1

\ £
4

a>

AT A
H =4

’-_

bz (D

OPS5 User’s Manual

July 1981

Charles L. Forgy
Department of Computer Science
Carnegie-Melion University

Pittsburgh, Pennsylvania 15213

DTIC

D

ELECTE
0CTO 1198t
DEPARTMENT S
of

COMPUTER SCIENCE

e dor Teen approved
for public relcase nd sale; 18
distribution is ted.

811102 193

i
[

R S A —— - PR R ———

l
.
:
i
*

MISSING PAGE
NUMBERS ARE BLANK
AND WERE NOT
FILMED

| "9
. |

7] cow-cs-81-135

(» , @PS5 User's Manua!/'"'

¥ TJWM /Zi’ &S) /

/ Charles L.I!Forgy

Department of Computer Science

rp—

Carnegie-Mecllon University |

Pitsburgh, Pennsylvania 15213

AN

Abstract: This is a combination introductory and reference manual for OPSS, a programming language for h

> production systems. OPS5 is uscd primarily for applications in the areas of artificial intclligence, cognitive

psychology, and cxpert systems. OPSS interpreters have been implemented in LISP and BLISS. =

Copyright © 1981 Charles L. Forgy

L2
Advanced Research Projegis.Agency.(DQD), .A%(PA Order
aboratory under ContracyF33615-73-C- 1551, v

’//3#\F= Dol e "5’(’]

ARSI AT W

this document are those of the author and should not be

The views and conclusions contained in
interpreted as represeuting the official policies, cither expressed or implicd, of the Defense Advanced

Research Projects Agency or the US Government.

*This rescarch was sponsored by the Defense
No. 3597. monitored by the Air Force Avionics L.

13

Table of Contents

1. Introduction 1

1.1. The Production System Architecture 1

1.2. OPS5's Working Mcmory P

1.3. OPS5's Production Memory 2

1.4. The OPSS Lexical System 4

1.5. Acknowledgements 4

2. Working Memory 7

2.1. Organization of Working Memory 7

2.2. Time Tags 7

2.3. Scalar Values 7

2.3.1. Numbers 7

2.3.2. Symbolic Atoms 8

2.3.3. Case 8

2.4. The Standard Structured Types 9

2.4.1. Attribute-Value Elements 9

2.4.1.1. Declarations 9

2.4.1.2. Error Checking 10

2.4.2. Vector Elements 10

2.5. Details of Implementation 10

2.5.1. Attribute-Value Elements 11

2.5.2. Vector Attributes 11
2.5.3. The Operator * 12 |
2.5.4. Default Values 12 ‘
2.6. User-Defined Representations 12 |
3. Production Memory 15 {
3.1. Organization of the Memory 15 J

3.2. Production Names 15
3.3. The Production 15 |

4. The LHS 17

4.1. The Condition Element 17

4.1.1. Terms 17

4.1.2. The Operator t 17

4.1.3. Values 18

4.1.3.1. Constants . Aoccssion Tor 18

4,1.3.2. Variables = - — 18

4.1.3.3. Disjunctions e & 13

4.1.3.4. The Opcrator // Unannounced 0 18

4.1.3.5. Predicates atificatio 19

4.1.3.6. Conjunctions Ffm ﬁ 2

4.2. The LHS as a Whole By - 20

4.2.1. Ncgated and Non-negated Condition Elements ' Distribution/ | 20

4.2.2. Element Variables I 21

Availability Codes
Avail and/or_
Dist Special

A

4.2.3. Length of an LHS 21

5. The RHS 23

5.1. Element Designators 23

5.2. Patterns 23

5.2.1. Terms 24

5.2.2. Evaluating Terms 24

5.2.3. The Operator t 24
5.2.4. Constants 25 X

5.2.5. Variables 25
5.2.6. The Operator // 25 v

5.2.7. " HS Functions 25

+ 0.7.1. substr 25

5.2.7.2. genatom 26

5.2.7.3. compute 26

5.2.7.4. litval 27

5.2.7.5. accept 27

5.2.7.6. acceptline 27

5.3. Actions 28

5.3.1. make 28

5.3.2. remove 2

5.3.2.1. Element Designators and remove 29

5.3.2.2. Multiple remove’s of an Element 29

5.3.3. modify 29

5.3.5.1. Element Designators and modify 30

5.3.3.2. Multiple modify’s of an Element 30

5.3.4. openfile 30

5.3.5. closefile x|

5.3.6. default 31

5.3.7. write 32

5.3.7.1. Special Functions for write 32

5.3.7.2. crlf ' 32

5.3.7.3. tabto 33

5.3.7.4. rjust 33

5.3.8. call 34

5.3.9. halt 34

5.3.10. bind 34

5.3.11. cbind 34

5.3.12. build M

6. The Recognize-Act Cycle 37

6.1. Conflict Resolution 37

6.1.1. The LEX Strategy 38

6.1.2. The MEA Strategy 38

6.1.3. Which Instantiations to Discard 39

6.2. Act 40

6.3. Match 40

ii

7. User-Defined Actions and Functions 41
7.1. Declarations 41
7.2. Actions 41

7.2.1. $parameter 41
7.2.2. $parametercount 42
7.2.3. Sassert 42
7.2.4, $tab 42
7.2.5. $value 42
7.2.6. $reset 42
7.2.7. Sifile and $ofile 43
7.3. Functions 43
7.3.1. Svarbind 43
7.3.2. $litbind 44
7.4. Atoms 44
7.4.1. Seql 44
7.4.2. $symbol 44
7.4.3. Sintern 44
7.4.4. $cvan and $cvna 44

8. Using the OPSS5 Interpreter 45

8.1. The Top Level 45
8.1.1. make 45
8.1.2. remove 46
8.1.3. openfile 46
8.1.4. closefile 46
8.1.5. default 46
8.1.6. call 46
8.1.7. run 47
8.1.8. ppwm 47
8.1.9. wm 47
8.1.10. pm 43
8.1.11.cs 48
8.1.12. matches 48
8.1.13. strategy 43
8.1.14. watch 48
8.1.15. pbreak 49
8.1.16. exit 49
8.1.17. excise 49
8.1.18. back 49

8.2. Loading a Production System 50

Appendix l. Syntax of QPS5 51

Index 55

iii

1. Introduction

OPSS is a member of the class of programming languages known as production systems. It is used
primarily for applications in the areas of artificial intelligence, expert systems, and cognitive psychology. This
manual is a combination introductory and reference manual for OPS5. The rest of Section 1 provides an
overview of the language. Scctions 2 through 8 describe the language and its interpreter in detail. ‘To allow
the new user to read the manual straight through, the material has been organized in a top-down fashion. To
allow the experienced user to answer detailed questions quickly, the manual has been divided into short

sections describing individual features of the language, and an index has been provided.

Three interpreters for OPSS have been written, one in BLISS [1], one in MACLISP [9], and one in FRANZ
LISP[3]. As could be expected, there are a few incompatibilities between the interpreters. The manual points

out the differences between the three interpreters.

1.1. The Production System Architecture

A production system is a program composed entirely of conditional statements called productions. Thesc
proitidons operate on expressions stored in a global data base called working memory. The productions are
stored in a separate memory called production memory. The production is similar to the If-Then statement of
conventional programming languages: a production that contains n conditions Cl through C . and m actions

Al through Am means

When working memory is such that C1 through Crl are true simultaneously,
then actions A, through A should be exccuted.

The condition part of a production is usually called its ZHS (left hand side), and the action part is called its
RHS (right har 4 side).

The production system interpreter exccutes a production system by performing a scauence of operations
called the recognize-act cycle:

1. [Match] Evaluate the LHSs of the productions to determine which are satisfied given the current
contents of working memory.

2. [Conflict resolution] Select one production with a satisfied LHS. If no productions have satisfied
LHSs, halt the interpreter.

3. [Act] Perform the actions specified in the RHS of the selected production.

4. Go to step 1.

Production systems differ from conveational programs in two major respects. The first is that the

production system uscs u different method for encoding the state of a computauon. A conventonal prograin
encodes state by assigning values to local and global variables. A production system encodes state by putting
expressions in the system'’s global working memory. The other difference between production systems and
conventional programs is the way flow of control is managed. A conventional program uses sequential
execution of statements plus a number of control constructs including subroutine calls, loops, and conditional
branching. A production system uses LHS satisfaction. Each production’s LHS is a description of the states
in which the production is applicable; the LHS becomes true when there is some information in working
memory that the production can process. When the interpreter performs the match process, it is in effect
searching for a production that knows how to process the data that is in working memory. When it finds that
production and executes its RHS, working memory is changed, and so on the next cycle, the interpreter

performs the match again to find a production that can handle the new data.

1.2. OPS5’s Working Memory

In OPSS, the most commonly used representation for information in working memory is the attribute-value
representation. This representation is oriented towards describing objects and relations among objects; that
is, even though it (like most representations) can be used for many other purposes, it is most naturally used to
describe objects and relations. In this representation, every eleraent in working memory consists of an object
and a collection of associated attribute-value pairs. For example, in this representation, a single working
memory element might indicate that block1 is a red block weighing S00 grams, measuring 100 mm on a side.

The element would be

(block
tname blockl
tcolor red
tmass 600
+length 100
twidth 100
theight 100)

As this shows, an element consists of a class name (block in this case) followed by some number of attributes
and values, with everything enclosed in parentheses. Attributes are distinguished by being preceded with the

operator *.

1.3. OPS5’s Production Memory

The LHS of a production consists of one or more patterns, i.e.. one or more expressions that describe
working memory elements. During the match part of the recognize-act cycle, the interpreter compares each
pattern with the elements in working memory to determinc if the pattern matches any of them. The pattern is
considered satisfied if it matches at least one element. If all the patterns in a production’s LHS are satisfied,

the LHS is satisfied.

