
7 AD-A 06 544 0OH1 STATE UNIV COLUMBUS ELECTROSCIENCE 
LAB FI 20/14

A STUDY OF EI6ENVALUE BEHAVIOR IN ADAPTIVE ARRAYS.IW N
AUG A1 K SUEN N00019-81-C-00937

UNCLASSIFIED ESL-713603-2



I

A STUDY OF EIGENVALUE BEHAVIOR
IN ADAPTIVE ARRAYS

I The Ohio SaeUiest h-ing LL!V L 7
I

I The Ohio State University

I ElectroScience Laboratory
Deportment of Electrical Engineering

Columbus, Ohio 43212- 'DiELEC -- -

Technical Report 713603-2 0 4 1981
August 1981

1Contract No. N00019-81-C-0093*

'.9

04

Naval Air Systems Command1Washington, D.C. 20361

IFB,



FI

NOTICES

When Government drawings, specifications, or other data are
used for any purpose other than in connection with a definitely
related Government procurement operation, the United States
Government thereby incurs no responsibility nor any obligation
whatsoever, and the fact that the Government may have formulated,
furnished, or in any way supplied the said drawings, specifications,
or other data, is not to be regarded by implication or otherwise as
in any manner licensing the holder or any other person or corporation,
or conveying any rights or permission to manufacture, use, or sell
any patented invention that may in any way be related thereto. 1

I

I I
I



UNCLASSI FIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

I REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIfENTS CATALOG NUMBER

4. TITLE (and Subtitle) S. 'TYPE Of RTPORTB VWOD COVERED

k STUDY OF EIGENVALUEBEHAVIOR IN Technical Report
ADAPTIVE ARRAYS- S. /Pf-fERP UG ORHr.REPORT NUMBER

j .!ESL-713603-2
7. AUTHOR() B." CONTRACT OR GRANT NUMBER(s)

Kah-jing/Suen NOO0l 9-81 -C-0093
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

AREA BI WORK UNIT NUMBERS

The Ohio State University, ElectroScience

Laboratory, Department of Electrical Engineering,
Columbus, Ohio 43212
11. CONTROLLING OFFICE NAME AND ADDRESS / REPO"OAT--

/ August 1981
Naval Air Systems Command 13. NUMBER OF PAGES

Washington, D.C. 20361 79 .z -./ --
14. MONITORING AGENCY NAME & ADDRESS(It different from Controllind Office) 15. SECURITY CLASS. (of this report)

ISs. DECL ASSI FICATION/ OWNGRAOING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thin Report)

":PROVED FOR PUSLIC RELEASQ

17. DISTRIBUTION STATEMENT (of (he abstract entered In Block 20. II dliferent from Report)

IS. SUPPLEMENTARY NOTES

The work reported in this report was also used as a thesis submitted to the
Department of Electrical Engineering, The Ohio State University as partial
fulfillment for the degree Master of Science.

19. KEY WORDS (Continue on reverase aide It necessary and Identify by block number)

Adaptive Arrays
Eigenvalues

20. ApSTACT (ContInue on reverse aide If necessary and Identify by block number)

\This report discusses the eiaenvalues of the covariance matrix for an
N-element LMS adaptive array. The effects of the sional and array parameters
on these einenvalues are discussed. A simple relation between the array output
SINR and one of the eiqenvalues is obtained for the case of stronq interference
and CV1 signals.

DD IORM 1473 EOITION OF I NOV65 IS OBSOLETE
N UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)



I

I

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS ........................................... ii

Chapter

I INTRODUCTION .................................... 1

II FORMULATION OF THE PROBLEM ...................... 3

A. Definition and Notation 3
B. Eigenvalues for Zero Bandwidth Signals 12
C. A Relation Between SINR and the

Eigenvalues for CW Signals 26

III RESULTS AND DISCUSSION .......................... 36

A. The Effect of Signal Strength 39
B. The Effect of the Number of Elements 49
C. The Effect of Element Spacing 51
D. The Effect of Element Patterns 57
E. The Effect of Signal Bandwidth 68

IV CONCLUSIONS ..................................... 75

REFERENCES ................................................ 77

""- - -1

iiiDict



I'

I
J CHAPTER I

INTRODUCTION

Adaptive arrays have been under study in recent years as a

means of protecting radar and communication systems from interference.

These arrays are based on the original work of Applebaum and Widrow et

al. Applebaum[l] presented an array control loop that maximizes a

generalized signal-to-noise ratio (SNR). Widrow and his co-workers[2]

presented the least mean square (LMS) error algorithm, based upon the

method of steepest descent. Both the Applebaum array and the LMS array

have found extensive applications in radar and communication systems.

One of the problems in applying adaptive arrays to communication

systems is that the array speed of response varies with signal

strengths. The array speed of response is determined by the eigen-

values of the so-called covariance matrix, which is the matrix of the

cross products between the array element signals. These eigenvalues

depend on signal powers. A strong signal produces a large eigenvalue

and a weak signal produces a small eigenvalue. If, for example, the

array must null interference 40 dB above thermal noise, the largest

eigenvalue will be approximately lO4 times larger than the smallest

one. It is important to keep the range of variation of the eigenvalues

as small as possible.

The eigenvalues not only depend on signal strengths, they also

depend on the signal arrival angles, the signal bandwidths, and the

array parameters (element spacings and element patterns).

The purpose of this report is to investigate and characterize

the actual behavior of the eirenvalues in some simple adaptive arrays.
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We examine here arrays with up to four elements and determine the

exact eigenvalue behavior as a function of signal strengths, band-

widths, angles of arrival and array parameters.

Although the problem of eigenvalue spread in adaptive arrays is

well known, very little data exists in the literature showing actual

eigenvalue behavior. Some information on eigenvalues has been given

by Gabriel[3], who discusses this subject in connection with retro-

directive eigenvector beams. His paper also gives some qualitative

descriptions of the effects of eigenvalues on array performance.

Mayhan[4] has also presented some data on eigenvalues for multiple
beam antennas. He has considered the eigenvalues for non-zero band-

width signals by regarding the bandwidth as a perturbation of the

original CW covariance matrix[5]. However, these papers do not give a

complete overview of eigenvalue behavior as a function of the signal

and array parameters. Our purpose here is to provide such data for

some simple arrays.

We begin in Chapter I by establishing notation and formulating

the problem. We then derive the eigenvalues for the case of two in-

coming signals, one desired and one interference. To simplify the

problem, we first work out the solution for zero-bandwidth (CW) signals.

In Chapter II-C, we develop an interesting relation between the array

output signal-to-interference-plus-noise ratio (SINR) and the eigen-

values. We show that when the interference is very strong, the array

output SINR is equal to one of the eigenvalues less one. Chapter III

presents numerical results illustrating the effects of signal para-

meters (strengths, arrival angles and bandwidths) and array parameters

(number of elements, 2lement spacings and patterns) on eigenvalue be-

havior. Chapter IV contains the conclusions.

2



I
I

CHAPTER II

FORMULATION OF THE PROBLEM

A. Definition and Notation

Consider an N-element adaptive array as shown in Figure I. The

N elements are assumed to lie along a straight line with spacing D P

between the zth element and the first element. The analytic signal

x (t) from the zth element is multiplied by a complex weight w, (t)

generated from the optimizing network. The resultant products are

summed to produce the array output signal ^(t). For an LMS array,

the weight vector

W = [wlw 2 ....wN
]T (1)

satisfies the first order differential equation

dW + k4 W = kS (2)

where P is the covariance matrix of the array,

T
s E{X*X (3)

S is the reference correlation vector,

S = E{X*%(t)) (4)

and k the loop gain. In these equations, X is the signal vector

X =[l(t), 2(t),...,N(t)]T  5
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Figure 1. An N-element adaptive array with two incoming signals.
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'(t) is the (complex) reference signal in the array, T denotes trans-

pose, * complex conjugate and E{-1 expectation.

As will be seen below, D is not singular as long as the element

signals contain independent thermal noise. Therefore, the inverse of

,P is always well defined. Let this inverse be denoted by 1- , and

then from Equation (2) the steady-state weight vector is

W.1st = -s (6)

where the subscript "st" denotes steady-state. The complete time

response of the weight vector is then

M -kzt -1
W(t) C e + (7)

where the C 's are constant vectors depending on the initial condi-

tions of the weights at t=O. The x's are the distinct eigenvalues

of D and M is the number of distinct eigenvalues. It is these eigen-

values that control the transient response of the array weights and

that concern us in this report.

