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A METHOD FOR CALCULATING THREE-DIMENSIONAL FLOW IN BLADED TURBOMACHINES BY USING

ARBITRARY QUASI PERPENDICULAR INTERSECTING PLANES

Xin Xiaokang, Jiang Jinliang

Fluid Dynamics Section, Department of Mathematics, Fudan University

Since the Great Proletariat Cultural Revolution, considerable development

has been seen in the research, design and manufacture of bladed turbomachines in

China. To further increase the efficiency and power output with small dimensions,

at present the theory of three-dimensional fluid flow is being applied to upgrade

design calculations in many plants and organizations of scientific research. We

follow Great Leader Chairman Mao's instruction, "Revolution in Education" by

meeting the demands of industrial and agricultural production as a research

subject. Along with the Shanghai Shipyard, Shanghai Diesel Engine Plant, and

Shanghai Institute of Internal Combustion Engines, we are engaged in the design

and calculation of three-dimensional fluid flow in superchargers. This paper

presents one result in our open-door educational activity.

Reports (1,2) first proposed fundamental equations and calculation processes

in the three-dimensional fluid flow in bladed turbomachines. This calculation

method aims at simplifying the three-dimensional flow field in a bladed turbo-

machine into two two-dimensional flow fields (S1 and S2 flow surfaces); by

mutually successive substitutions of these two two-dimensional flow fields,

Translator's note; flow surface or surface of flow should read
throughflow surface.



solutions of three-dimensional flow field can be obtained. Even at the present
time, this calculation method is widely adopted both domestically and abroad.

However, because a great volume of calculations is required to mutually and

successively substitute between the two groups of flow surfaces, the present

calculation method (3-10) of three-dimensional fluid flow does not employ succes-

sive substitutions. Instead, one successive substitution from the S2 to S1 flow

surface is used to derive the quasi three-dimensional solution.

From the method of arbitrary quasi perpendicular intersecting lines (6-8) in

the streamline curvature method, we developed a method of arbitrary quasi

perpendicular intersecting planes. In calculations, the mutual influence between

the two groups of flow surfaces is simultaneously considered, so that no corrections

need to be made from each other by successive substitution between these two

groups of flow surfaces. In this method, the theory of a variable curve sample

is applied. After appropriate successive substitutions of spatial streamlines,

the three-dimensional solution of the entire blade channel can be directly calcu-

lated, including shapes of arbitrary S1 and S2 flow surfaces, shapes of spatial

streamlines, and the distribution of flow parameters, such as velocity and pressure.

As the first step in solving the real three-dimensional flow field, we apply

the approximate hyp~othesis that the S1 flow surface is a surface of revolution;

this hypothesis is applied in most reports. Thus, there are briefer and more

convenient steps in flow integration and reverse interpolation of equal-sector

flow into new streamlines. flence,the solution obtained is basically still the

quasi three-dimensional solution. The next step is to eliminate the hypothesis

that the S surface is a surface of revolution in order to obtain the solution of

11a real three-dimensional flow field. Then the curvature of S1 flow surface can?

be calculated.

I. The Method of Arbitrary Quasi Perpendicular Intersecting Planes

In principle, this method can be applied to axial-flow, diametrical-flow,

and mixed-flow bladed turbomachines. The paper uses an example of a bladed

channel in a centrifugal compressor bladed turbomachine for a detailed illustration.

Figure la shows a bladed channel of a centrifugal compressor bladed rotor.

Figure lb shows the shape of the meridian plane of the bladed channel. The

report (6) introduces the situation of utilizing an arbitrary quasi perpendicular

2 .



interesting line q to solve for meridian flow field (S 2 flow surface). The report

(7) introduces a situation in which use is made of an arbitrary quasi perpendicular

intersecting line q to solve for the trans-blade flow field (S1 flow surface).