Seo0 o by TR T T

Patterns are abstract representations of working memory clements. One way & pallern can be an
abstraction of a working memory element is to contain fewer attributes and values than the element. Such a
pattern will match any working memory clement that contains the information in the pattern. (It does not

matter how much more information the working memory e¢lement contains.) Thus the pattern
(block tcolor red)

would match the working memory clement

(block
tname blockil
+color red
tmass 500
tlength 100
twidth 100
theight 100)

Another way a pattern can be an abstraction of a working memory element is (0 contain incompletely
specified values. OPS$ provides special pattern operators that can be used to specify values at various levels
of detail. The most important operator is the variable. A variable is any symbol that begins with the character
< and ends with the character > -- for example, <x> or <status>. A variable in a pattern may match
anything, but if a variable occurs more than once in a production, it must match the same value everywhere.
Thus if a cube is defined to be a block whose three sides are the same length, the following pattern will match

only cubes.
(block +length <x> twidth <x> theight <x>)

The RHS of a production consists of an unconditional sequence of actions. OPSS's set of action types
includes actions to manipulate working memory, actions to perform input and ouiput, actions to add new
productions o production memory, and others. The most important of the actions are the ones to manipulate
working memory. The action make is used to create and add new elements. A make action consists of an
open parenthesis, the symbol make, a description of the element to create, and a close parenthesis. The
description of the element is similar in form to the patterns in the LHS. For example, the following would

create the clement for blockl shown above.
(make block

tname block1l
tcolor red
tmass 500
tlength 100
twidth 100
theight 100)

The action remove is used to delete elements from working memory. A remove action consists of an open
parenthesis, the symbol remove, a pointer to the clement to delcte, and a close parcnthesis. The following

for example would delete the element matching the third pattern of the production’s LHS.
(remove 3)

[9¥]

The action modify is used to chiange one or more values of an existing clement. A modify action consists of
an open parenthesis, the symbol mad{fy, a pointer to the clement to change, a description of the changes to
make, and a close parenthesis. The following for example would change the status of the clement

matching the first pattern in the LHS to satisfied.
(modify 1 tstatus satisfied)

A production consists of an open parenthesis, the symbol p, a name, the LHS of the production, the symbol
-->. the RHS, and 1 ciose parenthesis. The following is a typieal (though quite small) OPSS produetion. The

text after the semicolon on eaeh line is a comment.

(p find-colored-block
(goal
tstatus active
ttype find
tobject block
tcolor <z>)

(block
tcolor <2z>
+name <block>)
-=>

(make result
t+pointer <block>)
(modify 1

If there is a goal
which is active

to find

a block

of a certain color
And there is a block
of that color

. Then make an .element
: to point to the block

I 4 - .
o o e =i re— 2
R L e T T

: And change the goal

t+status satisfied)) ; marking it satisfied

1.4. The OPS5 Lexical System

The input to OPSS is completely free format. Spaces, tabs, and new lines may be used at will to improve
the readability of productions and working memory elements; the interpreter uses the parentheses to
determine where units begin and end. In addition, comments like those shown above may be used anywhere;
when the interpreter reads a line eontaining a semicolon, it discards everything from the semicolon to the end

of the line. The :bove production could also have been written

(p find-colored-block
(goal tstatus active
tcolor <2>)
tcolor <2>

ttype find tobject block
(block
--=>
(make result
(modify 1

tnama <block>)

+pointer <block>)
t+status satisfied))

1.5. Acknowledgements
The first language in the OPS family [4, 5] was designed in 1975 at Carnegic-Mellon University by Charles
Forgy, John McDermott, Allen Newell, and Michael Rychener. The design of the language was influeneed

by earlier production systems languages. including PSG [10] and PSNLST [11]. Since 1975 OPS has been

revised several times as better representations and more cilicient nterpreters have been developed [6, 7, 12].
Many - >le have contributed to the developmeni of OPS, including the members of the CMU production

! systen, sert systems, and cognitive psychology groups, as well as the members of Digital Equipment

Corporation's expert systems group.

R R R R R R

2. Working Memory

Working memory is a sct of ordered pairs
{Time tag, Working memory element>

A working memory clement is a structure (usually a vector ar record) of scalar values. The time tag is a

unique nuinerical identitier that is supplied by the interpreter.

2.1. Organization of Working Memory
OPSS, like most programming languages, provides both scalar (sometimes called otomic) data types and
structurcd data types. The clements in working memory may not be scalars. (However, it is legal to have a

structure that contains only a single scalar value.)

The number of clements in working mewiory varies dynamically at run time. With the LISP-based
interpreter, working memory may grow arbitrarily large. With the BLL1SS-based interpreter, a maximum size

for the memory is established when the interpreter is installed; the current limit is 1023 clements.

2.2. Time Tays

Every element in working memor has an associated integer called the clement’s time tag. This integer
indicates when the element was created or last mudified; the clements with larger time tags were more
recently created or modified. No two elements have the same time tag. Time tags are used in conflict
resolution, and they are used to designate clements by many of the facilities that communicace with the user

(see Scction &.1).

2.3. Scalar Values

OPSS5 provides two scalar data types: numbers and symbolic atoms.

2.3.1. Numbers

The numeric type on the LISP-based interpreters for OPSS includes both floating point and fixed po'mt'
numbers. (The interpreters will make the appropriate conversions when mixed mode cxpressions are
evaluatcd.) The BLISS-bascd interpreter allows only fixed point numbers to be used. Fixed poirt numbers

consist of an optional sign, onc or more accimal digits, and an optional decimal point. Valid fixed point

numbers include
0

A floating point number consists ol an vptional sign, zero or more decimal digits, a decunal point, zero or
more digits after the decimal point, and an optional exponent, coasisting of the letter "¢ followed by asigned
or unsigned integer. The number must include either an exponent or a digit after the decimal point; if it

contains neither the interpreter will take it to be an integer. Typical floating point numbers include

0.0

.06
6.020-23
-1.,812

The computer on which OPSS is run determines the legal range for fixed and floating point numbers and the

number of digits of precision in floating point numbers.

2.3.2. Symbolic Atoms
A symbolic atom is any sequence of characters that does not constitute a number and that is treated as a

single unit by the production system. Examples of symbolic atoms include

a
nil

4-7-78
Scme non-printing characters such as escape (ASCII 33 octal) or control-C (ASCII 3 octal) cannot
conveniently be used in atom names. In addition, on the BLISS-based interpreters, symbolic atoms must not
contain the character '. But with this exception, all printing characters and many non-printing characters

such as space and tab can be used.

Some characters will be incorporated into atoms only if they are Guoted. If they are used unquoted they
are taken to be operators or separators. The characters that need to be quoted include (but are not limited to)
space, tab, period, comma, uparrow ("+"), left and right braces ("{}"), and left and right parentheses "O)".
Different LISP interpreters provide different mechanisms for quoting characters. The best mechanism to use
in OPSS is probably the vertical bar (the character |) because it is understood by all the OPS$ interpreters. In
all the interpreters, everything that occurs between two vertical bars constitutes an atom. Thus the atom)))
would be entered |)))].

2.3.3. Case

The MACLISP-based interpreter and the BLISS-based interpreter do case folding; that is, they convert
lower case characters to upper case on input. The FRANZ LISP-based interpreter does not do casc folding.
Thus on that interpreter, p and P arc distinct atoms. All commands to the FRANYZ, LISP-based interpreter

must be given in lower case.

R R N e T W WL T Ly —

L- B —

2.4. The Standard Structured Types
OPSS provides two non-scalar data types, plus a mechanism which allows the user to implement other non-

scalar types. The standard types are attribute-value elemenis and vectors.

2.4.1. Attribute-Value Elements
An atribute-value element consists of a class name and some number of attribute-va'ue pairs, with
everything enclosed in parentheses. Attributes are symbolic atoms, and values are cither scalars or sequences

of scalars. An attribute-value element may not contain more than 126 values. The following is a typical

element.
(goal +status activ: ttyse Tind tobject block tcclor rad)
The class name o . clement is goal. Its attributes are status, type, object, and color; the

corresponding attributes arc active, find, object, and red. The prefix operator * is used to distinguish

attributes from values.

The order in which attribute-value pairs are specified is not significant. Thus this element could also have

been written say
(goal tcolor red tobject block tstatus active ttype find)

2.4.1.1. Declarations

Attribute names must be declared before they can be used. The usual way to declare names is with
1iteralize. (Another method is described in Section 2.6.) A 1iteralize declaration indicates which
attributes will be used in clements of a given class. A declaration consists of the atom 11teralize, aclass
name, and the attributes for that class, all enclosed in parentheses. For the goal shown above, a declaration
like the following would be given.

(1iteralize goal
status

type
object
color)

This indicates that elements of class goa1 can have the attributes status, type. object, and color.

An atiribute may have only one scalar value at a time unless it has appeared in a vector-attribute
declaration. A vector attribute may have one, two, three, or more values; the only restriction is that the total
size of the working memory element may not exceed 126 values. The number of values assigried to a vector
attribute may vary dynamically at run time. The declaration consists of the atom vector-attribute and
one or more attribute names, all enclosed in parentheses. For example, if contents was to be madc a vector

attribute, it would be declared

(vector-attribute contents)
For an example of a vector attribute, consider a production system to solve the Towers of Hanoi problem.
The vector attribute contents could be used to indicate which disks were on a given peg.

(peg
tname peg2
tcontents diskl ¢*sk3 disk4 disk6)

Two restrictior apply to vector attributes.

¢ An element class may not have more than onc vector attribute.

e The vector attribute declaration is global. Each attribute is either a scalar attribute everywhere it
is used or a vector attribute everywhere it is used. It is not possible for an attribute to be a scalar
attribute in one element class and a vector attribute in another.

2.4.1.2. Error Checking

OPSS does not perform extensive error checking of attribute-value clements. It will permit attributes to be
used with element classes they were not declared for, and it will allow the user to treat scalar attributes as
vector attributes. It cannot check for errors like these because attribute-value elements are im.plemented

using a gencral mechanism that is also available to the user (see Section 2.6).

2.4.2. Vector Elements

The vector representation is used for data that needs to be represented as a sequence of symbols. An
element in this representation consists of an open parenthesis, a sequence of atoms and numbers, and a close
parenthesis. One commen use for this representation is to hold itput from the user. The clement shown

below for example might be a command given to a system for algebraic manipulation.
(differentiate expression 4 wrt x)

Vector working memory elements do not have to be declared. Vectors can vary in length at run time. A

vector cannot contain more than 127 values.

