" AD=A106 552 CARNEGIE-MELLON UNIV PITTS8URGH PA DEPT OF COMPUTER ==ETC F/6 9/5
THE COMPLEXITY OF MANIPULATING HIERARCHICALLY DEFINED SETS OF R==ETC(U)
APR 81 J L BENTLEY, T OTTMANN NO0O14=T6~C=0370
UNCLASSIFIED CMU=CS-81-109 N

§.

Postfach 6300, D-7900 Kavlowwhe

Weet Gommany
april 1981
-
DEPARTMENT
of

COMPUTER SCIENCE

! Carnegle-Mollon Universty

J

4 . (

~,

.

. QRI-CS-41-189

The Camp.iexity of Manipulating
Hierarchically Defined Sets of Rectangles,

/ ; Jon Louxozloatloy‘ = ,a
Deparwments of Camputer Science ‘
and Mathematics
Carnegie-dellon University .
Pittsburgh, Pennsylvania 15213 / 7 -
U.S8.A. :
rho-as/Ot:annnz

institut fir Angewandte Informatix
and Pormale BeschreibungsverZahren
Cniversitidt Karlsruhe
Postfach 6180, D=-7%00 Rarlsruhe °
~est Germany

Apssract

ALgoritims that manipulate sets of rectangles are 2f jreat
practical importancs :in VL3I design systems and other app.i:ca-
sions. Although much theoretical work has appeared recent.y on
tle campiexity of rectangle problems, it has assumed that che
iaputs are jiven as a list of rectangles. In this paper we study
the comp.exity of rectangle Problems when tae inputs are j.ven
ia a hierarchical langquage that alicws tie designer to build
-arse desijns by veplicazing mall designs. We wil. see that
wWhi.e mos= of the problems are NP-nard in the jenera. case, =aere
are 0 N .3 N) algoricims chat Prcocess Lnputs dSbeving Jer<ain
Testr.ct.:ns.

i~
.M'QK‘ﬂ 8 1D A SV e Cnicad State JfZ:0e oI Naval ‘Wwsearc:
ndar 2 NG 4-76-C=3379
- N—— . - - 4
T Tus WCIX WS PAITIALL KREpCrIed SV the Ceutsche Foracnuncscemeitsctads CFG.
’

1. INTROOUCTION

Algoritims that manipulate sets of rectangles in the
plane are of great interest to practitioners and theoreti-
Clans alike. Practical applications of such algoritims arise
in such areas as camputer graphics, architectural design
systems and VLSI (Very Large Scale Integrated Circuitry)
desi:gn systems. These problems also have great appeal ‘ram a
purely mathematical viewpoint: the problems are quite natura.l
and easy to pose, yet the solutions often have a rather sub-
tle structure.

Much theoretical work has been done recently on rectan-
gle problems; we will return to a brief survey of that work
in Subsection 3.1. Almost all of the work, though, has con-
centrated on rectangle sets that are defined by merely l.st.ng
all the rectangles they contain. Although this is quite appro-
b priate for many applicationa, for many others this model is
terribly inaccurate. VLSI circuits, for example, are usually

not specified by simply listing their components, but rather

are described in a hierarchical design language zhat allows
a designer to build big designs in an orderly way from sma.l
designs.

One way to process the hierarchical designs is merel:y
to throw away their structure and treat them as though they
were jiven as sets Of rectangles. This can be guite costly,
however, because such designs -on describe an exponentiallvy

large number of rectangles.

With this motivation several researchers have recently
begun to investigate the problem of dealing directly with
a hierarchical description of a set of gecmetric objects:;
see, for example, Hon (1980] andwWhitney [1980]. The approach
that they have taken, however, is a solution-oriented stra-
tegy that has not led them to investigate many of the theo-
retical questions cthat arise in this endeavor.

The purpose of this paper is to provide a sound theo-
retical basis for the important problem of manipulating
hierarchical descriptions of geometric objects. In Section ¢
we will define the rectangle problems we will study and then
consider the various forms in which their input might be

given. In Section] we investigate the complexities of the

.seven) problems when their inputs are given in (three)

different representations. Pinally, implications of the re-

sults and directions for further research are studied in

Section 4.

2. PROBLEMS

In order to state a geametric problem precisely and
to measure its complexity, we must specify the language
which is used to describe an instance of the problem. In
this section we will first give a list of rectangle problems and
their applications using geoametric terms in their intu-
itive meaning. We will then introduce a hierarchical lan-
guage which allows us to describe the input and output of
esach problem and to measure its size.

The first problems in our list are intersection problems:
“e are given a set of rectangles in the plane (with sides
parallel to the coordinate axes) and we ask for intersections
among these rectangles or with other given objects.
Two rectangles are said to intersect if the interior
of their intersection contains at least one point. Thus,
the intersection includes both proper edge intersection and

the inclusion of one rectangle within another, but not two

rectangles that touch only at the border.

I. Rerort ntersecting Pairs

Input: A set of rectangles.
Qutput: A list of all intersecting pairs of rectangles.

Application: This is an important task in the ‘Jecmetry
engine” underlying most VLSI design rule

checkers; see Haken (1980] or Hon [1980].

o

2., Intersection Queation

Input:

Qutput:

A set of rectangles.
Yes, if there is at least one pair of intersecting

rectangles in the set; otherwise no.

Motivation: This is a more mathematically tractable version

of problem 1.

