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FOREWORD

This report describes work performed by the University of
Dayton Research Institute (UDRI) under Air Force Contract
F33615-77-C-3075, Structural Sandwich Composites. The effort
was conducted for the Flight Dynamics Laboratory, Air Force
Wright Aeronautical Laboratories, under the administration and
technical direction of the Air Force Project Engineer,

Mr. Harold C. Croop (AFWAL/FIBCB).

Administrative project supervision at the UDRI was
provided by Mr. Dale H. Whitford (Supervisor, Aerospace
Mechanics Division), and technical supervision was provided by
Dr. Fred K. Bogner (Group Leader, Analytical Mechanics Group).

Accession For
Tt .

NTIS GRA&I {—
DTIC TAB N
Unannounced 0O

Justification. . |

By
Distritaticn/
Availiotility Codes
Avall oudjor
Pist | $pecicl

14i //V




TABLE OF CONTENTS

Section Page
1l INTRODUCTION ‘ 1
‘ 2 THEORETICAL DEVELOPMENT 3
|
2.1 INCREMENTAL EQUATIONS OF MOTION 3
1 2.2 CONSTITUTIVE RELATIONS (ELASTIC
. MATERIALS) 9
. 2.3 CONSTITUTIVE RELATIONS (ELASTIC-
PLASTIC MATERIALS) 12
3 FINITE ELEMENT APPROXIMATIONS leé
3.1 THIN SHELL/FACE SHEET ELEMENTS l6 u
3.2 SANDWICH CORE ELEMENTS 24
3.3 STIFFENING MEMBERS 27
3.4 THREE-DIMENSIONAL SOLID ELEMENTS 30 ]
4 NUMERICAL SOLUTION TECHNIQUES 32
4.1 STATIC RESPONSE SOLUTION 32 ?
4.2 NATURAL FREQUENCY SOLUTION 35 1
5 SAMPLE ANALYSES 38

5.1 NONLINEAR ANALYSIS OF A SANDWICH
PANEL UNDER PRESSURE 38
5.2 NATURAL FREQUENCIES OF SANDWICH 1
PANELS WITH VARIOUS BOUNDARY

CONDITIONS 41
5.3 STABILITY OF SIMPLY-SUPPORTED
SANDWICH PLATE 43
5.4 PLASTIC ANALYSIS OF A TOROIDAL
SANDWICH SHELL 46
5.5 THERMAL STRESS ANALYSIS OF A
VARIABLE-THICKNESS SANDWICH STRIP 50 ;
6 SUMMARY AND CONCLUSIONS 60

APPENDIX: COMPUTER PROGRAM INPUT DATA

' REFERENCES

A e ot T AN SRR, N P e




LIST OF ILLUSTRATIONS

Figure Page
1 Successive States of Deformation for a !
Three-Dimensional Continuum. 5 g
1
2 Shell Element Geometry and Local Coordinates. 18 ;
3 Thin Shell and Sandwich Face Sheet Element. 25 l é
! 4 Sandwich Core Finite Element. 26
g ! 5 Face Sheet Stiffener and Full-Depth Stiffener
3 Element Configurations. 28
6 Stiffener Element Geometry. 29
7 Three-Dimensional Solid Element. 31
8 Newton-Raphson Method for the Solution of
? Nonlinear Equations. 34
9 Sandwich Panel Under Uniform Lateral Pressure. 39
4
10 Load-versus-Deflection Curve for Uniformly
Loaded Panel. 40
) 11 Three-Layer Sandwich Panel used in Natural
. Frequency Calculations. 42
. 12 Simply Supported Sandwich Panel Under Edge
: Compression. 45
13 Toroidal Sandwich Shell. 48
14 Upper Face Sheet of Toroidal Shell Panel with
Node Numbers. 49
15 Deformed Shape of Inner Face Sheet at
Maximum Loading. 52
16 Deformed Shape of Outer Face Sheet at
Maximum Loading. 53
17 Plastic Boundary in Outer Face Sheet of Toroidal
Shell at Maximum Load. 54
18 Asymmetric Sandwich Strlp. 55




o -
Lo

LIST OF ILLUSTRATIONS (CONTINUED)

2- Figure Page
19 = Face Sheet and Stiffener Elements in ‘

Sandwich Strip Model. 57

. 20 Core Elements in Sandwich Strip Model. 58

‘ 21 Displaced Shape of Heated Sandwich Strip. 59
A.l Orthotropic Axis Definition. 75

P A2 Connectivity for Sandwich Core Element. 77
! A.3 Connectivity for Stiffener Elements. 81

A.4 Connectivity for Thin Shell/Face Sheet
Element. 86

{
!
| A.5 Connectivity for 3-D Solid Element. 93
"
!




‘ LIST OF TABLES

3
; Table Page
j 1l NATURAL FREQUENCY RESULTS FOR FLAT SANDWICH
' PANEL WITH VARIOUS BOUNDARY CONDITIONS 44
]
{ 2 COMPARISON OF BUCKLING LOADS FOR SIMPLY-
SUPPORTED SANDWICH PANEL 47
3 LOAD-DEFLECTION HISTORY AT CENTRAL POINT ON
LOADED EDGE OF TOROIDAL SANDWICH PANEL 51




SECTION 1
INTRODUCTION

Sandwich composites constitute an important class of
materials in the aerospace and building industries due to their
potential to provide high resistance to loading at a relatively
low weight penalty. Typical uses of sandwich materials
presently include wing skins and control surfaces, fairings,
shelving, cargo doors, helicopter blades, and prefabricated
panels for building construction.

As the application of these advanced materials increases,
sophisticated analysis techniques become increasingly important
for use in the formulation and qualification of practical
designs. The necessary analytical methods must be readily
accessible to the designer, while remaining quite general in
scope. To achieve the objective of generality, computational
methods must be employed, the most flexible of these being
techniques based upon finite element1 discretization.

The development of finite element analysis techniques
applicable to sandwich constructions is complicated by the
nature of the response of most sandwich layups. The relatively
thin, high-modulus face sheet layers resist loading through
inplane stresses, and thus are represented most effectively
with plate or shell type elements. Sandwich core, which is
typically much thicker and more flexible than the face sheets,
deforms principally in transverse shear modes, and therefore,
is modeled most appropriately by three-dimensional, shear-
deformable elements. The incompatibility of these two classes
of finite elements (shells and solids) is well-known, and a
departure from the traditional elements of these types is
clearly necessary. A number of specialized formulations have
been proposed to deal with the modeling problems of sandwich
materialsz—G. However, none of these has been developed in
sufficient generality to provide truly comprehensive modeling




capabilities for sandwich panels having arbitrary curvature,

multicore construction, transitions to other types of structure,

edge closeouts, and other troublesome geometrical features.

Applications to nonlinear sandwich analysis, including finite

displacements, large rotations, and material nonlinearities

1 are typically further restricted (flat panels, single-core
sandwich, or rectangular shapes) due to the complexity of

] the formulation and long solution times.

The present report documents a finite element approach
for the analysis of sandwich structures of arbitrary geometry,
which may include stiffening members, closeouts, and connections

to other three-dimensional structural components. Static
response to mechanical and thermal loading may be computed for
either linear or nonlinear deformations. In the case of
nonlinear analysis, arbitrarily large displacements and

rotations are permitted, in addition to material nonlinearities

(plasticity). Linear natural frequency and normal mode
calculations can also be performed.




oeCTION 2
THEORETICAL DEVELOPMENT

The basis of the present analysis of sandwich materials
is the incremental equilibrium relation for a general, three-
dimensional continuum experiencing large displacements and
materially nonlinear response. Each of the finite elements
(face sheet, core, stiffener, solid) described in Section 3
is derived from this general set of Joverning equations by
first making appropriate specializations and then applying the

procedure of finite element discretizations.

For finite element application, the appropriate form of
the equilibrium equations is expressed in terms of the principle
of virtual work. 1In this Section, the incremental form of the
principal of virtual work is obtained for a general, three-
dimensional continuum. The Lagrangian description of motion
is used throughout: that is, all displacements, strains and
stresses are expressed in terms of the original (undeformed)
configuration of the body. The appropriate constitutive
relations for elastic and elastic-plastic material behavior

are also developed.

2.1 INCREMENTAL EQUATIONS OF MOTION

For the purpose of obtaining an incremental description
of motion, three configuraticns of a general structure are
considered:

Configuration CO : the initial state of the body,
used as a reference state

. . 1 . . .
Configuration C : an intermediate state, at which
a solution for the structural
response is assumed tc be known

Configuration C2 : a subsequent configuration,
removed from state Cl by a single
increment of loading.




These three states of deformation are shown in Figure 1. 1In

an incremental nonlinear analysis, the objective at each step
of the solution is to compute a configuration such as C2, given
the previous solution (state Cl) and the incremental values of
mechanical and thermal loading.

In the initial state Co, the position of an arbitrary
point P (Figure 1) is denoted by xi; i=1,2,3. 1In reaching
configuration Cl, the point P moves to a new position whose
coordinates are X5 where

X, = X, + 194 (1)

and 194 represent the displacements in state Cl. The state of
strain at state Cl is measured by the Green-St. Venant strain
tensor7

NI

184 (18,5 * 1%5,1 ¥ 1%,1 1%,5" (2)

Observe that, in Equation 2, differentiation is performed with
respect to the initial coordinates Xi; that is,
9

1% 5 % 1Y%i9x5° (3)

The appropriate measure of the stress corresponding to
Equation 2 are

1544 = /G lnij (4)

where lnij are the symmetric Piola-Kirchoff stresses7 in
1

configuration C~, and /G is the determinant of the Green's

deformation tensor

(5)




‘UMNUT3IUOD) [RPUOTSUBWT(Q-I3IY] © I0J UOTIPWIOI3Q JO S23B3S 2ATSSIdONg °* T 2anbra

€2 €x'Ey

121y Iy

910iS
1o

Lo

9104S
2iDIpawWIB} Y|




Similarly in configuration Cz, denote the position of the point
P by coordinates z,: i=1,2,3. Then

+ Yy =Xy + Aui {6)

in which Aui are incremental displacements separating the states
1 2

C” and C°. The strain and stress are

2°1j = leij + Aeij (7)
and

Zsij = lsij + A’ij (8)
respectively.

