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THE FORMATION OF RADIATION PATTERNS OF ARC ANTENNAS

V.M. Golovachev, A.A. Kuz'min

The formula is obtained for calculation of the radiation

pattern of arc antennas in a plane orthogonal to the plane of
an arc. It is shown that the formula of the radiation pat-

tern depends on the radius of the arc and amplitude distri-

bution in the orthogonal plane. Characteristics of the form-
ing of the radiation pattern of an are antenna in a plane

normal to the plane of an arc are examined.

Introduction

In the last decade an enormous number of works, [1), [2], [3],
[4], and others, has been devoted to the investigation of charac-

teristics of arc antenna arrays. This interest is explained by the

definite advantages of circular antennas over plane antennas, the

main thing consisting in the possibility of a wide-angle movement of

the radiation pattern without a change in its characteristics. How-

ever, in the overwhelming majority of the works published, an exam-

ination is made of characteristics of circular (arc) antenna arrays
only in the plane of the arc (azimuthal plane), although it is known

about the interdependence of the radiation pattern in the plane of
the arc and orthogonal to it. This interdependence appears in the

fact that the arc (circular) antenna array possesses directional
properties in a vertical plane, even with the use of separate radi-

ators nondirectional in this plane. The indicated directional



properties are determined by the vertical radiation pattern corrLS-
ponding to factor of the arc (circular) antenna. Therefore, with the

formation in the vertical plane of special radiation patterns (of the
type cosec 2 e', sector, cos 2 0 and others), it is necessary to con-

sider the radiation pattern corresponding to the factor of the arc.

The latter, as is known £2], is determined by the geometric dimen-
sions of the arc (radius R, magnitude of aperture 2G), the radiation
pattern of the radiators and the amplitude distribution in the azi-

muthal plane. However, the formula obtained in work [2] for calcu-
lation of the vertical radiation pattern in practice is correct only

for the calculation of the continuous arc antennas. Examined below

are problems of the formation of the radiation pattern in a vertical

plane of arc antennas with discrete distribution of the radiators.

Radiation pattern corresponding to the factor of the are

The radiation pattern according to the field by an arc symmetric

with respect to the center of the antenna, which consists of N radi-

ators having directivity in the plane of the arc Fu(cp) and with

an amplitude distribution (I) is determined by the formula

where CLis the angular distance between the radiators, and .qO

is the phase factor of the arc antenna.

Fig. 1. 4
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The expression for the phase factor ,(,,.) of the arc antenna,

which can easily be obtained from Fig. 1, has the form

a, 01 R C-,9( 1 --C , ,) Co% I-sill Sillif . (2a)

To ensure the cophasal addition of fields of all the radiators

in the assigned direction q,H, the electrical phase compensation

for the j-th radiator must be equal to

Ei(fr.Q) KRcsO.,fI -cOs7i)cos1P, I- SillSil( . (2b)

where qn1., are the angles determining the direction of the maximum

of the radiaton pattern of the are antenna, and R is the radius of the

arc.

Consequently,
.0) - j i(Or0) -AR {(I - cos ,) (COs p c,is 0 - cos ,, cos oo) (3)

- sin .3 (sinl ,cos 0 -- sin q coso)}.

However, for the majority of the practically realizable cases,

it is required to ensure the movement of the main beam only in an

azimuthal plane (plane of the arc), and therefore, it is expedient

to assume that e 0.
0

To simplify the analys, of the radiation pattern in the plane

normal to the plane of the arc (in a vertical plane), which is of

interest at a given moment, let us assume that the maximum of the

main beam in an orthogonal plane has the direction T0 0. Then

the radiation pattern in the vertical plane corresponding to the

factor of the arc is written as'U
F(r') (', PX1 (i" Pi KR (I-cos y (I-cos 4}) (4)

The factor F,,ia,) in expression (4) defines the contribution

in the field of radiation of the arc owing to the directed properties

of the radiators in the azimuthal plane in the direction = O. It

is obvious that this factor will be determined by the function des-

cribing the radiation pattern of the radiator in the azimuthal plane

and will fulfill the role of the importance to the amplitude distri-

bution. Let us rewrite the formula (4) in the form of

a

F(,) -te-I V Iexpliico7,I. (5)

hi.-. .- J



where it kRlI c',;' is the generalized coordinate, and

jI/r|) ) I,.(,) is the normalized amplitude distribution in the

plane of the arc. Then, by using the equality

exp(iucO )- '+ i' J~tu)C~lil,). we get
F - J, (, e., (i (6 )

From expression (6) it follows that the vertical radiation pattern

fo the arc antenna, in the same way as the horizontal, has a complex

character and generally has no nulls.