S. TnzersecTion with 2 Juerw Sbiect

Input:

A set of rectangles, and
a) a point, or
b) a line (parallel to x- or y-axis), or

c) a rectangle

Yes, if

a) the guery point lies in the interior of at least
one rectangle in the set;

b) the line crosses the interior of at least one
rectangle in the set;

¢) the query rectangle intersects at least one rec-

tangle in the set; otherwise no.

Applications: a) This allows an interactive user to point

to a rectangle and have the system retrieve
it for him.
b) This arises in routing (see Lauther ([1980]).

¢) This tests the validity of placing a rec-

tangle.

¢. Vorthermmost Rectangle Below a Line

Input: A set of rectangles and a horizontal line y = Yo!
Note that an important special case occurs when Yo
is greater than all y-values in the set.

Qutput: A northernmost rectangle in the set below the given
line.

Application: This is related to the routing problem of

Lauther (1980].

§. Measure and Perimeter Problems

Input: A set of rectangles.
Qutput: The
a) measure or
b) perimeter of their union; i.e. the total area
covered by at least one rectangle in the set.
Motivation: These problemgwere raised in a theoretical

context by Klee [1977].

8. Jonwmectadness Problems

Input: A set of rectangles.

Qutput: a) Yes, if their union is a connected set, and, no,
otherwise
b) the rumber of connected components in the union
¢c) a list of all connected components in the union.

Applications: Connectedness is a central notion in VLSI

circuit extraction.

7. Zcualizty and fubsetr Testing of Rectangle Sets

Input: Two descriptions D1 and D2 of sets of rectangles.
Qutput: Yes, if
a) the set denoted by D, is equal to the set denoted
by D2
b) the set denoted by D, contains the set denoted
by D2
otherwise no.

Observe that these problems are meaningful only if a language

to describe sets of rectangles has been fixed.

We will now specify a verv simple hierarchical lancuage for

describing sets of rectangles. This Hierarchic Input Language

(HIL) may be considered as a proper subset of the Symbolic
Layout Language defined in Mead and Conway [1980, Section 4.3)anc
of CIF (see Section 4.5 of the above).

The HIL language describes sets of rectangles as collec-
tions of boxes. BoXx commands describe each of these boxes by
specifying the x,y- coordinates of the lower-left corner
and its length and height. We may assume that all coordinates
and lengths are nonnegative integer multiples of the layout

unit A. For instance, the command

Box (o,0) (1,1)

describes the unit square with lower-left corner at the origin.
The general form of a Box command is

Box (X Coord,Y Coord) (Width,Height)

In HIL we can also define symbols that denote sets of rec-
tangles. A symbol definition is a symbol number, followed
by zero or more attributes and a list of Box and Draw
commands. A Draw command has the fomm

Draw < symbol number > at < point > i

<symbol number> must be the number of a previously defined J
symbol, and <point> is a pair of (x,y) coordinates. This
command describes the placement of the symbol deroted by
the symbol number at the given point. To make this more
precise we consider every defined symbol as "hooked" to the
origin. Thus, drawing a symbol at a point means to place its

origin on that point.

We give an example of a symbol definition with empty

lists of attributes:

1 : Box (0,0)(3,1)

2 : Box (0,0)(1,3)

[FY)
.

Box (4,3)(1,5)
Draw 1 at (4,4)
Draw 1 at (4,6)

Draw 2 at (6,4)

Symbol 3 is as follows:

Y %
2
Z 1z
g"é/
3 - Z
T
i%%}f%'i >
4 X

We consider it as hooked to the origin. The set of rec-
tangles denoted by symbol number 3 consists of two copies
of box 1, one copy of box 2 and one copy of the box in
svmbol 3 placed in the plane as shown by the above figure.

We now introduce the notion of a bounding rectangle, or

BR, of a symbol: A bounding rectangle of a symbol is any
rectangle that includes all boxes in the set of rectangles
denoted by the symbol. A BR is specified by the coordinates
of its lower-left corner and its width and height.

Thus, the rectangle with lower-left corner at (2,3),

length 4 and height 5 is a BR of the above defined symbol 3
(note that it is not the minimal BR).

HIL allows us to augment a symbol definition with an
attribute which specifies a BR (not necessarily the minimum
BR) of the symbol. Thus, a symbol definition has the general
form:

1

<symbol number>: {BR<point>(<length>,<height>)} o

{<box camnand>};

{<draw ccmmand>};

We will assume w.l.o0.g. that the set of rectangles (i.e., boxes,)
defined by a HIL file is the symbol denoted by the largest
symbol number, which we will often call the root symbol.

Symbol calls, i.e. symbol numbers occurring in draw commands

of a symbol definition,may nest. That is, the definitions of
the called symbols may contain calls of other, previously

defined symbols etc. Thus, we can associate to every symbol

- 10 -

definition a call graph which reflects the hierarchical
structure of the symbol definition. The above definition

of the symbol 3 has the following call graph:
3

1 2
Note that the call graph is always a directed acyclic graph,

which we abbreviate as a DAG.

We define the length of the HIL description of a symbo.
as the total number of 3ox- and Draw commands occurring in
the definition of the gymbol. Thus, the length of the above
HIL definition is 6. Observe that we do not count the length
of the numbers (symbol numbers, coordinates, etc) occurrinc
in the definition. (We will return to <this point in Sub~-
section 3.2).

