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ABSTRACT

|

e

This report describes the development of GaAs MESFET power amplifiers at

21 GHz. Techniques for making large-signal loadpull and wg parameter mea-

surements at these frequencies, and the measured device characteristics are

presented. A unique method of obtaining accurate gain and power measurements

is discussed. Design methods and data are presented on 21 GHz amplifiers with

more CW power and higher efficiency than previously achieved,
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I. INTRODUCTION

The MIT Lincoln Laboratory Space Communications Program is currently in-
volved with emerging technology for solid-state EHF communications-satellite

systems,

A concept which would provide secure communications to a large number of ]
small mobile users is currently under development [REF, 1]. This concept in- _H
cludes a 44 GHz FDM uplink with multiple narrow beams, antenna nulling and on-
board signal processing. The proposed downlink is a 21 GHz beam-hopped,
frequency-hopped TDM system.

This report describes the progress in development of components for a solid-

state satellite transmitter at 21 GHz, including the results of Lincoln

Laboratory sponsored development of GaAs power MESFETs. New large-signal
characterization techniques are described, and unique gain and output-power
measurement methods are discussed. Finally, data is presented showing the
DC-to-RF conversion efficiency (of solid-state amplifiers at 21 GHz) signifi-
cantly higher than any previously reported [REF. 2, 3, 4].




—————

II. DEVICE DEVELOPMENT

During the past year Lincoln Laboratory has sponsored a development
program for GaAs MESFETs at 21 GHz, Table I shows the program goals and the

acceptable minimum characteristics of the devices.

TABLE I

POWER GaAs FET SPECIFICATIONS

CHARACTERISTIC GOAL MINIMUM
Power Output (W) 1 0.5
Power-added Efficiency (%) 20 15
Gain @ 1 dB Compression (dB) 5 4
Channel Temperature Rise (°C) <100

The power MESFETs were developed by Microwave Semiconductor Corporation,
Somerset, NJ.

Power FETs were constructed with 1.0um and 0.7ym gate lengths. The gate
width was 75um with a 1200um gate periphery. The GaAs chips were flip-chip
mounted to a gold-plated copper carrier as shown in Fig. 1. The resulting

average thermal resistance was reported as approximately 13°Cc/W [REF. 2].




Fig. 1. 0.5 W GaAs MESFET.
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I1I. TEST FIXTURE DEVELOPMENT

The GaAs MESFETs are being characterized at Lincoln Laboratory using
specially designed fixtures and unique components which were developed for

operation at K-band frequencies.

A bias-tee was designed and constructed for use between 12 and 24 GHz based
on a microwave-diplexer filter. The bias-tee is constructed using air and teflon-
loaded coaxial transmission-line sections. The through-loss of the bias-tee
measures less than 1 dB from 12.6 to 24 GHz. Between 15 and 21.5 GHz the loss
measures between 0.25 and 0.50 dB. DC resistance through the low-pass filter

section measures = 30m{l. The bias-tee is shown in Fig. 2.

A slabline transistor holder was designed and constructed as shown in rig.
3. The slabline construction consists of two parallel ground planes separated
by an air gap. Suspended between the ground planes is a center conductor with
a circular cross~section. The slabline is precision-made with a 502 charac-
teristic impedance. At the center of the slabline is a shim which is large
enough to mount a flip-chip packaged GaAs FET. The FET is held in place by
two clamps which hold the flange of the flip~chip carrier on the shim. Elec-
trical contact is made by resting the center conductors of the slabline on
the drain and gate standoffs of the transistor. The conductors are held in

place by a rexolite yoke which also applies the appropriate contact pressure.

Air-dielectric slabline was chosen for several reasons. First, the 508
characteristic impedance is unaffected by movement of the center conductor in
the vertical direction, This allows freedom of movement for positioning the
conductors on the gate and drain standoffs and allows for different standoff
heights due to the manufacturing tolerances of the flip-chip package. Second,
the air-dielectric structure provides very low losses, an improvement that A
enhances the accuracy of device performance measurements. Third, the slabline
structure easily lends itself to variable impedance matching by the introduction
of a moveable slug into the slabline structure. Figure 4 shows the slabline
holder with one side removed, exposing the center conductors and tuning slugs.

