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APPUOXIMATE FLUID-STRUCTURE INTUACION THlIORIES FOR
ACOUSTIC EHO SIGNAL PREDIC'ONS

INTRODUCTION

To predict the acoustic echo signals from a submerged elastic
structure of arbitrary shape impinged upon by an acoustic pulse, it
is necessary to simultaneously solve the dynamic structural response
and the acoustic scattering problems due to the interaction amongst
the incident pulse, the structure and its surrounding acoustic medium.
The scattered field here includes the pressure field due to the sub-
merged body acting as an obstacle to the passage of the incident pulse
and that due to the radiation by the vibratory structural response
motion. The exact mathematical formulations of this problem often use
the Helmholtz integral or the simple source integral representation
of the solution to the wave equation for the surrounding acoustic
medium. This integral equation together with the equation of motion
of the structure form the simultaneous set to be solved numerically.
The pressure and acceleration distribution on the fluid-structure
interface have to be first obtained prior to the calculation of the
far field quantities. The bulk of computation lies in obtaining the
surface distributions. The far field calculation is rather straight-
forward. For extensive computation involving a complex shaped struc-
ture, the computer expense could be quite costly. Depending on the
computation strategy used, numerical trouble could arise due to the
so called internal resonance of the integral representation (1,2].
For some situation, e.g., in analyzing high frequency echo signals,
the exact formulation is not only unnecessary but is also clumsy to
use. Thus it appears that an optimum computation scheme could be a
combination of various approximate theories of fluid-structure inter-
action and the exact formulation for the computation of distribution
of pressure and acceleration on the fluid-structure interface and
therefrom the far field is obtained by integrating the Helmholtz
integral.

Herein this scheme, which was suggested by N. Basdekas [3), is
explored using the problem of the echo signal from a spherical elastic
shell [4] as the benchmark. It is found that a theory termed the second
order doubly asymptotic approximation is particularly suitable.

THE APPROXIMATE PREDICTION SCHEME

The mathematical formulation for acoustic scattering problem in
the frequency domain is discussed here. For linear scatterina
in a isotropic homogeneous acoustic medium, the discussions also apply
directly to the time domain formulation except for some computation
procedures.

The pressure p in the acoustic field is governed by the Helmholtz
wave equation

V p + k 2p-  0 (1)

where V2 is the Laplace operator, k- w/c, w is the angular frequency
and c the sound speed of the acoustic medium. The pressure must satisfv
the radiation condition at far field and the boundary condition at the
fluid-structure interface S
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S2w (2)

where , is the mass density of the acoustic fluid medium, n is the
normal at the fluid-structure interface directing into the medium
and w is the normal component of displacement of the interface. The
pressure can also be written as the sum of the incident pressure and
the scattered pressure, i.e.,

PO pinc + psca (3)

Let r be the position vector of a field point (observation point) P
on S or in space, r' be the position vector of a source point (inte-
gration point) Q on-S, rpo - r' - r and r = PIrp. If S is piece-
wise smooth and P is exterior to S, it has been shown that, e.g. [2],

sca 1crikr ikr1sca (Q)_n e e ap(Q) dS. 4)

For P on S,

psca (P)= (Q) e r i2Qjds. (5)

For known distributions of the total pressure p and its normal deri-
vative on S and the geometrical properties of S, the scattered pres-
sure field psca can be readily evaluated by integrating the Helmholtz
surface integrals in equations (4) and (5). For scattering problems
in general, however, the surface distributions df the total pressure
and its normal derivative are unknown and need be solved for. Equa-
tions (2), (3) and (5) constitute a relation between the pressure
acting on the structure and the structural normal velocity (or acceler-
ation) at the fluid-structure interface. This, together with the
equation of motion of the elastic structure, form the governing system
for the problem of scattering from an elastic body. For numerical com-
putation, equation (5) is discretized into a matrix algebraic system.
The coefficients of the matrices are dependent on k, therefore the
computation effort could be quite large if the computation is to be
swept through a wide range of frequency. This is equally true for
the simple-source integral formulation [5). Moreover, for high fre-
quency situations, it is necessary to discretize S into a large number
of elements and proportionally the sizes of the matrices are increased.

