

AFWAL-TR-81-2078

A COMPUTER PROGRAM FOR VARIABLE-GEOMETRY SINGLE-STAGE AXIAL COMPRESSOR TEST DATA ANALYSIS (UD0400)

C. HERBERT LAW

TECHNOLOGY BRANCH TURBINE ENGINE DIVISION

SEPTEMBER 1981

INTERIM REPORT FOR PERIOD 1 JUNE 1980 - 31 MAY 1981

Approved for public release; distribution unlimited.

AERO PROPULSION LABORATORY AIR FORCE WRIGHT AERONAUTICAL LABORATORIES AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

81 11 0^K 001

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

C Hubut Law-

C. HERBERT LAW Compressor Research Group

WALKER H. MITCHELL Chief, Technology Branch

FOR THE COMMANDER

H. IVAN BUSH Acting Director Turbine Engine Division

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify AFWAL/POTX, W-PAFB, OH 45433 to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

	REPORT DOCUMENTATION PAGE		
REPORT NUMBER	Τ	2. GOVT ACCESSION	0. 3. RECIPIENT'S CATALOG NUMBER
AFWAL-TR-81-2078	J	ND-1106676	,
A COMPUTER PROCE	AM FOR VARIABLE CE	OMETRY	5. TTPE OF REPORT & PERIOD COVER
SINGLE-STACE AXL	AT COMPRESSOR TEST		1 June 80 - 31 May 1981
ANALYSIS (UD0400)		Para /	
			TERFORMING DAG. REPORT NUMBER
AUTHOR(#)			B. CONTRACT OR GRANT NUMBER(2)
C. Herbert/Law			
·			(10) $r(S1)$
PERFORMING ORGANIZ	TION NAME AND ADDRESS		10. PROBAN ELEMENT PROJECT TAS
Aero Propulsion	Laboratory (AFWAL/	POTX)	AREA & WORK UNIT NUMBERS
Air Force Wright	Aeronautical Labo	ratories	61102F 2307/S1/27
Wright-Patterson	AFB, Ohio 45433		
1. CONTROLLING OFFICE	NAME AND ADDRESS		12. REPORT DATE
Aero Propulsion !	Laboratory (AFWAL/	POT)	113 HUNDED 01
Air Force Wright	Aeronautical Labo	ratories	146 1:141
WEIGHE-PALLEISON 4. MONITORING AGENCY	AFB. UNIO 40433 NAME & ADDRESS(If differen	t from Controlling Office) 15. SECURITY CLASS. (of IMW Teport)
			UNCLASSIFIED
			SCHEDULE
7. DISTRIBUTION STATEM	ENT (of the abstract entered	in Block 20, il different	(rom Report)
7. DISTRIBUTION STATEM 8. SUPPLEMENTARY NOT	ENT (of the Abstract entered	in Block 20, il dillerent	(rom Report)
 DISTRIBUTION STATEM SUPPLEMENTARY NOTI KEY WORDS (Continue or axial compressor Compressor Reseat turbine engines test data analysi 	ENT (of the abstract entered ES treverse side if necessary and design tch Facility Is	in Block 20, il dillerent d (dentliy by block numb	(rom Report)
 DISTRIBUTION STATEM SUPPLEMENTARY NOTI KEY WORDS (Continue or axial compressor Compressor Reseat turbine engines test data analysi 	ENT (of the abstract entered ES design tch Facility Is	in Block 20, 11 tillerent d identify by block numb	(rom Report) er)
 SUPPLEMENTARY NOT SUPPLEMENTARY NOT KEY WORDS (Continue or axial compressor Compressor Reseat turbine engines test data analysi ABSTRACT (Continue on 	ENT (of the abstract entered ES a reverse side if necessary and design fch Facility is	in Block 20, il dillereni d identify by block numb	(rom Report) er)
 DISTRIBUTION STATEM SUPPLEMENTARY NOT SUPPLEMENTARY NOT AXIAL COMPRESSOR AUXIAL COMPRESSOR AUXIAL COMPLEXATION OF A COMPLEXATION OF	ENT (of the abstract entered Es reverse side if necessary and design rch Facility is reverse side if necessary and rt describes a com le-stage axial com compressible flu on is employed. D c, and a detailed The analysis is a may be included.	in Block 20, 11 tillerent d identify by block numbe puter program t pressor data. id is assumed, etails of the b account of the limited to a si Variable geom	(rom Report) er) that is designed for the The axisymmetric flow of a and the streamline curvature plade geometry may be flow through the blading .ngle-stage compressor, but metry is permitted in both

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

the inlet guide vanes and the stator vanes. An option in the analysis is to match computed and experimental static pressures at any radius by varying annulus blockage or relative flow deviation angles.

<u>Unclassified</u> SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

----the second second

PREFACE

This interim report was prepared by Dr. C. Herbert Law of the Technology Branch, Turbine Engine Division, Aero Propulsion Laboratory, Air Force Wright Aeronautical Laboratories (AFSC), Wright-Patterson AFB, Ohio. The work was accomplished between 1 June 1980 and 31 May 1981.

The report represents results from a portion of the effort of the Compressor Research Group, supervised by Dr. Arthur J. Wennerstrom, and was conducted under Work Unit 27, Task S1, of Project 2307, "Turbomachinery Fluid Mechanics."

This report describes Program UD0400, which was assembled from modified versions of Programs UD0100 and UD0200. The primary author of these three programs was Richard M. Hearsey (currently employed by the Boeing Commercial Aircraft Company, Seattle, WA) under contract by the University of Dayton Research Institute, Dayton, OH during the period June 1971 through September 1978. This report was assembled in part from four previous reports written by Mr. Hearsey: Aerospace Research Laboratory technical reports ARL 73-0177 (Volumes 1 and 2) and ARL 74-0131 and Hearsey Technology technical reports HT7701 and HT7808. Without the excellent technical support of Mr. Hearsey, this report could not have been written.

Accession For NTIS CRAAL M DOIC INS Unannessed Justification By____ Distribution/ Avail Flity Codes Avail and/or Special Dist

TABLE OF CONTENTS

SECTION		PAGE
I	INTRODUCTION	1
II	SCOPE AND GENERAL METHODS OF THE PROGRAM	5
	1. PROGRAM OPERATIONS	5
	2. PROGRAM INPUT DATA	7
III	INPUT DATA	9
	1. DATA FORMAT	· 9
	2. DEFINITION OF INPUT DATA ITEMS	12
IV	OUTPUT DATA	31
	1. INTRODUCTION	31
	2. SECTION UD0100 REGULAR OUTPUT	31
	3. SECTION UD0100 DIAGNOSTIC OUTPUT	32
	4. SECTION UD0200 REGULAR OUTPUT	32
	5. SECTION UD0200 DIAGNOSTIC OUTPUT	36
V	THEORY AND METHODS	43
	1. SECTION UD0100	43
	a. Nomenclature and Equations	43
	b. Iterative Solution of Equation 1	46
	c. Iterative Determination of Coordinates of Intersection of Surface of Revolution with Computing Station	47
	d. Interpolation and Determination of	
	Derivatives	47
	e. Computing Station Location Determination	49
	f. Computational Sequence	50
	2. SECTION UD0200	51
	a. Flow Model and Governing Equations	51
	b. Subsidiary Relationships and Definitions	56
	c. Computing Station Definition	58
	d. Interpolation and Integration	60
	e. Solution of Momentum Equation	60
	f. Solution of Continuity Equation	64
	g. Iterative Determination of Streamline Locations	66

V

PRECEDING PAGE BLANK-NOT FILMED

.

TABLE OF CONTENTS Continued

. . .

SECTION	PAGE	
	h. Iterative Determination of Flow Area 71 for a Given Static Pressure	
	i. Convergence Criteria	
	j. Probe Reading Correction	
	k. Fluid Properties	
	1. Blade Angle Relations	
	m. Stagnation Point	
	n. Pressure Differences	
VI	PROGRAM STRUCTURE	
	1. PROGRAM ORGANIZATION	
	2. PROGRAM ELEMENTS AND THEIR FUNCTIONS 81	
	a. Program UDO400 (Main Program) 81	
	b. Subroutine UD0200	
	c. Subroutine G2	
	d. Function FF1	
	e. Function FF2	
	f. Function FF3 84	
	g. Function FF4	
	h. Function FF5	
	i. Subroutine A2X	
	j. Subroutine B2X	
	k. Subroutine C2	
	1. Subroutine D2	
	m. Subroutine E2	
	n. Subroutine H2	
	o. Subroutine I2	
	p. Subroutine F2	
	q. Subroutine J2	
	r. Subroutine K2	
	s. Subroutine UD0100	
	t. Subroutine T2	
	u. Subroutine ROTATE 90	
	v. Subroutine LL	
	w. Subroutine MM	

TABLE OF CONTENTS Continued

SECTION		PAGE
VII	PROGRAM IMPLEMENTATION	91
	1. PROGRAM CODING AND STRUCTURE	91
	2. PROGRAM USE AND MODIFICATIONS	92
VIII	FORTRAN NOMENCLATURE	95
IX	SAMPLE OUTPUT FROM PROGRAM UD0400	10 <u>3</u>
REFERENCES		135

LIST OF ILLUSTRATIONS

FIGURE		PAGE
1	Blade Coordinate Rotation	43
2	Geometry of Blade Section Meanline Determination	45
3	Computing Station End Point Definition	59
4	Overall Logic of Subroutine UD0200	83
5	Logic of Subroutine D2	86

LIST OF SYMBOLS

А Area Α Component of momentum equation A Coefficient in spline-curve equation system Speed of sound in fluid а а Coefficient of specific heat polynomial B Component of momentum equation В 1-Blockage due to blades (Equation 12) В 1-Blockage due to blades and wakes/boundary layers (Equation 36) Coefficient in spline-curve equation system В b Coefficient of specific heat polynomial Specific heat at constant pressure Ср Cv Specific heat at constant volume Coefficient of specific heat polynomial С D Diffusion factor D Coefficient in spline-curve equation system d Coefficient of specific heat polynomial E Arbitrary error in streamline location Coordinate in direction of computing station, increasing with radius e Coefficient of specific heat polynomial e f Coefficient of specific heat polynomial Acceleration due to gravity g Н Total enthalpy Static enthalpy h 1 Incidence angle \mathbf{J} Joules equivalent М Mach number Coefficient in spline-curve equation system М Meridional coordinate, that is, intersection of axisymmetric m streamsurface with r-x plane, increasing in direction of flow P Total pressure

p Static pressure

ix

LIST OF SYMBOLS (Continued)

R Radius of circle defining blade section meanline R Gas constant r Radius Radius of curvature of streamsurfaces as seen in meridional plane r, Entropy s т Total temperature t Static temperature ŤŤ Blade speed v Velocity Specific volume v W Flow rate Specific weight ω Axial coordinate, common to cartesian and cylindrical systems, х increasing in direction of flow Independent variable in spline-curve theory x v Coordinate in cartesian system perpendicular to axial-radial plane of cylindrical system, increasing in direction of rotor rotation y Dependent variable in spline-curve theory Coordinate in cartesion system in radial direction that is also the Z blade stack axis, increasing with radius Flow angle, defined by tan $\alpha = V_{\theta}/V_{m}$ α ß Blade section angle, the angle made by the intersection of the blade mean surface and the axisymmetric streamsurface with the meridional plane, positive in direction of rotor rotation Ratio of specific heats γ Station lean angle, defined by tan $\gamma = dx/dr$ (along the computing γ station) δ Deviation angle ε Blade lean angle, the angle made by the intersection of the blade mean surface and the computing station with the radial direction, positive for sweep-back relative to rotor rotation Efficiency ŋ θ Angular coordinate in cylindrical system, positive in direction of rotor rotation λ The gradient $\partial r/\partial x$ on a blade mean surface at constant z

LIST OF SYMBOLS (Continued)

- π 3.14159265....
- ρ **Density**
- σ Cascade solidity (ratio of chord to spacing)
- ϕ The gradient dr/dx on a streamline
- $\overline{\omega}$ Relative total pressure loss coefficient

Subscripts

h	Hub
m.	Meridional
р	Pressure surface
R	Relative
s	suction surface
Т	Total
t	Tip (casing)
x	Projected onto a constant-x plane
θ	Circumferential
1	Inlet

2 Outlet

SECTION I

INTRODUCTION

This report describes a computer program that has been developed for the analysis of single-stage variable-geometry axial compressor test data. The purpose of the program is to determine details of the flow within a compressor from test measurements and a geometric description of the compressor. Performances of each blade row are calculated and expressed in terms of conventional parameters. This computer program (UD0400) consists essentially of modified forms of two computer programs (UD0100 and UD0200 as described in References 1 and 2) which have been incorporated into a single program in order to provide a convenient means of analyzing test data from variable geometry compressors. The blade geometry definition section of the program (UD0100) provides a complete or partial definition of one or more blade geometries. The aerodynamic analysis section of the program (UD0200) performs an aerodynamic analysis of the compressor consistent with the geometry of the compressor and the experimental measurements. During a single run of the program (UD0400), up to three entries may be made into the blade geometry definition section (once for each blade-row; inlet guide vane, rotor, and stator) and any number of entries may be made into the aerodynamic analysis section (UD0200) provided that each test data set was obtained from the same compressor geometry.

Either of the separate sections of the computer program may be executed separately. Normally the blade geometry definition section will be executed only once for each fixed blade-row, but this section will be executed every run for each variable blade-row. Once the fixed blade geometry data have been obtained they may be stored on disc and retrieved as needed. The variable blade geometry data must, however, be generated once for each blade configuration and stored on disc, or computed anew during each execution of the computer program. Computing the variable blade geometry data during each run offers several advantages including less operator interaction and not being restricted to prescribed variable blade configurations.

The aerodynamic analysis solves a system of equations which includes a full treatment of the axisymmetric equations of motion of an inviscid fluid, including blade-force terms, and the assumption of a thermally-perfect gas as the working fluid. The equations are solved in finite difference form by the streamline curvature method. Computing stations may be located within the blade-rows, as well as at the blade edges and in the duct regions of the compressor. This permits a detailed picture of the flow through the blade-rows to be constructed, albeit on an axisymmetric basis and by making certain assumptions regarding the build-up of losses and deviation within the blades. The computing stations need not be radial and may be curvilinear, defined by a series of points. The aerodynamic analysis is performed using the geometry of the stage and the experimental measurements as inputs. The geometric input data will have been generated by one or more executions of the blade geometry definition section of the program during the same run or a previous run. In addition to providing blade geometry data, the blade geometry definition section may also provide a partial definition of the locations of the computing stations. Given the experimental measurements for one or more test points, any number of test points may be analyzed in one run of the program provided that the compressor configuration is the same for all test points. The blade geometry definition section may be entered only once for each variable blade-row during a single run.

Output from the program includes printed details of the blade geometries, flow field within the compressor, blade and stage performance, CALCOMP plots of several blade and stage performance parameters, and punch-card output of blade and stage performance parameters for future plot generation.

The computer program is written in standard FORTRAN IV and should be compatible with all modern medium-to-large computing systems, with few or no changes to the coding. All development running was done on either a CDC 6600 system incorporating CALCOMP plotting software or an IBM 370 system incorporating DISSPLA software at Wright-Patterson Air Force Base, Ohio.

This report is divided into a number of sections each describing one aspect of one of the two program sections or of the combined program. The first section following this introduction describes the scope and general methods of the program and each section. The next section describes the input data requirements of the program and defines all input variables. A description of the output data follows this section. The next section specifically deals with the theory and methods used in the blade geometry definition section (UD0100). This is followed by several sections dealing specifically with the theory and methods used in the aerodynamic analysis section (UD0200). Finally, in the last section, a discussion of the implementation of the program on a computing system is presented.

SECTION II

SCOPE AND GENERAL METHODS OF THE PROGRAM

1. PROGRAM OPERATIONS

Program UD0400 consists essentially of modified forms of two programs (UD0100 and UD0200) which have been incorporated into a single program. The purpose of the program is to provide a convenient means of analyzing test data obtained from single-stage variable-geometry axial compressors. The blade geometry definition section (UD0100) may be used to provide a partial definition of the locations of the computing stations used in the aerodynamic section in addition to providing blade geometry data. The need to execute the blade geometry definition section is indicated by the blade setting angle defined by the test data. The aerodynamic section may be used to provide an analysis for any number of test cases involving the same blade setting angles.

Program UD0400 is flexible in regard to the number of entries made into the blade geometry definition section (UD0100), including zero. During an execution of UD0400, the aerodynamic analysis section (UD0200) may or may not be executed, and if it is, may be supplied with all its required input data directly by the user, if so desired. In short, program UD0400 provides all of the capabilities of programs UD0100 and UD0200 separately, plus adding the convenience of automatic internal transfer of data between sections.

Program UD0400 is capable of handling up to three blade-rows in the single-stage configuration, including an inlet guide vane (IGV). The IGV (if one exists) is handled somewhat differently from the rotor and stator blade-rows. Rather than using experimental data to define the IGV outlet flow angle and total pressure distribution, the user must supply these data. The IGV performance at any setting angle is defined by specifying "design-point" performance and the effects of restagger on performance. If incidence and deviation angles are required, IGV blade geometry data must be supplied (by the user or from UD0100).

The quantities that the blade geometry definition section (UD0100) determines are blade angles and blockages at locations which will be computing stations in a subsequent analysis performed by the aerodynamic analysis section (UD0200). Two blade angles are calculated: the blade

section angles at a series of arbitrary radii where the stream surfaces are taken to be cylindrical, and the blade lean angle defined as the angle between the blade mean surface and the intersection of the computing station and the meridional plane, projected onto a plane at a constant axial location. The blade blockages at the same radii are computed as the ratio of circumference blocked by blade metal to the total circumference.

The aerodynamic analysis of the compressor stage is performed assuming that the flow is axisymmetric and that the effects of the blades may be represented by force fields. The working fluid is assumed to be an inviscid, thermally-perfect, compressible fluid, and thus there is no transport of mass or energy normal to the streamline direction. The analysis is performed on computing stations located at the blade edges and in the duct regions of the compressor. The computing stations need not be radial and may be curvilinear, defined by a series of points. Computing stations may also be located within the blade-rows to obtain a more detailed picture of the flow field through the stage.

The equation system is solved by the streamline curvature technique. This consists basically of the following elements:

- (1) An initial estimate is made for the streamline pattern.
- (2) The continuity and momentum equations are solved at each computing station in turn. (The result is a function of the assumed streamline pattern.)
- (3) The estimated streamline pattern is refined on the basis of the mass flow distributions computed in Step 2. The objective here is to make the flow within each streamtube the same at all computing stations.
- (4) If overall convergence criteria have been met, proceed to Step 5; otherwise return to Step 2.
- (5) From the velocity distribution and streamline locations calculated during the last pass through the iterative procedure above, and the original input data, all the desired output data may be computed.

Relatively stringent criteria have been set for the convergence of the solution. The solution of the continuity and momentum equations in Step 2 above is iterative, and these are deemed to be converged when the total mass flow at the computing station is within one part in 4000 of the specified value, and the meridional velocities computed on two successive iterations agree at all radii to within one part in 4000. The overall convergence criteria referred to in Step 4 above are that the proportion of total mass flow in each streamtube must be constant to within one part in 1000, and that the meridional velocity at each mesh point must agree on two successive passes to within one part in 1000.

The momentum equation is solved by the program in finite difference form, and a precise analysis of the errors involved has not been made. However, these are believed to be much smaller than those due to the simplifications involved in the formulation of the flow model. The program has been written to handle up to 21 streamlines and 24 computing stations, and the traverse data may generally be input for up to 21 radial locations.

2. PROGRAM INPUT DATA

Input data to the program are comprised of geometric data to define each blade-row geometry and the compressor flow path configuration, test measurement data to define compressor performance, and user-option data to define the analysis methods employed by the program and various output forms and devices. Input data to the blade geometry definition section (UD0100) include a design configuration description of the blade surfaces in cartesian coordinates, a generalized statement of the desired locations of computing stations, and a restagger angle for the blade-row if it is variable and different from the design value. If a non-zero restagger angle is input (DEL), the cartesian section description of the blade is rotated DEL degrees about a single point for the entire blade. The assumption is made that the axis of blade rotation is parallel to the Z-axis of the blade cartesian coordinate data, which is a radial line. Having made this rotation, the program performs the usual geometric analysis of the data and computes new locations for each affected computing station.

The input data requirements for the aerodynamic analysis section (UD0200) vary depending upon the degree of sophistication desired in the calculation. As a minimum, the compressor annulus geometry, radial total temperature traverse data downstream of either the rotor or the stator, two total pressure traverse data sets, and the stage exit swirl distribution are required. One total pressure traverse is the radial distribution

of (circumferential) mean total pressure at the stage exit, and the other, to yield rotor outlet total pressure, is either the peak stage outlet total pressure at each radius, or simply the rotor outlet total pressure. Of course, the inlet conditions and flow rate, and gas properties are required. From these data, the rotor and stator relative inlet Mach numbers and loss coefficients, as well as the flow field characteristics at each computing station are determined. The IGV (if one exists) is handled somewhat differently in that the user supplies "design-point" outlet flow angle and total pressure distributions, and optionally, the effects of restagger of the IGV. Therefore, the IGV performance at any setting angle is "defined" rather than computed or measured.

If details of the blade-row geometries are included in the input data to the aerodynamic analysis section, two further areas of computation are made possible. First, the incidence angles, deviation angles, and diffusion factors for the blade-rows may be calculated. Second, computing stations may be located within the blade-rows to obtain a more detailed picture of the flow field through the stage. In this case generalized relationships for the variation of the deviation angles and loss coefficients within the blades as a function of their overall values must also be specified. This requirement reflects the unavailability of experimental data from within the blade rows.

SECTION III

INPUT DATA

1. DATA FORMAT

Three input data formats are used: alphanumeric, integer, and real. Each record, or card, contains only one type of data, and normal FORTRAN convention indicates which are the integer quantities. The alphanumeric format is used for the title cards, and consists of 72 characters starting in the first column. The integers are entered in fields of 6 characters, with up to 12 numbers per card. No decimal point may be used, and the number should be right-justified within the allocated field. The real numbers are entered in fields of 12 with up to 6 numbers per card, and a decimal point should be included to ensure correct interpretation of the data. Then the number may be placed anywhere within the allocated field.

As described later in the section "Program Structure and Implementation" input data may be read from up to five different files. Here, the variable containing the FORTRAN unit number is shown for each input record.

In the following chart, one line corresponds to one card, except where it has been necessary to use two lines to complete the description of one card.

(LOG1) N100 N200 NWITE

The following data occur N100 times (which may be zero):

(LOG1)	TITLE	
(LOG1)	NZ NBLADE NWHICH NPRINT NINPUT	
(LOG1)	Z This line occurs NZ times	
(LOG1)	NX	group
(LOG1)	NXII This group	occurs
(LOG1)	XSTN RSTN This line occurs NXII times	NWHICH=0
(LOG3)	DEL	
(LOG1)	Z XLE YLE XTE YTE This line occurs NZ times	group
(LOG1)	XR YR XSHIFT	occurs
(LOG1)	NX	NWHICH=1
(LOG1)	FX(1) FX(2) FX (NX)	

(LOGK)	NS INSIST	This
(LOGK)	XS YS This line occurs NS times	group
(LOGK)	NP	OCCUTS NZ times
(LOGK)	XP YP This line occurs NP times	
Note	: LOGK = LOG1 if NINPUT = 0	
	LOGK = LOG9 if NINPUT = 1	

This terminates the data that occurs N100 times, for the UD0100 section of the program. The following data, for the UD0200 section of the program, occurs if N0200 is greater than zero.

(LOG1)	TITLE1	
(LOG1)	NSTNS NSTRMS NMAX NFORCE NPRSS NTEMP	
	NSTN1 NSTN2 NOROTR NOSTAT NL NPLOT	
(LOG1)	NSPEC NHUBSG NCASEG	
(LOG7)	NDPS] This group	group
(LOG7)	RSTNA XSTNA This line occurs NDPS only occurs times	occurs NSTNS times
(LOG1)	RSTN XSTN This line occurs NSPEC times, which may be zero	
(LOG1)	NHUB NCASG	
(LOG1)	NPHUB NTPHUB This group	This
(LOG1)	XHUB RHUB This line occurs NPHUB cccurs times	group only
(LOG1)	NPCASE NTPCAS] This group	NSPEC=0
(LOG1)	XCASE RCASE This line occurs NPCASE Occurs times	at least once
(LOG1)	NCALC NDATA NBL] This
(LOG8)	NDATA2 This line occurs only if NDATA=-1	group
(LOGJ)	DATRAD DATBET DATEPS DATAB DATHET This line occurs NDATA times, unless NDATA=-1. Then, it occurs NDATA2 times. LOGJ=LOG1 unless NDATA=-1, when LOGJ=LOG8.	for stations 2 through NSTNS

The following data describing the performance of the IGV only occurs if NCALC=5 at one station in the above data.

- (LOG1) NOIGV NV1
- (LOG1) VR1 VBETA VLOSS This line occurs NV1 times
- (LOG1) NV2 NV3

(LOG1)	VR2		This group occurs
(LOG1)	DGAM DDEL DLOSS This line occurs NV3	times	may be zero
(LOG1)	NV5 NV4		
(LOG1)	VR3]This group	only occurs
(LOG1)	VXM VDEV This line occurs NV4 times	occurs NV	5 if
(/		Jtimes	NOIGV>0
This is th	e end of the optional IGV data.		
(LOG4)	NR1 NR2 NR3 NTF] This
(LOG4)	RIM RLOSS This line occurs NR1 times		group
(LOG4)	RRD	This group	only occurs
(LOG4)	R2M RDEV	occurs NR	if
	This line occurs NR2 times] •••••••	J NOROTR>0
(LOG4)	NS1 NS2 NS3		This
(LOG4)	SIM SLOSS This line occurs NS1 times		occurs
(LOG4)	RSD	This grou	p only
(LOG4)	S2M SDEV	times	NOSTAT>0
(This line occurs NS2 times	-	_
(LOG4)			
(LOG4)	PSCALE PLOWER DAMPF		
(LOG4)	NSAVE NNMAX MFORCE NEX NTCR NCARD ND	PQ	
The	remainder of the data occurs NCASE ti	mes	
(LOG3)	TITLE		
(LOG3)	GASR FRCAIR FLOW RPM PIN TIN		
(LOG3)	TRATIO PRATIO RESTAG		
(LOG3)	NRP		
(LOG3)	RRP PR This line occurs NRP times		
(LOG3)	NRT		
(LOG3)	RRT TR This line occurs NRT times		
(LOG3)	NSP		
(LOG3)	RSP PS PSM This line occurs NSP time	8	
(LOG3)	NST		
(LOG3)	RST TS This line occurs NST times		
(LOG3)	NSA		
(LOG3)	RSA SA This line occurs NSA times		
(LOG3)	NWSO		
(LOG3)	XWSO WSPO This line occurs NWSO time	es (NWSO may	be zero)
(LOG3)	NWSI		
(LOG3)	XWSI WSPI This line occurs NWSI time	es (NWSI may	be zero)
(LOG3)	NPSR		

- (LOG3) XPSR RPSR PSSR This line occurs NPSR times (NPSR may be zero)
- (LOG4) BLCKGE BDIST DEL DELDST BFRAC This line occurs NSTNS times
- (LOG4) NMACHI(1) NMACHI(2)...NMACHI(NSTNS)

(There are NSTNS values of NMACHI, up to 12 per card).

(LOG4) NJUMP

2. DEFINITION OF INPUT DATA ITEMS

Main program data:
 N100 The number of entries to be made to the UD0100-section of the program. May be zero or any positive value.
 N200 If N200 is greater than zero, the UD0200-section of the program will be entered.
 NWITE If NWITE=1, a message is written out that for a CDC 6000-series computing system, will ask the operator

to print the output on plain paper.

b. UD0100-section data:

TITLE	An alphanumeric job title of up to 72 characters.
NZ	The number of constant-z planes on which blades are defined. 3 <nz<15< td=""></nz<15<>
NBLADE	The number of blades in the blade-row.
NWHICH	If NWHICH=0, the UD0100-section of the program performs as Program UD0100.
	If NWHICH=1, additional data is read in, and (1) the blade sections are rotated by a specified angle and (2) computing station location data is generated.
NPRINT	If NPRINT=1, the input section coordinates (XS, YS, XP, XP, YP) are not listed.
NINPUT	If NINPUT=0, the blade section definitions (NS, INSIST XS, YS NP, XP, YP) are read from unit LOG1. If NINPUT=1, they are read from unit LOG9.
Z	The Z-coordinates of the constant-z planes must be in order of increasing magnitude. The origin is on the compressor axis.

NX	The number of	of stations	where output	is to be
	generated.	$1 \leq NX \leq 12$ if	NWHICH = $0;$	2 <u><nx< u=""><12 if</nx<></u>
	NWHICH = 1.			

- NXII The number of points defining a station. 1<NXII<15. If NXII=1, the station is assumed to be radial at the single axial coordinate given.
- XSTN, RSTN The axial coordinate and radius of a point defining a station. The axial coordinate increases in the direction of flow. The radii must be in order of increasing magnitude.
- DEL The blade sections defined by XS, YS, XP, YP are rotated DEL degrees anticlockwise. The center for the rotation is the point (XR, YR) for each section.
- XLE, YLE 'X' and 'Y' coordinates of a point representing the leading edge of the blade section that lies at the 'Z' given on the same card. These data are used to locate the leading edge computing station. Where a series of points on the leading edge arcs for a blade are known, a "like" point should be selected for each section.
- XTE, YTE 'X' and 'Y' coordinates of a point representing the trailing edge of the blade section that lies at the 'Z' given on the same card. These data are used to locate the blade trailing edge computing station.
- XR, YR See DEL (above).
- XSHIFT When the computing station data generated are output for use in UD0200, the quantity XSHIFT is added to the x-coordinates. XSHIFT is thus the difference between origins of axial coordinates of similar points in UD0200 and UD0100.
- FX When NWHICH=1, data describing the location of NX computing stations is generated. The first and last are always at the blade leading and trailing edges, respectively. FX(2) through FX(NSTNS-1), if NSTNS>2,

define the fractions of meridional chord where the intermediate stations lie. (FX(1) and FX(NSTNS) are not used.)

NS The number of points defining the 's' surface of the blade section. The designation of either surface of the blade as the 's' surface is arbitrary and has no significant effect upon the results. Must satisfy 3<NS<65.

INSIST

If INSIST=1, the blade mean line will be linearly extrapolated, if necessary, rearwards to give results at the intersections with each station. If INSIST=0, no rearward extrapolations are made. (Extrapolations forward are always made, if necessary). The reason for this option is that partial sections may exist for a typical compressor blade where the blade height decreases towards the rear, and in the case where the cartesian blade description is obtained by inspection of parts. In such a case, the specification of the section will cease at some fraction of the chord length short of the trailing edge. Then linear extrapolation of the blade mean line would not yield reasonable values, and INSIST should be set equal to zero. For completely specified sections, INSIST should be set equal to 1 so that should the intended trailing edge station in fact miss the trailing edge of the blade by some small distance, data will nevertheless be generated.

- XS, YS The X- and Y-coordinates, respectively, of a point on the 's' surface of the blade. These must be in order of increasing 'X' (which increases in the direction of the flow). The Y-coordinate direction increases in the direction of rotor rotation.
- NP, XP, YP These correspond to NS, XS, YS and apply to the 'p' surface.

- c. UD0200-section data:
 - TIME1 Alphanumeric title for job. Up to 72 characters may be used starting in column 1.
 - NSTNS The number of computing stations. Must satisfy 3<NSTNS<24.
 - NSTRMS The number of streamlines to be computed through the flow field. Must satisfy 3<NSTRMS<21. Eleven will frequently be satisfactory.
 - NMAX The maximum permitted number of passes through the iterative solution procedure. Thirty will be adequate in most cases.
 - NFORCE The maximum number of arbitrary passes through the iterative solution procedure. Five will be adequate in most cases.
 - NPRSS If NPRSS=0, the rotor outlet total pressure is obtained from instrumentation at station NSTN1. If NPRSS=1, the rotor outlet total pressure is obtained from instrumentation at station NSTN2.
 - NTEMP If NTEMP=0, the stage total temperature rise is obtained from instrumentation at station NSTN1. If NTEMP=1, the stage total temperature rise is obtained from instrumentation at station NSTN2.
 - NSTN1 Station number for instrumentation following the rotor.
 - NSTN2 Station number for instrumentation following the stator.

NOROTR Number of blades in rotor. If NOROTR=0, no details of rotor geometry are used in the computations.

- NOSTAT Number of blades in stator. If NOSTAT=0, no details of stator geometry are used in the computations.
- NL The maximum number of lines per page of printed output. If NL is set to zero, it is reset to 60.

NPLOT

If NPLOT=0, no CALCOMP plots are produced. If NPLOT=1 or 2, the computed stage static pressure distribution is shown, with experimental values, if any, included. A separate plot is made for each test point. If NPLOT=1, rotor and stator performance parameters are plotted, a separate graph being created for each test point. (When more than a few test points are analyzed, an excessive amount of paper is output). Incidence angle, relative inlet Mach number, total pressure loss coefficient, deviation angle, and diffusion factor are plotted for each blade-row, against radius in inches. If NPLOT=2, rotor and stator performance parameters are plotted, values of each parameter for all test points being placed on one graph. The parameters plotted are as for NPLOT=1, and also the ratio of blade exit meridional velocity to compressor inlet critical velocity. (Critical velocity is the velocity when the Mach number is unity). In this case, the parameters are plotted against the ratio of radius to (local) tip radius. If NPLOT=3, the same blade performance plots are made as for NPLOT=2, but the static pressure distribution plots are not made.

- NSPEC When positive, this is the number of points used to define the computing station. Then 2<NSPEC<21. The first and last points define the compressor hub and casing, respectively. When zero, the computing station definition is assembled from data generated by UD0100 (on LOG7), and hub and casing contour data supplied directly by the user. From whichever source, the total number of points used to define all computing stations must not exceed 200.
- NHUBSG This only has significance if NSPEC=0. Then it is the number of the hub segment that is to be used to determine the hub radius at the computing station. (The name NHUBSG is false; the program temporarily uses NDATA for this data item).

- NCASEG This only has significance if NSPEC=0. Then it is the number of the casing segment that is to be used to determine the casing radius at the computing station. (The name NCASEG is false; the program temporarily uses NBL for this data item).
- NDPS When NSPEC=0, NDPS specifies the number of points of 'X' and 'R' that are read from unit LOG7 to define the computing station. (The name NDPS is false; the program temporarily uses NCALC for this data item).
- RSTNA, 'X' and 'R' coordinates of points along the computing XSTNA station in order of increasing radius. These points define the line or curve of the station, but the first and last points do <u>not</u> define the hub and casing. (The names RSTNA, XSTNA are false; the program uses RSTN and XSTN).
- RSTN, XSTN The radius and axial coordinate of a point defining a computing station. These must start on the hub and finish on the casing.
- NHUB The number of hub contour segments that are to be input. 1<NHUB<5.
- NCASG The number of casing contour segments that are to be input. 1<NCASG<5.
- NPHUB The number of points making up the hub segment definition. When NTPHUB=0, NPHUB<21. Also, the sum of all NPHUB<50.
- NTPHUB The location of the point or the computing station at the hub if found from the intersection of the XSTNA, RSTNA curve and the XHUB, RHUB curve. The XSTNA, RSTNA data is always spline-fit interpolated. The XHUB, RHUB data is spline-fit if NTPHUB=0, or interpolated linearly point-to-point if NTPHUB=1.

XHUB, RHUB A point defining the hub contour in order of increasing axial coordinate. Sufficient points should be used to enable an accurate determination of the hub radius at the computing station(s) that use these data to be made.

NPCASE, These four items describing the casing correspond NTPCAS to the four items described above for the hub. RHUB

NCALC If NCLAC=0, the computing station follows a bladefree space. Enthalpy, entropy, and angular momentum are maintained constant along streamlines from the previous computing station.

> If NCALC=1, the station follows a blade-free space as for NCALC=0, and additionally is at a blade leading edge.

If NCALC=2, the station is within a blade. Details of the blade geometry must be given.

If NCALC=3, the station is at the stator trailing edge.

If NCALC=4, the station is at the rotor trailing edge.

If NCALC=5, the station is at the trailing edge of an IGV.

Note that a rotor and stator must be defined, but an IGV is optional.

NDATA The number of radial locations at which blade geometry is given. May be zero unless NCALC=2. The NDATA is subject to the following restrictions; 1<NDATA<21, and ENDATA<200 (all stations). If NDATA is set to -1, this indicates that data will be found on unit LOG8 (having been created by UD0100).

NBL If NBL=0, the blockage is held fixed according to the input data items BLCKGE and BDIST (which are described below).

If NBL=1, the blockage is determined iteratively so that the input experimental value of static pressure on the casing is reproduced. BDIST is maintained at its input value, and the input value of BLCKGE is used as a first estimate. The experimental value is obtained by linearly interpolating (or extrapolating) from the input table of values to the appropriate axial coordinate. Thus, NWSO must be not less than 2 for this option.

If NBL=2, BDIST is held at its input value and BLCKGE is determined by linear interpolation (as a function of axial coordinate) from the first station upstream and downstream where NBL=2. Thus, this option must not be used at the first or last station.

If NBL=3, the match between experimental and computed casing static pressures is obtained by varying the blade deviation angles rather than blockage value at the computing station. The blockage distribution is held fixed as specified by BLCKGE and BDIST. The flow angle at any radius will be given by the sum of the blade angle (given by DATBET and DATEPS and the streamline shape), and the "fixed" deviation given by RDEV (or, for the case of a stator, SDEV and the trailing edge deviation), and a "variable" deviation angle component. This latter component has a linear variation from hub to case, the new input item DELDST being the ratio of (variable) hub deviation to the midradius value (compare with BDIST). The midradius value is determined iteratively to give the desired match at the casing; a starting value of DEL is read in. DEL is given in degrees, and for conventionally positive rotor deviation would be negative.

If NBL=4, the procedure is the same as if NBL=3, except that the midradius value of blockage, BLCKGE, is not used, and instead a further data item BFRAC redefines BLCKGE as BFRAC times the value of BLCKGE

at the blade-row trailing edge. (The trailing edge value would generally itself be determined iteratively using NBL=1.)

If NBL=5, the blockage is determined iteratively so that the input experimental value of static pressure at an intermediate radius is reproduced. BDIST is maintained at its input value, and the input value of BLCKGE is used as a first estimate. The experimental value is determined by first finding the coordinates of the intersection of the computing station (described by a spline-curve through the points) and the line along which experimental static pressures are given (described by a series of straight. lines joining the specified points). The experimental static pressure is then linearly interpolated as functions of axial coordinate. Thus NPSR must not be less than two for this option. (Note the similarity to the NBL=1 option).

If NBL=6, a match between experimental and computed static pressure at an intermediate radius is sought by varying the flow deviation angle at the station. The blockage is specified as a fraction of blade-row trailing edge deviation on the same streamline. Thus, the only difference between this option (NBL=6) and the NBL=4 option is the method of specifying the experimental static pressure, which is as for the case NBL=5. Note: NBL=3, 4, and 6 can only be used at a station that is within a blade-row. Within the rotor blade and if NTF=1, NBL must not be 3, 4, or 6.

NDATA2 When NDATA=-1, NDATA2 on LOG8 defines the number of radii where blade geometry are given. The name NDATA2 is false; the data item actually redefines NDATA.

DATRAD The radius at which the blade parameters are given. Units: inches. DATBET The blade section angle at radius DATRAD, defined as the angle between the blade mean surface and the meridional plane on a cylinder. It is taken positive in the direction of rotor rotation, so that rotor angles are generally negative, stator angles generally positive. Units: degrees.

DATEPS The blade lean angle at radius DATRAD. DATEPS is defined as the projection onto a constant-x plane of the angle made by the intersection of the blade mean surface and the computing station with the radial direction. Sweep-back relative to rotor rotation is taken to be positive. Units: degrees.

DATAB The blade blockage at radius DATRAD. This is defined as the ratio of blocked to total circumference.

DATHET The angular coordinate of the intersection of the blade mean surface with the computing station. It is measured from any radial line, and taken to be positive in the direction of rotor rotation. Units: radians.

Note: It may be omitted for stations not at the blade edges, and the sign convention is arbitrary.

NOIGV The number of blades in the IGV row.

If NOIGV is set to zero, no details of the IGV blade geometry are used in the calculation and there must be no stations within the IGV.

NV1 The number of radii where the IGV "design performance" is given. 1<NV1<21.

VR1 Radius where the IGV design performance is given. These data must be in order of increasing magnitude.

VBETA Outlet flow angle (degrees) at radius VR1. The tangent of the angle is (tangential velocity component)/(axial velocity component).

VLOSS Total pressure loss coefficient at radius VR1 based upon <u>outlet</u> dynamic head.

NV2	The number of radii where the effect on IGV perform- ance of a change in setting angle is given. $0 \le NV2 \le 21$. If NV2=0, the IGV design-point performance is used regardless of setting angle.
NV 3	The number of changes in setting angle (at each radius) that are used to describe the variable geometry effects. $1 \le NV3 \le 11$.
VR2	Radius at IGV trailing edge where following data apply. VR2 must increase. If NV2=1, then VR2 is without significance.
DGAM	Change in IGV setting angle from "design value". These data must increase.
DDEL	Change in IGV outlet flow angle corresponding to DGAM. Measured in the stream surface plane.
DLOSS	Ratio of total pressure loss coefficient to design value, when setting angle is changed by DGAM.
NV5	Number of radii where following data is specified. 1 <nv5<21.< td=""></nv5<21.<>
NV4	Number of meridional chord locations read at each radius to describe IGV internal deviation. 1_NV4<11.
VR3	Radius at IGV trailing edge where following deviation data apply.
VXM	Fraction of meridional chord. These data must increase.
VDEV	Ratio of deviation angle at point defined by VXM to value at trailing edge. Should rise from some small value near leading edge to 1.0 at trailing edge.
NR1	The number of points on the meridionally-projected chord where the fraction of total loss is specified for the rotor. Must satisfy 2 <nr1<11.< td=""></nr1<11.<>
NR2	The number of points on the meridionally-projected chord where the deviation angle or enthalpy-rise fraction is specified for the rotor. Must satisfy 2 <nr2<11.< td=""></nr2<11.<>

NR3	The number of radial locations at which the devia- tion angle or enthalpy-rise fraction distribution is specified. Must satisfy $1 \le 1 $
NTF	If NTF=0, deviation angles are specified within the rotor.
	If NTF=1, fractions of rotor enthalpy rise are speci- fied.
RIM	The fraction of meridional chord length where RLOSS is specified. The NRL values must be in ascending order, generally will start at zero, and should end with 1.0.
RLOSS	The fraction of final rotor loss coefficient that applies at part-chord point RlM. The value of 1.0 should be entered for the trailing edge.
RRD	The radius at the rotor trailing edge where the following deviation angle or enthalpy-rise fraction distribution applies. If NR3=1, RRD has no signifi- cance; the single curve is applied at all radii. Units: inches.
R2M	The fraction of meridional chord length where RDEV is specified. The NR2 values must be in ascending order, generally will start at zero, and should end with 1.0.
RDEV	When NTF=0, RDEV is the rotor deviation angle at point- chord point R2M. In this case, RDEV would normally be negative and is in degrees. When NTF=1 RDEV is the fraction of rotor enthalpy-rise that occurs at point- chord point R2M. RDEV would normally vary from zero at the leading edge to 1.0 at the trailing edge. When NR3 is greater than 1, RDEV will be interpolated from each of the NR3 curves as a function of chord, and then the resulting distribution will be interpo-

A Construction of the second second

فالمناقبة هجارة المراب بالقالم والمترجيم

23

lated as a function of trailing edge radius.

NS1, NS2, NS3, S1M, SLOSS, RSD, S2M, SDEV	These correspond exactly to the definitions given above for the rotor internal performance, but apply to the stator, <u>except</u> that SDEV is the fraction of the stator trailing edge deviation angle, with no alternative.
NCASE	The number of test points to be analyzed. Must satisfy 1 <ncase<20.< td=""></ncase<20.<>
PSCALE	If PSCALE #0.0, it is the scale in psi/inch for the static pressure plots. (If PSCALE=0.0, a value of 5.0 is used).
PLOWER	If PLOWER #0.0, it is the minimum value of static pressure on the static pressure plots. (If PLOWER= 0.0, a value of 10.0 is used).
DAMPF	The constant shown as 8 in Equation 90 will be replaced by DAMPF if a value other than zero is given. A reduction to 6.0 or 4.0 has been found necessary to increase the damping sufficiently so that stability is maintained in some cases.
310 4317	TE NCATE-O and been added aslaulation atombe with

- NSAVE If NSAVE=0, each test point calculation starts with a new initial-streamline-pattern estimate. If NSAVE=1, and the preceding calculation was successful, the streamline pattern will be retained as a first estimate.
- NNMAX If NNMAX#0, it overwrites the value of NMAX previously read in.

MFORCE If MFORCE#0, it overwrites the value of NFORCE previously read in.

NEX Experimental probe values of total pressure and total temperature are not generally available at the annulus walls and hence extrapolation is required. If NEX=0, the experimental data are linearly extrapolated. If NEX=1, experimental data in the outer-wall region are linearly extrapolated, but at one half of the slope implied by the experimental data. If NEX=2, the same modification to the extrapolation procedure is also made in the inner-wall region.
NTCR The program includes a procedure for correction of the total temperature probe readings input as TR and TS. This is <u>not</u> executed if NTEMP=1 and NTCR=0; the input values are assumed to be corrected. The correction is made if NTEMP=0 or NTCR=1.

NCARD If NCARD=0, no special action is taken.

If NCARD = 1, output data are placed onto unit 6, which is equated to the PUNCH file. These data include the rotor and stator blade performance data (inlet and outlet radii, inlet Mach number, incidence, deviation, loss coefficient, and 3-D D-factor) on each streamline, computed static pressures at hub, mid, and tip streamlines, experimental static pressures, and test point compressor performance results. This output is generated for each test point analyzed.

NPDQ If NDPQ=0, no special action is taken.

If NDPQ=1, additional printout is generated which is the static pressure difference across the blades at each meshpoint from blade leading edge to blade trailing edge. If the number of blades in any row is set to zero, the pressure differences are computed for ten blades.

TITLE A title card for the test point; 72 alphanumeric characters starting in column 1.

GASR The gas constant. Units: ft lbs/lb deg Rankine.

FRCAIR The fraction of the gas by mass that is dry air; the remainder is taken to be water vapor.

FLOW The flow rate. Units: lbs/sec.

RPM The compressor rotational speed. Units: rev. per minute.

