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A METHOD FOR CALCULATING THREE-DIMENSIONAL FLOW IN BLADED TURBOMACHINES BY USING
ARBITRARY QUASI PERPENDICULAR INTERSECTING PLANES

Xin Xiaokang, Jiang Jinliang

Fluid Dynamics Section, Department of Mathematics, Fudan University

i
] . .
[ Since the Great Proletariat Cultural Revolution, considerable development

has been seen in the research, design and manufacture of bladed turbomachines in

\ China. To further increase the efficiency and power output with small dimensions,

l at present the theory of three-dimensional fluid flow is being applied to upgrade

t design calculations in many plants and organizations of scientific research. We
follow Great Leader Chairman Mao's instruction, '"Revolution in Education" by
meeting the demands of industrial and agricultural production as a research
subject. Along with the Shanghai Shipyard, Shanghai Diesel Engine Plant, and
Shanghai Institute of Internal Combustion Engines, we are engaged in the design
and calculation of three-dimensional fluid flow in superchargers. This paper
presents one result in our open-door educational activity.

Reports (1,2) first proposed fundamental equations and calculation processes

in the three-dimensional fluid flow in bladed turbomachines. This calculation
method aims at simplifying the three-dimensional flow field in a bladed turbo-
| machine into two two-dimensional flow fields (S1 and S2 flow surfaces); by

mutually successive substitutions of these two two-dimensional flow fields,

Translator's note:

flow surface or surface of flow should read
throughflow surface.
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solutions of three-dimensional flow field can be obtained. Even at the present
time, this calculation method is widely adopted both domestically and abroad.
However, because a great volume of calculations is required to mutually and
successively substitute between the two groups of flow surfaces, the present
calculation method (3-10) of three-dimensional fluid flow does not employ succes-

sive substitutions. Instead, one successive substitution from the S2 to S, flow

1
surface is used to derive the quasi three-dimensional solution.

From the method of arbitrary quasi perpendicular intersecting lines (6-8) in
the streamline curvature method, we developed a method of arbitrary quasi

perpendicular intersecting planes. In calculations, the mutual influence between

the two groups of flow surfaces is simultaneously considered, so that no corrections

need to be made from each other by successive substitution between these two
groups of flow surfaces. In this method, the theory of a variable curve sample
is applied. After appropriate successive substitutions of spatial streamlines,
the three-dimensional solution of the entire blade channel can be directly calcu-

lated, including shapes of arbitrary S1 and S2 flow surfaces, shapes of spatial

streamlines, and the distribution of flow parameters, such as velocity and pressure.

As the first step in solving the real three-dimensional flow field, we apply
the approximate hypothesis that the S1 flow surface is a surface of revolution;
this hypothesis is applied in most reports. Thus, there are briefer and more
convenient steps in flow integration and reverse interpolation of equal-sector
flow into new streamlines. Hcnce,the solution obtained is basically still the
quasi three-dimensional solution. The next step is to eliminate the hypothesis
that the S1 surface is a surface of revolution in order to obtain the solution of
a real three-dimensional flow field. Then the curvature of S, flow surface can

1
be calculated.

I. The Method of Arbitrary Quasi Perpendicular Intersecting Planes

In principle, this method can be applied to axial-flow, diametrical-flow,
and mixed-flow bladed turbomachines. The paper uses an example of a bladed

channel in a centrifugal compressor bladed turbomachine for a detailed illustration.

K

Figure la shows a bladed channel of a centrifugal compressor bladed rotor.
Figure 1b shows the shape of the meridian planec of the bladed channel. The

report (6) introduces the situation of utilizing an arbitrary quasi perpendicular
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interesting line q, to solve for meridian flow field (S2 flow surface). The report
(7) introduces a situation in which use is made of an arbitrary quasi perpendicular
intersecting line 9 to solve for the trans-blade flow field (S1 flow surface).

