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THE FORMATION OF RADIATION PATTERNS OF ARC ANTENNAS

V.M. Golovachev, A.A. Kuz'min

The formula is obtained for calculation of the radiation
pattern of arc antennas in a plane orthogonal to the plane of
an arc. It is shown that the formula of the radiation pat-
tern depends on the radius of the arc and amplitude distri-
bution in the orthogonal plane. Characteristics of the form-
ing of the radiation pattern of an arc antenna in a plane
normal to the plane of an arc are examined.

Introduction

In the last decade an enormous number of works, [1], [2], [3],
(4], and others, has been devoted to the investigation of charac-
teristics of arc antenna arrays. This interest is explained by the
definite advantages of circular antennas over plane antennas, the
main thing consisting in the possibility of a wide-angle movement of
the radiation pattern without a change in its characteristics. How-
ever, in the overwhelming majority of the works published, an exam-
ination is made of characteristics of circular (arc) antenna arrays
only in the plane of the arc (azimuthal plane), although it is known
about the interdependence of the radiation pattern in the plane of
the arc and orthogonal to it. This interdependence appears in the

" fact that the arc (circular) antenna array possesses directional

properties in a vertical plane, even with the use of separate radi-
ators nondirectional in this plane. The indicated directional
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properties are determined by the vertical radiation pattern corrcs-
ponding to factor of the arc (circular) antenna. Therefore, with the
formation in the vertical plane of special radiation patterns (of the
type cosec2 6, sector, cos2 @ and others), it is necessary to con-
sider the radiation pattern corresponding to the factor of the arc.
The latter, as is known [2], is determined by the geometric dimen-
sions of the arc (radius R, magnitude of aperture 26), the radiation
pattern of the radiators and the amplitude distribution in the azi-
muthal plane. However, the formula ohtained in work [2] for calcu-
lation of the vertical radiation pattern in practice is correct only
for the calculation of the continuous arc antennas. Examined below
are problems of the formation of the radiation pattern in a vertical
plane of arc antennas with discrete distribution of the radiators.

Radiation pattern corresponding to the factor of the arc

The radiation pattern according to the field by an arc symmetric
with respect to the center of the antenna, which consists of N radi-
ators having directivity in the plane of the arc F (q)) and with
an amplitude distribution {i } is determined by the formula

F(p ) -- : LiFy (- 3y e L85 O (e 8] (1)
f=—n
where & is the angular distance between the radiators, and 4.0

is the phase factor of the arc antenna.
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The expression for the phase factor &i¢.m of the arc antenna,
which can easily be obtained from Fig. 1, has the form

Eidp. M - ARcosOL —ensy )cosq |-sina sing). (2a)

To ensure the cophasal addition of fields of all the radiators
in the assigned direction «. #, , the electrical phase compensation

for the j-th radiator must be equal to
£ilrg. 0)) KRcosO,[(1 —cosaj)cosq, {-sina, siti oyl (2b)

where «.. 0 are the angles determining the direction of the maximum
of the radiaton pattern of the arc antenna, and R is the radius of the
arc.

Consequently,

§i(p M —3; (1phy) = AR {‘ I —cos 1,) (cos ¢ cos ) — cos q, cos 0y -+ 3)
+- sina; (sin ¢ cos 9 —- sin p, cos 0,)).

However, for the majority of the practically realizable cases,
it is required to ensure the movement of the main beam only in an
azimuthal plane (plane of the arc), and therefore, it is expedient
to assume that 90 = 0.

To simplify the analys.s of the radiation pattern in the plane
normal to the plane of the arc (in a vertical plane), which is of
interest at a given moment, let us assume that the maximum of the
main beam in an orthogonal plane has the direction ¢ro = 0. Then
the radiation pattern in the vertical plane corresponding to the
factor of the arc is written as

L]
F() - LiF,0pexp {ikR (1 —cos x,) (1 -~ cos™). (4)
) )

J=—n

The factor F.(2,) in expression (4) defines the contribution
in the field of radiation of the arc owing to the directed properties
of the radiators in the azimuthal plane in the direction @ = 0. It
is obvious that this factor will be determined by the function des-
cribing the radiation pattern of the radiator in the azimuthal plane
and will fulfill the role of the importance to the amplitude distri-
bution. Let us rewrite the formula (4) in the form of

a
Fu e X Lewlincoss, (5)

lr- -n
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where n» EkR(l costh is the generalized coordinate, and
{/;}- 4} Fu(a) is the normalized amplitude distribution in the
plane of the arc. Then, by using the equality

exp(iucoss)) = ‘\_“ i'.l,(u)cxp(ilz,), we get
1~ --on
n ~
Fwy= N 1 2 i' J,uyexplila). (6)
fe-n (o

From expression (6) it follows that the vertical radiation pattern
fo the arc antenna, in the same way as the horizontal, has a complex
character and generally has no nulls.