2.5. Details of Implementation

In the OPSS interpreter, all working memory elements are stored as ordered lists or vectors of values.
Attribute-valuc representations are implemented by mapping field names into indices. The lists shrink and
grow as necessary when the elements are modified. An clement may not grow to more than 127 values,

however.

10

251 Autribute-Value Elements

In an attribute-value element, the class name is stored in the first ficld of the element, and the value of each
attribute is stored in a ficld that is assigned to the attribute. For example, on one run of a production system
object might be assigned 2, status assigned 3, color assigned 4, and type assigned S. Then the

working memory element
(goal tstatus active ttype find tobject hiack tcolor red)

would be stored internally

Each rectangle here represents one ficld in the working memory element.

The assignment of ficld numbers to attributes is performed by the interpreter when the 1iteralize
leclarations are processed. The number assigned to each attribute is global; if attribute A has nuniber N in

one element class, it will have number N in every class it occurs in.

2.5.2. Vector Attributes
Vector attributes are implemented by assigning the vector attribute a higher number than any other
attribute in the class. (If a vector attribute is used in more than one class, it is assigned a number that is higher
than any other attribute in any of the classes.) This allows the tail of the element to be dedicated to the vector
attribute. The values of the attribute consist of the value in its assigned field plus all the succecding values to
the end of the element. Thus if name was assigned 2 and contents was assigned 3, then the element
(peg

tname peg2

tcontents diskl disk3 disk4 diskd)
would be stored

11

Since OPSS allows elements to grow ahd shrink dynamically at run time, the number of values assigned to

a vector attribute can » ary dynamically.

2.5.3. The Operator t
Since attributes are mapped by the interpreter into ficld numbers, the operator + is essentially an index

operator. To interpret
tatt

OPSS converts att into an integer, and then uscs that integer to index into the working memory clement.

The operator + can also be used with numeric arguments. For example,
+7

This designates the scventh value in an clement.

Although it is common practice to write + immediately adjacent to the attribute (or number) this is not

required. Blanks, tabs, and other non-printing characters can be put between the *+ and the attribute.

2.5.4. Default Values

In OPS5 it is legal to read the value in a field that has not reccived a value. (Sections 4 and 5 explain how
productions read values from elements.) By default, every field in an element has the value ni1 until the
production system changes it to something else. ~or consistency, the interpreter also returns ni1 if the
production system reads beyond the end of the element (e.g., reading field 20 of an element that has values
only in fields 1 through 10). It is not legal, however, to read non-existent fields; an attempt to read ficlds less

than 1 or greater than 127 is an error.

2.6. User-Defined Representations
The declaration 11teral is provided to allow users to implement their own representations. The
declaration is used to assign numbers to attributes. A 1iteral declaration consists of an open parenthesis,

the symbol 11teral, some number of triples of the form
attribute = number

followed by a close parenthesis. For example

12

(1iteral
status = 2
type = 3
object = 4
color = b)

[f a production system contains both 1iteral and 1iteralize declarations, the interpreter will process
the 11teral declatations first (even if they are not written first). Then, if is possible, it will use the explicit
1iteral assignments for the attributes that occur in both 11teral and 1iteralize declarations. Ifitis

not possible to accommodate the explicit assignments, an error message will be printed.

The declaration 11teral should be used only when 1iteralize cannot be used, because 1iteral has
two severe limitations. First, it is easy to make a mistake with 1iteral and assign the same number to two
attributes that were supposed to be distinct. This can cause obscure bugs in the production system. Second,
1iteral does not provide enough information for the working memory clement printer to work properly.
‘When 1iteralize is used, elements are printed in attribute-value format; when 1iteral is used,

elements must be printed as lists.

13

T P

3. Production Memory

An OPSS production memory consists of a set of productions.

3.1. Organization of the Memory
There is no structure imposed on production memory. In particular, the productions are not grouped into

subroutines; any production can fire at any time. Furthermore, the order in which productions are entered

into the system is not important.

Production memory can contain arbitrarily many productions. The only limit is the amount of memory

available on the computer to store the productions.

3.2. Production Names

The name of a production must be a symbolic atom. The atom ni 11 should not be used.

Two productions may not have the same name. If the user enters a production that has the same name as

an existing production, the existing production is removed from production memory.

3.3. The Production
A production consists of (1) an open parenthesis, (2) the symbol p, (3) the name of the production, (4) the
LHS of the production, (5) the symbol -==>, (6) the RHS of the production, and (7) a close parenthesis. The

production shown in Section 1.3 is typical.

(p find-colored-block
(goal t+status active t+types find tobject block
tcolor <2>)
{(block tcolor <25 t+name <block>)
==
(make result tpointer <block>)
(modify 1 t+status satisfied))

15

——— il

4. The LHS

As Scction 3.3 explained, the LHS of a production is everything between the production’s name and the

symbol ==>. An LHS is a collection of patterns called condition elements.

4.1. The Condition Element

A condition element is a pattern to match a working memory clement; it consists of an open parenthesis,
some number of forms to specify attributes and valucs, and a close parenthesis. The forms arc called
condition element ferms. A condition clement is considered to match a working memory element if every

term in the condition element maiches the corresponding part of the working memory clement.

4.1.1. Terms

A condition element term can be either

e The operator * followed by an attribute and a specification of a value (OPSS provides a variety of
ways to specify values in condition clements -- sce below)

® The operator + followed by a number and a specification of a value, or

e Just a specification of a valuc.

4.1.2. The Operator t

The interpreter applies three rules to determine which value in a working memory element a term should

be compared to. %

1. If the term contains * and an attribute name or a number, compare the term to the value in the
indicated field in the working rncmory element,

2. [faterm Ta that contains no * is preceded by another term Tp, move to the position immediately
after the position used for Tp, and compare Ta to the value there.

3. [f a term that contains no + is not preceded by another term, comparc the term to the value in the
first field in the working memory element.

To see how these rules work with vect attribute-value representations, consider the following
condition elements. In these elements, al tributes, and v1 through v6 are values.
(v1v2v3)

! (v4 tal v5 ta2 v6)

In the first condition element, by Rule 3, when vl is processed it will be compared to the first valuc in the

working memory clement. By Rule 2, v2 will be compared to the second value, and by the same rule, v3 will

be compared to the third value. Thus the rules cause vector style condition clements to be processed

17

correctly. 1n the second condition element, by Rule 3, v4 wiil be compared to the first value in the working
memory element. By Rule 1, v5 will be compared to the value in the ficld for al, and by the same rule, vé will
be compared to the value in the field for a2. Thus the rules also cause attribute-value style condition elements

to be processed properly.

4.1.3. Values
The values in condition element terms can be specificd as constants or by using the pattern operators
provided by OPSS.

4.1.3.1. Constants

Symbolic atoms and numbers may occur in condition elements as well as in working memory elements. A
symbolic atom in a condition element matches a symbolic atom in a working memory clement if the
sequences of characters composing the two clements are identical. A number in a condition element matches

a number in a working memory element if the algebraic difference of the two is zero.

4.1.3.2. Variables

A variable in OPSS is any symbolic atom whose first character is < and whese final character is >; for
example, <x> or <status>. A variable will match any symbolic atom or number, but if a variable occurs
more than once in an LHS, all occurrences must match the same value. A variable is said to be bound to the

value it matches.

4.1.3.3. Disjunctions
The brackets << and >> specify that any of the contained values is acceptable as a maich. Thus the

following
<< onil 17 >

will match either ni1 cr 17.

These brackets implicitly quote the symbols that they contain. Thus the following
x> Ky> »
would match not the binding of <x> or <y>, but rather the symbols <x> or <y>. The brackets will also

quote + and all the pattern operators that are described below.

4.1.3.4. The Operator //
The piefix operator // is used to quote single symbols in condition elements. For cxample, to match the

symbol <x> rather than the binding of the variable <x>, the following is used.
/7 <x>

18

For another example, to match the symbol // the following is used
/7 1/

This operator can also be used to quote +, the brackets << and >, and the other operators defined below.

4.1.3.5. Predicates
OPS5 has seven prefix operators called predicates wh _h arc used with constants and variables. The

predicates are

O
{=>
<
(=
>a
>

The first occurrence of a variable cannot be preceded by any predicate other than =. (This restriction is

necessary because the first occurrence of the variable cstablishes the binding for the variable.)

The predicate <> is the now-2qual predicate. If vall is a variable or constant,

<> vall

will match any value except the values that are matched by
vall

The predicate = is provided only for completeness; if val2 is a constant or variable
= val2

is exactly equivalent to
val2

The predicate <=> is the same type predicate. If val3 is a number or a variable bound to a number,
<=> val3

will match any number. If val4 is a symbolic atom or a variable bound to a symbolic atom,
<=> vald

will match any symbolic atom.

The remaining predicates, <, <=, >=, and > arc used only with numbers and with variables that are bound
to numbers. They match, respectively, numbers that are less than, less than or equal to, greater than or equal

to, or greater than the value in the condition element term. For ¢xample,
<0

will match any negative number.

19

4.1.3.6. Conjunctions
The braces { and } are used to indicate that a value in a working memory clement must match several
things simultancously. For example, to indicate that a value must be greater than zero, but less than ten, the
following would be used.
{>0 < 10}
Braces may contain constants, variables, either of iese preceded by predicates, the operator //, and the

brackets << and >>.

Braces are often used with variables. The braces allow specifying some restrictions on a value and binding
a variable to the valuc that meets the restrictions. For example,
{< abcd> x>}
Will match a, b, ¢, or d and bind the valuc that is matched to <x>. As another example,
{Ky> O x>}

will match anything that is not equal to the current binding of <x> and bind the valuc that is matched to <y>.

As a limiting case, empty braces place no restrictions on the value matched. Thus they can be used as place
holders in a condition element. For example, the condition element
(x> {} <x>)
will match any working memory element whose first and third values are equal, regardless of what the second

value is.

4.2. The LHS as a Whole
The condition elements in an LHS may be regated or not, and the non-negated condition elements may

have variables bound to them.

