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I ABSTRACT

I his dissertation presents the development of a

finite element method of analysis of interaction problems

I between an elastic structure and a moving fluid. The

fundamental principles of the method have been formulated

for the case of finite non-isothermal deformations of the

j structure and unsteady flow of a compressible, viscous,

heat-conducting fluid. Details of the method and numerical

I examples have been worked out for the simpler, and yet

practically important conditions of isothermal deforma-

tions of the structure and compressible, inviscid, *

isentropic flow of the fluid.

The finite element formulation of the method

3 represents a numerical solution of the variational

equations of the problem. The necessary variational

I principles have been derived for the fluid, for the struc-

I ture, and for the joint fluid-structure system. Since

the governing equations of the fluid do not form a poten-

I tial operator, the corresponding variational functional

has been constructed in terms of the actual and adjoint

I variables. Similar variational functionals have been

obtained the structure and for the iteraction problem.

Consequently, the resulting finite element algorithm

[ belongs to the class of "weighted residuals" methods.

A quadrilateral isoparametric element has been

Udeveloped and used for the fluid. In order to remove

ii
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I

I the instability effects inherent to the problems with

3 convective terms, the "upwind weighting" procedure has

been employed. The structure can, conceivably, be

* represented by any type of elements; in the present

examples, a compatible membrane element has been used.

) I The numerical examples demonstrate, first, the

-: application of the method for the analysis of transient

problems of gas dynamics in one and two dimensions.

I Subsequently, transient motion of a membrane interacting

with a two-dimensional gas flow, and the resulting

I perturbations in the gas itself, have been analyzed.
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I 1. INTRODUCTION

The goal of the present method is to analyze fluid

structure interactions of a general nature. The structure

is an elastic solid of arbitrary configuration. The fluid

is modeled as a compressible linear Newtonian fluid. The

method is not restricted to small displacements in the

structure, nor small perturbations in the fluid.

I The equations of motion, conservation of mass, and

j conservation of energy form the basis for the method. The

variational principle is stated in general coordinates but

most work is in Cartesian coordinates. This change is for

convenience only and does not represent a limitation of

I the method. The structural equations allow large displace-

ments and thermal strains. The fluid is formulated in

spatial coordinates, and the resulting convected gradients

J are included. The fluid is not restricted to being at

rest initially.

The problem solution is based upon the finite

j element method for both fluid and structure. Contributions

have been made to the use of upwind weighting to stabi-

I lize the numerical solution of the fluid dynamics equa-

tions. The ability of finite elements to approximate

[ complex shapes allows the analysis of very general con-

figurations. Further, the extremely simple handling
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1 of the fluid structure interface is a major reason for

5 the success of the numerical application of the method.

To demonstrate the viability of the method, several

I numerical examples are presented. The Newtonian fluid

I model is reduced to an ideal gas to simplify the
numerical procedure. As a result, the interface boundary

I condition is reduced to full slip or continuity of the

surface normal velocity. The examples include one-

I dimensional gas dynamics and vibration of an elastic

I membrane.

The finite element method is instrumental in the

effective solution of the arbitrary problems at hand.

The present method will allow the use of virtually any

j structural element in current program libraries, thereby

allowing the extension of previous problems to include

I interaction effects. Although the numerical examples of

( this work are problems of unsteady motion, the functional

and the discretization process are directly applicable to

other problem types. Some caution is indicated, however,

as the equations of the problem are nonlinear differential

I equations. Despite the limited success of the present

Jj work, much remains to be done in the numerical solution

of problems of this nature.

By far the most common formulation of structural

finite elements is based upon the displacements and

velocities. In contrast, fluid dynamics problems are more
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I frequently based upon the velocity potential or the stream

function and vorticity. As examples of fluid structure

interaction become more common, a shift to the use of

velocity has occurred. The use of a common basis for both

structure and fluid as is done here can simplify the

j mechanization of many aspects of the problem solution.

The handling of the interface in the present work

is simplified greatly by treating this region much as a

structural method handles an inhomogeneous medium. That

is, as long as the velocity field is continuous across

the surface, no other conditions need be explicitly

represented. When using finite elements in practice,

this means using compatible elements on the interface.

Further, it requires coincidence of the structural and

fluid nodes. As a result, the common difficulties

I arising from differing mesh densities do not occur.

A result of the present work is the demonstration

I by numerical examples of a new unified method for fluid

j structure interaction problems. The method is unified

in the sense that the entire problem domain is formulated

J and solved by the same procedure. Differences in treat-

ment of the structure and fluid domains arise as a

result of numerical stability requirements rather than

the variational formulation.



4J

!2. BACKGROUND

I There appears to be no published examples of fluid

structure interaction involving a compressible viscous

fluid in unsteady motion. It seems little attention has

been paid to formulating the solution procedure for such

I a fluid until recently (Nakamura, 1977 and Chung, 1978).

f By far the most developed fluid solution procedures are

for potential flow, acoustic fluids, and creeping

j viscous flow. Whatever the reason for this, it is

probably not unrelated to the fact that these three

I classes of fluid problems have simple variational formula-

i tions. Due to the well established position of these

procedures, they are the dominant formulations employed

in interaction problems.

For example, some of the specific fluid structure

i combinations that have been tried are: elastic shells

and acoustic fluid, both by finite differences

(DiMaggio, Bleich, McCormick, 1978); elasto-plastic

I shells and acoustic fluid, again by finite differences

(Nikolakopouiou, DiMaggio, 1978); elastic beams with

II acoustic fluid by finite elements (Zarda, 1976);

elastic bodies and incompressible viscous fluids by

finite elements (Zarda, Chien, Skalak, 1977); elastic

structural response to internal explosion with an

acoustic fluid (Jacobson, Yamane, Brues, 1977).

In addition, a lot of work has been done to
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I uncouple the problem by employing a suitable approximation

for the fluid response. Two of the most common are the

doubly asymptotic approximation and supersonic thin

airfoil theory. Examples of the former are: elastic

structural response to shock (Ranlet, DiMaggio, Bleich,

Baron, 1977); elasto-plastic structural response to shock

(Atkatsh, Baron, Bieniek, 1978); elastic structural response

(Everstine, 1976 and Everstine, Schroeder, Marcus, 1975);

Jtransient structural response (Geers, 1975).

The use of supersonic thin airfoil theory allows

Ithe local pressure to be related to the structural slope
and velocity. Examples are: elastic panel stability

(Kornecki, Dowell, O'Brien, 1976); panel flutter (Olson,

I 1970 and Dowell, 1970); large deflection plate flutter

(Dowell, 1966); Lyapunov stability analysis of panels

I (Wang, 1966); stability of cylindrical shell limit cycle

f oscillations (Evensen, Olson, 1968).

Several other fluid solution procedures are

j commonly used in iterative solution processes. By

separating the problem at each iteration, the method used

I to calculate the fluid response is almost entirely

divorced from the structural solution method. For this

reason fluid solution techniques will be considered

independently from the structural method in the following.

Perhaps the fastest growing inviscid procedure is

the doublet lattice method, although other methods of
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i singularity distribution are also used. Some are:

i doublet lattice method for interfering wings and bodies

(Rodden, Giesing, Kalman, 1970 and Giesing, Kalman,

Rodden, 1972); vortex lattice for lifting surfaces

(Pittman, Dillon, 1977); doublet lattice (Jordan, 1978);

I distributed sources and doublets in a paneling method

(Dusto, Epton, Johnson, 1978); distributed sources for

bluff body wakes (Parkinson, Jandali, 1970); distributed

i doublets with cubic spline interpolation functions

(Gotta, van de Vooren, 1972).

i One other method is finding acceptance for certain

i linear inviscid problems. Known variously as the Green's

function method or the boundary solution procedure, its

chief advantage is to reduce volume problems to surface

problems. The former has been applied to potential flow

I where the surface is modeled by flat quadrilaterals

(Morino, 1973). The latter has been used in surface

wave problems (Zienkiewicz, 1977) and other problems

f (Zienkiewicz, Kelly, Bettes, 1977).