If the radiators of the arc antenna are isotropic and uniformly
excited, i.e., {I'j} = const, then the expression of the vertical
radiation pattern acquires the form

Fu)-- ,_Z, i () ,-_}: exp(ilz). (7)
n
By noting that 7,'~'-=33—i and \1exp(ila,)~: “”"g , we finally find
! l{-fu sinl —
N
F)=Jdow 1 3 i —=Ch— (8)
o Nsinl’ v

The prime at the subscript of summation Z denotes the absence under
the sum sign of the value with Z-o0.

From (8), for the complete ring of the radiators, it 1is easy
to obtain the expression for the vertical radiation pattern of the
form

F((l) = JI)(") t S: ‘.""N ',ru‘.\ (ey. (9)

m’'=-—w
If the circular [ring] array with a sufficiently large number of rad-
fators N such that N)»u is used, then the vertical radiation pattern
of such an array is written as

F(u) 2 Jo(u) = Jo|xR (1 --cosb)]. (10)

Expression (10) completely concurs with the expression obtained

in work [3] for the continuous circular aperture. Furthermore, from
(8) it is easy to show that when f3#0 the radiation pattern in the
vertical plane becomes isotropic, which corresponds to the case of
the line-source antenna. For circular antennas with the magnitude of
the radating sector 2/3 £7, for which expression (10) is incorrect,
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it is necessary to use formula (8). At a sufficiently large number
of radiators N (N-»©0), expression (8) is still simplified and takes
the form

F(u) = Jqy(u) + }3 ‘.I'J“(")__ﬂ';"%ﬁ_. )

1"~ —-o0

(11)

If we are limited by the first several terms of expression (11), then
for the calculation of the radiation pattern of the arc antennas in
the vertical plane, we can use the relation

173°

200, = (12)

sin';- )} xR

The accuracy of the calculation according to formula (12) is no

worse than *¥5%. From equation (12) it is evident that the width of i
the radiation pattern is determined by radius R and the magnitude of

the radiating sector 2 P of the arc antenna. Figure 2 gives the cal-

culation dependences of the width of the radiation pattern of the arc

antennas on the magnitude of the angular aperture 2} for different

values of kR. From the given curves it is evident that with an in-

crease in values of kR, there occurs a considerable increase in the

width of the radiation pattern, especially for the small angular

apertures 23 of the arc antennas. From a physical point of view,

this is explained by the decrease in the magnitude of the phase leads ﬂ
caused by the geometry of the arc antennas. .

23855
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Results of the calculation

In order to investigate the change in the shape .of the vertical
radiation pattern of the arc antennas at different amplitude distri-
butions in the plane of the arc according to formulas (1) and (6), a
number of numerical calculations was conducted. The calculations
according to formula (1) was produced on the computer Ural-2,
and those according to formula (6), manually. From the diagrams given
below (see Fig. 3), we see the good concurrence of the points calcu-
lated on the digital computer and manually (the calculation values
according to formula (6) are noted on the diagrams by dots).

]
704
;
0,9
28 aR =150
LAY:)

97

96 {{,-'}:can.st

05 T
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ar

- —_— —

G & 8 2 16 20 2 28 32 5 U b 98 52 55 60 6% 68 12 7§ 0 gv 98 929
Fig. 3. 4

Figures 3-8 give calculation radiation patterns illustrating the ;
effect of the different amplitude distributions for the arc antennas i
with a curvature determined by values of kR = 50 and kR = 150 with f
angular apertures of 2 = 90°, 135° and 180°.

From an examination of the presented figures, it is evident that
the shape of the vertical radiation pattern, which corresponds to the




factor of the arc antennas, is close to being column-shaped. This is
explained by the fact that at small angles of elevation @, the out-
-of -phase, causeal by the change in the difference of the course of

the beams from different sections of the arc with respect to the
plane 6 - 0, is insignificant, and the radiation field is almost
equal to the maximum value. With a further increase in the angles
0@, out-of-phase begins to be affected, and the field in the far
zone sharply decreases. The presence of a nonuniform amplitude dis-
tribution in the plane of the arc leads to an expansion of the radia-
tion pattern in the orthogonal plane owing to an increase in the
contribution to the total field of radiation from elements located

on edges of the aperture. Besides this, as was indicated above, the
radiation patterns do not have nulls, and with an increase in the
nonuniformity of the amplitude distribution, we observed the simplest
transition from the oscillatory process of the change in the signal
beyond limits of the main beam to the smooth "pulling-in" of its
slope. At relatively small angular apertures (2}'34 900) of the arc
antenna, a certain stationarity of the shape of the radiation pat-
tern with respect to the form of the amplitude distribution is ob-
served. This occurs due to a lowering of the nonuniformity of the
amplitude distribution within the small angles 2 P of aperture of the
arc antenna and of the approach of it to the line-source antenna, in
which the radiation pattern in the vertical plane generally does not
depend on the amplitude distribution in the azimuthal plane.

