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THE DESI1GN OF PHASED ANNULAR ANTENNA ARRAYS OF INTERACTINMG
RADIATORS, EXCITED BY A BUTLER CIRCUIT

N. P. Polishchuk and D. M. Sazonov

The article discusses an annular antenna
array of arbitrary interacting radiators, ex-
cited by means of a passive reactive Butler
pattern-forming circuit.

The procedure is given for calculating
the phase distribution at the inputs of the
pattern-forming circuit, assuring the best
rms approximation to the direction pattern
with maximum efficiency in the given direc-
tion. The amplitude distribution is supposed
to be uniform. Several numerical examples
are given and discussed.

INTRODUCTION

Annular antenna arrays are interesting because they can rea-

lize a rotation of the direction pattern (DN) within limits of

360* (in the plane of the array). However the resulting

amplitude-phase distribution of the currents, necessary for the

formation of the beam in the given direction, is sharply nonuni-

form, which complicates the realization of the rotation of this

distribution.

The utilization of matrix schemes to energize the antenna

array enables the transformation of the amplitude-phase distri-

bution of currents on the radiators so that the control of the

direction pattern of the array can be implemented solely by

changing the phases in the regulated phase shifters at the in-

puts of the matrix circuit with constant amplitude excitations

[1,2]. In this connection, there occurs the problem of synthesis



of the DN with maxim coefficient of directional activity in the

given direction, using annular antenna arrays with phase scanning.

The synthesis is understood to refer to the discovery of the dis-

tribution of phase shifts of the exciting signals at the inputs

of the matrix circuit, which assure the best rus approximation to

the DN with maximum coefficient of directional activity in the

given direction. This paper is devoted to the above problem. It

considers a procedure of designing annular antenna arrays of

arbitrary radiators, allowing for their interaction.

FORMULATION OF THE PROBLEM. THE CALCULATION METHOD.

Let us consider an antenna array of N identical radiators,

arranged at equal distances along a ring of radius a in the plane

8-w/2 (Fig. 1). Let us assume that the DN of the radiators are

known. We shall designate these by f~(,) where n-1,2 ... N. We

may then consider a symmetrical matrix of mutual impedances to be

also known:

Z1 2 .. ZIN

the elements of which may be calculated, e.g., by the method

proposed in 131.

We shall consider that the antenna array is excited by means

of a passive, reactive, Butler pattern-forming circuit, character-

ized by the scattering matrix:

2
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Fig. 1.

... .N P". . .

I10, IT IJ2
Is]-, I1"1 1011

P" (2)
10 -= -

where the transformation block

I'" --In '=4'" (3)

coincides with a matrix comprised of the eigenvectors of matrix

[z].

The problem consists in finding the amplitude-phase distri-

bution of the exciting signals at the inputs of the pattern-forming

circuit, to assure a maximum coefficient of directional activity

of the antenna array in the given direction. It is convenient

to solve this problem in two stages.

3



1) Synthesis of the given DN with maximum coefficient of

directional activity in the given direction, i.e. finding the

optimal amplitude-phase distribution of the exciting currents on

the radiators of the antenna array.

2) Realization of an approximation to the optimal distribu-

tion of currents in the specific feeder circuit, i.e. rescaling

the discovered optimal distribution for the inputs of the

pattern-forming circuit.

As was shown in [4], the synthesis of a DN with maximu

coefficient of directivity is a partial case of a more general

Disgiven by the function:

(4)

where f is the vector of radiation, parallel to the vector E in

the far zone; (0o,00 ) is the direction of the maximum of the co-

efficient of directivity.

The first part of our problem corresponds to the problem of

synthesis of an annular antenna array with no limitations imposed

by the pattern-forming circuit, and its solution, i.e. the opti-

mal distribution of currents on the array elements, can be written

in the form [5]:

4



(5)1

where

- yf> e (e , ,)>sin OdOd. (6)

To the discovered currents there corresponds the DN of an

antenna array, which approximates the given (in a rms approxima-

tion) with the best accuracy:

-(e 7) < (, ) i> . (7)

In order to solve the second part of the problem, let us

consider the operation of the pattern-forming circuit in the con-

ditions of its loading on the antenna array (Fig. 2).

The normalized incident and reflected waves at the outputs

of the matrix circuit can be expressed by the currents in the

elements of the antenna array and by the matrix of mutual resis-

tances [z]:

(8)

2(9)

iThe designation a> refers to the column matrix, <a to the row
matrix, and {a} to the diagonal matrix.

5
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Fig. 2.
Key: (1) Antenna array;
(2) Pattern-forming circuit.

where E is a unit matrix of order N.

On the other hand, it follows from definition (2) of the

scattering matrix of the pattern-forming circuit that:

U>= [T u.>. (10)
.> --.TIu.,,>.

From (8)-(11) we find that:

U.A >- [T" [Z+El i>, (12)
- 2

U"> = IT] V-9 Is +E-* M UO >. (13)

The column .jx> gives the sopght optimal distribution of

the excitation at the inputs of the pattern-forming circuit, while

U T haracterizes the losses due to reflection and the mutual
coupling between the channels.

From the discovered column -ma> 16t us construct a new

. .... # ,, J-6



um > , all the amplitudes in which are equal to unity I while the

phases have not been changed. In this case, the corresponding

DN '(8,$) will differ from the optimal; however, this discrepancy

will be a minimum for the described construction of the column

uamI. In fact, the partial DN, corresponding to each excited

input of the pattern-forming circuit, are orthogonal by virtue of

the circular symmetry of the antenna array and the choice of

matrix [T] in the form (3). These DN have the appearance

< ;(0, q) = 2 <(O, 4p) [TI(C + I)-,

where { +l} is a diagonal matrix formed from the eigenvalues of

the matrix [z+E].

Then the DN of an antenna array can be represented in the

form:

Assuming that ua>=ae' > and uw>=e''>. , we find that

the squared norm of the difference between the two diagrams G(e,4)

and G(605), equalling

will be a minimum when k k"

iThe uniform distribution is a good approximation of the optimal

distribution, averaged over all the scanning angles.
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With the discovery of the .ulumn u.,A > , the particular

synthesis problem may be regarded as solved. By assigning dif-

ferent beam directions (60,0) in (4), we obtain sets of phase

shifts, the realization of which by means of phase shifters

enables the control of the DN of the antenna array.

Since the synthesis of the DN is approximate, a calculation

is necessary to verify the realized DN, using familiar distribu-

tions of u" >.

G'(0, (p) =2<f (0, qp) [z+EF' [TI )u;>. (14)

CALCULATION EXAMPLES

As an example of the use of the above procedure, several

calculations were made for a 32-element annular antenna array.

The DN of the individual radiators were given in the form:

el 1ca co-(P(_ sine0

Co (15)
Cos (e 1() ={c(n- 8)co

when eE1,I21 A 9 E[q, 1 ],
0 when [eeJV [ ,,

where K=2Tr/X,

l- 2 2t] for q>1,

10, Xl for q<I

NI1O, 2. 1; P>

2
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Under an appropriate choice of the parameters p and q, this

form of the equation can provide approximate DN of actual

radiators (vibrators, slits, etc.), arranged near an ideally

conducting cylinder.

Table 1 shows the values of the active and reactive compo-

nents of the atri:r f mutual resistances, calculated from the

DN (15) by the method of (3].

Table 1.

Ku 22 a- Is

-, fi 14 4 1

IIV0 1 0
2 '+0.099 -0.164 0.274 -0.134
3 -0.09 0.040 --0.069 0.000

4 0.001 -0.014 0.022 0,015
5 -0.004 0.006 -0,001 -0.015
6 O.004 -0.001 -0.007 0.006

Parameters p and q were chosen to obtain an approximate DN

of a transverse half-wave slit on the surface of an ideally

conducting circular cylinder: p=1.137 ; q=l. 2 . The calculations

were performed for two values of the electrical radius of the

cylinder: ka-22 and ka=l8, i.e. for a weak and strong inter-

coupling between the radiators.
I

Figures 3-7 show the amplitude-phase distributions at the

inputs of the pattern-forming circuit (a) and the radiators of

9
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an antenna array' (b), as well as the DN which correspond to these

(c) for various phasing directions. Further, the optimal distri-

butions and DN are shown on the figures for comparison.

It can be seen from the graphs that the amplitude distribu-

tion at the inputs of the pattern-forming circuit is close to the

uniform only for small numbers of harmonics and is oscillatory in

nature for the larger numbers. Thus the conversion to an

equal-amplitude distribution naturally produces a change in the

amplitude-phase distribution of the currents on the radiators and,

ultimately, reduces the directivity coefficient of the array.

However, as can be seen from the graphs and Tables 2 and 3, this

reduction is slight (<6%).

The graphs of Figs. 3-7 also show the distributions of the

coefficients of reflection at the inputs of the pattern-forming

circuit. These are determined solely by the matrix of mutual

resistances [z] and do not depend on the scanning angle. The

total reflected power is "',2.07. when ka-22 and -.7.3%. when lca-18.

Tables 2 and 3 show the values of the directivity coefficient

of an annular antenna array in the case of a scanning over * and e
for an optimal and an equal-amplitude excitation of the inputs of

the pattern-forming circuit when ka-22 and ka-18, respectively.

The calculations were performed with and without an allowance

for the interaction between the radiators (i.e. when lz]=E).

Ion the graphs the index n designates the numbers of the radiators
n-l,2,...,N, while the index m-0, ±1l... ±N/2 -1, N/2 designates the
numbers of the inputs of the pattern-forming circuit, corresponding
to the excited current harmonics at the outputs.

10
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Key: (a) Degrees.

When ka-22, the intercoupling is small and the results of

the calculations are practically in agreement. When ka-18, a

disregarding of the interaction between the radiators will lead

to an error in the directivity coefficient of '18%, the maximum

errors occurring for a beam scanning in the equatorial plane

(e0-Mf/2).

Figure 8 shows graphs for the change of the phases of the

regulated phase shifters at the inputs of the pattern-forming

circuit, which is necessary for a smooth scanning in the antenna

array in the equatorial plane when ka-22. The graphs were con-

structed only for positive harmonics, as it is easy to demonstrate

13



Table 2.

