
AO-AI06 552 CARNEGIE-MELLON UNIV PITTSBURGH PA DEPT OF COMPUTER --ETC F/G 915
THE COMLEXITY OF MANIPULATING HIERARCHICALLY DEFINED SETS OF R-ETC(U)
APR 81 J L BENTLEY. T OTTMANN N00014-76-C-0370

UNCLASSIFIED CMLCS61-109

EEND

J- Iw -

B &VAG eld 34m

-. -- ~gv
go AgeRtolwi

DEPARTM ENT
of
COMPUTER SCIENCE

I Carnegie-MIlon Unwuy

Vt$ la 103 009

The COVIminty @t 11anipulatizW

EIexoatchLe"Iy W~ined Sets of meet-aLos.

/ Jon Lois/'Sentley -

Dep~raents of Cmpatez Science

and Matemtcs
CCxueIs-Oe1Lon University-

Pxttaburyh. Pennsylvania 15213 1
U.S.A.

Thlomas /Otfcuaa

Znst.tut fur Angewandta Znfozraatik un

and Formals &ssckire~abunqsver fahxen
Universitit Kaxlsrubie .

Postfach 638C, D-7500 Karlsruhe
West Germaniy

Xo9=tkus thiat aanl.pu2ate sets of rect&nq..s are of ;reat

practical. importance in Vts: desiqn systems and othier appj.c&-

tIoAS. ALtouqh1 muchx th.eoretical work has appeared recent..y on

t!1 complwitey of rectanqle problems, it: has assumed thiat th*

inputs are given as a list of rectanq-'as. :n this paper -ie smdy
thie ccplexxty of rectazle problems wh~en --is Inputs are 4iv.en
IAn a hierarchi~cal lIw~auq that allows t.ie designer to bul.d

!An* deslqns by replicatinq mall- designs. we wl,.2. see 4_iat

whil.e most of thi. problems are Y4-dard I.n the 4enera. :as*, taiere
&re 3 4 .; %C aJlqor--*tus thiat process inputs oboyinq zertain

rest:..:t;.:ns.

d~k ad in M-. -Y tn-Mtm Stats :ff!c -f "4w msear=.

'2US Crx A- pvj''yuppcr--W y- t:W LLusc=A rs .'c -'

1. [NTROOUC TION

Algorithms that npAulate sets of rectangles in the

plane are of great interest to practitioners and theoreti-

cuana alike. Practical applications of such algorithms arise

in such areas as computer graphics, architectural design

systems and VLSI (Very Large Scale Integrated Circuitry)

design systems. These problems also have great appeal !ram a

purely mathematical viewpoint: the problems are quite natural

and easy to pose, yet the solutions often have a rather sub-

tle structure.

Much theoretical work has been done recently on rectan-

gle problems; we will return to a brief survey of that work

in Subsection 3.1. Almost all of the work, though, has con-

centrated on rectangle sets that are defined by merely listing

all the rectangles they contain. Although this Is quite appro-

priate for many applications, for many others this model is

terribly inaccurate. VLSI circuits, for example, are usua.l

not specified by simply listing their ccponents, but rather

are described in a hierarchical design language that allows

a designer to build big designs in an orderly way from mal

designs.

One way to process the hierarchical designs is merely

to throw away their structure and treat them as though they

were ;iven as sets of rectangles. This can be quite costly,

however, because such designs = describe an exponentially

large number of rectangles.

- 3 -

With this motivation several researchers have recently'

begun to investigate the problem of dealing directly with

a hierarchical description of a set of geometric objectsi

see, for example, Son [1980] and hitneo' E19601. The approach

that they have taken, however, is a solution-oriented stra-

teqy that has not led them to investigate many of the theo-

retical questions that &rise in this endeavor.

The purpose of this paper is to provide a sound r-neo-

retical basis for the important problem of manipulating

hierarchical descriptions of geometric objects. In Section

we will define the rect&qle problems we will study and then

consider the various forms in which their input might be

given. In Section 3 we investigate the cmplexities of the

,seven) problms when their inputs are given in (three)

different representations. Finally, implications of the re-

sults and directions for further research are studied in

Section 4.

-4-

2. PROBLEMS

In order to state a geometric problem precisely and

to measure its camplexity, we must specify the language

which is used to describe an instance of the problem. In

this section we will first give a list of rectangle problems and

their applications using geometric terms in their intu-

itive meaning. We will then introduce a hierarchical lan-

guage which allows us to describe the input and output of

each problem and to measure its size.

The first problems in our list are intersection problems:

we are given a set of rectangles in the plane (with sides

parallel to the coordinate axes) and we ask for intersections

monq these rectangles or with other given objects.

Two rectangles are said to intersect if the interior

of their intersection contains at least one point. Thus,

the intrsection includes both proper edge intersection and

the inclusion of one rectangle within another, but not two

rectangles that touch only at the border.

. ?eor :ntersecting Pairs

Input: A set of rectanqles.

Outpt: A list of all intersectinq pairs of rectangles.

Application: This is an important task in the leometry

engine" underlying most VLSI design rule

checkers; see Haken (1980] or Hon [1980].

. n-eraection Quest-.on

Input: A set of rectangles.

Output: Yes, if there is at least one pair of intersecting

rectangles in the set; otherwise no.

Motivation: This is a more mathematically tractable version

of problem 1.

