AD=A106 262 AIR FORCE INST OF TECH WRISHT=PATTERSON AFB ON
THE SOURCE TO S2K CONVERSION SYSTEM, (U)
DEC 78 J L STEVENS

UNCLASSIFIED AFIT=Cl~79=2627 °

P2

| LEVELZ

THE SOURCE TO S2K CUNVERSION SYSTEM

ey

JONATHAN LEE STEVENS, B.S.

DTIC

ELECTE
0CT 29 1981
o/
=
REPURT
Presented to the Faculty of the Graduate School ot
The University of Texas at Austin
in partial Fulfillment
of the Requirements

for the Degree of

MASTER OF SCIENCE

DT FILE CopY

THE UNIVERSITY OF TEXAS AT AUSTIN

Decemper, 1978

r;.v*l [SIas x(‘} ovod
For gt ;xwxmeamimﬂmxu
} "1wmonisunhmhal

Qr.l(u’u(/

R AEFL ey iz

b

/ .

 “UNCLASS

.—-mti CLQSSIFICATION OF THIS PAGE (When l)mil','nlmud)

READ INSTRUCTIONS
BEFOKRE COMPLETING FORM

— ¢ T—' REPORT DOCUMENTATION PAGE

t. REPORT NUM’ER 2. GOVT ACCESSION NO | 3 RECIPIENT'S CATALOG NUMHBER

ros2T pb-Aiod A5
> $4._TITLE (and Subtitle) o]

‘‘‘‘‘‘ P . 5 TvYyPE OF REPORY & PERIOD COVERED

The Source t §2K Conversion SysEém - THESIS VYR VAVYON

6 PERFORMING OG. REPORTY NUMBER

&

AUTHOR(a) §. CONTRACT OR GRANT NUMBER(s)
. ‘ ;

Jonathan Lee/gtevens/ ;7 s, / ’ .f)’ /

9. PERFORMING ORGANIZATION NAME AND ADDRESS

. AFIT STUDENT AT: The University of Texas at

10. PROGRAM EL EMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

Austin
1y, CONTROLLING OFFICE NAME AND ADDRESS . 43— REPORF DATE-
AFIT/NR /] Dec 878 /
WPAFB OH 45433 il e Yo7 cEs

14. MON|TORING AGENCY NAME & ADDRESS(i! different (rom Controlling Office) 15. SECURITY CL ASS. (of thie report)
X o~

Kd

A// ' . i
e s UNCLASS

j — ! 15a. DECL ASSIFICATION/ DOWNGRADING

[SCHEDULE

-

-

16. DISTRIBUTION STATEMENT (of this Report)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES R i

APPROVED FOR PUBLIC RELEASE: IAW AFR 190-17 iector of Public Attaire

i Fores Institute of Techn
ology (A
Welght-Patterson AFB, OH 4533(

for, USAR

19. KEY WORDS (Continue on reverse aide if necessary and identily by block number) [

20. ABSTRACT {Continue on reverse ailde Hf necosaary and identily by block numbet)

ATTACHED

81 10 26 222

DD |§2:M13 1473 EOITION OF 1 NOV 65 15 OBSOLETE

UNCLASS

SECURITY Cu. TATION OF THIS PAGE (When Data Enterad) /

. ' el
e s ’ o/ "4/ / T
SO '/r /

v - - aittgonrie o . EE 2

Do r o ade

PP RETET - F S TRT RS PR R

.

)

B UMY TP S

A P R

Acce~~inn Tap
—
I
noya o

Urrrprs ey '

Jou-r i -
Ry [|
in tr /
Avoild Ll Codes
ABSTRACT : o E
avail s /ogp
Dict | Special

/

‘

.The most common method of creating and loading a new database is
to write a program using the host language macros the database
management system provides., As for all software production, the cost of
writing this program is high, particularily considering it may be
executed only once. The "Source to S2K (System 2000) Conversjion System”
will generate a FORTRAN program which will load the described source
file into the described System 2000 database, The user inputs these
tile descriptions ana the source to target mapping transformations. The
system’s desian 1Is based on a common architecture developed through
research of seven current cohversion system implementations. This
report will present this architecture, detail the design 4and languages
ot the "Source to 52K Conversion System" and comment on its
implementation, Appendicies include a User’s Manual, and examples of
generated command files, The system has been implemented in PASCAL {n a

Va

Control pata 6000 series computing environment, //\\\
/x §

114

e

TABLE OF CONTENTS

INTRODUCTION
1, Statement of Problem
2, FReport Objectives

3. Design and Implementation Objectives

4., A Common Architecture for pData Conversion Systems

5., Comparison ot Implementations

6, Common Architecture petails
1. The Definition Section Functions
2. The Logic Section Functions
3. The Execution Section Functions

7. Sumrary ot Common Architecture

DESIGN AND IMPLEMENTATION
1. System Description
2, Detinftion Section Design
l. Source File Detinition Language Design
2., Conversion Language Design
3. VFiscellaneoys System Input
3. Logic section Design
1. The Read Module Design
2. The Conversion Module Design
3, The wWrite Module Design

iv

e i - —

[> Y wecime e e -

page

11
11
13
15

16

18
19
19
22
24
24
206
28

31

2l
|

[U

et g -~

TABLE OF CONTENTS (cont.)

2, DESIGN AND IMPLEMENTATION (cont,)
4. Execution Section Design
5. Implementation Detajls
1. Implerentation Philosophy
1. Programming Concepts
2. Programming Technigues
2. Basic Program Structure
3. Date Structures Used in the Program
4. Itemized List ot Program’s Proceduyres

. Final Comments

APPLIDLILIX A: USER’S MANUAL

APPENDIX B: EXAMPLE GENERATED COMMAND FILES

HREFEFENCES

VITA

page

32
34
34
34
3o
39
41
44

55

58

101

104

107

CHAPTER 1

Introduction

1.1 Statement Of Problem

An application which stores data under the control of a database
management syster (DMS) must initially "load" {ts data. The process ot
loaaing tnis data can be viewed as a data conversicn problem «= how to
convert the raw arplication data from its present form and format to one
shich is required ty the DMS. Most established DMSs provide two initial
load capabilities {10), The first 1is an automatic load function,
Typically this reauires the raw data to be in a specitic format, usually
with <delimiters surrounding each tield value, In addition, the lodad
function usually requires more computer processing time to load the same
amount of data than the second conversion method == a user written
program. The user written program utilizes the DMS’s tile manipulation
macrocommands in one of several host languages. A user written program
also enables the user to include validation and conversion routines,

These routines rarely are part ot the DMS’s load function, Even though

e WPVATY R VB

e e o m ——

there are major advantages in processor time and flexibility, the user
written program is expensive to produce, especially if it is executed
only once, A method is needed, theretore, which will allow a simple,
flexible, and cost effective means of converting initial load data into
its underlying DMS data structure without reqguiring any special data

tormatting or high sottware production costs.