(X} AR =30
Ne*23
0.7
o 1= const
2.5 - cosa, Fig. 4.
i [

I Fcosa,(1+cosay)

PN R P K 2 I 837 IF 60 we wl ST ih S0 Se K8 T2 6 Ko G0 MW
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Thus from the preceding section and the analysis of the calcula-
tion radiation patterns corresponding to the factor of the arc,
it follows that the arc array, which consists of radiators nondi- f
rectional in a vertical plane, possesses directional properties.
The latter fact imposes definite requirements on the formation of
the radiation patterns of the are arrays required in a vertical plane,
especially in the formation of the wide-directional patterns or pat-
terns of a special shape (cosecze, sector and others).

Characteristics of the forming of the assigned radiation pattern in ,
the vertical plane in arc antennas ‘

) In the designing of arc antenna arrays, there usually are assigned 1
radiation patterns both in the plane of the arc and orthogonal to it. ;
According to the assigned characteristics of the radiation pattern in
the plane of the arc - the width, level of side lobes, scanning

9




sector, and others, the geometric dimensions of the arc (radius R,
aperture Zp) and also the necessary normalized amplitude distribu-
tion {I'j} are determined.

rlm‘

R =150
N=9

1/} = const

) $ & 2 15 22 2% 2 32 35 w2 4 &g 52 55 30 s 5§ 72 5 0§ 3~ 88 3
Fig. 8. I

These parameters are necessary for the calculation of the verti-
cal radiation pattern corresponding to the factor of the arc antenna
array. For this the works [1] and [2] can be used. Let us emphasize
once more that in the preceding sections we considered the vertical
radiation patterns corresponding to the factor of the arc antenna
array, which consists of radiators nondirectional in a vertical plane.
The radiators usually used in the antennas possess a definite direc-
tivity in both planes. For the majority of the practical cases,
with a sufficient degree of accuracy it is possible to consider that
the three-dimensional pattern of the radiator is represented in the

form
Fualp, ) [p) Fy(9), (13) ‘
10
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where f(@) is the radiation pattern of the radiator in the plane

of the arc; F1(6) - radiation pattern of the radiator in the plane ,
normal to the plane of the arc; ? , @ - angles determined by di-
rectional cosines.
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Considering condition (13), we can assume that the vertical
radiation patterns of the separate radiators in different cross sec-
tions P, are identical, i.e.,

Foy  Fy(0) . Fay,
and the complete (required) radiation patterna in the plane under
consideration is written in the form

G F@®r,e. (13a)

where G(®) is the required radiation pattern in the vertical plane;
F1(8) - the radiation pattern in the vertical plane of a separate
radiator; F(8) - the vertical radiation pattern corresponding to the
factor of the arc array calculated according to formula (6). From

11
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expression (l13a) it follows that for the creation of the required
vertical radiation pattern in the arc antenna, it is necessary that
the radiation pattern of the separate radiator satisfy the condition

(]

Fyn ren (14)

the form of = .
It is obvious that,the radiation pattern F1(9) of the separate radia-

tor will be determined both by the geometric dimensions of the arc
and the shape of the required radiation pattern.

For clarity, Fig. 9 gives the change in ti..2 shape of the verti-
cal radiation pattern with respect to power P1(6) of the separate
radiator installed into an arc antenna with geometric dimensions
Zp = 1350; kR = 50; 150 and fI'J} : cos? a.j for the forming of the
radiation pattern, which is changed in the sector of 5°¢ o gus°

2

according to the law of cosec“®. On this same Fig. 9, given for a

comparison is an ideal radiation pattern (solid line) of the type
cosecze, which should be formed by the radiator located in the line-
-source antenna array. The results given on Fig. 9 confirm that said
above, namely, that with the formation of the wide-directional radia-
tion patterns in the arc antennas there can occur a considerable
change in the shape of the appropriate radiation pattern of the sep-
arate radiator. Further, the problem is reduced to the synthesis of
a separate radiator according to the assigned radiation pattern de-

termined by formula (1l4).
Conclusions

1. The arc antenna array, which consists of isotropic radiators,
possesses directional properties both in the plane of the arc and in
the plane orthogonal to it. The obtained relation shows that the
width of the radiation pattern of the arc antenna in a plane normal
to the plane of the arc considerably depends on the geometric dimen-
sions of the arc.