In the ordinary method of the quasi perpendicular intersecting line, first we

integrate the velocity gradient equation in the direction of q, T q,. Next, by

flow correction the velocity distribution along the quasi perpendicular intersecting

line can be obtained. Then, by inverse interpolation of equal-sector flows, the
position of new streamlines at the S2 or S1 flow surface can be obtained. In the
paper, the quasi perpendicular intersecting lines can constitute a curved surface
Sq (See Fig. 1la), which is formed by the quasi perpendicular interescting straight
line a (Fig. 1b) revolving around the z axis for a complete circle. We then take
this curved surface as the quasi perpendicular intersecting plane in solving the
problem. First, the fundamental equations can be used to derive a velocity
gradient equation along an arbitrary direction in space. Then two velocity
gradient equations can be derived along the U and Qg directions. Integrate these

two equations. Next, through flow correction, the velocity distribution at the

quasi perpendicular intersecting plane can be obtained. Then, by reverse interpola-

tion of equal-sector flow, new positions of spatial streamlines can be obtained.

Fig. 1.

Key: (1) Pressure surface; (2) Quasi perpendicular intersecting
plane; (3) Rotor; (4) Stator; (5) Suction surface; (6) Streamline;
(7) Quasi perpendicular intersecting line.

The fundamental hypothesis adopted by the paper is as follows:

1. The working medium (or fluid) is a perfect gas, which is viscousless with
equal Cp. The flow is isentropic. [Iriction losses in a real gas can be adjusted
by total pressure loss as indicated in reports (6,7), or revealed by using the
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ordinary polytropic process,

2. The flow passing through the blade rotor is of finite length, reclative to

blade rotor.

3. The Sy flow surface is a surface of revolution. This hypothesis is iden-
tical to the hypothesis used in most reports, and restricts the application range

of this method.

We now proceed to derive the fundamental equations used in the paper.

In reports (6,7), the velocity gradient equation at any curve direction in

the space along the flow field is as follows:

d‘-——" = g -—d'— + b .d_:_ + ¢ io—
dq dq dq dg
1 (db; dl.
(e
wi\dg Y4 (1)

In equation (1),

) = Weota cos f_ Wsin’$
r. r
+ sinacosﬂd—“:' — 2wsin g
dm
b= — Wisinacos’
. Te . . > (2)
t4
-+ macosﬁﬂ-"
dm

¢ = WWisingsin fcosf

+ rcosﬁ(% + 2w sin 6)
dém .

Here, W is the relative velocity; q is the intercept of the space curve; T, is the
radius of curvature of the projection by the streamline on the meridian plane
(briefly called the meridian streamline); « is the included angle between the z axis
(rotating axis) and the tangent of the meridian streamline; p is the included angle
(Fig. 2a,b) between the meridian plane and the relative velocity vector; A is the
previous rotation (A=rV0); h{ is the total entropy of each streamline; and w is

the angular velocity of the blade rotor rotation.

From Fig. 2, the following geomctric relationship equation can be established:
L




Fe e e R - R N R L

W WL W), WA= WD W,
W, = W_sina, W, = W,cosa,

Wa = Wcos 3, We = Wsin 8, 3)

Lo

Here, Wr, WO’ and Wz are, respectively, the relative velocity components along
the diametrical direction, circumferential direction, and axial direction; Wm is
the relative velocity component of meridian plane; dm is the micro-element of
the arc length of the meridian streamline.

©(a)

Fig. 2
Key: (1) Rotor; (2) Stator; (3) Streamline; (4) Quasi
perpendicular intersecting line.

In the appendix, velocity gradient equations can be derived in the direction

of two groups of curves along the quasi perpendicular intersecting plane:

One velocity gradient equation is in the direction of the intersecting line

between the quasi perpendicular intersecting plane and the blade pressure surface
W gw + B+ (cW + D)%%
49, 4.
+ L[4k _ i&.) 4)
In Equation (4), W \dq. dqm
A= cos’Bcos(b — a) __ sin’f cos )

Te r

B == ~ cosfsin (¢ — a)!‘—v"
dm

— 2wsin fcos f (s)

C = sinasin fcosp

D o= rcosﬁ(ﬂd‘—" + 2w sin a)
m
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Here, ¢ is the included angle between the z axis and the normal line n_ of the
intersecting line AB referred to concisely as the quasi perpendicular intersecting
line between the meridian plane and the quasi perpendicular intersecting plane;
I
secting point ¢ between line AB and the rotor; ed=fd(r,z) showing the pressure

is a parameter, indicating the intercept along line AB starting from the inter-

surface equation of the blade.