PIN The compressor inlet total pressure. Units: lbs/sq. in. abs.

TIN The compressor inlet total temperature: Units: deg. Rankine.

TRATIO Not used in the calculation.

- PRATIO The ratio of actual compressor inlet total pressure at test time to the value PIN. This will be other than 1.0 if the test data are corrected to some standard inlet condition before submission to Program UD0200. (It is used in the correction of the total temperature probe data.)
- RESTAG For cases that include an IGV, this is the change in setting angle from its "design value". This would generally equal DEL in the input to UD0100. For a conventional machine with positive rotation, a positive RESTAG value would correspond to "closing" of the IGV row. Units: degrees.
- NRP The number of radial locations at which the total pressure is given at station NSTN1. Must satisfy 1<NRP<21.
- RRP The radius at station NSTN1 where the total pressure is given. Must be in ascending order. Units: inches.
- PR The total pressure at radius RRP. Units: lbs/sq. in. abs.
- NRT The number of radial locations at which the total temperature is given at station NSTN1. Must satisfy 1<NRT<21.
- RRT The radius at station NSTN1 where the total temperature is given. Must be in ascending order. Units: inches.
- TR The total temperature at radius RRT. Units: deg. Rankine.
- NSP The number of radial locations at which the total pressures are given at station NSTN2.
- RSP The radius at station NSTN2 where the total pressures are given. Must be in ascending order. Units: inches.

PS	The circumferential average total pressure at radius RSP. Units: lbs/sq/in. abs.
PSM	The peak total pressure at radius RSP. Units: lbs/ sq/in. abs.
NST	The number of radial locations at which the total temperature is given at station NSTN2. Must satisfy $1\leq NST\leq 21$.
RST	The radius at station NSTN2 where the total tempera- ture is given. Must be in ascending order. Units: inches.
TS	The circumferentially averaged total temperature at radius RST. Units: deg. Rankine.
NSA	The number of radial locations at which the whirl angle is given at station NSTN2. Must satisfy $1 \le NSA \le 21$.
RSA	The radius at station NSTN2 where the whirl angle is given. Must be in ascending order. Units: inches.
SA	The circumferentially averaged whirl angle at radius RSA. The whirl angle is defined by tan(SA)=whirl velocity/meridional velocity, and is positive in the direction of rotor rotation. Units: degrees.
NWSO	The number of points on the casing where the static pressure is given. Must satisfy $0 \le NWSO \le 22$, except that if NBL=1, for any station, NWSO \$<2.
XWSO	The axial coordinate at which the casing static pressure is specified. Must be in ascending order. Units: inches.
WSPO	Casing static pressure at point XWSO. Units: 1bs/ sq. in. abs.
NWSI	The number of points on the hub where the static pressure is given. Must satisfy 0 <nwsi<22.< td=""></nwsi<22.<>
XWSI	The axial coordinate at which the hub static pressure is specified. Units: inches.

WSPI Hub static pressure at point XWSI. Units: lbs/sq. in. abs. Note: The hub static pressures are not used in any calculations, but are displayed on the stage static pressure distribution plot if NPLOT#0.

NPSR The number of points at specified, intermediate radii where the static pressure is given. Must satisfy O<NSPR<20, except that if NBL=5 or 6 for any station NPSR>2.

XPSR The axial coordinate at which the intermediate static pressure is specified. Must be supplied in ascending order. Units: inches.

RPSR The radius at which the intermediate static pressure is specified. Units: inches.

- PSSR Static pressure at point (XPSR, RPSR). Units: lbs/sq. in. abs.
- BLCKGE, The annulus boundary layer and wake blockage is accounted BDIST for by a distributed blockage. BLCKGE is the fraction of the circumference at midradius that is blocked, and BDIST is the ratio of the blockage at the hub to the midradius value, BLCKGE. The radial distribution is linear.
- DEL, DELDST When NBL=3, 4, or 6, the flow deviation angle at the station is varied in order to match computed and experimental static pressures. DEL (units: degrees) is the first estimate of the variable component of deviation angle at midradius, and DELDST is the ratio of hub deviation to midradius deviation. The variation with radius is linear.
- BFRAC When NBL=4 or 6, BFRAC is the fraction of trailing edge blockage that is to be applied at the station. BLCKGE is used for the first pass through the calculation. BDIST applies throughout.
- NMACHI If NMACHI is zero, the subsonic solution to the continuity equation is obtained. If NMACHI is 1, the

supersonic solution to the continuity equation is obtained. Note that NMACHI may be validly set equal to 1 only if NCALC=2.

N.HIMP If NJUMP=0, normal computation follows. If NJUMP=1, the program skips the computation and reads in the next set of test data. Must be zero for the last set of test data.

SECTION IV

OUTPUT DATA

1. INTRODUCTION

The output from Program UD0400 consists of printer, card punch, and plotter output data. The printed output consists of two sections; output data from the UD0100 section and from the UD0200 section. Each section of data may occur more than once or may be absent, depending on the number of blade geometry definitions generated and the number of experimental cases analyzed. In each section, the printed output is divided into two classes; regular output and diagnostic output. The regular and diagnostic outputs for each section are discussed in detail below.

2. SECTION UD0100 REGULAR OUTPUT

The blade geometry definition printed output consists of two parts; first a listing of the input data and second a listing of the results computed by the program. The listing of the input blade section coordinate data to the UD0100 section of the program may be omitted by use of the NPRINT=1 option. If the data are listed (NPRINT=0), they show the coordinates as input, that is, before any rotation is applied to them. If NWHICH=1, the additional input data involved is listed and also the x-r coordinates of the derived computing stations are shown. The x-values shown are relative to the same origin as was used to input the data for UD0100. The quantity XSHIFT is added to these data however, before they are written out to file TAPE7 (unit LOG7).

The results computed by the UD0100 section are printed and output onto a second unit file TAPE8 (unit LOG8) in a format directly compatible with the input data requirements for the UD0200 section. For each computing station, given first is the number of radii at which data are given. This will not necessarily equal the number of constant-z planes at which data were input if partially-defined sections are involved. Next are given the radii at which the blade mean lines on each of the input data planes intersect the station, and, at each radius, the blade section angle, the blade lean angle, the blockage, and the angular coordinate of the intersection of the blade mean line with the station. The blade section

31

PRECEDING PAGE BLANK-NOT FILMED

angle is the angle made by the intersection of the blade mean line and a cylinder with the meridional (axial-radial) plane. It is taken positive in the direction of rotor rotation. The blade lean angle is the projection onto a constant-x plane of the angle made by the intersection of the blade mean surface and the station with a locally radial line. This is taken positive for sweep-back relative to rotor rotation. Both the blade section angle and the blade lean angle are given in degrees. The blockage is the fraction of the circumference at the given radius that is blocked by the blades. The angular coordinate of the intersection of the blade mean line with the station is measured from the radial line that is also the z-coordinate. It is taken positive in the direction of rotor rotation, and is given in radians.

3. SECTION UD0100 DIAGNOSTIC OUTPUT

There are two iterative procedures in section UD0100 and they both have associated messages that will be printed should they fail to converge. If the determination of the coordinates of a point on the mean line of a blade section fails, the following message will appear:

MEANLINE DETERMINATION ITERATION FAILS

J=XXX NO. OF POINT ON P SURFACE = XXX

Here J is the number of the constant-z plane. If the determination of the axial coordinate of the intersection of the blade mean line with a computing station fails, the following message will appear:

ITERATION FOR XHERE FAILS I = XX

Here I is the computing station number. In both cases, the program will terminate execution and an input data error should be suspected.

4. SECTION UD0200 REGULAR OUTPUT

The aerodynamic analysis regular printed output consists of four parts: the fixed data printout, the test data printout, the printout of computed results, and data that are plotted on a CALCOMP plotter (if desired). The fixed data printout consists of all the input data items that are read in only once per program execution and displayed in the order in which they are read in. This includes principally the compressor geometry and some "constants". Where computing station data are read from

file TAPE7 (presumably having been created by the UD0100 section), the number of the hub and casing segments that are to be used to find the two wall radii are given. Then, the wall segment data will also be listed, followed by the calculated wall radii for each station that has the NSPEC=0 input option. Where an IGV occurs, the input data is listed under appropriate headings. IGV total pressure loss coefficients, both input and as shown in the computed results, are based upon outlet dynamic head.

Next, all the input data that are peculiar to the test point are listed, in the order in which they are read in. This data consists mainly of the experimental measurements. Then follow the computed results for the test point. These two outputs repeat for each new test point considered. The computed results are output station-by-station for all computing stations. If the calculation fails, the output will only be generated for stations up to the station where failure has occurred. For every computing station there appears a flow field description giving details of the flow relative to a stationary or absolute coordinate system. Only two items require any explanation. The whirl angle is defined as the angle whose tangent is the ratio of whirl velocity to meridional velocity. The radius of curvature of the meridional projection of the streamlines is shown as zero for the case of a straight line, when, of course, the actual value is infinite. (For this reason, the actual computation is based on curvature.) For computing stations that are at a blade leading on trailing edge, or located within a blade, a printout of data describing aspects of the blade section and its performance is made. The blade section angle is interpolated from the input data, and transformed from the value for a cylindrical section to that applying on the computed stream surface according to the blade lean angle and streamline slope angle. The blade lean angle is simply interpolated from the input data. The relative flow angle differs from the blade section angle by the amount of the incidence or deviation angle, which is also given. The relative total pressure loss coefficient reflects the loss up to the station for the blade section, referenced to the blade inlet relative dynamic head. The pressure ratio, normalized temperature rise, isentropic efficiency, and polytropic efficiency are cumulative for the compressor through to the relevant computing station, and are based upon

stagnation conditions. This applies to both the streamline and integrated values.

Following the flow description for the last computing station, printouts are made of the rotor and stator blade section overall performances. (The latter or both of these outputs will not occur, however, if the calculation has not successfully progressed to the stator trailing edge, or the rotor trailing edge, respectively.) The streamline inlet and outlet radii, the relative inlet Mach number, the incidence and (final) deviation angles, the (final) loss coefficient, the blade section angles at inlet and exit, and the blade lean angles at inlet and exit are reiterations of data that was previously printed in the station-by-station output. Note that in this section, the rotor incidence and deviation factor, static pressure rise coefficient, relative velocity ratio (sometimes called de Haller number), and normalized total enthalpy-rise. Diffusion factors are calculated on a conventional two-dimensional basis, and also accounting for the effects of radius change.

The next data that are output, describe the wake and boundary layer blockages that have been incorporated into the calculation. For each station there is shown the midradius $blocka_b$, the distribution factor, and the blockage integrated along the computing station. The midradius blockage will be the input value BLCKGE if NBL for the station is 0, the value calculated to give a casing static pressure match if NBL is 1, or an interpolated value if NBL is 2. The distribution factor is the input value BDIST, and the integrated blockage will only differ discernably from the midradius value if BDIST is different from 1.0, and the computing station has a low hub/tip ratio.

The printed output for each test-point is concluded with a summary of the compressor running conditions and a statement of the success or otherwise of the calculation. If the calculation has successfully converged, the following message appears:

THE CALCULATION IS CONVERGED PASS xx.

The pass number is the number of loops that have been made through the overall iterative procedure. If the calculation is unconverged after all permitted iterations have taken place, the following message will appear:

THE CALCULATION IS UNCONVERGED IVFAIL = xx IFFAIL = xx PASS xx IVFAIL refers to the number of mesh points where, from the penultimate to final passes, the meridional velocity differed by more than one part in a thousand. IFFAIL is the number of stream tubes (defined by the hub and each streamline to the casing) where the fraction of the total flow differed by more than one part in a thousand from the correct value. Should this message occur, and the two counts be, say, one tenth or less of their maximum possible values, the calculation can probably be taken as accurate. If larger counts occur, the program should be rerun with a larger permitted number of passes specified. In the event that the calculation has failed, the following message will appear:

THE CALCULATION FAILED AT STATION XX PASS XX

Normally the pass number will be the first pass after all "forced" passes (that is those where arbitrary numbers are introduced if required) have expired. A data error should be suspected, but it is possible that experimental data may be collected that is not compatible with the flow model incorporated into the computer program.

If NCARD = 1 is selected, punch-card output is generated on unit 6 for each test point analyzed which may be used to generate plots through another plotting program. This option is useful when CALCOMP software is not available or plots in a different format than those generated by UD0400 are desired. These punch-card data include:

(1) Rotor and stator blade performance data (streamline number, inlet and outlet radii, inlet Mach number, incidence, deviation, loss coefficient, and 3-D D-factor), one card per streamline in an (I4,F10.4,F9.4,F8.4,2F9.3, 2F8.4,F9.4) format.

(2) Computed static pressures and experimental static pressures. The first card contains the number of computing stations, number of casing experimental pressures, number of hub experimental pressures, and number of intermediate pressures in a 415 format. Then follow the computed hub static pressures (axial coordinate and static pressure in a 2F10.4 format, one card per computing station), the computed mid static pressures, the computed tip static pressures, casing experimental static pressures, hub experimental static pressures, and intermediate experimental static pressures.

(3) Test point compressor performance results (test point number, flow

rate, rotor RPM, rotor total pressure ratio, rotor isentropic efficiency, stage total pressure ratio, stage isentropic efficiency, and ratio of flowto-choked flow) in an (I12,F9.5,F9.2,F9.6,F9.7,F9.6,F9.7,F9.7) format.

The test data printout and results for the test point are repeated for each of the NCASE test points to be analyzed. Following the results for the last test point, a summary table showing the results for each point is printed. The data displayed are all a reiteration of the final performance figures noted for each point, with the addition of the ratio of the flow rate to the inlet choking flow rate. The inlet choking flow rate is computed on a one-dimensional basis from the inlet total pressure and temperature and the area at the rotor inlet. The area is based upon rotor tip and hub radius; that is, the station is assumed to be radial.

The remaining regular output is the optional CALCOMP plots. If NPLOT is 1 or 2, static pressure distribution plots are made. A separate graph is created for each test point, and the computed static pressure distributions on the hub, mid, and casing streamlines are plotted. Also shown are any experimental values that were included in the input data. Ten further plots show for both rotor and stator, the radial variation of relative inlet Mach number, incidence angle, relative total pressure loss coefficient, deviation angle, and diffusion factor. (The diffusion factor computed with radius change effects is plotted.) When NPLOT=2 (or 3), nondimensional meridional velocity profile plots are also made. If NPLOT=3, the same blade performance plots are made as for NPLOT=2, but the static pressure distribution plots are not made. If NPLOT is 1, a separate group of plots is made for each test point, and if NPLOT is 2, the results for all test points are plotted on one set of graphs. (Generally, this option is recommended as it will permit comparisons of values at different running conditions to be readily made, and also the amount of paper produced is more reasonable!)

5. SECTION UD0200 DIAGNOSTIC OUTPUT

During the execution of the program certain difficulties may arise which result in the issue of one or more diagnostic messages. All the possible diagnostic messages are detailed here, and also given a number. Reference is made to these numbers in a later section.

Messages 4 through 9 are only printed if the iterative pass number is greater than NFORCE, the last pass during which arbitrary numbers are inserted into the solution, if required, without the calculation being abandoned. On prior passes, only the corrective action described is taken, and the calculation proceeds.

a. Message No. 1

STATION XX LAST = XX TOO MUCH STATION SPECIFICATION DATA

This message will occur if more than 200 points are given in the input data to specify the geometry of the computing stations. LAST is the excessive cumulative total number of points reached at the specified station. Program execution ceases.

b. Message No. 2

STATION XX LAST = XX TOO MUCH BLADING DATA

This message will occur if more than 200 radial locations are used in the input data to specify blading geometry. LAST is the excessive cumulative total number of points reached at the specified station. Program execution ceases.

c. Message No. 3

FUNCTION FF2 HAS NOT CONVERGED

Function subprogram FF2 computes temperature as a function of enthalpy and, because specific heat is given by a fifth-order polynomial function of temperature, the calculation is iterative. If the calculation does not converge, this message is emitted, and the last estimate of the temperature is used. Twenty cycles of calculation are permitted, and the calculation is taken to be converged if the determined temperature corresponds to an enthalpy that is within one part in a million of the correct (input) value.

d. Message No. 4

PASS xx STATION xx STREAMTUBE xx ITERATION xx UNREAL STATIC ENTHALPY

During the iterative solution of the momentum and continuity equations, the static temperature is repeatedly re-estimated as a function of the total enthalpy and the velocity. This message relates to the determination of the static temperature during computation of the momentum equation. A lower limit of 10.0 BTU per 1b is set for the static enthalpy (from which the static temperature is determined). If this limit is violated, the static enthalpy is arbitrarily set equal to 10.0. Also, if the pass number is greater than NFORCE, the above message is printed. Additionally, if this occurs during the last permitted iteration for the solution of the momentum and continuity equations (20 are allowed) and failure of the solution has not been previously noted during the current pass, a flag is set to record failure of the solution. Then computation ceases, and results are printed for stations through to the station where failure has been noted.

e. Message No. 5

PASS XX STATION XX STREAMTUBE XX ITERATION XX EXPONENTIAL ARGUMENT LIMITED TO 88.0

Computation of the meridional velocity profile from the momentum equation involves evaluating an exponential which assumes excessive values only when unreasonable velocity profiles are implied. An upper limit of 88.0 is set for the argument to the exponential function. The logic of events if this limit is exceeded is the same as described above for message No. 4.

f. Message No. 6

PASS xx STATION xx STREAMLINE xx ITERATION xx VM = J*x.xxxExx

The momentum equation yields at each streamline the square of the meridional velocity. Gradients of enthalpy, entropy, and so forth specified to the computation could yield negative values for the square of the meridional velocity, which, in the case of this program, would indicate an incompatibility between the flow model and the experimental data. In the program, a lower limit on the meridional velocity of 1.0 feet per second is set. The logic of events if this limit is violated is the same as described above for message No. 4. The final number printed in the message is the square root of the modulus of the square of the offending meridional velocity.

g. Message No. 7

PASS xx STATION xx STREAMTUBE xx ITERATION xx STATIC ENTHALPY UNREAL

The meaning of this message and the logic of associated events is identical to that for message No. 4, except that in this case the limit on static enthalpy is applied during computation of the continuity equation. h. Message No. 8

PASS xx STATION xx ITERATION xx CONTINUITY SWITCH REQUIRED

During the iterative solution of the continuity and momentum equations, the type of solution (subsonic or supersonic) that is being generated is continuously monitored. In the event that the velocity profile determined during any iteration constitutes a solution of the wrong type, the midradius meridional velocity (the starting point for the velocity profile determination) is modified not to give a flow more nearly equal to the desired value, but to give a solution of the correct type. This action is termed a continuity switch. The logic regarding the setting of the failure flag and printing of the above message are the same as for message No. 4. Therefore, the message will normally only appear in the results if the flow rate specified at the computing station is greater than the maximum possible. In marginal cases, a solution may be found by increasing NFORCE in the input data.

i. Message No. 9

PASS xx STATION xx UNCONVERGED FLOW/SPECIFIED FLOW = xx.xxxxx VOLD/VNEW(HUB) = xx.xxxxx VOLD/ VNEW(CASE) = xx.xxxxxx

Up to 20 attempts are permitted to iteratively solve the continuity and momentum equations at each station during each pass. The solution is taken to be converged if the flow rate at the station is within one part in 4000 of the correct value, and the meridional velocities at every streamline agree on two consecutive iterations to within the same tolerance. If all 20 iterations are expired without convergence being achieved, and the pass number is greater than NFORCE, the above message is printed. If the pass number given is less than the pass number for which final results are printed, no particular significance attaches to the message, except that the (final) solution was somewhat more difficult to obtain than the norm. If the pass number given equals that for which the final results are printed, then the three ratios printed may be examined to see to what extent the solution is unconverged. If the results are to be used, the ratios should all be within, say, one part in 500 of unity. Note however that if one of the preceeding five messages has occurred in addition to this message, it becomes of secondary significance. If the solution is at all badly unconverged, the overall convergence criteria are unlikely to be met. Therefore, this message will generally only appear alone for the final pass if that pass is the last permitted, and overall convergence has not been

achieved.

j. Message No. 10

STATION XX STREAMLINE XX ISENTROPIC TEMPERATURE CHANGE NOT CONVERGED

In order to compute efficiency it is necessary to determine the isentropic temperature change corresponding to the actual total pressure ratio on each streamline. This is done iteratively, and the above message will appear if the calculation is unconverged after the permitted 20 iterations. The calculation is taken to be converged when the total temperature change determined corresponds to an outlet pressure that is within one part in 1,000,000 of the correct value. No corrective action is taken; the computation proceeds using the last estimated value for the temperature change.

k. Message No. 11

PASS xx STATION xx ITERATION FOR STATIC PRESSURE POINT LOCATION FAILS

When NBL = 5 or 6, an iterative procedure is used to determine the location of the point where the computing station intersects the line joining the two static pressure points that span the computing station. (A point may be precisely on the computing station but the procedure is expected nevertheless.) The procedure is deemed to be converged if the radius determined on the computing station is constant on two successive iterations to within 0.001 inches. The above message will occur if this criterion is not met after 20 attempts, and execution will be terminated.

1. Message No. 12

PASS XX STATION XX STREAMTUBE XX ITERATION XX EXPONENTIAL ARGUMENT LIMITED TO -88.0

This corresponds to message No. 5 except that in this case the argument is less than -88.0.

m. Message No. 13

PASS XX STATION XX STREAMLINE XX ITERATION XX VM/VM(MID) = XX.XXX VM(MID) = X.XXEXX

In the solution of the momentum equation, no meridional velocity is permitted to be more than 3.0 times the value on the mid-streamline. If this limit is violated, the above message appears, and the limiting value is imposed. If the condition occurs when the pass number is greater than NFORCE and during the last permitted iteration (for the solution of the momentum and continuity equations), computation ceases, and results are printed through to the station where the failure has occurred.

n. Message No. 14

PASS XX STATION XX STREAMLINE XX ITERATION XX STATIC ENTHALPY BELOW LIMIT - LOSS COEFFICIENT CALCULATION

In calculating the relative total pressure loss coefficient, the static enthalpy at the blade-row inlets is computed. If a value less than approximately 0.41 of the compressor inlet total enthalpy is determined, this limiting value is imposed, and the above message appears. If this would occur on the final pass, for which results are printed, the corresponding loss coefficients would be invalid.

SECTION V

THEORY AND METHODS

1. SECTION UD0100

a. Nomenclature and Equations

The calculations that are made in the UD0100 section of the program revolve mainly around the blade section mean lines. The blade sections are defined on constant-z input data planes by the X-Y coordinates of points on the section surfaces. The X-Y coordinates of each point describing the sections are changed to X'-Y' coordinates by rotating the point DEL degrees anticlockwise about the point (XR, YR), as shown in Figure 1.

PRECEDING PAGE BLANK-NOT FILMED

Because a single point (XR, YR) is used for the entire blade, the assumption is being made that the axis of rotation of the blade is parallel to the z-axis of the blade cartesian coordinate data, which is a radial line.

Having made the coordinate transformations, the mean line is defined as the curve passing through the centers of all circles that are simultaneously tangent to both blade section surfaces. From Figure 2,

$$R = \frac{((y_{p} - y_{s}) \cos \alpha - (x_{p} - x_{s}) \sin \alpha)}{(1 + \cos (\alpha - \alpha))}$$
(1)

$$x_{s} = x_{p} + R \left(\sin \alpha_{s} + \sin \alpha_{s} \right)$$
(2)

$$\mathbf{x}_{\text{mean}} = \mathbf{x}_{p} + R \sin \alpha_{p} \tag{3}$$

$$y_{\text{mean}} = y_p - R \cos \alpha_p . \tag{4}$$

Now, considering the blade in cylindrical polar coordinates, the mean lines each define a surface of revolution. The corresponding coordinates are

$$\mathbf{r} = \sqrt{\mathbf{z}^2 + \mathbf{y}^2} \tag{5}$$

and

$$\theta = \tan^{-1} (y/z) \tag{6}$$

 $(and x = x), \qquad (7)$

Then the blade angle on the surface of revolution is

$$\beta_{z-constant} = \tan^{-1} (rd\theta/dx).$$
 (8)

The blade lean angle along a computing station is given by

$$\boldsymbol{\epsilon}_{\mathbf{x}} = \boldsymbol{\theta} - \tan^{-1} \left(\frac{dy}{dz} \right). \tag{9}$$

The blade angle on a cylindrical section through the blade is related to the constant-z value by

$$\tan \beta_{r-\text{constant}} = \frac{\tan \beta_{z-\text{constant}} + \tan \epsilon_x \tan \lambda}{1 - \tan \gamma \tan \lambda}$$
(10)

where

$$\lambda = dr/dx$$
(11)

on the surface of revolution. Equation 10 is derived in Reference 3. The blockage due to the blade is found by considering the coordinates of the two surfaces of the blade at a given 'x', and is given by

$$B = \frac{\sin^{-1} (y_p/r) - \sin^{-1} (y_g/r)}{2\pi} \times \text{ no. of blades.}$$
(12)

Equations 1 through 12 enable properties of the blade sections defined by constant-z planes to be determined. Interpolation and/or extrapolation will generally be required to obtain values at points relevant to the aerodynamic analysis, that is, at the radii where streamlines are calculated to lie.

b. Iterative Solution of Equation 1

Given the coordinates of a series of points defining the p- and s-surfaces of the blade section, it is required to determine the coordinates of a series of points on the mean line. (The designation of either surface as the p- or s-surface is quite arbitrary. It will have an insignificant effect upon the result of the calculation.) A point is determined on the mean line to correspond to each point on the p-surface. Here "corresponds" means "is the center of a circle that is tangent to the given point on the p-surface and some point on the s-surface". In the event that the point on the s-surface is obtained by extrapolation of the surface beyond the leading edge of the blade (i.e., the first point specified), the mean line point so derived is discarded. A mean line point derived at the trailing edge by extrapolation of the s-surface will be retained or discarded. This feature is intended to enable the user to place a trailing-edge station at the actual blade edge without losing data points because both surfaces do not extend to this axial location. The iterative solution of Equation 1 proceeds as follows:

- (1) Select a point on the p-surface, noting its coordinates, x_p and y_p . Determine the surface slope at this point, tan α_p $(=dy_p/dx_p)$. (The methods used to determine slopes and for interpolations is described below.)
- (2) Estimate the corresponding x-coordinate on the s-surface, x_s , as being equal to x_n .
- (3) Determine the y-coordinate and surface slope at x_s ; y_s , and α_s , respectively.

- (4) Calculate the circle radius, R, from Equation 1.
- (5) Refine the estimate of x_{e} by applying Equation 2.
- (6) Return to Step 3 until the solution is converged, which is taken to be when

$$\frac{\left|R_{j}-R_{j-1}\right|}{yp-ys} \leq .001.$$

- (7) The coordinates of the center of the circle, i.e., the point on the mean line that has been determined, are calculated from Equations 3 and 4.
- c. Iterative Determination of Coordinates of Intersection of Surface of Revolution with Computing Station.

The location of this intersection is required because this is the point where the blade parameters are obtained. The determination proceeds as follows:

- (1) Estimate the x-coordinate (x) to be the first value defining the computing station, that is, generally, the axial location of the station at the hub. (In the special case of an "upright" computing station, this estimate will be correct, leading to immediate convergence.)
- (2) Interpolate the radius (r) on the surface of revolution at the estimated 'x'.
- (3) Interpolate the axial coordinate (x) on the computing station at the 'r' derived in Step 2.
- (4) Return to Step 2 until the solution is converged, which is taken to be when

$$|x_{j} - x_{j-1}| \leq .00001.$$

(The program will normally be used with dimensions of inches.)

d. Interpolation and Determination of Derivatives

All interpolation and derivative determination in section UD0100 is performed by curve fitting the data with a spline curve, and then evaluating the curve, or its analytic derivative, at the desired location. The spline curve consists of a series of algebraic cubics, one equation pertaining to the interval between each adjacent pair of data points. The four coefficients of a cubic equation enable the first and second derivatives of the two equations that apply at each point to be made equal, in addition to passing the curve through the data points. Conditions must be arbitrarily imposed at the two end-points, and the selected condition for both ends is that the second derivative at the end point is equal to the value at the adjacent point. Should extrapolation (rather than interpolation) be required, this is performed linearly at the slope of the spline curve at the appropriate end points.

The cubic equation between data points n - 1 and n is

$$y = \frac{M_{n-1}}{6} \frac{(x_n - x)^3}{(x_n - x_{n-1})^3} + \frac{M_n}{6} \frac{(x - x_{n-1})^3}{(x_n - x_{n-1})^3} + (x_n - x) \left[\frac{y_{n-1}}{x_n - x_{n-1}} - \frac{M_{n-1}}{6} (x_n - x_{n-1}) \right] + (x - x_{n-1}) \left[\frac{y_n}{x_n - x_{n-1}} - \frac{M_n}{6} (x_n - x_{n-1}) \right]$$
(13)

and its derivative is

$$\frac{dy}{dx} = -\frac{M_{n-1}}{2} \frac{(x_n - x)^2}{(x_n - x_{n-1})} + \frac{M_n}{2} \frac{(x - x_{n-1})^2}{(x_n - x_{n-1})} + \left(\frac{y_n - y_{n-1}}{x_n - x_{n-1}}\right) - \left(\frac{M_n - M_{n-1}}{6}\right) (x_n - x_{n-1}) . \quad (14)$$

The coefficients M_n are found by first calculating three series of coefficients, A_n , B_n , and D_n . These are determined from

$$A_{1} = 1.0 B_{1} = -1.0 D_{1} = 0.0$$
(15)

and

$$A_{n} = \frac{(x_{n} + 1 - x_{n} - 1)}{3} - \frac{(x_{n} - x_{n} - 1)}{6} \frac{B_{n} - 1}{A_{n} - 1}$$

$$B_{n} = \frac{x_{n} + 1 - x_{n}}{6}$$

$$D_{n} = \frac{y_{n+1} - y_{n}}{x_{n+1} - x_{n}} - \frac{y_{n} - y_{n-1}}{x_{n} - x_{n-1}} - \frac{x_{n} - x_{n-1}}{6} \frac{D_{n-1}}{A_{n-1}}$$
(16)

The subscript n in Equations 16 is varied from 2 to N, the total number of data points. Then the M coefficients may be determined from

$$M_{N} = \frac{A_{N}D_{N} - 1}{A_{N}B_{N} - 1 - A_{N} - 1^{B}_{N}}$$
(17)

and

$$M_{n} = \frac{D_{n} - B_{n}M_{n} + 1}{A_{n}} .$$
(18)

In Equation 18, n is varied from N - 1 to 1.

e. Computing Station Location Determination

Because rotation of the blade will lead to axial movement of the blade edges, section UD0100 may also be used to determine computing station locations. Given X and Y at the leading edge of a blade section at design setting, after rotation X' and Y' are obtained as for any other point. Then for the leading edge computing station,

A series of such points, at each Z-value, will define that station axial location. The trailing edge station location may be found similarly. For intermediate stations, if any are desired, the fraction of blade section meridional chord, F, is given. Then for an intermediate station, $x = x_{le} + F(x_{te} - x_{le})$ r = r_{le} + F(r_{te} - r_{le}).

f. Computational Sequence

The execution of section UD0100 follows the following sequence. The calculations are related to the FORTRAN program by means of the identification field in the columns 73 through 78 of the program cards:

- Read and print input data defining the number and location of the constant-z planes, and the number and location of the stations where output data are to be generated. (034430 through 034740)
- Read and print input data defining the blade restagger, blade leading and trailing edges, center of rotation, and computing station spacing. (034760 through 034930)
- (3) Rotate blade edge coordinates, calculate computing station coordinates, and print results. (034940 through 035190)
- (4) A sequence is started that is performed for each constant-z plane. (035300)
- (5) The points defining the s- and p-surfaces of the blade section are read in and printed. (035310 through 035430)
- (6) Rotate the blade section coordinates by the restagger angle.(035460 through 035540)
- Determine the coordinates of points on the mean line using Equations 1 through 4. (035550 through 035800)
- (8) Determine the cylindrical polar coordinate equivalents to the cartesian coordinates determined in Step 7 using Equations 5 through 7. (035810 through 035840)
- (9) Determine (iteratively) the coordinates of the intersections of each station with the mean line. The mean line is linearly extrapolated upstream if required, but downstream if required only if INSIST = 1. (035850 through 036000)
- (10) Determine at the intersection of each computing station with the mean line, the following quantities: $d\theta/dx$, dr/dx, θ , y_g , and y_p . (036010 through 036050)
- (11) At the intersection of each computing station with the mean line, determine $rd\theta/dx$ (= tan β constant) and the blockage B using Equation 12. (036060 through 036120)
- (12) This terminates the loop commenced in Step 4. (036130)

(20)

- (13) A sequence is started that is performed for each station.(036150)
- (14) The various quantities determined previously are shifted in their storage areas if "partial sections" have left the first elements of the arrays unused. (036160 through 036240)
- (15) The y- and z-coordinates of the intersection of the mean line of each blade section with the computing station are obtained. (036250 through 036270)
- (16) By spline-fitting the y and z data found above, the derivative dy/dz is found at each section. (036280)
- (17) For each section, the angle ϵ is found from Equation 9 and the blade section angle for a^xcylindrical section through the blade is found from Equation 10. (036290 through 036340)
- (18) The calculated blade parameters are written on units LOG2 (for printing) and LOG8 (for punching). (036350 through 036420)
- (19) This terminates the loop commenced in Step 13. (036430)
- (20) The subroutine always returns control to the main program in an attempt to compute a further data set. (036440)

2. SECTION UD0200

a. Flow Model and Governing Equations

The fluid flowing through the compressor is assumed to be an inviscid, thermally-perfect gas. The flow is taken to be axisymmetric, with the effects of blades represented by distributed body forces. It is further assumed that there is no transfer of mass or energy normal to the local flow direction.

Calculations of conditions within the compressor are made at a series of computing stations distributed along the flow path. The stations may be radial lines, nonradial lines, or arbitrary curves. This permits the stations to be located at strategic points in the flow such as at blade edges. However, they must nowhere be parallel to the local flow direction (as seen in meridional projection) and, in fact, the equations are more readily solved as the station and local (meridional) flow direction approach the perpendicular condition.

The equation of state for a thermally-perfect gas is:

51

$$p = wRt.$$

(21)

The specific heat at constant pressure is defined (arbitrarily) as:

$$Cp = a + bt + ct2 + dt3 + et4 + ft5.$$
 (22)

Thus, the enthalpy at temperature t_1 (with reference to the enthalpy at a temperature of absolute zero) is:

$$h = \int_{0}^{t_{1}} Cpdt$$
 (23)

$$= at_{1} + \frac{b}{2}t_{1}^{2} + \frac{c}{3}t_{1}^{3} + \frac{d}{4}t_{1}^{4} + \frac{e}{5}t_{1}^{5} + \frac{f}{6}t_{1}^{6}.$$
 (24)

The total enthalpy is given by

$$H = h + \frac{V^2}{2gJ} .$$
 (25)

The corresponding total temperature may be found by solving the following equation for T.

$$H = aT + \frac{b}{2}T^{2} + \frac{e}{3}T^{3} + \frac{d}{4}T^{4} + \frac{e}{5}T^{5} + \frac{f}{6}T^{6}.$$
 (26)

The first law of thermodynamics may be expressed as

$$dh = tds + \frac{vdp}{J}.$$
 (27)

For an isentropic process ds \approx 0, and substituting from Equations 21, 22, and 23, we may obtain upon integrating between limits:

$$\frac{p_2}{p_1} = \exp\left\{\frac{J}{R} \left(a \log_e \frac{t_2}{t_1} + b (t_2 - t_1) + \frac{c}{2} (t_2^2 - t_1^2) + \frac{d}{3} (t_2^3 - t_1^3) + \frac{e}{4} (t_2^4 - t_1^4) + \frac{f}{5} (t_2^5 - t_1^5)\right)\right\}$$
(28)

and also

$$\frac{\rho_2}{\rho_1} = \exp\left\{\frac{J}{R}\left((a - \frac{R}{J})\log_e \frac{t_2}{t_1} + b(t_2 - t_1) + \frac{c}{2}(t_2^2 - t_1^2) + \frac{d}{3}(t_2^3 - t_1^3) + \frac{e}{4}(t_2^4 - t_1^4) + \frac{f}{5}(t_2^5 - t_1^5)\right)\right\}.$$
(29)

Conditions 1 and 2 may be static and static, total and static, or total and total, so long as they are isentropically related.

The speed of sound in a gas is given by the general relationship

$$a^2 = \frac{dp}{d0}$$
. (30)

Using Equations 21 and 29 in differential form together with the relationship

$$Cp - Cv = R/J$$
(31)

the speed of sound is found to be given by

$$a^2 = g\gamma Rt.$$
(32)

Equation 27 may also be used to determine entropy variations. Rearranging and substituting from Equation 21 yields, upon integrating between limits,

$$s_{2} - s_{1} = a \log_{e} \frac{t_{2}}{t_{1}} + b (t_{2} - t_{1}) + \frac{c}{2} (t_{2}^{2} - t_{1}^{2}) + \frac{d}{3} (t_{2}^{3} - t_{1}^{3}) + \frac{e}{4} (t_{2}^{4} - t_{1}^{4}) + \frac{f}{5} (t_{2}^{5} - t_{1}^{5}) - \frac{R}{J} \log_{e} \frac{p_{2}}{p_{1}} .$$
 (33)

Conditions 1 and 2 may be both either cotal or static. The polytropic efficiency of a process is defined by

$$\eta_{\infty} = \frac{dh_{isentropic}}{dh} .$$
 (34)

Thus, from Equation 27

$$\eta_{\infty} dh = \frac{v dp}{J} \qquad (35)$$

By making the usual substitutions and integrating between limits (assuming the polytropic efficiency to be constant throughout the process); we obtain

$$n_{\infty} = \frac{\frac{R}{J} \log_{e} (p_{2}/p_{1})}{\{a \log_{e} (t_{2}/t_{1}) + b (t_{2} - t_{1}) + \frac{c}{2} (t_{2}^{2} - t_{1}^{2}) + \frac{d}{3} (t_{2}^{3} - t_{1}^{3}) + \frac{c}{4} (t_{2}^{4} - t_{1}^{4}) + \frac{f}{5} (t_{2}^{5} - t_{1}^{5})\}.$$
(36)

It is conventional in aeroengine applications to compute efficiencies on a total-to-total basis.

The continuity equation is applied at each computing station in the form

$$W = \int_{hub}^{case} V_{m} \cos (\emptyset + \gamma) w dA$$
(37)

which may be rewritten

$$W = \int_{\text{hub}}^{\text{case}} V_{\text{m}} \cos \phi (1 - \tan \gamma \tan \phi) wB2\pi r dr. \qquad (38)$$

In order to determine on which branch of the continuity equation a particular velocity profile lies, and also to estimate what velocity level change is required to satisfy continuity at a computing station, the rate of change of flow with midradius meridional velocity is required. (Any convenient reference location could replace midradius.) It is not possible to derive a simple, closed-form expression for this gradient when the specific heat is a function of the form of Equation 22. Fortunately a very precise value is not generally necessary, and therefore, the derivation is made based upon the assumption of a constant specific heat. Two slightly different derivations are required. When the tangential velocity component is fixed, Equation 38 is rewritten as

$$W = \int_{m}^{case} V_{m} \cos \emptyset (1 - \tan \emptyset \tan \gamma) w_{T} (1 - \frac{v^{2}}{2gJCpT})^{\frac{1}{\gamma - 1}} B2\pi r dr$$
hub
(39)

The velocity V is given by

$$\mathbf{v}^2 = \mathbf{v}_{\mathbf{m}}^2 + \mathbf{v}_{\mathbf{n}}^2 \tag{40}$$

and the following substitution is made for the meridional velocity component

$$V_{m} = V_{m} \times V_{m}/V_{m}$$
mid mid (41)

By making the assumption that

$$\frac{d}{dV_{m_{mid}}} \begin{pmatrix} V_{m} \\ V_{m_{mid}} \end{pmatrix} = 0$$
(42)

the following result is obtained

$$\frac{dW}{dV_{m_{mid}}} = \int_{hub}^{case} \frac{V_{m}}{V_{m_{mid}}} \cos \phi (1 - \tan \phi \tan \gamma) w (1 - M_{m}^{2}) B2\pi r dr.$$
(43)

When the relative outlet flow angle from a blade is fixed, Equation 38 is rewritten as

$$W = \int_{\text{hub}}^{\text{case}} V_{\text{m}} \cos \phi (1 - \tan \phi \tan \gamma) W_{\text{TR}} (1 - \frac{V_{\text{R}}^2}{2\text{gJCpT}_{\text{R}}}) \frac{1}{\gamma - 1} B2\pi r dr.$$
(44)

The relative velocity V_{R} is given by

$$\mathbf{v}_{\mathbf{R}} = \mathbf{v}_{\mathbf{m}}/\cos\alpha_{\mathbf{R}}$$
 (45)

and Equation 42 is assumed again. This leads to the result

$$\frac{dW}{dV_{m_{mid}}} = \int_{hub}^{case} \frac{V_{m}}{V_{m_{mid}}} \cos \phi (1 - \tan \phi \tan \gamma) w (1 - M_{R}^{2}) B2\pi r dr.$$
(46)

Thus, in the special case of radially uniform flow, the branch point in the continuity equation occurs when $M_m \approx 1$ if the tangential velocity component is fixed, and when $M_R \approx 1$ if the relative outlet flow angle is fixed. In the general case no single Mach number in the flow is indicative, although the flow exhibits the same basic characteristics.

The validity of Equations 43 and 46 has been discussed by Marsh and Hearsey in Reference 4. In practice, these equations have proved reliable. The form of momentum equation selected for this application is

$$V_{m} \frac{dV_{m}}{de} = \sin (\emptyset + \gamma) V_{m} \frac{dV_{m}}{dm} + \cos (\emptyset + \gamma) \frac{V_{m}^{2}}{r_{c}} - \frac{V_{\theta}}{r} \frac{d}{de} (rV_{\theta}) + \frac{dH}{de} - t \frac{ds}{de} - tan \in \frac{V_{m}}{r} \frac{d}{dm} (rV_{\theta}) + t\frac{ds}{dm} \cos^{2} \alpha_{R} x \left(\sin (\emptyset + \gamma) - tan \in tan \alpha_{R} \right) .$$
(47)

This equation is presented (somewhat unclearly) by Horlock in Reference 5. It was also independently derived by Wennerstrom in Reference 6. The assumption of axisymmetric flow has been incorporated into this equation. The last two terms reflect the effect of blade forces; the penultimate term is related to the change in angular momentum produced by the blades, and the last term is related to frictional forces on the blades and any other losses (entropy rises) in the flow. These two terms are only assigned non-zero values at computing stations that are within blade rows and at blade edges.

The change in total enthalpy that occurs along a streamline as it passes through a rotor is given by the Euler turbomachine equation

$$H_2 - H_1 = (v_2 v_{\theta_2} - v_1 v_{\theta_1})/gJ.$$
 (48)

b. Subsidiary Relationships and Definitions

The total pressure ratio across a blade row is related to the ideal or isentropic value by

$$P_2/P_1 = (P_2/P_1) \text{ isentropic } * P_{2R}/P_{2R} \text{ isentropic }.$$
 (49)

The isentropic total pressure ratio is given by Equation 28 as a function of the inlet and outlet total temperatures, which in turn are given by Equations 26 and 47. The ratio of actual to ideal relative outlet total pressure is related to the relative total pressure loss coefficient by

$$P_{2R}/P_{2R}$$
 isentropic = $1 - \overline{\omega} \left(\frac{P_{1R}}{P_{2R}}\right)$ isentropic $\left(1 - \frac{P_{1}}{P_{1R}}\right)$. (50)

The isentropic relative total pressure ratio is given by Equation 28 as a function of the relative total temperatures, which in turn are related to

the relative enthalpies by Equation 26. The ratio of the relative total enthalpies is given by

$$H_{2R}/H_{1R} = 1 + \frac{U_2^2}{2gJH_{1R}} \left\{ 1 - \left(\frac{r_1}{r_2}\right)^2 \right\} .$$
 (51)

The diffusion factor for a two-dimensional compressor blade section is defined by

$$D = 1 - V_{2R}/V_{1R} + \frac{V_{\theta R1} - V_{\theta R2}}{2\sigma V_{1R}} .$$
 (52)

A "three-dimensional" diffusion factor is defined by determining the relative whirl velocities that would exist if the blade section lay entirely at the mean of the inlet and outlet radii, and the absolute angular momentums were unchanged. Then we replace $V_{\theta R1}$ in Equation 52 by $V_{\theta R1}_{e}$, where

$$\mathbf{v}_{\theta \mathbf{R} \mathbf{1}_{\mathbf{e}}} = \frac{\mathbf{v}_{\theta \mathbf{1}} \cdot \mathbf{r}_{\mathbf{1}}}{\mathbf{r}_{\mathbf{m}}} - \mathbf{U}_{\mathbf{1}}$$
(53)

and similarly

$$v_{\theta R2} = \frac{v_{\theta 2} + r_2}{r_m} - \frac{v_2}{2}$$
(54)

where

$$r_{\rm m} = (r_1 + r_2)/2 \cdot 0. \tag{55}$$

In general, the mean flow direction through the blade-row is not the same as the local blade meanline direction. At the blade leading edge, the difference is called the incidence angle, and is defined by

$$\mathbf{i} = \alpha_{\mathbf{R}} - \beta . \tag{56}$$

Elsewhere in the blade, the difference is called the deviation angle, and is defined similarly

 $\delta = \alpha_{\rm R} - \beta. \tag{57}$

The isentropic efficiency of compression is defined in the conventional manner as the ratio of the total enthalpy change required to isentropically create the given total pressure rise to the actual total enthalpy-rise. For the purposes of computing "integrated" values of both isentropic and polytropic efficiency (defined by Equation 36), mean values of total temperature and total pressure are required. A simple flow-weighted mean total temperature is used, and the mean total pressure is taken to be given by

$$\frac{P_{mean}}{P_{inlet}} = F_2 \left(\frac{\sum F_1(P/P_{inlet}) \cdot T_{inlet} \cdot \delta W}{T_{inlet} \sum \delta W} \right)$$
(58)

where F_1 is the isentropic temperature ratio corresponding to the given pressure ratio, and F_2 is the isentropic pressure ratio corresponding to the given temperature ratio. The summations are made for all stream tubes from hub to casing.

The static pressure rise coefficient is the ratio of the static pressure rise across the blade section to the relative inlet dynamic head.