Next consider the principal of virtual work7 in

configurations C1 and Cz, which are written

j lsijxk,iauk,jdv = J ltiéuidA (9)
ov oav
and
[ 2Sijzk,i6uk,jdv = I ztiéuidA (10)
v v
o o

Here oV represents the original volume of the body (in state

Co), OBV denotes the corresponding boundary surface, and

1 2

and C
respectively. It is important to notice that the virtual

lti’ 2Ei are the prescribed surface forces in states C

displacements Gui may be any kinematically admissible
displacements, and that they are measured in each case with
respect to the initial configuration. Thus by subtracting
Equations 9 and 10 it is possible to write




I (2’ijzk.i - l’ijxk.i)suk,jdv = l KfisuidA {11)

ov o
where Kfi are the increments in prescribed surface traction,

Ft'i =Lt -t (12)
Using the incremental stresses defined in Equation 8, Equation
11 can be arranged in the form

I (lsijAuk,i + Asijzk'i) 6Auk'jdv = I KEiGAuidA (13)
oV oav
Note that the arbitrary virtual displacements Gui have been
replaced by incremental virtual displacements 6Aui, which is
clearly admissible provided both sets of virtual displacements
satisfy the imposed kinematic boundary conditions of the problem.

BEquation 13 expresses the equality of internal and
external virtual work performed during the increment of
deformation between configurations C1 and C2. Using Equation
6, the equation obtained above can be expressed more
conveniently in terms of the incremental strains Aeij (Equation 7).

Since the incremental stress tensor Asij is symmetric,

- .1
AsijzkliGAuk.j =3 Asij (zk,iGAuk.j + zk'jGAuk,i) (14)
and thus
Asijzk,iGA“k,j = AsijsAeij. (15)

The incremental principle of virtual work, Egquation 13, then

becomes

|
|




I (A'116A°ij + 1'1jAuk,16A“k,j)dv =

OV

J K€16Auidh. (16)

odV -

For later use, it is useful to separate those terms of the
incremental strain Aeij which are linear and nonlinear in the
incremental displacements Aui.

Define
Aeij = Aeij + Anij (17)
in which
1l
AN, = = Au_ .Au (19) |
i3 T 2 "%,1%°%, 3" :
|

Equation (17) becomes

I (AsijGAeij + lsijGAnij)dv =

°V

tiGAuidA (20)

oav
The material stress-strain relation used here assumes
that the incremental stresses and strains can be related in a
linear fashion,

Asij = Dijkl(Aeij - aszT). (21)




Here a are the thermal expansion coefficients and AT is an

k2
incremental change in temperature at a point. Combining
Equations 20 and 21 yields the final form of the incremental

principle of virtual work,

e e

I [Dijkz(Aekz - akgAT)GAeij + 1sijGAnij)dV =
. o

J AtiGAuidA. (22)
0V

Equation 22 is fully three-dimensional, and specific forms
which are used to derive the individual finite element types
are discussed in Section 3. The iterative solution of

Equation 22, which is nonlinear, is outlined in Section 4.

2.2 CONSTITUTIVE RELATIONS (ELASTIC MATERIALS)

For elastic materials, the incremental stress-strain law
of Equation 21 is precisely the same as the relation between

total stresses and strains,

sij = Dijkz(ekz - asz), (23)
where T is interpreted as the temperature change from a fixed
reference temperature. In matrix form, Eguation 23 can be
written as

s =D (e - aT) (24)
in which
o" = 18;) 855 233 853 %13 81,) (25)
e = Ley; e €33 €3 €13 1, (26) E




M Cmatn s  na me m

T
a” = layy a5 @33 %33 %33 %95} (27)

and D is a coefficient matrix of order six.

In the case of an isotropic material, D is completely
determined by the values of Young's modulus E and the Poisson's

ratio v,

{ peeee -
(l-v) v v 0 0 0
v (1-v) v 0 0 0
E v v  (1=v) 0 0

D= v 1-2v (28)
0 0 0 (—jf—) 0 0
o 0 0 o (1'3“) 0
4
0 0 0 0 0 1-2v
(=)
B —

and o depends only upon the scalar coefficient of thermal
expansion, o:

K af=]la a a 0 0o of. (29)

For orthotropic materials, the elastic properties are |
direction-dependent, and a stress-strain law must first be
formulated with respect to the preferential axes of the material, -
and then transformed to global coordinates. In the material
coordinate system (denoted by a subscript m), Equation 25
becomes

8n = Dp (&p = o T). (30)

The matrix Dm is a function of nine independent material
constants: the extensional moduli El'Ez'E37 the Poisgson's
Ratios Vogr Vigr Vqp¢ and the shear moduli G23, G13' G12’ The ;

10




nonzero upper triangular elements of 9m’ which is symmetric,

are given by8 é
dyy = (1 = Vy3V3)Ey/N
dyp = (V5 * V33V 3)Ep/N
dy3 = (V33 *+ V33Vp3)E3/N

dyy = (1 = Vy3V3,)E,/N

dy3 = (Vo3 + Yy V13)Ey/N

d33 = (1 = V1,959)E5/N

d =G

44 23
ds5 = €13
dee = G, (31) |
in which
N =1-Vy5Y31 = Va3¥3z = V31V13 ~ 2V21V32V13¢ (32)
It should be noted that the material properties in Equations .

31 must satisfy certain constraints in order to be valid

from symmetry and energy considerations. These constraints

can be summarized as followssz




(1-vijvji) > 0 {no sum) (35)

AV Vi, .

_%J. - _%.1_ (36)
i b
N > 0. (37)

With respect to the global coordinates of a body, the
stress-strain relation in Equation 30 becomes

™t (e - % M. (38)

Here Ts, Te define the transformations for stress and strain
between the material and global axes:

5= T, 8y (39)
e = ';[.‘e gm . (40)

A comparison of Equations 23 and 38 yields the correct
transformations needed for Pm and Qe namely

- t

D=1Tg Dy Te (41)
= -t

@ =Te" Cp (42)

2.3 CONSTITUTIVE RELATIONS (ELASTIC-PLASTIC MATERIALS)

The elastic-plastic material law considered in the
present development, which is applicable to initially isotropic
materials, is based upon the von Mises yield criteriong,

3 _. - 2
F(sij) = i sijsij = k (43)




T

in which sij represent the deviatoric stresses

-

= -1
8i3 = 815 ~ 3%’y

and k2 represents the diameter of the yield surface. For this
yield function, the associated plastic flow rule is

oP aF

A s Aa— (44)
ij asij
or, from Equation 43,
op - -

That is, the individual components of the plastic strain rate
are proportional to the corresponding deviatoric stresses.

The consistency condition is used in the form noted by

Hunsakerlo to obtain a computationally effective procedure.
Thus
oOF ¢ aF -p (46)
s,, = H et .
3sij ij asij ij

The parameter H characterizes the strain-hardening slope of the
stress-strain curve, and in the one dimensional case reduces to

EE
H= ——— (47)

in which ET is the tangent to the uniaxial stress-strain curve.

Finally, assuming an additive decomposition of the strain
rates into elastic and plastic components gives

. (34
855 = Eyqxefery ~ okt

13




-

Here Eiikl is the modulus tensor of the material in its elastic

state. Combining Equations 44, 46 and 48 permits a solution
for X in terms of the total strain rate,

9F -
Fijke 5§;§ )
A o= 3F ) ) (49)

(E, + Hog—) z5—
ijke 35, 38,5 35,

Eliminating A in the expression for éil in Equation 48 then
leads to the rate relation

85 = Dijke ®k2 (50) I

where the tensor Dijkl is8 given by

Diyk1 = Eijke ~ BSi3Ske (51)

and

0, (elastic)
8 = . (52)

3G/ (1+H/2G)k% (plastic)

It remains to determine the expansion of the yield surface
as plastic flow progresses in a strain-hardening material. This
information is obtained by requiring that any point in stress
space remain on the yield surface during inelastic deformation
(that is, that Equation 44 always be satisfied). If the stress
rate éij are known, then

s -1 oF

k = fk_ Es—i-j— Sij. (53)

In practice, the elastic-plastic constitutive equation
must be integrated to give the desired relationship between

14

—— J( { ",‘.'L 4‘ '- st




stress and strain increments (see Equation 22). 1In the present
formulation this integration is performed using a trapezoidal
rule over a number of strain subincrements whose size is
controlled to preserve accuracy. During any subincrement,

then Equations 50 and 53 become 4
Asij = (Eijkz - B'ij ’kz) Aekl (54)
and
Ak = 3 8;. As (55)
2k "ij ij’

Depending upon the size of the computed strain increment,
Equations 54 and 55 may be applied tens or even hundreds of
times in succession to update the element stress state with an
acceptable degree of accuracy.

