n = 3.

Wright [20] gives no rate of convergence analysis for the algorithms

using the logarithmic interpolating functions (3) and (4).

An outline of the paper is as follows. In section 2 we prove rate of

convergence theorems for general Tn,s -interpolation methods. We show that the

rate of convergence is given by the unique positive root of the indicial

equation

tn+l - (s-l)t n  -1

(11) F, t 0S~i=
J=O

Since this equation depends on n and s only, the rate is independent of the class T.
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In section 3 we analyze the specific family of interpolating functions

a2ax + bx + c
dx-l

Inverse interpolation for minimization algorithms is introduced in

section 4. We show that the rate of convergence in this case is again given

as the positive root of (11).

Numerical examples illustrating the convergence theorems are given

in section 5.

In section 6 we discuss the implications of the rate of convergence

analysis to the design of algorithms.
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2. RATES OF CONVERGENCE OF NONPOLYNOMIAL ALGORITHMS

Traub [19] studied the rate of convergence of algorithms that use

polynomials to interpolate f, or its inverse function for the root finding

problem (7). The naturalmodifications of these results for the minimization

problem are discussed by Tamir [17, 18] for the direct polynomial case, i.e.,

when the interpolation requirements are given by (9), T being a polynomial

of degree < r = s(n+l).

The key result for this analysis is the product form formula of the

error incurred in hyperosculatory polynomial interpolation (e.g. [6, p. 67]).

Ostrowski [13, p. 12] generalized this formula to the case where the

interpolating function is not necessarily a polynomial. However, no use of

this generalized formula has been made to extend the analysis of Traub and

Tamir to the nonpolynomial case. Using this formula, we will obtain a

difference equation which differs from the one obtained by Tamir in its

right hand side only. This implies that in the nonpolynomial case too,

the rate is given by the positive root of the indicial equation (11).

Tamir [17, 18] gives two separate proofs for the cases s = 1, s > 1. We

will give a unified proof, and settle his conjectures in 1171.

Stronger results than ours can evidently be obtained by relaxing

some of our assumptions (compare for example Brent [4] ). We have preferred,

however, to keep the presentation unobscured by these technicalities. For

the same reason, we have not stated explicitly the interval of (local)

convergence. This is done in great detail in [17] and repeated in [18].

We will denote by a a solution of (1), and by J the interval

J = Ix: Ix - al c L} for some positive L. The error xk - a will be denoted

by ek, and the open interval determined by (al, ..., am } will be denoted by



<an, ... , a >.

The fo.Llowing assumption will be used repeatedly.

Assumption 1 r = s(n+l) -> 3; f and T have continuous derivatives of

order r + 1 in J for all T c ; f"() 0 0 ; xi c J and xj 1 xk for

J #k, i,j, k = 0, 1, 2, ... , n ; ek 0 0 for all k.

Note that if ei = 0 for some i, xi is a solution of (1), and the

algorithm is terminated.

In order that the sequence {x i } defined by the algorithm be well

defined, the interpolation equations (9), as well as equation (10) for
Xi+l, must have solutions. If T is the class Pn,s of polynomials of degree

less than r = s(n+l), equations (9) have a solution if and only if

xk 0 x. for k P. To quote Davis [6, p. 27), the hope that an interpolation

problem can always be solved providing the number of parameters equals

the number of conditions, is naive. T can be replaced by Pn,s in iterations

at which (9) has no solution, but in practice this case is rather unlikely.

We will assume henceforth that (9) has a solution for all i.

As for equation (i0), we will prove that under Assumption 1, it has

a solution for all i, if L is small enough. We need the following difference

relation to prove this and other results.

Theorem 1 Under Assumption 1, if T" 0 0 on J, then the errors ei = x-

induced by the T ns- interpolation algorithm, satisfy the recursion equation:

(12) e M e n n

. i -k e=0 j + Ni =i
jJ= ei
J~k
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where

Hr 1 i(o) (-I)-1.s Ni r

Mi = T" ((x i+ ) T"N( =( i+ )

MI() = fr( )____T____r)(x)r1)(rl

m1 W f(r)() - T(r)(X) Nl(X) f (r+l)(x) - T (x)
(r+l)!