One easily observes that the same set cf rectang.es
may have very different HIL descriptions, whose lengths nay
differ by an exponential factor. We may give a descrrgticn
of a set of N rectangles in the plane not using the Rlerar-

chical structure of HIL at all by writing N 2Zox commands in

th

the definition, one for each rectangle. This description

[§]

a set of rectangles is ¢bviously equivalent %c the usual
assumption made in much previous work on jeametr:ic Prcblems,
namely, that the set <of rectangles is given bv <he sexz of
coordinates of their corners. We will call this a gurelx

——

geametrical description of a set of rectangles.

whern an HIT Zcocraiption of a set of rectangles uses BR attri-

--zes they should often be consistently assigned. That

means whenever a user specifies a BR attribute in a symbol
definizion it should always contain the minimum bounding
reczangle which includes all rectangles (boxes) denoted by
the sympol. Clearly, the minimum bouncing rectangle for a
set =f rectangles denotec by a symbol in HIL can always be
computed by following the hierarchic definition "bottamuwm".

By imposing stronger constraints on the symbols which
we might use to define new ones we can restrict the ex-
pressive power of HIL considerably. We may use the BR attri-
butes (or other attributes) to state and check these con-
straints. As an example we will single out a restricted
vers:on of HIL which allows us only to define sets of rectan-
gles which do not contain any pair of intersecting rectangles:

Let us assume that every symbol definition is augmented with

a consisten- BR attribute. Then we require that all boxes
and all Bil's of the symbols occurring in Draw cammands of |
a symbol definition do not intersect. Thus, under the assump-

tion that all called symbols denote sets of nonintersecting !
rectangles the same holds true for the defined symbol. Let

us call the thus restricted version of HIL consistent.

- 12 -

3. COMPLEXITY RESULTS

In this section we shall study the camplexity of the
various rectangle problems under the various formats for
input. The primary results for this section are summarized
in Table 1. In Subsection 3.1 we will review the results
shown in the first column of Table 1; that section is just
a survey of previous worll Tn Subsection 3.2 we will study
the results of the third column (in which the problems
have unconstrained HIL input), and in Subsection 3.3 we
will study the results of the second column (in which the

problems have consistent HIL input).

- 13 =

\
Problem i
I

Geometry Consistent General
Only HIL HIL
1. Report Intersecting Pairs | N lg N + k 1 Exponential
2. Intarsection Quastion NilgN 1 NP-canplete
3. Intarsection with
uary Gbject .
a. Point N NP-campleta
b. Line N NP-canplete NP-canplete
C. Ractargle N NP-camplete NP-camplete
4. Northermmost Rectargle N NP—campiete NP-camnplete
Below a Line
5. Msasure Problem NigN N NP-canplete
Perimeter Problem NIlgN N NP-camplete
6. Connectedness Problems
a. Single Camponent (N+S) lg N 1 NP-hard
b. Number of Camponents (N+S) lg N N NP-hard
C. Report all Camponents | N 1g N + S-G(S) Exponential Exponential -
7. Equality and Subset N1lgN NP-hard
Testing of Rectangle Sets | N 1lg N NP-hard

Table 1.

Camplexities of Rectangle Problems.

} —

- 14 -

3.1 Geometric lnput

In this subsection we shall review the complexitv cf rec-

tangle problems when their inputs are given in Jeametric
forms (or, equivalently, given as a list of Box-cammands
in HIL). Rectangle problems having this input format have
recently been extensively studied in the literature. 'See,
for instance, Bentley and Wood [1980], van Leeuwen and
Wood [1979], Vitanyi and Wood [1979], Nievergelt 3ind Prepa-
rata [1980], and McCreight [1980].' We shall review -he
known results and sketch the basic techniques which have
been used to obtain the results.

We will now consider the first problem in our list in
some detail:

2.8

l. Xevorc Zacarseéczcingc

A naive algorithm checks all (?) Dairs of rectangles .n
a given set of N rectangles and thus solves zhe proplem
in quadratic time. This is optimal in the worst case
because all N rectangles could intersect, yie.d.ng .n
output of size (g). One can do better, however, v
first sorting the 2N values of their lower and upper
houndaries and then moving a scan line through the sec:
bottam-to-top, keeping track of rectangles intarsecting
the current scan iine. More precisely: Let us assume

that every rectangle R is specified by the {4 values

(x‘\R;,xs’R),y;(R),y_(R)\of their left, right, lower octtom

and upper’ -opl boundaries. ‘e sweer a horizontal 3can ..ne

—a

- 15 =

SL through zne set cf rectangles. At each instant of

time the scan line d:vides the set 0f rectangles :into
three disjoint sets: The set 0of dead rectangles which
have been cut by SL, the set of active rectangles
which are currently cut by the scan line SL, and the
set of sleeping rectangles which will be cut by SL.
These sets change only if SL passes a lower ©Or upper
osoundary of some rectangle.

Whenever a sleeping rectangle becomes active, ..e.
whenever SL halts at yE(RL we check all currently
active rectangles for intersection with R. This stra-
tegy assures that we do not miss any pair ¢of inter-
secting rectangles after sweeping SL once over the whole
set of rectangles. Consider an instant cf time, where
a sleeping rectangle R becomes active, i.e. when SL
halts at yS(R). How can we detect intersection with all
currently active rectangles? Let us assume that R :s
such a rectangle. Then R and R intersect iff their
projections to the x-axis overlap, i.e. i{ff [x_(n),x!(a))
and [x‘(§).§’(i)) have a nonempty intersection. (Thus
the scanning technicue has reduced the intersection
problem from a two-dimensional to a one-dimensional
problem.

Our above considerations show that it is sufficient
to store the x-projections of the currently active rectangles

in a data structure L such that we are able to answer the

above question efficiently. Furthermore, L must be dynamically
altered during the scan-line sweep: L is initially empty;
whenever a sleeping rectangle R becomes active, its projec-
tion to the x-axis is inserted into L, and whenever R becomes
dead, its projection to the x-axis is deleted from L.

