
i.iiiii.i,WJ,iiJB!,|,,„HIU,»(ipUI|

00

• • ■■ J

CMÜ-CS-81-135

LEVELS
OPS5 User's Manual

July 1981

Charles L. Forgy

Department of Computer Science

Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

DEPARTMENT
of

COMPUTER SCIENCE

DTIO
ELECTE

, OCT 0 119811

^

igi »h9*a approved

M.MY^Sm 1» uritoiled-

Carnegie-Mel Ion University

8 1 11 02 193

i r '■'-n-iiiiifttiffl*1itfiiriatr-ir V iiiii'ftii i ' Lmfm. ..,,.■ I.T-:.I.. .,-■. .:.... | .,

MISSING PAGE

NUMBERS ARE BLANK

AND WERE NOT

FILMED

r " ' I II

/ J
y | OPSSUser' s Manual

I i Ju»81

f'l~C Charles L./Forgy

Department of Computer Science

Carnegie-Mellon University

Pittsburgh. Pennsylvania 15213

(iy^7

Abstract: TOs is a combination introductory and reference manual for OPS5, a programming language for

production systems. OPS5 is used primarily for applications in the areas of artificial intelligence, cognitive

psychology, and expert systems. OPS5 interpreters have been implemented in LISP and BLISS.

Copyright © 1981 Charles L. Forgy

/

u£- <

'This research was sponsored by the Defense Advanced Research Proj^^M-DODX.ARPA Order
No 3597, monitored by the Air Force Avionics Laboratory under ContracÜF3J615-78-C-iüi; . 7 r-^ (

T^e views and conclusions contained in this document arc those of ^e'author and should not be
interpreted as representing the off.cial policies, either expressed or u^plied, of die Defense Advanced
Research Projects Agency or the US Government.

;

■J
/ iS

//

^

Table of Contents
1. Introduction

1.1. The Production System Architecture
1.2. OPSS's Working Memory
1.3. OPS5-s Production Memory
1.4. The OPS5 Lexical System
1.5. Acknowledgements

2. Working Memory

2.1. Organization of Working Memory
2.2. Time Tags
2.3. Scalar Values

2.3.1. Numbers
2.3.2. Symbolic Atoms
2.3.3. Case

2.4. The Standard Structured Types
2.4.1. Attribute-Value Elements

2.4.1.1. Declarations
2.4.1.2. Error Checking

2.4.2. Vector Elements
2.5. Details of Implementation

2.5.1. Attribute-Value Elements
2.5.2. Vector Attributes
2.5.3. The Operator t
2.5.4. Default Values

2.6. User-Defined Representations

3. Production Memory

3.1. Organization of die Memory
3.2. Production Names
3.3. The Production

4. The LHS

4.1. The Condition Element
4.1.1. Terms
4.1.2. The Operator t
4.1.3. Values

4.1.3.1. Constants u-
4.1.3.2. Variables
4.1.3.3. Disjunctions
4.1.3.4. The Operator //
4.1.3.5. Predicates
4.1.3.6. Conjunctions

4.2. The LHS as a Whole
4.2.1. Negated and Non-negated Condition Elements
4.2.2. Element Variables

Accession For

NTIS GRA&I
DTIC TAB
Unannounced
Lustif ioatioi

D

Distribution/

Availability Codes
Avail and/or

Special

1
2
2
4
4

7

7
7

7
8
8
9

9
9

10
10
10
11
11
12
12
12

15

15
15
15

17

17
17
17
18
18
18
18
18
19
20
20
20
21

■

——————-^———-

/

4,2.3. Length of an LHS

S.TheRHS

5.1. Element Designators
5.2. Patterns

5.2.1. Terms
5.2.2. Evaluating Terms
5.2.3. The Operator t
5.2.4. Constants
5.2.5. Variables
5.2.6. The Operator //
5.2.7. nHS Functions

: !.7.1.substr
5.2.7.2. genatom
5.2.7.3. compute
5.2.7.4. litval
5.2.7.5. accept
5.2.7.6. acceptline

5.3. Actions
5.3.1. make
5.3.2. remove

5.3.2.1. Element Designators and remove
5.3.2.2. Multiple remove's of an Element

5.3.3. modify
5.3.3.1. Element Designators and modify
5.3.3.2. Multiple modify's of an Element

5.3.4. openfile
5.3.5. closeflle
5.3.6. default
5.3.7. write

5.3.7.1. Special Functions for write
5.3.7.2. crlf
5.3.7.3. tabto
5.3.7.4. rjust

5.3.8. call
5.3.9. halt
5.3.10. bind
5.3.11. cbind
5.3.12. build

6. The Recognize-Act Cycle

6.1. Conflict Resolution
6.1.1. The LEX Strategy
6.1.2. The MEA Strategy
6.1.3. Which Instantiations to Discard

6.2. Act
6.3. Match

21

23

23
23
24
24
24
25
25
25
25
25
26
26
27
27
27
28
28
28
29
29
29
30
30
30
31
31
32
32
32
33
33
34
34
34
34
34

37

37
38
38
39
40
40

 _

——«_____ " 1 1

7. User-Defined Actions and Functions

7.1. Declarations
7.2. Actions

7.2.1. Sparameter
7.2.2. Sparametercount
7.2.3. Sassert
7.2.4. Stab
7.2.5. Svalue
7.2.6. Sreset
7.2.7. SiFile and Sofile

7.3. Functions
7.3.1. Svarbind
7.3.2. Slitbind

7.4. Atoms
7.4.1. $eql
7.4.2. $symbol
7.4.3. Sintern
7.4.4. Sevan and Scvna

8. Using the OPS5 Interpreter

8.1. The Top Level
8.1.1. make
8.1.2. remove
8.1.3. openfile
8.1.4. closefile
8.1.5. default
8.1.6. call
8.1.7. run
8.1.8. ppwm
8.1.9. wm
8.1.10. om
8.1.11. cs
8.1.12. matches
8.1.13. strategy
8.1.14. watch
8.1.15. pbreak
8.1.16. exit
8.1.17. excise
8.1.18. back

8.2. Loading a Production System

Appendix I. Syntax of OPS5

Index

41

41

41
41

42

42
42

42

42
43

43
43
44

44
44
44

44

44

45

45
45

46
46
46
46

46
47
47
47

48
48
48
48

48

49
49

49

50

51

55

in

 ,,..,.., ■

■■ li.I" HH'Jl.i^M

1. Introduction
0PS5 is a member of the class of programming languages known as production systems. It is used

primarily for applications in the areas of artificial intelligence, expert systems, and cognitive psychology. This

manual is a combination introductory and reference manual for OPS5. The rest of Section 1 provides an

overview of the language. Sections 2 through 8 describe the language and its interpreter in detail. To allow

the new user to read the manual straight through, the material has been organized in a top-down fashion. To

allow the experienced user to answer detailed questions quickly, the manual has been divided into short

sections describing individual features of the language, and an index has been provided.

Three interpreters for OPS5 have been written, one in BLISS [1], one in MACLISP [9], and one in FRANZ

LISP [3]. As could be expected, there are a few incompatibilities between the interpreters. The manual points

out the differences between die three interpreters.

1.1. The Production System Architecture

A production system is a program composed entirely of conditional statements called productions. These

pro'lt'cdons operate on expressions stored in a global data base called working memory. The producüons are

stored in a separate memory called production memory. The production is similar to the If-Thcn statement of

conventional programming languages: a production that contains n conditions C1 through C and m actions

A, through A means

When working memory is such that C, through C are true simultaneously,
then actions A, through A should be executed.

The condition part of a production is usually called its LHS (left hand side), and the action part is called its

/?//5 (right har.H side).

The production system interpreter executes a production system by performing a wquence of operations

called the recognize-act cycle:

1. [Match] Evaluate the LHSs of the productions to determine which are satisfied given the current
contents of working memory.

2. [Conflict resolution] Select one production with a satisfied LHS. If no productions have satisfied
LHSs, halt the interpreter.

3. [Act] Perform the actions specified in the RHS of the selected production.

4. Go to step 1.

Production systems differ from conventional programs in two major respects. The first is that the

ttüultfö aUHaBoWufodhh —"- - ■ .i^afe-^*. ̂ ^ , ÜH
■ .

1

: !
.

■M

Ä

 . —.—■—.

producüoa system uses a different method foi encoding ü^e state of a compuiaüon. A conventional program

encodes state by assigning values to local and global.variables. A production system encodes state by putting

expressions m the system's global working memory. The other difference between production systems and

conventional programs is the way flow of control is managed. A conventional program uses sequential

execution of statements plus a number of control constructs including subroutine calls, loops, and conditional

branching. A production system uses LHS satisfaction. Each production s LHS is a description of the states

in which the production is applicable; the LHS becomes tme when there is some information in working

memory that the production can process. When the interpreter performs the match process, it is in effect

searching for a production that knows how to process the data that is in working memory. When it finds that

production and executes its RHS. working memory is changed, and so on the next cycle, the interpreter

performs the match again to find a production that can handle the new data.

1.2. OPSS's Working Memory
In OPS5, the most commonly used representation for information in working memory is the attribute-value

representation. This representation is oriented towards describing objects and relations among objects; that

is, even though it (like most representations) can be used for many other purposes, it is most naturally used to

describe objects and.relations. In this representauon. every element in working memory consists of an object

and a collection of associated attribute-value pairs. For example, in this representation, a single working

memory element might indicate that blockl is a red block weighing 500 grams, measuring 100 mm on a side.

The element would be

(block
tname
tcolor
tmass
tlength
twidth
thelght

blockl
red
600
100
100
100)

As this shows, an element consists of a class name (block in this case) followed by some number of attributes

and values, with everything enclosed in parentheses. Attributes are distinguished by being preceded with the

operator t.

1.3. OPSS's Production Memory
The LHS of a production consists of one or more patterns; i.e.. one or more expressions that describe

working memory elements. During the match part of the recognize-act cycle, the interpreter compares each

pattern with die elements in working memory to determine if the pattern matches any of them. The pattern is

considered satisfied if it matches at least one element. If all the patterns in a production's LHS are satisfied,

the LHS is satisfied.