&it hi( n(t) <t, xi, xi 1, ... , Xi-n> and

0(xIC) < , >

Proof: The error in the interpolation (9) is given by (see [13, p. 12] )

(r) (r) ()n

(13) T(t) = f(t) + T- - r = (t -

== -- j

Differentiating (13) we have

(14) f'(t) = T'(t) + Ml( .t(t))W'(t) + Nl(n,(t)) W(t)

n
where W(t) = i (t - xij )s and M1 , NI, i(t) and ni are defined aboveJ=0

(for proof see [I, section a where we generalize Ralston's result [14, 15] on the

differentiation of the error term, to the hyperosculatory case). Substituting

t = a in (14) and using

S - lT"(X )l we obtain (12).

0
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Under Assumption 1, f"(a) 0. Since f'((a) 0, ff must change its sign at

a. It follows by substituting t = a - L and t = a + L in (14), that T' also

has opposite signs at these two points (for a detailed proof see Appendix A

in [18]), if L is small enough. We summarize this result in

Theorem 2 Under Assumption 1, if L is small enough, there exists xi+1 E J

satisfying equation (10).

Using Theorem 1 in [7, chapter 6, section 51, it follows immediately

from the difference equation (12), that if the initial errors e0, ..., en are

small enough (i.e., L is small enough), the sequence ei tends to zero, establishing

the following local convergence result.

Theorem 3 Under Assumption 1, if L is small enough, the sequence {x I converges

to the solution a of (1). 0

Also note that if L is small enough, and if s > 1, we have by (12)

l eil < jel , implying xi+1 0 xi . For s = 1 however, we have to assume

xi+1  xi (cf. [16]).

We now replace (12) by a more useful difference equation.

Theorem 4 Under the assumptions of Theorem 3, and if the sequences (M [Ni

are bounded, then

(15) el+I  Ai s-in s

J=i

with (A i bounded.

Proof. By assumption, the sequences Mi, Ni are bounded. If s > 2, (12) implies

(16) ei+1 0e i
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(i.e. superlinear convergence). If s = 1, we must have n 2 since we assumed

r = s(n+l) > 3. For n = 2, (12) is the basic difference relation governing

the behavior of the Quadratic Fit algorithm, which is known to converge

superlinearly (see Theorem 3.4.1 in Brent [4]). It is evident from (12) that

the rate for n > 2 is not less than the rate for n = 2. Therefore, (16) holds

for all s 1, n >- 0 if r = (n+l)s > 3. Rewriting (12) in the form

n s[ n ei 1(17) e+ 1, = ea = le- M++M 1E +N ei = i I kt e i-k

we see by (16) that (15) holds with

Ak=l e i-k 
0

Remark In [17, Appendix C], Tamir conjectures that his apriory assumption

(17, Assumption 21 on the superlinear convergence of the sequence {e } is

redundant. Our proof shows that this assumption is indeed redundant.

We now state our main result.

Theorem 5 Under the assumptions of Theorem l4, the sequence {x ) generated

by the T ,- interpolation algorithm converges to the solution a of (1), with

Q- and R-rates of convergence at least p, where p is the unique positive

root of the equation
tn+l -s t j = 0.

J=O
Proof Convergence of (x) to cL is proved in Theorem 3.

Tamir (17,181 proves, under the additional assumption Ai + A 0 0,

that the C- (and therefore Q- and R-) rate is exactly p.
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Now A * A # 0 is the worst possible case, for if the sequence [Ail

is bounded (not necessarily convergent), equation (15) implies Q-rate of con-

vergence at least p (even though the C-order may fail to exist).

Indeed, the proof in [17,18] is based on a similar result of Traub [191

for the root finding problem. We will indicate the slight modifications necessary

in the proof, for the latter problem. First, it is evident that if the sequence

Ni ) of Theorem 3-I in [19] is bounded above, so is the sequence (ai}1. This

in turn implies that the sequence (DiI of Theorem 3-3 of (19] is bounded above,Iei+1 I
or equivalently lim sup .---1. < + -, hence the Q-order of the sequence [xi }

lei
is at least p.

The assertion on the R-order follows from Theorem 9.3.2 in [11, section 9].

C3

Remark If the mapping from x n ,..., x1  to the parameters of T defined

by (9) is continuous, the sequences (Mi , (Ni) are convergent, hence bounded,

as assumed in Theorem 5.

Corollary The rate of convergence of the sequence generated by the interpolation

algorithm does not depend on the class of interpolating functions T.

Remark It is evident from our analysis that the above corollary holds for

the root finding problem, as well as for the case when the number of pieces of

information used at the interpolation point xiij depends on J (e.g. the False

Position Method).