15




SECTION 3
FINITE ELEMENT APPROXIMATIONS

The present development includes four classes of finite
element approximations: thin shell or sandwich face sheet:
sandwich core; stiffening members; and general, three-
dimensional solids. The first three of these finite element
types are most often used specifically for modeling the
individual components of stiffened sandwich panels, while the
solid element is used for other structure, for connections
between sandwich and other components, and for more detailed
analysis of sandwich constructions themselves.

Each of the finite element approximations described in
this Section is obtained from the nonlinear equilibrium of
Section 2 by appropriate specialization. Linear forms of the
governing equations are also obtained from the general
formulation through the assumptions of infinitesimal displacements
and elastic material response.

3.1 THIN SHELL/FACE SHEET ELEMENTS

The formulation of Reference 11 is used herein to obtain
a thin plate and shell finite element suitable for representing
sandwich face sheet materials. This element is based upon a
penalty function formulation, which leads to an effective thin
shell approximation derived directly from the field equations
of a three-dimensional continuum. The shell element so derived
possesses several distinct advantages over similar elements
based upon a specific theory of thin shells. In particular,

- geometric parameters of an element are completely
defined by the nodal coordinate information,

- complete compatibility of displacements with standard
isoparametric solid elements is possible,

- no restrictions need be placed upon the extent of
displacements or rotations of the shell, and

16




- effects such as variable thickness, complex shell
intersections, skewed lateral boundaries and
connections to adjacent structure are accounted for

simply and effectively.

The undeformed geometry of a single element of a shell
. (or face sheet) is shown in Figure 2. Geometric parameters are
analyzed with respect to a local coordinate system (x,y) which

is close to the element midsurface z = z(x,y) at all points.

An additional coordinate ! is used to describe the distance

away from the midsurface at any point.

It is assumed that on the element level, the shell is
shallow, so that

2 (56)

everywhere. The unit vector normal to the shell midsurface at

a point can then be written as

n=-z 1i-2 :+%k (57)

in the local system of coordinates. Due to the assumption of
shallowness, the (x,y,f) coordinates constitute, at least
approximately, a local Cartesian system; taking advantage of
this fact, the position vectors of an arbitrary opoint within

the shell before and after deformation may be expressed in the

form

r= (x - .z x)1+ (y - CZ'Y)J + (z + 0)k

’

17




Figure 2. Shell Element Geometry and Local Coordinates.




R

(x - cz'x

+

v + V)S

+u)il + (y - ¢z
’

(z + 7 + w)ﬁ. (59)

Equations 58 and 59 lead directly to the appropriate definitions

of strain for the shell element, sincel?

.a

e,
1]

Thus, the Green's

XX

YY

(44

x;ax, = 3UER-ER) - (@F-3). (60)
strains referred to the system (x,y,7) become:
= u,x(1 - Cz,xx) - Cz,xyv,x Z x¥,x
1l 2 2
+ i(u'x + V'x + W'x)
= - - +
V,Y(l Czryy) Czrxyury z’yw,y
1l 2 2
+ i(u" + v'y + w,Y)
= w:C - z,xu:C z:Yv:C
1 2 2
RV W)
= V,C(l - ;z'yy) + w’y - z'xu'y + z,Y(w:C - v
+ + +
22 xyt e Y Uyt P VY T Yy
19
L.;-.‘.. '(l 1“‘ _a "




= - + + + -
Zeyy =8, c 1 82 ) P W Y2 Vo T2 W Ty

- L2z v +u _u +v . Vv +w W
¢ ' XY 8 X, X ,T X,

= ~ + - + +
2exy u’y(l Cz'xx) v’x(l Cz’yy) z'xw,y z'yw'x

- + + +
Cz'xY(ulx Iy) v uly levry w'xw’y (61)

It should be noted that the strain-displacement relations above
do not involve the orientation of the displaced midsurface
normal, and, therefore, apply to arbitrarily large displacements
and rotations of the shell. The definitions of the linear and
nonlinear portions of the incremental strains (AZ . and An in

ij
Equations 18 and 19) follow directly from Equatlons 6211

In order to ensure proper behavior of the finite element
approximation, constraints must be applied to enforce the
conditions of thin shell response. To prescribe the condition
that line elements initially normal to the shell midsurface
remain straight, normal to the surface and unstrained, it is
necessary to suppress the virtual work due to transverse shear
and normal strains, and to enforce constraint relations of the
form

Aexc = AeyC = AeCC = 0. (62)

A particularly effective method of enforcing the constraints
of Equation 62 is developed in Reference 11, by defining a penalty
functional which, in the limit, forces Equation 62 to be satisfied
at selected discrete points within an element. Define the
functional
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1 2 >
2szecc(rm)] (63)

in which M is the number of constraint locations, wx,w 'WC are
positive weights, and ;m is the location at which the mth
constant is to be enforced. Observe that, by setting G(Anc) = 0,

Equation 62 is satisfied identically at each of the points

-
2 m=1,2,...,M.

Introducing the above constraints into the incremental
principle of virtual work, Equation 21, yields

: I[DaBXu(AeAu - OLMJAT)GAemB + 1Sa86Ana6]dv

\"
(o]

- IAtidAuidA + G(AHC) = 0. (64)
OBV
In Equation 64, Greek subscripts imply a range of summation of 2,
while Latin indices have a range of 3. The additional thin
shell constraint of vanishing normal stress through the thickness

(Org
strain relation for the remaining nonzero stresses and strains

= 0) is enforced exactly in Equation 64. Thus, the stress-

is one of plane stress.

To cast Equation 64 in matrix form, the following
quantities are defined. Let

T

<
]

| au Av Aw | (65)
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1
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| - "
T
ot = |l o ol (72)
W, 0 0] ,
W=1lo w o (73) I
y
L—o WC.-J :
T
o= LA'rx A'ry ATC_J (74)
The constrained principle of virtual work then becomes
I[6e D(e - QaAT) + 6F I*F]dv
°V
+§5T*)w () = | suTraa (75)
mE1 OY (F)W y(rp) = ol ‘
oav

which is the basis of the thin shell finite element. It remains
only to specify an appropriate approximation for u in terms of
a finite number of unknown parameters.
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Defining the

In selecting the finite element approximation for u in
Equation 75, it is noted that only first-order derivatives

% Thus, any approximation which preserves continuity of
: displacements (but which may violate the
: slopes between elements) is admissible.

1 . development the simplest possible forms,

{ appropriate one-dimensional functions are

L, (§4)
Ll(E3)
L, (&5)
L, (&3)
L, (&5)
L, (§5)
L, (E3)

L2(E3)

continuity of

For the present
piecewise liner
natural coordinates

of the displacement appear in the energy form of the equations.

£i;i=1,2,3 which vary between -1 and 1 within an element, the

(76)

(77)

the form of the approximate displacement field within a single
element is




8
u(g) = I, §; () Uy = N'U. (78)

Here Ui; i,2,...,8 are values of the displacement u at the
eight nodal points of an element, as shown in Fiqure 3. The
displacements u, w are represented in exactly the same manner.

Substitution of the above approximation into Equation 75
leads to the definition of the tangent stiffness matrix §T' the
geometric stiffness § , a discrete "constraint stiffness" gc'
and the external force vector T. 1In matrix form, the
equilibrium relation for a single element becomes

Ry + Kg + Kg) U =T (79)

G
which can be solved iteratively as shown in Section 4.

3.2 SANDWICH CORE ELEMENTS

The sandwich core finite elements employed in the present
work are obtained directly from the three-~dimensicnal nonlinear
formulation of Section 2, without any specialization. Orthotropic
stress-strain relations, as described in Paragraph 2.2, are
permitted for analyzing orthotropic cores (e.g., metal honeycomb
core), and to represent the very low extensional moduli typical
of many types of core. Permanent deformations, such as core
crushing, can be treated in an approximate fashion using the
elastic-plastic material law described in Paragraph 2.3.

The core element is shown in Figure 4. 1In the planform
directions, a linear interpolation of the displacements is used
for compatibility with the face sheet element (Paragraph 3.1).
Linear displacement shape functions are also employed through the
core thickness; due to the typical high flexibility of the core
layers in transverse shear, linear displacements are nearly
always an adequate approximation. Due to the very simple nature
of the displacement state approximation, the resulting element
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Figure 3.

Thin Shell and Sandwich Face Sheet Element.
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Figure 4.
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Sandwich Core Finite Element.
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may become excessively "stiff" when integrated exactlyll. For

this reason, a single integration point is used in each core
element to provide improved accuracy with this simple
approximation. Although the core element alone would prove to
be unstable using the single point integration rule, the
addition of face sheet and closeout elements provides a
stabilizing effect which eliminates singularity in the final
system of equations. When stabilized in this manner, the simple
core element used here provides a highly effective and accurate
representation of the sandwich response.

3.3 STIFFENING MEMBERS

Beam stiffener elements obtained here from the general
formulation of Section 2 are of two types: face sheet
stiffeners and full-depth stiffeners. The face sheet stiffening
member is used to represent discrete beam stiffeners attached
to the inner or outer surface of a sandwich panel. The full-
depth stiffener is used to model spar panels connected to both
the upper and lower face sheets of a sandwich, or to represent
panel edge closeouts. Both of these configurations are shown
in Figure 5.

Stiffener elements of both types have similar geometry,

shown in Figure 6. The coordinates xL, Y, are local coordinates,

L
embedded in the plane of an element. 1In this local coordinate
xz' °yz and ozz are assumed
to vanish, and thus the stress-strain relation for an element

system, the transverse stresses o

has the form appropriate for a plane state of stress. The
resulting element models extension, primary bending, and twisting
effects. Again, compatibility is achieved with the other
sandwich elements through the use of linear displacement shape
functions. To avoid excessive stiffness of the element in

bending, a selective integration11 scheme is used for the in-plane
shear strain energy.
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Figure 5. Face Sheet Stiffener and Full-Depth Stiffener
Element Configurations.
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3.4 THREE-DIMENSIONAL SOLID ELEMENTS

A three-dimensional continuum finite element is included
in the present formulation, for use in the modeling of:

~ general structural configurations,

- transitions between sandwich panels and surrounding

components, and

R e M.

