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CHAPTER 1
INTRODUCTION

Adaptive arrays have been under study in recent years as a
means of protecting radar and communication systems from interference.
These arrays are based on the original work of Applebaum and Widrow et
al. Applebaum[1] presented an array control loop that maximizes a
generalized signal-to-noise ratio (SNR). Widrow and his co-workers[2]
presented the least mean square (LMS) error algorithm, based upon the
method of steepest descent. Both the Applebaum array and the LMS array

have found extensive applications in radar and communication systems.

One of the problems in applying adaptive arrays to communication
systems is that the array speed of response varies with signal
strengths. The array speed of response is determined by the eigen-
values of the so-called covariance matrix, which is the matrix of the
cross products between the array element signals. These eigenvalues
depend on signal powers. A strong signal produces a large eigenvalue
and a weak signal produces a small eigenvalue, If, for example, the
array must null interference 40 dB above thermal noise, the largest
eigenvalue will be approximately 104 times larger than the smallest
one. It is important to keep the range of variation of the eigenvalues
as small as possible.

The eigenvalues not only depend on signal strengths, they also
depend on the signal arrival angles, the signal bandwidths, and the
array parameters (element spacings and element patterns).

The purpose of this report is to investigate and characterize
the actual behavior of the eigenvalues in some simple adaptive arrays.
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We examine here arrays with up to four elements and determine the
exact eigenvalue behavior as a function of signal strengths, band-
widths, angles of arrival and array parameters.

Although the problem of eigenvalue spread in adaptive arrays is
well known, very little data exists in the literature showing actual ‘
eigenvalue behavior. Some information on eigenvalues has been given |
by Gabriel[3], who discusses this subject in connection with retro-
directive eigenvector beams. His paper also gives some qualitative
descriptions of the effects of eigenvalues on array performance.
Mayhan[4] has also presented some data on eigenvalues for multiple
beam antennas. He has considered the eigenvalues for non-zero band-
width signals by regarding the bandwidth as a perturbation of the
original CW covariance matrix[5]. However, these papers do not give a

complete overview of eigenvalue behavior as a function of the signal
and array parameters. Our purpose here is to provide such data for
some simple arrays.

We begin in Chapter II by establishing notation and formulating
the problem. We then derive the eigenvalues for the case of two in-
coming signals, one desired and one interference. To simplify the
problem, we first work out the solution for zero-bandwidth (CW) signals.
In Chapter II-C, we develop an interesting relation between the array
output signal-to-interference-plus-noise ratio (SINR) and the eigen-
values. We show that when the interference is very strong, the array
output SINR is equal to one of the eigenvalues Tess one. Chapter III
presents numerical results illustrating the effects of signal para-
meters (strengths, arrival angles and bandwidths) and array parameters
(number of elements, 2lement spacings and patterns) on eigenvalue be-
havior. Chapter IV contains the conclusions.




CHAPTER 11
FORMULATION OF THE PROBLEM

A. Definition and Notation

Consider an N-element adaptive array as shown in Figure 1. The
N elements are assumed to lie along a straight line with spacing D2

between the ch element and the first element. The analytic signa)l

%l(t) from the ¢tP element is multiplied by a complex weight wz(t)
generated from the optimizing network. The resultant products are
summed to produce the array output signal ¢(t). For an LMS array,
the weight vector
W= [w,,w,.---w ]T (1)
1’72 N

satisfies the first order differential equation

where ¢ is the covariance matrix of the array,

o = EOXT} (3)
S is the reference correlation vector,

S = E(X*F(t)) (4)
and k the loop gain. In these equations, X is the signal vector

K= [ (2], Xy (8], X ()] (5)
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Figure 1. An N-element adaptive array with two incoming signals.
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¥(t) is the (complex) reference signal in the array, T denotes trans-
pose, * complex conjugate and E{-} expectation.

As will be seen below, ¢ is not singular as long as the element
signals contain independent thermal noise. Therefore, the inverse of
¢ is always well defined. Let this inverse be denoted by ¢'], and
then from Equation (2) the steady-state weight vector is

W, = e ls (6)

st

where the subscript "st" denotes steady-state. The complete time
response of the weight vector is then

M -k)\gt _]

W(t) = J C e +9¢ 'S (7)

=1 ¢
where the Cv's are constant vectors depending on the initial condi-
tions of the weights at t=0. The xg's are the distinct eigenvalues
of ¢ and M is the number of distinct eigenvalues. It is these eigen-
values that control the transient response of the array weights and
that concern us in this report.

We shall determine the eigenvalues of ¢ under the condition that
there are two signals coming into the array. One is the desired sig-
nal arriving from angle 04 and the other interference from 0. Both
angles are measured with respect to broadside, as shown in Figure 1.
We also assume each element signal contains a thermal noise component.
Thus, the analytic signal behind the zth element is written
X, (t) = d,(t) + ¥ (t) + W (t) (8)

where ac(t) and ?v(t) are the received desired signal and interfer-
ence on the ot element, respectively, and ﬁg(t) is the element noise.

e e a e et




The above equation suggests that we can divide the signal vector
X into the sum of three component vectors, i.e.,

X = Xy + X, + X (9)
with
- T b ey T
Xg = Td,(£),d,y (), dy (1)) (10)
the desired signal vector,

Y
1

X = .5, o1 (1)

1

the interference vector, and

X = [ ()0, (1), o (£)] 1

n = [n](t),n2 t), Ny t (12)
the noise vector.

We shall assume here that the desired signal, the interference
and the noises are zero mean GausSian random processes uncorrelated
with each other. Thus, the signal vectors are statistically independ-
ent of each other, i.e.,

*y T, _ OV DO N *, T, _ *y T
E{XTX.} = E{Xan} = E{Xixd} = E{Xan} E{XnXd}

d"i
_ * T _
= E{ani} =0.
Then from Equations (3) and (9), we have
= * T ‘
® E{(xd+xi+xn) (xd+xi+xn) } (13) |
l
_ *, T *y T KT 1]
= E(X3XgH + EOXOXGH + EQUX ) (14) |
|
= ¢d+¢i+¢n . (15) |

i S SRR =5 SRS



‘]

- —

Consider first the desired signal. It is clear from Equation
(15) that the desired signal part of the covariance matrix, b4 is

L
4y = E{XdXd}— [¢d2m] (16)

where @d denotes the matrix element of ¢d at the ch row and the mth

column. L?rom Equations (10) and (16), we know that

¢

= E{&j(t)& (t)} ) (17)

d m

em

Because of the interelement propagation delays, we can write

d,(t) = f“(od)d(t—TdQ) (18)
where TdQ denotes the interelement time delay between element ¢ and
element 1, d(t) is the desired signal waveform and fQ(e) is the volt-

age response of the i element to a unit amplitude test signal arriv-
ing from angle o. In Equation (18) we have assumed that the element
patterns are independent of the signal frequencies over the bandwidth
of the desired signal d(t). Thus from Equations (17) and (18), we have

o, = ft(ud)fm(ed)E{a*(t-le)a(t-Tdm)} (19)

dvm

The time delays in the above equations are determined by the element

spacings and the signal arrival angles, i.e.,
Dv
Ty =& singy (20)
L

with ¢ the velocity of propagation.

