
AD-AI06 375 CALIFORNIA UNIV RIVERSIDE DEPT OF MATHEMATICS F/S 12/1DOMINATION PROBLEM FOR VECTOR MEASURES AND APPLICATIONS TO NONS--ETCIU)SEP 81 M M RAO NOSOIN 79-C 0754
UNCLASSIFE OR-EEEEhEE-h



O10'IhE
i A' t ISFIU

ow~m OF miiiic
OFm

fo Ioabo

-1102



DWGINATION PROS LEM FORVECTOR
'IEASURES AND 4PPLICATI6NS TO

'NOt4STATIOI4ARY-PROCESSES.

by DOTIc
I M. M-/RaoS ELECTE

s OCT 2 6 191

-~Technical Xewto 4

01 Spwohow W 081H

- W pubbe umofI MMbm Uabs.4



DGINATIWN PIOBI4 FO0 VECTOR NEASURES AND
APPLICATIONS TO NONSTATIO4ARY PROCESSES

M . . Rao*

University of California
Riverside, CA 92521

1. Stoductioan.

The domination problem of a signed measure, as comnonly understood,
is chat of finding a positive (finite) measure with respect to which
the given one is absolutely continuous. Hence the class of null sets

of the given signed measure contains the class of null sets of the dom-
Lnating measure, which can be taken as its (total) variation measure.
For vector measures also, the dominating measure is usually taken to be
the (tocal) variation measure if the latter is a-finite, or at least

locally finite. However, in a number of important applications a vector

measure need not have a c-finite total variation, and the last condition
is a fundamental assumption for the Radon-tklum theory of these mess-
ues. But by an important theorem of Pettis, each vector measure into

a Banach space has finite semi-variation and the determination of a dom-

nating measure takes on an interest of its own. So one may consider
weaker concepts of p-(ssmi-)variation of a vector measure for some pa I ,

and then search for the existence of a dominating measure. It results

that this existence problem depends both on such a p a 1 and the type

of ange space. This leads co the clssLflicticLOn of (range) vector spaces

whL4 admit domination for each given p , and it is a nontrivial matter.

In this paper the question of finite p-variation and its represen-

tation (via the Radon-Nikodyu theory) will not be considered beyond its

comparison, even though it is useful in the integral representation of
certain linear operations. On the other hand, the problem of finite
p-semi-variatLon has immediate interest for certain stochastic process

representation@, and that will be treated in a reasonably detailed fashion
for a class of vector measures.,\ An outline of the content of this paper

is as follows.
The next section is uciliazd to a precise formulation of the don-

ination problem, and a solution of the general case. The generality of

the result renders it somewhat ineffective for the special applications
here. In Section 3, a class of spaces is thus isolated for which a

*This research is supported in tart under the ON Contract No. N004- A
79-C-0754 (Modification No. PO000 ).
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complete solution of the domination problem is obtained for vector meas-

ures, which have p-semi-variation finite, I a p a 2 . The work here do-

pieda in part on an inequality of Grothendieck-Pietsch. The rest of

the paper is devoted to some key applications of this theory to nonsca-

tionary processes. Thus Section is utilized in showing that a large
class of second order (nonstationary) processes, introduced by Cremdr

(21, admit a dilation to processes of the type considered by Karhunen
(61 an an extended Rilbert space. Conversely, a continuous linear trans-

formation of a larhunen process is always of a Cramdr process. Related

study on stochastic measures is given in [101 and analogous results ap-

pear in [121. These considerations also admit interesting applications

to operator theory and the last section is devoted to this. There it

is shown that a large family of bounded operators on a Hilbert space has

self-adjoint dilations. This generalizes the classical results on uni-

tary dilations of contractions in (141. Let us now turn to details.

2. Domination oroblem for seneral vector measures.

if (,E) is a measurable space, % a Banach space wich norm "

and v:E -% is weakly (or equivalently strongly) a-additive, called a

vector measure, then the p-variation of v relative to a measure t :r -

is defined on A as:

IVI (A) - sup( E Lv(Ai)laiJ :AiEE(A), disjoint, 1 1' (L)
i-I

n
where f - E axA , q - p/p-laI , and fECLq(O,Z,) - Lq ) , E(A)

i-I i "

being the trace *-algebra of E on A . If IvIp(A) c- , then v is

said to have p-variacion finite on A relative to . If p I,

Le(&) is usually replaced by B(n,z) , the vector space of bounded (E-)
measurable scalar functions vith uniform norm,- without reference to w

and the I-variacion is simply called variation. Then (1) reduces to:

n
IvI(A) _ sup( E Iv(Ai), :AiE A), disjoint) (2)

iml
Also IvI(.) is additive or a-additive accordingly as v is, but this

is obviously not true of IvIp(') for pl .