1.2 HKReport Objectives

The objectives of this report are to document the design,
implementation and correct usage of the "Source To S2K Conversion
System", This system is a solution to the previously stated proolen,
It is a simple, flexible system which allows automaticC generation ot
initial load programs tor MRI‘’s System 2000 (S2K) database manhagement
systenm, secause it generates a complete FORTRAN program, it has tne
advabtaqes of efticient processor utilization, validation and conversion
routine capabilities, and no special formatting ot the input data.

Because the prograr is generated from a small amount of user input, it

is d4ls0 cost etfective, compared to writing the program by hand.

As all systems, however, the Source To S2k Conversion System has
its limitations, The generated program can read in only one input
source file at a time., Subsequent programs can be generated which will
allow uypdating ot ¢the initial database, but from only cne tile per
program, The target database must be an S2K defined database, Because
S2K supports @& bhlerarchical data model, the data transtormations fror

tne input source file to the target database are also based on a

'
- >, . .
P s W L -

?l‘. ® © o o 9

hierarchical data model, As a consequence of this design, the input
source file must be describable in a hjerarchical manner, All
valigatjon and conversion routines must be written by the user in ANSI
Standard FORTRAN. Within these limitations, however, lie a great number

of source tile to target S2K database conversion capabilities.

1.3 DVLesign and Irplementatjon Objectives

The design and implementation objectives of the Source To S2k
Conversion Systemr were not to develop new approaches or methodologies,
Ine objectives were to study existing data conversion implementations,
gleaning from them the required components and functions of a conversion
system, design the source to S2K system based on this research, and
findlly, implerent the system using disciplined, structured software
engineering vprinciples. In order to properly document how these
ovjectives were accomplished, the remainder of Chapter 1 will discuss a
common architecture tor data conversion systems. This architecture was
developed from tre study of seven different data conversjion system
implementations. Fkased on this common architecture, the Source To S2K
Conversion Syster was designed. Chapter 2 will report this design and
detajils ot its imrplementation, Appendix A is the system’s User’s
Manual. It also contains executlion instructions and a complete example,
Appendix B is an example of generated UT«2D command files needed to

execyte the systerm,

- -

L0 SRRV C SR ST -

e e e —— ' —_—

- - P . D

- * Wm- e

ﬂ.ﬁ..

1.4 A Common Architecture For Data Conversion Systems

Seven difterent data conversion {implementations were studied to
tind their common functions and components. 7The implementations studied
were: |BM’s EXPRESS System, 1977 (19]); SDC’s CODS System, 1975 (3,181}
University ot Michigan’s Data Translation Project, 1976 {(6,11,12); J.A.
kamirez’s (University ot pPennsylvania) Conversion System, 1974 [15,16);
CODASYL Stored Data Definition and Translation (SDDT) Task Group
COBOL=-TO-NIPS/360 Prototype, 1973 (7]; Honevwell’s File Translator
Prototype, 1975 {1); and the ASAP-TO-REL System (University ot
Pennsylvania), 1975 {2,17). Although the seven systems studjied aifter
in purpose, basic approach and architecture, they all contained tnhe same
functional components, These components have been grouped {into three
sections: Definition, Logic, and Execution (see tigure 1), The
Definition section {is composea of the definition languages the
conversion system uses, Since most systems us€e the hierarchical data
rodel, the Data Definjtion Language (DDL) used to describe the source
and target files looks much like & COBOL Data Definition. The reguired
steps ot restructuring the source file to produce the target file are
usually contained in the "conversion" langquage, Any special source
translation ard value conversions may appear in the DDL (seen in the

ramirez sSystem) or in the conversion language (seéen in EXPRESS).

A transition tunction between the Definition section and the
Logic section is the Lanquage Processor. The DDL and Conversion
language statements must be parsed and checked for syntax, Some systems
(CuobsS), have elegant semantic analysers which guard against ambiguous

conversjion statements and redundant or impossible constructs. All

TYT ey s -
I

A O n m o

p—

DEFINITION SECTION

) DEFINE SOURCE
FILE

DEFINE SOURCE TO TARGET
MAPPINGS AND CONVERSION
REQUIREMENTS

DEFINE TARGET
FILE

LOGIC SECTION

LANGUAGE PROCESSOF

~

syntax
semantics
symbol Tables

v

(sUJLD) READ LOGIC
RASED ON SQUKCE
ODL

(BUJLD) COUONVERSION,
LATION,
PROCEDURES

TRANS= (BUILD) wKI1TE
AND RESTRUCTURING |—

LOGIC BASED O

TARGET ODL ANUL
COnvV, SPECS

EXECUTION SECTICN

INTER=
MELIATE

PERFORM CONVEK=
SIUON FROM SOURCE
INTERMEDIATE FILE
TO TARGET INTER=
MEDIATE FILE.