In the ordinary method of the quasi perpendicular intersecting line, first we

integrate the velocity gradient equation in the direction of q or qO. Next, by

flow correction the velocity distribution along the quasi perpendicular intersecting

line can be obtained. Then, by inverse interpolation of equal-sector flows, the

position of new streamlines at the S2 or S1 flow surface can be obtained. In the

paper, the quasi perpendicular intersecting lines can constitute a curved surface

Sq (See Fig. la), which is formed by the quasi perpendicular interescting straight

line qm (Fig. lb) revolving around the z axis for a complete circle. We then take
this curved surface as the quasi perpendicular intersecting plane in solving the

problem. First, the fundamental equations can be used to derive a velocity

gradient equation along an arbitrary direction in space. Then two velocity

gradient equations can be derived along the q and q. directions. Integrate these

two equations. Next, through flow correction, the velocity distribution at the

quasi perpendicular intersecting plane can be obtained. Then, by reverse interpola-

tion of equal-sector flow, new positions of spatial streamlines can be obtained.

(4) (4) 011

(a) (b)

Fig. 1.
Key: (1) Pressure surface; (2) Quasi perpendicular intersecting
plane; (3) Rotor; (4) Stator; (5) Suction surface; (6) Streamline;
(7) Quasi perpendicular intersecting line.

The fundamental hypothesis adopted by the paper is as follows:

1. The working medium (or fluid) is a perfect gas, which is viscousless with

equal C . The flow is isentropic. Friction losses in a real gas can be adjusted
p

by total pressure loss as indicated in reports (6,7), or revealed by using the
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ordinary polytropic process.

2. The flow passing through the blade rotor is of finite length, relative to

blade rotor.

3. The S1 flow surface is a surface of revolution. This hypothesis is iden-

tical to the hypothesis used in most reports, and restricts the application range

of this method.

We now proceed to derive the fundamental equations used in the paper.

In reports (6,7), the velocity gradient equation at any curve direction in

the space along the flow field is as follows:

Id ld dz dO

dq dq dq dq

In equation (1), 11' d)

W cosa cos W sin'
IdI1

re r
+ sinacos$W-2w nPf

dm

b IV sin a cos? p
(2)

+ cos Cos 1-0
dm

C I - sinasin#CosI

Col (d --. + 2, zAi

Here, W is the relative velocity; q is the intercept of the space curve; rc is the

radius of curvature of the projection by the streamline on the meridian plane

(briefly called the meridian streamline); a is the included angle between the z axis

(rotating axis) and the tangent of the meridian streamline; f3 is the included angle

(Fig. 2a,b) between the meridian plane and the relative velocity vector; A is the

previous rotation (A=rV0); h' is the total entropy of each streamline; and w is

the angular velocity of the blade rotor rotation.

From Fig. 2, the following geometric relationship equation can be established:

- . . . . . . , n4



1" - u'L + U' , I1°.- II;+ ,

It', .sin a, 11' - iI.,cusa,
1."IV Cos g, W- 11 sin 9 (3)

rdO

dm M

Here, W WO , and W are, respectively, the relative velocity components along

the diametrical direction, circumferential direction, and axial direction; Wm is

the relative velocity component of meridian plane; dm is the micro-element of

the arc length of the meridian streamline.

-___. . ..

2) A,,

(b)
3.

• (.

((b)

Fig. 2
Key: (1) Rotor; (2) Stator; (3) Streamline; (4) Quasi
perpendicular intersecting line.

In the appendix, velocity gradient equations can be derived in the direction

of two groups of curves along the quasi perpendicular intersecting plane:

One velocity gradient equation is in the direction of the intersecting line

between the quasi perpendicular intersecting plane and the blade pressure surface

dF-_A I+ B + (CCW + D)
dq. dq.

+ d , d,) (4)

In Equation (4), Wq. dq.

A- CoPCoS(, - a) __ CinP cos,
re •

B - - cos#sin (, - a) d-'
dm

- 2tsinpcos, (S)

C - sinasinpcos#

D - , cos + 2w sin a)
dm

5,
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Here, q/ is the included angle between the z axis and the normal line nq of the

intersecting line AR referred to concisely as the quasi perpendicular intersecting

line between the meridian plane and the quasi perpendicular intersecting plane;

is a parameter, indicating the intercept along line AR starting from the inter-

secting point c between line AB and the rotor; Od=fd(r,z) showing the pressure

surface equation of the blade.