For viscous fluids, the majority of the work has

been done in very low Reynolds number flows. Here a

simple variational principle leads to minimizing the

dissipation. Some examples are: Newtonian and special

non-Newtonian fluids (Delleur, Sooky, 1961); Galerkin's

method with the use of Lagrangian multiplier for

incompressibility (Argyris, Mareczek, 1974);
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I minimization of dissipation with finite elements

I (Oden, Somogoyi, 1969). Alternate formulations for

viscous flows include the stream function and vorticity

I (Baker, 1974 and Tuann, Olson, 1976). Series solutions

have been applied, for example, to elastic spheres in

close fitting tubes (T6zeren, Skalak, 1978).

When studying higher Reynolds number flow, the

use of upwind differencing (Steele, Barrett, 1978) or

j upwind weighting (Christie, Griffiths, Mitchel, Zienkiewicz,

1976) brings numerical stability. This technique is

being mentioned more frequently in new texts (Chung, 1978)

but few numerical examples beyond two-dimensional tempera-

ture convection (Zienkiewicz, 1977) are given.

I
I

I
I

I

i1
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1 3. VARIATIONAL FORMULATION OF THE PROBLEM

3.1 Existing Variational Principles

Examination of the variational methods of fluid

5 dynamics reveals that there is no established common varia-

tional principle valid for compressible viscous fluids in

U unsteady motion. In fact, Finlayson (1972) has shown that

I the Navier Stokes equations do not comprise a potential
operator. Thus, there is no variational principle in

the conventional sense.

In the context of the present search for a general

I procedure, the existing variational principles suffer

from one of two difficulties. Most frequently, the

U problem must be restricted or simplified to obtain a

I functional. An example is the assumption of small

velocities and incompressibility in creeping viscous

I flow. Secondly, side conditions may be imposed on the

trial functions. As the problems become more complex,

it is difficult to include all the equations in the func-

tional without introducing unknown multipliers. Such

conditions are then left as constraints on the trial

I functions and can complicate the numerical solution

I procedure.

For inviscid compressible flow of a perfect gas,

Serrin (1959) presents a functional based vrimarily on

kinetic and internal energies. The continuity equation
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I and the isentropic condition are added by using multi-

* pliers. This leads to a formulation based upon velocity,

density, entropy and two multipliers. A later modifica-

tion, attributed to C.C. Lin by Finlayson, includes the

material coordinates and a multiplier to insure that these

I coordinates do not change in rotational flow.

The most common inviscid principles are based upon

the velocity potential. For steady incompressible flow

the equation to be solved is Laplace's equation in the

velocity potential. The well-known functional involves

I the sum of the squares of the spatial gradients of the

potential.

A functional for steady compressible isentropic

flow based upon the velocity potential is easily con-

structed (Carey, 1975 and Norrie, deVries, 1973). The

I functional is

1() = 1 1i 0 p(t)dtdV (3.1-1)

whereI 1
p ( t ) = i + y - 1 M 2 ( - t ] -

2 = l + 1 (3.1-2)

The Euler equation for this functional is the steady

continuity equation in terms of the potential 0,

(p4,.),i = 0 (3.1-3)

_ i m1 1
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Carey (1975) suggests the solution should be based upon

discretization by finite elements followed by a perturba-

tion expansion to handle the required root. The first

term in such an expansion leads to the incompressible flow

equation, and successive terms give compressibility*I
corrections.

A quasi-variational principle for the compressible

flow velocity potential equation has been given by Norrie

and deVries (1973). For two-dimensional flow the equation

is

2 2 2 2a 2 + 2 , xdy + ( 4 ,y-a) 0(X- a)'xx ' ' xy yy

(3.1-4)

where the local speed of sound,I
a = a + Lpl q2 + -- + 2 (3.1-5)

The functional is written as

1(v) = ( 1 4 y'x 2 x 2 (,x, y

V Y a

Hv + QV + 1tv ] dSS 2 (3.1-6)

where
1 3 G

H 13n + 3,yny) + G( n + 0,n x

3a x a X y
(3.1-7)

The functional of Eq. 3.1-6 has as its Euler equation

the preceding differential equation if variations are

I

-- * -.I I | |-
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I permitted in v only and, after variations, v is set

equal to 4. In practice, the functions, G, H and a are

evaluated at a previous iteration and treated as known

J on the next iteration.

ror slow viscous incompressible flow the functional

I has been given by Zarda, Chien and Skalak (1977).

The incompressibility condition is included by using

the pressure as a multiplier. The functional is

I(vwep) = !V[21d d -pva ,] dV+I v t dS (3.1-8)

where
1

d = (v + (3.1-9)

velocity is specified on S1 and t is a prescribed1
traction on S2 . The Euler equation is

21id aB, - P' a = 0 (3.1-10)

while the boundary condition on S2 isI
2Vd anB -pna = (3.1-11)

Steady heat conduction with constant thermal con-

ductivity has a variational principle very similar to

incompressible potential flow. The functional is

^ .
I(T) - v[kT, aT,a - Tr] dV+ Is2TqanadS (3.1-12)

where qa is a prescribed heat flux on surface S2, r is

the rate of heat generation and T is prescribed on S1 .

I
iI
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I The Euler equation is

IkT'aa + r = 0 (3.1-13)

and the boundary condition on S2 is

- kT,an q n (3.1-14)a a a na

The unsteady heat conduction equation is non-

selfadjoint due to the presence of the first time

fderivative. As a result the operator is not potential
and no variational principle exists. With certain

jrestrictions, however, the equation can be transformed
into a symmetric form. For linear thermoelasticity,

i for example, the Laplace transform in time can be used

Ito render the equations symmetric (Nickell, Sackman, 1968).

The method has the advantage of having the initial con-

Iditions contained explicitly in the functional.
The discussion of variational principles would not

I be complete without a brief mention of the Principle of

Minimum Total Potential Energy. The principle is

applicable to isothermal motion of an elastic solid.

It states that minimizing the sum of the strain energy

and the potential of external forces is equivalent to

satisfying the equations of motion. Use of the principle

requires the specification of the strain energy func-

tion. For isotropic materials with nonlinear con-

stitutive equations, a suitable form that will

I[
, _ __ _
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approximate the behavior of the material can usually

be found by using functions of the strain invariants.

3.2 General Method of Construction of Variational

Functionals

Several of the more well developed areas of

structural and fluid dynamics have in common the exis-

tence of functionals and variational principles. Linear

elasticity, heat conduction in solids, slow viscous flow

and potential flow are just a few of the areas. In most

cases, determination of the existence of the functional

for a given differential operator has been a matter of

trial and error. If the operator represents the Euler

equations of a functional, that operator is the gradient

of the functional in a variational sense. The operator

is then said to be potential. Finlayson (1972) presents

a method based upon Frechet differentials to easily

determine whether an operator is potential. He uses

the method to demonstrate that a functional does not

exist for steady motion of an incompressible viscous

fluid unless

v x (V x v) = 0 or v. Vv = 0 (3.2-1)
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.1 where v is the velocity. The following is a summary of

Finlayson's work leading to the use of adjoint variables

to construct a functional for non-potential operators.

