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The Conversion of Aircraft Ice Crystal Measurements
Into Terms of Liquid Water Using Simulated Data

1. INTRODUCTION

The determination of the water content, or mass, of clouds and/or precipita-

tion has dominated the efforts of many meteorological groups for a number of years.
1-4

As part of their mission objectives in programs concerned with weather erosion,

large scale cloud systems, 5, 6 and cirrus studies 7 - 1 3 the Cloud Physics Branch of

the Air Force Geophysics Laboratory (AFGL), for example, has been determining

the mass of many diverse types of hydrometeors from the particle spectra meas-

ured with an instrumented MC-130E aircraft.

The absence of the means to measure the water content of hydrometeors direct-

ly and reliably necessitates the measuring of the particle spectra and calculating

mass through knowledge of particle size and number concentration. In past years,

much time-consuming labor has been expended in the analysis of aircraft-acquired

particle spectra from instruments such as the aluminum foil sampler 1 4 ' 15 and the

airborne continuous particle replicator 1 6 ,17 in an attempt to define spectra for the

determination of mass. With the relatively recent operational use of specialized

electrooptical instrumentation, such as the Particle Measuring System's (PMS) one-

dimensional instrument (l-D), hydrometeor spector can now be conveniently measured

(Received for publication 15 June 198!)

Because of the large number of references cited above, they will not be listed here.
See References, page 43.
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18and efficiently processed with computers. Assuming an errorless operation of

such an instrument, accurate determinations of mass, within the bounds of some

inherent variability, are now possible. This is particularly true in rain situations

when the measured hydrometeors can be considered spherical water drops. Ice

particles present a more complex problem, however, since knowledge of geometric

form and dimensions are required for the calculation of volume and an assumed

density is needed to convert the ice volume to an equivalent mass of liquid water.

The investigation presented in this report is basically concerned with aircraft

measurements of single ice crystals and the subsequent determination of mass. It

is a study of hypothetical experimental situations where simulated ice crystals of

known dimensions and densities are "measured" by an equally simulated electro-

optical aircraft instrument, of the PMS 1-D type, where the shadows from parti-

cles passing through a laser beam occlude diodes in a sensing array and are elec-

tronically counted and classified as to size. All the simulations are conducted with

a computer programmed mathematical model where mass is calculated from the

assumed geometry and spectra of pristine crystals of specific type, aggregates not

included.

2. MODEL DEVELOPMENT

The first crystal considered was a solid, cylindrical ice column with a speci-

fied length to diameter ratio. A cylindrical structure was used in the development

of the model because of the relative ease of visualizing this form in the following

discussion. Conversion to the natural hexagonal structure is undertaken later in

Section 6.

The mass (m) of such configuration is

m = PI rD 2 L/4 (g), (1)

where the diameter (D) and length (L) of the column are in millimeters and

PI (g rm-3) is the density of ice.

When the diameter is expressed in terms of length as

D = L/X (mm) (2)

18. Knollenberg, R. G. (1970) The optical array: an alternative to scattering or
extinction for airborne particle size determination, J. Appl. Meteor.
1:86-103.

8



Eq. (1) then becomes

m = p, L 3 /4 X 2  (g). (3)

(The use of a linear relationship of D with L shows a general agreement with the

experimental results of other investigations. A discussion of the geometric rela-

tionships used in this study and those derived from experimental data is included

in Section 7.)

It is convenient in cloud physics work to express the mass of any hydrometeor

in terms of the equivalent mass of liquid water (M) contained in a spherical water

drop as

M = p 7rd/6 (g), (4)

where d is the diameter in millimeters of the spherical drop and p (g mm - 3 ) is

the density of water. The equivalent melted diameter (de) of a spherical drop re-

sulting from the melting of a cylindrical columnar ice crystal is found by equating

Eqs. (3) and (4) as

P ird 3 /6 = prL 3 /4X (5)

and solving for de as

( 63)1/3 (m 
C

When p =0. 001 gmm and p, is considered to be 0. 0009 g mm Eq. (6) becomnes

d e (1. 35/X2) 1 / 3 L (mm). (7)

In the first situation considered, the diameter of the ice column was defined to

be 1/4 the length and thus, for this particular case where X = 4,

d 0. 4386 L (mm). (8)
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3
The equivalent mass of liquid water contained in one m from one such crystal

can be determined by substituting the de of Lq. (8) for the d of Eq. (4) as

M= -- (0.4386 L) 3  (g m- 3 )  (9)
6

The total mass from a number (n) of this type crystal is found bj summing the

individual M's as

M = M 1 + M 2 +M .. +M (gm - ) . (10)

The radar reflectivity (Z) from one m 3 containing a crystal is defined as being

equal to the sixth power of the diameter of the assumed spherical water drop as

Z = (0.4386 L)-6  (mm 6 m 3) (11)

and the total reflectivity from a number of these specified columns can be expressed

as

Z = ZI + Z2 + Z 3 . + Z (mm in - ) . (12)

When a specified environment of n cylindrical ice columns is considered, the

M and Z can be determined by applying the crystal lengths to Eqs. (9) and (10) for

M and Eqs. (11) and (12) for Z. If these same hydrometeors are assumed to be

measured with an airborne instrument, the resulting L's will be classified in dis-

crete size classes and M and Z are then determined by

i n

M = p ,/6 de3N. (gm - 3  (13)

and

i=n

Z de Ni (mm6 m 3) (14)
i=1

10



where N. is the number of particles per m 3 in class "i" and dei is the mid-
equivalent melted diameter of that class which is found by applying the midclass L

to Eq. (8). If the spatial positioning of these columns were such that the true geo-

metric lengths were measured, then the calculated M and Z would be the true values

of that distribution. However, this condition specifies that each individual column

has to pass through the measuring instrument's field of view with its longitudinal

axis precisely aligned with the diode array to insure a true measure of length. This

situation would require a field of freely falling ice columns, preferentially o: o-nted

parallel to each other in the horizontal plane which, although not impossible, is

highly improbable.

In the absence of a force field, which could serve to align the crystals in a

preferred manner, such as an electric charge field, 19 one must assume that freely

falling crystals woul i present a random selection of all probable orientations in

the horizontal. Figure 1 is a diagramatic view looking down upon such a columnand

shows the possible angles of orientation that could be presented to the measuring

instrumnent.