A LE i ahab b

- detailed aspects of the deformation of sandwich panels.

The element, which has a variable number of nodes, can be made
compatible with the sandwich face sheet and/or core elements
(which use linear shape functions) on selected element surfaces
while higher-order displacement functions are used elsewhere

in the element. Thus, transitions from sandwich panels to
attachments or other supporting structure can be represented
quite simply. Since the solid element is fully three-dimensional,
it is also useful for detailed analysis of effects such as core
crushing or plastic deformation of the sandwich face sheets.

The general solid element is pictured in Figure 7. Node
points 1 through 8 (the vertices) are required for each element;
however, each of the remaining 12 midside nodes may be included
or deleted as required. 1In most instances, the use of the
midside nodes is highly desirable in terms of accuracy. The
solid element may be numerically integrated using either an
eight-point (2x2x2) or 27-point (3x3x3) Gaussian quadrature

formula.
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Figure 7. Three-Dimensional Solid Element.
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SECTION 4
NUMERICAL SOLUTION TECHNIQUES

In this section, the methodology used in solving the
governing equations for a complete assemblage of finite elements
is described. Static response may be computed with or without
nonlinear effects included, and considering both thermal and
mechanical loadings. The option to compute a specified number
of natural vibration frequencies and their associated mode
shapes is also provided.

4.1 STATIC RESPONSE SOLUTION

In static problems, the finite element equations take

the form
(K, + KG)AU = AT (80)
in which
KT = tangent stiffness matrix,
Ko = geometric (initial stress) stiffness,
AU = incremental nodal displacements, and
AT = incremental nodal forces, including

both mechanical and thermal effects.

The tangent stiffness, for nonlinear problems, is a function of
the total displacements, K, + K_,(U), and the geometric stiffness
depends upon the current stress level, K, = K_(0).

When the problem is assumed to be linear (small displacements,
elastic material behavior), KT = KE, the linear stiffness, and
Ks = 0. 1In this case, Equation 80 can be written using the total

displacements U and forces T:

Kg U= T- (81)
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A direct solution is obtained by factoring KE as

K_ = 1oLt (82)
~E ~~=~
where L is a unit lower trianqular matrix and D is diagonal.

Next letting

g = DL'U, (83)
the relation
Lz =T (84)

can be solved directly for Z. Similarly, Equation 83 gives

1Ty = 7'z (85)
which can finally be solved for U. Knowing the displacement

solution, strain and stress information can be computed at
selected locations in the model to complete the linear analysis.

Whan nonlinear effects are considered in the solution
of Equation 80, an iterative technique must be adopted. 1In
addition, the nonlinear solution is usually performed in an
incremental fashion, by applying the total loading in a number
of steps. Such an approach is adopted to provide the static
solution for an entire range of loading, to enhance convergence,
and to facilitate the detection of buckling or similar
phenomena. In plastic analysis, this incremental method is
necessary due to the history-dependent nature of the response.

The nonlinear equations are solved using various forms of
the Newton-Raphson method, as shown in Fiqure 8. First, the
nonlinear system is written as

(Rp + K)AU = T - 1 (86)
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Figure 8. Newton-Raphson Method for the Solution of

Nonlinear Equations.
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: where T is the total applied loading and I are the internal
forces based upon the current (computed) state of stress. Once
the computed stress state is in equilibrium with the external
loading, the right-hand side of Equation 86 becomes zero. Thus,
Equation 86 can be used repeatedly to compute corrections to an A

]

f

|

:

|

i estimated displacement state for given T, until the equilibrium

[ condition (? = E) is satisfied to within a specified tolerance.

! During a full Newton-Raphson solution, the coefficient matrix

} is updated at each iteration cycle. In the modified Newton

E solution, the stiffness matrix is reformed only at the start

{ of an increment, as indicated in Figure 8. The conventional
Newton's method tends to converge rapidly, with each iteration
consuming a relatively large amount of processor time; with the
modified iteration, each cycle of iteration is computationally

simpler, but convergence is generally rather slow.

4.2 NATURAL FREQUENCY SOLUTION

When free vibrations are considered, the problem is assumed
to be linear, and the forcing function T is replaced by the
inertial forces,

| KgU = -MU (87)

where M is the structure mass matrix. For harmonic motions,
< then, the nodal displacements are

U = X sinwt (88)
and the equation of motion becomes

K X = w"MX, (89)
Notice that the vector X describes only the relative displacements

of the node points, and represents a mode shape corresponding to

the circular frequency of vibration, w. If KE and M are matrices
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of order N, then there exist N-solutions of Equation 89: w,_,

i
§i; i=1,2...,N.

Generally only the lowest few frequencies and mode
shapes of the system will be of interest, and, therefore, a
vector iteration procedure is most appropriate. 1In the present
development, the method of simultaneous vector iteration13 is

used.

If KE can be expressed in the Choleski-factored form

_ T
Kp = LL (90)

with I, a lower triangular matrix, then the transformation

vy = 1Tx (91)
allows Equation 89 to be written in the standard form
ay = 1 vy (92)
-~ w2 ~°
Here A is defined by
a=1tmT, (93)

Given a set of trial solution vectors Yi; i=1,2,...,m,
a partial modal matrix is formed,

[gl Yy ¢ oo gm]. (94)

I -

Noting that any set of eigenvectors of A must be orthogonal

with respect to A, the next step is to inspect the "interaction
matrix"

B = 0'A? (95)




which is diagonal if the columns of ¢ are true eigenvectors.
when the vectors Y, are properly normalized, the diagonal
entries of B are estimates of the eigenvalues

w, = /5;; (96)

1 Before the solution has converged, the interaction matrix

i B is not diagonal. Instead, an approximate solution can be
performed for § to obtain an improved estimate of the eigenvalues.
The trial vectors (i.e., columns of ¢) are then modified
accordingly, orthogonalized, and used in the next iteration

cycle.

A solution for the lowest several frequencies and mode
shapes using simultaneous iteration tends to converge in very
few iterations, provided the number of trial iteration vectors
is sufficient. If p is the number of natural frequencies to
be solved, an estimate for the proper number of trial vectors
can be obtained from

m = min(2p, p + 5]. (97)

The procedure in general tends to be quite fast, since only one
factorization of §E is required, and can be performed
economically without actually forming the matrix A (Equation 92).
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SECTION 5
SAMPLE ANALYSES

Several sample problems are presented in this Section to
demonstrate the analytical capabilities of the present finite
element formulation. Classes of problems considered include
large deflection and elastic-plastic analysis, buckling, natural
frequency solutions and thermal stress analysis.

5.1 NONLINEAR ANALYSIS OF A SANDWICH PANEL UNDER PRESSURE

A square sandwich panel, 50 inches on each side, is
subjected to a uniform lateral pressure. The three-layer plate,
shown in Figure 9, has identical aluminum face sheets
(E = 10.5 x 106 psi; v = 0.3) 0.015 inches thick, bonded to
an aluminum honeycomb core of one inch thick. The core is
assumed to be isotropic, with shear modulus G = 50,000 psi.

All boundaries of the sandwich are fully clamped.

Due to symmetry of the geometry and loading, one quarter
of the panel is considered in the finite element solution.
The finite element discretization consists of a total of 75
finite elements, 25 in each layer. The two face sheets are
modeled using eight-node, thin shell elements (Paragraoh 3.1).
Three-dimensional sandwich core elements (Paragraph 3.2) are
used for the central layer. Note that these element types are
fully compatible so that no special constraints are necessary
for joining the individual layers. The nonlinear solution
has been obtained in load increments of one psi to a total
pressure of 20 psi followed by two psi increments to 30 psi.

The nonlinear central displacement of the sandwich is
plotted versus load in Figure 10. Nonlinear finite element
results obtained by Monfortonz, using 16 specially formulated
bicubic sandwich elements, are shown for comparison. Agreement

between the two finite element solutions is quite good. Figure

10 also shows the perturbation solution of Kan and Huangl4,

given by
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q = 10.5299w_ + 4.8550w (98)

in which q is the applied pressure and W the transverse center
displacement. The analytical solution of Reference 14 is valid
for deflections which are smaller than the core thickness, and
reasonable agreement with the two numerical solutions is observed
in this region. For larger deflections, the perturbation
analysis requires more terms for acceptable accuracy; the two-
term solution gives results which overestimate the influence of
membrane stiffening upon the panel deflection.

5.2 NATURAL FREQUENCIES OF SANDWICH PANELS WITH VARIOUS
BOUNDARY CONDITIONS
The three-layer sandwich plate shown in Figure 11 has
been analyzed for its free vibration response using a number of
different edge conditions. The finite element model of the panel
consists of 36 elements in each layer, and contains a total of
196 nodes and 480 unconstrained degrees of freedom. Material
properties and dimensions of the specimen are as follows:

Dimensions a = 62.25 in.
b = 43.50 in.
tf = 0.072 in.
t, = 1.856 in.