We shall determine the eigenvalues of P under the condition that

there are two signals coming into the array. One is the desired sig-

nal arriving from angle ed and the other interference from 0. Both

angles are measured with respect to broadside, as shown in Figure 1.

We also assume each element signal contains a thermal noise component.

Thus, the analytic signal behind the kth element is written

x9,(t) = av't) + ? (t) + n"(t (8)

where k(t) and 1',(t) are the received desired signal and interfer-
thence on the v element, respectively, and "(t) is the element noise.

5



The above equation suggests that we can divide the signal vector

X into the sum of three component vectors, i.e.,

X = Xd + Xi + Xn  (9)

with

Xd = d(t),d2(t), • • ,N(t)] (O

the desired signal vector,

= [ l(t),' 2 (t),' " ' N(t)] (I1)

the interference vector, and

X n  = In l (t ) ,n 2 (t ) ,- '- ,nN M (12)

the noise vector.

We shall assume here that the desired signal, the interference

and the noises are zero mean Gaussian random processes uncorrelated

with each other. Thus, the signal vectors are statistically independ-

ent of each other, i.e.,

. TI E{X*XT} E{X*XT }  X T  T
E{XdXi d = i E{iXn} = EdXnXd}

= E{XnXil = 0

Then from Equations (3) and (9), we have

= E{(Xd Xi+X)*(Xd+Xi+X) T  (13)

- T + ,XT ,*T 1)
EfX X + E(XX Ii + E'Xn (14)

Sd+ i+ n (15)
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Consider first the desired signal. It is clear from Equation

(15) that the desired signal part of the covariance matrix, d' is

= EfX*XTI= [ (16)

th th
where 'd denotes the matrix element of 4d at the row and the mt

column. 'rom Equations (10) and (16), we know that

E*t)(t)A t)} (17)
d V'1111 11

Because of the interelement propagation delays, we can write

a(t) = f (od )(t-Td ) (18)

where Td denotes the interelement time delay between element P and

element 1, (t) is the desired signal waveform and fz(o) is the volt-

age response of the th element to a unit amplitude test signal arriv-

ing from angle o. In Equation (18) we have assumed that the element

patterns are independent of the signal frequencies over the bandwidth

of the desired signal a(t). Thus from Equations (17) and (18), we have

Sdm f*((ld)fm(0d)Efa*(t-Td )a(t-Tdm)  (19)

The time delays in the above equations are determined by the element

spacings and the signal arrival angles, i.e.,

DV
Td _ sinod (20)

with c the velocity of propagation.

In order to evaluate the expectation in Equation (19), we use

the following definition. Let the desired signal be a stationary

random process with autocorrelation function

7



Ra(T) : E{*(t) (t+)} (21)

= E{ *(t-i)d(t)} .(22)

Then we can rewrite Equation (19) as

d = f*((d)fm(d)R(Td-Td ) (23)
9.m "m

Furthermore, we assume that the desired signal has a flat, band-limited

power spectral density S-(,,) centered at w as shown in Figure 2.

Within the band Awd the desired signal has power density 2 aPd/(Awd),

with Pd the desired signal power. Then the autocorrelation function

is given by

R-(T) = S- (wj)e dw (24)

Aod r
sin 2y 0Awd

= Pd 2we e (25)

2

Combining Equations (23) and (25), we have

Jw (T -Td0 d d~ f*[I e o °(d9  m (6

d = (d)fm(d)Pd sinc A.d(Td-Tdm  e (26)

with sinc x sinx
x

We can simplify the above result by noting that w oTd is just

the phase shift between element 1 and element z at the center frequency

o 0* Let us define this phase shift to be

+ = ,,T. (27)d V o d,

Upon substitution of Equation (20) into Equation (27), we get

.. . . .. .. .. , , - ,,, , ,, ,,. -. l ' -- : = ' ;l,' II II IIII8
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I

Awd
2 V Pd

AWd

Figure 2. Power spectral density of the
desired signal, S (w).

21TD
2di- V sinod 

(28)

with x the wavelength at the center frequency wo" In addition,

AdTd 1 (d (29)

2 2, o) ( d2 ) Bdd 2

where

Bd = Ad (30)
0

is the fractional bandwidth of the desired signal.

Substituting Equation (29) into Equation (26), we finally have

j(d d m
f*(d)fm(Od)p sinc Bd(4d -,dm e (31)

Similar results may be derived for the interference. We have

i (t) - fV( )i(t-T i  )(32)

where 1(t) is the interference waveform and

9



D .T. c sifoi (33)

From the previous discussion, we know that the 2,mth element of the

interference part of the covariance matrix, D,, is given by

i f*(O)f (i)Ei*(t-T i  lT )M (34)
91 V, 1 i 1 Q1 1

We define the autocorrelation function of the interference as

= E{i (t)i(t+) (35)

= E{i(t-.)i(t)l (36)

= Pi sinc A jo e 0 (37)

where we have assumed the interference also has a flat, band-limited

power spectral density of bandwidth Awi , as shown in Figure 3. Hence,

Equation (34) becomes

. f(i)f(iP sinc 2 Bi(4 i - 1 e 1 (38)
1 . 1 m 1 i [ 1m 1, im

where

An.
Bi  - (39)

0

is the fractional bandwidth of the interference and

27D
, = . .... s ino . (4 0 )

0 
1

is the interelement phase shift between the Z th element and the first

element for the interference.

Finally, we assume the noises are zero mean Gaussian random
2

processes uncorrelated with each other, each with power o . Thus,

10
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S '1w),

AWj

Figure 3. Power spectral density of the
interference, S'v(w).

E{n (t)' m(t)l 2 6 (41)

with 6m the Kronecker delta function. Therefore, the noise part of

the covariance matrix is

= 021 (42)
n

with I denoting the identity matrix.

From Equations (15), (31), (38) and (42) we conclude that the

9mt h element of is

* ((Pd  - d)

z mJ

+ f(0i)f m(oi)Pi sinc Bi(i Q-im e Q m

+ (2 Vm (43)

In a later section of this report, we shall investigate the

eigenvalues of + for arbitrary bandwidths. First, however, we shall

11



consider the special case of zero bandwidth (CW) signals because in

this case we can obtain the eigenvalues in simple analytical form.

B. _Eienvalues for Zero Bandwidth Signals

For Bd=Bi=O, the sinc function in Equation (43) is unity, so

Equation (43) simplifies to

(Vm = Pdf*(O d)fmod~e " (I' V + Pif *(oi)f (o i)e
cw

+ 02 .m (44)

This result is equivalent to the form

4cw= PdUdT + 0 2 1  (45)

where

If-J 'ld _j -JId2 _J dN

Ud = l(od)e I f2(0d)e 2 . fN(Od)e d T (46)

and

Ui = I(oi eil, f2(2i)e , fN(oi)e i T (47)

are vectors that contain the element patterns and interelement phases.