If the radiators of the arc antenna are isotropic and uniformly

excited, i.e., II' ] = const, then the expression of the vertical

radiation pattern acquires the form

- a
1=-in I--'

By noting that 7 2j and Vexp (i12) I we finally find
NN l=-in IN

I" :---,, .X sin ' .'

The prime at the subscript of summation Z denotes the absence under

the sum sign of the value with Z= 0.

From (8), for the complete ring of the radiators, it is easy

to obtain the expression for the vertical radiation pattern of the

form
F (u) = J,((I) I "^ l,.. ( !  9

If the circular [ring] array with a sufficiently large number of rad-

iators N such that N)u is used, then the vertical radiation pattern

of such an array is written as

F (i) t .1 J(u) Ja IcR (0 -- cos 0). (10)

Expression (10) completely concurs with the expression obtained

in work £3) for the continuous circular aperture. Furthermore, from

(8) it is easy to show that when J3O the radiation pattern in the

vertical plane becomes isotropic, which corresponds to the case of

the line-source antenna. For circular antennas with the magnitude of

the radating sector 2/3,<l, for which expression (10) is incorrect,

'4



it is necessary to use formula (8). At a sufficiently large number
of radiators N (N-*O0), expression (8) is still simplified and takes

the form

F(u) J9 ()+ i"1,.(.) ,

If we are limited by the first several terms of expression (11), then

for the calculation of the radiation pattern of the arc antennas in

the vertical plane, we can use the relation

W o~r.. 173' ( 2.. A .(12)
sin-2- 'R

The accuracy of the calculation according to formula (12) is no

worse than *5%. From equation (12) it is evident that the width of

the radiation pattern is determined by radius R and the magnitude of

the radiating sector 2 P of the arc antenna. Figure 2 gives the cal-

culation dependences of the width of the radiation pattern of the arc

antennas on the magnitude of the angular aperture 2 for different

values of kR. From the given curves it is evident that with an in-
crease in values of kR, there occurs a considerable increase in the

width of the radiation pattern, especially for the small angular
apertures 2 P of the arc antennas. From a physical point of view,

this is explained by the decrease in the magnitude of the phase leads

caused by the geometry of the arc antennas.

'J

3 t0 k-t

Fig. 2.
Fig. 2.
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Results of the calculation

In order to investigate the change in the shape .of the vertical

radiation pattern of the arc antennas at different amplitude distri-

butions in the plane of the arc according to formulas (1) and (6), a

number of numerical calculations was conducted. The calculations

according to formula (1) was produced on the computer Ural-2,

and those according to formula (6), manually. From the diagrams given

below (see Fig. 3), we see the good concurrence of the points calcu-
lated on the digital computer and manually (the calculation values

according to formula (6) are noted on the diagrams by dots).

'e' 150
- 15

0,7

j C075

Fig. 3.

Figures 3-8 give calculation radiation patterns illustrating the

effect of the different amplitude distributions for the arc antennas
with a curvature determined by values of kR = 50 and kR = 150 with

angular apertures of 2g = 900, 1350 and 1800

From an examination of the presented figures, it is evident that
the shape of the vertical radiation pattern, which corresponds to the

