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1. Introduction.
The doainstion problem of a signed measure, as commonly understood,
is chac of finding & positive (finite) measure with respect to which
the given one is absolutely continuous. Hence the class of null secs
of the given signed measure contains the class of null sets of the dom-
inacing measurs, which can be taken as its (total) variation measure.
For vector measures also, the dominating measure is usually taken to be
the (tocal) variation measure if the latter is g-finite, or at least
locally finite. However, in & number of important applications a vector
messure need not have a c-finite total variation, and the last condicion
is a fundamencal assumption for the Radon-Nikodym theory of these meas-
ures. But by an {mportant theorem of Pettis, each vector measure into
4 Banach space has finite semi-variation and the determination of a dom-
inating measure takes on an interest of its own. So one may consider
weaker concepcs of p-(semi-)variation of a vector measure for some pal,
and then search for the exiscence of a dominating measure. It resulcs
that this existence problem depends both omn such 8 p2al and the type
of \range space. This leads to the classificacion of (range) vector spaces
wh admit dominacion for esch given p , and it is & nontrivial matter.
In this paper the question of finite p-variation and its represen-
tation (via the Radon-Nikodym theory) will not be considered beyond ics
comparison, even though it is useful in the integral represencation of
certain linear operacions. On the octher hand, the problem of finite
p-semi-varistion has immediate interest for certain stochastic process
representations, and that will be treaced in a reasonably detailed fashion
for & class of vector DEASUTES An outline of the content of this paper

is as follows. V\

The next seccion is ucilized co a precise formulation of the dom-
ination problem, and a solution of the general case. The generality of
the result renders it somewhat ineffective for the special applications
here. In Section 3, a class of spaces is thus isolacted for which a
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complete solucion of the domination problem is obtained for vector meas-
ures, which have p-semi-variation finite, lsps2 . The work here de-
pends in part on sn inequality of Grothendieck-Pietsch. The rest of
the paper is devoted to scme key applicacions of this theory to nonsca-
tionary processes. Thus Section 4 is utilized in showing that & large
class of second order (nonstationary) processes, introduced by Cramér
(2], admit a dilation co processes of the type considered by Karhunen
(6] on an extended Hilbert space. Conversely, s continuous linear trans-
formation of a Karhunen process is always of a Cramdr process. Related
study on stochastic measures is given in [10] and analogous results ap-
pear in [12]. These considerations also admit interesting applications
to operator theory and the last section is devoted to this. There it
is shown that a large family of bounded operators on & Hilbert space has
self-adjoinc dilacions. This generalizes the classical results on uni-
tary dilacions of contractions in (14]). Let us now turn to detalils.

2. Dominatgion problem for general vector meagures.

If (n,f) {s a measurable space, I & Banach space wich norm |-},
and v:I=1 1is weakly (or equivalently strongly) c-additive, called a
vgggt measure, then the p-variation of v relative to a measure .:I =~
R is defined on A as:

n
Ivip ) = .up(ﬁlllv(lt,.)llla,.l :A(€2(A), disjoinc, £ sl} , ¢))

]

'q,m
n

where £ = Za,x, ,q*p/p~lal, and f£e13(a,f,u) = L9@w) , £(A)
tol L7Ag

being the trace g-algebra of T on A . If |v|_ (A)<e , then v is

said to have p-variacion finite on A relacive u. If p=1,
L°G) s usually replaced by B(n,f) , the vector space of bounded (Z-)

measurable scalar functions wich uniform norm,: without reference to u ,
and the lL-variation is simply called yvariacion. Then (1) reduces to:

a
vl (A) = supl 121“\'(51)'.! A €E(A), disjoiac) . )

Also |v|(-) 1is additive or g-additive accordingly as v 1is, buc this
is obviously not true of Ivlp(°) for p>1 .

A weaker concept is p-gemi-varfiation relative to u , defined as:
iy @ = suptl & ey lageza), atesotae, 1l o) )

whers f = 1%,‘.‘“’. , Q@ *p/p-lal , as before. 1If iMlp(A) <e , then

v s said to have p-gemi-variation finite on A pelative to x . If
2
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p=l,L°W) is again replaced by B(Q,L) , and the l-semi-varistion

is called gemi-variacion. In this case (3) becomes:
Ivica) = mtllél'f."‘*:)""‘L""‘z‘“"» disotne] . @)

Note that for l-semi-variation also, the auxiliary measure is noc neces-
sary. The relations between the different definitions are:
1) = IVl @), IVI) = fviy @)

with equalities if v {3 u-continuous. Also v| (A)‘lle(A) gener-
ally, with a strict inequalicy if X {s infinite dimensional. An ex-
tended discussion of these variations can be found in (3].

It 1is convenient to restate che p-semi-variation definition (3) in
the following incegral form:

'.‘.Vllp(A) - sup(}lifdvllzilfilq,usll , ()

vhere the integral of a measurable scalar function relative to a vector
measure is taken in the sense of Dunford and Schwartz ([4], IV.10). A-
nalogous formula does not obtain for the p-variation case.