A weaker concept is p-semi-variation relative to .i , defined as:

3vip(A) - sup( 1 t&aiv(Ai)lJ:AiEf(A), disjoint, f;J q,t) (3)

where f A _ i , q - p/p-l a I , as before. if ;vp W(A)<- , then

v is said to have p-semi-variation finite on A relative to ; . If

t2



p 1 , L&) is again replaced by ,(f,E) , and the L-semL-variatio
is called ui-nariatiom. In this case (3) becomes:

Nvil(A) - supl' aLv(A0)iJ:IaJLsI,ALE(A), disjoint) (4)

Note that for 1-seL-variation also, the auxiliary measure is not naces-

sary. The relations between the different definitions are:
JvJ(A) , IvIl(A) , IvMI(A) a 11vill(A)

with equalities if v is ,-continuous. Also ',Ivjp(A) aIvip(A) gener-
ally, with a strict inequality if X is infinite dimensional. An ex-
tended discussion of these variations can be found in [3).

It is convenient to restate the p-semi-variation definition (3) in

the following integral form:

"I (A) - sup(Cl fdvJI: 1 f[ all , (5)
p I q AA.

where the integral of a measurable scalar function relative to a vector
measure is taken in the sense of Dunford and Schwartz ([4], IV.,O). A-

nalogous formula does not obtain for the p-variation case.

With these concepts, the needed classical properties of vector meas-
ures can be quickly stated. It is a consequence of a theorem of Pettis
(cf. [41, IV.lO.2) that a vector measure is of finite semi-variation,
for any Banach space X . Even though JvJ () is c-additive, it need
not be finite on most sets of r . For the Radon-Nikodfm theory however,
the basic assumption is that 6L - Iv(.):E -+ is at least a-finite,

and then one seeks conditions on the spaces I such that the derivative
M exists. If z is reflexive or a separable adjoint space, such a
result holds. In general even if T is a Hilbert space X , A - IvI('):
i00)-I need not be a-finite, where S R) is the Borel c-algebra
of the Line 1 . For instance, if v is defined by the Wiener process

on R into x , then IvI (A) - 4- for each n ondesenerate open set A a
31. A similar phenomenon occurs in many other probabilistic applications
involving integral representations of processes by stochastic measures
such as those needed for the stationary or harmonizable processes, as
well as the ones considered in Section 4 below.

Thus the main technical problem of this paper is the following.
* If v:Z - is c-additive, does there exist a a-finite 6:E-k 4  such

chat for some lp<- one has (with q ft p/p-l )
111(o)v(do)*:l1 -a 1V.q faLq(U) ? (6)

In other words, does v have finite p-semi-variation for some I ap <.
and so measure w ? This is referred to as the domination Problem.
A solution of this problem is important for applications. A related

3
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question is to classify the spaces I for which the existence (or non-
existence) of such a w is to be determined for each given p . Some

partial solutions are obtained to those questions, and they will be given
here. These results have already proved useful for important applcations.

For the generaL case, it is convenient to restate (5) in a somewhat

extended form. RecaLL that if .p-:K is a symmetric convex function,

p(0) - 0 and qp O , it is called a Young funccion with v: - as
Its conjugate where *(x) - sup(JxJy-V(y):y%0) . Then * is also con-

vex with similar properties and the sauze norm of a measurable f is

defined as:

The co-sem-variation of Y:E-% is then defined as in (5), i.e.,

H1vIU (A) * sup('Uf(g)v(du)' :llf',. , 1 1}',(7)

where the vector integral is in the sense of Dunford-Schwartz, and other
symbols are as defined before. If v(x) - 1xI p, pal , then (7) becomes
(5).

A solution of the general case is given by the following:

TZORJm . Let. (a,r) be a meaurable space, I a Banach space and

v::-% a vector measure. Then there exlts a finite Positive .:Z-e

continuous Youna function :It - I +*, Li. - x - , sugh that

VII1,P(a) C" • Thi v is dominated by the pair (t, ) . The pair in
aeneral is not unioue.

P1g .: As noted already, the weak and strong a-additivity of a
vector measure are equivalent. Let S* be the unit sphere of the ad-

joint space I* of % , and CA.,nall c r be a disjoint sequence. Then

0 - limilv ( U A ) - t v (Ak)J
o- L ,I uxn" - k-

a-" a

slim$up I(x .v)( u A)- E (x .v)(A C) 1 (8)
nal n k-L

So the scalar (signed) measures (a*.v:* ES are uniformly a-additive
on I . By a result of Bartle-Dunford-Schwartz (cf. [4), IV.l0.5) there

exists a positive finite (sometimes called a "control") measure A :Z -R+

such that a .v is m-continuous for all x ES*. Hence by the scalar

3adon-Mikod m theorem, g . - exists and by (8) one has
x

0 -Li Ix*.v(A)l " im fg S*(w)u(da) . (9)
S(A)-0 4(A)-OA x

4
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uniformly in x*eS* Nance C g :x*eS c:L( ) is bounded (since a
x

vector masure is bounded) and uniformly L-integrable. Remembering the
fact that 4(n) 4a , one can invoke the classical de I& VaLlde Poussin's

theorem (cf. e.g. (11], The. 1.4.4, for the form used here), there exists
a convex function v :3-Re of the given description such that

x(*1 (0))%(d) ' k0 c , z*ES* (10)