It is helpful to work with dimensionless quantities, and speci-

fically to normalize the covariance matrix with respect to the noise

power 02. We define

+ cw U.*,,T .ij UT + 1 (48)
cw 2 d d d i "

where

12



P d

-d - 2
a

= the signal-to-noise ratio (SNR) of the desired signal

and

P.
F. = 1

a

= the interference-to-noise ratio (INR) of the interference.I
We shall determine the eigenvalues of 4' rather than P . The eigen-cw 2 cw-

values of Pcw are equal to those of w times c 2

Because of the form of the covariance matrix in Equation (48),

it is clear that two of the eigenvectors of c will lie in the planecw
formed by Ud and Ui. Hence we may express two eigenvectors (e) in

the form

e = ad + (49)

where a and r are constants to be determined by the requirement

Swe = xe (50)

and X is the corresponding eigenvalue. We may find a and r by sub-
stituting Equation (49) into Equation (50). Straightforward calcu-

lations show that

cw U+ U ) d(Ud+iUi ) 4 aUdJdU + d dd ddUia

+ Vu uTui + ( iU  * (51)

Hence Equation (49) will be a legitimate eigenvector if we choose ,

and ( so that

13



Tu* + ~ u uTu* + uu
SdUdd dl+ U U U TU + UT(52)ddd ddi i i i i ri id

Therefore, from Equations (50), (51) and (52), we have

S 1 + F, UU ~~ UdUi (53)

or equivalently

T i d u (54)= ] + iii 1 i i d

By defining

_ Y (55)

and then transforminq Equation (42) into a quadratic equation, we get

2 Td U iU )Y- UT Ud = 0 (56)

This quadratic equation is readily solved to give two solutions,

Y 11 (a+b) (57)

2 2 (a-b) (58)

t~d d i

where

T * T *(9
a = iUiUi - dUdUd (59)

and

2 = UUd2)1 / 2  
(60)

14



I According to Equation (53), we then have two eigenvalues,

there are N eigenvalues. In addition to the above two, there are N-2

additional eigenvalues. To find these, we note that if e1 is an

arbitrary vector orthogonal to both Uand Ui , then

c'wel= el+FdUd(Ud el) + FiiU(U el) = e1  (63)

since UTel=UTel=0 from the orthogonality. This result implies that e

is also an eigenvector of 4' with unity eigenvalue. In general, since
cw

D' is of order N, we can find N-2 such vectors orthogonal to both U*
cw d
and U.. Hence the remaining N-2 eigenvalues are all unity.

We now have found all N eigenvalues of &' . In the followingCw

paragraphs, we shall make some observations about the results obtained.

First, all the eigenvalues of (' are real because 4,' is acw cw
Hermitian matrix. Moreover,

X, > 1 (64)

for z=1,2,---,N since both TdUdUd and iu *uT in Equation (48) are non-
negative definite matrices. To see this, consider for example tdUdUd.

It is easily seen that

Kd(UdUd)Ud ()dUdUd)Ud

15



T* *
where F dUdUd is a non-neqative quantity. Thus Ud is an eigenvector

of CdUUU d with eiqenvalue :dU d >.O, For any other vector U perpen-

dicular to LJ*, we have

*T d T* * *I66
(UdUd)U* = (UdU )Ud 0 Ud 66

so U* is also an eigenvector of u*UT with zero eigenvalue. In N space,

there will have N-i vectors U* perpendicular to Ud and to each other,

and hence N-i zero eigenvalues. Therefore rdUdUd is of rank one and

the only non-zero eigenvalue is rdUdUd . Thus rdUdUd is non-negative

definito. Likewise, F.iUT is also a non-negative definite matrix,

so the sum

A U * + F.ijUUT (67)~d dd 111

is non-negative definite. Since P)' in Equation (48) is the sum ofcw

the identity matrix and the non-negative definite matrix A in Equation

(67), the eigenvalues of D)' are just the eigenvalues of A plus unity.cw

Thus

X(, w) = A(I+A) = l+X(A)>i (68)

where X(-) denotes 'the eigenvalues of'.

Note that in general the number of eigenvalues of q'' different
cw

from unity is equal to the number of signals incident on the array.

When the array receives no signals other than the thermal noise, the

normalized covariance matrix of Eqution (48) is simply

cw

In this case, all the eigenvalues are unity. If one CW signal, char-

acterized by stren(Ith F. and arrival angle n, is incident on the array,

then the covariance matrix becomes

16



'U + (69)

In this case, one of the eigenvalues of *cw is l+FU TU and the remain-

ing N-l are all unity. From the earlier discussion, it is clear that

with two input signals there are two eigenvalues different from unity.

In general, one may show that with K CW input signals (K<N) there are

K non-unity eigenvalues and the remaining N-K eigenvalues are unity.*

Note that when only one signal is incident on the array, the one

eigenvalue different from unity has a simple form. Using the defini-

tion of a typical signal vector as Equation (46), we see that

T*N 12
1 u U = I + C X Iff( ) (70)

91 1

Hence this eigenvalue is independent of the element spacings in the

array but is a function of signal arrival angle o. Moreover, if the

element patterns are chosen so that

N 1 f(0)1 
2

does not vary with e (as, for example, with isotropic elements) then

this eigenvalue is constant for all e.

Next, we note that x1 and A2 in Equations (61) and (62) depend

strongly on the signal powers. For example, suppose the interference

power is much stronger than the desired signal power. I.e., we have

uTu,

i i i F> dUdUd (71)

and

*This statement assumes that all K incoming signals produce linearly
independent signal vectors.

17



Fi >> F ' (72)

then in Equations (59) and (60) we may approximate a and b by

a F UTU (73)

and

b a (74)

In Equation (74) we have neglected the term 4cidUTUl 2 of Equation
(60) because it is small compared 

to a, since

..... d d 4 d 2

a 2 i U U

Therefore the two eigenvalues in Equations (61) and (62) can be written
approximately as follows:

r. U + 1 (75)

T* (6
2 dUdUd + l (76)

The above two formulas for the eigenvalues depend solely on signal

arrival angles; the element spacings have no effect. It is clear that

the largest eigenvalue xl is essentially controlled by the large in-
terference and the smaller eigenvalue X 2 is controlled by the weaker

desired signal. All other eigenvalues are unity with no dependence

on the signal arrival angles.

Better approximations for the eigenvalues A and x2 may be

obtained by usinq the binomial expansion to approximate b in Equation
(60). That is, we use

18



I

1/2 1
(i+x) +l

to get

b (I - j'i. d-  uTu*2) (77)
a -= 2 i d

Then putting Equation (77) into Equations (61) and (62), we get

Al = 1 + i i +  -- U u (78)

= 1 + T* + Yid UTU*12 (78)

a i d

The above approximations are more accurate than Equations (75) and

(76).

We now consider the eigenvalues under two special conditions

for IUT u . The first case is when the two signal vectors are

parallel, i.e., when

Ui = h Ud (80)

with h a complex constant. Clearly, under Equation (80) we have from

Equations (59) and (60) that

2 IUT*U(1all [Ihl2 i- d]U ud (81)

and

=bl [a,, 2+41hi 2r .T.*)?ld 2 . (82)

Hence we have

19
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_+ d + T U + hi 2 UT U l+r u Tu* + UTU (83)

l+ d~dd +l d Ui d d d d i i

and

2 =1 (84)

In the above equations, the subscript 'I'' indicates that afl, b1, l

and x211 are calculated under condition Equation (80). From our

earlier result in Equation (64) it is clear that x211 is the smallest

possible value of A2.

On the other hand, if we have orthogonal signal vectors, i.e.,

T
U. : 0 (85)

then from Equations (60), (61) and (62) we get

b, = a. (86)

I 1 + iuT.U. (87)
i i1

A T* (88)
21 + LdUd d

where the subscript ,I' indicates that these quantities are obtained

under condition Equation (85).

These special case eigenvalues specify the bounds within which

the eigenvalues will vary with signal angles. To show this, we make

the following observations. From Equation (60), it is clear that*

b-a (89)

T* T*
*Here, we assume that a O, i.e., rU iU U U The case for a-:O

can be similarly deduced. 1 i i d d d"

2O-



Therefore, from Equation (62) we see that

2 I + rdUTU (90)

Combining with Equations (68), (84) and (88), we see clearly that

2  _-N2 2 (91)

This inequality gives the bounds within which X2 varies as a function

of 0d and oi . To get the corresponding bounds on Al we proceed as

follows. Rewrite Equation (61)

T * I
I = I+F.UjU.i +  (b-a) (92)

Thus it is clear that

FT*(

'1 U (93)

which gives a lower bound for I Making use of the Schwartz inequal-

ity

T* T*~ d  (94)T 1 (UTU*)(UTU*UUi d - 1 dd (4

we have from Equations (60) and (94) that

2 2 T UT*2
b= a +4 fi'd iUd

2 U T * 2)(U TU

U TF U U T '.U ~ 2  (95)

i. e.,

T. T* (
b < b iUiUi+dUdUd (95)

21
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Equation (61) can aqain be rewritten as

= T*. T* +1 T* T*
1I l+iU i Ui+TdUdd + 1 (b-,.U.U.- ' Ud) (96)

Therefore, from Equations (95) and (96), it is clear that

IjUTU* + 1U T U* (9).I1"U.U U U
1- iii dd d

Combining Equations (93), (97) and the previous results of and
II

'1 we have
I

\I I " \I(98)

Notice that the eioenvalues do not necessaril v attain these

hounds as the siomal aniles vary. An ei(jenvalue, say \2' will often

have a maximum \ smaller than 2 These bounds are determined
2mx 1 T *

simply from the siqnal strengths and terms such as UT U which ;nvolve

the element patterns f,(,) 2 but not the element spacings. Typically

it is found that when the element spacings are larger than half-wave-

length the extrema of the eigenvalues coincide with the bounds for

isotropic element arrays.