Wich chese concepts, the needed classical properties of vector meas-
ures can be quickly stated. It is a consequence of a theorem of Pettis
(cf. [4]), 1V.10.2) that s vector measure is of finite semi-variation,
for any Banach space I . Even though |v|(-) 1s o-addicive, it need
not be finite on most sets of [ . For the Radon-Nikodjm theory however,
the basic assumption is that u = |v|(:):E &% 15 at least g-~finite,
and then one seeks conditions on the spaces I such that the derivative
gy exists. If I 1is veflaxive or a separable adjoint space, such a

result holds. In general even i{f I s a Hilbert space ¥ , u = [v|(-):

s(R)~ i+ need not be c-finite, where 8(R) 1is the Borel g-algebra
of the line R . For instance, if v 1is defined by the Wiener process
on R into ¥ , then [v|[(A) = += for esch nondegenerate open set A c
R. A similar phenowenon occurs in many other probabilistic applications
involving integral representations of processes by stochastic measures
such as those needed for the stationary or harmonizable processes, as
well as the ones considered in Section &4 below.

Thus the main technical problem of this paper is the following.
If v:I=@ 1is g-additive, does there exist a c-finite u:E-R% such
that for some lsp<e one has (with q = p/p-1)

W @iveamyily < lely . tatq) ? (6)

In other words, does Vv have finite p-semi-variation for some lsp<e
and some measure u ? This is referred to as the inaci blem.
A solucion of this problem is important for applications. A related

3

L S W St WS Y O 2




question 1s zo classify the spaces I for which the existence (or non-
axistence) of such a . {3 to be determined for each given p . Some
paxcial solutions are obtained to these questions, and they will be given
here. These results have already proved useful for important applications.
For the general case, it is convenient to restate (5) in & somewhat
sxtended form. Recall chact if a:n-n“' is a symmetric convex functionm,
©(0) =0 and 9#0 , it is called a Young function with v:R-R' as
its conjugate where ¥(x) = sup{|x|y-9(y):ya0} . Then ¢ is also con~
vex with similar properties and the gauge norm of & measurable £ 1is
defined as:

£l = {nf{a >0:0y !_)‘h s1} .
il AV 1'1 G
The p-gemi-variation of v:EZ~Y {s then defined as in (5), L{.e.,

IMI,(A) = sup{ !lgf(m)\'(dw)ll:'.ltil'.u‘ll ) ¢)]

where the vector incegral is in the sense of Dunford-Schwartz, and other
symbols are as defined before. If op(x) = |%x]?, pal, then (7) becomes

(5).

A solution of the gensral case is given by the following:
THEOREM 1. Let (0,I) be a measurable space, I a Banach space and
v:iEi=I & vegtor measure. gicive u:L -Rt R

!>

& _coutinuous Young function #:R-R ,

3 a8 xte , such that
ated by the

Ivllgla) <= . Thus v is.d ir (g,.) . The pair in
general is not unique.

Proof: As noted already, the weak and strong g-additivicy of a
vector uuutc*nn equivalent. Let s* be the unit sphere of the ad-
joint space I of I , and [An,ml.} @ £ be & disjoinc sequence. Then

0 = lim A)- 2
halv(ngl » k.1\'(““)!1

* [ -
o Jimsup{|(x «v)(V A= T (x 'V)(A1)| x €S} . 8)
n—e nal k=1
So the scalar (signed) measures [x*-v:x*is*} are uniformly c-additive
on I . By a result of Bartle-Dunford-Schwarcz (cf. (4], IV.10.5) there
exists a posi:ivo finite (sometimes called : "control") measure u:I -r
such that =x v 1is u-continucus gor all x es* . Hence by the scalar

fadon-Nikodsm theorem, - =¥) oxists and by (8) one has
'x* %l‘

0=
73

s |x"v(A)| = lim dw) .
(A)-le v{A)| u(A)-OJ;‘x*(W)u( )

®




uniformly in x*es’ . Hence (g .:x'es'} c Ll(u) {s bounded (since &

vector measure is bounded) and u:uorlly u-integrable. Remembering the
fact that . (Q) <= , one can invoke the classical de la Vallée Poussin's
theorem (cf. e.g. [11], Thm. 1.4.4, for the form used hers), there exists
a convex function 9:R-~R of the given description such that

72018 of @) (da) € kg <, x"es” (10)
x
Lot 4:R=R" be the conjugate function to ¢ . Then one has

lIvilg(a) = sup( HRICICO] BHE O N
a » ’ L JOK |
- lup{wpll{‘f(u)(x sv)(dw)| :x €S ]:llfll
- NwaPUbf(w)l (Wi (dw)) :x *es ] llle ‘1)

s 2 sup{sup(llg *‘lo “21!“' :x"es ]:!l!!l sl} , by the HSlder
‘ 1]

inequality fot Orlicz spaces,
< 2sup (lig ,ll@ X ES ]‘2k0<- by (10).
‘ '

This completes the proof.