4.2.1. Negated and Non-negated Condition Elements
A condition element may be negated by preceding it with the operator =. An LHS consists of one non-
negated condition clement followed by zero or more negated or non-negated condition clements. An LHS is

satisfied when
e There cxist working memory elements that match all the non-negated condition clements, and
o There cxist no working memory elements that match the negated condition elements.

Thus if P1, P2, and P3 are condition clements, the LHS
P1 P2 -P3

is satisfied only when working memory contains somicthing matching P1, somcthing matching #2, and

20

nothing matching P3.

4.2.2. Flement Variables
A variable may be bound to the working memory element that matches a reu-negated condition element
through the use of the {3} braces. The condition element and the variable are placed inside the braces; for
cxample
{ <c2> (block tcolor <z2>) }
or
{ (block tcolor <2>) <c2> }

These two lines are exactly equivalent.

These variables, which are called clement variables, are not treated like the other variables. A given
element variable can appear only once in an LHS. Thus clement variables can only be bound on the LHS:
they cannot be tested. An LHS may contain both an ordinary variable and an element variable with the same

name; OPSS5 will not confuse the two since the contexts they occur in are distinct.

4.2.3. Length of an LHS
On the LISP-based interpreters, LHSs can contain arbitrarily many negated and non-negated condition
elements. On the BLISS-based interpreter, there is a limit of sixtcen non-negated condition elements per

LHS. There is no limit on the number of negated condition eleinents an LHS may contain, however.

s

5. The RHS

The RHS of a production is cverything in the produetion after the -->. The RHS consists of an
unconditonal sequence of commands called actions. An action consists of an open parenthesis, the action

type, the arguments to the aetion, and a close parenthesis. The actions in the production in Section 1.3 are

(make result tpointer <block>)
(modify 1 tstatus satisfied)

The action types here are make and modify; everything else constitutes the arguments to the actions.

OPSS provides twelve action types: make, remove, and modify to change working memory,
openfile, closefile, and default to manipulate files; write to output information; bind and
chind to assign values to variables; ¢al1 to call user-written subroutines; halt to cause the interpreter to
stop firing piodiicuons; and bu11d to add productions to production memory. Sections 5.1 and 5.2 explain

how the argurncnts to these actions are evaluated. Section 5.3 deseribes the actions.

5.1. Element Designators

Some of the actions and functions in OPS5 refer to working memory elements. Working memory elements
may be designated eithier by number or by use of element variables (see Section 4.2.2). Ifan element variable
is used, it refers. to the working memory element that it was bound to in the LHS. (Element variables can be
bound explicitly in the RHS -- see Seetion 5.3.11. If the variable has been given an explicit binding, that
binding is used.) If a number K is used, it refers to the element matching the Kth non-negated condition
element in the LHS. It is important to note that the interpreter does not count negated condition elements

when it is evaluating a numeric element designator. Thus in the RHS of the following produetion

(p ex1
) (--0)
() <e>}
=y .0)

The element variable <¢> and the numerie elcment designator 2 both refer to the same working memory

element -- the one matching the last condition element in the [.HS.

5.2. Patterns
Many of the RHS actions take patterns like condition elements as arguments. The make action, whieh is

described in Section 5.3.1, is typieal; its only argument is a pattern. For instance,

(make block tname block1l tcolor red tmass 6500 tlength 100
twidth 100 theight 100)

When the interpreter evaluates a pattern in the RHS, it instantiates the pattern into an clement by replaeing

variables with the values they are bound to, supplying default valucs for unspecified parte of the element, etc.

The clement that results does not necessarily get put inw working memory. Sone of the actions put the
element in working memory; some use it for other purposes and then delete it. The element that is built is

called the result element.

5.2.1. Terms

A.. RHS pattern, like a condition element, consists of a sequence of terms. An RHS term can be

e The operator + followed by an attribute and a sp zcification of a value,
e The operator + followed by a number and a specification of a value,

e The operator + followed by a variable and a specification of a value (this is not allowed in the
LHS), or

¢ Just a specification of a value.

5.2.2. Evaluating Terms

In outline, the process of instantiating a pattern is

1. Fill the result element entirely with n11.

2. Evaluate each term in the pattern in order from left to right, changing the result element as the
term indicates.

5.2.3. The Operator t

The interpreter uses three rules to determine which position in the result element a term refers to.*

e If 2 term contains + and an attribute name or a number, move to the indicaied field and change its
value as the term specifies.

e If a term Ta that does not contain + is preceded by another term Tp, move to the position
immediately after the position used for Tp and change its value as Ta specifies.

e If a term that does not contain + is not preceded ty any other term, change the first ficld in the
result element as the term specifies.

1’Iheso: rules are like the ones used in processing patterns in the LHS. Sce section 4.1.2.

24

3.2.4. Constauts

Symbolic atoms and numbers are copied into the result element without change. Thus if
(make ... *4 ni 50 ...)

is evaluated, position 4 of the clement is set to ni 1, and position S to 0.

5.2.5. Variables
When a variable in an RHS pattern is evaluated, the binding of the variable is copied into e result

element. Thus if <x> is bound to ni1, when the fullowing is evaluated
(make ... t6 <x> ...)

position 6 of the element is given the value ni1.

5.2.6. The Operator //
The symbol /7 is used to keep symbols from being evaluated. If sym is any symbol,
// sym

causes sym to be placed directly into the result clement. Thus if
(make ... *7 /7 ¢ 8 // <2> 19 /777 ...)

is evaluated, position 7 is given the value *, position 8 is given the value <z, and position 9 is given the value
/7.

5.2.7. RHS Functions
An RHS function is a subroutine that puts one or more values into the result clement. The syntax of an
RHS functivn call is like the syntax of an action: an open parenthesis, the name of the furction, the

arguments to the function if any, and a close parenthesis.

5.2.7.1. substr

The function substr extracts a sequence of values from an existing working memory element and puts
the values in the result clement. The function takes three arguments. he first argument is an clement
designator. (Sce Section 5.1.) This argument indicates which working memory cleraent is to be examined to
get the values. The second argument should be an integer, an atrribute name, or a variable that is bound to an
integer or attribute name. This argument indicates the first value that is to be extracted. The third argument
should be an integer, an attribute name, a variable that is bourd 0 an integer or attribute name, or the symbul
inf. This argument indicates the final value to extract. For example, if <w> is bound to (a b cdoe),

then evaluating
(make ... *10 (substr <w)> 3 3) ...)

will cause the atom ¢ to be copied into position 10 of the result element. When more than one valug is

25

extracted, the values are placed in contiguous ficlds in the element; thus
(make ... t11 (substr <w> 2 4) ...)

will cause b to be copied into position 11, ¢ to be copied into position 12, and d to be copied into position 13.
The special symbol 4157 indicates that substr is to continue tak.ng values until it reaches the end of the

clement it is extracting them from. Thus
(make ... t14 (substr <w> 4 inf) ...)

will copy d into position 14 and e into position 13.

The function substr can be used to extract information from attribute-value elements, but it should be

used carefully. Itis legal to call substr to copy all the values in a certain range -- for example, to use
(substr 3 status object)

to copy all the values from the value of status to the valuc of object - but thisisa questionable practice.
If the interpreter assigns numbers to attributes, the positions of status and object may vary from run to
rua: in fact, on some runs status may come after object. There arc two safe uses of substr with
attribute-value elements however. The first is to extract the value of a particular attribute. If the same
attribute name is used for the sccond and third arguments, substr will return just the value of that attribute.
For example, the following would be used to copy the from valuc of one element into the to field of

another.
(make ... tto (substr <x> from from) ...)

The other safe use with attribute-value elements is copying an entire element. For example, exccuting
(make ... *t1 (substr <z> 1 inf) ...)

copies all the values of elenien <z into the corresponding fields of the result clement.

5.2.7.2. genatom
The function genatom creates a new symbolic atom and puts it in the result element. This function takes

no arguments, so a call on it always has the form (genatom).

5.2.7.3. compule

The function compute evaluates arithmetic expressions. The expressions can contain five operators, +, -,
« //, and \\, which denote respectively addition, subtraction, multiplication, division, and modulus.
Standard infix notation is used, but operator precedence is not used; compute cvaluates the operators from
right to left. Parentheses can be used to override the right to left evaluation. Only numbers and variables that

are bound to numbers can be used in the expressions. Typical calls on compute include

(compute <x> + 1;
(compute (*) - 4 * <a> * <¢>)

26

R T

3.2.7.4. litval

The function 1itval puts into the result clement the number which has been assigned to an auribute
name. That is, if a is an attribute name, then (11tval a) determines the number of the ficld that is used
for attribute @ and puts the number into the result element. The function takes one argument, which
normally is an attribute name or a variible which is bound to an attribute name. The function will also accept

numbers or variables bound to numbers; when it is called with such an argument, it returns the number.

5.2.7.5. accept
The function accept takes input from the user and puts it into the result element. The function takes
either one or zero arguments. If it has an argument, the argument must be a symbolic atom or a variable that

is bound to a symbolic atom. The following are legal calls on accept

(accept)
(accapt infile)
(accept <x>)

If accept is called with no arguments, it takes its input from the currewt default input stream. (See Section
5.3.6.) Ifitis called with an argument, accept takes its input from the file that has been associated with the

atom. (See Section 5.3.4.)

The function will read cither a single atom or a list. When it reads a list, it strips the parentheses from the
list and puts the atoms of the list into the result element. The interpreter determines whether it is to read a list
or a single atom by inspecting the first printing character in the input. If the interpreter encounters (, it
expects to read a list, so it does not stop reading untl it reaches). If it encounters any other printing

character, it reads only onc atom.

If accept is asked to read beyond the end of a file, it puts the atom end-of -file in the result element.
In the LISP-based interpreters, if the end of the file is reached while a list is being read, a LISP error will

occur.

5.2.7.6. acceptline
The function accept11na is also used to read input. The difference between accept and acceptline
is that the latter always reads exactly one line of input. The function reads everything on the line, removes

any parentheses that are there. and puts the atoms into the result element.