It follows from Theorem 5, that the rates of convergence of the interpola-

tion algorithms using the conic interpolating function (5) is p =.1.46 for s = ,

n = 3 (4 interpolation points with no derivatives); p = 2 for s 2, n I

i
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(f and f' used at two points) and p = 3 for s =, n = 0 (f, fl, f", f"' used

at one interpolation point). Rates of convergence of algorithms using the

interpolating functions mentioned in the introduction, can be computed likewise.

The behavior of the rate p as a function of n, for fixed a, is summarized

in Theorem 6.

Theorem 6 For fixed a, p is an increasing function of n. For n = 0, p = s - 1,

2
while for n= i, p =s. As n tends to infinity, p tends to + +
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Proof For n = 0, n = 1, the rate is obtained by solving the indicial equations

t - (s-1) = 0 and t2 - (s-l)t - s = 0 respectively. The remaining assertions

are proved in Tamir 117, 18]. 0

A few numerical values for p, are listed in Table 2.1.

TABLE 2.1

n p

2 1.3

3 1.4

00 1.6

2 1 2

2 2.3

@ 2.4

3 0 2

1 3

Go 3.3

5 0 s-I

2 + ()+i
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Since + 1 is close to s even for small values of s

(see Table 1), Theorem 6 implies that algorithms using more than two interpolation

points (n > 1) are inefficient. However, two points algorithms are substantially

faster than one point (or memoryless) algorithms. Instead of making the last

statement precise by defining a measure of efficiency (chosen carefully to suit

the authors' purpose), we will note that the transition from n = 0 to n = 1

involves storage (but no computation) of s extra pieces of data. In addition to

this, the system of equations (9) will involve 2s instead of s unknowns.

However, this system is linear in the polynomial and rational cases (which are

the most important ones) and need to be solved once only for the class T. The

main difficulty is the solution of equation (10). This, in the case of s = 3,

n = 1 (Newton's Method with memory) with polynomial interpolation, is a polyno-

mial equation of degree 4. Solution of this equation can be avoided by using

inverse interpolation, to be discussed in section 4. On the other hand, for line

search algorithms, computation of f(k)(t) involves in fact computation of the

derivatives of a function on Rn (i.e., gradient vectors and Hessian matrices,)

making the extra effort worthwhile.
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3. A CLASS OF RATIONAL INTERPOLATING FUNCTIONS

In this section we briefly discuss the four parameter rational interpolating

function

2

(18) R(x) = ax +bx+c
dx-1

Writing (18) in the form

(19) (dx-l)R(x) - ax2 + bx + c

differentiating (19) implicitly and then using the interpolation equations (9),

leads to a linear system of equations for the coefficients a,b,c,d. For ex-

ample, with data s=4, n- 0, the equations are

2
(dx -l)f(x1 ) = ax + bx + c

(dx -l)f' (xi) + df(xi) = 2ax1 + b

(dxi-l)f" (xi) + 2df' (x ) 2a

(dxi-l)f'i (xi) + 3df" (xi) 0

Note that if d- 0, R(x) has no singularity. Therefore, it may be expected

that R(x) will provide a good fit to functions with regular or singular behavior.

We now turn our attention to the solution of (10) for x i+I . If d- 0, R(x)
b

is a quadratic and (10) yields x 1  -- . For dO 0, it is convenient to re-

write R(x) in the form

(20) R(x) - cx + + .x ,B
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where = , S d 2 Y = + 3 , -
d d d

Differentiating (20) we have

(21) R' (x) = .
(x-8)2

(22) R"(x) =

From (22) we see that R"(x) has exactly one change of sign at x= 5. The

point x1+1  will be a minimm of f if

(23) R'(x ) 0

(24) R" (x+ 1 ) > 0.

From (21)-(24) we have

(25) xi+1 = -Y7_

assming

(26) CCY > 0.

The two solutions In (25) correspond to the miniunm point of the convex

branch of R, and the maximum point of the concave branch of R. Multiplying

(22) by (x-a) 4  we see that in order for (24) to hold, we must have y(x 1+l-b) > 0,

which combined with (25) yields

t~
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x+ 1 =8 + c 
4  _, c - sign y

Condition (26) will hold near the solution under the assumptions of Theorem 2.

Remarks. Rational interpolations are particularly useful in cases where f,

or its derivatives, have rapid changes, even when f has no singularities (see

section 5).