W~ . I U.g U.11 S.#. 1M ,Ni. jai&,.,

Ox' 146.1 1I h.I k4 .I 4 .6 I

7r 11-E 4. 4. 44.2[ 44.5f 43.6

-8f mE 1, l42 144.0 144.2 143.5

"-00 ".6 I,,.s U.5 135.5 1M.5

"''I or 11- " .1 ".'i U.61 M. I M. I

*8 me f[ . 7 .41 134.6 134. 134.

OW IU.7 I2.? 1.7 123,7 123.7
E U~ S2,a[ 22.81 23.9j 22.6

(81 E 23 2 2S.I 2.1 23.2 [22.93
t 112 , 12.s 112,. 112,8 112.6

4V 1i,. 1 jl,5 1l,5 I I.sj 11.5 11.4

Of j- E 11. 9 1".9 I1.9 11.9 II".'

Key: (1) *O values.

that, for a symmetrical DN, the phase radiators corresponding to

positive and negative harmonics are related by:

argu-~-argu(16)

It can be seen from the graphs that, for inputs which

correspond to small harmonic numbers (m<8), the phase change is

nearly linear, which is characteristic for a continuous circular

antenna. For larger harmonic numbers, the phase distribution

becomes sharply nonuniform.

14



Table 3.

3.4' I .8' 4. .
Opt 94 59.4 159.5 s 4 59. 6

[&JOB__ . 57. 56.7 a . 570, 55.8

Opt 148.5 146.5 k48,6 k46,6 k6:I* -P E 1 45.64 45.41 45.54 45.6 4 ,8
Is] - E 4,2 48.1 .1 ,.3 1 8 o

*Opt 133.8 133,6 133,9 133.9 133,9
1 a* E 4 33,4 3t.3j 33,4j 33.4 .33.0

s E 1 32,8 j2.8 132.8 132.9 32,6

Ot 121.2 121,2 121,2 121,2 121,2

5V zJ*vE 1 20.34 20.34 20,3 u 20. 20.1

[mE 21,0 21.0 421.0 121.0 420.9

Opt 110.9 I,o.9 Iio.9 110,9 110.9
Mr ~ iE 4 9.54 9,41 9,44 9.4 9.4

[jE 1105 410.4 1410.5 1410.4 104

Key: (1) * values.

As was pointed out above, the amplitude distribution at the

inputs of the pattern-forming circuit differs considerably from

the uniform for large harmonic numbers. The question therefore

arises as to the feasibility of exciting these harmonics.

Figures 9 and 10 show the DN of an antenna array with the

inputs, corresponding to the seven upper harmonics (m-_13, ±14,

t15, 16), closed on matched loads for ka-22 and ka-18, respec-

tively. It can be seen that, although the elimination of the

upper harmonics will reduce the directivity coefficient as a

result of the beam expansion, the shape of the DN is slightly

15
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Key: (a) Degrees.

improved, since the level of side lobes is reduced. This can be

utilized in the selection of the number of elements in the antenna

array. The same figures show for comparison the DN obtained for

corresponding 25-element arrays when all the harmonics are excited

F in them. It can be seen that the increase in the number of

excited radiators iL' the case of an identical number of considered

harmonics will increase the directivity coefficient of the array

as a result of reducing the level of side lobes.

16



8 o a d, .1118 V qra.

Fig. 9.
Key: (a) All the harmonics taken into
account, directivity coefficient 37.5;
(b) 25 harmonics taken into account,
directivity coefficient 42.8; (c) Degrees.

at-b

x a a AV g uo 'W94W(C)

Fig. 10.
Key: (a) All harmonics taken into
account, directivity coefficient 40.7;
(b) 25 harmonics taken into account,
directivity coefficient 47.9;
(c) Degrees.
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CONCLUS ION

This paper, contrary to 11,2], proposes a procedure for cal-

culating annular antenna arrays with phase scanning which takes

into account the interaction between the radiators of the array.1

Furthermore, the direction of the maximum directivity may change

in both the equatorial and meridional planes.

These calculations demonstrate that the intercoupling between

the radiators should be taken into account only for a scanning

close to the equatorial plane. When the beam deviates from the

equator (e04700), the influence of the intercoupling can bp dis-

regarded.

This procedure is convenient for calculations by digital

computer. The number of computations can be significantly reduced

by exploiting the property of symmetry of the annular array,

thanks to which in the matrix (z] it is sufficient to calculate

mrely (N/2 +1) elements. Moreover, the DN of a radiator may be

calulaedfor a single element, the other DN being found by

calcutge first through the appropriate angle. All the cal-

culations can be done by hand in the case of small N.

1-A calculation is given in [6] for partial D14 of an annular array
of interacting radiators in the form of infinite slits in an
ideally conducting cylinder. However, questions of phase scanning
were not considered.

18
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THE DESIGN OF THE CRITICAL WAVE NUMBER AND WAVE RESISTANCE OF A

COAXIAL LINE WITH INTERIOR CONDUCTOR OF CROSS-SHAPED SECTION

G. P. Koshelev, Yu. B. Korchemkin and S. I. Shamayev

The paper reports the results of a
theoretical investigation of a new waveguide
with complicated profile of its cross sec-
tion. Formulas are derived to calculate the
critical wave number and wave resistance for
various dimensions of the cross section.

The results of a numerical calculation
for a broad range of cross sectional parameters
are given in the form of graphs, convenient
for practical use.

INTRODUCTION

Recently the theory and technique of waveguide devices is

resorting more and more to waveguides with a complex shape of

cross section, e.g. U, H, and E-shaped waveguides (1,2,3,4]. This

interest can be accounted for by several reasons. In the first

place, the use of such waveguides generally assures a gain in the

dimensions and weight, and also produces a broader band for the

fundamental oscillations, as compared with waveguides of simple

shape (rectangular, circular, etc.). In the second place, as a

rule, the basic characteristics of various devices (commutators,

phase shifters, resonators, switches, etc.) can be significantly

improved by employing waveguides with a complex cross section.

Theoretical investigations of any type of waveguide, since

it is a transmission line, basically involve the determination

of the critical wave numbers, wave resistances, and the dependence

of these on the geometrical dimensions. The paper solves a

20
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similar problem for a homogeneous cylindrical waveguide, formed

by an external circular tube 1 and an internal rod 2 with length-

wise ribs 3, the general appearance of which is shown in Fig. 1.

The walls of the waveguide are considered to be ideally conducting.

The symmetrical arrangement of the ribs relative to the orthogonal

axes AA' and BB' creates conditions for the propagation of waves

of circular or any given linear polarization while preserving the

advantages of the U or H-shaped waveguides.

A

Fig. 1

STATEMENT OF THE PROBLEM. OBTAINING THE CHARACTERISTIC EQUATION

Let us first note that the cross section of the investigated

waveguide represents a doubly connected region and, consequently,

there may exist here TEM, TE, and TM types of waves. We shall

confine ourselves to a consideration of a magnetic wave, similar

to a wave of the type HI1 in a coaxial waveguide.

As is known from the theory of cylindrical waveguides [5],

21



the fields in these are entirely determined by the eigenfunctions

4 and eigenvalues K of the Helmholtz equation:

-_L W -Xl =0, (1)

where A.L is the Laplacian for the transverse coordinates with

boundary conditions on the contour L of the cross section (for

a magnetic wave):

iL 0. (2)

Here, -. is the normal derivative.an

Additional conditions which emerge from the features of our

chosen magnetic wave (by analogy with the wave HII in a coaxial

line) are:

;;- ,. = 0 (3)
V 1AA' =0'

It is presumed in this case that the vector of the intensity

of the electrical exciting field coincides in direction with the

line AA' (Fig. I).

The conditions (3) permit a narrowing of the considered

region to the quadrant AOB (Fig. 2). Thus, the problem (1), (2)

is reduced to finding the eigenfunctions and eigenvalues of

equation (1) under the following boundary conditions:

22



0!

'-0 (on the line AC), (4)

3T 0 (on the remaining portion of the complex
Th- contour in quadrant AOB, including BD).

C

Fig. 2

In view of the fact that the boundary L coincides with the

coordinate lines in a polar system (p, ), it is most convenient

to seek a solution by the method of partial regions. Therefore,

let us break down the selected segment AOB into two simple

regions I and II (Fig. 2), in which we shall designate the eigen-

functions as tj and',*,. In order for these to represent the

solutions in the entire region AOB, it is necessary to satisfy

the conditions of continuity on the line FG1 :

,,- I,, It,, (5)
Tz a V1 1
-0 " -P ,..,, (5')

1Here and below all the designations conform to Fig. 2.

23
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We shall represent the general solutions of equation (1) for

each of the partial regions, satisfying boundary conditions (4),

in the form:

. ' [ Is ((..,) coa41(6)

where am- _ when m-O,1,2...

y , = B . A ronR . -- (V ) , p ,
'Fit ( lp5) (6')

where a n=l+2n when n=0,1,2...

Let us introduce the auxiliary function:

(T)- " (7)

Using (6) and (6') to calculate the partial derivatives in

(5') and treating the obtained result as the expansion of f(O) in

a Fourier series of cos mm(O-0O) on the interval [00,-Z-00 ] and a

Fourier series of sin BnO on-the interval [0,-L-, we shall express

the coefficients Am and Bn by f(4):

24
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2,,q Ju n 'O l

m-1, 2,3,...
X/27- % ((8)

A@. j f ,F) ()

• J; N; (z ,

'f (4p) s'Nian)d9

B9 fyspd(8')
-, (7 r,) Six (,,)

4(ILR.) (xR.)

where q)0-/2-200, n-0,1,
2 ,3 ... In the last integral, the limits

(0, Tr/2) have been replaced by (0, ii/2- 0)' since f( )-O on CF

and GD in view of (4) and (7).