2. The effect of the different amplitude distributions on the
radiation pattern of the arc antenna array in the plane normal to the
plane of the arc, as the numerical calculations showed, becomes
noticeable with an angular aperture of the antenna of 2]3 >90°.

3. The radiation patterns of the whole antenna and separate rad-

iator in the plane normal to the plane of the arc are considerably
le

. e d




different, which should be considered with the designing of arc

ihtennas with a radiation pattern of special shape in the plane in-
dicated above.
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ENERGY CHARACTERISTICS OF PERIODIC SYSTEMS OF RADIATORS
Efficiency and Qutput Coefficient of Power, Directive Gain, and

Gain Factor

I.V. Guzeyev, A.B. Kolot

Obtained in this article, which is a continuation of [1],

are expressions for the efficiency and output coefficient; and

the connection between the matrix of scattering and partial gain

of the array element

For the linear periodic array with several active radiators, the

is established.

feeders of which are excited by external incident waves, the effic-

iency equals

n -

where p1, pz,..., Pe are
complex amplitudes of the
elements.

On the basis of [1],
relation (1) can be given

L]

RIES BT

Wasa  parre
w .
naa ‘\-“ la, |2 (1 )
PPy Py n

numbers of the active elements; anbn - the
direct and inverse waves in feeders of the

which was used by the Parseval theorem,
the form

jla(u) BFlv 1S Pldu
| e
2n ‘\:‘ fa,p ' (2)

PPy Proc Py
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where a(u) and S(u) are the complex Fourier series compiled, repcc-
tively, from amplitudes of incident waves (ah) and from elements of
the central line of the matrix of scattering (sn) of the system (see

(1.

With the excitation of only one radiator and an identical load
of feeders of the passive elements, characterized by the reflection
factor I, on the basis of [1] and formula (2), we obtain

—T_—_—-Fi:(-l'l\l:
1, 'r‘.‘,"’ o -——'-—!———-- —_—— ‘l‘:""(p =Q, v 1, ., o (3)

. ] du

2
i |-v?m)!

b ot e e SR

With the wave loading of feeders of the parasitic elements ([=0)
from (3) we get the relation

L3 ~

MR |—-?-"‘-'f|§(u)l’ du— | — E[s,,]'—' TR ()

— n-- ~

similar to that obtained in [2] for two-dimensional periodic arrays.

Let us consider the case when the radiators with numbers within
-NSnéN are excited with the linear distribution of the phases and
feeders of the remaining loadings of their wave impedances, i.e.,

a. == ||a"‘e--f"’h' n - 0- .|' l' :If 2. . e ey f‘ N; (5)
" Ao, ne (VD LV, L oo, :
where Cb is the difference in the phases between the adjacent radia- 1

tors.

When N))1, and at a sufficiently smooth distribution of the |
‘ amplitudes |ah| (i.e., for the highly directional arrays), the peri-
3 odic function IEZ(u)I2 is changed considerably faster than I‘.s'(u)l2
i and has in the interval (-, 7) a single main maximum (when u = §).
Considering this fact and taking into account the theorem of Parseval,
on the basis of (2) we have1)

(D) 2 1 — |5(h) . (6)

IIn the limit, when N-+&, relation (6) becomes precise.

15




The radiation power (W,45 ) is a function of characteristics of
both the antenna and sources which are the connected system, and,

PRpp———

therefore, it is convenient to characterize the change in W3 not
by the efficiency, which is a characteristic only of the antenna,
but by the so-called output coefficient of power

£ Y 1

: (N

where Wyaxe 1is the maximally possible total power which can be re-

Waake

moved from sources which excite the system.

If the sources are generators of voltage with an emf a;n and
identical internal impedances characterized by the reflection factor
I’ , then on the basis of (7), by applying the Parseval identity, we

getZ):

=T f

P " ‘ '?T(H) ’2du
. \_J | I l‘s(u)l'
§.': (l"—lrl-) ® ’

"i‘f (@) I du

(8)

where &(v) is the complex Fourier series compiled of the emf [1].