900

DIODE
sinaj-4--4----L COG ~ARRAY

CRYSTAL SHADOW

Figure 1. The Shadow Produced by a Columnar Crystal w ith a 300

19.CraeR. . 1978)Evaluation of Unetite nthe Etmt q ,,rrmeer asConcentrations usin- Sandar Daa n Aircraft esure

mens, cietiic epot N. , AFGL-TR-78-0118, AD A05 4 223. 107 pp.
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It is apparent that any angle in the 36;o dashed circle, circumscribed by a

column rotating in the horizontal plane, is possible but, since the angles in each

quadrant present identical configurations, there is quadrant symmetry and only

the angles of 0 through 900 have to be considered. It is evident that an angle of

00 (parallel with the diode array) would result in the true length of the crystal being

shadowed on the sensing diodes whereas an angle of 90 would give a shadow equal

to the column's diameter. Angles between these extremes can present shadows

ranging in size from the crystal diameter up to slightly larger than the geometric

crystal length. The spatial positioning of a freely falling crystal and consequently,

the crystal's angle of orientation with the measuring diode array, is a chance

effect and can be simulated by use of a nonbiased selection technique such as the

association of a random number with a random angle.

The dotted lines in Figure 1 indicate the shadow length that would be produced

by a column when its axis is orientated 300 from the axis of the diode array. The

length of shadow (LS) cast by this column as it moves through the beam of light at

an angle of a degrees can be defined as

LS = L Cos a + D Sin a (mm) (15)

It is the second term of this equation or the shadow component attributed to

the ends of this cylindrical crystal that can cause L S values in excess of actual L.

This is demonstrated in Figure 2 where the shadow length of a 1 mm column is

plotted from 0 to 900 as the solid line along with the component parts of Eq. (15)

namely, the contribution from the length (L Cos a) as the dotted line and that from

the crystal diameter (D Sin a) as the dashed line. (It must be pointed out that the

PMS l-D instrument has a shadow density threshold on each diode and will not re-

spond to insufficient occlusion. This would act to minimize or negate this "excess

length effect. " No adjustment has been made in this study to compensate for this

effect since this investigation is of a theoretical nature. )

A second degree of freedom in the orientation of the crystals is possible, this

being in the vertical plane perpendicular to the level flight plane of the sampling

aircraft. It is generally accepted that a columnar crystal will fall so that its axis

is somewhat parallel to the wings of a level flying aircraft. The freedom in this

case was assumed to be ±0 to 450 relative to the horizontal. The reason behind

this decision is that the turbulent wind shear, normally experienced during actual

experimental conditions, would have an effect on the crystals' spatial positioning.

As an aircraft passes through a field of ice crystals it would encounter groups of

particles that are experiencing varying amounts of shear. Therefore, the distance

traveled by an aircraft in a sampling time period would expose the measuring de-

vice to crystals that are tilted at various degrees in the vertical plane. It is

12
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assure 2. The Shadow Lengths (21 ) Produced bys a mm Co-

lumnar Crystal with a Diameter of 0. 025 Mill (Solid Line) atHo0 t00 with the Diode Array

assumed that a random degree of tilt in the vertical would simulate this turbulent
wind shear effect. Angles in this plane that are larger than 450 would most likely

represent crystals that are experiencing severe turbulent conditions and tumbling,

which is not envisioned as being the typical or usual situation. (Different atmos-

pheric effects can alter crystal spatial positioning depending upon crystal sizc and/

or shape. No consideration has been made for these possible variations in this

study and the assumptions of random positioning, as described above, have bcen

applied to all crystal types and sizes. )

The shado. length 01, S ) obtained from the two degrees of freedom in a column's

orientation can be expressed as

LSt t = L Cos au + D Sin oll (1)

and

I S  ISH Cos o\1 + D Sin aV (17)
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where L SH is the shadow length from the orientation of the column at a random

angle of 0 to 900 (OH) in the horizontal plane and ov, is the random angle of n to

450 in the vertical plane.

A Tektronix 4052 computer was used to define simulated ice-column environ-

ments of known di str ibut ions of specified size and number concentrations. The

random number generator of the TEK 4052 allowed each individual crystal to be

assigned a random angle in both the horizontal and vertical planes. The, simulated

measuring was accomplished by calculating the shadows that %would have been pro-

duced had the crystals passed through a light beam. The resulting shadiow, lengths
ve-re tlVf-n .sc-d in Eq. (8) to determine the d, 's which, in turn, were applied_ toi

(10)) for the calculation of M and to Eqs. (11) and (12) for Z. The -
V : les also classified into 0. 025, mmr classes and the N1 and Z, in this c ase,

were determ ined by calculating the midclass 6.1s5 by using thc roidciass length

values in Eq. (8) and applying them with the corresponding N 's to ELqs. (13) and

(14). Thus, the true M and Z (M1 and Z) determined from using the geometric

crystal lengths in the equations could he ompnir d with results ohtairceIfe

simulated experimental conditions.

3. vA.ALISIS OF SIN(;LF-SJ/E C:YLINDRICAL. (OLI \

The first exercise presented to the computer model was 0 group of 520o t n

drical columns, all of the exact same sizc , having lengths oif -, ior ari la,et r es

of 1). 125 corn. The shadow lengths of these colceens -,,.ere .ulat !i .s up lu'

deoarienta tion process described above. The re suit ing n!:)1It.st J i; 'I(-

tion from) the classified 1ita is sho.nc in. F~ gir( '..

It, is interesting tn iotc that this d: r ution is hetavi!\, 'l 'ii - t oi

2 ~ z * , z ,- .'th ne-ar!l mlcaf (2. -2 per-enle of ':h, ceat!oe len!_ , -)

un t of the trut- Leom eli e ength it' 1he !n.:.it t

;J(' \1( tt I i l, tL

Ij 'Ii' Iiee cl W> . ,,cT'. __ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ _ _ I L'
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fall within 10 percent of the geometric length. The random selection of angles in

the vertical plane (a mean of 22. 50) would further amplify this effect and only by

having crystal orientation heavily biased toward the larger angles would a more

even apportionment become evident.

Line 1 in Table 1 lists the M and Z values that were calculated from the speci-

fied physical size of the 500 crystals. Lines 2 through 6 are calculations based on

the shadow lengths that resulted from the simulated measurements. Line 2 gives

the M and Z values that are calculated if each shadow length is presumed to be a

true length. Line 3 shows the results that were obtained from using the classified

number density distribution where the M and Z values are the summations calcu-

lated from the numbers and mid LS sizes of each 0.025 mm class. Lines 4, 5 and

6 give the M and Z values that result from using the mean (0.4110 mm), the median

(0. 4466 mm) and the most frequently occurring value, the mode (0. 5125 mm) of

the L S distribution as the length of the columns.