Face Sheets: E = 1.0 x 107 psi
v

= 0.33

Core Layer ze = 30000. psi
G = 30000. psi
E

Yz
, = 60000. psi

Three types of edge conditions have been considered in the
present analysis., The first is a simply-supported condition in
which in-plane motions of the edge are permitted; this tyve of
constraint allows a pure-bending type of response of the entire
panel and is readily verified with known analytical solutions.
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For the second type of constraint, in-plane displacements are
prevented on the lower face of the panel, introducing a net
stretching effect when transverse bending occurs. The third

boundary condition used is a fully clamped edge.

Fundamental frequencies of these vanels are summarized
in Table 1. For the first set of edge conditions, analytical
frequencies computed from the formulation of Reference 15 are also
listed. Agreement between the two solutions is good. The
stiffening effect produced by the two alternative boundary
conditions is clearly shown in the frequency results.

5.3 BUCKLING OF A SIMPLY-SUPPORTED SANDWICH PLATE

The compressive buckling of a plate of sandwich
construction is considered. A square, three-layer panel (Figure
12) is subjected to a uniform compressive load of ﬁx pounds per
inch. The panel is 23.5 inches on each side, and supported at
each face of the sandwich on all four edges (vertical
displacements only are prevented).

The outer face sheets of the panel, which are represented
by thin shell finite elements, are each 0.021 inches in thickness,
with isotropic material properties E = 9.5 x 106 psi, v = 0.3.
The core layer, 0.181 inches thick, has a transverse shear
rigidity G = 19000 psi. Each laver of the model contains 16
elements of equal planform dimensions. Only one guadrant of
the panel is considered in the numerical solution, due to
symmetry of the geometry and loading. On the lateral boundaries,
the tangential transverse shear strains within the core are
suppressed by making the uprer and lower face sheet displacements
equal in the direction parallel to each edge.

A solution for the buckling load N has been obtained

CR
by applying the in-plane forces incrementally until a sudden
increase in transverse displacement is observed. Out of plane
deflections are triggered by a small (one pound) transverse

load applied at the center of the plate. Buckling is found to
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b TABLE 1
' NATURAL FREQUENCY RESULTS FOR FLAT SANDWICH PANEL
3 WITH VARIOUS BOUNDARY CONDITIONS
Frequency, Hz Frequency, Hz
Boundary Condition (Computed) (Analytical)
3 Simple Support ]
. Inplane Motion Permitted 174 170
4
Simple Support i
No Inplane Motion 211 - '
Clamped Edge 288 -
J
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Figure 12. Simply Supported Sandwich Panel Under Edge
Compression.
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occur for an applied load of ﬁx = 305 pounds per inch; this

computed value compares well with previous analytical and

experimental results, as shown in Table 2. It is noted that all

of the analytical results give estimates of the critical load

which are about nine percent too high; it is likely that the

assumption of zero transverse shear strains at the panel !
boundaries is largely responsible for this error. The

transverse shear constraint has been used in the present finite

element solution to permit comparison with previous analytical

solutions.

5.4 PLASTIC ANALYSIS OF A TOROIDAL SANDWICH SHELL

A toroidal sandwich shell panel under line loading has been
analyzed to determine its elastic-plastic response. The following

geometric parameters are used:

major radius R = 5.0 inches

included angle GR = 75.0 degrees |
minor radius r = 1.5 inches :
included angle er = 90.0 degrees

core thickness t, = 0.90 inches

face thickness tf = 0.05 inches

The geometry of the shell is shown (in the form of a finite
element model) in Figure 13. Figure 14 shows the outer face
sheet of the sandwich with node numbers on the exterior surface
labeled. A line load is applied in the vertical direction along
the upper edge of the shell (nodes 36, 56, 92, ..., 316 in
Figure 14). The two short edges of the panel are fully clamped.

The panel is constructed of aluminum, with the properties

E. = 1.0 x 107 1b/in?

£
Ve = 0.30
GC = 30000. 1b/in2

A yield stress of 10000 lb/in2 is assumed in all layers, and

the material is considered to be elastic, perfectly plastic.
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TABLE 2
5 COMPARISON OF BUCKLING LOADS FOR SIMPLY-SUPPORTED SANDWICH PANEL
!
Reference Method N.r (pounds/inch)
Hoff16 Series Solution 303.0
Plantema15 Series Solution 308.0
Brockman17 Series Solution 309.0
Boller18 Experimental 266. - 300.
Monforton2 Finite Element 307.5
Present Analysis Finite Element 305.0
b
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From an elastic analysis of the shell, the yield stress
is found to occur at a total load of approximately 600 pounds.
The elastic-plastic solution is then performed using a single
increment of 600 pounds, followed by equal increments of 180
pounds to a maximum loading of 1500 pounds. Full Newton-
Raphson iterations are used at each step of the solution to

maintain equilibrium of the nonlinear system.

The transverse displacement at the center of the loaded
edge (node 168 in Figure 14) is tabulated as a function of the
total load in Table 3. Deflected shapes of the inner and
outer face sheet layers are also given in Figures 15 and 16,
respectively, for the maximum value of loading. Although the
nonlinearity in central displacement at this loading level
are rather mild (see Table 3), material yielding is extensive
near the clamped edges and the loaded free boundary. Figure 17
shows the zone of plastic behavior in the outer face sheet at
the maximum loading level.

5.5 THERMAL STRESS ANALYSIS OF A VARIABLE-THICKNESS SANDWICH
STRIP
A narrow sandwich strip with a small geometric asymmetry
is subjected to uniform heating, to study the effect of the
asymmetry in producing transverse deflections at high temperature.
One guarter of the symmetric panel is shown in Figure 18. The
uniform middle segment of the strip is 16 inches in length, while
the tapered sections and ends are each two inches long. The

lower face sheet is 0.075 inches in thickness. At the small ends,
the thicknesses of the remaining layers are tc = 0.25 inches,

£ = 0.075
inches in the central section. Full-depth stiffeners 0.015 in

tf = 0.050 inches, increasing to tc = 0.50 inches, t

width are used to close out the lateral boundaries of the strip.

The entire strip is constructed from aluminum, the

properties being
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TABLE 3

LOAD-DEFLECTION HISTORY AT CENTRAL POINT ON
LOADED EDGE OF TOROIDAL SANDWICH PANEL

Increment Total Load (Pounds) Deflection (Node 168)
- 0. 0.
1 600. -0.00864
2 780. -0.01141
3 960. -0.01437
4 1140. -0.01770
S 1320. -0.02184
’ 6 1500. -0.02698
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Figure 15. Deformed Shape of Inner Face Sheet at
Maximum Loading.
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Figure 16. Deformed Shape of Quter Face Sheet at
Maximum Loading.
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Face Sheets: E = 10. x 106 1b/in2
v = 0.30
a = 12. x 10°% in/in°F
i Stiffeners: E = 10. x 10° 1b/in?
§ v = 0.30

. o = 12.4 x 10°% in/in°F

20000. 1b/in?

\ Core: G =
XZ
Gy, = 30000. 1b/in?
a=a, = 1. x 10-10 jin/in°F
a = 12. x 10”8 in/in°F

The finite element model of the strip is shown in more
detail in Figures 19 and 20. Figure 19 shows the face sheet
and full-depth stiffener elements; Figure 20 is a plot of the
core layer elements only, in a similar orientation. The model
represents only one fourth of the strip due to double symmetry
of the problem. The small ends of the strip are fully clamped
at all points.

A deformed geometry plot of the panel (Figure 21) after
i uniform heating shows quite clearly the bending response
caused by the asymmetry at the panel ends. The displaced
shape (solid lines) is drawn to scale for a temperature rise
of 2000°F. While the deflections remain linear, the transverse
central displacement due to uniform temperature rise is
4 in/°F.

approximately 5.0 x 10~
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Figure 19.

Face Sheet and Stiffener Elements in

Sandwich Strip Model.
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Figure 20. Core Elements in Sandwich Strip Model.
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Figure 21. Displaced Shape of Heated Sandwich Strip.
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SECTION 6
SUMMARY AND CONCLUSIONS

A finite element approach for the linear and nonlinear
analysis of structures incorporating sandwich composite materials
has been described. The methodology is based upon a philosophy
of modeling each layer of a sandwich material in some detail,
rather than using approximate properties assembled from the
characteristics of each layer. With such an approach, it is a
rather straightforward task to simulate resmonse problems
involving local deformations, crushing, buckling and plasticity.
Furthermore, connections between sandwich panels and other more
conventional construction materials may be represented in

detail using standard continuum finite elements.

The present formulation includes lower-order thin shell
and orthotropic solid elements for representing the basic
characteristics of sandwich panels, and compatible bending
elements for modeling face sheet or full depth stiffeners.
Standard three-dimensional solid elements describe other
connected structure, or may be used for more detailed analysis
of sandwich panels when required. Each of these elements is
applicable to problems involving arbitrarily large displacements
or rotations, since no restrictive assumptions are made in the
element theoretical formulations. Plasticity is considered
using the von Mises yield condition and the Prandtl-Reuss

equations of incremental plastic flow.

The finite element approach described has been shown to
be effective for numerous applications, involving both
mechanical and thermal loading. Natural frequency calculations
indicate that the methodology is also quite accurate for this
purpose.
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APPENDIX
COMPUTER PROGRAM INPUT INSTRUCTIONS

The theoretical and numerical formulation described in this

e e e e ——

report have been implemented in a computer program, from which
representative solutions have been presented in Section 5. 1In the
following, input data instructions for use of the program are
provided.

The computer program input is divided into 26 input Data
Sets, not all of which will be required in a single analysis.
Conditions under which each Input Set should be included or
skipped are noted at the start of the Data Set. Default
values and/or additional explanatory information concerning
each item of input are included in each Input Set description
in the form of Notes.