6



factor of the arc antennas, is close to being column-shaped. This is

explained by the fact that at small angles of elevation 1 , the out-

-of-phase, causedby the change in the difference of the course of

the beams from different sections of the arc with respect to the

plane e = 0, is insignificant, and the radiation field is almost

equal to the maximum value. With a further increase in the angles

e, out-of-phase begins to be affected, and the field in the far

zone sharply decreases. The presence of a nonuniform amplitude dis-

tribution in the plane of the arc leads to an expansion of the radia-

tion pattern in the orthogonal plane owing to at, increase in the

contribution to the total field of radiation from elements located

on edges of the aperture. Besides this, as was indicated above, the

radiation patterns do not have nulls, and with an increase in the

nonuniformity of the amplitude distribution, we observed the simplest

transition from the oscillatory process of the change in the signal

beyond limits of the main beam to the smooth "pulling-in" of its

slope. At relatively small angular apertures (2134 90) of the arc

antenna, a certain stationarity of the shape of the radiation pat-

tern with respect to the form of the amplitude distribution is ob-

served. This occurs due to a lowering of the nonuniformity of the

amplitude distribution within the small angles 2 P of aperture of the

arc antenna and of the approach of it to the line-source antenna, in

which the radiation pattern in the vertical plane generally does not

depend on the amplitude distribution in the azimuthal plane.

AS
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Fig. 7.

Thus from the preceding section and the analysis of the calcula-

tion radiation patterns corresponding to the factor of the arc,

it follows that the arc array, which consists of radiators nondi-

rectional in a vertical plane, possesses directional properties.

The latter fact imposes definite requirements on the formation of

the radiation patterns of the arc arrays required in a vertical plane,

especially in the formation of the wide-directional patterns or pat-

terns of a special shape (cosec 2, sector and others).

Characteristics of the forming of the assigned radiation pattern in

the vertical plane in arc antennas

In the designing of arc antenna arrays, there usually are assigned

radiation patterns both in the plane of the are and orthogonal to it.

According to the assigned characteristics of the radiation pattern in

the plane of the arc - the width, level of side lobes, scanning

9



sector, and others, the geometric dimensions of the arc (radius R,

aperture 2jP) and also the necessary normalized amplitude distribu-

tion (I'J] are determined.

O.

0, 7 
=15O
N=$1

0,6

" 1 1. %1

4 # 1 I 2 . 24o 2d 32 3 - ' . 52 J S 1 . - i$ 72 ' . d

Fig. 8.

These parameters are necessary for the calculation of the verti-

cal radiation pattern corresponding to the factor of the arc antenna

array. For this the works [1] and [2) can be used. Let us emphasize

once more that in the precedin6 sections we considered the vertical

radiation patterns corresponding to the factor of the arc antenna

array, which consists of radiators nondirectional in a vertical plane.

The radiators usually used in the antennas possess a definite direc-

tivity in both planes. For the majority of the practical cases,

with a sufficient degree of accuracy it is possible to consider that

the three-dimensional pattern of the radiator is represented in the

form

0) I ,O , (), (13)
10



where f(fo) is the radiation pattern of the radiator in the plane

of the arc; F1(8) - radiation pattern of the radiator in the plane

normal to the plane of the arc; ip, G - angles determined by di-

rectional cosines.

4.,

9.77

45

0 ,3h N R .5 0
i ,,..,o

P'#
0. ,.o

0.1{
A0? ;b 1 '4

Fig. 9.

Considering condition (13), we can assume that the vertical

radiation patterns of the separate radiators in different cross sec-

tions Pn are identical, i.e.,

F,1 (6) F", (0 "0),

and the complete (required) radiation patterna in the plane under

consideration is written in the form

G (0) r (6)I:,). (13a)

where G(O) is the required radiation pattern in the vertical plane;

F 1() - the radiation pattern in the vertical plane of a separate

radiator; F(@) - the vertical radiation pattern corresponding to the

factor of the arc array calculated according to formula (6). From

11



expression (13a) it follows that for the creation of the required

vertical radiation pattern in the arc antenna, it is necessary that

the radiation pattern of the separate radiator satisfy the condition

/ (14)

the form of
It is obvious that~the radiation pattern F I W of the separate radia-

tor will be determined both by the geometric dimensions of the arc

and the shape of the required radiation pattern.

For clarity, Fig. 9 gives the change in t:, shape of the verti-

cal radiation pattern with respect to power P (8) of the separate

radiator installed into an arc antenna with geom'etric dimensions

28=1350; kR =50; 150 and [VA cos 2 cx . for the forming of the

radiation pattern, which is changed in the sector of 5oe.0.f45o
according to the law of cosec 2 . On this same Fig. 9, given for a

comparison is an ideal radiation pattern (solid line) of the type

cosec 28, which should be formed by the radiator located in the line-
-source antenna array. The results given on Fig. 9 confirm that said
above, namely, that with the formation of the wide-directional radia-

tion patterns in the arc antennas there can occur a considerable

change in the shape of the appropriate radiation pattern of the sep-

arate radiator. Further, the problem is reduced to the synthesis of

a separate radiator according to the assigned radiation pattern de-

termined by formula (14I).

