
I ~~~NONLINEAR FINITE ELEMENT ANALYSIS OF SANDWICH COMPOSITES A-1637 ATNUNV O ESAC NT / Il

IMAR 81 R A BROCKMAN F33615 77-C 3075

UNCLASSIFIED UR-TR-80-113 AFWAL-TR-81-3008 NL

mmmhmmmmmmmEmhmhEEEmhmhI



=F

AFWAL-TR-81- 3008( L EL V
NONLINEAR FINITE ELEMENT ANALYSIS OF SANDWICH COMPOSITES

R. A. Brockman

University of Dayton
P-4 Research Institute

Dayton, Ohio 45469

March 1981

Final Report for Period September 1977 - November 1980

Approved for public release; distribution unlimited.

DTICSl ELECTE
OCT 29 19813

. FLIGHT DYNAMICS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES

K AIR FORCE SYSTEMS COMMAND
L a WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

'I.,. jO 28 07(C



.0

NOTICE

When Government drawings, specifications, or other data areused for any purpose other than in connection with a definitely
related Government procurement operation, the United StatesGovernment thereby incurs no responsibility nor any obligationwhatsoever; and the fact that the government may have formulated,
furnished, or in any way supplied the said drawings, specifications,
or other data, is not to be regarded by implication or otherwise
as in any manner licensing the holder or any other person orcorporation, or conveying any rights or permission to manufactureuse, or sell any patented invention that may in any way be
related thereto.

This report has been reviewed by the Office of PublicAffairs (ASD/PA) and is releasable to the National Technical
Information Service (NTIS). At NTIS, it will be available to the
general public, including foreign nations.

This technical report has been reviewed and is approved
for publication.

HAROLD C. CROOP, AFWAL/FICLRY 'JLYCif
Project Engineer Src 1Cnet al

FOR THE COMMANDER

JA,(J LSN sitnt for

RTsearch & Technology
Structures and Dynamics Division

"If your address has changed, if you wish to be removedfrom our mailing list, or if the addressee is no longer employed
by your organization please notify AFWAL/FIBC, WPAFB, Ohio, 45433,
to help us maintain a current mailing list".

Copies of this report should not be returned unless returnis required by security considerations, contractual obligations,
or notice on a specific document.



Unclassified
SCCURITy CUASSIFICATION OF THIS PAGE (Mona DarstaB,e0 __________________

2. OVTACCSSIN 10,S.. ECL ASSIFICATAON OUNONIN

IS. ONISTIUNAFTE EE ANAYSI OFi Reinlport)t1epwww

,ApoD for Opublics relese; istibuton nlimted

AuS. ~ e SUPPEMETAR NOTES~a

Sandwi Copositn Seerc tiene AREanelsUMER

Nonolea Anaysis nu

ArFinie elemnt Aernalyisa techniques ardvloe for8th

solutontofrnonier porobemBse inOlvn sandwic copoit
matrils MOIOIGAECh AyEr AoRSf aifret1 sanih paniel IS EpUReT Snftd "on

easiy cosidred. Thefinie eemen d ciassifnis erore

00 JA75 14) EDTION P NOV3 ISCHSEDULE -

IS. DISTRBUTIY SLAATEMEANTO (of this5 RAoom#),DcpUna

Apprved or pbli relase;distibuion nlimted

t7.~ ~ ~ ~ ~ ~~~~~~k DITIUINSAEET(fteasrc nee i lc 0 tdfeetf"Noi



Unclassified
,GCUPiTV CLASSIPICATiON OF THIS PAO(Phow Does En .00,

20. (concluded).

and/or face sheet stiffeners. Each of these elements is
capable of representing arbitrarily large displacements.
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FOREWORD

This report describes work performed by the University of

Dayton Research Institute (UDRI) under Air Force Contract

F33615-77-C-3075, Structural Sandwich Composites. The effort

was conducted for the Flight Dynamics Laboratory, Air Force

Wright Aeronautical Laboratories, under the administration and

technical direction of the Air Force Project Engineer,

Mr. Harold C. Croop (AFWAL/FIBCB).

Administrative project supervision at the UDRI was

provided by Mr. Dale H. Whitford (Supervisor, Aerospace

Mechanics Division), and technical supervision was provided by

Dr. Fred K. Bogner (Group Leader, Analytical Mechanics Group).
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SECTION 1

I NTRODUCT ION

Sandwich composites constitute an important class of

materials in the aerospace and building industries due to their

potential to provide high resistance to loading at a relatively

low weight penalty. Typical uses of sandwich materials

presently include wing skins and control surfaces, fairings,

shelving, cargo doors, helicopter blades, and prefabricated

panels for building construction.

As the application of these advanced materials increases,

sophisticated analysis techniques become increasingly important

for use in the formulation and qualification of practical

designs. The necessary analytical methods must be readily

accessible to the designer, while remaining quite general in

scope. To achieve the objective of generality, computational

methods must be employed, the most flexible of these being

techniques based upon finite element1 discretization.

The development of finite element analysis techniques

applicable to sandwich constructions is complicated by the

nature of the response of most sandwich layups. The relatively

thin, high-modulus face sheet layers resist loading through

inplane stresses, and thus are represented most effectively

with plate or shell type elements. Sandwich core, which is

typically much thicker and more flexible than the face sheets,

deforms principally in transverse shear modes, and therefore,
is modeled most appropriately by three-dimensional, shear-

deformable elements. The incompatibility of these two classes

of finite elements (shells and solids) is well-known, and a

departure from the traditional elements of these types is

clearly necessary. A number of specialized formulations have

been proposed to deal with the modeling problems of sandwich
2-6

materials 2 . However, none of these has been developed in
sufficient generality to provide truly comprehensive modeling

1i



capabilities for sandwich panels having arbitrary curvature,

multicore construction, transitions to other types of structure,

edge closeouts, and other troublesome geometrical features.

Applications to nonlinear sandwich analysis, including finite

displacements, large rotations, and material nonlinearities

are typically further restricted (flat panels, single-core

sandwich, or rectangular shapes) due to the complexity of

the formulation and long solution times.

The present report documents a finite element approach

for the analysis of sandwich structures of arbitrary geometry,

which may include stiffening members, closeouts, and connections

to other three-dimensional structural components. Static

response to mechanical and thermal loading may be computed for

either linear or nonlinear deformations. In the case of

nonlinear analysis, arbitrarily large displacements and

rotations are permitted, in addition to material nonlinearities

(plasticity). Linear natural frequency and normal mode

calculations can also be performed.

2
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atCTION 2

THEORETICAL DEVELOPMENT

The basis of the present analysis of sandwich materials

is the incremental equilibrium relation for a general, three-

dimensional continuum experiencing large displacements and

materially nonlinear response. Each of the finite elements

(face sheet, core, stiffener, solid) described in Section 3

is derived from this general set of ,overning equations by

first making appropriate specializations and then applying the

procedure of finite element discretizations.

For finite element application, the appropriate form of

the equilibrium equations is expressed in terms of the principle

of virtual work. In this Section, the incremental form of the

principal of virtual work is obtained for a general, three-

dimensional continuum. The Laqrangian description of motion

is used throughout: that is, all displacements, strains and

stresses are expressed in terms of the original (undeformed)

configuration of the body. The appropriate constitutive

relations for elastic and elastic-plastic material behavior

are also developed.

2.1 INCREMENTAL EQUATIONS OF MOTION

For the purpose of obtaining an incremental description

of motion, three configurations of a general structure are

considered:

Configuration C : the initial state of the body,

used as a reference state

1
Configuration C 1 an intermediate state, at which

a solution for the structural
response is assumed tc be known

2
Configuration C : a subsequent configuration,

removed from state C 1 by a single
increment of loading.

3



These three states of deformation are shown in Figure 1. In

an incremental nonlinear analysis, the objective at each step

of the solution is to compute a configuration such as C2 , given

the previous solution (state C1 ) and the incremental values of

mechanical and thermal loading.

In the initial state C0 , the position of an arbitrary

point P (Figure 1) is denoted by Xi; i=1,2,3. In reaching

configuration C1 , the point P moves to a new position whose

coordinates are xi, where

x i = Xi + 1Ui (1)

and 1ui represent the displacements in state C1 . The state of

strain at state C is measured by the Green-St. Venant strain

tensor
7

leij (ij + luj~ + luki lukj). (2)

Observe that, in Equation 2, differentiation is performed with

respect to the initial coordinates Xi; that is,

- 1ui/X (3)
1 i,j 1 i/aXj

The appropriate measure of the stress corresponding to

Equation 2 are

1 = r 11ij (4)lij lj

where 1l.. are the symmetric Piola-Kirchoff stresses7 inI 13 1
configuration C , and AG is the determinant of the Green's

deformation tensor

G= .X,2 (5)

4
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2

Similarly in configuration C2 , denote the position of the point

P by coordinates zi; i-1,2,3. Then

zi = Xi + 2u = xi + Aui (6)

in which Aiu. are incremental displacements separatinq the states

C 1 and C The strain and stress are

2e ij - leij + Aeij (7)

and

2sij - i i si (8)

respectively.