Table 1. The M (g m - 3 ) and Z (mm 6 m- 3 ) of 500 Cylindrical Columns of
0.5 mm Length Compared to those Calculated from the "Measured" Sha-
dow Lengths

M Factor Z Factor

N of 6 3 of
No. Source (g m_ 3 ) TrueM (m m M ) True Z

1 Using L 0. 00276 ---- 0. 05562

2 Using LS  0. 00182 0.6588 0. 03194 0. 5743

3 Using Classified Data 0. 00182 0. 6596 0. 03201 0. 5756

4 Using Mean 0. 00153 0. 5552 0. 01715 0. 3083

5 Using Median 0. 00197 0.7 128 0.02826 0.5081

6 Using Mode 0.00297 1.0769 0.06450 1. 1597

The M and Z calculated from using each individual L s and the classified L s

data give essentially the same results and indicate that classifying the shadow

lengths in 0. 025 mm size increments produces little difference. Since the value

of the L s mode is closest to the actual crystal size, it is not surprising that the

best agreement with the true M and Z results from the use of this statistical para-

meter. The calculations from the individual L S , the LS classes and the median

and mean give M and Z's values much smaller than true.

16
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4. ANALYSIS OF A UNIFORM DISTRIBUTION OF CYLINDRICAL COLUMNS

The next computer simulation was a uniform distribution of cylindrical columns

consisting of 10 size groups with 80 particles in each group. The smallest length

was 0. 05 mm, the largest was 0. 5 mm with D = L/4 for all particles and the incre-

ment between size groups was 0. 05 mm.

The number density distribution of the computed L s values in 0. 025 mm classes

is shown in Figure 5. The noticeable change in this plot from Figure 3 is that the

large number counts are contained in the low to midsize class range giving the- dis-

tribution a general negative slope which is an effect that is almost always prevalent

in the data obtained from actual aircraft measurements using the PMS 1-D instru-

ment. The difference in the two plots is directly attributable to the spread of the

LS values resulting from the assumed measurements of the randomly oriented col-

umns contained within the different size groups. The plot of the equivalent melted

diameters of the columns vs the resulting shadow lengths in Figure 6 show the cal-

culated LS values that are obtained from each crystal size group and how they over-

lap those that are produced by other groups. It is apparent that each crystal size

group contributes in some degree to the number of smaller LS sizes. Since the

number density distribution of Figure 5 is constructed from the summation of the

number of particles within each 0. 025 mm class, the smaller size classes result

in higher number counts. Also included in Figure 6 are the mean, median, and

modal values for both the complete distribution and each column group size.

Table 2 lists the M and Zs and the factors of true M and Z that were calculated

using the shadow lengths that resulted from the analysis of the uniform column dis-

tribution. The format is the same as that of Table 1.

Once again, the M and Z calculated from using each individual L S and the

classified LS data are essentially the same. Both have values that are consider-

ably smaller than true. The M and Z's calculated from using the distribution's

mean (0. 2333 mm), median (0. 1950 mm), and modal (0. 0375 mm) values are sub-

stantially smaller. Calculations were not made using the mean, median, or modal

values for each crystal size group since these parameters would be impossible to

determine under actual experimental conditions. They are plotted in Figure 6 how-

ever, to show the relative changes that occur between the different groups of col-

umns. The results in Table 2 show that the methods that were used in the calcula-

tions of M and Z from L s "measurements" are unable to give good estimates of the

true M and Z.

17
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Table 2. The M (g m - 3 ) and Z (mm 6 m - 3 ) from the Uniform Cylindricai Column
Distribution Compared to those Calculated from the "Measured" Shadow Lengths

M Factor Z Factor
of of

No. Source (g ) True M (mm m - ) True Z

1 Using L 0.001340 0.01761

2 Using LS  0.000852 0.6374 0.00934 0. 5304

3 Using Classified Data 0.000855 0.6399 0.00936 0. 5317

4 Using Mean 0.000449 0.3358 0.00892 0. 0521

5 Using Median 0. 000262 0. 1962 0. 00313 0. 0178

6 Using Mode 2 X 10 - 6  0.001395 2)(10 7  9X10- 7

4.1 Regresion Method

When the equivalent melted diameters of the crystals are plotted against their

corresponding LS values in a log-log format, as in Figure 7, the spread attribut-

able to each group of columns tends to become more uniform. This suggests that

a regression analysis could be performed on this field of data points to give the

line of best fit which could then be used for the conversion of LS to de -

The power function equation of the regression line in Figure 7 is

de = 0.41151 LS 0.82495 (mm). (18)

This equation was substituted for the de in Eqs. (13) and (14) and calculations

were performed to determine the M and Z values using the numbers and classes

from the distribution of Figure 5. When these values of M and Z were divided by

those derived from the columns' physical sizes, the factor of M/MT was 0.9249

and Z/ZT was 0. 9393. This shows that when the regression method is used to

estimate de the subsequent M and Z provides a reasonably close approximation to

true (within 8 percent).

4.2 Gamma Method

Another method was developed for estimating the M and Z from the LS dis-

tribution by directly linking Eqs. (13) and (14) to MT and ZT.

It was pointed out in Section 3 that the LS modal peak of the single group of

columns was slightly larger than the true length (Figu",- 3). In the case of the
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Figure 7. A Logarithmic Plot of the Data in Figure 6 with
the "Best Fit" Line from a Regression Analysis and Gam-
ma Method Relationship

uniform distribution, the modal peaks of the 10 size groups fluxuate about the geo-

metric lengths as shown in Figure 6. It is apparent from these plots that the modal

values of the measured shadow lengths from randomly orientated crystals of any

specific size group will approximate the true geometric lengths.

Also in the case of the uniform distribution, all the columns within the 0. 025

to 0. 5 mm size range of interest are of the same geometric form and density thus

a logarithmic plot of true length vs de will give a slope of 1. 0. It is assumed in

this method, since the modal values approximate the true lengths, that a slope of

.. 0 will also be applicable for the randomly orientated crystals. Therefore, the

same equation form can be used for the conversion of LS to de for biased conditions

where the shadow lengths equal the geometric lengths (Eq. [8]) and also for cases

where the shadow lengths are derived from randomly orientated crystals. The

difference in the equations will be reflected in the multiplication factor which will

be larger in the randomly orientated case to account for the less-than-true length

measurements.