Inserting (8) and (8') in (6) and (6') and using condition

(5), we obtain an integral equation for the auxiliary function

f(O):

,(9)

where

25



1 *4

PS Q9 g ric. - r(10)

The function

J, (X) NV (S)

QV(. g) J,() W,-6
J.;(x) N.(.)

in accordance with [7], is known as the major radial cotangent

of the index v.

We shall solve the integral equation (9) approximately by

the method of Galerkin-Bubnov, for which we shall represent the

function f(O) in the form:

fm±CJ,, (11)
I

where fi(il,2,3 ... ) form a complete system of functions on the

interval [ 0 n/2-€0] and satisfy the same boundary conditions as

f(O), namely:

i7-0 (at 9-ve; 4p-n/2-). (12)
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Inserting (11) in (9) and altering the sequence of integra-

tion and summation, we obtain a system of equations in terms of

the coefficients Ci :

At - PAI) C1 O. (13)

where

MUM~~, f9,lpj ))jTddp

A condition for the existence of a nontrivial solution of

the system of equations (13) is its determinant equaling zero:

det II M 1-PN 11 11 = 0. (14)

Equation (14) is characteristic and contains, as unknown,

the number K, i.e. the critical wave number. The least value of

this number corresponds, evidently, to the investigated type of

magnetic wave.

SOLUTION OF THE CHARACTERISTIC EQUATION. DISCUSSION OF THE
RESULTS

As a complete system of functions fi which satisfy condition

(12), let us select a sequence of the type
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Such a selection greatly simplifies the ultimate form of the

characteristic equation, since Nij-0 when i#l and j0l. Using (15)
to calculate Mij and Nij and inserting the values of these coef-

ficients in (14), we obtain:

1) for the first approximation [n-1 in expansion (11)]

C(XI , ,R.e) 2 -"LCt(Xr 1, S,,--O (16)

2) for the second approximation [n=2 in expansion (11)]

cts. (-A,,,. %,]Re) QOzil.xr

,~~~i P. sin (1,,.6,006 & (%jj .1O- 2 (17)
1iP!- ]~h

n 2 " 0,,
4 (CosOjfi, IVgj Ro) - - ~ Ct(hi x .1

The equation obtained for the third approximation KIII is

too unwieldy and not given in the paper.

Let us note that, in the case of o=w/4, the investigated

waveguide becomes coaxial with a radius R0 (external) and r1

(internal). In this case, equations (16) and (17) are reduced,

by simple transformations and a passage to the limit, to the

characteristic equation in terms of the critical wave number for
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a wave of type Hl in a coaxial waveguide.

The solutions of the transcendental equations (16) and (17)

are respectively the first K I and second KII approximations of the

sought critical wave number K. In order to estimate their con-

vergence, several trial corutations were made, revealing that,

when r1.<0.9R0 and o00, the error between )I and KII does not

exceed 30%, while between KI and KIII is less than 5%, the error

diminishing with increasing 0". Thus, a third approximation only

slightly improves the results of the second; this fact was the

basis of a numerical calculation by digital computer.

We found K in accordance with (17) in a broad region of

variation of the cross section parameters of the waveguide,

specifically:

2
0,Ro < 0,95RO,O,R. < ro O,7R*

The calculation results are represented in the form of

graphs, indicated by solid lines in Figs. 3-6, where the nondimen-

sional quantity KR0 is laid off along the vertical axis (at the

left). The radial parameters have also been replaced by the

nondimensional relations r0/R0 and r1 /R0 , allowing the results

to be used for any given values of the external radius R0. An

analysis of these graphs reveals that the behavior of the critical

wave number K is characterized by the following features:

1) a weak dependence on the internal radius r0 ;
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2) a strong dependence on r1 , especially when rl-RO;

3) the presence of an optimum depending on 00 near the

value n/8.

The latter two circumstances suggest a qualitative agreement with

the behavior of the critical wave number of a type H10 wave in a

U and H-shaped waveguide (8].
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Fig. 5. Fig. 6.
Key: (a) Ohms. Key: (a) Ohms.

CALCULATION OF THE WAVE RES ISTANCE

In order to determine the wave resistance of the investigated

waveguide, we shall employ the familiar formula

Z _ _2 (18)
2P

where Um is the amplitude of the "potential" of the traveling

wave; P is the power which passes through the cross section S

Presuming that

U,=j E dp,

P EHI dS
2
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and representing the components of the fields E and H by the

eigenfunctions of the partial regions, we obtain:

SO*ij(p,o) dp (19)

J *2(P. ) Pd pdf+ f 'Ij(p, ip d p dr* r , p )dd

where

< is the wave number in free space; co and p0 are respectively

the electrical and magnetic permeability.

The quantities *1 and *II, necessary to calculate the inte-

grals in (19), are expressed by inserting (8) and (8') in (6) and

(6') in terms of the function f(O) which, in accordance with (11),

is determined by means of the coefficients Ci, which are a solu-

tion of the system of equations (13) when conditions (14) are

satisfied. Confining ourselves to a second approximation, as in

the case of the calculation of the critical wave number, we

obtain the following formula as a result:

64 Z.
.z z

ro R 2

S S R0 Sdp l ( , d I!

X ")" R , (20)

( 2 F2[ Q'1  (r)--.Q1 ,. (rO)J - DIT,(R ,,-7,,r

0
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where

sini Pn + a,CoP. MS P,
4 2 2

F-

fj.) - - ,.
F- p

T22

CtoS2 to n 2. .

C' (,N U Ip- (%4) N1 1 (4

,;, ) (- ,i r) N ' (:r

I+,. 2a- n .=0, 1, 2,..

A calculation by formula (20), including the computation of

the integrals in the numerator, was carried out by digital com-

puter, using a numerical method. The results of the calculation

for various dimensions of the cross section are represented in the

33
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form of graphs, shown by dotted lines in Figs. 3-6, where the

values of the resistances Z. for infinite frequency are laid off

along the vertical axis (at the right), so that: 4

Z.

In view of the fact that the representation of the eigenfunctions

j and II in the second approximation is unsatisfactory for values

of 00 close to zero and rl close to R0 , the accuracy of the calcu-

lation by formula (20) is reduced when 00 and rl -

An analysis of the obtained results shows that the nature of

the dependence of Z on 00 and r1 , except for the above-mentioned

region, qualitatively agrees with the behavior of the wave resis-

tance of a type Hi0 wave in a U or H-shaped waveguide [8) under a

corresponding replacement of the dimensions of the cross section.

EXPERIMENTAL CONFIRMATION

In order to confirm the theoretical calculations of the

critical wave number KTeop by formula (17), an experimental inves-

tigation of the waveguide (Fig. 1) was carried out. At various

values of the cross section parameters, the wavelength was

measured in the waveguide and used to calculate the quantity

Kakc . The results of the confirmation are shown in the table

below. Also shown here are the error % and the

measurement error awaM' As can be seen from the table, a,<a,*
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Table

2-% P..R. i ..I  X,,R. z.op. i n"..

46" 0,9 0,1875 0.679 0,670 3,6% 1.4%
45P 0.75 0,1875 0,974 0,956 2.5% 1.9%
45 0,65 0, 185 1,142 1,142 2.0% 0.5%
ise 0,9 0,1875 0,687 0,668 3,4% 2.8%

Thus, the results of the calculation of the critical wave

number, shown in Figs. 3-6, have an accuracy which is sufficient

for practice.
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iE SYNTHESIS OF DIFFERENCE DIRECTION PATTERNS OF SPHERICAL

ANTENNAS

D. I. Voskresenskiy and A. Yu. Grinev

The paper considers the problem of mini-
mization of the lateral space radiation of
difference direction patterns of spherical
non-superdirectional antennas in the form of
an idealized continuous system of diffraction-
type radiators, arranged on an ideally con-
ducting spherical surface.

INTRODUCTION

In radar systems designed for precise measurement of the

angular coordinates of objects there arises the problem of con-

structing difference direction patterns with a small level of

side radiation [1-3).

It is known from [2,3] that the problem of Dolf-Chebyshev

for difference direction patterns is formulated in the following

manner: under a given level of side radiation (R) the slope of

the normalized difference characteristic curve in the direction

of the bearing (y) should be a maximum, while the width of both

major lobes should be minimal at the zeroes (Ae0 ) and, on the

contrary, at a given value of y the level of side radiation and

A 0 should be minimal. The designations R, y, and A60 are

explained in Fig. 1.

A large number of Soviet and foreign works, e.g. [1-31, have

been devoted to the problem of the formulation of difference

direction patterns which are optimal or close to optimal, in the
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above-mentioned sense, by means of planar arrays, as well as

linear, rectangular, and circular apertures with continuous

distributions of the exciting currents.

This paper considers a solution of an analogous problem for

spherical antennas in the form of rather closely spaced

diffraction-type radiators, cut out in an ideally conducting

spherical surface, so that the distribution of the exciting

current may be regarded as continuous. The need to use convex

(especially spherical) pencil-beam antenna arrays occurs, for

example, when implementing a wide-angle electrical scanning with

the shape of the direction pattern changing little or not at all.

The problem is solved in the most general vector form by the

method of eigenfunctions, enabling an allowance for the diffraction

effects at the surface of the spherical antennas.
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THE FUNDAMENTAL STARTING RELATIONSHIPS

We shall show that the problem of minimization of the side

radiation in spatial difference direction patterns of spherical

antennas can be reduced, under certain conditions, to the solution

of two unidimensional problems.

For this purpose, we shall represent the vectorial spatial

direction pattern r(6, ) (6 and c are the spherical coordinates)

of a spherical antenna in the form of a series in the vectorial

eigenfunctions E and Ee [4:
m mn[

In n

where Ce and CP are the unknown excitation coefficients.
mn mn

As the plane for formulation of the difference direction

pattern (bearing plane) let us use the plane 0=1T/2 and let the

zero direction of the difference pattern coincide with the axis

Z(= ) of the spherical system of coordinates.