Next, we consider the case of isotropic elements. With f (n)=l;

,'=l,2,-..,N we have then

UdUd T U N = the number of elements in the array.

Thus the eigenvalues in Equations (61) and (62) have a simpler form

1 N, 1- (+ ) (99)
1 = l4N'd 2

2 1N: d (a-1) (1)0)2 = lN d 2

where
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I
J a = N(&i d

i 'd

b =i(a +4i UdI2)l/2  (101)

The bounds in Equations (91) and (98) also reduce to

1 + N.i  < 1 .- 1 + N( i+, , (102)

and

1 < A2< 1 + Nd (103)

Now the bounds depend on the signal strengths ci and r d only. It is

clear from Equation (102) that for very strong interference, such that

i >>rd and ri.-l hold, the variation in X I is very small compared to

its magnitude.

Since for isotropic elements the sum of X1 and x2 equals a
constant, 2+W +d we know that when attains its minimum A1 must

be at its maximum, and vice versa. We shall show the explicit condi-

tions under which the eigenvalues attain their extrema with respect

to signal arrival angles. For example, let us differentiate Equation

(100) with respect to oi (with od fixed). The result is

a2 1 ib Y-rd U T U*12
;)0. 2 o. b ,'o.

2ri rd ]
- '- U r*1 [_ JUTU~] (104)b iT *  3(-

Thus the extrema of x2 (with respect to oi) occur when21

U Tid =0 (105)

or when

I
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3. ITd = 0 (106)
1

We see, then, that the orthogonal condition in Equation (85) is also

the condition for x2 to reach its extrema with respect to 0. On the

other hand, the parallel signal vector condition in Equation (80)

satisfies Equation (106) because

S T* h 1 UTU* 0
i ddd

Therefore Equation (80) also gives the condition for A2 to be extrema.

These results indicate that the extrema of the eigenvalues coincide

with the bounds given in Equations (91) and (98) for isotropic ele-

ments.

We now return to arbitrary element patterns and consider how

the condition in Equation (80) can be met. From the definition of Ud

and U. in Equations (46) and (47), it may be seen that the condition1

in Equation (80) requires suitable (od'0i) pairs that satisfy N simul-

taneous equations, i.e.,

h f z( d )e = V (o.)e 1 (107)

for Y=I,2,...,N. One solution to this is of course od=ni with h=l.

Whether other od and o i exist for which Equation (107) is satisfied

depends on the element spacings and patterns. Actually, Equation

(107) is just the condition for a grating null[6]. If the array does

not have grating nulls, Equation (107) will not be satisfied except

for o i=od , so that A's will not attain the bounds in Equations (91)

and (98).

For isotropic elements, Equation (107) reduces to

e d= e (108)
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with h=l. This equation is always satisfied for o i=0d and the symmetry
angle oi=w-O d since the array in Figure 1 has all elements along a

straight line.

Finally, we define the eigenvalue spread S to be the ratio

between x1 and x2. Since both X1 and x2 are functions of od and o

we have

1I (od °i )
S(Od, i) = A2(.dOi) (109)

This spread is then bounded by Smin and Smax' i.e.,

Smin <S S (110)

where, from Equations (84), (85) and (89)

l+ UiUi (with UiU d  0) (111)min 2 , l+r dUTUd

T* + T* (i h U. (112)

max A l+dUdU d i UiUi (with Ui=hUd)

If, for example we have a three element array with isotropic element

patterns and rd=l, i=1000, we then have

S 3001 - 750

mi 4-
S = 3004max

The eigenvalue spread is just the time constant spread in the

array transient response, as can be seen from Equation (7). If, for

example, an array with three isotropic elements can accommnodate a

time constant spread of 3000 then the array would be useful in a signal

environment with interference power up to r i=1000.
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In this section, we have discussed the eigenvalues of 4' for
cwthe case of CW signals. In the next section, we point out an interest-

ing relation between the second eigenvalue, A2, and the array output

signal-to-interference-plus-noise (SINR) for CW signals. Then in

Chapter I1, Section E, we consider the case of non-zero bandwidth

signals.

C. A Relation Between SINR and the
Figenvalues for CW Signals

Here we depart from the main subject of this report, the behavior

of the eigenvalues, to discuss an interesting relation between the

eigenvalues and the array output SINR.

With the steady state array weight vector in Equation (6) the

desired signal component of the array output is

S d(t) = wKtXd (113)

The output desired signal power is then ("o" denotes "output")

1 T 2

o I E{IWstXdl . (114)Pod Y td

Similarly, the output interference and noise powers are

Po 12 EfJW T Xi 2 1(115)

and

Pon E1 IW TXn 21 1w ti2  (116)

We define the array output signal-to-interference-plus-noise ratio

(SINR) to be

SINR P od (117)
Poi +on
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It has been shown by Ishide and Compton[6] that when there is a desired

signal and one interference signal and both are CW, the output SINR

from the array may be written

T T 2 -
SINR dud :+u ui J (118)

The above equation is derived from the matrix inversion lemma[7].

T * T T *
Note that the vector products UdU d , U U and UiU d which control

the behavior of the eigenvalues also appear in the SINR formula. When

the signal vectors are orthogonal, i.e., UTU*=O, the SINR in Equation
i d

(118) attains its maximum value. This maximum is

SINR1 = *UU (119)~d dTd

From Equation (85) we know that UTU*=O is also the condition under
i d

which x2 attains its maximum. On the other hand, when the two signal

vectors are parallel, as in Equation (80), we find

F h2(UT*) 2

SINR ' d * 2 T,,1T* I ilh l (UdUdj
SINR. = d - l+ 1ilhI UdUd J

T*
dUdUd (120)
l+gUTU i

Then for the case of strong interference, as given in Equation (71),

we have SINR,,:O. Therefore, the condition in Equation (80) gives not

only minimum x2 but also a very small SINR. In conclusion, both 2

and the SINR reach their extrema under the same conditions. Hence

thLre appears to be a close relationship between X2 and the SINR for

the strong interference case.
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To find this relationship, we now express the SINR in terms of

the eigenvalues. To do so, we first expand the Hermitian matrix 'cw

in a spectral decomposition[8]. We have

w]_l N I T
= 1 e (121)

where the A 's are the eigenvalues and the e*'s are the corresponding

eigenvectors of ,' . Recall that +'' is given by Equation (48).
cw c

Also its first two eigenvectors have been found to be (see Section B,

Equation (49))

e I = OlU-VU = Ud +iUi (122)

e2 = 2(Ud+y2Ui ) = '2 Ud+'2Ui (123)

and the remaining N-2 eigenvectors are all orthogonal to both U and
U i. Also, the first two eigenvalues are given by Equations (61) and

(62) and the remaining N-2 eigenvalues are unity. As we shall see,

these unity eigenvalues will not appear in the SINR expression because

their associated eigenvectors are orthogonal to both Ud and Ui .

First we calculate the steady-state weight vector. We assume

that the reference signal r(t) is a replica of the desired signal.

Then the reference correlation vector is just the desired signal

vector, i.e.,

S = YUd (124)

with y a proportional constant. From Equation (6), we have

Wst = ,-[+' w - YUd (125)
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Substituting Equation (121) for [cw]-I , we find that the products
T T T * c

between e3 e4, ... e N and Ud are zero and do not contribute to the

I result. Therefore,

W[ - 2 V  e * T* + 1 * TeT 1 (126)
st 1 elTel2d2 d

Since the desired siqnal is CW, we have

J G) 0t+qld)

SXd = /4d o e U d

where (/F4 % )2 is the input desired signal power Pd' o is the signal

frequency and q, is the desired signal phase. We also assume that p

is uniformly distributed between 0 and 2w. Now we can calculate the

steady-state desired signal component of the array output from

Equation (113). We find

sdYt - (W 0e t d) [1_ UTe*J2 + I- TU*12] (17sd(t) - _ d l[

From Equation (114), we have the output desired signal power

'dlyl21 Ii Te*12 1 JUT*12] 2  (128)
Pod 2rY dk X2 d  2Ude2

Similarly we have

J ( ( 0o t + 1i )

Xi = eU1 '

where ( TFa)2 is the input interference power Pi and ]i is the inter-

ference phase, also assumed to be uniformly distributed in [0,2n].