■ ■

Patterns arc abstract rcprcseniations of working memory elements. One wa> a pattern can be an

abstraction of a working memory element is to contain fewer attributes and values than the clement. Such a

pattern will match any working memory element that contains the information in the pattern. (It does not

matter how much more information the working memory clement contains.) Thus the pattern

(block tcolor red)

would match the working memory element

(block
tname blockl
tcolor red
tmass 500
tlength 100
twidth 100
thelght 100)

Another way a pattern can be an abstraction of a working memory element is to contain incompletely

specified values. OPS5 provides special pattern operators that can be used to specify values at various levels

of detail. The most important operator is the variable. A variable is any symbol that begins with the character

< and ends with the character > -- for example, <x> or <status>. A variable in a pattern may match

anything, but if a variable occurs more than once in a production, it must match the same value everywhere.

Thus if a cube is defined to be a block whose three sides are the same length, the following pattern will match

only cubes.

(block tlength <x> twidth <x> thelght <x>)

The RHS of a production consists of an unconditional sequence of actions. OPSS's set of action types

indudes actions to manipulate working memory, actions to perform input and output, actions to add new

productions io production memory, and others. The most important of die actions are the ones to manipulate

working memory. The action make is used to create and add new elements. A make action consists of an

open parenthesis, the symbol make, a description of the element to create, and a close parenthesis. The

description of the element is similar in furm to the patterns in the LHS. For example, die following would

create the element for blockl shown above.

(make block
tname blockl
tcolor red
tmass 500
tlength 100
twidth 100
theight 100)

The action remove is used to delete elements from working memory. A remove action consists of an open

parenthesis, the symbol remove, a pointer to the element to delete, and a close parenthesis. The following

for example would delete the element matching the third pattern of the production's LHS.

(remove 3)

■

^.^^^^^.^^^u.^^^u^^....—^..-.--. i ni^iiiiiimf^^

■—- ———————

The action mod i f y is used to change one or more values of an existing element. A mod i f y action consists of

an open parenthesis, the symbol modify, a pointer to the element to change, a description of the changes to

make, and a close parenthesis. The following for example would change the status of the element

matching the first pattern in the LHS to satisfied,

(modify 1 tstatus satisfied)

A production consists of an open parenthesis, the symbol p, a name, the LHS of the production, the symbol

-->, the RHS, and i ciose parenthesis. The following is a typical (though quite small) OPS5 production. The

text after the semicolon on each line is a comment.

(p find-colored-block
(goal

tstatus active
ttype find
tobject block
tcolor <z>)

(block
tcolor <z>
tname <block>)

—>
(make result

tpointer <block>)
(modify 1

tstatus satisfied))

If there is a goal
which is active
to find
a block
of a certain color
And there is a block
of that color

Then make an element
to point to the block
And change the goal
marking it satisfied

1.4. The OPS5 Lexical System

The input to OPS5 is completely free formal. Spaces, tabs, and new lines may be used at will to improve

the readability of productions and working memory elements; the interpreter uses the parentheses to

determine where units begin and end. In addition, comments like those shown above may be used anywhere;

when the interpreter reads a line containing a semicolon, it discards everything from the semicolon to the end

of the line. The :.bove production could also have been written

(p find-colored-block
(goal tstatus active ttype find tobject block

tcolor <z>)
(block tcolor <z> tnama <block>)
—>
(make result tpointer <block>)
(modify 1 tstatus satisfied))

1,5. Acknowledgements

The first language in the OPS family [4, 5] was designed in 1975 at Carnegie-Mellon University by Charles

Forgy, John McDermott, Allen Newell, and Michael Rychener. The design of the language was influenced

by earlier production systems languages, including PSG [10] and PSNLST [11]. Since 1975 OPS has been

r

revised several limes as better represeiuatiuns and mure euieient interpreters have been developed [ö, 7, 12].

Many)lc have contributed to the development of OPS, including the members of the CMU production

systen. ica systems, and cognitive psychology groups, as well as the members of Digital Equipment

Corporation's expert systems group.

■ra--

-_
T

2. Working Memory
Working memory is a set of ordered pairs

< Time tag, Working memory element)

A working memory element is a structure (usually a vector or record) of scalar values. The time tag is a

unique numerical identifier that is supplied by the interpreter.

2.1. Organization of Working Memory

OPS5, like most programming languages, provides both scalar (sometimes called atomic) data types and

structured data types. The elements in working memory may not be scalars. (However, it is legal to have a

structure that contains only a single scalar value.)

The number of elements in working memory varies dynamically at run time. With the LISP-based

interpreter, working memory may grow arbitrarily large. With the BLISS-bascd interpreter, a maximum size

for the memory is established when the interpreter is installed; the current limit is 1023 elements.

2.2. Time Tags

Every element in working memor' has an associated integer called the element's time tag. This integer

indicates when the element was created or last modified; the elements with larger time tags were more

recently created or modified. No two elements have the same time tag. Time tags are used in conflict

resolution, and they are used to designate elements by many of the facilities that communicate with the user

(see Section 8.1).

2.3. Scalar Values
OPS5 provides two scalar data types; numbers and symbolic atoms.

2.3.1. Numbers

The numeric type on the LISP-based interpreters for OPS5 includes both floating point and fixed point

numbers. (The interpreters will make the appropriate conversions when mixed mode expressions are

evaluated.) The BLISS-based interpreter allows only fixed point numbers to be used. Fixed poirt numbers

consist of an optional sign, one or more jccimal digits, and an optional decimal point. Valid fixed point

numbers include

0
0.
-7
-7.

J^lfe^jJfafiaiH^gil^ai ~** .

 ' ' ■■

A floating point number consists of an optional sign, zero or more decimal digits, a decimal point, zero or

more digits after the decimal point, and an optional exponent, consisting of the letter "e" followed by a signed

or unsigned integer. The number must include either an exponent or a digit after the decimal point; if it

contains neither the interpreter will take it to be an integer. Typical floating point numbers include

0.0
.05
6.028-23
-1.812

The computer on which OPS5 is run determines the legal range for fixed and floating point numbers and the

number of digits of precision in floating point numbers.

2.3.2. Symbolic Atoms

A symbolic atom is any sequence of characters that does not constitute a number and that is treated as a

single unit by the production system. Examples of symbolic atoms include

a
nil

4-7-76

Seme non-printing characters such as escape (ASCII 33 octal) or control-C (ASCII 3 octal) cannot

conveniently be used in atom names. In addition, on the BLiSS-based interpreters, symbolic atoms must not

contain the character '. But with this exception, all printing characters and many non-printing characters

such as space and tab can be used.

Some characters will be incorporated into atoms only if they are quoted. If they are used unquoted they

are taken to be operators or separators. The characters that need to be quoted include (but are not limited to)

space, tab, period, comma, uparrow ("t"), left and right braces ("{}"), and left and right parentheses ("()")•

Different LISP interpreters provide different mechanisms for quoting characters. The best mechanism to use

in OPS5 is probably the vertical bar (the character |) because it is understood by all the OPS5 interpreters. In

all the interpreters, everything that occurs between two vertical bars constitutes an atom. Thus the atom)))

would be entered |))) |.

2.3.3. Case

The MACLISP-based interpreter and the BLISS-bascd interpreter do case folding; that is, they convert

lower case characters to upper case on input. The FRANZ LISP-based interpreter docs not do case folding.

Thus on that interpreter, p and P are distinct atoms. All commands to the FRAN/ LISP-based interpreter

must be given in lower case.

u^c^^ — "• —^

2.4. The Standard Structured Types

0PS5 provides two non-icalar data types, plus a mechanism which allows the user to implement other non-

scalar types. The standard types arc attribute-value clemenrs and vectors.

2.4.1. Attribute-Value Elements

An attribute-value element consists of a class name and some number of attribute-va'ue pairs, with

everything enclosed in parentheses. Attributes are symbolic atoms, and values are either scalars or sequences

of scalars. An attribute-value element may not contain more than 126 values. The following is a typical

element
(goal s-status acfiv M.^pi f^nu tobject block tcslor rad)

The class name o) . element is goal. Its attributes are status, type, object, and color; the

corresponding attributes are active, find, object, and red. The prefix operator t is used to distinguish

attributes from values.

The order in which attribute-value pairs are specified is not significant. Thus this element could also have

been written say
(goal tcolor red tobject block tstatus active ttype find)

2.4.1.1. Declarations

Attribute names must be declared before they can be used. The usual way to declare names is with

1 iteral ize. (Another method is described in Section 2.6.) A 1 i teral ize declaration indicates which

attributes will be used in elements of a given class. A declaration consists of the atom 1 iteral ize, a class

name, and the attributes for that class, all enclosed in parentheses. For the goal shown above, a declaration

like the following would be given.

(literalize goal
status
type
object
color)

This indicates that elements of class goal can have tine attributes status, type, object, and color.

An attribute may have only one scalar value at a time unless it has appeared in a vector-attribute

declaration. A vector attribute may have one, two, three, or more values; die only restriction is that the total

size of the working memory element may not exceed 126 values. The number of values assigned to a vector

attribute may vary dynamically at am time. The declaration consists of the atom vector-attribute and

one or more attribute names, all enclosed in parentheses. For example, if contents was to be made a vector

attribute, it would be declared

 . . . ^ , i _,.

(vector-attribute contents)

For an example of a vector attribute, consider a production system to solve the Towers of Hanoi problem.

The vector attribute contents could be used to indicate which disks were on a given peg.

(peg
tname peg2
tcontents dlskl c,Jsk3 d1sk4 disk5)

Two restrictio! apply to vector attributes.

• An element class may not have more than one vector attribute.

• The vector attribute declaration is global. Each attribute is either a scalar attribute everywhere it
is used or a vector attribute everywhere it is used. It is not possible for an attribute to be a scalar
attribute in one element class and a vector attribute in another.

2.4.1.2. Error Checking

OPS5 does not perform extensive error checking of attribute-value elements. It will permit attributes to be

used with element classes they were not declared for, and it will allow the user to treat scalar attributes as

vector attributes. It cannot check for errors like these because attribute-value elements are implemented

using a general mechanism that is also available to the user (see Section 2.6).

2.4.2. Vector Elements

The vector representation is used for data that needs to be represented as a sequence of symbols. An

element in this representadon consists of an open parenthesis, a sequence of atoms and numbers, and a close

parenthesis. One common use for this representation is to hold input from the user. The element shown

below for example might be a command given to a system for algebraic manipulation.