Next consider the principal of virtual work7 in

configurations C1 and C2 , which are written

I iijxk,i Uk,jdu dV  Su tiudA (9)

0V  0o3v

and

s ukdv 2t6u dA (0
2 ij k,i j2

0V 03Vov  o v

Here 0V represents the original volume of the body (in state

C 0) 0V denotes the corresponding boundary surface, and

1 , 2ti are the prescribed surface forces in states C
1 and C2

respectively. It is important to notice that the virtual

displacements 6ui may be any kinematically admissible

displacements, and that they are measured in each case with

respect to the initial configuration. Thus by subtracting

Equations 9 and 10 it is possible to write

6



( ( ij 'k,i 1lijXk,i)6Uk,jdV - fEEv uidA (11)

o 0

where i are the increments in prescribed surface traction,

Ei = -i - 71" (12)

Using the incremental stresses defined in Equation 8, Equation

11 can be arranged in the form

I (l ijuk,i + Ai'Zk,i) 6AukjdV H i 6Aui dA (13)

0V 3Vov  o v

Note that the arbitrary virtual displacements 6ui have been

replaced by incremental virtual displacements 6Aui, which is

clearly admissible provided both sets of virtual displacements

satisfy the imposed kinematic boundary conditions of the problem.

Equation 13 expresses the equality of internal and

external virtual work performed during the increment of
1 2deformation between configurations C and C2 . Using Equation

6, the equation obtained above can be expressed more

conveniently in terms of the incremental strains Aeij (Equation 7).

Since the incremental stress tensor Asij is symmetric,

As ijzkii6AUk j = 2 Asij (z 6Auk, j zk,j (14)

and thus

Asijk,i 6AUk,j = Asij 6Aeij (15)

The incremental principle of virtual work, Equation 13, then

becomes

7



J (Asij6AeOij iijAuk,i AUk,j)dV-

V
0

J iE6AUidA. (16)

o V

For later use, it is useful to separate those terms of the

incremental strain Aeij which are linear and nonlinear in the
incremental displacements Aui.

Define

Aeij - Aij + An ij (17)

in which

AC 1-(AU + AU + u Au + U Au(81Aij = Ai'j +AJ' i  1 lk,i k,j 1 lk,j k,i)  (8

An, j Auk,iAuk,j. (19)

Equation (17) becomes

(Asij6Aei isij6Anij)dv
oV

0

j Ri 6AuidA (20)

0 av

The material stress-strain relation used here assumes

that the incremental stresses and strains can be related in a

linear fashion,

Asij Dijkl(Aeij _kIAT) (21)

8
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Here a k are the thermal expansion coefficients and AT is an

incremental change in temperature at a point. Combining

Equations 20 and 21 yields the final form of the incremental

principle of virtual work,

I [Dijkt(Aeki - a k£AT)6Aeij + isij Anij)dV =

V
o

J AtiSAuidA. (22)

oV

Equation 22 is fully three-dimensional, and specific forms

which are used to derive the individual finite element types

are discussed in Section 3. The iterative solution of

Equation 22, which is nonlinear, is outlined in Section 4.

2.2 CONSTITUTIVE RELATIONS (ELASTIC MATERIALS)

For elastic materials, the incremental stress-strain law

of Equation 21 is precisely the same as the relation between

total stresses and strains,

sij = Dijkt(ekX - ak9T), (23)

where T is interpreted as the temperature change from a fixed

reference temperature. In matrix form, Equation 23 can be

written as

s - D (e - aT) (24)

in which

T
T L111 s22 s33 '23 '13 s1 2j (25)

T
e Lell e 2 2 e 3 3 e2 3 e1 3 e 1 2 J (26)

9



T
T= L311 ' 2 2 '33 * 2 3 ' 1 3 '12- (27)

and D is a coefficient matrix of order six.

In the case of an isotropic material, D is completely

determined by the values of Young's modulus E and the Poisson's

ratio v,

(l-v) v v 0 0 0

V (l-v) V 0 0 0

E v v (l-v) 0 0
D E ( V1-20 0 0 (28)

0 0 0 (2-) 0 0

o o 0 0 1-2v o

0 0 0 0 0 l-2v

and a depends only upon the scalar coefficient of thermal
expansion, a:

T L a 0 0 oJ (29)

For orthotropic materials, the elastic properties are

direction-dependent, and a stress-strain law must first be
formulated with respect to the preferential axes of the material,
and then transformed to global coordinates. In the material
coordinate system (denoted by a subscript m), Equation 25

becomes

!m -D (e m - amT). (30)

The matrix Dm is a function of nine independent material

constants: the extensional moduli EIE 2 ,E3 ; the Poisson's
Ratios v 2 3 V1 3 V1  and the shear moduli G2 3 , G1 3 , GI2 . The

10
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nonzero upper triangular elements of Dm, which is symmetric,

are given by
8

d i = (1 - V23V32)E1/N

d12 = (V1 2 + V32 13)E2/N

d13 = (v1 3 + v12v2 3 )E3/N

d22= (1 - v 13 32)E 2/N

d2 3 = (V 2 3 +2113E3

d33 = (1 - VlV2)E3/N

d 44 G G23

d 55 G G13

d = G (31)

in which

N v 1 - u12 21 - V23 32 - V31 13 2v 2 1v 3 2 V13. (32)

It should be noted that the material properties in Equations

31 must satisfy certain constraints in order to be valid

from symmetry and energy considerations. These constraints

can be summarized as follows8:

Ei  > 0 (33)

ii
Gij > 0 (34)

11
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(l-vijvji) > 0 (no sum) (35)

'ij i(36)
E i  Ej

N > 0. (37)

With respect to the global coordinates of a body, the

stress-strain relation in Equation 30 becomes

s=TDt (e - TtaT). (38)
- sme e .m

Here Ts, Te define the transformations for stress and strain

between the material and global axes:

S = T sm  (39)

e = T e !m . (40)

A comparison of Equations 23 and 38 yields the correct

transformations needed for Dm and a m, namely

D Ts D Tt (41)

a=T a . (42)
- ~e _m

2.3 CONSTITUTIVE RELATIONS (ELASTIC-PLASTIC MATERIALS)

The elastic-plastic material law considered in the

present development, which is applicable to initially isotropic
.9

materials, is based upon the von Mises yield criterion

F(sj) .s ,s=k 2  (43)

12
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in which s~j represent the deviatoric stresses

1 1 6
ij ! sij " 3 kk ij

and k2 represents the diameter of the yield surface. For this

yield function, the associated plastic flow rule is

- ~3F(44)
ij ij1

or, from Equation 43,

(45)

That is, the individual components of the plastic strain rate

are proportional to the corresponding deviatoric stresses.

The consistency condition is used in the form noted by

Hunsaker10 to obtain a computationally effective procedure.

Thus

3F a e- (46)

The parameter H characterizes the strain-hardening slope of the

stress-strain curve, and in the one dimensional case reduces to

E ET
H = - (47)E-ET

in which ET is the tangent to the uniaxial stress-strain curve.

Finally, assuming an additive decomposition of the strain

rates into elastic and plastic components gives

J= EiJkt(ekl - ;P)" (48)

13
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Here E is the modulus tensor of the material in its elastic
ijkl

state. Combining Equations 44, 46 and 48 permits a solution

for X in terms of the total strain rate,

Eijkk IS

(49)
(E ijkt + H as as.

.p 1)

Eliminating X in the expression for ek in Equation 48 then

leads to the rate relation

eij = Dijk; tk (50)

where the tensor Dijkl is given by

Dijkl - Eijk£ - asijSk£ (51)

and

S0, (elastic)

3G/(l+H/2G)k2  (plastic)

It remains to determine the expansion of the yield surface

as plastic flow progresses in a strain-hardening material. This

information is obtained by requiring that any point in stress

space remain on the yield surface during inelastic deformation

(that is, that Equation 44 always be satisfied). If the stress

rate s.. are known, then

I IF _" (53)

In practice, the elastic-plastic constitutive equation

must be integrated to give the desired relationship between

14



stress and strain increments (see Equation 22). In the present

formulation this integration is performed using a trapezoidal

rule over a number of strain subincrements whose size is

controlled to preserve accuracy. During any subincrement,

then Equations 50 and 53 become

Asij - (E ijkl - aBsj s;) Aekl (54)

and

A - 3 si sij (55)
Ak (5

Depending upon the size of the computed strain increment,

Equations 54 and 55 may be applied tens or even hundreds of

times in succession to update the element stress state with an

acceptable degree of accuracy.

15



SECTION 3

FINITE ELEMENT APPROXIMATIONS

The present development includes four classes of finite

element approximations: thin shell or sandwich face sheet-

sandwich core; stiffening members; and general, three-

dimensional solids. The first three of these finite element

types are most often used specifically for modeling the

individual components of stiffened sandwich panels, while the

solid element is used for other structure, for connections

between sandwich and other components, and for more detailed

analysis of sandwich constructions themselves.

Each of the finite element approximations described in

this Section is obtained from the nonlinear equilibrium of

Section 2 by appropriate specialization. Linear forms of the

governing equations are also obtained from the general

formulation through the assumptions of infinitesimal displacements

and elastic material response.

3.1 THIN SHELL/FACE SHEET ELEMENTS

The formulation of Reference 11 is used herein to obtain

a thin plate and shell finite element suitable for representing

sandwich face sheet materials. This element is based upon a

penalty function formulation, which leads to an effective thin

shell approximation derived directly from the field equations

of a three-dimensional continuum. The shell element so derived

possesses several distinct advantages over similar elements

based upon a specific theory of thin shells. In particular,

- geometric parameters of an element are completely

defined by the nodal coordinate information,

- complete compatibility of displacements with standard

isoparametric solid elements is possible,

- no restrictions need be placed upon the extent of

displacements or rotations of the shell, and

16



- effects such as variable thickness, complex shell

intersections, skewed lateral boundaries and

connections to adjacent structure are accounted for

simply and effectively.