It is well known in both acoustic scattering and fluid-structure
interaction theories that the mathematics can be much simplified for
very high or very low frequency problems. Here, the high or low
frequency is measured relative to the size of the scatterer and its
fundamental natural frequencies. Recently, in analyzing structural
response to the impingement of acoustic pulses, an approximation
theory [6] emerged to bridge the high and low frequency approximations.
This theory provides a hierarchy of formulae which approach exactness
in the limit of low- and high-frequency and effect a smooth transition
in the intermediate frequency range. This is therefore termed the DAA
(Doubly Asymptotic Approximation) family [6]. The DAA family can also
be derived directly from equation (5) [7]. Replacing equation (5) by
DAA or other relating approximations, the computation effort could be
much reduced for calculating the surface distributions of pressure andi
normal acceleration and hence for calculating the far field scattered
pressure.
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The equation of motion of an elastic structure can be written in
the following matrix form (6]

M; + C + Kx - fint " GA f(p cd + pinc (6)

where x is the structural displacement vector, a dot denotes time
differentiation, M, C and K are the structural mass, damping and stiff-
ness matrices respectively, Af is a diagonal area matrix for the fluid-
structure interface, G is a transformation matrix which relates the
forces on the structure to those on the interface, and fint is the
known internal force vector. Practical doubly asymptotic approximations
are encompassed in the second order DAA2 formula [61

NO sca + c Afpsca + cSfAfp sca .C Mf(GT*-cin c )  (7)

0C[Mf(GTX-uinc) + (ftf(f f(o-inc)]

where Mf and Q are respectively the fluid added mass and frequency
matrices pertaining to the fluid-structure interface GT is the trans-
pose of G and Uinc is the known normal fluid-particle velocity vector
associated with the incident wave. The method for obtaining Mf and
Qf and their definition have been propounded in (6]. These matrices
are time invariant, i.e., frequency independent. It is this propertv
that equation (7) requires less computation effort compared to equa-
tion (5). If Of-0, equation (7) reduces to the first order DAA1
formula

Mfpsca + ocArpsca = pcMf(GT-uinc). (8)

For every early time (high frequency) interaction, equation (8)
approaches the plane wave approximation, PWA,

psca = pc(GT _uinc), (9)

and for late time (low frequency) interaction, equation (8) approaches
the added mass approximation

sca = M T.-uinc (10)
AfP = M f(G X-U (10

The proposed approximate scheme here for analyzing the scattered
acoustic field from an arbitrary elastic structure utilizes approximate
fluid-structure interaction theories such as those embodied in equations
(7) through (10) to first calculate the pressure and normal acceleration
on the fluid-structure interface. These results are then used as inputs
in equation (4) to determine the far field echo signals by numerical
quadratures.

THE BENCHMARK PROBLEM

The effectiveness of this approximate scheme is investigated here
by comparisons of results to an exact analysis of the echoes from a
spherical elastic shell irradiated by a distant point source.
Extensive exact numerical results were first published in ref-
erence (4] which treated the elastic shell by the three-dimensional
theory of elasticity. The same problem has also been solvad exactly
without numerical result treating the shell by a shell theory [8].
To facilitate computations involving various approirJate interaction
theories, the shell solution is also used here.
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Figure I sketches the uniform spherical elastic shell and the
incident plane wave front. R and 8 are spherical radial and polar
coordinates whose origin 0 coincides with the center of
the spherical shell. Since the problem is axisymmetric, the azimuthal
coordinate is not needed here. The shell is made of an isotropic
elastic material and its geometric and material properties are its
middle surface radius a, thickness h, Young's modulus E, Poisson's
ratio v and mass density ps. The radial deflection and pressure can
be expanded in terms of series of Legendre functions as the following

00
w (6,t) = 1 w mP m(cos)exp(-iwt)

m=o
00

p(R,O,t) = F pm(R)Pm(cose)exp(-iwt) (11)
m=o

inc sca
PmPm +p

where Pm is the Legendre polynomial of the first kind and mth
degree, t designates time and i = V-J . For brevity, the time factor
exp(-iwt) will be omitted hereafter.