After using an explicit representation of the vector eigen-

functions in the spherical system of coordinates [4] and consid-

ering that the difference pattern is equal to zero when e-00,

and considering the behavior of y in the direction e=0 ° , we may

demonstrate that the index of summation in (i) should be put at

m-2 for E. and m=0 or 2 for Emn" Then, for the difference pat-m-2fo mn

tern F(60) from (1) we shall have:
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TA aP +(cPs 0) p co8 sin 2( 1-iAI Io d)= C= o ,si-- --

+[Ce 2POcs+ 2 (COS2P 0) (2)
+ Ck~m-'p. (COS ) + CP cos 24p 9 4."C&P n(Cos 0)-"

where Pr(cos 6) are the associated Legendre polynomials; i8 and

i are the unit vectors of the spherical system of coordinates.

Let us note that, in order to exclude the superdirectional

mode, we shall restrict the upper index of summation in (2) to

the condition N=ka (ka is the electrical radius of the antenna) [4].

We shall select the coefficients Ce CP C"n such that the

2n' 2n On

spatial difference pattern is optimal in the sense of Dolf and

Chebyshev.

As is known [1,2], a spatial amplitude direction pattern

IFA(e,)j in the plane 0=0, perpendicular to the plane 0=7r/2,

should be equivalent to zero, while in the plane 0=7r/2 a per-

fectly natural condition is imposed on IFA0,%)I, namely that

IFA(e,n/ 2 )1 should satisfy the requirements of an optimal dif-

ference pattern, which we shall designate as YN(6). Thus,

Then, from (2) and (3) we may find that:

CLPA (C= 0)(), (4a)
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[C..co __0)2(OS1 +C (4b)awlj 2

It can be shown that, if additional conditions Cn=C n2nare

imposed on the excitation coefficients, then the spatial vectorial

difference pattern is represented in the form:

-7,(G, v)=Yv()sfny~sinicosy7,- (5(5)

while the amplitude pattern is:

F , o,)IjYvw (0) sinq, (6).

i.e. it has a practically satisfactory dependence of the azimuth

on the coordinate El].

Thus, the above-formulated problem for FA(e, ) has been

reduced to two unidimensional problems (4a) and (4b) under the

condition Ce =C
U

2n 2n'

In order to solve these, let us examine the properties of

the functions:

rNMI (7a)CL [_ 2 2 (CM )+ p, (CM e)]
'p.e (7b)

Considering the known properties of the associated Legendre

polynomials [8], we can represent F 1(e) and FA2 (8) in the form:
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,o-l (8a)
_(I -( M- 12(l + X) C c0ML.(o). (8b)

Here,

n. 1,. N

(9a)

L. (0) -91,,^, n2,3, . (9b)

where Kkn and 1kn designate the coefficients which are easily

determined from (7a) and (7b), respectively.

From (7a)-(8b) it is not difficult to obtain:

(10a)
a--O

F -(l-')li+x) Zbr, (lOb)

where
N

,.,+,(Ila)

N

Let us further replace the variables in (10a) and (10b) (the

necessity of which will become clear from the following):

(12)

Then, FNA(6) and FN2(e) can be converted to:

(13a)

p-OF%(0) 2 [;(1-7 )]1l 27 '  (13b)
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IN.

Here, a and b designate the new coefficients FNI(e) andHee p an p

FN2(8), related to the old coefficients by:
N-I

i K -I K -P P X
"-'s- (14a) i

-2

E bx (- I)K-'2PC, (14b)
xM,

while Cp is the number of combinations of k elements taken p at

a time.

Thus, as is seen from (13a) and (13b), FA () and FA (e)
Ni N2

represent quasipolynomials of the form

Ft (0) = 2 [2'(1 -7)1'"2 O._, (2-), (15)

where QNI(^) is a (N-1) degree polynomial in 3=cos2 8/2, repre-

sented by:

N--N
ajPwhen FA.r(8) (13a) (6

QN2-I ipWhen FJV2 (0). (136) (6

P-0

The problem further consists in constructing such a quasi-

polynomial F (0) (or, which is the same thing, in selecting the

coefficients of the polynomial QN()) so that the spatial dif-

ference pattern FA(0,4) - (5) and (6) - is optimal in the sense

of Dolf and Chebyshev on the interval 04xl (0040,).
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CHEBYSHEV-AKHIYEZER POLYNOMIALS IN THE SOLUTION OF THE PROBLEM
OF MINIMIZATION OF THE SIDE RADIATION IN DIFFERENCE PATTERNS OF
SPHERICAL ANTENNAS

Let us try to convert the above problem to an analogous

problem for linear antennas 13], for which we shall change the

variables:

Xml -- ', (17)

which converts the interval Ox~l to the interval -14y<+l (the

selected direction of bearing 6-0* corresponding to the value

-O), and the quasipolynomial (15) to a quasipolynomial of the

form:

FN (0) = j- 2J'c;-)_ (18)

where

rN I)=Z dpy l wher Fm. (0). .-I
A *K 2(19a)

' m-l( = ( --1) 1 e P + wn F A (O),(1 b

P-0

while d and ep designate new coefficients, related to the old
p==

coefficients W and by formulas of the type (14a) and (14b).cofiiet p an p

It is known (3] that, of all the quasipolynomials FA(@) (18)

N

of degree (2N-1), having an identical value of the principal max-

imum, the quasipolynomial

YN (0) ( (-)' 2 G2 ._, (-. )) (20)
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I
assures that the other two are extreme when one of the three

parameters (R, y, E) is given; where G2N_("',  ) designates a

second order Chebyshev-Akhiyezer of degree (2N-1), which does not

contain even degrees and has the least deviation from zero on the

two segments [-1, - ] and [, 1] with a weight w-(l- 2)1/2 [3,5].

Let us observe the following. The representation of

FA (0) of (18) and (19b) in the form of the quasipolynomial YN(e)
N2

of (20), i.e. the satisfaction of the identity:

uniquely determines the coefficient ep. However, moving on to

determine the excitation coefficients Cn, we arrive at an incom-

patible set of N equations with (N-1) unknowns. The condition of

incompatibility becomes more explicit by noting that one of the

roots of the polynomial Y2Nl1() (19b) is the point -±l. On the

other hand, for the Chebyshev-Akhiyezer polynomial G2Nl() the

point "-+l is not a root for any values of N or E. Therefore,

condition (21) cannot be made identical in respect of y and the

solution of the above problem is sought in the form:

N-2FA, _A1 -? 12 -- V) e- % '+' -) (l-V3'Q,-3 .Y (22)

PMO

where Q2N3(y,) is a certain polynomial which, with an appropriate

weighting function in (22) and one of the three parameters (R, y,

F) given, assures that the other two are extreme.
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The finding of such a polynomial would lead to additional

trouble in the solution of our problem, and therefore instead of

this polynomial we shall use the second order Chebyshev-Akhiyezer

polynomial G2N.3 (y, ), the properties of which have been discussed

above.

Furthermore, returning to (18) and (19a) and taking into

account (4a) and (4b), we shall find it necessary to search for

FA (e) as well in the form:
N--

(23)

In view of the complexity of the closed representation of

Chebyshev-Akhiyezer polynomials, we may calculate the coefficients

dp and ep by the method of exponential polynomials or the method

of trigonometric interpolation [8], and then find the excitation

cof T COnT  hich provide a spatial direction pat-coffcint O n n 2

tern of the type (5); here, YN(e) is determined from (22) and (23).

The required distribution of the magnetic current P(w'')
at the surface of a spherical antenna of radius a can be found

by the method explained, e.g., in 14]. With an accuracy down to

a constant, this equals:

~4 2 a p"(CM86'

jo(r, 9).al - i T P" COS +1(UX.) ]X

X cm 2..,, ' Cr(') .o' )j-in.
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where Lm(4'--m4,,(); l'.(Z) is the Henkel function of the first

order; (e', ') are spherical coordinates of the point at the sur-

face of the spherical antenna.

The use of Chebyshev-Akhiyezer polynomials involve certain I
computational difficulties 12,51, and therefore it is of interest 9
to consider so-called quasioptimal A direction patterns, i.e.

those similar to patterns of the type (22) and (23).

QUASIOPTIMAL DIFFERENCE DIRECTION PATTERNS

Quasioptimal [in the sense of approaching patterns of the

type (22) and (23)] difference patterns will be sought in the

class of direction patterns obtained by differentiation of the

amplitude patterns of non-superdirectional (N-ka) spherical an-

tennas, representing a body of revolution with respect to the

maximum of radiation, with optimal sunmmary characteristics (in

the sense of Dolf and Chebyshev) in an arbitrary section of the

space pattern by a plane passing through the radiation maximum

which, by analogy with (6] and allowing for (12), we shall repre-

sent in the plane 0-n/2 in the form:

Fv(0.T) (2a_;,1) (25)

where TN(2ax-1) is a Chebyshev polynomial of the first order;

a is a parameter (a>1,.X"cos 2 e
2"

We note that this approach was apparently used for the first

time in [7].
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A differentiation of (25) with respect to the variable e,
with an accuracy down to a constant, yields:

dem (6)
Y (- - 21 (1-l _)1"2 U_ (2C'- i) (26)

where UN_(2ai-I) is a second order Chebyshev polynomial.

Turning further to (15) and (16) and taking into account the

above remark as to the impossibility of satisfying the identity/2UN_2

F(6)2[ (N- 1  (2ax-1) with respect to x, we shall represent

the quasioptimal difference pattern in the plane O=-/2 -YN(e) in

the form

(O= 2 Z(I--)'/ -(20;-). (27)

Since the spatial direction pattern in this case is determined

by expression (5), for its analysis we shall examine the properties

of the quasipolynomial YN(9) (27) on the interval 0<x,<l.