Another velocity gradient equation is in the arc direction (O direction) when

qm=constant along the quasi perpendicular intersecting plane.
d ll' _ C I S' + D + I ( LAh "dl )( 6

dO IV" dO del
Here, C and D are the same as in Equation (5).

The continuous equation is satisfied by using the same flow (equivalent to

a given flow) passing through the quasi perpendicular intersecting plane. The

following is the equation of flow weight as the flow passes through an arbitrary

quasi perpendicular intersecting plane and stays within the channel of two adjacent

blades. G-- 4. 16rgw  '0n " dOdq.

-:m ::, P,1V.cos(4, - a)rdOdq. (7)

i a Equation (7), od is the angle of the blade pressure surface and 0 is the angle

of the blade suction surface. As integrations are conducted along a curved surface,

d%0d (q.) and s=O S(q M); these are equations of the curve.

These three equations are the fundamental equations we adopted.

II. The Solution Procedures in This Method

The procedures in this method are as follows:

1. First on the meridian plane, arbitrarily select m quasi perpendicular

intersecting lines (Fig. lb), which are quasi perpendicularly intersecting with

all meridian streamlines. For sake of simplicity, generally straight lines are

selected. Then the corresponding angle V) of these m quasi perpendicular inter-

secting lines can be written as n

( , 1,,, 2 , (

- I _ _(_-__ _, _,_ ..., _ _ _ _ _ _ _ _



In the equation, (rli, zli) and (ri, Z.,i) are, respectively, the coordinates of

the intersecting points between the quasi perpendicular intersecting line on one

side, and the rotor and stator, on the other.

2. Rotate this group of quasi perpendicular intersecting lines about the z

axis, we obtain the required quasi perpendicular intersecting planes.

3. Form the initial meridian streamlines on a meridian plane. As usual, we

can adopt an equidistant division of quasi perpendicular intersecting straight

lines, or make the revolving-ring-shaped channel areas equal in value. We adopt

the first method by dividing into n equal parts to obtain (n+l) meridian stream-

lines. Then we can see that the coordinates (rB., zB) of the intersecting point

between the initial meridian streamlines and the quasi perpendicular intersecting

lines are:
.- r3, + 1 ( -

1, 2, " + I

4. In the hypothesis, the S1 flow surface is a surface of revolution,

therefore, as mentioned above, revolving the (n+l) meridian streamlines around

z axis will generate (n+l) S1 flow surfaces. The initial space streamlines can be

generated on (n+l) S1 flow surfaces.

First, the cutting of a blade channel of the rotor by a quasi perpendicular

intersecting plane is drawn in Figure 3. Figure 3a is the developed diagram

(projection on a plane with z=constant) in an ordinary rectangular coordinate

system. Figure 3b is the developed diagram in the qm- coordinate system.

From Figure Y, when a quasi perpendicular intersecting plane cuts through

the flow channel, the boundary of the cross section thus produced forms a curved

parallelogram. On q -0 diagram, the upper and lower sides of the parallelogram

are straight lines: qmsO and qm=qm stator

Moreover, the intersecting line between the S flow surface and the quasi perpen-

dicular plane is also a straight line:

(qm)l=[(J'l)/nlqm stator



Therefore, along these straight lines, r=constant and :=constant. The var ation

range of angle O) is

A...

----------------------------------------------
I /

-------------------------- ..I--
* : (2)I ,

- --I .. .I - "

OAF'.)

(.) (b)

Fig. 3
Key: (1) Pressure surface; (2) Suction surface.