C. ~rsec:2-.'-;ih ;tb'-.hecz

Input: A set of rectangles, and

a) a point, or

b) a line (parallel to x- or y-axis), or

c) a rectangle

Output: Yes, if

a) the query point lies in the interior of at least

one rectangle in the set;

b) the line crosses the interior of at least one

rectangle in the set;

c) the query rectangle intersects at least one rec-

tangle in the set; otherwise no.

Applications: a) This allows an interactive userto point

to a rectangle and have the system retriee

it for him.

b) This arises in routing (see Lauther [1980]).

c) This tests the validity of placing a rec-

tangle.

4. NVorthernmost RectangLe BeZow a Line

Input: A set of rectangles and a horizontal line y - y0

Note that an important special case occurs when yo

is greater than all y-values in the set.

Output: A northernmost rectangle in the set below the given

line.

Application: This is related to the routing problem of

Lauther (1980].

5. eaure and Perimater Problems

Input: A set of rectangles.

Output: The

a) measure or

b) perimeter of their union; i.e. the total area

covered by at least one rectangle in the set.

Motivation: These problem were raised in a theoretical

context by Klee [19771.

6. :onnectedne33 Probems

input: A set of rectangles.

Output: a) Yes, if their union is a connected set, and, no,

otherwise

b) the r.umber of connected components in the union

c) a list of all connected components in the union.

Applications: Connectedness Is a central notion in VLSI

circuit extraction.

-7-

7. 7cuaZiry and Subset Testing of Rectangle Sets

Input: Two descriptions D1 and D2 of sets of rectangles.

Output: Yes, if

a) the set denoted by D1 is equal to the set denoted

by D2

b) the set denoted by D1 contains the set denoted

by D2

otherwise no.

Observe that these problems are meaningful only if a language

to describe sets of rectangles has been fixed.

We will now specify a very simple hierarchical language for

describing sets of rectangles. This Hierarchic Input Language

(HIL) may be considered as a proper subset of the Symbolic

Layout Language defined in Mead and Conway [1980, Section 4.3]and

of CIF (see Section 4.5 of the above).

The HIL language describes sets of rectangles as collec-

tions of boxes. Box CcmIands describe each of these boxes by

specifying the x,y- coordinates of the lower-left corner

and its length and height. We may assume that all coordinates

and lengths are nonnegative integer multiples of the layout

unit X. For instance, the command

Box (o,o) (1,1)

describes the unit square with lower-left corner at the origin.

The general form of a Box command is

Box (X Coord,Y Coord) (Width,Height)

8-

In HIL we can also define symbols that denote sets of rec-

tangles. A symbol definition is a symbol number, followed

by zero or more attributes and a list of Box and Draw

comands. A Draw command has the form

Draw < symbol number > at < point >

<symbol number> must be the number of a previously defined

symbol, and <point> is a pair of (x,y) coordinates. This

command describes the placement of the symbol denoted by

the symbol number at the given point. To make this more

precise we consider every defined symbol as"hooked~to the

origin. Thus, drawing a symbol at a point mneans to place its

origin on that point.

We give an example of a symbol definition with empty

lists of attributes:

1 : Box (0,0) (3,1)

2 : Box (0,0) (1 ,3)

3 : Box (4,3) (1 ,S)

Draw 1 at (4,4)

Draw 1 at (4,6)

Draw 2 at (6,4)

Symbol 3 is as follows:

4 X

-9-

We consider it as hooked to the origin. The set of rec-

tangles denoted by symbol number 3 consists of two copies

of box 1, one copy of box 2 and one copy of the box in

symbol 3 placed in the plane as shown by the above figure.

We now introduce the notion of a bounding rectangle, or

BR, of a symbol: A bounding rectangle of a symbol is any

rectangle that includes all boxes in the set of rectangles

denoted by the symbol. A BR is specified by the coordinates

of its lower-left corner and its width and height.

Thus, the rectangle with lower-left corner at (3,3),

length 4 and height 5 is a BR of the above defined symbol 3

(note that it is not the minimal BR).

HIL allows us to augment a symbol definition with an

attribute which specifies a BR (not necessarily the minimum

BR) of the symbol. Thus, a symbol definition has the general

form:

1
<symbol number>: {BR<point> (<length> ,<height>) }

{ <box camand>} 0

{<draw command>}0

We will assume w.l.o.g. that the set of rectangles (i.e.,boxes,)

defined by a HIL file is the symbol denoted by the largest

symbol number, which we will often call the root symbol.

Symbol calls, i.e. symbol numbers occurring in draw commands

of a symbol definition,may nest. That is, the definitions of

the called symbols may contain calls of other, previously

defined symbols etc. Thus, we can associate to every symbol

-10-

definition a call graph which reflects the hierarchical

structure of the symbol definition. The above definition

of the symbol 3 has the following call graph:

3
1 2

Note that the call graph is always a directed acyclic graph,

which we abbreviate as a DAG.

We define the length of the HIL description of a s.mbol

as the total number of Box- and Draw comands occurring in

the definition of the symbol. Thus, the length of the above

HIL definition is 6. Observe that we do not count the length.

of the numbers (symbol numbers, coordinates, etcJ occurrInc

in the definition. (We will return to this point in Sub-

section 3.2).

One easily observes that the same set of rectangles

may have very different HIL descriptions, whose lengths ma'y

differ by an exponential factor. We may give a descr-.=t-cn

of a set of N rectangles in the plane not using the hierar-

chical structure of HIL at all by writing N 2ox canands in

the definition, one for each rectangle. This description

a set of rectangles is obviously equivalent to the usual

assumption made in much previous work on geometric prblems,

namely, that the set of rectangles is given by the set of

coordinates of their corners. We will call this a purely

geanetrical description of a set of rectangles.