The tuning slugs are black-anodized aluminum.
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The slabline test fixture provides a versatile characterization tool at
21 GHz. When used as a precision 500 test fixture the slabline can be used for
large and small-signal network analysis of the 21 GHz GaAs FETs. With the ad-
dition of the variable tuning slugs, the transistors can be matched for optimum
performance at any particular frequency in the band of interest. Gain, effi-
ciency, and output power can then be measured for any desired set of operating
parameters, including frequency, input-power level, and bias conditions. Be-
cause of the small losses in the slabline and tuning structures, these measure-
ments yield useful data on the performance which can be expected when these

devices are used in an amplifier circuit,

Finally the slabline fixture can serve as a test-bed for various matching

filter configurations which are designed from the data obtained in large- .

signal input-impedance and load-pull measurements.




IV. GaAs FET CHARACTERIZATION

A simplified block diagram of the GaAs FET characterization set-up is
shown in Fig. 5. The set-up is shown configured for load-pull or gain
measurements., By turning the waveguide switch and reversing the connections
on the harmonic converter and the device-under-test (DUT), the set-up can be

configured for large-signal input-impedance measurements.

Computer-controlled automatic error correction is vital to obtain accurate
measurements at 21 GHz., In addition, the signal generator, an HP 8620, 2-22 GHz
sweeper, 1s phase-locked to an HP 8660 synthesizer to maintain low phase noise
and high frequency accuracy during the measurements. A Tektronix 4051 graphic
controller is used to perform the necessary error correction and to control

and gather data from the instruments in the test set-up.

Although the load-pull set-up is similar to others that have been published
previously, [REF 5, 6] the calibration technique is unique, and the method of
absolute output-power measurement is new. The output-power measurement techni-
que determines the actual output power of the device-under-test without the
errors normally caused by lossy test fixtures, blas-tees, couplers, tuners,

and other components in the set-up.

A model of the load-pull measurement is shown in Fig. 6. The load-pull
tuner and waveguide termination are lumped together to obtain the load-
reflection coefficient (FL). The purpose of the load-pull measurement is
to determine the load reflection coefficient at the plane of the device-
under-test which is labeled the reference plane. Between the reference
plane and the load is shown the measurement plane, which may exist only
in a mathematical sense. In an ideal system, the measurement plane may
be defined as the position in the test set-up where the measured reflection
coefficient is identical to the actual reflection coefficient. A manually
operated network analyzer is adjusted so that the measurement plane is at
the reference plane and, with limited accuracy,.the desired reflection

coefficient is read directly from the analyzer screen. Real-world network

oy itros B
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analyzers may have no physically accessible location which corresponds to the
measurement plane. In the general case, the measurement plane is separated
from the reference plane by the effects of errors in the system, including the
finite directivity of couplers, losses, and differential line lengths between
the reference and test ports of the harmonic converter. The effects of these
errors can be modeled as an imaginary two-port which connects the reference
plane to the measurement plane [REF 7]. If the two-port parameters of the
imaginary two-port, are known, the reflection coefficient at the reference
plane can be found by de-embedding the measured reflection coefficient through

the imaginary two-port.