Conclusions

1. The arc antenna array, which consists of isotropic radiators,
possesses directional properties both in the plane of the arc and in

the plane orthogonal to it. The obtained relation shows that the

width of the radiation pattern of the arc antenna in a plane normal

to the plane of the arc considerably depends on the geometric dimen-

sions of the arc.

2. The effect of the different amplitude distributions on the

radiation pattern of the arc antenna array in the plane normal to the

plane of the arc, as the numerical calculations showel, becomes

noticeable with an angular aperture of the antenna of 213 >900.

3. The radiation patterns of the whole antenna and separate rad-
iator in the plane normal to the plane of the arc are considerably

12



d~ftrc:Lwhich should be considered with the designing of arc
Mmvr. with a radiation pattern of special shape in the plane in-
%iicatL'i above.
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ENERGY CHARACTERISTICS OF PERIODIC SYSTEMS OF RADIATORS

Efficiency and Output Coefficient of Power, Directive Gain, and

Gain Factor

I.V. Guzeyev, A.B. Kolot

Obtained in this article, which is a continuation of [1),

are expressions for the efficiency and output coefficient; and

the connection between the matrix of scattering and partial gain

of the array element is established.

For the linear periodic array with several active radiators, the

feeders of which are excited by external incident waves, the effic-

iency equals

, (1)

p-si,. p ...

where PI' P2''...' , are numbers of the active elements; anbn  the

complex amplitudes of the direct and inverse waves in feeders of the

elements.

On the basis of (1), which was used by the Parseval theorem,

relation (1) can be given the form

*51 )I II, I s(,,) II d,,

2 1 (2)

14



where a(u) and s(u) are the complex Fourier series compiled, repec-

tively, from amplitudes of incident waves (.n ) and from elements of

the central line of the matrix of scattering (sn ) of the system (see

[1).

With the excitation of only one radiator and an identical load

of feeders of the passive elements, characterized by the reflection

factor r , on the basis of [] and formula (2), we obtain

fit)
2r : (, -(I3)1

With the wave loading of feeders of the parasitic elements (r=O)

from (3) we get the relation

2n, .)- - -- , , .

similar to that obtained in [2) for two-dimensional periodic arrays.

Let us consider the case when the radiators with numbers within

-N 4ngN are excited with the linear distribution of the phases and

feeders of the remaining loadings of their wave impedances, i.e.,

anI  ian'e ,, n , , -1. :,2, . - N; (5)
10. n (N I- i). ± (Y 1- 2) ...... J o

where 0 is the difference in the phases between the adjacent radia-

tors.

When N>>1, and at a sufficiently smooth distribution of the

amplitudes lan% (i.e., for the highly directional arrays), the peri-
2 - 2

odic function IZ(u) 2 is changed considerably faster than Is(u)I

and has in the interval (-1,1r) a single main maximum (when u = 44).

Considering this fact and taking into account the theorem of Parseval,

on the basis of (2) we have
1 )

( ) 17(- I ) I (6 )

In the limit, when N-0O, relation (6) becomes precise.

15



The radiation power (WH ) is a function of characteristics of

both the antenna and sources which are the connected system, and,

therefore, it is convenient to characterize the change in W3,n not

by the efficiency, which is a characteristic only of the antenna,

but by the so-called output coefficient of power

(7)

where WMAlc is the maximally possible total power which can be re-

moved from sources which excite the system.

If the sources are generators of voltage with an emf n and

identical internal impedances characterized by the reflection factor

r , then on the basis of (7), by applying the Parseval identity, we

get2)

17(ai) j2du

i i (u) 1 d
(I II)''S(8)

• 'I 1.() I' d,

where C(u) is the complex Fourier series compiled of the emf [1].