INCIDENT WAVEFRONT

R

a

S h

Fig. 1 - Spherical elatic shell irradiated by an incident plane wave

The incident plane wave front travels in such a direction that it
first impinges on the shell at (R=a, 6=r). The incident wave can be
represented by

p inC(R,O) = poexp(ikRcose)

p00 (2m+l)imPm (cose)j m(kR) (12)

m=o
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where p0 is the incident pressure amplitude and Jm is the sphericalBessel function of the first kind. The boundary condition at the fluid-
shell interface S is now

pm 2

2Wm at R=a (13)

The equation of motion of the spherical shell can be written as [9]

rmwm = - pm(a) (14)rinc sca
P in (a) + pm (a)]

where whrepc2 k 4 a 4- (Am + Cc)k 2a 2 + (AmCm - BmDm)

m a M(C mk 2 a 2 )

Am = C 2 + m(m+ (m 1) + ) - ((-) T 15)
1 + v

Bm= m(m + 1)C 2 [1 + m(m + 1) - (l-V)

C = (1 + I)C 2 m(m + 1) - (l-v) Im 1 + V

D = B m/[m(m + 1)] (15)

M = oa/(p sh)

C2 = E/[ps(l-V)C 2]

I = h2/(12a 2 ).

Solving equation (1) with the boundary condition, equation (13),
and using equation (11) and (12), the scattered pressure can be written
as

-h (kR) inc
PMsca (R) c(w - (16)

hr wh' (ka)m
where

*inc w - w m + imjm(ka) (17)U = - p(2m +l)m~
m PCm

hm is the spherical Hankel function of the first kind and a prime
denotes differentiation of the Bessel functions with respect to its
argument. Evaluating equation (16) at R=a gives the exact relationship
between the scattered pressure on S and the normal acceleration of the
shell. Combining this and equations (12) and (14) yields the normal
acceleration

= p c 2 (2m + )im + 1(18)
a 2 rmh(ka) + pc 2ka 2hm (ka)
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Substituting this result back in equation (14) and (16) and performing
summations as required in equation (11), the total pressure distribution
on S and the far field scattered pressure can be determined. Alterna-
tively, the resulting distributions of pressure and normal acceleration
on S can be used in conjunction with equation (4) to calculate the
scattered pressure. Following reference [4], the echo function is
defined as

= Rsca. -ikR
~ f~,(R,Qka,C,M,h/a) = OP~~c (R,O)eik

p0

with the time factor exp(-iwt) in p omitted.

The approximate equations (7) through (10) are of the same nature
as equation (16), i.e., they are relations between the scattered pres-
sure pSCa and the normal acceleration at S. For a spherical surface,
it has been shown in reference [6] that the values of M , A and I
for the mth mode are respectively 47Ta3p/[(2m+l)(m+l)], 47a 2/(2m+l) and
(m+l)c/a. Thereupon, the modal forms of equations (7) through (10) are
respectively

pa .sca + sca pc (m + 1) pC a-
m+l m pCPm + a =

pa (. inc (m+l)c ... :inc(cm W- m ) ~-U m  ) (20)
Pm+l M m a M m

pa -sca sca pa _ inc)
m+ Pm + pCP = pcml- (m m ' (21)

sca = (-Uinc
M c~m M (22)

and

sca
pa inc(+- -U . (23)

Each of these can be used with equation (14) for determining the dis-
tributions of pressure and normal acceleration on S.