INTEK=
MEDIATE
TARGET
FILE

WHITE
TARGET
F1LES

tFijure 1,

System,

s e ——

Basic Components of a Generallzed Data Conversion

[%

systems myst cortbine the {ntormation gained from the definition and
conversion statements and build a series of symbol tables, These symbol

taoles may be used In both the Logic¢ 4and txecution sections,

I'ne Logic section performs three functions: what format to reaa
tne source tile, what is required to restructure, translate and convert
€ach souyrce recorao, and wnat format to write the target file. 7The read
and w«rite loaic takes intormation from the symbol taples anao tile
descriptions to determine the structure of the recora and the location
of specific fielos. An example of this jis the l0gic required to read a4
record containing & repeating group. Some type of wHILE LOOP woula have
to be executed (or generated, tor non-interpretive systems) until 4

given delimiter hadc teen received,

Ine Conversion logic 1is more difficult. 1f the conversion
language 1s procCedural (a small set of primitive conversion tunctions),
the conversion logic 1is usually a8 set of generalized procedures
correspondaing to the conversion functions, This is the case for EXPRLESS
ann Cuvs, Noneprocedural conversion languages Trely on derivina tne
conversjon reqguired by comparing the source and target DOLs., Any
complex restructuring is accomplished by user written procedures (seen
in Kamjrez’s System), tor this approach, the conversion logic 1is

reduced to Simple rapping and proper procedure binding,

The Execution section contains the functions performed during
the d4actual conversion, Betore descriping this, the interpretive vs
Jenerative approach must bpe explained, Generative systems generate

prodgrams which, when compiled, will perform the conversion desired,.

ti

L]

-~

g - N -

Interpretive systers determine how to convert each record and pertorm
tne conversion all 1in the same step. Thus, interpretive systers nhave
their Logic and Execution sectlons combined, A generative systemr would

-

have a compiler vetween the LOQIiC and txecute sections.

[ne Execute section performs the actual conversjion. nis
incluces reading the file, writing it in an intermediate source tormat,
converting the file to an jintermediate target format, and finally,
#riting tne taroet file, Let us now look at the getails of several
implementations ard see how they map to the common architecture just
presented, The specific details studjed will be the purpose of each
system, tne number of tiles it can handle, the data model it uses, and
shetner it generates code or is interpretive. These attributes, for tne

seven systems studied, are symmarizea in tigure 2.

1.9 Comparisonr Of Irplementations

The number and typre ot fliles a conversion system will support is
gredtly intluences t.y its purpose, For example, the purpose ot CUDS is
to convert a source odtapase to a target database, using the source and
target Jatabase management systems to do the storage and physical level
conversjion, The Famirez System converts a source sequential file to a
target seqguential tile., His system can not use a database file, nor can
Clibs convert a file without the DMS., The ASAP-TO-REL System converts
tlat tiles oproduced by ASAP (a seguential file management system) to
relational database load strings in KEL (Relational Eknglish) tormat,

Tnus, its purpose is to allow a subset of A very large sequential file

B L T R

——

—_— e . mdke.]

S13IeM hAidk

Rameriz,J
(J. Ot Penn)

Cuud
(sdC)

LEXPKEESS
C1BM)

Data [rans-
lation proj.
(U, ot Micn,)

CubASYL
(shL1GG)

Honeywell

ASAP=TU~REL
(11, ot Penn.)

Figure 2.

BLBEOSE

tile to tile

DMS to DMS

tile to tile

and DMS to DMS

tile to file

tile to file

file to tile

ASAP tile to

R¥L load string

ELLES

1 input
1 output

1 DMS to
1 DMS

multicle
inputs and
outputs

Multiple
inputs and
outputs

1 input
1 output

—

input
1 output

—

input
output

—

Hierarchical

Hierarchical

Hierarchical

Relational

CODASYL

Hierarchical

Relational

Ccrparison of Studieda Implementations.,

B

—

8/

ABEBLACH

Generate PL/1

progranm

Interpretive

Generate ¢L/1
procegures

Interpretive

Interpretive

Generate As-
sempbly lana,

Interpretive

to be converted into a relatjional database and aqueried against by the
system REgL ([2). Although the purposes and tfiles of these data
conversion systems vary greatly, they tunctionally are the same, kacn
system reduces tre source files to one consolidated intermedjate tile.
The format of this tile is knowsn, The target file’s format is Kknown,
and ¢ single target file is produced, IBM‘s EXPRESS further illustrates
this process. EXPRESS can convert multiple input filles, database
supported or not, into multiple output files, 1t utilizes a "Peader"
step to read all source tiles into a single intermediate ¢tjle, The
conversion step converts the source intermediate file into a single
intermediate target tile, The "ariter" step then writes out this
intermeaiate target tile into the size and format the user wants. Thus,
althouygh tne purpose, number and type ot files differ among systems,

they tunctionally execute the same,

The data model used by 4 system will affect its Data Description
Language (DUL) and restructuring language more than its tunctional
architecture, As rreviously mentjioned, most systems use a hierarchical
rodel. The raticrale is that this model is familiar to the user (CUBUL
programmer), the restrycturing dynamjics are well known [(13), and the
major commercial database management systems Support the model.
vichigan University‘’s Data Translation Project, however, uses a
relatjional data model, The relational model allows for a normal torm of
data for its intermeaiate source and data file, This allows tor more
general and etticient conversion (6}, 1If, for instance, a relational
source file neeas converting to @& hierarchical target ¢file, the
conversjon Wwould require a total reading of the source file betore the

conversion began, However, {f the majority of the time the system is

>

‘*':’

3

~ oy sl e

10

converting hierarcnhical to hierarchical files, it probably would not be
etficient to use the Michigan approach. In summary, the hierarchical
model is the wrost popular model supported, 1t non-hierarchjcal files
neecrconvertinq, either a complete read step is required (as done by the
¥ichigan Syster and EXPRESS) or software support outside the conversion

system (as in CODS) is reqguired.

The final feature to discuss is whether the conversion system js
interpretive, or whether it generates code to be compiled, Although the
approaches are clearly different, the logic required in the systems are
ti.e same, rnitrh the interpretive approach, the system programs are
generalizea, whereas for the dgenerator approach, the method of
constructing programs {is generalized, In both cases the logic, for
instance, to read all ot the occurrences of a particular record vs
generating the cooe to do the same function requires the same amount ot
knowledge about the record and its structure, Thus, the read ster for
an interpretive system reads the source record, while tnhe generative
system progcuces the code to read the source record, Functionally, and
logically, they are the same, There are, however, some run time
difterences betweern the two approaches, Interpretive systems must
execute logic usirg the DDL to determine how to read, convert, and write
each recora. Generative systems perform the reads, conversion, and
writes airectly since a specifiCc program has been generated and compiled
to do such, Better run time efficiency can be expected from the
Jjenerative syster dye to the direct execution, There is, however, the
syster overhead ot creating and compiling the gqgenerated progranm,

Literature on actual performance comparisons is not known,

C————— e

A, % P SR

VITWLADY .
SECURITY CL. “STION OF THIS PAGE (When Dars Entersu: y ‘

Rl 2// ’ /r'// o/ —%,_- o
4 . N ; ?