If the array is excited by (2N+1) voltage generators with lin-
early phased-in emf [similar to (5)], then under the same assumptions
as with the derivation of (6), we obtain

o V=I5 (9)
Py~ () =) - —= =,
ey (1=l by~ P

when [ = 0 the output coefficient concurs with the efficiency
which is natural, since due to the absence of reflection from the !
generators, the amplitudes of the extraneous waves do not depend on i
the loads. i

For the plane two-dimensional periodic array with the use of
notations of work [1], relations (3), (4), (6), and (9) are replaced
by the following:

1Let us recall that the scurce of voltage generates the maximally
possible power on the load with the impedance complex conjugate to
the internal impedance of the source.

16
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T - dud
o) o s — .‘..,“ Fsw.of
ol ’h,"—’.l’ =l - (10)
(e T
dos b= rs(u. v
‘ Ve i : ) ~ a2 “" m‘ .
. o = | i ‘ ‘ Is(u.v)fPdudv:= | — ‘\-‘ L [Saoe |1 (11)
b, Wy~ | — I;(q,' \|r”2 ‘ (12)
B, Wy~ (1. iy -t lEenl (13)
i -rse. 0

Let us turn to the linear or two-dimensional periodic array with
ctue active radiator and with the wave loads in feeders of the passive
clerments. By equating the expressions for the radiated power, com-
puted along the fields in the far zone and in feeders of the system,
and using work [1], it is possible to obtain the equality i

.
w= [ [0 o sinnavde, (14)
S0 gm0
where 'vam'w and » are the partial pattern and directive gain of
the element correspondingly for the linear and two-dimensional arrays.

Designating by D©(d, q) the direct gain of the element of the
array (with the wave load of the passive feeders) and on the basis
of the determination of the directive gain, we get

DO, )7 =4x| 770 @ =g"0. 9. (15)

where g<'(f,¢) is the amplification of the element of the linear or
two-dimensional array (with the wave load of the feeders).

Relations (14) and (15) can be examined as conditions of the g
normalization of the partial patterns. ' §

In conclusion of the section, let us note that the connection

between the efficiency, directive gain, gain, and partial pattern of ﬁ
the element in the array with arbitrary but equal loads in the feeders
retains the form of the equalities (14) and (15), in whith, thus,

it is sufficient to replace the superscript (c) with (H) [1].

17
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Connection between the function of scattering and partial gain of
the element in the periodic array

The power radiated by the antenna system can be computed doubly:
according to amplitudes of waves in feeders and by fields in the far
zone.

Since the amplitudes of the waves are connected by the matrix
of scattering, and the fields of radiation are expressed by the super-
position of the partial patterns, it appears possible to establish
the connection between these most important characteristics of the
system. Obtained in works [3, 4] are relationships between ampli-
tudes of waves in the feeders and the power being radiated for finite
systems of radiators. By extending these relationships to the linear
periodic systems of radiators and considering their characteristics
[11:

Som = S =Sp(n,m, p 0 1, 2 ),

7:."(“. T ‘-73,"’(". ) exp (i phdcos i),

it is possible to obtain the equalities

Qe = Nssp g =0, 21, 32 ) (16)
Pomaon
* 2=
AR " J"[:’c)(:), ¢p)|’oxp(~ igkd cos M sinNd dd o, (17)
n'..o'-o

in which g¢-m'—m, Qu=Qn.-, tv,=tv.m-. 1.e., for the array being consider-
ed, the elements of the infinite matrices [Q) and [¥] depend actually
on the difference in the suberipts. For the two-dimensional periodic
arrays, instead of (16) and (17), we have

Q-l - E z sns:.a,'.-.("- B"—ou 1, 42,0, (18)

72— (e anon

s W
Ty = f } I[g,’(ﬂ, ml'exp[-—iakd. sind cosp —
Vel gu-0

— iPhdysindising|sinfiddde
@ $=0 1, £2 .., (19)

where & and ﬂ are differences in the subscripts, respectively,
with respect to the rows and columns.l)

1)Let: us note that in the derivation of relations (17) and (19),

it was assumed that in the infinite arrays there exists no continuous
18 [continued on next pagel




Quantities 1% for the linear and 1&p for the two-dimensional

arrays are coefficients of the interaction of partial patterns of
definite radiators of the considered systems; they are distinguished
frcm cimilar coefficients introduced in works [3] and (4] only by the
factor caused by the normalization of the patterns. In conformity
with (l4), (17) and (19), the quantities 16 and 'zbo have physical
reaning of the efficiency of radiators of corresponding arrays (with
wive loading of feeders of the remaining elements); o (when q # 0)
and 'f.p (when d-2+ p2 Z 0) are measures of the nonor‘thggonality of
the partial patterns.