I The Frdchet differential of an operator N(u) in

I the direction * is defined as

' N(u + 0) -N(u)
N lim =5[ N(u+ W ] 0

(3.2-2)

IThe operator N(u) is the gradient of a functional if the
Frechet differential Nu is symmetric, i.e.,

I f/Nu dV = fNu dV (3.2-3)

For a potential operator N(u), the functional can be con-

I structed by

F(u) = fuf N(Xu)dXdV (3.2-4)

For the nonsymmetric operator, N, the definition of the

"adjoint" operator, N*, is

N (u,u) = N u (3.2-5)

where Nu is obtained by integration by parts, such that,

U * ~' *

fu N udV = !uNuU dV + boundary terms (3.2-6)
u

The functional for the operator N(u) and its adjoint

N (u,u) is

I(u,u ) = flu N(u) - ug - u fI dV (3.2-7)

!
II.
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The Euler equations are

j 6u*: N(u) - f= 0 (3.2-8a)

6U Nu -g=N (u,u) -g=0 (3.2-8b)

Thus,if the problem is expanded to include the adjoint

Iequation, a variational principle exists.

3.3 Compressible Newtonian Fluid

Constitutive Relations

The stresses at a point, P,, consist of a

i pressure, p, and viscous stresses, tas, such that

I P8-P6 +t8 (3.3-1)

The Newtonian fluid model for the viscous stresses assumes

yt y = v ,6a + 21d (3.3-2)

where X and )j are coefficients of viscosity, v is the

i velocity and the rate of strain tensor is

d I (v ,+ v , (3.3-3)

The equation of state for the pressure can be written as

p = pRT (3.3-4)

For a perfect gas, the entropy function per unit mass is

S = - log (3.3-5)

y-l

and the internal energy, per unit mass,

E = CvT (3.3-6)

i i • ,, mv
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If C is the specific heat at constant pressure, and

i v is the specific heat at constant volume, R and y are

defined as

R RC - C
p v

Y C = C /Cv

The heat conduction law is assumed as

q= - kT, (3.3-7)

where q is the heat flux vector, k is the thermal

conductivity and T is temperature.

The Governing Differential Equations

The equation of motion for the fluid in spatial

I coordinates is assumed in the form

Dv
--- P - PfL = 0 (3.3-8)

Dt a'

where f is the body force vector per unit mass. After

using the Newtonian fluid model and the perfect gas law,

the equation of motion becomes

S Dv - 21jd + (RTp) " Pf) =0 (3.3-9)

The equation of continuity or conservation of mass

is

Dp + =0 (3.3-10)

I
i i- *l-- - _____
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I The energy equation is

I DE + ( - q + pf v (3.3-11)

~Dt 2 D v

I Dotting the equation of motion into the velocity and sub-

( tracting gives the thermodynamic energy equation,

2E D P (3.3-12)

I After inserting the Newtonian fluid model, the perfect

gas law, and the heat conduction law, the result is the

temperature equation,

DTC v- + RTv , A a v ,S- 2jd d -k T, a=0I (3.3-12)

l The Functional

In the following, the form of the functional in

J Eq. 3.2-7 corresponding to the preceding equations

is given. The boundary conditions are extracted from

the volume integral by integration by parts of the

stresses and the temperature. In addition, adjoint

boundary functions are added to enhance the appearance

of symmetry. Let VF denote the fluid volume and S its

surface. SF is that part of S where tractions ta are

specified anl SF2 that part where the heat flux q a

is specified.

i • __•
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The functional is given by

I t 2  Dv , * ,
I-I I {v* 11+ Av v,+ 2id d -RTpv

ciV Dt aIZ Bla cz8 aa af tl VF

V Dp * * DT + *+p -~ppv 1~ +T C -+T RTv -

a ( HEIp V Dt a'a

't v-T 2u d d +k T, T, adVdt-

t 2, 
-

f f I + v t a dSdt +
tI SF 2

I t 2
+ f f {T q n + Tq n } dSdt (3.3-14)

1 1$F 2

The Euler Equations and Boundary Conditions

I For the functional defined in Eq. 3.3-14, the

Euler equations in the primary variables are

i . Dvc_2xu

6v*: ( D--{ -D vv -,2 d + (RTp), p = 0

(3.3-15a)

6c*: RP_ +P = 0 (3.3-15b)6 : Dt vaa

I * D

6T C DT +RTv -A I V V - 21 d d -s-k T, 0T : v  + R~ve~ ci8v,8 u

(3.3-15c)

The remaining Euler equations, mixed in the primary

variables and the adjoint variables, are

)
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I + (+rT)- z'(r ,.,'c "rd,),, -

[,. C T, o (3.3-15d)

p p V' + RT +
e (3. 3-15e)

T: (" r" vs),, 4" - of

I * AT += 0 (3.3-15f)

I The boundary conditions are

0-nS Avo )7 + , d,,, -n, - R Tp 7L,(.3-16a

(3.3-16b)

| -4:"--'T"
L

I -m - 7 0 1 (3.3-16d)
W 

6.

UIu mi
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3.4 Inviscid Isentropic Fluid

Assumptions and Constitutive Equations

This fluid model is a special case of the compress-

ible Newtonian fluid discussed in the preceding section.

Since this model is used frequently in various analyses,

its assumptions, equations and functional will be written

here explicitly.

The assumption of negligible viscosity is expressed

by setting the constants and i of the Newtonian fluid

model equal to zero. Consequently, the viscous stress

tensor t vanishes identically.

The equation of state for a perfect gas is

p = QRT (3.4-1)

With the assumption of perfect behavior the entropy

function is given by

S(p, ) = R log -
-  (3.4-2)

Again, Cp is the specific heat at constant pressure, Cv

is the specific heat at constant volume and

R = C - C (3.4-3)Ip v
7 = Cp/Cv (3.4-4)

The isentropic assumption for a moving fluid takes the form

DS 0 0 (3.4-5)
Dt
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Thus the energy equation in terms of entropy i1
SDS 1 (3.4-6)

Dt p , a

leads to q 0 or no heat conduction.

Body forces will not be considered, but may easily

be included.

Full slip will be assumed at all boundaries, and

only the normal velocity of the fluid will be prescribed.

It will be assumed that the internal energy per

unit mass, E, is a function of temperature only, in the

form

f E = CvT 
(3.4-7)

Governing Differential Equations

Without viscous stresses, the equations of motion

reduce to

Dv
p - + (RTp) = 0 (3.4-8)

when the perfect gas law is used to eliminate the

pressure.

jThe continuity equation is

Dp +Pv = 0 (3.4-9)I5Dt aa

With the isentropic assumption and the lack of dis-

I sipation, the temperature equation is simply

C T +RTv 0 (3.4-10)
v Dt ,•,

I
ri
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The Functional

I Insertion of the preceding equations into Eq. 3.2-7

leads to the functional to be presented in the following.

I Without the wiscous stresses and heat conduction,

j integration by parts is performed only on the pressure

gradient. Thus, the only surface integral in the

functional contains a specified pressure.

The inviscid isentropic flow functional is

y"R + pt', +'* Dr

+ ,TC 4 V R T ., Jv Si-

Sjr 7 (3.4-11)

The Euler Equations and Boundary Conditions

For the functional defined by Eq. 3.4-11, the

Euler equations on the primary variables are:

gV: ' D v + (RF P) " 0 (3.4-12a)

+ . v (3.4-12b)
Di"

9TO: Cv o7 + RTv,,,, " (3.4-12c)

I I
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The Euler equations, mixed in the primary and adjoint

variables, are

I-

I -. T",V7: -(RT)- - (3.4-12d)

lot - RTC,. '.t4l~

i 6T: -C,' Cv w." R 7..,-Rpv4,o (3.4-12f)

I
The boundary conditions are

I
A (3.4-13a)

vevj , +T#RT,.i I = V (3.4-13b)

I

I_____________________



1 24

1 3.5 Elastic Solid

The equations for thermodynamics of an elastic

solid are presented here only for completeness. The

functional given in this section is not that of the

Principle of Minimum Total Potential aergy but instead

| is the adjoint functional constructed by the present

method. An example will be given in a subsequent

chapter of an elastic membrane with geometric non-

linearities. It will be shown that, in this case, the

results are identical to those of the Principle.