(differentiate expression 4 wrt x)

Vector working memory elements do not have to be declared. Vectors can vary in length at run time, A

vector cannot contain more than 127 values.

2.5. Details of Implementation

In the OPS5 interpreter, all working memory elements are stored as ordered lists or vectors of values.

Attribute-value representations are implemented by mapping field names into indices. The lists shrink and

grow as necessary when the elements are modified. An element may not grow to more than 127 values,

however.

10

iiiiitt-iiiiiiii[iiiii"-i"-""-™,"a-''"'*'--™-'"-'■•'■"■■ : i

2,5.1. AUribule-Vaiuü Llüiuciits

In an attribute-value clement, the class name is stored in the first field of the element, and the value of each

attribute is stored in a field that is assigned to the attribute. For example, on one run of a production system

object might be assigned 2, status assigned 3, color assigned 4, and type assigned 5. Then the

working memory element

(goal tstatus active ttype find tobject öloclc tcolor red)

would be stored internally

goal

block |

active |

red |

find I

Each rectangle here represents one field in the working memory element

The assignment of field numbers to attributes is performed by the interpreter when the Uteralize

Jeclarations are processed. The number assigned to each attribute is global; if attribute A has number N in

one element class, it will have number N in every class it occurs in.

2.5.2. Vector Attributes

Vector attributes are implemented by assigning the vector attribute a higher number than any other

attribute in the class. (If a vector attribute is used in more than one class, it is assigned a number that is higher

than any other attribute in any of the classes.) This allows the tail of the element to be dedicated to the vector

attribute. The values of the attribute consist of the value in its assigned field plus all the succeeding values to

the end of the element. Thus if name was assigned 2 and contents was assigned 3, then the element

(peg
tname peg2
tcontents diskl disk3 disk4 diskS)

would be stored

peg I

Peg2 |

diskl |

disk3 I

11

 v'tiaMM,,* ■ . . kd

I disk4 |

| disk5 |

Since 0PS5 allows elements to grow ahd shrink dynamically at run time, die number of values assigned to

a vector attribute can > ary dynamically.

2.5.3. The Operator t

Since attributes are mapped by the interpreter into field numbers, the operator t is essentially an index

operator. To interpret

tatt
OPS5 converts att into an integer, and then uses that integer to index into the working memory element.

The operator t can also be used with numeric arguments. For example,

t7

This designates the seventh value in an clement.

Although it is common practice to write t immediately adjacent to the attribute (or number) this is not

required. Blanks, tabs, and other non-printing characters can be put between the t and the attribute.

2.5.4. Default Values

In OPS5 it is legal to read the value in a field that has not received a value. (Sections 4 and 5 explain how

productions read values from elements.) By default, every field in an element has the value nil until the

production system changes it to something else, "or consistency, the interpreter also returns nil if the

production system reads beyond the end of the element (e.g., reading field 20 of an element that has values

only in fields 1 through 10). It is not legal, however, to read non-existent fields; an attempt to read fields less

than 1 or greater than 127 is an error.

2.6. User-Defined Representations
Tue declaration literal is provided to allow users to implement their own representations. The

declaration is used to assign numbers to attributes. A 1 iteral declaration consists of an open parenthesis,

the symbol 1 iteral, some number of triples of the form

attribute = number

followed by a close parenthesis. For example

12

 : • ■ . , __ . .

(1iteral
status = 2
type a 3
object a 4
color ■ 5)

If a production system contains both 1 iteral and 1 iteral ize declarations, ilic interpreter will process

the literal dcclaiations first (even if they are not written first). Then, if is possible, it will use the explicit

literal assignments for the attributes that occur in bodi literal and literal ize declarations. Ifitis

not possible to accommodate the explicit assignments, an error message will be printed.

The declaration literal should be used only when 1 iteral ize cannot be used, because literal has

two severe limitations. First, it is easy to make a mistake with literal and assign the same number to two

attributes that were supposed to be distinct. This can cause obscure bugs in the production system. Second,

literal does not provide enough information for the working memory element printer to work properly.

When literal ize is used, elements are printed in attribute-value format; when literal is used,

elements must be printed as lists.

13

 : ä

3. Production Memory
An OPS5 production memory consists of a set of productions.

3.1. Organization of the Memory
There is no structure imposed on production memory. In particular, the productions are not grouped into

subroutines; any production can fire at any time. Furthermore, the order in which productions are entered

into the system is not important.

Production memory can contain arbitrarily many productions. The only limit is the amount of memory

available on the computer to store the productions.

3.2. Production Names
The name of a production must be a symbolic atom. The atom nil should not be used.

Two productions may not have the same name. If the user enters a production that has the same name as

an existing production, the existing production is removed from production memory.

3.3. The Production
A production consists of (1) an open parenthesis, (2) the symbol p, (3) the name of the production, (4) the

LHS of the production. (5) the symbol -->, (6) the RHS of the production, and (7) a close parenthesis. The

production shown in Section 1.3 is typical.

(p f-ind-colored-block
(goal tstatus active ttype find tobject block

tcolor <z>)
(block tcolor <z> tname <block>)
—>
(make result tpointer <block>)
(modify 1 tstatus satisfied))

15

4.TheLHS
As Section 3.3 explained, the LHS of a production is everything between the production's name and the

symbol -->. An LHS is a collection of patterns called condition elements.

4.1. The Condition Element
A condition clement is a pattern to match a working memory element; it consists of an open parenthesis,

some number of forms to specify attributes and values, and a close parenthesis. The forms are called

condition element terrm. A condition clement is considered to match a working memory element if every

term in the condition element matches the corresponding part of the working memory element.

4.1.1. Terms

A condition element term can be either

• The operator t followed by an attribute and a specification of a value (OPS5 provides a variety of
ways to specify values in conditiofl elements -- see below)

• The operator t followed by a number and a specification of a value, or

• Just a specification of a value.

4.1.2. The Operator t

The interpreter applies three rules to determine which value in a working memory element a term should

be compared to.

1. If the term contains t and an attribute name or a number, compare the term to die value in the
indicated field in the working memory element.

2. If a term Ta that contains no t is preceded by another term Tp, move to the position immediately
after the position used for Tp, and compare Ta to the value there.

3. If a term that contains no t is not preceded by another term, compare the term to the value in the
first field in the working memory element.

To see how these rules work with vectoi ' attribute-value representaüons, consider the following

condition elements. In these elements, al. :ributes, and vl through v6 arc values.

(vlv2v3)
(v4tal v5 ta2 v6)

In the first condition element, by Rule 3, when vl is processed it will be compared to the first value in the

working memory clement. By Rule 2, v2 will be compared to the second value, and by the same rule, v3 will

be compared to the third value. Thus the rules cause vector style condition elements to be processed

17

correctly. In the second condiiioa clement, by Rule 3, v4 will be compared to the first value in the working

memory clement. By Rule 1, v5 will be compared to the value in the field for al, and by the same ailc, v6 will

be compared to the value in the field for a2. Thus the rules also cause attribute-value style condition elements

to be processed properly.

4.1.3. Values

The values in condition element terms can be specified as constants or by using the pattern operators

provided by OPS5.

4.1.3.1. Constants

Symbolic atoms and numbers may occur in condition elements as well as in working memory elements. A

symbolic atom in a condition element matches a symbolic atom in a working memory element if the

sequences of characters composing the two elements are identical. A number in a condition element matches

a number in a working memory element if the algebraic difference of the two is zero.

4.1.3.2. Variables

A variable in OPS5 is any symbolic atom whose first character is < and whose final character is >; for

example, <x> or <status>. A variable will match any symbolic atom or number, but if a variable occurs

more than once in an LHS, all occurrences must match the same value. A variable is said to be bound to the

value it matches.

4.1.3.3. Disjunctions

The brackets « and » specify that any of the contained values is acceptable as a match. Thus the

following

« nil 17 »

will match either nil or 17.

These brackets implicitly quote the symbols that they contain. Thus the following

« <x> <y> »

would match not the binding of <x> or <y>, but rather the symbols <x> or <y>. The brackets will also

quote t and all the pattern operators that are described below.

4.1.3.4. The Operator//

The piefix operator //is used to quote single symbols in condition elements. For example, to match the

symbol <x> rather than tlie binding of the variable <x>, the following is used.

// <x>

18

For another example, to match the symbol // the following is used

// //

This operator can also be used to quote t, the brackets « and ». and the other operators defined below.

4.1.3.5. Predicates

OFS5 has seven prefix operators called predicates wh .h arc used with constants and variables. The

predicates are
■

<>
<=>
<
<-
>-
>

The first occurrence of a variable cannot be preceded by any predicate other than «. (This restriction is

necessary because the first occurrence of the variable establishes the binding for the variable.)

The predicate <> is the not-equal predicate. If vail is a variable or constant,

<> vail

will match any value except the values that are matched by

vail

The predicate ■ is provided only for completeness; if val2 is a constant or variable

■ val2

is exactly equivalent to

val2

The predicate < = > is the same type predicate. If val3 is a number or a variable bound to a number,

<=> val3

will match any number. If val4 is a symbolic atom or a variable bound to a symbolic atom,

<=> val4

will match any symbolic atom.

The remaining predicates, <, <=, >=, and > are used only with numbers and with variables that are bound

to numbers. They match, respectively, numbers that are less than, less than or equal to, greater than or equal

to, or greater than the value in the condition element term. For example,

< 0

will match any negative number.

19

4.1.3.6. Conjunctions

The braces { and } are used to indicate that a value in a working memory clement must match several

things simultaneously. For example, to indicate that a value must be greater Üian zero, but less than ten, the

following would be used.

{> 0 < 10}

Braces may contain constants, variables, either of these preceded by predicates, the operator //, and die

brackets « and ».

Braces are often used with variables. The braces allow specifying some restrictions on a value and binding

a variable to the value that meets the restrictions. For example,

{«abed» <x>>

Will match a, b, c, or d and bind the value that is matched to <x>. As another example,

{<y> <> <x>>

will match anything that is not equal to the current binding of <x> and bind the value that is matched to <y>.