The normalized total enthalpy-rise is the ratio of the total enthalpy-rise across the blade section (times gJ) to the square of the blade speed at the outlet radius.

c. Computing Station Definition

In UD0200, the first and last points used to define a computing station also define the hub and casing contours, respectively. However, the data generated by UD0100, just described, only describe the axial location of the stations; the extent of the data is controlled radially by the range of Z-values of the cartesian blade descriptions. To handle this situation, UD0200 is supplied with data that describes the wall contours, and the points where the station definition intersects the walls are found and entered as the first and last points of the station definition. Some data which is outside of the flow path may then be discarded. This is illustrated in Figure 3.

Figure 3. Computing Station End Point Definition

The points that define the station are always spline-fit through all supplied points; any superfluous end-points are discarded after the intersections have been determined. The user may specify spline-fit or linear interpolation for the wall segments.

The method used to determine the intersections is as follows:

- (1) Estimate the radius of the intersection to be that of the wall at the previous computing station.
- (2) Interpolate the corresponding axial coordinate from the computing station definition.
- (3) Re-estimate the radius by interpolation from the wall contour data at the axial coordinate found in Step 2.
- (4) If the two estimates of radius differ by more than 0.0005, return to Step 2 with the radius estimate found in Step 3.

Up to ten loops through the procedure are permitted in the program. If the procedure is not then converged, a diagnostic message is printed and execution halts.

d. Interpolation and Integration

Interpolations are required to determine quantities at streamline locations from tabulated input data. There are two "types" of data to be handled; the blade geometry, and the experimental test data. The former can reasonably be presumed to plot "smoothly", and hence, this data is fitted with a spline-curve for interpolation. The test data, however, may be somewhat uneven, and use of a spline-curve then would exaggerate the irregularities. Linear interpolation is therefore employed in this case.

The theory of the spline-curve was given previously. In this case, however, different boundary conditions are imposed at the two ends of the curve; here the second derivative is made equal to zero. Consequently, the following changes are made to Equations 15 and 17 for this case:

$$M_1 = M_N = 0$$
 (59)
 $B_1 = 0.0$

Several integrations are performed in the program, including the evaluation of the continuity equation and its derivative forms, Equations 39, 43, and 46. In each case, trapezoidal integration is used. Adequate accuracy is obtained through the use of a sufficiently fine mesh of points.

e. Solution of Momentum Equation

Equation 47 may be written in the form

$$\frac{\mathrm{d}V^2}{\mathrm{d}e} + A(e)V^2_{\mathrm{m}} = B(e)$$
(60)

where

$$A(e) = 2 \left[\frac{\tan \epsilon}{r V_{m}} \frac{d}{dm} (r V_{\theta}) - \frac{\cos (\phi + \gamma)}{r_{c}} - \frac{\sin (\phi + \gamma)}{V_{m}} \frac{d V_{m}}{dm} \right] (61)$$

$$B(e) = 2 \left[\frac{dH}{de} - \frac{tds}{de} - \frac{V_{\theta}}{r} \cdot \frac{d}{de} (rV_{\theta}) + \frac{tds}{dm} \cos^2 \alpha_R s n (\phi + \gamma) - tan \in tan \alpha_R \right].$$
(62)

If A and B are assumed invariant with e, the integrating factor technique may be applied to Equation 60 yielding, upon integrating between limits 1 and 2,

$$v_{m_2}^2 = v_{m_1}^2 e^{-A(e_2 - e_1)} + (1 - e^{-A(e_2 - e_1)}) B/A.$$
 (63)

In order to keep small the error caused by assuming A and B to be constants, the interval (e_2-e_1) must be kept sufficiently small that a single, mean value may reasonably be assumed. This is accomplished by using Equation 60 to step from one streamline to the next (up to 21 streamlines may be used). In the event that A is zero, Equation 63 fails, and the following alternative equation applies:

$$v_{m_2}^2 = v_{m_1}^2 + B (e_2 - e_1).$$
 (64)

In the computer program, the switch from Equation 63 to Equation 64 is made not for zero A, but when the magnitude of A is so small that numerical inaccuracies are liable to occur.

The derivatives (in Equations 61 and 62) in the "e" direction are determined from the values of the function on the two streamlines bounding the interval (e_2-e_1) thus:

$$\left(\frac{\mathrm{d}\mathbf{F}}{\mathrm{d}\mathbf{e}}\right)_{\mathbf{e_1} \neq \mathbf{e_2}} = \frac{\mathbf{F_2} - \mathbf{F_1}}{\mathbf{e_2} - \mathbf{e_1}}$$
$$= \frac{\mathbf{F_2} - \mathbf{F_1}}{\mathbf{r_2} - \mathbf{r_1}} \cos \gamma. \tag{65}$$

and

Here γ is the value of the station lean angle at mid-interval, and is related to the computing station geometry by

 $\tan \gamma = dx/dr.$ (66)

This gradient is found from the analytic derivative of a spline-curve passed through the data points describing the computing station.

The derivatives in the "m" direction are determined from values of the function on the same streamline at the computing station under consideration, and the two adjacent stations, thus:

$$\left(\frac{dF}{d_{m}}\right)_{I} = \left(\frac{F_{I+1} - F_{I}}{m_{I+1} - m_{I}} + \frac{F_{I} - F_{I-1}}{m_{I} - m_{I-1}}\right) /2.0 \quad .$$
(67)

At the first and last computing stations, these gradients are assumed to be zero.

Also involved in Equations 60 and 62 are the streamline slopes and curvatures. The slopes, and rates of change of slope, are determined from

$$\left(\frac{Dr}{Dx}\right)_{I} = \tan\phi_{I} = \left(\frac{r_{I+1} - r_{I}}{x_{I+1} - x_{I}} + \frac{r_{I} - r_{I-1}}{x_{I} - x_{I-1}}\right) /2.0$$
(68)

and

$$\left(\frac{D^{2}r}{Dx^{2}}\right)_{I} = \left(\frac{D \tan \phi}{Dx}\right)_{I} = \left(\frac{\frac{T_{I+1} - r_{I}}{Dx}}{\frac{T_{I+1} - x_{I}}{Dx}}\right)_{I} = \frac{\left(\frac{r_{I+1} - r_{I}}{\frac{T_{I+1} - x_{I}}{x_{I}}} - \frac{r_{I} - r_{I-1}}{\frac{T_{I} - x_{I-1}}{x_{I}}}\right)_{I}$$
(69)

The curvatures then follow from combining the first and second derivatives in the conventional manner. At the first and last computing stations, the streamlines are assumed to have no curvature, and the slopes are calculated from

$$\left(\frac{Dr}{Dx}\right)_{I} = \tan \phi_{I} = \frac{r_{I \pm 1} - r_{I}}{r_{I \pm 1} - r_{I}}.$$
(70)
The iterative determination of the meridional velocity distribution at a computing station is accomplished by the following procedure:

- (1) The assumed streamline pattern leads to streamline slopes and curvatures, through Equations 68 and 69. A meridional velocity component profile is assumed; during the first pass through the compressor it is taken to be radially uniform, and subsequently the results obtained on the previous pass are assumed.
- (2) All terms in Equations 61 and 62 are calculated.
- (3) Assuming the previous value of the midradius meridional velocity to apply, Equation 63 (or 64) is applied repeatedly to step from the midradius streamline to each wall, yielding a new meridional velocity profile.
- (4) The meridional velocity profile is not taken to be that given in Step 3, but a relaxation factor is applied, thus

$$V_{mew} = V_{m} + R (V_{m} - V_{m}).$$
(71)
mew previous

The relaxation factor R is obtained by consideration of the effect of changes in meridional velocity upon the enthalpy gradient in Equation 47. When the absolute whirl velocity is specified, or relative flow angle is specified but the blade-row is stationary, the enthalpy gradient is independent of meridional velocity. Hence,

$$R = 1.0$$
 (72)

When the relative flow angle for a rotating blade-row is specified, differentiation of Equation 48 yields

$$gJ \frac{dH}{dV_{m}} = U \tan \alpha_{R}.$$
 (73)

The momentum equation, in simplified form accounting for an enthalpy gradient only, is

$$\frac{\mathrm{d}\mathbf{V}_{\mathbf{m}}}{\mathrm{d}\mathbf{r}} = \frac{\mathbf{g}J}{\mathbf{V}_{\mathbf{m}}} \frac{\mathrm{d}H}{\mathrm{d}\mathbf{r}}.$$
 (74)

If then at some radius the correct meridional velocity is perturbed an amount ΔV_m , from Equations 73 and 74, a recalculation of the enthalpy and meridional velocity shows a perturbation from the original value of ΔV_m . U tan α_R/V_m , or a change from the proposed value of ΔV_m (U tan $\alpha_R/V_m - 1$). In order to correct the velocity the relaxation factor R is therefore given by

$$R\Delta V_{m} \left(\frac{U \tan \alpha_{R}}{V_{m}} - 1 \right) = -\Delta V_{m}$$

or

$$R = \frac{1}{\frac{U \tan \alpha}{1 - \frac{R}{v_{m}}}}.$$
 (75)

(5) In the event that the new velocity profile differs from the assumed profile by more than a specified tolerance, the calculation returns to Step 2.

f. Solution of Continuity Equation

Satisfaction of the continuity equation at a computing station depends upon correctly estimating the midradius meridional velocity component. Then, as described above, the velocities at all other radii are prescribed by the momentum equation. This establishes the total flow at the computing station. Generally, continuity is not satisfied (to within the desired tolerance) by the initial midradius velocity estimate, and a refined estimate must be made. The gradient of flow with velocity (Equation 43 or 46 as appropriate) is used for this. If it is assumed that the gradient is constant in the region between the flow computed and the flow desired, then the midradius meridional velocity can be refined using

$$\Delta V_{m} = (V_{m})_{mid} \text{ previous}^{x} (W_{desired} - W_{computed}) / \frac{dW}{dV_{m}}. \quad (76)$$

Of course, the gradient is not constant, decreasing (in magnitude) as the maximum-flow point is approached (M = 1 for simple flows). Hence, when refinement leads to the new velocity being closer to the maximum flow value, the velocity increment will be underestimated and vice versa. This is desirable, as it is computationally inconvenient to unintentionally cross the branch-point in the continuity equation. Because, as was described above, the procedure for the solution of the momentum equation requires meridional velocity estimates at all radii (rather than at midradius only), the velocity increment (Equation 76) is applied to the computed velocity profile at all radii.

There are two circumstances when the branch-point will be crossed. First, the initial velocity estimate may be such that the gradient computed by Equation 43 (or Equation 46) is of the wrong sign. Then a new "first estimate" must be made that will produce a gradient of the correct sign. This is easily achieved by multiplying the existing meridional velocity profile by, say, 0.9 if a switch to a subsonic solution is required, or 1.111 if a switch to a supersonic solution is required. Several applications of the factor may be required. (In the case of a specified absolute whirl velocity, Equation 43, the branch-point is when the flow-weighted mean value of $(1 - M_{m}^{2})$ is negative, so that subsonic solutions only are permitted.) The second circumstance, when the branch-point is crossed (or, at least, potentially crossed) is when the specified flow is larger than the maximum possible flow. Then the velocity increment given by Equation 76 would make the solution type change, and a switch back to the correct type would be indicated. However, as no solution is possible. the computational sequence must be monitored to detect this anomaly. One situation which can occur when the specified flow through a blade row is very close to the maximum possible is that the specified flow cannot apparently be passed with the currently assumed streamline pattern. What is required is that the calculation be forced to proceed with some arbitrary numbers inserted where necessary so that the streamline pattern may be refined until a valid solution is obtained. As indicated above, repeated crossings of the branch-point will occur, first when Equation 46 predicts the velocity increment to satisfy the continuity equation, and again when a deliberate switch is made to regain the correct solution type. Νοω consider a case where a subsonic solution is sought. A range of "plausible" velocities is established. As a lower limit, the highest velocity that

yields a subsonic solution and less flow than desired is noted. As an upper limit, the lowest velocity that yields a supersonic solution is noted. (Where a supersonic solution is required, this procedure is reversed.) Outside of this range, the flow will be farther from the desired value than within it. Hence, successive values of the midradius velocity are constrained to be within this range. Further, this range is continuously refined by constraining the velocity to be not within 2% of extremes of the hitherto defined plausible range, when, without restriction, the velocity would fall outside the range.

g. Iterative Determination of Streamline Locations

The estimates of streamline locations (that is, radii at each computing station) are refined by applying the condition that a constant flow should pass through each streamtube. The flow distributions established by solving the momentum and continuity equations at each station are used to predict at what radius each streamline should lie in order that it divides the flow into the same, specified proportion at each computing station. Subsequent recalculation of the flow distributions (that is, solution of the momentum and continuity equations at each station) based upon the revised streamline locations yield different flow distributions and thus, potentially the iteration will not rapidly converge, or may diverge. The behavior of this procedure may be determined from the following analysis. (This analysis is based upon one given by Wilkinson for plane two-dimensional flows in Reference 7.)

As we are concerned here with the effect of streamline mislocations only, we examine a simplified form of the momentum equation (Equation 47).

$$\frac{\mathrm{d}\mathbf{V}}{\mathrm{d}\mathbf{r}} = \frac{\mathbf{V}}{\mathbf{r}} \tag{77}$$

Assuming that only small deviations from midradius meridional velocity occur, we approximate Equation 77 by

$$\frac{dV}{dr} = \frac{V_m}{r_c}$$
(78)

where V_m is the midradius meridional velocity. For radial computing stations, uniformly spaced Δx apart in a uniform, cylindrical flow, presume an error in streamline location of E at one station only. The corresponding radius of curvature at that station will be given by

$$\mathbf{r}_{c} = -\Delta \mathbf{x}^{2}/2\mathbf{E}.$$
 (79)

The radial distribution of meridional velocity, from Equations 78 and 79, is then

$$V_{m}(r) = V_{m} \{ 1 + \frac{2E}{\Delta x^{2}} (V_{m} - r_{m}) \}.$$
 (80)

The mass flux is proportional to $(\mathtt{V}_{m}\rho),$ and again we approximate the distribution using

$$V_{m}\rho = (V_{m}\rho)_{m} + (V_{m} - V_{m})K$$
 (81)

where

$$K = \left(\frac{d(\rho V_{m})}{dV_{m}}\right)_{m}$$
(82)

For a high radius ratio, the flow between radii r_1 and r_2 is proportional to $\int_{r_1}^{r_2} v_m \rho dr$, and from Equations 80 and 81

$$\int_{r_1}^{r_2} v_m \rho = (v_m \rho)_m \left\{ (r_2 - r_1) + \frac{2EK'}{\Delta x^2} \left[r_m (r_2 - r_1) - \frac{(r_2^2 - r_1^2)}{2} \right] \right\}$$
(83)

where

$$K' = K/\rho_{\rm m} \tag{84}$$

and r_m is the midradius. Equation 83 gives the mass flux distribution that will be predicted by the momentum equation. To determine where the streamline which should be at midradius will be predicted to lie, we seek the radius which divides the flow in half. This may be found by solving the following equation for $r_{\rm v}$

$$.5 = \int_{r_h}^{r_x} v_m^{\rho dr} \int_{r_h}^{r_t} v_m^{\rho dr}$$
(85)

where r_h and r_t are the hub and tip radii respectively, i.e., $r_m = (r_h + r_t)/2.0$. Substituting from Equation 83 into Equation 85, and approximating $(r_x - r_h)$ by $(r_m - r_h)$, this yields

$$r_{x} = r_{m} - \frac{E(r_{t} - r_{h})^{2} \cdot K'}{4\Delta x^{2}}$$
 (86)

Now, due to original error E, the previous radius was $r_m + E$, so that the shift in radius is

$$r_{x} - (r_{m} + E) = -E(1 + \frac{K'}{4} (\frac{\Delta R}{\Delta x})^{2})$$
 (87)

where

$$\Delta \mathbf{R} = \mathbf{r}_{t} - \mathbf{r}_{h}.$$

To make the shift connect, that is equal to -E, the relaxation factor should be

$$R = \frac{1}{1 + \frac{K'}{4} \left(\frac{\Delta R}{\Delta x}\right)^2} .$$
(88)

Now the case considered, where the error E is imposed at one station only, is one extreme. It produces the largest curvatures, and, without a relaxation factor, the largest shifts in radius from one pass to the next. The other extreme is when the error is imposed at all stations, producing no curvature. In this case, damping will cause the streamline shift to be underestimated. An optimum relaxation factor may be defined as one which gives the same undershoot for the "long-wave" case as overshoot for the "short-wave" case. Calling this optimum factor F, and equating the ratio of residual error to original error for these two cases (with the sign change indicated by the undershoot/overshoot).

$$F - 1 = 1 - F \left(1 + \frac{K'}{4} \left(\frac{\Delta R}{\Delta x}\right)^2\right)$$
 (89)

so that

$$F = \frac{1}{1 + \frac{K'}{8} (\frac{\Delta R}{\Delta x})^2} .$$
 (90)

It remains to evaluate K'. From Equations 82 and 84

$$K' = K/\rho_{\rm m}$$
$$= \frac{1}{\rho_{\rm m}} \left(\frac{d(\rho V_{\rm m})}{dV_{\rm m}} \right)_{\rm m} . \tag{91}$$

Consider the case where the whirl velocity is fixed. We may write

$$\rho \mathbf{v}_{\mathbf{m}} = \rho_{\mathbf{T}} \cdot \frac{\rho}{\rho_{\mathbf{T}}} \cdot \mathbf{v}_{\mathbf{m}}$$

where $\boldsymbol{\rho}_{_{T}}$ is the total density, and

$$\rho_{\mathbf{T}} \cdot \frac{\rho}{\rho_{\mathbf{T}}} \cdot \mathbf{v}_{\mathbf{m}} = \rho_{\mathbf{T}} \cdot \mathbf{v}_{\mathbf{m}} \left(1 - \frac{\mathbf{v}_{\mathbf{m}}^{2} + \mathbf{v}_{\theta}^{2}}{2\mathbf{g}\mathbf{J}\mathbf{C}_{\mathbf{p}}^{T}} \right)^{\frac{1}{\gamma - 1}} .$$
(92)

(assuming a perfect gas)

The only variable in Equation 92 is V_m , so we may differentiate w.r.t. V_m to obtain

$$\frac{1}{\rho} \frac{d(\rho V_m)}{dV_m} = 1 - M_m^2$$
⁽⁹³⁾

where

$$M_{\rm m} = V_{\rm m}/a. \tag{94}$$

In the case where the relative flow angle is fixed, we write

$$\rho \mathbf{v}_{\mathbf{m}} = \rho_{\mathbf{TR}} \cdot \frac{\rho}{\rho_{\mathbf{TR}}} \mathbf{v}_{\mathbf{m}}$$

where $\rho_{TR}^{}$ is the relative total density and thus

$$\rho \mathbf{v}_{\mathbf{m}} = \rho_{\mathbf{TR}} \cdot \mathbf{v}_{\mathbf{m}} \left(1 - \frac{\mathbf{v}_{\mathbf{m}}^{2} (1 + \tan^{2} \alpha_{\mathbf{R}})}{2g J C_{\mathbf{p}}^{T} R} \right)^{\frac{1}{\gamma - 1}} .$$
(95)

Again the only variable is $\boldsymbol{V}_{m}^{},$ and we may differentiate to obtain

$$\frac{1}{\rho} \frac{d(\rho \mathbf{v}_{m})}{d\mathbf{v}_{m}} = 1 - M_{R}^{2}$$
(96)

where

$$M_{\rm R} = V_{\rm m} \sqrt{1 + \tan^2 \alpha_{\rm R}} / a.$$
 (97)

Hence

$$K' = \frac{1}{\rho_{\rm m}} \left(\frac{d(\rho V_{\rm m})}{dV_{\rm m}} \right)_{\rm m}$$
$$= (1 - M^2)_{\rm m}$$
(98)

where

$$M = V_{m}/a \text{ if the whirl velocity is fixed, and}$$
$$= V_{m}\sqrt{1 + \tan^{2}\alpha_{R}} /a \text{ if the relative flow angle is fixed}$$

h. Iterative Determination of Flow Area for a Given Static Pressure

One option in the program is to determine the blockage coefficient at a computing station such that the computed static pressure for the casing matches an experimental value. The method employed is to make a calculation of the static pressure (as part of the solution of the continuity and momentum equations), incorporating the input blockage value, and then to refine the blockage on every subsequent iteration, using

$$\Delta A = \Delta p / \frac{dp}{dA}$$
(99)

where

 ΔA is the change in flow area, and

 Δp is the difference between the desired static pressure and the value computed.

The gradient dp/dA is required. The following derivations assume a perfect gas. First consider the case when the whirl velocity is fixed.

One-dimensional continuity gives

$$p = \frac{WRt}{V_{m}A} = \frac{WRT}{V_{m}A} \left(1 - \frac{V_{\theta}^{2} + V_{m}^{2}}{2gJC_{p}T} \right) .$$
(100)

Differentiating Equation 100 yields

$$\frac{dp}{dA} = -\frac{p}{A} \left(1 + \frac{dV_m}{dA} \left(\frac{A}{V_m} + \frac{WR}{gJC_p p} \right) \right) .$$
(101)

Reverting to the continuity equation again,

$$A = \frac{W}{WV_{m}} .$$
 (102)

Differentiating Equation 102 and using also

$$\frac{w}{w_{T}} = \left(1 - \frac{v_{m}^{2} + v_{\theta}^{2}}{2gJC_{p}^{T}}\right)^{\frac{1}{\gamma - 1}}$$
(103)

we may obtain

$$-\frac{dA}{dV_{m}} - \frac{W}{WV_{m}^{2}} (1 - M_{m}^{2}).$$
(104)

Combining Equations 101 and 104 gives the desired result

$$\frac{dp}{dA} \approx \frac{\gamma M}{1-M_m^2} \cdot \frac{P}{A} \quad . \tag{105}$$

This is in agreement with the value given in a table of influence coefficients presented by Anderson, Heiser, and Jackson in Reference 8.

For the case when the relative flow angle is fixed, the total velocity is given by

$$v^2 = v_m^2 (1 + \tan^2 \alpha_R).$$
 (106)

For the fixed whirl velocity case it is given by

$$v^2 = v_m^2 + v_\theta^2.$$
 (107)

Replacing Equation 107 with Equation 106 in the above derivation gives the following result.

$$\frac{dp}{dA} = \frac{\gamma M_R^2}{1 - M_R^2} \cdot \frac{P}{A} .$$
(108)

When NBL = 5 or 6, an iterative procedure is used to determine the location of the intersection of the computing station with the line joining the two static pressure points that span the computing station. The procedure is executed regardless of whether a static pressure is specified precisely on the computing station or the computing station is upstream or downstream of all the static pressure points. In the latter case, linear interpolation between static pressure points becomes linear extrapolation from the two appropriate end values. The procedure employed is as follows:

- The radius is estimated as the arithmetic mean of the radii at points where static pressures are specified.
- (2) The axial location on the computing station at the estimated radius is found by spline-fit interpolation of the points defining the station. (Linear interpolation is used if only two points define the station.)
- (3) A new estimate of the radius is found by linear interpolation between the coordinates of the static pressure specification points at the axial location found in Step 2.
- (4) If the new and old radii estimates vary by more than 0.001 inches, Step 2 is reentered.

When NBL = 3, 4, or 6, the flow deviation angle at the computing station is adjusted to give the desired static pressure match. The method of calculation is very similar to that used for the case when NBL = 1. In this case, the flow area is varied by changing the relative flow angle (and hence deviation angle) rather than the blockage fraction. Using Equation 108 and relating flow area to relative flow angle gives

$$\cos \alpha_{R_{new}} = \cos \alpha_{R_{old}} \left[1 + \frac{\Delta p (1 - M_{R}^{2})}{\gamma M_{R}^{2} p} \right]$$
(109)

where $\alpha_{\mathbf{R}}$ is relative flow angle

 Δp is the difference between the desired static pressure and value computed.

The calculation is performed using the mid-streamline value of relative flow angle. The sign of the new relative flow angle is set negative if the computing station is within the rotor, and a new value for DEL, the midradius additional deviation is found. Then, as noted in the description of NBL in the input data description, the relative flow angle at any radius is given by

$$\alpha_{\mathbf{R}} = \beta + \mathbf{a} + \mathbf{b} + \mathbf{cr} \tag{110}$$

where α is the blade angle, determined from the input data items DATBET and DATEPS

 β is the "fixed" deviation, determined from the input data items RRD, R2M, and RDEV in the case of the rotor, and the input data items RSD, S2M, SDEV and the trailing edge deviation angle in the case of the stator

b,c are arranged so that when r = midradius, b + cr = DEL, and when r = hub radius, $b + cr = DEL \times DELDST$

The inlet choking condition is required in order to compute the ratio of actual flow rate to choking flow rate, and also to nondimensionalize the meridional velocity profiles that are plotted when NPLOT = 2 or 3. Because the working fluid is assumed to be an ideal gas, an iterative calculation is required to find the velocity which corresponds to a Mach number of unity. The procedure used is as follows:

- (1) Estimate critical velocity from rotor face area, flow rate, and inlet total density.
- (2) Determine static enthalpy from inlet total enthalpy and estimated velocity.
- (3) Determine corresponding static temperature, ratio of specific heats, and hence speed of sound.
- (4) If the estimated critical velocity and the speed of sound agree within 0.1 ft/sec, deem the calculation to have converged.
- (5) If the calculation has not converged, reestimate the critical velocity as the mean of the previous estimate and the sound speed determined in Step 3. Control returns to Step 2.
- i. Convergence Criteria

Four checks are incorporated into the overall iterative procedure to determine if the solution is "converged". Two relate to the continuity equation, and two to the momentum equation. In the iterative solution of the momentum and continuity equations at a station for a fixed streamline pattern, a check is made upon the total flow level. This is considered correct if it is within one part in 4000 of the specified value. A check is also made upon the meridional velocity profile, and this is considered converged if it is reproduced from one iteration to another to within one part in 4000 at each mesh point.

Two further checks are made from one overall pass to the next which determine if the overall solution is converged. A continuity check is made upon the streamlines; the area between the hub and each streamline must, at all stations, contain the same fraction of the total flow, to within five parts in 1000. Also, the meridional velocities at each mesh point must be reproduced from one pass to the next to within five parts in 1000.

j. Probe Reading Corrections

Total pressures and total temperatures used in the calculation of the flow through the test compressor are deduced from values given by probes in the flow, and the readings generally need some "correction" to yield true stagnation conditions. The corrections made are a function of the types of probes presumed to be used in the associated experiment, and if probes different to those described here are used, some minor modifications to the program may be required.

The total pressure probes are presumed to be a Kiel-type probe which is insensitive to incoming flow direction over a wide range of angles. (Alternatively, one may presume that the probe is aligned with the flow direction for each reading.) Then the only correction required is for the effect of a normal shock wave if the incoming flow is supersonic. A perfect gas is assumed, and the classic normal shock relation is used, so that:

$$P_{\text{stream}} = P_{\text{probe}} / \left(\left(\frac{(\gamma + 1)M^2}{(\gamma - 1)M^2 + 2} \right) \frac{\gamma}{\gamma - 1} \left(\frac{\gamma + 1}{2\gamma M^2 - (\gamma - 1)} \right) \frac{1}{\gamma - 1} \right)$$
(111)

where

M is the local Mach number, and γ is the ratio of specific heats.

In the program, γ is calculated to correspond to static conditions upstream of the shock.

The total temperatures are assumed to be obtained from small slotvented probes, in particular, the type referred to as Probe 6 by Stickney in Reference 9. The stream total temperature is related to the temperature of the probe by:

$$T_{stream} = T_{probe} / \left(F_{3}(M) - F_{4}(P/P_{ref})(1 - F_{3}(M)) \right)$$
(112)

where

 $F_3(M)$ is the recovery ratio as a function of Mach number at the reference total pressure (1 atmosphere), and

 $F_{L}(P/P_{ref})$ is the variation of recovery ratio with total pressure.

For Probe 6, $F_3(M)$ was obtained from Figure 6 of Reference 9. The values used are as follows:

Mach Number	Recovery Pressure	Ratio at (14.6944	Reference 1bs/sq.	ce Total ín. abs.
0		1.0		
0.2		0.9991		
0.4		0.9978		
0.6		0.9960		
0.8		0.9944		
1.0		0.9929		
1.2		0.9919		
1.4		0.9907		
1.6		0.9900		
1.8		0.9895		
2.0		0.9890		

Spline-curv. interpolation is used to obtain the value corresponding to any Mach number. The total pressure correction function was found in Reference 9 to be adequately represented by the analytic form

$$F_4(P/P_{ref}) = (P/P_{ref})^n - 1.0$$
 (113)

where, for Probe 6, n = -0.8.

k. Fluid Properties

The fluid is assumed to be a thermally-perfect gas (as detailed in Section V) and to be composed of a mixture of air and water vapor in the proportions (by muss) m of air to (1 - m) of water vapor. Here m is the input data item FRCAIR. The associated gas constant is the input data item GASR. The specific heat at constant pressure of the mixture is given by Equation 22, and each of the six coefficients is determined from the following relationship.

$$K_{j} = mK_{j} (air) + (1 - m)K_{j} (water vapor)$$
(114)

where K_{i} (air) and K_{i} (water vapor) are as follows.

j	K _j (air)		K (water vapor)			Mixture CoefficientDesignation	
1	.25037964			.43483286			а
2	08081282	•	10^{-3}	.1098044	•	10^{-3}	Ъ
3	.23122066	•	10^{-6}	52292623	•	10^{-6}	С
4	34160919	•	10 ⁻⁹	1.0182121	•	10 ⁻⁹	đ
5	.27497128	•	10^{-12}	79236516	•	10^{-12}	e
6	085548936	•	10^{-15}	.22724483	٠	10^{-15}	f

The coefficients listed above were determined from specific heat values presented by Keenan and Kaye in Reference 10. Table 2 for air and Table 16 for water vapor. They represent all significant figures in the tables between temperatures of 450 and 1,000 degrees Rankine.

If the program is to be used outside of these temperature limits, or for gases other than an air/water vapor mixture, some modifications to the program will be necessary.

1. Blade Angle Relations

The blade section angle given in the input data is the angle between the blade mean surface and the meridional plane on a cylinder. For the aerodynamic analysis, the angle on a stream surface is required; the angles are related by

$$\tan \beta_{\text{stream surface}} = \cos \phi (1 - \tan \gamma \tan \phi) \tan \beta_{\text{cylinder}} - \tan \phi \tan \epsilon_{x}).$$
(115)

This equation, which is an inverted form of Equation 10, is derived in Reference 3.

The blade lean angle in the input data (ϵ_x) is the angle between the blade mean surface and the radial direction (at the computing station), projected onto a constant-x plane. For the momentum equation computation (ϵ), the angle seen normal to the computing station is required, and these angles are related by

$$\tan \mathbf{\epsilon} = \tan \mathbf{\epsilon} / \cos \gamma \,. \tag{116}$$

m. Stagnation Point

In the event that a compressor inlet including a "bullet-nose" is in the geometry to be analyzed, a stagnation point is introduced there into the flow field. The method of solution used for the momentum equation is unable to handle this, and so a special provision is introduced into the program. At the stagnation point, a velocity of zero is "written" directly into the results, and the integration of the momentum equation inwards from the midradius streamline is made only to the second streamline (that is, the first streamline in from the stagnation point). The integrations for the continuity equation are made in the usual manner, that is including the stagnation point.

The stagnation point, if one exists, must be upstream of the rotor, and is detected by the program as the last station where the "hub" radius is zero. Although the radius of curvature here is actually zero, the value seen in the results is still computed from Equations 68 and 69. This is not used in any calculation as the momentum equation is not integrated across the innermost streamtube.

n. Pressure Differences

The pressure differences across the blades are found from

$$\Delta \mathbf{p} = \frac{2\pi\rho V_{\rm m}}{N} \frac{\mathbf{d}(\mathbf{r}V_{\theta})}{\mathbf{d}\mathbf{m}}$$
(117)

where Δp is the static pressure difference across the blade

- ρ is the density
- V_{m} is the meridional velocity component
- $\mathbf{V}_{\boldsymbol{\boldsymbol{\theta}}}$ is the tangential velocity component
- r is radius
- m is the streamline direction in the meridional plane
- N is the number of blades

The streamwise gradient is found from a mean upstream and downstream difference, so that at a blade trailing edge the value computed will be of the order of one half that computed within the blade. At the leading edge, however, the computed value is doubled, which is equivalent to using a downstream difference only, as the upstream difference will be zero.

SECTION VI

PROGRAM STRUCTURE

1. PROGRAM ORGANIZATION

Program UD0400 has been written as a standard FORTRAN program, with one main program and a number of subprograms. The program is maintained as a CDC Scope UPDATE Library File and the deck names and their contents, in order of occurence, are as follows:

Deck Name	Contents
\$U4M\$	Program UD0400 (Main Program)
\$\$CM	COMMON Deck
\$mn\$	Subroutine UD0200
\$G2\$	Subroutine G2
\$ F F\$	Functions FF1, FF2, FF3, FF4, and FF5
\$A2\$	Subroutine A2X
\$B2\$	Subroutine B2X
\$C2\$	Subroutine C2
\$D2\$	Subroutine D2
\$E2\$	Subroutine E2
\$H2\$	Subroutine H2
\$12\$	Subroutine 12
\$F2\$	Subroutine F2
\$J2\$	Subroutine J2
\$K2\$	Subroutine K2
\$U1\$	Subroutines UD0100, TZ and ROTATE
\$LL\$	Subroutine LL
şmmş	Subroutine MM
DAT4	Sample input data

2. PROGRAM ELEMENTS AND THEIR FUNCTIONS

a. Program UD0400 (Main Program)

The main program controls the flow of the program between the two main Subroutines UD0100 (blade geometry definition section) and UD0200 (aerodynamic analysis section). The program defines the input and output files and the internal scratch files. The program calls Subroutine

81

PRECEDING PAGE BLANK-NOT FILMED

UD0100 once for each blade geometry definition required. Subroutine UD0200 is called only once if one or more aerodynamic analyses are to be performed.

b. Subroutine UD0200

Subroutine UD0200 is the "main program" for the aerodynamic analysis section of the program. This subroutine controls the logical flow of the program between the subprograms which perform the calculations in the aerodynamic analysis. The overall logic for Subroutine UD0200 is shown in Figure 3. This is essentially a flow-chart of the subroutine, and shows all the important logical points and all calls to the other subprograms. Some significant points are as follows. Subroutine A2X, which reads the fixed input data, is only entered once. Upon completing the NCASE analyses, the subroutine returns control to the main program which terminates execution. The first action for each test point analysis is to read some unique analysis option parameters and then enter Subroutine B2X, which reads the test data. Subroutine C2, which is entered once per pass through the compressor, determines the total pressure distributions at rotor and stator exit, the total temperature distribution at the rotor exit (which then pertains throughout the rest of the compressor), and the rotor exit whirl velocity distribution. Thus, although the calculation will march through the compressor station by station, these quantities are determined at the outset. Subroutine D2, which handles the solution of the continuity and momentum equations, is one large loop executed for each station. Therefore, a complete pass is made through the flow field without returning to Subroutine UD0200. The logic of Subroutine D2 is discussed further below. Note that IVFAIL and IFFAIL are set to record the number of unconverged mesh points and stream tubes in the flow field, and that if the calculation fails when IPASS is greater than NFORCE, ILAST records the station number where failure occured. A pass through the flow field comprises one entry to Subroutine C2 followed by one entry to Subroutine D2, and this sequence is repeated until one of three conditions is fulfilled. The conditions are either that all permitted passes have been made, or that the failure flag ILAST has been set, or that the solution is converged. Then Subroutine F2 is entered to produce the regular printed output, which includes a statement of the reason for the termination of the calculation. If a separate plot of blade performance parameters for each test point is specified, Subroutine J2 is entered. Subroutine K2 will be entered if one set of plots for all test points is specified, and all test

SUBROUTINE UD0200

FIGURE 4. Overall Logic of Subroutine UD0200.

points have been computed. If all test points have been computed, program execution ceases; otherwise, Subroutine B2X is reentered to read in the test data for the next test point.

c. Subroutine G2

Subroutine G2 performs interpolations and slope determinations. The subroutine provides both spline-curve fitting and linear pointto-point fitting alternatives.

d. Function FF1

Function FF1 gives enthalpy as a function of temperature by solving Equation 26.

e. Function FF2

Function FF2 gives temperature as a function of enthalpy by iteratively solving Equation 26 by Newton's method.

f. Function FF3

Function FF3 gives the ratio of specific heats as a function of temperature by solving Equations 22 and 31.

8. Function FF4

Function FF4 gives the entropy difference between two states that are defined by their temperatures and pressures, by solving Equation 33.

h. Function FF5

Function FF5 gives the isentropic pressure ratio corresponding to two given temperatures by solving Equation 28.

i. Subroutine A2X

Subroutine A2X reads and lists the "fixed" input data (those data items that are read in only once per program execution) read by the aerodynamic analysis (UD0200) section of the program.

j. Subroutine B2X

Subroutine B2X reads and lists the "test" input data (those data items that are read in for each test point to be analyzed) read by the aerodynamic analysis (UD0200) section of the program.

k. Subroutine C2

Subroutine C2 handles the interpolation of the experimental total temperatures and pressures on each streamline at the instrumentation computing stations. These are corrected from probe-to-stream values. The whirl velocity distribution at the rotor exit is also calculated.

1. Subroutine D2

Subroutine D2 iteratively determines the solution to the momentum and continuity equations at each computing station. Rotor and stator loss coefficients and deviation angles are also computed. This is the major calculational subroutine of the aerodynamic analysis (UD0200) section. The logic in Subroutine D2 is shown in Figure 4.

In the flow-chart (Figure 4), the numbers shown in the left column correspond to the FORTRAN statement numbers in the coding. Where a message number is shown in parentheses, the corresponding diagnostic message may be produced, as described in the previous section. Some significant points in the logic are as follows. The subroutine is essentially one large loop performed (potentially) for each computing station. Subroutine H2 is entered to determine, for the station being computed, the streamline slopes and curvatures, and some terms in the momentum equation. Subroutine I2 determines the radial distribution of blockage due to annulus wall boundary layers and blade wakes. The radial distributions of total temperature, total pressure, and whirl velocity are required for solution of the momentum and continuity equations, and these quantities are determined in various ways depending upon the location of the computing station. At the inlet station they are specified directly in the input data. At stations following a blade-free space, they are dictated by constancy of enthalpy, entropy, and angular momentum along streamlines from the previous computing station. For stations that are within a blade-row, they are estimated in Subroutine E2. At the rotor exit, they have already been determined in Subroutine C2, which also determines the total pressure and temperature at the stator exit. The stator exit whirl velocity distribution is estimated in Subroutine D2 from the downstream experimental flow angle data. The iterative solution of the momentum and continuity equations is then commenced. The gradients in the direction of the computing station of total enthalpy, entropy, and angular momentum are determined, leading to a new estimate of the meridional

SUBROUTINE D2

Figure 5. Logic of Subroutine D2.

Figure 5 continued.

velocity profile from the momentum equation. Then, if the computing station is within a blade row, Subroutine E2 is reentered to obtain a revised estimate of the total pressure, total temperature, and whirl velocity distributions based on the new meridional velocity profile. Unless all permitted iterations have taken place, a degree of convergence of the momentum equation is required before the continuity equation is evaluated. This is because the flow and rate of change of flow with meridional velocity that are computed from the continuity equation are associated with the midradius meridional velocity, and, if the calculations are based upon an unconverged (that is, invalid) meridional velocity profile, an incorrect relationship may be deduced. For this purpose, the meridional velocity profile is taken to be converged if, at every streamline, the change in velocity is less than five parts in 1000. Application of the continuity equations consists of determining the flow rate and rate of change of flow with (midradius) meridional velocity, and then adjusting the velocity level accordingly. Next, a check is made upon the convergence of the momentum and continuity equations. The solution is taken to be converged when the flow rate is within one part in 4000 of the specified value, and the meridional velocity at each streamline has changed on two consecutive iterations by less than the same proportions. If the solution is not converged and all permitted iterations have not taken place, a further iteration is started. For stations that are within a blade row, Subroutine E2 is reentered to obtain revised estimates of total temperature, total pressure, and whirl velocity. If no further iterations are to be made, a blade row loss coefficient or deviation angle distribution, or instrumentation plane Mach number distribution may be determined, depending upon the location of the computing station. The overall convergence of the solution at the computing station is then checked. The overall solution is taken to be converged if the meridional velocities computed on two consecutive passes agree to within one part in 1000, and the proportion of the total flow in each streamtube is correct to within the same tolerance. The streamline radii are reestimated next. If the solution failed and the pass number is greater than NFORCE, execution of Subroutine D2 terminates, and control returns to Subroutine UD0200. Otherwise, if iterative determination of the blockage at the station is specified, Subroutine I2 is reentered to obtain a refined estimate of the blockage at the computing station. Control then returns to the beginning of Subroutine D2 to perform the entire procedure for each remaining computing station.

m. Subroutine E2

Subroutine E2 determines, for computing stations that are within blade rows, the relative flow angles, total temperature, total pressure, whirl velocity, and some components of the momentum equation.

n. Subroutine H2

Subroutine H2 determines the streamline characteristics (slope and curvature), and most terms of the momentum equation. It determines the values of terms that are not a function of meridional velocity and therefore need no revision as the iterative solution of the momentum and continuity equations proceeds.

o. Subroutine I2

Subroutine I2 determines the radial distribution of blockage due to annulus wall boundary layers and blade wakes, according to the input data terms BLCKGE and BDIST. If iterative determination of the blockage to create a match between computed and observed casing static pressure is specified, BLCKGE is recalculated.

p. Subroutine F2

Subroutine F2 produces the aerodynamic analysis regular printed output and, if specified, creates the static pressure distribution plot. Subroutine F2 takes no part in the determination of the solution. The ordinate of the static pressure plot is pressure and the abscissa is the axial coordinate. The lower unit and scale of the ordinate are specified by the user, but the length of the axis is fixed at 6 inches. The subroutine automatically sets the lower unit of the abscissa so that the whole flow field is included in the plot. The scale of the abscissa is fixed at one inch of axial coordinate per one inch of plot.

If the user specifies that blade performance plots are to be generated in which all test point results are contained on a single plot for each parameter, the necessary data are written onto a scratch file for subsequent plotting. These plots are generated in another subroutine.

q. Subroutine J2

Subroutine J2 plots blade performance parameters when separate plots for each test point for each parameter are specified. The abscissa for each plot is the ratio of radius to tip radius, and the scale is automatically set so that a four-inch long axis is created. The ordinates are the various parameters plotted, and, with the scales selected, all reasonable variations of the parameters should fall within approximately a four-inch spread. The starting point values for the ordinates are selected automatically, based upon the lowest value of the parameter to be plotted. The plots are fully labeled.

r. Subroutine K2

Subroutine K2 produces plots of the blade performance parameters when values of each parameter for all test points are to be plotted on one graph. Subroutine K2 is a modified form of Subroutine J2.

s. Subroutine UD0100

Subroutine UD0100 is the "main program" for the blade geometry definition section of the program. The functions, procedures, and methods used in Subroutine UD0100 have already been discussed in previous sections.

t. Subroutine T2

Subroutine T2 performs the interpolations, slope determinations, and linear extrapolations required in the blade geometry definition section of the program.

u. Subroutine ROTATE

Subroutine ROTATE performs the blade coordinate rotation transformations required in the blade geometry definition section of the program.

v. Subroutine LL

Subroutine LL performs the line-counting function required to prepare the printed output.

w. Subroutine MM

Subroutine MM reads and prints the inlet guide vane input data (if an IGV exists).

SECTION VII

PROGRAM IMPLEMENTATION

1. PROGRAM CODING AND STRUCTURE

Program UD0400 has been written in standard FORTRAN IV and will be compatible with all contemporary computing systems having a FORTRAN compiler with few or no modifications. The program was originally developed using a CDC 6600 system and has also been used on an IBM 370 system. Some minor modifications are required to change from one system to the other or if CALCOMP software is not available. These modifications are discussed below.

There is one nonstandard coding feature which was introduced to run the program on the CDC 6600 system - the PROGRAM statement at the beginning of the main program (UD0400). The PROGRAM statement defines ten peripheral units referred to within the program. This statement should be deleted if the program is to be run on another type of system.

Within the program, reference is made to ten peripheral units: LOG1, LOG2, LOG3, LOG4, LOG5, LOG6, LOG7, LOG8, LOG9, and TAPE10. The peripheral unit assignments are made at the beginning of the main program (UD0400) and passed throughout the program so that if changes are required they need only be made once. The file assignments and contents are as follows:

FORTRAN NOMENCLATURE	PERIPHERAL UNIT	CONTENTS
LOG1	TAPE1	Input data
LOG2	TAPE6	Printed output
LOG3	TAPE3	Input data
LOG4	TAPE4	Input data
LOG5	TAPE5	Internal scratch file
LOG6	TAPE2	Punch-card output
LOG7	TAPE7	Internal scratch file
LOG8	TAPE8	Internal scratch file
LOG9	TAPE9	Input data
-	TAPE10	CALCOMP plot output

The contents of the input data files (LOG1, LOG3, LOG4, and LOG9) are defined in Section III. The internal scratch file LOG5 is only required

if NPLOT=2 is selected, and is used to store the blade performance data to be plotted after all test points have been analyzed. The internal scratch files LOG7 and LOG3 are used to transfer blade geometry data from the UD0100 section of the program to the UD0200 section. All printed output is contained on file LOG2. All punch-card type output is contained on file LOG6. The peripheral unit TAPE10 contains the CALCOMP plot output.

2. PROGRAM USE AND MODIFICATIONS

A typical example of the Job-Control-Language (JCL) necessary to execute Program UD0400 on a CDC 6600 system with CALCOMP software is as follows:

> JOB, CM100000, T50, I050. P750232, LAW, 54738. ATTACH, UD0400, UD0400, CY=3. ATTACH, TAPE1, UD0400DATA, CY=1. ATTACH, TAPE3, UD0400DATA, CY=3. ATTACH, TAPE4, UD0400DATA, CY=4. ATTACH, TAPE9, UD0400DATA, CY=9. ATTACH, CCPLOT, CCPLOT1038, ID=LIBRARY, SN=ASD. LIBRARY=CCPLOT. REQUEST, TAPE10, *Q. UD0400, PL=30000. ROUTE, TAPE10, TID-AP, ST=CSA, DC=PR, FC=NP, FID=LAWAO. 6/7/8/9 END OF JOB

In this example, input data files TAPE1, TAPE3, TAPE4, and TAPE9 are attached from permanent files. The program (compiled and loaded) is attached as UD0400. Permanent file CCPLOT1038 contains the CALCOMP software routines for the CALCOMP Model 1038 plotter. File TAPE10 contains the CALCOMP plot output from the program.