It is simplest of all to explain the meaning of elements of the
infinite matrices [Q] for the arrays being considered on the basis of
relations (22) and (27) (see below), from which, in particular, there
follow almost evident equalities [2, 3, 4]:

-
Qo z { % F ! ‘7‘6”'

H—= —-w

o ~
\) Al 5 .
Qoo l Z l Sup l.! b 7‘:;: '

e - p=x--r

By turning at first to the linear array, let us introduce the
notations:

u — kdcos®, (20a)

2r
[ "
(L]
where g(u) is the partial gain of the element of the array (as a H
function of the generalized coordinate u) averaged over the angle P -

By taking (20a and b) and (15) into account instead of (17),
we obtain the equality equivalent to it

]
A “22‘7 :‘;‘g(u')(' W e, (21)

By using works [2, 3], in notations (16) and (17) it is possible
to obtain an infinite set of equalities

de Q, ¢ O L1200 (22)

(continued from previous page] surface waves; in the opposite case,
Y would  be necessary to consider them in the energy balance of the
Sy tenm, 19




————a

o

.

By multiplying each of the relations of (22) by e'?™ and adding
them with respect to q in limits of -eeo, +00, we get

|--.Q~(M) T ), (23a)
where
dw) - ‘\_" ch"’"; T - :: T, e, (23b
- [y 3
On the basis of (16), (21) and 23b) we get R
dw [se)f, (24)
&
t~(u) ﬁ ‘ K@) b, (—u'ydu
;bt'
. b _ ‘4 ---2an
- ""..\ g2 nya u—), (25a)
where
| \
ey by (13
b, @) - g lim N e (25b)
¢=—N
is the periodic delta function {5]:
0, lz]~1,
3@ -y, (2] -1, (25¢)
1, |z} 1.

By substituting (24) and (25a) into (23a) and returning to the
angular coefficients, we obtain

2

V- [s(kdcosiny [ - ::‘l. 2 { E"_ S g, gydda(cosig (26a)
L) 0

where the summation (at fixed 4¥) is conducted according to discrete
angles determined by the euality

cos i, - - cos --::7" . (26b)
where the summation index is actually included in the limits of
—EfL (1 --cosm|in ElL
c[ (1= cos »)J ‘n c[ - -}-cns“)]. (26¢)
Function E(z) denotes the whole part of the number z.

—

In the process of the conversions of (16) to the “orm of (24),

the order of summation (with replacement: r =z q-p, qQ = p+r); with the

transition from (21) to (25a) the order of the summation and inte-

gration is changed.
20
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For the two-dimensional periodic arrays, instead of (22) and
(23a), we obtain

avvll al,n ’ (‘,:,- Vq'.( ', " O ' '. ¢ 2- .. ). ( 27 )
I Qui, v -, v, (28)
where Ciu vy, 1(v vy are the appropriate two-dimensional Fourier series.

By transforming (18) similar to the linear case, we obtain
Q. v) — s ol . (29)

To obtain the function ?(u, v), let us transform, at first, the
expression (19), introducing the generalized coordinates:

u' - kdysinitcosg, v - kdgsin i sin ¢ (30a)

The element of the solid angle, according to (30a), equals

. D @) du'dv’
£ W IDd Lo v
sundide L. V) / W v (30b)
nnm.v ! (hﬁ) (L{

In connection with the two-valued property of function o’ ) ,
let us divide the integral of (19) into the sum of integrals

Tar =G0 Sy
taken, respectively, over the upper (+) and lower (-) hemispheres,
which ar egions of single-valuedness for @(«'. v) . By introducing
into T «p the replacement -1 -¢ and considering that o --sing,

for 1;P it is possible to obtain the following expression:

e Y S R E
1My J
(‘r)
N exp(—izu’ —ipe) du'dy

cmil(up v') ' (31a)
where

eV w, vy —gfivw. o), g, o),
g'_'(u', v') = g&’(n —¥(’, V), qu, )

O < M, v') = Arcsin l/(-"‘Td-)’ .;_(F,: % i (31b)
4 t

0, v)= Arclg""‘ . 2r, (31c)

The integration in (3la) is extended to the area of the "ellipse

of radiation" o

() +Ga) < (310)
21




v__-------m-...._,____m_-zya

which is a representation of the upper half-space on the plane (u',

f v').
By transforming (3la) similar to the linear case, we get
r U ,A_‘_. ' .-.”‘(“:_'.Al"’,-b —u)d QY T
T LEY Al,s,\ cas b (1'0") 2 )0 1 )
("r)
A U O TR0 L T LY. I
L dude inA }.J L cus (1 -~2an, v —2np}
nNn——tMon -—om
ol o (R EEE T s
8 I U e B i I (32a)
where
g, v) =s g”'(u, v) - g(’" (4, v), (32b)

A = d1 X d2 is the area of aperture of the array per one element;

e[...] is determined by (25c).