"N o

1.6 Common Architecture Details

It has beer shown that the common architecture s a valld
representation ot the reqguired functions and components of a data
conversion system. This section will examine each functional component
in more detail. Examples from the studied implementations will pe used

to illustrate functional component specitics.

f.6,1 The Definition Section Functions

A data description language (DDI.) must be capable ot descrioing
the structure of thre source and target files, (a hierarchical mocel will
pe assumed tor this discussion). Shoshani (18] describes three levels
ot «aqata structure description: logical, storage, and physical, The
logical description itemizes the entities of the record, the Trelations
among them, and the 5iZe and type ot the fields. 7The storage level
describves such things as file indexing organizations, access paths, and
fixea or varitle length recoras, Finally, physical level descriptions
inadicate how and where data is to be read and written, such as device
type, blocksize and lape]l intormation. 1f the conversion system
converts the storage and physical level as well as the logical level,
the DLLL must have the capability of describinag all three levels, This
is the type of DLL the Ramirez and Michigan systems use, CODS, on the
other nand, uses the source and target database management system
tacilities to perform the storage and physical conversion. The CODS LDL
is theretore much smaller and simpler. 1I1f the source and tarqet storage

and physical levels are tixed (but not necessarily the same), the DDL,

T T —— . = -

L B :"’5-4' R

12

agaln, would not have to describe all three levels, This i{s the case
with the ASAP=-TO=REL system where the input is always an ASAP ¢file and

the output is always Relational English Lanquage strings,

There are two basic dapproaches for describing conversjion
specitications == procedural and non=procedural. The non=procedural
approach requires the user to describe the source file, the desired
target tile ard the translation rules, Michigan’s Translation
Definition Lanaouage (TDL) is an example of the non-procedural approach,
The procedural approach requires the user to specify, in terms of the
conversion language primitives, the specific steps required to enact the
conversion anrd thre order in which to execute them. Examples ot
proceadural conversion languages are EXPRESS® "CONVEKRT", and CODS’
"CDTIL". Proronents of the non-procedural approach believe it is less
restrictive and easier to use {15]., The procedural languages proponents

believe it is more powerful, efticient and direct (18]},

The CODS Common bata Translation Language (CDTIL) is
representative of the procedural conversion languages studied. It
conslists ot eleven primitive operations (EXPRESS® "CONVERT" has nine
crimitives). The primitives describe the basic data transtformations
required to restructure hierarchical data mocel structures, plus varied
valiagation and conversion capabilities, The data transtormation
operations are of three types: 1,.,) moving values across on the same
level, 2,) movina data values down and repeating them in each ot its
mempers, and 3,) fertorming an operation on a set of lower level values
and moving this new single value up, or moving a specific oCcurrence of

a lower level wvalue up., Details on the meanings ot these

S e e

et e .

e e ey ——

e __ o

P

13

transformations are in Appendix A == User’s Manual.

The tinal tunction in the Description section §{s the parsing,
syntax checking and symbol table builoing. The literature gives little
detail on these irrlementations. It 1s assumed that rasic conmpiler

principles are used,

1.6.2 The Logic Section Functions

when discussing the next two sections the reader s Treminded
that the jinterrretive and generative systems will difter slignhtly, Tne
interpretive syster will execute the code corresponding to the logic it
Just vperformed, The generative system w«will gutput high level code

corresponding to the logic it just performed.

The read tunction is usually implemented by traversing the ddta
descriptions and previously built sympbol tables. As each tield is
parsea, a position in the input buffer is filled, For systems requiring
storage conversion, the read function must have @& subroutine
corresponding to each possible access method, tor physical level
conversion nNost systems take aavantage of the operating system they are
executed on by merely setting appropriate file attributes. This may be
done gynamically tor interpretive systems, or 1in the geperated Job

Control Lanquage (JCL) for generative systems,

Tne conversion logic is implemented differently based on the

proceduralsnoneprocedural characteristic of its conversion langquage, as

1.

i
1
4
x
\

<5,

P

14

previously discussed, C(iDS uses the CDIL statements and the CDDL sympol
tables to bulld a conversion table, Each table entry consists of tne
primitive’s 1D nurber and the relative address of the source and target
tields. buring execution (CUDS is interpretive) each conversion table
entry is executed by a CASE statement using the primitive number as the
Key. The Famirez System usSes a noneprocedural conversion language
(DML) . 1t is a generative (non=interpretive) system, Its
implementation reauires the wuser to specify the maximum number ot
occurrences any repeating group may have, The strategy is to build the
source anc target record butters large enough to hold the largest
possible source/target record, During execution the read tunction
expanas the source record into a large tixed format record. The
conversion tuncticn will then execute the data transformation operations
trom the source input buftfer to the tarqget output byfter, Input
validations or special conversions must be written by the user in PpL/I

procequres and sukmitted as part ot the conversion statements,

Some systens (ASAP=-TU~-REL) use the operating system to perform
"value" conversions, such as Hollerith to EBCDIC code conversjon. Other
systems (LXPRESS and the Mjichigan systems) perform the conversions
themselves, CODS has a separate language, Common Format Definition
Language (CFDL), and a separate functional component which performs the
"value" conversions, Most systems support table 1look=up value
translations, but, obviously, the user is required to fill the taple
(tor iInterpretive systems) or write the translation subroutine (tor

generative systems),

B e g e A i A)
N .ot S SRR S 255 e R
— : .

TN MG W I e

h.

"N o

15

1.0.3 The Execution Section kFunctions

The first function during execution is to read the source file,
1t the systemr can handle several files, most implementations read all ot
the tiles and combtine them into a single intermediate source file, This
is done py the Michigan, EXPRESS, and CODS systems, It is not necessary
to reaa the entire source file pefore converting, The Ramirez ano
ASAP=TU-KEL systers read a source record, convert it, and write the new
target recora out one at a time, These systems usually can handle only
one input source file and are guaranteed it will be in a specitic

storage tormat, (i.e. seguential file with variable length records).

The implerentation ot the conversion step is wusually motivated
by etticiency tactors, 1he numper cof 1/0 operations must be kept to a
minimum as well as memory to memory data moves, EXPRESS implements a
"pipelining" techrigue to increase its efficiency., The Michigan system
has been making etforts towards bypassina the conversion step for
records which do not reauire conversion, (aggregate schema facility),
Most ot the "minor" implementations have not introduced any significant
etficiency features and execute the conversion step quite straight

forwaralye.