All the zeroes of the quasipolynomial YN(2ax-1) are real and

situated on the interval [0,11. The quasipolynomial has a maximum

lobe corresponding to the value xmXml (cf. Fig. 1); the value of

the side lobes decreases smoothly away from the value xml, and

therefore the nearest to the principal lobe (-x.m 2) has the maxi-

mum value. The values of tml and m2 can be determined from the

following transcendental equation:

(- +2-3a; + a-x U,.(2a--I) =(N--1) (1 -7 _,(2a:7- 1). (28)
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supplemented by the appropriate inequalities:

- I + Cos ---
<2a (29a)

I + Co J - I +Cos 2-.t
2a N- I< 3,,< - 2a - (29b)

The maximum level of the side lobes in this case is:

R P (6'9) ( (l 2 *,,xUN-(2Zm- (30)
l -I [z,, 1 I-,V)1 2 XmUN(2CX-, -,1 i)

while the slope of the normalized characteristic difference curve

is:

TO 'o US-2( 2 -1

I .'aic I [7m, (i -Kn ,_)' 2 (2&0 -M I (31)

For the width AO0 of the quasioptimal difference pattern we

obtain:

M + [ -a. (32)

However, by analogy with [6], a more convenient characteristic

for the analysis of the difference patterns is the ratio of (A60 )

to the corresponding width of both principal lobes (Ae 0 ) of the

equivalent planar aperture with a difference pattern which

assures a maximum value of the parameter p (slope of the non-

normalized difference pattern) [I], determined in accordance with

(34). Then, we obtain:
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N-

(j ~C& (33)
A..= ., 514

arc sin -
N

Figure 2 shows curves for the maximum level of the side lobes

R, while Fig. 3 shows the parameter A, as functions of a for

different values of ka(N=ka), constructed from (30) and (33),

respectively.

'jt4 ' 1.9 7 ais ;.a 6

Fig. 2. Fig. 3.
Key: (a) Decibels.

The above-obtained relations (30)-(32) enable the finding of the

value of the parameter a from a given value of R for

non-superdirectional spherical antennas and then the determination

of y and A60 , corresponding to the given R or, vice versa, the

finding of R for a given value of y (or Ae0).

An important characteristic for the analysis of antennas

with difference direction patterns is the slope of the difference

pattern in the equal-signal direction p [i], defined as:
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!- .L I2,- (34)

where GA(0/2,60) is the directivity of the pattern in the direc-

tion of its principal maxima.

Inserting in (34) the expression for F ((,,) from (5), where

YN(6) is determined by (27), we have after simple transformations:

L'._2 (2r - I)

02 (- ) uJx -_ (2zx - I ) (35)

Since the integrand is a polynomial of degree 2N, the pro-

cess of integration can be carried out rather easily in each

particular case.

Let us now turn to the determination of the conditions of

excitation of the antenna which assure the formation of difference

patterns of the type (5) with YN(e) as determined by expression

(27), i.e. when:

YMA (0, COSP -.o _eSin 0 U.,_ (2a cos2 _~e _1 sirn 9[sinl q"1- -cs 4F .
-, 2 2 [ P e (36)

From (4a) and (4b), allowing for (15), (16), and (27), we

obtain:
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N- - 2

P-
0

N-2

I- 6; =E-_ UN- 2 (2a - 1). (37)
p-

0

For the purposes of our problem, it is more convenient to

represent UN-2(2a-I) in the form:

N-a

U)=V U, (38)
p,-0

where up are coefficients of a corresponding displaced Chebyshev

polynomial of the second order.

We point out that the coefficients of the first 13 displaced

Chebyshev polynomials of the second order are given in [8].

In order to satisfy the identities (37), it is necessary and

sufficient that:

2W-4,u, p=O, 1,2, 3- I

4,=-u, p=O, 1, 2, 21

Considering that the coefficients ap and bp are expressed

linearly by the coefficients of excitation of the natural waves,

we find that each of the conditions (39) represents a set of N (or

N-l) simultaneous linear algebraic equations with N (or N-l) un-

knowns for the coefficient of excitation C n, C1 . We shallOn' 2n*

designate the solution of system (39) by CO', C9.
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In this case, the spatial difference pattern has the

appearance (36), while the amplitude-phase and polarization dis-

tribution of the current which excites the spherical antenna can

be found from (24).

RESULTS OF THE NUMERICAL CALCULATION

Let us illustrate the above remarks by the example of a

spherical non-superdirectional (N=6) antenna of electrical radius

ka=6 and a difference pattern F6 (e,) of the type (36).

Figures 4a and 4b show the difference patterns of this

particular spherical antenna ka=6 of the type (36) (without

allowing for the factor cos 2 ) in the plane O=Tr/2 for R=-20 and

-30 dB; here also for comparison are given a non-lobed direction

pattern (R=-- dB), as well as a pattern with maximum 4. As can

be seen, contrary to the difference patterns of Dolf and

Akhiyezer (3], the side lobes are not identical: the value of

the first side lobe is a maximum, the others decreasing smoothly

away from the major lobe. The factor cos 2 4.in (36) merely

influences the level of the remote side lobes in the discussion

of pencil-beam spherical antennas, producing a monotonic decrease

of these lobes, with virtually no influence on the level of the

first side lobes.

Figures 5a and 5b show the amplitude-phase distributions of

the magnetic current in the plane '=iT/2 on the surface of our

spherical antenna, realizing the difference patterns -A(O 0) (36)

with different levels of side radiation, calculated by (24).
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Fig. 5.
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As can be seen, even in the case of a significant variation

of R the necessary amplitude distribution (Fig. 5a) is almost

unaffected, especially in the antenna region which is "illuminated"

with respect to the equal-signal direction. On the other hand, j
the necessary phase excitation (Fig. 5b), contrary to planar

non-superdirectional antennas, depends considerably on the

required level of side radiation, the less this level the smaller

the rate of change in the required phase distribution over the

antenna.

Figure 6 shows the dependence on R of the normalized (to

the maximum possible) value of p (35) of our spherical antenna

ka-6. When R increases, the curve approaches the level determined

from (35) when a- (R-).

(a)

Fig. 6.
Key: (a) dB.

In conclusion let us note that the expressions for patterns

(5) and (22) and for the quasioptimal difference patterns (36)

of non-superdirectional spherical antennas coincide only for the

two limit cases: a non-lobed pattern (R--- dB) and a pattern

with identical level of major and side lobes (R-O dB). In all

other cases, the difference patterns which employ
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Chebyshev-Akhiyezer polynomials have a somewhat smaller level of

side radiation than the quasioptimal patterns for a given value

of Y.

CONCLUS IONS

The problem of synthesis of spherical non-superdirectional

antennas with spatial difference patterns, optimal in the sense

of Dolf and Chebyshev, has been formulated.

The problem of minimization of the spatial side radiation of

the difference patterns of spherical antennas, similar to those

of Dolf and Chebyshev [cf. relations (22) and (23)], has been

solved by converting it to two similar unidimensional problems,

the solutions of which are represented in the form of

Chebyshev-Akhiyezer polynomials, multiplied by a certain

weakly-directional factor.

A consideration is made for the problem of synthesis of

quasioptimal difference direction patterns, greatly simplifying

the numerical calculations. The obtained relations determine the

correlation between the level of side radiation, the slope, and

the width of both major lobes at the zeroes.

Results of the numerical calculations are given.
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THE CALCULATION OF THE INPUT RESISTANCE OF A VIBRATOR WITH
DIELECTRIC COVER BY THE METHOD OF INDUCED EMF

Yu. N. Sokolov

The paper discusses the radiation of a
vibrator with dielectric cover, placed in a
semiconducting medium. It analyzes the field
in the dielectric.

The discussion, along with the results
obtained [6], enable the finding of the com-
plete value of the input resistance under
the assumption of a sinusoidal current dis-
tribution.

In 16] the problem of calculating the flux of electromagnetic

energy across the cylindrical surface of a vibrator was considered

in the case of a given distribution of current along it by the

law sin y(1-z), when the quantity y is not equal to the wave

number of the external medium k. Such a current distribution in

a first approximation obtains for a vibrator placed in a semi-

conducting medium and possessing a dielectric cover.

For the complete solution of the problem of calculating the

input resistance by the method of induced EMF it is further

necessary to find the value of the z-component of the electric

field in the immediate vicinity of the transmitting conductor,

i.e. inside the insulating shell.

Before beginning the solution of this problem, let us point

out the well-known fact that the field of a symmetrical vibrator

can be represented by a superposition of the fields of three

point sources, situated at the edges and in the center of the

vibrator.
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In the case of y~k, it is easy to demonstrate this fact by

representing the Hertz vector of the vibrator field in the form:

+ 4' +4" Il -- i i
J7, " - -- _. Wi (1i- K (r Y1ir-I-) 1  e- ' +e'"-e-12+-1p 4(

where K0 is a modified Bessel function.

After integrating with respect to the variable , we

imediately obtain the sum of the fields of sources situated at

the points z-±l and z-0:

Il =*2~ iil ' _ K. (r V/ -'X- e-IIlP "

(2)

+ e'-'*- " - 2c¢s yl le *
- dp.

This circumstance allows us to confine our treatment to the

field of a point source, situated in the cylindrical cavity, and

to utilize the available solution for this problem. This problem

has been treated by many authors 11,2, et al.], and we shall touch

briefly here on the solution given in 12], somewhat modifying the

final results.

The Hertz vector of the field of a point source, situated in

a cylindrical cavity of radius rI with a moment F directed along

the axis of the cavity, can be represented in the form:

f7(, (c (p) K (rr,) a (p) J (rv)e-DI p. (3)
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The expression for the Hertz vector outside the cylindrical

cavity has the appearance:

7 .2)= b (p) K (rv) e ' P dp, (4 )

where 0'P2 --2 . 2p
2 -I

c(p) is the arbitrary function of the source;

k is the wave number of the external medium;

kI is the wave number of the material of the cylinder;

r is the radial coordinate;

K0 and Jo are modified Bessel functions of the zero order.

The boundary conditions at the bot-ndary between the cylinder

and the external medium lead to the following expression for

a(p) (when r-rl):

(p) c (p) " 1  2 A(5 )

XIo1K (rio) 10 (rIvL) - KI VKo (ria) 11 (rivo)

It is possible to considerably simplify this relation by employing

the expressions for Bessel functions of small arguments. The

fundamentals of such a replacement have been given in [2] and

reduce to the satisfaction of the conditions: klrll<<l,z>>r,

and k>k .