Therefore, we have

Is1(t) = 2e[i Iie + - UTe 21 (129)

and
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-jYI [1 JT *12 1 ~*12
ei2 +e (130)i 22 xi ~i ! x i 2

The output noise power is given by Equation (116), i.e.,
2

Ude I  T 1e2  (131)

Pon 2a2 [2

From Equations (117), (128), (130) and (131) we haveET*2 UTe2
d Udel d

SINR = - .. (132)+Ui + [ Udelr + ude2
+ 2_+

1 
A

which gives the SINR in terms of the eigenvalues X1 . x2 and the pro-

jections of each signal vector on the eigenvectors.

It is easily seen from Equations (122) and (61) that

= T U* +,U T UI11 UdUd Yl d i

-1 I l(x 1-1) (133)

and similarly

T!
Ude 2  = "' 1  (A-) (134)

UTe* I'l 1-1 (135)

Ue2 T e .-1 ( 2- (136)

Putting Equations (133) through (136) into Equation (32), we get
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E2Ia 2 2 2 2 2- ]

d 2
I SINR Id C 1l + 1 2  (13J

iLAI I + iIU2 _ 1
2J

d I ll1 XI 
a2 1 (A 2 _ il

X2 + A2  J

The above formula expresses the SINR in terms of the eigenvalues AI

and x2 and the coefficients Jail's and Iil's. We need these Jail's

and IJil's to further simplify the expression.

In Equations (122) and (123), we need al and '2 as well as Yl
and Y2 (given in Equation (57) and (58)) to specify el and e2 com-

pletely. The additional equation needed may be obtained by normal-

izing e and e2, i.e., by enforcing

eTe* T*
eeI=e 2 e2 =l

From Equations (107) and (123), we get

T 2 A1-1 -I
ele* = I + 16112 1 -1
1 r~d + 61 F.

hence

2 11 2
+ 2_ 1 - (138)

rd i A -1

Similarly we have

1, 21 2 1 2 1 (139)
rd e .-

Then from Equations (53) through (58), we have
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2 16I - (a+b)2 (A -1- U T U 2

IY1l 2 1 d d d) (140)21i 4r,2 uT * 2 ,Tu *12
d dui di dj

and

2 T * 2
S 2- rdUdUd ('21 42 UT " - 2u~u.(141)

I(YI 2 2UT 2 T *12
2 d d id 'di d

Substituting Equation (140) into Equation (138), we can solve for

I'1 1 and J,$1!2 The results are

[, 2 = I : yjYI2 ) -1

1 - +1-113)
+ -l (142)

12 =y 1 12 2l 1 (143)

with yl given in Equation (57). Likewise, by substituting Equation

(141) into Equation (139) we have

2 = 1 -( I _ I, 2 (144)
1 1 A2-l F, ~i

and

1021 2  = Iy2 121((2 12 (145)

With the above results, we may express the SINR in terms of the

eigenvalues and the signal vectors. The final result is

SINR - (146)

where
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E E d T + _ 2_T_* 2
I + I -I- d Ud Ud ) 2 ( A 2 - & d Ud U d)
i T- " *i 2 UT U*1

LdlUTu* 2 i'dUddd

I (147)

'1(xlI- UTu*2 ( 2 1- T *U 2  2
I - d 2 dd dd

ST*2 +d U T *2

D+ + -

I
1 i F- i T 2 UTi(x~~di id d2 (A-i ud*

T*2 + 1- d

I + d UdU d X + 2__d d dFd UTu* 2 T' rd U u 12

(148)

1This general expression is rather unwieldy. But, for the case

of very strong interference, the equation reduces to a simple form.

If Equations (71) and (72) hold, i.e.,

UTU* T*i i i  A> d d

j and

>' >> "
i d

then from our earlier results in Equations (75) and (76), we know that
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1 >> A 2

Therefore,

1  
2 -I 

2

d 2  ( -l uT u* 2 (149)

+ (2 ' dd 

'd i d

and

1 d 2 - I  '

D -1 2 _ T 2  (150)

2 i + (2d d ulud2

d

where the first term in Equation (147) involving A 1 is negligible and

the first term in Equation (148) is also neglected because it involves

which is much smaller than the second term, proportional to ld I

Thus,

S N = ( A -1 T * 2 (1 5 1 )
SINR = (+2-I) (A2- l-r'dUdUd)

il d UTU* 2

The above expression can be further simplified by recognizing that

(A,,-l- dUd I d )

dl d dl

under Equations (71) and (72). Therefore we have

SINR = 2- 1 (152)
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This remarkably simple result is valid for arbitrary element

spacings, element patterns and signal arrival angles, but only for CW

signals. The formula is interesting because it tells us that when the

interference is much stronger than the desired signal, x2 controls not

only the transient response of the array but also the steady-state

SINR performance.

Much recent work has been directed at the problem of choosing

element patterns in an adaptive array. The goal of this work is to

find element patterns for which the SINR does not vary widely as the

signal arrival angles change. We note, however, that because of

Equation (152), choosing element patterns to minimize the SINR varia-

tion also minimizes the variation in both x2 and the eigenvalue spread.

We now return to the main subject of this report and discuss the

behavior of the eigenvalues in typical situations.

I
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CHAPTER III

RESULTS AND DISCUSSION

We have determined the N eigenvalues of the covariance matrix

for an N-element adaptive array with i CW desired signal and a CW

interference signal incident on it. We have also related the eigen-

values to the array output SINR, as given in Equations (146) and (152).

In this Chapter, we shall discuss the behavior of the eigen-

values and relate their values to the signal strengths (Fd and i) ,

the number of elements, the element spacings, the element patterns

and the signal bandwidths.

To illustrate the behavior of the eigenvalues, we first present

Figure 4, which shows a typical set of eigenvalues; it shows all three

eigenvalues (NiI  2 and 3) versus the interference angle f. for a

three-element array. The desired signal angle is arbitrarily fixed at
f d=45' and the interference angle is varied between 0' and 360'. Both

signals are CW. The elements are assumed isotropic and a half-wave-

length apart (DI=0, D2=0.5x , D3 = l.O 0). The signal-to-noise ratios

are '=d1l and i =10.

From Figure 4, we observe the following:

1) \l, the largest eigenvalue, is always larger than 31. This
T *miniumum of 'I is determined by I+U .U.iU from Equation (93).

2) '2' the middle eiqenvalue, varies between 1 and 4, i.e.,

S+2 dUdUd from Equation (103).
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3) 3=.

4) I has a range of variation equal to 3, i.e

a X 1i = 34-31 = 3.
max min

This range is determined by the weaker signal (the desired

signal) and has value rdUdU (from Equation (98)). Also

we find that A I m ] = 34, n = = 31.

T*
5) X2 also has a range of 3, i.e., ?dUdUd. (From Equation

(103)).

6) The eigenvalue spread S has extrema

Sa I 11+ ,dUdd 34 (Equation (112))

l T*
...... --1 31=  7.75 (Equation (111)).

min l+TdUdUd

7) The sum of the three eigenvalues is constant, i.e.,

X1 +X2+X3 = N(Fji+rld+1) = 36

From 1) and 2), we see that the levels of the eigenvalues are

determined by the signal strengths, namely, NI by i and 2 by 'd"

3 is always constant (unity). Points 4) and 5) illustrate how the

ranges of the eigenvalues are controlled by the weaker signal, in

this case the desired signal. The graph also shows that the eigen-

value variation is symmetrical around oi=90' and 279', i.e.,

\(90'-,N) = k(go"+,%): A(279'-, 5 =  (2700+, )

This syvvnetry comes from the fact that

Ui(o) = Ui(18O"-,,iS.
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With this background, we now discuss the effect of each of the

system parameters separately. We start with the signal strengths.