Discussion 2. By the earlier remarks, since v 1is u-continuous, it
follows that [vii(Q) = "vlll(a)<- relative to u . By the support line
property of the convu function o , and the fact that u(Q)<e , {t is
seen that 19() < 1. () where L®() 1s che Orlicz space defined as
W) = [f:llf}lw'“o-} with norm - “w,u . This is s Banach space and

the inclusion into I.]'(u) is topological. From this one deduces that
there is a constant 0<C<e gsuch that “""om) € Cllv,i(Q) <o . However
® woay (in general does) grow faster than any polynomial, and it also
depends on the space X . If o(x) = lep , it is nontrivial to classify
Banach spaces Y for each given pal . This problem has interest in
applications and is essentially open. :

If o(x) = x2 , an important aspect of the corresponding problem
can be solved, so that v 1is dominated by a pair (2,u) .

3. ion blem for s special class of gpaces.
It is convenient to introduce the following concept:

Definition 3. lLet pal, Aal be numbers, and I be & Banach space.

Then I 1is termed an £ , -space if for each n-dimensional subspace E
of I, lgnce , there is an m-dimensional subspece F of I (lswm<e),
Ec F, such that d(l',l") $A where (T {is the a-dimensional Lebesgue
sequence gpace, and where for any pair of normed vector spaces El.tz ,

o e _p TP PP, T Ay e



d(E,,E;) = taflIT]-IT"L):TeB(E),E))} . Bere and below B(E),E,) stands
for the space of bounded linear mappings on E; taco !2 . The space
is an £_-gpace if it is an :g \ “space for some L >1 . (An operator
msans & linear operacor in is paper.)

It 1s known that esch LP(u’) on a measurse space (n’,I'.u’) is
an ‘p,x""““ for every )\ >1 , and an sbstract (M)-space is an :-,f
space for every A >1 . Further the class of £,-spaces coincides with
the class of Banach spaces lsomorphic with Hilbert spaces. For instance,
a Banach space, such that its norm and the norm of its adjoinc space are
both twice continuously Fréchet differentiable, is of class £y . Sev-
eral propercies of L _-spaces, some of which will be needed here, can be

P
found in [7].
In terms of the above notation and concepts one has:

IHEOREM 4. lec (Q,I) be s messurable space, B(Q,I) ghe Banach space
of scelax (I-)peasurable bounded funccions with uniform norm, and 4

&0 £ . -spage, lsps2 . [gt v:I~y bhe & vector weasure. Then v 1is
(2,u)-dominated. More explicicly, thiere exiscs a finite positive meas-
uEe u on I gugh that

snd v has 2-ssmi-verjsciog finite velative to u .

Pxoof: For the following relacively short srgumenc, some auxiliary
results from Functionsl Analysis are needed, and they will be given with
references. let T:f w z‘;f(u)v(du)tu. £€x = B(n,2) , so that T is a

well-defined operator and since v 1is & vector measure it is also se-
quentially continuous for bounded pointwise limits, by ([4], IV.10.10).
This means if £ €x , £ —~f pointwise and boundedly, then ',l‘rfn!', -
‘J'r!:l,‘ , and of course T 1is bounded. Now (ll) will be established in
three steps. :

I. Firsc assuma that Y =~ C(S) , the space of real continuous func-
tions on & compact Hausdorff space S . Let gq:s » z.ez' , where

t.(t) » £(s) , £€1 , the evaluation functional on I =C(S) . If K<«

" is the set of all extreme poincs of the unit ball, then by the

Mil'man's theorem (cf. (4], V.8, pp. 440-442), since S is compact
Rauedorff, K 1is closed and equals q(S)u(-q(S)) , the extreme points
being of the form ai, with lal = 1 . Thus {f TE€B(C(S),y) where

¥y is an £,-space lsps2 , then by ([7]), Corol. 2 to Tha. 4.3 and Prop.
3.1, che latter is the Grothendieck-Pietsch inequality alluded to in

the Iatroduction), the space 1 = C(S) bLeing an £_-space, there exists




sud

a regular probability measure u, on K , hence on q(s)u(-q(s)) ,
absoluts constants €11 such thac

Il < clq{s)ll'(l)lzuo(dl’) *e, .qj;s)lt‘(f)lzuo(dz'), lsps2 ,

P caglt(s)lzuo(ds), te1 . (12)

Here S and q(S) are i{dentified (as they can be) and cq = qux(cl,cz).