Let *:- I + be the conjugate function to q) Then one has

OVII,(fl) - sup(CL f(-)V(dW)q:llfl,,,'l

= sup(sup([If(w)(x*.v)(dw)I:z *s*I :1Iflla ,l

- sup( sup[l "f (u)s .(u.(dw)J :x*ES*I :11lll',1)

* 2 sup Csup[Il ',f'I :x*45s* :1f!It, M
1 1 , by the IWlder

inequality for Orlicz spaces,

* 2 sup 1112Ix :x ES a2k0 -  by (10).

This completes the proof.

Discusion 2,. By the earlier remarks, since v is -continuous, it

follows that lv l(fl) - ivll 1 ()<- relative to .• By the support line

property of the convex function 0 , and the fact that 4&(O) <- , it is

seen that L0 (u) c L',() where L
0

6.u) is the Orlicz space defined as
L:W)- M f:1f1,& <a) with norm 11-11 . This is a Banach space and

the inclusion into L(( A) is topological. From this one deduces that

there is a constant OcC< such that :v (0) 9 Cl1,(0) <- However

v may (in general does) grow faster than any polynomial, and it also

depends on the space I . If c(x) - Jxl p , it is nontrivial to classify

Bsnach spaces % for each given pa l . This problem has interest in

applications and is essentially open.

If C ) - x2 , an important aspect of the corresponding problem

can be solved, so that v is dominated by a pair ( 2 , )

3. Domination Problem for a special class of syaces.

It is convenient to introduce the following concept:

Definition 3. Let pal, X.&l be numbers, and % be a Banach space.

Then I is termed an IpP)Z - if for each n-dimensional subspace E

of 1, lsn<o , there is an a-dimensional subspace F of % (lamc.),
I c: F , such that d(F,Am) S). where 1 is the a-dimensional Lebesgue

p p
sequence space, and where for any pair of normed vector spaces E1 ,F 2

.5



d(I 1 ,1) . inf(11T1b.11TjI':T4,(1.,K 2 )) . ure and below B(z.,Z2) stands
for the space of bounded Linear mappings on El into K2 . The space

is an t p-us.e if it is an £ 1 -space for some X 21 . (An operator

Mans a Linear operator in 9L; paper.)
It is known that each LP u') on a measure space {n',r', ') is

an zp,.-space for every X >1 , and an abstract (14)-pace is an r., -

apace for every x. '1 Further the class of Z2 -*Paces coincides with
the class of Banach spaces isomorphic with Hilbert apaces. For instance,
a Banach spac such that Its norm and the norm of its adjoint space are

both twice continuously Yrdchet differentiable, ia of class t2 . Sev-

eral properties of Z -spaces, some of which will be needed here, can be

found in [71.
In term of the above notation and concepts one has:

THF 4. kLa (n,r) be a measurable space, B(O,E) the Banach space

of scalar (E-)measurable bounded functions with uniform norm.and 4

J Z-spae, Ia p s2 . v:r -4 te a vector measure. Then v s

(2m)-. More exnLicitly. there exists a finite positive mass-
Mae u gj r such that

1f (.)v (do)1 4 . lfI 211  fI(nr) , (11)

ad v hba 2-semi-variation finite relative to .

ZXML: For the following reLativeLy short argumenc, some auxiliary

results from Functional Analysis are needed, and they will be given with

references. Let T:f - 'f(w)v(ds)E4, fM B(a,r) , so that T is a

well-defined operator and since v is a vector measure it is also as-

quentially continuous for bounded poinvise limits, by ([4], IV.10.l0).

This mans if fan , fn f poincwise and boundedly, then :Tf -

!tTf%' , and of course T is bounded. Now (11) will be establLshed in

three steps.
I. First assuin that I f C(S) , the space of real continuous func-

tions on a compact Hausdorff space S . Let q:s , where

I (f) a f(s) , Lil , the evaluation functional on I - C(S) . If K c

I is the set of all extrem points of the unit ball, then by the

Mil'aan's theorem (cf. (4], V.8, pp. 440-"2), since S is compact

Neusdorff, K is closed and equals q(S)u(-q(S)) , the extreme points

being of the form s th jej - I . Thus if TW(C(S),4) where

4 is an Ip-space lspeZ , then by ([7], Corol. 2 to Thi. 4.3 and Prop.

3.1, the Latter is the Grothendieck-Pietsch inequality alluded to in

the Introduction), the space I - C(S) being an 1,-spece, there exists

6



a regular probability measure 0 on K , hence on q(S)U(-q(S))

absolute constants ClC 2  such that

1IT02 9 cl It (f)12odz)c2 4 If6Cf)I2 L0(dzs), lsp%2,
qtS) -q(S)

t c3  If(S)1 26&0(ds). fz . (12)

Here S and q(S) are identified (as they can be) and c3 - 2max(cLc 2 ).