Use of rational functions other than (5) and (6) suggests itself, especially

when higher degree interpolation is needed, possibly combined with inverse interp-

olation (see section 4).
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4. INVERSE INTERPOLATION FOR LINE SEARCH

Inverse interpolation methods for the root finding problem f(x) = 0 are

well known. Assuming that f' is nonzero and f ()(x) is continuous on an

interval J mapped by f onto K, then f has an inverse F, and F (r)

is continuous on K. If T is a hyperosculatory interpolating function satis-

fying

(27 T ( ) =y- F ( y 1-) j=O0,...,n; k=0,...,sa-lI

then

(28) F (t) T T(t) + r!t tyi)
J-0

with 0 i(t) r. (t,y, y i 1,. I i-n* In the inverse interpolation algorithm

for the root finding problem, we approximate L= F(0) by x =T(O).
i+l

The derivatives of the inverse function F can be expressed in terms of the

derivatives of f. Indeed, letting

Ok F k- f), k=1,2'...

we have (see [121)

n-k 1  (2n-k1-2)! -(2n-k 1 ) k2  kn
(29) Ok n) 'k'.k!0 'l *2n~2. 3 n

where the summation is taken over all k1 , k 2  k.. kn satisfying

n n
Xk =n-l, Eik -.2n-2, k > 0.
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Let T be a polynomial Qns of degree < r. By the above and since

Yi-j= f(xi-J) and Fyi.j) x i-j. Qn,s can be expressed in terms of the

data x and f ( X x If T is not a polynomial, we first construct
i-i -

the interpolating polynomial Qn,s satisfying (27), and proceed to solve the

system

)k - kT (Yi-J nsi- j =O,...,n; k=O,...,s- ,

= f(x i..j)

Traub [19] shows that the rate of convergence of the polynomial inverse

interpolation algorithm is given by the positive root of the (root finding)
n+l n

indicial equation t s t j = 0, exactly as in the case of direct polynomial
J=O

interpolation. Similar to our derivation in section 2, it can be shown that the

rate of convergence is independent of the interpolating class of functions.

Inverse interpolation has not been applied so far to the solution of line

search problems. We will define the i -inverse interpolation algorithm, and

prove that under the appropriate assumptions, its rate of convergence is given

by the positive solution of the indicial equation (11).

A difficulty in applying inverse interpolation to the line search problem

is that one cannot assume that f has an inverse near an extremum point a,

since necessarily f' (a) = 0. Denoting, however, g= fV we can write equation

(1) as g(a)= 0. Assuming that a is a simple zero of g, g has an inverse

G defined on a neighborhood of g(a). Since the solution m of (1) satisfies

g(m) = 0, it is given by

(30) a = G(O)
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The assumption on the differentiability of g implies that G is differentiable.

Hence G is continuous and has a primitive function F (i.e., an indefinite in-

tegral of G), satisfying

(31) F'(t) = G(t)

Equation (31) determines F up to an additive constant. By (30) M is given in

terms of any solution F of (31) by

(32) = F' (0)

Now let F be any solution of (31), and let T be a hyperosculatory interpolating

function satisfying

( T(k)(Yi-J) = F (k)(y i -j j=0,...,n; k=0,...,s- I

Yi-j - g(xi.j)

The inverse interpolation process for the solution of (1) consists of approximating

a in (32) by

(34) xi+1 =T'(0)

Evidently, xi+1  as defined by (34) is independent of the particular integration

constant associated with F. Let Qns be the interpolation polynomial of degree

< r satisfying (33). We will later express (34) in this case in terms of the data.

If T is not a polynomial, we can express equations (33) in terms of the data by

first constructing Qn,s (i.e., replace T by Q s in (33)) and then interpolate

Qn's by T (i.e., replace F by Q in (33)).qn, s n 3)

In order to write (34) explicitly in the polynomial case, we can proceed to

construct P (x), the direct interpolating polynomial determined by (9), differ-

n, s

entiate it to obtain
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r-2k

p' (x) = F k
k=O

from which we obtain directly by [12] the inverse interpolation formula for

line search

r-2
(35) xi+l= x i + E 0k(-M0 ) k

k=l

where 0 k is given in terms of the ak's in (29).

Remark. If P(x) is a quadratic (which is the case for the classical Newton,

False Position and Quadratic Fit methods), P'(x) is a linear function, with

linear inverse, so that in this case the direct and inverse interpolation formulas

coincide.