The two-port S-parameters of the imaginary two-port can be determined for
the load-pull measurement by the technique shown in Fig. 7. The load has been
replaced by the signal source, and the device-under-test has been replaced by
a short at the reference plame. The reflection coefficient of the short (T

appears to the analyzer as 1/T The relationship between the measured

short’
reflection coefficient (FM) and the reflection coefficient at the reference

plane (FR) is given by

Sa1, Sle Ty
I, =8 + (1)
R llA 1 FM 522
A
where sllA’ leA’ Sle, and S22A are the two-port S-parameters of the imaginary

two-port. Equation 1 may be rewritten as

I, =58 + I I S T,, 48 (2)

R 11A R M 22A M A

short

)

s e
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Fig. 7. Load-pull calibration model.
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The three unknowns in equation 2 are S s S , and AS,. By making three
11A 22A A

measurements using three arbitrary (but known) standards, a system of three
equations with three unknowns (of the form of equation 2) can be solved simul-
taneously, yielding the S-parameter values needed in equation 1. The S-

parameters are given by the following equations:

(X3 = X) Xy Ty + (Xg = X3) Xy Ty + (X5 = X)) X3 Ty
S = (4)
22, (X3 = X)) X3 Ty Ty ¥ Xy = Xg) Xy Ty T3+ (X3 = %)) X Ty Ty

s
A X1 Xo (I = 1))
S22A Fl +1
S =AS, T. ~ (6)
11, Al X;
)
S s =5 S - AS
21, "12, 11, “22, A

where xi = actual reflection coefficient of standard 1{i.

Fi = measured reflection coefficient of standard 1.

The most convenient standards to use for the load-pull measurement are a
"reference" short and two different-length offset-shorts. For the best cali-
bration the length of the offset-shorts should be chosen such that the angles
of the reflection coefficients of the three shorts differ by = 120° from
each other, which places the shorts symmetrically around the outer edge of
the Smith chart. When two of the shorts lie in the same quadrant of the
Smith chart, inaccuracies can occur due to the finite resolution of the

arithmetic processor which is used to do the calculations.

14
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A 50Q load cannot be used as a load-pull calibration standard since l/I‘L

for a 500 load is «, which is beyond the dynamic range of the analyzer.

The offset shorts which are used with the slabline test fixture are
shown in Fig. 8. The shorts are constructed identically to the slabline fix-
ture except that the shim for mounting the GaAs FET is replaced by a solid
plate.

Until now one of the major drawbacks of the loadpull technique was that
an accurate measurement of the device's output power could not be obtained.
This is because the output power was measured after the load-pull tuner. The
losses in the load-pull set-up between the device-under-test and the tuner are
dependent on the standing wave which exists in this region. Therefore, the |
losses vary with different settings of the tuner. The loss in the tuner itself ;
is also a function of the tuner settings and, therefore, cannot be accurately
taken into consideration. These losses result in large inaccuracies in the
load-pull measurement, because the indicated optimum-power point is a system

measurement of the entire load-pull set-up and not of the device-under-test.

In a recent paper [REF 6] a differential-power-meter technique was reported
which makes use of two power meters to measure the forward and reflected power
before the tuner. The output power is then found by taking the difference 4
between the forward and reflected powers. This technique eliminates the variable
losses due to the tuner, but it still does not take into account the variable
losses due to the standing waves between the device-under-test and the tuner.

The effects of a standing wave on a low-loss component such as a blas-tee are

illustrated by example in Fig. 9. The problem becomes most severe for high

standing-wave ratios, where the effective loss becomes very high.

A new technique for measuring output power is shown in Fig. 10. A single
power meter is placed between the tuner and the device-under-test to measure
the power incident on the load-pull tuner. Calibration of this power meter is
accomplished in the usual way by substituting a known power source at the

frequency of interest in place of the device-under-test. This meter can now

15




Fig. 8. Slabline reference and offset shorts.
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OUTPUT '
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Fig. 9. Losses in a region of high standing waves: (a) Low return loss.
(b) High return loss.
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measure the actual forward power at the reference plane of the device-under
test. The reflected power at the device-under-test is calculated from the
actual load reflection coefficient which has been determined in the load-pull
measurement. The forward and reflected powers are related to the load reflec-

tion coefficient by:

P

R 2

7= T (8)
PF L
Since

P =P, -P 9)

then

_ _ 2

Equation 10 gives the actual output power of the device-under-test at the

reference plane of the load-pull measurement.