In the event that CALCOMP software is not available on a system where the program is to be run, it may be necessary to provide dummy subroutines for PLOTS, PLOT, PLOTE, AXIS, SCALE, LINE, NUMBER, and SYMBOL to avoid unsatisfied external reference errors during compilation. A typical dummy subroutine might be:

> SUBROUTINE SCALE(A,B,C,D) RETURN END

On an IBM 370 system it may be necessary to also provide a dummy subroutine for EOF.

On the IBM 370 system, the PROGRAM statement at the beginning of the main program (UD0400) is deleted and all files are defined in the JCL. A typical example on an IBM 370 system without CALCOMP software is as follows:

```
//LAW
                   JOB (55555,450,60,8),LAW-PHASE2-DATA,
         REGION=316K, TIME=10, NOTIFY=LAW
\Pi
//ONE
                   EXEC FORTHCL, PARM. FORT=ID
//*
//* LOAD PROGRAM UD0400
//*
//FORT.SYSIN
                   DD
                         DISP=SHR, DSN=LAW. UD0400.FORTMOD.FORT (MAIN2)
//LKED.OLDLMOD
                   DD
                         DSN=LAW.UD0400.LOAD,DISP=SHR
                         *
//LKED.SYSIN
                   DD
         INCLUDE
                   OLDLMOD (MAIN)
         ENTRY MAIN
//TWO
                   EXEC PGM=IEBGENER
//*
//* COPY DATA TO SCRATCH DATA SET - &&TAPE1
//*
//SYSPRINT
                   DD
                         DUMMY
//SYSIN
                   DD
                         DUMMY
//SYSUT2
                   DD
                         UNIT=DISK.VOL=SER=OSSY01.
         DSN=&&TAPE1,DISP=(NEW,PASS),SPACE=(1600,(100,10)),
\Pi
         DCB=(LRECL=80,BLKSIZE=1600,RECFM=FB)
11
//SYSUT1
                   DD
                         DSN=LAW.UD0400.DATA(TAPE1), DISP=SHR
//THREE
                    EXEC PGM=IEBGENER
//*
//* COPY DATA TO SCRATCH DATA SET - &&TAPE3
//*
//SYSPRINT
                   DD
                         DUMMY
//SYSIN
                   DD
                         DUMMY
//SYSUT2
                   DD
                        UNIT=DISK,VOL=SER=OSSY01,
         DSN=&&TAPE3,DISP=(NEW,PASS),SPACE=(1600,(100,10)),
\Pi
\Pi
         DCB=(LRECL=80, BLKSIZE=1600, RECFM=FB)
//SYSUT1
                   DD
                         DSN=LAW.PUNCH.DATA(P810408),DISP=SHR
//FOUR
                   EXEC PGM=IEBGENER
//*
//* COPY DATA TO SCRATCH DATA SET - &&TAPE4
//*
//SYSPRINT
                    DD
                         DUMMY
//SYSIN
                   DD
                         DUMMY
//SYSUT2
                         UNIT=DISK, VOL=SER=OSSY01,
                   DD
         DSN=&&TAPE4, DISP=(NEW, PASS), SPACE=(1600, (100, 10)),
\Pi
         DCB=(LRECL=80,BLKSIZE=1600,RECFM=FB)
\Pi
//SYSUT1
                    DD
                         DSN=LAW.UD0400.DATA(TAPE4),DISP=SHR
//FIVE
                    EXEC PGM=IEBGENER
//*
//* COPY DATA TO SCRATCH DATA SET - &&TAPE9
//*
```

```
DUMMY
//SYSPRINT
                    DD
//SYSIN
                    DD
                         DUMMY
//SYSUT2
                    DD
                         UNIT=DISK, VOL=SER=OSSY01,
         DSN=&&TAPE9,DISP=(NEW,PASS),SPACE=(1600,(100,10)),
11
11
         DCB=(LRECL=80,BLKSIZE=1600,RECFM=FB)
//SYSUT1
                    DD
                        DSN=LAW.UD0400.DATA(TAPE9),DISP=SHR
//SIX
                    EXEC PGM=*.ONE.LKED.SYSLMOD,
         COND=((4,LT,ONE.FORT),(4,LT,ONE.LKED))
11
//*
//* EXECUTE PROGRAM UD0400
//*
//FT01F001
                    DD
                         DSN=&&TAPE1, DISP=(OLD, DELETE)
//FT02F001
                    DD
                         SYSOUT=B
//FT03F001
                    DD
                         DSN=&&TAPE3, DISP=(OLD, DELETE)
//FT04F001
                    DD
                         DSN=&&TAPE4, DISP=(OLD, DELETE)
                         UNIT=DISK, VOL=SER=OSSY01,
//FT05F001
                    DD
         SPACE=(1600, (100, 10)), DCB=(LRECL=80, BLKSIZE=1600, RECFM=FB)
11
//FT06F001
                    DD
                         SYSOUT=A
//FT07F001
                         UNIT=DISK, VOL=SER=OSSY01,
                    DD
         SPACE=(1600,(100,10)),DCB=(LRECL=80,BLKSIZE=1600,RECFM=FB)
\boldsymbol{H}
//FT08F001
                         UNIT=DISK, VOL=SER=OSSY01.
                    DD
         SPACE=(1600,(100,10)),DCB=(LRECL=80,BLKSIZE=1600,RECFM=FB)
11
//FT09F001
                    DD
                         DSN=&&TAPE9, DISP=(OLD, DELETE)
11
```

SECTION VIII

FORTRAN NOMENCLATURE

والمتعاونة والمنافقة والمنافعة والمتعالية والمتعاولة والمتعاونة والمتعاولة والمتعاولة والمتعاولة والمتعاولة وال

l

All the important variables in the program and their uses are given here.

Variable	Description
ABROTM	Mach number on each streamline at instrumentation plane NSTN1 (downstream of rotor)
ABSTAM	Mach number on each streamline at instrumentation plane NSTN2 (downstream of stage)
BDIST	Ratio of wake and boundary layer blockage at hub to midradius value (one value per station)
BLCKGE	Blockage due to blade wakes and annulus wall boundary layers at midradius (one value per station)
B1	Blockage at mid-streamtube due to blading
B2	Blockage at mid-streamtube determined from BLCKGE and BDIST
CPPG	$\cos(\emptyset + \gamma)$ on each streamline
CR	Streamline curvature, on each streamline
C1	π/180.0
DATAB	Input data values of blockage due to blades
DATBET	Input data values of blade section angle
DATEPS	Input data values of blade lean angle
DATHET	Input data values of blade angular coordinate
DATRAD	Input data values of radius for blade properties
DEL	Blade section angle of rotation
DELF	Target flow distribution for streamtubes
DR	"Three-dimensional" rotor diffusion factor on each streamline
DRDZ2	$(\Delta r/\Delta x)^2$ for streamline relocation relaxation factor, one value per station

DRVWDM	$\frac{\tan \epsilon}{r} \frac{drV_{\theta}}{dm} \text{ on each streamline}$
DS	"Three-dimensional" stator diffusion factor on each streamline
DVMDM	sin (\emptyset + γ)dV _m /dm on each streamline
EJ	Joules equivalent
EPS	tan ϵ on each streamline
FLOW	Flow rate specified in input data
FRCAIR	Fraction of working fluid that is air, by mass
FX	Fraction of meridional chord where intermediate stations lie
G	Acceleration due to gravity
GAMA	tan γ on each streamline
GASR	Gas constant
HIR	Relative total enthalpy at blade inlet on each streamline
ICASE	Test point number being analyzed
IFFAIL	Number of unconverged streamtubes
ILAST	Records station number if solution has failed
IMID	NSTRMS/2 + 1
INSIST	Blade data extrapolation option indicator
IPASS	Iterative pass number
IRLE	Station number at rotor leading edge
IRT	Station number at rotor trailing edge
ISLE	Station number at stator leading edge
IST	Station number at stator trailing edge
ISTOP	Last station at which results are to be output
ISTRT1	Location within data arrays at which first station geometry specification data is stored, one value per station

ISTRT2	Location within data arrays at which first blade geometry data item is stored, one value per station
ITUB	NSTRMS - 1
IVFAIL	Number of unconverged mesh points
LNCT	Number of lines printed on current output page
LOG1	Fixed input data unit number
LOG2	Standard output unit number
LOG3	Experimental input data unit number
LOG4	User-supplied input data unit number
LOG5	Scratch file unit number
LOG6	Punch-card output unit number
LOG7	Scratch file unit number
LOG8	Scratch file unit number
LOG9	Blade coordinate input data unit number
NBL	Input indicator for handling blockage due to wakes and boundary layers, one value per station
NBLADE	The number of blades in a blade row
NCALC	Input indicator specifying type of calculation, one value per station (except station 1)
NCASE	Number of test points to be analyzed
NDATA	Number of blade data points, one value per station
NFORCE	Last pass number when arbitrary numbers will be inserted into solution if necessary
NINPUT	Indicator for blade section coordinate input data source
NL	Maximum number of printed lines per output page
NMACH	Solution type indicator for continuity equation, one value per station
NMAX	Maximum permitted number of iterative passes
	97

- NOROTR Number of blades in rotor
- NOSTAT Number of blades in stator
- NP Number of points defining the 'p' surface of the blade section
- NPLOT Indicator for CALCOMP plots
- NPRINT Indicator for blade section coordinate printout
- NPRSS Indicator specifying which instrumentation plane gives rotor outlet total pressure
- NRP Number of total pressure data points at instrumentation plane NSTN1
- NRT Number of total temperature data points at instrumentation plane NSTN1
- NR1 Number of points for rotor internal loss curve
- NR2 Number of points for rotor internal deviation curves
- NR3 Number of radii where rotor internal deviation curves are given
- NS Number of points defining the 's' surface of the blade section
- NSA Number of radii where flow angles are given at instrumentation plane NSTN2
- NSP Number of radii where total pressures are given at instrumentation plane NSTN2
- NSPEC Number of points defining computing station geometry, one value per station
- NST Number of radii where total temperature is given at instrumentation plane NSTN2
- NSTNS Number of computing stations
- NSTN1 Station number at instrumentation plane downstream of rotor
- NSTN2 Station number at instrumentation plane downstream of stage
- NSTRMS Number of streamlines
- NS1 Number of points for stator internal loss curve
- NS2 Number of points for stator internal deviation curves
| NS3 | Number of radii where stator internal deviation curves are given |
|--------|--|
| NTEMP | Indicator specifying which instrumentation plane gives total temperature at rotor outlet |
| NWHICH | Indicator for blade section rotation |
| NWSI | Number of experimental wall static pressure readings on inner wall |
| NWSO | Number of experimental wall static pressure readings on outer wall |
| NX | Number of stations where output is to be generated |
| NXII | Number of points defining a station |
| NZ | Number of constant-z planes on which blade sections are defined |
| OMPP | $(1 - p/P_R)$ at blade leading edge, on each streamline |
| P | Total pressure; first subscript streamline number, second station number |
| PHI | \emptyset , radians, on each streamline |
| PI | π |
| PIN | Inlet total pressure |
| PR | Experimental total pressures at instrumentation plane NSTN1 |
| PRATIO | Ratio of actual compressor inlet total pressure at test time to the value PIN |
| PS | Circumferentially averaged experimental total pressures at instrumentation plane NSTN2 |
| PSM | Circumferential peak experimental total pressures at instru-
mentation plane NSTN2 |
| R | Streamline radius, subscripted as P |
| RDEV | Rotor deviation angles on each streamline |
| RF | Relaxation factor used in iterative solution of momentum equation |
| RI | Rotor incidence angles on each streamline |
| RLOSS | Ratio of local to final loss coefficient within rotor |
| ROTDEV | Rotor deviation angles on each streamline
99 |

RPM	Rotor rotational speed
RRD	Radius at which rotor internal deviation curve applied
RRP	Radii at which total pressures are given at instrumentation plane NSTN1
RRT	Radii at which total temperatures are given at instrumentation plane NSTN1
RSA	Radii at which flow angles are given at instrumentation plane NSTN2
RSD	Radius at which stator internal deviation curve applies
RSP	Radii at which total pressures are given at instrumentation plane NSTN2
RST	Radii at which total temperatures are given at instrumentation plane NSTN2
RSTN	Radius at a point defining computing station geometry
RTEMP	Array used to store streamline radii at previous computing station as determined on previous pass
RIM	Fractions of meridional chord where rotor internal loss are given
R2M	Fractions of meridional chord where rotor internal deviation angles are given
SA	Experimental flow angles at instrumentation plane NSTN2
SDEV	Stator deviation angles on each streamline
SI	Stator incidence angles on each streamline
SLOSS	Ratio of local to final loss coefficient within stator
SPPG	sin (\emptyset + γ) on each streamline
STADEV	Stator deviation angles on each streamline
SIM	Fractions of meridional chord where stator internal loss are given
S2M	Fractions of meridional chord where stator internal deviation are given
Т	Total temperature, subscripted as P
TANA	Tangent of blade section angle on each streamline

TANR	Tangent of relative flow angle on each streamline
TAPE10	CALCOMP output unit
TDSDM	$\cos^2 \alpha_{\rm R} \frac{{\rm d}s}{{\rm d}m} (\sin (\emptyset + \gamma) - \tan \epsilon \tan \alpha_{\rm R})$ on each streamline
TFW	Fraction of total flow passing between hub and streamline, one value for each streamline
TIN	Inlet total temperature
TITLE	Title for UD0200 section test point input data or title for UD0100 section input data
TITLE1	Title for UD0200 section fixed input data
TR	Experimental total temperatures at instrumentation plane NSTN1
TS	Experimental total temperatures at instrumentation plane NSTN2
TIR	Relative total temperature at blade inlet on each streamline
VM	Meridional velocity, subscripted as P
vv	Meridional velocity on each streamline during iterative solution of momentum and continuity equations
VW	Whirl velocity, subscripted as P
WR	Rotor relative total pressure loss coefficient on each stream- line
WS	Stator relative total pressure loss coefficient on each stream- line
WSPI	Experimental static pressures on inner wall
WSPO	Experimental static pressures on outer wall
XLE	'X' coordinate of a point representing the leading edge of the blade section
XMR	Relative Mach number at rotor inlet on each streamline
XMS	Mach number at stator inlet on each streamline
XP	The x-coordinate of a point on the 'p' surface of a blade
XR	'X' coordinate of the center of rotation for the blade section

XS	The x-coordinate of a point on the 's' surface of a blade
XSHIFT	Quantity added to the blade section station coordinates to align the blade origin with the compressor origin
XSTN	Axial coordinate of a point defining computing station geometry
XTE	'X' coordinate of a point representing the trailing edge of the blade section
XWSI	Axial coordinate of a point where inner wall static pressure is given
XWSO	Axial coordinate of a point where outer wall static pressure is given
YLE	'Y' coordinate of a point representing the leading edge of the blade section
YP	The y-coordinate of a point on the 'p' surface of a blade
YR	'Y' coordinate of the center of rotation for the blade section
YS	The y-coordinate of a point on the 's' surface of a blade
YTE	'Y' coordinate of a point representing the trailing edge of the blade section
Z	The z-coordinates of the constant-z planes, the origin is on the compressor axis

SECTION IX

SAMPLE OUTPUT FROM PROGRAM UD0400

The printed output for a single test point is reproduced on the following pages. The analysis is performed for a single-stage compressor with an inlet guide vane. Three blade row geometries are determined prior to one test point analysis. In the sample, the inlet guide vanes and stator vanes are variable but set at their design values (0.0 deg.). Each of the three blade geometry definition printed outputs consist of two parts: a listing of the user input data and a listing of the computed results. In this sample, all of the blade section coordinate input data printout has been omitted. For each blade row, data are computed and printed which define the computing stations at leading and trailing edges. Note that the sequence of blade geometry printouts is the same as the sequence in which the air flow encounters the blades in the aerodynamic analysis.

The aerodynamic analysis printed output follows next and consists of three parts: the fixed input data, the experimental data, and the computed aerodynamic results. The fixed input data printout consists of all the input data which are read only once per program execution, including principally the compressor geometry and some "constants." Computing station data are printed next which define the hub and casing segments over each of the blade-rows, followed by the calculated wall radii for each leading and trailing edge computing station. Printed next are station calculation specification and blading data that include a listing of the data computed by the previous three executions of the blade geometry definition section of the program. IGV performance data and rotor and stator generalized performance specifications are then printed.

Next, all of the input data peculiar to the test point are listed, consisting mainly of the experimental data and distributed blockage specifications. For this sample, stage outlet temperatures and peak stage outlet pressures are used to compute compressor performance. The computed results are printed next, station-by-station, followed by printouts of the rotor and stator blade section overall performances. The printed output is concluded by listing the wake and boundary layer blockages incorporated into the calculation and a summary of the running conditions for the test point.

PROGRAM J00400 (UD0100 AND UD0200 COMBINED)

- ------

Ł

÷

4

NUMBER OF ENTRIES TO UD0100 = 3 NUMBER OF ENTRIES TO UD0200 = 1

PROGRAM JD0100

RUN TITLF = IGV BLADE GEOMETRY CALCULATION NZ = 13 NBLADE = 36 NWHICH = 1 NPRINT = 1 NINPUT = 1 BLADE RESTAGGER = 0.000 J Z XLE YLE XTE YTE 3.8000 1 -1.3658 .0050 .5790 .0313 2 4.1000 -1.1205 .0121 .6343 .0067 4.4000 3 -.9217 .0183 •6897 -.0178

4	4.7030	8222	•0229	.7456	0381
5	5.0000	7842	.0279	.8018	0532
6	5.3000	7833	.0336	.8576	0691
7	5.6000	7840	• 0 3 9 4	.9136	0863
8	5.9000	7837	•0455	•9695	1042
9	6.2000	8061	• 05 22	1.0256	1244
10	6.5000	8663	•0598	1.0815	1494
11	6.8000	9668	.0678	1.1374	1811
12	7.1000	-1.1203	.0758	1.1932	2216
13	7.4000	-1.3075	.0835	1.2489	2630

XR = 0.0000 YR = 0.0000 XSHIFT = -12.6770

- NX = 2
 - I FX

1 0.0000 2 1.0000

- STATION 1
- NXI = 13

XSTN RSTN 3.8000 -1.3658 -1.1205 4.1000 -.9217 4.4000 -.8222 4.7001 -.7842 5.0001 -.7833 5.3001 -.7840 5.6001 -.7837 5.9002 -.8061 6.2002 -.8663 6.5003 6.8003 -.9668 7.1004 -1.1203 7.4005 -1.3075

STATION 2

NXI = 13

XSTN	RSTN	
.5790	3.8001	
•6343	4.1000	
•6897	4.4000	
• 7456	4.7002	
.8018	5.0003	

- 1	576 5.3005			
	136 5.6007			
	695 5,9009	•		
1.0	6.2012			
1.0	815 6.5017	,		
1.1	374 6.8024	•		
1.1	932 7.1035	1		
1.4	489 7.4047			
STATION	1 NRR = 13			
2141101				
RADIUS	ALPHA	EPS	B	THETA
3.8000	-2.5006	-1.3353	.0135	.0014
4.1000	-2.6265	-1.1200	.0125	.0031
4.4000	-2.7814	7585	.0116	.0043
4.7001	-2.8069	5955	.0107	•0050
5.0001	-3.0377	7140	.0100	.0057
5.3001	-3.0281	7376	•0093	.0064
5.6001	-2.9993	7243	.0087	.0071
5.9002	-2.9954	7582	.0081	•0078
6.2002	-3.0118	8741	.0076	.0085
6.5003	-3.0700	9789	.0072	.0093
6.8003	-3.2297	9664	.0067	.0101
7.1004	-3.7275	8884	•0064	.0107
7.4005	-4.1962	8224	•0060	.0114
STATION	2 NRR = 13			
RADIUS	ALPHA	EPS	8	THETA
3.8002	5.1064	5.1567	.0149	.0095
4.1000	2.8744	4.9172	.0139	•0028
4.4000	.1684	4.2280	.0130	0029
4.7001	-2.8304	2.8548	•0123	0070
5.0002	-4.5887	2.2707	•0116	0096
5.3004	-6.0628	2.5074	•0109	0121
5.6005	-7.5113	2.5027	•0104	0145
5.9008	-8.9091	2.5812	.0100	0168
6.2011	-10.2191	3.1398	•0095	0192
6.5016	-11.5775	4.0183	•0092	0222
6.8023	-12.9691	5.4833	•0089	0259
7.1033	-14.3257	6.2322	• 00 86	0305
7.4045	-15.3340	5.7346	.0083	0348

....

PR()G)	RAM JUOLOO				
PUN NZ =	TITLE # 11 NBLADE	ROTOR L = 34 NWHIC	BLADE GEOM H = 1 NPRI	ETRY CALC NT = 1 NI	ULATION NPUT = 1
BLAD	E RESTAGGE	x = 0.000			
L	2	XLE	YLE	XTE	YTE
1	4.5000	-1.4327	1.0325	1.7542	.8730
2	4.7500	-1.4710	1.1104	1.6806	• 5636
3	5.0000	-1.4527	1.1810	1.6071	•2543
4	5.2500	-1.4281	1.2343	1.5336	0551
5	5.5000	-1.3884	1 2124	1.4501	3645
7	6-0000	-1.3649	1.3404	1.3193	- 8443
8	6.2500	-1.3417	1.3636	1.2572	9725
9	6.5000	-1.3178	1.3719	1.1994	-1.0747
10	6.7500	-1.2934	1.3777	1.1459	-1.1776
11	7.0000	-1.2728	1.4025	1.0877	-1.2653
XR =	0.0000	¥R = 0.0	000 XSHIF	T = -9.9	985
NX =	2				
I	FX				
1	0.0000				
CTATION	1.0000				
STATION .	L				
NXI = 11					
	XSTN	RSTN			
	-1.4827	4.6169			
	-1.4710	4.8781			
	-1.4527	5.1376			
	-1.4281	5.343L 5.6464			
	-1.3884	5.8981			
	-1.3649	6.1479			
	-1.3417	6.3970			
	-1.3178	6.6432			
	-1.2934 -1.2728	6.8892 7.1391			
STATION	2				
NXI = 11					
	XSTN	RSTN			
	1.7542	4.5839			
	1.6806	4.7833			
	1.6071	5.0065			
	1.5336	5.2503			
	1.3440 1.3440	7+7121 5,7467	107	1	
	1.3193	5.0591			
	1.2572	6.3252			
	1.1994	6.5382			

·

And the second s

1.1459 6.8520 1.0877 7.1134

STATION	1 NRR = 11			
RADIUS	ALPHA	EPS	8	THETA
4.6183	-52.2904	-4.7773	.0172	.2268
4.8795	-52.7924	-3.6635	.0169	•2309
5.1390	-53.4238	6320	.0166	.2331
5.3946	-53.3391	2.6566	•0158	•2320
5.6479	-53+8188	4.0539	.0154	•2293
5.8995	-54.3619	5.9147	.0151	•2256
6.1493	-55.0767	6.6850	•0148	•2208
6.3984	-55.8658	8.6445	.0146	.2158
6.6443	-56.5129	11.1771	•0144	•2090
6.8906	-57.9189	8.5194	.0145	.2023
7.1405	-58.7963	3.1278	.0142	.1987
STATION	2 NRR = 11			
RADIUS	ALPHA	EPS	8	THETA
4.5853	54.1364	62.2089	.0177	.1932
4.7841	47.3259	57.9709	• 01 45	.1195
5.0068	39.1632	54.0736	•0122	•0520
5.2502	29.0829	50.5734	•0108	0094
5.5117	16.6664	47.1791	.0104	0652
5.7860	3799	37.9711	.0106	1116
6.0583	-14,1101	23.5421	.0109	1389
6.3243	-22.3885	14.7451	.0110	1535
6.5873	-27.4116	12.8096	.0112	1630
6.8509	-31.2704	11.5410	.0115	1718
7.1123	-35.5278	7.0459	.0114	1780

.....

i.

PHOGRAM JOOLOU

State State State

RUN T	ITLE =	STATOR 1	BLADE GEDI	METRY CALC	ULATION
NZ =	10 NBLADE	= 54 NWHIC	H = 1 NPRI	NT = 1 NIN	iPUT = 1
BLADE	RESTAGGE	R = 0.000			
L	,	XI F	YLE	XTE	YTE
•	-				
1	5-6500	- 8313	50.88	. 7352	2090
2	5.8000	- 7118	- 4290	7439	• 3007
2	5 0500	- 4540	- 3909	• / 7 30	• 2 2 0 4
3	5.7300	0340	3000	+ 1212	•1011
4 E	0.1000	0445	3771	•/59/	.1198
2	0.2900	0502	3480	.7667	.0917
6	6.4000	/356	3526	•7747	•0708
/	6.5500	7905	3596	•7824	•0508
8	6.7000	8454	3736	•7906	•0309
9	6.8500	9011	3960	• 7982	.0109
10	7.0000	9565	4251	.8060	0111
XR =	0.0000	YR = 0.0	000 XSHIFT	r = -7+37	47
NX =	2				
I	FX				
•					
1	0.0000				
2	1 0000				
2	1.0000				
STATION L					
NX1 = 10					
	XSTN	RSTN			
	8313	5.6729			
	7118	5.8159			
	6540	5.9622			
	6445	6.1103			
	6802	6.2597			
	7356	6.4097			
	7905	6.5579			
	- 8454	6.7104			
	9011	6.8614			
	9565	7.0120			
	• • • • • •	10127			
STATIUN 2					
NXI = 10					
	XSTN	RSTN			
	• 7352	5.6584			
	.7438	5.8044			
	.7515	5.9522			
	.7597	6.1012			
	.7667	6.2507			
	.7747	6.4004			
	.7824	6.5502	109		
	.7906	6.7001	/		
	.7982	6.8500			
	. 8040	7.0000			
		7 • • • • •			

STATION	1 NRR = 10			
RADIUS	ALPHA	EPS	8	ΤΗΕ ΤΑ
5.6732	43.6575	-37.4645	.0200	0906
5.8162	40.9769	-27.0955	.0185	0748
5.9625	39.6002	-17.3400	.0175	0647
6.1106	38.2358	-9.1446	.0166	0589
6.2600	37.5022	-3.0856	.0160	0565
6.4100	37.2908	-1.0055	.0155	0558
6.5601	37.4268	.4927	.0151	0556
6.7106	37.5422	3.7048	.0149	0564
6.8617	38.9109	6.5332	.0148	0584
7.0131	40.7306	8.6051	.0148	0613
STATION	2 NRR = 10			
RADIUS	ALPHA	EPS	8	THE TA
5.6582	-1.9591	34.0410	.0147	.0538
5.8042	-5.3636	28.8225	.0145	•0382
5.9520	-9.5374	20.9675	.0144	.0262
6.1011	-12.5577	13.5078	.0142	.0188
6.2506	-15.2306	9.7496	.0139	.0138
6.4003	-17.4455	8.1099	.0137	.0102
6.5502	-19.5264	8.0418	.0135	.0069
6.7000	-21.8752	7.7435	.0133	•0038
6.8500	-24.5548	7.9634	.0131	.0008
7.0000	-27.9610	8.6835	.0131	0024

'n

.

.

- -

PROGRAM UD0200 - AXIAL COMPRESSOR TEST DATA ANALYSIS FIXED DATA PRINTOUT

BASELINE AERODYNAMIC ANALYSIS - ACROSS BLADE

NUMBER OF STATIONS	= 14
NUMBER OF STREAMLINES	= 11
MAXIMUM NUMBER OF ITERATIONS	= 80
MAXIMUM NUMBER OF ARBITRARY ITERATIONS	= 10
TOTAL PRESSURE SOURCE INDICATOR	= 1
TOTAL TEMPERATURE SOURCE INDICATOR	= 1
STATION NUMBER FOR ROTOR EXIT DATA	= ÿ
STATION NUMBER FOR STAGE EXIT DATA	= 11
NUMBER OF ROTOR BLADES	= 34
NUMBER OF STATOR BLADES	= 54
MAXIMUM NUMBER OF LINES PER PAGE	= 60
NPLUT	= 0

ANNULUS SPECIFICATION

.

STATION 1 SPECIFIED BY 2 POINTS

RSTN XSTN

5.2393	-19.2000
13.7718	-19.2000

STATION 2 SPECIFIED BY 2 POINTS

RSTN	XSTN

5.2393	-17.6000
11.6279	-17.6000

STATION 3 SPECIFIED BY 2 POINTS

RSTN	XSTN

4.7749-15.10009.6179-16.1000

STATION 4 SPECIFIED BY 2 POINTS

1	
RSTN	XSTN

4.1658	-14.8500
8.1444	-15.0000

STATION	5	13 POINTS	HUB	SEGMENT	L	CASE	SEGMENT	1
RSTN		XSTN						
3.8000	•	-14.0428						
4.1000		-13.7975						
4.4000		-13.5987						
4.7001		-13.4992						
5.0001		-13.4612						
5.3001		-13.4603						
5.6001		-13.4610						
5.9002		-13.4607						
6.2002		-13.4831						
6.5003		-13.5433						
6.8003		-13.6438						
7.1004		-13.7973						
7.4005		-13.9845						
STATION	6	13 POINTS	нив	SEGMENT	1	CASE	SEGMENT	1
RSTN		XSTN						
3.8001		-12.0980						
4.1000		-12.0427						
4.4000		-11.9873						
4.7002		-11.9314						
5.0003		-11.8752						
5.3005		-11.8194						
5.6007		-11.7634						
5.9009		-11.7075						
6.2013		-11.6514						
6.5017		-11.5955						
6.8024		-11.5396						
7.1035		-11.4838						
7.4047		-11.4281						
STATION	7	11 POINTS	HUB	SEGMENT	2	CASE	SEGMENT	2
RSTN		XSTN						
4.6169		-11-4912						
4.8781		-11.4695						
5.1376		-11.4512						
5.3931		-11.4266						
5.6454		-11.4072						
5.8981		-11.3869						
6.1479		-11.3634						
6.3970		-11.3402						
6.6432		-11.3163						
5.4892		-11.2919						
7.1391		-11.2713						

ST	ATION	8	11	POINTS	S HUE	SEGM	ENT	2	CASE	SEGMENT	2
	RSTN			XSTN							
	4.5839			-8.244	43						
	4.7833			-8-31	79						
	5.0065			-8.39	14						
	5.2503			-8-464	49						
	5.5121			-8.53	34						
	5.7867			-8.61	36						
	6.0591			-8-679	42 42						
	6.3252			-8.74	13						
	6.5883			-8.799	71						
	6.8520			-8.85	26						
	7.1134			-8.910	80						
ST	ATION	9	10	PUINT	s HUE	B SEGM	ENT	3	CASE	SEGMENT	3
	RSTN			XSTN							
	5.6729			-8.20	50						
	5.8159			-8.086	55						
	5.9622			-8.020	57						
	6.1103			-8.01	72						
	6.2597			-8.05	49						
	6.4097			-8.110	33						
	6.5599			-8.16	52						
	6.7104			-8.220	01						
	6.8514			-8.27	58						
	7.0129			-8.33	12						
ST	ATION	10	10	POINT	S HUI	B SEGM	ENT	3	CASE	SEGMENT	3
	RSTN			XSTN							
	5.6584			-6.63	95						
	5.8044			-6.63)9						
	5.9522			-6.62	32						
	6.1012			-6.61	50						
	6.2507			-6.60	80						
	6.4004			-6.60(00						
	6.5502			-6.59	23						
	6.7001			-6.58	+1						
	6.8500			-6.57	55						
	7.0000			-6.56	87						
ST	ATION	11	SPE	CIFIED	8Y 2	2 POIN	TS				
	RSTN			XSTN							
	5.7600			-6.32	20						
	7.0000			-6.32	20						

215	110	12	SPEC	1+1	ΕD	8 Y	2	PU1	.412			
R	STN			xs	TN				·			
5	. 76(6		-6.	000	0						
7	. 000	10		-6.	000	0						
,	• • • • •			- 0 •	000	<i>,</i> , , , , , , , , , ,						
STA	101	1 1 3	SPEC	IF I	ED	BY	2	P01	NTS			
R	STN			X S	ΤŅ							
5	.760	00		-5.	700	00						
7	.000	00		-5.	700	00						
STA	TION	1 14	SPEC	IFI	ED	θY	2	P01	NTS			
Ŕ	STN			XS	TN							
5	.76	00		-5.	400	00						
7	.000	00		-5.	40(0						
NO	нив	SEG	MENTS	Ŧ	3	NO	C/	SE	SEG	MENT	S =	3
HUB	SE(GMEN	T 1	8	P01	INTS	١	NTER	<ρ =	0		
X	HUB			RH	UB							
-14	.850	00		4.	165	58						
-13	.900	00		3.	973	38						
-13	. 46	20		3.	960	25						
-13	.02	40		3.	998	38						
-12	.580	50		4.	083	39						
-12	. 291	80		4.	160	30						
-12	.010	00		4.	276	51						
-11	.84	30		4.	34	75						
HUB	SE	GMEN	T 2	8	PO	INTS	ţ	NTEF	₹ ₽ =	0		
X	HUB			RH	6UI							
-11	. 67	50		4 -	42	25						
-11	-48	70		4 -	502	25						
-10	.88	14		4 -	758	30						
-10	. 20	28		4 -	940	00						
-9	.70	41		5.	20	50						
_q	.11	55		5.	406	55						
-8	. 55	85		5-	586	30						
- A	.42	69		5-	610	55						
.,												

HUB	SEG	MENT	3	8	P01	NTS	NT	ERP=	ა	
XH	IUB			RH	UB					
. 0	7 74	<u>_</u>		£	623	0				
	0320 374	.0			661	0				
-7	309	9 9		5	071	0				
-7	500			5	7002	0				
-7	770	1		5	710					
-10	. 451	2		5.	734					
-00	632	יב יו		5.	758	0				
-6	527			5.	760					
- 01	, , , , , , , , , , , , , , , , , , , ,	•			100					
CASI	NG	SEGM	ENT	1	8	POIN	T S	NTE	RP =	0
×C	: A S E			RC	ASE					
-15.	.000	0		8.	144	4				
-13.	900	0		7.	266	1				
-13.	420	0		7.	094	8				
-12.	940	0		7.	011	4				
-12.	460	0		7.	000	0				
-11.	980	0		7.	000	0				
-11.	500	0		7.	000	0				
-11.	427	6		7.	000	0				
CASI	NG	SEGM	ENT	2	2	POIN	T S	NTE	2 P =	1
xc	ASE			९С	ASE					
						_				
-11.	355	1		7.	000	0				
-8.	674	2		7.	000	0				
CASI	NG	SEGM	ENT	3	2	POIN	15	NTE	2P=	1
				0.0						
Χ(, A 3 C			ĸĊ	AJC					
-8.	500	6		7.	000	0				
-6.	485	7		7.	000	0				
STAT	100	5	CALO	ULA	TED	END	-P0	INTS		
RHUR		2	. 977	4 4 4	ун	118=	- 1	12.21	2972	
RCAS	F.		7.26	573	- XC	ASE #	- 1	-13-6	1023	7
	L -					NJL *		-1300	,,,,,,	'
STAT	ION	6	CALC	ULA	TED	END	-P01	INTS		
RHUB	. =	4	.275	599	хн	UB=	~ 1	12.01	026	
RCAS	E *	•	7.00	0000	×C	ASE=	-	-11.5	2029	6
									_	
STAT	ION	7	CALC	ULA	TED	END	- 901	INTS		
RHUB		4	. 503	10 Z	XH	UB=	-1	11.48	3578	
RCAS	Ē=		7.00	0000	XC	ASE=	-	-11.2	2823	2

STATION 8 CALCULATED END-POINTS

RCASE=

RHUB = 5.58772 XHUB= -8.55968 RCASE= 7.00000 XCASE= -8.88498 STATION 9 CALCULATED END-POINTS RHUB= 5.65106 XHUB= -8.22646 7.00000 XCASE= RCASE= -8.32649 STATION 10 CALCULATED END-POINTS RHUB = 5.75795 XHU8= -6.63353

7.00000 XCASE=

STATION CALCULATION SPECIFICATION AND BLADINC DATA STATION 2 NCALC = 0 NDATA = 0 NBL = 0STATION 3 NCALC = 0NDATA = 0 NBL = 0STATION 4 NCALC = 0NDATA = 0 NBL = 0BLADE DATA FROM UD0100 FOR STATION 5 NDATA = 13STATION 5 NCALC = 1 NBL = 0 RADIUS BETA EPSILUN BLOCKAGE THETA 3.8000 -2.5006 -1.3353 .01353 .0014 4.1000 -1.1200 -2.6265 .01251 .0031 -. 7585 4.4000 -2.7814 .01158 .0043 4.7001 -2.8069 -.5955 .01071 .0050 5.0001 -3.0377 -.7140 .00995 .0057 5.3001 -3.0281 -.7376 .00926 .0064 5.6001 -2.9993 -.7243 .00870 .0071 5.9002 -2.9954 -.7582 .00811 .0078 6.2002 -3.0118 -.8741 .00759 .0085 5.5003 -3.0700 -.9789 .00718 .0093

-. 9664

-.8884

-.8224

.00674

.00636

.00602

.0101

.0107

.0114

-6.56870

BLADE DATA FRUM UD0100 FOR STATION 6

-3.2297

-3.7275

-4.1962

6.8003

7.1004

7.4005

STATION & NCALC = 5 NDATA = 13 NBL = 1

RADIUS	BETA	EPSILON	BLOCKAGE	THETA
3.8002	5.1064	5.1567	.01492	.0095
4.1000	2.3744	4.9172	.01389	.0028
4.4000	.1684	4.2280	.01302	0029
4.7001	-2.8304	2.8548	.01226	0070
5.0002	-4.5887	2.2707	.01156	0096
5.3004	-6.0628	2.5074	.01095	0121
5.6006	-7.5113	2.5027	.01043	0145
5.9008	-8.9091	2.5812	.00996	0168
6.2011	-10.2191	3.1398	.00952	0192
6.5016	-11.5775	4.0183	.00919	0222
6.8023	-12.9691	5.4833	.00885	0259
7.1033	-14.3257	6.2322	.00857	0305
7.4045	-15.3340	5.7346	.00832	0348

BLADE DATA FROM UD0100 FOR STATION 7

STATION	7	NCALC = 1	NDATA = 11	NBL = 2	
RA	orus	8E T 4	EPSILON	BLOCKAGE	THETA
4.	6183	-52.2904	-4.7773	.01724	.2268
4.	8795	-52.7924	-3.6635	.01695	• 2309
5.	1 3 9 0	-53.4238	-•6320	.01657	.2331
5.	3946	-53.3391	2.6566	.01584	• 2320
5.	6479	-53.8188	4.0539	.01542	.2293
5.	8995	-54.3619	5.9147	.01508	.2256
6.	1493	-55.0767	6.6850	.01482	.2208
6.	3984	-55.8658	8.6445	.01455	.2158
6.	6443	-56.5129	11.1771	.01441	.2090
6.	8905	-57.9189	8.5194	.01451	• 202 3
7.	1405	-58.7963	3.1278	.01417	.1987

BLADE DATA FROM UD0100 FOR STATION 8

STATEON	8	NCALC = 4	NDATA = 11	NBL = 1	
RAD	IUS	BETA	EPSILON	BLOCKAGE	THETA
4.5	853	54.1364	62.2089	.01767	•1932
4.7	841	47.3259	57.9709	.01452	.1195
5.0	068	39.1632	54.0736	.01223	.0520
5.2	502	29.0829	50.5734	.01083	0094
5.5	117	16.6664	47.1791	.01039	0652
5.7	860	3799	37.9711	.01064	1116
6.0	583	-14.1101	23.5421	.01087	1389
6.3	243	-22.3885	14.7451	.01099	1535
6.5	873	-27.4116	12.8096	.01116	1630
6.8	509	-31.2704	11.5410	.01153	1718
7.1	123	-35.5278	7.0459	.01143	1780

BLADE DATA FROM UD0100 FOR STATION 9

STATION 9	NCALC =	1	NDATA .	: 10	NBL :	=	г
-----------	---------	---	---------	------	-------	---	---

RADIUS	BETA	EPSILON	BLOCKAGE	THETA
5.6732	43.6575	-37.4645	•02003	0406
5.6162	40.9769	-27.0955	.01853	0748
5.9625	39.6002	-17.3400	.01745	0647
6.1106	38.2358	-9.1446	.01658	0589
6.2600	37.5022	-3.0856	.01597	0565
6.4100	37.2908	-1.0055	.01547	0558
6.5601	37.4268	.4927	•01508	0556
6.7106	37.5422	3.7048	.01486	0564
6.8617	38.9109	6.5332	.01475	0584
7.0131	40.7306	8.6051	.01476	0613

BLADE DATA FROM UD0100 FOR STATION 10

STATION 10 NCALC = 3 NDATA = 10 NBL = 1

RADIUS	BETA	EPSILON	BLUCKAGE	THETA
5.6582	-1.9591	34.0410	•01471	• 05 38
5.8042	-5.3636	28.8225	•01453	•0382
5.9520	-9.5374	20.9675	.01438	.0262
6.1011	-12.5577	13.5078	.01417	.0188
6.2506	-15.2306	9.7496	.01391	- 01 38
6.4003	-17.4455	8.1099	.01370	.0102
6.5502	-19.5264	8.0418	-01345	. 0069
6.7000	-21.8752	7.7435	.01329	. 0036
6.8500	-24.6548	7.9636	-01314	00000
7 0000		9 6936	01212	- 0024
1.0000	-27.9010	0.0033	•ULJL2	0024
STATION 11	NCALC = 0	NDATA = () NBL = 1	
STATION 12	NCALC = 0	NDATA = () NBL = 1	
STATION 13	NCALC = 0	NDATA = () NBL = 1	
STATION 14	NCALC = 0	NDATA = () NBL = 1	
NUMBER OF IG	V BLADES =	0		
DESIGN PERFOR	RMANCE AT 1	1 RADII		

RADIUS BETA LOSS COEFF 4.2761 .2500 .02886 4.5853 -1.6670 .02967 4.8895 -3.1200 .03048 .03134 5.1885 -4.3870 5.4810 -5.5940 .03233 5.7653 -6.7670 .03338 6.0396 -7.8910 .03442 6.3020 -8.9990 .03551 6.5509 -10.1120 .03674 6.7842 -11.1720 .03801 7.0000 -12.1360 .03920

.

RESTAGGER DATA GIVEN AT O RADII O POINTS PER RADIUS ROTOR GENERALISED PERFORMANCE LOSS 2PTS DEVIATION 2PTS

M-COURD LOSS COEFF/TOTAL LOSS COEFF

0.0000	0.0000
1.0000	1.0000

DUTLET RADIUS = 0.0000

.

1

M-COORD DELTA R*V#/TOTAL DELTA R*VW

0.0000	0.0000
1.0000	1.0000

STATOR GENERALISED PERFORMANCE LOSS 2PTS DEVIATION 2PTS

M-COORD LOSS COEFF/TOTAL LOSS COEFF

0.0000	0.0000
1.0000	1.0000

OUTLET RADIUS = 0.0000

M-COORD DEVIATION/TOTAL DEVIATION

0.0000 0.0000 1.0000 1.0000

NUMBER OF TEST POINTS TO BE ANALYSED = 1

PSCALE= 0.00 PLOWER= 0.00 DAMPF= 6.000 NSAVE= 1 NNMAX= 0 MFDRCE= 0 NEX= 2 NTCR= 0 NCARD= 1 NDPQ= 0

TEST DATA PRINTOUT FUR POINT NO. 1

TEST POINT TITLE * 810522101 = 53.4270 GAS CONSTANT .99763 AIR MASS FRACTION FLOWRATE * 17.2752 ROTOR SPEED = 12510.0 - 14.6940 INLET TOTAL PRESSURE • 518.708 INLET TOTAL TEMPERATURE = 1+03585 T IN/T IN(STD) = +96697 P IN/P IN(STD) = 0.00000 IGV RESTAGGER ANGLE

ROTOR OUTLET TOTAL PRESSURE (3 POINTS)

RADIUS PRESSURE

5.7660	19.4433
6.2910	19.4880
6.8490	19.9646

ROTOR OUTLET TOTAL TEMPERATURE (3 POINTS)

RADIUS TEMPERATURE

5.7660	560.857
6.2910	558.395
6.8490	562.719

STAGE DUTLET TOTAL PRESSURES (7 POINTS)

RADIUS	MEAN PRES	PEAK PRES
5.9200	19.7479	19.9017
6.0750	18.8650	19.6966
6.2290	18.5541	19.5896
6.3830	18.8847	19.5202
6.5380	19.2559	19.6150
6.6910	19.1011	19.5846
6.8460	18.8933	19.4046

STAGE OUTLET TOTAL TEMPERATURES (7 POINTS)

RADIUS	TEMPERATURE
5.9200	565+643
6.0750	564.931
6.2290	563.479
6 - 3830	563.157
6.5380	564.616
6.6910	564.923
6.8460	567.012

120

the second second second

STAGE OUTLET FLOW ANGLES (3 POINTS)

PADIUS	ANGLE
6.0750	-8.672
6.3830	-5.541
6.6910	-6.035

CASING STATIC/PRESSURES (17 POINTS)

X-COORD	PRESSURE
-16.9000	14.6291
-14.0000	13.5996
-11.5000	13.1881
-11.0430	13.3567
-10.8020	13.0268
-10.5620	13.0511
-10.3220	13.4971
-10.0820	14.0377
-9.8410	14.5643
-9.6010	14.9577
-9.3610	15.2637
-9.1200	15.2379
-8.4270	15.1894
-6.5690	13.9593
-6.3220	14.3328
-4.7560	14.5478
-3.6910	14.5143

HUB STATIC PRESSURES (6 POINTS)

X-COORD	PRESSURE
-16.9000	14.2602
-14.0000	14.3354
-11.8900	13.8931
-11.6770	13.4681
-5.9800	13.4643
-5.7300	14.4985

INTERMEDIATE RADIUS STATIC PRESSURES (3 POINTS)

X-C00KD	RADIUS	PRESSURE
-7.8180	6.3140	12.8747
-7.3750	6.3140	13.0273
-6.9320	6.3140	12.8803

DISTRIBUTED BLOCKAGE SPECIFICATION

		DIST.	MID ADD.	DIST.	FRAC. TE
STATION	BLOCKAGE	FACTOR	DEVIATION	FACTOR	BLOCKAGE
1	0.0000	1.0000	0.000	0.000	0.000
2	.0020	1.0000	0.000	0.000	0.000
3	.0023	1.0000	0.000	0.000	0.000
4	•0020	1.0000	0.000	0.000	0.000
5	•0020	1.0000	0.000	0.000	0.000
6	.0180	1.0000	0.000	0.000	0.000
7	.0173	1.0000	0.000	0.000	0.000
8	.0627	1.0000	0.000	0.000	0.000
9	.0655	1.0000	0.000	0.000	0.000
10	.0888	1.0000	0.000	0.000	0.000
11	.0888	1.0000	0.000	0.000	0.000
12	.0885	1.0000	0.000	0.000	0.000
13	.0888	1.0000	0.000	0.000	0.000
14	.0888	1.0000	0.000	0.000	0.000

SOLUTION TYPE INDICATORS

STATION	1	2	3	4	5	6	7	8	9	10	11	12	13	14
NMACH	0	0	0	0	0	0	0	0	0	0	0	0	0	0

NJUMP= 0

1

STAGE DUTLET TOTAL TEMPERATURES ARE USED PEAK STAGE OUTLET PRESSURES ARE USED FOR ROTOR PRESSURE RISE RESULTS FOR TEST POINT NO. 1

.