As a limiting case, empty braces place no restrictions on die value matched. Thus they can be used as place

holders in a condition element For example, the condition element

(<x> {} <x>)

will match any working memory element whose first and third values are equal, regardless of what the second

value is.

4.2. The LHS as a Whole
The condition elements in an LHS may be negated or not, and the non-negated condition elements may

have variables bound to them.

4.2,1. Negated and Non-negated Condition Elements

A condition element may be negated by preceding it with die operator -. An LHS consists of one non-

negated condition element followed by zero or more negated or non-negated condition elements. An LHS is

saüsfied when

• There exist working memory elements that match all the non-negated condition elements, and

• There exist no working memory elements that match the negated condition elements.

Thus if PI, P2, and P3 are condition elements, the LHS

PI P2 -P3

is saüsfied only when working memory contains something matching PI, something matching P2, and

20

nothing matching P3.

4.2.2. Element Variables

A variable may be bound to the working memory element that matches a rvn-ncgatcd condition element

through the use of the {} braces. The condition element and the variable are placed inside the braces; for

example

{ <c2> (block tcolop <z>) >

or

{ (block tcolop <2>) <c2> }

These two lines are exactly equivalent.

These variables, which are called element variables, are not treated like the other variables. A given

element variable can appear only once in an LHS. Thus element variables can only be bound on the LHS;

they cannot be tested. An LHS may contain both an ordinary variable and an element variable with the same

name; OPS5 will not confuse the two since the contexts they occur in are distinct.

4.2.3. Length of an LHS

On the LISP-based interpreters, LHSs can contain arbitrarily many negated and non-negated condition

elements. On the RLISS-based interpreter, there is a limit of sixteen non-negated condition elements per

LHS. There is no limit on the number of negated condition elements an LHS may contain, however.

21

■MMM I

S.TheRHS
The RHS of a production is everything in the production after the -->. The RHS consists of an

unconditional sequence of commands called actions. An action consists of an open parenthesis, the action

type, the arguments to the action, and a close parenthesis. The actions in die production in Section 1.3 are

(make result tpointer <b1ock>)
(modify 1 tstatus satisfied)

The action types here are make and modify; everything else constitutes the arguments to die actions.

OPS5 provides twelve action types: make, remove, and modify to change working memory;

openfile, closefile, and default to manipulate files; write to output information; bind and

cbind to assign values to variables; cal 1 to call user-written subroutines; halt to cause the interpreter to

stop firing piaductions; and bui Id to add productions to production memory. Sections 5.1 and 5.2 explain

how the argiuncnts to these actions are evaluated. Section 5.3 describes the actions.

5.1 Element Designators
Some of the actions and functions in OPS5 refer to working memory elements. Working memory elements

may be designated either by number or by use of element variables (see Section 4.2.2). If an element variable

is used, it refers to the working memory element that it was bound to in the LHS. (Element variables can be

bound explicitly in the RHS -- sec Section 5.3.11. If the variable has been given an explicit binding, that

binding is used.) If a number K is used, it refers to the element matching the Kth non-negated condition

element in the LHS. It is important to note that the interpreter does not count negated condition elements

when it is evaluating a numeric element designator. Thus in the RHS of the following production

(P 8X1
(...)

" (...)
{(...) <c>}

"> ...)

The element variable <c> and the numeric element designator 2 both refer to the same working memory

element -- the one matching the last condition element in the LHS.

5.2. Patterns

Many of the RHS actions take patterns like condition elements as arguments. The make action, which is

described in Section 5.3.1, is typical; its only argument is a pattern. For instance,

(make block tname blockl tcolor red tmass 500 tlength 100
twidth 100 theight 100)

When the interpreter evaluates a pattern in the RHS, it instantiates the pattern into an element by replacing

variables with the values they are bound to, supplying default values for unspecified parts of the clement, etc.

23

-';'a,t''■""""'" '•—""-■ - . L_ ...__ *i ■

The elemeiit üiat rcsulLs does not necessarily get put into working memory. Some of the actions put the

element in working memory; some use it for other purposes and then delete it. The clement that is built is

called the result element.

5.2.1. Terms

AK RHS pattern, like a condition element, consists of a sequence of terms. An RHS term can be

• The operator t followed by an atLibute and a sp deification of a value,

• The operator t followed by a number and a specification of a value,

• The operator t followed by a variable and a specification of a value (this is not allowed in the
LHS), or

• Just a specification of a value.

5.2.2. Evaluating Terms

In outline, the process of instantiating a pattern is

1. Fill the result element entirely with nil.

2. Evaluate each term in the pattern in order from left to right, changing the result element as the
term indicates.

5.13. The Operator t

The interpreter uses three rules to determine which position in the result element a term refers to.1

• If a term contains t and an attribute name or a number, move to the indicated field and change its
value as the term specifies.

• If a term Ta that does not contain t is preceded by another term Tp, move to the position
immediately after the position used for Tp and change its value as Ta specifies.

• If a term that does not contain t is not preceded by any other term, change the first field in the
result element as the term specifies.

4 Tiese rules are like the ones used in processing patterns in the LHS. See section 4.1.2.

24

in IT 'mi iiiiMilHnriflitiiiiin'i IJilMllliiMllltiiiilMiii I'H in ■-But^ -1i'i n rmiiiiiiiiiiBiiiiiliititiiiMitliiiilrii

 -w.—.. —..—, —>.-,„■».—„ . , J

5.2.4. Constants

Symbolic atoms and numbers arc copied into the result clement without change. Thus if
(make ... t4 nil 1-5 0 ...)

is evaluated, position 4 of the element is set to n 11, and position 5 to 0.

5.2.5. Variables

When a variable in an RHS pattern is evaluated, the binding of the variable is cop.ed into ehe result

element Thus if <x> is bound to nil, when the following is evaluated

(make ... t6 <x> ...)

position 6 of the element is given the value nil.

5.2.6. The Operator//

The symbol // is used to keep symbols from being evaluated. If sym is any symbol,
// sym

causes sym to be placed directly into the result element. Thus if

(make ... t7 // t ts // <2> t9 // // ...)

is evaluated, position 7 is given the value t. position 8 is given the value <z>, and position 9 is given die value
//.

5.2.7. RHS Functions

An RHS function is a subroutine that puts one or more values into the result element. The syntax of an

RHS ftmctu.n call is like the syntax of an acüon: an open parenthesis, the name of the function, the

arguments to the function if any, and a close parenthesis.

5.2.7.1. substr

The function substr extracts a sequence of values from an existing working memory element and puts

the values in the result element. The function takes three arguments. The first argument is an element

designator. (See Section 5.1.) This argument indicates which working memory element is to be examined to

get the values. The second argument should be an integer, an attribute name, or a variable that is bound to an

integer or attribute name. This argument indicates the first value that is to be extracted. The third argument

should be an integer, an attribute name, a variable that is bound .0 an integer or attribute name, or the symbol

Inf. This argument indicates the final value to extract. For example, if <w> is bound to (a b c d 9).
then evaluating

(make ... tio (substr <w> 3 3) ...)

will cause the atom c to be copied into position 10 of the result element. When more than one value is

25

 ■ M IM I ^

extracted, the values arc placed in contiguüiis fields in die element; thus

(make ... til (substr <w> 2 4) ...)

will cause b to be copied into position 11, c to be copied into position 12, and d to be copied into position 13.

The special symbol inf indicates that substr is to continue tak.ng values unül it reaches the end of the

element it is extracting them from. Thus

(make ... ti4 (substr <w> 4 inf) ...)

will copy d into position 14 and e into position 15.

The function substr can be used to extract information from attribute-value elements, but it should be

used carefully. It is legal to call substr to copy all the values in a certain range -- for example, to use

(substr 3 status object)

to copy all the values from the value of status to the value of object -- but this is a questionable practice.

If the interpreter assigns numbers to attributes, the positions of status and object may vary from run to

run; in fart, on some runs status may come after object. There are two safe uses of substr with

attribute-value elements however. The first is to extract the value of a particular attribute. If the same

attribute name is used for the second and third arguments, substr will return just the value ofthat attribute.

Fo-- example, the following would be used to copy the from value of one element into the to field of

another.

(make ... no (substr <x> from from) ...)

The other safe use with attribute-value elements is copying an entire element. For example, executing

(make ... tl (substr <z> 1 1nf) ...)

copies all the values of elemen <z> into the corresponding fields of the result element

5.2.7.2. genalom

The function gen atom creates a new symbolic atom and puts it in the result element. This function takes

no arguments, so a call on it always has the form (genatom).

5.2.7.3. compute

The function compute evaluates arithmeüc expressions. The expressions can contain five operators, +, -,

*, //, and \\, which denote respectively addition, subtraction, multiplication, division, and modulus.

Standard infix notadon is used, but operator precedence is not used; compute evaluates the operators from

right to left. Parentheses can be used to override the right to left evaluation. Only numbers and variables that

are bound to numbers can be used in the expressions. Typical calls on compute include

(compute <x> + 1)
(compute (• <!3>) - 4 • <a> * <c>)

26

■

5.2.7.4. liival

The function Htval puts into the result element the number which has been assigned to an attribute

name. That is, if a is an attribute name, then (11 tval a) determines the number of the field that is used

for attribute a and puts die number into the result element. The ainction takes one argument, which

normally is an attribute name or a variable which is bound to an attribute name. The function will also accept

numbers or variables bound to numbers; when it is called widi such an argument, it returns the number.

5.2.7.5. accept

The function accept takes input from the user and puts it into the result element. The function takes

either one or zero arguments. If it has an argument, the argument must be a symbolic atom or a variable that

is bound to a symbolic atom. The following are legal calls on accept

(accept)
(accept Inflle)
(accept <x>)

If accept is called with no arguments, it takes its input from the curreiit default input stream. (See Section

5.3.6.) If it is called with an argument, accept takes its input from the file that has been associated with the

atom. (See Section 5.3.4.)

The function will read either a single atom or a list. When it reads a list, it strips the parentheses from the

list and puts the atoms of the list into the result element. The interpreter determines whether it is to read a list

or a single atom by inspecting the first printing character in the input If the interpreter encounters (, it

expects to read a list, so it does not stop reading until it reaches). If it encounters any other printing

character, it reads only one atom.

If accept is asked to read beyond the end of a file, it puts die atom end-of-f i le in the result element

In the LISP-based interpreters, if the end of the file is reached while a list is being read, a LISP error will

occur.