The Constitutive Equations

j Let U be the internal energy per unit mass, T the

temperature, and S, the entropy per unit mass. The free

Ienergy A is defined as
A = U - ST (3.5-1)

For a linear elastic material, the free energy will be

0A  1 2 1 2
0 + eabeab aa yT (3.5-2)

where X and u are the Lam6 constants, 8 is the pressure

coefficient and y is a specific heat parameter. Thus,

the material stress tensor is found to be

SA%

Sab = 0 e a + 2e - 8T6ab (3.5-3)

Further, the entropy function is given by

S A _ 1-Be + 1 YT (3.5-4)3. T PO aa PO

i
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I
In the above, the material strain tensor is

e U +u + u u b) (3.5-5)
eab 2 (Ua,b +Ub,a c,a c,b

U The heat conduction law is assumed in the form

OI q0  = - kT, a  (3.5-6)

Vaa

where q0 is the heat flux vector, and k is the thermalI a
conductivity.

Governing Differential Equations

I The Equation of Motion

The equation of motion for the elastic solid in

material coordinates is assumed in the form

I [Sab(6cb + Uc,b)], a + P0fc - p0ac = 0 (3.5-7)

where fc is the body force vector per unit mass, and ac
is the acceleration vector.

The Temperature Equation

The local form of the First Law of Thermodynamics

minus the rate of change of mechanical energy, in

material coordinates, is

P0  - Sabeab + q - P0r = 0 (3.5-8)

The rate of change of internal energy 6, can be

expressed in terms of the free energy A, entropy S and

temperature T, as follows:

*I.
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[I

A V+ST+ TT +-C 4 +ST,#T

T + - -lbe (3.5-.9)

With this substitution for U, the energy equation becomes

P k0 ST + q0  - P0r = 0 (3.5-10)
a,a

For the specific free energy function given, the entropy

rate is

1 1S=- YT (3.5-11)p0  a a

and the equation takes the form

I yTT -kT,aa - p0r + Tea 0 (3.5-12)

The Functional

The functional presented here is obtained from

I Eq. 3.2-7 by insertion of the preceding equations. It

differs from the Principle of Minimum Total Potential

I Energy primarily in the inclusion of the temperature

equation. Integration by parts is performed on the

acceleration, the strain rate term in the temperature

[ equation, the stresses and the heat flux gradient. The

latter two will contribute to the boundary conditions

onSS and S$ 2respectively, after the variation. The

specified adjoint boundary functions are included to

enhance the appearance of symmetry.

L _ _ _ -
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The functional I is defined by

I =f [- 4 S&5 ~S+(4b Ut 1. e..

k+ + TV Tt - pTr- e.T),]Ji

V1/(Lt + # ld +

T f (3.5-13)

Euler Equations and Boundary Conditions

I For the functional defined in Eq. 3.5-13, the

I Euler equations in the primary variables are

SL t4:. AII(~ +L) eaf - ' 0 (3.5-14a)

I r:YTt -kT ..- er 4.L o 351b

'I The Euler equations, mixed in primary and adjoint

[ variables, are

f + A&(tL; 4 + 4L L a6) - 1

- ~ o(3.5-14c)

ST: -r - tC(3.5-14d)

____ ___ ____ ___ ____ __

L
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The boundary equations are

Ofl S " 4- IV (3.5-15a)

I f0I .,) +

* + Ut eb X f ) -

1 74), (3.5-15b)

o J -k n - k=r (3.5-15c)
'A0.

T (3.5-15d)

3.6 Variational Principle for Fluid Structure Interaction

The functional for fluid structure interaction to be

I presented in this section is constructed from the governing

differential equations of each region. The condition of

I continuity on the interface is expressed as an admissi-

bility requirement on the trial functions and, therefore,

does not appear in the functional.

In the following, general coordinates have been used

with the vertical bar signifying covariant differentiation,

and the metric tensor denoted by gab or gW The use

of general coordinates in this principle is a simple

extension of the previous sections and is justifieO

solely on the grounds that it contributes greatly to the

generality of the formulation.

I

L-
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1 Consider the region R divided into two volumes, VF and

VS and bounded by surface S (Fig. 3.1). Let Vsbe that part f
of the region containing the structure. The portion ofI '~
S bounding VS is Ss. The remaining part of the region,

VF, contains the fluid. The portion of S bounding VF

is S The surface S will be partitioned two ways:

first, S; S FF and second, SS ,F SSsIS 2'1 FI'F2 1S 2' 1 2
Each partition will account for the entire surface S.

Make stationary, the functional

I fu bb + b) + +
+ krTz ga + Tr TTr - .r

I - RT v'1 / " +

1- OT" RTMT v 'T'I', -l
II

2, -'rT J'" + hr' T T ] JvJ +
,,t V,,

+ CS f .4
+

,-| --- *II IpI..
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I + f~ [T'n +TrA] SJ It
+; Ti.^ ..j~d

iL

[T+ f .iro + T o 1 3.6-1)ccI
C* *

among functions u ,u ,T,T , continuous and defined on

V S and SS, satisfying

i C ^C * ^*
u = uu =u on S S (3.6-2a)

T T= on SSI (3.6-2b)

and among functions vS' ,V a , ,T,T , continuous and

defined on VF and SF , satisfying

v = v , v = v on SFI (3.6- 3a)

T=T , T =T onS F (3.6-3b)

where

D- a8 (3.6-4)

Further, let the interface SI be the common boundary

between VS and VF. Admissible structural velocities and

fluid velocities must be continuous across SI, and

admissible fluid temperatures and structural temperatures

must be continuous across SI .

iI- *--*-l - - ----
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I
Stationarity of this functional is equivalent to

I the satisfaction of the governing differential equations

and assures continuity of the traction vector across S[
I
I
I
i
I
I

I
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I
4. NUMERICAL METHOD FOR INVISCID COMPRESSIBLE FLUID

AND AN ELASTIC SOLID

4.1 Spatial Discretization of the Fluid Functional a

Matrix Equations

Proceeding by the finite element method, the fluid

volume, VF , is subdivided into elements of volume VFe,

such that there is no gapping or overlapping, and the

entire volume is included. The functional I will be

taken as the sum over all elements of the element

functionals I

Within each element, the variables will be approxi-

mated by the product of interpolation functions and

nodal parameters. These parameters will be taken to

be the value of the variable at the spatial point or

node of the element.

Specifically, the approximations are
S* **

=N~ v N.v
V V. l.