If' the array is excited by (2N+I) voltage generators with lin-

early phased-in emf [similar to (5)], then under the same assumptions

as with the derivation of (6), we obtain

I - V rSD, 19
When r = 0 the output coefficient concurs with the efficiency

which is natural, since due to the absence of reflection from the

generators, the amplitudes of the extraneous waves do not depend on

the loads.

For the plane two-dimensional periodic array with the use of

notations of work [1], relations (3), (4), (6), and (9) are replaced

by the following:

2)Let us recall that the source of voltage generates the maximally

possible power on the load with the impedance complex conjugate to

the internal impedance of the source.

16



. .. ." ... d .

i a-- r; W= v) 11 10

; .... - ., 11)v)

,,(,J). °) _ nI- IS(4). 'lit) (12)
.t '. ,") (I- rn IZO-,_;'_: . '_=')I. (13 )

In -rsQD. 'I')l"-

Let us turn to the linear or two-dimensional periodic array with

one active radiator and with the wave loads in feeders of the passive

clements. By equating the expressions for the radiated power, com-

puted along the fields in the far zone and in feeders of the system,

and using work [1], it is possible to obtain the equality

q), Si n,) dt) 1)d ( 14 )

where -w.q) and , are the partial pattern and directive gain of

the element correspondingly for the linear and two-dimensional arrays.

Designating by D")(*,,) the direct gain of the element of the

array (with the wave load of the passive feeders) and on the basis

of the determination of the directive gain, we get

d '" (0, ip) 4" - 4,m 1 - ' ()V. .'0) is ---9(C (a. (P), (15 )

where glIe,1.) is the amplification of the element of the linear or

two-dimensional array (with the wave load of the feeders).

Relations (14 ) and (15) can be examined as conditions of the

normalization of the partial patterns.

In conclusion of the section, let us note that the connection

between the efficiency, directive gain, gain, and partial pattern of

the element in the array with arbitrary but equal loads in the feeders

retains the form of the equalities (14) and (15), in which, thus,

It is sufficient to replace the superscript (c) with (0) (I].

17



Connection between the function of scattering and partial gain of

the element in the periodic array

The power radiated by the antenna system can be computed doubly:

according to amplitudes of waves in feeders and by fields in the far

zone.

Since the amplitudes of the waves are connected by the matrix

of scattering, and the fields of radiation are expressed by the super-

position of the partial patterns, it appears possible to establish

the connection between these most important characteristics of the

system. Obtained in works [3, 4] are relationships between ampli-

tudes of waves in the feeders and the power being radiated for finite

systems of radiators. By extending these relationships to the linear

periodic systems of radiators and considering their characteristics

[1]:

S . s,_, 1=s,(n, nZ. p 0, -1 1..± 2.

1 ( . /l) o (.1. ,P) exp (i pkcrC H).

it is possible to obtain the equalities

Q s,,s, q-O. j 1. -, 2. .: (16)

O-- J
T ) J f QoO . Er)jeqp(- i qkd co% 0i) sh I d *4( 4 r. (17)

in which q -,n'-. QqmQ#.. .. t ',m.. i.e., for the array being consider-

ed, the elements of the infinite matrices [Q] and ['] depend actually

on the difference in the suberipts. For the two-dimensional periodic

arrays, instead of (16) and (17), we have

Q.,- 0,,_ . 1 o , :1,. 2 ...

To f jI() PjexpI-iakd,sin~ctoVy-

I- i k in 1n %qj sin fid Ody

(a p=O . 1. ± 2. . . (19)

where A and P are differences in the subscripts, respectively,

with respect to the rows and columns.
1 )

1 Let us note that in the derivation of relations (17) and (19),

it was assumed that in the infinite arrays there exists no continuous

18 [continued on next page]



Quantities -r' for the linear and Za.p for the two-dimensional
qarrays are coefficients of the interaction of partial patterns of

definite radiators of the considered systems; they are distinguished

frc.-. cimilar coefficients introduced in works [3] and [4] only by the
factor caused by the normalization of the patterns. In conformity

with (14), (17) and (19), the quantities T"0 and Ir00 have physical

n.caning of the efficiency of radiators of corresponding arrays (with

wave loading of feeders of the remaining elements); e q (when q 1 0)

and ZIp (when a 2 + 2 1 0) are measures of the nonorthogonality of

tt~e partial patterns.