In order to evaluate the expectation in Equation (19), we use
the following definition. Let the desired signal be a stationary

random process with autocorrelation function




Ra(r) = E(d*(t)d(t+1)) (21)
E(d*(t-1)d(t)) . (22)

i

Then we can rewrite Equation (19) as

L (0
om

f (v

d) m ‘d)Rg(Td:_Tdm) (23)

Furthermore, we assume that the desired signal has a flat, band-limited
power spectral density Sg(m) centered at w, as shown in Figure 2.
Within the band Awy the desired signal has power density 2nPd/(Aud),
with Pd the desired signal power. Then the autocorrelation function

is given by

R{&(T) = %"ﬂ‘ J_m S‘a(m)e\}mT dw (24)
Aw T
sSin ’—Z‘d* JIA)OT
4 g - (25)
2

Combining Equations (Z23) and (25), we have

_ . 1 - 2 m
¢de = fz(od)fm(od)Pd sinc [2 Amd(ng Tdmi] e (26)

sinx

with sinc x =

We can simplify the above result by noting that monQ is just
the phase shift between element 1 and element ¢ at the center frequency
W - Let us define this phase shift to be

(27)

")d = mOTd

v, ¢

Upon substitution of Equation (20) into Equation (27), we get
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Figure 2. Power spectral density of the
desired signal, Sa(w).

2“00
o, = --—- sino (28)
dg Ao d

with Ao the wavelength at the center frequency W+ In addition,

Lo} (52) (eota,) -
—_—— = = — wT =‘~B¢ (29)
2 2\u, / \o'd, )~ Z 7%,

where

Ba = o (30)

is the fractional bandwidth of the desired signal.

Substituting Equation (29) into Equation (26), we finally have
J (¢dp_¢dm)
' . (31)

.|
N = f*(g ,)f (0,)P 51nc[j»B (44 -0 ﬂ €
d,~ "% 0%’ g 2 "d''d, Td

Similar results may be derived for the interference. We have
v - f v
i,(t) = 0(01)1(t'Tiv) (32)

where 1(t) is the interference waveform and

|
l
!
|




v

b, |
T. = o sinoy . (33)

t

From the previous discussion, we know that the wm h element of the

interference part of the covariance matrix, bis is given by

_ ek "k v
by = FF (0BT (T, )T(-T, ) . (34)
2m ¢ m

We define the autocorrelation function of the interference as

Ry(1) = E(T*(t)i(t+1) (35)
I\J* N\
= E(i (t-t)i(t)! (36)
} ) '-| ju)OT
= Pi s1ncl§ Ami]e (37)

where we have assumed the interference also has a flat, band-limited
power spectral density of bandwidth Awy, as shown in Figure 3. Hence,
Equation (34) becomes

; io, =45 )
_ gk . 9 m
o T fa(ni)fm(“i)pi sinc [zBi(¢i -9 i] e . (38)
i ¢ m
am
where
Am]
Bi = (39)
0

is the fractional bandwidth of the interference and

24D

$: = ——5 sinu. (40)
1 A 1
< 0

t

is the interelement phase shift between the ¢ h element and the first

element for the interference.

Finally, we assume the noises are zero mean Gaussian random
, . 2
processes uncorrelated with each other, each with power o~. Thus,

10
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Figure 3. Power spectral density of the
interference, S?(m).

Ak, _ 2
E{"m(t)"m(t)} =08 (41)

with de the Kronecker delta function. Therefore, the noise part of
the covariance matrix is

b = ool (42)
with 1 denoting the identity matrix.

From Equations (15), (31), (38) and (42) we conclude that the

amth element of 4 is

(e, =4, )

0.0 (0P, sinc |LBy(o, 0,0 e F M
Com T Tl0g)TplogiFy sinc 5 By *a, ¢dm
(e, -0, )
* . 1 i i
+ fz(oi)fm(ni)pi sinc [E-Bi(¢iq—¢imi] o ¢ 'm
2
+ots, ) (43)

In a later section of this report, we shall investigate the
eigenvalues of « for arbitrary bandwidths. First, however, we shall

1




consider the special case of zero bandwidth (CW) signals because in
this case we can obtain the eigenvalues in simple analytical form.

B.  Eigenvalues for Zero Bandwidth Signals

For Bd:Bi:O’ the sinc function in Equation (43) is unity, so
Equation (43) simplifies to

b, = P f¥(0 )} (o )eJ(¢dy-¢dm) F P (0 )E (o)) J(¢i”-¢im)
“om d e'"d''m\"d AR AN R
cw
2
+ 0 Gp,m . (44)
This result is equivalent to the form |
. x, T *T 2
L PdUddd + PiUiUi + g°1 (45)
where
[ -j "'d ‘j ¢ ~Jy 1
d d
- 1 2 {
Ud = f](od)e . f2(ed)e e fN(Od)e 5] (46)
and
( -Jibs -3¢, -3¢, T
U, = |f,(0.)e " f_(e.)e 12 s, N (47)
i = [fle + ol > Tylog)e

are vectors that contain the element patterns and interelement phases.

It is helpful to work with dimensionless quantities, and speci-
fically to normalize the covariance matrix with respect to the noise

power u2. We define
NN

SNl | (48)
i

where

12




e e

Ml ———— ‘71
P
. d
b ° 2
a
= the signal-to-noise ratio (SNR) of the desired signal
and
P
772

the interference-to-noise ratio (INR) of the interference.

We shall determine the eigenvalues of ¢éw rather than L The eigen-

. .
values of oy 3re equal to those of L times o .

Because of the form of the covariance matrix in Equation (48),
it is clear that two of the eigenvectors of ¢! will 1ie in the plane
* * cw . .
formed by Ud and Ui‘ Hence we may express two eigenvectors (e) in
the form ;

- * *
where a and g are constants to be determined by the requirement

' e = re (50)

cw
and » is the corresponding eigenvalue. We may find o and g by sub-
stituting Equation (49) into Equation (50). Straightforward calcu-
lations show that

! oy - * * * T, * R T *)
teploUgtety) = (alg+all) + aly (‘d”d”d * oy faVaYi

* T, * « *
+ ﬂui(fiUiUi + E—ﬁiUiUd) . (51)

Hence Equation (49) will be a legitimate eigenvector if we choose «
and g so that

13




T*, 8 T ox _ Tx, o T *
V¥ t o alaVi T AVt g 5% : (52)

Therefore, from Equations (50), (51) and (52), we have

- Tl* .‘ir T*
»E Uy S e UgUy , (53)
or equivalently
_ T*x , o T,
V=14 g U+ R Uy . (54)
By defining
B _
By (55)

and then transforming Equation (42) into a quadratic equation, we get

2. T\ * Y I T,* _
VeglgUi - (Uit Uglg)Y - Filile = 0 (56)

This quadratic equation is readily solved to give two solutions,

= 1 (a+b
= e (@) (57)
dd’i
Y, = —L— (a-b) (58)
2 2¢ UTU*
d"d-i
where
_ T % T %
and
(2240, T, *12,1/2
b= (a +4.‘if,d‘UiUd| ) . (60)
14
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According to Equation (53), we then have two eigenvalues,

1

= TU* + &
o=l £4U3%4 * 3 (a+b) (61)
_ Tox 1
rp = 1+ £ U UL+ 7-(a-b) (62)

Since we have an N element array, ¢éw is an N by N matrix so
there are N eigenvalues. In addition to the above two, there are N-2
additional eigenvalues. To find these, we note that if e is an
arbitrary vector orthogonal to both Ug and U?, then

Vo *,0.T P
Pew®y = eytegUg(Ugey) + ;Ui (Usey) = e (63)

since Uge]=UIe]=0 from the orthogonality. This result implies that e

is also an eigenvector of ¢éw with unity eigenvalue. In general, since

*

¢éw is of order N, we can find N-2 such vectors orthogonal to both Ud

and U?. Hence the remaining N-2 eigenvalues are all unity.

We now have found all N eigenvalues of ¢éw' In the following
paragraphs, we shall make some observations about the results obtained.

First, all the eigenvalues of ¢éw are real because ¢éw is a
Hermitian matrix. Moreover,

A, 20 (64)

for ¢=1,2,---,N since both gdUEUJ and giu:UE in Equation (48) are non-

negative definite matrices. To see this, consider for example edUQUL.