When an FT' fcription of a set of rectangles uses BR attri-

_.zes thney should often be consistently assigned. That

means whenever a user specifies a BR attribute in a symbol

definition it should always contain the minimum bounding

rectangle which includes all rectangles (boxes) denoted by

the symzol. Clearly, the minimum boundinq rectangle for a

set zf rectangles denoted by a symbol in HIL can always be

c puted by following the hierarchic definition "bottc-=".

By imposing stronger constraints on the symbols which

we might use to define new ones we can restrict the ex-

pressive power of HIL considerably. We may use the BR attri-

butes (or other attributes) to state and check these con-

straints. As an example we will single out a restricted

vers.on of HIL which allows us only to define sets of rectan-

gles which do not contain any pair of intersecting rectangles:

Let us assume that every symbol definition is augmented with

a consistent BR attribute. Then we require that all boxes

and all BE's of the symbols occurring in Draw comands of

a symbol definition do not intersect. Thus, under the assump-

tion that all called symbols denote sets of nonintersecting

rectangles the same holds true for the defined symbol. Let

us call the thus restricted version of HIL consistent.

-12-

3. COMPLEXITY RESULTS

In this section we shall study the complexity of the

various rectangle problems under the various foxmats for

input. The primary results for this section are summarized

in Table 1. In Subsection 3.1 we will review the results

shown in the first column of Table 1; that section is just

a survey of previous worl Tn Subsection 3.2 we will study

the results of the third column (in which the problems

have unconstrained HIL input), and in Subsection 3.3 we

will study the results of the second column (in which the

problems have consistent HIL input).

- 1 3 -I

PrbmGeometry. Consistent General
Sonly HIL HIL

1 . PAP=nwuc.LWPar N Iq N + k 1 CPWAwi~l

2. IntMeo± Qi @stian N ig N 1 p-mplete

;; - y Obj ec t NH - ~ l t
bLieN NP-alt Hp-plete

b. Lzmagl N Hp-canplerte NP-cmplete

. m tamms le t~ N N-apliete NP-omplete

Beli a Unaw

5. Measure Problin N ig N N ?P-omplete
Perimeter Probun N 1g N N NIP-plete

a. Single CoiuNM (N.S) la N 1 ha'd

b. Nubm of C~q~p~mtS (N+S) 1g N N NPhad

c. ?Ap all Caqzrants N ig N + S-G(S) cpital CpUt1

7. Equality and 9.ihaet N Jq N ? Phrd

Testing of Rectangle Sets N Iq N ?NP-hard

Table 1. Cmiplexities of Rectangle Problems.

-14-

3.1 Geometric Input

In this subsection we shall review the complexit,j of rec-

tangle problems when their inputs are given in 4esoetric

forms (or, equivalently, given as a list of Bmx-cemands

in HIL). Rectangle problems having this input foat nave

recently been extensively studied in the literature. See,

for instance, Bentley and Wood [1980], van Leouwen and

Wood [1979], Vitanyi and Wood [1979], Nievergelt ind Prepa-

rata [1980], and McCreight [19801.) We shall review *-'e

known results and sketch the basic techniques which have

been used to obtain the results.

We will now consider the first problem in our list in

sone detail:

N,A naive algorithm checks all (,, pairs of rectangles in

a given set of N rectangles and thus solves the problem

in quadratic time. This is optimal in the worst case

because all N rectangles could intersect, yie.ding ..n

output of size (N). One can do better, however, by

first sorting the 2N values of their lower and upper

boundaries and then movinq a scan line through the set

bottom-to-top, keeping track of rectangles intersectinq

the current scan line. More precisely: Let us assume

that every rectangle R is specified by the 4 values

(x R,,x 'R),(R),y (R)) of their left, right, lower ottcr

and upperfoo) boundaries. ve sweep a horizonta: scan -Le

-15-

SL through -.he set of rectangles. At each instant of

time the scan line divides the set of rectangles into

three disjoint sets: The set of dead rectangles wt.ich

have been cut by SL, the set of active rectangles

which are currently cut by the scan line SL, and the

set of sleeping rectangles which wil be cut by SL.

These sets change only if SL passes a lower or upper

ooundary of some rectangle.

Whenever a sleeping rectangle becomes active, 1.e.

whenever SL halts at y (R), we check all currently

active rectangles for intersection with R. This stra-

tegy assures that we do not miss any pair of inter-

secting rectangles after sweeping SL once over the whole

set of rectangles. Consider an instant of time, where

a sleeping rectangle R becomes active, i.e. when SL

halts at y6 (R). How can we detect intersection with all

currently active rectangles? Let us assume that R -S

such a rectangle. Then R and R intersect iff their

pro3ections to the x-axis overlap, i.e. iff (x (R),x,(R)h

and Ex (R),x (R)) have a nonempty intersection. (Thus

the scanning technicue has reduced the intersection

problem from a two-dimensional to a one-dimensional

problem.

Our above considerations show that it is sufficient

to store the x-projections of the currently active rectangles

in a data structure L such that we are able to answer the

- 16-

above question efficiently. Furthermore, L must be dynamically

altered during the scan-line sweep: L is initially empty;

whenever a sleeping rectangle R becomes active, its projec-

tion to the x-axis is inserted into L, and whenever R becomes

dead, its projection to the x-axis is deleted from L.