19




V. DEVICE PERFORMANCE

Initial measurements on the FETs showed that the desired load impedance was
very close to the limits of tuning which could be achieved by the slide-screw
tuner alone. In order to achieve greater accuracy and tuning range, a slabline
matching circuit was constructed using stepped-impedance transmission-line

sections.

Subsequent measurements were made with the aid of the partial matching
provided by the slabline matching circuit. The load-pull data was then de-~
embedded from the matching filter to provide load impedance data at the

transistor. A typical load-pull measurement is shown in Fig. 11.

Load impedance and bias conditions for optimum power and for optimum ef-
ficiency have been determined for several transistors. The spread in measured
load impedances for both optimum power and optimum efficiency is shown in
Fig. 12, Figure 13 shows histograms of the number of measured devices which
fall into various performance ranges of power and efficiency. Separate histo-
grams are shown for the same devices with high-power bias and tuning, and with
high-efficiency bias and tuning conditions, at both 20 and 21 GHz. The highest
power measured at 21 GHz was 620 mW with 3 dB of gain and 24.3% power-added
efficiency. The same device when tuned and biased for optimum efficiency pro-

duced 400 mW of output power with 3.7 dB of gain and 35.7% power-added efficiency.

Characterization of the large-signal input impedance of the GaAs FETs has
yielded the typical data shown in Fig. 14,

A number of GaAs FETs have also been characterized for gain, output power,
and efficiency with the inclusion of the slug tuners in the slabline test
fixture. Figure 15 shows a summary of measurements taken on 17 different
devices from three different wafers, Figure 15 shows the best power-added
efficiency obtained for each device and the corresponding gain and output power.
The best efficiency obtained with the slabline tuners is 22.3% with 4.5 dB of
gain and 288 mW of output power at 21 GHz., Figure 16 shows the power, gain,
and efficiency versus RF drive level of a typical device tuned for maximum

power-added efficiency in the slabline tunmer.

20







Rz ](Q) /5\ 0 R

\ i
RING P OUT (W) GAIN (dB) EFF IDC (A)
A 0.284 3.56 0.304 0.095
@) 0.281 3.52 0.304 0.093

-15 0.274

3.41 0.300 0.091

Fig. 11(b). 0.5 W power MESFET load-pull de-embedded data.
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Slabline matching circuits were fabricated for one device, and a comparison
between load-pull performance and measured amplifier performance at 20 GHz is

given in Table II.

TABLE II

COMPARISON BETWEEN LOAD-PULL PREDICTIONS AND AMPLIFIER PERFORMANCE AT 20 GHz.

CONFIGURATION BIAS OUTPUT POWER GAIN EFFICIENCY
Loadpull Power 530 mW 3.0 dB 21.7%
Predictions Efficiency 350 mW 4.0 dB 25.62
Amplifier Power 377 oW 3.0 dB 19.5%

Efficiency 267 mW 3.4 dB 24,8%
Amplifier With Power 453 mW 3.0 dB 20.0%
Additional Slug Efficiency 290 mW 3.4 4B 25.6%
Tuning

Optimization of the input and output matches was achieved by the addition
of glabline tuning slugs. Figure 17 shows the swept gain and return loss of
the amplifier with slug~tuning assistance. The large signal gain is essentially
flat from 19.2 to 20.2 GHz.
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VI. CONCLUSION

This report describes the progress in the development of components for a
21 GHz solid-state satellite transmitter. The techniques for characterizing
state-~of~the-art GaAs FETs at 21 GHz have been discussed as well as the per-
formance milestones which have been achieved. The measurements which have
been presented show that potential GaAs FET performance at 21 GHz is consider-
ably better than what has been achieved in amplifier circuits using more con-
ventional characterization techniques. Perhaps the real potential of state-of-
the-art GaAs FETs will not be realized until low-loss internal matching techni-

ques are realized.
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