It is simplest of all to explain the meaning of elements of the
infinite matrices [Q] for the arrays being considered on the basis of

relations (22) and (27) (see below), from which, in particular, there

follow almost evident equalities [2, 3, 4]:

Q. , I.,I1 I .

By turning at first to the linear array, let us introduce the
notations:

u - klco% 1), (20a)
2,

1t) f- 0;, (Irc c 4,, . o) d,4. (20b)

where g(u) is the partial gain of the element of the array (as a
function of the generalized coordinate u) averaged over the angle p .

By taking (20a and b) and (15) into account instead of (17),
we obtain the equality equivalent to it

hd
g (Ii 1", , , / .1 . ( 2 1 )

2kd I

By using works [2, 3], in notations (16) and (17) it is possible

to obtain an infinite set of equalities

Av Q., t(q 0. 1.1. 2....), (22)

(continued from previous page] surface waves; in the opposite case,
;w.uld be necessary to consider them in the energy balance of the

'n ""19



By multiplying each of the relations of (22) by e'lu and adding

them with respect to q in limits of - , +o, we get

I--( ,q ;(,).(23a)

where

I@1 -

-- a (23b

On the basis of (16), (21) and 23b) we get 1)

Q(,) Is(,,)I'. (24)

kd f 9 (11) 62 (11 U)

-kt

(it 1 - 2n n) a - .d- * (25a)

where
N

21t w - (25b)

is the periodic delta function [5]:

3(Z) - 1/2, Iz1-- (25c)
I. I.

By substituting (24) and (25a) into (23a) and returning to the

angular coefficients, we obtain
2.

I--- i(kdcos') f -  ', - Ss . j (26a)

where the summation (at fixed %Y) is conducted according to discrete

angles determined by the euality

cos st) --Cos (26b)
d

where the summation index is actually included in the limits of_ 0,, nE +Co 1
- E[~ ( CE ~ 1±(i+cni')(26c)

Function E(z) denotes the whole part of the number z.

In the process of the conversions of (16) to the -'orm of (24),

the order of summation (with replacement: r = q-p, q = p+r); with the

transition from (21) to (25a) the order of the summation and inte-

gration is changed.
20



For the two-dimensional periodic arrays, instead of (22) and

(23a), we obtain

,,,, ,,. ,,, -,, . , 2. (27 )

I Qu., vI - .. 1 .~(28)

where g'i,. .v) are the appropriate two-dimensional Fourier series.

By transforming (18) similar to the linear case, we obtain

QJ(,,. u) j. jI. ,fu)l (29)

To obtain the function rg(u, 9), let us transform, at first, the

expression (19), introducing the generalized coordinates:

11 Wd, sil;I COST', V L W' iOSl ( 30a )

The element of the solid angle, according to (30a), equals

.;Ill ;' d A d . .. .d u 'd '
U(u' ) M'd /I-- (30b)

In connection with the two-valued property of function O(u'W,.)

let us divide the integral of (19) into the sum of integrals

7a~ -TU (l-)

420 ap

taken, respectively, over the upper (+) and lower (-) hemispheres,

which ar? Iegions of single-valuedness for 0(u'. v') By introducing

into r a. the replacement a -.1 -0' and considering that .I.vo'-. iO

for rp,3 it is possible to obtain the following expression:

T ,! (,4'. L")i , '-) ,.'. V)

(CR)

" exp(- 2 u' -- i v') du'd' (31a)

where

( ',  ") " ) V) (u'. - '". f(," u') V .
g9-1 (,,'. V,) - g -fr. (u. ("', u');

O I< (u ', V ) = A rc s n u' /A&. d. 1 2

0 (W. W) -- Arc g 'd , 2r.

Ud, - (310)

The integration in (31a) is extended to the area of the "ellipse

of radiation"

\ \d4, ) I (31d)

21



which is a representation of the upper half-space on the plane (u',
v').

By transforming (31a) similar to the linear case, we get

(2I

0i - A11.vI a P
d' v N,1 E, -- -___" __,_ -; -. .. 6 ---

4a A .J cks;(i--2xn. v 2a p)

2- - t n 2 V 2

" [ --\k --J - kd- J J (32a)

where
g .v) - +, v) (32b )

A d X d is the area of aperture of the array per one element;
1 2

&I..] is determined by (25c).