On the basis of (24), (31b) and (32b), it is possible to write
equality (23a) in the following coordinate form:

- |'s(kdy sin i cosy, kdysindsing) [

(e (. (c) .
Son o Taed F Boa (0 Paas Qus ,
— ..,':_< 1\‘ ot T .- ,_“"..( o TL)_ o (sin ”"I’)' ( 33a)

1A Lodimd 08 gy,
n r

The summation (at fixed 4?, q)) is conducted along discrete
directions (v.,. ¢u;), determined by relations

sinil, cosq,, - sindcosq - L ; |
“ (33b)
sindt, sing,, -sinftsing —p -
where i ¥y pp de
0 My, <r/2, 0L gy, < 2,
P Do @ = oo (33¢) ,

When d, = d2 and p%(h ¢)=0 relation (33a) concurs with that
\

obtained in work (2].

In conclusion to the section, let us note that in relations (26a)
and (33a) the slipping directions1) should be excluded from the exam- ;
ination, since for the finite arrays in these directions the concept j

)That is, the directions corresponding to 4} = 0 and éY = 7 for {
the linear arrays and 49': /2 for the two-dimensional arrays. i
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of partial radiation patterns is incorrect, and it is necessary to
use the r~ ial fields. Therefore, in formula (25¢) the value of
(1) = 1, .as a purely formal meaning conditioned by the apparatus
of the Fourier series.

Certain theoretical limitations of characteristics of linear arrays

Relations (26a) and (33a) are equivalent to the law of the con-
servation of energy for periodic systems of radiators and establish
the close connection between the matrix of scattering of the system
and radiation patters of the radiators. Hence, in particular, it
follows that in the analysis of the multi-element arrays it is im-
possible to assign the patterns of the radiators irrespective of the
matrix of scattering, especially, if the period (or periods) of the
array does not exceed the wavelength.

The indicated relations make it possible to expand a number of
interesting regularities peculiar to the periodic radiating systems.
For the two-dimensional arrays (when d1 = d2) these regularities were
first studied in work [2]; below some of them are examined in refer-
ence to the linear periodic arrays.

Since the right side of (26a) is the sum of the negative func-

1)

tions, resulting from this relation are three important inequalities

0 < |sthdcost | < 1;

' (34)
0< Vpwm)aosn,) <2,
2}%( Jo(cosi) < 22 (352)
og<pom g,
g (35b)
where | 2r
BE (M) = — | g (), ¢)d
’ 2"5‘ s e (35¢)
is the partial gain averaged over P -
2d

The upper limit of the gain, equal, according to (35b), to T
becomes physically obvious if we consider that for the multi-element
axisymmetric phased array with equal-amplitude excitation of the

1Let us note that the relation (34) has already been obtained

(true, strictly insufficiently) in work [1].

23
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e

v Lerente, the gain in the maximum does not exceed ggg (N - the num-

tor of elements) and is connected with the gain of the radiator by
tte known relation [2, 6]

D Dane)- (36)

When d <:L. the sum in the right side of (26a) is reduced to a
single term, and the scattering function in the interval —n< us<in

Guane == Np2

catifies the relations

1 [H.’»’.Fﬂ— <u< kd,

~ when
Is () |’ B % g(u)[ upn —~1‘d su - kdcos i < ki, (37)
’ [wheng
1 up kd - 1 L =

from which, in particular, it follows that the defined scattering

matrix corresponds when de;- to the completely defined partial

gain averaged over qi(the reverse is incorrect!).

In connection with this, it is interesting to note that due to
the eveness of S(u) (see [1]) function g0y, in conformity with
(37), proves to be symmetric with respect to the plane perpendicular
to the axis of the array. 1Ih this case the pattern of the radiator,
taken isolated from the system, can be nonsymmetric.

From (37) it also follows that the efficiency of the linear
phased array [see (4)] with the period within the half-wave is equal
to zero when ki<|h|<n ; this phenomenon is physically evident, since
with such phasing the considered array does not have the main beams

1)

in the region of the real angles ’.