It is easily seen that ‘
P B T PR |
»,d(UdUd)Ud = (r,dUdUd)Ud (65) !

|
15




* *

where sdugud js a non-negative quantity. Thus Ud is an eijgenvector
* *

of sdugug with eigenvalue deZUdzo. For any other vector U perpen-

dicular to Ug. we have

*

* Tyox _ o To*y o
(UdUd)U = (UdU )Ud = 0 Uy (66)

so U* is also an eigenvector of USUE with zero eigenvalue. In N space,

there will have N-1 vectors U* perpendicular to Ug and to each other,

and hence N-1 zero eigenvalues. Therefore adugug is of rank one and
T
U

. . * *T. .
the only non-zero eigenvalue is L4 dUd' Thus chdUd 1S non-negative

definite. Likewise, xiu:uz is also a non-negative definite matrix,
so the sum
= cuqul o+ of T
A )dUdUd + ’iUiUi (67)

is non-negative definite. Since ¢éw in Equation (48) is the sum of
the identity matrix and the non-negative definite matrix A in Equation
(67), the eigenvalues of ¢éw are just the eigenvalues of A plus unity.
Thus

Moz, = H{I+A) = 1+x(A)>] (68)

where 2{-) denotes 'the eigenvalues of'.

Note that in general the number of eigenvalues of ¢éw different
from unity is equal to the number of signals incident on the array.
When the array receives no signals other than the thermal noise, the
normalized covariance matrix of Eqution (48) is simply

[} -
bcw I

In this case, all the eigenvalues are unity. If one CW signal, char-
acterized by strength 5 and arrival angle o, is incident on the array,
then the covariance matrix becomes

16




' o = Uyl 4+ 1 (69)
cw

TU* and the remain-

l In this case, one of the eigenvalues of ¢éw is 1+zU
ing N-1 are all unity. From the earlier discussion, it is clear that
with two input signals there are two eigenvalues different from unity.
In general, one may show that with K CW input signals (K<N) there are

K non-unity eigenvalues and the remaining N-K eigenvalues are unity.*

Note that when only one signal is incident on the array, the one
eigenvalue different from unity has a simple form. Using the defini-
tion of a typical signal vector as Equation (46), we see that

T

N
1+eUuU"=1+¢ Z] lfﬂ(e)l2 . (70)

Q=

Hence this eigenvalue is independent of the element spacings in the
array but is a function of signal arrival angle 0. Moreover, if the

| element patterns are chosen so that

N
2
Io1f,0)]
. =1 '
does not vary with e (as, for example, with isotropic elements) then ‘
this eigenvalue is constant for all s. H

Next, we note that A and Ao in Equations (61) and (62) depend I
strongly on the signal powers. For example, suppose the interference
power is much stronger than the desired signal power. I.e., we have

T * T, *
£5U3U5 > £qUqYq (71)

and

*This statement assumes that all K incoming signals produce linearly i
independent signal vectors.




£y >> £y , (72)

then in Equations (59) and (60) we may approximate a and b by
RN I 4

a = t,iUiU]. (73)
and

b=a (74)
In Equation (74) we have neglected the term 4gigd|UIU3‘2 of Equation
(60) because it is small compared to a, since

* 2 T x(2 .
2 . x| 2 £
a i ?Uiui? j
Therefore the two eigenvalues in Equations (61) and (62) can be written
approximately as follows:
_ T *

IR H U (75)

Ao = hqUgUy + T . (76)
The above two formulas for the eigenvalues depend solely on signal
arrival angles; the element spacings have no effect. It is clear that
the largest eigenvaiue M is essentially controlled by the large in-
terference and the smaller eigenvalue xz is controlled by the weaker
desired signal. A1l other eigenvalues are unity with no dependence
on the signal arrival angles.

Better approximations for the eigenvalues M and Ay may be
obtained by using the binomial expansion to approximate b in Equation
(60). That is, we use

18
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1
I
!
l
|

()2 =14 % X
to get
2t .1
b:a (? + 1 UIUS 2) . (77)
a

Then putting Equation (77) into Equations (61) and (62), we get

€€
- T, % itd |, T,*|2 -
A IR 'Uiud (78)
- CoTe . Citd T ]2
Ay = 1+ “dUdUd - U1.Ud (79)
The above approximations are more accurate than Equations (75) and
(76).
We now consider the eigenvalues under two special conditions
for \U§U§ . The first case is when the two signal vectors are
parallel, i.e., when
* *
Ui = h Ud (80)

with h a complex constant. Clearly, under Equation (80) we have from
Equations (59) and (60) that

x*
ay [Ihlzai-&d]UZUd (81)

and

i
by = [a,2+ainl 2o (u?' /e (82) *

Hence we have !

19




_ T * 2 T * _ T,,* T,*
Yy T Tealala b Ugly = THEgUGU, e U5 (83)
and
Ay =1 . (84
2, )
In the above equations, the subscript 'I' indicates that a,, b, M

. . 0
and AZ are calculated under condition Equation (80). From our

I .
earlier result in Equation (64) it is clear that Ay s the smallest

possible value of Az. "

On the other hand, if we have orthogonal signal vectors, i.e.,

T *
UiUd' - 0 (85)

then from Equations (60), (61) and (62) we get

b, = a, (86)
=1 T.*

\11 =7+ {iUiUi (87)
=1 TN 88

where the subscript 'L' indicates that these guantities are obtained
under condition Equation (85).

These special case eigenvalues specify the bounds within which
the eigenvalues will vary with signal angles. To show this, we make
the following observations. From Equation (60), it is clear that*

b-a (89)

*
*Here, we assume that a0, i.e., siU1UijadUZ
can be similarly deduced.

U,. The case for a-i

o *
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' Therefore, from Equation (62) we see that
1 T
l o = Tt rglgly (90)

Combining with Equations (68), (84) and (88), we see clearly that

2" < \2 ,\21 . (9])

This inequality gives the bounds within which XZ varies as a function
of Od and Oi' To get the corresponding bounds on A] we proceed as
follows. Rewrite Equation (61)

= T+ UTUT + L (b-a) (92)
SUHR -

‘\] i

Thus it is clear that

T*
oo UL (93)

|
j which gives a lower bound for - Making use of the Schwartz inequal-
| .
| ity

T X2 TRy T
Ujug|? < WlvD vy : (94)
we have from Equations (60) and (94) that

2 _ . 2.,, T, *l2
b~ = a +4”icdluiud|

, ; T *x T *

(95)

i
|
!; 2
?
|




Equation (61) can again be rewritten as

. T*: T‘* :I B T'k- IT
e A TS AT G T T

H

u;) . (96)

Therefore, from Equations (95) and (96), it is clear that

ST T
s Ut gy : (97)
Combining Equations (93), (97) and the previous results of 4 and
R] » we have !
1
o, : (98)

Notice that the eigenvalues do not necessarilv attain these
hounds as the sional angles vary. An eigenvalue, say \2, will often
have a maximum Vomax smaller than \21. These boundsTa:e determined
simply from the siqgnal strenqths and terms such as U'U which :nvolve
the element patterns {fv(«‘)l2 but not the element spacings. Typically
it is found that when the element spacings are larger than half-wave-
length the extrema of the eigenvalues coincide with the bounds for
isotropic element arrays.

Next, we consider the case of isotropic elements. With fc(ﬂ)=1;
1=1,2,-++,N we have then

UdU; = U;.rUi = N = the number of elements in the array.

Thus the eigenvalues in Equations (61) and (62) have a simpler form
R R } (asb) (99)
T TN ; (a-b) (100)

where
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1]
i

o
H

2 T .*12\1
(a +4giﬁdlUiUdl ) /2 (101)
The bounds in Equations (91) and (98) also reduce to

T+ Ny <oy < 1+ Neg (102)

'I d) 1]

and

1<, <1+ N (103)

2 d

Now the bounds depend on the signal strengths gi and gd only. It is
clear from Equation (102) that for very strong interference, such that
and £i>>1 hold, the variation in M is very small compared to

d
its magnitude.