Then, disregarding the second term in the denominator of

expression (5), we obtain:

a (.P)--(p) - KO (r, V), _ .. 1

K,, (6)
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Considering the fact that E(.,K=jf,) ,. -,''

C r t (z is the component of

the electric field inside the cylinder), and also the fact that

K1(,iv1) _! , we find that:
KI(r,1  v,

S+ .) Ko(r)-lKo(rivi) e-i" dp. (7)

The function for the source of the incident wave c(p) for a

vibrator of finite dimensions and for the case y#k, in accordance

with expression (2), has the appearance:

i 0 pwy cO (p)C (p) .- ___--__,
4.tVy - pl)K I I

where c0 (p) does not depend on the parameters of the material of

the cavity (the magnetic permeability of the material of the

cavity, as well as of the external medium, will be assumed to

equal u0 here and below).

Then:
E('= .p K' K(r,) - - o( i,)--l I

EP C# (P) o.,K r Ko~r, v) Ko(r~v1) e-~ dp.
(8)

It follows from expression (8) that the field of a source

inside a cylindrical cavity can be represented by the following

sum:

E =E (r,. K) -LE~r 1 -E~rK 9
(9)
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where

E(rl,k) is the field of the source at the radius rI in a

homogeneous medium with wave number k;

E(r1 ,k1 ) is the field of a source at the radius r in a

homogeneous medium with wave number kl;

E(r,kl) is the field of a source at an arbitrary radius

r<r I in a homogeneous medium with wave number kI .

We note that, if k>>kl, then with no additional assumptions

it follows from (3) and (5) that

E ')=E(r, vj-E(r,. K1). (10)

There is no field E(rl,k) in this case, as it is screened by the

external medium. This case corresponds to a passage to the limit

for conditions of a coaxial cable.

Expression (9) on the basis of (2) is also valid for a

vibrator of finite dimensions.

In order to calculate the value of the energy flux through

the lateral surface of the vibrator, let us multiply expression

(9) by the quantity:

H' _ @ sin *

Setting r-r0 in the obtained expression and performing an

integration over the cylindrical surface of the vibrator, we

find that:
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+1 2x

1V j rES')l;dzdq - 2J0sin-y*Q1-z)E(ri, K)dz-()

+_j2Iosin y*(--_) [E (ro, Kj)-E(r, c,)I dz,

where

Ez ('. x) . c2r7: (r, K) + (,. K)
M-- (12)

17 (r , , l o s in y * (l - ) t.1 ' r - ,4 0 1a
+ (12a)

E' is the relative dielectric permeability of the external medium.

The expression for Ez (r 1 ,k1 ) is obtained from (12) and (12a)

by the replacement of k, for k; an expression for Ez(r 0 ,kl) is

obtained from the expression for Ez(rl,k1 ) by substituting r0 for

r V

The calculation of the first term in (11) has been considered

in [61. The value of the radiation resistance corresponding to

this term is determined by formulas (19) and (20) in that work.

The other term appearing in (11) is calculated by means of

the same formulas under the already-mentioned substitutions for

k and r.

The last term in (11) specifies an additional component of

the radiation resistance AZ the calculation of which in accor-22

dance with expression (11) and expressions (20) and (22) of [61

leads to the relation:

-1 LC -sfin2L+-sh 2l1 nLa[, _- _ ( ,(13)
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where

Cj-e'+fV-' C;=+P+K2

Ei is the relative dielectric permeability of the material of the

shell.

The complete value of the radiation resistance of the vibra-

tor, found on the surface of the conductor, is determined by the

Sum:

Z'- Z +AZ . (14)

We can further show that, in the presence of several shells

surrounding the conductor, with small dimensions as compared to

the length of the wave, it is sufficient in formula (13) to

replace r1 by rn and El' kl by %aKB' k3 KB' as determined by the

relations:

A

I --- i ro in -- K (15)
EVD r ~ e r.,,

n is the number of the last shell.

Let us consider several partial cases of the resulting

solution.

At present the theory of long conductors is widely used for

the calculation of vibrators with dielectric coating. We shall

also begin our comparison with the premises of this theory.
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From expression (22) of [6], by passing to the limit al-*

with a consideration of the formula for the rescaling of ZZ for

the input of the vibrator, we obtain:

inz 30 1~ cY d 1,12

Z I, + 6 0 P __n y . . ,,1 r 1, (16)

where

c_.--as~pU-j, c,=a'+p'sc'. (17)

Similarly, after converting the value of AZz to the input and under

the condition of al-*, we obtain:

AZ -.-i 60, -L ¢_. In1r..A
el; ICI Inro (18)

The expressions for cI and c' can be represented in the form:
!1

-- -+2y, -i -c +2y. (19)

Using the relationship:

n1,12 In ,
riV(K + ) (I--) r-y-i-- , -- (20)

and adding expressions (16) and (18), after inserting (19) and

(20) into these, we obtain:
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' 0 in +-- L0--

X[±, 1n ,+2 60. 1 e ×-,- -I -- _-In :-- (21)

.1 2
-M I.Lr" ".1

where k_=___O-0

By virtue of the dispersion equation for y [4], [5], the

last term in (21) vanishes.

The third term in (21) shall be transformed for the case of

Ik-Ij>> a. Then, with an accuracy down to terms on the order of
ct2

we find:

I -tIn V:-. =-(yK+i ), (22)

and expression (21) becomes:

Z. in+Y0

120 1,12 1. (23)+;;:207 ,t In -L +In

The second term in (23) coincides with the expression for

the wave resistance of a cunductor in an insulator, obtained by

the method of expanding the excitation function by a continuous

spectrum of cylindrical waves [4,51. The solution in this case

is represented in the form of a contour integral and likewise

contains two terms, one of which corresponds to the remainder of

the integrand and determines the wave resistance of the conductor;
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the other term is represented by an integral over the cross

section and it has not yet been possible to obtain this in an

explicit form. However, estimates suggest that, for the case of

y<< k, this term is much less than the wave resistance.

For this particular case we shall also estimate the expression

(23). When y<<k:

60 [c --' y a + O 2  (24)
+7 2§jr.7) (24)r P

Thus, when the wave resistance of the vibrator is on the

order of I000l// - T and when Iy/kl=0.7, the first term in (23) is

no more than 3% of the second.

For the case of short vibrators with yl<<l, in accordance

with expression (13) as well as expression (24) of [6], we have:

120 (a 2 +P2 )1J (--1 2) 1 (I- -1 "'n+In--- 1-K re r(

For the case of k>>k I , we can disregard Zz and the formula

for the doubled input resistance of a coaxial cable follows from

expression (13), after converting AZ to the input of the

vibrator.

In conclusion, the author expresses his gratitude to Doctor

of Technical Sciences G. A. Lavrov for his assistance and advice

in the writing of this paper.
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ON THE CALCULATION OF THE H-PLANE STEPPED JOINT OF RECTANGULAR
WAVEGUIDES

S. V. Butakova

The paper considers a block diagram of a
computer program and presents numerical results
of a calculation by the program for the scat-
tering matrix of a step in a rectangular wave-
guide. It is shown that the balance of activep~cwers of the waveguide structures should be
carried out independently of the number of
higher types of waves for which an allowance
is made in the waveguides between hetero-
geneities.

INTRODUCTION

Structures with coordinate-plane discontinuities in a

rectangular waveguide with Hmo waves are very common in UHF

techniques. This also includes the relatively simple designs of

a slit bridge, inductive diaphragm, waveguide turn, H-plane step,

and more complicated structures such as a zig-zag waveguide with

retarded wave, step junctions, a pair of waveguides coupled by

rectangular slits in a common narrow wall, etc. [1]. In [2] a

method is proposed for as accurate a design as desired for all

the above and other structures of this class, in the form of a

combination of an accurate method of factorization of the

functions (the method of Wiener, Hopf, and Foch) of a unitary

switch function [3] and of matrix transformations, including

inversion.

The fundamental formula in the method determines the scat-

tering matrix of the system in terms of familiar scattering
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matrices of the elements. This signifies that the space of the

vector functions is a portion of the space of the vector argu-

ments and not every vector argument has a corresponding vector

function. Consequently, the above matrix transformations only

in part correspond to the conventional definition of an operator

[4]. On the basis of the above, we shall designate the method

proposed in [2] the method of scattering quasioperators.

The successful use of the method of scattering quasioperators

for the design of structures with coordinate-plane discontinuities

largely depends on how accurately the scattering matrix of the

H-plane nonsymmetrical step is calculated in the available machine

time. This is due to the fact that the step, along with

waveguide branching (in the switch problem), is an elementary

discontinuity which figures in almost all structures of this

particular class.

On the other hand, in the method of scattering quasioperators,

the step is regarded as a partial form of the structure in the

form of a branching of waveguides with a short circuit in one

narrow channel. The nature of the discontinuity near the sharp

edge (near field) differs considerably for the zero and nonzero

separation of the short circuit from the edge. (In the former

case there is also a waveguide junction step.) In [5] a proof is

given for the validity of the passage to the limit of a zero

length of the short circuited waveguide for matrix transformations

similar to those used in the method of scattering quasioperators.
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However this feature of a step junction may make it necessary

to invert an excessively large matrix when using the method of

scattering quasioperators for the calculation. This would make

a numerical realization of the algorithms of the method difficult

or impossible for complicated structures.

The goal of the present work is to demonstrate the possi-

bility of computing the scattering matrix of a step by the method

of scattering quasioperators, using the computer, and of predicting,

on the basis of these calculations, the rate of convergence of the

method in calculations for complicated structures with

coordinate-plane discontinuities. The paper discusses a block

diagram of a computer program and the numerical results obtained

from a M-20 type computer.

THE COMPUTER ALGORITHM

A H-plane nonsymmetrical step junction of rectangular wave-

guides is shown in Fig. 1. The vector E is parallel to the edge

of the step.

In the method of scattering quasioperators, the design of

the step junction is regarded as a partial case in the design of

the structure, the general layout of which is shown in Fig. 2.

Here, S is the discontinuity in the form of a branching of

three regular waveguides A, B, T; the waveguides A and B are

semi-infinite, while waveguide T is short circuited by the dis-

tance 1 from the discontinuity S. In the waveguide step, the
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C,,,,,0IaN(1) (2)

Fig. 1. Fig. 2.