For each item of input, a corresponding FORTRAN variable
name is listed which serves to define the data type (floating
point, integer). Any exceptions to this scheme (e.qg., .
alphanumeric data) are noted explicitly as they occur. All
floating point (real) data may be entered with or without
exponents; exponents, if used, must be right-justified in the
data field provided. Integer value must be input without
decimal points or exponents, and must be right-justified in
the data field.

No plotting utilities are provided in the present program
for display and verification of the finite element model data.
For this reason, the nodal coordinate and element connectivity
data have been made compatible with that used in the MAGNA
finite element program. Therefore, full advantage can be taken
of the capabilities offered in the MAGNA program for interactively
displaying the model geometry for verification and documentation
purposes.
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INPUT SET 1 1
PROBLEM IDENTIFICATION

(Required for all analyses)

CARD COL DATA DESCRIPTION NOTES

' 1 1-80 | TITLE | Alphanumeric Problem Description -
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INPUT SET 2

SOLUTION OPTIONS

(Required for all analyses)

CARD CoL DATA DESCRIPTION NOTES
1 1-5 IATYPE Analysis Type -
=1, Linear Static
=2, Nonlinear Static
=3, Natural Frequency
6-10 ITHERM Thermal Stress Flag -
=0, Thermal Stresses Neglected
=1, Thermal Stresses Included
11-15 IP@ST Postprocessor File Flag -
=0, Do Not Save Results
=], Save Analysis Results
on File PLOTFIL
2 1-5 NINCR Number of Solution Increments -
6-10 IPRNTF Printing Frequency -
3 1-10 STEP Loading Parameter Step Size (1)
NOTES:

(1) In a nonlinear analysis, all external forces
are expressed as functions of a "loading
parameters,"” which is continuously increasing
during the solution. STEP defines the amount
by which the loading parameter (whose initial
value is zero) is increased at each solution
increment.
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INPUT SET 3

EQUILIBRIUM ITERATION OPTIONS

(Required only for nonlinear analysis, IATYPE = 2 on input Set 2)

CARD COL DATA DESCRIPTION NOTES
. 1 1-5 ITTYPFE Iteration Type (1)
‘ =0, No Iteration
=1, Modified Newton Iteration
=2, Newton-Raphson Iteration
6-10 ITFREQ Iteration Frequency (2)
| 11-15 ITMAX Maximum Number of Iterations/
l Increment (3}
,
‘ 16-25 EQTOL Iteration Convergence Tolerance (4)
NOTES
(1) ITTYPE determines the type of equilibrium iteration

(2)

(3)

(if any) to be performed at specified intervals

in the solution to restore the nonlinear conditions

of equilibrium (i.e., internal forces = external
forces). Modified Newton-Raphson iteration (ITTYPE =

1) involves no reformulation of the system stiffness
matrix; internal forces are computed at each iteration,
and the resulting out-of-balance forces are applied

to obtain displacement corrections to improve the
solution, With full Newton-Raphson iteration (ITTYPE =
2), the stiffness is formed and solved at each iteration,
This procedure is, therefore, more expensive than the
modified iteration, but is normally quicker to converge.

Iteration is performed every ITFREQ increments of the
nonlinear analysis. The default value is ITFREQ = 1.

If more than ITMAX iterations are required in any
single solution increment, the solution will be
terminated to permit a change in increment size or
other parameters. The default value is ITMAX = 20.
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(4)

EQTPL defines the convergence tolerance on errors in
the internal forces R, as a fraction of the applied
load, F, during equilibrium iteration. The
iteration is considered converged when

< EQTEL

where ||V |j denotes the Euclidean norm, v yTy.
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INPUT SET 4
EIGENVALUE SOLUTION PARAMETERS

(Required only for natural frequency analysis, IATYPE = 3 in

s Card Set 2)
CARD COL DATA DESCRIPTION NOTES
1 1-5 NTRIAL Number of Iteration Trial

Vectors (1)

6-10 NREQD Number of Natural Frequencies
to be Determined (2)

11-15 MAXIT Maximum Number of Iterations (3)
16-25 TPLVEC Vector Tolerance for

Convergence of Frequency
Soluticn (4)

NOTES:

(1) In general, the greater the number of trial iteration
vectors, NTRIAL, the better the convergence and
accuracy characteristics of the solution. However,
the use of an excessive number of iteration vectors
is costly and inefficient in terms of central memory
requirements. The use of the NTRIAL = min (2*N,N+5),
where N is the number of frequencies to be solved,
provides a good balance between rate of convergence
and storage requirements. The default value is
NTRIAL = 2.

(2) The program will determine the first NREQD natural
frequegcies and normal modes of the linear system
KX = w® MX, where K is the system stiffness matrix
and M the mass matrix. Since the solution is performed
by vector iteration, NREQD is limited to values which
are relatively small for large finite element models. i
The default value is NREQD = 1. !

(3) MAXIT controls the total number of iteration cycles .
performed during the solution. A value of MAXIT = 15 !
to 20 is sufficient for nearly all problems, unless the 5
number of frequencies to be computed (NREQD) is quite
large. A default value of MAXIT = 15 is used.
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(4)

TOLVEC defines the convergence tolerance on
successive approximations to each eigenvector.

If V; and V;j,) are successive iterates to a single
eigenvector, that eigenvector is considered
converged if

vy, -v; Il < ToLvec

where [[V|| denotes the Fuclidean norm, v yTy . The
default is TOLVEC = 0.00l. i
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INPUT SET 5
NODAL COORDINATES
(Required for all analyses)
The number of cards entered in this Section is determined

by the number of nodal points to be defined in the model. Nodal
input is terminated by a single blank card (i.e., NODE = 0).

oy

{ CARD coL DATA DESCRIPTION NOTES

1l 1-5 Literal "COORDINATES" -
16-20 NODES Total Number of Node Points -
21-25 (blank)

1 26-35 TDFLT Default Nodal Temperature
Value (1)

b 36-40 ITDATA Load Parameter Curve for
' Variation of Nodal
Temperatures (2)

2-n 1-5 NODE Node Point Number (3)

6 ISYS Reference Coordinate System (4)
= : Cartesian X,Y,Z,
=A: Cylindrical R,8,2
=B: Spherical R,¢,6

7-10 NINCR Increment for Node Point
Generation (5)

11-20 X (NODE) Coordinate x1
21-30 Y (NODE) Coordinate x2

31-40 Z (NODE) Coordinate X3

41-50 T (NODE) Nodal Temperature (6)

‘ ]
e 2 “ .




(1)

(2)

(3)

(4)

(5)

TDFLT is a default temperature value which will be
assigned to any node point whose input temperature
value is zero. This parameter is commonly used in
problems of uniform heating, etc., in which
temperature data may be absent from the original
input data.

ITDATA refers to a loading parameter curve (i.e.,
function of time) which is input in input set 25.
Curve ITDATA describes the variation of temperature
at all nodes in the model, and is used in nonlinear
analysis only.

Acceptable nodal point numbers are between 1 and NODES.
Not every node need be connected to an active element
in the model, but inactive nodes must be fully
constrained (through boundary condition input).
Coordinate data is read until a blank (i.e.,

NODE = 0) is encountered.

Nodes may be defined in circular cylindrical
coordinates by setting ISYS = A and providing as
input the R,6,Z coordinates of the point, where 6
is measured in degrees. 1In this case, the node
coordinates are converted internally to Cartesian
coordinates defined by:

X = Rcos?®
Y = Rsin®
2 = 2.

When ISYS = B, the program interprets coordinate

data as spherical coordinate values R, ¢, and 8,
where both ¢ and 6 are measured in degrees.

Spherical coordinates are then converted to Cartesian
coordinates by the formulas:

X = Rsin¢cos8
Y = Rsin¢sin®
Z = Rcosd.

Node generation increments NINCR are entered on the
second card of a pair, causing nodes to be equally
spaced between the last and current nodes, with

numbering increment NINCR. As an example, the data
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(6)

10 0. 0. 0.
20 2 10. -10. 0.

is equivalent to

10 0. 0. 0.
12 2. -2. 0. k
14 4. -4, 0.
16 6. -6. 0.
18 8. -8. 0.
20 10. -10. 0.

Note that incremental node generation is performed
in the Cartesian system only.

Nodal temperatures are understood to be the
differences in temperature from the (unstressed)
reference of the structure (usually "room temperature").
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INPUT SET 5

GIZING PARAMETERS FOR SANDWICH CORE ELEMENTS

} (Skip this Set if no Sandwich Core Elements are to be defined)

3 ‘ CARD COL DATA DESCRIPTION NOTES
1
1 1-5 IECOPE Element Type Code; Enter the
number "2" -
6-10 NMAT Number of Material Piroperty
Sets (1)

11-15 NELEM Number of Elements of this
Element Type -

16-20 NAXIS Number of Orthotropic Axis
Definitions (2)

NOTES:

(1) NMAT defines the total number of property sets to
be defined in Input Sets 6 and 7.

(2) NAXIS determines the number of axis sets to be
defined in Input Set 8.




INPUT SET 6
ISOTROPIC SANDWICH CORE PROPERTIES

(Skip this Set if no Sandwich Core Elements are used)

CARD COL DATA DESCRIPTION NOTES
1 1-10 EE(I) Flastic Modulus (1)

11-20 PR(I) Poisson's Ratio (1)

21-30 DNS (1) Mass Density (2)

31-40 YLD(I) Equivalent Stress at First

Yield (3)
L 41-50 ALPHA(I) | Coefficient of Thermal
- Expansion
NOTES:

(1) Repeat Card 1 for each isotropic core material to
be defined. The first card defines material property
set number 1, the second card, set number 2, and so
on. For low~-modulus core materials in which the

transverse shear moduli are of primary importance,
setting EE(I) = 2G and PR(I) = 0 is usually adequate.