The splitting of the one-dimensional overlapping segment

problem into a range and inverse range query suggests to choose

a pair of a range and a segment tree for L. Bentley and Wood

[1980] used this to solve Problem 1 in time O(N log N + k),

where k is the number of intersecting pairs, and in space

0(N log N).

McCreight [1980] uses tile trees to improve that approach

and obtain a solution with time complexity 0(N log N + k)

and space complexity O(N) which is optimal. Bentley, Haken

and Hon C 1980] use an array of segment bins for L which

yields a linear expected time solution to the problem for

sets of rectangles occurring in real chip designs.

We will now briefly examine the remaining rectangle prc-

blems when their input is given in geometric form.

2 . -,i.asecton uestionl

This problem can be solved by the same algorithm which

was used to solve Problem 1: Just stop it after the first

intersecting pair of rectangles was found, if there is one,

or, if the scan line has passed the whole set of rectangles.

Thus, the answer to auestion 2 can be ccmputed in time

0(N log N).

- 17- -

However, in order to detect intersection it is suffi-

cient to keep the list of left and right boundaries of the

currently active rectangles sorted according to their x-values

in a simple AVL tree L during the scan line sweep bottom-to-

top. Whenever a rectangle becomes active (respectively dead)

its left and right boundaries are inserted into L (respectively

deleted from L). There is at least one pair of intersecting

rectangles in the set if and only if for at least one rec-

tangle R either the newly inserted left or right boundary of

R is squeezed in between the boundaries of any other active

rectangle or the boundaries of R are separated by boundaries

of any other active rectangle, i.e. the boundaries of R do

not become immediate successors in L. This observation leads

to a simpler O(N log N) time algorithm for solving Problem 2.

1. :nz? -cion wi?.h a Query~ Obj~ect

It is obvious that we can detect intersection of a query

object (a point, line, or rectangle) with at least one rec-

tangle in a set of N rectangles in linear time. We can just

use the naive approach of sequentially comparing each rec-

tangle to the object and need no preprocessing. If prepro-

cessing is allowed, it is possible to maintain the set of

rectangles under sequences of insertions and deletions of

rectangles; Vaishnavi and Wood 11980] claim to have a solution

to the dynamic version of this problem which takes prepro-

cessing time O(N log N) and query time O(log N).

- 18 -

4. Yortez'nmoer Rectangle Below a Line

Both the general and the special case of this problem

can obviously be solved in linear time.

5. M'easure and Perimeter Probieme

These problems can be solved by the scan line technique

which was used to solve Problems 1 and 2 above. When moving

the scan line bottom-to-top through the set of rectangles

we keep track of appropriate information about the currently

active rectangles like the 1-dimensional measure of the pro-

jections of the currently active rectangles to the x-axis.

Thus the measure and the perimeter can be accumulated in time

O(N log N). See Bentley [19771, van Leouwen and Wood [1979],

and Vitanyi and Wood [1979] for the details.

i. : ?t_.43 dne8a Pro_: ms

Aievergelt [19811 gives a solution for this problem which

uses the scan line technique: The "dual graph" -s construc-

ted on-line during the sweep of the scan line for the even

more general case where the given objects have arbitrary

polygons as their boundaries. The "dual graph" reflects the

connectedness structure of the objects in the set. If N and

S are the total numbers of edges and intersections, respec-

tively, the algorithm can be carried out in time O((N+S)logN).

This implies that all three subproblems of Problem 6 can

cer.ail h-e solved within the same time. It is left- open

-19-

whether or not an improvement to O(N log N) for the problems

6a) and b) and to O(N log N + k) for problem 6c) is possible,

where k denotes the number of connected components.

However, it is easy to see that one can solve the

connectodness problems in timeO(N log N + S * G(S)), for a

set of N rectangles with S intersections, where G denotes

the inverse of the Ackermann function. For, the scan line

technique rwduces the problem to the problem of determining

pairwise intersections and performing at most S Union or

Find operations.

7. EozsaZity and Subset Testing of Rectangle Set8

By first sorting the two sets of coordinates we obviously

can get a solution to these problems in time O(N log N), using

the methods used in Problems 1 and 5.

- 20 -

3.2 General HIL Input

In this subsection we shall study the complexity of

rectangle problems when their inputs are given in the

Hierarchical Input Language HIL. Most of the results that

we will see in this subsection are negative; that is, we

will see that most of the problems either provably require

exponential time (because an extremely concise HIL descrip-

tion can generate exponentially large output) or are NP-

cmplete (because HIL can generate rectangle sets in which

NP-hard problems can be encoded). Because all of our proofs

use only two primary constructions (giving an exponentially

large output and encoding an NP-hard problem), we will first

examine those two constructs in detail in Subsection 3.2.1,

and then turn to the rest of the problems in Subsection 3.2.2.

k '

- 21 -

3.2.1 Pairwise Intersection Problems

In this section we shall study two problems that con-

cern the pairwise intersections among a set of rectangles

specified by an HIL description of length N (recall that

the length of an HIL description is defined to be the total

nunber of Box and Draw coands contained in the input).

The two problems are to report all intersecting pairs of

rectangles, and to determine whether any two pairs intersect.

We shall first examine the problem of reporting all inter-

secting pairs, which the following theorem shows is diffi-

cult in the worst case.