On the basis of formulas (4), (35b) and (37), it is possibdble
to obtain the following inequality:

’:.‘,"~<3:-< 1. (38)

From (38) it follows that, in the first place, the efficiency of

the radiator of the considered array (with the wave load of feeders

1)

of the array and the absence of Joule losses in the radiators and the

Such a behavior of the efficiency is the result of the infinity

Surrounding space. For the phased array of finite dimensions, in the
case of the disappearance of the beam, in practice only its extreme
elements radiate, and the efficisﬁy proves to be of the order of 1/N.




of the remaining elements) does not exceed %? and, in the second place,
even if one element of the scattering matrix of the system is differ-
ent from zero.

A somewhat more specific judgment about the elements of the
matrix [s] can be obtained on the basis of (37).

For example, it is possible to show that the radiators can be
decoupled (sy=ss2=..=0) only in the trivial case when Isol =1, i.e.,
when they are not radiating. Actually, formulas (37) are identically
satisfied when |s(m)}:=|s|=1 and g§ (d, ¢)=0, and when |s,l <1 and
s, ° O(n # 0), on the basis of (4), (15) and (37), we get the in-
equality

(c)

U | |Skdcas) P 2
D™ T g

e < (39)
which, obviously, contradicts the definition of efficiency.

Let us note that the inequality (38) doe not at all prohibit the
reaching of a 100% efficiency with operation of the array in the
scanning mode (i.e., with the linear-phase excitation of its ele-
ments). According to (6) and (34), for this the vanishing of function
s(u) is necessary when -kd €u<kd, i.e., in the interval of the real
angles. From (37) it follows that the scattering function of the
indicated "ideal" phased array satisfies the conditions:

[when]
[Sun ()| = { ?w:,kllg:n Ia; /;d, :: ": :d' (40)
and the partial gain

€€ (1) = 311 — const, (41)

i.e., its radiators are omnidirectiona11). The efficiency of the
element of the ideal array, as follows from (l41), reaches its upper
limit equal to %g . Elements of the matrix [s“n], accordingto (U40),

are expressed in the form
1

e"* " cos nudu

S

snl n

Y (42)
(ﬂ‘:ﬂ. i“. i?. . . .)-

The omnidirectionality, which, as is known, is impossible at
finite distributions of current, here is the result of the infinity
of the considered systems in the absence of Joule losses in radiators
and the surrounding space.
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where ?(u) is a certain real function.

In connection with the expressed remark, it is clear that the
concordance of the phased array, for which [v(ideridun.| ). is neces-
sary, and the concordance of its elements in the generally accepted
meaning (lsol<k1) are completely different concepts. In a number of
cases, for example, with the closely located (d & ) elements, the
concordance of the radiators can lead even to a mismatch in the phased
array, and, on the other hand, the wide-angled matching of the latter
can correspond noticeably to the detuned elements.

Regarding the arrays with a period of d).%ﬁ, then for them
many of the limitations noted above drop out. In particular, it
becomes fundamentally permissible that sy=syy=s.s= ..-0 and
R TURES The mutually single-valued correspondence of type (37)
between the gain of the radiator and the modulus of the scattering
function of the system is preserved when d<\within

-~ 2n--kd) <u<2n- kd. which correspond only to part of the spectrum
of the real angles [#arc sin X (%—-1) from the normal to the aper-
ture]1).

Conclusions

1. Expressions are obtained for the efficiency and power output
coefficient for linear and two-dimensional periodic arrays with ex-
citation by their voltage generators [oscillators] with identical in-
ternal impedances and arbitrary emfs.

2. The relationship of the connection between the scattering
matrix and the radiator gain in the linear periodic array has been
established. For the two-dimensional array, this relationship is
obtained under more general assumptions than it is in [2], and, namely,
when the periods of the array are arbitrary, and the radiation of
energy is not limited by the half-space.

3. On the basis of the relationship of the connection between
the scattering matrix and the radiator gain of the linear periodic

——

However, as follows from (26a), the defined function {%e.
o~
at any d corresponds only to one function [s(u)l. The reverse cor-
respondence (between @™ and s(u) is correct only when d‘<%}g

26
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array, a number of theoretical limitations for its characteristics
is obtained, in particular:

a) the gain of the radiator, averaged over @ , of the linear
array (with a wave load of feeders of all elements) does not exceed
24/ ;

b) when d< A\, the gain indicated in item a) is a function sym-

metric with respect to the plane perpendicular to the axis within
limits of #*arc sin ( A/d-1);

¢) the interconnection between radiators of the array with the
period d< A/2 is inevitable;

d) the efficiency of the radiator (with the wave load of feeders
of the remaining elements) when d<A/2 does not exceed 2d/A .

e) with a period exceeding A/2, the radiators of the array in

principle can be decoupled and matched, and their efficiency can
reach 100%.
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