Key: (1) Section
in the H plane;
(2) H plane.

length 1 is equal to zero.

Figure 3 shows the H-plane sections of structures which can

be presented in the generalized form of Fig. 2.

I - a waveguide turn, II and III - junctions of two rectangu-

lar waveguides with a stub. In the partial case, when 1-0,

structures II and III are converted to the H-plane nonsymmetrical

step.

The scattering matrix of structures I, II, III contains

four infinite components:

_ aA) (aB)][(bA) I(MB)

here, {aA},{bB} are scattering submatrices of channels A and B,

respectively; {aB},{bA} are submatrices for the passage from

waveguide B into waveguide A and vice versa. The elements of the
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( 1 )CCV#hU, lE N

Fig. 3.
Key: (1) Section
in the H plane.

submatrices have additional indexes, for example {aB1ij1 which

designates the element of the i-th row of the j-th column of

component {aB}, being the amplitude of the E-field of the H io

wave, excited in waveguide A by the wave H~ incident on the

waveguide Junction from the direction of waveguide B.

In accordance with the method of scattering quasioperators,

the submatrices of the structures shown in Fig. 3 can be calcu-

lated from the following exact matrix formula:

WS- 3)11-ff 14

where

Sis the symbol for any given cell of the matrix ?
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(I).§(4) are the cells of the scattering matrix of the

waveguide branching which is part of the particular structures;

T is a diagonal matrix with elements Tij:

0  ati:J,J.fi,? &t ,i

Here, 1 and T. are the geometrical length and the lengthwise wave

number: HiO is the mode of the communication waveguide. When

1-0 and T-1, formula (1) is simplified:

(2)

Thus, the scattering matrices of structures I, I, III can

be calculated by a single computer program, the machine time for

the calculation of any of the structures depending solely on the

dimensions of the required matrix and the given accuracy. As

initial data for the program, the operator should enter in the

machine the values of the geometrical parameters (a0 ,a'), the

frequency (or wavelength in free space X), the length 1, the

accuracy, the dimensions, and the designator (version) of that

submatrix of structures I, II, III which is to be computed. There

are four submatrices in each of the three structures, and there-

fore a total of 12 versions is possible.

Each of the versions is characterized by a set of four con-

ventional codes, corresponding to the specific submatrices S(i)
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of the waveguide branching. The conventional codes of all 12

versions can be entered in the operational memory of the computer

as octuple constants.

In the following section we discuss the block diagram of the
"1

computer program, formulated on the basis of the above-described

computational algorithm.

Formulas of the type (1) and (2) have been obtained in [2].

The computational algorithms, estimates of accuracy, and the

program for computer calculation of submatrices () 4 have

been considered in [3].

THE BLOCK DIAGRAM OF THE COMPUTER PROGRAM

Let us discuss the basic elements of the program formulated

for computer calculation of the scattering matrices of the devices

in Fig. 3, using formulas (1) and (2). The block diagram of the

program is shown in Fig. 4. We\distinguish foremost in the pro-

gram the unit for calculation of the submatrix A (independently

of the specific values of the component matrices S(!-S(4), T)

and shall call this the matrix program unit.

Another unit of the program should implement the preparation

for calculation of the specific submatrices of the waveguide

branching, corresponding to the given cell of the matrix of the

selected structure. We shall call this part of the program the

analysis unit. The calculation of the values of the elements of

submatrices (l)_ (4) is carried out by the program described in

[3].
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(4)

Fig. 4.
Key: (1) From the input

structures; (2) Analysis
unit; (3) Conventional
codes; (4) Program for cal-
culation of the scattering
matrix of the waveguide
branching; (5) Matrix unit;
(6) SPMGU (standard program
of Moscow State University);
(7) Nonstandard portion;
(8) Output of results;
(9) To printer; (10) In
adjacent version; (11) Check
of balances.

Thus, the complete program for calculation of the scattering

matrices of structures I, II, III (Fig. 1) consists of an analysis

unit, a matrix unit, and a program for calculation of the

scattering matrix of the waveguide branching [3]. Let us con-

sider the structure of the first two units.

The analysis unit. As shown in [3], the scattering matrix

of a waveguide branching consists of 9 cells. We shall mark each

of these by a serial number, located in a single address or copy

of an operative storage location (in a three-address computer):
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nN)-*1, {MI-.4. {,4, R- 7,
{,N.-'}- 2. {,,M}--.- 5. (MR)- 8w.(to.j,
(W)V - 3. {rM) 6, (. rR} 90, (1 i,).

Now, to each of the submatrices determined by formula (1) or

(2) there corresponds an individual set of four code numbers,

which may be stored at a single location of the operational

storage of a three-address computer: the number of the submatrix

in the copy, the numbers of submatrices g(2) §(3) (W in

the three addresses of the same storage location, as shown in

Table 1.

Table 1.

()Ye-wame x (b)()td

-SO -S(2) ~ ~ u~eg Hoase

001 0004 0005 0002 { } 10
003 0006 0005 0002 {11 n
Oil 0006 0005 0010 (bE) 12
007 0004 0005 0010 (aB) 13

Oil 0003 0001 - 0007 4b1) 14
010 0002 0001 0007' Wa) 15I 005 0002 0001 OO4 (aA) 16
006 0003 0001 0004 (b} 17

001 0007 0011 0003 (bB) 18
002 0010 0011 0003 taB) 19

05 0010 00!! 0006 Wa) 20
004 0007 00!! 0006 (MA) 21

Key: (a) Number of structure; (b) Conven-
tional codes; (c) Designator of submatrix;
(d) Number of version.
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The conventional codes in Table 1 are stored in the register

of the operative memory in succession, as the initial octuple

constants. To each sought submatrix of these particular structures

there is assigned a serial number of the version - from 10 to 21

(cf. the right column of Table 1). The number of the version is

entered in the operative storage from punched card, along with

the other decimal constants of the problem.

The analysis unit operates in the following sequence. The

conventional code corresponding to the given version is entered

in the working register. Addresses are formed for the calculation

of the cells of the matrix of the waveguide branching, corresponding

to the code numbers at the copy and at the addresses of the working

register with conventional code. In another working register

2there is recorded the quantity (2K/A) , where K is the width of

the communication waveguide, corresponding to the contents of the

second address of the working register with conventional code,

for calculation of the T matrix. After this, the control is

transferred to the matrix unit.

The matrix unit of the program, in accordance with formula

(1) or (2), carries out:

- the inversion of the matrix with complex elements;

- the multiplication of the complex matrices;

- the algebraic addition of the complex matrices.

In order to obtain results with high precision, it may be

necessary to carry out all or certain of the operations on
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matrices of an elevated order, as the latter cannot be fully

entered in the operative computer storage (MOZU). Therefore, in

formulating the program, a provision should be made for the

possibility of reading during the recording in the MOZU of one

row of complex matrices which take part in the operations.

Since there is no appropriate standard program included in

the IS-2 of M-20 type computers, we employed the program of the

Computer Center of MGU (Moscow State University) [6], which enables

the combination of the inversion of the complex matrix and the

subsequent multiplication of the result by another complex matrix.

During this process, only a single row of the first and second

matrix is recorded at the same time in the MOZU.

In addition to the standard program of MGU [6], the matrix

unit includes subprograms for the multiplication and addition of

two complex matrices, as well as a subunit for the output of the

results, which controls the operation of a printer. The calcu-

lation results are printed out in the form of individual files

of a decimal printing, represented by consecutive lines of the

sought submatrices.

In order to check the correct functioning of the program and

to evaluate the accuracy of the intermediate results, the program

provides for the calculation of the balance of the active powers.

In order to determine the balance in the matrix unit there is an

additional calculation of the submatrix of an "adjacent" version,

which is characterized by the same excitation waveguide as the
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initial version. Versions which are "adjacent" to each other are

10 and 11, 12 and 13, etc. After calculating the initial and the

"adjacent" versions and printout of their corresponding submatrices,

there is a printout for a file of an even number of decimal values

which are equal in pairs to the left and right portions of the

balance equations for the active power of the particular device.

The quantity of pairs of numbers in the file is equal to the

quantity of balance equations of active powers which is possible

in the problem.

In a type M-20 computer, this program requires a slight

computer time. Thus, the calculation of two submatrices of the

10-th order with an allowance for 25 modes of the communication

waveguide is carried out in not more than 15 minutes.

ESTIMATION OF THE COMPUTATIONAL ACCURACY. DISCUSSION OF THE
RESULTS

Let us estimate the accuracy of the calculation of the scat-

tering matrix of a step junction, obtained by the described com-

puter program. For the step, the length of the communication

region 1 is equal to zero and, consequently, the calculations

should be carried out by formula (2). It is apparent from

formula (2) that the calculation accuracy for any given submatrix

depends, in the first place, on the accuracy of calculating the

submatrices S(i) of the waveguide branching and, in the second

place, on the order of the matrix which is to be inverted (i.e.

on the number of waves considered in the communication region).

The potential accuracy of the calculation for A by formula (2)
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does not exceed the precision of finding the elements of ( As

shown in the appendix to this paper, the potential accuracy of the

calculation for the submatrices A can be evaluated by the balance

of active powers which, however, cannot be used to estimate the

resulting precision, as it should be carried out independently of

the number of waves considered in the communication waveguide.

In order to estimate the accuracy of the solution determined

by formula (2), let us find a series of solutions for different

values for the order of the inverted matrix (it is necessary to

draw up the balance of the active powers at all the points). In

the case of a waveguide step, the elements of the inverted matrix

vary monotonically with respect to the modulus and the argument

(cf. [31). Therefore, as the order of the inverse matrix in-

creases, the elements of the sought matrix A should vary smoothly,

asymptotically approaching the most accurate solution. Table 2

shows such a series of solutions for several values of the geome-

trical and frequency parameters of the step.

Table 2.