For the complex case C(S) - Cr(S) +iCr(S) so that the inequality (12)

holds if c3  is replaced by c4 " 2c3 . This is (11) if X - C(S) there,

and if one defines the measure 6 as c4,0 .

11. Suppose X - B(a,E) , and 4 an p.space, lsps2 as before.

Since Z is a closed subalsebra of B( ) w(- ,2 ) ), It follows by

the isomorphism theorem (cf. [4), IV.6.18) that there is a compact (ox-

tremally disconnected) Hausdorff space So and an isometric algebraic

isomorphism I between I and 10 a C(S0 ) which maps real elements

of I into real functions of 10 , complex conjugate functions into

complex conjugate ones and preserves order relation between real func-

tions. Let f - T.I1 :10 -4 . Then NEB(10 4) and f satisfies-the

hypothesis of Step 1. Hence there is a regular Sore, measure "L on

S0  into e such that

ittf 114 ' 1lf 2,M, fEZ0 . (13)

Now fEZ implies I - I(f)6Z0 . Consequently (13) can be sim-
plified as follows:

!ITfl 4 " ' l 2111C) , fEZ

- <f, 1 ) , since 1EZ and (-,-) is the duality
pairing,

= (Z(f!),l) , by the algebraic properties of I

- (fII*( .)) , I*:Z-Z* is the adjoint mapping of
I ,

- IfI2 2 (dw) , (14)

where u2  1* (6&)E* - ba(n,r) , the space of bounded additive set

functions on r with total variation as norm. Here the integral re-

lativ* to a finitely additive 42 is defined in the standard manner

(cf. [41, p. 108ff). It thus remains to show that, in (14), u2 may

7



be replaced by a a-additive measure.
II. To extend the result for a bounded a-additive measure, let

6 be the Carathdodory generated measure by the pair (E,M) . Let

be the class of g-measurable sets. Then the classical theory implies

(cf., e.g. (131, pp. 66-67) that r ,d 1 is a-additive on

&(A) s 2 (A), Aft (equality holds 1ff is also a-additive on r ).

Now (11) will follow if (14) is show to btrue with u in place of

92  and f a step function, since step functions are uniformly dense
in (a ,r) (cf. [4J, p. 259). This is verified by a direct computa-

tion below. m

So let f - A ax. , A , disjoint, and a1 0 0 . By defini-

i-lI)A I 01
tion of and the boundedness of 2 given £ >0 , there exist AnEE

such that Ai n Ain and

6L (A, ) + (An

m a=I n. I

Replacing Al. by AifAl1  in E , if necessary, one may assume in the

above that A U L a Ac also, without changing the inequality (15).

Let fj E I a N with the stated modifications. Then fE ,

k-1 ik

and f;-f poinewise and boundedly. Consequently (14) simplifies to:

11T , 4- ;l~ff (,.)v (d.) 12 (.1

m 2 N A I
- i1 Ja 62( k Iik)

SE Jail2 E 2(A k) , since 42 "is additive.
i- k-I

Letting N-- on both sides and using ((41, IV.l0.l0) one has

lTf 11 2 f [(w)v (A) l1

m 2
1 1 a ,i (A, , by (15),

i1 .7a1

- ,lf'(w)124 (dw) +c

Since c >0 is arbitrary, (11) is proved for all step functions ffZ

at.d hence, by the earlier coment, generally. This completes the proof.

In the rest of the paper some important stochastic and operator

applications of this result with 4 as an L2-space will be presented.

, \
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4. ApolLcation to Cramdr and Karhunen Processes.

One of the most interesting applications of the domination problem,

especially the special case treated in the prceding section, is in re-
lating two general classes of nonstationary second order processes, to

be called Cramdr and /Karhunan -lasses here. It will be shown essentially

that the projection of each Karhunen class is of Cramdr class and many,

but not all, Cramdr classes are projections of some Karhunen classes on

enlarged probability spaces, depending on the process under consLdera-

tion.

To introduce these processes, Let X:R -L (0,r,P) - Lo(P) be a

mapping where LO(P) is the L2 -space on a probability triple (n,r,P)

where fEL(P) iff rfdP - E(f) - 0 . Then X is called a Karhunen

process (or class if the covariLnce function r(.,.):(s,t) - E(X(s)xT"T)

- (X(s),X(t)) , the inner product, can be represented as the Labesgue-
Stieltjes (IS-) integral (cf. (6]):

r(s,t) - "g(s,X)-(gt,,)F.dX) , s,te , (16)

relative to a class of Borel functions Cg(s,-),sERL) and a 7-finite

Borel measure F on a(R) . It can be shown that such a process is

representable as:

X(t) - rg(t,x)Z(dx) , tEF. , (17)

it
where Z:s 0 0R)-L 2(P) , satisfies (Z(A),Z(B)) - F(AInB) , BOOK) being

the 8-ring of bounded Borel sets of R . Thus Z(-) has orthogonal

values. The mapping X , instead, is called a Cramdr process (or class)

if its covariance is expressible as the strong Morse-Transue (or MT-)

integral (cf. [9] for the basic theory of this nonabsolute integral):

relative to a class of BoreL functions (g(s,'),sfJ] and a covariance

bimeasure of finite Frtchet variation on s 0 R)x 0 (R) , such that

0Os

If f is of finite VLtali variation on S 0 (R)xB 0 tR) , then the above

integrals become LS-integrals. The latter case is the one actually con-

siddred in [2], but the present generality is needed. This will be called

a Cramir process. Note that if F concentrates on the diagonal, then
(18) reduces to (16) so that the Karhunen class is a subset of the Cramdr
class.

Again it can be proved that the Cramdr process also admits an

9
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integral represencacion as:

X(t) - '(t,X))(dX) , cER , (19)

for a 7-addicive Zi: 0 (;)-L2(P) such that (i(A),Z(I))- F(A,B) and

the Integrals ia (17) and (19) are in the Dunford-Schwartz sense. (I

have verified both these representations for the work In [12].) For

simplicity, it will be assumed hereafter that, for the work of (16)-(19),
SO(R) can be replaced by %(R) itself, so that Z,1 are vector meas-
ures on s*R) into L0 (P).

I t),If g(t,') - t  , then the above defined Cramar process becomes

a weakly harmonizable process and it is stronaly harmonizable if the

MT-integral in (18) is replaced by the LS-Integral. The latter concept

was first introduced by Lo4ve ([8], p. 474). The general dilation re-

sult stated at the beginning of this section will now be demonstrated.

Let X:R -LO(P) be a Karhunen process relative to a family

(g(s,'),sE.1 and a a-finite measure F on OR) as in (16). If
T:L0(P ) -L

2 (P ) is any bounded linear operator, consider Y(t) - TX(t),

tEE. Using the representation (17), one has

Y(r) - T*&(t,x)Z(d%.) - g(t,%)(T-Z)(dX) , (20)

by a classical theorem (cf. [4], p. 324), since g(t,.) is Z-tntegrable

implies it is also T.Z-integrable (cf. (15], p. 79). Letting i - T.Z
2which isavectormeasure on R(0) Into LO(P) , it is seen that the co-

variance of the process Y is expressible as in (18) relative to the

bimeasure function F:(A,B) - (Z(A),i(B)) , A,3SCEB) . Thus Y:R- L2(P)

is a Crainr process.
The result in the opposite direction is harder. It uses Theorem 4

in a crucial manner. Thus let [X(t),tE]JR be a Cram4r process rela-

tive to g(,.),tEcRI and Fas in (18), and then by (19)
X(t) -9 (t,X)(d) , CE ,

with 0:tR) -L 2 (P) as a vector measure, by the current assumption.
20

Taking 4 - LO(P) in Theorem 4, it follows that there is a finite reg-

ular Borel measure " on OR) such that
'0 ())1(d%)l 'J ' , B R,2 00)) (21)

What if f is not bounded in (2L)? If f is I-Integrable, then

there exists faEBMAl()) such that fn "f poinrwise and by the vec-
tor dominated convergence theorem (cf. [4), 1V.l0.l0) ine has

n .i,, ( I
It n-asIk

10



' JIf ) 2  (dX) , by (21),

r liaIf(X)IA(d)) , by atou's inequality,

ftiI fO,)Iz,(dj) ."(22)

However, while the left side of (22) is finite, the right side can be

infinite when f is not bounded. Nevertheless, (22) is of interest.

If " is either a Lebesgue measure, or is dominated by the Lebesgue

measure with a bounded density, then (the process determined by) the

vector measure I for which (22) is true is called an L2' 2 -bounded meas-

ure (and _process, respectively) by Bochner (cf. [L], p. 25) who empha-

sized the importance of this concept. The Wiener process is a particu-

lar example of this. So hereafter [g(t,.),tE].1 will also be con-

sLdered as contained in L2 (u) for any 4 satisfying (22). In par-

ticular g(t,-)eB(R,4.)) a L2 2(), cEIN, for every such finite domin-

ating 6 , verifies this assumption.