Now, we make h equal divisions on 0 at the straight lines qm=constant; then

we have (n+l)(h+1) initial space streamlines. Then we can derive the result that

the coordinates of 0 of the intersecting point between the quasi perpendicular

intersecting plane and the initial space streamlines are:

-, 2, m
( l~.,. A- Ad/if 1,t [,r.,li - dr~,Z~) , 2, " . + 1 (10)

In the equation, Od(r,z) and s(r,z) are determined by the blade forming equation

of air-guiding rotor and Working rotor. The analytical equation can be derived

or values of divergent points can be obtained. Thus, after r and z are given,

values of 0d and Os can be solved or obtained by interpolation.

Thus, we obtain nodes oF initial streamlines in the entire blade channel,

There are altogether m quasi perpendicular intersecting planes, (n+l) S1 flow

surfaces and (h+l) S2 flow surfaces. Coordinates of intersecting points (nodes)

of these three groups of surfaces can refer to Equations (9) and (10).

S. After obtaining the coordinates of the initial streamlines, according to

the theory of sampling curve we can obtain various geometric quantities (such as

a, p, and r c ) of streamlines and solve for various parameters (such as dW m/dm

and dWo/dm) required in Equations (4), (6) and (7). The solution procedures are
8



the same as in report (6). As in report (6), the initial value of W can be

assumed constant; in our case, the initial value of W arc assumed as constant at

each quasi perpendicular intersecting plane for more rapid convergence in succes-

sive substitutions. Here, the initial value of W!0 ) is given by input.

6. Same equations for numerical solution can be adopted in the numerical

integration of two differential equations (4) and (6). We still adopt the

prediction - correction method (i.e., Runge-Kutta method) described in report (6).

In this method, the procedure for solving W values of the entire flow

field is as follows: To each quasi perpendicular intersecting plane, first solve

for W values (Fig. 3b) at points A1, A3 ..... An+ 1 with initial values of point A1

by using pressure surface integration equation (4). Then, use q,,=constant to

integrate linear differential equation (6), from point Ai to point Bi at the

suction surface in order to obtain W values of the entire net lattice points.

7. Use flow conservation equation (7) to check whether the total flow can

be satisfied in order to revise the initial value of W for point A1.

G4 pg1cos cos(4 - a)d6 (11)

Then the flow weight equation (7) passing through any arbitrary quasi perpendicular

intersecting plane can be written as

G- stator G4(q) • (r, + q.cos)dq. (12)

These integrations can be easily obtained by using the sampling curve theory of

the divergent point. Moreover, a group of successively additive numbers can be

obtained. If the calculated total flow G. and the given flow G0 do not satisfy1

precision requirement iG. - Co < ec (Ec input) (13)

Then, we can use

Wl - ", o (14)G,

to be the new initial value of the velocity at point A 1. Repeat steps 6 and 7

until the precision requirement (13) is satisfied. Generally, this process

requires five to six iterations.

8. After satisfying the precision requirement (13), apply the method of

reverse interpolation of equal-division flow and solve for the streamline



coo rJ i 1i t ' (L" ' * ando.).

First, dll reverse interpolation by n equal divisions of meridian flow at

the total flow curve Gi-qm (Fig. 4a) and solve for various values of (qM)G, then

,G - r, + (q-)c cos }
=-- -- (q-)G $ine (15

Apply reverse interpolation to angle 0 and reverse interpolation for h equal

divisions at the flow curve Gk-O (Fig. 4b), we obtain the value of ')G. However,

since values of r and z have changed, values of 0 d and 0s for boundary points

should start from rG and zG values using blade equations Od=Od(r,z) and O s=S(r,z)

a:,i solving for values of (ed) G and (0s ) G' Here we employed an

approximation hypothesis: we considered that the e values obtained
G

for the original r and z can be approximately regarded as the

rartition values for rG and zG but 8 and e nonetheless use the
Gd s

v-lues (ed) G and (0 ) G Because the loosening factor 9 is adopted

later on, this approximation will not affect convergence.

0;

-----------------------------

3/4------------- ----- --- --

B ! !