. >>E
¥ide’

Since for isotropic elements the sum of M and Ao equals a
constant, 2+N(&i+ﬁd), we know that when AZ attains its minimum A] must
be at its maximum, and vice versa. We shall show the explicit condi-
tions under which the eigenvalues attain their extrema with respect
to signal arrival angles. For example, let us differentiate Equation
(100) with respect to P (with o, fixed). The result is

d
M2 _lab __Fifd oo o152
aei 2 ’61 b 301 i“d
= _ zi‘i_d UTU* .,,3__ UTU* . (104)
b id 8”1 i~d

Thus the extrema of 1, (with respect to Oi) occur when

T *
lUiUd -0 (105)

or when
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36; |U1Ud =0 ' (106)
We see. then, that the orthogonal condition in Equation (85) is also
the condition for Ay to reach its extrema with respect to 0. On the
other hand, the parallel signal vector condition in Equation (80)
satisfies Equation (106) because
B! T,*| _ )
S0, Ui”d,‘“" ,UdU
i i
Therefore Equation (80) also gives the condition for AZ to be extrema.
These results indicate that the extrema of the eigenvalues coincide
with the bounds given in Equations (91) and (98) for isotropic ele-
ments.

We now return to arbitrary element patterns and consider how
the condition in Equation (80) can be met. From the definition of U
and U: in Equations (46) and (47), it may be seen that the condition
in Equation (80) requires suitable (Od’ei) pairs that satisfy N simul-

*

d

taneous equations, i.e.,
j(})d jll\.i

0 0
h fQ(od)e = fw(ni)e

(107)

for 2=1,2,---,N. One solution to this is of course 04=0; with h=1.
Whether other 04 and o, exist for which Equation (107) is satisfied
depends on the element spacings and patterns. Actually, Equation
(107) is just the condition for a grating nul1[6]. If the array does
not have grating nulls, Equation (107) will not be satisfied except
for 0i=0d. so that »'s will not attain the bounds in Equations (91)
and (98).

For isotropic elements, Equation (107) reduces to

J¢dv J+iy
e = e (108)
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with h=1. This equation is always satisfied for 6,70

d and the symmetry

angle 0,=m-0 since the array in Figure 1 has all elements along a

d
straight line.

Finally, we define the eigenvalue spread S to be the ratio
between A1 and Az. Since both A] and A, are functions of Od and 0,

we have
A (04505)
S(Ud’ni) = W . (]09)

This spread is then bounded by Smin and Smax’ i.e.,

Smin =S~ Smax (110)
where, from Equations (84), (85) and (89)
s - N Ui o LT - o
min = —X;— = ]—-;‘F‘-—U‘TIJ? (W1th lU1Udl - ) (]]])
i ‘d d~d
M
= A_J:_ = T.* T * 1 *= *
Smax Az ]+5dUdUd + CiUiUi (with Ui hUd) . (112)
0

If, for example we have a three element array with isotropic element
patterns and cd=1, gi=1000, we then have

_ 3001 -
“min T g~ 7%0
Smax = 3004

The eigenvalue spread is just the time constant spread in the
array transient response, as can be seen from Equation (7). If, for
exampie, an array with three isotropic elements can accomnmodate a
time constant spread of 3000 then the array would be useful in a signal
environment with interference power up to ci=1000.
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In this section, we have discussed the eigenvalues of ¢éw for
the case of CW signals. In the next section, we point out an interest-
ing relation between the second eigenvalue, Ao and the array output
signal-to~interference-plus-noise {SINR) for CW signals. Then in
Chapter III, Section £, we consider the case of non-zero bandwidth
signals.

C. A Relation Between SINR and the
Eigenvalues for CV¥ Signals

Here we depart from the main subject of this report, the behavior
of the eigenvalues, to discuss an interesting relation between the
eigenvalues and the array output SINR.

With the steady state array weight vector in Equation (6) the
desired signal component of the array output is

X . (113)
The output desired signal power is then ("o0" denotes "output")

] T, 2
Pog = 7 E(IM X415 . (Ma)

od

Similarly, the output interference and noise powers are

1 T 2
Pyi = 5 ECJULX]°H (115)

and

2

1 T, 2, o T2
o LI X 1Y = 5 M| . (116)

P 2

on

We define the array output signal-to-interference-plus-noise ratio
(SINR) to be

p

od
SINR = -+ . (117)
p01'+Pon
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It has been shown by Ishide and Compton[6] that when there is a desired
signal and one interference signal and both are CW, the output SINR
from the array may be written

T . *|2
u.u,:
*
UTU i~d

d |"d%d T T
57 UL

SINR = ¢ (118)

The above equation is derived from the matrix inversion lemma[7].
T * T * T * ]

Note that the vector products UdUd’ UiUi and UiUd which control
the behavior of the eigenvalues also appear in the SINR formula. When
IUZ=0, the SINR in Equation
(118) attains its maximum value. This maximum is

the signal vectors are orthogonal, i.e., U

= o U, 119
SINRy = &,UyUy : (119)

*
From Equation (85) we know that UEUd=O is also the condition under

which Ao attains its maximum. On the other hand, when the two signal
vectors are parallel, as in Equation (80), we find

2
20, T,%)
£31h17 (U ud

2T *
T+ [h]|7U Uy

T*
SINR, =y |UgUy -

3 UTU*

ddd_ : (120) ‘.
]+€iUiUi |
Then for the case of strong interference, as given in Equation (71),
we have SINR,=0. Therefore, the condition in Equation (80) gives not
only minimum xz but also a very small SINR. In conclusion, both Ao
and the SINR reach their extrema under the same conditions. Hence
there appears to be a close relationship between Az and the SINR for
the strong interference case.

.~
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To find this relationship, we now express the SINR in terms of
the eigenvalues. To do so, we first expand the Hermitian matrix ¢éw
in a spectral decomposition[8]. We have

N
vl 1 * 7
[ch] N Z AT (121)
=1 v
where the ) 's are the eigenvalues and the e:'s are the corresponding
eigenvectors of ¢éw' Recall that ¢éw is given by Equation (48).

Also its first two eigenvectors have been found to be (see Section B,
Equation (49))

* * * * *
e] = n:-l(Ud"'y.IUi) = Ud+81U1‘ (122)
* * * * *
92 = (12(Ud+y2U]-) ) Ud+82U’i (123)

*
and the remaining N-2 eigenvectors are all orthogonal to both Ud and

*

U;. Also, the first two eigenvalues are given by Equations (61) and
(62) and the remaining N-2 eigenvalues are unity. As we shall see,
these unity eigenvalues will not appear in the SINR expression because

* *
their associated eigenvectors are orthogonal to both Ud and Ui'

First we calculate the steady-state weight vector. We assume

that the reference signal ¥(t) is a replica of the desired signal.
Then the reference correlation vector is just the desired sianal
vector, i.e.,

*

) (124)

S = yU i
with y a proportional constant. From Equation (6), we have j

W= oo 17t (125 ’
st~ Lhey "y : 25) ;




Substituting Equation (121) for [¢ ] , we find that the products
between eg,ez --~,eT and Ud are zero and do not contribute to the

result. Therefore,

_ _2 ]‘" * T* L_ * T*
wst =g y[%] e](e]Ud) + x2 e2(e2Udi] . (126)
Since the desired signal is CW, we have

5 ((u t+l,'d)
Xd=@(;e Ud

where (/EH 0)2 is the input desired signal power Pd’ W is the signal
frequency and Uy is the desired signal phase. We also assume that by
is uniformly distributed between 0 and 2n. Now we can caiculate the
steady-state desired signal component of the array output from

Equation (113). We find
%} . (127)

" Y'/rd \](U t+‘1’d) 1 T *
Sd(t) ”‘(“ — |U
1
From Equation (114) we have the output desired signal power

2 1 | T
A 4
é}z : (128)

+ -—-IU e
Ao d2

d|Y| 2, T *
Pod = 7,2 [x] Uge 1| lUdeZ

Similarly we have

j(w t+(jr.)
X. =/r.oe © LR
1 1 1

where (/Z;b)z is the input interference power P, and y. is the inter-
ference phase, also assumed to be uniformly distributed in [0,2n].