	STATION	1 FLOW	FIELD D	ESCRIPTION			
PADIUS	VE	LOCITIES		TEMPERA	rures	PRESS	URES
	MERID	TANGEN	TOTAL	TOTAL	STATIC	TOTAL	STATIC
5.2393	89.28	0.00	89.28	518.708	518.045	14.694	14.628
5.8786	89.28	0.00	89.28	518.708	518.045	14.694	14.628
6.5560	89.28	0.00	89.28	518.708	518.045	14.694	14.628
7.2795	89.23	0.00	89.28	518.708	518.045	14.694	14.628
8.0557	89.28	0.00	89.28	518.708	518.045	14.694	14.628
8.8892	89.28	0.00	89.28	518.708	518.045	14.694	14.628
9.7818	89.23	0.00	89.28	518.708	518.045	14.694	14.628
10.7303	89.28	0.00	89.28	518.708	518.045	14.694	14.628
11.7251	89.28	0.00	87.28	518.708	518.045	14.694	14.628
12.7476	89.28	0.00	89.28	518.708	518.045	14.694	14.628
13.7718	89.28	0.00	89.28	518.708	518.045	14.694	14.628
RADIUS	MACH	ANGL	.ES	RADIUS OF	SPECIFIC	2	
	NØ	WHIRL	SLOPE	CURVATURE	WEIGHT		
5.2393	.0800	6.00	0.00	0.000	.0761		
5.8786	.0800	0.00	-10.48	0.000	.0761		
6.5560	.0800	0.00	-19.68	0.000	.0761		
7.2795	.0800	0.00	-27.64	0.000	.0761		
8.0557	.0800	0.00	-34.62	0.000	.0761		
8.8892	.0800	0.00	-40.54	0.000	.0761		
9.7818	.0800	0.00	-45.45	0.000	.0761		
10.7303	.0900	0.00	-49.29	0.000	.0761		
11.7251	.0800	0.00	-51.96	0.000	.0761		
12.7476	.0800	0.00	-53.32	0.000	.0761		
13.7718	.0800	0.00	-53.27	0.000	.0761		
		.					
	STATION	2 FLOA	FIELD D	ESCRIPTION			
_	STATION	2 FLOA	FIELD 0	ESCRIPTION			
RADIUS	STATION	2 FLOA	FIELD D	ESCRIPTION	TURES	PRESS	URES
RADIUS	STATION VE MERID	2 FLOA LOCITIES TANGEN	FIELD D TOTAL	ESCRIPTION TEMPERA	TURES STATIC	PRESS TOTAL	URES STATIC
RADIUS 5.2393	STATION VE MERID 179.01	2 FLOW LOCITIES TANGEN 0.00	FIELD 0 TOTAL 179.01	TEMPERA TOTAL 518-708	TURES STATIC 516.044	PRESS TOTAL 14.694	URES STATIC 14-432
RADIUS 5.2393 5.5828	STATION VE MERID 179.01 167.72	2 FLOA LOCITIES TANGEN 0.00 0.00	FIELD 0 TOTAL 179.01 167.72	ESCRIPTION TEMPERA' TOTAL 518.708 518.708	TURES STATIC 516.044 516.369	PRESS TOTAL 14.694 14.694	URES STATIC 14.432 14.464
RADIUS 5.2393 5.5828 5.9836	STATION VE MERID 179.01 167.72 159.64	2 FLOA LOCITIES TANGEN 0.00 0.00 0.00	FIELD 0 TOTAL 179.01 167.72 159.64	ESCRIPTION TEMPERA TOTAL 518.708 518.708 518.708	TURES STATIC 516.044 516.369 516.589	PRESS TOTAL 14.694 14.694 14.694	URES STATIC 14.432 14.464 14.485
RADIUS 5.2393 5.5828 5.9836 6.4399	STATION VE MERID 179.01 167.72 159.64 153.79	2 FLOA LOCITIES TANGEN 0.00 0.00 0.00 0.00	FIELD 0 TOTAL 179.01 167.72 159.64 153.79	ESCRIPTION TEMPERA TOTAL 518.708 518.708 518.708 518.708	TURES STATIC 516.044 516.369 516.589 516.741	PRESS TOTAL 14.694 14.694 14.694 14.694	URES STATIC 14.432 14.464 14.485 14.500
RADIUS 5.2393 5.5828 5.9836 6.4399 6.9513	STATION VE MERID 179.01 167.72 159.64 153.79 148.99	2 FLOA LOCITIES TANGEN 0.00 0.00 0.00 0.00 0.00	FIELD 0 TOTAL 179.01 167.72 159.64 153.79 148.99	ESCRIPTION TEMPERA TOTAL 518.708 518.708 518.708 518.708 518.708	URES STATIC 516.044 516.369 516.589 516.741 516.862	PRESS TOTAL 14.694 14.694 14.694 14.694 14.694	URES STATIC 14.432 14.464 14.485 14.500 14.512
RADIUS 5.2393 5.5828 5.9836 6.4399 6.9513 7.5208	STATION VE MERID 179.01 167.72 159.64 153.79 148.99 144.08	2 FLOA LOCITIES TANGEN 0.00 0.00 0.00 0.00 0.00 0.00 0.00	FIELD 0 TOTAL 179.01 167.72 159.64 153.79 148.99 144.08	ESCRIPTION TEMPERA TOTAL 518.708 518.708 518.708 518.708 518.708 518.708	URES STATIC 516.044 516.369 516.589 516.741 516.862 516.982	PRESS TOTAL 14.694 14.694 14.694 14.694 14.694 14.694	URES STATIC 14.432 14.464 14.485 14.500 14.512 14.524
RADIUS 5.2393 5.5828 5.9836 6.4399 6.9513 7.5208 8.1563	STATION VE MERID 179.01 167.72 159.64 153.79 148.99 144.08 138.04	2 FLOA LOCITIES TANGEN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	FIELD 0 TOTAL 179.01 167.72 159.64 153.79 148.99 144.08 138.04	ESCRIPTION TEMPERA TOTAL 518.708 518.708 518.708 518.708 518.708 518.708 518.708	URES STATIC 516.044 516.369 516.589 516.741 516.862 516.982 517.124	PRESS TOTAL 14.694 14.694 14.694 14.694 14.694 14.694 14.694	URES STATIC 14.432 14.464 14.485 14.500 14.512 14.524 14.538
RADIUS 5.2393 5.5828 5.9836 6.4399 6.9513 7.5208 8.1563 8.8706	STATION VE MERID 179.01 167.72 159.64 153.79 148.99 148.99 148.08 138.04 130.22	2 FLOA LOCITIES TANGEN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	FIELD 0 TOTAL 179.01 167.72 159.64 153.79 148.99 144.08 138.04 130.22	ESCRIPTION TEMPERA TOTAL 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708	URES STATIC 516.044 516.369 516.589 516.741 516.862 516.982 517.124 517.298	PRESS TOTAL 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694	URES STATIC 14.432 14.464 14.485 14.500 14.512 14.524 14.538 14.555
RADIUS 5.2393 5.5828 5.9836 6.4399 6.9513 7.5208 8.1563 8.8706 9.6800	STATION VE MERID 179.01 167.72 159.64 153.79 148.99 144.08 138.04 130.22 120.56	2 FLOA LOCITIES TANGEN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	FIELD 0 TOTAL 179.01 167.72 159.64 153.79 148.99 148.99 144.08 138.04 130.22 120.56	ESCRIPTION TEMPERA TOTAL 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708	URES STATIC 516.044 516.369 516.589 516.741 516.862 516.982 517.124 517.298 517.499	PRESS TOTAL 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694	URES STATIC 14.432 14.464 14.485 14.500 14.512 14.524 14.538 14.555 14.575
RADIUS 5.2393 5.5828 5.9836 6.4399 6.9513 7.5208 8.1563 8.8706 9.6800 10.5991	STATION VE MERID 179.01 167.72 159.64 153.79 148.99 144.08 138.04 130.22 120.56 109.84	2 FLOA LOCITIES TANGEN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	FIELD 0 TOTAL 179.01 167.72 159.64 153.79 148.99 148.99 144.08 138.04 130.22 120.56 109.84	ESCRIPTION TEMPERA TOTAL 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708	URES STATIC 516.044 516.369 516.589 516.741 516.862 516.982 517.124 517.298 517.499 517.705	PRESS TOTAL 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694	URES STATIC 14.432 14.464 14.485 14.500 14.512 14.524 14.538 14.555 14.575 14.595
RADIUS 5.2393 5.5828 5.9836 6.4399 6.9513 7.5208 8.1563 8.8706 9.6800 10.5991 11.6279	STATION VE MERID 179.01 167.72 159.64 153.79 148.99 144.08 138.04 130.22 120.56 109.84 99.88	2 FLOA LOCITIES TANGEN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	FIELD 0 TOTAL 179.01 167.72 159.64 153.79 148.99 144.08 138.04 130.22 120.56 109.84 99.88	ESCRIPTION TEMPERA TOTAL 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708	URES STATIC 516.044 516.369 516.589 516.741 516.862 516.982 517.124 517.298 517.499 517.705 517.879	PRESS TOTAL 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694	URES STATIC 14.432 14.464 14.485 14.500 14.512 14.524 14.538 14.555 14.575 14.595 14.612
RADIUS 5.2393 5.5828 5.9836 6.4399 6.9513 7.5208 8.1563 8.8706 9.6800 10.5991 11.6279	STATION VE MERID 179.01 167.72 159.64 153.79 148.99 144.08 138.04 130.22 120.56 109.84 99.88 	2 FLOA LOCITIES TANGEN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	FIELD 0 TOTAL 179.01 167.72 159.64 153.79 148.99 144.08 138.04 130.22 120.56 109.84 99.88	ESCRIPTION TEMPERA TOTAL 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708	URES STATIC 516.044 516.369 516.589 516.741 516.862 516.982 517.124 517.298 517.705 517.879	PRESS TOTAL 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694	URES STATIC 14.432 14.464 14.485 14.500 14.512 14.524 14.538 14.555 14.575 14.575 14.612
RADIUS 5.2393 5.5828 5.9836 6.4399 6.9513 7.5208 8.1563 8.8706 9.6800 10.5991 11.6279 RADIUS	STATION VE MERID 179.01 167.72 159.64 153.79 148.99 144.08 138.04 130.22 120.56 109.84 99.88 MACH	2 FLOA LOCITIES TANGEN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	FIELD 0 TOTAL 179.01 167.72 159.64 153.79 148.99 144.08 138.04 130.22 120.56 109.84 99.88 LES	ESCRIPTION TEMPERA TOTAL 518.708	URES STATIC 516.044 516.369 516.589 516.741 516.862 516.982 517.124 517.298 517.499 517.705 517.879 SPECIFIC	PRESS TOTAL 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694	URES STATIC 14.432 14.464 14.485 14.500 14.512 14.524 14.538 14.555 14.575 14.575 14.612
RADIUS 5.2393 5.5828 5.9836 6.4399 6.9513 7.5208 8.1563 8.8706 9.6800 10.5991 11.6279 RADIUS	STATION VE MERID 179.01 167.72 159.64 153.79 148.99 144.08 138.04 130.22 120.56 109.84 99.88 MACH NO	2 FLOA LOCITIES TANGEN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	FIELD 0 TOTAL 179.01 167.72 159.64 153.79 148.99 144.08 138.04 130.22 120.56 109.84 99.88 LES SLOPE	ESCRIPTION TEMPERA TOTAL 518.708	URES STATIC 516.044 516.369 516.589 516.741 516.862 516.982 517.124 517.298 517.499 517.705 517.879 SPECIFIC wEIGHT	PRESS TOTAL 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694	URES STATIC 14.432 14.464 14.485 14.500 14.512 14.524 14.538 14.555 14.575 14.595 14.612
RADIUS 5.2393 5.5828 5.9836 6.4399 6.9513 7.5208 8.1563 8.8706 9.6800 10.5991 11.6279 RADIUS 5.2393	STATION VE MERID 179.01 167.72 159.64 153.79 148.99 144.08 138.04 130.22 120.56 109.84 99.88 MACH NO .1606	2 FLOA LOCITIES TANGEN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	FIELD 0 TOTAL 179.01 167.72 159.64 153.79 148.99 144.08 138.04 130.22 120.56 109.84 99.88 LES SLOPE -8.80 167.72	ESCRIPTION TEMPERA TOTAL 518.708	URES STATIC 516.044 516.369 516.589 516.741 516.862 516.982 517.124 517.298 517.705 517.879 SPECIFIC wEIGHT .0754	PRESS TOTAL 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694	URES STATIC 14.432 14.464 14.485 14.500 14.512 14.524 14.538 14.555 14.575 14.595 14.612
RADIUS 5.2393 5.5828 5.9836 6.4399 6.9513 7.5208 8.1563 8.8706 9.6800 10.5991 11.6279 RADIUS 5.2393 5.5828	STATION VE MERID 179.01 167.72 159.64 153.79 148.99 144.08 138.04 130.22 120.56 109.84 99.88 MACH NO .1606 .1504	2 FLOA LOCITIES TANGEN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	FIELD 0 TOTAL 179.01 167.72 159.64 153.79 148.99 144.08 138.04 130.22 120.56 109.84 99.88 LES SLOPE -8.80 -14.63	ESCRIPTION TEMPERA TOTAL 518.708	URES STATIC 516.044 516.369 516.589 516.741 516.862 516.982 517.124 517.298 517.499 517.705 517.879 SPECIFIC WEIGHT .0754 .0755	PRESS TOTAL 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694	URES STATIC 14.432 14.464 14.485 14.500 14.512 14.524 14.538 14.555 14.575 14.595 14.612
RADIUS 5.2393 5.5828 5.9836 6.4399 6.9513 7.5208 8.1563 8.8706 9.6800 10.5991 11.6279 RADIUS 5.2393 5.5828 5.9836	STATION VE MERID 179.01 167.72 159.64 153.79 148.99 144.08 138.04 130.22 120.56 109.84 99.88 MACH NO .1606 .1504 .1432	2 FLOA LOCITIES TANGEN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	FIELD 0 TOTAL 179.01 167.72 159.64 153.79 148.99 149.88 109.84 90.84 90.88 149.63 -20.26 71	ESCRIPTION TEMPERA TOTAL 518.708	URES STATIC 516.044 516.369 516.589 516.741 516.862 516.982 517.124 517.298 517.298 517.705 517.879 SPECIFIC WEIGHT .0754 .0755 .0756	PRESS TOTAL 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694	URES STATIC 14.432 14.464 14.485 14.500 14.512 14.524 14.538 14.555 14.575 14.595 14.612
RADIUS 5.2393 5.5828 5.9836 6.4399 6.9513 7.5208 8.1563 8.8706 9.6800 10.5991 11.6279 RADIUS 5.2393 5.5828 5.9836 6.4399	STATION VE MERID 179.01 167.72 159.64 153.79 148.99 144.08 138.04 130.22 120.56 109.84 99.88 MACH NO .1606 .1504 .1379	2 FLOA LOCITIES TANGEN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	FIELD 0 TOTAL 179.01 167.72 159.64 153.79 148.99 148.99 148.04 130.22 120.56 109.84 99.88 LES SLOPE -8.80 -14.63 -20.26 -25.76	ESCRIPTION TEMPERA TOTAL 518.708	URES STATIC 516.044 516.369 516.589 516.741 516.862 516.982 517.124 517.298 517.499 517.705 517.879 SPECIFIC WEIGHT .0754 .0755 .0756 .0756	PRESS TOTAL 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694	URES STATIC 14.432 14.464 14.485 14.500 14.512 14.524 14.538 14.555 14.575 14.595 14.612
RADIUS 5.2393 5.5828 5.9836 6.4399 6.9513 7.5208 8.1563 8.8706 9.6800 10.5991 11.6279 RADIUS 5.2393 5.5828 5.9836 6.4399 6.9513	STATION VE MERID 179.01 167.72 159.64 153.79 148.99 144.08 138.04 130.22 120.56 109.84 99.88 MACH NO .1606 .1504 .1379 .1336	2 FLOA LOCITIES TANGEN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	FIELD 0 TOTAL 179.01 167.72 159.64 153.79 148.99 148.99 148.04 130.22 120.56 109.84 99.88 LES SLOPE -8.80 -14.63 -25.76 -31.11	ESCRIPTION TEMPERA TOTAL 518.708	URES STATIC 516.044 516.369 516.589 516.741 516.862 516.982 517.124 517.298 517.499 517.705 517.879 SPECIFIC WEIGHT .0754 .0756 .0756 .0757	PRESS TOTAL 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694	URES STATIC 14.432 14.464 14.485 14.500 14.512 14.524 14.538 14.555 14.575 14.595 14.612
RADIUS 5.2393 5.5828 5.9836 6.4399 6.9513 7.5208 8.1563 8.8706 9.6800 10.5991 11.6279 RADIUS 5.2393 5.5828 5.9836 6.4399 6.9513 7.5208	STATION VE MERID 179.01 167.72 159.64 153.79 148.99 144.08 138.04 130.22 120.56 109.84 99.88 MACH NO .1606 .1504 .1432 .1379 .1336 .1292	2 FLOA LOCITIES TANGEN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	FIELD 0 TOTAL 179.01 167.72 159.64 153.79 148.99 148.99 148.08 138.04 130.22 120.56 109.84 99.88 LES SLOPE -8.80 -14.63 -20.26 -25.76 -31.11 -36.26	ESCRIPTION TEMPERA TOTAL 518.708	URES STATIC 516.044 516.369 516.589 516.741 516.862 517.124 517.298 517.499 517.705 517.879 SPECIFIC WEIGHT .0754 .0755 .0756 .0757 .0757	PRESS TOTAL 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694	URES STATIC 14.432 14.464 14.485 14.500 14.512 14.524 14.538 14.555 14.575 14.595 14.612
RADIUS 5.2393 5.5828 5.9836 6.4399 6.9513 7.5208 8.1563 8.8706 9.6800 10.5991 11.6279 RADIUS 5.2393 5.5828 5.9836 6.4399 6.9513 7.5208 8.1563	STATION VE MERID 179.01 167.72 159.64 153.79 148.99 144.08 138.04 130.22 120.56 109.84 99.88 MACH NO .1606 .1504 .1432 .1379 .1336 .1292 .1237	2 FLOA LOCITIES TANGEN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	FIELD 0 TOTAL 179.01 167.72 159.64 153.79 148.99 144.08 138.04 130.22 120.56 109.84 99.88 ES SLOPE -8.80 -14.63 -20.26 -25.76 -31.11 -36.26 -41.07	ESCRIPTION TEMPERA TOTAL 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 S18.708	URES STATIC 516.044 516.369 516.589 516.741 516.862 517.124 517.298 517.124 517.298 517.705 517.879 SPECIFIC WEIGHT .0754 .0755 .0756 .0757 .0757	PRESS TOTAL 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694	URES STATIC 14.432 14.464 14.485 14.500 14.512 14.524 14.538 14.555 14.575 14.595 14.612
RADIUS 5.2393 5.5828 5.9836 6.4399 6.9513 7.5208 8.1563 8.8706 9.6800 10.5991 11.6279 RADIUS 5.2393 5.5828 5.9836 6.4399 6.9513 7.5208 8.1563 8.1563 8.8706	STATION VE MERID 179.01 167.72 159.64 153.79 148.99 144.08 138.04 130.22 120.56 109.84 99.88 MACH NO .1606 .1504 .1432 .1379 .1336 .1292 .1237 .1167	2 FLOA LOCITIES TANGEN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	FIELD 0 TOTAL 179.01 167.72 159.64 153.79 148.99 144.08 138.04 130.22 120.56 109.84 99.88 ES SLOPE -8.80 -14.63 -20.26 -25.76 -31.11 -36.26 -41.07 -45.40	ESCRIPTION TEMPERA TOTAL 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 S18.708	URES STATIC 516.044 516.369 516.589 516.741 516.862 517.124 517.298 517.124 517.298 517.705 517.879 SPECIFIC WEIGHT .0754 .0755 .0756 .0757 .0758 .0758	PRESS TOTAL 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694	URES STATIC 14.432 14.464 14.485 14.500 14.512 14.524 14.538 14.555 14.575 14.595 14.612
RADIUS 5.2393 5.5828 5.9836 6.4399 6.9513 7.5208 8.1563 8.8706 9.6800 10.5991 11.6279 RADIUS 5.2393 5.5828 5.9836 6.4399 6.9513 7.5208 8.1563 8.8706 9.6800	STATION VE MERID 179.01 167.72 159.64 153.79 148.99 144.08 138.04 130.22 120.56 109.84 99.88 MACH NO .1606 .1504 .1432 .1379 .1336 .1292 .1237 .1167 .1080	2 FLOA LOCITIES TANGEN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	FIELD 0 TOTAL 179.01 167.72 159.64 153.79 148.99 144.08 138.04 130.22 120.56 109.84 99.88 ES SLOPE -8.80 -14.63 -20.26 -25.76 -31.11 -36.26 -41.07 -45.40 -49.05	ESCRIPTION TEMPERA TOTAL 518.708	URES STATIC 516.044 516.369 516.589 516.741 516.862 517.124 517.298 517.124 517.298 517.705 517.879 SPECIFIC WEIGHT .0754 .0755 .0756 .0756 .0757 .0758 .0758 .0759	PRESS TOTAL 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694	URES STATIC 14.432 14.464 14.485 14.500 14.512 14.524 14.538 14.555 14.575 14.595 14.612
RADIUS 5.2393 5.5828 5.9836 6.4399 6.9513 7.5208 8.1563 8.8706 9.6800 10.5991 11.6279 RADIUS 5.2393 5.5828 5.9836 6.4399 6.9513 7.5208 8.1563 8.8706 9.6800 10.5991	STATION VE MERID 179.01 167.72 159.64 153.79 148.99 144.08 138.04 130.22 120.56 109.84 99.88 MACH NO .1606 .1504 .1432 .1379 .1336 .1292 .1237 .1167 .080 .0984 .0495	2 FLOA LOCITIES TANGEN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	FIELD 0 TOTAL 179.01 167.72 159.64 153.79 148.99 144.08 138.04 130.22 120.56 109.84 99.88 ES SLOPE -8.80 -14.63 -20.26 -25.76 -31.11 -36.26 -41.07 -45.40 -45.05	ESCRIPTION TEMPERA TOTAL 518.708	URES STATIC 516.044 516.369 516.589 516.741 516.862 517.124 517.298 517.705 517.879 SPECIFIC WEIGHT .0754 .0755 .0756 .0756 .0757 .0758 .0758 .0758 .0758	PRESS TOTAL 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694	URES STATIC 14.432 14.464 14.485 14.500 14.512 14.524 14.538 14.555 14.575 14.575 14.612

STATION 3 FLOW FIELD DESCRIPTION

RADIUS	VE	LOCITIES-		TEMPERA	TURES	PRESS	SURES
	MERID	TANGEN	TOTAL	TOTAL	STATIC	TOTAL	STATIC
4.7749	231.99	0.00	231.99	518,708	514.233	14.694	14.255
5.0772	225.33	0.00	225.33	518.708	514.486	14.694	14.280
5.4128	219.77	0.00	219.77	518.708	514.692	14.694	14.300
5.7795	215.22	0.00	215.22	518.708	514.856	14.694	14.316
6.1761	211.33	0.00	211.33	518.708	514.994	14.694	14.329
6.6034	207.48	0.00	207.48	518,708	515,129	14.694	14.342
7.0655	202.71	0.00	202.71	518,708	515, 291	14.694	14.358
7.5718	195.70	0.00	195.70	518.708	515.523	14.694	14.381
8.1401	184.63	0.00	184.63	518.708	515.873	14.694	14.415
8.8028	167.38	0.00	167.38	518.708	516.378	14.694	14.464
9 6179	142 17	0.00		519 708	517 027	14 694	14.578
7.0117	172.17	0.00	142017	J10.100	511.021	14.074	14+720
RADIUS	MACH		F S	PADTUS DE	SPECIEIC	~	
	ND	UH101	SUDPE	CURVATIRE	WETCHT	•	
4.7749	- 2085	0.00	-21.72	-9.653	.0747		
5.0772	.2025	0.00	-21.31	-15.940	.0748		
5 4128	1074	0.00	~21 07	- 27 270	0740		
5 7706	1032	0.00	-21.77	245 476	0749		
5.1761	•1933	0.00	-25.54	2434473	0750		
6 6026	1040	0.00	-20.07	33.10	.0750		
7 04 55	• 1 9 2 0 3	0.00	-29.33	20.310	.0750		
7.00000	•1820	0.00	-33.30	15 405	•0751		
1.5/18	•1/5/	0.00	-37.90	13.403	•0752		
8.1401	•107/	0.00	-42.97	17.709	•0753		
8.8028	.1501	0.00	-48.25	28.690	•0755		
1.0117	•12/7	0.00		13304.009	••••		
7.0117	STATION	4 FLOW	FIELD D	ESCRIPTION	••••		
PARTIES	STATION	4 FLOW	FIELD D		TUP55		511055
RADIUS		4 FLOW	FIELD D	ESCRIPTION	TURES	PRES	SURES
RADIUS	STATION VE MERID	4 FLOW	FIELD D		TURES STATIC	PRESS Total	SURES STATIC
RADIUS 4.1658	STATION VE MERID 205.48	4 FLOW LOCITIES- TANGEN 0.00	FIELD 0	TEMPERA TOTAL 518.708	TURES STATIC 515.197	PRES TOTAL 14.694	SURES STATIC 14.349
RADIUS 4.1658 4.5293	STATION VE MERID 205.48 219.88	4 FLOW LOCITIES- TANGEN 0.00 0.00	FIELD 0 TOTAL 205.48 219.88	TEMPERA TOTAL 518.708	TURES STATIC 515.197 514.688	PRESS TOTAL 14.694 14.694	SURES STATIC 14.349 14.299
RADIUS 4.1658 4.5293 4.8916	STATION VE MERID 205.48 219.88 231.76	4 FLOW LOCITIES- TANGEN 0.00 0.00	FIELD 0 TOTAL 205.48 219.88 231.76	TEMPERA TOTAL 518.708 518.708	TURES STATIC 515.197 514.688 514.241	PRESS TOTAL 14.694 14.694	SURES STATIC 14.349 14.299 14.256
RADIUS 4.1658 4.5293 4.8916 5.2559	STATION VE MERID 205.48 219.88 231.76 241.71	4 FLOW LOCITIES- TANGEN 0.00 0.00 0.00 0.00	FIELD 0 TOTAL 205.48 219.88 231.76 241.71	TEMPERA TOTAL 518.708 518.708 518.708	TURES STATIC 515.197 514.688 514.241 513.850	PRESS TOTAL 14.694 14.694 14.694 14.694	SURES STATIC 14.349 14.299 14.256 14.218
RADIUS 4.1658 4.5293 4.8916 5.2559 5.6243	STATION VE MERID 205.48 219.88 231.76 241.71 250.13	4 FLOW LOCITIES- TANGEN 0.00 0.00 0.00 0.00	FIELD D TOTAL 205.48 219.88 231.76 241.71 250.13	TEMPERA TOTAL 518.708 518.708 518.708 518.708 518.708	TURES STATIC 515.197 514.688 514.241 513.850 513.506	PRES TOTAL 14.694 14.694 14.694 14.694 14.694	SURES STATIC 14.349 14.299 14.256 14.218 14.185
RADIUS 4.1658 4.5293 4.8916 5.2559 5.6243 5.9988	STATION VE MERID 205.48 219.88 231.76 241.71 250.13 257.36	4 FLOW LDCITIES- TANGEN 0.00 0.00 0.00 0.00 0.00 0.00	FIELD D TOTAL 205.48 219.88 231.76 241.71 250.13 257.36	TEMPERA TOTAL 518.708 518.708 518.708 518.708 518.708 518.708	TURES STATIC 515.197 514.688 514.241 513.850 513.506 513.200	PRES TOTAL 14.694 14.694 14.694 14.694 14.694 14.694	SURES STATIC 14.349 14.299 14.256 14.218 14.185 14.155
RADIUS 4.1658 4.5293 4.8916 5.2559 5.6243 5.9988 6.3816	STATION VE MERID 205.48 219.88 231.76 241.71 250.13 257.36 263.61 268.71	4 FLOW LOCITIES- TANGEN 0.00 0.00 0.00 0.00 0.00 0.00 0.00	FIELD D TOTAL 205.48 219.88 231.76 241.71 250.13 257.36 263.61	TEMPERA TOTAL 518.708 518.708 518.708 518.708 518.708 518.708 518.708	TURES STATIC 515.197 514.688 514.241 513.850 513.506 513.200 512.930	PRES TOTAL 14.694 14.694 14.694 14.694 14.694 14.694 14.694	SURES STATIC 14.349 14.299 14.256 14.218 14.185 14.155 14.129
RADIUS 4.1658 4.5293 4.8916 5.2559 5.6243 5.9988 6.3816 6.7763	STATION VE MERID 205.48 219.88 231.76 241.71 250.13 257.36 263.61 268.71	4 FLOW LOCITIES- TANGEN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	FIELD D TOTAL 205.48 219.88 231.76 241.71 250.13 257.36 263.61 263.61 263.71	TEMPERA TOTAL 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708	TURES STATIC 515.197 514.688 514.241 513.850 513.506 513.200 512.930 512.704	PRES TOTAL 14.694 14.694 14.694 14.694 14.694 14.694 14.694	SURES STATIC 14.349 14.299 14.256 14.218 14.185 14.155 14.129 14.108
RADIUS 4.1658 4.5293 4.8916 5.2559 5.6243 5.9988 6.3816 6.7763 7.1897	STATION VE MERID 205.48 219.88 231.76 241.71 250.13 257.36 263.61 268.71 271.80	4 FLOW 4 FLOW LOCITIES TANGEN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	FIELD D TOTAL 205.48 219.88 231.76 241.71 250.13 257.36 263.61 268.71 271.80	TEMPERA TOTAL 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708	TURES STATIC 515.197 514.688 514.241 513.850 513.506 513.200 512.930 512.704 512.565	PRESS TOTAL 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694	SURES STATIC 14.349 14.299 14.256 14.218 14.185 14.155 14.129 14.108 14.09
RADIUS 4.1658 4.5293 4.8916 5.2559 5.6243 5.9988 6.3816 6.7763 7.1897 7.6354	STATION VE MERID 205.48 219.88 231.76 241.71 250.13 257.36 263.61 268.71 271.80 270.60	4 FLOW LOCITIES TANGEN 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	FIELD D TDTAL 205.48 219.88 231.76 241.71 250.13 257.36 263.61 268.71 271.80 270.60	TEMPERA TOTAL 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708	TURES STATIC 515.197 514.688 514.241 513.850 513.506 513.200 512.930 512.704 512.565 512.619	PRESS TOTAL 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694	SURES STATIC 14.349 14.299 14.256 14.218 14.185 14.155 14.129 14.108 14.094 14.099
RADIUS 4.1658 4.5293 4.8916 5.2559 5.6243 5.9988 6.3816 6.7763 7.1897 7.6354 8.1444	STATION VE MERID 205.48 219.88 231.76 241.71 250.13 257.36 263.61 268.71 271.80 270.60 259.49	4 FLOW 4 FLOW LOCITIES- TANGEN 0.000 0.00	FIELD 0 FIELD 0 TOTAL 205.48 219.88 231.76 241.71 250.13 257.36 263.61 263.61 271.80 270.60 259.49	TEMPERA TOTAL 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708	TURES STATIC 515.197 514.688 514.241 513.850 513.506 513.200 512.930 512.704 512.565 512.619 513.109	PRES TOTAL 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694	SURES STATIC 14.349 14.299 14.256 14.218 14.185 14.155 14.129 14.108 14.099 14.147
RADIUS 4.1658 4.5293 4.8916 5.2559 5.6243 5.9998 6.3816 6.7763 7.1897 7.6354 8.1444 RADIUS	STATION VE MERID 205.48 219.88 231.76 241.71 250.13 257.36 263.61 268.71 271.80 270.60 259.49 MACH	4 FLOW 4 FLOW LOCITIES- TANGEN 0.00 0	FIELD 0 FIELD 0 TOTAL 205.48 219.88 231.76 241.71 250.13 257.36 263.61 268.71 271.80 270.60 259.49 ES	TEMPERA TOTAL 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708	TURES STATIC 515.197 514.688 514.241 513.850 513.506 513.200 512.930 512.704 512.565 512.619 513.109	PRES TOTAL 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694	SURES STATIC 14.349 14.299 14.256 14.218 14.185 14.155 14.129 14.108 14.094 14.099 14.147
RADIUS 4.1658 4.5293 4.8916 5.2559 5.6243 5.9998 6.3816 6.7763 7.1897 7.6354 8.1444 RADIUS	STATION VE MERID 205.48 219.88 231.76 241.71 250.13 257.36 263.61 268.71 271.80 270.60 259.49 MACH NO	4 FLOW 4 FLOW LOCITIES- TANGEN 0.00 0	FIELD D FIELD D TOTAL 205.48 219.88 231.76 241.71 250.13 257.36 263.61 263.61 268.71 271.80 270.60 259.49 ES SI OPE	TEMPERA TOTAL 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708	TURES STATIC 515.197 514.688 514.241 513.850 513.506 513.200 512.930 512.704 512.565 512.619 513.109 SPECIFIC WEIGHT	PRES TOTAL 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694	SURES STATIC 14.349 14.299 14.256 14.218 14.185 14.155 14.129 14.108 14.094 14.099 14.147
RADIUS 4.1658 4.5293 4.8916 5.2559 5.6243 5.9998 6.3816 6.7763 7.1897 7.6354 8.1444 RADIUS	STATION VE MERID 205.48 219.88 231.76 241.71 250.13 257.36 263.61 268.71 271.80 270.60 259.49 MACH NO 21845	4 FLOW 4 FLOW LDCITIES- TANGEN 0.00 0	FIELD 0 FIELD 0 TOTAL 205.48 219.88 231.76 241.71 250.13 257.36 263.61 268.71 271.80 270.60 259.49 ES SLOPE -19.01	TEMPERA TOTAL 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708	TURES STATIC 515.197 514.688 514.241 513.850 513.506 513.200 512.930 512.704 512.565 512.619 513.109 SPECIFIC WEIGHT	PRES TOTAL 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694	SURES STATIC 14.349 14.299 14.256 14.218 14.185 14.155 14.129 14.108 14.094 14.099 14.147
RADIUS 4.1658 4.5293 4.8916 5.2559 5.6243 5.9998 6.3816 6.7763 7.1897 7.6354 8.1444 RADIUS 4.1658 4.5293	STATION VE MERID 205.48 219.88 231.76 241.71 250.13 257.36 263.61 268.71 271.80 270.60 259.49 MACH NO .1845 .1975	4 FLOW 4 FLOW LDCITIES- TANGEN 0.00 0	FIELD 0 FIELD 0 TOTAL 205.48 219.88 231.76 241.71 250.13 257.36 263.61 268.71 271.80 270.60 259.49 ES SLOPE -19.01 -17.43	TEMPERA TOTAL 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708	TURES STATIC 515.197 514.688 514.241 513.850 513.506 513.200 512.930 512.704 512.565 512.619 513.109 SPECIFIC WEIGHT .0751	PRES TOTAL 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694	SURES STATIC 14.349 14.299 14.256 14.218 14.185 14.155 14.129 14.108 14.094 14.099 14.147
RADIUS 4.1658 4.5293 4.8916 5.2559 5.6243 5.9988 6.3816 5.7763 7.1897 7.6354 8.1444 RADIUS 4.1658 4.5293 4.8916	STATION VE MERID 205.48 219.88 231.76 241.71 250.13 257.36 263.61 268.71 271.80 270.60 259.49 MACH NO .1845 .1975 .2083	4 FLOW 4 FLOW LOCITIES- TANGEN 0.00 0	FIELD 0 FIELD 0 TOTAL 205.48 219.88 231.76 241.71 250.13 257.36 263.61 268.71 271.80 270.60 259.49 ES SLOPE -19.01 -17.43 -17.13	TEMPERA TOTAL 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708 518.708	TURES STATIC 515.197 514.688 514.241 513.850 513.506 513.200 512.930 512.704 512.565 512.619 513.109 SPECIFIC WEIGHT .0751 .0749	PRES TOTAL 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694	SURES STATIC 14.349 14.299 14.256 14.218 14.185 14.155 14.129 14.108 14.094 14.099 14.147
RADIUS 4.1658 4.5293 4.8916 5.2559 5.6243 5.9988 6.3816 6.7763 7.1897 7.6354 8.1444 RADIUS 4.1658 4.5293 4.8916 5.2559	STATION VE MERID 205.48 219.88 231.76 241.71 250.13 257.36 263.61 268.71 271.80 270.60 259.49 MACH NO .1845 .1975 .2083 .2173	4 FLOW 4 FLOW LOCITIES- TANGEN 0.00 0	FIELD 0 FIELD 0 TOTAL 205.48 219.88 231.76 241.71 250.13 257.36 263.61 268.71 271.80 270.60 259.49 ES SLOPE -19.01 -17.43 -17.13 -17.88	TEMPERA TOTAL 518.708	TURES STATIC 515.197 514.688 514.241 513.850 513.506 513.200 512.930 512.704 512.565 512.619 513.109 SPECIFIC WEIGHT .0751 .0749 .0747	PRES TOTAL 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694	SURES STATIC 14.349 14.299 14.256 14.218 14.185 14.155 14.129 14.108 14.094 14.099 14.147
RADIUS 4.1658 4.5293 4.8916 5.2559 5.6243 5.9988 6.3816 6.7763 7.1897 7.6354 8.1444 RADIUS 4.1658 4.5293 4.8916 5.2559 5.6243	STATION VE MERID 205.48 219.88 231.76 241.71 250.13 257.36 263.61 268.71 271.80 270.60 259.49 MACH NO .1845 .1975 .2083 .2173 .2250	4 FLOW LOCITIES- TANGEN 0.00 0.0	FIELD 0 FIELD 0 TOTAL 205.48 219.88 231.76 241.71 250.13 257.36 263.61 268.71 271.80 270.60 259.49 ES SLOPE -19.01 -17.43 -17.13 -17.88	TEMPERA TOTAL 518.708 518.70	TURES STATIC 515.197 514.688 514.241 513.850 513.506 513.200 512.930 512.930 512.930 512.565 512.619 513.109 SPECIFIC WEIGHT .0751 .0749 .0746	PRES TOTAL 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694	SURES STATIC 14.349 14.299 14.256 14.218 14.185 14.155 14.129 14.108 14.094 14.099 14.147
RADIUS 4.1658 4.5293 4.8916 5.2559 5.6243 5.9988 6.3816 6.7763 7.1897 7.6354 8.1444 RADIUS 4.1658 4.5293 4.8916 5.2559 5.6243 5.9988	STATION VE MERID 205.48 219.88 231.76 241.71 250.13 257.36 263.61 268.71 271.80 270.60 259.49 MACH NO .1845 .1975 .2083 .2173 .2250 .2315	4 FLOW 4 FLOW LOCITIES- TANGEN 0.00 0	FIELD 0 FIELD 0 TOTAL 205.48 219.88 231.76 241.71 250.13 257.36 263.61 268.71 271.80 270.60 259.49 ES SLOPE -19.01 -17.43 -17.13 -17.88 -19.44 -21.67	TEMPERA TOTAL 518.708 518.70	TURES STATIC 515.197 514.688 514.241 513.850 513.506 513.200 512.930 512.930 512.704 512.565 512.619 513.109 SPECIFIC WEIGHT .0749 .0745 .0745	PRES TOTAL 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694	SURES STATIC 14.349 14.299 14.256 14.218 14.185 14.155 14.129 14.108 14.094 14.099 14.147
RADIUS 4.1658 4.5293 4.8916 5.2559 5.6243 5.9988 6.3816 6.7763 7.1897 7.6354 8.1444 RADIUS 4.1658 4.5293 4.8916 5.2559 5.6243 5.9988 6.3816	STATION VE MERID 205.48 219.88 231.76 241.71 250.13 257.36 263.61 268.71 271.80 270.60 259.49 MACH NO .1845 .1975 .2083 .2173 .2250 .2315 .2372	4 FLDW 4 FLDW LDCITIES- TANGEN 0.00 0	FIELD 0 FIELD 0 TOTAL 205.48 219.88 231.76 241.71 250.13 257.36 263.61 263.61 263.61 263.61 271.80 270.60 259.49 ES SLOPE -19.01 -17.43 -17.13 -17.88 -19.44 -21.67 -24.56	TEMPERA TOTAL 518.708 518.70	TURES STATIC 515.197 514.688 514.241 513.850 513.506 513.200 512.930 512.704 512.565 512.619 513.109 SPECIFIC WEIGHT .0749 .0749 .0745 .0743 .0743	PRES TOTAL 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694	SURES STATIC 14.349 14.299 14.256 14.218 14.185 14.155 14.129 14.108 14.094 14.099 14.147
RADIUS 4.1658 4.5293 4.8916 5.2559 5.6243 5.9988 6.3816 6.7763 7.1897 7.6354 8.1444 RADIUS 4.1658 4.5293 4.8916 5.2559 5.6243 5.9988 6.3816 6.7763	STATION VE MERID 205.48 219.88 231.76 241.71 250.13 257.36 263.61 268.71 271.80 270.60 259.49 MACH NO .1845 .1975 .2083 .2173 .2250 .2315 .2372 .2419	4 FLOW 4 FLOW LOCITIES- TANGEN 0.00 0	FIELD 0 FIELD 0 TOTAL 205.48 219.88 231.76 241.71 250.13 257.36 263.61 268.71 271.80 270.60 259.49 ES SLOPE -19.01 -17.43 -17.13 -17.88 -19.44 -21.67 -24.56	TEMPERA TOTAL 518.708 518.70	TURES STATIC 515.197 514.688 514.241 513.850 513.506 513.200 512.930 512.930 512.704 512.565 512.619 513.109 SPECIFIC WEIGHT .0749 .0749 .0745 .0743 .0742 .0742	PRES TOTAL 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694	SURES STATIC 14.349 14.299 14.256 14.218 14.185 14.155 14.129 14.108 14.099 14.147
RADIUS 4.1658 4.5293 4.8916 5.2559 5.6243 5.9988 6.3816 6.7763 7.1897 7.6354 8.1444 RADIUS 4.1658 4.5293 4.8916 5.2559 5.6243 5.9988 6.3816 6.7763 7.1847	STATION VE MERID 205.48 219.88 231.76 241.71 250.13 257.36 263.61 268.71 271.80 270.60 259.49 MACH NO .1845 .1975 .2083 .2173 .2250 .2315 .2372 .2419 .2447	4 FLDW 4 FLDW LDCITIES- TANGEN 0.00 0	FIELD 0 FIELD 0 TOTAL 205.48 219.88 231.76 241.71 250.13 257.36 263.61 268.71 271.80 270.60 259.49 ES SLOPE -19.01 -17.43 -17.13 -17.88 -19.44 -21.67 -24.56 -28.28 -33.04	TEMPERA TOTAL 518.708	TURES STATIC 515.197 514.688 514.241 513.850 513.506 513.200 512.930 512.704 512.565 512.619 513.109 SPECIFIC WEIGHT .0749 .0749 .0745 .0743 .0742 .0741	PRES TOTAL 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694	SURES STATIC 14.349 14.299 14.256 14.218 14.185 14.155 14.129 14.108 14.094 14.099 14.147
RADIUS 4.1658 4.5293 4.8916 5.2559 5.6243 5.9988 6.3816 6.7763 7.1897 7.6354 8.1444 RADIUS 4.1658 4.5293 4.8916 5.2559 5.6243 5.9988 6.3816 6.7763 7.1897 7.6354	STATION VE MERID 205.48 219.88 231.76 241.71 250.13 257.36 263.61 268.71 271.80 270.60 259.49 MACH NO .1845 .1975 .2083 .2173 .2250 .2315 .2372 .2419 .2447 .2436	4 FLOW 4 FLOW LOCITIES- TANGEN 0.00 0	FIELD 0 FIELD 0 TOTAL 205.48 219.88 231.76 241.71 250.13 257.36 263.61 268.71 271.80 270.60 259.49 ES SLOPE -19.01 -17.43 -17.13 -17.88 -19.44 -21.67 -24.56 -28.28 -33.04	TEMPERA TOTAL 518.708 518.70	TURES STATIC 515.197 514.688 514.241 513.850 513.506 513.200 512.930 512.704 512.565 512.619 513.109 SPECIFIC WEIGHT .0749 .0749 .0745 .0743 .0742 .0741 .0741	PRES TOTAL 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694	SURES STATIC 14.349 14.299 14.256 14.218 14.185 14.155 14.129 14.108 14.094 14.099 14.147
RADIUS 4.1658 4.5293 4.8916 5.2559 5.6243 5.9988 6.3816 6.7763 7.1897 7.6354 8.1444 RADIUS 4.1658 4.5293 4.8916 5.2559 5.6243 5.9988 6.3816 6.7763 7.1897 7.6354 8.1444	STATION VE MERID 205.48 219.88 231.76 241.71 250.13 257.36 263.61 268.71 271.80 270.60 259.49 MACH NO .1845 .1975 .2083 .2173 .2250 .2315 .2372 .2419 .2447 .2436 .2335	4 FLDW 4 FLDW LDCITIES- TANGEN 0.00 0	FIELD 0 FIELD 0 TOTAL 205.48 219.88 231.76 241.71 250.13 257.36 263.61 263.61 263.61 263.61 271.80 270.60 259.49 ES SLOPE -19.01 -17.43 -17.13 -17.88 -19.44 -21.67 -24.56 -28.28 -33.04 -39.11 -46.90	TEMPERA TOTAL 518.708 518.70	TURES STATIC 515.197 514.688 514.241 513.850 513.506 513.200 512.704 512.565 512.619 513.109 SPECIFIC WEIGHT .0749 .0749 .0745 .0743 .0741 .0741 .0741	PRES TOTAL 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694 14.694	SURES STATIC 14.349 14.299 14.256 14.218 14.185 14.155 14.129 14.108 14.094 14.099 14.147