On the basis of (24), (31b) and (32b), it is possible to write

equality (23a) in the following coordinate form:

I s(kil sin :C Cos, 'i. kd, sin ;) sin 'r) I!
--" t ' . .. . .. . .. .,I (CI : n )

4.z A I

a p

The summation (at fixed &,e) is conducted along discrete

directions ,.,.. ,,,. determined by relations

sill , CoS -. in ,1 " o - 1 .
(33b)

where sill : si si ;l sin 4p - p - ,

) ;)Do. T 'Ton. ( 33c )

When dI  d2 and 1!10-0 )()i relation (33a) concurs with that

obtained in work [2].

In conclusion to the section, let us note that in relations (26a)

and (33a) the slipping directions I) should be excluded from the exam-

ination, since for the finite arrays in these directions the concept

1)That is, the directions corresponding to N)'= 0 and %Y ' for

the linear arrays and '3 = 12 for the two-dimensional arrays.
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of partial radiation patterns is incorrect, and it is necessary to

use the rn ial fields. Therefore, in formula (25c) the value of

'() = 1/ ,as a purely formal meaning conditioned by the apparatus

of the Fourier series.

Certain theoretical limitations of characteristics of linear arrays

Relations (26a) and (33a) are equivalent to the law of the con-

servation of energy for periodic systems of radiators and establish

the close connection between the matrix of scattering of the system

and radiation patters of the radiators. Hence, in particular, it

follows that in the analysis of the multi-element arrays it is im-

possible to assign the patterns of the radiators irrespective of the

matrix of scattering, especially, if the period (or periods) of the

array does not exceed the wavelength.

The indicated relations make it possible to expand a number of

interesting regularities peculiar to the periodic radiating systems.

For the two-dimensional arrays (when d 1 d 2 ) these regularities were

first studied in work [2]; below some of them are examined in refer-

ence to the linear periodic arrays.

Since the right side of (26a) is the sum of the negative func-

tions, resulting from this relation are three important inequalities1):

o < I (kdcos 0 I; (34)

E' (35a)

o < Ri (;I) J

o J 2(35b)

where 2,

0 (350)

is the partial gain averaged over 9 .
2d

The upper limit of the gain, equal, according to (35b), to
becomes physically obvious if we consider that for the multi-element

axisymmetric phased array with equal-amplitude excitation of the

Let us note that the relation (34) has already been obtained

(true, strictly insufficiently) in work [1].
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".-... .', the Cain in the maximum does not exceed 2-d (N the num-

t,,r of elements) and is connected with the gain of the radiator by

the known relation [2, 6]

G;Mas -N Mc . (36)

When d <1 the sum in the right side of (26a) is reduced to a
2

zin~le term, and the scattering function in the interval -n;,un

ratifies the relations

[when]
I 1) . . u , .K kd.(_ i [when b, , < kdcosi( 37 )

[when
2d [when~ (37)

from which, in particular, it follows that the defined scattering
matrix corresponds when d- to the completely defined partial

2

gain averaged over 4 (the reverse is incorrect!).

In connection with this, it is interesting to note that due to
the eveness of s(u) (see [1]) function lt/),-)) in conformity with

(37), proves to be symmetric with respect to the plane perpendicular

to the axis of the array. Ih this case the pattern of the radiator,
taken isolated from the system, can be nonsymmetric.

From (37) it also follows that the efficiency of the linear
phased array [see (M)] with the period within the half-wave is equal
to zero when kd<111<1; this phenomenon is physically evident, since
with such phasing the considered array does not have the main beams
in the region of the real angles I)

On the basis of formulas (4), (35b) and (37), it is possible
to obtain the following inequality:

~Z) < < (38)

From (38) it follows that, in the first place, the efficiency of
the radiator of the considered array (with the wave load of feeders

1)Such a behavior of the efficiency is the result of the infinity
of the array and the absence of Joule losses in the radiators and the
surrounding space. For the phased array of finite dimensions, in the
case of the disappearance of the beam, in practice only its extreme
elements radiate, and the efficiecy proves to be of the order of 1/N.
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2d
of the remaining elements) does not exceed r and, in the second place,

even if one element of the scattering matrix of the system is differ-

ent from zero.