This function takes any number of arguments. If the first argument is associated with an input file (sce
Section 5.3.4) acceptline takes the inpv. from that file; otherwise, it takes the input from the current
default input stream (see Scction 5.3.6). The rest of the arguments are used when a null line is read or when

acceptline trics to read beyond the.end of a file. A null line is a line that contains no characters other than

2

.
S 4 Lo i VL e e L Lt n Lo

spaces and tabs. When acceptline cncounters a null line or the end of a tile, it puts its arguments into the
result element. (If the first argument is not the name of a file, it © put in the result element along with the

other arguments.) Thus when the function
(acceptliine nothing read)

is evaluated, the interpreter will read the default input (assuming that noth1ing is not associated to a file) and

then put into the result element either one line of input or the two atoms nothing and read.

5.3. Actions
The actions in OPSS arc make, removse, modify, openfilse, closefile, default, write, call,
halt, bind, cbind, and build.

5.3.1. make
The action make creates new elements and adds them to working memory. The argument to make is an
RHS pattern; it is evaluated as described in Section 5.2. A typical example of a make action is
(make result tpointer <block>)
If <b1ock> was bound to block1, this action would :dd to working memory the element
(result tpointer block1l)
A bigger example of make was shown before:
(make block

t+name block1
+color red
tmass 500
tlength 100
twidth 100
theight 100)
which puts into working memory the element
{(block
tname bloc 1
tcolor red
tmass 500
tlength 100
twidth 100
theight 100)

5.3.2. remove
The action remove is uscd to delete elements from working memory. Any number of arguments may be
given to remove; the arguments 1ust be element designators. When thic action is executed, the indicated

working memory elements arc deleted from working memory A typical call on removae is
(remove 1 <c3>)

28

e Tre— R e e T—
— L "

)

5.3.2.1. Element Designators and remove
Deleting working memory clements does not change the bindings of clement variables or of numeric
element designators. Thus in the following RHS, the two calls on substr rewrn the same value, cven

though element <¢> is deleted between the two calls.

(.o, ==>
(make ... (substr <c> & 10))
(remove <c>)
(make ... (substr <c> & 10)))

5.3.2.2. Multiple remove’s of an Element
It is legal to call remove with the same argument more than once in an RHS. When the interpieter

encounters this situation, it executes the first remove and then ignores the rest.

5.3.3. modify

The action mod1ify is used to change one or more values in an existing working memory clement. It takes
as arguments a condition element designator and an RHS pattern. It removes the old form of the designated
element from working memory, changes it as the pattern specifies, and then puts it back into werking
memory. For example, when the modify in the following production executes

(p find-colored~block
(goal tstatus active +type find tobject block
tcolor <2z>)
(block tcolor <2> tname <block>)
-=>
(make result tpointer <block>)
{(modify 1 tstatus satisfied)}

it deletes the element that matched the first condition element -- say
(goal +status active +type find tobject block tcolor red)

and replaces it with a similar element
(goal +status satisfied ttype find tobject block tcolor red)

It is possible to change more than one value in a modify action. The following, for example, is a legal

action
(modify 3 tstatus followed tvalue <response> +1d <newid>)

The action modify is defined io be equivalent to a remove followed by amake. The action

(modify designator pattern)
does preciscly what the two actions

(remove designaior)
(make (substr designator 1 inf) pattern)

29

i AT 3
ol RIITS SV R P PR P — - " 4

would do.” Thus the action
(modify 3 +status followed tvalue <response> +id <newid>)
1s equivalent to

(remove 3)
(make (substr 3 1 inf) +status followed tvalue <responsed>
+1d <newid>)

3.3.3.1. Element Designators and modify
Modifying elements does not change the bindings of element variables or of numeric clcinent designators.

Thus in the following RHS, the two calls on substr both return the same result.

(000 =
(make ... (substr <c> 6 10))
(modify <c¢> *7 nil)
(make ... (substr <c> 6 10)))

3.3.3.2. Multiple modify’'s of ait Element

Itis legal to modify an clcment more than once in an RHS. That is, an RHS like the following is legal.

(w5 --B
(modify <x> 12 0)
(modify <x> 12 1))

To understand what happens in this case, recall that modify is defined to be equivalent to a remove

followed by a make. Thus this RHS is equivalent to

(evr =
(remove <x>)
(make (substr <x> 1 inf) 12 0)
(remove <x>)
(make (substr <x> 1 inf) 12 1))

As explained in the previous section, the binding of <x> remains unchanged while the RHS exccutes. Thus
the two calls on make produce two elements that are identical except for their second subclements. As
explained in Section 5.3.2, if remove is callcd more than once with the same argument, the second and later
calls have no effect. Thus the second remove herc is a no op. In short then, the two calls on mod1fy result

in the original clement being deleted from working memory and replaced by two slightly different copies.

5.3.4. openfile

Thc action openf11e is used to open files and associate names with the files. The action takes an RHS
pattern as its argument. After the pattern is cvaluated, the first three fields in the result element should
contain valucs. The first value should be a symbolic atom; this is the name that the production systcm will

use to refer to the file. The second value should be a valid file name for the system on which OPSS is being

2If the pattern does not begin with the operator +, then it is necessary to put 11 betwecen the substr and the pattern in make.

30

el onp oy o S e L S e, . s

run. ‘The third value should be either in or out; this value indicates whether the file is to be opencd for
input or output. A typical use of outf11e is

(openfile tracefile |trace.r11] out)
This opens the file trace. r11 for output and associates the name tracefi1e with the open file,

The atom n11 cannot be used as the first argument to openf1le. This atom is used 1o refer to the user's

terminal (sce Section 5.3.6).

5.3.5. closefile

The action c1osef 11e is used to close files that have been opened with openfile. This action takes an
RHS pattern as its argument. The pattern should evaluate to one or more symbouc atoms. These atoms
should be namies which have been associated with files by openfile. When closefile is executed, the
operating system is called to close the files and the associations between the names and the files are removed,

‘Thus to close the file that was opened in the example above, the following would be executed
(clozefile tracefile)

It is important that output files be closed before the OPSS interpreter is exited. On some systems, the files

will be lost if they are not closed.

5.3.6. defauit

The action defau1t is used to control wherc write and the trace routines print their information and
where accept and acceptline read their information. This action takes an RHS pattern as its argument.
After the pattern is evaluated, the first two positions in the result element should contain values. The first
position should contain either n41 or a symbolic atom that has been associated with a file by openfile.
The second position should contain either trace, write, or accept; the value in this position determines
which default is being set. (The atom acceptline is not a valid value for the sccond position:
acceptline reads from the same default file as accept.) Asan example of its use, to make the file that
was opencd in the example in Secction 5.3.4 be the default for trace information, the following would be

exccuted.
(default tracefile trace)

[fthe second argument to default is ni 1, then the default is set to the user's terminal. Thus to undo the
effects of the previous call to defaul t, the following would be used
(default ni1 trace)

31

5.3.7. write

The action write is used to output information from the production system. The action takes an RHS
pattern as its argument. It instantiates the pattern and then prints the values in the result element on the
user’s terminal or a file. (Thus the pattern should be in vector format; if it is in attribute-value format, the

information will come out in a jumbled order that depends on the assignrilent of numbers to attribute names.)

If the value in the first ficld of the result element has been associated with an output file by openfile, the
information will be wrirten to that file. If ihe value has not been associated to an output file, the information
will be written to the current default stream for write. The value in the first po..on is not printed if it is a

file specifier.

As explained in the following sections, the user can specity printer control information in write. When
information is not supplied, write priats its values on the current output line, putting on¢ space between

values.

5.3.7.1. Special Functions for write
Three functions, cr1f, tabto, and rjust are provided for use with write. It is possible to call these

functions within make, mod1fy, or other action, but this is not recommended.

In some implementations of the OPSS interpreter these functions place only a single value into the result
element; in other implementations they place two. Nonetheless, production systems will always give the same

results provided the operator * is not used inwrite.

5.3.7.2 crlf
The function ¢r1f puts into the result element a value that will cause wrte to begin a new line when it

encounters the atom. The function takes no arguments, S0 2 call on it has the form (¢r1f). As an example

of its use, the following action

(write (crif) a b c (cr1f) (crif) d e f)
will cause the interpreter to begin a new ling, print a b c,skip aline (by execuling the operation to begin a
new line twice), and then printd e f. Thus the output is

abec

de t

32

3.3.7.3. tbto
The function cabto piaces valucs into the result clement that cause the write action to move o a
specificd column. The function takes onc argument, the column numbcr. The argument must be a numcric

atom or a variablc that is bound to a numcric atom. Typical callson tabto are

(tabto 30)
(tabto <x>)

If the spccificd column is to the left of the last column printed, a new linc is begun. Thus the action
(write (crlf) (tabto 5) * (tabto 3) * (tabto 1) *)
would print

]

]
Thc action
(write (crl1f) (tabto 1) * (tabto 3) * (tabto 6) *)

would print
$ 8 @

5.3.7.4. rjust

The function rjust is used to print values flush-right in fields of specificd widths. Thc function takcs one
argument, an indication of the width of the ficld. The argument must bc a numeric atom or a variablc that
evaluates to a numeric atom. When the action is evaluated it placcs print-control information in the result
element. When writs processes the information, it allocates a ficld of the indicatcd width beginning at the
next available position on the output linc. Then write dctcrmines the number of characters that the next
value to be printed will necd and prints cnough blanks to cause the value to be right justified in the field.

Thus the acticn
(write (crl1f) (tabto 10) (rjust 10) abc)

will causc a to be printed in column 18, b in column 19, and ¢ in column 20. This action is equivalent to
(write (cr1f) (tabto 18) abc)

If the value to be printed is widcr than the field, write reverts to the normal modc of printing. That is, it |

prints a single space and then the value.

The action must immediately precede a printable value. That is, it must not precede a call on erlf,

tabto, or rjust. Howcver, it is lcgal for rjust to follow ¢r1f or tabto.

5.3.8. cull

The action ca 11 is used to call subroutines written by the user. The action takes as arguments the name of
a subroutine and an RHS pattern. [t instantiates the pattern and then calls the subroutine. The subroutine
can interrogate the OPSS interpreter to determine what information is in the result element. (See Section 7

for more information about the interaction between OPSS and the subroutine.)