7 2] (129)

Therefore, we have

n, \'/{.- j(h) t"‘dl.)
s (t)= ~-'e ° 7 [L
1 0 )\]

2,
U, e]‘

and

S U
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T*
Uie]

2 .1 l T *
+

2
P =i]_.l_Y|_~ ]__
oi 2 M\

é] . (130)
20

The output noise power is given by Equation (116), i.e.,

2
p o= Ixl |1, ‘uTe* 2 2 . (131)
52 [Ag d€

on
From Equations (117) (128), (130) and (131) we have

*
* i§'iude2
2

U,e e
el dz\
d \ J— 4
T TZ NI
| L 1Y 2 a1l , 1Y
g.i ,X-l )2 Ny
5 2 |
which gives the SINR in terms of the eigenvalues A], Az and the pro-

jections of each signal vector on the eigenvectors.
It is easily seen from Equations (122) and (61) that

o] - o1

_ T* T*
- ‘“1|‘Ud”d"y1ud”1‘

= og'lay 101 : (133) |
and similarly
Uges| = 73 oyl (1p-1) (134) f
uley| = <7, 10,-1) (135)
Ule,| = 7yl (0,01) : (136)

Putting Equations (133) through (136) into Equation (32), we qget ;
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-2 2 2 -2 2 2
. £4 Ia]] (A]-]) . £4 Iazl (Az-l)
s d A] Az ( \
INR = 137
r - -2 2 2
[P 11700107 Pl <x2-nT )
il A An
i 2 z

7 ?
5 M A2

— -2 2 -2 -2 2 2
£d I“]l ()‘]‘])L s {’d I“zl ()\2']) ]

The above formula expresses the SINR in terms of the eigenvalues M
and A, and the coefficients |ail's and |Bi|'5' We need these [ail's
and |81|'5 to further simplify the expression.

In Equations (122) and (123), we need o and uy as well as 2
and Y, (given in Equation (57) and (58)) to specify eT and eg com-
pletely. The additional equation needed may be obtained by normal-
izing e? and e;, i.e., by enforcing

T* _T*_
ee = e2e2 =]

From Equations (107) and (123), we get

T* 2 "1 271
e.e; = |o|® ——+ |87 —— =1
171 1 &4 1 j
hence
2
lag ™ [8q12
r] * r] N A]-1 : (138)
>d "1 1
Similarly we have
2 2
fa, | [
,_r_z._— + {2-. = -X—]:T (]39)
d i 2

Then from Equations (53) through (58), we have
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2 T k2
vl - 1817 ap)?  OqrTmegUgly) :
AL R W % (140)
lag |2 4e2|uTy Zluly* |2
1 d|Yas d[Y%i%
and i
q
2 T, %22 !
E 81" (rp-1-74U4U4)

ly,

2
et (a-b)t V72 i

2 o o 37 S e 2T : (141)
|(12l 4.~d Ud”i‘ f,d U'iUd

Substituting Equation (140) into Equation (138), we can solve for

|a]|2 and IS]IZ. The results are
lyy12\-1
o 1% = (}+ ST (142)
1 1 °d A
2 2 2
1012 = 13,121 (143)

with y] given in Equation (57). Likewise, by substituting Equation
(141) into Equation (139) we have

2 1 (1 1¥12)-
PSR L (144)
2 Ao 1 £ £

and

2
l

2
817 = 1yl lop |2 : (145)

With the above results, we may express the SINR in terms of the é

eigenvalues and the signal vectors. The final result is |

SINR = g (146)

where




f

- =
i ] 2
= e N et ‘27! 2
) T ERT T LY
1 L (A1 1 gdUdUd) 2 { (Az ] gdUdUd)
i ML g . T2
_ d{Yil% d| iV
(147)
- T *\2 T %272
(A1 -1-£4UqU4) (15-1-24U4U4)
T *[2 T *[2
4 -1 £41Y;Y4 A=l £41Y4Y4
D=t TF2 "5, T *2
1 (A -1-g,U0,U)) 2 (r,-1-g,UU)
P IO N 27" "E4Y4Y%
¥ g, + *x
L i ¢ UTU 2 i £ UTU 2
4| Yil% atViYe]
i |
d |2 T*2 "3 T ¥
Mo, el 2, (25-1-£4U4U4)
| . ToTl2 4TI
-d|Yi% d|YiY% J
" (148)

This general expression is rather unwieldy. But, for the case
of very strong interference, the equation reduces to a simple form.
If Equations (71) and (72) hold, i.e.,

T
UdU

a *

*
F.UU, »> ¢
1 1

-

d

and

. o> 7
£ “d

then from our earlier results in Equations (75) and (76), we know that




177
Therefore, i 7
2 -
An-1 £,
L R Ly (149)
2 {(r,-1-£ U U))
., 27 ddd
B T *[2
L Ed\“iud‘ .J
and B W
An-1 .
v -2 0 i
P 22 (A,=1-¢ UTU*)2 (150)
2 V20 Tddd
' T,*12
L {’d Uiud‘ _l ',’

where the first term in Equation (147) involving A] is negligible and

the first term in Equation (148) is also neglected because it involves
-1 -

g s which is much smaller than the second term, proportional to ‘d

Thus,

£.
SINR = (2,-1) ! ) (151)
2 T *.2
(xp-1-r4UqU4)

.o+
i

T,%|2
£ UiUd‘
The above expression can be further simplified by recognizing that

o a

TR 7

(Ao-T-74040 ) i

T
“d|”dUd|

under Equations (71) and (72). Therefore we have

SINR ¥ 1,-] . (152) i

34




This remarkably simple result is valid for arbitrary element
spacings, element patterns and signal arrival angles, but only for CW
signals. The formula is interesting because it tells us that when the

interference is much stronger than the desired signal, Ao controls not
only the transient response of the array but also the steady-state

SINR performance.

Much recent work has been directed at the problem of choosing
element patterns in an adaptive array. The goal of this work is to ;
find element patterns for which the SINR does not vary widely as the !
signal arrival angles change. We note, however, that because of
Equation (152), choosing element patterns to minimize the SINR varia-
tion also minimizes the variation in both Ao and the eigenvalue spread.

We now return to the main subject of this report and discuss the
behavior of the eigenvalues in typical situations.
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: CHAPTER III
’ RESULTS AND DISCUSSION

We have determined the N eigenvalues of the covariance matrix
for an N-element adaptive array with a CW desired signal and a Cl

interference signal incident on it. We have also related the eigen-
values to the array output SINR, as given in Equations (146) and (152).

In this Chapter, we shall discuss the behavior of the eigen-

values and relate their values to the signal strengths (fd and 71),
the number of elements, the element spacings, the element patterns

and the signal bandwidths.

To illustrate the behavior of the eigenvalues, we first present
Figure 4, which shows a typical set of eigenvalues; it shows all three

eigenvalues (x], A, and \3) versus the interference angle o for a

three-element arrai. The desired signal angle is arbitrarily fixed at

wd=45° and the interference angle is varied between 0° and 360°. Both ‘
signals are CW. The elements are assumed isotropic and a half-wave-
]=0, D

are &d:] and 51=1n.

length apart (D 2=O.5A0, D3::1.0\O). The signal-to-noise ratios

From Fiqure 4, we observe the following:

1) Vs the largest eigenvalue, is always larger than 31. This
*
minimum of Y is determined by ]+f1U§Ui from Equation (93).