S I I I
, i I I ,--------- Fig. 4

I I I . . ..- i !
i I i I i I

I I I I I 1 I I I I I

0 q.I i II* I I

(a) (b)

9. Lastly, we derive the maximum deviation between new and old streamline

;o ints M' - max t( r - ,,Y + (z -Z,)

+ (eo - 0o), (16)

hhn <tII (input value), we obtain coordinate positions and velocity distribution

of streamlines by using the calculation results of the printout. Otherwise, utilize

the loosening factor ri(input) of the streamline coordinates to obtain new stream-

line coordinates:

r, + 17(f --rG =

S&,+ ,7(XG XI) . . ,g8 (17)

O. + (Oc0 -P l'

10



Aain, rettirn to stcp 5 for iterated calcuilations tintil t < iin

Now, we make several explanatory notes about the solution process:

1. Just as for procedures in report (6), when solving for a, first rotate

the r-z coordinates by 450 and then apply the method of obtaining first order deriv-

ative by using sampling curves.

2. Just as for procedures used in report (12), when solving for re , use two

sampling curves to improve the precision with the same conditions of terminal

points as in report (6).

3. During trial claculation used in the paper, for the time being the varia-

tions of h! and X are left aside. This is feasible in compressor calculations of
I

superchargers. Variations of h! and A will not cause any other difficulties.1

4. As for loss revisions, we may use the correction method of total pressure

loss in report (6). However, for convenience this program adopts a correction to

the multivariant index: -
n,- 1 x-

Here, k is the adiabatic index, n is the multivariant index; and rl is the multi-

variant efficiency. The value of no is determined by input.

III. Analysis and Discussion of Results

A program was compiled by using this method; trial calculations were conducted

on a centrifugal compressor of a Number 780 supercharger designed by the Shanghai

Shipyard, the Shanghai Institute of Ship Transportation and other units. Refer to

Figure 5 for outlines of the meridian planes of a compressor blade rotor. The

following are the performance parameters thus calculated: inlet temperature T.=303*K;

inlet specific gravity Yi=1.1 4 9 kg/m 3; isopiestic specific heat C p=1003.56 kg-m/kg;

multivariant index n =1.509; flow weight G =24 kg; angular velocity
0 o

w= 8 8 0 radians/sec; number of blades Zn= 2 0; number of quasi perpendi-

cular intersecting planes m=12; number of S1 flow surfaces (n+l)=9;

number of S 2 flow surfaces (h+l)-9.

The common parabola forming method is used to generate outlines of air-guiding

rotors; the working rotor has diametrical straight blades.
ll

em
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-~ 7

01 0.5 0. 1

(a) (b)

Fig. S
(a) Shapes of Meridian Streamlines and Meridian Plane Outlines of a
Blade Rotor; (b) Distribution of Relative Mach Number on the Averaged
S 2Flow Surface (k=5).

Key: (1) Meter (m); (2) Quasi perpendicular intersecting lines.

C.1.0

i-II

0.S 0.050

Fig. 6. .

(a) Streamline Shapes on a Rotor (j=l); (b) Distribution of Relative
Mach Number on a Rotor (j=l).
Key: ()Radian



(M)

0~0. 0. .7

0 a h 0.5 1. 0r0 . _

Fig. 7
(a) Streamline Shapes on an Averaged Trans-blade Surface (j=5);
(b) Distribution of Relative Mach Number on a Rotor (j=l).
Key: (*) Radian.

0 i~~e ~ 10 0. 0I
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I.0

24,,
',.

C1 a 2) le.2

Fig. 9 Distribution of relative
Mach number on a quasi perpen-
dicular intersecting line at the
inlet.
Key: (1) Rotor; (2) Stator.

The calculation results are plotted in Figures 5-9. Since there are many data,

for sake of simplicity, these curves drawn are streamlines of the trans-blade flow

field for j=l, 5 and 9; the corresponding velocity distributions for k=l, 3, 5, 7

and 9; the streamline distribution for k=S (i.e., the average surface of flow

channels); and the velocity distribution for j=l, 3, 5, 7 and 9.