The inverse interpolation formula for s= 4, n =0 (with rate 3), will differ

by the above argument from the direct interpolation formula for this case. It is

given by

i 1 (fj)2fit
(36) x = x-" 2 (I )3

Note that omitting the term with the third order derivative in (36) yields

Newton's method. Note also that the direct interpolation formula in this case is

given by the solution of the quadratic equation

i P (x ) = O, whereSo;, 3--i+l o

2 1, 3. ,,,

P0 3 (x) = f1 + (x'x)fi + (x-xi) 2 f. + 6lx'xj)

We now turn to the analysis of rate of convergence of this class of algorithms,

starting with the derivation of a basic difference equation.



22.

Theorem 7. Let f" 00 and let f(r+1) T(r+l) be continuous on an interval J.

Let the derivative G of F be the inverse of g= f, and let

xi+l xi ,..., x J, where xi+1  T' (0) and T satisfies (33). Then

n n n
(37) e1+ = K e 1 1i e + L 1i-ik=O i-k i-k J= ij +  i j

jjk

where
Ki~ (-1) rS ~ ( () ,s-In
Ki-k _,rsK (I 1(0)) 1fl,(9 i-kl s- 1 " G I

1=0
j~~k

Li = ((1 ))i [f[(@ S
i I ~ J=0 -
F(r) .(r) (rx) (r+l)()

(x)-T (X) F (x)-T
K I (x) r! , L1 (x) = (r+l)!

{ t W qi (t ) 6 (tyi' Yi-'1  Yi-n ) ' and 9i-j e (xi-J C )

Proof. The proof is similar to the proof of Theorem 1 and will be omitted.

The interested reader can find the proof of Theorem 7 as well as the inverse

interpolation formulas for the cases nf= I, s= 2 and n= , s= 3 in [I].
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The following theorem characterizes the behavior of the inverse interpolatory

process for the line search problem (1).

Theorem 8. Let f and T have continuous derivatives of order r +1, in the

interval J=(x: Ix-al SL). Let f"(cx)00. If L is small enough, if

x0 , ... , xn e J and the sequence (xi) is constructed by the inverse interpolation

algorithm for line search (i.e. xi+ 1 T'(0), where T satisfies (27)), then

e J. Furthermore, if the algorithm does not terminate, and the sequence (Kixi+i

defined in Theorem 7 is bounded, then xi * a with Q- and R-rates of convergence

at least p, where p is the unique positive root of

n-l

(38) t n+ (S- l)tn -s n tj = 0
J=O

Proof. The proof is identical with the proof of Theorem 5.

Equation (38) is identical of course with equation (11) which is the indicial

equation of the derived difference equation (15).
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5. NUMERICAL EXAMPLES

The purpose of this section is to illustrate that the theoretical rate of

convergence predicted by the preceding theorems, is well reflected in the actual

behavior of the various direct and inverse algorithms. Ten algorithms (without

safeguards) are applied to minimizing two functions:

1 6 3
f(x) = Tx -x + 2x

and

f(x) = x + 1
e -1

The first function, although nonsingular, behaves very much like a singular

one in the interval [0,2], due to rapid changes of f and its derivatives in

the interval. This in particular caused the cubic fit method to diverge.

The second function is highly singular at x= 1. For this function, three

of the methods based on polynomial interpolation diverged. In contrast, all four

methods based on rational interpolation worked well.

The results are summarized in Tables 5.1, and 5.2. The Rational and Conic
ax2+bx+c ax2+bx+c

functions referred to in these tables are d and respectively.
dx-1 (dx+l)2

Initial values used in Table 5.1 are (2), (2,2.1), [1.9,2,2.1), and (2,2.1,2.3,2.3)

according to the number of interpolation points. Initial values used in Table 5.2

are (1.75), (1.7,1.8), (1.7,1.75,1.8), and (1.7,1.73,1.77,1.8). The Q (x)'s are the
p

Ixi+l- * *11
quotients where x are the solutions 1.120742611 and 1.962423650

respectively.

The algorithms were coded in APLSF-VOI on a Digital Equipment Corporation DEC-10

computer, using double precision arithmetic. We stopped when If'(x)J < 10" , ex-

cept for the Quadratic Fit algorithm which was terminated after 12 steps on the first

function.
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The following theorem characterizes the behavior of the inverse interpolatory

process for the line search problem (1).

Theorem 8. Let f and T have continuous derivatives of order r +1, in the

interval J = [x: Ix-LI S L). Let f"(a) 0 O. If L is small enough, if

x0 , ... ' xn e J and the sequence [x i  is constructed by the inverse interpolation

algorithm for line search (i.e. x i+1 T'(O), where T satisfies (27)), then

x i+1  J. Furthermore, if the algorithm does not terminate, and the sequence [Kui

defined in Theorem 7 is bounded, then xi * a. with Q- and R-rates of convergence

at least p, where p is the unique positive root of

n-l

(38) tn + - (s-)tn - s n tj = 0 .
J=O

Proof. The proof is identical with the proof of Theorem 5.