5.3.9. halt
The action ha1t sets an internal flag in the interpreter that causes the interpreter to stop firing productions
after completing the recognize-act cycle in progress. The action takes no arguments; a call on halt always

takes the following form.
(halt)

5.3.10. bind

The action bind is used to assign valucs to variables. There arc two forms of calls on bind. In the more
general form bind is given two arguments: a variable and an RHS pattern. 1t evaluatcs the pattern and then
assigns to the variable the value that is in position 1 of the result element. For example, to add 1 to the

binding of <x>, the following would be exccuted.
(bind <x> (compute <x> + 1))

In the other form of bind, the action is given only onec argument -- the variable to be bound. When this

action is executed, a new symbolic atom is created and assigned to the variable. Thus the action
(bind <2>)

is equivalent to
(bind <z> (genatom))

5.3.11. chind
The action cbind is used to assign values to element variables. The action takes cnly one argument, the

variable. A typical call is
(cbind <c>)

The variable is bound to the last clement that was added to working memory (by make, modify, or

infrequently ca11). The result of executing ¢bind before the RHS has added an element is undefined.

5.3.12. build
The action bui1d is supported only by the LISP-based interpreters for OPSS. This action is used to add a
new production to production memory while the system is exccuting. Because some of the variables, actions,

and functions in the argument to bui1d are meant to be evaluated when the action is performed, while

34

others are meant t be incorporated as they are in the new production, bu1i1d cannot usc the ordinary OPS5
argument evaluation mechanism. Instead, when bui1d is cvaluated, all its arguments are treated as constants
unless th: are preceded by the special unquotce opcerator, \\. The arguments to bu11d should evaluate © a
symbolic atom (the production’s name), a sequence of condition elements, the atom --», and a scquence of

actions.

g5

6. The Recognize-Act Cycle

By convention, the steps in the recognize-act cycle are usually said to occur in the following order:

1. [Match] Evaluate the LHSs of the productions to determine which are satisfied given the current
contents of working memory.

2. [Conflict Resolution] Sclect one production with a satisfied LHS. 1f no productions have satisfied
1LHSs, return control to the user.

3. [Act] Perform the actions specificd in the RHS of the sclected production.
4. If a halt action was performed. return contro! (o the user; otherwise go to step L.

[n the OPSS interpreter, the cycle has been changed to:

1. [Conflict Resolution] Select one production with a satisfied LHS. 1f no productions have satisfied
LHSs, return control to the user.

2. [Act] Perform the actions specified in the RHS of the selected production.

5. [Match] Evaluate the LHSs of the productions to determine which are satisfied given the current
contents of working memory.

4.1fa halt action was performed, return control to the user; otherwise go to step L.

The OPSS cycle is more convenient for the user because when the cycle ends, the conflict set is consistent with

the current contents of working memory.

6.1. Conflict Resolution
The output of the match process, and the input to conflict resolution, is a sct called the conflict set. The

objects in the conflict set are called instantiations. An instantiation is an ordered pair of a production name
and a list of working memory elements satisfying the production’s LHS. During conflict rasclution the
interpreter examines the conflict set to find an instantiation which dominates all the others under the ordering

rules listed below. The dominat instantiation will be executed in the act phase of the cycle.

A sct of ordering rules for instantiations is called a conflict resolution strategy. OPSS provides two

strategics called LEX and MEAL. Although these strategies arc rather complex to describe, what they achieve
is simple:

e Both strategies prevent instantiations from executing more than once. Early production systems
were subject to trivial loops in which the interpreter fired a production on the same data
indefinitely. The OPSS strategics contain a mechanism to prevent these loops.

o They make production systems attend to the most recent data in working memory. This makes

3

Ln-“-—m—nmw:ﬂ- p—
S e—

production systems casier o prugram because direction is given to the system’s processing; once
the system begins a subtask it is unlikely to be distracted by anything left over from carlier tasks.
The difference between LEX and MEA is that MEA makes the system more sensitive to recent
tasks. With the MEA strategy, the system cannot be distracted from its current task.

e They give preference to productions with more specific LHSs. Since productions with more
specific LHSs are satisfied in fewer cases, they are more likely to be appropriate for those cases in
which they are satisfied. More specific productions are therefore chosen when they are available.

These three things are important because they make it easy to add productions to an existing set and have the

new productions fire at the right time, and because they make it easy to simulate common control constructs

such as loops and subroutine calls. See [8] for a defense of these assertions.

6.1.1. The LEX Strategy

The LEX conflict resolution strategy contains four rules which are applied in order to find the instantiation

that dominates under them.

1. Discard from the conflict set the instantiations that have already fired. If there arc no
instantiations that have not fired, conflict resolution fails and no instantiation is selcted.

2. Order the instantiations on the basis of the recency of the working memory elements, using the
following algorithm to compare pairs of instantiations: First compare the most recent elements
from the two instantiations. If one element is mere recent than the other, the instantiation
containing that element dominates. If the two elements are equally recent, compare the second
most recent elements from the instantiations. Continue in this manner either until one element of
one instantiation is found to be more recent than the corresponding element in the other
instantiation, or until no elements remain for one instantiation. If one instantiation is exhausted
before the other, the instantiation not exhausted dominates; if the two instantiations are exhausted
at the same time, neither dominates.

3. If no one instantiation dominates all the others under the previous rule, compare the dominant
instantiations on the basis of the specificity of the LHSs of the productions. Count the number of
tests (for constants and varizbles) that have to be made in finding an instantiation for the LHS.
The LHSs that require morc tests dominate.

4. If no single instantiation dominates after the previous rule. make an arbitrary selection of the
dominant instantiation.

6.1.2. The MIEA Strategy
The MEA straicgy differs from LEX in that another rule has been added after the first. The rule that was

second had to be modified slightly to accommodate the new rule. The rules for MEA are:

1. Discard from the conflict set the instuntiations that have already fired. If there are no
instantiations that have not fired, conflict resolution fails and no instantiation is selected.

38

2

. Compare the recencies of the working memory clements matching the first condition elements of
the instantiations. The instantiations using the most recent working memory elements dominate.

3. Order the instantiations on the basis of the recencies of the remairing working memory clements,
using the following algorithm to compare pairs of instantiations: First compare the most recent
clements from the two instantiations. If one element is more recent than the other, the
instantiation containing that clement dominates. If the two clements are cqually recent, compare
the second most recent elements trom the instantiations. Continue in this manner either until one
clement of one instantiation is found to be more recent than the corresponding element in the
other instantiation, or until no clem<n’s remain for one instantiation. If one instantiation is
exhausted before the other, the instantiation not exhausted dominates: if the two instantiations are
cxhausted at the same time, neither dominates.

4. If no one instantiation dominates all the others under the previous rule, compare the dominant
instantiations on the basis of the specificity of the LHSs of the productions. Count the number of
tests (for constants and variables) that have to be made in finding an instantiation for the LHS.
The LHSs that require more tests dominate.

5. If no single instantiation dominates after the previous rule, make an arbitrary sclection of the
dominant instantiation.

6.1.3. Which Instantiations to Discard

The first rule in both strategies specifies that instantiations that have already fired are to be discarded.
Implementing this rule requires that a precise definitios of equality for instantiations be chosen; and this in
tura requires that a precise definition of equality for working memory elements be chosen. In OPSS the latter
is simple: Working memory clements X and Y are cqual if they have equal time tags. The former is
somewhat more complex; the definition of equality for instantiations that is used in OPS5 is: Instantiations A

and B are cqual if

¢ A and B arc instantiations of the same production,
¢ A and B contain the same list of working memory clements, and

» If A was in the conflict set at time Ta and B was in the conflict st at time Tb, there is no time Tc
between Ta and Tb such that A and B were not in the conflict set at time Tc.
The last item here probably requires an cxplanation. It is needed for productions that contain negated
condition clements. It is possible for such a production to be satisfied by some list of working memory
elements (instantiation A), become unsatisfied because sometning enters working memory that matches the
negated condition clement, and then become satisfied again on the original list of clements when the new
clement is deleted (instantiation B). The third rule is included so that the production will be able to respond

to these changes by firing a second time.

39

6.2. Act

In the act phase of the cycle, the actions in the chosen production arc exccutcd one at a tme, in the order
they are written. Actions take effect immediately. Hence if an RHS contains several make or modify

actions, the element added by r'se last action in the RHS is more rccent than the elements added by the rest.

6.3. Match
During the match, the interpreter determines ¢ - ry instantiation of every production. Thatis, it finds every
production that is instantiated, and if any of the productions can be instantiated by more than one ust of

. working memory elements, it finas every list of elements. It puts the instantiations into the conflict set.

40

P o LTS

7. User-Defined Actions and Functions
The OPSS interpreters allow users to write their own acuons and functions. The BLISS-hased interpreter
will call routines written in BLISS (or any other language that uses the BLISSH subroutine cailing

conventions): the LISP-based interpreter will call routines written i LISP.

7.1. Declarations

The user’s routines must be declared to the interpreter before they are used in an RHS. Tte synicof the
declaration is: an open parenthesis, the atom external, onc or more routin¢ names, anc a ciose
parenthesis. Any number of routines may be declared external in one declaration, and any number of
declarations may be made in a production system. Thus to declarc min and max, either of the fullowing

could be used:

(external
min
max)

or

(external min)
(external max)

7.2. Actions

User-defined actions are called, using cal1, from the RHS of a production or fivm the top level (see
Sections 5.3.8 and 8.1.6). The routine should take no arguments, and it should return no sziues (if vaiucs are
returned they are ignored). All communication between the interpreter and the routine is accoryplished

through usc of t%« functions described below.

7.2.1. Sparameter
The sccond argument to the cal7l action is an RHS pattern, which is instartiated into the result element

before the user’s routine is called. The function $parameter allows the routine to rcad values out of the
clement. The function takes one argument, an integer; when it is called with the argument K, it returns the
value in the Kth field in the ci. ~ent. Thus to get the first value in the element, a routine written in LISP
wouid exccute

($parameter 1)
and an action written in BLISS would exccute

Sparameter(1)
Following the usual OPSS convention, when $parameter is called to access a ficld that was not explicitly

given a value, it returns ni1. It is consider=d an error, however, to access a non-cxisten: field (i.c, to use an

41

index less than 1 or greater than 127).