The splitting of the one-dimensional overlapping segment
problem into a range and inverse range gquery suggests to choose
a pair of a range and a segment tree for L. Bentley and Wood
[1980] used this to solve Problem 1 in time O(N log N + k),
where k is the number of intersecting pairs, and in space
O(N log N).

McCreight [1980] uses tile trees to improve that approach
and obtain a solution with time complexity O(N lcg N + k)
and space complexity O(N) which is optimal. Bentley, Haken
and Hon [1980] use an array of segment bins for L which
yields a linear expected time 3solution to the problem for
sets of rectangles occurring in real chip designs.

We will now briefly examine the remaining rectangle sreo-

blems when their input is given in geocmetric form.

2. Intersaction Jueation

This problem can be solved by the same algorithm which

was used to solve Problem 1: Just stop it after the first
intersecting pair of rectangles was fcund, if there is one,
or, if the scan line has passed the whole set of rectangles.

Thus, the answer to guestion 2 can be ccmputed in time

O(N log N).

However, in order to detect intersection it is suffi-
cient to keep the list of left and right boundaries of the
currently active rectangles sorted according to their x-values
in a simple AVL tree L during the scan line sweep bottom-to-
top. Whenever a rectangle becomes active (respectively dead)
its left and right boundaries are inserted into L (respectively
deleted from L). There is at least one pair of intersecting
rectangles in the set if and only if for at least one rec-
tangle R either the newly inserted left or right boundary of
R is squeezed in between the boundaries of any other active
rectangle or the boundaries of R are separated by boundaries
of any other active rectangle, i.e. the boundaries of R do
not become immediate successors in L. This observation leads

to a simpler O(N log N) time algorithm for solving Problem 2.

2. Intersectrion with a Juery Chbiect

It is obvious that we can detect intersection of a query
object (a point, line, or rectangle) with at least one rec-
tangle in a set of N rectangles in linear time. We can just
use the naive approach of sequentially comparing each rec-
tangle to the object and need no preprocessing. If prepro-
cessing is allowed, it is possible to maintain the set of
rectangles under sequences of insertions and deletions of
rectangles; Vaishnavi and Wood [1980) claim to have a solution
to the dynamic version of this problem which takes prepro-

cessing time O(N log N) and query time O(log N).

[ST S S L .

y

4. Yorthernmoat Rectangle Below a _ine

Both the general and the special case of this problem

can obviously be solved in linear time.

§. Measure and Perimeter Problems

These problems can be sclved by the scan line technicue

which was used to solve Problems 1 and 2 above. When moving
the scan line bottom-to-top through the set of rectangles

we keep track of appropriate information about the currently
active rectangles like the 1-dimensional measure of the pro-
jections of the currently active rectangles to the x-axis.
Thus the measure and the perimeter can be accumulated in time
O(N log N). See Bentley (1977]), van Leeuwen and Wood [1979],

and Vitanyi and Wood (1979] for the details.

7. Jomnectedna@ss Proz.ams

dievergelt [1981] gives a solution for tiis ovroblem which
uses the scan line technique: The "dual graph" is construc-
ted on-line during the sweep of the scan line for the even
more general case where the given objects have arbitrary
polygons as their boundaries. The "dual graph" reflects the
connectedness structure of the objects in the set. If N and

S are tha total numbers of edges and intersections, respec-~
tively, the algorithm can be carried ocut in time O((N+S)logl).
This implies that all three subproblems of Problem 6 can

cer.ain.; = gsolved within the same time. It is left open

- 19 -

whether or not an improvement to O(N log N) for the problems
6a) and b) and to O(N log N + k) for problem 6c) is possible,
where k denotes the number of connected camponents.

However, it is easv to gsee that one can solve the
connectadness problems in timeO(N log N + S * G(S)), for a
set of N rectangles with S intersections, where G denotes

the inverse of the Ackermann function. For, the scan line

technigue reduces the problem to the problem of determining
pairwise intersections and performing at most $§ Union or

Find operations.

7. Eouality and Subset Testing of Rectangle Sets

By first sorting the two sets of coordinates we obviously
. can get a solution to these problems in time O(N log N), using

the methods used in Problems 1 and 5.

- 20 -

3.2 General HIL Input

In this subsection we shall study the camplexity of
rectangle problems when their inputs are given in the
Hierarchical Input Language HIL. Most of the results that
we will see in this subsection are negative; that is, we
will see that most of the problems either provébly require
exponential time (because an extremely concise HIL descrip-
tion can generate exponentially large ocutput) or are NP-
camplete (because HIL can generate rectangle sets in which
NP-hard problems can be encoded). Because all of our proofs
use only two primary constructions (giving an exponentially
large output and encoding an NP-hard problem), we will first
examine those two constructs in detail in Subsection 3.2.1,

and then turn to the rest of the problems in Subsection 3.2.2.

- 21 -

3.2.1 Pairwise Intersection Problems

In this section we shall study two problems that con-
cern the pairwise intersections among a set of rectangles
specified by an HIL description of length N (recall that
the length of an HIL description is defined to be the total
number of Box and Draw cammands contained in the input).

The two problems are to report all intersecting pairs of
rectangles, and to determine whether any two pairs intersect.
We shall first examine the problem of reporting all inter-
secting pairs, which the following theorem shows is diffi-

cult in the worst case.