Equation (38) is identical of course with equation (11) which is the indicial

equation of the derived difference equation (15).



TABLE 5.1: Solution of f'(x) - 0 , f(x) =X x + 2x 25.

Algorithm Iterations

FoTVWXx x* Q p(x)

01 2.961101000E1 I 9.792573887E-I
I 6.728546951E0 I 5.529105297F-1 I 5.684783867E-1
21 4.972863922F0 I 4,863864194E-1 I 1.066328870E0

Polynomial 31 2,882038163E0 I 3.815942441-1 I 9,914324335E-1
41 1.34695182260 1 2.647918769z-1 9.487772134E"-1

(Quadratic Fit) 5 7.684644291E-1 1 1.976246895- I 1.149025754E0

61 3,992167669E"t 1 1.364989189E-1 1.169340571C0
7 1,997530860E-1 I 8,876782058r-2 I 1.2415534,0E0

Data: f at 3 points 1 1,005668367E-1 I 5,535730732E-2 I 1,369114301E0
91 4.71863544SE-2 1 3.104070036E-2 I 1,435060514E0

101 2,034304172E-2 I 1.52305'1207E-2 I 1.515237702E0
Rate: 1.3 111 7,613347509E-3 I 6,175096344-3 I 1.57773236060

121 2.210373360E--3 I 1,865705167E-3 I 1.576220344E0

01 5,049343000E1 1,179257389C0 I
11 3,70909126960 4.277186567- 1 3.359004532E-1
21 2,281684841C0 1 3,422946382.-1 I 1.188404178E0

Rational 31 1.040389540E0 I 2.320417711E-1 I 1.11.6698663E)
41 3,936613400E- I 1.353720412E-1 I 1.151693577E0
5I 1*297609663E-1 I 6,63440!5486r"2 I 1,243392255E0

Data: f at 4 points 61 5,030661751-2 3,267536431F-'2 1,7.416204SIr0
71 1,550631811-2 I 1.194496127-2 I 1,79763091560
81 3,409830478E-3 I 2.851697807E-3 I 1.875539531E-0
91 4,146773605E"4 I 3.550433290VE"4 I 1,90549780760

Rate: 1.4 101 2,060197138E-5 1 1,7o9587929E-5 1 2,012243570E0
III 2.394566790E-7 1 2*057134096u-7 I 1.896026810F0
121 3.616562856E"10 3,106937485Er-10i 1,959848404E0

01 2,200000000-I 1 8,792573887E-1 I
Polynomial 11 6.811135228E0 I 5,557279770"1 I 7,188366439c-1

21 2.037118820E0 I :.,243497512E--. I 1,050241190F0
(Newton) 31 5.799609462E-1 I 1,6925014691-" I 1 ,608799476r0

41 1.528615287E-1 I 7.426608718.-"2 I 2,59258.1.600E0
51 3.407897B60E-2 I 2,375875576E-2 I 4,307672124E0

Data: f, f', " at 61 4,649413295E-3 I 3,852395563.-3 I 6,821697750-0
I point 71 1,546338457E-4 II ,326761876.".4 I 8,9398706..9E0

81 1.945599880r-7 I 1.67143446 ' ' 7 1 9,495183683F0Rate: 2 91 3.094629587E-131 2.658559137E-13 9,516289591FO
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1 6 x3

TABLE 5.1 (continued): Solution of f'(x) = 0 , f(x) = _x3 + 2x

Algorithm Iterations

N. f'(x) I X -x Q (x)

Rational 01 2,961101000E1 I 90792573887E-1 I
11 2,810902098E0 I 3,772360335E-1 I 3.933865033E-1

Data: f, fV at 2 points 2 8,691731487E'- I 2.1I1i29278F- I I. 483503206E0
3 1,523995812E-1 I 7.411334564E-2 1.662902405r0
41 2.864145851E-2 I 2.050884987E'-2 3.733777795F0
5 2,435379612E-3 I 2.052034818E-3 I 4.878677532t0

Rate: 6 3,036533579E-5 1 2.607995338C-5 6.1935173?2E0
71 4,411705579E-9 I 3.790033105E-9 I 5,572234465tO

01 2,961101000E 1 9.792573887'1 I
Inverse Polynomial 11 5,486944138E0 1 5.073422766b-1 5.290629378-l