For the complex case C(S) = cr(S)-H.ct(S) s0 that the inequalicty (12)
holds if 3 is replaced by e " 2c3 . This &3 (11) 1{f 1 = C(S) there,
and if one defines the measure . as Cg -

II. Suppose X = B(,Z) , and Y an <,

Since I 1is a closed subalgebra of B(a) (=B(n,2%) ), it follows by
the isomorphism theorem (cf. [4), IV.6.18) that there is a compact (ex-
tremally discomnected) Hausdorff space So and an isomectric algebraic
isomorphism 1 between Y and IO - C(so) which maps real elements
of I 1into real functions of I » complex conjugate functions into
complex conjugate ones and preserves order relation between real func-
tions. Let T = T-I']‘:Io—\; . Then Ten(xo,u) and T sacisfies the
hypothesis of Step I. Hence there is a regular Borel measure My om
S, into R' such thac

ITely < el gex, . (13)
Now f£€r implies P = I(£)€X, . Consequently (13) can be sim-
plified as follows:
”Tﬂlu - llﬁilu < !lfﬂz,ul » f€x ,

<f§,u ) , since 4 €1, and (-,-) 1is the dualicy
1 17%
pairing,

(LELE) y)
(I(tl),ul) , by the algebraic properties of 1 ,

(ff,l*(pl)) . I*:23~1* is the adjoint mapping of
I,

glflzuz(dm) , (14)

where u, = I*(ul)et* = ba(,£) , the space of bounded additive sat

functions on [ with total variation as norm. Here the integral re-
lative to & finitely additive uy is defined in the standard manner
(ct. [4], p. 108££). It thus remains to show that, in (14), u, may

-space, lsps2 as before.




.y

be replaced by a g-additive measure.

III. To extend the result for a bounded c-additive measure, let
W be the Carathéodory generated measure by the pair (f,.) . Let ¢
be the class of u-messurable sets. Then the classical theory implies

{cf., e.g. [13], pp. 66-67) that £, > £,and u is g-addiciveon I ,

u(A) suz(A), A€  (equality holds {iff ) is also g-additive on T ).
Now (11) will follow {f (1l4) is shown to be true with . in place of
By and £ a step function, since scep functions are uniformly dense
in B(Q,r) (cf. [4]), p. 259). This is verified by a direct computa-
tion below.

So let £ = E aixA , Aj€T, , disjoint, and 4&; # 0 . By defini-

tion of . and the boundedness of Bo s given ¢ >0 , there existc A;nﬂ:

such that Aic LilAin and

w(Ay) +—""—|2' > E 42 (Atn) (15)

Replacing A'in by Aim‘m in ¢ , 1if necessary, one may assume in the
above that A, = ulA'in also, without changing the inequality (15).
nx

m
Let £f = T ax with the stated modificationa. Then £§ez ,
i=} U AS -

and E:l-t pointwise and boundedly. Consequently (14) simplifies to:
(AR ONCH L WEABIRCH)

m N
- 2 Ili'zuz( U A;k)
- 23 l‘zl Euz(A k) » since by 'is additive.

letting N«e on both sidcs and using ({4], IV.10.10) one has
1reid - 0 f(w)v(dus)llu

z Ag) +—E , by (15),
‘1-1“1, h(ap) “—|:1—|2-] y (15)

'glf(m)izu(w)ﬂ :

Since ¢ >0 is arbitrary, (l1) is proved for all step functions £€Y

sud hence, by the earlier comment, generally. This completes the proof.

In the rest of the paper some important stochastic and operator
spplications of this result with 4y as an Lz-lplcc will be presented.




4. Application to Cramér and Karhunen processes.

One of the most interesting applications of the dominacion problem,
especially che special case treated in the prceding section, is in re-
lating two general classes of nonstationary second order processes, to
be called Cranér and Karhunen ~lasses here. It will be shown essentially
that the projection of each Karhunen class is of Cramér class and many,
but not all, Cramér classes are projections of some Karhunen classes on
enlarged probability spaces, depending on the process under considera-
tion.

To introduce these processes, let x:R.-Lg(n,z,P) - L%(P) be &

mapping where Lg(P) is the Lz-spacn on a probability triple (a,r,P) ,
where feL (P) iff [fdP = E(f) =0 . Then X {s called a Karhunen

(e}
process (or class) if the covariance function «r(-,:):(s,t) = E(X(s)X(T))
= (X(s),X(t)) , the inner product, can be represented as the Lebesgue-
Stielcjes (LS~) incegral (cf. (5]):

r(s,t) -i:g(s,x)E(E,x)rcdx) . s,t€R , (16)
relative to a class of Borel functions {g(s,-),s€R) and a s-finite
Borel measure F on 8(R) . It can be shown that such a process is
representable as:

X(t) -ir;g(c.x)z(dx) . t€R , (17)

where Z:aOCI.l)-Lg(P) , satisfies (Z(A),Z2(B)) = F(AMB) , ROCR) being
the s-ring of bounded Borel sets of R . Thus 2(-) has orthogonal
values. The mapping X , instead, is called a Cramér process (or class)
1f its covariance is expressible as the strong Morse-Transue (or MT-)
integral (cf. [9] for the basic theory of this nonabsolute integral):

£(s,t) -i:i:g(s,x)g_(t?,x')?(dx,dl') . s,LE€R (18)

relative to a class of Borel functions ({g(s,'),s€R] and a covarlance
bimeasure of finite Fréchet variation on aom)xcom) , such that
0s i‘;i;s(s.X)T(?,x’)?(dx,dX‘) <e .