Theorem 1:

The problem of reporting all intersecting pairs of

rectangles definedby a. HILdescription of length N

must sometimes require time exponential in N.

Proof:

We will construct a particular HIL file of length N

that contains 2N/2 overlapping unit squares with lower-

left corners at the origin; because the output must
2N/ 2

include all (2) pairs, it is of size (2N/2)'(2N/2- 1)/2,

N-1or approximately 2 - . Symbol 1 in this file is defined

as

1: BR (0,0) ,(1,1)

Box (0,0),(1,1)

Box (0,0),(11I,,

- 22 -

so it consists of two unit squares with lor-left

corners at the origin. The it symbol, for 2<_ijN, is defined

as

i: BR (O,0), (1,1)

Draw i-I at (0,0)

Draw i-I at (0,0).

It i- easy to prove by induction that the ith symbol contains

exactly 2i overlapping rectangles, so the Nt ectangle contains

2N, and the construction is complete. QED.

We will now turn our attention to the more subtle pro-

blem of testing whether any two elements intersect in a set

of rectangles given by an HIL of length N. Our primary result

for this problem is that it is NP-complete; our first step

toward showing this is the following leuma.

Lemma 2:

The HIL intersection question is in NP.

Proof:

The nondeterministic algorithm first guesses two rec-

tangles, then verifies that they intersect. A rectangle

is guessed by starting at the root symbol and nondeter-

ministically following down the call structure of the

HIL description until a Box command is reached. QED.

Note that the above proof is concise precisely because a

certificate of intersection for a particular HIL is so simple:

we merely display the two intersecting rectangles.

-- -- -- -

- 23 -

The next part of the proof is the more substantial: we will

demonstrate that the HIL intersection question is in fact

NP-hard. The reduction is to the knapsack problem, which

asks whether there is some subset of a set of integers whose

sum is a given integer (see Garey and Johnson [1979]).

Lemma 3:

The HIL intersection question is NP-hard.

Proof:

We will show that the question of whether some subset

of the set of positive integers W w{WW2 ,...,wN stms to .he

given integer T can be reduced in polynomial time to

an HIL intersection problem. Our first step is to define

in N+1 HIL symbols a set of 2N x-by-x rectangles (for

any O<x<l, say x-l/2)* whose left hand sides are aligned

along the integers from 0 to 2N-I and whose bottom sides

have heights c.)rresponding to the sums of all 2N subsets

of weights. Symbol 0 is defined as

0: BR (0,0), (x,x)

Box (0,0) , (X, X)

Note that we have taken a liberty with the definition of m by

using a rectangle of the ncninteger size (1/2,1/2). This could easily

be fixed, but that would only obscure the structure of the proof.

- 24 -

For 1_iIN, symbol i is defined as

i: BR(0,0), (21 -1 x, x+ I w

Draw i-1 at (0,0)

Draw i-I at (2 w)

Note that the heights of the bottoms of the rectangles

in symbol i represent the sums of all the subsets of

wi w2, . ,w; this is easily proved by induction.

Now t/hat we have represented the sums of all the subsets

by a sequence of rectangles at various heigths, we .nust do

the same for the desired sum T. Symbol N*1 is defined as

N+1 : BR(0,T) , (1+xx)

Draw 0 at (0,T)

Draw 0 at (,T);

it places two x-by-x rectangles at height T. We then copy

those rectangles by defining, for 2<i<N,

N+i: BR(O,T),(2'-1+x,x)

Draw N+i-1 at (0,0)

i-1Draw N+i-1 at (2 ,0).

Note that the symbol NN = 2N consists of a row of 2
N

rectangles with bottoms at height: T and left sides along

the integers from 0 to 2 -1.

The stage is now completely set; the final symbol is

defined as

2N+1: BR(C,O) (2N-1+x, x+ z wE)

Draw N at (0,0)

Draw 2N at (0,0)

- 25 -

and there is a solution to the knapsack problem if

and only if some pair of rectangles in symbol 2N+1

intersect (for by the distinctness of x-values in

symbols N and 2N, two rectangles intersect if and only

if they share the same y-value of T). QED.

An example of the construction used in this proof is given

as Example 1. The two above lemmas can now be cmbined to

prove Theorem 4.

Theorem 4:

The HIL intersection question is NP-complete.

Proof:

Immediate from Lmmas 2 and 3.

- 26 -

Example 1

In this example we will see how a particular instance

of the knapsack problem can be reduced to a problem of tes-

ting for intersection in a rectangle set defined in HIL. We

will assume that the set W is {2,3,5} and we want to know

whether any subset sums to 5. Symbols 1,2,3 are illustrated

below.

C;0

4 4 4

01 C

f ' :I I I I iII I

0 1 2 0 2 4

Symbol 1 Symbol 2 Symbol 3

Symbol 6 has the structure

41 0 0 0 0

1234When symbols 3 and 6 are overlayed they have two intersections,

at (3,5) and (4,5); these correspond to the subsets (2,31 and

{s}, both of which sum to 5. End of Examie.