Theorem 1:
The problem of reporting all intersecting pairs of
rectangles definedby ar HILdescription of length N

must scmetimes require time exponential in N.

Proof:

We will construct a particular HIL file of length N

N/2

that contains 2 overlapping unit squares with lower-

left corners at the origin; because the output must
N/2
2

or approximately 2

include all (2) pairs, it is of size (2N/2)'(2N/2-1)/2,

N=1 Symbol 1 in this file is defined
as
1: BR (0,0),(1,1)
Bax (0,0),(1,1)

Box (0,0),(1,1),

- 22 -

so it consists of two unit squares with lower-left
corners at the origin. The ith symbol, for 2<igN, is defined

as
i: BR (0,0),(1,1)

Draw i-1 at (0,0)
Draw i-1 at (0,0).

It is; easy to prove by induction that the ith symbol contains

exactly 2i overlapping rectangles, sc the Nﬂ}ectangle centains
ZN, and the construction is complete. QED.
We will now turn our attention to the more subtle pro-

blem of testing whether any two elements intersect in a set

of rectangles given by an HIL of length N. Our primary result

for this problem is that it is NP-complete; our Iirst step

toward showing this is the following lemma.

Lemma 2:

The HIL intersection guestion is in NP.

Proof:

The nondeterministic algorithm first guesses two rec-
tangles, then verifies that they intersect. A rectangle
is guessed by starting at the root symbol and nondeter-
ministically following down the call structure of the

HIL description until a Box command is reached. CED.

Note that the above proof is concise precisely because a
certificate of intersection for a particular HIL is so simple:

wWwe merely display the two intersecting rectangles.

- 23 -

The next part of the proof is the more substantial: we will
demonstrate that the HIL intersection gquestion is in fact
NP-hard. The reduction is to the knapsack problem, which
asks whether there is some subset of a set of integers whose

sum is a given integer (see Garey and Johnson [1979]).

Lemma 3:

The HIL intersection question is NP~-hard.

Proof:

We will show that the question of whether scme subset

of the set of positive integers W ={wWo.W reoerWy L osums to the
given integer T can be reduced in polynomial time to

an HIL intersection problem. Our first step is to define
in N+1 HIL symbols a set of ZN x=-by-x rectangles (for

any O<x<1, say x=1/2)* whose left hand sides are aligned
along the integers fraom O to ZN-1 and whose bottam sides

have heights corresponding to the sums of all 2N subsets

of weights. Symbol O is defined as

O: BR (0,0), (x,x)

Box (0,0}, (x,x)

* Note that we have taken a liberty with the definition of HIL by
using a rectangle of the nonintecer size (1/2,1/2). This could easily
be fixed, but that would only cbscure the structure of the proof.

Y%

- 24 -

For 13isN, symbol i is defined as

i: BR{0,0),(2%=1+x, x+ I w.)
sy 2

Draw i-1 at (0,0)

1-1

Draw i-1 at (2 JW).

i
Note that the heigihts of the bottams of the rectang.es
in symbol i represent the sums of all the subsets of

{w1,w ,wi}; this is easily proved by induct.on.

2, ¢

Now that we have represented the sums cf all the subsets
by a sequence of rectangles at various heigths, we must do

the same for the desired sum T. Symbol N+1 is defined as

N+1: BR(O,T), (14x,x)
Draw O at (C,7T)
Draw O at (1,T);
it places two x-by-x rectangles at height T. We then coryv

those rectangles by defining, Ior 2<igN,

N+i: BR(O,T), (2%-1+x,x)
Draw N+i-1 at (0,0)

Draw N+i-1 at (2%7',0).

Note that the symbcocl N+N = 2N consists cf a row of ZN
rectangles with bottams at heigh-« T and left sides along
the integers from O to 2N-1.

The stage is now completely set; the final symbol :is

defined as

2N+1: BR(C,0) (2N-14x, x+ T w.)
jsisny *

Draw N at (0,0)

Draw 2N at (0,0)

and there is a solution to the knapsack problem if

and only if same pair of rectangles in symbol 2N+1
intersect (for by the distinctness of x-values in
symbols N and 2N, two rectangles intersect if and only

if they share the same y-value of T). QED.

An example of the construction used in this proof is given
as Example 1. The two above lemmas can now be combined to

rove Theorem 4.

Theorem 4:
The HIL intersection gquestion is NP-complete.
Proof:

Immediate from Lemmas 2 and 3.

Example 1

In this example we will see how a particular instance
of the knapsack problem can be reduced to a problem of tes-
ting for intersection in a rectangle set defined in HIL. We
will assume that the set W is {2,3,5} and we want to know

whether any subset sums to 5. Symbols 1,2,3 are illustrated

below.
- - - D
-1 - -
8-1 8 - 8 « U
- - - a
J -] - c0o
4 4 4 4 <
1 - D - a
-t D -y D - D
4 -
mi }1
i f 1 i] ! H ¥ ! Vol 18 } i L) T 1 i i i i L
°© © 12 ° 12 4
Symbol 1 Symbol 2 Symboi 3

Symbol 6 has the structure

gaocoaoaaog

cC TTTTTTTTTTT T

1 2 3 4
When symbols 3 and 6 are overlayed they have two intersecticns,

at (3,35) and (4,5); these correspond to the subsets {2,3} and

{5;, both of which sum to 5. EZnd of Example.

e o N USRS S -

-27 -

Because we will make extensive use of the construction
used in the proof of Lemma 3, it is important that we ana-
lyze the construction in same detail. The first aspect to
note is that because we reduced the HIL intersection gques-
tion to the knapsack problem, which is known to be solvable
in pseudc-polynominal time, we have shown only the weak
NP-completeness {and not the strong NP-campleteness) of
the HIL intersection question*. This is an essential aspect
of the proof, because the HIL intersection question is it-
self solvable in pseudo-polynomial time (that is, it is
solvable in polynomial time if the inputs are expressed in
unary). To prove this it suffices to observe that both the
height and width of the minimum bounding rectangle of the
root symbol are less than the sum of all the input para-
meters; thus all the symbols in the set must be placed on
an integer grid of size at most the square of the input
length. We can record for each cell in the grid which
of the linear number of symbols have already been instan-
tiated there, and thus avoid doing more than a polynomial

amount of checking.