Define a bimeasuroe v:8eR)xBet) -C as v(A,B) L(APB) . Hence

one has

f( , ')v(dX,dX') - KfI(X,Q)(dX) f1 6 1() . (23)

Setting a - v-t:4Sq)xi(R)-C , (22) implies with fl.,),') f(X):"=X

in (23),

0 r : tf()12 .L(d ) - (X) (d )ll2

r f OL rCTv (d., d%' f - x fQ)!T (d)X,dkV)

= f ff(). z(dX,d') - 1(f,f) (say), fEL 2
.) . (24)

R R
Thus m(.,.) is a covariance bimoeasure on 6QR)x6<R) . ConsiderLng

I(f,g) as the .- integral relative to a which is clearly of finite

Frdchet variation (since v and f are), it follows that t(f,g)

, O I(f,f)<- , so that I:L 2 ()xL 2 G&)-C qualifies to be a

positive hermitian kernel. Then by the theory of Aronszajn, there is

a Hilbert space 9 determined by I(.,.) , such that t(f,g) - (hf,h),

hf~hgQe . But for concreteness, a short explicit construction of X

wil1 be included here so that a Karhunen process in 9 with a as its

covariance bimeasure (in the representation (16)) can be exhibited.

Lot [.,.]':L2 (j)xL2 ()-C be defined by (f,g]' - I(f,g) . Then

by (24), [.,i' is a semi-inner product on (2) . If h - [f:[f,fj

.0] and 9 1  is the set L2(j.)/? 0 , define [-,-]:ixMl -C by

II



[((),(s)] - [f,gj' * fE(f)Sl0 8E(8)Si (25)

Then (.,.J is an inner produce on V. and Let X0  be Lts completion

in this induced meric. Lot n 0 :L2(,) -40 be the caonical projection.
Note thac so my not be separable. Consider the subspaces N',N" do-

fined by S' - spX(t),tEN)c 40). S" -2Rl(t)-"0(S(t..)),tqL|€ so
and set up the direct sum N * I ' w who*e lner product Ls the sum of
the inner products of S' and i' , identified as N'O(O). (01m"

2
2 Since X, c LW() , lot us realize V as a subspace of sa

SL(P') on a probability space (0',E',P') so that one can enlarge the
original (n,r,P) by adjoining this now triple (i.e., (,fj)
1 (f"')@(o',E',"') ) and then one can realize I as a subspace of
La( . Thus both X and XL-processes will be independent and take

values in I , Y - X+Xl. , Y'J -L2(t) will be shown co be the desired
iarhunen process. Such a realization as noted above is classical, but
may not be as well known. So a brief sketch will be included here.

Lat ch.JfJl c N' be a complete orthonormal set f nj - € .
r- Borel a-algebra of C . and P (A) - (2v)l1 exp(-IIt2/2)detdt2

A
AEZj , t M c1 4+it 2 C , JJ le (n',£',P') - " (nJ.Ej.PJ) t the pro-
duct space given by the Fubini-Jessen theorem (cf. (4], 111.11.20). If
XW) - o(J), JEJ. 24Q' - C the coordinate function, then it follows
that E(I(j))- 0, E(J2(j)1 2 )'. I and Ct(j),Jfj. is a set of inde-
pendent standard Gaussian random variables in L6(P') . The correspond-
ence r:h. , 1(i) , extended linearly, sets up an isomorphism of s'

ont £- p{~jJE) LCP)2 and lt(h ),,2 _ Z(IX(j)1 2 ) a (h ,h I
1, JET . Thus i is an isometric isomorphism. Corresponding to X1:

I -X". let 1 -1(X):R- L2(P') , so that realizing 9 - X'SN" C
L(() if Y(t) - X(t)l 1 (t), tEf , then (X(s),i1 (t)) -0, S.tE

2 2-Y(t).L2(P) . It is claimed that Y:K- L2(P)* is the desired Karhun*en
process.

Identifying LO(P) as a subspace of LO(P) , if Q is the ortho-

gonal projection of LO(P) onto S' (C L( ) ). then QY(t) - X(t),
tE]N. Also

i(a,t) - (Y(s),Y(t)) - (x(S),Xt))+(21 (s),2,()) , since Xl

it it' (d.,d') ,by

(24) and (25),
"I (a ' )-'Tt- 'v (d% , dx

S(s =t, X -- , (d).) , by (23)

12
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memo CY(t) ,ctt I L;(P) is a Karusen process relative Co the s
faiLly Cg(e,),tER1 and & .

The preceding wek thus provee the following comprehensive result:

2M1iJ.lL. JjA L :1- Lo(I) b a oaess and C8(,.),CtER b.-a t
ily of el f tn. S ha- L e Proass relative o tois

st any caninums linear iLt n then (T( ) S TX(),tER) M. .qdV .

grocess rative o Me si -f LY an a s LLe covaiance bias-

MA. Gmd Iz.UA_ (g(t,),tEl] is a bounded lorel flmL and X:

1- () il a CrMr ocess relatie tochis a- 11Y andasitab e
c glarance bmuure. then there exists an eztens ion aae L()
v(1) ) the by ph iv orocess. a Karhunn oroces Y:R- L0(F)

elative to the sAMK -family and 4 suitable finite goel masure oa I
such that X(t) a QY(c), tIN, w Q is the orthoaonal o oiflj So

aL L(F) gn 4(P)
Sam coments on this general result are now in order.