A tinal comment should be made on execution flexibility.
Flexibility in this sense means: 1.) the ability to handle the hard to
describe, very unusual conversion requirement, and 2.,) the ability to
execuyte the conversion in incremental steps. The generative systems
usually allow more tlexibility in regard to handling the unusuadl

conversion case, This 1is because the generated code can usually be

Y . _. .= T T A, = -

s LI

..%-

16

accessed and modified prior to its execution, EXPRESS produces separdate
read, conversion and write PL/1 procedures for each Jjob. During
execution the EXFRESS system calls these procedures based on the
conversion phase {t is {n and the data being operated on., The Ramirez
system produces a complete, self-contained PL/! program., The execution
step 1s conducted completely free of any conversion system support, The
EXPRESS system could be difficult to alter, particularly if the aesired
change was 1in the control portion of the program., The Ramirez system,
however, would be much easjer to modify since it 1is a complete,
selt-contained ©program, The advantage of the Ramirez self-contained
program is also a disadvantage in terms of incremental step execution,
The only way to breakeup the Ramirez conversion is to stop its execution
and rely on some "restart" mechanism to start it at a later time, Other
systems, such as EXPRESS, Michigan and CODS, allow separate reaaing,
converting ana writing of the ¢tiles to be converted, with this
tlexipility, the conversion c¢an run even though a large block ot

computer time is not available,

1.7 Summary of Comrmon Architecture

Based on the examination of seven data conversion
imvlementations, the common tunctions of a data conversion system have
veen identifieds These include a DDL to describe the source and target
tiles, a conversion 1language to describe the source to target tield
mappings, and read, conversion and write modules., Difterences in DULLs
were tound to be rased on the data model the langquaqge used, and how many

data structure levels it converted (logical, storage, and physical).

-

17

Conversion lanaguage difterences arose dependina on whether the language

approach wds procedural

nonesprocedural.

write

moaule

ditterences were based on how many source/tarqget files the system coulcd

handle. Conversi

on module

procedural/non=procedural

introaucea.

Finally,

implementatjons

whether

language

the

diftered
aperoach,

system

duye
efticiency

interpretive

the

factors

or

generative approach appeared to attect its output (converted records or

a conversion program) more than its architecture.

Based oh this

architecture, the Source to S2K Conversion System was designed,

AW W e T

common

CHAPTER 2

DESIGN AND IMPLEMENTATION

This chapter will discuss the design of the Source to S2K
Conversion Syster and document its sottware implementation, The design
discussion will tollow the organization ¢of the common conversion system
architecture, as presented in Chapter 1, The implementation discussion
will present the aeneral software organization, major data structures,

and itemize the main procedyres, their tunctions, inputs and outputs.

2.1 System Descrigtion

The Source to S2K Conversion System design lent itself well to &
"top=down" development. The system’s purpose, to convert source files
to S2K databases, »Aas well defined, HecausSe the S2K system provides a
conversion taclility througnh execution of a Program Language Intertace
(PL1) program, generating a new program tor each conversion job appearea

18

?h’ L o L J

N

19

to be the pest aprroach, Using the nierarchical data model also was a
natural cholce since the target file would always be an S2K datapase,
In order to simplity the implementation, the number of source files was
restricted to onre, as was the number of different target databases.
Generating a PL] FUKTRAN program was decided over generating a PLI COBUL
program duye to 1local support. Thus, starting with the purpose of the
system and some basic decisions, the design of the system developed, It
woula take as input a description ot the source flle, S2K database, ana
conversion mappinas, and produce a PL1 FORTRAN program which, when
executea, would rerform the actual conversion., Ffigure 3 shows this
design, UVesian details of the system’s Definition, Logic, and Execution

sections are now presented.

2.2 Detinition Section Design

Languages had to pe designed which allowed the user to input the
necessary information needed to generate the FORTRAN program. These
languages included one to describe the source file, one to describe the
mappings betv€en the souyrce and target ¢files, and a third for
miscellaneous system input. A special target description 1lanquage was
not necessary as the required S2K database desCription input could be

used.
2.2.1 Source File Detinition L.anguage Design

As discussed in Chapter 1, there are three levels of data
structure that nmust be descCriped: logical, storage, and physical,

Since the Source to $2K system has a limited scope, extensive

L t)
e A . SN ~ -

20

DEFINITICN SECIION

SUURCE FILE 52Kk DATABASE CONVEKSION MISC SYSTtM
ESCRIPTION DESCRIPTION "MAPPING"

[LOGIC SECIL1UN

SOUKCE [0 82k COUNVEFSIUN

SYSTEM GENEFATED
FUF1kRAN
PRUGFAM

[ForTran
COMPILER

//

/s

EXECUTIUN SECTIUN

OBJECT CuDE OF GEN=-

ERATED FURTRAN —>
PPUGRAM J
ineé sSource larget S22k
tile Database

Figure 3, D[ata tlow of a source to S2K Conversion system job.

21

description capabtility for all levels was not necessary. Specifically,

the ul=20 operating system nas no direct means of aescriping tile

storage characteristics, other than stating the file is "local" or

"foreign". Secondly, since the target tile is an S2K aatabdase, commonly

stored on disk, the ophysical conversion requirements will be small.

Theretore the storage and physical level descriptions can be simple,

consisting of keywords followed by user input, For example,

FILE = INPUT/1234/9876,
DEVICE = DISK,
indicates the input source tile name {s "INPUT" and it resices on

permanent disk library number "1234" (password "9876").

The source file loagjcal description is also simple, due to two

restrictions. First, the file must pe describable in a hjerarchical

manner. Secondly, since the UT=2D storage structure capabjlities are

limitea, all source records must be fixed length. 1This implies all

repeating groups rave a defined maximum number of times they may repeat.