The undeformed geometry of a single element of a shell

(or face sheet) is shown in Figure 2. Geometric parameters are

analyzed with respect to a local coordinate system (x,y) which

is close to the element midsurface z - z(x,y) at all points.

An additional coordinate r is used to describe the distance

away from the midsurface at any point.

It is assumed that on the element level, the shell is

shallow, so that

z2

2 (56)

,y

everywhere. The unit vector normal to the shell midsurface at

a point can then be written as

n = -z 1 - z + (57)
x ,Y3

in the local system of coordinates. Due to the assumption of

shallowness, the (x,y,C) coordinates constitute, at least

approximately, a local Cartesian system; taking advantage of

this fact, the position vectors of an arbitrary point within

the shell before and after deformation may be expressed in the

form

r= (x - <Zx)i + (y - =Zy)j + (z + )k (58)

and

17
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Figure 2. Shell Element Geometry and Local Coordinates.
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=(x - z ,~+ u) i + (y - z ,+ V) j

+ (Z + C~ + W) k. (59)

Equations 58 and 59 lead directly to the appropriate definitions

of strain for the shell element, sincel2

e. .jdxidx. = 1 [ -A) - (Tr*d) 1 (60)

Thus, the Green's strains referred to the system (x,y,C) become:

e =u (1 - z 4-z v + z w
,xx ,x ,XX x x ,x

+1(u2 +v2 +w2
2 ,x Fx O

ey= v (- Cz ) Cz u + z w
,y y ,yy ,xy Iy Iy Sy

1 j2 + 2+W

e =w -z u z vI x IC ,y C~

2

2e = v C(1 - Cz ) + WI; - z xu, + z '(w -V I)

rxy 'y C 'yI C ,y C~

19
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2ex u (l-z + w + z v + z (w -U
, xx x ,y ,x ,x ,

-Cz v + UxU +v v + w w

2e =u (1 - z )+ v (1 - Z ) + zwy + z ,w,xy ,y I xx I x ,yy IXy I

- izy(u + vy) + U Uy + v ,v y + w W (61)

It should be noted that the strain-displacement relations above

do not involve the orientation of the displaced midsurface

normal, and, therefore, apply to arbitrarily large displacements

and rotations of the shell. The definitions of the linear and

nonlinear portions of the incremental strains (AZ ij and An.ij in

Equations 18 and 19) follow directly from Equations 6211.

In order to ensure proper behavior of the finite element

approximation, constraints must be applied to enforce the

conditions of thin shell response. To prescribe the condition

that line elements initially normal to the shell midsurface

remain straight, normal to the surface and unstrained, it is
necessary to suppress the virtual work due to transverse shear

and normal strains, and to enforce constraint relations of the

form

Ae x = Ae Y = Ae = 0. (62)

A particularly effective method of enforcing the constraints

of Equation 62 is developed in Reference 11, by defining a penalty

functional which, in the limit, forces Equation 62 to be satisfied

at selected discrete points within an element. Define the

functional

20



M 1 2
A C m EifiWxAexC~rm

+ 2 ( m
+ WyAey(M

1 2 (' ) (63)+ W Aem

in which M is the number of constraint locations, W W ,W arex YLh
positive weights, and rm is the location at which the mth

constant is to be enforced. Observe that, by setting 6 (ARc) = 0,

Equation 62 is satisfied identically at each of the points

rm; m=l,2,...,M.

Introducing the above constraints into the incremental

principle of virtual work, Equation 21, yields

f [D x (Aex a XP AT)6Ae + IS B6An a]dV

V
0

f Ati6AuidA + 6(A c ) = 0. (64)

0
v

In Equation 64, Greek subscripts imply a range of summation of 2,

while Latin indices have a range of 3. The additional thin

shell constraint of vanishing normal stress through the thickness

(cc = 0) is enforced exactly in Equation 64. Thus, the stress-

strain relation for the remaining nonzero stresses and strains

is one of plane stress.

To cast Equation 64 in matrix form, the following

quantities are defined. Let

= LAu Av AwJ (65)

FT LAu x Au ,y Au V, AV 'x AV ,y Av, AW 'x AW ,y Aw J (66)

T = exx Aeyy 2Aexyl (67)
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T Ae x Aey¢ Ae CJ (68)

T " xx a a (69)

- Ixx a i0

= y0 (70)

L o0 oj

= (71)

00

T La c cij (72)

-W 0 0-,

[ W y ] (73)

T L= x AT ATJ (74)

The constrained principle of virtual work then becomes

[6e TD(e - cAT) + 6F T*F]dV

V
0

+ M T r r 6uT dA, ' (75)
E 6Y (r )W -y(, m fudA

0

which is the basis of the thin shell finite element. It remains

only to specify an appropriate approximation for u in terms of

a finite number of unknown parameters.
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In selecting the finite element approximation for u in

Equation 75, it is noted that only first-order derivatives

of the displacement appear in the energy form of the equations.

Thus, any approximation which preserves continuity of

displacements (but which may violate the continuity of

slopes between elements) is admissible. For the present

developnent the simplest possible forms, piecewise liner

polynomials, are selected. Defining the natural coordinates

i;i=1,2,3 which vary between -1 and 1 within an element, the

appropriate one-dimensional functions are

1
L() = (i -

1

L2 () = (I + s)- (76)

Letting

N() = L1 ( 1 ) L1 ( 62 ) L1 ( 3 )

N = L2 ( 61 ) LI ( 2 ) LI (t)

N (  = L2 ( 1) L2 (&2 ) L1 (R 3 )

N = LI(&1 ) L2 (E2 ) LI()

N5 ( ) = LI (E1) LI ( 2 ) L2 ( 3 )

N65 L-52 (E1 ) L1 (&2) L2 (t 3)

N7 ( E ) = L2 (&l ) L2 ( 2 ) L2 (R 3 )

N8  = LI( I) L2 (&2) L2 ( 3) (77)

the form of the approximate displacement field within a single

element is
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U = il Ni() Ui = NTU. (78)

Here Ui; i,2,...,8 are values of the displacement u at the

eight nodal points of an element, as shown in Figure 3. The

displacements u, w are represented in exactly the same manner.

Substitution of the above approximation into Equation 75

leads to the definition of the tangent stiffness matrix K T' the

geometric stiffness K a discrete "constraint stiffness" K c

and the external force vector T. In matrix form, the

equilibrium relation for a single element becomes

(K + K + (7)  = T (79)T G !C~

which can be solved iteratively as shown in Section 4.

3.2 SANDWICH CORE ELEMENTS

The sandwich core finite elements employed in the present

work are obtained directly from the three-dimensicnal nonlinear

formulation of Section 2, without any specialization. Orthotropic

stress-strain relations, as described in Paragraph 2.2, are

permitted for analyzing orthotropic cores (e.g., metal honeycomb

core), and to represent the very low extensional moduli typical

of many types of core. Permanent deformations, such as core

crushing, can be treated in an approximate fashion using the

elastic-plastic material law described in Paragraph 2.3.

The core element is shown in Figure 4. In the planform

directions, a linear interpolation of the displacements is used

for compatibility with the face sheet element (Paragraph 3.1).

Linear displacement shape functions are also employed through the

core thickness; due to the typical high flexibility of the core
layers in transverse shear, linear displacements are nearly

always an adequate approximation. Due to the very simple nature

of the displacement state approximation, the resulting element
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Figure 3. Thin Shell and sandwich Face Sheet Element.
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Figure 4. Sandwich Core Finite Element.
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may become excessively "stiff" when integrated exactly For

this reason, a single integration point is used in each core

element to provide improved accuracy with this simple

approximation. Although the core element alone would prove to

be unstable using the single point integration rule, the

addition of face sheet and closeout elements provides a

stabilizing effect which eliminates singularity in the final

system of equations. When stabilized in this manner, the simple

core element used here provides a highly effective and accurate

representation of the sandwich response.

3.3 STIFFENING MEMBERS

Beam stiffener elements obtained here from the general

formulation of Section 2 are of two types: face sheet

stiffeners and full-depth stiffeners. The face sheet stiffening

member is used to represent discrete beam stiffeners attached

to the inner or outer surface of a sandwich panel. The full-

depth stiffener is used to model spar panels connected to both

the upper and lower face sheets of a sandwich, or to represent

panel edge closeouts. Both of these configurations are shown

in Figure 5.

Stiffener elements of both types have similar geometry,
shown in Figure 6. The coordinates XL, YL are local coordinates,

embedded in the plane of an element. In this local coordinate

system, the transverse stresses 0xz' ayz and a zz are assumed

to vanish, and thus the stress-strain relation for an element

has the form appropriate for a plane state of stress. The
resulting element models extension, primary bending, and twisting

effects. Again, compatibility is achieved with the other

sandwich elements through the use of linear displacement shape

functions. To avoid excessive stiffness of the element in
bending, a selective integration scheme is used for the in-plane

shear strain energy.
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FULL-DEPTH
STIFFENER

FACE SHEET
STIFFENER

Figure 5. Face Sheet Stiffener and Full-Depth Stiffener
Element Configurations.
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Figure 6. stiffener Element 
Geometry.
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3.4 THREE-DIMENSIONAL SOLID ELEMENTS

A three-dimensional continuum finite element is included

in the present formulation, for use in the modeling of:

- general structural configurations,

- transitions between sandwich panels and surrounding

components, and

- detailed aspects of the deformation of sandwich panels.