IMibgi. (a) One of the important queries raised by this result La
that whether every Cramir process is obtainable as a projectio of some

Karbunen process on a sufficiencLy Large super ItLberc space. In general,
the answer is in the negative. Indeed, if the result were true where
the g(t,.)-faaily is merely 1-integrabLe in (19), then it must also be
Z-incegrabLe for (17). Since Z - Q.Z is then true, one has X2 ( )

2 Z2 (Z) . But now there muc be equality here. However, a counter-
exale for this equality has been construcced at the OberwoLfach meet-
ings by Eik Thow". I wish to acknowledge an enlightening discussion
with him on this matter.

(b) The preceding remark and theorem show that the class of Cramdr
processes is quite Large and some of its members cannot be dilated to

Karhunen processes. Since each $(t,.)-functiogn which is integrable re-
lative co a vector measure v is also intcegrable relative to 0 - T-V

for each continuous Linear mapping T:L(P) Lo(F) (cf. [15), p. 79),

it follows chat the Crmr class is closed under all such transformations.
(c) Zn the above work, the fact that the processes are indexed by

I i not really used. Hence the result holds if 1 il replaced by a
Locally compact space and F or t is a Radon positive definite bi-

measure on such a space, sice the 1.5- and MT-integration theories are
available on chose spaces.

In the case of , caking 8(c,2.) * •t) k ec() , a character of
R , the Cremr process becomes a weakly harmonixable process, and the
above result thus implies the following one. Now a. can be replaced

13



by an LCA group by the Last remark, and the r( ,-) is assumed concLi-

M for the next result.
2MUMB L7. JAL G be a Locally c9mact abelian aronu and X:G-La(P)

.e aae. IL X ia weakly stat l nary in that r(s,t) - r(st "L) I

g Y(c) - ?X(t), tfG Md TO(L0 (P)) defines a weakly halMLzable
Y:G -L2(P) . Conversely. given a weekly harnizabLe Broccia

Y:G -e it a) e1tnaton space L0(f) L(P) and a weakly

stationry process X:G-L () such tht Y(t) a QX(t), ct4 , wher Q

is the orthogonal proeccion of LO(F) 2n=o 2()
Since each character of the LCA group G is a bounded continuous

function, all weakly harmonizable processes are accounted for in this

construction. However, each extension space may be different for each

process and all those super spaces may have nothing in cemons, except

the given 2(P) as a subspace.

5. Anlication to self-adioint omeraor dilations.

It is of interest to present an operator theoretic characterization
of Theorem 5. Though it is essentially a translation of language, it

nevertheless gives further insight into the structure of these processes.

Definition 8. Let I be a Banach space, A:Z-1 be a linear (perhaps

unbounded) operator, and a(A) , the spectrum of A , be a proper subset

of C . Let 3(A) be the collection of all mappings f:C-C , analytic

in some neighborhood of ((A) and at "a," where "a" may be in i(A)
in the unbounded case. The neighborhood need not be connected, and can

depend on f . If fM(A) , let r be the boundary of an open V = a(A)

consisting of a finite number of Jordan arcs such chat f is analytic

on Vur . Then one defines the operator f(A) as:

f (A) - f (-)T.+1P.rf ()10R,A)dX (26)

where R(,A) - (A-X)"1 , is the resolvent of A . (26) is the Bochner

integral.

The operator f(A) is well defined and is closed. When I - X

a lilbert space, one can show that an equivalent definition is as fol-

lows: for each Sorel f on R and seLf-adjoint A , if fn -

1[If(.)jsn , and $f(A) - CxU:lAmfn(A)x exists) , then f(A)x-

lAS fn(A)x, zftf(A) . Thus (26) specializes to this when all the condi-
tions are met. This formulation will be used in the next result.

In what follows, it wll be assumed that S(O,.)ul so that r(0,0)

- k<- . This will force F to be a finite measure for the iarhunen

process case (cf. (16)). It is a convenient normalization. Then the

14



folLouing result obtains:

Jj :R- L60I) be a Cramdr process. relative to a class
Cg(:.),E~jof bounded Sorel f~cein with g(0-)@L. Thesn..there

in an exteusios sows. q(?') = LI(P) , L~ Y 0 4(?') OW an
umouned limear gerator A &a~ 2(P') "a~ L2(P M such tha

@Ms~ntric vith domain daei In spXt) R c La (P) , and

~h~(g(t,A) is defie L n in ah above definition and comet)

X(e) * (t.A)Y0  tea. (27)

S1OJIiZOaLm if kit a smmetric densely defined operator in Lop?)
X0 4L4(1) and the g(t.-) 'I are as above, tethe process 1(t)
g(t,A)310 , tEa, is always a Cramdr process relative to the a-famiLy.