{b),{bB,},a.)j
11B 1

,/ . 2; ./k 11,4;
a/a, - 0,476 a'/ a.. 0.409 a/ I.- 0.57

3 - 0,3364 + 0,1591 - 0,1653+ 0,1284 2 - 0,7993 + 0,6009
6 -0,3331 + 0,1622 - 0,1621 + 0,1301 4 - 0,8087 +0,5880
9 -0,3323+-0,1634 -0,1611 + 0,1309 6 -0,8112 + 0,5849

12 - 0.3319 + 0,1640 - ,1607 +0 ,1313 7 - 0,8119 + 0,5838

13 - 0,3318 + 0.1642 - 0,1606 + 0,1315 8 - 0,8125+ 0.5829
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Analyzing the data of Table 2, we see that it is sufficient

to take an order of n=10 for the matrix which is to be inverted,

so that the difference between the solutions by formula (2) for

the preceding and following value of n is not more than 0.5% of

the latter. Upon further increase in n, this difference will

decrease monotonically to zero when n-, upon which an accuracy

will be obtained which is determined solely by the accuracy of

the calculation for 9(i) In the methods which provide a series

of solutions which asymptotically approach the exact solution,

the error is estimated by the relative size of the difference

between the last two solutions of the series [4]. Thus, the

error of the results does not exceed 0.5%. The data of Table 2

permits an assessment of the "rate of convergence of the solution"

to the "exact", i.e. the speed of reduction of the difference

between two adjacent solutions with increase in n. From the

standpoint of computer realization of the calculations, this

speed is fully acceptable.

The results of the calculations by the method of scattering

quasioperators are in good agreement with the theoretical data,

obtained by other methods. Figure 5 shows curves from [7], cal-

culated by means of the equivalent statistical method, using

two quasistatic waves. The points indicated by small circles on

these graphs have been calculated by the method of scattering

quasioperators and are in good agreement with the curves (agree-

ment not worse than 3-4 of the first decimal figures).
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~Figures 6-9 show the various submatrices of a H-plane wave-

guide step as a function of the number p in the first column and

the number K in the first row. The figures indicate the number

n of modes of the communication waveguide which were taken into

account. The geometrical and frequency relationships for the

calculation were chosen so that, in a wide waveguide, two propa-

gating waves (H10 , H20) could exist in all the particular cases,

while in a narrow waveguide could exist either one propagating

I0 wave or only attenuating modes. The former case occurs with

a,/a 0 >0.5, and the latter when a'/a 0 <0.5 (a' and a0 are the width of
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the narrow and broad articulated waveguides, respectively)..
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The curves shown in Figs. 6-9 permit an idea as to the nature

of the dependence of the moduli and arguments of the elements of

the step submatrices on the indexes in the row and column. It

can be seen that, starting with a certain number in the sequence,

in the row and in the column there is a decrease in the moduli

of the elements, while the arguments of two adjacent elements

differ from each other by an angle close to 0 or 1800. In all

the submatrices of the step, except for {bB}, there are oscil-

lations of the moduli of the elements, the minima corresponding
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It is interesting to compare the graphs in Figs. 6-9 with

the data given in [31 for the scattering matrix of a waveguide

branching, forming a part of the step. It may be noted that the

nature of the dependence of the elements in the rows and columns

of the submatrix of the step resembles the dependence in the

particular waveguide branching. In this case, the difference

between the elements of the scattering matrices of the step and

of the initial branching is the greater as the ratio between the
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width of the narrow and that of the wide waveguides, comprising

the step, is smaller. At the limit, when this ratio approaches

zero, the scattering matrix of the step is converted 
to the

scattering matrix of an ideal short circuit.

Z- mad (aAj1 ,
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40
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Fig. 8.
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From these graph comparisons it is apparent that the rate of

decrease in the moduli of the elements in the rows and columns of

the matrix of the step is not less than that in the matrix of the

corresponding waveguide branching (cf. the graphs of [3]). This

fact allows us to suppose that, when designing more complicated

structures by the algorithms of the method of scattering

quasioperators, the use of the matrix of the step will not impair

the rate of convergence of the solution. Therefore, in order to

obtain an identical accuracy when repeatedly using the formulas

of the method of scattering quasioperators, the order of the

inverted matrices need not be increased significantly.
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CONCLUSIONS

The materials of the calculation of the scattering matrix

of a H-plane step junction, given in this paper, demonstrate that

the method of scattering quasioperators can be used with success

for the computer calculation of structures of varying complexity

with coordinate-plane computer discontinuities, with a high degree

of accuracy. A reliable criterion for the correctness of the

intermediate results and the absence of computer malfunction is

the drawing up of balances of the active powers.

APPENDIX

ON THE BALANCE OF THE ACTIVE POWERS IN WAVEGUIDE STRUCTURES

In the design of waveguide structures which consist of

regular waveguides and discontinuities, the condition of drawing

up balances of the active powers is often used as the solitary

criterion for the exact solution of a problem for the fields in

the output waveguides of the device. Rough errors may occur in

this process, one of which, overlooked in [Apl], has been dis-

cuse(' in [Ap2]. In this work [Apl], the electrical parameters of

the slit bridge with short slit were incorrectly determined as a

result of failing to allow for the upper modes in the communica-

tion region, even though the balance of the active powers was

carried out with high precision.

In numerous calculations of waveguide structures by type

M-20 computers, performed by the author of this paper, a balance
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of the active powers was drawn up at all points under the most

diverse numbers of waves, considered in the communication wave-

guide - from merely the propagating waves (1,2,3) up to the con-

sideration of 32 modes of the comunication waveguide. The dis-

cussion gives reason to suppose that the drawing up of a balance

of active powers is a necessary, but not sufficient condition for

obtaining an exact solution of the waveguide problem. We present

below an analytic proof of this supposition.

Let us consider a waveguide structure, consisting of two

discontinuities S1 and S2 , joined by a regular communication wave-

guide T, and two semi-infinite regular waveguides I and II

(Fig. Ap.l). In the waveguide T there may propagate m types of

waves. We shall first prove that the balance of active powers

for this particular structure does not allow for all the attenu-

ating waves of the waveguide T. By PI and PII we shall designate

the exact values of the powers produced by channels I and II when

a wave arrives from the direction of waveguide I. The power of

the incident wave shall be designated by P0. The balance of

active powers for the structure shown in Fig. Ap.l will be

written in the form:

p.P,+pJI. (Ap. 1)

Equation (1) is valid for any given values of the length of the

communication waveguide 1 and takes into account all types of

waves in this waveguide.
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Fig. Apl.

Now let the length 1 be so large that all the higher types

of waves in waveguide T are attenuated within a length 1. By

andP we shall designate the powers produced from channels

I and II; when I is large, we shall write the equation for the

balance of the active powers as:

j + Ps -(Ap.2)

Equation (Ap2) only allows for the propagating types of waves.

The dependence of .I and 9 on I of the amplitudes of theseII

waves is determined by the functions eiajTjl, where j is the

number of the propagating wave from 1 to m; aj is the number of

a natural series; T. is the real constant of propagation of theJ

j-th mode. The powers'9f andl do not change if the quantities

a.T.i1 increase or decrease by 2rb. (b. are the numbers of the

natural series). Consequently, the balance of active powers

(Ap2) - without allowing for the attenuating modes of the wave-

gui'de T - should be carried out for any given values of the length

1 direction down to zero.

It is now necessary to prove that the balance of active
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powers of the device shown in Fig. Apl should take into account

all the propagating modes and any given finite number of attenu-

ating modes of waveguide T.

Let the length 1 be small and therefore the exact values of

the powers produced from channels I and II (P, and PII) differ

from the quantities 9,I andi III calculated without allowing for

the attenuating waves of the waveguide T. The differences

P1 -$ =Ap1

P11 - 6,1 = A P11 (Ap. 3)

represent the summary active powers, transferred by the attenuating

modes of the waveguide T to waveguides I and II, respectively.

The possibility of transferring the active power by attenuating

modes in a waveguide between two discontinuities has been proved

in [Ap3].

From equations (Apl)-(Ap3) it is not difficult to obtain:

AP,+AP,,-O. (Ap.4)

The left side of equation (Ap4) will be written in the form of a

sum:

AP + AP 1 -A' +A +A" + ... . ,.5 (Ap .5)

where AU ) is the suamary active power transferred to channels

I and II by the j-th attenuating mode.
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Since the active powers in a passive system without losses

cannot be negative, while their sum is equal to zero, each of the

quantities A( ) should be equal to zero. On this basis, we shall

alter the balance equation:

(Ap.6)

where PIq and Pllq are the active powers transferred by the out-

going waves in waveguides I and II, calculated with an allowance

for any given finite number q of attenuating modes in the junction

waveguide T. It is obvious that

when q-o Ps,- so, P 1a =-jj,
when P,=P 1  P11

The significance of equation (Ap6) is the following.

An allowance for the active power transferred by any given

number of attenuating types of waves in a waveguide between two

discontinuities, without disrupting the balance of the active

powers, produces a change in the calculated (but not the actual)

active power in the output branches of the waveguide system.

Thus, the validity of the balance of active powers in the design

of systems of discontinuities, closely arranged in regular wave-

guides, may be considered necessary, but not a sufficient condi-

tion for the correctness of finding the active powers in the

output channels of the waveguides.

This proof employs the condition of rationality ,
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of the longitudinal wave numbers of the propagating waves of the

junction waveguide (when m>l), since, in the opposite case, it is

not possible to find values 1 which can satisfy the system

The longitudinal wave numbers are defined as the square root of a

certain number and. as a rule, are irrational numbers, the ratios

of which are likewise irrational. However, for a manual or com-

puter calculation, we always employ numbers with a certain finite

number of decimal figures. i.e. rational numbers. Therefore, the

calculation may require a mindatory equalization of the Left and

right halves of the balance equation of the active powers with a

certain given accuracy for any given values of the length of the

junction waveguide.

This proof is valid for any given waveguida systems, con-

sisting of nonuniform regions, joined by segmants of regular

waveguides. It is easy to be convinced of this, as a similar

proof can be given at first for more simple parts, treating these

as ideally discomected. The proof should then be repeated for

the entire coumection as a whole, under the condition that the

more simple parts will be treated as partial discontinuities.
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