Factors relating LS to de can be derived by the following procedure when ap-

plied to any designated distribution of crystals for which the MT and ZT can be

calculated.
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When Eq. (18) is written in a general form as

d = y L (rm), (19)e S (m)

it can be substituted in Eqs. (13) and (14) to give

3 i=n

M 6 3 N. (g mn) (20)
i= 1

and

i=n
Z 7Y6  LS6 0 Ni (mm 6 -3 (21)

j=l1

When M and Z are replaced by MT and ZT. and€ = 1. the equations can be

solved for - as

/ ~ 1/3

M= K -=n )(22)
'YM i 1= nL

and

L6N.
i

it Eqs. (22) and (23) are used with a distribution consisting of cylindrical
(D = L/4) columns biased in orientation so that L S = I then both M and Z would

equal 0. 4386 (Eq. [81). Since L would not normally equal L because of random

orientation, then yM and -yZ will be different reflecting the third power size rela-
tionship with M and the sixth power with Z.
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Thus Eq. (19) where = 1, can now be rewritten as

de = 'M (or -yZ) LS (mm) (24)

and can be used in Eqs. (13) and (14) for the determination of M and Z.

When the MT and ZT calculated from the uniform column distribution were

substituted in Eqs. (22) and (23), -yM was 0. 50964 and -Z was 0.48749. The mid
LS class sizes from the distribution in Figure 6 and the yM value were used in

Eq. (24) to give a d e for each class and are plotted in Figure 7. These de 's and

the corresponding class Ni's were used in Eq. (13) for the determination of M. The

same procedure was followed using -Z in Eq. (24) and then in Eq. (14) for the cal-

culation of Z. The factors of M/MT and Z/ZT were 1. 0027 and 1. 0036. This ex-
cellent agreement is not surprising since this method is linked directly to MT and

Z T and a very close correspondance between the calculated M and Z from the

classified distribution and MT and ZT is to be expected.

The method, described in this section will subsequently be referred to as the
"gamma" method.

5. COMPARISON OF MET1HODS

A very important criteria of any method of converting LS to de is its effective-

ness in estimating M and Z when applied to all types of particle distributions. One
way to establish which method (regression or gamma) will produce the most accur-

ate and least variable M and Z values is to compare the results from both on a

number of different simulated crystal environments.

The computer model was changed so that the input numbers of crystals were

determined by an exponential distribution function for specified size groups as

A L No. m"3  -
N i = Nd0d No.m mm (25)

where No is the "zero intercept" of the distribution function in No. in - 3 mm - and
A is the slope of the distribution per mm.

Five column situations were designated each having a different slope of 25, 15,

10, 5, and 0 with 0 being a uniform distribution. The number of size groups, size

increments, and maximum crystal lengths were arbitrarily varied so that each

situation had a different number total. This procedure resulted in five distinct

column distributions with classes exponentially distributed in number content.

Thus, each class could be considered as a specific size group of crystals and be
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"measured" by the random orientation process previously described. Since each

specific size group has an inherent LS variability because of the assumed random

crystal orientation, five separate distributions were analyzed for each situation

so that the magnitude of the variance within each set could be established.

The MT and ZT were determined for the 25 sets (5 for each situation) and the

shadow lengths for each were calculated using Eqs. (16) and (17). A regression

analysis was performed on each set of L S data to determine the coefficient and

exponent of the power function equation for the line of best fit as described in

Section 4. 1. The LS values were then classified into number density distributions

with classes of 0. 025 mm. The -M and tZ values for each set were calculated

using the gamma method by substituting MT and ZT in Eqs. (22) and (23) with the

corresponding class mid-sizes and numbers. Table 3 lists the distribution para-

meters for the 5 situations and the mean, minimum and maximum values for YM,

-Z and the coefficients and exponents of the regression equations for each of the

25 column distributions.

The largest variation in any of the 4 parameters within each situation was less

than 4 percent from the mean values with neither method displaying a distinct ad-

vantage. Thus, in the comparison of the results from the five situations, any vari-

ations larger than 4 percent from the means will be directly attributable to the dif-

ferences in the simulated crystal environments.

The means, minimums, and maximums for the same parameters for the com-

bined 25 sets are listed in Table 4.

The variations caused by the physical differences in the assumed column en-

vironments are more evident in this table when comparing the variances of IM and

-Z, which were again within 4 percent, to the 11.7 to 17. 1 percent of that in the

regression equations' coefficients and the -5.7 to 7. 1 percent in the exponents.

Since the variations in the coefficients and exponents of power function equa-

tions are not necessarily indicative of the variations in the products of the expres-

sions, the M and Z for the LS distribution of Figure 6 were calculated using the de

derived from the M0 -Z and the regression equation for each of the 25 distribu-

tions. These results are listed in Table 5 and allow a comparison between the M

and Z's calculated from the two methods with the true M and Z's obtained from an

independent set of data.

This table shows that a choice of any one of the -M'S determined from the 25

test distributions can be used in Eq. (24) with the midclass LS values from Fig-

ure 5 to produce de's that, in turn, can be substituted into Eq. (13) to give an M

that could differ from true by -6. 1 to 7. 9 percent. A choice of one of the regres-

sion equations, on the other hand, could give a difference ranging from -53. 3 to

0.2 percent.
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Table 4. The Mean, Minimum, and Maximum Values of "YM' 'Z from the Gamma
Method and the Coefficient and Exponent of the Regression Equations for the 25
Combined Distributions

% (-) , (+)
from from

Method Mean Min Mean Max Mean

Gamma ' M .51106 0.49834 2.5 0. 5220)9 2.2

^"Z 0.48625 0.47182 3. 0 0. 50253 3. 3
Coef 0. 37587 0.33184 11.7 0.43998 17. 1Regression Vxp 0.84279 0.79499 5.7 0. 90289 7. 1

Table 5. Comparison of the M and Z's Calculated Using the Distribution in Fig-
ure 5 with the IM' IZ and Regression Equation for Each of the 25 Column Distri-
butions (MT = 0. 001536, ZT = 0.01761)

M (g m 3 ) from M (gin- 3 ) from
Gamma Method (-M) Regression Equations

M AM/MT(%) M 6I~/MT(%)

Mean 0. 001353 1. 3 0. 0008901 -33. 4
Minimum 0. 001254 -6. 1 0.0006243 -53.3
Maximum 0. 001442 7.9 0. 001339 0.2

Z (mm 6 m- 3 ) from Z (mmr6 m- 3 ) from

Gamma Method ('YZ) Regression Equations

Z AZ/ZT(%) Z 6Z/ZT(0)

Mean 0.01744 -0.9 0. 009606 -45.5
Minimum 0. 01572 -10.7 0. 004393 -75.4

Maximum 0.02118 20.3 0.01971 11.9

When reviewing the results in Tables 4 and 5, it is evident that the regression

method is dependent upon the number and size of the crystals that are being meas-
ured and upon the distribution of these particles. For example, an exponential dis-
tribution with a steep slope would have the majority of particles contained in the

smaller size classes and relatively few in the larger ones. Therefore, the slope
of the regression line of the de vs LS plot would be heavily weighted by the smaller
sizes although it is the lesser number of larger particles that contribute most to

the M and Z.