' Another velocity gradient equation is in the arc direction (@ direction) when
q,=constant along the quasi perpendicular intersecting plane.

dhl _ db )

FALY . (
V4D
= - CW + D+ — m 7 (6)

Here, C and D are the same as in Equation (5).

The continuous equation is satisfied by using the same flow (equivalent to
a given flow) passing through the quasi perpendicular intersecting plane. The
following is the equation of flow weight as the flow passes through an arbitrary
quasi perpendicular intersecting plane and stays within the channel of two adjacent
blades. -
G-s'.j peW - n - rdbdg,
[ ]

- S'-'S oW cos (¢ — a)rdbdq,, (7)
o

1 Equation (7), 8y is the angle of the blade pressure surface and 8 is the angle
of the blade suction surface. As integrations are conducted along a curved surface,
edzed(qm) and 95=Os(qm); these are equations of the curve.

These three equations are the fundamental equations we adopted.
I1. The Solution Procedures in This Method

The procedures in this method are as follows:

1. First on the meridian plane, arbitrarily select m quasi perpendicular
intersecting lines (Fig. 1b), which are quasi perpendicularly intersecting with

all meridian streamlines. For sake of simplicity, generally straight lines are
selected. Then the corresponding angle ¢ of these m quasi perpendicular inter-

secting lines can be written as __l." )
- ll’Clln( e ————

\/ z’l - xla) + (" = Tu )’

6 (' - 19 2’ %y M) (8)
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In the equation, (r,., zli) and (rZi' :qi) are, respectively, the coordinates of

1i
the intersecting points between the quasi perpendicular intersecting line on one

side, and the rotor and stator, on the cother.

2. Rotate this group of quasi perpendicular intersecting lines about the z

axis, we obtain the required quasi perpendicular intersecting planes.

3. Form the initial meridian streamlines on a meridian plane. As usual, we
can adopt an equidistant division of quasi perpendicular intersecting straight
lines, or make the revolving-ring-shaped channel areas equal in value. We adopt
the first method by dividing into n equal parts to obtain (n+l) meridian stream-
lines. Then we can see that the coordinates (rB, zB) of the intersecting point
between the initial meridian streamlines and the quasi perpendicular intersecting

lines are: i
Cradiyy =1y, + ‘%‘ (ru = ry)

(’l)n.} - u + L:_l' (=b - 3,,’)

('."'1’ 2, -coym ) 9
f=1,2, «cc.n+1

4, In the hypothesis, the S1 flow surface is a surface of revolution,
therefore, as mentioned above, revolving the (n+l) meridian streamlines around
z axis will generate (n+l) S1 flow surfaces. The initial space streamlines can be

generated on (n+l) S1 flow surfaces.

First, the cutting of a blade channel of the rotor by a quasi perpendicular
intersecting plane is drawn in Figure 3. Figure 3a is the developed diagram
(projection on a plane with z=constant) in an ordinary rectangular coordinate

system. Figure 3b is the developed diagram in the 4y 9 coordinate system,

From Figure 3', when a quasi perpendicular intersecting plane cuts through
the flow channel, the boundary of the cross section thus produced forms a curved
parallelogram. On 9p-6 diagram, the upper and lower sides of the parallelogram
are straight lines: qmso and 9% seator .
Moreover, the intersecting line between the S1 flow surface and the quasi perpen-
dicular plane is also a straight line:

(a0, =(G-D/n]q, seaeor
T
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Therefore, along these straight lines, r=constant and z=constant. The var ation

range of angle ¢ is b, <06,

RAHE (2 -
N\ (2) v

Fig. 3
Key: (1) Pressure surface; (2) Suction surface.