The element, which has a variable number of nodes, can be made

compatible with the sandwich face sheet and/or core elements

(which use linear shape functions) on selected element surfaces

while higher-order displacement functions are used elsewhere

in the element. Thus, transitions from sandwich panels to

attachments or other supporting structure can be represented

quite simply. Since the solid element is fully three-dimensional,

it is also useful for detailed analysis of effects such as core

crushing or plastic deformation of the sandwich face sheets.

The general solid element is pictured in Figure 7. Node

points 1 through 8 (the vertices) are required for each element;

however, each of the remaining 12 midside nodes may be included

or deleted as required. In most instances, the use of the

midside nodes is highly desirable in terms of accuracy. The

solid element may be numerically integrated using either an

eight-point (2x2x2) or 27-point (3x3x3) Gaussian quadrature

formula.
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Figure 7. Three-Dimensional Solid Element.
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SECTION 4

NUMERICAL SOLUTION TECHNIQUES

In this section, the methodology used in solving the

governing equations for a complete assemblage of finite elements

is described. Static response may be computed with or without

nonlinear effects included, and considering both thermal and

mechanical loadings. The option to compute a specified number

of natural vibration frequencies and their associated mode

shapes is also provided.

4.1 STATIC RESPONSE SOLUTION

In static problems, the finite element equations take

the form

+ KG)AU = AT (80)

in which

K T = tangent stiffness matrix,

KG = geometric (initial stress) stiffness,

AU = incremental nodal displacements, and

AT = incremental nodal forces, including
both mechanical and thermal effects.

The tangent stiffness, for nonlinear problems, is a function of

the total displacements, K T + K T(U) and the geometric stiffness

depends upon the current stress level, K G = K(a ) .

When the problem is assumed to be linear (small displacements,

elastic material behavior), KT = E' the linear stiffness, and

G = 0. In this case, Equation 80 can be written using the total

displacements U and forces T:

KE U = T. (81)
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A direct solution is obtained by factoring KE as

K=LDL T (82)

where L is a unit lower triangular matrix and D is diagonal.

Next letting

Z = DLT U, (83)

the relation

LZ = T (84)

can be solved directly for Z. Similarly, Equation 83 gives

LTU = D- z (85)

which can finally be solved for U. Knowing the displacement

solution, strain and stress information can be computed at

selected locations in the model to complete the linear analysis.

When nonlinear effects are considered in the solution

of Equation 80, an iterative technique must be adopted. In

addition, the nonlinear solution is usually performed in an

incremental fashion, by applying the total loading in a number

of steps. Such an approach is adopted to provide the static

solution for an entire range of loading, to enhance convergence,

and to facilitate the detection of buckling or similar

phenomena. In plastic analysis, this incremental method is

necessary due to the history-dependent nature of the response.

The nonlinear equations are solved using various forms of

the Newton-Raphson method, as shown in Figure 8. First, the

nonlinear system is written as

K+ K T - 1 (86)
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MODIFIED NEWTON-RAPHSON

(CONSTANT STIF FNE SS)

ITERATION

DEFLECTION

FULL NEWATON-RAPHSON

- ITERATION

DEF'LECTION

Figure 8. Newton-Raphson method for the Solution of
Nonlinear Equations.
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where T is the total applied loading and I are the internal

forces based upon the current (computed) state of stress. Once

the computed stress state is in equilibrium with the external
loading, the right-hand side of Equation 86 becomes zero. Thus,

Equation 86 can be used repeatedly to compute corrections to an

estimated displacement state for given T, until the equilibrium
condition (T - I) is satisfied to within a specified tolerance.

During a full Newton-Raphson solution, the coefficient matrix
is updated at each iteration cycle. In the modified Newton

solution, the stiffness matrix is reformed only at the start

of an increment, as indicated in Figure 8. The conventional

Newton's method tends to converge rapidly, with each iteration

consuming a relatively large amount of processor time; with the

modified iteration, each cycle of iteration is computationally

simpler, but convergence is generally rather slow.

4.2 NATURAL FREQUENCY SOLUTION

When free vibrations are considered, the problem is assumed

to be linear, and the forcing function T is replaced by the

inertial forces,

K (87)

where M is the structure mass matrix. For harmonic motions,

then, the nodal displacements are

U = X sinWT (88)

and the equation of motion becomes

K0 =X MX. (89)

Notice that the vector X describes only the relative displacements

of the node points, and represents a mode shape corresponding to

the circular frequency of vibration, w. If K E and M are matrices

35

_JI



of order N, then there exist N-solutions of Equation 89: w

Generally only the lowest few frequencies and mode

shapes of the system will be of interest, and, therefore, a

vector iteration procedure is most appropriate. In the present

development, the method of simultaneous vector iteration1 3 is

used.

If K E can be expressed in the Choleski-factored form

K = LLT (90)

with 1, a lower triangular matrix, then the transformation

Y = LTx (91)

allows Equation 89 to be written in the standard form

1 (92)

Here A is defined by

A =LMLT. (93)

Given a set of trial solution vectors Yi; i=l,2,...,m,

a partial modal matrix is formed,

~ Y~ Y2 " * Ym ]  (94)

Noting that any set of eigenvectors of A must be orthogonal

with respect to A, the next step is to inspect the "interaction

matrix"

B = ,TAO (95)
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which is diagonal if the columns of 4 are true eigenvectors.

When the vectors Yi are properly normalized, the diagonal

entries of B are estimates of the eigenvalues

W. W (96)
1 i

Before the solution has converged, the interaction matrix

B is not diagonal. Instead, an approximate solution can be

performed for B to obtain an improved estimate of the eigenvalues.

The trial vectors (i.e., columns of 0) are then modified

accordingly, orthogonalized, and used in the next iteration

cycle.

A solution for the lowest several frequencies and mode

shapes using simultaneous iteration tends to converge in very

few iterations, provided the number of trial iteration vectors

is sufficient. If p is the number of natural frequencies to

be solved, an estimate for the proper number of trial vectors

can be obtained from

m = min[Zp, p + 5]. (97)

The procedure in general tends to be quite fast, since only one

factorization of K E is required, and can be performed

economically without actually forming the matrix A (Equation 92).

37



SECTION 5

SAMPLE ANALYSES

Several sample problems are presented in this Section to

demonstrate the analytical capabilities of the present finite

element formulation. Classes of problems considered include

large deflection and elastic-plastic analysis, buckling, natural

frequency solutions and thermal stress analysis.

5.1 NONLINEAR ANALYSIS OF A SANDWICH PANEL UNDER PRESSURE

A square sandwich panel, 50 inches on each side, is

subjected to a uniform lateral pressure. The three-layer plate,

shown in Figure 9, has identical aluminum face sheets

(E = 10.5 x 106 psi; v = 0.3) 0.015 inches thick, bonded to

an aluminum honeycomb core of one inch thick. The core is

assumed to be isotropic, with shear modulus G = 50,000 psi.

All boundaries of the sandwich are fully clamped.

Due to symmetry of the geometry and loading, one quarter

of the panel is considered in the finite element solution.

The finite element discretization consists of a total of 75

finite elements, 25 in each layer. The two face sheets are

modeled using eight-node, thin shell elements (Paragraph 3.1).

Three-dimensional sandwich core elements (Paragraph 3.2) are

used for the central layer. Note that these element types are

fully compatible so that no special constraints are necessary

for joining the individual layers. The nonlinear solution

has been obtained in load increments of one psi to a total

pressure of 20 psi followed by two psi increments to 30 psi.

The nonlinear central displacement of the sandwich is

plotted versus load in Figure 10. Nonlinear finite element
2

results obtained by Monforton , using 16 specially formulated

bicubic sandwich elements, are shown for comparison. Agreement

between the two finite element solutions is quite good. Figure
1410 also shows the perturbation solution of Kan and Huang

given by
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Figure 9. Sandwich Panel Under Uniform Lateral Pressure.
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q = 10.5299w + 4.8550w 3  (98)
c c

in which q is the applied pressure and w the transverse center

displacement. The analytical solution of Reference 14 is valid

for deflections which are smaller than the core thickness, and

reasonable agreement with the two numerical solutions is observed

in this region. For larger deflections, the perturbation

analysis requires more terms for acceptable accuracy; the two-

term solution gives results which overestimate the influence of

membrane stiffening upon the panel deflection.

5.2 NATURAL FREQUENCIES OF SANDWICH PANELS WITH VARIOUS

BOUNDARY CONDITIONS

The three-layer sandwich plate shown in Figure 11 has

been analyzed for its free vibration response using a number of

different edge conditions. The finite element model of the panel

consists of 36 elements in each layer, and contains a total of

196 nodes and 480 unconstrained degrees of freedom. Material

properties and dimensions of the specimen are as follows:

Dimensions : a = 62.25 in.

b = 43.50 in.

tf = 0.072 in.

tc = 1.856 in.
c7

Face Sheets: E = 1.0 x 107 psi

V = 0.33

Core Layer : Gxz = 30000. psi

G = 30000. psiyz

Ez = 60000. psi

Three types of edge conditions have been considered in the

present analysis. The first is a simply-supported condition in

which in-plane motions of the edqe are permitted; this type of

constraint allows a pure-bending type of response of the entire

panel and is readily verified with known analytical solutions.
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Figure 11. Three-Layer Sandwich Panel used in Natural

Frequency Calculations.
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For the second type of constraint, in-plane displacements are

prevented on the lower face of the panel, introducing a net

stretching effect when transverse bending occurs. The third

boundary condition used is a fully clamped edge.