1f F 1is of finite Vitall variation on 8,R)x8,(R) , then the above
integrals become LS-integrals. The latter case is the one actually con-
sidered in (2], buc the present generality is needed. This will be called
a Cramér process. Note that {f F concentrates on the diagonal, then
(18) reduces to (16) so thac the Karhunen class is a subset of the Cramér
class.

Again it can be proved that the Cramér process alsc adaits an

9




incegral represencacion as:

X(t) -’:z(:.x)Z(dx) , tER (19)

for a 7-addicive Z:8y®)-L3(P) such char (Z(A),Z(B) = F(A,B) and
the incegrals in (17) and (19) are in the Dunford-Schwartz sense. (1
have verified both these representations for the work in [12).) For
simplicicy, it will be assumed hereafter that, for the work of (16)-(19),
IO(R) can be replaced by A(R) 1itself, so chat 2,2 are vector meas-
ures on 8 (R) 1into L%(P) .

If g(c,a) = .it). , then the above defined Cramér process becomes
a weakly harmonizable process and it (s strongly harmonizable if che
MT-integral in (l8) is replaced by the LS-integral. The latter concept
was firsc introduced by Lodve ([8], p. 474). The general dilation re-
sult scated at the beginning of chis section will now be demonscraced.

Let X:R -L%(P) be a Karhunen process relacive to a family
{g(s,"),s€R} and a c-finite measure F on &(R) as in (16). 1If
T:LO(P) -LO(P) is any bounded linear operator, consider Y(t) = TX(t),
téR . Using the represencacion (l7), one has

Y(e) = Tg(c,\)Z(dr) = “g(t,a)(T-2)(dr) , 20
(c Rz ks (dr) (20)

by a classical theorem (cf. [4], p. 324), since g(t,.) is Z-integrable
implies it is also T-Z-integrable (cf. [15], p. 79). Lecting Z = T-Z ,
which is a vector measure on AR) into LO(P) , it is seen that the co-
variance of the process Y 1is expressible as in (18) relative to the
bimeasure function F:(A,8) = (Z(A),Z(3)) , A,BEBR) . Thus Y:R=- Li(P)
is a Cramér process.

The result in the opposite direction {s harder. It uses Theorem -
in a crucial manner. Thus let [X(t),t€R ]} be a Cramér process rela-
tive to {g(c, ),c€R} and F as in (18), and then by (19)

x(c) -R'g(t,x)i(dx) , t€R ,

with Z:8R) -L%(P) as a vector measure, by the current assumpction.

Taking Yy = Lg(l’) in Theorem 4, it follows that there is a finite reg-
ular Borel measure . on #(@R) such that

"if(x)i(d&)'!u s 1€, L LBRAR)) . (1)

What 1f £ {s not bounded in (21)? If £ 4is Z-integrable, then
there exiscs tnen@,nat)) such that fn-f pointwise and by the vec-
tor dominated convergence theorem (cf. [4], IV.10.10) ine has

e = 2 ym nwa
TPEOHZ(AA) 4 = Limi e ()Z(dr)"
!ﬁ()( M n—kn()(

10




s Ma flg 001 %@ |, by (2D),

N-s

s { la| !n(x)lzu(dx) , by Fatou's inequalicy,
]

-1
'£l£(k)|2u(d>-) . (22)

However, while the left side of (22) is finite, the right side can be
infinite when £ 1is not bounded. Nevertheless, (22) is of interest.
If u 1is either a Lebesgue measure, or is dominated by the Lebesgue
measure with & bounded density, then (the process determined by) the
vector measure 2 for which (22) is true is called an Lz’z-boundcd meas -
ure (and grbcoss, respectively) by Bochner (cf. [l], p. 25) who empha-
sized the importance of this concept. The Wiener process is a particu-
lar example of this. So hereafter (g(t,-),t€R} will also be con-
sidered as contained in Lz(u) for any u satisfying (22). 1In pac-
ticular g(t,")EBR,3R)) < L), t€R, for every such finite domin-
ating u , verifies this assumption.

Define a bimeasure v:SR)xB(R)~-C as v(A,B) = 4(ANB) . Hence
one has :

{{aea WE@a = fnaamE@) , getla) . (23)

Setting o = v-F:8R)x8®R)~C , (22) implies wich £,(1,1") = 1 4¢91{c90]
in (23),

0 sirllf(ulzu(au . uﬁfmzcmnz
-{{f(x)fzx’iv(dx,dx') -£ {f(x)!(x’i F(a,d)

-{{f(x)m (dr,dh’) = I(£,£) (say), fer?q) . (26)

Thua a(-,) 1is a covariance bimeasure on S8 R)x8R) . Considering
I1(f,g) as the MI-integral relative to q which i{s clearly of finite
Fréchet variation (since v and F are), it follows that I(f,g) =
TG I, 0sI(f,£) <~ , so that I:L2@)xL%()~€ qualifies to be a
positive hermitian kernel. Then by the theory of Aronszajn, there is
a Hilbert space ¥ determined by I(-,-) , such thact I(f,g) = (hf'hs)'
hf,h & . But for concreteness, a short explicit construction of ¥
will be included here so that & Karhunen process in ¥ with a as ics
covarisnce bimeasure (in the represencation (16)) can be exhibited.