7.2.2. Sparametercount

The function $parametercount returns an integer; the integer is the number of the last field in the
result elemient that received a valuc. Thus if the ¢a11 did not contain the operator +, this function indicates
how many values were put into the result clement. (Generally, * is not used with ¢a11.) The function takes

no arguments.

7.2.3. Sassert

Some of the actions written by users add elements to working memory. The actions put an clement in
working memory by clearing the result element (sce Section 7.2.6), putting the new values in the result
clement (see Sections 7.2.5 and 7.2.4), and then executing the function $assert. The function $assert
copies the result element into working nemory. After it is copied into working memory, the result element
can be cleared again and another collection of values assembled there. The function $assert takes no

arguments.

7.2.4. Stab

The function $tab controls where the next valuc will be placed in the result element. This function takes
one argument, which should be either an integer or a symbolic atom which has been assigned an integer in a
1iteralize or 1iteral declaration. When $tab is executed it informs the interpreter that the next value

put into the result element should go into the indicated field.

7.2.5. $value

The function $value is used to put one symbolic atom or number into the result clement. It is called with
one argument, the value to put in. If no $tab has been executed since the last call on $value, it puts the
value in the field just after the one used on the previous call. If $tab has been exccuted since the last call on
Svalue, it puts the value in the field hat $tab designated. If no calls on cither $t.ab or $value have been
made since the result element was cleated, the value is placed in the first field. (These rules for deciding

where to put values are equivalent to the rules used for terms in the RHS -- see Section 5.2.3.)

7.2.6. Sreset
The function $reset is used to remove the information currently in the result element. This function

takes no arguments. It shiould be noted that $assert does not automatically perform a $reset.

)

7.2.7. Sifile and Sofile

The functions $ifile and $ofile are used to access files that were opened with openfile. The
function $1f11e lakes a single argument, which should be a symbolic atom that is associated with an open
file. That is, the atom should have occurred as the first argument to openfile. If the atom is associated with
a file that is currently cpen for input, the file is returned. (More precisely, in FRANZ LISP, a port is
rerurned; in MACLISP, a file object is returned; and in BLISS, the address of an XPORT IOB is returned
[2].) If the atom is not associated with a file that is open for inpu o failure signal is returned: in LISP, the
atom ni1 is returned, and in BLISS, the XFORT value xpo$k_failure isreturned. The function $ofile

is identical except that it returns files that are open for output.

7.3. Functions
The syntax of a call on a user-written function is identical to the syntax of a call on a standard function:
The call consists of an open parenthesis, the name of the function, the arguments to the function (if any), and

a close parenthesis.

The conventions for passing arguments to functions are not the same in the LISP- and BLISS-based
interpreters. In the BLISS-based interpreter, the arguments are cvaluated (i.c., OPSS variables are replaced
by their bindings) and then they are passed using the ordinary BLISS parameter passing mechanism. Thus if
the function in the RHS has threc parameters, the BLISS routine is called with three arguments. In the LISP-
based interpreter, the arguments arc passed unevaluated. The LiSP routine must be a fexpr. If the LISP
routine needs the arguiments to be evaluated, it calls routines in the interpreter to perform the evaluation.

(Sec the two sections immediately following.)

RHS functions do not return values using the normal value return mechanism of LISP or BLISS. (If values
ar. r2rorned with the normal mechanism, OPSS discards them.) Instead, values are returned using the

function $vatue described in Section 7.2.5.

7.3.1. Svarbind
The function $Svarbind is provided in the LISP-based interpreter to allow RHS functions to cvaluate
their arguments. This function takes one argument. If the argument is a bound variable, the binding of the

variable is returncd. [f the argument is not a bound variable, the argument is returned unchanged.

43

hﬂmﬁ— e o v R s i s L s T Tr— T

e e g)

7.3.2. $lithind
The function $14tb1ind is provided in both the LISP- and BL.1SS-based interpreters. This function takes
one argument, If the argument has been assigned anumberina 1iteral or 1iteralize declaration, the

number is returned. 1f the argument has net been assigned a number, the argument is returned unchanged.

7.4. Atoms

The scalar values in the LISP-based interpreters are ordinary LISP atoms, so user-supplied routines ean
process them using the usual LISP f inetions. The scalar values in the BLISS-based interpreters are data types
that are implemented in the OPSS interpreter, so user-supplied routines must call routines in the interpreter

to process them. The following are the neeessary routines.

7.4.1. $eql
An atom in the BLISS-based interpreter is a one word value (32 or 36 bits, depending on the computer
being used). To compare twn atoms for equality, the routine $eql is used. The routine takes two

parameters, the atoms to eompare. It returns a true value if the atoms are the same type and

e They are symbolic atoms :hat consist of the same string of eharacters, or

o They are numeric atoms whose algebraic difference is zero.

7.4.2. Ssymbol
The routine $symbo1 is used to test the type of atoms. It takes a single parameter, the atom to test. The

routine returns a true value if the atom is a symbolic atom, and a false value if it is a numeric atom.

7.4.3. Sintern
The routine $§ -*ern is used to convert a string of characters into a symbolic atom. It takes two
parameters, a BLISS character string pointer and a count of the number of charaeters in the string. It returns

the symbolic atom that represents the string.

7.4.4. Scvan and $cvna
'The routines $cvan and $cvna are used to convert between numeric atoms and ordinary BLISS integers.
Both routines take a single parameter. The routine $cvan takes an atom as its parameter and returns an

ordinary integer. The routine $cvna takes an ordinary number and returns a numerie atom.

e

8. Using the OPSS5 interpreter

This section explains how to load a production system into the interpreter and how 1o run the production

system after it is loaded.

8.1. The Top Level

After OPSS is installed on a systemn, it is invoked as any other program on the system is. When the
interpreter starts, it begins executing the top level routine. When the production system stops exccuting for
any reason. the interpreter returns to the wp level routine. This routine allows the user to add productions to
production memory (in LISP only), to put elements into working memory, to inspect the state of the

production system, to start the production system exccuting, etc. The top leve) routine is

1. Read a command from the user,
2. Execute the command.

3. Goto 1.

The following sections describe the commards that the OPSS interpreter supports.3

The syntax of all commands is the same: A command consists of an open parenthesis, the name of the
command, the arguments to the command if any, and a close parenthesis. On the BLISS-based interpreter, if
the command does not have arguments, the parentheses may be omitted. The commands are free format; end

ofline is treated like a space.

8.1.1. make
The action make can be executed at the top level as well as in a produetion’s RHS. If the user types
(make start)
the clement
(start)

will be created and placed into working memory. At the top level, make will not accept variables, the

operator //, or functions as argumeats. Constant symbols and numbers, +, and literalized atoms are

acceptable as arguments.

When makae is cxecuted, the match process is performed, and the conflict set is updated.

3'I'hc OPS3 interpreters that are written ir LISP usc the normal LISP top level. Thus in these interpreters the user can cvecute any
LISP command. However, the interpreter written in BLISS accepts only the commands listed here.

8.1.2. remove

The action remove may also be executed at the top level. However, since variables cannot be uscd at the

top level, remove uses a different method to designate the elements L0 delete. 1If the user types
(remove *)

the interpreter deletes everything from working memory. If the user gives one or more numbers as

arguments, the clements having those time tags are deleted. Thus typing
(remove 117 118)
will cause clements with time tags 117 and 118 to be deleted.

When remove is executed, the match process is performed, and the conflict set is updated.

8.1.3. openfile
The action openfile may be executed at the top level as well as in the RHS of a production. It has the

same effect as cpenfile in the RHS. When called at the top level, its argument should not contain

variables, the operator //, or function calls.

8.1.4. closefile
The action c1osef i1e may be executed at the top level as well as in the RHS of a production. It has the

same effect as closefile in the RHS. When called at the top level, its argument should not contain

variables, the operator //, or function calls.

8.1.5. default
The action default may be exccuted at the top level as well as in the RHS of a production. It has the

same effect as default in the RHS. When called at the top level, its argument should not contain variables,

the operator //, or function calls.

8.1.6. call
The action ¢a11 can also be used at the top lovel. Like the RHS command call (see Section 5.3.8) this

command is used to invoke user-defined subroutines. Its arguments should be a routine name and an
optional pattern like the patterns given to make at the top level. The pattern should not contain variables, the
operator //, or function calls. Tne interpreter instantiates the pattern and invokes the routine. The routine

must have been declared external.

46

| EERg——

8.1.7. run
The command run causes the interpreter to execute a production system. 1f the user types
(run)
the production system is allowed to execute until it halts or a breakpoint is reached (see Section 8.1.15). Ifthe
user gives a numeric argument to run the interpreter will automatically halt after that many cycles. Thus
entering
(run 100)
will cause the interpreter to run 100 cycles and halt. (Of course, the system may not exccute the full 100

cycles, because the conflict set may become empty, a production may execute the halt action, etc.)

8.1.8. ppwm
The command ppwm is one of two commands to print working memory elements. (See also wm, below.)
This command takes a pattern likc a condition element; it prints all the clements matching the pattern. For
example
(ppwm goal tstatus active)
will print all the active goals. When ppwm is called with a null pattern, as in

(ppwm)
it prints every element in working memory. The pattern can contain constant symbols and numbers, the

operator *, and literalized atoms. It should not contain variables, predicates, the operator //, or the two
kinds of brackets ({ } and << >>).

8.1.9. wm

The command wm, like ppwm, is a command to print working memory elements. It differs from ppwm in
the kind of arguments it takes. This command takes a list of time tags and prints the elements with those time
tags. It is useful because some of the other OPS5 commands print time tags rather than working memory

elements to save space; wm is used to expand the time tags into the elements they resresent. Thus
(wm 6 6 7)

causes the interpreter to print the three elements whose time tags are 5, 6, and 7. When wm is given with no
arguments, as in
(wm)

the interpreter prints the entire contents of working memory, as ppwm with no arguments does.