A. The Effect of Signal Strength

We first show how eigenvalues are affected by the desired signal

strength, r d" Figure 5 shows the three eigenvalues with r d=3 and with

all other parameters the same as in Figure 4. (Figure 4 was for r,d=I).

Comparing the two plots, we find

1) The minimum value of X1 is still 31, i.e., the minimum value

of A 1 does not depend on r d' as can be seen from Equation

(93).

2) x2 has minimum 1 and varies between 1 and 10. The bounds

on IN2 are from Equation (103) again.

3) X3 remains constant (unity).

4) x1 has a larger range of variation, 9 in this case, whichT*
is %dUdUd (or Nd). Also we see that

XIm a x = X1l = 40, m i n = X1 = 31.

5) A 2 also has a larger range of 9, we also have

X1max = X2L = 10, A2 min X211 = 1.

6) The eigenvalue spread has extrema

Smax =40 (from Equation (112))

S 31= 3.1 (from Equation (111))
min 10
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7) The sum of the three eigenvalues is a constang equal to,

in this case, 42.

From the above observations, we see that the desired signal

strength d affects the range of variation of AI and X2" The range

is proportional to d" In addition, the increase in d substantially

reduces Smin (from 7.75 to 3.1). At the same time, increasing rd

makes Smax to increase (from 34 to 40). Therefore, tripling d

reduces Smin more than by a half and only causes Smax to increase

less than 20%.

The previous example was for the case of weak interference

(ci=lO). We now consider how Cd affects the eigenvalues when i is

much stronger. Vie let ti=l000 and calculate A1 for three different

ds (d=l, 10 and 100). The result is shown in Figure 6. We see

clearly that A1 is little affected by the increase in td for strong

interference. Thus, the larger eigenvalue x1 can be regarded as

independent of Fd as long as Ci/rd > 10 and i > 1000.

In Figure 7, we show X2 calculated for two r.d values with all

other parameters the same as in Figure 6. Clearly, A2 depends very

much on rd' Acutally, for rd=lO is just a magnified version of the

case cd=

Next, we discuss the effect of interference strenqth. First,

we show that A1 , the largest eigenvalue, depends mainly on the inter-

ference. In Figure 8, we have A1 plotted against 0i for three inter-

ference strengths, ,i=lO0, 1000 and 10000 with all other parameters

the same as in Figure 4. It clearly shows how for strong interference

the largest eigenvalue A1 is a constant, 3t.i, as a function of o. To

show the exact relation between Al and i, we present Figure 9, which

is an enlarged version of AI(o i) for r,.=lO0. The percentage change

of xI from its minimum (301) to maximum (304) is so small that A1 can
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indeed be considered as a constant proportional to as Figure 8

indicates.

We now show how the large eigenvalue A1 behaves with weak inter-

ference. In Figure 10, we show x1 for .i=O.O1, 0.1 and 1 with the

other parameters the same as in Figure 4. As may be seen, A l is nearly

constant for r,i=O.0l. For t,. <<Cd we have

I = 1 I+3td (from Equation (93)).

Then as r, increases, x also increases. When r i> d' we have

1+31j (from Equation (93)).

Thus, \I depends on rd when ri<eKd because x1 depends on the stronger

of the two incoming signals. Once ri becomes larger than rd' 1 is

controlled by ri"

Now consider how A2 behaves as f:. is varied. Figure 11 shows

1

2 calculated for various interference powers from i=0.01 to 100 for

the same array. We first note that A2 approaches an upper bound as

.increases. This upper bound is the curve of output SINR less one

(see Equation (152)). In the figure, the top curve shows 2 for

I 100 and also gives the output SINR from the array (read fron the

right-hand side scale). Note that the curve for ci=l1 deviates little

from the i l00 curve, so we conclude that the approximation

A = SINR+l

causes little error as long as ri-1 ,d'

When ,0.01 or less, the second eigenvalue is essentially unity,

as shown. In this case, the array behaves as if there is only one

si(nal present, the desired signal. Hence there is only one eigenvalue

46



I
I
I
I

-0

2 /\ I -\> / o, / , , '' ,
to

9 0. 1 80 7.0

LU.
o/

SNRI.01 N=.1,01

LUJ
LD

cc

100. 90. 180. 270. 360.

THETA I (DEG.)

Figure 10. xfor weak interference.

SNR=1.; INR=0.01, 0.1, 1
BD=0.000; BI=0.O00;
THETA Dz 45.DEGREES.
3-ELEMENT ARRAY WITH HALF-

WAVELENGTH SPACING.

47



r - qi

z I \ o

m ci = 0.1

0

S0.01

THET I DEG .)

ii fwtR =10

3-ELEMENT ARRAY WITH
UN IFORM HALF-WAVE
LENGTH SPACING.

48



I

T*
different from unity, XI" The output SINR for this case is rdUdUd,

from Equation (118). X2 does not approximate I+SINR because the con-

dition FiUiUi>>c dU U is not met. Thus the curves in Figure 10 do

not indicate the SINR behavior for cases where i-l.

From Equation (109), we see that the eigenvalue spread increases

with increased r i because X 2 is bounded by I+SINR and is proportion-

al to ri" The extrema of the eigenvalue spread S are

I+Nr i  NEi
Smin - N d  ' + d

Smax I+NFi+N,-d = N i

These extrema also increase with increased The problem of eigen-

value spread arises when the interference is so strong (ti/KdlO3

that the array cannot accomodate the widely separated eigenvalues (or

the widely separated time constants). When r. is small, the eigen-

value spread is small and causes no problem. Thus we are interested

in the eigenvalue behavior under strong interference. For large yi

AI is essentially constant as signal angles and 'd vary, so we shall

not consider A I any further. Moreover, x3 is unity for CW signals,

so the only eigenvalue that varies with signal angle is A2. In the

following two sections, we shall concentrate on A2 and discuss the

effects of the number of elements, signal bandwidth, etc., on the

behavior of A2 "

B. The Effect of the Number of Elements

In Figure 12, we show three plots of X2 (as well as SINR) versus

0 . with N=2, 3 and 4. In general, we obtain better output SINR with1

more elements because the larger N, the greater the array gain.

Correspondinqly, N2 increases with increased N. Moreover, as the

number of elements is increased, the eigenvalue spread also increases.
For example, the extrema of the eigenvalue spread are:
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Figure 12. Relation between x2 and N.
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3000I S2mi n =3T- 7 S 2ma x  20

S = 3001 =750 S3  =3004

Smi n  3 max

S4001 800 S 4005m nmax

where subscripts 2, 3 and 4 indicate the number of elements. We

see from Equation (111) that for isotropic elements

lim S

because UTU*UdTN. Thus, the minimum eigenvalue spread increases

to a limit, i/'d, with increasing number of elements

Note that with four elements, there are four local minima

indicated by points C, D, E and F in Figure 12. For three elements,

there are only two such relative minima (indicated by points A and B).

Thus, as we increase the number of elements, the number of these mini-

ma will also increase. The value of A2 at these minima may decrease

if we change the array parameters, such as the element spacings.

These minima may sometimes drop to unity. When this happens, there

is a corresponding null in the SINR. This situation is due to the

presence of a grating null in the antenna pattern[6]. In addition,

the maxima on these curves correspond to the cases whe;'e UTUd=O, whichi d
as we know from Equation (118), results in maximum output SINR.

C. The Effect of Element Spacing

Since the covariance matrix depends on the interelement phase

shifts, which in turn depend on the interelement spacings, we expect

the interelement spacings to have an important role on the eigenvalue

behavior.

51

ti



We beqin by considering '2 for a two element array with several

values of separation D2 between elements. The elements are assumed

to be isotropic. A series of plots of A2 will be shown. The first of

these, Figure 13. shows A2 calculated for four separations, D2=0 0.5,o ,

0 .1. 0 , O.2xo and 0.3\ as indicated. In later qraphs, D2 is further

increased so we are able to see the gradual variation of 2 with D2.

As before, rd , .i1O00, (d=450 and both signals are CW.