(2) Mass densities are entered in Force-Length-Time
units (weight density/gravity).

(3) The default value of YLD(I) is 1.0 x 1020 (elastic

core).
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INPUT SET 7
ORTHOTROPIC SANDWICH CORE PROPERTIES
(Skip this Set if no Sandwich Core Elements are used)
CARD COL DATA DESCRIPTION NOTES
1 1 MTYPE Literal "A" - Flag for
Orthotropic Ma- - ’'als Data (1)
2-10 E1(I) Elastic Modulus in Direction 1 -
11-20 E2(I) Elastic Modulus in Direction 2 -
21-30 E3(I) Elastic Modulus in Direction 3 -
31-40 Gl2 (I) Shear Modulus in Plane 1-2 -
41-50 G13(I) Shear Modulus in Plane 1-3 -
51-60 G23(I) Shear Modulus in Plane 2-3 -
2 1-10 PR12(I) Poisson's Ratio in Plane 1-2 -
11-20 PR13(I) Poisson's Ratio in Plane 1-3 -
21-30 PR23 (1) Poisson's Ratio in Plane 2-3 -
31-40 DNS(I) Mass Density -
41-50 ALPHAl (I) | Coefficient of Thermal
Expansion in Direction 1 -
51-60 ALPHA2 (I) | Coefficient of Thermal
Expansion in Direction 2 -
61-70 ALPHA3(I) | Coefficient of Thermal
Expansion in Direction 3 -

NOTES:

(1) Repeat Cards 1 and 2 for each orthotropic core
material to be defined. Note that all orthotropic
materials must be elastic, and are defined with
respect to the principal directions of the material.




!
!
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INPUT SET 8
ORTHOTROPIC AXIS DEFINITIONS FOR SANDWICH CORE ELEMENTS

(Skip this Set if no Sandwich Core Elements are used, or if
NAXIS = 0)

CARD CcoL DATA DESCRIPTION NOTES
1 1-5 NODE1 (I) Node Numbers Defining Origin
of Coordinates (1)

6-10 | NODE2 (1) Node Number Defining Material
Direction 1

11-15| NODE3 (1) Node Number Defining one
Additional Point in the 1-2
Plane of the Material

NOTES:

(1) Repeat Card 1 to define NAXIS sets of axis directions.
Orthotropic material axes are defined in terms of
existing nodes of the finite element model as shown
in Figure A.1l.




-

Nopa

Figure A.l.

Orthotropic Axis Definition.
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L INPUT SET 9
ELEMENT CONNECTIVITY, SANDWICH CORE ELEMENTS u

(Skip this Set if no Sandwich Core Elements are used)

| CARD COL DATA DESCRIPTION NOTES
1 1-5 1EL Element Number (1)

_" t

§ 6-10 IPR Material Property Set Number

: for this Element (from
: Input Set 6 or 7) -

: 11-15 IAX Orthotropic Axis Set Number
’ {(from Input Set 8) -
16-20 KGEN Node Increment for Element
Generation (2)
ﬁ‘ 21-25 N(1l) Local Node Number 1 (3)
1 26-30 N(2) Local Node Number 2 -
L . . .
56-60 N(8) Local Node Number 8 -

NOTES:

(1) Repeat Card 1 as required to define all Sandwich Core
Elements. Elements must be entered in ascending
order, for IEL = 1,2,...,NELEM. A single blank card
is used to terminate this section of input.

(2) A nonzero value of KGEN on the second card of a pair :
causes intermediate elements to be generated, by !
incrementing N(I) by KGEN for each succeeding element.

More than one element must be generated to use this
feature.

(3) Node point ordering for the Sandwich Core Element is
shown in Figure A.2.
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Figure A.2.

Connectivity for Sandwich Core Element.
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INPUT SET 10
SIZING PARAMETERS FOR STIFFENER ELEMENTS

(Skip this Set if no Stiffener Elements are to be defined)

CARD COL DATA DESCRIPTION NOTES
{ 1
1 1-5 IECODE Element Type Code; Enter the
Number "3" -

6-10 NMAT Number of Material Property
Sets (Maximum of 20) -

] 11-15 NELEM Number of Elements of this
Element Type -




INPUT SET 11

STIFFENER ELEMENT PROPERTIES

(Skip this Set if no Stiffener Elements are used)
s -
CARD COL DATA DESCRIPTION NOTES
|
] 1 1-10 | EE(I) Elastic Modulus (1)
11-20 PR{(I) Poisson's Ratio (1)
21-30 | DNS(I) Mass Density (2) |
31-40 YLD (TI) Equivalent Stress at First
Yield (3)
] 41-50 | ALPHA(I) | Coefficient of Thermal
Expansion
g
L
NOTES:
1
(1) Repeat Card 1 for each stiffener material to be
defined. The first line entered in this Input Set
defines stiffener property set number 1, the second
line defines property set 2, and so on. Note that,
for face sheet stiffeners (i.e., slender beams),

it is appropriate to set the Poisson's Ratio, PR(I),
to zero.

(2) Mass densities are entered in Force-Length-Time
units (weight/density/gravity).

(3) The default value of YLD(I) is 1.0 x 102°

(elastic material).
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INPUT SET 12

CONNECTIVITY FOR STIFFENER ELEMENTS

(Skip this Set if no Stiffener Elements are used)

CARD | COL DATA DESCRIPTION NOTES .
1 1-5 IEL Element Number (1)
6-10 (Blank)
11-15 IPR Material Property Set for this
Element =
16-20 (Blank) |
21-25 KGEN Node Increment for Element
Generation (2)
26-30 N(1) Local Node Number 1 (3)
* 31-35 | N(2) Local Node Number 2
36-40 N(3) Local Node Number 3
t 41-45 | N(4) Local Node Number 4
46-55 | THICK Stiffener Width or Depth (4)

NOTES:

(1) Repeat Card 1 as required to define all Stiffener Elements.
Face sheet and full-depth stiffeners may be intermixed
freely. All elements must be entered in ascending
order, with a single blank line entered to terminate 1
input.

(2) A nonzero value of KGEN on the second card of a pair
causes intermediate elements to be generated, by
incrementing N(I) by KGEN for each succeeding element.
More than one element must be generated to use this
feature.

(3) Node point ordering for all Stiffener Elements is
shown in Fiqure A.3. N(1) through N(4) are the global
node numbers corresponding to positions 1 through 4 in
the Figure.
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Figure A.3. Connectivity for Stiffener Elements.
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(4)

The Stiffener Element depth is defined by the
positions of its connected nodes. THICK is the
element dimension perpendicular to the warped
plane defined by nodes N(1) through N(4).
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INPUT SET 13
SIZING PARAMETERS FOR THIN SHELL ELEMENTS

(Skip this Set if no Thin Shell Elemen:s are to be defined)

7 CARD COL DATA DESCRIPTION NOTES
o
1 1-5 IECODE Element Type Code; Enter the
{ Number "S" -
6-10 NMAT Number of Material Property

Sets (Maximum of 20) -

11-15 NELEM Number of Elements of this
Element Type -
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INPUT SET 14
THIN SHELL MATERIAL PROPERTIES

(Skip this Set if no Thin Shell Elements are used)

CARD coL DATA DESCRIPTION ~ NOTES 7
1 1-10 EE(I) Elastic Modulus (1)
11-20 PR(I) Poisson's Ratio -
21-30 DNS(I) Mass Density (2)
31-40 ALPHA(I) Coefficignt of Thermal
Expansion -

NOTES:

(1) Repeat Card 1 for each Thin Shell material to be
defined.

(2) Mass densities are entered in Force-Length-Time
units (weight density/gravity).
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INPUT SET 15

THIN SHELL ELEMENT CONNECTIVITY

(Skip this Set of no Thin Shell Elements are used)

CARD COL DATA DESCRIPTION NOTES
1 1-5 IEL Element Number (1)
6-10 IPR Material Property Set for this
Element -
11-15 KGEN Node Increment for Element
Generation (2)
16-20 N(1l) Local Node Number 1 (3)
21-25 N(2) Local Node Number 2
51-55 N(8) Local Node Number 8 -
)
i NOTES:

(1)

(2)

(3)

Repeat Card 1 as required to define all Thin Shell

Elements.

Elements must be entered in ascending

order for TEL = 1,2,..., NELEM. A single blank card
terminates this section of input.

A nonzero value of KGEN on the second card of a pair
causes intermediate elements to be generated, by

incrementing N(I) by KGEN for each succeeding element.

More than one element must be generated to use this

feature.

Node point ordering for the Thin Shell Element is
shown in Figure A.4.
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Figure A.4.

T— ——

Connectivity for Thin Shell/Face Sheet
Element.
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INPUT SET 16

SIZING PARAMETERS FOR 3-D SOLID ELEMENTS

(Skip this Set if no Solid Elements are to be defined)

CARD coL DATA DESCRIPTION NOTES
1 1-5 IECODE Element Type Code; Enter the
Number " 7 " -
6-10 NMAT Number of Material Property
Sets (1)
11-15 NELEM Number of Elements of this
Element Type -
16-20 NAXIS Number of Orthotropic Axis
Definitions (2) |
|
NOTES:

(1) NMAT defines the total number of property sets

to be defined in Input Sets 17 and 18.