1 1

P =Lip. p = LiP i

T = M.T. T = M.T. (4.1-1)

Notice that the following two expressions are equivalent:

a i Nva V = [N ]'{v}
1

The vector of nodal velocity parameters {v} will be

ordered in coordinate sequence by node. Let [N xy

be a row matrix such that

- .
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v [Nxy] {v} (4.1-2)

IThen the elemental functional becomes

I I jTT.4
t

Vf,,f? r IT[ fL, I -4V 4

+, L"I~~~t ~.irr/ 
I

I +s f ,f I L"' , f[ [,,,L I ) (N] VLSVJI

I !

|

r T

J f fV"I [ fmj T~ 1 v. [LI Vji +

e T T

F.F
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I

Due to the linearity of the functional in the adjoint

variables, enforcing stationarity with respect to the adjoint

j nodal parameters leads to equations in the primary nodal

variables only. The stationarity is expressed by

0; 0; = 0 (4.1-4)
S{v } {p } a{T

( and the resulting equations are

[VMj {v} + [WI {v}- {P} = 0 (4.1-5a)

I [RMj {p + [RVfv}) 0 (4.1-5b)

Ts [TM {T + [TV] {v} = 0 (4.1-5c)

These global matrices have been assembled by standard

I techniques from the following element matrices:

lr

a (4.1-6c)

I
[RMk, I/v[LIT LU LSV (4. -Gd)

ee[TV~ V 1 , f[M ] [[IV[~lV [N (4.1-6b)

- -- 31 -- - -

____ 
-~~[j d f-7
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I
(4.1-6f)

: • (4. 1-6g)

The Bilinear Quadrilateral Fluid Element

The isoparametric quadrilateral with linear inter-

polation functions was chosen since it is the lowest

order quadrilateral that will produce a continuous

variable field. The element matrices are evaluated by

Inumerical integration using a two point Gaussian quadra-
ture in each coordinate. The mapping functions and all

variable interpolaton functions were chosen to be

N. = (i+ &i) (i+ nn i ) i = 1,2,3,4 (4.1.7)

f The end product of the element routine is an elemental

contribution to the global rate vector. Given the current

value of the nodal parameters, the element contributions

are calculated and summed by connectivity. Lumped masses

are used to simplify the procedure.

4.2 Upwind Weighting

Convected Inertia Terms

The recent work of Heinrich, Huyakorn, Mitchell

and Zienkiewicz (1977) forms the basis for the present

- - -V- -- -. ---
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use of upwind weighting in finite elements. The authors

have established the nature of the numerical instability

associated with one-dimensional transport problems. By

* employing an asymmetric or "upwind weighted element,"

they were able to demonstrate the values of the winding

* parameter that lead to unstable solutions to the difference

equations. Their work indicates that large coefficients

of the gradients are the source of the instability.

The equation solution is stabilized by modifying

the weighting functions of a weighted residual method.

For example, for a one-dimensional element, the weighting

functions are

W. = . (x,a) =N. (x) + LF (x) (4.2-1)

The authors chose

F~x W - x~ x(x -h) (4.2-2)

where h is the mesh size (Fig. 4.1). The effect of the

upwinding is to shift the elemental emphasis to the

direction of upwind. This is accomplished by giving a

the sign of the velocity v along the element. Their

work shows that a certain value of a will lead to minimum

error in the difference equations. A sizable reduction

in error is reported when using an optimal value of

upwinding instead of full upwinding.

The authors have carried their numerical work to
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two dimensions although it was not possible to extend the

j analytical work. Since two-dimensional interpolation

functions are formed from products of one-dimensional

I interpolation functions, the two-dixlensional weighting

functions are formed similarly. Introducing 6 as an n
direction winding parameter, the functions for the

bilinear isoparametric quadrilateral are

Nli zC4C, )( (4.2-3)

I Notice that these weighting functions reduce to the

g interpolation functions for the case of no winding.

The authors note that, in a true method of weighted

residuals fashion, these winded weighting functions are

applied to all terms in the residual. The analogous

g development focr the present set of nonlinear equations

has not been demonstrated.

Typical Nodal Equation in One Dimension

To see the effects of upwind weighting when used

in the present set of nonlinear equations, the typical

nodal equation for a one-dimensional assemblage of

elements will be presented. The elements are line

elements of unit length using linear interpolation func-

tions. The upwind weighting functions will be applied

to the convected gradient terms only.
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I Consider two line elements of unit length. Let the

common node be labeled 2, the upwind node be 1, and the

downwind node be 3. Each node will have three nodal

parameters: ui,Pi,T. By straightforward evaluation of

the matrix equations, the three typical nodal equations

are found to be

VV-,)- + +~pg 6~%) .0 (iL0 1

4 f(~ -V (, 1K)-V) + -,-J4)e, -

I~~1 (v-ib;~'-z- etgo-)~ -

(4.2-5a)

I. z 3

+--( --w0....) .. + e- -(.).. I... . . .

(42-b
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It 3rT, +1i? 4 - T,-)( 4.4v +
m

J- (T3V2. + 1 (T3 )_. 1)V

tR

1 (4.2-5c)

For a local velocity positive, or from node 1 to

node 3, a = 1.0. The gradients from the left or upwind

element receive a greater weight than corresponding

gradients from the downwind element. In the momentum

equation, the upwind gradient, v2 - V., has weight

I increased by a, that part including p, receiving the

largest. The downwind gradient, v3 - v2, receives

I diminished weight when multiplied by v21 and even further

reduced weight when multiplied by v3. In both terms,I3
P2 receives more weight than P3. For negative velocities,

I = -1.0 and all effects are reversed.

Typical Nodal Equation in Two Dimensions

When implementing upwind weighting in two dimen-

sions, several additional effects occur. Because of the

multiplicative generation of the weighting functions, the

y direction winding affects the x direction equations

substantially. Thus, when considering a flow with a
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dominant velocity direction, the concept of cross winding

arises. Velocity in this cross direction significantly

affects the response of the main flow.

j To see this, partial sums of terms from a typical

nodal equation will be presented. The elements used

will be bilinear squares with unit length sides (Fig. 4.2a).

All nodal parameters will be interpolated linearly and

all variables will use the same interpolation functions.

Upwind weighting will only be applied to the convected

terms.

The interpolation functions are

N1  (i-x) (I-y)

N2 (x) (- y)

N3 (x)

N4  (1 -x) (y) (4.2-6)

The weighting functions are

W, D- X) - 31WcI-XIf(i -y) - SPY(,- Y)]

I W X 4 3(I-x )](4-y)- 3PyO-Y)]

w3L x +3o(1-J y

IW
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To see the interaction of winding in the two direc-

tions, consider the nodal equations for two elements with

a connon side (Fig. 4.2b). The equation for v at node 3

contains convected inertia terms that are quadratic ir the

velocities from all nodes. For purposes of comparison,

terms in v v V V from the v and v equations4 x3 x4
will be listed.

From the v equation, the terms are
x 3

IV, j(-V) [( 1 (1 +

,vtop ftk 4.)p, # (i # 4 P,1
-4- u)OLf5 4-)p, + - ).1 -

+ -VX(J-.71) _ -) e+ (A e) -

~a [(-L --, [4,) P's a -, .) e. I -t el + (4 **p J

(4.2-8)

I

( I 1I L



I,
42

From the v equation, the terms arex4

*/- U IK)p, +(- P, +

(S."4,60) 4' 4) 440g,) P.i)

I Ol_W + (41
~.4IBtf( to4 ) q 4#) I-L N[LW + 4t"P3 4
- jz'')((k)pq + (4 ' 9, )f+P

4 Pf +(*~q LAi~)~ +

(4 ~~ (4.2-9) - 4

and v equations. A one row strip of two-dimensional

4 V,

elements cannot solve a one-dimensional problem accurately

unless B = 0.

:I
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To further illustrate the convected inertia terms

in the typical equation, selected terms from the v

equation will be presented. The particular terms involv-

Iing the y velocities are given, followed by simplifica-
f tions to clarify their meaning.