2) Loy the middle eigenvalue, varies between 1 and 4, i.e.,
*

UTU from Equation (103).

T o b Uy

2
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A] - M = 34-31 = 3.
max min
This range is determined by the weaker signal (the desired
*
signal) and has value RdUZUd (from Equation (98)). Also

we find that A] =y, = 34, \] = ) = 31.

] .
max it min 1y

*
5) Ay also has a range of 3, i.e., ﬂdUEUd. (From Equation
(103)).

6) The eigenvalue spread S has extrema

S = 1ol Tt = 3 ; 11
max - LU0 aqUgly = (Equation {112))
*
T+, UTU. 3
S . o= -l la=yl=7.75 (Equation (111)).
min 4y oty 4
d"d"d

7) The sum of the three eigenvalues is constant, i.e.,

x]+A2+x3 = N(ai+gd+1) = 36

From 1) and 2), we see that the levels of the eigenvalues are
determined by the signal strengths, namely, M by = and Ay by a4
A3 is always constant (unity). Points 4) and 5) illustrate how the
ranges of the eigenvalues are controlled by the weaker signal, in
this case the desired signal. The graph also shows that the eigen-
value variation is symmetrical around 01.=900 and 279", i.e.,

V{90°-5) = 2 {90°+8):  A(2797-8) = A(270°+5)

This synmetry comes from the fact that

* * o
U;(0) = U, (180°-0.).
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With this background, we now discuss the effect of each of the

system parameters separately. We start with the signal strengths.

A. The Effect of Signal Strength

We first show how eigenvalues are affected by the desired signal
strength, q Figure 5 shows the three eigenvalues with Ld=3 and with
all other parameters the same as in Figure 4. (Figure 4 was for ad=1).

% ‘ Comparing the two plots, we find

1) The minimum value of M is still 31, i.e., the minimum value
of M does not depend on fq» @S can be seen from Equation
(93).

2) Az has minimum 1 and varies between 1 and 10. The bounds

an A, are from Equation (103) again.
3) A3 remains constant (unity).

4) N has a larger range of variation, 9 in this case, which
*
is gdugud (or Nsd). Also we see that

A =, = 40, 2 =i, = 31.
]max 1min Ty

5) X, also has a larger range of 9, we also have

A =X, =10, A = A, = 1.
T nax 2, 2

6) The eigenvalue spread has extrema

Smax - 40 (from Equation (112))
S =3 3.1 (from Equation (111))
min 10 ’
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7) The sum of the three eigenvalues is a constang equal to,
in this case, 42.

From the above observations, we see that the desired signal
strength £d affects the range of variation of M and Ao The range
is proportional to ﬁd' In addition, the increase in Ed substantially
reduces Smin (from 7.75 to 3.1). At the same time, increasing g
makes Smax to increase (from 34 to 40). Therefore, tripiing &d
reduces Smin more than by a half and only causes Smax to increase
less than 20%.

The previous example was for the case of weak interference
(gi=10). He now consider how £4 affects the eigenvalues when s is
much stronger. We let €i=1000 and calculate M for three different
gd's (gd=1, 10 and 100). The result is shown in Figure 6. We see

clearly that A] is little affected by the increase in ¢, for strong

d
interference. Thus, the larger eigenvalue Ay can be regarded as

independent of £q S Tong as gilgd > 10 and Ly = 1000.

In Figure 7, we show X, calculated for two ¢ 6 values with all

2 d
other parameters the same as in Figure 6. Clearly, AZ depends very

much on Ed'
case gd=1.

Acutally, for gd=10 is just a magnified version of the

Mext, we discuss the effect of interference strenagth. First,
we show that Ao the largest eigenvalue, depends mainly on the inter-
ference. In Fiqure 8, we have M plotted against 0, for three inter-
ference strengths, £i=100, 1000 and 10000 with all other parameters
the same as in Figure 4. It clearly shows how for strong interference
the largest eigenvalue M is a constant, 3t;, as a function of 0 To
show the exact relation between x] and ﬁi, we present Fiqure 9, which
is an enlarged version of A](Ui) for &i=100. The percentage change

of A, from its minimum (301) to maximum (304) is so small that A can

1
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indeed be considered as a constant proportional to i s Figure 8

indicates.

We now show how the large eigenvalue M behaves with weak inter-
ference. In Figure 10, we show M for £1=0.0], 0.1 and 1 with the
other parameters the same as in Figure 4. As may be seen, M is nearly
constant for ai=0.01. For £4<<bys We have

ine

1+3{d (from Equation (93)).
Then as Ei increases, A] also increases. When ci>>€d, we have
\ ¥ ]+3{1 (from Equation (93)).

Thus, \] depends on d when &i<<{d because A] depends on the stronger
of the two incoming signals. Once 5 becomes larger than 4’ A] is
controlled by i

Now consider how Ay behaves as Ei is varied. Fiqgure 11 shows
12 calculated for various interference powers from ai=0.01 to 100 for
the same array. We first note that AZ approaches an upper bound as
K increases. This upper bound is the curve of output SINR less one
(see Equation (152)). In the figure, the top curve shows Yo for
vi;]OO and also gives the output SINR from the array (read fron the
right-hand side scale). Note that the curve for ai=10 deviates little
from the :1\100 curve, so we conclude that the approximation

Ay = SINR+1

causes little error as long as ﬁi;IOﬁd.
When ri~0.01 or less, the second eigenvalue is essentially unity,

as shown. In this case, the array behaves as if there is only one
signal present, the desired signal. Hence there is only one eigenvalue
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different from unity, A]. The output SINR for this case is {dUZUS,

from Equation (118). AZ does not approximate 1+SINR because the con-

* *
IUi>>EdULUd is not met. Thus the curves in Figure 10 do

not indicate the SINR behavior for cases where &iil.

dition &iU

From Equation (109), we see that the eigenvalue spread increases
with increased £ because AZ is bounded by 1+SINR and x] is proportion-
al to £ The extrema of the eigenvalue spread S are

14Nz . Ne .

- i i
min  T+N7 T+N¢,

d d

L
4 = Ny

Smax 1+Né’,_i+N:',
These extrema also increase with increased oy The problem of eigen-
value spread arises when the interference is so strong (&i/{d3J03)
that the array cannot accomodate the widely separated eigenvalues (or
the widely separated time constants). When 5 is small, the eigen-
vaiue spread is small and causes no problem. Thus we are interested
in the eigenvalue behavior under strong interference. For large Li»
M is essentially constant as signal angles and T4 vary, so we shall
not consider Ay any further. Moreover, x3 is unity for CW signals,
so the only eigenvalue that varies with signal angle is Ay In the
following two sections, we shall concentrate on 12 and discuss the
effects of the number of elements, signal bandwidth, etc., on the

behavior of AZ.

B. The Effect of the Number of Elements

In Figure 12, we show three plots of Ay (as well as SINR) versus
0, with N=2, 3 and 4. In general, we obtain better output SINR with
imore elements because the larger N, the greater the array gain.
Correspondingly, X2 increases with increased N. Moreover, as the

number of elements is increased, the eigenvalue spread also increases.
For example, the extrema of the eigenvalue spread are:
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s, = 2_291_ Y 670 s, = 2003
min max
3001 -
S 001 = 759 S. = 3008
3['1'”1 4 3maX
4001
s, = 3001 x gqg S, = 4005
4min S 4max

where subscripts 2, 3 and 4 indicate the number of elements. We
see from Equation (111) that for isotropic elements

5.
1im S =1
N--eo Nmin “d
T * T * .. . .
because U1U1=UdUd=N. Thus, the minimum eigenvalue spread increases

to a limit, gi/gd, with increasing number of elements

Note that with four elements, there are four local minima
indicated by points C, D, E and F in Figure 12. For three elements,
there are only two such relative minima (indicated by points A and B).
Thus, as we increase the number of elements, the number of these mini-
ma will also increase. The value of Az at these minima may decrease
if we change the array parameters, such as the element spacings.