The logical description is thus reduced to field names, tield

specifications, and the maximum number of times & group may repeat. The

tiela names consist of the letter "S$" tollowed by an integer, starting

with one, increasing by one for each new fileld. A comment tield is

rroviaed to make the field name more meaningful (i.e. "S3 A20., Company

vare."). uvince FUKTRAN FOKMAT statements will be generated from tne

source input, the field specitications use the same notation as the

tormdat statements. An example of a logical structure description {s

given {n fiqure 4, More examples may be found in the User‘’s Manual,

Section 2.C.

o

v

finc: X At

MR

. . . e

22

S5l Aln, DAL Name,
KEP-AT 5 HEGIN, Start CHILDREN Repeating Group (Max=b5),
5 A10, CHILD Name,
53 Je. AGE,
<EFEAT 3 BEGIN, Start PET Repeating Group (Max=3),
54 Al2, PET Kind,
S5 AR, PET Name,
ENDY, £nd of PET Repeating Group.,
Eie Enag of CHILDKEN Repeating Group.

Fijure 4, Source Descriptionh Language Exanple,

2.2.2 Conversion Lanjuage Design

A procedural language approach was taken for the conversion
lanyuayge, Fased on the systems studied, it appeared to te the lecast
amblyuous tor the user and easiest to implement., Seven primitjves were
desigyned, each corresponding to either a data transtormatjion operation,
4 conversion or valication operation, or the special STORE operation.
Cubd’s conversion language, [18), strongly influenced this design. COUS
1s a bMS to DMS conversion system, requiring the source and target UDMSs
to hdandle all physical and storage strycture conversions. Its
conversion language primjitives are concerned only +#ith the logical level
conversion, and focus on the three basjic hierarchical model data
transtormations needed to map source to target data structures, These
transtormations are discussed in Chapter 1, Section l.6.1, anc the

User’s sanual, Section 2.E.

Along with the data transtormation primitives, conversion

langyuage primjtives for validation and conversion were also designed.

B L Sy —

“y @ ©® @

23

The conversion primitive allows the user to write FORTRAN code which
will be included in the generated program, This code should perform a
unigue conversion on one, Or several, source tields to produce a single
target value. The validation primitive allows tne user to input FORTRAN
Ccode tor tne purpose of validating a particular input source tield., The
user ad4also specifies an option that execution should take (reject
validated tield or reject data set occurrence) should the validation
tail, Ine valiocatjon primitive is a feature not seen in any ot the
implementations studgdled, Ramirez’s system allows users to input PL/I
procedures in order to perform validation checks, but provides no
capabllity of altering tne control of the execution should tne
valiagation fail. Since most conversion ettorts desire some editing of
trhe source data, the validation primitive {s an {importdant, practical

teature,

The firal conversion primitive is the special STORE operation,
The wuser 1is expected to input a data transformation primitive for each
target tield 1in the order the tfields are defined, After the
transtormation for the last field in a particular group is jinput, the
Frimitive STORE must be input. This specifies to the system that all
target tields for this group have been "filled"™ and the new data set
shoulad be written., A data transtormation primitive tor the first target
field ot the next group should then be input, The last input for this
group should, agair, be followed by a STORE primitive, This process
shoula be continued until the end of the detined target database jis
reachean, turther details ot the conversion lanquage and examples are

contained {n the User’s Manual, Section 2.E, Figure 5 contains a

24

summary of the conversion language primitives,

2.2.,3 Miscellaneous System Input

Information on the S2Kk datavase file name and several system
cptions were neeoced to complete the generated FORTRAN program dand
generdted UT=2D cormand tiles. A keyword followed by uSer input tormat

wdas designed to give the user this input capability. For example

RUN = 8
is an option cara specifying the run is tor syntax only. The proper

1nput to specity the run is a tull generation run is

RUN = F,
All ot the key words and user input options are discussed in Section 2.8

ot the ilser’s Manual,

2.3 Logic S ~tion Design

For generative conversion systems, the logic section is where
the conversion program {s qenerated, Using the user‘s input, read,
conversjion, and write modules must be generated, In addition other
reguired code must be generated, such as database schema and local
declarations, orering and closing ot the database, and error detection
procCeaures, This required code Is fairly static, requiring little
change trom job to job. [Ihe read, conversion and write modules are tar
rore aynamic and require more complex 4dlgorithms, Their design will pe

disCussed here.

t PRIMITIVE
NAME

e ————

DIRECT

REPEAT

[LEVELUP

) urap

TYPE

TRANSFURMATION

TRANSFORMATION

TRANSFORMATION

TRAMNSFORMATION

CUNVEKSIUN USEF WwRITTEN

VALIDATE

STURE

® Figure 5,

USEF wRITTEN

SPECIAL

<5

FUNCTION

——————————

The transtormation usea to move source
to target tjields that are in
correspondence,

The transformation used to move 4
source field in an ancestor data
set to a tarqget field.

The transformation used to move a
specific occurrence of a source field
in a subordinate set to a taraget
tield,

The transformation used to apply an
operation aasainst all occurrences
0f a source tield in a subordinate
set., The results of the operation
are moved to the target ftield.

Signals the input 0t a user written
FORTRAN module, The module will
perform a conversion on one or severdl
source tields,

Signals the input of a user written
FORIRAN module and instructions

tor execution should the validation
module return a "talse" valuye,

Signals the end of the conversion
primitives tor the target data
set teing built,

Summary of the 7 Conversion Language Primitives,

206

2,3.1 The Fead Module Design

The purpose of the read module {s to read a complete souyrce
recora and separate each field so {t can be individually moved to a
target fjela, These two operations could be accomplished by a FORTRAN
tormattea read, tut this statement restricts the source input to 150
characters. Since this restriction is unacceptable, an uneditea FORTKAN
read statement is used to read the source record and several DECODE
statements are used to separate the flelds, The number of words read by
tne unedited read is calculated trom the source input description. The
decode statements will separate the fields from the input butfer and put
them in a temporary array, one tield for each array word. Since the
decode statement also has a 150 character limit, several statements may
be necessary. Atter execution ot the wunedited read and decode
statements, each source field resides in a separate array word and can
pe directly addressed. buring the parsing ot the input source tile
description, a syrbol table is filled which maps the source field names
and their corresponding temporary array addresses. For example,
consiager a source tile consisting of the field DAD (18 <characters), a
repeating qroup CHILDREN (max=2, each 10 characters), and a repeating
aroup PETS (max=3, each 8 characters) within the group CHILDREN, The

source name to temporary array location mappings are shown in figure 6,

3

27

SUURCE FILE DESCRIFTION

I DAD) CHILDREN kG |

CHILD | PETS RG |

PET=NAME |

SOUKCE NAME TC ARKAY LOCATION MAPPING

Field tName Array Address

DAD

CHILL =t

PET=NAME #1
82
83

CHILL =#2

PET=NAME 81
L
43

O WX IO U D W

—

Figure 6, kExarple of source tile to temporary array mapping.