5.2.7.6. acceptline

The function accept! in^ is also used to read input The difference between accept and accept"! 1ne

is that the latter always reads exacdy one line of input. The function reads everything on thr line, removes

any parentheses that are there, and puts the atoms into the result element

This function takes any number of arguments. If the first argument is associated with an input file (see

Section 5.3.4) accept! 1ne takes the inpi. from that file; otherwise, it takes the input from the current

default input stream (see Section 5.3.6). The rest of the arguments are used when a null line is read or when

accept! i ne tries to read beyond theend of a file. A null line is a line that contains no characters other than

27

. i

spaces and uibs. When acceptl i ne encounters a null line or the end of a file, it puts its arguments into the

result clement. (If the first argument is not the name of a file, it; put in the result clement along with the

other arguments.) Thus when the function

(acceptline nothing read)

is evaluated, the interpreter will read the default input (assuming that nothing is not associated to a file) and

then put into the result element eiüicr one line of input or tlic two atoms nothing and read.

5.3. Actions
The actions in OPS5 are make, remove, modify, openf lie, closef He, default, write, call,

halt, bind, cblnd, and build.

5.3.1. make

The action make creates new elements and adds them to working memory. The argument to make is an

RHS pattern; it is evaluated as described in Section 5.2. A typical example of a make action is

(make result tpolnter <block>)

If <block> was bound to blockl, this action would add to working memory the element

(result tpolnter blockl)

A bigger example of make was shown before:

(make block
tname blockl
tcolor red
tmass 600
tlength 100
twidth 100
thelght 100)

which puts into working memory the element

(block
tname bloc 1
tcolor red
tmass 500
tlength 100
twidth 100
thelght 100)

5.3.2. remove

The action remove is used to delete elements from working memory. Any number of arguments may be

given to remove; the arguments must be element designators. When the action is executed, the indicated

working memory elements arc deleted from working memory A typical call on remove is

(remove 1 <c3>)

28

illiiiriilniiiiiM«imBil*MiMim--'W~iir

5.3.2.1. Element Designators and remove

Deleting working memory elements docs not change the bindings of element variables or of numeric

element designators. Thus in the following RHS, the two calls on substr return the same value, even

though element <c> is deleted between the two calls.

(... -->
(make ... (substr <c> 5 10))
(remove <c>)
(make ... (substr <c> 5 10)))

5.3.2.2. Multiple remove's of an Element

It is legal to call remove with the same argument more dian once in an RHS. When the imerpieter

encounters this situation, it executes the first remove and then ignores the rest.

5.3.3. modify

The action modify is used to change one or more values in an existing working memory element. It takes

as arguments a condition element designator and an RHS pattern. It removes the old form of the designated

element from working memory, changes it as the pattern specifies, and then puts it back into working

memory. For example, when the mod i f y in the following production executes

(p find-colored-block
(goal tstatus active ttype find tobject block

tcolor <z>)
(block tcolor <z> tname <block>)
—>
(make result tpointer <block>)
(modify 1 tstatus satisfied);

it deletes the element that matched the first condition element -- say

(goal tstatus active ttype find tobject block tcolor red)

and replaces it with a similar element

(goal tstatus satisfied ttype find tobject block tcolor red)

It is possible to change more than one value in a modify action. The following, for example, is a legal

action

(modify 3 tstatus followed tvalue <response> tid <newid>)

The action modify is defined to be equivalent to a remove followed by a make. The action

(modify designator pattern)

does precisely what the two actions

(remove designator)
(make (substr designator 1 inf) pattern)

29

~ - •

-———^——^^

would dor Thus the action

(modify 3 tstatus followed tvalue <response> t1d <new1d>)

is equivalent to

(remove 3)
(make (substr 3 1 1nf) tstatus followed tvalue <response>

tid <new1d>)

5.3.3.1. Element Designators and modify

Modifying elements does not change the bindings of element variables or of numeric element designators.

Thus in the following RHS, the two calls on substr both return the same result

(... -->
(make ... (substr <c> 5 10))
(modify <c> t? nil)
(make ... (substr <c> 5 10)))

5.3.3.2. Multiple modify's of an Element

It is legal to modify an clement more than once in an RHS. That is, an RHS like the following is legal.

(... -->
(modify <x> t2 0)
(modify <x> t2 1))

To understand what happens in this case, recall that modify is defined to be equivalent to a remove

followed by a make. Thus this RHS is equivalent to

(... -->
(remove <x>)
(make (substr <x> 1 Inf) t2 0)
(remove <x>)
(make (substr <x> 1 1nf) t2 1))

As explained in the previous section, the binding of <x> remains unchanged while the RHS executes. Thus

the two calls on make produce two elements that are identical except for their second subelements. As

explained in Section 5.3.2, if remove is called more than once with the same argument, the second and later

calls have no effect. Thus the second remove here is a no op. In short then, the two calls on modify result

in the original element being deleted from working memory and replaced by two slightly different copies.

5.3.4. openfile

The action openf 1 le is used to open files and associate names with the files. The action takes an RHS

pattern as its argument. After the pattern is evaluated, the first three fields in the result clement should

contain values. The first value should be a symbolic atom: this is the name that the production system will

use to refer to the file. The second value should be a valid file name for the system on which OPS5 is being

'If the pattern does not begin with the operator t, then it is necessary to put tl between the suöstr and the pattern in make.

30

i a I ^^H<«V

'

run. The chW value should be cü.cr 1n „r out; lhls value indicalcs .hclhcr (ho lllc Is u, be „penej for

input or output. A typical use of outf He is

(openfUe tracefHe |trace.rll| out)

This opens the file trace. Pll for output and associates the name tracef ile with the open file.

The atom nil cannot be used as the first argument to openf i 1e. This atom is used to refer to the user's
terminal (see Section 5.3.6).

5.3.5. closefile

The action closef He is used to close files that have been opened with openf lie. This action takes an

RHS pattern as its argument. The pattern should evaluate to one or more symbolic atoms. These atoms

should be names which have been associated with files by openf He. When closefile is executed the

operating system is called to close the files and the associations between the names and the files are removed.

Thus to close the file that was opened in the example above, the following would be executed
(closefile traceflle)

It is important that output files be closed before the OPS5 intcpreter is exited. On some systems, the files
will be lost if they are not closed.

5.3.6. default

The action default is used to control where write and the trace routines prirtt their information and

where accept and acceptl 1ne read their information. This action takes an RHS pattern as its argument

After the pattern is evaluated, the first two positions in the result element should contain values. Tne first

position should contain either nil or a symbolic atom that has been associated with a file bv openf ile

The second position should contain either trace, write, or accept; the value in this position detennines

which default is being set. (The atom acceptl ine is not a valid value for the second position-

acceptl ine reads from the same default file as accept.) As an example of its use, to make the file that

was opened in the example in Section 5.3.4 be the default for trace information, the following would be
executed.

(default tracefile trace)

If the second argument to default is ni 1, then the default is set to the user's terminal. TTius to undo the

effects of the previous call to default, the following would be used

(default nil trace)

31

•

-— 1 ^mmmmmm— ■ ^ .-_ . _. .., —. _ -„„„„r^,^™.,,,,.,,,,, ^ ipuji JIMIJJ ™„_^-™~_-m „_

5.3.7. write
The action write is used to output information from the production system. The action takes an RHS

pattern as its argument. It instantiates the pattern and then pnnts the values in the result element on the

user's terminal or a file. (Thus the pattern should be in vector format; if it is in attribute-value format, the

information will come out in a jumbled order that depends on the assignment of numbers to attribute names.)

If the value in the first field of the result element has been associated with an output file by ope nf 11 e, the

information will be wriaen to that file. If the value has not been associated to an output file, the information

will be written to the current default sueam for write. The value in the first pa aion is not prmted if it is a

file specifier.

As explained in the following sections, the user can specify printer control information in write. When

iBformation is not supplied, write prints its values on the current output line, putting one space between

values.

5 3 7.1. Special Functions for write
Three functions, crlf. tabto, and rjust are provided for use with write. It is possible to call these

functions within make, mod 1 f y, or other action, but this is not recommended.

In some implementations of the OPS5 interpreter these functions place only a single value into the result

element; in other implementauons they place two. Nonetheless, producuon systems will always give the same

results provided the operator t is not used in wrl te.

5.3.7.2. crlf
The function crlf puts into the result element a value that will cause write to begin a new line when it

encounters the atom. The function takes no arguments, so a call on it has the form (crlf). As an example

of its use, the following action
(write (crlf) a b c (crlf) (crlf) d e f)

will cause the interpreter to begin a new line, print a b c, skip a line (by executing the operation to begin a

new line twice), and then print d e f. Thus the output is

a b c

d e f

32

i ■ ■ —

5.3.7.3. lablo

The function tabto places values into the result element that cause the write action to move to a

specified column. The function takes one argument, the column number. The argument must be a numeric

atom or a variable that is bound to a numeric atom. Typical calls on tabto are

(tabto 30)
(tabto <x>)

If the specified column is to the left of the last column printed, a new line is begun. Thus the action

(write (crlf) (tabto 5) • (tabto 3) • (tabto 1) ♦)

would print

The action

(write (crlf) (tabto 1) ♦ (tabto 3) • (tabto 6) •)

would print
• • •

5.3.7.4. rjust

The function rjust is usH to print values flush-right in fields of specified widths. The function takes one

argument, an indication of the width of the field. The argument must be a numeric atom or a variable that

evaluates to a numeric atom. When the action is evaluated it places print-control information in the result

element. When write processes the information, it allocates a field of the indicated width beginning at the

next available position on the output line. Then write determines the number of characters that the next

value to be printed will need and prints enough blanks to cause the value to be right justified in the field.

Thus the action

(write (crlf) (tabto 10) (rjust 10) abc)

will cause a to be printed in column 18, b in column 19, and c in column 20. This action is equivalent to

(write (crlf) (tabto 18) abc)

If the value to be printed is wider than the field, wri te reverts to the normal mode of printing. That is, it

prints a single space and then the value.

The action must immediately precede a printable value. That is, it must not precede a call on crlf,

tabto, or rjust. However, it is legal for rjust to follow crlf or tabto.