These minima may sometimes drop to unity. When this happens, there

is a corresponding null in the SINR. This situation is due to the
presence of a grating null in the antenna pattern{6]. In addition,
the maxima on these curves correspond to the cases whe:e UIU§=0, which
as we know from Equation (118), results in maximum output SINR.

C. The Effect of Element Spacing

Since the covariance matrix depends on the interelement phase
shifts, which in turn depend on the interelement spacings, we expect
the interelement spacinqgs to have an important role on the eigenvalue
behavior.




We beqin by considering i
values of separation 02 between elements.
to be isotropic. A series of plots of Ao will be shown.

2

for a two element array with several
The elements are assumed
The first of

these, Figure 13. shows Ay calculated for four separations. DQ=O.05aO.

O.lxo. 0.2A0 and O.3x0 as indicated. In later graphs, D2 is further
increased so we are able to see the gradual variation of ' with 02.
As before, 5d=l, &1:1000, ud=45° and both signals are CW.

From Figure 13, we see that for very small separation (D

2=0.05

xo), \2 stays nearly constant at unity. This result indicates that

the output SINR of the array is poor for every -

Because the small

separation cannot provide enough phase shift between elements, the

array is not able to produce a satisfactory SINR.
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Putting N=2 in the SINR formula in Equation (118), we have the
SINR for the two element array as

*i %
SINR, = 2¢ in? 2 2
2 = ?)d sin o 2 (]53)
where we have used
1 1
YT ey | 0 YT -aey
? 2
Le e
and
2'er2 2qD,
by = o=Zsinng . g = - sino,
d2 A d 2 Ao

Thus, for ngp.OSAO the phase shifts ¢q and ¢i and hence the SINR
2

are small. 2

The fact that A2=1 also means that the eigenvalue spread S is
large for all 0y For Dz=0.05A0, we have

s . %5 . ¥ 2000.

min ma

As the separation increases from 0.]xo to O.3Ao in Figure 13,
we see that Ao also increases. In other words, we have better SINR
as well as decreased eigenvalue spread with increased element separa-
tion. From the figure, we see that with a spacing 0.2A0, the two-
element array is able to null interference adequately in the sector
180°20,<360° for v ,=45° if the minimum required output SINR from the
array is not higher than 0.4 (-4 dB).

The next qraph, Fiqgure 14, shows XZ for the same conditions as
in Figure 13 except that 02=0.4\O, O.SAO and 0.6A0. The SINR improves
in the sector 0“«ni~180“ with increased separation but degrades in the
sector ]80”/nif360°. In particular, for 02=0.6\0. the SINR is low
when the interference is coming from 240"-ui-300°. For still larger
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separations, the array starts to have qrating nulls. Tfigure 15

5 for D2=0.7\O,0.8~0
and 0.9x0, respectively. For Dz=0.7xo, there are two arating nulls
around 9i=225° and ni=315“. As the separation is increased, the
grating nulls move in opposite directions as indicated. In Figure 16,
Ao is plotted with DZ=1.6,\0 and 1.7)0. AZ exhibits fast fluctuations
between its extrema and the SINR has sharper lobes and more grating

nulls.

illustrates this phenomenon. The graph shows X

In conclusion, for two isotropic elements, the number of grating
nulls and the number of minima and/or maxima jincrease with increased
element separation. With very small separation, such as for n? n.nn.“,
the eigenvalue spread s rounhlv Nﬂi which is high for strong intoey-
forence  Yhen the separation i< large enouqh to produce grabine

nulls, it alsn qives larqge eiqgenvalue spread.
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We now show how by varies with interelement spacing for a three

element array. In order to make comparisons among various cases, we
l first fix the total length of the array, 03, and then change 02 by
moving the center elenent.
Figure 17 shows A2 for Dz=0.1A0, 0.3>\0 and O.SAO with D3 kept
constant at Ao From the figure, we see the least desirable choice
is 02=O.1A0 because it gives very low SINR around 0i=220° and Oi=3400'
Considering the SINR output in the sector 0°5pifJ80°, the three cases
give nearly identical performance. However, in the sector ]80050ii

360°, the case with DZ=0.3Ao does not have as deep as a null as the
case Dz=0.5xO or D2=0.1A0. This fact suggests that the equally spaced
array may not be thke best choice in certain conditions.

Next, we keep 02 fixed and vary the total length D We arbi-

3
trarily choose DZ=0.3A0 and let D, change from O.SA0 to 1.2Ao and to

3
ZAO. The eigenvalue, X2’ for this three cases is shown in Figure 18.
In general, increasing the total spacing gives higher SINR and gives
sharper nulls around 0,70, and 0i=180°—0d. However, from Figure 18

we see that around points A and A' the case D =2A0 gives Tower SINR

2
than the case with Dz=].2xo. Thus, with increased total spacing the
array will have additional SINR drops such as those around A and A’

in the fiqure.

D. The Effect of Element Patterns

In the previous sections, we have assumed that the elements are
isotropic. We shall now illustrate how element patterns affect the
eigenvalues.

With isotropic elements, and with the interference much stronger
than the desired signal, the largest eigenvalue, Ve exhibits little ]
variation as the signal angles vary. For non-isotropic elements, !

however, A] is no longer constant. Also, the behavior of the middle
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eigenvalue, Ao is changed. Ve shall use a three element array of
dipoles spaced a half-wavelength apart to illustrate these effects.

Let us assume each of the elements is a short dipole with a
cosine pattern of the form

f (u) = cos(o+s )

for 2=1,2,3. 1Initially, we shall assume all three elements have
their pattern maxima at broadside, i.e.,

for 2=1,2,3. Then, all elements also have nulls at 0=90° and 270°. |
First we consider the case where the interference is weak, i.e., let
gd=1 and &i=]0. Also, we let 0d=45° as usual. The resultant eigen-

values (x],xz and x3) are shown in Fiqure 19,

Comparing Figure 19 with Figure 4 (calculated for isotropic
elements), we see that the first difference is in the largest eigen-

value, A The ranage of variation of i, in Figure 19 is much larger

1
than that in Fiqure 4. With cosine elements, we have

A = 31, A = A (01=90°, or 270°) =

max ]min 1

Notice that M occurs when the interference is arriving in the
min

pattern nulls at ni=90” or 270°. In the vicinity of these two inter-

ference angles, we have

7.

T* T*
i 1 i

" £qUqYy

so the array behaves as if only one (the desired) signal is present.
[&
Hence M is just l+2:d[f(nd)|2:l + g = ; which checks with the fiqure.
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From Equation (98), we know that for isotropic elements, X

min
occurs when the two signal vectors are orthogonal, i.e., when

*

T
UiUd 0.

It is evident that this condition is satisfied for ”1:900 or 01=270“
with cosine elements (although we might not describe this relation
as orthogonality).

Considering next the second eigenvalue, we see that \2 has
additional minima around 01=90° and 270°. These minima occur when-
ever the array behaves as if only one signal is present. We have from
Figure 19 that

,
n
e

max min

Theoretically, from Equation (60) and (62) we know that when

uTU® = 0 A, will reach its maximum 1+¢ UNUT, which is 2
iYd 2 ‘dVaYa- 5

for Ud=45°.

Note that the smallest eigenvalue, Ags remains at unity. This
eigenvalue is not affected by the change in element patterns.

The previous example shows A], A2 and A3 for cosine elements
with weak interference (oi=10). We now show how A] and AZ behave for
cosine elements with strong interference. Suppose we now set &1=1000
with other parameters the same as in Figure 19. We first show A1 in
Figure 20. From the figure, we see that with cosine elements \] has
a rarge of variation far larger than that for isotropic elements.
Because of the pattern nulls around r>1.=90n and 2707, A] varies between

a high value of approximately 3x]03 to a low of 2.5. Thus, \] is very
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sensitive to the element patterns and, of course, can no longer be
viewed as a constant.