21 1.395258096E-1 I 6,976612359E-2 I 2.710456778r-1
31 6.937587796-1 I -4,193049971-1 I 8.614713769r1

Data: f, f' at 2 points 41 1.185756774E'1 I -2.000676860r-J I-.137933473r0
51 2.169400795E-2 I 1.399295964r -I -3.495873294EO
61 8.943116552E-4 '-I ,216314003c-1 " 6-211929863c0

Rate: 2 71 I,741909068E-6 '1.207443531C-1 1 .16160206t1F.
81 6.889045107E121 -1.207426113E-1 -8.281841327EO

01 '.961101000E I 9.792573887-i IConic 11 2.216090916E0 I 3.376086171 1 I 3.020621.326v-1
25 6.181358832E-1 I 1,753877494E'-1 1 1.538164680L.

Data: f, f' at 2 points 3 9,276089320E"2 I 5.219436396":2 I 1.696778292E04D 1.397758065E-2 I 1.086966678F"2 I 3.989964315E's
51 6.087564621'-4 I 5.203953372E-4 I 4. 404543820E.')

Rate: 2 61 1.681494620E-6 I 1.444528151E-'6 I 5.334076214F-)
71 1.i26799608E-11I 9.680174631E'-121 4.639072635F0

Inverse Polynomial 01 2.961101000OEI 9,792573887E-"1 I
Data: f,f, f" I 2,803096043:0 1 3,767533945R-1 I 4.012052457E-1' 21 2.236092670U-1 9.,5500861375r"2 1 1.78581221E:O

at 2 points 31 9.894209873E-3 I 7.900627329P'-3 I 9007067"5067r0
Rate: 3 41 1,778781896F-6 I 1.528103896F'6 I 3,098618810E0

5I -8.673617380E"19I 0 1 0

01 2,200000000oj 1  8,792573887-:--1Inverse Polynomial 11 3.8967026740 1 4.372031449-I I 6.431839487E1
r21 6,374399616.-1 I 1.784081162r-" 1 2,134837269E0Data: f, f',f",f'" at 31 8.957458010E-2 1 5,08'7163547r-2 I 8,958429431r0

I point . 41 7,053276768r-3 15. 743407965::-3 4.362571583A
51 3.047780125F-5 1 2.61'6222 -5 138166'j64jF2Rate: 3 61 3.552651662E-121 3°0520325853'-121 1.701583625E2
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TABLE 5.1 (continued): Solution of f' (x) = 0, f(x) = 16 x+ 2x

Algorithm Iterations

No. f'(x) x - Qxx

Rational 01 2,200000000E1 8.792573887E-1 I
I 2.418567463E0 I 3,517996559E1 I 5.175440627E-

Data: ff',f",f"' at 21 2,478962995E-1 I 1.019923738E-1 I 2.342510081E0
1 point 3 1,858685452E-2 I 1.405709876E-2 I 1,324928972cI4p 1.651599946E-4 I 1,416954968E-4 I 5,101160170I1

Rate: 3 51 2.300722529E101 1.976517860E-101 6.947564682E1

TABLE 5.2: Solution of f'(x) = 0 , f(x) = x+l/(ex--1)

Algorithm Iterations

f'(x) x-x Q (x)

01 -4,817670946E-1 -1*624236501E-1 I
Polynomial 11 -1,595324554E-1 I -6.425557875E-2 1 7,138022810E-1
(Quadratic Fit) 21 -6,867413860E-2 1-2,931057467E-2 I 1.112259825E0

31 1.980314467E-2 I -8,735336800E"3 1 9,376484668E-1
Data: f at 3 points 41 -3.136116528E-3 I -,399442557E-3 I 7.467562867E-1

51 3,604098014E-4 I -1.611395109E-4 1 9.727620112c--
61 -1,616424827E-5 I -7.228789794E-6 1 7.6463321657-1

Rate: 1.3 71 -2,762386271E-7 I -1.235376457E-7 I 7.981553749E-1
81 -2.808337059E-9 I -1,255926503E-9 1 1.779843092E0

Rational 01 "4,817670946E-1 I -1.624236501r--1 I
11 -1,793161898E-4 I -8,018257350F-5 I 1.150614171E-3

Data: f at 4 points 21 -4,093437144F-5 I -1.830588290E-5 I 1,842693963E1
31 -1.806096932E-8 1 -8.077110018E-9 I 7,083809281E-2