Fundamental frequencies of these panels are summarized

in Table 1. For the first set of edge conditions, analytical

frequencies computed from the formulation of Reference 15 are also

listed. Agreement between the two solutions is good. The

stiffening effect produced by the two alternative boundary

conditions is clearly shown in the frequency results.

5.3 BUCKLING OF A SIMPLY-SUPPORTED SANDWICH PLATE

The compressive buckling of a plate of sandwich

construction is considered. A square, three-layer panel (Figure

12) is subjected to a uniform compressive load of Nx pounds per

inch. The panel is 23.5 inches on each side, and supported at

each face of the sandwich on all four edges (vertical

displacements only are prevented).

The outer face sheets of the panel, which are represented

by thin shell finite elements, are each 0.021 inches in thickness,

with isotropic material properties E = 9.5 x 106 psi, v = 0.3.

The core layer, 0.181 inches thick, has a transverse shear

rigidity G = 19000 psi. Each layer of the model contains 16

elements of equal planform dimensions. Only one quadrant of

the panel is considered in the numerical solution, due to

symmetry of the geometry and loading. On the lateral boundaries,

the tangential transverse shear strains within the core are

suppressed by making the upper and lower face sheet displacements

equal in the direction parallel to each edge.

A solution for the buckling load NCR has been obtained

by applying the in-plane forces incrementally until a sudden

increase in transverse displacement is observed. Out of plane

deflections are triggered by a small (one pound) transverse

load applied at the center of the plate. Buckling is found to
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TABLE 1

NATURAL FREQUENCY RESULTS FOR FLAT SANDWICH PANEL
WITH VARIOUS BOUNDARY CONDITIONS

Frequency, Hz Frequency, Hz
Boundary Condition (Computed) (Analytical)

Simple Support
Inplane Motion Permitted 174 170

Simple Support
No Inplane Motion 211

Clamped Edge 288
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Figure 12. Simply Supported Sandwich Panel Under Edge
Compression.
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occur for an applied load of N = 305 pounds per inch; this

computed value compares well with previous analytical and

experimental results, as shown in Table 2. It is noted that all

of the analytical results give estimates of the critical load

which are about nine percent too high; it is likely that the

assumption of zero transverse shear strains at the panel

boundaries is largely responsible for this error. The

transverse shear constraint has been used in the present finite

element solution to permit comparison with previous analytical

solutions.

5.4 PLASTIC ANALYSIS OF A TOROIDAL SANDWICH SHELL

A toroidal sandwich shell panel under line loading has been

analyzed to determine its elastic-plastic response. The following

geometric parameters are used:

major radius R = 5.0 inches

included angle 0R = 75.0 degrees

minor radius r = 1.5 inches
included angle 0r = 90.0 degrees

core thickness t = 0.90 inchesc
face thickness tf = 0.05 inches

The geometry of the shell is shown (in the form of a finite

element model) in Figure 13. Figure 14 shows the outer face

sheet of the sandwich with node numbers on the exterior surface

labeled. A line load is applied in the vertical direction along

the upper edge of the shell (nodes 36, 56, 92, ... , 316 in

Figure 14). The two short edges of the panel are fully clamped.

The panel is constructed of aluminum, with the properties

Ef = 1.0 x 107 lb/in 2

vf = 0.30

G = 30000. lb/in 2

c

A yield stress of 10000 lb/in 2 is assumed in all layers, and

the material is considered to be elastic, perfectly plastic.
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TABLE 2

COMPARISON OF BUCKLING LOADS FOR SIMPLY-SUPPORTED SANDWICH PANEL

Reference Method Ncr (pounds/inch)

Hoff16  Series Solution 303.0

Plantema1 5  Series Solution 308.0

Brockman1 7  Series Solution 309.0

Boller 1 8  Experimental 266. - 300.

Monforton2  Finite Element 307.5

Present Analysis Finite Element 305.0

47

-t **'



Figure 13. Toroidal Sandwich Shell.
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From an elastic analysis of the shell, the yield stress

is found to occur at a total load of approximately 600 pounds.

The elastic-plastic solution is then performed using a single

increment of 600 pounds, followed by equal increments of 180

pounds to a maximum loading of 1500 pounds. Full Newton-

Raphson iterations are used at each step of the solution to

maintain equilibrium of the nonlinear system.

The transverse displacement at the center of the loaded

edge (node 168 in Figure 14) is tabulated as a function of the

total load in Table 3. Deflected shapes of the inner and

outer face sheet layers are also given in Figures 15 and 16,

respectively, for the maximum value of loading. Although the

nonlinearity in central displacement at this loading level

are rather mild (see Table 3), material yielding is extensive

near the clamped edges and the loaded free boundary. Figure 17

shows the zone of plastic behavior in the outer face sheet at

the maximum loading level.

5.5 THERMAL STRESS ANALYSIS OF A VARIABLE-THICKNESS SANDWICH
STRIP

A narrow sandwich strip with a small geometric asymmetry

is subjected to uniform heating, to study the effect of the

asymmetry in producing transverse deflections at high temperature.

One quarter of the symmetric panel is shown in Figure 18. The

uniform middle segment of the strip is 16 inches in length, while

the tapered sections and ends are each two inches long. The

lower face sheet is 0.075 inches in thickness. At the small ends,

the thicknesses of the remaining layers are tc = 0.25 inches,

tf = 0.050 inches, increasing to tc = 0.50 inches, tf = 0.075

inches in the central section. Full-depth stiffeners 0.015 in

width are used to close out the lateral boundaries of the strip.

The entire strip is constructed from aluminum, the

properties being
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TABLE 3

LOAD-DEFLECTION HISTORY AT CENTRAL POINT ON

LOADED EDGE OF TOROIDAL SANDWICH PANEL

Increment Total Load (Pounds) Deflection (Node 168)

0. 0.

1 600. -0.00864

2 780. -0.01141

3 960. -0.01437

4 1140. -0.01770

5 1320. -0.02184

6 1500. -0.02698
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Figure 15. Deformed Shape of Inner Face Sheet at
Maximum Loading.
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Figure 16. Deformed Shape of Outer Face Sheet at
Maximum~ Loading.
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Figure 18. Asymmetric Sandwich Strip.
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Face Sheets: E = 10. x 106 lb/in 2

v = 0.30

a = 12. x 10- 6 in/in*F

Stiffeners: E = 10. x 106 lb/in 2

v = 0.30

a = 12.4 x i06 in/in°F

Core: G = 20000. lb/in
2

XZ

Gy z = 30000. lb/in 2

"= = 1. x 10-10 in/in°Fx y

= 12. x 10-6 in/in°F

The finite element model of the strip is shown in more

detail in Figures 19 and 20. Figure 19 shows the face sheet

and full-depth stiffener elements; Figure 20 is a plot of the

core layer elements only, in a similar orientation. The model

represents only one fourth of the strip due to double symmetry

of the problem. The small ends of the strip are fully clamped

at all points.

A deformed geometry plot of the panel (Figure 21) after

uniform heating shows quite clearly the bending response

caused by the asymmetry at the panel ends. The displaced

shape (solid lines) is drawn to scale for a temperature rise

of 2000°F. While the deflections remain linear, the transverse

central displacement due to uniform temperature rise is

approximately 5.0 x 10 - in/0 F.
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Figure 19. Face Sheet and Stiffener Elements in
Sandwich Strip Model.
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Figure 20. Core Elements in Sandwich Strip Model.
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SECTION 6

SUMMARY AND CONCLUSIONS

A finite element approach for the linear and nonlinear

analysis of structures incorporating sandwich composite materials

has been described. The methodology is based upon a philosophy

of modeling each layer of a sandwich material in some detail,

rather than using approximate properties assembled from the

characteristics of each layer. With such an approach, it is a

rather straiqhtforward task to simulate response problems

involving local deformations, crushing, buckling and plasticity.

Furthermore, connections between sandwich panels and other more

conventional construction materials may be represented in

detail using standard continuum finite elements.

The present formulation includes lower-order thin shell

and orthotropic solid elements for representing the basic

characteristics of sandwich panels, and compatible bending

elements for modeling face sheet or full depth stiffeners.

Standard three-dimensional solid elements describe other

connected structure, or may be used for more detailed analysis

of sandwich panels when required. Each of these elements is

applicable to problems involving arbitrarily large displacements

or rotations, since no restrictive assumptions are made in the

element theoretical formulations. Plasticity is considered

using the von Mises yield condition and the Prandtl-Reuss

equations of incremental plastic flow.

The finite element approach described has been shown to

be effective for numerous applications, involving both

mechanical and thermal loading. Natural frequency calculations

indicate that the methodology is also quite accurate for this

purpose.
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APPENDIX

COMPUTER PROGRAM INPUT INSTRUCTIONS

The theoretical and numerical formulation described in this

report have been implemented in a computer program, from which

representative solutions have been presented in Section 5. In the

following, input data instructions for use of the program are

provided.