From Figure 13, we see that for very small separation (D2--0.05

N0), N2 stays nearly constant at unity. This result indicates that

the output SINR of the array is poor for every o.. Because the small

separation cannot provide enough phase shift between elements, the

array is not able to produce a satisfactory SINR.

C0 0
Co 0

C.< -

jCo D2 :0.3X0  0

ClC

LU :)D2202X\ o z
'-' U D2 = I01

3 . ,'

D2 =.05Xo 0
LLJ
U-)

. .0 ' ' I . I. . I I I I I I . . ..iU
00. 90. 180. 270. 360.

THETA I (DEG.)
Fi.qure 13. ELte I. of element spacinqs (12 is varied)

SNR I , INR-l000. B13-0.000, BI-0 000,
THETA D=45 DEGREES
2-LEMENT ARRAY.
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Putting N=2 in the SINR formula in Equation (118), we have the

SINR for the two element array as

SINR2 = 
2 1d sin2 2-d 2  (153)
2 d 2

where we have used

Ud d 1i 2
Le 2e

and

21D 2 2,02

d2 Osin (d 2 o s in O i

Thus, for D2 0.5Ao the phase shifts 
4,d and and hence the SiNR2 2

are small.

The fact that x2= also means that the eigenvalue spread S is

large for all oi. For D2=0.05xo , we have

Smin Smax 2000.

As the separation increases from 0.lI 0 to 0.3X0 in Figure 13,

we see that A2 also increases. In other words, we have better SINR

as well as decreased eigenvalue spread with increased element separa-

tion. From the figure, we see that with a spacing O.2A O, the two-

element array is able to null interference adequately in the sector

180°<oi<360' for od= 4 5" if the minimum required output SINR from the

array is not higher than 0.4 (-4 dB).

The next graph, Figure 14, shows X 2 for the same conditions as

in Figure 13 except that D2=0.4ko , 0.5Ao and 0.6 , The SINR improves

in the sector 0"-o..180" with increased separation but degrades in the

sector 1800-no".360'. In particular, for D2=0 .6\o , the SINR is low

when the interference is coming from 240'.1) .300'". For still larger
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Figure 14.in ( = 0.5
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separations, the array starts to have grating nulls. Figure 15

illustrates this phenomenon. The graph shows x2 for D2=O.7\0,0.8,°

and O.9x o, respectively. For D2=O.7x o , there are two Grating nulls

around oi=2 2 5' and , .=315'. As the senaration is increased, the

grating nulls move in opposite directions as indicated. In Figure 16,

A 2 is plotted with D2=l.6A 0 and 1.7A0. X2 exhibits fast fluctuations

between its extrema and the SINR has sharper lobes and more gratinq

nulls.

In conclusion, for two isotropic elements, the number of grating

nulls and the number of minima and/or maxima increase with increased

element separation. With very small separation, s-,h a,, ior ) ,,

the oi(ionvali sproid is rotiuhlv 11F. i which is high for ,troinq l itor -

f (, renP o ,.lhn .tip r'(lparation is lirarge enough to piroduce: ',. i op

ullIs, it also (livos lirgev vi'envaltie spread.
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Figure 15. Effect of element spacing (D2=0.7Ao0.8x,0 and 0.9A 0).

SNR=I., INR=IO00., BD=O.O00,

BI=O.O00, THETA D=45. DEGREES,
2-ELEMENT ARRAY.

55

1



C
o 0-o

.0<

LLJo D2  1.6Xo
0
--0

:

• ' ' ' | ' ' ' I ' + ' I .

DLJ I.7 0 -

90-/. 360.

Figure 16. Effect of element spacing (D2=l.6x ° and 1.7Xo).

SNR=l., INR:IO00., BD:O.O00, BI=O.O00,
THETA D=45. DEGREES, 2-ELEMENT ARRAY.
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:2We now show how varies with interelement spacing for a three

element array. In order to make comparisons among various cases, we

first fix the total length of the array, D3, and then change D2 by

moving the center element.

Figure 17 shows A2 for D2=O.A 0, 0.3X ° and O.5X ° with D3 kept

constant at A 0* From the figure, we see the least desirable choice

is D2= O.D 0 because it gives very low SINR around oi=220' and oi=340'.

Considering the SINR output in the sector 0°<o.<180 °, the three cases-- -
give nearly identical pprformance. However, in the sector 180'<o<

360', the case with D2=0.3x 0 does not have as deep as a null as the

case D2=0.5x0 or D2=O.A o. This fact suggests that the equally spaced

array may not be the best choice in certain conditions.

Next, we keep D2 fixed and vary the total length D3* We arbi-

trarily choose D2=0.3x0 and let D3 change from O.5X ° to 1.2Ao and to

2xo. The eigenvalue, X2, for this three cases is shown in Figure 18.

In general, increasing the total spacing gives higher SINR and gives

sharper nulls around ni = d and o.=1800-0 However, from Figure 18

we see that around points A and A' the case D2=2A o gives lower SINR

than the case with D2=1. 0. Thus, with increased total spacing the

array will have additional SINR drops such as those around A and A'

in the figure.

D. The Effect of Element Patterns

In the previous sections, we have assumed that the elements are

isotropic. We shall now illustrate how element patterns affect the

eigenvalues.

With isotropic elements, ind with the interference much stronger

than the desired signal, the largest eigenvalue, \l' exhibits little

variation as the signal angles vary. For non-isotropic elements,

however, A1 is no longer constant. Also, the behavior of the middle
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Figure 17. Effect of element spacing (D2 is varied, D 3=x 0).

SNR=l.0
INR=l000.
BD=0.0.
BI=0.0.
THETA 0=45 DEGREES
THE ELEMENT SPACINGS ARE CHANGED.
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3-ELEMENT ARRAY.
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eigenvalue, x2 ' is changed. Vie shall use a three element array of

dipoles spaced a half-wavelength apart to illustrate these effects.

Let us assume each of the elements is a short dipole with a

cosine pattern of the form

f (o) = cos(o+, V)

for 9,=1,2,3. Initially, we shall assume all three elements have

their pattern maxima at broadside, i.e.,

6 = 0

for z=1,2,3. Then, all elements also have nulls at 0=90' and 2700.

First we consider the case where the interference is weak, i.e., let

d=1 and ri=l0. Also, we let od= 4 50 as usual. The resultant eigen-

values (xl,A 2 and 3) are shown in Figure 19.

Comparing Figure 19 with Figure 4 (calculated for isotropic

elements), we see that the first difference is in the largest eigen-

value, x1. The range of variation of X I in Figure 19 is much larger

than that in Figure 4. With cosine elements, we have

lmax = 31, X = X (oi=90', or 270') = 2.5
max lmi n

Notice that X1 occurs when the interference is arriving in the

pattern nulls at o.=90" or 2700. In the vicinity of these two inter-

ference angles, we have

U T * U T Ui iii d d d

so the array behaves as if only one (the desired) signal is present.
Hence A is just l+3df(d)2= + 3 which checks with the fiqure.
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SRI=l .0
INR=lQ.
BD=0.0
BI=O.0
THETA D=45 DEGREES
3-ELEMENT ARRAY WITH HALF-WAVELENGTH SPACINGS.

61



From Equation (98), we know that for isotropic elements, 1 min

occurs when the two signal vectors are orthogonal, i.e., when

T* = 0.
1 d1

It is evident that this condition is satisfied for ).=90' or ().=270"
1 1

with cosine elements (although we might not describe this relation

as orthogonality).

Considering next the second eigenvalue, we see that k2 has

additional minima around o.=90' and 270'. These minima occur when-I
ever the array behaves as if only one signal is present. We have from

Figure 19 that

2max 2 min

Theoretically, from Equation (60) and (62) we know that when

T * T* 5
UiU d = 0 A2 will reach its maximum l+tdUdUd which is

for o d=45' .

Note that the smallest eigenvalue, A3, remains at unity. This

eigenvalue is not affected by the change in element patterns.

The previous example shows AV' A2 and A3 for cosine elements

with weak interference (oi=l0). We now show how A1 and A2 behave for

cosine elements with strong interference. Suppose we now set 1 .i= 1000

with other parameters the same as in Figure 19. We first show Al in

Figure 20. From the figure, we see that with cosine elements k has

a range of variation far larger than that for isotropic elements.