25



The gamma method, on the other hand, displays considerably less variation

with changes in the distribution parameters and leads to the conclusion that it is

the more stable method and that the average values of yM and - Z from the 25 sets

could be incorporated as standards for the calculation of reasonable values of M

and Z from any distribution of ice columns.

These standards, of course, are particular for nonaggregated ice columns

having cylindrical configurations with D = L/4. Any variation in the crystal's para-

meters would change the y values.

The next section shows how this mathematical approach can be adapted to de-

rive the "y values that are applicable to other single crystals. Section 8 summarizes

these results.

6. OTHER COLUMNAR FORMS

The process described herein can be adapted for the study of any simulated ice

crystal geometric form that may be defined mathematically. Two important changes

are required in the analysis. First, a new relationship of de with the crystal para-

meter L has to be formed (Eq. [81 for columns). Second, the shadow lengths result-

ing from the possible crystal orientations have to be defined in mathematical terms

such as Eqs. (16) and (17) for columns.

6.1 Hollow Columns

A slight change in the mathematics used for solid columns allow the simulation

of a hollow column environment. If a cylindrical column has a hollow section, which

is in the center of the crystal and aligned with the longitudinal axis, then Eq. (3)

can be changed to give the mass as

m = P, 7r L 3 /4 X 2 - p, ir L 3 /4 X2 (g) (26)

or

m = (P, 7r L 3 /4) (l/X 2 
- l/X 1

2 ) (g) . (27)

X in this case is the L to D ratio of the crystals outer diameter and X 1 is that of

the inner diameter or the hollow portion. If X = 4 and X 1 is arbitrarily given the

value of 8, then

d e 0. 3985 L (mm) (28)
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and would, as an example, refer to a ice column of 0. 5 mm in length and 0. 125 mm

in diameter with a hollow center section of 0. 0625 mm diameter. The ice wall

thickness of such a crystal would be 0. 03125 mm. (No attempt was made to asso-

ciate this hollow column example to observed data. It has been given just to de-

monstrate how this random orientation concept may be applied to hollow crystals.)

Equations (16) and (17) were used to define the LS values since the geometric con-

figuration of the hollow columns is the same as the solid crystals. The mean VMof the 25 distribution in this case was 0. 46342 and the mean yZ was 0. 44103. The

variance in both the y values and regression parameters were substantially the

same as those from the solid columns with D's of L/4.

Although these mean y's were determined using the 5 situation format described

in Section 5, a simpler procedure may be utilized in some particular cases. This

hollow column form is one such example since the geometric configuration of the

hollow column is the same as that of the solid case, thus the deviations caused by

shape and spatial positioning can be applied to either case. The difference in the

two crystals is the missing center section of the hollow column which effects the

relative mass. Dividing the mass of the hollow (Eq. 127]) by that of the solid

(Eq. (3]) yields a factor of 0. 75. This value taken to the 1/3 power gives a factor

of 0.9086 in d 's (Eq. [28]/Eq. 18]). An approximation of the mean y's for thee
hollow columns can be made by multiplying this factor times the Y's of the solid

form which gives a yM of 0. 46435 and a -Z of 0. 44181 as estimated values. These

means are 0.2 percent larger than those determined using the longer, more com-

plicated procedure.

6.2 Hexagonal Columns

If the D of a hexagonal column is considered to be the distance between the

apex of two sides to the apex of the opposite two sides when viewing the end of the

crystal ("a" axis of the basal plane) then the mass can be expressed as

m = p 1 3.-3 D 2 L/8 (g). (29)

When D = L/X, Eq. (29) becomes

m = pI0. 6495 L 3/X 2  (g). (30)

The short method is applicable again in this case (when X = 4) and Eq. (30) di-

vided by Eq. (3) gives a factor of 0. 82697 in mass and a factor of 0. 93863 in d e'S.

The estimated-7M now becomes 0.47979 and IZ, 0.45641.
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A very slight discrepancy can result if a hexagonal column is positioned in

such a manner that the part of the shadow attributable to the ends of the crystal

is caused by the sides as opposed to the diameter. For example, when a = 300,

the shadow length from a column having such positioning would be 1. 7 percent less

than the shadow from a cylindrical crystal. This effect is minor and is neglected

in this study.

6.3 Bullets

If a particular bullet configuration2 0 is considered as being a hexagonal column

with one end having a 600 pyramid and D = L/X then

m = (pI 0. 6495 L 3 /X 2 ) (I - 0. 5774/X) (g) . (31)

When X = 4 the mass ratio of a solid cylindrical column to the bullet is

0.70758 and the factor in de's is 0.89110. This results in an estimated "yM of

0. 45541 and 7 Z of 0. 43330.

Once again, as in the case of columns, the discrepancy in the crystal's shadow

that is caused by considering a cylindrical rather than a hexagonal structure is

neglected. Also, in this case, the effect caused by the pyramid end is neglected.

6.4 Needles

When X is made equal to 10 in Eq. (7), the crystal form becomes elongated

and may be considered as a simulated solid needle (Figure 1) where

d = 0.23811 L (mm). (32)e

Using the 5 situation format of Section 5 and determining the L s values with

Eqs. (16) and (17), the mean values from the gamma method were calculated to be

0. 31658 for -M and 0. 29282 for yZ. The variances were -2. 0 to 4. 0 percent in

-M and -2.5 to 4.4 percent for -yZ with both showing a slight increase when com-

pared to those from the columns. Both the coefficient and exponent values from

the regression method show a still larger spread with the coefficient's range being

from -20. 1 to 29. 3 percent and the exponents from -10. 8 to 11. 1 percent.

20. Magone, C. and Lee, C. W. (1966) Meteorological classification of natural
snow crystals, J. of the Faculty of Science, Hokkaido University, Ser. VII
(Geophysics) 4:32 1-335.
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6.5 HoUow Needles

Once again the simplified procedure may be used to estimate the mean - 's that

would represent hollow needles from the calculations madc for the solid needles.