47

8.1.10. pm
The command pm displays productions on the user's terminal. [t is called with one or more production
names, and it prints the productions in a readable format. This command is 20t supported in the BLISS-

based interpreter.

8.1.11. cs

The command ¢ prints the current contents of the conflict set. The command does not accept arguments.

8.1.12. matches
The command matches prints the partal matches for productions. It is called with one or more
production names as its argument; for example
(matches find-colored-block)
It prints the time tags of the elements matching each condition element of each production; it prints the pairs
of working memory 2lements matching the first two condition clements; it prints the triples matching the first

three condition elements; and so forth.

8.1.13. strategy
The command strategy prints or sets the conflict resolution strategy being used. If the command is
given with no arguments, as in
(strategy)
it prints the current strategy (it wii! be either mea or Tex). If the command
(strategy mea)
is given, it sets the current strategy to mea. If the command
(strategy lex)
is given, it sets the current strategy to 1ex. The only legal arguments to strategy are 1ex and mea.]

The default strategy -- that is, the one in effect when the interpreter starts -- is 1@x.

8.1.14. watch
The command watch controls how much trace information the interpreter prints while it executes a
production system. If the user executes
(watch 0)
the system will print no trace information. If the user executes
(watch 1)

the system will print the name of each production that fires along with a list of the time tags of the elements

F -

48

h“w—.m_.—-_“-..n e b i e LI e

instantiating the production. If the user executes

(watch 2)
the interpreter will print the information of level 1, and it will print the clements that are added to or deleted
from working memory. If the user executes

(watch 3)
the interpreter will print the information of level 2, and it will print every change to the conflict set when it
happens. Level 3 of tracing is not supported in the LISP-based interpreters. If watch is called with no

arguments, it reports the current trace level.

8.1.15. pbreak

The command pbreak sets and removes breakpoints on the productions. If a breakpoint is set on a
production, the interpreter will halt and return to top level whenever that production fires. The production is
allowed to execute, but then the recognize-act cycle is exited. Giving the command pbreak with no
arguments causes the interpreter to print the names of the productions that have breakpoints set. Giving the
command with productions as arguments, as in

(pbreak ri€ ri17)

toggles the state of the listed productions: The productions that had breakpoints sct have them removed: the

productions that did not have breakpoints have them set.

8.1.16. exit
The command ex1it causes the interpreter to cease operation and returns the user to the monitor. The

command does not take arguments.

In the BLISS-based interpreter, a control-Z character (ASCII 32 octal) is treated like the ex 4% command.

8.1.17. excise
The command excise is used to delete productions from production memory. When excise is called,

its argument list should contain one or more production names.

8.1.18. back
The command back is supported only in the LISP-based interpreters. This command causes the
interpreter to restore the production system to an carlicr state. The command takes one argument, a number

indicating how many rccognizc-act cycles to back up. Thus
(back 1)

causes the system to back up 1 cycle. To save space, the interpreter maintains only enough information to

49

+ L L e
i e e e L L e s e b e L T S ik r

back up 32 cycles.

The commands back and run can be intermixed without confusing the interpreter. The following

sequence, for example, is legal.

(run 100)
(back 10)
(run 5)

(back 15)

If no productions have fired before, this will cause the interpreter to perform cycles 1 to ; 9, back up to the

state that existed after cycle 90, run for another S cycles, and then back up to the state tha' :xisted after cycle
80.

8.2. Loading a Production System
When the BLISS-based OPSS interpreter is used, productions are compiled and linked with the interpreter
before the interpreter is started. Thus with this interpreter the system is always ready to run as soon as the

interpreter is started.

With the LISP-based OPSS interpreter, productions are usually defined after the interpreter is starred. (In
fact, unless the user has saved his own core image, production memory will contain no productions when the
interpreter is started.) Productions are defined by typing in the declarations and the productions, by loading

files that contain the declarations and the productions, or both.

50

U

Apnendix |
Syntax of OPS5
The following is a simplified BNF description of the syntax of OPSS. Terminals are printed in a Roman
type face, and non-terminals are printed in italics. The only nonstandard meta symbol used is the star ("'*").

The star indicates that the preceding item is to be repeated zero or more tmes.

production = (p constant-symbolic-atom lhs ==> rhs)
Ihs L= positive-ce ce*
ce HIKE positive-ce
S negative-ce
positive-ce 1= Sform
g2 { element-variable form }
. { form element-variable }
negative-ce 33 - form
form RE. (Ihs-term*)
lhs-term 1= t constant-symbolic-atom lhs-value
pAs + number lhs-value
W= Ihs-value
lhs-value R { restriction* }
= restriction
restriction QRE <L any-atom* >>
ti= predicate atomic-value
:= atomic-value
alomic-value 1= // any-alom
R G var-or-constant
var-or-constant R constant-symbolic-atom
ti= number
R variable
predicate R =
= <>
= <
= {=
= >=
= >
= <=>
rhs ti= action*
action . s (make rhs-term*)

(remove element-dosignator*)
(modify element-designator rhs-term*)

51

element-designator

rhs-term

rhs-value

Sfunction

user-defined-function

expression

operalor

quoted-form

Scveral terms have been left undefined: variable, element-variable, constant-symbolic-atom, any-atom, and
number. Symbolic atoms and numbers arc described in Section 2. The two kinds of variables arc described in

Scctions 4 and 5. The only thing that nceds 10 be explained here is the difference between any-atom and

es ee

e

ae se ee

halt)

bind variable)

bind variable rhs-term*)

cbind element-variable)

call constant-symbolic-atom rhs-term*)
write rhs-tenn*)

openfile rhs-term*)

closefile rhs-term*)

default rhs-tenn*)

build quoted-form*)

number
element-variable

+ var-or-constant rhs-value
rhs-value

atomic-value
function

e i Rt Rame W S N]

user-defined-function

(

number
variable
expression operalor expression

(

\\ rhs-value
any-atom

(

1itval varorconstant)

substr element-designator var-or-constan{ var-or-constan!)
genatom)

crlf) |
rjust varor-constant)

tabto varor-constant)
accept)

accept varorconstant)
acceptline varorconstant*)
compute expression)

constant-symbolic-atom var-or-constant® ')

expression)

1Y

»

//
AN\

quoted-form*)

52

constam-symbolic-atom. The former is an atom that is treated as a constant because it is quoted (with // or

<< > usually). The latter is an atcem that is treated as a constant because it does not have the form of a

variable or operator.

il

53

References

1. Digital Equipnient Corporation. BLISS language guide. 1980.
2. Digital Equipment Corporation. XPOR " programmer’s guide. 1980.
3. Foderaro, J. K. The FRANZ LISP manual. University of California at Berkeley, 1980.

4. Forgy, C. L. and McDermott, J. The OPS reference manual. Department of Computer Science, Carnegie-
Mellon University, 1976.

S. Forgy, C. L. and McDermott, J. OPS, a domain-independent production systern. Proceedings of the Fifth
International Joint Conference on Artificial Intelligence, 1977, pp. 933-939.

6. Forgy, C. L. and McDermott, J. The OPS2 reference m. iz.a1. Department of Computer Science,
Carnegie-Mellon University, 1978.

7. Forgy, C. L. OPS4 user's manual. Department of Computer Science, Camnegie-Mellon University, 1979.

8. McDermott, J. and Forgy, C. L. Production system conflict resolution strategics. In Waterman, D. A. and
Hayes-Roth, F., Ed., Pattern- Directed Inference Systems, Academic Press, New York, 1978, pp. 177-199.

9. MIT Al Lab and Project MAC. MACLISP manual. Massachusetts Insttute of Technology, 1978.
10. Newell, A. PSG manual. Department of Computer Science, Carnegie-Mellon University, 1973.

11. Rychener, M. D. Production Systems as a Programming Language for Artficial Intelligence Applications.
Ph.D. Th., Carncgie-Meilon University, December 1976.

12. Rychener, M. D. OPS3 production system language tutorial and . " ence manual. Department of
Computer Scicnce, Carnegie-Mellon University, 1980.

54

=]
Q

eXx

$aszot 42
Scvan 44
Scvnz 44
Seql 44

Sifile 43
Sintern 44
$litbind 44
Sofile 43
Sparameter 41
Sparametercount 42
$reset 42
Stab 42
Svalue 42
$varbind 43

-2
-> 15

/7 18,25
. 4

< 19
<< 18
<= 19
<=> 19
19

|
=19 |

> 19
>= 19
» 18

Accept 27

Acceptline 27 -

Act 1,40

Action 28, 41

Atom 44

Attribute-value element 9, 11

, Back 49
Bind 34
Build 34

Call 34,41, 46,47
Cbind ¥4

Closefile 31, 46
Comment 4

Compute 26

Condition element 17, 20
Conlflict resolution 1, 37, 48
Conflict set 37, 48
Constant 18, 25

Crif 32

Cs 48

35

Default 31, 46

Element designator 23, 29, 30
Element variable 21, 23, 29, 30
Excise 49

Exit 49

External 41

Function 25,43
Genatom 26
Halt 34

._ LEX 38,48

F LHS 1,215 17,20
Literal 12
Literalize 9
Litval 27

Make 28,45
Match 1,40
Matches 48
MEA 38,48
Modify 29

Negated condition element 20
Number 7,18, 25, 4
Numeric element designator 23, 29, 30

Openfile 30, 46

P 1S

Pattern 23

Pbreak 49

Pm 48

Ppwm 47

Production 1,15

Production memory 1,2, 15, 48, 49

Recognize-act cycle 1,37
Remove 28,46

RHS 1,3,15,23

Rjust 33

Strategy 48
Substr 25
Symbolic atom 8, 18, 25, 44

Tabto 33

Term 17,24
Time tag 7
Top level 45

Variable 18,25
Vector clement 10
Vector-attribute 9

Watch 48
Wm 47

T T | S — FYOT VN J— - . —

Working memory 1,2,7.47
Write 32

T 9,12,17,24 |
i
{ 20,2 {I
]
I

| 8

} 20,21

P TEp— ——

57