The computer program input is divided into 26 input Data

Sets, not all of which will be required in a single analysis.

Conditions under which each Input Set should be included or

skipped are noted at the start of the Data Set. Default

values and/or additional explanatory information concerning

each item of input are included in each Input Set description

in the form of Notes.

For each item of input, a corresponding FORTRAN variable

name is listed which serves to define the data type (floating

point, integer). Any exceptions to this scheme (e.g.,

alphanumeric data) are noted explicitly as they occur. All

floating point (real) data may be entered with or without

exponents; exponents, if used, must be right-justified in the

data field provided. Integer value must be input without

decimal points or exponents, and must be right-justified in

the data field.

No plotting utilities are provided in the present program

for display and verification of the finite element model data.

For this reason, the nodal coordinate and element connectivity

data have been made compatible with that used in the MAGNA

finite element program. Therefore, full advantage can be taken

of the capabilities offered in the MAGNA program for interactively

displaying the model geometry for verification and documentation

purposes.
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INPUT SET 1

PROBLEM4 IDENTIFICATION

(Required for all analyses)

CARD COL DATA DESCRIPTION NOTES

11 8 TITLE Alphanumeric Problem Description
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INPUT SET 2

SOLUTION OPTIONS

(Required for all analyses)

CARD COL DATA DESCRIPTION NOTES

1 1-5 IATYPE Analysis Type
=1, Linear Static
=2, Nonlinear Static
=3, Natural Frequency

6-10 ITHERM Thermal Stress Flag
=0, Thermal Stresses Neglected
=1, Thermal Stresses Included

11-15 IP0ST Postprocessor File Flag
=0, Do Not Save Results
=1, Save Analysis Results

on File PLOTFIL

2 1-5 NINCR Number of Solution Increments

6-10 IPRNTF Printing Frequency

3 1-10 STEP Loading Parameter Step Size (1)

NOTES:

(1) In a nonlinear analysis, all external forces
are expressed as functions of a "loading
parameters," which is continuously increasing
during the solution. STEP defines the amount
by which the loading parameter (whose initial
value is zero) is increased at each solution
increment.
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INPUT SET 3

EQUILIBRIUM ITERATION OPTIONS

(Required only for nonlinear analysis, IATYPE = 2 on input Set 2)

CARD COL DATA DESCRIPTION NOTES

1-5 ITTYPE Iteration Type (1)
=0, No Iteration
=1, Modified Newton Iteration
=2, Newton-Raphson Iteration

6-10 ITFREQ Iteration Frequency (2)

11-15 ITMAX Maximum Number of Iterations/
Increment (3)

16-25 EQTOL Iteration Convergence Tolerance (4)

NOTESi

(1) ITTYPE determines the type of equilibrium iteration
(if any) to be performed at specified intervals
in the solution to restore the nonlinear conditions
of equilibrium (i.e., internal forces = external
forces). Modified Newton-Raphson iteration (ITTYPE
1) involves no reformulation of the system stiffness
matrix; internal forces are computed at each iteration,
and the resulting out-of-balance forces are applied
to obtain displacement corrections to improve the
solution. With full Newton-Raphson iteration (ITTYPE =
2), the stiffness is formed and solved at each iteration.
This procedure is, therefore, more expensive than the
modified iteration, but is normally quicker to converge.

(2) Iteration is performed every ITFREQ increments of the
nonlinear analysis. The default value is ITFREQ = 1.

(3) If more than ITMAX iterations are required in any
single solution increment, the solution will be
terminated to permit a change in increment size or
other parameters. The default value is ITMAX = 20.
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(4) EQT0L defines the convergence tolerance on errors in
the internal forces R, as a fraction of the applied
load, F, during equilibrium iteration. The
iteration is considered converged when

11 F - RIJ
< EQTOLII F II

F

where llyli denotes the Euclidean norm, / VTV.
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INPUT SET 4

EIGENVALUE SOLUTION PARAMETERS

(Required only for natural frequency analysis, IATYPE = 3 in
Card Set 2)

CARD COL DATA DESCRIPTION NOTES

1 1-5 NTRIAL Number of Iteration Trial
Vectors (1)

6-10 NREQD Number of Natural Frequencies
to be Determined (2)

11-15 MAXIT Maximum Number of Iterations (3)

16-25 T0LVEC Vector Tolerance for
Convergence of Frequency
Solution (4)

NOTES:

(1) In general, the greater the number of trial iteration
vectors, NTRIAL, the better the convergence and
accuracy characteristics of the solution. However,
the use of an excessive number of iteration vectors
is costly and inefficient in terms of central memory
requirements. The use of the NTRIAL = min (2*N,N+5),
where N is the number of frequencies to be solved,
provides a good balance between rate of convergence
and storage requirements. The default value is
NTRIAL = 2.

(2) The program will determine the first NREQD natural
frequercies and normal modes of the linear system
KX = w MX, where K is the system stiffness matrix
and M the mass matrix. Since the solution is performed
by vector iteration, NREQD is limited to values which
are relatively small for large finite element models.
The default value is NREQD = 1.

(3) MAXIT controls the total number of iteration cycles
performed during the solution. A value of MAXIT = 15
to 20 is sufficient for nearly all problems, unless the
number of frequencies to be computed (NREQD) is quite
large. A default value of MAXIT = 15 is used.
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(4) TOLVEC defines the convergence tolerance on
successive approximations to each eiqenvector.
If Vi and Vi+ 1 are successive iterates to a single
eigenvector, that eiqenvector is considered
converged if

I Yi+l- Yi ii < TOLVEC

where jVIl denotes the Euclidean norm, ' VTy . The
default-is TOLVEC 

- 0.001.
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INPUT SET 5

NODAL COORDINATES

(Required for all analyses)

The number of cards entered in this Section is determined
by the number of nodal points to be defined in the model. Nodal
input is terminated by a single blank card (i.e., NODE = 0).

CARD COL DATA DESCRIPTION NOTES

1 1-5 Literal "COORDINATES"

16-20 NODES Total Number of Node Points

21-25 (blank)

26-35 TDFLT Default Nodal Temperature
Value (1)

36-40 ITDATA Load Parameter Curve for
Variation of Nodal
Temperatures (2)

2-n 1-5 NODE Node Point Number (3)

6 ISYS Reference Coordinate System (4)
= : Cartesian X,Y,Z,
=A: Cylindrical R,O,Z
=B: Spherical R,4,O

7-10 NINCR Increment for Node Point

Generation (5)

11-20 X(NODE) Coordinate X

21-30 Y(NODE) Coordinate X2

31-40 Z(NODE) Coordinate X3

41-50 T(NODE) Nodal Temperature (6)
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NOTES:

(1) TDFLT is a default temperature value which will be
assigned to any node point whose input temperature
value is zero. This parameter is commonly used in
problems of uniform heating, etc., in which
temperature data may be absent from the original
input data.

(2) ITDATA refers to a loading parameter curve (i.e.,

function of time) which is input in input set 25.
Curve ITDATA describes the variation of temperature
at all nodes in the model, and is used in nonlinear
analysis only.

(3) Acceptable nodal point numbers are between 1 and NODES.
Not every node need be connected to an active element
in the model, but inactive nodes must be fully
constrained (through boundary condition input).
Coordinate data is read until a blank (i.e.,
NODE = 0) is encountered.

(4) Nodes may be defined in circular cylindrical
coordinates by setting ISYS = A and providing as
input the R,O,Z coordinates of the point, where 6
is measured in degrees. In this case, the node
coordinates are converted internally to Cartesian
coordinates defined by:

X = Rcos8

Y = Rsin8

Z = Z.

When ISYS = B, the program interprets coordinate
data as spherical coordinate values R, , and 8,
where both 0 and 8 are measured in degrees.
Spherical coordinates are then converted to Cartesian
coordinates by the formulas:

X = Rsincos8

Y = RsinosinO

Z = Rcos4.

(5) Node generation increments NINCR are entered on the
second card of a pair, causing nodes to be equally
spaced between the last and current nodes, with
numbering increment NINCR. As an example, the data
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10 0. 0. 0.

20 2 10. -10. 0.

is equivalent to

10 0. 0. 0.

12 2. -2. 0.

14 4. -4. 0.

16 6. -6. 0.

18 8. -8. 0.

20 10. -10. 0.

Note that incremental node generation is performed
in the Cartesian system only.

(6) Nodal temperatures are understood to be the
differences in temperature from the (unstressed)
reference of the structure (usually "room temperature").
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INPUT SET 5

SIZING PARAMETERS FOR SANDWICH CORE ELEMENTS

(Skip this Set if no Sandwich Core Elements are to be defined)

CARD COL DATA DESCRIPTION NOTES

1 1-5 IECOPE Element Type Code; Enter the
number "2"

6-10 NMAT Number of Material PzDperty
Sets (1)

11-15 NELEM Number of Elements of +his
Element Type

16-20 NAXIS Number of Orthotropic Axis
Definitions (2)

NOTES:

(1) NMAT defines the total number of property sets to
be defined in Input Sets 6 and 7.