* For a discussion of the notion of weak NP-completeness,

see Garey and Johnson [(1979].

metubiiieteid

- 28 -

The second important fact to note is that the HIL descrio-
tions constructed in the proof of Lemma 3 are in a very
well-behaved subset of HIL. The most important property
is that 2N+1 of the 2N+2 symbols are consistent in the sense
that the bounding boxes of their symbols do not intersect;
only symbol 2N+1 has intersecting subsymbols. Thus the HIL
intersection question remains NP-complete even when we con-
strain the HIL input to contain at most one pair of over-
lapping called symbols. There are a number of other senses
in which the graph of the construction is well-behaved:
it uses only one Box command, every symbol (except O) makes
exactly two calls, and every symbol (except O) is called

exactly twice by exactly one other symbol.

- 20 o

.2 Jther Prodblems with HIL Input

In the previous subsection we saw the foliowing results

for rectangle problems with inputs :n HIL.

S, Jercrc nierseerins Pairs

Theorem | showed by a counting argument that this

problem must require exponential time in the worst case.

S, Ivntersection Juedtion

Theorem 4 showed that this problem is (weakly) NP-

coamplete, using a reduction to the knapsack problem.

We will now briefly examine the remaining rectangle questions xrd

problems when their inputs are given in HIL.

¢. Intersgecticn with a Query ‘rk-ec:

We will consider the three subproblems in decreasing
order of generality.

e) Intersection with a Rectangle

To prove this problem NP-complete we will use the
construction in the proof of Lemma 3 and replace
the ZN squares at height T with one rectangle of
height x and width ZN-1+x, with bottom left corner
at (0,T). The knapsack problem has a solution if

and only if that rectangle intersects any other.

?) Intersection with a Line

Replace the query rectangle in the above construction

by a horizontal line with height T+x/2.

a) Intersection with a Point

Use the construction of parts a and b, but place all
squares to have their left edges on the line x=0.
The query point at (x/2,T+x/2) intersects a rectangle

if and only if the knapsack problem has a solution.

4. Vorthermmoat Seccangle 3Jelow a lLine

The general problem can be proved NP-complete by the
proof of Problem 3b; if the northerrmost rectangle
below the line y= T+1-€ is at y=T, then and only then
does the knapsack problem have a solution. The spe-

cial case of finding the northermmost rectangle in

the entire set is solvable in linear time by computing

"bottom-up” the northernmost rectangle in every symbol.

5. Measure and Parimetar Problaems

To prove these problems NP-complete we will use the
construction in the proof of 3a, in which the sums

of all subsets are represented by a set of rectangles
at a vertical line. We first construct such a set and
compute its measure, then augment the old set by a
single x-by-x square at height T; the new measure

is xz greater than the old if and only if there is no
solution to the knapsack problem. Likewise, the peri-

meter increases by 4x.

3. Connectedness "roblems

a) 4Are *the Rectanc.es in a2 Single Conmngczel Timrinenc!

-~

We will show that this problem is NP-hard by using

the same constructions as for problems 3a und 5. We

first place all squares with their bottom sides at
the sums of all subsets and their left sides along

the y-axis. We then place a rectangle of width 1

-3 -

and height equal to x plus the sum of all weights
in W to have its right side along the y-axis. Note
that at this time all of the rectangles form a
single connected component. Finally, we place a
single (x/2,x) rectangle at (x/2,T); that rectangle
is in the single connected component if and only

if the knapsack problem has a solution. Note that
this proof shows only that the problem is NP-hard,
and not that it is in NP,

\

o) Number of Comnected Zomponents

By the reduction of 6a, this problem is also NP-hard.

e) Enumeration of All Connected Components

The construction used in the proof of Theorem 1

can be slightly augmented to produce in N symbols
a total of ZN disjoint squares; the time to output Q
them alone shows that this problem must require

l exponential time.

7. Equality and Subset Testing of Rectangle Sets

The construction used in question 6a shows that these

problems are NP-hard.

_ i . P i —_———

-32 -

3.3 Consistent HIL Input

In this subsection we shall study the complexity of
rectangle problems when their inputs are given as consistent
HIL descriptions. That is, for every symbol in the HIL de-
scription, the bounding boxes of all objects within the
symbol must be contained within the symbol's bounding box
and nonoverlapping. This restriction has very different
impacts on the complexity of the various rectangle problems:
whereas most of the problems with general HIL input were
NP-hard, we will see that for consistent designs scme
problems remain NP-hard, while other problems are now sol-
vable in polynomial time (usually linear or &N lg N)), and
still others becaome trivial (that is, they can be solved
in constant time).