If such a crystal had an arbitrarily selected inner diameter of L/ 14 and the outer

diameter remained as L/ 10, the mass ratio would be 0. 48980 and the factor in

d e's, 0.78827. This gives aI M of 0.24955 and a -Zof 0.23019 and would refer,

for example, to a hollow needle 0. 5 mm in length with an outer diameter of 0. 05 mm,

inner diameter of 0. 0357 mm, and a wall thickness of 0. 00715 mm. (These dimen-

sions are again used only as an example and are not associated with any experimen-

tally observed data.)

6.6 Hexagonal Plates

If the D of a hexagonal plate is defined as in Section 6. 2 the mass can be ex-

pressed in terms of D as

m = PI 3,-3 D2 T/8 (g), (33)

where T is the thickness of the crystal in mm. If T = D/X then

d = 1. 03739 D (mm) (34)
e X 1/3

and when X = 25,

d = 0.35478 D (mm) . (35)

Figure 8 shows a hexagonal plate in the horizontal plane at the angle (300) that

would present the smallest shadow to the sensing array. The 00 angle, when the

distance designated as the diameter is parallel to the array, will again give a sha-

dow that is equal to D. Crystal symmetry dictates that only the angles of 0 to 300

have to be considered.

The shadow diameter can thus be defined as

D SH D Cos a1H  (mm) (36)

and

D S - DSH Cos aV (mm), (37)
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Figure 8. The Shadow Produced by a Hexagonal Plate with a 300 Orien-
tation from the Axis of the Diode Array as it Passes Through the Meas-
uring Instrument

where aH is a horizontal random angle from 0 to 300 and aV is, again, a vertical

random angle from 0 to 45 . Contributions from the plate's thickness are not

taken in consideration in this particular case since the effect is extremely small.

The calculations using the gamma method on the five crystal environment

simulations give a mean IM of 0. 39058 and -yZ of 0. 38528. The variance was -0.6

to 0. 7 percent for -M and -1. 0 to 1.2 percent for "fZ" The deviation in the para-

meters of the regression lines were low, being -2. 0 to 2. 0 in the coefficients and

-0. 8 to 0. 7 in the exponents and the mean exponent of 0. 987 12 was close to the

assumed 1. 0 of the gamma method.

6.7 Combined Bullets

A combination of four single bullets, right angles to one another in a common

plane and attached at their pyramid ends will form a simple example of a rosette

structure. This form would have the shape of a cross with four arms forming 90 °

angles. The mass of such configuration will be four times that of a single bullet or

m = 4 (p, 0. 6495 L0
3/X 2 ) (1 - 0. 5774/X) (g) (38)
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and when X = 4.

d = ) 310)21 1. (n-m) (39)e

%%,here L. 0is now the length of a single bullet and 1, (1 21. 0) is the geometric

length of the combination.

Figure 9 depicts a downward view of a crystal of this type in the horizontal

plane at an angle of 450 from the detector array. This angle presents the minimum

possible shadow. Zero degrees, when either of the axes are parallel with the

diode array, \k ill give the shadow of the :rystal's geometric length as in the case

of the single column. Because of crystal symmetry, only the angles of 0 to 450

have to be considered.

/ . sina D cosaI 

: 
/-DIODE

a=450 ARRAY

CRYSTAL SHADOW

Figure 9. The Shadow Produced by a Combination of Four Bul-
lets With a 450 Orientation from the Axis of the Diode Array as
it Passes Through the Measuring Instrument

31



Since the outer appendages of this crystal are columnar in form, the shadow

length can be expressed by the same equations as for the single columns (Eq. [161

and [171). In this case, however, both aH and aV are the random angles from 0

to 450.

The mean values from the 25 exponential distributions of Section 5 gave a yM

of 0. 34195 and a yZ of 0.33818 with a variance of -0. 6 to 1.2 percent in 'YM and

-0. 9 to 1. 5 percent in yZ. The variations in the values of the coefficients and ex-

ponents of the regression equations were also extremely small ranging from -1. 8

to 2.8 percent for the coefficients and from -0.8 to 0. 7 percent for the exponents.

The mean exponent of 0. 98409 very nearly matched the assumed 1. 0 of the gamma

method.

7. EXPERIMENTALLY DERIVED GEOMETRIC RELATIONSHIPS

As mentioned in Section 1, the assumed linear relationships of crystal length

to diameter (D to T for plates) are in general agreement with experimentally de-

rived equations.

Figure 10 is a plot showing the d e's that result from using a linear geometric

relationship for columns for crystal lengths of 0. 025 to 0. 5 mm compared to those

determined from using the empirical equations of Auer and Veal2 1 and Hobbs, et

al. 22 Figures 11 and 12 are the same comparisons made for needles and hexagonal

plates. The density of ice was assumed to be 0. 0009 g mm 3 in all cases.

Since this study is concerned with the assessment of water content through the

conversion of ice crystal measurements into terms of equivalent melted diameters,

comparing de to crystal size is deemed more appropriate than the conventional

plots of L vs D or D vs T. The solid lines in these figures delineate the results of

using the linear relationships. The heavy lines depict the ratios used in this study,

and the light lines show the differences that can be obtained with the indicated

changes in geometric ratios.

In all three cases, the plots show that the results of the linear assumptions

used herein compare favorably with those from the empirical equations for crystal

sizes > 0. 1 mm. The linear results are generally smaller for sizes <0. 1 mm, the

exception being the case of needles where the de's from the experimentally derived

equations vary considerably from one another and with the linear assumption. Cau-

tion must be used however, when making comparisons in the small cyrstal size

range since the experimental data from which the empirical equations were derived

were predominantly from larger sizes.

21. Auer, A.H. and Veal, D. L. (1970) The dimension of ice crystals in natural
clouds, J. of Atmos. Sci. 27:919-926.

22. Hobbs, P. V., Chang S. and Locatelli, J. D. (1974) The dimensions and aggre-

gation of ice crystals in natural clouds, J. Geo. Research 15:2 199-2206.
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Understandably, the actual experitut -ztal U:ata e Xhibit.- onsiderable st atter

which reflects the extreme difficulty in obtaining pre -ist. weasurenitnts and/or the

diversity of the natural ice crystals that are being classified, under specific cate-

gory types. This is evidenced by the differences in the de'S that result from use of

the empirical equations from the two investigations presented ii Figures I 1)- 12.

When comparisons of geoi tic relationships are made Aith other experimental
99"

invrstigations, such as pr( nted in the paper of Hobbs. (A al, the differences

in the findings of the various studies are more apparent. 'f each of these studies

had the same degree of uncertainty in their measurements, the differen, es k ould

only be associated with the actual physical structure of the crystals being sampled.