Now, we make h equal divisions on 6 at the straight lines qm=constant; then
we have (n+1)(h+1) initial space streamlines. Then we can derive the result that
the coordinates of 6 of the intersecting point between the quasi perpendicular

intersecting plane and the initial space streamlines are:

i 1,2,y m

(ol)-'u-l = 04(r.i» 2.4) + &':—1[6:('1.,:3..5) = 0,Criis 2001 7 = 1, 2, :rr 0t ] (10)

Ao 1,2,---, 41
In the equation, ed(r,z) and gs(r,z) are determined by the blade forming equation
of air-guiding rotor and working rotor. The analytical equation can be derived
or values of divergent points can be obtained. Thus, after r and z are given,

values of 8y and g, can be solved or obtained by interpolation.

Thus, we obtain nodes of initial streamlines in the entire blade channel.
There are altogether m quasi perpendicular intersecting planes, (n+l) S1 flow
surfaces and (h+l) 52 flow surfaces. Coordinates of intersecting points (nodes)
of these three groups of surfaces can refer to Equations (9) and (10).

S. After obtaining the coordinates of the initial streamlines, according to
the theory of sampling curve we can obtain various geometric quantities (such as
«, B, and rc) of streamlines and solve for various parameters (such as dwm/dm

and dwu/dm) required in Equations (4), (6) and (7). The solution procedures are
8
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the same as in report (6). As in report (6), the initial value of W can be
assumed constant; in our case, the initial value of W arc assumed as constant at
each quasi perpendicular intersecting plane for more rapid convergence in succes-

sive substitutions. Here, the initial value of wgo) is given by input.

6. Same equations for numerical solution can be adopted in the numerical
integration of two differential equations (4) and (6). We still adopt the

prediction - correction method (i.e., Runge-Kutta method) described in report (6).

In this method, the procedure for solving W values of the entire flow
field is as follows: To each quasi perpendicular intersecting plane, first solve
for W values (Fig. 3b) at points Ays A3,..., An+1 with initial values of point A1
by using pressure surface integration equation (4). Then, use q,=constant to
integrate linear differential equation (6), from point Ai to point Bi at the

suction surface in order to obtain W values of the entire net lattice points,

7. Use flow conservation equation (7) to check whether the total flow can
be satisfied in order to revise the initial value of W for peoint Al'
_—

G- S. pgW cosfeos(p — a)db a11)
('

Then the flow weight equation (7) passing through any arbitrary quasi perpendicular

intersecting plane can be written as

G, - L'" stator G (gu) * (r, + qacosP)dg, (12)
These integrations can be easily obtained by using the sampling curve theory of
the divergent point. Moreover, a group of successively additive numbers can be
obtained. 1If the calculated total flow Gi and the given flow G0 do not satisfy
precision requirement |G, — Gl < €g (e input) 13)
Then, we can use

" - WA.-gJ (14)

to be the new initial value of the velocity at point Al. Repeat steps 6 and 7
until the precision requirement (13) is satisfied. Generally, this process

requires five to six iterations.

8. After satisfying the precision rcquirement (13), apply the method of

reverse interpolation of equal-division flow and solve for the streamline
Y

- r— e T &




coordinates (xc . i} and 95)'

First, apply reverse interpolation by n cqual divisions of meridian flow at

the total flow curve Gi-qm (Fig. 4a) and solve for various values of (th;, then
rc=r,+ (ga)c * cosg }

2=z, — (gu)c * sin¢

(15)

Apply reverse interpolation to angle @ and reverse interpolation for h equal
Jdivisions at the flow curve Gk—e (Fig. 4b), we obtain the value of dG' However,
<ince values of r and z have changed, values of 84 and 65 for boundary points
should start from IS and zG values using blade equations 9d=8d(r,z) and 95=es(r,z)
and solving for values of (6 ) and (GS)G. Here we employed an

4°G

approximation hypothesis: we considered that the GG values obtained

for the original r and z can be approximately regarded as the
rartition values for r_ and zg but Bd and es nonetheless use the

G
values (ed)G and (GS)G. Because the loosening factor n is adopted

later on, this approximation will not affect convergence.