RESULTS AND DISCUSSION

Numerical calculations are carried out for the following material
property values and thickness to radius ratio

3p = lC00 Kg/m

c = 1410 m/sec,

3 3Ps = 2.7 x 10 kg/m, (24)

E = 6.74822 x 10 Newton/m 3

= 0.35506,

h/a = 2.5/98.75.

Plots of the amplitudes of the backscattered echo function at
(R=20a, O= ) versus ka resulted form exact and approximate psca-;ig
relations are presented here.
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The exact values are computed using the Helmholtz
integral, equation (4), and alternately the series summation of
equation (16). Both results agree completely with each other and
coalesce into one single curve as displayed in F~gure 2. The maxinur
amplitude of this backscatterinq echo function I is about unit'
for the hard sphere case and is - f-r the soft spner, case ["J. !!cr,
the two sharp peaks of I .,, between ka equals 1 and .' with am 1itudes
close to 8 dramatically reveal the significant ef:ect of elastic
vibration. The convergence criterion for the summations of the
Legendre series for the pressure and acceleration on S and the far
field scattered pressure is

( l m )/? m<0.000l1

where Zm represents a sum of m terms in equation (11). The number of
terms required by this criterion depends on ka, e.g., 5 terms are needf-I
for ka=l and 25 terms for ka=15. In the numerical integration of
equation (4), the spherical surface S is divided into a number of rlnus
the widths of which are always less than 1/6 of the incident wave len.Tth.
All subsequent results for 4-, 1 are obtained by equation (4) usinq the
same summation convergence criterion and integration requirement.

Figure 3 plots the 4. curve obtained using the added mass
approximation (AMA), equation (23). As anticipated, the AMA agrees
with the exact solution for small values of ka (ka- 1). It correctly
predicts the location of the first sharp peak but over predicts its
amplitude by more than 50% attributable to the neglect of the radiatijn
damping of the shell vibration. For higher ka values, the AMA results
are erroneous.

Figure 4 is a juxtaposition of the exact and plane wave approxi-
mation (PWA), equation (22), solutions. They agree extreoely ,'> ",r
ka>5. Here, it is evident that the PWA should not be used for low
frequency situations.

Figure 5 compares the exact and the first order doubly asymptotic
approximation (DAAI), equation (21), solutions. It can be seen that
the DAA1 is quite effective for kael and kao5. However it fails to
predict the two important sharp peaks in 1-ka 1.5. This is also
anticipated since it has been known that the DAAI tends to overestimate
fluid radiation damping in the intermediate frequency ranoe [11,6 1.

Finally, figure 6 presents the 4- , curve obtained usin'; thu
second order doubly asymptotic approximation (DAA2) , equation (20).
Albeit the magnitude of the second peak is less satisfactorily pre-
dicted, the DAA2 result here is a very viable approximation to the
exact solution for the entire ka range.

CONCLUSION

It appears that the second order doubly asymptotic approximation
(DAA2) is promising for predicting acoustic echo siqnals usinq the
present scheme. For very low or very high frequency situations,
simpler approximations can be employed. If the neiohborhood of fre-
quency in which the structural resonance effect is significant is kncwn
a priori, the exact method should be used in this neighborhood.
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Fig. 2 - Exact pressure amplitude of the Echo returned by a
spherical elastic shell
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Fig. 3 - Pressure amplitude of the Echo returned by a spherical elastic shell
calculated from surface pressure And acceleration obtained by the added un
approximation.
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Fig. 4 - Pressure ampitude of the Echo returned by a spherical elastic shell.
The solid and dotted lines are respectively calculated from the exwt and the
plane wave approximation of the surface preure and acceleration.
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Fig. 6 -Pressue amplitude of the Echo returned by a spherical elastic shell
CalcuadW from surface preoure and acceleration obtained by the Meond order
doubly asymptotic approiation.
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