From the calculation results, we drew the following primary conclusions:

i. We can see from Fig. 9 that on the average throughflow surface

(k=5), the distribution of relative Mach number MW at the inlet on

the quasi perpendicular intersecting lines is quite similar to that

shown in Fig. 7 of report (12). The shapes of velocity distribution

and streamline plot spectra in Figs 5-8 are also consistent with

curves in other reports.
-4

2. For this example, whenG=l , =10- 4 and the loosening factor 17 is
selected as 0.1, the three-dimensional flow field solution can be obtained by

applying more than 20 successive substitutions. Besides the printout time, the

processing time is approximately 8-10 minutes by using our university's 719 computer

(125,000 operations per second). This processing time is considerably less than

the mutually successive substitutions of nine S 1 flow surfaces and nine S2 flow

surfaces in several calculations.

3. The shortcoming of this method is the same as the common streamline
14



curvature method: it is gcnerally difficult to calcul ate prec isel tile flows at

inlet and exit -- corrections are required. hlowever, the revision of the three-

dimensional flow field differs from the situation of solving separately the S1

and S2 flow surfaces. The work will be continued later on.

4. Since the method in the paper is based on the assumption that S 1 flow

surface is a surface of revolution with more limitations, one still cannot calcu-

late the curving state of the S 1 flow surface. As a continuation of the paper,

later this assumption will be eliminated in order to derive a real solution of the

three-dimensional flow field.

APPENDIX

In the following, we deduce Equations (4), (6) and (7).

Since the quasi perpendicular intersecting plane we select is a plane of

revolution, the generating line is a straight line (AB in Fig. 2a) of a meridian

plane: r , + q c os (AI

Sm I -q'cl,~.sinCJ (Al)

In the equation, (r1 , z1) are coordinates of intersecting point c between the blade

rotor and the quasi perpendicular intersecting line AB; qm is the intercept along

line AB starting from point c; and is the included angle between z axis and nq,

the normal line of AB.

By eliminating qm in Equation (Al), the straight line equation is

P, .) si. 0 + (S -.. Cos,0.- 0 (A2)

If the equation of blade pressure surface is

0, - t,3(F,) (A3)

the conditions of the intersecting curve (space curve) equation between the pressure

surface and the quasi perpendicular intersecting plane are

rd -,. + q.cos 0
. , - q..sint (A4)

d ,(,,, a) - ,(.)

The direction of q in Equation (1) takes on the direction of intersecting curve,

then 15



dW d" + b + d,+

q-. q: dq d9.

+ I (±," - . ) (AS)

From Equation (AS), we know

d'da p . 1 . - in (A6)
dq. .(M

By substituting Equations (A6) and (2) into Equation (AS) and by simple algebraic

manipulations, we obtain Equation (4).

Since along the arc sector of qm=constant, there are

dr - 0 L . , dO ( 7-0, .u, -n(A7)

Substitute q in Equation (1) by 0, then Equation (6) can be obtained by using

Equation (A7).

The general equation of flow weight streaming into any curved surface S is

GJJOtW R ds (A8)

If the equation of curved surface S is s(,,O (A9)

then the unit normal vector of curved surface is

$ . s os
W ' - +0 a (AlO)

In the present situation, the curved surface S is quasi perpendicular inter-

secting plane, the equation of which is Equation (A2). Therefore its unit normal

vector is

a - sin i. 4 + io + Cos fi/, (All)

The vector form of relative velocity W is

IW .- ,,', -r t fit + Uli (Al 2)

Hence,

W * - W. sin 4 + R'.coS4

W.s in asin , + U'. cos a cos

-w.Co(03
1 6 (A ll

L



Besid s, the area inicro- eimnent of this quasi perpendicular intersect ing plane can

be written as
d sr-, 0 ,. (A 1N)

Substituting Equations (A13) and (Al4) into Equation (A8), we obtain Equa-I

tion (7).

The density equations are the same as in report (7), therefore the paper does

not list them.
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