(el
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9. Lastly, we derive the maximum deviation between new and old streamline

points M= max ((rg— rg) + (26 — 2,)
1$i$7
1<2<atl
+ 1%(68; — 6,)) (16)

When M<:Em (input value), we obtain coordinate positions and velocity distribution
of streamlines by using the calculation results of the printout. Otherwise, utilize

the loosening factor 7 (input) of the streamline coordinates to obtain new stream-
linc coordinates:

rg + n(rg— ra)=>1

5+ n(zc = 2)=>1% an
8, + n(8s — 65)=>0s
10
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Agiain, return to step 5 tor iterated calculations until.“<&Ff
Now, we mahe several explanatory notes about the solution process:

1. Just as for procedures in report (6), when solving for a, first rotate
the r-z coordinates by 45° and then apply the method of obtaining first order deriv-

ative by using sampling curves.

2. Just as for procedures used in report (12), when solving for rc, use two
sampling curves to improve the precision with the same conditions of terminal

points as in report (6).

3. During trial claculation used in the paper, for the time being the varia-
tions of hi and )\ are left aside. This is feasible in compressor calculations of

superchargers. Variations of h{ and A will not cause any other difficulties.

4, As for loss revisions, we may use the corrcction method of total pressurc
loss in report (6). Howcver, for convenience this program adopts a correction to

the multivariant index: [

L8 -y
ﬂg—l

£—1

Here, k is the adiabatic index, n, is the multivariant index; and n is the multi-

variant efficiency. The value of n, is determined by input.
ITI. Analysis and Discussion of Results

A program was compiled by using this method; trial calculations were conducted
on a centrifugal compressor of a Number 780 supercharger designed by the Shanghai
Shipyard, the Shanghai Institute of Ship Transportation and other units. Refer to
Figure 5 for outlines of the meridian planes of a compressor blade rotor. The
following are the performance parameters thus calculated: inlet temperature Ti=303°K;
inlet specific gravity Yi=1.149 kg/mS; isopiestic specific heat C_=1003.56 kg-m/kg;
multivariant index n°=l.509; flow weight G°=2h kg; angular velocity
w=880 radians/sec; number of blades Zn=20; number of quasi perpendi-
cular intersecting planes m=12; number of S, flow surfaces (n+1)=9;

1

number of S, flow surfaces (h+1)=9,

The common parabola forming method is uscd to generate outlines of air-guiding
rotors; the working rotor has diametrical straight blades.
11
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(2) (®)

Fig. 5

(a) Shapes of Mferidian Streamlines and Meridian Plane Outlines of a

Blade Rotor; (b) Distribution of Relative Mach Number on the Averaged

S2 Flow Surface (k=5).

Key: (1) Meter (m); (2) Quasi perpendicular intersecting lines.

[ Mur
1.0
J=1
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[ 4
®Bos
L ]
9 .
7
5
3
hm)
0 0.5 1.0 w
(
Fig. 6

(a) Streamline Shapes on a Rotor (j=1); (b) Distribution of Relative
Mach Number on a Rotor (j=1).
Key: (*) Radian

T . 3908 Ty T ey

T




"]“

(*)
[}
aw J=5
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¢ 0.5 1.0m
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Fig. 7

0

. (b)

(a) Strecamline Shapes on an Averaged Trans-blade Surface (j=5);
(b) Distribution of Relative Mach Number on a Rotor (j=1).

Key: (*) Radian.

(3)

Fig. 8

M.
1.0

0.5

()

(a) Streamline Distribution on a Rotor (j=9); (b) Distribution
of Relative Mach Number on a Rotor (j=9).

Key: (*) Radian.
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Fig. 9 Distribution of relative
Mach number on a quasi perpen-
dicular intersecting line at the
inlet.

Key: (1) Rotor; (2) Stator.

The calculation results are plotted in Figures 5-9. Since there are many data,
for sake of simplicity, these curves drawn are streamlines of the trans-blade flow
field for j=1, 5 and 9; the corresponding vclocity distributions for k=1, 3, 5, 7
and 9; the streamline distribution for k=5 (i.e., the average surface of flow

O3

channel§); and the velocity distribution for j=1, 3, 5, 7 and 9.