Let all nodal values of the density take on the

uniform value .0" First consider a = 6 = 0, or no upwind

weighting. With these simplifications, the v terms
Y3

reduce to

2P0j {(2v +v +3vy) (v -v ) +(v +2v -12v -6v +144 (2yl+Vy2  YlYJ Y Y2 Y3 Y4

+v +2v )(v -v )+(3v +2v +v )(v V)

I (4.2-10)

Notice that the appearance is that of weighted sums of

I the three available velocity gradients.

Letting 1 = 1 and c(= 0 corresponds to a dominant y

velocity across the element row. The terms then reduce to

j4p °

0 {(v -v +V -v )(Vy-V )+(V -v +6v -6v +-v ) (2 3 -Y4  2y-V y y) y2  y 3  y4

+vy5Vy6) y4 Y3 )+(V v Y4+V v )(v -v

(4.2-11)

Although the form of weighted sums of velocity gradients

can still be seen, the weights have changed. Terms on the

upwind row, v ,v yV, are slightly increased, while

I' 3 y5
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I
terms on the downwind row, v ,v v 6 are substantially

jreduced.
Finally, consider a = 6 = 1 or dominant velocitiesI

in the positive direction of each axis. The terms reduce

to

~00PO {(14v y 14v )(v -Vy ) +
144 YI 2 Y2  Y

+( -22v +22v -30v -2v +2v )(V y-vy3 ) +-2y Y2 Y4  y5  y6

+28v v + (- 4v +4v )(Vy 6 -v )5 (4.2-12)28V3 Y4 Y5  Y6 y6  y5

Here the shift to upwind is less obvious.

Upwind Weighting on Terms other than Convected Inertias

In a consistent application of the present varia-

tional method, the same weighting functions are used in

all terms of an equation. To assure stability, however,

it appears necessary only to apply upwind weighting to the

convected terms. In practice, nodal equations of elements

without an upwind neighbor are ill-conditioned by the

application of such weighting to the entire equation.

This difficulty may be avoided by prescribing nodal

values for upwind boundary nodes. Such artificial bound-

ary conditions are not desired since it may be difficult

to find appropriate values to prescribe prior to solu-

tion of the problem.

i
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I
To illustrate this, elements of the density rate

matrix [RMI will be presented, where

[RM]e = IVF [L*1 [LI dV (4.2-13)

e

Using the bilinear interpolation functions for [LI and

the upwinded weighting functions for [L ], the elements

of the first row are

RM(l,l) = 1 (1 - . B)

1 1 1 1RM(I,2) = a - )(! - 1 6)

1 1 1 1
RM(I,3) = (1 - ) - )

1 1 1 1
RM(I,4) = (- - ct)(1- - S) (4.2-14)I

Consider the case of full a winding, and no 8 winding.

Two of the terms become negative, while following a

lumping procedure, the sum of these terms is zero. When

assembled into a global matrix, there will be no nonzero

terms added if there are no upwind neighbors.

The momentum rate or mass matrix behaves similarly.

This matrix is

[M2 *T

FVMe  I IN [N] [LI {P} dV (4.2-15)

Using the bilinear functions for IN] and IL], and the

winded functions for IN ], the lumped mass is

I low
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v M(1, 1) - (4.2-16)
360

where P is an assumed uniform value of the density,

and ax 1, P = 0. For comparison, the result with no

winding and uniform density is - r for the lumped mass.

4.3 Discretization of the Elastic Solid Functional

Membrane Element

The elemental contributions arising from the

partial differentiation of the leading term in the solid

functional with respect to the nodal values of the adjoint

displacement will be called the element restoring forces.

This membrane element will have structural displacements

that are linear combinations of the two sets of nodal

j values, i.e.,

u x N I  2 N

{uJ N0 N2

Y2  (4.3-1)

The adjoint variables will be interpolated similarly.

Evaluating the strains and assuming a linear elastic

mraterial, the stresses are found to be

N
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I S = Eexx xx

1 = s 2Ge
I Sxy = yx = Gxy

1 yy =0 (4.3-2)

The leading term in the element functional is found,

after insertion of the precedina, to be

L

N, u NOA

- , (u N ,,+ L 'x , (4.3-3)

The element restoring forces are

L

A + 0 U ))JI .3-4a)

-Q,, U!,,, h <,+ N,,* h E ,U,,,+
+ x Y ,,,,+;", t Y, ,. -A

I

- -"- -L i
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I

I

L Y, N (4 . 3 - 4c )

* Ij{ h ~ NZ" hF£(u, L4 y

, x 
V iV 

. X 

"

These results are identical to those obtained by

retaining all terms in the virtual work equations for

large deformatlons. To reach the simplified form usually

used in practice, the assumptions required are

I. 1 + u iX,x

2. 2 x,x xx

3. s 0 but , $

These assumptions are consistent 
with the practice of

neglecting higher powers of small 
terms.

_ _ _ _
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4.4 Fluid Structure Interface

Typical Nodal Equation on the Interface

The condition on the interface SI of the fluid

f region VF and the structural region VS is continuity of

velocity and temperature. For the specific case of

inviscid flow, this is reduced to continuity of the

normal velocity. In practice, this means the equation

r for the normal velocity of a node on the interface will

contain contributions from elements in both regions.

The example presented here is the momentum equation

for a node common to two unit sauare fluid elements and two

membrane elements (Fig. 4.3). This equation will containcon-

vected inertia and pressure terms from the fluid element

and restoring forces from the membrane. In addition, the

nodal mass will be the sum of lumped masses from the

fluid and membrane elements.

The equation for the y velocity at node 3 will be

presented. An external pressure of magnitude

p will be applied to the membrane. Each membrane element

will have a thickness h and uniform density P . In this exam-

ple, contributions from the x velocities to the convected

inertias will be neglected. The fluid will have a uniform

density pF and pressure p0. These conditions are

appropriate for initial motion of the membrane into

stationary fluid.

Some contributions to the equation for v are:
y3

i_

I- - -- - I-- -- -- - - ----------
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I11
I1 12 1

fluid lumped mass = + 9 P3 +  9 4 +

18 5 +6 P6 = 2 F
1 1 1 1

pressure gradient = -i- 1 P2 - P 3 - 1P 4 -

S1 1
12 P5  12 P6 = -P

external pressure = 1 - 2 -6 1P5  -p
- Pl-5 iP 3 -6iP

Let a = 0, P = 1, and QY3 be the s1ring restoring force.

The equation for v3 is

Y 3I " ' V ' V --Y ( -V -V
y - 4v- -v )- vy ( y + -V

I -6,% % -w, )y.w) + 4v ,,+%-, (,-,
1(4.4-1)

jIf p has the value of the rest pressure of the fluid,

there is no pressure gradient across the membrane. If the

fluid velocities away from the membrane can be neglected,

the equation simplifies to

+9h~9)4y' Qy 3( [v '.)"V (4.4-2
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Continuity on the Interface

The only condition on admissible trial functions
on the interface surfaceS I is that the velocity and

temperature fields be continuous. Continuity of trial

functions is a commnon requirement in finite element

procedures and is generally met by requiring elements

to be compatible. The following will investigate the

r compatibility of a structural element and a fluid element.

To facilitate this, consider the mesh segment

shown in Fig. 4.4. The elements 2,3,4 and 8 are fluid

elements, elements 1,5,6 and 7 are structural elements,

and nodes 1,5 and 9 are the interface surface nodes.

Let u arepresent the structural displacements, v (Xbe

the fluid velocities, N e be the interpolation functionI efor node i in element e, and N.i denote that function

restricted to the interface. The triangular elements

will allow linear variation in the variable fields and

ethis will be assumed for both regions. Let u NSbe the

function u a restricted to element e on surface S1.