Figure 21 shows AZ for both isotropic and cosine pattern ele-
ments. In general, \2 has the same shape for both cases except
around the pattern nulls at f)].=900 and 270°. MWithin the region
around these pattern nulls (indicated by A and A'), the interference
is nulled by the element patterns. 1I.e., the array behaves as if
only one (the desired) signal is present.

Notice that around these null regions (A and A'), A2—1 is not
* *
related to the output SINR because the condition LiUIUi o &dUSUd is
not met.

Next, consider what happens if the element patterns are rotated
so the elements have beam maxima and nulls in different directions.
Rotating the elements eliminates the symmetry null at 0i=180°-~d. i
For example, in the element patterns f[(u)=cos(0+éx), let us set

A]=—60“, w2=0 and m3=60 .
A] for this situation is shown in Figure 22. Notice that the range
of variation is smaller than that for the unrotated pattern case.
We have from the figure

A] = 1502.5 and A] = 1501.
max min

A]min does not drop to a low value because when the interference is

nulled by one element, it can still be picked up by the other two
elements since the elements have different null directions. “ is i

essentially constant in this case.

In Figure 23, we show AZ for the rotated elements. Notice that
the only angle where \? reaches its minimum is Hi=Hd=45”. For alt i
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other values of Oi we have A2>1. From Equation (152), we know that
the array output SINR has only one substantial dip at 0,504 The
corresponding dip due to symmetry at ”i=]800'”d has been eliminated
by the rotation of the elements.

Because *3 is independent of the element patterns, we know that
the smallest eiygyenvalue remains at unity.
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L. The Effect of Signal Bandwidth

The previous sections have discussed the eigenvalues for CW
signals. We shall now study the effect of signal bandwidth on the

eigenvalues.

In Equation (43), the L’mth element of the covariance matrix
was given for the non-zero bandwidth case. We first normalize this
equation with respect to the noise power 52, i.e.,

O (e s [l . E J(qu\,-‘:’dm)
%9 Tnt g’ g S1NC 13 Pattg, Tlq ') €

. . L m
)fm(ui)ni sinc [§ B.(¢ix—$hnﬂ e

Tim

¢

+ fz(oi

+ 3 m
From these matrix elements, we have obtained the normalized eigen-
values of *+' by a subroutine in the IBM Scientific Subroutine Package
[9]. The subroutine is based on the Jacobi method (modified by Von
Neumann[10,17])  We shall first show the effect of desired siqnal
bandwidth on the eigenvalues and then the effect of interference
bandwidth. We consider again an array with three isotropic elements
a half wavelength apart. The signal-to-noise ratios are assumed to
be &d=1 and ai=1000 with Ud=45 .

We first show how AZ varies for different desired signal band-
widths, Bd, in Figure 24. Bd has been increased from zero to one in
steps of 0.2 and Bi is kept at zero. In the sector 25“*uiu155”, we
see that A? increases with increased Bd. so the time constant of the
array associated with A? becomes smaller. On the other hand, for
interference coming from outside that sector, A, decreases with in-

2

creased Bd and the associated time constant is larger. The combined
effect of the above two results is that the range of variation of ‘o

is reduced with increased Bd' For example, with Bd'O.d, we have
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Ay =3.88and 1, T 1.12
max min

so the range of Yy has been reduced to 2.76 (an 87 change from 3) with

407 change in the desired signal bandwidth. Notice that A2min 15 nO
Tonger unity for non-zero By.

We now consider Yy With non-zero bandwidth, A3 is no longer
constant. In Figure 25, we show how A3 increases with increased Bd'
With Bd=0.4, we find '

A 21.15 A 2 1.05
3max 3min

The time constant associated with A3 decreases with increased Bd‘

Because the sum of the three eigenvalues is a constant, we can
obtain the behavior of A] with Bd from Figures 24 and 25. However,
since the changes in both AZ and A3 {hence in xI) are very small (-5
for Bd=]) compared to the magnitude of A which is around 3000, it
turns out that A, is still essentially constant for Bdi]'

Now let us discuss the effect of interference bandwidth, Bi'
In Figure 26, we have calculated A2 for various Bi' It is seen
that Ao is more sensitive to Bi than to Bd because a small {5%)
increase in Bi causes A2 to increase significantly while a large
(40%) increase in B, makes 4, change only slightly (8%). This
difference is due to the fact that the interference is very much
stronger than the desired signal.

From the fiqure. we see that \2 increases with Bi' Also, notice
that when the interference is coming from broadside (vifﬂ“ or 1807),
XZ has a low value. This phenomenon occurs because for these arrival
angles there is no interelement delay for the interference <o the

interference has the <ame effect on the covariance matrix as a CW
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signal. From the previous result in Equation (90) we know that Y
* |

is bounded by l+chLUd for CW signals, so AZ is approximately 4 at
0i=00 and 180°, as shown

S S

The effect of Bi on the small eigenvalue, A3. is shown in Fiqure
27. As Bi increases, A3 also increases and exhibits more complicated

behavior.
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Since AZ and \3 increase with Bi and the sum of the three eigen-
values is a constant, we conclude that M must decrease with increased
Bi' However, the percentage change in A] caused by Bi is still small
i because A] is large. For example, with Bi:O'Z’ we see from Figures 24

and 25 at Oi:QOO

A2=66 N A, = 1.2,

so from x1+x2+x3 = 3006 we know

Ay = 2938.8.

1

Thus A] decreases from its value of 3002.6 for CW to 2933.8 with 20
percent interference bandwidth. The percentage change is less than

2 percent, i.e.,

3002.6-2938.6
3002.6

< 2%
Therefore, the effect of Bi on X] is rather small.

In conclusion, increased interference bandwidth causes AZ and

A3 to increase and M to decrease. The time constants associated with
Ay and A3 will decrease with Bi and that associated with e will in-
crease. Desired signal bandwidth causes the range of variation of xz
to decrease and that of », to increase. In addition, M is littie

3
affected by both B, and B, provided that B,<1 and Bigp.z.

>
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CHAPTER 1V
CONCLUSIONS

In this report, we have first derived the eigenvalues of the
covariance matrix for an N element adaptive array with a CW desired
signal and a CW interference. There are N-2 constant eigenvalues in
this case. The remaining two eigenvalues depend on the signal envir-
onment and have been shown to vary within certain bounds. Hence the
eigenvalue spread, defined as the ratio between the two eigenvalues,
is also bounded, as in Equation (110).

Furthermore, we have discussed the effects of various signal
and array parameters on the eigenvalues. It has been shown that when
the interference is strong, the largest eigenvalue is essentially
constant for isotropic elements. This large eigenvalue exhibits little
percentage change as the signal angles are varied. The large eigen-
value remains constant regardless of element spacing or signal band-
width. It does depend on the input INR, the number of elements and
the element patterns, however.

We have also shown that the second eigenvalue, Ao approaches
a limit when £5 is increased. For large £; and CW signals, the array
output SINR is one less than this 1imit, as shown in Equation (152).
The higher £ the better the approximation. As the input SNR, fd is
increased, the ranqge of variation of Az becomes larger. A2 is very
sensitive to element spacings and element patterns. By manipulating
element spacings and patterns, we can modify the behavior of AZ and

also the array output SINR. In addition, ), depends very much on Bi;

2
a small increase in Bi causes A2 to increase significantly, as demon-

strated in Fiqure 26. 1In the case of greatest interest where L is
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much lower than £5 the effect of desired signal bandwidth on xz is
much less.

The remaining N-2 eigenvalues will differ from unity only when
non-zero bandwidth signals are present. Also, the effect of Bi on g

is larger than that of Bd when the interference is much stronger than
the desired signal.
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