Because of the pattern nulls around n .=90' and 270', A varies between1

a high value of approximately 3x1O to a low of 2.5. Thus, 1 is very
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Figure 20. Al vs . for isotropic elements and dipole
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63



sensitive to the element patterns and, of course, can no longer be

viewed as a constant.

Figure 21 shows A2 for both isotropic and cosine pattern ele-

ments. In general, 12 has the same shape for both cases except

around the pattern nulls at o i=900 and 270". Within the region

around these pattern nulls (indicated by A and A'), the interference

is nulled by the element patterns. I.e., the array behaves as if

only one (the desired) signal is present.

Notice that around these null regions (A and A'), A2-1 is not

related to the output SINR because the condition .UTU1 i U idUdUd is

not met.

Next, consider what happens if the element patterns are rotated

so the elements have beam maxima and nulls in different directions.

Rotating the elements eliminates the symmetry null at 0.=180' -i d'

For example, in the element patterns f,(o)=cos(O+), let us set
2 n 3 60.

1 =-60", '2=0 and = 6.

A1 for this situation is shown in Figure 22. Notice that the range

of variation is smaller than that for the unrotated pattern case.

We have from the figure

A = 1502.5 and A1  1501.

1max 1min

Almin does not drop to a low value because when the interference is

nulled by one element, it can still be picked up by the other two

elements since the elements have different null directions. I i

essentially constant in this case.

In Figure 23, we show A2 for the rotated elements. Notice that

the only angle where '2 reaches its minimum is o i=n1d 45". For all
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Figure 23. A2 vs. Oi with rotated elements.
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BD=O.OO0, BI=O.O00,
THETA D=45. DEGREES
3-ELEMENT ARRAY WITH HALF-

WAVELENGTH SPACING
COSINE PATTERNS WITH TITLE=60'.

other values of 0i we have A2>. From Equation (152), we know that

the array output SINR has only one substantial dip at 0i=0 d" The

corresponding dip due to symmetry at (0i=1800-od has been eliminated

by the rotation of the elements.

Because A3 is independent of the element patterns, we know that

the smallest eigenvalue remains at unity.
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L. The Effect of Signal Bandwidth

The previous sections have discussed the eigenvalues for CW

signals. We shall now study the effect of signal bandwidth on the

eiqenvalues.

In Equation (43), the mth element of the covariance matrix

was given for the non-zero bandwidth case. We first normalize this
2

equation with respect to the noise power i.e.,

: I inc 0 eJ ( q'd -d 
)

+ f*(0 )fm(oi )i sinc 1 Bd(id - d)] e m
Z i m iJ( ii-ii m )

+ ,S V m

From these matrix elements, we have obtained the normalized eigen-

values of ' by a subroutine in the IBM Scientific Subroutine Package

[9]. The subroutine is based on the Jacobi method (modified by Von

Neumann[lO,li]) We shall first show the effect of desired siqnal

bandwidth on the eigenvalues and then the effect of interference

bandwidth. We consider again an array with three isotropic elements

a half wavelength apart. The signal-to-noise ratios are assumed to

be id=I and :,.i=0O00 with (1d= 4 5'.

We first show how A2 varies for different desired signal band-

widths, Bd9 in Figure 24. Bd has been increased from zero to one in

steps of 0.2 and Bi is kept at zero. In the sector 25' (o "155', we

see that A2 increases with increased Bd , so the time constant of the

array associated with A2 becomes smaller. On the other hand, for

interference cominq from outside that sector, k2 decreases with in-

creased B d and the associated time constant is lar(qer. The combined

effect of the above two results is that the range of variation of '2

is reduced with inireased Bd. For exdmple, with Bd 0.4. we have
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A2 m 3.88 and 2 1.12max min

so the range of A2 has been reduced to 2.76 (an 8% change from 3) with

40'/ change in the desired signal bandwidth. Notice that A2min is no

longer unity for non-zero Bd.

We now consider k3 With non-zero bandwidth, >3 is no longer
constant. In Figure 25, we show how A3 increases with increased Bd-

With Bd=O.4 , we find

A3  = 1.15 . = 1.05
max min

The time constant associated with A3 decreases with increased Bd.

Because the sum of the three eigenvalues is a constant, we can

obtain the behavior of AI with Bd from Figures 24 and 25. However,

since the changes in both A 2 and A 3 (hence in II) are very small (-5

for Bd=1) compared to the magnitude of A, which is around 3000, it

turns out that A is still essentially constant for Bd-1.

Now let us discuss the effect of interference bandwidth, Bi .

In Figure 26, we have calculated A2 for various B1 . It is seen

that A2 is more sensitive to Bi than to Bd because a small (5%)

increase in B. causes A2 to increase significantly while a large

(40%) increase in Bd makes A2 change only slightly (8'). This

difference is due to the fact that the interference is very much

stronger than the desired signal.

From the figure. we see that 2 increases with B.. Also, notice

that when the interference is coming from broadside (.zl or 180),

A2 has a low value. This phenomenon occurs because for these arrival

anls there is no intlerelement delay for the interference so the

interference hd,, the, .ame effect on the (ovariancv matrix a,( CW
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Figure 25. Effect of Bd on 3"

SNR=I.
INR=1000.
THETA D=45.
BI=0.00
BD is changed.

signal. From the previous result in Equation (90) we know that
T*

is bounded by +r, dUdd for CW signals, so A2 is approximately 4 at

o.=00 and 1800 , as shown1

The effect of Bi on the small eigenvalue, A is shown in Figure

27. As Bi increases. A3 also increases and exhibits more complicated

behavior.
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Since .2 and N increase with B. and the sum of the three eigen-
values is a constant, we conclude that X must decrease with increased

Bi. However, the percentage change in X1 caused by B. is still small1

because A1 is large. For example, with Bi=O.2, we see from Figures 24

and 25 at o.=90'1

A2 =66 x3 = 1.2,

so from xi+x 2+X3 = 3006 we know

1 = 2938.8.

Thus X1 decreases from its value of 3002.6 for CW to 2938.8 with 20

percent interference bandwidth. The percentage change is less than

2 percent, i.e.,

3002.6-2938.6 < 2%

3002.6

Therefore, the effect of Bi on X1 is rather small.

In conclusion, increased interference bandwidth causes A2 and

A3 to increase and X1 to decrease. The time constants associated with

X2 and x3 will decrease with Bi and that associated with A1 will in-

crease. Desired signal bandwidth causes the range of variation of 2

to decrease and that of X3 to increase. In addition, x1 is little

affected by both Bd and Bi provided that Bd<l and B.<0.2.
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CHAPTER IV

CONCLUSIONS

In this report, we have first derived the eigenvalues of the

covariance matrix for an N element adaptive array with a CW desired

signal and a CW interference. There are N-2 constant eigenvalues in

this case. The remaining two eigenvalues depend on the signal envir-

onment and have been shown to vary within certain bounds. Hence the

eigenvalue spread, defined as the ratio between the two eigenvalues,

is also bounded, as in Equation (110).

Furthermore, we have discussed the effects of various signal

and array parameters on the eigenvalues. It has been shown that when

the interference is strong, the largest eigenvalue is essentially

constant for isotropic elements. This large eigenvalue exhibits little

percentage change as the signal angles are varied. The large eigen-

value remains constant regardless of element spacing or signal band-

width. It does depend on the input INR, the number of elements and

the element patterns, however.

We have also shown that the second eigenvalue, A2, approaches

a limit when ri is increased. For large &i and CW signals, the array

Joutput SINR is one less than this limit, as shown in Equation (152).
The higher ri the better the approximation. As the input SNR, rd' is

increased, the range of variation of A2 becomes larger. X2 is very

sensitive to element spacings and element patterns. By manipulating

element spacings and patterns, we can modify the behavior of X2 and

also the array output SINR. In addition, x2 depends very much on Bi;

a small increase in Bi causes A2 to increase significantly, as demon-

I
strated in Figure 26. In the case of greatest interest where t, d is
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much lower than Ei' the effect of desired signal bandwidth on X2 is

much less.

The remaining N-2 eigenvalues will differ from unity only when

non-zero bandwidth signals are present. Also, the effect of Bi on 3

is larger than that of Bd when the interference is much stronger than

the desired signal.
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