STATION 5 FLOW FIELD DESCRIPTION

RADIUS	VE	LOCITIES	~~~~~	TEMPE	RATURES-	PR	ESSURE	S
	MERID	TANGEN	TOTAL	TOTAL	STATIC	C TOTA	L ST	ATIC
3.9737	217.39	0.00	217.39	518.708	514.7	78 14.6	94 14	.308
4.3055	241.45	0.00	241.45	518.708	513.86	50 14.6	94 14	.219
4.6323	262.71	0.00	262.71	518.708	512.90	59 14.6	94 14	.133
4.9534	281.07	0.00	281.07	518.708	512.1	39 14.6	94 14	.053
5.2716	297.76	0.00	297.76	518.706	511.3	35 14.6	94 13	.976
5.5869	314.16	0.00	314.16	518.708	3 510.50	01 14.6	94 13	. 897
5.8991	331.06	0.00	331.06	518.708	509.59	74 14.6	94 13	.811
6.2128	348.19	0.00	348.18	518.708	508.6	27 14.6	94 13	.719
6.5342	365.33	0.00	365.33	518.708	507.60	09 14.6	94 13	•623
6.8758	381.94	0.00	381.94	518.708	506.5	77 14.6	94 13	.527
7.2652	395.40	0.00	395.40	518.708	505.70	06 14.6	94 13	. 4 46
								• • • •
RADIUS	MACH	ANG	LES	RADIUS	OF SPEC	1 F I C		
	ND	#HIRL	SLOPE	CURVATI	JRE WEIG	GHT		
3.9737	.1953	0.00	-1.20	3.9	.01	749		
4.3055	-2171	0.00	-1.22	4.4	.49 .0	746		
4.6323	.2364	0.00	-2.20	4.8	.03	743		
4.9534	.2531	0.00	-3.76	5.2	.0	740		
5.2716	.2684	0.00	-5.61	5.	.0	737		
5.5869	.2834	0.00	-7.50	5.	.0	734		
5.8991	.2989	0.00	-9.45	5.	203 .01	730		
6.2128	.3147	0.00	-11.65	4.8	.03	727		
6.5342	.3305	0.00	-14.40	4.4	.46 .0	723		
6.8758	.3459	0.00	-18.19	3.9	.01	720		
7.2652	•3584	0.00	-24.44	3.3	.0	717		
				05.444.40				
RAUIUS	BLAUE-	ANGLES RI	L FLUW	DEV/INC	F022	BLADE	REL	REL
2 0 7 2 7	SECTION		ANGLE	A AAU	LUEFF	SPEED	MACH #	VELOCITY
3.9/3/	0.00	0.00	0.000	0.000	0.0000	0.0	+1955	217.39
4.3077	0.00	0.00	0.000	0.000	0.0000	0.0	•21/1	241.45
7.0323	0.00	0.00	0.000	0.000	0.0000	0.0	• 2 3 0 4	262.71
4 9734	0.00	0.00	0.000	0.000	0.0000	0.0	+2751	281.07
5 5 9 4 0	0.00	0.00	0.000	0.000	0.0000	0.0	•2004	297.70
5 8001	0.00	0.00	0.000	0.000	0.0000	0.0	• 2034	314.10
5.0471	0.00	0.00	0.000	0.000	0.0000	0.0	.2909	331.00
6 5362	0.00	0.00	0.000	0.000	0.0000	0.0	13141	340.10
6 8758	0.00	0.00	0.000	0.000	0.0000	0.0	- 3303	307.33
7.2652	0.00	0.00	0.000	0.000	0.0000	0.0	• J 4 2 7 3 6 9 6	301.44
102072	0.00	0.00	0.000	0.000	0.0000	0.0	• 3 2 0 4	393.40
RADIUS	REL	REL	PRESS	DELTA	ISENTR	POLYTR		
	PRESS	TEMP	RATIO	ON T	EFF	EFF		
3.9737	14.694	518.708	1.000	0.000	1.0000	1.0000	<u>į</u>	
4.3055	14.694	518.708	1.000	0.000	1.0000	1.0000)	
4.6323	14.694	518.708	1.000	0.000	1.0000	1.0000	1	
4.9534	14.694	518.708	1.000	0.000	1.0000	1.0000	1	
5.2716	14.694	518.708	1.000	0.000	L.0000	1.0000	I.	
5.5869	14.694	518.708	1.000	0.000	1.0000	1.0000	i.	
5.8991	14.694	518.708	1.000	0.000	1.0000	1.0000	i -	
6.2128	14.694	518.708	1.000	0.000	1.0000	1.0000		
6.5342	14.694	518.708	1.000	0.000	1.0000	1.0000		
6.8758	14.694	518.708	1.000	0.000	1.0000	1.0000		
7 7467	14 404	610 700	1 000	A AAA	1 0000	1 0000		

STATION 6 FLOW FIELD DESCRIPTION

RADIUS	VE L	LOCITIES		TEMPE	RATURES	·PR	ES SURE:	S
	MERID	TANGEN	TOTAL	TOTAL	STATIC	τοτα	L STA	ATIC
4.2760	280.08	1.17	280.08	518.708	512.18	5 14.6	76 14	• 0 4 0
4.5455	303.87	-7.41	303.96	518.708	511.02	5 14.6	72 13	. 926
4.8143	325.43	-15.57	325.80	518.708	509.88	1 14.6	68 13	.813
5.0824	344.51	-23.48	345.31	518.708	508.79	2 14.6	64 13	. 707
5.3504	360.99	-31.72	362.38	518.708	507.78	7 14.6	60 13	.609
5.6194	375.10	-40.39	377.26	518.708	506.87	2 14.6	57 13	.520
5.8901	387.03	-49.36	390.17	518.708	506.04	8 14.6	53 13	• 4 4 0
6.1631	396.89	-58.62	401.19	518.708	505.32	3 14.6	49 13	369
6.4390	404.81	-68.49	410.56	518.708	504.69	0 14.6	46 13	.307
6.7179	411.36	-78.96	418.87	518,708	504.11	7 14.6	42 13	.251
7.0000	418.00	-89.76	427.53	518.708	503.50	7 14.6	37 13	.191
RADIUS	MACH	ANG	LES	RADIUS	OF SPECI	FIC		
	NO	WHIRL	SLOPE	CURVATU	RE WEIG	HT		
4.2760	.2522	• 24	16.51	5.0	19 .07	39		
4.5455	.2740	-1.40	13.75	5.7	75 .07	34		
4.8143	.2941	-2.74	10.98	6.7	20 .07	30		
5.0824	.3120	-3.90	8.34	7.8	63 .07	26		
5.3504	.3278	-5.02	5.93	9.2	06 .07	22		
5.6194	. 3415	-6.15	3.88	10.6	14 .07	19		
5.8901	.3535	-7.27	2.11	12.4	05 .07	16		
6.1631	.3637	-8.40	• 55	14.4	61 .07	13		
6.4390	.3725	-9.60	84	16.1	94 .07	11		
6.7179	.3902	-10.87	-2.09	15.6	69 .07	208		
7.0000	.3883	-12.12	-3.17	11.8	67 .07	06		
RADIUS	BLADE-	ANGLES R	EL FLOW	DEV/INC	LOSS	BLADE	REL	REL
	SECTION	LEAN	ANGLE		COEFF	SPEED	MACH #	VELOCITY
4.2760	0.00	0.00	• 240	0.000	• 0289	0.0	•2522	280.08
4.5455	0.00	0.00	-1.397	0.000	•0296	0.0	•2740	303.96
4.8143	0.00	0.00	-2.740	0.000	• 0 3 0 3	0.0	.2941	325.80
5.0824	0.00	0.00	-3.899	0.000	.0310	0.0	•3120	345.31
5.3504	0.00	0.00	-5.022	0.000	.0319	0.0	•3278	362.38
5.6194	0.00	0.00	-6.146	0.000	•0328	0.0	•3415	377.26
5.8901	0.00	0.00	-7.268	0.000	• 0338	0.0	• 35 35	390.17
6.1631	0.00	0.00	-8.401	0.000	• 0 3 4 9	0.0	.3637	401.19
6.4390	0.00	0.00	-9.603	0.000	• 0 362	0.0	.3725	410.56
6.7179	0.00	0.00	-10.965	0.000	.0377	0.0	.3802	418.87
7.0000	0.00	0.00	-12.120	0.000	• 0 3 9 2	0.0	•3883	427.53
DADTIC	951	961	DDCCC		TSENTO			
R 40103	DDECC	TEMP	PATIO		LJENIK			
4.2760	14.676	518.708	.000	0.000	1,0000	1.0000		
4.5455	14 672	518.708	00A	0.000	1.0000	1.0000		
4 9143	14 448	519 709	• • • • • • • • • • • • • • • • • • •	0.000	1 0000	1 0000		
	14.444	518.700		0.000	1.0000	1.0000		
5. 3504	14.660	518.709		0.000	1.0000	1.0000		
5.6194	14.457	518.70		0.000	1.0000	1.0000		
5.8401	14.653	518-709		0.000	1.0000	1.0000		
6.1631	14.640	518.709	.007	0.000	1.0000	1.0000		
6.4390	14.646	518-708	.007	0.000	1.0000	1_0000		
6.7179	14.642	518.708	.996	0.000	1.0000	1.0000		
7 0000	14.637	518.708	499	0.000	1.0000	1.0000		

126

) !