From the calculation results, we drew the following primary conclusions:

l. We can see from Fig. 9 that on the average throughflow surface
(k=5), the distribution of relative Mach number MW at thg inlet on
the quasi perpendicular intersecting lines is quite similar to that
shown in Fig. 7 of report (12). The shapes of velocity distribution
and streamline plot spectra in Figs 5-8 are also consistent with

curves in other reports.

2. Por this example, whenE(fd%, E‘m=10-4 and the loosening factor 7 is
selected as 0.1, the three-dimensional flow field solution can be obtained by
applying more than 20 successive substitutions. Besides the printout time, the
processing timc is approximately 8-10 minutes by using our university's 719 computer
(125,000 operations per sccond). This processing time is considerably less than
the mutually successive substitutions of nine S1 flow surfaces and nine S2 flow

surfaces in several calculations. -

3. The shortcoming of this method is the same as the common strcamline
14 -
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curvature method: it is generally difficult to calculate precisely the flows at
inlet and exit -- corrections are required. However, the revision of the three-
dimensional flow ficld differs from the situation of solving separately the Sl i

and 52 flow surfaces. The work will be continued later on,

4. Since the method in the paper is basced on the assumption that Sl flow
surface is a surface of revolution with more limitations, one still cannot calcu-
late the curving state of the S flow surface. As a continuation of the paper,
later this assumption will be eliminated in order to derive a real solution of the

three-dimensional flow field.
APPENDIX
In the following, we deduce Equations (4), (6) and (7).

Since the quasi perpendicular intersecting plane we select is a plane of
revolution, the gencrating line is a straight line (AB in Fig. 2a) of a meridian

plane:

r—r.+q.cou¢}. (Al)

smg, —~ g, sing

In the equation, (rl, zl) are coordinates of intersecting point ¢ between the blade
rotor and the quasi perpendicular intersecting line AB; a, is the intercept along
line AB starting from point c¢; and ¢ is the included angle between z axis and n_,

the normal line of AB.

By eliminating A in Equation (Al), the straight line equation is

(r—r)sing + (s —2)cos ) =0 (A2)

If the equation of blade pressure surface is
0y = 14(75%) (A3)

the conditions of the intersecting curve (space curve) equation between the pressure
surface and the quasi perpendicular intersecting planc are

ramr, 4 qucos ¢

oy =8, — gusind (Ad)

0= 14(ray 24) = 04(4a)
The direction of q in Equation (1) takes on the direction of intersecting curve,

then 15




aw dr, ds P7)

—_— - g L Y Phabal ¢

4a ¢ 4. + dae *e dge

1 ah, _ Piy
+ (G -ed) (AS)
From Equation (AS5), wc know
dJ

T =y T = (A6)

By substituting LEquations (A6) and (2) into Equation (A5) and by simple algebraic
manipulations, we obtain Equation (4).

Since along the arc sector of q =constant, there are
g U

d d d8
‘—’0-0,‘—;""0’ ;‘é-l (A7)

Substitute q in Equation (1) by O, then Equation (6) can be obtained by using
Equation (A7).

The general equation of flow weight streaming into any curved surface S is
GCen || pgW+nds (A8)
fJer

If the equation of curved surface S is S(ry8,8) = 0 (A9)

then the unit normal vector of curved surface is

oS . + as | +65'_
-1, — bl 18
ne v o ar 38 * T Os (A10)
EA |ws|

In the present situation, the curved surface S is quasi perpendicular inter-
secting plane, the equation of which is Equation (A2). Therefore its unit normal
vector is

n e sindi, + s + cor i, (All)

The vector form of relative velocity W is

W Wi, + oo + Wi, (A12)

Hence,

WenaW,singd + W,cond
- Wasinasingd + W_cosacos ¢

- Wocos (¢ — a)

Al3
16 (A13)

P -




Besides, the arca micro-clement of this quasi perpendicular intersecting plance can

be written as

dS = r d9 dga (A1)

Substituting Fquations (A13) and (Al4) into Equation (A8), we obtain Equa-
tion (7).

The density cquations arc the same as in report (7), thercfore the paper does
not list them,
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