Any scenario in which airborne shadowgraph instrumentation is utilized for

the purpose of determining atmospheric water content is almost certain to be a

situation where little or nothing is known about the geometric relationships of the
crystals in the immediate env.ronment. In fact, the determination of a specific

crystal type or mixture of types can sometimes be a problem. Therefore, general

single crystal equations, ones that are able to approximate the crystal size to de
relationships within specifi( category types, are necessary for the processing of

aircraft acquired data.
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In light of present knowledge, the conversion of aircraft-acquired measure-

inents of single ice crystals (> 0. 025 mi) into terms of liquid water (d e ) can be

adequately described by logarithmic equations with a slope of 1. 0 which result from

linear geometric crystal size relationships. The ratios of linear assumptions can

be altered for better agreement with any particular data set or group of data sets

for any specified size range as shown in the plots. How well the determined mass

of liquid water fronm a linear relationship agrees with an experimental finding is

not only dependent upon the geometric assumption used but also on the shape of the

crystal numaber density distribution. In general, the better the agreement in geo-

metric relationships in the larger crystal sizes, the better the agreement in liquid

water content since it is the larger crystals that contain the most mass.

If, for example, an idealized uniform distribution of columns composed of 20

classes over the size range of 0. 025 to 0.5 mm is -.onsidered, use of the Auer and

Veal equation will give a liquid water mass 102 percent larger than that of the linear

D = L/4 relation used in this study whereas the result of the Hobbs equation is only

9 percent higher. The reason can be seen in Figure 10 where the dashed Auer and

Veal curve lies completely above the heavy I) = L/4 line while the dotted Hobbs
,u2Wu is very close to the straight line at the larger crystal sizes. A change in the

linear assumption to D = L/3 (light line in Figure 10) increases the linear-related

mass determination so that the Auer and Veal result drops to just 13 percent above

arid Hobbs to F33 percent less than that from the linear. Figure 10 again shows the

reason, where the dotted Hobbs curve crosses the light D = L/3 line at -0.45 mrm.

Different shape number density distributions will, of course, give varying re-

sults depending upon the distribution's slope. As the slope increases, the number

of smalier particles increase as compared to the larger, thus the crystal size con-

taining the most water content becomes progressively smaller.

If a situation occurs where it can be verified that the actual geometric relation-

ship is in fact better described by a particular mathematical expression, that equa-

tion can !i itilized with the concept of random orientation to determine the effects

of , r-,: , patial positioning for any particular distribution. A gamma value will

not be ahl. to be der:.,.-,,! zin;'e the development of this method is based on linear

d - cryctal size cci:,:i.naiiips.

8. S IMMXRY OF RSII.TS

Table 6 lists the mean values of Y, and -Y, for each of the crystal forms de-

rived in Sections 5 and 9 and the minimum and maximum variations that resulted

fr'm those determined using the previously described five-situation format. The

='r;tai types )re arrangd in ascending gammas which emphasize the effect that
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Table 6. Summary of the Mean, Minimum, and Maximum Values of TM and 7Z for
the Crystal Configurations Determined in Sections 5 and 6

Percentage Percentage
From Mean From Mean

Crystal Form Mean 7M Min Max Mean 'YZ Min Max

Hollow needles 0.24955 ------- 0.23019 ... ...

Solid needles 0.31658 -2.(0 4.0 0.29282 -2.5 4.4

Comb. of bullets 0.34195 -0.6 1.2 0.33818 -0.9 1.5

Hex plates 0.39058 -0.6 0.7 0.38528 -1. 0 1.2

Solid bullets 0.45541 --- 0.43330 --- ---

Hollow cyl. columns 0. 46342 -2. 1 2.2 0.44 103 -3.0 2.8

Solid hex columns 0.47979 --- 0.45041 --- ---

Solid cyl. columns 0.51106 -2.5 2.2 0.48625 -3.0 3.3

crystal density has on these values. Crystal symmetry shows a smaller effect in

the uncertainties of the gamma values.

The uppermost gamma value that could be obtained would be from measure-

ments of solid ice spheres. This hypothetical form would have perfect symmetry

and the relationship with a spherical water drop would be

de = (pi/p,, )1/' D (mm) (40)

and since all L values would equal D both 7 M and yZ would equal the ratio of

p1/pw to the 1/3 power or 0. 9655. The smallest conceivable gamma value would

probably result from a hollow, thin-walled form having a very small density.

9. COMPARISON WITH OPERATIONAL PROCEDURE

The mass of liquid water contained in ice environments will continue to be de-

rived from knowledge of crystal populations until some instrument is developed to

make direct measurements. The accuracy of particle measuring devices such as

the PMS 1-D are very important for the reliable determination of M. Equally im -

portant however, is how the physical measurements are converted into mass of

equivalent liquid water. This process, which normally involves changing measured
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ice particle parameters (length, L) into diameters (de) of equivalent spherical

water drops, is commonly referred to as the "L to d" ("L S to d e" in this report)

conversion.

The conversion equations that are an integral part in the processing of aircraft-

acquired particle spectra at AFGL, have been derived from extensive literature

evaluations and the personal observations and deductions of Dr. R. M. Cunningham

while he was a member of the Meteorology Division. 23

Table 7 lists the AFGL equations that would be most applicable to the basic

crystal types that are considered in this study. Also included, are the correspond-

ing -yM relationships that were derived in this investigation.

Table 7. The Conversion Equations Currently Being Used at AFGL and the Theore-
tically Derived Equations for the Comparable Crystal Types Considered in this
Study

Derived IM
AFGL Type AFGL Eqs. Crystal Eqs.

Columns d e = 0.438 LS 1.0 d e = 0.47970L S

Needles de = 0.256 LS 0 . 6 7 0  de = 0.31658 LS

Plate Family d = 0.340 LS0.783 (<1 mm) d - 0.39058 L
e S e

0. 685(>1r)
d = 0.340 L0 (>1mm)e S

Bullet-Rosettes de = 0.256 LS0-667 (<0.2 mm) de = 0.34195

de = 0.438 LS  (>.2 mm)

Some interesting ponderable points are evident when considering the AFGL

equations listed in this table. All equations are of power function form and the

same equation, which has a slope of 1. 0, is applicable to columns and bullet-

rosettes with sizes larger than 0. 2 mm. Note the similarity between this equation

and Eq. (8). Also, the equation for bullet-rosettes with sizes less than 0. 2 mm

and the one for needles are nearly identical.