ŝ

	STATION	7 FLOM	FIELD D	DESCRIPTI	ON			
RADTUS	VF			TEMPE	RATHRES-	P 8	ESSURES	<
~~~~	MERID	TANGEN	TOTAL	ΤΠΤΔΙ	STATIO	TOTA	I STA	TIC
4-5030	370.49	1.12	370.49	518.708	507.29	33 14.6	76 13	.577
4.7133	380.41	-7.15	380.48	518.708	506.66	9 14.6	72 13	-515
4.9362	340.38	-15-19	390.68	518-708	506-01	15 14.6	68 13	451
5.1699	400.28	-23.08	400.95	518.708	505.3	39 14.6	64 13	. 384
5.4121	409.24	-31.36	410.44	518.708	504-69	98 14.6	60 13	322
5.6606	416.72	-40.10	418.64	518,708	504.1	32 14.6	57 13	266
5.9156	422.99	-49.15	425.83	518.708	503.62	7 14.6	53 13	.216
6.1769	428.00	-58.49	431.98	518,708	503-10	39 14.6	49 13	173
6.4443	430.82	-68.43	436.22	518.708	502.8	83 14.6	46 13	.141
6.7183	430.35	-78.95	437.53	518.708	502.7	37 14.6	42 13	129
7.0000	426.61	-89.76	435.95	518.708	502.90	02 14.6	37 13	136
RADIUS	MACH	ANG	LES	RADIUS	OF SPEC	IFIC		
	NO	WHIRL	SLOPE	CURVATU	IRE WEIG	GHT		
4.5030	• 3 3 5 3	.17	21.89	-34.7	41 .0	721		
4.7133	. 3445	-1.08	18.79	-140.6	.08	719		
4.9362	.3540	-2.23	15.90	89.1	.03 .03	716		
5.1699	.3635	-3.30	13.24	38.6	.07	714		
5.4121	• 3724	-4.38	10.79	27.0	86 .07	711		
5.6606	.3900	-5.50	8.56	23.2	35 .07	709		
5.9156	•3867	-6.63	6.47	21.7	.0	707		
6.1769	.3925	-7.78	4.51	22.2	.03	706		
6.4443	.3965	-9.03	2.69	25.6	•04 •03	704		
6.7183	•3977	-10.40	1.10	37.8	.01	704		
7.0000	• 3962	-11.88	.004	* * * * * * * * * *	• • • •	704		
RADIUS	BL AD E-	ANGLES R	EL FLOW	DEV/INC	LOSS	BLADE	REL	REL
	SECTION	LEAN	ANGLE		COEFF	SPEED	MACH #	VELOCITY
4.5030	-48.75	-5.07	-52.934	4.186	0.0000	491.6	• 5562	614.68
4.7133	-49.91	-4.52	-53.901	3.988	0.0000	514.6	•5840	645.66
4.9362	-51.05	-3.16	-54.833	3.786	0.0000	538.9	•6141	677.79
5.1699	-52.06	19	-55.731	3.671	0.0000	564.4	•6445	710.89
5.4121	-52.60	2.80	-56.666	4.069	0.0000	590.8	•6756	744.72
5.6606	-53.45	4.14	-57.656	4.203	0.0000	618.0	.7070	778.92
5.9156	-54.18	6.00	-58.673	4.493	0.0000	645.8	•7389	813.56
6.1769	-55.06	6.80	-59.713	4.650	0.0000	674.3	.7711	848.65
6.4443	-55.96	9.24	-60.835	4.877	0.0000	703.5	.8034	884.04
6.7183	-56.90	10.94	-62.088	5.186	0.0000	733.4	•8356	919.33
7.0000	-58.38	6.29	-63.455	5.072	0.0000	764.2	•8676	954.59
	05.		0.0000		****			
RADIUS	REL	REL	PKESS	DELIAI	LSENIK	PULYIR		
	PRESS	1644	RATIU					
4.7030	17 075	541 274	• 999	0.000	1.0000	1.0000		
4.7133	17 350	541.328	•998	0.000	1.0000	1.0000		
4+9302	17.30	544+207	• 4 4 8	0.000	1.0000	1.0000		
7.1099	10 009	747+37L	• 775	0.000	1.0000	1.0000		
J+7161 6 1101	10.000	550+8UZ	• 778	0.000	1.0000	1 0000		
J.0000	19 004		• • • • • • • • • • • • • • • • • • • •	0.000	1 0000	1.0000		
5 1740	10.671	370+044 663 AEA	4771	0.000	1.0000	1 0000		
0.1107	20.104	567 436	• 77/	0.000	1.0000	1.0000		
6.7122	20.740	573.024		0.000	1.0000	1.0000		
7.0000	200199	578 433		0.000	1.0000	1.0000		
1.0000	610706		• 7 7 0		1.0000			

The second se

STATION 8 FLOW FIELD DESCRIPTION

RADIUS	VE	LOCITIES		TEMP	ERATURES-	PRI	ESSURE	S
	MERID	TANGEN	TOTAL	TUTAL	STATI	C TOTAL	_ ST	ATIC
5.5877	687.35	467.50	831.26	566.010	508.5	84 20.00	08 13	.759
5.6772	677.19	451.64	813.98	565.831	510.7	77 10.0	58 13	948
5 7 70 2		474 50	705 43	646 434		77 <b>470</b> 7		141
5.1142	000.44	434.54	797.02	202+030		32 19.90	JU 14	• 1 7 1
2.8942	072.07	414.30	113.04	707.1/0	5 515+5		)0 L4	• 321
6.0215	643.11	389.66	/51.94	564.35	6 517+3	/2 19.5	24 14	• 498
5.1597	637.68	363.11	733.81	563.40	518.6	51 19.5	74 14	•652
6.3081	632.24	343.47	719.51	563.294	4 520.2	75 19.57	29 14	• 788
6.4658	631.87	335.29	715.32	564.59	5 522.0	79 19.6	14 14	.912
6.6322	628.76	317.40	704.34	564.90	523.6	82 19.50	37 15	.024
5-8099	610.45	311.92	685.52	566.869	9 527.8	25 19.4	17 15	. 124
7.0000	600.44	298.76	670.67	568.050	1 530 h	82 19.3	15 15	. 2 2 1
			0.0101	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			., .,	
DADTHS	MACH					1610		
40103	NO			CHUNAT				
	NU Trans	MHIKL	SLUPE	LURVATI		681		
5.5477	• 7 51 3	34.22	15.66	-10.	.03 .0	729		
5.6772	.7341	33.70	13.86	-10.	548 •0	7.36		
5.7792	•7159	33.11	12.22	-11.9	5 <b>7</b> 2 •0	743		
5.8942	•6939	32.41	10.75	-13.	240 .0	749		
6.0215	.6738	31.21	9.32	-15.	<b>512</b> .0	755		
6.1597	.6567	29.66	7.92	-19-1	.0	761		
6.3081	.6430	28.51	6.47	-24-	170 .0	766		
6 4658	6381	27 95	4 08	-13		770		
6 6 3 3 3	+0J01 6373	21075	2 4 2	-57	נים ה	773		
0.0322	•02/3	20.70	2.42	-73.		())		
6.8099	•6082	27.07	1.77	-122.0	····	112		
1.0000	• 5 9 3 4	20.45	0.00	0.0	.000	(13		
RADIUS	BL AD E-	ANGLES R	EL FLOW	DEV/INC	LOSS	BLADE	REL	REL
	SECTION	LEAN	ANGLE		CUEFF	SPEED	1ACH #	VELOCITY
5.5877	-2.88	45.39	-11.714	8.835	0251	610.0	•6344	701.97
5.6772	-5.85	42.55	-13.944	8.096	0169	619.8	•6292	697.75
5.7792	-9.46	38.29	-16.415	6.954	0088	630.9	.6252	694.76
5.8942	-13-21	32.31	-19.348	6.133	.0073	643.5	.6209	691.71
6.0215	-16-99	25.38	-22.601	5.614	.0083	657.4	.6242	696-60
6.1597	-20.62	19.24	-25 879	5 257	0001	672.5	.6343	708.75
6 2091	-20.02	15 05	-27.077	J • L J 1	.0002	LNG 7	6627	720 74
4 4460	-23.00	13.30	-20.034	1110F	0153	705 0	40437	720037
( ( ) )		13.20	- 30 + 341	3.700	•0193	702.9	•0737	752.033
0.0322	-20.93	12.72	-32.892	3.977	.0231	724.0	.00/0	740.00
6.8099	-31.09	11.93	-35+256	4.170	.0771	143.4	• 6 6 3 3	141.51
7.0000	-33.64	9•26	-37.781	4.137	•1030	764.2	•6722	759.71
RADIUS	REL	REL	PRESS	DELTA	T ISENTR	POLYTR		
	PRESS	TEMP	RATIO	UN T	EFF	EFF		
5.5877	18.042	549.545	1.362	•091	1.0109	1.0104		
5.6772	18.213	551.245	1.358	.091	1.0061	1.0058		
5.7792	18.403	553.152	1.354	.090	1.0003	1.0003		
5.8942	18.582	555.284	1.345	.090	.9871	.9876		
6-0215	18.854	557.700	1.178	-084	9845	.9852		
6 1507	10 211	560.405	1.332	086	0008	. 9911		
0 . L 7 7 7 6 . 20 41	10 641	662 201	1 3 3 0	•000 AB4	07700 0460	• 7 7 L L 0 0 5 5 4		
0.3001	エブッフサレー シロー・ション	203+342	4+364	• 000	• 7070	• 7070		
0.4078	14.00/	200.004	1.335	•088	• 4122	• 4733		
5.6322	20.246	570.267	1.333	•089	• 4609	• 9625		
5.8099	20.317	574.251	1.321	•093	•8926	• 8968		
7.0000	20.604	578.622	1.314	• 095	.8541	.8597		
	STATION	8 INTE	GRATED P	PERFORMAN	NCE: PRES	SURE RAT	10 = 1	• 3 35
	ISEN. EF	F.= .96	2 POLY.	6FF•=	+963 DEI	TA T UN	Τ = .	• 090
				128				
				T				

	STATION	9 FLUW	FIELD	DESCRIPT	ION			
								-
RADIUS	V{	LOCITIES		TERP	ERATURES-	PR	ESSURE	5
	MERID	TANGEN	TOTAL	TOTAL	STATIO	C TUTA	L ST	ATIC
5.6511	762.66	462.26	891.81	566.010	0 499.90	06 20.0	08 12	•955
5.7408	753.97	446.01	876.02	565.83	8 502.05	57 19.9	58 13	•133
5.8547	744.83	428.99	859.54	565.63	5 504.23	33 19.9	00 13	. 310
5.9688	732.29	409.12	838.83	565.17	8 506.69	99 19.7	68 13	.488
6.0913	722.92	385.19	819.14	564.35	7 508.5	3 19.6	54 13	• 656
6.2215	716.33	359.51	801.53	563.40	510.0	15 19.5	74 13	.815
6.3590	709.27	340.72	786.86	563.29	6 511.8	39 19.5	29 13	.966
5.5051	706.68	333.26	781.32	564.59	5 513.80	5 19.6	14 14	.107
6.6596	701.90	316.10	769.79	564.90	2 515.6	59 19.5	87 14	. 234
6.8243	684.73	311.26	752.15	566 86	9 519.80	1 19.4	17 14	. 341
7.0000	676.35	298.76	739.40	568.050	522.6	25 19.3	15 14	. 427
	0/0.55	2 /0 . /0	737440	101.01		., .,.,	17 14	• - 2 /
	MACH		E S	PANTING		t e tr		
40103	NO			CHOVAT	UF JFEU.			
	NU 0.1.30		32076	LURVAI		500		
2.0211	-8129	31.22	/ • 33	-3.0	020 .00	598		
5.7488	• 7968	30.61	6.18	-9.0	.0	705		
5.8547	.7801	29.94	5.27	-10.	999 .0	711		
5.9688	•7595	29.19	4.56	-12.	149 .0	717		
5.0913	•7403	28.05	3.98	-13.	856 •0`	724		
6.2215	.7234	26.65	3.51	-16.	358 .0	730		
6.3590	.7089	25.66	3.00	-20.	310 .0	735		
6.5051	.7025	25.25	2.36	-25.0	.0	740		
6.6596	.6909	24.24	1.67	-35.0	.03	744		
6.8243	.6724	24.45	.90	-63.	335 .0	744		
7.0000	•6592	23.83	0.00	0.0	000 .0	744		
					•••			
RADIUS	BL AOF	-ANGLES RI	EL FLOW	DEV/INC	1.055	BLADE	REL	REL
	SECTION	N LEAN	ANGLE		COFFE	SPEED	MACH #	VELOCITY
5.6511	43.52	-19.09	31.220	-12.208	0 0000		9120	821 81
5 7488	41 44		30 606	-12-290	0.0000	0.0	7049	974 01
5 2647	40 50	- 3 4 6 7 5	20 040	-10.554	0.0000	0.0	07700 7001	950 54
5 0400	30.94	-27.71	27.740	-10.064	0.0000	0.0	3605	034.34
2.9000	37.54	-10.40	29.191	-10.647	0.0000	0.0	. (292	838.83
0.0913	30.70	-10.12	20.050	-10.813	0.0000	0.0	• 7 4 0 3	819.14
0.2215	38.24	-4.28	20.049	-11.595	0.0000	0.0	• 7234	801.53
6-3590	37.86	-1.42	25.659	-12.202	0.0000	0.0	•7089	786.86
6.5051	37.78	23	25.248	-12.533	0.0000	0.0	•7025	781.32
6.6596	37.65	2.54	24.244	-13.404	0.0000	0.0	•6909	759.79
6.8243	38.59	5.92	24.445	$-14 \cdot 141$	0.0000	0.0	•6724	752.15
7.0000	40.57	8.44	23.832	-16.738	0.0000	0.0	•6592	739.40
RADIUS	REL	REL	PRESS	DELTA	T ISENTR	POLYTR		
	PRESS	TEMP	RATIO	ON T	EFF	EFF		
5+6511	20.008	566.010	1.362	•091	1.0109	1.0104		
5.7488	19.958	565.838	1.358	• 091	1.0061	1.0058		
5.8547	19.900	565.636	1.354	•090	1.0003	1.0003		
5.9688	19.768	565.178	1.345	.090	.9871	.9876		
6.0913	19.654	564.357	1.338	.088	.9845	.9852		
6.2215	19.574	563-408	1.332	.086	80PP	.9911		
6.3590	19.529	563.294	1.329	.086	9850	9856		
6.5051	19.614	564.595	1.336	7000 7000	.9722	2732		
6-6504	10.597	564 002	1,222	. ARG	. 0600	.0436		
6.2747	10.417	566.040	1.221	• V07 Aga	• 70V 7 2034	+ 7027		
7 0000	10 315	568 057	1 114	• U7 J	• 0720 0641	+ 0700 8507		
r • 0000	14.313	200000000	1.214	•093	•0741	• 6 7 4 7		
	STATION	0 1475	COATEN P				10 - 1	316
	JIAIIUN		DRAIEU P	"CK"UKMA'	VUE: PKES	DURE KAI	10 = L	• 3 3 7
	LICKA EF	-r	C 174LTA			. 1 A I []N	1 🗰 .	.090

and the second second second

.

	STATION	10 FLOM	FIELD C	DESCRIPTI	ION			
RADIUS	VF	LOCITIES	دهر وروه همه ورود همر مارد	TEMPE	ERA TURE S-	Pi	RESSURE	5
	MERIO	TANGEN	TOTAL	TOTAL	STAT 1	C TOT	AL ST	ATIC
5.7580	797.56	-164.57	814.36	566.010	0 510.8	97 20.	204 14	•116
5.8341	792.26	-151.56	806.63	565.838	8 511.7	68 19.	990 14	.055
5.9216	784.25	-136.96	796.12	565.030	6 512.9	66 19.	739 14	.020
6.0219	755.08	-117.88	765.21	565.17	8 516.5	20 19.	171 13	.989
6.1365	732.45	-99.10	739.13	564.35	7 518.9	61 18.	742 13	.975
6.2633	726.47	-82.29	731.11	563.400	8 518.9	90 18.	627 13	.974
6.3976	745.95	-69.67	749.20	563-29	4 516.6	50 18.	919 13	.980
6.5361	766-20	~74.66	769.83	564.59	5 515.3	47 19.	251 13	.986
6 6810	757.75	-76.75	761.62	564-903	2 516.6	au 10.	112 13	987
6 8358	746.80	-78.63	750.93	566.869	9 520.0		UNK 13	.979
7 0000	741 47		745 90	568 050	0 523 8	22 14	700 13	- 960
1.0000	147041	-01011	(4).70	700.07		22 10.		.,
211104.0	MACH		165	PAGTUS		16 11		
RAUIUS				CHOVAT				
5 35.00	ניא	WHIRL	SLUPE	LUKVATI	UKE WEI			
5.7580	•7343	-11.00	2.11	-17.	/bl •0	747		
5.8341	.1267	~10.83	1.70	-16.	931 •0	0741		
5,9216	./164	-9.91	1.33	-18.	125 .0	0/3/		
6.0219	•6863	-8.86	1.02	-21.4	4/5 .0	730		
6.1365	•6613	-7.70	•86	-24.0	677 •0	726		
6.2633	•6541	-6.46	• 80	-28.	413 •0	)726		
5.3976	•6713	-5.34	.73	-33.	570 .(	)729		
6.5361	•6912	-5.57	•54	-43.	575 •0	731		
6.6810	•6829	-5.78	• 33	-62.	455 •(	730		
6.8358	.6712	-6.01	•15	-114.	343 .(	1725		
7.0.)00	•6655	-6.24	0.00	0.	000 .0	721		
RADIUS	BLADE-	ANGLES R	EL FLOW	DEV/INC	LUSS	BLADE	REL	REL
	SECTION	LEAN	ANGLE		CUEFF	SPEED	MACH #	VELOCITY
5.7580	-5.42	30.71	-11.659	-6.239	0278	0.0	.7343	814.36
5.8341	-7.06	27.41	-10.830	-3.773	0047	0.0	.7267	806.63
5.9216	-9.26	22.70	-9.906	646	.0244	0.0	.7164	796.12
6.0219	-11.37	17.13	-8.861	2.514	.0950	0.0	.6863	765.21
6-1365	-13.37	12.30	-7.705	5.667	.1521	0.0	.6613	739.13
6.2633			-6.462	••••				731 11
	-15.55	9.54		9.089	.1645	0.0	.0741	1 3 1 8 1 1
6.3976	-15.55	9+54 8-12	~5.336	9+089	.1645	0.0	.6718	749.20
6.3976	-15.55 -17.49 -19.38	9.54 8.12 8.04	-5.336	9.089 12.155 13.816	.1645 .1096	0.0	•6718 •6718	749.20
6.3976 6.5361 6.6810	-15.55 -17.49 -19.38 -21.59	9.54 8.12 8.04 7.77	-5.336	9.089 12.155 13.816 15.806	.1645 .1096 .0659	0.0 0.0 0.0	•6541 •6718 •6912	749.20 759.83 761.62
6.3976 6.5361 6.6810	-15.55 -17.49 -19.38 -21.59 -24.38	9.54 8.12 8.04 7.77 7.91	-5.336 -5.565 -5.784	9.089 12.155 13.816 15.806	.1645 .1096 .0659 .3887	0.0 0.0 0.0 0.0	.6718 .6718 .6912 .6829	759.83 759.83 761.62 750.93
6.3976 6.5361 6.6810 6.8358 7.0000	-15.55 -17.49 -19.38 -21.59 -24.38 -27.96	9.54 8.12 8.04 7.77 7.91 8.68	-5.336 -5.565 -5.784 -6.011	9.089 12.155 13.816 15.806 18.370 21.716	.1645 .1096 .0659 .0887 .1004		.6541 .6718 .6912 .6829 .6712	749.20 759.83 761.62 750.93 745.90
6.3976 6.5361 6.6810 6.8358 7.0000	-15.55 -17.49 -19.38 -21.59 -24.38 -27.96	9.54 8.12 8.04 7.77 7.91 8.68	-5.336 -5.565 -5.784 -6.011 -6.245	9.089 12.155 13.816 15.806 18.370 21.716	.1645 .1096 .0659 .0887 .1004 .1074	0.0 0.0 0.0 0.0 0.0 0.0	.6541 .6718 .6912 .6829 .6712 .6655	749.20 759.83 761.62 750.93 745.90
6.3976 6.5361 6.6810 6.8358 7.0000	-15.55 -17.49 -19.38 -21.59 -24.38 -27.96	9.54 8.12 8.04 7.77 7.91 8.68	-5.336 -5.565 -5.784 -6.011 -6.245	9.089 12.155 13.816 15.806 18.370 21.716	.1645 .1096 .0659 .0887 .1004 .1074	0.0 0.0 0.0 0.0 0.0 0.0	.6541 .6718 .6912 .6829 .6712 .6655	749.20 759.83 761.62 750.93 745.90
6.3976 6.5361 6.6810 6.8358 7.0000 RADIUS	-15.55 -17.49 -19.38 -21.59 -24.38 -27.96 REL	9.54 8.12 8.04 7.77 7.91 8.68 REL	-5.336 -5.565 -5.784 -6.011 -6.245 PRESS	9.089 12.155 13.816 15.806 18.370 21.716 DELTA	.1645 .1096 .0659 .0887 .1004 .1074 T ISENTH	0.0 0.0 0.0 0.0 0.0 0.0 0.0	.6541 .6718 .6912 .6829 .6712 .6655	749.20 759.83 761.62 750.93 745.90
6.3976 6.5361 6.6810 6.8358 7.0000 RADIUS	-15.55 -17.49 -19.38 -21.59 -24.38 -27.96 REL PRESS	9.54 8.12 8.04 7.77 7.91 8.68 REL TEMP	-5.336 -5.565 -5.784 -6.011 -6.245 PRESS RATIO	9.089 12.155 13.816 15.806 18.370 21.716 DELTA ON T	.1645 .1096 .0659 .0887 .1004 .1074 T ISENTH EFF	0.0 0.0 0.0 0.0 0.0 0.0 0.0 EFF	.6541 .6718 .6912 .6829 .6712 .6655	749.20 759.83 761.62 750.93 745.90
6.3976 6.5361 6.6810 6.8358 7.0000 RADIUS 5.7580	-15.55 -17.49 -19.38 -21.59 -24.38 -27.96 REL PRESS 20.204	9.54 8.12 8.04 7.77 7.91 8.68 REL TEMP 566.010	-5.336 -5.565 -5.784 -6.011 -6.245 PRESS RATIO 1.375	9.089 12.155 13.816 15.806 18.370 21.716 DELTA ON T .091	.1645 .1096 .0659 .0887 .1004 .1074 T ISENTH EFF 1.0443	0.0 0.0 0.0 0.0 0.0 0.0 0.0 POLYT EFF 1.042	.6541 .6718 .6912 .6829 .6712 .6655 R	749.20 759.83 761.62 750.93 745.90
6.3976 6.5361 6.6810 6.8358 7.0000 RADIUS 5.7580 5.8341	-15.55 -17.49 -19.38 -21.59 -24.38 -27.96 REL PRESS 20.204 19.990	9.54 8.12 8.04 7.77 7.91 8.68 REL TEMP 566.010 565.838	-5.336 -5.565 -5.784 -6.011 -6.245 PRESS RATIO 1.375 1.360	9.089 12.155 13.816 15.806 18.370 21.716 DELTA ON T .091 .091	.1645 .1096 .0659 .0887 .1004 .1074 T ISENTH EFF 1.0443 1.0116	0.0 0.0 0.0 0.0 0.0 0.0 0.0 POLYT EFF 1.042 1.011	.6541 .6718 .6912 .6829 .6712 .6655 R	749.20 759.83 761.62 750.93 745.90
6.3976 6.5361 6.6810 6.8358 7.0000 RADIUS 5.7580 5.8341 5.9216	-15.55 -17.49 -19.38 -21.59 -24.38 -27.96 REL PRESS 20.204 19.990 19.739	9.54 8.12 8.04 7.77 7.91 8.68 REL TEMP 566.010 565.838 565.636	-5.336 -5.565 -5.784 -6.011 -6.245 PRESS RATIO 1.375 1.360 1.343	9.089 12.155 13.816 15.806 18.370 21.716 DELTA ON T .091 .091 .090	.1645 .1096 .0659 .0887 .1004 .1074 T ISENTH EFF 1.0443 1.0116 .9725	0.0 0.0 0.0 0.0 0.0 0.0 0.0 POLYT EFF 1.042 1.011 .973	.6541 .6718 .6912 .6829 .6712 .6655 R 3 1 6	749.20 759.83 761.62 750.93 745.90
6.3976 6.5361 6.6810 6.8358 7.0000 RADIUS 5.7580 5.8341 5.9216 6.0219	-15.55 -17.49 -19.38 -21.59 -24.38 -27.96 REL PRESS 20.204 19.990 19.739 19.171	9.54 8.12 8.04 7.77 7.91 8.68 REL TEMP 566.010 565.838 565.636 565.178	-5.336 -5.565 -5.784 -6.011 -6.245 PRESS RATIO 1.375 1.360 1.343 1.305	9.089 12.155 13.816 15.806 18.370 21.716 DELTA 0N T .091 .091 .090 .090	.1645 .1096 .0659 .0887 .1004 .1074 T ISENTH EFF 1.0443 1.0116 .9725 .8811	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 POLYT EFF 1.042 1.011 .973 .885	.6541 .6718 .6912 .6829 .6712 .6655 R 3 1 6 5	749.20 759.83 761.62 750.93 745.90
6.3976 6.5361 6.6810 6.8358 7.0000 RADIUS 5.7580 5.8341 5.9216 6.0219 6.1365	-15.55 -17.49 -19.38 -21.59 -24.38 -27.96 REL PRESS 20.204 19.990 19.739 19.171 18.742	9.54 8.12 8.04 7.77 7.91 8.68 REL TEMP 566.010 565.838 565.636 565.178 564.357	-5.336 -5.565 -5.784 -6.011 -6.245 PRESS RATIO 1.375 1.360 1.343 1.305 1.275	9.089 12.155 13.816 15.806 18.370 21.716 DELTA 0N T .091 .090 .040 .088	.1645 .1096 .0659 .0887 .1004 .1074 T ISENTH EFF 1.0443 1.0116 .9725 .8811 .8180	0.0 0.0 0.0 0.0 0.0 0.0 0.0 POLYT EFF 1.042 1.011 .973 .885 .824	.6541 .6718 .6912 .6829 .6712 .6655 R 3 1 6 5 2 2	749.20 759.83 761.62 750.93 745.90
6.3976 6.5361 6.6810 6.8358 7.0000 RADIUS 5.7580 5.8341 5.9216 6.0219 6.1365 6.2633	-15.55 -17.49 -19.38 -21.59 -24.38 -27.96 REL PRESS 20.204 19.990 19.739 19.171 18.742 18.627	9.54 8.12 8.04 7.77 7.91 8.68 REL TEMP 566.010 565.838 565.636 565.178 564.308	-5.336 -5.565 -5.784 -6.011 -6.245 PRESS RATIO 1.375 1.360 1.343 1.305 1.275 1.268	9.089 12.155 13.816 15.806 18.370 21.716 DELTA 0N T .091 .091 .090 .088 .086	.1645 .1096 .0659 .0887 .1004 .1074 T ISENTH EFF 1.0443 1.0116 .9725 .8811 .8180 .8136	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 POLYT EFF 1.042 1.011 0.973 .885 .824 .819	.6541 .6718 .6912 .6829 .6712 .6655 R 3 1 6 5 2 7 7	749.20 759.83 761.62 750.93 745.90
6.3976 6.5361 6.6810 6.8358 7.0000 RADIUS 5.7580 5.8341 5.9216 6.0219 6.1365 6.2633 6.3976	-15.55 -17.49 -19.38 -21.59 -24.38 -27.96 REL PRESS 20.204 19.990 19.739 19.171 18.742 18.627 18.919	9.54 8.12 8.04 7.77 7.91 8.68 REL TEMP 566.010 565.838 565.636 565.178 564.357 563.408 563.294	-5.336 -5.565 -5.784 -6.011 -6.245 PRESS RATIO 1.375 1.360 1.343 1.305 1.275 1.268 1.288	9.089 12.155 13.816 15.806 18.370 21.716 DELTA 0N T .091 .091 .090 .040 .088 .086 .086	.1645 .1096 .0659 .0887 .1004 .1074 T ISENTH EFF 1.0443 1.0116 .9725 .8811 .8180 .8136 .8712	0.0 0.0 0.0 0.0 0.0 0.0 0.0 POLYT EFF 1.042 1.011 .973 .885 .824 .819 .875	.6541 .6718 .6912 .6829 .6712 .6655 R 3 1 6 5 2 7 7	749.20 759.83 761.62 750.93 745.90
6.3976 6.5361 6.6810 6.8358 7.0000 RADIUS 5.7580 5.8341 5.9216 6.0219 6.1365 6.2633 6.3976 6.5361	-15.55 -17.49 -19.38 -21.59 -24.38 -27.96 REL PRESS 20.204 19.990 19.739 19.171 18.742 18.627 18.919 19.251	9.54 8.12 8.04 7.77 7.91 8.68 REL TEMP 566.010 565.838 565.636 565.178 564.357 563.408 563.294 564.55	-5.336 -5.565 -5.784 -6.011 -6.245 PRESS RATIO 1.375 1.360 1.343 1.305 1.275 1.268 1.288 1.310	9.089 12.155 13.816 15.806 18.370 21.716 DELTA 0N T .091 .090 .040 .088 .086 .086 .086	.1645 .1096 .0659 .0887 .1004 .1074 T ISENTH EFF 1.0443 1.0116 .9725 .8811 .8180 .8136 .8712	0.0 0.0 0.0 0.0 0.0 0.0 0.0 POLYT EFF 1.042 1.011 .973 .885 .824 .819 .875 .910	.6541 .6718 .6912 .6829 .6712 .6655 R 3 1 6 5 2 7 7 3	749.20 759.83 761.62 750.93 745.90
6.3976 6.5361 6.6810 6.8358 7.0000 RADIUS 5.7580 5.8341 5.9216 6.0219 6.1365 6.2633 6.3976 6.5361 6.6810	-15.55 -17.49 -19.38 -21.59 -24.38 -27.96 REL PRESS 20.204 19.990 19.739 19.171 18.742 18.627 18.919 19.251 19.112	9.54 8.12 8.04 7.77 7.91 8.68 REL TEMP 566.010 565.838 565.636 565.178 564.357 563.408 563.294 564.595	-5.336 -5.565 -5.784 -6.011 -6.245 PRESS RATIO 1.375 1.360 1.343 1.305 1.275 1.268 1.288 1.310 1.301	9.089 12.155 13.816 15.806 18.370 21.716 DELTA 0N T .091 .090 .040 .088 .088 .088 .088 .088	.1645 .1096 .0659 .0887 .1004 .1074 T ISENTH EFF 1.0443 1.0116 .9725 .8811 .8180 .8136 .8712 .9064 .8757	0.0 0.0 0.0 0.0 0.0 0.0 POLYT EFF 1.042 1.011 .973 .885 .824 .819 .875 .910 .880	.6541 .6718 .6912 .6829 .6712 .6655 R 3 1 6 5 2 7 7 3 3 3	749.20 759.83 761.62 750.93 745.90
6.3976 6.5361 6.6810 6.8358 7.0000 RADIUS 5.7580 5.8341 5.9216 6.0219 6.1365 6.2633 6.3976 6.5361 6.6810 6.8358	-15.55 -17.49 -19.38 -21.59 -24.38 -27.96 REL PRESS 20.204 19.990 19.739 19.171 18.742 18.627 18.919 19.251 19.112 18.905	9.54 8.12 8.04 7.77 7.91 8.68 REL TEMP 566.010 565.838 565.636 565.178 564.357 563.408 563.294 564.595 564.902 566.869	-5.336 -5.565 -5.784 -6.011 -6.245 PRESS RATIO 1.375 1.360 1.343 1.305 1.275 1.268 1.288 1.310 1.301 1.287	9.089 12.155 13.816 15.806 18.370 21.716 DELTA 0N T .091 .090 .040 .088 .088 .088 .088 .089 .093	.1645 .1096 .0659 .0887 .1004 .1074 T ISENTH EFF 1.0443 1.0116 .9725 .8811 .8136 .8712 .9068 .8757 .8044	0.0 0.0 0.0 0.0 0.0 0.0 POLYT EFF 1.042 1.011 .973 .885 .824 .819 .875 .910 .880 .811	.6541 .6718 .6912 .6829 .6712 .6655 .6655 .8 3 1 6 5 2 7 7 3 3 3 2	749.20 759.83 761.62 750.93 745.90
6.3976 6.5361 6.6810 6.8358 7.0000 RADIUS 5.7580 5.8341 5.9216 6.0219 6.1365 6.2633 6.3976 6.5361 6.630 6.8358 7.0000	-15.55 -17.49 -19.38 -21.59 -24.38 -27.96 REL PRESS 20.204 19.990 19.739 19.171 18.742 18.627 18.919 19.251 19.112 18.908 18.790	9.54 8.12 8.04 7.77 7.91 8.68 4.58 4.55 5.55.838 5.55.636 5.65.178 5.63.408 5.63.294 5.64.595 5.64.595 5.64.902 5.65.869 5.68.050	-5.336 -5.565 -5.784 -6.011 -6.245 PRESS RATIO 1.375 1.360 1.343 1.305 1.275 1.268 1.288 1.301 1.301 1.287 1.279	9.089 12.155 13.816 15.806 18.370 21.716 DELTA 0N T .091 .090 .040 .088 .086 .088 .089 .093 .095	.1645 .1096 .0659 .0887 .1004 .1074 T ISENTH EFF 1.0442 1.0116 .9725 .8811 .8136 .8712 .9068 .8757 .8044 .7650	0.0 0.0 0.0 0.0 0.0 0.0 0.0 POLYT EFF 1.042 1.011 .973 .885 .824 .819 .875 .910 .880 .811 .773	.6541 .6718 .6912 .6829 .6712 .6655 .6655 .8 3 1 6 5 2 7 7 3 3 3 2 0	749.20 759.83 761.62 750.93 745.90
6.3976 6.5361 6.6810 6.8358 7.0000 RADIUS 5.7580 5.8341 5.9216 6.0219 6.1365 6.2633 6.3976 6.5361 6.6810 6.8358 7.0000	-15.55 -17.49 -19.38 -21.59 -24.38 -27.96 REL PRESS 20.204 19.990 19.739 19.171 18.742 18.627 18.919 19.251 19.112 18.908 18.908	9.54 8.12 8.04 7.77 7.91 8.68 REL TEMP 566.010 565.838 565.636 565.178 564.357 563.408 563.294 564.595 564.902 566.869 568.050	-5.336 -5.565 -5.784 -6.011 -6.245 PRESS RATIO 1.375 1.360 1.343 1.305 1.275 1.268 1.310 1.301 1.287 1.279	9.089 12.155 13.816 15.806 18.370 21.716 DELTA 0N T .091 .091 .090 .040 .088 .088 .088 .088 .089 .093 .095	.1645 .1096 .0659 .0887 .1004 .1074 T ISENTH EFF 1.0443 1.0116 .9725 .8811 .8136 .8136 .8712 .9065 .8757 .8044	0.0 0.0 0.0 0.0 0.0 0.0 0.0 POLYT EFF 1.042 1.011 .973 .885 .824 .819 .875 .910 .881 .811 .773	.6541 .6718 .6912 .6829 .6712 .6655 8 3 1 6 5 2 7 7 3 3 2 0	749.20 759.83 761.62 750.93 745.90
6.3976 6.5361 6.6810 6.8358 7.0000 RADIUS 5.7580 5.8341 5.9216 6.0219 6.1365 6.2633 6.3976 6.5361 6.6810 6.8358 7.0000	-15.55 -17.49 -19.38 -21.59 -24.38 -27.96 REL PRESS 20.204 19.990 19.739 19.171 18.742 18.627 18.919 19.251 19.112 18.908 18.908 18.790	9.54 8.12 8.04 7.77 7.91 8.68 REL TEMP 566.010 565.838 565.636 565.178 564.357 563.408 563.294 564.595 564.902 566.869 568.050 10 INTE	-5.336 -5.565 -5.784 -6.011 -6.245 PRESS RATIO 1.375 1.360 1.343 1.305 1.275 1.268 1.310 1.301 1.287 1.279 GRATED	9.089 12.155 13.816 15.806 18.370 21.716 DELTA 0N T .091 .090 .040 .040 .040 .088 .086 .088 .088 .088 .089 .093 .095	.1645 .1096 .0659 .0887 .1004 .1074 T ISENTH EFF 1.0443 1.0116 .9725 .8811 .8136 .8136 .8757 .8044 .7650 NCE: PRES	0.0 0.0 0.0 0.0 0.0 0.0 0.0 POLYT EFF 1.042 1.011 .973 .885 .824 .819 .824 .819 .875 .811 .773 SURE RA	.6541 .6718 .6912 .6829 .6712 .6655 8 3 1 6 5 2 7 7 3 3 3 2 0 7 7 7 3 3 3 2 0	- 301

STATION 11 FLOW FIELD DESCRIPTION

.

				*****			
RADIUS	VF	I DOLT TES		TEMPERA	TURES	PRESS	URES
	MENTO	TANCEN	TOTAL	TOTAL	STATIC	TOTAL	STATIC
5 7600	793 40	-144 61	700 60	566 010	517 HQ2	20 204	14 310
5.03/0	702.40	-104+71	799.30	200.010	512 + 972	20.204	14.310
7.8349	//1.73	-171.74	100.21	202.030	214.404	19.990	14.320
5.9215	758.76	-146.96	//1.02	505+636	516+236	19.739	14.335
6.0213	726.44	-117.89	735.95	565.178	520.172	19.171	14.338
6.1358	700.44	-99.11	707.42	564.357	522.775	18.742	14.337
6.2630	694.17	-82.29	699.03	563.408	522.805	18.627	14.336
6.3975	715.18	-69.67	718.57	563.294	520.388	18.919	14.337
6.5358	736.80	-74.66	740.58	564.595	519.021	19.251	14.338
6.6805	728.09	- 16 - 76	732.12	564.902	520.363	19,112	14.337
6.8354	716.11	-78.64	720.41	566.869	523.747	18.908	14.333
7 0000	709 73	-91 13	712 36	568 050	525 770	18 700	14 333
1.0000	100.13	-01.13	113.30	J00+0J0	7270110	100190	144 333
					605 <b>6161</b>		
RAUIUS	MALH	ANG	- 52	RAULUS UF	SPECIFIC	•	
	NO	WHIRL	SLOPE	CURVATURE	HE IGHT		
5.7600	•7195	-11.87	.19	-48.243	•0752		
5.8349	•7065	-11.11	•08	-104.438	.0751		
5.9215	.6917	-10.23	01	-1294.769	•0748		
6.0213	.6577	-9.22	07	220.809	.0743		
6.1358	.6306	-8.05	0B	202.508	.0739		
6.2630	.6231	-6.76	05	552.867	.0733		
6.3975	.6420	-5.56	- 03	-4773.781	.0743		
6 5358	6626	-5 70	- 04	682 774	0745		
6 4 90 5	-0020	-5.03	07	0020717	0743		
5.0000	+0742	-0.02	07	230.701	• 0743		
0.0374	+0410	-0.27	06	227.880	.0738		
/.0000	•6341	-6+23	0.00	0.000	.0735		
	STATION	12 FLOW	FIELD D	ESCRIPTION			
	STATION	12 FLO#	FIELD D	ESCRIPTION			
RADIUS	STATION	12 FLOW	FIELD D	ESCRIPTION TEMPERA	TURES	PRESS	URES
RADIUS	STATION VE MERID	12 FLOW LOCITIES TANGEN	FIELD D	ESCRIPTION TEMPERA TOTAL	TURES STATIC	PRESS	URES STATIC
R AD I U S 5 • 7600	STATION VE MERID 779.09	12 FLOW LOCITIES TANGEN -164.51	FIELD D TOTAL 796.27	ESCRIPTION 	TURES STATIC 513.321	PRESS TOTAL 20.204	URES STATIC 14.352
R 4D I U S 5 • 7600 5 • 8349	STATION VE MERID 779.09 769.07	12 FLOW LOCITIES TANGEN -164.51 -151.54	FIELD D TOTAL 796.27 783.86	ESCRIPTION TEMPERA TOTAL 566.010 565.838	TURES STATIC 513.321 514.780	PRESS TOTAL 20.204 19.990	URES STATIC 14.352 14.357
R 4D IUS 5.7600 5.8349 5.9214	STATION VE MERID 779.09 769.07 756.60	12 FLOW LOCITIES TANGEN -164.51 -151.54 -136.96	FIELD D TOTAL 796.27 783.86 768.89	ESCRIPTION TEMPERA TOTAL 566.010 565.838 565.636	TURES STATIC 513.321 514.780 516.509	PRESS TOTAL 20.204 19.990 19.739	URES STATIC 14.352 14.357 14.362
R 40 IUS 5 • 7600 5 • 8349 5 • 9214 6 • 0211	STATION VE MERID 779.09 769.07 756.60 724.04	12 FLOW LOCITIES TANGEN -164.51 -151.54 -136.96 -117.89	FIELD D TOTAL 796.27 783.86 768.89 733.58	ESCRIPTION TEMPERA TOTAL 566.010 565.838 565.636 565.178	TURES STATIC 513.321 514.780 516.509 520.462	PRESS TOTAL 20.204 19.990 19.739 19.171	URES STATIC 14.352 14.357 14.362 14.365
RADIUS 5.7600 5.8349 5.9214 6.0211 6.1356	STATION VE MERID 779.09 769.07 756.60 724.04 697.55	12 FLOW LOCITIES TANGEN -164.51 -151.54 -136.96 -117.89 -99.11	FIELD D TOTAL 796.27 783.86 768.89 733.58 704.58	ESCRIPTION TEMPERA TOTAL 566.010 565.838 565.636 565.178 564.357	TURES STATIC 513.321 514.780 516.509 520.462 523.107	PRESS TOTAL 20.204 19.990 19.739 19.171 18.742	URES STATIC 14.352 14.357 14.362 14.366 14.369
R AD IUS 5.7600 5.8349 5.9214 6.0211 6.1356 6.2628	STATION VE MERID 779.09 769.07 756.60 724.04 697.58 691.03	12 FLOW LOCITIES TANGEN -164.51 -151.54 -136.96 -117.89 -99.11 -82.29	FIELD D TOTAL 796.27 783.86 768.89 733.58 704.58	ESCRIPTION TEMPERA TOTAL 566.010 565.838 565.636 565.178 564.357 563.408	TURES STATIC 513.321 514.780 516.509 520.462 523.107 523.166	PRESS TOTAL 20.204 19.990 19.739 19.171 18.742 18.627	URES STATIC 14.352 14.357 14.362 14.366 14.369
R AD IUS 5.7600 5.8349 5.9214 6.0211 6.1356 6.2628 6.3976	STATION VE MERID 779.09 769.07 756.60 724.04 697.58 691.03 712.14	12 FLOW LOCITIES TANGEN -164.51 -151.54 -136.96 -117.89 -99.11 -82.29 -69.64	FIELD D TOTAL 796.27 783.86 768.89 733.58 704.58 695.92 715 54	ESCRIPTION TEMPERA TOTAL 566.010 565.838 565.636 565.178 564.357 563.408 563.294	TURES STATIC 513.321 514.780 516.509 520.462 523.107 523.166	PRESS TOTAL 20.204 19.990 19.739 19.171 18.742 18.627	URES STATIC 14.352 14.357 14.362 14.366 14.369 14.371
R AD IUS 5.7600 5.8349 5.9214 6.0211 6.1356 6.2628 6.3974	STATION VE MERID 779.09 769.07 756.60 724.04 697.59 691.03 712.14	12 FLOW LOCITIES TANGEN -164.51 -151.54 -136.96 -117.89 -99.11 -82.29 -69.68 -76.46	FIELD D TOTAL 796.27 783.86 768.89 733.58 704.58 695.92 715.54	ESCRIPTION TEMPERA TOTAL 566.010 565.838 565.636 565.178 564.357 563.408 563.294 564.595	TURES STATIC 513.321 514.780 516.509 520.462 523.107 523.166 520.748	PRESS TOTAL 20.204 19.990 19.739 19.171 18.742 18.627 18.919	URES STATIC 14.352 14.357 14.362 14.366 14.369 14.371 14.372
R AD IUS 5.7600 5.8349 5.9214 6.0211 6.1356 6.2628 6.3974 6.5356	STATION VE MERID 779.09 769.07 756.60 724.04 697.59 691.03 712.14 733.88 734.80	12 FLOW LOCITIES TANGEN -164.51 -151.54 -136.96 -117.89 -99.11 -82.29 -69.68 -74.66	FIELD D TOTAL 796.27 783.86 768.89 733.58 704.58 695.92 715.54 737.66	ESCRIPTION TEMPERA TOTAL 566.010 565.838 565.636 565.178 564.357 563.408 563.294 564.595 564.003	TURES STATIC 513.321 514.780 516.509 520.462 523.107 523.166 520.748 519.379	PRESS TOTAL 20.204 19.990 19.739 19.171 18.742 18.627 18.919 19.251	URES STATIC 14.352 14.357 14.362 14.366 14.369 14.371 14.372 14.373
R AD IUS 5.7600 5.8349 5.9214 6.0211 6.1356 6.2628 6.3974 6.5356 6.6804	STATION VE MERID 779.09 769.07 756.60 724.04 697.59 691.03 712.14 733.88 724.90	12 FLOW LOCITIES TANGEN -164.51 -151.54 -136.96 -117.89 -99.11 -82.29 -69.68 -74.66 -76.76	FIELD D TOTAL 796.27 783.86 768.89 733.58 704.58 695.92 715.54 737.66 728.95	ESCRIPTION TEMPERA TOTAL 566.010 565.838 565.636 565.178 564.357 563.408 563.294 564.595 564.902	TURES STATIC 513.321 514.780 516.509 520.462 523.107 523.166 520.748 519.379 520.748	PRESS TOTAL 20.204 19.990 19.739 19.171 18.742 18.627 18.919 19.251 19.112	URES STATIC 14.352 14.357 14.362 14.366 14.369 14.371 14.372 14.373 14.374
R AD IUS 5.7600 5.8349 5.9214 6.0211 6.1356 6.2628 6.3974 6.5356 6.6804 6.8352	STATION VE MERID 779.09 769.07 756.60 724.04 697.59 691.03 712.14 733.88 724.90 712.44	12 FLOW LOCITIES TANGEN -164.51 -151.54 -136.96 -117.89 -99.11 -82.29 -69.68 -74.66 -76.76 -78.64	FIELD D TOTAL 796.27 783.86 768.89 733.58 704.58 695.92 715.54 737.66 728.95 716.76	ESCRIPTION TEMPERA TOTAL 566.010 565.838 565.636 565.178 564.357 563.408 563.294 564.595 564.902 566.869	TURES STATIC 513.321 514.780 516.509 520.462 523.107 523.166 520.748 519.379 520.748 524.183	PRESS TOTAL 20.204 19.990 19.739 19.171 18.742 18.627 18.919 19.251 19.112 18.908	URES STATIC 14.352 14.357 14.362 14.366 14.369 14.371 14.372 14.373 14.374 14.375
R AD IUS 5.7600 5.8349 5.9214 6.0211 6.1356 6.2628 6.3974 6.5356 6.6804 6.8352 7.0000	STATION VE MERID 779.09 769.07 756.60 724.04 697.58 691.03 712.14 733.88 724.90 712.44 704.78	12 FLOW LOCITIES TANGEN -164.51 -151.54 -136.96 -117.89 -99.11 -82.29 -69.68 -74.66 -76.76 -78.64 -81.13	FIELD D TOTAL 796.27 783.86 768.89 733.58 704.58 695.92 715.54 737.66 728.95 716.76 709.44	ESCR IPTION TEMPERA TOTAL 566.010 565.838 565.636 565.178 564.357 563.408 563.294 564.595 564.595 564.902 566.869 568.050	TURES STATIC 513.321 514.780 516.509 520.462 523.107 523.166 520.748 519.379 520.748 524.183 526.234	PRESS TOTAL 20.204 19.990 19.739 19.171 18.742 18.627 18.919 19.251 19.112 18.908 18.790	URES STATIC 14.352 14.357 14.362 14.366 14.369 14.371 14.372 14.373 14.375 14.377
R AD IUS 5.7600 5.8349 5.9214 6.0211 6.1356 6.2628 6.3974 6.5356 6.6804 6.8352 7.0000	STATION VE MERID 779.09 769.07 756.60 724.04 697.53 691.03 712.14 733.88 724.90 712.44 704.78	12 FLOW LOCITIES TANGEN -164.51 -151.54 -136.96 -117.89 -99.11 -82.29 -69.68 -74.66 -76.76 -78.64 -81.13	FIELD D TOTAL 796.27 783.86 768.89 733.58 704.58 695.92 715.54 737.66 728.95 716.76 709.44	ESCR IPTION TEMPERA TOTAL 566.010 565.838 565.636 565.178 564.357 563.408 563.294 564.595 564.595 564.902 566.869 568.050	TURES STATIC 513.321 514.780 516.509 520.462 523.107 523.166 520.748 519.379 520.748 524.183 526.234	PRESS TOTAL 20.204 19.990 19.739 19.171 18.742 18.627 18.919 19.251 19.112 18.908 18.790	URES STATIC 14.352 14.357 14.362 14.366 14.369 14.371 14.372 14.373 14.375 14.377
R AD IUS 5.7600 5.8349 5.9214 6.0211 6.1356 6.2628 6.3974 6.5356 6.6804 6.8352 7.0000 RADIUS	STATION VE MERID 779.09 769.07 756.60 724.04 697.58 691.03 712.14 733.88 724.90 712.44 704.78 MACH	12 FLOW TANGEN -164.51 -151.54 -136.96 -117.89 -99.11 -82.29 -69.68 -74.66 -76.76 -78.64 -81.13 ANG	FIELD D TOTAL 796.27 783.86 768.89 733.58 704.58 695.92 715.54 737.66 728.95 716.76 709.44	ESCR IPTION TEMPERA TOTAL 566.010 565.838 565.636 565.178 564.357 563.408 564.595 564.595 564.595 564.902 566.869 568.050 RADIUS OF	TURES STATIC 513.321 514.780 516.509 520.462 523.107 523.166 520.748 519.379 520.748 524.183 526.234 SPECIFIC	PRESS TOTAL 20.204 19.990 19.739 19.171 18.742 18.627 18.919 19.251 19.112 18.908 18.790	URES STATIC 14.352 14.357 14.362 14.366 14.369 14.371 14.372 14.373 14.375 14.377
R AD IUS 5.7600 5.8349 5.9214 6.0211 6.1356 6.2628 6.3974 6.5356 6.6804 6.8352 7.0000 R AD IUS	STATION VE MERID 779.09 769.07 756.60 724.04 697.53 691.03 712.14 733.88 724.90 712.44 704.78 MACH NO	12 FLOW TANGEN -164.51 -151.54 -136.96 -117.89 -99.11 -82.29 -69.68 -74.66 -76.76 -78.64 -81.13 ANGU WHIRL	FIELD D TOTAL 796.27 783.86 768.89 733.58 704.58 695.92 715.54 737.66 728.95 716.76 709.44 LES SLOPE	ESCR IPTION TEMPERA TOTAL 566.010 565.838 565.636 565.178 564.357 563.408 564.595 564.595 564.595 564.902 566.869 568.050 RADIUS OF CURVATURE	TURES STATIC 513.321 514.780 516.509 520.462 523.107 523.166 520.748 519.379 520.748 524.183 526.234 SPECIFIC WEIGHT	PRESS TOTAL 20.204 19.990 19.739 19.171 18.742 18.627 18.919 19.251 19.112 18.908 18.790	SURES STATIC 14.352 14.362 14.366 14.369 14.371 14.372 14.373 14.374 14.375 14.377
R AD IUS 5.7600 5.8349 5.9214 6.0211 6.1356 6.2628 6.3974 6.5356 6.6804 6.8352 7.0000 R AD IUS 5.7600	STATION VE MERID 779.09 769.07 756.60 724.04 697.53 691.03 712.14 733.88 724.90 712.44 704.78 MACH NO .7163	12 FLOW LOCITIES TANGEN -164.51 -151.54 -136.96 -117.89 -99.11 -82.29 -69.68 -74.66 -76.76 -78.64 -81.13 ANG WHIRL -11.92	FIELD D TOTAL 796.27 783.86 768.89 733.58 704.58 695.92 715.54 737.66 728.95 716.76 709.44 LES SLOPE 0.00	ESCR IPTION TEMPERA TOTAL 566.010 565.838 565.636 565.178 564.357 563.408 564.595 564.595 564.595 564.595 564.902 566.869 568.050 RADIUS DF CURVATURE 0.000	TURES STATIC 513.321 514.780 516.509 520.462 523.107 523.166 520.748 519.379 520.748 524.183 526.234 SPECIFIC WEIGHT .0754	PRESS TOTAL 20.204 19.990 19.739 19.171 18.742 18.627 18.919 19.251 19.112 18.908 18.790	SURE S STATIC 14.352 14.362 14.362 14.366 14.369 14.371 14.372 14.373 14.374 14.375 14.377
R AD IUS 5.7600 5.8349 5.9214 6.0211 6.1356 6.2628 6.3974 6.5356 6.6804 6.8352 7.0000 R AD IUS 5.7600 5.8349	STATION VE MERID 779.09 769.07 756.60 724.04 697.55 691.03 712.14 733.88 724.90 712.44 704.78 MACH NO .7163 .7042	12 FLOW TANGEN -164.51 -151.54 -151.54 -136.96 -117.89 -99.11 -82.29 -69.68 -74.66 -76.76 -78.64 -81.13 ANG WHIRL -11.92 -11.15	FIELD D TOTAL 796.27 783.86 768.89 733.58 704.58 695.92 715.54 737.66 728.95 716.76 709.44 LES SLOPE 0.00 01	ESCR IPTION TEMPERA TOTAL 566.010 565.838 565.636 565.178 564.357 563.408 564.595 564.902 564.902 564.902 566.869 568.050 RADIUS DF CURVATURE 0.000 -5592.043	TURES STATIC 513.321 514.780 516.509 520.462 523.107 523.166 520.748 519.379 520.748 524.183 526.234 SPECIFIC WEIGHT .0754 .0752	PRESS TOTAL 20.204 19.990 19.739 19.171 18.742 18.627 18.919 19.251 19.112 18.908 18.790	URES STATIC 14.352 14.357 14.362 14.366 14.369 14.371 14.372 14.373 14.375 14.377
R AD IUS 5.7600 5.8349 5.9214 6.0211 6.1356 6.2628 6.3974 6.5356 6.6804 6.8352 7.0000 R AD IUS 5.7600 5.8349 5.9214	STATION VE MERID 779.09 769.07 756.60 724.04 697.53 691.03 712.14 733.88 724.90 712.44 704.78 MACH NO .7163 .7042 .6896	12 FLOW TANGEN -164.51 -151.54 -151.54 -136.96 -117.89 -99.11 -82.29 -69.68 -74.66 -78.64 -81.13 ANG WHIRL -11.92 -11.15 -10.26	FIELD D TOTAL 796.27 783.86 768.89 733.58 704.58 695.92 715.54 737.66 728.95 716.76 709.44 LES SLOPE 0.00 01 02	ESCR IPTION TEMPERA TOTAL 566.010 565.838 565.636 565.178 564.357 563.408 564.595 564.902 564.902 564.902 566.869 568.050 RADIUS DF CURVATURE 0.000 -5592.043 -77626.543	TURES STATIC 513.321 514.780 516.509 520.462 523.107 523.166 520.748 519.379 520.748 524.183 526.234 SPECIFIC WEIGHT .0754 .0752 .0749	PRESS TOTAL 20.204 19.990 19.739 19.171 18.742 18.627 18.919 19.251 19.112 18.908 18.790	SURE S STATIC 14.352 14.362 14.366 14.369 14.371 14.372 14.373 14.374 14.375 14.377
R AD IUS 5.7600 5.8349 5.9214 6.0211 6.1356 6.2628 6.3974 6.5356 6.6804 6.8352 7.0000 R AD IUS 5.7600 5.8349 5.9214 6.0211	STATION VE MERID 779.09 769.07 756.60 724.04 697.53 691.03 712.14 733.88 724.90 712.44 704.78 MACH NO .7163 .7042 .6896 .6554	12 FLOW LOCITIES TANGEN -164.51 -151.54 -136.96 -117.89 -99.11 -82.29 -69.68 -74.66 -76.76 -78.64 -81.13 ANG WHIRL -11.92 -11.15 -10.26 -9.25	FIELD D TOTAL 796.27 783.86 768.89 733.58 704.58 695.92 715.54 737.66 728.95 716.76 709.44 LES SLOPE 0.00 01 02 03	ESCR IPTION TEMPERA TOTAL 566.010 565.838 565.636 565.178 564.357 563.408 563.294 564.595 564.902 566.869 568.050 RADIUS DF CURVATURE 0.000 -5592.043 -77626.543 2998.866	TURES STATIC 513.321 514.780 516.509 520.462 523.107 523.166 520.748 519.379 520.748 524.183 526.234 SPECIFIC WEIGHT .0754 .0752 .0749 .0744	PRESS TOTAL 20.204 19.990 19.739 19.171 18.742 18.627 18.919 19.251 19.112 18.908 18.790	SURE S STATIC 14.352 14.362 14.366 14.369 14.371 14.372 14.373 14.374 14.375 14.377
R AD IUS 5.7600 5.8349 5.9214 6.0211 6.1356 6.2628 6.3974 6.5356 6.6804 6.8352 7.0000 R AD IUS 5.7600 5.8349 5.9214 6.0211 6.1356	STATION VE MERID 779.09 769.07 756.60 724.04 697.53 691.03 712.14 733.88 724.90 712.44 704.78 MACH NO .7163 .7042 .6896 .6554 .6279	12 FLOW LOCITIES TANGEN -164.51 -151.54 -136.96 -117.89 -99.11 -82.29 -69.68 -74.66 -76.76 -78.64 -81.13 ANG WHIRL -11.92 -11.15 -10.26 -9.25 -8.09	FIELD D TOTAL 796.27 783.86 768.89 733.58 704.58 695.92 715.54 737.66 728.95 716.76 709.44 LES SLOPE 0.00 01 02 03 03	ESCR IPTION TEMPERA TOTAL 566.010 565.838 565.636 565.178 564.357 563.408 564.595 564.902 564.902 566.869 568.050 RADIUS DF CURVATURE 0.000 -5592.043 -77626.543 2998.866 1539.631	TURES STATIC 513.321 514.780 516.509 520.462 523.107 523.166 520.748 519.379 520.748 524.183 526.234 SPECIFIC WEIGHT .0754 .0752 .0749 .0744	PRESS TOTAL 20.204 19.990 19.739 19.171 18.742 18.627 18.919 19.251 19.112 18.908 18.790	SURE S STATIC 14.352 14.357 14.362 14.366 14.369 14.371 14.372 14.373 14.374 14.375 14.377
R AD IUS 5.7600 5.8349 5.9214 6.0211 6.1356 6.2628 6.3974 6.5356 6.6804 6.8352 7.0000 R AD IUS 5.7600 5.8349 5.9214 6.0211 6.1356 6.262#	STATION VE MERID 779.09 769.07 756.60 724.04 697.53 691.03 712.14 733.88 724.90 712.44 704.78 MACH NO .7163 .7042 .6896 .6554 .6279 .6202	12 FLOW LOCITIES TANGEN -164.51 -151.54 -136.96 -117.89 -99.11 -82.29 -69.68 -74.66 -76.76 -78.64 -81.13 ANG WHIRL -11.92 -11.15 -10.26 -9.25 -8.09 -6.79	FIELD D TOTAL 796.27 783.86 768.89 733.58 704.58 695.92 715.54 737.66 728.95 716.76 709.44 LES SLOPE 0.00 01 02 03 03 03	ESCRIPTION TEMPERA TOTAL 566.010 565.838 565.636 565.178 564.357 563.408 563.294 564.595 564.902 566.869 568.050 RADIUS OF CURVATURE 0.000 -5592.043 -77626.543 2998.866 1539.631 1263.199	TURES STATIC 513.321 514.780 516.509 520.462 523.107 523.166 520.748 519.379 520.748 524.183 526.234 SPECIFIC WEIGHT .0754 .0752 .0749 .0740 .0740	PRESS TOTAL 20.204 19.990 19.739 19.171 18.742 18.627 18.919 19.251 19.112 18.908 18.790	SURE S STATIC 14.352 14.357 14.362 14.366 14.369 14.371 14.372 14.373 14.374 14.375 14.377
R AD IUS 5.7600 5.8349 5.9214 6.0211 6.1356 6.2628 6.3974 6.5356 6.6804 6.8352 7.0000 R AD IUS 5.7600 5.8349 5.9214 6.0211 6.1356 6.2628 6.3974	STATION VE MERID 779.09 769.07 756.60 724.04 697.53 691.03 712.14 733.88 724.90 712.44 704.78 MACH NO .7163 .7042 .6896 .6554 .6279 .6202 .6391	12 FLOW LOCITIES TANGEN -164.51 -151.54 -136.96 -117.89 -99.11 -82.29 -69.68 -74.66 -76.76 -78.64 -81.13 ANG WHIRL -11.92 -11.15 -10.26 -9.25 -8.09 -6.79 -5.59	FIELD D TOTAL 796.27 783.86 768.89 733.58 704.58 695.92 715.54 737.66 728.95 716.76 709.44 LES SLOPE 0.00 01 02 03 03 03 03	ESCRIPTION TEMPERA TOTAL 566.010 565.838 565.636 565.178 564.357 563.408 564.595 564.902 564.902 566.869 568.050 RADIUS DF CURVATURE 0.000 -5592.043 -77626.543 2998.866 1539.631 1263.199 1194.344	TURES STATIC 513.321 514.780 516.509 520.462 523.107 523.166 520.748 519.379 520.748 524.183 526.234 SPECIFIC WEIGHT .0754 .0749 .0744 .0740 .0740	PRESS TOTAL 20.204 19.990 19.739 19.171 18.742 18.627 18.919 19.251 19.112 18.908 18.790	SURE S STATIC 14.352 14.357 14.362 14.369 14.371 14.372 14.373 14.374 14.375 14.377
R AD IUS 5.7600 5.8349 5.9214 6.0211 6.1356 6.2628 6.3974 6.5356 6.6804 6.8352 7.0000 R AD IUS 5.7600 5.8349 5.9214 6.0211 6.1356 6.2628 6.3974	STATION VE MERID 779.09 769.07 756.60 724.04 697.53 691.03 712.14 733.88 724.90 712.44 704.78 MACH NO .7163 .7042 .6896 .6554 .6279 .6202 .6391	12 FLOW LOCITIES TANGEN -164.51 -151.54 -136.96 -117.89 -99.11 -82.29 -69.68 -74.66 -76.76 -78.64 -81.13 ANGI WHIRL -11.92 -11.15 -10.26 -9.25 -8.09 -6.79 -5.59 -5.9	FIELD D TOTAL 796.27 783.86 768.89 733.58 704.58 695.92 715.54 737.66 728.95 716.76 709.44 LES SLOPE 0.00 01 02 03 03 02 03	ESCRIPTION TEMPERA TOTAL 566.010 565.838 565.636 565.178 564.357 563.408 563.294 564.595 564.902 566.869 568.050 RADIUS DF CURVATURE 0.000 -5592.043 -77626.543 2998.866 1539.631 1263.199 1194.344 1125.044	TURES STATIC 513.321 514.780 516.509 520.462 523.107 523.166 520.748 519.379 520.748 524.183 526.234 SPECIFIC WEIGHT .0754 .0752 .0749 .0740 .0740 .0740 .0744	PRESS TOTAL 20.204 19.990 19.739 19.171 18.742 18.627 18.919 19.251 19.112 18.908 18.790	SURE S STATIC 14.352 14.357 14.362 14.369 14.371 14.372 14.373 14.374 14.375 14.377
R AD IUS 5.7600 5.8349 5.9214 6.0211 6.1356 6.2628 6.3974 6.5356 6.6804 6.8352 7.0000 R AD IUS 5.7600 5.8349 5.9214 6.0211 6.1356 6.2628 6.3974 6.5356	STATION VE MERID 779.09 769.07 756.60 724.04 697.58 691.03 712.14 733.88 724.90 712.44 704.78 MACH NO .7163 .7042 .6896 .6554 .6279 .6202 .6391 .6597	12 FLOW LOCITIES TANGEN -164.51 -151.54 -136.96 -117.89 -99.11 -82.29 -69.68 -74.66 -76.76 -78.64 -81.13 ANGI WHIRL -11.92 -11.15 -10.26 -9.25 -8.09 -5.81 -5.81 -5.61	FIELD D TOTAL 796.27 783.86 768.89 733.58 704.58 695.92 715.54 737.66 728.95 716.76 709.44 LES SLOPE 0.00 01 02 03 03 03 02 02	ESCRIPTION TEMPERA TOTAL 566.010 565.838 565.636 565.178 564.357 563.408 564.595 564.902 564.595 564.902 566.869 568.050 RADIUS DF CURVATURE 0.000 -5592.043 -77626.543 2998.866 1539.631 1263.199 1194.344 1125.969 1194.344	TURES STATIC 513.321 514.780 516.509 520.462 523.107 523.166 520.748 519.379 520.748 524.183 526.234 SPECIFIC WEIGHT .0754 .0740 .0740 .0740 .0746 .0746	PRESS TOTAL 20.204 19.990 19.739 19.171 18.742 18.627 18.919 19.251 19.112 18.908 18.790	SURE S STATIC 14.352 14.357 14.362 14.369 14.371 14.372 14.373 14.374 14.375 14.377
R AD IUS 5.7600 5.8349 5.9214 6.0211 6.1356 6.2628 6.3974 6.5356 6.6804 6.8352 7.0000 R AD IUS 5.7600 5.8349 5.9214 6.0211 6.1356 6.2628 6.3974 6.5356 6.6804	STATION VE MERID 779.09 769.07 756.60 724.04 697.58 691.03 712.14 733.88 724.90 712.44 704.78 MACH NO .7163 .7042 .6896 .6554 .6279 .6202 .6391 .6597 .6511	12 FLOW LOCITIES TANGEN -164.51 -151.54 -136.96 -117.89 -99.11 -82.29 -69.68 -74.66 -76.76 -78.64 -81.13 ANG WHIRL -11.92 -11.15 -10.26 -9.25 -8.09 -5.59 -5.81 -6.04	FIELD D TOTAL 796.27 783.86 768.89 733.58 704.58 695.92 715.54 737.66 728.95 716.76 709.44 LES SLOPE 0.00 01 02 03 03 02 02 02 02	ESCRIPTION TEMPERA TOTAL 566.010 565.838 565.636 565.178 564.357 563.408 564.595 564.902 564.595 564.902 566.869 568.050 RADIUS DF CURVATURE 0.000 -5592.043 -77626.543 2998.866 1539.631 1263.199 1194.344 1125.969 1131.409	TURES STATIC 513.321 514.780 516.509 520.462 523.107 523.166 520.748 519.379 520.748 524.183 526.234 SPECIFIC WEIGHT .0754 .0749 .0744 .0740 .0744 .0746 .0744	PRESS TOTAL 20.204 19.990 19.739 19.171 18.742 18.627 18.919 19.251 19.112 18.908 18.790	SURE S STATIC 14.352 14.357 14.362 14.366 14.369 14.371 14.372 14.373 14.374 14.375 14.377