22
g-fauly. Then by Thesorem 5, there is an extension space LB(P') z

2 2
1.O(F , and a Karhunen process Y:R- 1.a(P') such that X(t) a QY(t),
tEa , where Q is the orthogonal projection of L6(PW) onto 2OP
Since g(O,-)sl , the representing measure (of (16)) is finite. But
thon a Karhwien process can also be given in an operator theoretic form

Y(t) - g(t,Z)Y(0) , tEa (28)

where A is an unbounded self-adjoint operator with dense domain in
iitYe),tN)CLa(?') .Thin version of the representation (07) has

been proved by Getoor ([5), Thm. 3A). Note that S(tA) it actually
defined by the spectral theorem for 1 . Consequently

g(tAL)Y(O) - '(tiL)1(d]L)Y(O) (29)

where C f(t),tEN)j in the resolution of the identity of A.Since
S(t,-)Ez(Z) , where I - 2(I)Y(O) in a vector measure, it follows also
that S(e,-)E(Q2) , by ([151, p. 79). Thus

1(t) -QY(t) -is(t.X)(Q.E)(dX)Y(O) , by ([41, p. 324),

- g(tA)Y(O) ,(30)

where A - jLr(dX) , with Z(X) a Qt(X), )AEIN, as a generalized soectral

family (i.e., its increments are positive but not necessarily projec-
tioas) (cf. (141, p. 6). It is known and easily verified that Al12 M
in a symmetric and densely defined operator of the stated kind. Note
that g(O,A) - Q and so X(0) *QY(0)

For the converse part, if A is a symmetric densely defined operator



as in the statement, then by Naemark's theorem ([14], Thm. 1) 1it ez-
tends to a self-adjoint operator Aon an extension space L('
such that A - Hence g(t.A) *Qg(t,l) . ut '1(t) . g(tA)Y0,
t~a, is a Karhunen process in Lo(P') by (12) and (51 relative to the
g-family. So by the corresponding part of Theorem 5, X(t) - QY(t),

2
tER , is a Cremir process in LO(?) relative to the sawm g-family. This
completes the proof.

The preceding result has an interesting consequence:
Rear. Each vector measure on %,*Gt)) into a Hilbert space is

derived from a generalized spectral family.

it).L Lot v:40L) -LO(P) be a vector measure. Then X(t)
0 v (d.) is weakly harmonizabLe by Theorem 7, and hence, by the above

2~P' , 2 asl-don p
result, thore is an extension space L ,3 zL(?) asL-don p
erator A on it, and an element it EL2(P") such that, with S(t,x)
itX

Poitxv(d)L) - X(t) -Qs(tA):R0  'j- t Q-)d.1 tEEt, (3L)

where tE(t),t(EE] is the resolution of the identity of A in La(P)
If CE(t) mQ1(t),tG~i is the generalized resolution, then (31) im-
plies Y(-) - E(*)io This establishes the assertion.

The Last theorem also yields the next result of interest on self-
adjoint dilations of certain operators:

TEM L.- I& A be a symmetric operator with dense domain in X
Mjd C g,tER]) be a family of bounded Sorel functions with goul . Te
Tt a St(A), tMR, defines a family of bounded operators for which there
exists an extension Hilbert space x :) , a soLf-adloint operator 1
2D. X In flJnf A suc tha Tt Qgt(;A) , where Q is the orthogonal
2rioctsio2L.21 on -* . Conversely. every densely defined seLf-adioint
operator A on a Hilbert soace x , and a f amily St, t3R] of Borel
functions define a class of closed operators 'Tt - Qst(X)Ix, - t(A)IK
whlee A - Q1 jA it - Q(K) ,Q being an orthogonal orojection on, X

If, in the above, gtk e1 rk , then gt(:%) - itA .- is a
unitary operator and Tt QSt(k) *a eitX (Q*I)(dx) ,defines a wekly

continuous family of positive definite contractive operators in K - QX
Heoce the following result of Sz.-Nagy ([141, Thin. IV) is obtained from

the above result, which depends only on Nalmark's theorem.

13L..LL 1. IL (TtttE] is a weakly continuous Positive definite
contractive family of operators on a Hilbert soace v with To - iden-
tity, then there is an extension Hilbert seace x x a unitary zrouo

16



(Ut,tta I of oertrs on 9 such that Tt -QUt, tQ@ Conversely,

every weakly continuoms arsup of unitary operators CUtt, } defines

a we akly continuous oaitive definite contractive faily of oostatots

(T t - QUt tE31 ) gM 31 - Q(x) for each orthozonal oroiection Q on x
It may be noted that the above theorem was independently proved

in (141, and then Nalmsrk'a result was deduced from this one. The above

work shows that the converse implication is valid as well. Thus both 5
these results are essentially equivalent, though this equivalence lies
somewhat deeper. Actually Sz.-Nagy has proved a more general result,
the "Pri ncpal Theorem," in [14] for a suitable semi-Sroup of operators
and then deduced several of these results including Theorem 11. By a
suitable choice of the t-family, it appears that one can obtain this
general theorem with the above work plus Nalmark's result, which will
then imply the equivalence of all the results of [141 with the above

point of view.
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