CHILL 1 starts ir location 3 instead ot 2 because DAD is gqreater than
10 characters. Array word t and 2 are used to store the DAD field. 1Ihe
symbol table does not itemize each field occurrence and its
corresponding tefporary array address, as showh in figure 6., Kather,
tne address of the first occurrence of each field, the number of words
petseen the first and second occurrences, and the maximum number of
occurrences is stored. This intormation is passed dowh from each level

to 1ts subordinate levels, 1The sympol table for the previous exampile

{

-

f"

| ® @

28

would bpe:

cSmewee level 1 cEmae o = level 2 P
| | | {
Field Name 1st Occ Size between Max Occ. Size Between Max Occ,

DAD 1 0 0 0 0
CHILD 3 4 2 0 0
PET=NAME 4 4 2 1 3

Addresses tor CHILD are tne original (3) and the original plus the size
vetween occurrences (3+44=7). Addresses tor PET=-NAME are the original
(3) plus the size between occurrences tor level 2 (4+1=5, 5+1=6) and the
same jteration for the second occurrence of level 1 (4+4=8, 8+1=9,
9+1=10), This algorithm is wused «hen generating the conversion

assignment statements.

In sumrary, the read module logic <consists of dgenerating an
uneaited read statement to move an entire source record into an input
cutter, Decode statements are then generated which convert each tield
to 1its proper internal representation, and moves the value to a
tempordary array word, The previously build symbol table allows
retrieving the proper temporary array word for any occurrence of any

source tield,

2.3.2 The Conversion Module Design

The conversjon module is responsible for generating the FURTRAN
code tfor the gata transformatjions ana validatjions/conversion procecures,
Since the user is responsicle for the validation and conversion code,
the only action the system takes is to replace the source field

reterences with their proper temporary array locations. This 1is done

B

2.4

1

o eyl L, el

——s v s oy —— v v

ay

29

using the symbol table mappings built during the source definition

parsing, and a set of indexes, one index corresponding to each source

data groupe. The value of the (indexes represents the "current"

occurrence of its corresponding group. B8y computing

INDEX = <orig, pos.> ¢ (<curr indexi>#<groupl! size>) + ...
for 4ll groups the field in guestion is subordinate to, the correct
temporary array subscript is found. This c¢omputation statement is
generated betore each source tield reterence. Then the field narme |is
replacead with the temporary d4rray name, subscripted by the variapole

INDEX (1.e. TEMP(UINDEX)).

The data transformation algorithms must also generate similar
statements for all source field references, Before a source data value
is moved to a target field, INDEX must pe computed. Then the value ot
the temporary array, subscripted by INDEX, is moved to the target tield,
The other task the aata transtormation algorithms must accomplish is
generating proper loopinag statements, These statements are needed so
that the data transformations are executed for all source filield
occurrences. The DIRECT data transtormation (moving values on the same
level) requires a loop tor the group the source field is in, plus a loop
for eacn aroup the source field is subordinate to, Consider the DAD,
CHILDREN, PETS data structure in tigure 6 as a source file, and the
target s a "FE1S" dataopase, one pet per record, In order to address
all of the pets contained in a single input record, the CHILDREN group
must be Jlooped throujh as well as the PETS group. Thus, this example

would require generation of two FURTRAN DO loops.

.

)

30

The REPEAT data transformation (moving upper level values down)
requires no additional loop statement generation, The current
occurrence of the rarent group will contain the <correct source field
value, Using the DAD, CHILDREN, PETS example auain, consider moving tne
CHILU (name) into the target "pet"” record, The proper occurrence ot the
CHILLDKEN group nmust be used, Since the previous DIKECT statement
generated a loop tor the CHILDREN group, the proper index is guaranteed,
The argument for this is the following, It & source value is peing
moved "down" to a field in a target group, the target group muyst have a
corresponding source group. At least one field in this corresponding
source group must be moved to the target gqroup using the DIRECT
transtormation, Since DIRECT generates loops $Or all groups above i{t,

the parent group the REPEAT refers to will be properly incremented.

Tne UPOP (Up OUperation) data transformation 1is designed to
pertorm an operatjon on all field values contained in a subordinate
group. Here agaln loops must be generated for the group itself plus all
groups superior to it wuyp to the group level which called the
transtormation (the DIKECT group level). Consider the previous example,
cut tnis time the target database is a "DADs" database rather than a
"PeIs" datatase., In this case the source level 0 tields would be moved
to the target level 0 fields using the DIRECT transtormation, Consider
a tdrget field defined "NUM-PETS=OWNED", with the desire to store in
eacn DAD’s target record the number of pets he owns. A loop tor the
CHILUREN group as well as the PETS group must be generated in order to
count all ot the pets pelonging to each source DAD record. 1t is not

sufticient to generate only a single loop for the PETS group.

e I —— - ——

et

|
|
|
!
|

3
@
In summary, the conversion logic algorithms must accomplish two
1‘ tasks, The ftirst {s to generate code which will comnpute the correct
® temporary array subscript tor each source field occurrence., The second
is to yenerate loopiny statements so that a data transformation is
® executed tor all scurce tield occurrences,
o
2,3.3 The wWrite Mcdule Design
®
All target database "writes" are accomplished using the S2h PLI
. statement ILSERT <schema name>, The semantics of the INSEKRT statement
1 are to attach the <schema name> data set to the database, positioning it
accoraing to the current values ot each S2K set occurrence pointer,
! Thus, if the level 0 occurrence pointer equaled 3, an INSERT on a level
’ 1 data set would tecome a suybordinate set of the third occurrence of the
A level U data set, 1Tre entire write logic 1{s, therefore, ctased on
¢ insuring the order of INSERT commands is <correct., Using the DAD,
) CHILLKEN, PETS cata structure as a target database, an INSERT tor the
tirst vAD is tollowed by an INSERT for the first CHILD which js followed
0 cy as many INSERIS as there are PETS belonging to the first CHILD. Then
o tne next CHILD INSERT is issued, followed again by as many INSERTS as
there are PETS belonging to the second child., This order s continuea
i until ajl CHILDKEN tor the first DAD have been inserted. 1Then the order
® repeats, startinag with an INSERT for the second DAD, etc.
®
[]