33

■ ■ ■■■.■

^^^... .

I

5.3.8. call

The action cal 1 is used to call subroutines written by the user. The action takes as arguments the name of

a subroutine and an RHS pattern. It instantiates the pattern and then calls the subroutine. The subroutine

can interrogate the OPS5 interpreter to determine what information is in the result element. (See Section 7

for more information about the interaction between OPS5 and the subroutine.)

5.3.9. halt

The action ha 11 sets an internal flag in the interpreter that causes the interpreter to stop firing productions

after completing the recognize-act cycle in progress. The action takes no arguments; a call on ha It always

takes the following form.

(halt)

5.3.10. bind

The action bind is used to assign values to variables. There are two forms of calls on bind. In the more

general form b1 nd is given two arguments: a variable and an RHS pattern. It. evaluates the pattern and then

assigns to the variable the value that is in position 1 of the result element. For example, to add i to the

binding of <x>) the following would be executed.

(bind <x> (compute <x> + 1))

In the other form of bind, the action is given only one argument -- the variable to be bound. When this

action is executed, a new symbolic atom is created and assigned to the variable. Thus the action

(bind <2>)

is equivalent to

(bind <z> (genatom))

5.3.11. cbind

The action cbind is used to assign values to element variables. The action takes only one argument, the

variable. A typical call is

(cbind <c>)

The variable is bound to the last element that was added to working memory (by make, modify, or

infrequently call). The result of executing cb 1 nd before the RHS has added an element is undefined.

5.3.12. build

The action bulld is supported only by the LISP-bascd interpreters for OPS5. Tins action is used to add a

new production to production memory while the system is executing. Because some of the variables, actions,

and functions in the argument to build are meant to be evaluated when the action is performed, while

34

——•^■^^■»M

others arc meant to be incorporated as they arc in the new production, build cannot use the ordinary OPS5

argument evaluation mechanism. Instead, when bu11 d is evaluated, all its arguments arc treated as constants

unless the / arc preceded by die special unquote operator, \\. The arguments to bull d should evaluate to a

symbolic atom (the production's name), a sequence of condition elements, the atom -->, and a sequence of
actions.

35

'i JiiHWiiimiiywPWiww11 MI-IMHW«™ «n j, II« immmm m

6. The Recognize-Act Cycle
By convention, the steps in the recognize-act cycle are usually said to occur in the following order:

1. [Match] Evaluate the l.HSs of the productions to determine which are satisfied given the current

contents of working memory.

2. [Conflict Resolution! Select one production with a satisfied LHS. If no productions have satisfied

LHSs, return control to the user.

3. [Act] Perform the actions specified in the RHS of the selected production.

4. If a halt action was performed, return control to the user: otherwise go to step 1.

In the OPS5 interpreter, the cycle has been changed to:

1. [Conflict Resolution] Select one production with a satisfied LHS. If no productions have satisfied

LHSs, return control to the user.

2. [Act] Perform the actions specified in the RHS of the selected production.

1 [Match] Evaluate the LHSs of the productions to determine which are satisfied given the current

contents of working memory.

4. If a halt action was performed, return control to the user; otherwise go to step 1.

The OPS5 cycle is more convenient for the user because when the cycle ends, the conflict set is consistent with

the current contents of working memory.

6.1. Conflict Resolution
The output of the match process, and the input to conflict resolution, is a set called the conflict set. The

objects in the conflict set are called instantiations. An instantiation is an ordered pair of a production name

and a list of working memory elements satisfying the producüon's LHS. During conflict resolution the

interpreter examines the conflict set to find an instantiation which dominates all the others under the ordering

rules listed below. The dominant instantiation will be executed in the act phase of the cycle.

A set of ordering rules for instantiations is called a conflict resolution strategy. OPS5 provides two

strategies called LEX and ME A. Although these strategies are rather complex to describe, what they achieve

is simple:

• Both stratesies prevent instantiations from executing more than once. Early production systems
were subject to trivial loops in which the interpreter fired a production on the same data
indefinitely. The OPS5 strategies contain a mechanism to prevent these loops.

• They make production systems attend to the most recent data in working memory. This makes

37

IJIiiBMlMiMllilMlilMmM

■ ■ ^1

production systems easier to program because direction is given to the system's processing; once
the system begins a subtask it is unlikely to be distracted by anything left over from earlier tasks.
The difference between LEX and MEA is that MHA makes the system more sensitive to recent
tasks. With the MHA strategy, the system cannot be distracted from its current task.

• They give preference to productions with more specific LHSs. Since productions with more
specific LHSs are satisfied in fewer cases, they arc more likely to be appropriate for those cases in
which they are satisfied. More specific productions are therefore chosen when diey are available.

These three things are important because they make it easy to add productions to an existing set and have the

new productions fire at the right time, and because they make it easy to simulate common control constructs

such as loops and subroutine calls. See [8] for a defense of these assertions.

6.1.1. The LEX Strategy

The LEX conflict resolution strategy contains four rules which arc applied in order to find the instantiation

that dominates under them.

1. Discard from the conflict set the instantiations that have already fired. If there are no
instantiations that have not fired, conflict resolution fails and no instantiation is selocted.

2. Order the instantiations on the basis of the recency of the working memory elements, using the
following algorithm to compare pairs of instantiations: First compare the most recent elements
from the two instantiations. If one element is mce recent than the other, the instantiation
containing that element dominates. If the two elements are equally recent, compare die second
most recent elements from the instantiations. Continue in this manner either until one element of
one instantiation is found to be more recent than the corresponding element in the other
instantiation, or until no elements remain for one instantiation. If one instantiation is exhausted
before the other, the instantiation not exhausted dominates; if the two instantiations are exhausted
at the same time, neither dominates.

3. If no one instantiation dominates all the others under the previous rule, compare the dominant
instantiations on the basis of the specificity of the LHSs of the productions. Count the number of
tests (for constants and variables) that have to be made in finding an instantiation for the LHS.
The LHSs that require more tests dominate.

4. If no single instantiation dominates after the previous rule, make an arbitrary selection of the
dominant instantiation.

6.1.2. The MEA Strategy

The MEA strategy differs from LEX in that another rule has been added after the first. The rule that was

second had to be modified slightly to accommodate the new rule. The rules for MEA are;

1. Discard from the conflict set the instantiations that have already fired. If there are no
instantiations that have not fired, conflict resolution fails and no instantiation is selected.

38

T

2. Compare the recencies of the working memory elements matching Die first condition elements of
the instantiations. The instantiations using the most recent working memory elements dominate.

3. Order the instantiations on the basis of the recencies of the remaining working memory elements,
using the following algorithm to compare pairs of instantiations: First compare the most recent
elements from the two instantiations. If one element is more recent than the other, the
instantiation containing that element dominates. If the two elements arc equally recent, compare
the second most recent elements from the instantiations. Continue in this manner either until one
element of one instantiation is found to be more recent than the corresponding element in the
other instantiation, or until no elements remain for one instantiation. If one instantiation is
exhausted before the other, the instantiation not exhausted dominates; if the two instantiations are
exhausted at the same time, neither dominates.

4. If no one instantiation dominates all the others under the previous rule, compare the dominant
instantiations on the basis of the specificity of the LHSs of the productions. Count the number of
tests (for constants and variables) that have to be made in finding an instantiation for the LHS.
The LHSs that require more tests dominate.

5. If no single instantiation dominates after the previous rule, make an arbitrary selection of the
dominant instantiation.

6.1.3. Which Instantiations to Discard

The first rule in both strategies specifies that instantiations that have already fired are to be discarded.

Implementing this rule requires that a precise definitio , of equality for instantiations be chosen; and this in

turn requires that a precise definition of equality for working memory elements be chosen. In OPS5 the latter

is simple: Working memory elements X and Y are equal if they have equal time tags. The former is

somewhat more complex; die definition of equality for instantiations that is used in OPS5 is: Instantiations A

and B are equal if

• A and B are instantiations of the same production,

• A and B contain the same list of working memory elements, and

• If A was in the conflict set at time Ta and B was in the conflict set at time Tb, there is no time Tc
between Ta and Tb such that A and B were not in the conflict set at time Tc.

The last item here probably requires an explanation. It is needed for productions that contain negated

condition elements. It is possible for such a production to be satisfied by some list of working memory

elements (instantiation A), become unsatisfied because sometrung enters working memory that matches the

negated condition element, and then become satisfied again on the original list of elements when the new

element is deleted (instantiation B). The third rule is included so that die production will be able to respond

to these changes by firing a second time.

39

_,——-' - ■ - II11 www- ^™«

6.2. Act
In the act phase of the cycle, the actions in the chosen production are executed one at a time, in the order

they are written. Actions take effect immediately. Hence if an RHS contains several make or modify

actions, the element added by r'jc last action in the RHS is more recent than the elements added by the rest.

6.3. Match
During the match, the interpreter determines e- ry instantiation of every production. That is, it finds every

production that is instantiated, and if any of the productions can be instantiated by more than one list of

working memory elements, it finas every list of elements. It puts the instantiations into the conflict set.

40

hk_ ̂,,........„.....„-.-,..^,^^..,^, - iiiiiitifliiimilii"lli#iaMi'iliai"iriiiiiii

7. User-Defined Actions and Functions
The OPS5 interpreters allow users to write their own actions and functions. The BLISS-based interpreter

will call routines written in BLISS (or any other language that uses the BLISS subroutine calling

conventions); the LISP-based interpreter will call routines written m LISP.

7.1. Declarations
The user's routines must be declared to the interpreter before they are used in an RHS. The syn^x of the

declaration is: an open parenthesis, the atom external, one or more routine names, and a close

parenthesis. Any number of routines may be declared external in one declaration, and any number of

declarations may be made in a production system. Thus to declare min and max, either of the fuilowing

could be used:

(external
min
max)

or

(external min)
(external max)

7.2. Actions
User-defined actions are called, using call, from the RHS of a production or kom the lop level (see

Sections 5.3.8 and 8.1.6). The routine should take no arguments, and it should return no values (if values are

returned they are ignored). All communication between the interpreter and the routine is accomplished

through use of ^ i functions described below.