Then in element 8, a fluid element, the velocity is

8V O = EN iv Ot i = 5,6,9

[ 8 8 8
= Fv + Nv +N v(4-35 cE5  6 (1 9 aL9 (4-3

If N 6S 0 as is common, the velocity on SI is

v8 =N 8 v + N8 v (4.4-4)
S 5



52

In a similar manner, the temperature is

T8 = M T5 + M sT 9  (4.4-5)

J In element 7, a structural element, the displacement is

=N7u + N7u + N 7 u (4.4-6)5 ccz 8 U 8  9 ci9

Then, on Si, the displacement becomes

7 7 7
U s N u + N u(

5 C 9 Ux 47

if

7
N =0

and the temperature is

T T= M7sT + M97 T (4.4-8)S S 5 9 S9

Since Ne = 0 at node j # i and N = 1 for node i, at
1 1

node 5, the interface values of the field variables are

8
v =v

S  a5

8
T = T5  (4.4-9)

and
7

U = uca

7T = T5  (4.4-10)

Since the interpolation functions are not time dependent,

the structural velocity is

I

in
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u Z Ne6 for i in e (4.4-11)

Then at the nodes, the velocity and temperature are

continuous and equal to the nodal value.

The continuity along the interface from node 5 to

node 9 is expressed as

8 .7v =U
aS aS

T8  T 7  (4.4-12)S S

or
8 8 7. 7.

N v +N v N + NU9
5 s( 5  9 sQ9 N5s 5  N9 u

8 8 7 7

M 8T + M aT M 7 T + M T5 sT5 9 sT9 5 sT5 9 sT9 (4.4-13)

This can only hold for arbitrary values of the nodal

parameters if the interpolation functions on the inter-

face are such that

8 N 7
5 S 5

8 S 7

M8 =M

SM 8  = M7  (.-4
9s  9 ( . -4

This is the usual requirement for compatibility of

elements.

71-
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I 4.5 Time Integration

The actual form of the matrix equations is an

integral over time, e.g.,

t r t [[VMJ{v} + [wli v} -{P] dt = 0
{ fv * 1(4.5-1)

This integral equation is satisfied in practice by

solving the ordinary differential equation obtained by

setting the integrand to zero for all time.

For reasons of simplicity in implementation, a

Runge-Kutta integration package was used. This routine

calculates end of time step values based upon a weighted

i average of the rates obtained from four evaluations

during the step.

i Although this is a highly nonlinear equation set, the

time step criterion for linear problems has proven

adequate. Specifically, the time step is chosen such

that information propagating at the local speed of sound

travels no farther than one element width in one time

step. In practice, one sound speed is chosen, usually

the rest speed of sound. The maximum time step is

calculated based upon the smallest element in the field.

Since local sound speeds may rise considerably above the

rest value, the calculated time step is halved.

Parametric studies of numerical solutions have shown

this to be adequate.

U----- - . 11, . ~ . . .
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f5. NUM4ERICAL EXAMPLES

Several numerical problems are presented. Their

purpose is to exercise the major capabilities of the

variational formulation and its computer implementation.

Since a combined problem with compressible isentropic

fluid and a large deformation structure is quite complex,

simpler examples are given first. Understanding of these

simple examples was essential to adequately solve the

combined problem.

To verify the fluid element used in the present

method, problems of a one-dimensional wave tube have

been solved. This problem can demonstrate extreme fluid

motions for which a limited analytical solution is

available.

The wave tube is enlarged to two dimensions by

examining a radially expanding cylinder in an infinite

fluid. Valuable insight into the functioning of the

upwind weighting is obtained here.

The final example is transient motion of a

membrane with fluid on one side. In the first of two

J cases considered, initial motion of thq membrane dis-

turbs the fluid. In the second, a pressure wave

traverses the fluid and excites the membrane.
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15.1 Piston Wave Tube

The one-dimensional gas dynamics of a rigid piston

moving in a tube filled with a perfect gas was investigated.

The pressure and velocity of the inviscid gas were calcu-

lated using a prescribed motion of the piston. The move-

ment of the piston is modeled by changing the coordinates

and velocities of the nodes assigned to the piston

surface. When the element in front of the piston is

reduced to a certain size, it is eliminated from the

problem solution.

j The rest speed of sound for the following examples

is 1000 fps. In the first example, the piston is started

I impulsively with a speed of 500 fps and keeps this

g speed for all time. I-i the second example, the piston

velocity increases linearly from rest to 500 fps at .002

1 sec, then decreases linearly to rest at .004 sec. The

parameter ax is the upwind weight in the direction of

I motion. With one exception which will be noted, symmetric

weighting was used in the transverse direction. The time

step was half the linear stability limit based upon the

rest speed of sound and the initial configuration mesh

size.

Figure 5.1 presents the fluid velocity and pressure

for the constant speed piston. The calculated pressure

ratio across the shock agrees to less than 1% with that
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given by the Rankine-Hugoniot relations (Liepman, Roshko,

1957). The smearing of the shock discontinuity is

typical of the finite element solutions. There appears

to be very little ringing or oscillation in the solution

behind the shock.

The results for the second piston example are

presented in Fig. 5.2. The example contains a comnpres-

sion wave which changes to a shock as well as an expan-

sion wave. Also presented are some early time solutions

by the method of characteristics for comparison.

Agreement between the two is quite good in the expansion

wave but due to smearing of the finite elements,

agrees only fairly in the high gradient region of the

shock front. Again there is little ringing near the

peak, and the fluid behind the wave is reasonably still.

The deterioration of the solution as a. is decreased

to zero is presented in the next figure (Fig. 5.3).

Deviations from the full upwind solution (ai = 1.0) are

noticeable in the case of ai = .5. The solution for a- 0

is barely recognizable. These results are consistent with

those of Zienkiewicz (1977).

It is a characteristic of the present upwind

weighting scheme that winding in one direction affects

the solution in the other direction. An example of this

is presented in Fig. 5.4. The calculated velocities for

e=±1 differ significantly from the 5 = 0 solution
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of Fiq 5,2

5.2. Cylindrical Wave

To demonstrate the two-dimensional capability of

the present method, the piston problem was expanded to a

cylindrical problem (Fig. 5.5). The goal is to calculate

velocities and pressure in an initially still fluid

surrounding an expanding cylinder. The cylinder radius

and velocity are prescribed functions of time.

The init- 1 radius of the cylinder is 1.0 ft. Its

velocity increases linearly to 500 fps at .002 sec then

decreases linearly to zero at .004 sec. The rest speed

of sound is 1000 fps. The physical problem is in fact

one-dimensional in the radius. A solution procedure

using the method of characteristics is given by Rudinger

(1969) but was not used because of its complexity.

Figure 5.5 also presents the calculated radial veloc-

ity and pressure. Since there should be no tangential

velocity, the appropriate value of the tangential or cross

wind weighting is zero. Table 5.1 shows the effect on

the main flow caused by the inclusion of cross wind

weighting. The local value of the winding parameter is

F 1.O0x sign (v
t

The variation in the radial velocity and pressure are

evidently associated with the fluctuating sign of the
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very small taruqential velocity.

15.3 Transient Motion of a Membrane

J The most complex problem attempted was transient

motion of a membrane wetted on one side by an inviscid

compressible fluid. Such a problem exercises all the

features of the computer program and illustrates the

problems that can be attacked by the present method. The

membrane is capable of accurately reproducing large

motions and the fluid permits accurate and stable calcu-

lation of motion in the presence of extreme gradients.