(2) NAXIS determines the number of axis sets to be
defined in Input Set 8.
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INPUT SET 6

ISOTROPIC SANDWICH CORE PROPERTIES

(Skip this Set if no Sandwich Core Elements are used)

CARD COL DATA DESCRIPTION NOTES

1 1-10 EE(I) Elastic Modulus (1)

11-20 PR(I) Poisson's Ratio (1)

21-30 DNS(I) Mass Density (2)

31-40 YLD(I) Equivalent Stress at First
Yield (3)

41-50 ALPHA(I) Coefficient of Thermal
Expansion

NOTES:

(1) Repeat Card 1 for each isotropic core material to
be defined. The first card defines material property
set number 1, the second card, set number 2, and so
on. For low-modulus core materials in which the
transverse shear moduli are of primary importance,
setting EE(I) = 2G and PR(I) = 0 is usually adequate.

(2) Mass densities are entered in Force-Length-Time
units (weight density/gravity).

(3) The default value of YLD(I) is 1.0 x 1020 (elastic
core).
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INPUT SET 7

ORTHOTROPIC SANDWICH CORE PROPERTIES

(Skip this Set if no Sandwich Core Elements are used)

CARD COL DATA DESCRIPTION NOTES

1 MTYPE Literal "A" - Flag for

Orthotropic Ma- pals Data (1)

2-10 El(I) Elastic Modulus in Direction 1 -

11-20 E2(I) Elastic Modulus in Direction 2 -

21-30 E3(I) Elastic Modulus in Direction 3 -

31-40 G12(I) Shear Modulus in Plane 1-2 -

41-50 G13(I) Shear Modulus in Plane 1-3 -

51-60 G23(I) Shear Modulus in Plane 2-3 -

2 1-10 PRI2(I) Poisson's Ratio in Plane 1-2 -

11-20 PR13(I) Poisson's Ratio in Plane 1-3 -

21-30 PR23(I) Poisson's Ratio in Plane 2-3 -

31-40 DNS(I) Mass Density

41-50 ALPHA1(I) Coefficient of Thermal
Expansion in Direction 1 -

51-60 ALPHA2(I) Coefficient of Thermal
Expansion in Direction 2 -

61-70 ALPHA3(I) Coefficient of Thermal
Expansion in Direction 3 -

NOTES:

(1) Repeat Cards 1 and 2 for each orthotropic core
material to be defined. Note that all orthotropic
materials must be elastic, and are defined with
respect to the principal directions of the material.
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INPUT SET 8

ORTHOTROPIC AXIS DEFINITIONS FOR SANDWICH CORE ELEMENTS

(Skip this Set if no Sandwich Core Elements are used, or if
NAXIS = 0)

CARD COL DATA DESCRIPTION NOTES

1 1-5 NODEl(I) Node Numbers Defining Origin
of Coordinates (1)

6-10 NODE2(I) Node Number Defininq Material
Direction 1

11-15 NODE3(I) Node Number Defining one
Additional Point in the 1-2
Plane of the Material

NOTES:

(1) Repeat Card 1 to define NAXIS sets of axis directions.
Orthotropic material axes are defined in terms of
existing nodes of the finite element model as shown
in Figure A.l.
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Figure A.1. Orthotropic Axis Definition.
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INPUT SET 9

ELEMENT CONNECTIVITY, SANDWICH CORE ELEMENTS

(Skip this Set if no Sandwich Core Elements are used)

CARD COL DATA DESCRIPTION NOTES

1-5 IEL Element Number (1)

6-10 IPR Material Property Set Number
for this Element (from
Input Set 6 or 7)

11-15 IAX Orthotropic Axis Set Number
(from Input Set 8)

16-20 KGEN Node Increment for Element

Generation (2)

21-25 N(1) Local Node Number 1 (3)

26-30 N(2) Local Node Number 2

56-60 N(8) Local Node Number 8

NOTES:

(1) Repeat Card 1 as required to define all Sandwich Core
Elements. Elements must be entered in ascending
order, for IEL = 1,2,...,NELEM. A single blank card
is used to terminate this section of input.

(2) A nonzero value of KGEN on the second card of a pair
causes intermediate elements to be generated, by
incrementing N(I) by KGEN for each succeeding element.
More than one element must be generated to use this
feature.

(3) Node point ordering for the Sandwich Core Element is
shown in Figure A.2.
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Figure A.2. Connectivity for Sandwich Core Element.
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INPUT SET 10

SIZING PARAMETERS FOR STIFFENER ELEMENTS

(Skip this Set if no Stiffener Elements are to be defined)

CARD COL DATA DESCRIPTION NOTES

1 1-5 IECODE Element Type Code; Enter the
Number "3"

6-10 NMAT Number of Material Property
Sets (Maximum of 20)

11-15 NELEM Number of Elements of this
_____________ ___________ ________________ Element Type __________
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INPUT SET 11

STIFFENER ELEMENT PROPERTIES

(Skip this Set if no Stiffener Elements are used)

CARD COL DATA DESCRIPTION NOTES

1 1-10 EE(I) Elastic Modulus (1)

11-20 PR(I) Poisson's Ratio (1)

21-30 DNS(I) Mass Density (2)

31-40 YLD(I) Equivalent Stress at First

Yield (3)

41-50 ALPHA(I) Coefficient of Thermal

Expansion

NOTES:

(1) Repeat Card 1 for each stiffener material to be
defined. The first line entered in this Input Set
defines stiffener property set number 1, the second
line defines property set 2, and so on. Note that,
for face sheet stiffeners (i.e., slender beams),
it is appropriate to set the Poisson's Ratio, PR(I),
to zero.

(2) Mass densities are entered in Force-Length-Time
units (weight/density/gravity).

(3) The default value of YLD(I) is 1.0 x 1020

(elastic material).
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INPUT SET 12

CONNECTIVITY FOR STIFFENER ELFMENTS

(Skip this Set if no Stiffener Elements are used)

CARD COL DATA DESCRIPTION NOTES

1-5 IEL Element Number (1)

6-10 (Blank)

11-15 IPR Material Property Set for this
Element

16-20 (Blank)

21-25 KGEN Node Increment for Element
Generation (2)

26-30 N(l) Local Node Number 1 (3)

31-35 N(2) Local Node Number 2

36-40 N(3) Local Node Number 3

41-45 N(4) Local Node Number 4

46-55 THICK Stiffener Width or Depth (4)

NOTES:

(1) Repeat Card 1 as required to define all Stiffener Elements.
Face sheet and full-depth stiffeners may be intermixed
freely. All elements must be entered in ascending
order, with a single blank line entered to terminate
input.

(2) A nonzero value of KGEN on the second card of a pair
causes intermediate elements to be generated, by
incrementing N(I) by KGEN for each succeeding element.
More than one element must be generated to use this
feature.

(3) Node point ordering for all Stiffener Elements is
show , in Figure A.3. N(l) through N(4) are the global
node numbers corresponding to positions 1 through 4 in
the Figure.
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(4) The Stiffener Element depth is defined by the
positions of its connected nodes. THICK is the
element dimension perpendicular to the warped
plane defined by nodes N(l) through N(4).
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INPUT SET 13

SIZING PARAMETERS FOR THIN SHELL ELEMENTS

(Skip this Set if no Thin Shell Elemen :s are to be defined)

CARD COL DATA DESCRIPTION NOTES

1 1-5 IECODE Element Type Code; Enter the
Number '5I"

6-10 NMAT Number of Material Property
Sets (Maximum of 20)

11-15 NELEM Number of Elements of this
Element Type
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INPUT SET 14

THIN SHELL MATERIAL PROPERTIES

(Skip this Set if no Thin Shell Elements are used)

CARD COL DATA DESCRIPTION NOTES

1 1-10 EE(I) Elastic Modulus (1)

11-20 PR(I) Poisson's Ratio

21-30 DNS(I) Mass Density (2)

31-40 ALPHA(I) Coefficient of Thermal
Expansion

NOTES:

(1) Repeat Card 1 for each Thin Shell material to be
defined.

(2) Mass densities are entered in Force-Length-Time
units (weight density/gravity).
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INPUT SET 15

THIN SHELL ELEMENT CONNECTIVITY

(Skip this Set of no Thin Shell Elements are used)

CARD COL DATA DESCRIPTION NOTES

1-5 IEL Element Number (1)

6-10 IPR Material Property Set for this
Element

11-15 KGEN Node Increment for Element
Generation (2)

16-20 N(1) Local Node Number 1 (3)

21-25 N(2) Local Node Number 2

51-55 N(8) Local Node Number 8

NOTES:

(1) Repeat Card 1 as required to define all Thin Shell
Elements. Elements must be entered in ascending
order for IEL = 1,2,..., NELEM. A single blank card
terminates this section of input.

(2) A nonzero value of KGEN on the second card of a pair
causes intermediate elements to be generated, by
incrementing N(I) by KGEN for each succeeding element.
More than one element must be generated to use this
feature.

(3) Node point ordering for the Thin Shell Element is
shown in Figure A.4.
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Figure A.4. Connectivity for Thin Shell/Face Sheet

Element.
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INPUT SET 16

SIZING PARAMETERS FOR 3-D SOLID ELEMENTS

(Skip this Set if no Solid Elements are to be defined)

CARD COL DATA DESCRIPTION NOTES

1 1-5 IECODE Element Type Code; Enter the
Number "7"

6-10 NMAT Number of Material Property
Sets (1)

11-15 NELEM Number of Elements of this
Element Type

16-20 NAXIS Number of Orthotropic Axis
Definitions (2)

NOTES:

(1) NMAT defines the total number of property sets
to be defined in Input Sets 17 and 18.