Let [-,-]17:12@)xl? @) =€ be defined by (£,g]’ = I(£,g) . Then
by (24), [:,-]’ 4s a semi-inner product on Lz(p) . 1 ng = [£:(£,£)
= 0) and ¥ is the set Lz(u)/no , define [-,-]:xlxul-c by
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(&), ()] = [£.8]° , te(t)&,, se(s) @, . (29)
Then (-,-] Ls sa inner product on ¥, and let ¥, be its complecion

in this induced metric. Let nozl.z(u) =¥y be the canonical projeccion.
Mote that ¥y may not be separable. Consider the subspaces ' .,8° de-

fined by ¥’ = FIX(E),cER)C LI(P), ¥° = THK; (t)omy(8(c,")), ceMIC By
and set up the direct sum ¥ = % ‘64’ whose inner product is the sum of
the inner products of ¥’ and ¥’ , idencified as x‘0(0], (Olem’ .

Since ¥’ c Lo(r) » let us realize ¥° as a subspace of some
Lé(r') on & probability spsce (0',L’,P’) so that one can enlarge the
original (q,I,P) by adjoining this new triple (i.e., (4.f,F) =
(q,z,P)e(a’,2’,P’) ) and then one can reslize ¥ as a subspace of ,
L%(l-’) . Thus both X and X, -processes will be independent and take
values tn ¥ , Y = X#X, , YR<L3(F) will be shown to be the desired
Karhunen process. Such a realizaction as noted above is classical, buc
may not be a3 well known. So a brief sketch will be included here.

Let (h,,j€J} = ¥° be a complete orthonormal set. If a, = C ,

- I, = Borel c-algebra of €, and P,(A) = (Zn)'lioxp(-ltIZIZ)dtldtz ,
Aetj » € =g e €, JE&I , lec (0, ,P') = :J(“J'zJ"J) , the pro-
duct space given by the Fubini-Jessen cheorem (cf. (4], III.11.20). 1If
X(J) = a(3), j&J, wea’ = d , the coordinate function, then it follows
that ER(N =0, E(IRNI2) =1 and (R()),J&J} 1s a set of inde-
pendent standard Gaussian random variables in LO(P’) . The correspond-
ence r:h, = g(i) . ox:.nd;d linearly, sets upzln uouorph%u of ¥’
onto & = IPFX(J),j&} < Ly(P’) , and {I'(hj)'f = E(IX(§){€) = [hj.hj.l
=1, ]JeJ . Thus r 1is an isometric isomorphism. Corresponding to xl:
B -4, lec & = r@):R= t3(e’) , so that realizing ¥ = ¥'®’ €
Lo(P) , Lf ¥(t) = X(£)4k, (c), t€R, then (X(8),X,(t)) = 0, 5,teRm,
Y()ELA(F) . It is claimed that Y:R=- L3(F) s the desired Karhunen
process.

Identifying L%(P) as a subspace of Lg(i) , {f Q 1is the ortho-
gonal projection of L%(P) onco ¥’ (ch(i) ), then QY(t) = X(t),
té€R. Also

T(s,8) = (Y(8),Y(c)) = (X(s),X(t)) + (R (8), % (c)) , since XuF,

'{{80&)8—(':_,77? (dl.dX')"'i: Ls(l.k)ma (dr,d\’) , by
. (24) and (25),
'{{8(:,).);{:,).'$v(dx,dx’)

- {s(-.x)s't_e.'ﬂu(dx) , by (23) .
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Wence (Y(c),cefR}) ¢ l.%(’) is & Karhunen process relative co the same
tamily (g(c, ), t€R] and u .

The preceding vork thus proves the following cc-pnhmtn resulc:
INEQRRM 3 lag X:R- l-om Ln..ms.m.nd (g(c, ), cem]
4hr of Borel fupccions  If X Wmnﬂty_ms;u
s(c,-)-family and & +-£iniCe measure ¥ on SM) , gnd rx.,,m Lo(®
42 _sav concinvous linesr sspeing. then (Y(c) = TX(c),teR}
REecess reigcive o che seme §- Wmm
m anm.u.._u (g(t,),cem}

Lom umw:-m_!_mm
W_sm_sm_nmm_mm_mn Lo®
L5(®) ) decermined by the xiven process, s Karhupen process Y:R- Li(P)
Eelacive So the same s- W.mﬁw R,
mu.;m x(c) 'QY<=> t€R, where Q is che orchogonsl proleccion

of Lo(?) gmco Lom

Soms commencs on this general result are now in order.
Remacks 6. (a) One of the important queries raised by chis result is
thac whether every Cramér process is obtainable as a projection of some

Kathunen process on a sufficiently large super Hilbert space. In general,

the answer is in the negative. Indeed, {f the result were true where
che g(c,-)~family is merely 2-integrable in (19), then it must also be
Z-incegrable for (17). Since Z = Q:Z is then true, one has 2@

a :2(2) . But now chere must be equality here. However, a counter-
example for this equality has been constructed at the Oberwolfach mset-
ings by Erik Thomas. I wish to acknowledge an enlightening discussion
wicth him on this sacter.