The first problem that we must face when dealing with
consistent designs is that of verifying that an allegedly
consistent design does in fact satisfy the properties of
having only contained and nonoverlapping subsymbols. This
property is easy to verify using the scanning algorithm to
solve Problem 2 in Subsection 3.1 (that is, given N rec-
tangles in the plane, do any intersect?); recall that
(N lg N) time is necessary and sufficient to test this
property. Our algorithm for testing consistency will now
proceed bottam=-up through the HIL design, symbol-by-symbecl,
and use the gecmetry-only intersection checker to verify

that no subsymbols in any symbol intersect; it is trivial

- 33 =

to ensure in linear time that all subsymbols are in fact
contained within the symbol's bounding rectangle. By the
fact that there are a total of O(N) rectangles and calls
on subsymbols altogether in the HIL and the fact that the
function 6(N lg N) is concave upward, the entire algorithm
takes at most O(N lg N) time. Note that &(N 1lg N) is ne-
cessary for the case of a one-level consistent design, so

this bound is best possible.

We turn now to study the rectangle problems themselves.
The first two problems are trivial for designs that we
know to be consistent.

Report Intersecting Pairs

2. Intersection Juestion

Both of these problems can be answered in constant
time because a consistent design is known to have no

intersecting pairs of rectangles.

The remaining problems do not admit trivial solutions.

2. Intersection with a Queryv Orject

We will consider the three subproblems in increasing
order of generality.

a) Intersection with a Point

This problem can be solved in linear time. To see

if any of the symbols intersects a given point we

start at the root symbol and then recursively search

4q.

- 34 -

down the DAG that is the HIL description; at each
symbol we visit at most one of its subsymbols.
(Note that if we have to visit more, then the sub-
symbols overlap, which violates consistency).

L) Intersection with a Line

o) Intersection with a Rectangle

Because the HIL descriptions used in Subsection 3.2
to prove the NP-hardness of these questions for
general designs were in fa~t consistent, both pro-
blems b and ¢ remain NP-complete for consistent
designs.

VYorthermmost Rectangle 3elow a line

Because the proof in Subsection 3.2 uses a consistent

design, this problem remains NP-complete.

S.

Yeasure and Fer<mecer 2rod.ems

These problems are both solvable in linear time. To

solve the measure problem we proceed bottam-up through

the set, camputing for each symbol the sum of the

measures of the rectangles it contains by adding to-

gether the (previcusly calculated) measures of the sub-

rectangles it calls. The perimeter problem is solved

in a similar fashion.

g.

Connectednresaa Zroblams

2) Apre the Rectang.es in a S<ngle Jonneczesd Cempengnt?l

The answer is yes if and only if there is exactly

one rectangle in the set.

P W e e - -

- 3§ -

b) JNumber of Connected Componente

This can be solved in linear time by a bottom-up
algorithm like the algorithms used to solve problem 5.

e) Znumerction of All Connected Componentse

The construction used in Subsection 2.2 to show
that this problem can require exponential time
still holds.

7. Zauality and Subset Testing of Rectangle Sets

i

We leave these as open problems.

- 36 -

4., IMPLICATIONS AND OPEN PROBLEMS *

The purpose of this paper has been to lay a solid
theoretical foundation for the manipulation of hierarchi-
cally defined sets of rectangles in the plane. There are
two motivations for this approach: the questions are inter-
esting from a purely mathematical viewpoint, and the theory
can occasionally have a substantial impact on practice.

For instance, the asymptotic worst-case rectangle inter-
section algorithm of Bentley and Wood [1980] motivated the
efficient expected-time algorithm of Bentley, Haken and
Hon [1980], which was in turn used in the VLSI Design Rule
Checker of Haken [1980].

The primary results of this paper are summarized in
Table 1. The first column of that table surveys previous
work on geametrically defined rectangle problems, the
third column shows that most problems are NP-hard when
presented with unrestricted HIL inputs, and the second column
shows that when the designs are constrained to be consistent,
then most of the problems beccme rather easy to solve. These
facts correspond closely to the experience of Hon [1980]
and Whitney (19801 in using their programs that manipulate
hierarchical VLSI designs: highly structured designs {(which
are never consistent but usually rather close in some sense)
can be processed very gquickly, while highly unstructured

designs require prohibitive amounts of processing time.

—

- 37 -

It is important to state carefully the implicationes of
the above results for the builders of systems that process
hierarchical designs. The NP-hardness results do not state
that such designs cannot be processed efficiently; rather,
they imply that it is highly unlikely that one can ever find
an algorithm that will efficiently process every design.
Thus one should not search for such an algorithm, but rather
focus one's energy on algorithms that work well for an
important subclass of designs.

There are two types of subclasses that might be inves-~
tigated, and both appear to offer much to theoretician and
practitioner alike.

1. 4 Statistical Aprroach

Using this approach one would first build a probabilis-
tic model of VLSI designs, and then design an algorithm ‘
that performs well on the average when the inputs are
drawn from that distribution. (This is the approach
taken for the geametry-only rectangle intersection
problem by Bentley, Haken and Hon [1980]). Devising a
probabilistic model that includes both the graph-

theoretic aspects of the HIL structure and the geametric

aspects of the shapes and placement of the rectangles
is a subtle mathematical problem; fitting such a model
to actual data will require an exceptionally talented

practitioner.

4 T ———

- 38 -

2. A Restriction Approach

We saw that restricting the designs to be consistent
allowed many of the problems to be solved quite effi-
ciently. Unfortunately, consistency is so restrictive
that no real designs can be built using it! We therefore

observe a tradeoff between severe restrictions (which

exclude many designs but facilitate rapid processing)
f and lax restrictions (which exclude few designs but
l admit many that are very time consuming to process).
| It will be important to identify families of restric-
} tions that exclude only a few designs (and hopefully
| uninteresting ones at that) but admit to very rapid
processing of the remaining designs.