(2) NAXIS determines the number of axis sets to
be defined in Input Set 19.
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ISOTROPIC PNMP??m FOR 3-D SOLID 3L31Y5

(Skip this Set if no Solid Ulmsts are used)

C&Nm COL DATA 0SCUZPY ION NOT"

1 1-10 U3(I) Elastic ofdulus (1)

11-20 Pik(I) Poisson's Ratio

21-10 MhS(I) Nase Density (2)

31-40 YLD(I Equivalent Stress at First
Yield (3)

41-50 ALMII(1) Coeffticient of Therimal
Expansion

1) Repeat Card 1 for each isotropic mterial to be
derfined.

(2) Mass densities are entered in Foree-Lonqth-Tim units
(weight density/gravity).

(3) The default valuen of YLD(I is 1.0 x 10 20
(elastic material).



I IIUY SBT I1I

NOPICW PPRUTIES FOR 3-0 SOLID L3MS

(Skip this Set it no Solid Itlennaes are use")

1 "TYPE Literal "h - Flag for

2-10 31(t) Elastic No4falus in Direction 1

11-20 92(1) Elastic Modulus in Direction 2

21-30 93(I) Elastic Nodfalus in Direction 3

31-40 G12(1) Shear Modulus in Plane 1-2

41-SO G13(1) Shear Modulus in Plans 1-3

51-60 G23(1) Shear Modulus in Plane 2-3

2 1-10 PRI2(I) Poisson's Ratio in Plane 1-2

11-20 PR13(I) Poisson's Ratio in Plane 1-3

21-30 PR23(1) Poisson's Ratio in Plane 2-3

31-40 D9IS(I) Mass Density

41-SO ALPRA1(I) Coefficient of Thermal Expansion
in Direction 1

S1-60 ALPRA2(l) Coefficient of Thermal Expansion
in Direction 2

61-70 ALPH&3(I Coefficient of Thermal Expansion
in Direction 3

(1) Repeat Cards 1 and 2 for each orthotropic solid
material to be defined. Note that all orthotropic
materials must be elastic, and are defined with
respect to the principal directions of the material.
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O971101"IC ALXIS DU1INIIONS FOR 3-D SOLID RLUUUSY

(Skip this Set if no Solid Ulemaits are used, or if MAXIS -0)

CAWD COL DATA DBSCRIP? ION NOTES

1 1-5 M0031I) Nods Nuamber Defining Origin
of Coordinates(1

6-10 NOCU8 (1) Nods Number Defining Material
Direction 1

11-15 YM0033(I) Mode Nuamber Defining one
Additional Point in the 1-2
Plane of the Material

NOTBS:

(1) Repeat card 1 to define MAXIS sets of axis directions.
orthotropic material axes are defined in terms of
existing nodes of the finite element model as shown
in rigure A.l.
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InPt an? 20

CO.NWIVI"? FrO 3-D SOLID 3LINITIS

(Sip this Set if no solid glements are uNd)

CARD COL DATA DISCRIPTION NOTES

1 1-5 IlL gloment umer (1)

6-10 IPR Material Property Set for this
element

11-13 AX Orthotropic Axis Set

14-15 INT Order of Numerical Integration (2)

16-20 XGIN Mode Increment for Element
Generation (3)

21-25 (Blank)

26-30 N(1) Local Node Number 1 (4)

31-35 N(2) Local Node Number 2

75-80 N(11) Local Node Number 11

2 1-5 N(12) Local Node Number 12

6-10 N(13) Local Node Number 13

41-45 N(20) Local Node Number 20
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(1) Repeat Cards I and 2 as required to def ine all solid
Slemts. Blemuits must be entered in ascending
order for IlL - 1.2,...# WB3L. A single blank
card is used to terminate this section of input.

(2) Acceptable values for XE? are INT - 2 (2 by 2 by 2
Gaussian integration) and TNT - 3 (3 by 3 by 3
Gaussian integration).

(3) A nonzero value of 1.033 on the second card of a
pair causes intermediate elements to be generated,
by incrementing NMX by 1.03 for each succeeding
element. MoHre than one element aunt be generated
to use this feature.

(4) Node point ordering for the Solid Element is shown
in Figure A.S. Note that nodes 1-8 are always
required, but nodes 9-20 mey each be included or
omitted as desired.
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Figure A.5. Connectivity for 3-D Solid Element.

I9



INPUT SIT 21

BLimN"T INPUT TEINATOK

(Nequired for all analyses)

CAR COL DATA DESCRIPTION NOTES

1 1-80 (blank) (1)

NOTES :

(1) This input line terminates element input for the

problem being defined, and is required for all
analysis options.
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INPUT SET 22

SIZING PARAMETERS FOR BOUNDARY CONDITION DATA

(Required for all analyses)

CARD COL DATA DESCRIPTION NOTES

1 1-5 NB(1) Number of Type 1 Boundary
Conditions (1)

6-10 NB(2) Number of Type 2 BoundaryConditions (2)

NOTES:

(1) Type 1 and Type 2 boundary conditions are defined
in Input Sets 23 and 24, respectively.
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INPUT SET 23

BOUNDARY CONDITIONS, TYPE 1

(Skip this Set if NB(1) - 0 in Input Set 22)

Boundary conditions entered in this Input Set are
used to constrain a range of nodes in specified coordinate
directions.

CARD COL DATA DESCRIPTION NOTES

1 1-5 Ni Beginning Node Number (1)

6-10 N2 Ending Node Number

11-15 INCR Node Number Increment

2 1-5 JD(1) First Direction Constrained (1)

6-10 JD(2) Second Direction Constrained -

11-15 JD(3) Third Direction Constrained

NOTES:

(1) Repeat Cards 1 and 2 NB(l) times to define all
Type 1 boundary conditions. Nodes Ni, NI + INCR,
NI + 2*INCR,.... '2 will be constrained in the
directions JD(I);I = 1,2,3. One or more of the
JD(I) may be zero. Valid nonzero entries for
JD(I) are 1,2,3 for constraints in the x,y and
z directions respectively.
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INPUT SET 24

BOUNDARY CONDITIONS, TYPE 2

(Skip this Set if NB(2) - 0 in Input Set 22)

Boundary conditions entered in this Input Set are used
to constrain an arbitrary list of nodes in specified coordinate
directions.

CARD COL DATA DESCRIPTION NOTES

1 1-5 JD(l) First Direction Constrained (1)

6-10 JD(2) Second Direction Constrained -

11-15 JD(3) Third Direction Constrained

2 1-5 ND(1) First Node Constrained (1)

6-10 ND(2) Second Node Constrained

46-50 ND(10) Tenth Node Constrained

NOTES:

(1) Repeat Cards 1 and 2 NB(2) times to define all
Type 2 boundary conditions. The nodes ND(I);
I = 1,...,l0 will each be constrained in the
directions specified by the JD(I). Some of the
directions (JD's) and some of the nodes (ND's)
may be zero.
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INPUT SET 25

NONLINEAR LOADING FUNCTIONS

(Required for nonlinear analyses only)

Loading and/or temperature variations are defined in this
Set as functions of a single independent loading parameter, which
is continually increasing duri.ng the solution.

CARD COL DATA DESCRIPTION NOTES

1 1-5 NFUNCT Number of Loading Functions
to be Defined (1)

2 1-5 IFUNCT Load Function Identification
Nunber (2)

6-10 NPTS Number of Point Pairs [X(I),
Y(I)] Used to Define the
Curve (3)

11-80 TITL Optional Alphanumeric Title

3 1-10 X(l) Abscissa for First Data Point -

11-20 Y(l) Ordinate for First Data Point

61-70 X(4) Abscissa for Fourth Data Point

71-80 Y(4) Ordinate for Fourth Data Point

4-7 1-80 Additional Pairs [X(I),Y(I)] as
shown for Card 3 (4)
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NOTES:

(1) More than one loading function will be needed only
if non-proportional loads are to be considered in
the analysis. A maximum of fifty loading functions
may be defined.

(2) Loading functions must be numbered between 1 and 50
inclusive. The functions need not be numbered
sequentially, nor must they be entered in any
particular order.

(3) Up to 20 data points may be used to define each load
function. Each data point is defined by an abscissa
(the loading parameter value X(I)) and an ordinate
(the function value Y(I)).

(4) Cards 4-7 are required for a given loading function
only if the number of points exceeds four. Unneeded
cards should not be entered.
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INPUT SET 26

APPLIED LOADING

(Required for linear and nonlinear static analyses)

CARD COL DATA DESCRIPTION NOTES

1 1-5 NODE Node at which Load is Applied (1)

6-10 IDIR Direction of Loading
(l-X, 2-Y, 3-Z)

11-15 NCURV Identification Number of
Loading Function Describing
the Variation of the Load (2)

16-25 SCALE Scale Factor or Load Magnitude (3)

NOTES:

(1) Repeat Card I as required to define all applied
forces acting on the model. Loads may be entered
in any order. Input in this section is terminated
by a single blank card.

(2) The history of each load during the solution is
determined by one of the loading functions entered
in Input Set 25. The parameter NCURV is ignored
in linear analysis.

(3) In linear analysis, SCALE is the actual magnitude
of force to be applied at the given node in the
specified direction. For nonlinear problems,
the value obtained from the specified loading
function (NCURV) at any stage of the solution will
be multiplied by the value of SCALE.
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