R AD IUS 5.7600 5.8349 5.9214 6.0211 6.1356 6.2628 6.3974 6.5356 6.6804 6.8352 7.0000 R AD IUS 5.7600 5.8349 5.9214 6.1356 6.2628 6.3974 6.5356 6.6804 6.5356	STATION VE MERID 779.09 769.07 756.60 724.04 697.58 691.03 712.14 733.88 724.90 712.44 704.78 MACH NO .7163 .7042 .6896 .6554 .6279 .6202 .6391 .6597 .6511 .6381	12 FLOW LOCITIES TANGEN -164.51 -151.54 -136.96 -117.89 -99.11 -82.29 -69.68 -74.66 -76.76 -78.64 -81.13 ANG WHIRL -11.92 -11.15 -10.26 -9.25 -8.09 -5.59 -5.81 -6.04 -6.30	FIELD D TOTAL 796.27 783.86 768.89 733.58 704.58 695.92 715.54 737.66 728.95 716.76 709.44 LES SLOPE 0.00 01 02 03 03 02 02 02 02 02	ESCR IPTION TEMPERA TOTAL 566.010 565.838 565.636 565.178 564.357 563.408 564.595 564.902 564.902 566.869 568.050 RADIUS DF CURVATURE 0.000 -5592.043 -77626.543 2998.866 1539.631 1263.199 1194.344 1125.969 1131.409 1624.541	TURES STATIC 513.321 514.780 516.509 520.462 523.107 523.166 520.748 519.379 520.748 524.183 526.234 SPECIFIC WEIGHT .0754 .0749 .0744 .0740 .0744 .0746 .0744 .0746 .0744	PRESS TOTAL 20.204 19.990 19.739 19.171 18.742 18.627 18.919 19.251 19.112 18.908 18.790	SURE S STATIC 14.352 14.357 14.362 14.369 14.371 14.372 14.373 14.374 14.375 14.377

STATION 13 FLOW FIELD DESCRIPTION

I

RADIUS	V	LOCITIES		TEMPERAT	FURES	PRESS	SURES
	MERID	TANGEN	TOTAL	τηται	STATIC	TOTAL	STATIC
5.7600	776.15	-164.51	793.39	566.010	512 701	20.204	14.380
5.9349	766 00	-151 54	740 02	546 838	515.701	10 000	14 304
5 0313	760.007	-134 07	760.73	20200	515+180	19.990	14 300
3.9213	753.50	-130.97	705.91		210.040	19.739	14.344
5.0210	120.84	-117.90	730.41	565.178	520.847	19.171	14.403
6.1355	694.20	-99.11	701.24	554.357	523.498	18.742	14.407
6.2627	687.58	-82.30	692.49	563.408	523.562	18.627	14.409
6.3973	708.76	-69.68	712.18	563.294	521.148	18.919	14.411
6.5356	730.55	-74.66	734.35	564.595	519.784	19.251	14.412
6.6803	721.45	-76.76	725.52	564.902	521.163	19.112	14.414
6.8352	708.84	-78.64	713.19	566.869	524.608	18.908	14.416
7.0000	701.11	-81.13	705.78	568.050	526.664	18.790	14.418
							_
RADIUS	MACH	ANG	LES	RADIUS OF	SPECIFIC	2	
. – • • • •	NO	WHIRI		CURVATURE	WEIGHT	-	
5.7600	. 7135	-11.97	0.00	0.000	.0755		
5.8348	7013	-11 19	- 01	106238.051	0753		
5 0 2 1 2	61013	-10 30	- 02	20701 400	0751		
4 0210	-0000	-10.30	02		0751		
6 1255	•0JZJ	-7.29	03		•0743		
0.1355	•0277	-0+13	03	00904 042	.0742		
0.2021	•0109	-0.03	02	3904.402	.0742		
0.3973	•0379	-2.01	01	3310.076	.0745		
0.7370	•0202	-7.84	01	3396.072	.0747		
6.6803	•64/8	-6.07	01	4139.618	.0745		
6.8352	.6347	-0.33	01	7046.453	•074L		
1.0000	.0209	-0.00	0.00	0.000	.0738		
	STATION	14 FLUW	FIELD L	DESCRIPTION			
KADIUS	V	LUCITES		IEMPERA	IURES	PRES:	UKES
	MERID	TANGEN	TUTAL	TUTAL	STATIC	TOTAL	STATIC
5.7600	773.04	-164.51	790.35			<b>30 30</b> 4	14.428
E 0 3/ D			170.37	200.010	514.102	20.204	
7.0340	762.92	-151.54	777.83	565.838	514.102	19.990	14.433
5.9212	762.92 750.33	-151.54	777.83	565.838 565.636	514.102 515.562 517.294	19.990 19.739	14.433 14.438
5.9212 6.0208	762.92 750.33 717.43	-151.54 -136.97 -117.90	777.83 762.73 727.05	565.010 565.838 565.636 565.178	514.102 515.562 517.294 521.255	19.990 19.739 19.171	14.433 14.438 14.443
5.9212 6.0208 6.1353	762.92 750.33 717.43 690.63	-151.54 -136.97 -117.90 -99.11	777.83 762.73 727.05 697.71	565.010 565.838 565.636 565.178 564.357	514.102 515.562 517.294 521.255 523.909	20.204 19.990 19.739 19.171 18.742	14.433 14.438 14.443 14.446
5.9212 6.0208 6.1353 6.2626	762.92 750.33 717.43 690.63 683.96	-151.54 -136.97 -117.90 -99.11 -82.30	777.83 762.73 727.05 697.71 688.89	565.010 565.838 565.636 565.178 564.357 563.40°	514.102 515.562 517.294 521.255 523.909 523.975	20.204 19.990 19.739 19.171 18.742 18.627	14.433 14.438 14.443 14.446 14.449
5.0348 5.9212 6.0208 6.1353 6.2626 6.3972	762.92 750.33 717.43 690.63 683.96 705.24	-151.54 -136.97 -117.90 -99.11 -82.30 -69.68	777.83 762.73 727.05 697.71 688.89 708.67	565.010 565.636 565.178 564.357 563.40° 563.294	514.102 515.562 517.294 521.255 523.909 523.975 521.562	19.990 19.739 19.171 18.742 18.627 18.919	14.433 14.438 14.443 14.446 14.449 14.451
5.0348 5.9212 6.0208 6.1353 6.2626 6.3972 6.5355	762.92 750.33 717.43 690.63 683.96 705.24 727.11	-151.54 -136.97 -117.90 -99.11 -82.30 -69.68 -74.66	777.83 762.73 727.05 697.71 688.89 708.67 730.93	565.010 565.838 565.636 565.178 564.357 563.40° 563.294 564.595	514.102 515.562 517.294 521.255 523.909 523.975 521.562 520.201	19.990 19.739 19.171 18.742 18.627 18.919 19.251	14.433 14.438 14.443 14.446 14.449 14.451 14.453
5.9212 6.0208 6.1353 6.2626 6.3972 6.5355 5.6802	762.92 750.33 717.43 690.63 683.96 705.24 727.11 717.93	-151.54 -136.97 -117.90 -99.11 -82.30 -69.68 -74.66 -76.76	777.83 762.73 727.05 697.71 688.89 708.67 730.93 722.02	565.010 565.838 565.636 565.178 564.357 563.40° 563.294 564.595 564.902	514.102 515.562 517.294 521.255 523.909 523.975 521.562 520.201 521.584	20.204 19.990 19.739 19.171 18.742 18.627 18.919 19.251 19.112	14.433 14.438 14.443 14.446 14.449 14.451 14.453 14.455
5.0348 5.9212 6.0208 6.1353 6.2626 6.3972 6.5355 5.6802 6.8351	762.92 750.33 717.43 690.63 683.96 705.24 727.11 717.93 705.21	-151.54 -136.97 -117.90 -99.11 -82.30 -69.68 -74.66 -76.76 -78.64	777.83 762.73 727.05 697.71 688.89 708.67 730.93 722.02 709.58	566.010 565.838 565.636 565.178 564.357 563.40° 563.294 564.595 564.902 566.869	514.102 515.562 517.294 521.255 523.909 523.975 521.562 520.201 521.584 525.034	20.204 19.990 19.739 19.171 18.742 18.627 18.919 19.251 19.112 18.908	14.433 14.438 14.443 14.446 14.449 14.451 14.453 14.455 14.455
5.0348 5.9212 6.0208 6.1353 6.2626 6.3972 6.5355 5.6802 6.8351 7.0000	762.92 750.33 717.43 690.63 683.96 705.24 727.11 717.93 705.21 697.41	-151.54 -136.97 -117.90 -99.11 -82.30 -69.68 -74.66 -76.76 -78.64 -81.13	777.83 762.73 727.05 697.71 688.89 708.67 730.93 722.02 709.58 702.12	565.010 565.838 565.636 565.178 564.357 563.40° 563.294 564.595 564.902 566.869 568.050	514.102 515.562 517.294 521.255 523.909 523.975 521.562 520.201 521.584 525.034 527.093	20.204 19.990 19.739 19.171 18.742 18.627 18.919 19.251 19.112 18.908 18.790	14.433 14.438 14.443 14.446 14.449 14.451 14.453 14.455 14.455 14.457 14.459
5.0348 5.9212 6.0208 6.1353 6.2626 6.3972 6.5355 5.6802 6.8351 7.0000	762.92 750.33 717.43 690.63 683.96 705.24 727.11 717.93 705.21 697.41	-151.54 -136.97 -117.90 -99.11 -82.30 -69.68 -74.66 -76.76 -78.64 -81.13	777.83 762.73 727.05 697.71 688.89 708.67 730.93 722.02 709.58 702.12	565.010 565.838 565.636 565.178 564.357 563.40° 563.294 564.595 564.902 566.869 568.050	514.102 515.562 517.294 521.255 523.909 523.975 521.562 520.201 521.584 525.034 527.093	20.204 19.990 19.739 19.171 18.742 18.627 18.919 19.251 19.112 18.908 18.790	14.433 14.438 14.443 14.446 14.449 14.451 14.453 14.455 14.455 14.457
5.0348 5.9212 6.0208 6.1353 6.2626 6.3972 6.5355 5.6802 6.8351 7.0000 RADIUS	762.92 750.33 717.43 690.63 683.96 705.24 727.11 717.93 705.21 697.41 MACH	-151.54 -136.97 -117.90 -99.11 -82.30 -69.68 -74.66 -76.76 -78.64 -81.13 ANG	777.83 762.73 727.05 697.71 688.89 708.67 730.93 722.02 709.58 702.12	565.010 565.838 565.636 565.178 564.357 563.294 564.595 564.902 566.869 568.050 RADIUS OF	514.102 515.562 517.294 521.255 523.909 523.975 521.562 520.201 521.584 525.034 527.093 SPECIFIC	20.204 19.990 19.739 19.171 18.742 18.627 18.919 19.251 19.112 18.908 18.790	14.433 14.438 14.443 14.446 14.449 14.451 14.453 14.455 14.455 14.457 14.457
5.0348 5.9212 6.0208 6.1353 6.2626 6.3972 6.5355 5.6802 6.8351 7.0000 RADIUS	762.92 750.33 717.43 690.63 683.96 705.24 727.11 717.93 705.21 697.41 MACH NO	-151.54 -136.97 -117.90 -99.11 -82.30 -69.68 -74.66 -76.76 -78.64 -81.13 ANGI WHIRL	777.83 762.73 727.05 697.71 688.89 708.67 730.93 722.02 709.58 702.12 LES SLOPE	565.010 565.838 565.636 565.178 564.357 563.294 564.595 564.902 566.869 568.050 RADIUS OF CURVATURE	514.102 515.562 517.294 521.255 523.909 523.975 521.562 520.201 521.584 525.034 527.093 SPECIFIC WEIGHT	20.204 19.990 19.739 19.171 18.742 18.627 18.919 19.251 19.112 18.908 18.790	14.433 14.438 14.443 14.446 14.449 14.451 14.453 14.455 14.455 14.457 14.459
5.0348 5.9212 6.0208 6.1353 6.2626 6.3972 6.5355 5.6802 6.8351 7.0000 RADIUS 5.7600	762.92 750.33 717.43 690.63 683.96 705.24 727.11 717.93 705.21 697.41 MACH NO .7105	-151.54 -151.54 -136.97 -117.90 -99.11 -82.30 -69.68 -74.66 -76.76 -78.64 -81.13 ANGI WHIRL -12.01	777.83 762.73 727.05 697.71 688.89 708.67 730.93 722.02 709.58 702.12 LES SLOPE 0.00	565.010 565.838 565.636 565.178 564.357 563.294 564.595 564.902 566.869 568.050 RADIUS OF CURVATURE 0.000	514.102 515.562 517.294 521.255 523.909 523.975 521.562 520.201 521.584 525.034 527.093 SPECIFIC WEIGHT .0756	20.204 19.990 19.739 19.171 18.742 18.627 18.919 19.251 19.112 18.908 18.790	14.433 14.438 14.443 14.446 14.449 14.451 14.453 14.455 14.455 14.457
5.0348 5.9212 6.0208 6.1353 6.2626 6.3972 6.5355 5.6802 6.8351 7.0000 RADIUS 5.7600 5.8348	762.92 750.33 717.43 690.63 683.96 705.24 727.11 717.93 705.21 697.41 MACH NO .7105 .6982	-151.54 -136.97 -117.90 -99.11 -82.30 -69.68 -74.66 -76.76 -78.64 -81.13 ANGI WHIRL -12.01 -11.23	777.83 762.73 727.05 697.71 688.89 708.67 730.93 722.02 709.58 702.12 LES SLOPE 0.00 01	565.010 565.838 565.636 565.178 564.357 563.294 564.595 564.595 564.902 566.869 568.050 RADIUS OF CURVATURE 0.000 0.000	514.102 515.562 517.294 521.255 523.909 523.975 521.562 520.201 521.584 525.034 527.093 SPECIFIC WEIGHT .0756 .0755	20.204 19.990 19.739 19.171 18.742 18.627 18.919 19.251 19.112 18.908 18.790	14.433 14.438 14.443 14.446 14.449 14.451 14.453 14.455 14.455 14.457
5.0348 5.9212 6.0208 6.1353 6.2626 6.3972 6.5355 5.6802 6.8351 7.0000 RADIUS 5.7600 5.8348 5.9212	762.92 750.33 717.43 690.63 683.96 705.24 727.11 717.93 705.21 697.41 MACH NO .7105 .6982 .6835	-151.54 -136.97 -117.90 -99.11 -82.30 -69.68 -74.66 -76.76 -78.64 -81.13 ANGI WHIRL -12.01 -11.23 -10.35	777.83 762.73 727.05 697.71 688.89 708.67 730.93 722.02 709.58 702.12 LES SLOPE 0.00 01 02	565.010 565.838 565.636 565.178 564.357 563.294 564.595 564.595 564.902 566.869 568.050 RADIUS OF CURVATURE 0.000 0.000 0.000	514.102 515.562 517.294 521.255 523.909 523.975 521.562 520.201 521.584 525.034 527.093 SPECIFIC WEIGHT .0756 .0755 .0752	20.204 19.990 19.739 19.171 18.742 18.627 18.919 19.251 19.112 18.908 18.790	14.433 14.43 14.443 14.446 14.449 14.451 14.453 14.455 14.455 14.457
5.0348 5.9212 6.0208 6.1353 6.2626 6.3972 6.5355 5.6802 6.8351 7.0000 RADIUS 5.7600 5.8348 5.9212 6.0208	762.92 750.33 717.43 690.63 683.96 705.24 727.11 717.93 705.21 697.41 MACH NO .7105 .6982 .6835 .6491	-151.54 -136.97 -117.90 -99.11 -82.30 -69.68 -74.66 -76.76 -78.64 -81.13 ANGI WHIRL -12.01 -11.23 -10.35 -9.33	777.83 762.73 727.05 697.71 688.89 708.67 730.93 722.02 709.58 702.12 LES SLOPE 0.00 01 02 03	565.010 565.838 565.636 565.178 564.357 563.294 564.595 564.595 564.902 566.869 568.050 RADIUS OF CURVATURE 0.000 0.000 0.000 0.000	514.102 515.562 517.294 521.255 523.909 523.975 521.562 520.201 521.584 525.034 527.093 SPECIFIC WEIGHT .0756 .0755 .0752 .0747	20.204 19.990 19.739 19.171 18.742 18.627 18.919 19.251 19.112 18.908 18.790	14.433 14.438 14.443 14.446 14.449 14.451 14.453 14.455 14.455 14.457
5.0348 5.9212 6.0208 6.1353 6.2626 6.3972 6.5355 5.6602 6.8351 7.0000 RADIUS 5.7600 5.8348 5.9212 6.0208 6.1353	762.92 750.33 717.43 690.63 683.96 705.24 727.11 717.93 705.21 697.41 MACH NO .7105 .6982 .6835 .6491 .6213	-151.54 -151.54 -136.97 -117.90 -99.11 -82.30 -69.68 -74.66 -76.76 -78.64 -81.13 ANGI WHIRL -12.01 -11.23 -10.35 -9.33 -8.17	777.83 762.73 727.05 697.71 688.89 708.67 730.93 722.02 709.58 702.12 LES SLOPE 0.00 01 02 03 02	565.010 565.838 565.636 565.178 564.357 563.40° 563.294 564.595 564.902 566.869 568.050 RADIUS DF CURVATURE 0.000 0.000 0.000 0.000 0.000	514.102 515.562 517.294 521.255 523.909 523.975 521.562 520.201 521.584 525.034 527.093 SPECIFIC WEIGHT .0756 .0755 .0752 .0747 .0743	20.204 19.990 19.739 19.171 18.742 18.627 18.919 19.251 19.112 18.908 18.790	14.433 14.438 14.443 14.446 14.449 14.451 14.453 14.455 14.457 14.459
5.0348 5.9212 6.0208 6.1353 6.2626 6.3972 6.5355 5.6602 6.8351 7.0000 RADIUS 5.7600 5.8348 5.9212 6.0208 6.1353 6.2626	762.92 750.33 717.43 690.63 683.96 705.24 727.11 717.93 705.21 697.41 MACH NO .7105 .6982 .6835 .6491 .6213 .6134	-151.54 -151.54 -136.97 -117.90 -99.11 -82.30 -69.68 -74.66 -76.76 -78.64 -81.13 ANGI WHIRL -12.01 -11.23 -10.35 -9.33 -8.17 -6.86	777.83 762.73 727.05 697.71 688.89 708.67 730.93 722.02 709.58 702.12 LES SLOPE 0.00 01 02 03 02 02	565.010 565.838 565.636 565.178 564.357 563.40° 563.294 564.595 564.902 566.869 568.050 RADIUS DF CURVATURE 0.000 0.000 0.000 0.000 0.000 0.000	514.102 515.562 517.294 521.255 523.909 523.975 521.562 520.201 521.584 525.034 527.093 SPECIFIC WEIGHT .0756 .0755 .0752 .0743 .0743 .0743	20.204 19.990 19.739 19.171 18.742 18.627 18.919 19.251 19.112 18.908 18.790	14.433 14.438 14.443 14.446 14.449 14.451 14.453 14.455 14.455 14.457
5.0348 5.9212 6.0208 6.1353 6.2626 6.3972 6.5355 5.6802 6.8351 7.0000 RADIUS 5.7600 5.8348 5.9212 6.0208 6.1353 6.2626 5.3972	762.92 750.33 717.43 690.63 683.96 705.24 727.11 717.93 705.21 697.41 MACH NO .7105 .6982 .6835 .6491 .6213 .6134	-151.54 -151.54 -136.97 -117.90 -99.11 -82.30 -69.68 -74.66 -76.76 -78.64 -81.13 ANGI WHIRL -12.01 -11.23 -10.35 -9.33 -8.17 -6.86 -5.64	777.83 762.73 727.05 697.71 688.89 708.67 730.93 722.02 709.58 702.12 LES SLOPE 0.00 01 02 03 02 02	565.010 565.838 565.636 565.178 564.357 563.40° 563.294 564.595 564.902 566.869 568.050 RADIUS DF CURVATURE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	514.102 515.562 517.294 521.255 523.909 523.975 521.562 520.201 521.584 525.034 527.093 SPECIFIC WEIGHT .0756 .0755 .0752 .0747 .0743 .0743 .0747	20.204 19.990 19.739 19.171 18.742 18.627 18.919 19.251 19.112 18.908 18.790	14.433 14.438 14.443 14.446 14.449 14.451 14.453 14.455 14.455 14.457 14.459
5.0348 5.9212 6.0208 6.1353 6.2626 6.3972 6.5355 5.6802 6.8351 7.0000 RADIUS 5.7600 5.8348 5.9212 6.0208 6.1353 6.2626 6.3972 5.5355	762.92 750.33 717.43 690.63 683.96 705.24 727.11 717.93 705.21 697.41 MACH NO .7105 .6982 .6835 .6491 .6213 .6134 .6325 .6532	-151.54 -151.54 -136.97 -117.90 -99.11 -82.30 -69.68 -74.66 -76.76 -78.64 -81.13 ANGI WHIRL -12.01 -11.23 -10.35 -9.33 -8.17 -6.86 -5.64 -5.86	777.83 762.73 727.05 697.71 688.89 708.67 730.93 722.02 709.58 702.12 LES SLOPE 0.00 01 02 03 02 01 01	565.010 565.838 565.636 565.178 564.357 563.40° 563.294 564.595 564.902 566.869 568.050 RADIUS OF CURVATURE 0.000 0.000 0.000 0.000 0.000 0.000 0.000	514.102 515.562 517.294 521.255 523.909 523.975 521.562 520.201 521.584 525.034 527.093 SPECIFIC WEIGHT .0756 .0755 .0752 .0747 .0743 .0743 .0749	20.204 19.990 19.739 19.171 18.742 18.627 18.919 19.251 19.112 18.908 18.790	14.433 14.438 14.443 14.446 14.449 14.451 14.453 14.455 14.455 14.457 14.459
5.0348 5.9212 6.0208 6.1353 6.2626 6.3972 6.5355 5.6802 6.8351 7.0000 RADIUS 5.7600 5.8348 5.9212 6.0208 6.1353 6.2626 5.3972 5.5355 6.6802	762.92 750.33 717.43 690.63 683.96 705.24 727.11 717.93 705.21 697.41 MACH NO .7105 .6982 .6835 .6491 .6213 .6134 .6325 .6532	-151.54 -136.97 -117.90 -99.11 -82.30 -69.68 -74.66 -76.76 -78.64 -81.13 ANG WHIRL -12.01 -11.23 -10.35 -9.33 -8.17 -6.86 -5.64 -5.86 -6.10	777.83 762.73 727.05 697.71 688.89 708.67 730.93 722.02 709.58 702.12 LES SLOPE 0.00 01 02 03 02 01 01 01	565.010 565.838 565.636 565.178 564.357 563.40° 563.294 564.595 564.902 566.869 568.050 RADIUS OF CURVATURE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	514.102 515.562 517.294 521.255 523.909 523.975 521.562 520.201 521.584 525.034 527.093 SPECIFIC WEIGHT .0756 .0755 .0752 .0747 .0743 .0743 .0747 .0749 .0747	20.204 19.990 19.739 19.171 18.742 18.627 18.919 19.251 19.112 18.908 18.790	14.433 14.438 14.443 14.446 14.449 14.451 14.453 14.455 14.455 14.457 14.459
5.0348 5.9212 6.0208 6.1353 6.2626 6.3972 6.5355 5.6802 6.8351 7.0000 RADIUS 5.7600 5.8348 5.9212 6.0208 6.1353 6.2626 5.3972 5.5355 6.6802 6.8351	762.92 750.33 717.43 690.63 683.96 705.24 727.11 717.93 705.21 697.41 MACH NO .7105 .6982 .6835 .6491 .6213 .6134 .6325 .6532 .6444	-151.54 -136.97 -117.90 -99.11 -82.30 -69.68 -74.66 -76.76 -78.64 -81.13 ANG WHIRL -12.01 -11.23 -10.35 -9.33 -8.17 -6.86 -5.64 -5.64 -5.86 -6.10 -6.36	777.83 762.73 727.05 697.71 688.89 708.67 730.93 722.02 709.58 702.12 LES SLOPE 0.00 01 02 03 02 01 01 01	565.010 565.838 565.636 565.178 564.357 563.40° 563.294 564.595 564.902 566.869 568.050 RADIUS OF CURVATURE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	514.102 515.562 517.294 521.255 523.909 523.975 521.562 520.201 521.584 525.034 527.093 SPECIFIC WEIGHT .0756 .0755 .0752 .0747 .0743 .0743 .0747 .0749 .0747	20.204 19.990 19.739 19.171 18.742 18.627 18.919 19.251 19.112 18.908 18.790	14.433 14.438 14.443 14.446 14.449 14.451 14.453 14.455 14.455 14.457 14.459
5.0348 5.9212 6.0208 6.1353 6.2626 6.3972 6.5355 5.6802 6.8351 7.0000 RADIUS 5.7600 5.8348 5.9212 6.0208 6.1353 6.2626 6.3972 5.5355 6.6802 6.8351 7.0000	762.92 750.33 717.43 690.63 683.96 705.24 727.11 717.93 705.21 697.41 MACH NO .7105 .6982 .6835 .6491 .6213 .6134 .6325 .6532 .6444 .6312 .6234	-151.54 -151.54 -136.97 -117.90 -99.11 -82.30 -69.68 -74.66 -76.76 -78.64 -81.13 ANGI WHIRL -12.01 -11.23 -10.35 -9.33 -8.17 -6.86 -5.64 -5.64 -5.86 -6.10 -6.36 -6.64	777.83 762.73 727.05 697.71 688.89 708.67 730.93 722.02 709.58 702.12 LES SLOPE 0.00 01 02 03 02 01 01 01 01 01 0.00	565.010 565.838 565.636 565.178 564.357 563.294 564.595 564.902 566.869 568.050 RADIUS OF CURVATURE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	514.102 515.562 517.294 521.255 523.909 523.975 521.562 520.201 521.584 525.034 527.093 SPECIFIC WEIGHT .0756 .0755 .0752 .0747 .0743 .0743 .0747 .0749 .0747 .0742 .0739	20.204 19.990 19.739 19.171 18.742 18.627 18.919 19.251 19.112 18.908 18.790	14.433 14.438 14.443 14.446 14.449 14.451 14.453 14.455 14.455 14.457 14.459

	ROTUR	PERFORMA	NCE					
		011TI 6 T	 IN1ET	INCLO		1055	2-0 0	3-0 0
	PADTHS	PADTUS	M. NO	-ENCL				
-104	K AULUS	5 5977	6562	-ENCE	-1104	- 0251	- 0661	- 0551
2	4 7133	5 6772	69.46	7.100	0.033	- 0160	- 0051	0551
2	* • / 1 3 3	5. 7707	• 50 40	3.970 2.9410	0.042	0109	0052	•0030
3	4.4302	5 9043	• 0 1 4 1	3. ( 3)	0.940	0008	•0497	•0300
4 E	7.1699	2.8942	• 0447	3.6/1	6.127	•0073	•1004	.1076
7	5.4121	6.0215	• 6 / 20	4.069	5.609	.0083	•1361	•1399
5	5.6606	6.1597	.7070	4.203	5.273	.0001	• 1594	.1621
/	7.9156	6.3081	• 7 38 9	4.493	4.774	.0046	•1832	.1851
8	6.1769	6.4658	• / /11	4.650	3.758	•0153	.2073	.2085
9	0.4443	6.6322	.8034	4.877	3.955	•0231	•2234	.2241
10	6.7183	6.8099	.8356	5.186	4.169	.0771	• 2598	.2601
11	7.0000	7.0000	• 8676	5.072	4.137	.1030	•2781	.2781
ΠΓΑΤ		REL V	DELTA	SECTIO	N-ANGLES	LEAN-		
-100	PONO	PATIO	H/11442	INIET	OUTLET	INLET		
1	. 0573	1,1420	- 7649	-48.75	-2.88	-5-07	45.39	
۰ ب	- 1229	1.0807	. 7383	-40.01	-2.00	-4-52	42.55	
2	.1769	1.0250	. 7094	-51.05	-9.69	-7.16	38.29	
6	2185	. 9730	.6753	-52.06	-13 21	- 19	32.21	
5	-2107	9750	.6356	-52.00		2 80	JE 4 JE 25 JE	
,	.2637	. 9000	- 5948	-52.00	-20.62	4.14	19.24	
7	•2037	• 7077 8854	• 5 7 4 9	-54 19	-20.02	4.14	15 05	
9	-2740	+00J7 8632	• JOJI 5541	-55 04	-25.00	6.00	13 20	
9	• 27 40	• 7032 8470	6302	-55 06	-20.03	0.24	12 72	
10	2618	8132	- 5243	- 55. 90	-20.75	10.94	11 02	
11	•2010	.7050	.5084	-58 38	-31.07	6 20	0.26	
11	• 2 3 0 4	• ( 7 ) 7	• 3004	- 30 - 30	-33404	0.27	7.20	
	STATO	R PERFORM	ANCE					
LOCAT	STATO	V PERFORM	ANCE	INCIO	DEVIA	LOSS	2-0 0	3-0 D
LOCAT -ION	STATO INLET RADIUS	OUTLET RADIUS	ANCE INLET M. NO	INCIO ENCE	DEVIA -TION	LOSS COEFF	2-D D Factor	3-0 D Factor
LOCAT -ION 1	STATO INLET RADIUS 5.6511	OUTLET RADIUS 5.7580	ANCE INLET M. NO .8129	INCIO ENCE 12-298	DEVIA -TIUN -6.239	LOSS COEFF 0278	2-D D FACTOR -2182	3-0 0 FACTOR -2176
LOCAT -ION 1 2	STATO INLET RADIUS 5.6511 5.7488	2 PERFORM OUTLET RADIUS 5.7580 5.8341	ANCE INLET M. NO .8129 .7968	INCI0 -ENCE -12.298 -10.832	DEVIA -TIUN -6.239 -3.772	LOSS COEFF 0278 0047	2-D D FACTOR .2182 .2180	3-0 D FACTOR .2176 .2175
LOCAT -ION 1 2 3	STATO INLET RADIUS 5.6511 5.7488 5.8547	QUTLET RADIUS 5.7580 5.8341 5.9216	ANCE INLET M. NO .8129 .7968 .7801	INCIO -ENCE -12.298 -10.832 -10.564	DEVIA -TIUN -6.239 -3.772 645	LOSS COEFF 0278 0047	2-D D FACTOR .2182 .2180 .2187	3-0 D FACTOR .2176 .2175 .2183
LOCAT -ION 1 2 3 4	STATO INLET RADIUS 5.6511 5.7488 5.8547 5.9688	CUTLET RADIUS 5.7580 5.8341 5.9216 6.0219	ANCE INLET M. NO .8129 .7968 .7801 .7595	INCID -ENCE -12.298 -10.832 -10.564	DEVIA -TIUN -6.239 -3.772 645 2.514	LOSS COEFF 0278 0047 .0244 .0950	2-D D FACTOR .2182 .2180 .2187 .2337	3-0 0 FACTOR .2176 .2175 .2183 .2333
LOCAT -ION 1 2 3 4 5	STATO INLET RADIUS 5.6511 5.7488 5.8547 5.9688 6.0913	<pre>     PERFORM     OUTLET     RADIUS     5.7580     5.8341     5.9216     6.0219     6.1365 </pre>	ANCE INLET M. NO .8129 .7968 .7801 .7595 .7403	INCID -ENCE -12.298 -10.832 -10.564 -10.645 -10.813	DEVIA -TIUN -6.239 -3.772 645 2.514 5.668	LOSS COEFF 0278 0047 .0244 .0950 .1521	2-D D FACTOR .2182 .2180 .2187 .2337 .2396	3-0 0 FACTOR •2176 •2175 •2183 •2333 •2333
LOCAT -ION 1 2 3 4 5 6	STATO INLET RADIUS 5.6511 5.7488 5.8547 5.9688 6.0913 6.2215	<pre>     PERFORM     OUTLET     RADIUS     5.7580     5.8341     5.9216     6.0219     6.1365     6.2633 </pre>	ANCE INLET M. NO .8129 .7968 .7801 .7595 .7403 .7234	INCIU -ENCE -12.298 -10.832 -10.564 -10.645 -10.813 -11.595	DEVIA -TIUN -6.239 -3.772 645 2.514 5.668 9.090	LOSS COEFF 0278 0047 .0244 .0950 .1521 .1645	2-D D FACTOR .2182 .2180 .2187 .2337 .2396 .2212	3-0 0 FACTOR •2176 •2175 •2183 •2333 •2393 •2209
LOCAT -ION 1 2 3 4 5 6 7	STATO INLET RADIUS 5.6511 5.7488 5.8547 5.9688 6.0913 6.2215 6.3590	QUTLET RADIUS 5.7580 5.8341 5.9216 6.0219 6.1365 6.2633 6.3976	ANCE INLET M. NO .8129 .7968 .7801 .7595 .7403 .7234 .7089	INCI0 -ENCE -12.298 -10.832 -10.564 -10.645 -10.813 -11.595 -12.202	DEVIA -TIUN -6.239 -3.772 645 2.514 5.668 9.090	LOSS COEFF 0278 0047 .0244 .0950 .1521 .1645 .1096	2-D D FACTOR .2182 .2180 .2187 .2337 .2396 .2212 .1727	3-0 0 FACTOR •2176 •2175 •2183 •2333 •2393 •2209 •1725
LOCAT -ION 1 2 3 4 5 6 7 8	STATOR INLET RADIUS 5.6511 5.7488 5.8547 5.9688 6.0913 6.2215 6.3590 6.5051	<pre>     PERFORM     OUTLET     RADIUS     5.7580     5.8341     5.9216     6.0219     6.1365     6.2633     6.3976     6.5361 </pre>	ANCE INLET M. NO .8129 .7968 .7801 .7595 .7403 .7234 .7089 .7025	INCID -ENCE -12.298 -10.832 -10.564 -10.645 -10.813 -11.595 -12.202 -12.533	DEVIA -TIUN -6.239 -3.772 645 2.514 5.668 9.090 12.155 13.816	LOSS COEFF 0278 0047 .0244 .0950 .1521 .1645 .1096	2-D D FACTOR .2182 .2180 .2187 .2337 .2396 .2212 .1727 .1380	3-0 0 FACTOR .2176 .2175 .2183 .2333 .2393 .2209 .1725 .1379
LOCAT -ION 1 2 3 4 5 6 7 8 9	STATOR INLET RADIUS 5.6511 5.7488 5.8547 5.9688 6.0913 6.2215 6.3590 6.5051 6.6596	<pre>     PERFORM     OUTLET     RADIUS     5.7580     5.8341     5.9216     6.0219     6.1365     6.2633     6.3976     6.5361     6.6810 </pre>	ANCE INLET M. NO .8129 .7968 .7801 .7595 .7403 .7234 .7089 .7025 .6909	INCID -ENCE -12.298 -10.832 -10.564 -10.645 -10.813 -11.595 -12.202 -12.533 -13.404	DEVIA -TIUN -6.239 -3.772 645 2.514 5.668 9.090 12.155 13.816 15.806	LOSS COEFF 0278 0047 .0244 .0950 .1521 .1645 .1096 .0659	2-D D FACTOR .2182 .2180 .2187 .2337 .2396 .2212 .1727 .1380 .1295	3-0 0 FACTOR .2176 .2175 .2183 .2333 .2393 .2209 .1725 .1379 .1294
LOCAT -ION 1 2 3 4 5 6 7 8 9	STATOR INLET RADIUS 5.6511 5.7488 5.8547 5.9688 6.0913 6.2215 6.3590 6.5051 6.6596 6.8243	<pre>     PERFORM     OUTLET     RADIUS     5.7580     5.8341     5.9216     6.0219     6.1365     6.2633     6.3976     6.5361     6.6810     6.8358 </pre>	ANCE INLET M. NO .8129 .7968 .7801 .7595 .7403 .7234 .7089 .7025 .6909 .6724	INCID -ENCE -12.298 -10.832 -10.564 -10.645 -10.813 -11.595 -12.202 -12.533 -13.404 -14.141	DEVIA -TIUN -6.239 -3.772 645 2.514 5.668 9.090 12.155 13.816 15.806 18.370	LOSS COEFF 0278 0047 .0244 .0950 .1521 .1645 .1096 .0659 .0887 .1004	2-D D FACTOR .2182 .2180 .2187 .2337 .2396 .2212 .1727 .1380 .1295 .1205	3-0 0 FACTOR .2176 .2175 .2183 .2333 .2393 .2209 .1725 .1379 .1294 .1205
LOCAT -ION 1 2 3 4 5 6 7 8 9 10 11	STATOR INLET RADIUS 5.6511 5.7488 5.8547 5.9688 6.0913 6.2215 6.3590 6.5051 6.6596 6.8243 7.0000	<pre>     PERFORM     OUTLET     RADIUS     5.7580     5.8341     5.9216     6.0219     6.1365     6.2633     6.3976     6.5361     6.6810     6.8358     7.0000 </pre>	ANCE INLET M. NO .8129 .7968 .7801 .7595 .7403 .7234 .7089 .7025 .6909 .6724 .6592	INCID -ENCE -12.298 -10.832 -10.564 -10.645 -10.813 -11.595 -12.202 -12.533 -13.404 -14.141 -16.738	DEVIA -TIUN -6.239 -3.772 645 2.514 5.668 9.090 12.155 13.816 15.806 18.370 21.716	LOSS COEFF 0278 0047 .0244 .0950 .1521 .1645 .1096 .0659 .0887 .1004 .1074	2-D 0 FACTOR 2182 2180 2187 2337 2396 2212 1727 1380 1295 1205 1071	3-0 D FACTOR .2176 .2175 .2183 .2333 .2393 .2209 .1725 .1379 .1294 .1205 .1071
LOCAT -ION 1 2 3 4 5 6 7 8 9 10 11	STATON INLET RADIUS 5.6511 5.7488 5.8547 5.9688 6.0913 6.2215 6.3590 6.5051 6.6596 6.8243 7.0000	<pre>     PERFORM     OUTLET     RADIUS     5.7580     5.8341     5.9216     6.0219     6.1365     6.2633     6.3976     6.5361     6.6810     6.8358     7.0000 </pre>	ANCE INLET M. NO .8129 .7968 .7801 .7595 .7403 .7234 .7089 .7025 .6909 .6724 .6592	INCID -ENCE -12.298 -10.832 -10.564 -10.645 -10.813 -11.595 -12.202 -12.533 -13.404 -14.141 -16.738	DEVIA -TIUN -6.239 -3.772 645 2.514 5.668 9.090 12.155 13.816 15.806 16.370 21.716	LOSS COEFF 0278 0047 .0244 .0950 .1521 .1645 .1096 .0659 .0887 .1004 .1074	2-D D FACTOR .2182 .2180 .2187 .2337 .2396 .2212 .1727 .1380 .1295 .1205 .1071	3-0 D FACTOR .2176 .2175 .2183 .2333 .2393 .2209 .1725 .1379 .1294 .1205 .1071
LOCAT -ION 1 2 3 4 5 6 7 8 9 10 11 11	STATON INLET RADIUS 5.6511 5.7488 5.8547 5.9688 6.0913 6.2215 6.3590 6.5051 6.6596 6.8243 7.0000 DELTA	<pre>R PERFORM OUTLET RADIUS 5.7580 5.8341 5.9216 6.0219 6.1365 6.2633 6.3976 6.5361 6.6810 6.8358 7.0000 REL V</pre>	ANCE INLET M. NO .8129 .7968 .7801 .7595 .7403 .7234 .7089 .7025 .6909 .6724 .6592 DELTA	INCID -ENCE -12.298 -10.832 -10.564 -10.645 -10.813 -11.592 -12.202 -12.533 -13.404 -14.141 -16.738 SECTID	DEVIA -TIUN -6.239 -3.772 645 2.514 5.668 9.090 12.155 13.816 15.806 18.370 21.716 N-ANGLES	LOSS CDEFF 0278 0047 .0244 .0950 .1521 .1645 .1096 .0659 .0887 .1004 .1074	2-D D FACTOR .2182 .2180 .2187 .2337 .2396 .2212 .1727 .1380 .1295 .1205 .1071 ANGLES	3-0 0 FACTOR 2176 2175 2183 2333 2393 2209 1725 1379 1294 1205 1071
LOCAT -ION 1 2 3 4 5 6 7 8 9 10 11 11 LDCAT -ION	STATON INLET RADIUS 5.6511 5.7488 5.8547 5.9688 6.0913 6.2215 6.3590 6.5051 6.6596 6.8243 7.0000 DELTA PON Q	<pre>     PERFORM     OUTLET     RADIUS     5.7580     5.8341     5.9216     6.0219     6.1365     6.2633     6.3976     6.5361     6.6810     6.8358     7.0000     REL V     RATIO </pre>	ANCE INLET M. NO .8129 .7968 .7801 .7595 .7403 .7234 .7089 .7025 .6909 .6724 .6592 DELTA H/U**2	INCID -ENCE -12.298 -10.832 -10.564 -10.645 -10.813 -11.595 -12.202 -12.533 -13.404 -14.141 -16.738 SECTID INLET	DEVIA -TIUN -6.239 -3.772 645 2.514 5.668 9.090 12.155 13.816 15.806 18.370 21.716 N-ANGLES OUTLET	LOSS CDEFF 0278 0047 .0244 .0950 .1521 .1645 .1096 .0659 .0887 .1004 .1074 LEAN-/ INLET	2-D D FACTOR .2182 .2180 .2187 .2337 .2396 .2212 .1727 .1380 .1295 .1205 .1071 ANGLES OUTLET	3-0 0 FACTOR 2176 2175 2183 2333 2333 2393 2209 1725 1379 1294 1205 1071
LOCAT -ION 1 2 3 4 5 6 7 8 9 10 11 11 LDCAT -ION 1	STATON INLET RADIUS 5.6511 5.7488 5.8547 5.9688 6.0913 6.2215 6.3590 6.5051 6.6596 6.8243 7.0000 DELTA P ON Q .1646	<pre>     PERFORM     OUTLET     RADIUS     5.7580     5.8341     5.9216     6.0219     6.1365     6.2633     6.3976     6.5361     6.6810     6.8358     7.0000     REL V     RATIU     .9132 </pre>	ANCE INLET M. NO .8129 .7968 .7801 .7595 .7403 .7234 .7089 .7025 .6909 .6724 .6592 DELTA H/U++2 0.0000	INCID -ENCE -12.298 -10.832 -10.564 -10.645 -10.813 -11.595 -12.202 -12.533 -13.404 -14.141 -16.738 SECTID INLET 43.52	DEVIA -TIUN -6.239 -3.772 645 2.514 5.668 9.090 12.155 13.816 15.806 18.370 21.716 N-ANGLES DUTLET -5.42	LOSS COEFF 0278 0047 .0244 .0950 .1521 .1645 .1096 .0659 .0887 .1004 .1074 LEAN-4 INLET -39.09	2-D D FACTOR .2182 .2180 .2187 .2337 .2396 .2212 .1727 .1380 .1295 .1205 .1071 ANGLES OUTLET 30.71	3-0 0 FACTOR 2176 2175 2183 2333 2333 2393 2209 1725 1379 1294 1205 1071
LOCAT -ION 1 2 3 4 5 6 7 8 9 10 11 11 LOCAT -ION 1 2	STATON INLET RADIUS 5.6511 5.7488 5.8547 5.9688 6.0913 6.2215 6.3590 6.5051 6.6596 6.8243 7.0000 DELTA P ON Q .1646 .1366	<pre>     PERFORM     OUTLET     RADIUS     5.7580     5.8341     5.9216     6.0219     6.1365     6.2633     6.3976     6.5361     6.6810     6.8358     7.0000     REL V     RATID     .9132     .9208 </pre>	ANCE INLET M. NO .8129 .7968 .7801 .7595 .7403 .7234 .7089 .7025 .6909 .6724 .6592 DELTA H/U**2 0.0000 0.0000	INCID -ENCE -12.298 -10.832 -10.564 -10.645 -10.813 -11.595 -12.202 -12.533 -13.404 -14.141 -16.738 SECTID INLET 43.52 41.44	DEVIA -TIUN -6.239 -3.772 645 2.514 5.668 9.090 12.155 13.816 15.806 18.370 21.716 N-ANGLES DUTLET -5.42 -7.06	LOSS COEFF 0278 0047 .0244 .0950 .1521 .1645 .1096 .0659 .0887 .1004 .1074 LEAN-/ INLET -39.09 -31.93	2-D D FACTOR .2182 .2180 .2187 .2337 .2396 .2212 .1727 .1380 .1295 .1205 .1071 ANGLES OUTLET 30.71 27.41	3-0 0 FACTOR 2176 2175 2183 2333 2333 2209 1725 1379 1294 1205 1071
LOCAT -ION 1 2 3 4 5 6 7 8 9 10 11 10 11 LOCAT -ION 1 2 3	STATOR INLET RADIUS 5.6511 5.7488 5.8547 5.9688 6.0913 6.2215 6.3590 6.5051 6.6596 6.8243 7.0000 DELTA P ON Q .1646 .1366 .1077	<pre>     PERFORM     OUTLET     RADIUS     5.7580     5.8341     5.9216     6.0219     6.1365     6.2633     6.3976     6.5361     6.6810     6.8358     7.0000     REL V     RATID     .9132     .9208     .9262 </pre>	ANCE INLET M. NO .8129 .7968 .7801 .7595 .7403 .7234 .7089 .7025 .6909 .6724 .6592 DELTA H/U++2 0.0000 0.0000 0.0000	INCID -ENCE -12.298 -10.832 -10.564 -10.645 -10.813 -11.595 -12.202 -12.533 -13.404 -14.141 -16.738 SECTID INLET 43.52 41.44 40.50	DEVIA -TIUN -6.239 -3.772 645 2.514 5.668 9.090 12.155 13.816 15.806 18.370 21.716 N-ANGLES DUTLET -5.42 -7.06 -9.26	LOSS COEFF 0278 0047 .0244 .0950 .1521 .1645 .1096 .0659 .0887 .1004 .1074 LEAN-/ INLET -39.09 -31.93 -24.41	2-D 0 FACTOR .2182 .2180 .2187 .2337 .2396 .2212 .1727 .1380 .1295 .1205 .1071 ANGLES OUTLET 30.71 27.41 22.70	3-0 D FACTOR 2176 2175 2183 2333 2393 2209 1725 1379 1294 1205 1071
LOCAT -ION 1 2 3 4 5 6 7 8 9 10 11 11 LOCAT -ION 1 2 3 4	STATOR INLET RADIUS 5.6511 5.7488 5.8547 5.9688 6.0913 6.2215 6.3590 6.5051 6.6596 6.8243 7.0000 DELTA P ON Q .1646 .1366 .1077 .0798	<pre>     PERFORM     OUTLET     RADIUS     5.7580     5.8341     5.9216     6.0219     6.1365     6.2633     6.3976     6.5361     6.6810     6.8358     7.0000     REL V     RATID     .9132     .9208     .9262     .9122 </pre>	ANCE INLET M. NO .8129 .7968 .7801 .7595 .7403 .7234 .7089 .7025 .6909 .6724 .6592 DELTA H/U++2 0.0000 0.0000 0.0000 0.0000	INCID -ENCE -12.298 -10.832 -10.564 -10.645 -10.813 -11.595 -12.202 -12.533 -13.404 -14.141 -16.738 SECTID INLET 43.52 41.44 40.50 39.84	DEVIA -TIUN -6.239 -3.772 645 2.514 5.668 9.090 12.155 13.816 15.806 18.370 21.716 N-ANGLES OUTLET -5.42 -7.06 -9.26 -11.37	LOSS COEFF 0278 0047 .0244 .0950 .1521 .1645 .1096 .0659 .0887 .1004 .1074 LEAN-/ INLET -39.09 -31.93 -24.41 -16.96	2-D 0 FACTOR .2182 .2180 .2187 .2337 .2396 .2212 .1727 .1380 .1295 .1205 .1071 ANGLES OUTLET 30.71 27.41 22.70 17.13	3-0 0 FACTOR 2176 2175 2183 2333 2393 2209 1725 1379 1294 1205 1071
LOCAT -ION 1 2 3 4 5 6 7 8 9 10 11 LDCAT -ION 1 2 3 4 5	STATOR INLET RADIUS 5.6511 5.7488 5.8547 5.9688 6.0913 6.2215 6.3590 6.5051 6.6596 6.8243 7.0000 DELTA P ON Q .1646 .1366 .1077 .0798 .0531	<pre>     PERFORM     OUTLET     RADIUS     5.7580     5.8341     5.9216     6.0219     6.1365     6.2633     6.3976     6.5361     6.6810     6.8358     7.0000     REL V     RATI0     .9132     .9208     .9262     .9122     .9023 </pre>	ANCE INLET M. NO .8129 .7968 .7801 .7595 .7403 .7234 .7089 .7025 .6909 .6724 .6592 DELTA H/U++2 0.0000 0.0000 0.0000 0.0000 0.0000	INCID -ENCE -12.298 -10.832 -10.5645 -10.645 -10.813 -11.595 -12.202 -12.533 -13.404 -14.141 -16.738 SECTID INLET 43.52 41.44 40.50 39.84 38.86	DEVIA -TIUN -6.239 -3.772 645 2.514 5.668 9.090 12.155 13.816 15.806 18.370 21.716 N-ANGLES OUTLET -5.42 -7.06 -9.26 -11.37 -13.37	LOSS COEFF 0278 0047 .0244 .0950 .1521 .1645 .1096 .0659 .0887 .1004 .1074 LEAN-/ INLET -39.09 -31.93 -24.41 -16.96 -10.12	2-D 0 FACTOR .2182 .2180 .2187 .2337 .2396 .2212 .1727 .1380 .1295 .1205 .1071 ANGLES OUTLET 30.71 27.41 22.70 17.13 12.30	3-0 0 FACTOR 2176 2175 2183 2333 2393 2209 1725 1379 1294 1205 1071
LOCAT -ION 1 2 3 4 5 6 7 8 9 10 11 LDCAT -ION 1 2 3 4 5 6	STATOR INLET RADIUS 5.6511 5.7488 5.8547 5.9688 6.0913 6.2215 6.3590 6.5051 6.6596 6.8243 7.0000 DELTA P ON Q .1646 .1366 .1077 .0798 .0531 .0276	<pre>     PERFORM     OUTLET     RADIUS     5.7580     5.8341     5.9216     6.0219     6.1365     6.2633     6.3976     6.5361     6.6810     6.8358     7.0000     REL V     RATID     .9132     .9208     .9262     .9122     .9023     .9121 </pre>	ANCE INLET M. NO .8129 .7968 .7801 .7595 .7403 .7234 .7089 .7025 .6909 .6724 .6592 DELTA H/U**2 0.0000 0.0000 0.0000 0.0000 0.0000	INCID -ENCE -12.298 -10.832 -10.645 -10.645 -10.813 -11.595 -12.202 -12.533 -13.404 -14.141 -16.738 SECTID INLET 43.52 41.44 40.50 39.84 38.86 38.24	DEVIA -TIUN -6.239 -3.772 645 2.514 5.668 9.090 12.155 13.816 15.806 16.370 21.716 N-ANGLES DUTLET -5.42 -7.06 -9.26 -11.37 -13.37 -15.55	LOSS COEFF 0278 0047 .0244 .0950 .1521 .1645 .1096 .0659 .0887 .1004 .1074 LEAN-/ INLET -39.09 -31.93 -24.41 -16.96 -10.12 -4.28	2-D 0 FACTOR .2182 .2180 .2187 .2337 .2396 .2212 .1727 .1380 .1295 .1205 .1071 ANGLES OUTLET 30.71 27.41 22.70 17.13 12.30 9.54	3-0 D FACTOR 2176 2175 2183 2333 2393 2209 1725 1379 1294 1205 1071
LOCAT -ION 1 2 3 4 5 6 7 8 9 10 11 LDCAT -ION 1 2 3 4 5 6 7	STATOR INLET RADIUS 5.6511 5.7488 5.8547 5.9688 6.0913 6.2215 6.3590 6.5051 6.6596 6.8243 7.0000 DELTA P ON Q .1646 .1366 .1077 .0798 .0531 .0276 .0025	<pre>     PERFORM     OUTLET     RADIUS     5.7580     5.8341     5.9216     6.0219     6.1365     6.2633     6.3976     6.5361     6.6810     6.8358     7.0000     REL V     RATID     .9132     .9208     .9262     .9122     .9023     .9121     .9521 </pre>	ANCE INLET M. NO .8129 .7968 .7801 .7595 .7403 .7234 .7089 .7025 .6909 .6724 .6592 DELTA H/U**2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	INCID -ENCE -12.298 -10.832 -10.645 -10.645 -10.813 -11.595 -12.202 -12.533 -13.404 -14.141 -16.738 SECTID INLET 43.52 41.44 40.50 39.84 38.86 38.24 37.86	DEVIA -TIUN -6.239 -3.772 645 2.514 5.668 9.090 12.155 13.816 15.806 16.370 21.716 N-ANGLES DUTLET -5.42 -7.06 -9.26 -11.37 -13.37 -15.55 -17.49	LOSS CDEFF 0278 0047 .0244 .0950 .1521 .1645 .1096 .0659 .0887 .1004 .1074 LEAN-/ INLET -39.09 -31.93 -24.41 -16.96 -10.12 -4.28 -1.42	2-D D FACTOR .2182 .2180 .2187 .2337 .2396 .2212 .1727 .1380 .1295 .1205 .1071 ANGLES OUTLET 30.71 27.41 22.70 17.13 12.30 9.54 8.12	3-0 D FACTOR 2176 2175 2183 2333 2393 2209 1725 1379 1294 1205 1071
LOCAT -ION 1 2 3 4 5 6 7 8 9 10 11 LDCAT -ION 1 2 3 4 5 6 7 8	STATOR INLET RADIUS 5.6511 5.7488 5.8547 5.9688 6.0913 6.2215 6.3590 6.5051 6.6596 6.8243 7.0000 DELTA P ON Q .1646 .1366 .1077 .0798 .0531 .0276 .0025 0220	<pre>     PERFORM     OUTLET     RADIUS     5.7580     5.8341     5.9216     6.0219     6.1365     6.2633     6.3976     6.5361     6.6810     6.8358     7.0000     REL V     RATID     .9132     .9208     .9262     .9122     .9023     .9121     .9521     .9853 </pre>	ANCE INLET M. NO .8129 .7968 .7801 .7595 .7403 .7234 .7089 .7025 .6909 .6724 .6592 DELTA H/U**2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	INCID -ENCE -12.298 -10.832 -10.645 -10.645 -10.813 -11.595 -12.202 -12.533 -13.404 -14.141 -16.738 SECTID INLET 43.52 41.44 40.50 39.84 38.86 38.24 37.86 37.78	DEVIA -TIUN -6.239 -3.772 645 2.514 5.668 9.090 12.155 13.816 15.806 16.370 21.716 N-ANGLES DUTLET -5.42 -7.06 -9.26 -11.37 -13.37 -15.55 -17.49 -19.38	LOSS COEFF 0278 0047 .0244 .0950 .1521 .1645 .1096 .0659 .0887 .1004 .1074 LEAN-/ INLET -39.09 -31.93 -24.41 -16.96 -10.12 -4.28 -1.42 23	2-D D FACTOR .2182 .2180 .2187 .2337 .2396 .2212 .1727 .1380 .1295 .1205 .1071 ANGLES OUTLET 30.71 27.41 22.70 17.13 12.30 9.54 8.12 8.04	3-0 0 FACTOR 2176 2175 2183 2333 2393 2209 1725 1379 1294 1205 1071
LOCAT -ION 1 2 3 4 5 6 7 8 9 10 11 LOCAT -ION 1 2 3 4 5 6 7 8 9	STATOR INLET RADIUS 5.6511 5.7488 5.8547 5.9688 6.0913 6.2215 6.3590 6.5051 6.6596 6.8243 7.0000 DELTA P ON Q .1646 .1366 .1077 .0798 .0531 .0276 .0025 0220 0461	<pre>     PERFORM     OUTLET     RADIUS     5.7580     5.8341     5.9216     6.0219     6.1365     6.2633     6.3976     6.5361     6.6810     6.8358     7.0000     REL V     RATID     .9132     .9208     .9262     .9122     .9023     .9121     .9521     .9853     .9894 </pre>	ANCE INLET M. NO .8129 .7968 .7801 .7595 .7403 .7234 .7089 .7025 .6909 .6724 .6592 DELTA H/U++2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.000000 0.000000 0.00000000	INCID -ENCE -12.298 -10.832 -10.864 -10.645 -10.813 -11.595 -12.202 -12.533 -13.404 -14.141 -16.738 SECTID INLET 43.52 41.44 40.50 39.84 38.86 38.24 37.86 37.78 37.65	DEVIA -TIUN -6.239 -3.772 645 2.514 5.668 9.090 12.155 13.816 15.806 16.370 21.716 N-ANGLES DUTLET -5.42 -7.06 -9.26 -11.37 -13.37 -15.55 -17.49 -19.38 -21.59	LOSS COEFF 0278 0047 .0244 .0950 .1521 .1645 .1096 .0659 .0887 .1004 .1074 LEAN-/ INLET -39.09 -31.93 -24.41 -16.96 -10.12 -4.28 -1.42 23 2.54	2-D D FACTOR .2182 .2180 .2187 .2337 .2396 .2212 .1727 .1380 .1295 .1205 .1071 ANGLES OUTLET 30.71 27.41 22.70 17.13 12.30 9.54 8.12 8.04 7.77	3-0 0 FACTOR 2176 2175 2183 2333 2393 2209 1725 1379 1294 1205 1071
LOCAT -ION 1 2 3 4 5 6 7 8 9 10 11 LOCAT -ION 1 2 3 4 5 6 7 8 9 10	STATOR INLET RADIUS 5.6511 5.7488 5.8547 5.9688 6.0913 6.2215 6.3590 6.5051 6.6596 6.8243 7.0000 DELTA P ON Q .1646 .1366 .1077 .0798 .0531 .0276 .0025 0220 0461 0713	<pre>     PERFORM     OUTLET     RADIUS     5.7580     5.8341     5.9216     6.0219     6.1365     6.2633     6.3976     6.5361     6.6810     6.8358     7.0000     REL V     RATID     .9132     .9208     .9262     .9122     .9023     .9121     .9521     .9853     .9894     .9984 </pre>	ANCE INLET M. NO .8129 .7968 .7801 .7595 .7403 .7234 .7089 .7025 .6909 .6724 .6592 DELTA H/U+2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.000000 0.00000000	INCID -ENCE -12.298 -10.832 -10.564 -10.645 -10.813 -11.595 -12.202 -12.533 -13.404 -14.141 -16.738 SECTID INLET 43.52 41.44 40.50 39.84 38.86 38.24 37.86 37.78 37.65 38.59	DEVIA -TIUN -6.239 -3.772 645 2.514 5.668 9.090 12.155 13.816 15.806 16.370 21.716 N-ANGLES DUTLET -5.42 -7.06 -9.26 -11.37 -13.37 -15.55 -17.49 -19.38 -21.59 -24.38	LOSS COEFF 0278 0047 .0244 .0950 .1521 .1645 .1096 .0659 .0887 .1004 .1074 LEAN-/ INLET -39.09 -31.93 -24.41 -16.96 -10.12 -4.28 -1.42 23 2.54 5.92	2-D D FACTOR .2182 .2180 .2187 .2337 .2396 .2212 .1727 .1380 .1295 .1205 .1071 ANGLES OUTLET 30.71 27.41 22.70 17.13 12.30 9.54 8.12 8.04 7.77 7.91	3-0 0 FACTOR 2176 2175 2183 2333 2393 2209 1725 1379 1294 1205 1071

	WAKE	AND	80UND/	ARY [ 	AYER	BLOCK	AGES	(PERC	ENT)			
STATION MID BLOCK	AGE	10.0	2 • 2	3 • 2	4	5 • 2	6 1.7	7 2•3	8 8•6	9 8•4	10 7.7	
DIST FACT Int block	OR AGE	1.0 0.0	1.0 .2	1.0	1.0 .2	1.0 .2	1.0 1.7	1.0 2.3	1.0 8.6	1.0 8.4	1.0 7.7	
STATION MID BLOCK DIST FACT INT BLOCK	AGE Or AGE	11 6.9 1.0 6.9	12 6.7 1.0 6.7	13 6.5 1.0 6.5	14 6.2 1.0 6.2							
	SUMM	ARY	POINT	NO.	L 1	THE CA		TION	IS CO	NVERG	ED PASS	16
	TE S T	P 0 1 '	TIT T	LE =	81	105221	.01					
			17.28	SPE	n =	12510		PRESSU		TTO	1.301	

and the second second

FLOW = 17.28 SPEED = 12510.0 PRESSURE RATIO = 1.301 ISENTROPIC EFFY = .8710 POLYTROPIC EFFY= .8757 DEL T/T= .0895
## REFERENCES

- Hearsey, R. M., "Computer Programs for Single-Stage Axial Compressor Test Data Analysis," Volumes I and II, ARL 73-0177, AD 776 791 and 792, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio, December 1973.
- Hearsey, R. M., "Modifications to Compressor Test Data Analysis Program UD0200," ARL 74-0131, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio, November 1974.
- 3. Tysl, E. R., Schwenk, F. C., and Watkins, T. T., "Experimental Investigation of a Transonic Compressor Rotor with a 1.5-Inch Chord Length and an Aspect Ratio of 3.0 I-Design, Over-all Performance, and Rotating-Stall Characteristics," NACA RM E54L31, National Advisory Committee for Aeronautics, 1955.
- 4. Hearsey, R. M. and Marsh, H., "Communication," Journal of Mechanical Engineering Science, Vol. 14, No. 3, 1972. (Refers to Marsh, H., "The Uniqueness of Turbomachinery Flow Calculations Using Streamline Curvature and Matrix Through-Flow Methods," Journal of Mechanical Engineering Science, Vol. 13, No. 6, 1971.)
- 5. Horlock, J. H., "On Entropy Production in Adiabatic Flow in Turbomachines," Paper No. 71-FE-3, American Society of Mechanical Engineers, 1971.
- 6. Wennerstrom, A. J., "On the Treatment of Body Forces in the Radial Equilibrium Equation of Turbomachinery," ARL 75-0052, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio, 1975.
- 7. Wilkinson, D. H., "Stability, Convergence and Accuracy of 2-Dimensional Streamline Curvature Methods Using Quasi-Orthogonals," Proceedings of the Institution of Mechanical Engineers, 1970.
- Anderson, L. R., Heiser, W. H., and Jackson, J. C., "Axisymmetric One-Dimensional Compressible Flow - Theory and Applications," Paper No. 70-GT-82, American Society of Mechanical Engineers, 1970.
- 9. Stickney, T. M., "Recovery and Time-Response Characteristics of Six Thermocouple Probes in Subsonic and Supersonic Flow," NACA TN 3455, National Advisory Committee for Aeronautics, 1955.

and the second second

10. Keenan, J. H. and Kaye, J., "Gas Tables," John Wiley and Sons, Inc., 1948.

## DATE ILME