Figure 13 shows the different relationships of de with LS for the four types

designated in Table 7 with measured particle sizes of 0. 025 to 0. 5 mm. The curves

from the gamma equations are derived using -M since it is the determination of M

23. Cunningham, R. M. (1978) Analysis of particle spectral data from optical array
(PMS) 1-D and 2-D sensors, Preprints Fourth Symposium on Meteorological
Observations and Instrumentation, Denver, Colorado, 10-14 April 1978,
345-350.
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0.5 COLUMNS 0.5 NEEDLES

Eo 0. E20.1

0.011I 0.01
0.01 0.1 0.5 0.01 0.1 0.5

0.5 -PLATES 0.5 BULLET-ROSETTES

0.01 0.01
0.01 0.1 0.5 0.01 0.1 0.5

---- AFGL Eq.
ItGAMMA" Eq.

Figure 13. Comparison of the AFGL "LS to de" Conversion Equations with those
Derived Using the Gamma Method
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that is of primary importance. The two column curves are offset reflecting the

difference in the multiplication factors and could be the effect of assumed crystal

density (D to L ratio) and/or column orientation. The curve for bullet-rosettes

is above the gamma curve and diverges below 0. 2 mm but becomes parallel above

0.2 mm because of the two equation AFGL conversion. The curves for needles

and plates show a drastic divergence with smaller LS sizes.

The AFGL equations are for crystal environments containing specific types

and are not designated for single crystals only, as in the case of the relations de-

rived in this study. The application of the general conversion equations to a single

crystal environment could result in appreciable error in the assessment of M. De-

viation from true M will vary considerably with crystal type, size, number density,

and shape of distribution. One means of obtaining some information as to the pos-

sible uncertainties is to apply the conversion equations to a number density having

a known mass. One distribution for each crystal type was chosen from the A = 25

test situations described in Table 3. One for each type was also taken from the

A-- 10 case. The M's for those number densities were calculated using the AFGI,

and -M equations from Table 7 and compared to the actual M. These results are

listed in Table 8.

Table 8. Percentage Difference (AM,'MT) for the Four Crystal Types
Calculated from the AI'GL Equations and Average -rM's for Tuko Differ-
ent Distributions

Prcentage M'MT

Using 7M Using AFGL Eq.
AFGL Type A 25 A= 10 A= 25 A1

Columns 2. 1 -3.7 -22. 2 -26.7

Needles 2.0 1. 1 533.6 144.G

Plate Family 2.8 -o. 5 204.8 60. 3

Bullet-Rosettes 2.4 1.2 359. 1 137.7

It is evident from both Figure 13 and the results in Table S that the column

type will be the only one that will give a prediCtable deviation for any distribution

since the two equations differ by a factor of I. 1115. The other three classifications

vary considerably from one situation to another.
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10. CONCLUSIONS

The determination of the mass of liquid water from ice hydrometeor environ-
ments is severely handicapped by the absence of an operational device that can
directly and reliably record such information. The result of this technological

void is that mass has to be derived from knowledge of crystal populations that are

ascertained with instruments such as the PMS 1-D. The accuracy of any device

used in the sizing and counting of particles is, of course, important for the correct

assessment of M but so is the manner in which the measured ice crystal parameters

are converted into diameters of equivalent water drops.

The study presented in this report is an evaluation of this conversion problem

through the analyses of assumed single crystal environments. Admittedly, these

assumed situations are not nearly as complex as those presented to a sampling

aircraft but they have served a useful purpose by providing some definitive con-

clusions along with some suggestions for possible future investigations.

Foremost is the demonstrated feasibility of simulating ice particle measure-
ments by mathematical modeling with the use of a computer. The complexity of

an assumed situation and how well it compares to reality is limited only by the

scope of the investigation and the knowledge and ability of the investigator. For

instance, if the requirement presents itself, slight programming changes in the

model used in this report would allow the analysis of mixed-type, single crystal

situations. A more ambitious study could explore the effect on the measuring and

conversion processes on multicrystal structures. In such case, a computer could

be used to generate random points for crystal attachment and thus simulate an

aggregation process by making assumptions about the approximate shapes and den-

sities of the aggregates.

This study also indicates that a number density distribution constructed from

the measurements of a shadowgraph instrument could, because of crystal orienta-

tion, be a false representation of the actual crystal environment. The analysis of

the uniform column distribution (Section 4, Figure 5) show that crystal configura-

tions having elongated forms (columns, bullets, needles) can result in measured

distributions with more smaller and less larger particles than that of the true en-

vironment. Random orientation, however, has little effect on the number density

distributions of crystals having more proportional configurations (plates for

example).

Another conclusion brought forth by this study is that the use of a power func-

tion relationship (other than a slope of 1. 0) for converting LS to de could result in

considerable error if the measurements were made on single crystals. As parti-

cles join to form aggregates, the number of air spaces in the lattice should increast.

with increasing aggregate size for most situations (bundles of needles would be an
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exception). Thus, the aggregate density most probably decreases with increasing

size. Apparently, some type of variable relationship exists between the various

aggregate sizes and their corresponding de'S.

This investigation points toward a logarithmic relationship with a slope of 1. 0

as best for single crystals. Logic dictates that some slope less than 1.0 . ould h

applicable for different size aggregates. If these arguments have any validity,

then something other than a straight-line logarithmic format has to be used to

define the 1 S to de relationships that exist throughout the complete growth process

from single crystal on through the varying stages of aggregation.
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List of Symbols

d Diameter of a spherical water drop

de Equivalent diameter of a spherical water drop
de Midelass, equivalent melted diameter of an ice crystal of theei i" class

D Diameter of an ice crystal

L Length of an ice crystal

LS Length of shadow produced by an ice crystal passing through an
electrooptical measuring device

m Mass of an ice crystal

M Mass of liquid water

MT True mass of liquid water contained in a specific ice crystal
environment

N. Number of particles in "i" class

N The zero intercept of an exponential distribution function0

T Thickness of a hexagonal plate
X Ratio of diameter to length of a cylindrical ice crystal or thickness

to diameter for plates

X 1  Ratio of inner diameter of a hollow column to crystal length

Z Radar-reflectivity factor
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ZT True radar-reflectivity factor calculated from a specific ice

crystal environment

a Crystal orientation angle in degrees

aH Crystal orientation angle in the horizontal plane

aV Crystal orientation angle in the vertical plane

'I Coefficient of the measured length to equivalent melted diameter

conversion equation

IM Factor used for the calculation of M in the "gamma
1 method

ItZ Factor used for the calculation of Z in the "gamma" method

A Exponential "slope factor" in the distribution function for the

number concentration of the particles

Exponent of the measured length to equivalent melted diameter

conversion equation

Pl Density of ice

PW Density of water
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