The problem at hand will illustrate the proper coupling

i of the two regions at their interface.

gThe membrane is stretched at y = 0 between

-2.5 - x , 2.5 with rigid extensions to -5.0 and 7.5 in

F the x direction (Fig. 5.C). The fluid volume is truncated

at y = 5.0 and extends from x - 5.0 to x = 7.5. The

membrane starts with no deflection and an initial velocity

such that a linear membrane in a vacuum would have a

maximum deflection of 8% of its length. The fluid will

start either at rest or have a uniform velocity in the x

direction of magnitude v = 1000 fps or M =.31. The

rest sound speed, a0, is 3200 fps, and the rest pressure,

PP is 2000 psf. The membrane has a small amplitude in

vacuum natural frequency of 800 cps. A uniform pressure

Ii
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of magnitude equal to the fluid rest pressure is applied

to the outside of the membrane.

Table 5.2 presents variables at the membrane at a

fixed tir'e. The membrane has moved into the fluid to a

point just short of its maximum. In all cases, the

membrane is never affected by the presence or absence of

the free stream velocity. The fluid velocity and pressure

show a marked asymmetry when the cross wind is present.

Apparently the asymmetric pressure gradient and x velocity

are too small to affect the membrane motion in so short

a time.

The physical properties of the present example of

fluid and structure have been chosen such that the membrane

is not appreciably affected by the presence of the fluid.

For example, the period of oscillation is shortened by

only a few percent, and the amplitude is not affected.

Since the fluid has been truncated and a prescribed

normal velocity imposed, reflections from these boundaries

will lead to a solution that looks more like vibrations

in a cavity at the later times. Some effects attributable

to reflections can be seen in the results that follow.

Figure 5.7 presents pressure wave forms along the

cavity center line. The times chosen correspond to

quarter periods of the membrane motion. The disturbances

appear to be large and the distortion in the wave shape
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can b . attributed to the changing local speed of sound.

The amplitudes of the third cycle (compare t 2.76 x 10-

to t = 1.50 x 10 - and t = 0.30 x 10 3) are noticeably

larger than the first. This is probably due to the

reflections off the boundary at y = 5.0.

Pressure wave forms on two planes parallel to the

membrane show similar effects of reflections at later

times (Fig. 5.8). In addition, results of a calculation

with an initial velocity in the x direction of 1000 fps or

M = .31 have been included. At all times presented,

the waves have drifted noticeably downstream.

As a second case using the same model geometry,

response of the membrane to a traveling pressure wave was

considered. Both fluid and membrane are initially at rest

and a step pressure increase from 2000 psf to 4000 psf is

applied to the fluid boundary at y= 5.0. The wave propa-

gates across the cavity and reflects off the membrane and

its rigid extensions.

Three typical pressure wave forms on the cavity

center line are presented in Fig. 5.9. The times chosen

depict the incident wave, the time of maximum pressur± and

the wave as it returns to the y=5.0 boundary. The motion

of the center of the membrane is shown in Fig. 5.10. In

Table 5.3 this same information is presented for compar-

ison to a solution obtained by modal expansion. For the

comparison solution, the motion of the membrane was calcu-

lated using the pressure at y=O0 as the forcing input.



62

j LIST OF SYMBOLS

A free energy

C vspecific heat at constant volum~e

E internal energy of the fluid or Young's modulus

G shear modulus

I functional

L density interpolation function

M Mach number or temperature interpolation function

N nonlinear operator or velocity interpolation function

Q membrane restoring force

R~ gas constant

S entropy

T temperature

U internal energy of the solid

W weighting function

a local sound speed or acceleration vector

d spatial rate of strain tensor

e material strain tensor

f body force vector

g metric tensor

h membrane thickness or mesh spacing

k thermal conductivity

n surface normal

p pressure

q velocity magnitude or heat flux vector
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I
r rate of heat generation or radial coordinate

s material stress tensor

u displacement

v velocity

O or x direction winding parameter, - 1 a a ' 1

n or y direction winding parameter, - 1 1 B <i

y gas constant

6 Kronecker's delta

. viscosity coefficient or Lam6 constant

viscosity coefficient or Lam6 constant

coordinate of quadrilateral element

n coordinate of quadrilateral elemert

c density

¢ velocity potential or direction in Fr6chet differential

direction in Fr~chet differential

e cylindrical coordinate angle

Superscripts and Subscripts

S solid

F fluid

a,b,c .... indices of material coordinates

e element quantity

r radial component

t tangential component

x,8,y .... indices of 7patial coordinates

far field value

f adjoint quantity f

prescribed quantity f
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i Operators

Vf gradient of f

f, partial differentiation of f with respect to xx

f x covariant differentiation of f with respect to x

Df material derivative of fDt

f time derivative of f

i
I

I
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1 LIST OF TABLES

ITable 5.1 Cylindrical wave solution at t -. 003 sec,

r - 3.0 ft with and without cross wind

weighting.

Table 5.2 Fluid velocity and pressure on membrane

at t - .30 x10- sec.

Table 5.3 Membrane response to incident pressure 
wave
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'I
i = x. Xsign(v t ) - 0

0 vr  vt P Vr vt p

( 0.0 384.9 0.0 2733 307.8 0.0 2481

11.5 235.2 3.9 2251 307.5 1.2 2479

22.5 374.0 -0.2 2700 307.5 0.3 2480

33.5 235.8 -1.9 2254 308.2 -0.5 2483

45.0 377.3 0.0 2709 308.2 0.0 2483

56.5 235.8 1.9 2254 308.4 0.5 2483 A

67.5 374.0 0.2 2701 307.5 -0.3 2480

78.5 234.9 -3.8 2251 307.5 -1.2 2479

90.0 384.9 0.0 2733 307.8 0.0 2481

Note: p0 = 1700 psf, a0 = 1000 fps and Ar - .125 ft.

Table 5.1. Cylindrical wave solution at t - .003 sec,

r - 3.0 ft, with and without cross wind weighting.

I

I

II II -n , - - -, . . ...
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I

I x Uy vx p

M. .31 M. 0. M. .31 M. 0.
-5.5 0. 1000 0. 2000 2001

-4.5 0. 984 -9.7 2001 2001

-3.5 0. 948 -24.7 2120 2083

-2.5 0. 135 -1103 2242 2061

-2.0 .1209 476 -463 2605 2192

-1.5 .2305 648 -366 2906 2448

-1.0 .3179 886 -178 2540 2218

-0.5 .3744 1050 -53.4 1830 1724

0.0 .3939 1120 0. 1424 1435

0.5 .3744 1165 53.4 1607 1724

1.0 .3180 1252 178 1944 2218

j 1.5 .2305 1385 366 2071 2448

2.0 .1209 1394 463 1859 2192

2.5 0. 1936 1103 1999 2061

3.5 0. 1106 24.7 2041 2083

4.5 0. 1005 9.8 2009 2001

5.5 0. 1001 0. 2000 2001

6.5 0. 1000 0. 2000 2000

7.5 0. 1000 0. 2000 2000

Note: p0 - 2000 psf and a0  3200 fps.

Table 5.2. Fluid velocity and pressure on membrane

at t .30 x 30- .

I;
|I_____ _____
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ITime Displacement Displacement

x10 2 (sec) Finite Element Modal Expansion

x x10 3 (ft) x 10 3 (ft)

.132 -.259 -.263

1.144 -.573 -.601

.156 -.993 -1.08

.168 -1.40 -1.58

.180 -1.62 -1.88

.192 -1.56 -1.81

.204 -1.17 -1.34

1.216 -. 599 -. 633

.228 -.058 .030

I.240 .237 .385

.252 .184 .304

1.264 -. 183 -. 159

.276 -. 728 -. 814

.288 -1.24 -1.42

.300 -1.54 -1.76

Table 5.3. Membrane response to incident pressure wave.
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