The NP-completeness results of Subsection 3.2 have
a rather interesting implication for this endeavor.
Recall that the Rectangle Intersection Question is

NP~complete when the inputs are presented in HIL. Many

people suspect that this implies that the complement

of the problem is not even in NP (see, for instance,
Garey and Johnson [1979, Section 7]). This in turn
would imply that there can never be a polvnomial-lencth
certificate of nonintersection for a set of rectangles.
This means that if a restriction apprcach is taken in
which the designer adds a polynomial amount of extra

information and the resulting design can be processed

in polynomial time, then some valid designs must ne-

cessarily have been excluded.

Bibliography

Bentley, J.L. [1977]: Solution to Klee's rectangle
problems, unpublished manuscript, Dept. of

Computer Science, Carnegie-Mellon University,
l 1977.

i Bentley, J5.L. and Wood, D. [1¢30]:An optimal worst-
| case algorithm for reporting intersections of

rectangles, IEEE Transactions on Computers,
Vol. C-29, 1930, 571-577.

Bentley, J.L., Haken, D., and Hon, R. [1980]: Statis-
tics on VLSI Designs, Carnegie-Mellon University,
Computz2r Science Department, Technical Report
CMU-CS~-80-111.

Garey, M.R. and Johnson, D.S. [1979]): Computers and
Intractability, A Guide to the Theory of NP-Com-
pleteness, Freeman, San Francisco, 1979

Haken, D. [1980]: A geometric design rule checker,
VLEI Document V053, Carnegie-Mellon University,
9 June 1980, 9%pp.

Hon, R. [1980]: The Hierarchical Analysis of VLSI

Designs, Thesis propcsal, Carnegie-tiellon University.
Dec. 1980

Klee, V. [1977]: Can the Measure of U[ai,bi] be
computed in less than 0(n log n) steps,
Research Probl. Sect., Amer. Math. Monthly 84,
1977, 284-285,

Lauther [1980]: A Data Structure for Gridless Routing,
th
17

Design Autcmation Conference, Minneapolis,
1980, 1-7.

- 40 =~

van Leeuwen, J. and Wocd, D. [1979]: The Measure
Problem for Rectangular Ranges in d-Space,
Technical Report, RUU=-CS=-79-6, July 1979.

Mead, C. and Conway, L. [(1980]:Introduction to VLSI
Systems, Addison-Wesley.

Nievergelt, J. and Preparata, F.P. [1980]: Plane-
sweep algorithms for intersecting geometric
figures, Technical Report (in preparation),
Institut fir Informatik, ETH, Zirich.

Nievergelt, J. [1981]: Private Communication.

Vaishnavi, V. and Wood, D. [1980]: Rectilinear line
segment intersection, layered segment trees
and dynamization, Computer Science Technical
Report, 80-CS-8, McMaster University, Hamilton,
Ontaric, Canada.

Vitanyi, P.M.B. and Wood, D. [1979]: Computing the
Perimeter of a Set of Rectangles , Cocmputer
Science Technical Report, 79-CS-23,

McMaster University, Hamilton, Ontario, Canada.

Whitney, T. [1980]: Description of the Hierarchical
Design Rule Filter, Caltech SSP File 4027,
Oct. 1980,

UNCLASSIFITD
SECURITY SLASSIT ZAT DN OF Tw R PATE ‘dhen Nace Eniered;
T o 4 [l i
REPORT DOCULENTATION PAGE | PEFoR o e i Py
1. REFOAT NUMBER 2. GOVY ACCESSION MO 3. RECIPIENT S CATALDS A MBlLAR
CMU-CS-81-109 /}‘ KD LS5S52
4. TITLE (and Subtitie} S. .TYFE OF REPOAT & PERIOT COVERED
THE COMPLEXITY OF MANIPULATING HEIRARCHICALLY .
DEFINED SETS OF RECTANGLES Interin
6. PERFORMING ORG. REPORT muMBER
7. AUTHOR(S) 8. CONTRACT OR GRANT NUMBER(S)
JON LOUIS BENTLEY
; THOMAS OTTMANN . N00014-76-C-0370
9. PERFORMING ORGANIZATICN NAME AND ADDRESS 1. PROSRAM E_EMENT. FRAZUEST, TAMK
' Carnegie-Mellon University ARCA & WORK UNIT hUMBERS
}4 Computer Science Dercartment
! Pittsburgh, PA 15213
! 1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPCAT-DATE
i Office of Kaval Research APRIL 1981
t Arlington, VA 22217 13 "““"‘:‘1” PAcEs
; 4. MONIT'ORING AGENCY NAME & ACORESS(! difterent from Contreliing Oliice) 18. SESURITY CLASS. (0! this report)
UNCLASSIFIED
T8e. DECL ASSIFICATION COWNNGRADING
SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)
|
Approved for public relezse; distribution unlimited
f
17. DISTRIBUTION STATEMENT (of the abstract entered in Bleck 20, if dilferent lram Repert)
318. SUPPLEMENTARY NOTES
r
:
]
19. KEY WORDS (Cc ntinue on reverse alce il necessary and identify by block number)
20. ABSTRACT (Coniinue on reverae side Il necessary and igentily by block mumber)
DD \5ons: 1473 eoimion oF t wov 6315 oosOLETE UNCLASSIFIED

$/N 0102°034~6¢01 |

SECURITY CLASLIFICATION OF Tiis PAGE ("hen Deta Batered)