- 27 -

Because we will make extensive use of the construction

used in the proof of Lema 3, it is important that we ana-

lyze the construction in some detail. The first aspect to

note is that because we reduced the HIL intersection ques-

tion to the knapsack problem, which is known to be solvable

in pseudo-polynominal time, we have shown only the weak

NP-completeness (and not the strong NP-completeness) of

the HIL intersection question . This is an essential aspect

of the proof, because the HIL intersection question is it-

self solvable in pseudo-polynomial time (that is, it is

solvable in polynomial time if the inputs are expressed in

unary). To prove this it suffices to observe that both the

height and width of the minimum bounding rectangle of the

root symbol are less than the sum of all the input para-

meters; thus all the symbols in the set must be placed on

an integer grid of size at most the square of the input

length. We can record for each cell in the grid which

of the linear number of symbols have already been instan-

tiated there, and thus avoid doing more than a polynomial

amount of checking.

For a discussion of the notion of weak NP-completeness,

see Garey and Johnson [1979].

- 28 -

The second important fact to note is that the HIL descrip-

tions constructed in the proof of Leia 3 are in a very

well-behaved subset of HIL. The most important property

is that 2N+I of the 2N+2 symbols are consistent in the sense

that the bounding boxes of their symbols do not intersect;

only symbol 2N 1 has intersecting subsymbols. Thus the HIL

intersection question remains NP-complete even when we con-

strain the HIL input to contain at most one pair of over-

lapping called symbols. There are a number of other senses

in which the graph of the construction is well-behaved:

it uses only one Box command, every symbol (except 0) makes

exactly two calls, and every symbol (e Opt0) is called

exactly twice by exactly one other symbol.

- 29 -

:. 3tner Pr0olers w'tn HIL Input

In thne previous subsection we saw the follow-.nq restl.ts

for rectangle problems with inputs in HIL.

-. .ircr: anzrseC;:7 Pairs

Theorem 1 showed by a counting argument that this

problem must require exponential time in the worst case.

Theorem 4 showed that this problem is (weakly) NP-

complete, using a reduction to the knapsack problem.

We will nz brieflV examine the remaining rectangle questions ard

problems when their inputs are given in HIL.

3. Znrersection with a Querb 2. ec"

We will consider the three subproblems in decreasing

order of generality.

c) Intersection with a Rectanq~e

To prove this problem NP-complete we will use the

construction in the proof of Lenua 3 and replace

the 2 N squares at height T with one rectangle of

height x and width 2 N-1+x, with bottom left corner

at (O,T). The knapsack problem has a solution if

and only if that rectangle intersects any other.

b) intersection with a Line

Replace the query rectangle in the above construction

by a horizontal line with height T+x/2.

a) Intersection with a Point

Use the construction of parts a and b, but place all

squares to have their left edges on the line x-O.

The query point at (x/2,T+x/2) intersects a rectangle

if and only if the knapsack problem has a solution.

0J

4. .Varthern'moat fecea2ng~e 3elow a LZine

The general problem can be proved NP-camplete by the

proof of Problem 3b; if the northerrnuost rectangle

below the line y- T+1-E is at y-T, then and only then

does the knapsack problem have a solution. The spe-

cial case of finding the northernmost rectangle in

the entire set is solvable in linear time by computing

"bottom-up" the northernmost rectangle in every symbol.

5. Measure and Parimeraz' Prob~ae

To prove these problems NP-complete we will use the

construction in the proof of 3a, in which the sums

of all subsets are represented by a set of rectangles

at a vertical line. We first construct such a set and

compute its measure, then augment the old set by a

single x-by-x square at height T; the new measure
2

is x greater than the old if and only if there is no

solution to the knapsack problem. Likewise, the peri-

meter increases by 4x.

5. :onneatedneaa ?roTerms

a/' Are .e Rectanq.es in a Sinq.e Connea-ed :-:nen.

We will show that this problem is NP-hard by using

the same constructions as for problems 3a und 5. We

first place all squares with their bottom sides at

the sums of all subsets and their left sides along

the y-axis. We then place a rectangle of width 1

- 31 -

and height equal to x plus the sum of all weights

in W to have its right side along the y-axis. Note

that at this time all of the rectangles form a

single connected camponent. Finally, we place a

single (x/2,x) rectangle at (x/2,T); that rectangle

is in the single connected component if and only

if the knapsack problem has a solution. Note that

this proof shows only that the problem is NP-hard,

and not that it is in NP.

b) Number of Connected Componenta

By the reduction of 6a, this problem is also NP-hard.

a) Enumeration of All Connected Components

The construction used in the proof of Theorem 1

can be slightly augmented to produce in N symbols

a total of 2N disjoint squares; the time to output

them alone shows that this problem must require

exponential time.

7. Equality and Subset Testing of Rectangle Sets

The construction used in question 6a shows that these

problems are NP-hard.

- 32 -

3.3 Consistent HIL Input

In this subsection we shall study the complexity of

rectangle problems when their inputs are given as consistent

HIL descriptions. That is, for every symbol in the HIL de-

scription, the bounding boxes of all objects within the

symbol must be contained within the symbol's bounding box

and nonoverlapping. This restriction has very different

impacts on the complexity of the various rectangle problems:

whereas most of the problems with general HIL input were

NP-hard, we will see that for consistent designs some

problems remain NP-hard, while other problems are now sol-

vable in polynomial time (usually linear orG(N ig N)), and

still others become trivial (that is, they can be solved

in constant time).