7.2.1. Sparameter

The second argument to the cal 1 action is an RHS pattern, which is instantiated into the result element

before the user's routine is called. The function Sparameter allows the routine to read values out of the

element. The function takes one argument, an integer; when it is called with the argument K, it returns the

value in the Kth field in the ei rent. Thus to get the first value in the element, a routine written in LISP

would execute

(Sparameter 1)

and an action written in BLISS would execute

$parameter(l)

Following the usual OPS5 convention, when Sparameter is called to access a field that was not explicitly

given a value, it returns nil. It is considered an error, however, to access a non-existent field (i.e., to use an

41

 ^ mm^i i JÄE&'-fl

index less than 1 or greater than 127).

7.2.2. Sparametcrcount

The function Sparametercount returns an integer; the integer is the number of the last field in the

result elerr.ent that received a value. Thus if the cal 1 did not contain the operator t, this function indicates

how many values were put into the resu't element. (Generally, t is not used with cal 1.) The function takes

no arguments.

7.2.3. Sassert

Some of the actions written by users add elements to working memory. The actions put an element in

working memory by clearing the result element (see Section 7.2.6), putting the new values in the result

element (see Sections 7.2.5 and 7.2.4), and then executing the function Sassert. The function Sassert

copies the result element into working nemory. After it is copied into working memory, the result element

can be cleared again and another co'lection of values assembled there. The function Sassert takes no

arguments.

7.2.4. Stab

The function Stab controls where the next value will be placed in the result element. This function takes

one argument, which should be either an integer or a symbolic atom which has been assigned an integer in a

1 iteralize or 1 Iteral declaration. When Stab is executed it informs the interpreter that the next value

put into the result element should go into die indicated field.

7.2.5. Svalue

The function Svalue is used to put one symbolic atom or number into the result element. It is called with

one argument, the value to put in. If no Stab has been executed since the last call on Svalue, it puts the

value in the field just after the one used on the previous call. If Stab has been executed since the last call on

Svalue, it puts the value in the field Jiat Stab designated. If no calls on either Stab or Svalue have been

made since the result element was cleared, the value is placed in the first field. (These rules for deciding

where to put values are equivalent to the rules used for terms in the RHS -- see Section 5.2.3.)

7.2.6. Sreset

The function Sreset is used to remove the information currently in the result element. This function

takes no arguments. It should be noted that Sassert does not automatically perrbrm a Sreset.

42

,^„^1^1^.^^.^,^.^»^^^. -J.1:;t^.,^,...J-.,^...m.-.^.n-..,^..'—..„>... ■

7.2.7. Sifili; aivl Sofilo

The functions SifHe and Sofila are used to access files that were opened with openfile. The

tiinction $if ile uikes a single argument, which should be a symbolic atom that is associated with an open

file. That is, die atom should have occurred as the first argument to openf lie. If the atom is associated with

a file that is currently open for input, the file is returned. (More precisely, in FRANZ I.ISP, a port is

returned; in MACLISP, a file object is returned; and in BLISS, die address of an XPORT IOB is returned

[2].) If the atom is not associated with a file that is open for inpu a failure signal is returned: in LISP, the

atom nil is returned, and in BLISS, the XPORT value xpo$k_f allure is returned. The function $of He

is identical except that it returns files that are open for output.

7.3. Functions
The syntax of a call on a user-written function is identical to the syntax of a call on a standard function:

The call consists of an open parenthesis, the name of the function, the arguments to the function (if any), and

a close parenthesis.

The conventions for passing arguments to functions are not the same in the LISP- and BLISS-based

interpreters. In the BLISS-based interpreter, the arguments are evaluated (i.e., OPS5 variables are replaced

by their bindings) and then they are passed using the ordinary BLISS parameter passing mechanism. Thus if

the function in the RHS has three parameters, the BLISS routine is called with three arguments. In the LISP-

based interpreter, the arguments arc passed unevaluated. The LISP routine must be a f expr. If the LISP

routine needs the arguments to be evaluated, it calls routines in the interpreter to perform the evaluation.

(See the two sections immediately following.)

RHS functions do not return values using the normal value return mechanism of LISP or BLISS. (If values

an, r:f"rned with the normal mechanism, OPS5 discards them.) Instead, values arc returned using the

function Sval ue described in Section 7.2.5.

7.3.1. Svarbind

The function Svarbind is provided in the LISP-based interpreter to allow RHS functions to evaluate

their arguments. This function takes one argument. If the argument is a bound variable, the binding of the

variable is returned. If the argument is not a bound variable, the argument is returned unchanged.

43

 L ■ - i . : ..._

7.3.2. Slithind

The function $11tb1nd is provided in both the LISP- and BLISS-based interpreters. This function takes

one argument. If the argument has been assigned a number in a 1 "itaral or 1 iteral Ize declaration, the

number is returned. If the argument has ncf been assigned a number, the argument is returned unchanged.

7.4. Atoms
The scalar values in the LISP-based interpreters are ordinary LISP atoms, so user-supplied routines can

process them using the usual LISP f mctions. The scalar values in the BLISS-based interpreters are data types

that are implemented in the OPS5 interpreter, so user-supplied routines must call routines in the interpreter

to process them. The following are the necessary routines.

7.4.1. Seql

An atom in the BLISS-based interpreter is a one word value (32 or 36 bits, depending on the computer

being used). To compare two atoms for equality, the routine Seql is used. The routine takes two

parameters, the atoms to compare. It returns a true value if the atoms are the same type and

• They are symbolic atoms that consist of the same string of characters, or

• They are numeric atoms whose algebraic difference is zero.

7.4.2. Ssymboi

The routine Ssymboi is used to test the type of atoms. It takes a single parameter, the atom to test. The

routine returns a true value if the atom is a symbolic atom, and a false value if it is a numeric atom.

7.4.3. Sintern

The routine $ ■vern is used to convert a string of characters into a symbolic atom. It takes two

parameters, a BLISS character string pointer and a count of the number of characters in the string. It returns

the symbolic atom that represents the string.

7.4.4. Sevan and Scvna

The routines Sevan and Scvna are used to convert between numeric atoms and ordinary BLISS integers.

Both routines take a single parameter. The routine Sevan takes an atom as its parameter and returns an

ordinary integer. The routine Scvna takes an ordinary number and returns a numeric atom.

44

8. Using the 0PS5 Interpreter
This section explains how to load a production system into the interpreter and how to run die production

system after it is loaded.

8.1. The Top Level

After OPS5 is installed on a system, it is invoked as any other program on die system is. When the

interpreter starts, it begins executing the top level routine. When the production system stops executing for

any reason, the interpreter returns to the top level routine. This routine allows the user to add productions to

production memory (in LISP only), to put elements into working memory, to inspect the state of the

production system, to start the production system executing, etc. The top level routine is

1. Read a command from the user.

2. Execute the command.

3. Goto 1.

The following sections describe the commands that the OPS5 interpreter supports.3

The syntax of all commands is the same: A command consists of an open parenthesis, the name of the

command, the arguments to the command if any, and a close parenthesis. On the BLISS-based interpreter, if

the command docs not have arguments, the parentheses may be omitted. The commands are free format; end

of line is treated like a space.

8.1.1. make

The action make can be executed at the top level as well as in a production's RHS. If the user types
(make start)

the element

(start)

will be created and placed into working memory. At the top level, make will not accept variables, the

operator //, or functions as arguments. Constant symbols and numbers, t. and literalized atoms are

acceptable as arguments.

When make is executed, the match process is performed, and the conflict set is updated.

3The OPS5 interpreters that arc written in LISP use the normal LISP top level. THus in these mtefprctens the user can execute any
USP command. However, the intorprcter written in BLISS accepts only the commands listed here.

45

 ■^■^- ^ ■ ■ . .

8.1.2. remove
The action remove may also be executed at the top level. However, since variables cannot be used at the

top level, remove uses a different method to designate the elements to delete. If the user types

(remove •)
the interpreter deletes everything from working memory. If the user gives one or more numbers a.

arguments, die cements having those time tags are deleted. Thus typing

(remove 117 118)

will cause elements with time tags 117 and 118 to be deleted.

When remove is executed, the match process is performed, and the conflict set is updated.

8.1.3. openfile
The action openf i le may be executed at the top level as well as in the RHS of a production. It has the

same effect as openfile in the RHS. When called at the top level, its argument should not contain

variables, the operator //, or function calls.

8.1.4. closefile
The action cl osef 11 e may be executed at the top level as well as in the RHS of a production. It has the

same effect as closefile in the RHS. When called at the top level, its argument should not contain

variables, the operator //, or function calls.

8.1.5. default
The action def aul t may be executed at the top level as well as in the RHS of a production. It has the

same effect as def aul t in the RHS. When called at the top level, its argument should not contain variables,

the operator //, or function calls.

8.1.6. call
The action cal 1 can also be used at the top level. Like the RHS command cal 1 (see Section 5.3.8) this

command is used to invoke user-defined subroutines. Its arguments should be a routine name and an

optional pattern like the patterns given to make at the top level. The pattern should not contain variables, the

operator //, or function calls. The interpreter instantiates the pattern and invokes the routine. The routine

must have been declared external.

46

8.1.7. run

The command run causes the interpreter to execute a production system. If the user types

(run)

the production system is allowed to execute until it halts or a breakpoint is reached (sec Section 8.1.15). If the

user gives a numeric argument to run the interpreter will automatically halt after that many cycles. Thus

entering

(run 100)

will cause the interpreter to run 100 cycles and halt. (Of course, the system may not execute the full 100

cycles, because the conflict set may become empty, a production may execute the hal t action, etc.)

8.1.8. ppwm

The command ppwm is one of two commands to print working memory elements. (See also wm, below.)

This command takes a pattern like a condition element; it prints all the elements matching the pattern. For

example

(ppwm goal tstatus active)

will print all the active goals. When ppwm is called with a null pattern, as in

(ppwm)

it prints every element in working memory. The pattern can contain constant symbols and numbers, the

operator t, and literalized atoms. It should not contain variables, predicates, the operator //, or the two

kinds of brackets ({ } and « »).

8.1.9. wm

The command wm, like ppwm. is a command to print working memory elements. It differs from ppwm in

the kind of arguments it takes. This command takes a list of time tags and prints the elements with those time

tags. It is useflil because some of the other OPS5 commands print time tags rather than working memory

elements to save space; wm is used to expand the time tags into the elements they represent. Thus

(wm 5 6 7)

causes the interpreter to print the three elements whose time tags are 5, 6, and 7. When wm is given with no

arguments, as in

(wm)

the interpreter prints the entire contents of working memory, as ppwm with no arguments does.