A somewhat more specific judgment about the elements of the

matrix [s] can be obtained on the basis of (37).

For example, it is possible to show that the radiators can be

decoupled =s,. .. 0) only in the trivial case when Is0I = 1, i.e.,
0

when they are not radiating. Actually, formulas (37) are identically

satisfied when I,,)IsIxoI-I and g"(0.,r)- 0, and when Is0 1 I and

s = 0(n 1 0), on the basis of (4), (15) and (37), we get the in-n
equality

.. .. . < I. (39)

which, obviously, contradicts the definition of efficiency.

Let us note that the inequality (38) doe not at all prohibit the

reaching of a 100% efficiency with operation of the array in the

scanning mode (i.e., with the linear-phase excitation of its ele-

ments). According to (6) and (34), for this the vanishing of function

s(u) is necessary when -kd <u <kd, i.e., in the interval of the real

angles. From (37) it follows that the scattering function of the

indicated "ideal" phased array satisfies the conditions:

Jwh(")-.whe u kd. (40)is"ufl we"In <"<=

and the partial gain
g () -2d Const(~(41)

i.e., its radiators are omnidirectional I)  The efficiency of the

element of the ideal array, as follows from (41), reaches its upper2d codnt(4)

limit equal to - Elements of the matrix [sa], accordingto (40),
are expressed in the form

I- 1 e' , cos ndu). (42)

(n=Q. ±1. ±2.... .

The omnidirectionality, which, as is known, is impossible at

finite distributions of current, here is the result of the infinity

of the considered systems in the absence of Joule losses in radiators

and the surrounding space.
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where t(u) is a certain real function.

In connection with the expressed remark, it is clear that the

concordance of the phased array, for which I:.,I, ..... I I. is neces-

sary, and the concordance of its elements in the generally accepted

meaning (Is I<<1) are completely different concepts. In a number of
0

cases, for example, with the closely located (d <0*) elements, the

concordance of the radiators can lead even to a mismatch in the phased

array, and, on the other hand, the wide-angled matching of the latter

can correspond noticeably to the detuned elements.

Regarding the arrays with a period of d> then for them

many of the limitations noted above drop out. In particular, it

becomes fundamentally permissible that , .. and

The mutually single-valued correspondence of type (37)

between the gain of the radiator and the modulus of the scattering

function of the system is preserved when d<),within

-- ,--ktI)<,<2n,--tl. which correspond only to part of the spectrum

of the real angles [*arc sin X (--1) from the normal to the aper-1) d
ture)

Conclusions

1. Expressions are obtained for the efficiency and power output

coefficient for linear and two-dimensional periodic arrays with ex-

citation by their voltage generators [oscillators) with identical in-

ternal impedances and arbitrary emfs.

2. The relationship of the connection between the scattering

matrix and the radiator gain in the linear periodic array has been

established. For the two-dimensional array, this relationship is

obtained under more general assumptions than it is in [2), and, namely,

when the periods of the array are arbitrary, and the radiation of

energy is not limited by the half-space.

3. On the basis of the relationship of the connection between

the scattering matrix and the radiator gain of the linear periodic

However, as follows from (26a), the defined function (em.,r)

at any d corresponds only to one function Is(u)l. The reverse cor-

respondence (between 4 f' and s(u) is correct only when d<-L

26

i2



array, a number of theoretical limitations for its characteristics

is obtained, in particular:

a) the gain of the radiator, averaged over 4 , of the linear

array (with a wave load of feeders of all elements) does not exceed

2d/ I ;

b) when d<X, the gain indicated in item a) is a function sym-

metric with respect to the plane perpendicular to the axis within

limits of *arc sin ( /d-l);

c) the interconnection between radiators of the array with the

period d< X/2 is inevitable;

d) the efficiency of the radiator (with the wave load of feeders

of the remaining elements) when d< /2 does not exceed 2d/ .

e) with a period exceeding )/2, the radiators of the array in

principle can be decoupled and matched, and their efficiency can

reach 100%.
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