The first problem that we must face when dealing with

consistent designs is that of verifying that an allegedly

consistent design does in fact satisfy the properties of

having only contained and nonoverlapping subsymbols. This

property is easy to verify using the scanning algorithm to

solve Problem 2 in Subsection 3.1 (that is, given N rec-

tangles in the plane, do any intersect?); recall that

9(N ig N) time is necessary and sufficient to test this

property. Our algorithm for testing consistency will now

proceed bottom-up through the HIL design, symbol-by-symbol,

and use the geometry-only intersection checker to verify

that no subsymbols in any symbol intersect; it is trivial

- 33 -

to ensure in linear time that all subsymbols are in fact

contained within the symbol's bounding rectangle. By the

fact that there are a total of O(N) rectangles and calls

on subsymbols altogether in the HIL and the fact that the

function G(N ig N) is concave upward, the entire algorithm

takes at most O(N lg N) time. Note that e(N lg N) is ne-

cessary for the case of a one-level consistent design, so

this bound is best possible.

We turn now to study the rectangle problems themselves.

The first two problems are trivial for designs that we

know to be consistent.

-. Report Intereecting Pairs

2. .nversection Queetion

Both of these problems can be answered in constant

time because a consistent design is known to have no

intersecting pairs of rectangles.

The remaining problems do not admit trivial solutions.
3. .ntersetion with a Query Object

We will consider the three subproblems in increasing

order of generality.

a) Interaeotion with a Point

This problem can be solved in linear time. To see

if any of the symbols intersects a given point we

start at the root symbol and then recursively search

- 34 -

down the DAG that is the HIL description; at each

symbol we visit at most one of its subsyubols.

(Note that if we have to visit more, then the sub-

symbols overlap, which violates consistency).

b) Intereection with a Line

o) Interection with a Rectangle

Because the HIL descriptions used in Subsection 3.2

to prove the NP-hardness of these questions for

general designs were in fa't consistent, both pro-

blems b and c remain NP-camplete for consistent

designs.

4. .Vr-hernmos- Rectangle 3elow a Line

Because the proof in Subsection 3.2 uses a consistent

design, this problem remains NP-ccmplete.

5. 'easure and Perime-er ?rob7- ms

These problems are both solvable in linear time. To

solve the measure problem we proceed bottom-up through

the set, computing for each symbol the sum of the

measures of the rectangles it contains by adding to-

gether the (previously calculated) measures of the sub-

rectangles it calls. The perimeter problem is solved

in a similar fashion.

6. Connectedneaa robiams

a) Are the Rectanqies in a Sinle Conne3:ed :cmvcn-.?

The answer is yes if and only if there is exactly

one rectangle in the set.

- 35 -

b) Number of Connected Components

This can be solved in linear time by a bottom-up

algorithm like the algorithms used to solve problem 5.

c) Enumeration of AZZ Connected Components

The construction used in Subsection 2.2 to show

that this problem can require exponential time

still holds.

7. Ecuaity and Subset Testing of Rectangie Sets

We leave these as open problems.

-36 -

4. IMPLICATIONS AND OPEN PROBLEMS

The purpose of this paper has been to lay a solid

theoretical foundation for the manipulation of hierarchi-

cally defined sets of rectangles in the plane. There are

two motivations for this approach: the questions are inter-

esting from a purely mathematical viewpoint, and the theory

can occasionally have a substantial impact on practice.

For instance, the asymptotic worst-case rectangle inter-

section algorithm of Bentley and Wood [19801 motivated the

efficient expected-time algorithm of Bentley, Haken and

Hon [1980], which was in turn used in the VLSI Design Rule

Checker of Haken [1980].

The primary results of this paper are summarized in

Table 1. The first column of that table surveys previous

work on geometrically defined rectangle problems, the

third column shows that most problems are NP-hard when

presented with unrestricted HIL inputs, and the second column

shows that when the designs are constrained to be consistent,

then most of the problems become rather easy to solve. These

facts correspond closely to the excperience of Hon [1980]

and Whitney (19801 in using their prograrms that manipulate

hierarchical VLSI designs: highly structured designs (which

are never consistent but usually rather close in same sense)

can be processed very quickly, while highly unstructured

designs require prohibitive amounts of processing time.

- 37 -

It is important to state carefully the implications of

the above results for the builders of systems that process

hierarchical designs. The NP-hardness results do not state

that such designs cannot be processed efficiently; rather,

they imply that it is highly unlikely that one can ever find

an algorithm that will efficiently process every design.

Thus one should not search for such an algorithm, but rather

focus one's energy on algorithms that work well for an

important subclass of designs.

There are two types of subclasses that might be inves-

tigated, and both appear to offer much to theoretician and

practitioner alike.

2. A Satistical Aprroach

Using this approach one would first build a probabilis-

tic model of VLSI designs, and then design an algorithm

that performs well on the average when the inputs are

drawn from that distribution. (This is the approach

taken for the geometry-only rectangle intersection

problem by Bentley, Haken and Hon [19801). Devising a

probabilistic model that includes both the graph-

theoretic aspects of the HIL structure and the geometric

aspects of the shapes and placement of the rectangles

is a subtle mathematical problem; fitting such a model

to actual data will require an exceptionally talented

practitioner.

- 38 -

2. A Restriction Approach

We saw that restricting the designs to be consistent

allowed many of the problems to be solved quite effi-

ciently. Unfortunately, consistency is so restrictive

that no real designs can be built using it! We therefore

observe a tradeoff between severe restrictions (which

exclude many designs but facilitate rapid processing)

and lax restrictions (which exclude few designs but

admit many that are very time consuming to process).

It will be impo:tant to identify families of restric-

tions that exclude only a few designs (and hopefully

uninteresting ones at that) but admit to very rapid

processing of the remaining designs.