Rate: 1.4 41 -1.465487887E-121 -6.553780955E-131 4.753184221E-1

Polynomial 01 -6,967368901E1 I -2124236501-1 I
(Newton) 11 -1,623305337E-1 1 652701"2E-2 1 1.446467539E0

Data: f,f',i ' at one 21 1.470965849E-2 I -6,511392281E-3 I 1.528428081 0
Da nt o31 1.480594988E-4 I -6.620735904E-5 I 1,561559526.0
point 41 1,53415820-B -6,860964325E-9 I 1,565210065E0

Rate: 2 51 1,647987302'1-16i -6,548581122E-171 1.391159384E0
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TABLE 5.2 'continued): Solution of f'(x) = 0 , f(x) = x+1/(e X'-1)

Algorithm Iterations

o' -(x) x Q (x)

.1

Rational 01 -4.817670946E-1 I -1.624236501E-1 I

Data: ff' at 2points 11 -1.754343274E-4 I -7,8446982B7E-5 I 2.973566893E-3

21 -2,441789574E-8 I -1°092001475E-8 I 1,774478474E0
Rate: 2 31 -1.864827737E-171 0 ; 0

Conic 01 -4,817670946E-1 I -1.62423650E-'I

Data: f,f' at2 points 11 1,617959193E-2 I 7,318732791E-3 I 2.774197391E-1

21 -1.324951426E-4 I -5,924813411E-5 I 1.106121656E0
Rate: 2 31 1.862712947'-9 I B,33030563SE-101 2.373075636E-1

Inverse Polynomial 01 -6.967368901E-1 I -2.124236501E-1 I

Data: f, f t, ,f., 11 -5.067809765E-2 I -2.189048593E-2 I 2.283740747E0

at one point 21 -6.296381781E-5 I - 2 ,815703434E'-5 I 2.684236045E0

Rate: 3 31 -1.364355677E-131 -6.100762256F141 2.732897665E0

Rational

Data: f,f',f",f"' 01 -6,9673689OIE-1 I -2.124236501I-1 I

at one point 11 -1.846146248E4 I -8.255150214E-5 I 8.61224,05,5E:" -

Rate: 3 21 -1.39757996SE-141 6,241968747E'151 1.109549416F,

,|,,,J,
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6. CONCLUDING REMARKS

Our analysis points to the inefficiency of interpolation algorithms based

on more than two interpolation points (or more than three points if function

values only are used). Two-point algorithms are significantly faster than one-

point algorithms, the latter are therefore useful only if computation of the

derivatives of f are relatively very cheap.

Use of inverse interpolation is reconended if equation (10) is difficult

to solve. Note that even in the Cubit Fit case where the interpolating function

is a cubic, solution of equation (10) involves computation of square roots (see

[10. p. 1421), in itself a relatively costly operation on the computer.

Moreover, our results allow the design of a one-dimensional minimization

algorithm without regard to the choice of the r-paraneter family of interpolating

functions used. Special structure of the problem can be taken advantage of by

using appropriate r-parameter interpolants with the assurance that the rate of

convergence will not beimpaired. Also, when combined with a safeguarding technique,

one might want to compute several guesses to the minimizer based upon different

r-parameter interpolation of the same data, and then use the "best" guess. This

can be used to great advantage, for example, when one guess is outside the interval

of uncertainty or undefined. Clearly, the rate of convergence will be unhampered

even though iterates may be selected from a (finite) number of r-parameter families

of interpolants.

Note that the procedure of safeguarding by bracketing as suggested in [10,

section 7.3J, may severely affect the rate of convergence, since the basic difference

equations may be fundamentally changed by such modifications.

Assume, for example, that we modify the Quadratic Fit algorithm so that one of

the points xi+1 , x i , xi 1 1, xi12 (not necessarily xi.2) is dropped, in such a manner
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that the remaining points bracket the solution u. Then we may choose

e < 0 < e < e I and small enough L, such that equation (15) of Theorem 4 would

imply that, for M > 0, we have ei+1 > 0 for all i. Hence, in the bracketing

algorithm, one of the three interpolation points is fixed as x3 , and in the

difference relation (15) one of the indexes should be replaced by 3, leading to

difference equation with an indicial equation different than (11).

Thus the statement in Tamir [17], that bracketing algorithms do not lend

themselves to the difference equation approach, and the conjecture made there

that the interpolation and the bracketing algorithms have the same rates of

convergence, are both false.

A bracketing procedure that aims at maintaining the rate of convergence of

the underlying interpolation, should coincide with it near the solution.
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