47

8.1.10. pm

The command pm displays producuons on the user's terminal. It is called with one or more production

names, and it prints the productions in a readable format. This command is not supported in the BL1SS-

based interpreter.

8.1.11. cs

The command cs prints the current contents of the conflict set. The command does not accept arguments.

8.1.12. matches

The command matches prints the partial matches for produetions. It is called with one or more

production names as its argument; for example

(matches find-colored-block)

It prints the time tags of the elements matching each condition element of each production; it prints the pairs

of working memory elements matching the first two condition elements; it prints the triples matching the first

three condition elements; and so forth.

8.1.13. strategy

The command strategy prints or sets the conflict resolution strategy being used. If the command is

given with no arguments, as in

(strategy)

it prints the current strategy (it will be either me a or 1 ex). If the command

(strategy mea)

is given, it sets the current strategy to mea. If the command

(strategy lex)

is given, it sets the current strategy to lex. The only legal arguments to strategy are lex and mea.

The default strategy -- that is, the one in effect when the interpreter starts -- is 1 ex.

8.1.14. watch

The command watch controls how much trace information the interpreter prints while it executes a

production system. If the user executes

(watch 0)

the system will print no trace information. If die user executes

(watch 1)

the system will print the name of each production that fires along with a list of the time tags of the elements

48

■"■•——" "^ jM

instantiating the production. If the user executes

(watch 2)

the interpreter will print the information of level 1, and it will print the elements that are added to or deleted

from working memory. If the user executes

(watch 3)

die interpreter will print the information of level 2. and it will print every change to the conflict set when it

happens. Level 3 of tracing is not supported in the LISP-based interpreters. If watch is called with no

arguments, it reports the current trace level.

8.1.15. pbreak

The command pbreak sets and removes breakpoints on the producüons. If a breakpoint is set on a

producdon, the interpreter will halt and return to top level whenever that producdon fires. The producdon is

allowed to execute, but then die recognize-act cycle is exited. Giving the command pbreak with no

arguments causes the interpreter to print the names of the producdons that have breakpoints set. Giving the

command with producdons as arguments, as in

(pbreak rie rl7)

toggles the state of the listed producdons: The producdons that had breaxpoints set have them removed; the

productions that did not have breakpoints have them set.

8.1.16. exit

The command exit causes the interpreter to cease operation and returns the user to the monitor. The

command does not take arguments.

In the BLISS-based interpreter, a control-Z character (ASCII 32 octal) is treated like the ex11 command.

8.1.17. excise

The command excise is used to delete producdons from production memory. When excise is called,

its argument list should contain one or more producdon names.

8.1.18. back

The command back is supported only in the LISP-based interpreters. Phis command causes the

interpreter to restore the production system to an earlier state. The command takes one argument, a number

indicating how many recognize-act cycles to back up. Thus

(back 1)

causes the system to back up 1 cycle. To save space, the interpreter maintains only enough information to

49

■■■■ ■■■.:. .:. :. |
..■^'

back up 32 cycles.

The commands back and run can be intermixed without confusing the interpreter. The following

sequence, for example, is legal.

(run 100)
(back 10)
(run 5)
(back 15)

If no productions have fired before, this will cause the interpreter to perform cycles 1 to i 0, back up to the

state that existed after cycle 90, run for another 5 cycles, and then back up to the state tha' .xistcd after cycle

80.

8.2. Loading a Production System

When the BLISS-based OPS5 interpreter is used, productions are compiled and linked with the interpreter

before the interpreter is started. Thus with this interpreter the system is always ready to run as soon as the

interpreter is started.

With the LISP-based OPS5 interpreter, productions are usually defined after the interpreter is started. (In

fact, unless the user has saved his own core image, production memory will contain no productions when the

interpreter is started.) Productions are defined by typing in the declarations and the productions, by loading

files that contain the declarations and the productions, or both.

50

Appendix I
Syntax of 0PS5

The following is a simplified BNF description of the syntax of OPS5. Terminals are printed in a Roman

type face, and non-terminals are printed in italics. The only nonstandard meta symbol used is the star ("*").

The star indicates that the preceding item is to be repeated zero or more times.

production

Ihs

ce

positive-ce

negalive-ce

form

Ihs-term

Ihs-value

restriction

atomic-value

var-or-constant

predicate

rhs

action

(p constant-symbolic-atom Ihs --> rhs)

positive-ce ce*

positive-ce
negative-ce

form
{ element-variable form }
{ form element-variable }

- form

(Ihs-term*)

t constant-symbolic-atom Ihs-value
t number Ihs-value
Ihs-value

{ restriction* }
restriction

<< any-atom* >>
predicate atomic-value
atomic- value

/1 any-atom
var-or-constant

constant-symbolic-atom
number
variable

<>
<
< =
> =
>
< = >

action*

(make rhs-term*)
(remove elemenhdesignator*)
(modify element-designator rhs-term*)

51

 ' ,

element-designator

rhs-term

rhs-value

function

userdefined-funclion

expression

operator

quoled-form

halt)
bind variable)
bind variable rhs-term*)
c b i n d element-variable)
call constant-symbolic-atom rhs-term*)
write rhs-lenn*)
openfile rhs-lerm*)
closefile rhs-term*)
default rhs-lerm*)
build quoled-form*)

number
element-variable

t var or-constant rhs-value
rhs- value

atomic-value
function

(litval var-or-constant)
(substr element-designator varorconstant varor-constant)
(genatom)
(crlf)
(rjust varorconstant)
(tab to var-or-constant)
(accept)
(accept var or constant)
{ accept! ine var-orconstant*)
(compute expression)
user-defined-function

(constant-symbolic-atom var-orconstant*)

number
variable
expression operator expression
(expression)

//
\\

\\ rhs-value
any-atom
(quoted-form*)

Several terms have been left undefined: variable, element-variable, constant-symbolic-atom, any-atom, and

number. Symbolic atoms and numbers are described in Section 2. The two kinds of variables are described in

Sections 4 and 5. The only thing that needs to be explained here is the difference between any-atom and

52

constani-symbolk-aiom. The fonner is an alum lhac is trcaicd as a constant because it is quoted (with // or

« » usually). The latter is an atom that is treated as a constant because it docs not have the form of a

variable or operator.

53

J

References

1. Digital Equipment Corporation. BLISS language guide. 1980.

2. Digital Equipment Corporation. X PORT programmer's guide. 1980.

3. Foderaro, J. K. The FRANZ LISP manual. University of California at Berkeley, 1980.

4. Forgy, C. L. and McDermott. J. The OPS reference manual. Department of Computer Science, Carnegie-
Mellon University, 1976.

5. Forgy, C. L. and McDermott, J. OPS, a domain-independent production system. Procecdingsof the Fifth
International Joint Conference on Artificial Intelligence, 1977, pp. 933-939.

6. Forgy, C. L. and McDermott, J. The OPS2 reference m. num. Department of Computer Science,
Carnegie-Mellon University, 1978.

7. Forgy, C. L. OPS4 user's manual. Department of Computer Science, Carnegie-Mellon University, 1979.

8. McDermott, J. and Forgy, C. L. Production system conflict resolution strategies. In Waterman, D. A. and
Hayes-Roth, F., Ed., Paliem-Directed Inference Systems, Academic Press, New York, 1978, pp. 177-199.

9. MIT AI Lab and Project MAC. MACLISP manual. Massachusetts Institute of Technology, 1978.

10. Newell, A. PSG manual. DepanmentofComputer Science, Carnegie-Mellon University, 1973.

11. Rychener, M. D. Production Systems as a Programming Language for Artificial Intelligence Applications.
Ph.D. Th., Carncgif-Mellon University, December 1976.

12. Rychener, M. D. OPS3 production system language tutorial and-f/rience manual. Department of
Computer Science, Carnegie-Mellon University, 1980.

54

_"""——

Index
fassnit 42
Sevan 'M
Scvna 44
Seqi 44
Sifile 43
Sintern 44
Slitbind 44
Sofile 43
Sparaineter 41
Sparametercount 42
Sreset 42
Stab 42
Svalue 42
Svarbind 43

- 20
--> 15

// 18,25

< 19
« 18
<= IS
<=> 19
O 19

= 19

> 19
>= 19
» 18

Aceept 27
Acceptline 27
Act 1,40
Action 28,41
Atom 44
Attribute-value element 9,11

,Back 49
Bind 34
Build 34

Call 34,41,46,47
Cbind 34 ■
Closefile 31,46
Comment 4
Compute 26
Condition element 17, 20
ConOict resolution 1, 37, 48
Comlictsct 37,48
Constant 18,25
Crlf 32
Cs 48

55

-"'''^^^^^■■■■■■■■■"■■■■■■■■■■■■■■■■■■^■■■■■■■■nBHH^^r.^W.Ji1--1 II.L.... I.J.japiNil^BJJJMUUgi " Tlfm

Default 31,46

Elemcnl designator 23, 29, 30
Element variable 21, 23, 29, 30
Excise 49
Exit 49
External 41

Function 25, 43

Genatom 26

Halt 34

LEX 38,48
LHS 1,2,15,17,20
Literal 12
Literalize 9
Litval 27

Make 28,45
Match 1,40
Matches 48
MEA 38,48
Modify 29

Negated condition element 20
Number 7,18,25,44
Numeric element designator 23, 29, 30

Openfile 30,46

P 15
Pattern 23
Pbreak 49
Pm 48
Ppwm 47
Production 1,15
Production memory 1,2,15, 48,49

Recognize-act cycle 1, 37
Remove 28, 46
RHS 1,3,15,23
Rjust 33

Strategy 48
Substr 25
Symbolic atom 8.18, 25,44

Tabto 33
Term 17,24
Time tag 7
Top level 45

Variable 18,25
Vector clement 10
Vector-attribute 9

Watch 48
Wm 47

56

^■■T" ^——^-~ mrmswiß

Working memory 1,2, ",47
Write 32

T 9,12,17, 24

{ 20,21

I 8

} 20,21

57

ä

■-,v.-