The NP-completeness results of Subsection 3.2 have

a rather interesting implication for this endeavor.

Recall that the Rectangle Intersection Question is

NP-complete when the inputs are presented in HIL. Many

people suspect that this implies that the complement

of the problem is not even in NP (see, for instance,

Garey and Johnson [1979, Section 7]). This in turn

would imply that there can never be a polynomial-length

certificate of nonintersection for a set of rectangles.

This means that if a restriction approach is taken in

which the designer adds a polynomial amount of extra

information and the resulting design can be processed

in polynomial time, then some valid designs must ne-

cessarily have been excluded.

- 39 -

Bibliography

Bentley, J.L. [1977]: Solution to Klee's rectangle

problems, unpublished manuscript, Dept. of

Computer Science, Carnegie-Mellon University,

1977.

Bentley, J.L. and Wood, D. [1S30]:An optimal worst-

case algorithm for reporting intersections of

rectangles, IEEE Transactions on Computers,

Vol. C-29, 1930, 571-577.

Bentley, J.L., Haken, D., and Hon, R. [1980]: Statis-

tics on VLSI Designs, Carnegie-Mellon University,

Computer Science Department, Technical Report

CMU-CS-80-111.

Garey, M.R. and Johnson, D.S. [1979): Computers and

Intractability, A Guide to the Theory of NP-Com-

pleteness, Freeman, San Francisco, 1979

Haken, D. [1980]: A geometric design rule checker,

VLSI Document V053, Carnegie-Mellon University,

9 June 1980, 9pp.

Hon, R. [1980): The Hierarchical Analysis of VLSI

Designs, Thesis proposal, Carnegie-Mellon university,
Dec. 1980

Klee, V. [1977]: Can the Measure of Uai.,bi] be

computed in less than O(n log n) steps,

Research Probl. Sect., Amer. Math. Monthly 84,

1977, 284-285.

Lauther [1980]: A Data Structure for Gridless Routing,

1 7th Design Automation Conference, Minneapolis,

1980, 1-7.

- 40 -

van Leeuwen, J. and wood, D. [19793: The Measure

Problem for Rectangular Ranges in d-Space,

Technical Report, RUU-CS-79-6, July 1979.

Mead, C. and Conway, L. [1980]:Introducton to VLSI

Systems, Addison-Wesley.

Nievergelt, J. and Preparata, F.P. £19803: Plane-

sweep algorithms for intersecting geometric

figures, Technical Report (in preparation),

Institut fir Informatik, ETH, ZUrich.

Nievergelt, J. (19813: Private Communication.

Vaishnavi, V. and Wood, D. (1980]: Rectilinear line

segment intersection, layered segment trees

and dynamization, Computer Science Technical

Report, 80-CS-8, McMaster University, Hamilton,

Ontario, Canada.

Vitanyi, P.M.B. and Wood, D. £19793: Computing the

Perimeter of a Set of Rectangles , Computer

Science Technical Report, 79-CS-23,

McMaster University, Hamilton, Ontario, Canada.

Whitney, T. [19801: Description of the Hierarchical

Design Rule Filter, Caltech SSP File 4027,

Oct. 1980.

UCLASSFTrD
SECURITy CL.XSS -:&," . - r S READ T.'T 7 :REPORT DOCU.',ENTATION PAGE nrEA CCsTRL;-:.

, flEFORE CC":'LE",: ?M.

1. RE oAT NUm bER 2.'GOVA aCCESSIO NO. j. RLC4P'E.T'S CATA6V. hUM

CMt,-CS-81-109 , ;/o 4 5_5__2___

4. TITLE (and Subtitle) S. TYPE OF REPORT 6 PERIOD COVERED

THE COMPLEXITY OF MANIPULATING HEIRARCHICALLY
DEFINED SETS OF RECTANGLES Interim

A. PERFORMING ORG. tREORT "4jMSLR

7. AUTNOR(s) S. CONTRACT OR GRANT f.60MVIER(e)

JON LOUIS BENTLEY N00014-76-C-0370
THOMAS OTTMANN

9. PERFORMING ORGANIZATION NAME AND ADDRE$S ,. PR i~RAm E-.ME%P , rP'-, TASK

Carnegie-Mellon University AREA £ WOAK UNIT NUMBERS

Computer Science Detartment
Pittsburgh, PA 15213

St. CONTROLLING OFFICE NAME AND ADDRESS I1. REPAT" ATE

Office of Naval Research APRIL 1981
Arlington, VA 22217 4.1UMBER OF PAGES41

Up. MONITORING AGEt4CY NAME 6 A.ZOIRNSS(If Eif.wecrt tfm Covr'iling Ofg..e) 1. SECURITY CLASS. (0! LID PepOl)

1NCLASSIFIED
I&S. DECLA SSiCATIO% DONGRADING

SICM EDu &.1

16. DISTRIBUTION STATEMENT (o Ie Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the ebstract entered In leck 20, it illffert m Reevi

It. SUPPLEMENTARY NOTES

It. KEY WORDS (Cc nJnuo N One Flr*P & *too/ tOnecessary and Identl F
I I€ h tifyb lcknme)

20. AIBSTRqACT (continu~e an revels* lide it necessaryl and Identify b lock n|¢&I~lb")

DD F 1473 EoIIoN oF I NOV es is OBsoLfe

S/N *103-014-If,01
SECURITY CLAFICATION Or THIS PAgE (0%0o Date 8*1.00.E