(2) NAXIS determines the number of axis sets to
be defined in Input Set 19.
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INPUT 88T 17

ISOTROPIC PROPRRTIES POR 3-D SOLID ELENENTS

(8kip this Set if no Solid RBlements are used)

31-40 YLD(I)

41-50 ALPHA (1)

Equivalent Stress at First
Yield

Coefficient of Thermal
Expansion

CARD COoL DATA DESCRIPTION NOTRS
1 1-10 BE(I) Elastic Modulus 1)
11-20 MR(I) Poisson's Ratio -
21-30 DNS (1) Rass Density (2)

(3)

defined.

(3J) The default value of YLD(I) is 1.0 x 10

(1) Repeat Card 1 for each isotropic material to be

(elastic material).

20

(2) Mass densities are entered in Porce-Length-Time units
(weight density/gravity).




INPUT SET 18

ORTHOTROPIC PROPERTIRS FOR 1)-D SOLID RLENENTS

(Skip this Set if no S0lid Rlements are used)

CARD CcoL DATA DESCRIPTION NOTES
1 1 RTYPE Literal "A" - Plag for

orthotropic Materials Data -
2-10 E1(1) Elastic Modulus in Direction 1l -
11-20 | B2(1) Elastic Nodulus in Direction 2 -
21-30 | E3(I) Blastic Modulus in Direction 3 -
31-40 | Gl2(I) Shear Modulus in Plane 1-2 -
41-50 Gl3(I) Shear Modulus in Plane 1-) -
51-60 | G23(I) Shear Modulus in Plane 2-) -
2 1-10 | PR12(T) Poisson's Ratio in Plane 1-2 -
11-20 PR13(I) Poisson's Ratio in Plane 1-) -
21-30 PR23(I) Poisson's Ratio in Plane 2-3 -
31-40 DNS (1) Mass Density -

41-50 ALPHAl (1) | Coefficient of Thermal Expansion
in Direction 1 -

51-60 ALPHA2 (1) | Coefficient of Thermal Expansion
in Direction 2 -

61-70 ALPHA3(I)| Coefficient of Thermal Expansion
in Direction 3 -

NOTES :

(1) Repeat Cards 1
material to be
materials must
respect to the

and 2 for each orthotropic solid
defined. Note that all orthotropic
be elastic, and are defined with
principal directions of the material.




INPUT SBT 19

ORTWOTROPIC AXIS DEPINITIONS POR 3-D SOLID ELENENTS h

(skip this Set if no Solid Blements are used, or if NAXIS = 0)

CARD coL DATA DESCRIPTION MOTES
1 1-8 NODR1 (I) Node Wumber Defining Origin
of Coordinates 1)

6-10 | noom2 (1) Node NMumber Defining Material
Direction 1

11-1% | NODE3(I) Node Number Defining one
Mditional Point in the 1-2
Plane of the Material

NOTES:

(1) Repeat Card 1 to define NAXIS sets of axis directions.
Orthotropic material axes are defined in terms of

existing nodes of the finite element model as shown
in Figure A.1l.
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INPUT SET 20
COMMECTIVITY POR 3~-D SOLID EBLENENTS

(8kip this Set if no 80lid Elements are used)

coL DATA DRSCRIPTION NOTES
1-% IEL Element Number (1)
6-10 | IPR Material Property Set for this L
Element -
11-13 | IAX Orthotropic Axis Set - :
14-15 INT Order of Numerical Integration (2) ?
|
16-20 | KGEN Node Increment for Element !
Generation (3)
21-25 (Blank)
26-30 N(l) Local Node Number 1 (4)
31-35 N(2) Local Node Number 2 -
75-80 N(1ll) Local Node Number 11l
1-5 N(12) Local Node Number 12
6-10 N(13) Local Node Number 13
Node Number 20

R " L




(1)

(2)

(3)

(4)

Repeat Cards 1 and 2 as required to define all Solid
Elements. ERlements must be entered in ascending
Ol’d.! tor Iu - 1,2,.00' m. A .tn’l. bl.ﬂk
card is used to terminate this section of input.

Acceptable values for INT are INT = 2 (2 by 2 by 2
Gaussian integration) and INT = 3 (3 by 3 by 3
Gaussian integration).

A nonsero value of KGEN on the second card of a
pair causes intermediate elements to be generated,
by incrementing N(I) by KGEN for each succeeding
element. More than one element must be generated
to use this feature.

Node point ordering for the Solid Element is shown
in Pigure A.5. MNote that nodes 1-8 are always
required, but nodes 9-20 may each be included or
omitted as desired.
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o ' Figure A.5. Connectivity for 3-D Solid Element.




INPUT SET 21
ELEMENT INPUT TERMINATOR
(Required for all analyses)

CARD CoL DATA DESCRIPTION NOTES
i 1l 1-80 {blank) (1)
1
NOTES:

(1) This input line terminates element input for the
problem being defined, and is required for all
analysis options.




INPUT SET 22

SIZING PARAMETERS FOR BOUNDARY CONDITION DATA

(Required for all analyses)

CARD CoL DATA DESCRIPTION NOTES
1l 1-5 NB (1) Number of Type 1 Boundary
Conditions (1)
6-10 | NB(2) Number of Type 2 Boundary
Conditions (2)
NOTES :

(1) Type 1 and Type 2 boundary conditions are defined
in Input Sets 23 and 24, respectively.




INPUT SET 23
BOUNDARY CONDITIONS, TYPE 1
(Skip this Set if NB(l) = 0 in Input Set 22)

Boundary conditions entered in this Input Set are
used to constrain a range of nodes in specified coordinate

y v

directions.
f
CARD CoL DATA DESCRIPTION NOTES
1 1-5 N1 Beginning Node Number (1)
{ 6-10 N2 Ending Node Number -
11-15 INCR Node Number Increment -
] 2 1-5 JD(1) First Direction Constrained (1)
] 6-10 JD(2) Second Direction Constrained -
11-15 JD(3) Third Direction Constrained -
NOTES:

(1) Repeat Cards 1 and 2 NB(l) times to define all
Type 1 boundary conditions. Nodes N1, N1 + INCR,
N1l + 2*INCR,....Y2 will be constrained in the
directions JD(I):;I = 1,2,3. One or more of the
JD(I) may be zero. Valid nonzero entries for
JD(I) are 1,2,3 for constraints in the x,y and
2z directions respectively.
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INPUT SET 24
BOUNDARY CONDITIONS, TYPE 2
(Skip this Set if NB(2) = 0 in Input Set 22)

Boundary conditions entered in this Input Set are used
to constrain an arbitrary list of nodes in specified coordinate

. directions.
{
CARD COL DATA DESCRIPTION NOTES
1l 1-5 JD(1) First Direction Constrained (1)
6-10 JD(2) Second Direction Constrained -
11-15 JD(3) Third Direction Constrained -
2 1-5 ND(1) First Node Constrained (1)
6-10 ND(2) Second Node Constrained -
46-50 ND(10) Tenth Node Constrained -
NOTES :

(1) Repeat Cards 1 and 2 NB(2) times to define all
Type 2 boundary conditions. The nodes ND(I);
I=1,...,10 will each be constrained in the
directions specified by the JD(I). Some of the
directions (JD's) and some of the nodes (ND's)
may be zero.
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INPUT SET 25

NONLINEAR LOADING FUNCTIONS

(Required for nonlinear analyses only)

Loading and/or temperature variations are defined in this

Set as functions of a single independent loading parameter, which
is continually increasing during the solution.

CARD COL DATA DESCRIPTION NOTES
1 1-5 NFUNCT Number of Loading Functions
to be Defined (1)
2 1-5 IFUNCT Load Function Identification
Number (2)
6~-10 NPTS Number of Point Pairs [X(I),
Y(I)) Used to Define the
Curve (3)
11-80 TITL Optional Alphanumeric Title
3 1-10 X(1) Abscissa for First Data Point -
11-20 Y(1) Ordinate for First Data Point -
61-70 X(4) Abscissa for Fourth Data Point -
71-80 Y(4) Ordinate for Fourth Data Point
4-7 1-80 Additional Pairs [X(I),Y(I)] as

shown for Card 3




(1) More than one loading function will be needed only
if non-proportional loads are to be considered in
the analysis. A maximum of fifty loading functions
may be defined. 4

(2) Loading functions must be numbered between 1 and 50
inclusive. The functions need not be numbered
sequentially, nor must they be entered in any
particular order.

(3) Up to 20 data points may be used to define each load
function. Each data point is defined by an abscissa
{the loading parameter value X(I)) and an ordinate
{the function value Y(I)).

(4) Cards 4-7 are required for a given loading function

only if the number of points exceeds four. Unneeded
| cards should not be entered.
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INPUT SET 26

APPLIED LOADING

(Required for linear and nonlinear static analyses)

CARD COL DATA DESCRIPTION NOTES - 4
i 1 1-5 NODE Node at which Load is Applied (1)
6-10 IDIR Direction of Loading
(1=X, 2=y, 3=2Z) -

e 11-15 NCURV Identification Number of
! Loading Function Describing
' the Variation of the Load (2)

16-25 SCALE Scale Factor or Load Magnitude 13)

1 NOTES:

(1) Repeat Card 1 as required to define all applied
forces acting on the model. Loads may be entered
in any order. 1Input in this section is terminated

! by a single blank card.

(2) The history of each load during the solution is
determined by one of the loading functions entered
in Input Set 25. The parameter NCURV is ignored
in linear analysis.

(3) In linear analysis, SCALE is the actual magnitude
of force to be applied at the given node in the
specified direction. For nonlinear problems,
the value obtained from the specified loading
function (NCURV) at any stage of the solution will
be multiplied by the value of SCALE.




10.

11.

12,

13,
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