(b) The preceding remark and theorem show that the class of Cramér
processes is quite large and some of its members cannot be dilated to
Karhunen processes. Since esch g(t,-)-function which is integrable re-
lative Co & vector measure v 1is also integrable relstive to J = T.v
for each continuous linear mapping T:I%(?)-!%(P) (c€. [15), p. 79),

it follows chat the Cramér class is closed under all such transformacions.

{¢) In the above work, the fact that the processes are indexed by
R is not really used. Hence the result holds {f R is replaced by a
locally compacet space and F or f is a Radon positive definice bi-
msasure oo such a space, since che LS- and MI-integracion theories are
available on chese spaces.

In the case of R , caking g(t,\) = e ian tt(x) , & character of
R , the Cramér process becomes s weskly harmonizable process, and the
above result thus {mplies the following one. Now R can be replaced

13
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by en LCA group by cthe last remark, and the rv(-,') {s assumed goncin-
ugus for cthe next resulc.

INRORRM I Lac G be s locally cossect ebelisn group sod X:G -L3(P)
he s process. I X SOUR RO
sheg Y(c) = TX(t), t€G sad TE(L, (P)) defiges ¢ weskly herwonifsble
Rresess. Y:G-L{(P) . Couversely, given & wesily heracnissble process

Y:G-L15(P) , ghere exisce an excension spece Ly(F) o Ly(P) and s weskly
atasionary orocess X:G-L3(F) aush chet Y(t) = QX(t), t€G , whers Q
12 She oxchosonal proteccion of L3(P) gato LI(P) .

Since esch character of the LCA group G 1s a bounded continuous
function, all wesakly harmonizable processes are accounted for in this
construccion. However, each extension spsace may be different for each

process and all those super spaces may have nothing in common, except
the given L%(P) as a subspace.

S. - in rator dilaci .

It is of interest to present an operator cheoretic characterization
of Theorem 5. Though it is essentially a translacion of language, it
nevertheless gives further insight into the structure of these processes.

Definition 8. Let I be a Banach space, A:X~I be a linear (perhaps
unbounded) operator, and o(A) , the spectrum of A , be a proper subset
of €. Let J(A) be the collection of all meppings f£:€-C , analytic
in some neighborhood of o(A) and at " »," where '" may be {in s(A)
in the unbounded case. The neighborhood need not be connected, and can
depend on £ . If f£€J(A) , let r be the boundary of an open V 2 o(A)
consisting of a finite number of Jordan arcs such that f 1is analytic
on WIr . Then one defines the operator £(A) as:

£A) = £(=)1 +2%r,;‘_t(x)a(x,mdx: . (26)

where R(\,A) = (A-AI)-l , is the resolvent of A . (26) is the Bochner
inctegral.

The operacor £(A) 1is well defined and is closed. When I =3 ,
a Hilbert space, one can show that an equivalent definition is as fol-
lows: for each Borel £ on R and self-adjoinc A, if £ =
h“!(')l‘ﬂl , and .f(A) - [xﬂ:lﬂmfn(A)x exists} , then f(A)x =
1&- fn(A)x, :esg(” . Thus (26) specializes to this when all the condi-
tions are met. This formulation will be used in the next result.

In what follows, it will be assumed chat g(0,-)sl so that ¢(0,0)
®« k<e ., This will force F ¢to be & finite measure for the Karhunen
process case (cf. (16)). It is a convenient normalization. Then the
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following result obtains:

DIERRM 9 lec X:R- 1-30) be s Crenér process, relagive o s clese
(g(c, ), cem} s, )-1. Then chere
ia_ap excension gpece Ly(P') :x.o(r) . 88 _elegent ron.o(r ) and en
spbounded linesr opersgor A from Lo(r') inco Lom

A 2 is symmecric wich dopsip denge in #pIX(c),t€R) < Lo(P), snd

| . sn.s. ( s(c.,A) 4a defined as i che sbove definicion snd commenc)
X(e) = g(e,A)Y, , ceER 27

fmx,;m:.._u A mmmmumu Lo(P) '
Xg€L°(P) gnd che ¢(t,') 's gre 43 sbove, then the process Y(t) =
8(c,A)Xy, t€R, {3 slvays s Crapdr process relative to che g-fapily.
Irgef: Let X:R~ r.z(r) be a Cramdr process relative :o the given
.-t-uy Then by ‘thco:n S, there 1is an extension space I.O(P ) >
Lo(P) , and & Karhunen process Y:R - Lo(l" such that X(t) = Q¥(t),

c€R , where Q 1is che orthogonal projection of Lg(r') onto L%(P) .
Since g(0,-)sl , the representing measure (of (16)) {s finite. But
then a Karhunen process can also be given in an operator theoretic form
as:

Y(c) = g(c,A)Y(0) , Cte€R, (28)
vhere & is an unbomdod self-adjoinc operstor with dense domain in
pLY(L),ceR} s LO(P . This version of the representation (17) has
been proved by Getoor ([S], Thm. 3A). Note that g(t,A) {is actually
defined by the spectral theorem for A . Consequently

s(e.K)Y(0) = ;‘s(c.x)iwmo) (29)
where (E(t),c€R]} 1is the resolution of the identity of & . Since

g, )ee(2) , where Z = B(-)Y(0) 1is a vector measure, it follows also
thac g(c,-)ee(QZ) , by ([1S], p. 79). Thus

X(c) = Q¥(c) -{z(t.x)(Q-i)(dX)Y(O) , by ([4], p. 324), ;

. l(:,A)Y(O) ’ (30) [
where A -ixl(d\) , with EQ) = QE(\), A€R, as a generalized spectral )

family (L.e., ics increments are positive but not necessarily projec- P
tions) (cf. (l4], p. 6). It is known and easily verified that Al 2(?) _
is & symmetric and densely defined operator of che stated kind. Note "
that g(0,A) = Q and so X{0) = QY(0) . 1

For the converse part, i{f A is a symmetric densely defined operator i
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ss in the scatement, then by Nalmark's theorem ([14], Tha. I), it ex-
tends to a self-adjoint operator A on an extension space Lg(l”) ,
such that A = QK . Hence g(ct,A) = Qg(c,A) . But Y(c) = g(&,K)Y,,
t€R, is a Karhunen process in Lg(l") by (12) and (3] relative to cthe
g-family. So by che corresponding part of Theorem 5, X(t) = QY(c),
t€R, is a Cramér process in LO(P) relative to the same g-family. This
completes the proof.

The preceding result has an interesting consequence:

Remark. Each vector measure on (R,8(R)) into a Hilbert space is
derived from a generalized spectral family.

For, let v:sm)-ng(r) be & vector measure. Then X(t) =
’l"uv (d\) is weskly harmonizable by Theorem 7, and hence, by the above

result, there is an extension space L%(P') > L%(P) a self-adjoint op-

erator A on it, snd an element Xoﬂ.g(l”) such that, with g(t,\) =

- ,

;.mv«n) = x(t) = ag(e, M)k, -i;e"'-" @E)@ )X, , terR,  (31)

where (E(t),c€R] 1s the resolution of the identity of X fn L3(2) .
1f [E(t) »QE(t),t€R} 1is the generslized resolution, then (31) im-"
plies v(-) = E(-)io . This establishes the assertion.

The last theorem also yields the next result of interest on self-
adjoint dilacions of certain operators:

THEOREM 10. Let A be g symmetric operator with dense domain in » ,
and (g,,t€R] be a 1 bounded el £ ions with gyel . Then

T, ® 8.(A), t€R, defines a fanily of bounded operators for which there

; exists an extension Hilbert space X O ¥ , a self-adjoint operator A i
en % exgending A guch chag T, = Qg.(A) , where Q is the orthogonal {
profection on X =x . ly defined self-ad '

gperacor A on a Hilbert space X , and s family (g,,t€R} of Borel

funccions define s class of closed operators T, = Qg (A)|y = 8. (A,

where A ~QA and ¥ =Q(X) , Q be an_orthogonal projection on X .
If, in the above, g.(\) = ¢! , chen g (A) = elfA =y  isa

unitary operator and rt - Q;:(K) -i"o"tx (Q-E) (dr) , defines a weakly

continuous family of positive definite contractive operators in X = QX .
Hence the following result of Sz.-Nagy ([14], Thm. IV) is obtained from
the above result, which depends only on Nalmark's theorem.

THEORRM 11, If (T,,t€R} a weak u ive definite

contractive family of operators on a Hilbert space % with ‘ro = iden-
tity, then chere is an extension Hilbert space X > X% , a unitary group
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(U,,c€m} of opexators on X gugh chag T, =QU,, t@® . (Conversely,
every weskly coutinuous group of unitary operators (U.,t@R} defines
8 weak sitive definitce tractive family o ors

(T, *QU,,t€R} on ¥ =Q(x) for each orchogonal projection Q on X .

1t may be noted that the above theorem was independently proved
in (14], and then Nalmark'’s result was deduced from this one. The above
work shows that the converse implication is valid as well. Thus both
these results are essencially equivalent, though this equivalence lies
somewhat deeper. Actually Sz.-Nagy has proved a more gensral resule,
the "Principal Theorem," in [14) for a suitable semi-group of operators
and then deduced several of these results including Theorem ll. By a
suicable choice of the 5t-£mly, it appears that one can obtain this
general cheorem wich the above work plus Nalmark's result, which will
then imply the equivalence of all the results of {14] with the above
point of view.
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