e 3

———— . W Wy w =~
. i X

C e e

e —— e e e

L ‘.. 9 L

32

2.4 txecution Section Design

The Source to S2K Conversion System generates a4 complete,
selt=contained FOKTRAN program which will pertorm the entire conversion
jobp. This is in contrast to generating unique conversion procedures and
then calling ther when needed, as done by the EXPRESS system, In order
to support the execution phase, the Source to SZK System generates two
tiles containing UT+-20 control commands. One tile is needed to support
generation ot the FORTRAN program and the second to control its
execution, Because several users may be using the system, uniaue names
tor the generated programs and the command files must be assigned, The
rules tor these nares are contained in Section 3,2 ot the User’s Manual,
In order to generate these ynique files, as well as simplity the user’s
input, a single, ¢fixed comnmand tile was desintned. This file, named
"GEuwkAlE™, is called by the user., 1t will take the user’s description
input d4nd execute the Source to S2k Conversion System (see figure 7).
Here the FUFTKAN program and the two command files are generated, Next,
tile GENRATE calls the first command file just generated. The commands
in this file will sort the qgenerated FORTRAN program, (See section
2.5.2), complile it, change the proygram’s name to a unique name for that
user, ana save it, when the user {s ready to execute the conversion
job, the second generated command file s called. This file will
complle the FORTRAN program, ready the source input, target database and
S2K sottware, execute the program d4and save all files. Details and
examples of executing the system are contained 1In Section 3 of the
User’s Manual, The command statements for the file GENRATE, and an

example of the two generated files, is contalined in Appendix B,

v ‘.. w

GENERATIUN PHASE:

Jser CdllS__ﬁp

GENFATE

executes —»SUURCE TU S2K
CONVERSICGN
SYSTEM

EXECUTIUN PHASE

y

(GENEPATED FORTFAN)

SOURCE CUDE
o Y
execytes —¥ SORT UTILITY

enames SORTED, GENERATED
FORTKAN PRUOGRAM

executes ——PIFORTRAN

COMPILEK

User Calls UNIQUE EXECU=- FORTRAN
kxecution TIUN FILE 7 JCOMPILER

EXECUTABLE
CUDE

File

Figure 7,

readies —

source

saves =
SZK
DATABASE

Files and tasks involved in each Source to S2K
Conversion Job.

33

%)

4

4.5 1mplementationr Details

petails of the system’s design and major algorithms have already
been presented, This section will present details on the sotftwdre
implementation ot these alagorithms, Specifically, the implementation
phnilosopny, basic program structure, major data structures, and d4n
itemization of each procedure, {its tunction and inputs/outpuls are

presentea.

2.5.1 Implementation Philosophy

The prograrming philosophy usea for this implementation {is a4
result ot the autnor’s 12 vyears programming experience and recent
grauuate work in Frogramming mMethodology., Wwhile it is beyond the scope
ot this report to document the entire philosophy, it may be of interest
to highlight certain proyramming concepts and techniques used to
implement the Source to S2K Conversion System. The programming concepts
discussed can be thought of as guidelines to "good" progranm
construction, Tre program techniques are specific rules and procedures

whicn complement tre concepts ana help realize the program construction.

2.5.1.1 Proaramming Concepts

Reliarle grogramming {s not an easy task. Most systems are very
large and very complex. pue to this size, tew programs <¢dn te
completely tested where all possibple {nput and output states are
examined, In light ot tnese facts, it is pelleved reliable programs
myust pbe constructed in a disciplined and systematic manner, This is the

tirst and rost important programming concept, The second concept is to

!
|
i
!

35

construct proqaramrs using a hjierarchy of abstractions, This means to
suppress the details of a tunction to the lowest level possible, Tne
purpose ot this is to improve both the clarity and understandability ot
the program. ULijkstra states, "The purpose of abstraction is not to be
vague byt to create a new semantic level in which one can re absolutely
rrecise" (4], How to recognize when a new semantic level is desirable,
as well as the total organization of the program, should be gqguided by
specitic reasonina rather than intuition. The third concept, theretore,
is to use bParnas’® work [(14) in program module decomposition as a
Criteria tor determininj the modules of a program, ©Brietly, this
criteria 1includes:
1. Ekmphasize the intertace between the modules rather then tne
tracitional functional modularjization,
Z. From a given set of requirements, select the set of assumptions
that are 1likely to change, Design modules Jaround these
assurptions and "hjide" them in the module. Then select the

assumptions that are unlikely to change and design the module
interfaces around them,

1he final concept is that of developing the program using a
"stepwlse refinemrent" approach, as introduced by Wirth (20)., Stepwise
retinement means that proagram construction should be viewed 4as a4
sejuence of retinement sSteps. In each step a task is broken up into
several suptasks, As the descriptions of each subtask are refinea, so
shoula the data structures uysed Lo support the tasks. Thus, the program
ana supportinag data structures are developed in parallel. fhe important
aspect ot this <concept is to recognize the possiblity of improving an
aljorithm ashen the data structures are refined, Father than design the

Jdata structures separately, they should be designed using the same

-

¢

oy

R
.

pE S

4.,,,..-...
P
o

3o

hierarchicdl process as that used to design the algorithm’s logic.

2:.5.1e2 Programming Technigues

Tne tour concepts discussed, c¢onstructing the progrsr in a
disciplinea, systematic manner, using a nhierarchical 1level ot
abstractions, decompose the prodgram modules based on their (intertaces,
and aevelor the rrodram and data structures using a stepwise retinement
approach, must have speciflic prodramming techniques to Support thnem,
lThe tirst technicue used was tO ensure all reguirement specitications
~sere completed, reviewed, and accurate before any system design «sork
commenced, The emphasis here was to study the elements in the system
wnich were likely to change a4nd those which were Jlikely to remain
stabile, Fror tris study a better decomposition ot the system coulda pe

Tade during the design phase.

structurec tlowcharts were used to design the entire system
cetore codina rtegan, Fiagure & is an example of a structurea flowcnart
for an algorithm tc merge two sorted arrays into a single array. These
Chdarts encourage a4 structured organization ana the use of levels of
dostraction, The only programming constructs alloweg are the
assiynment, if..then,.else, and case statements, procedure calls, and
"while" loops. 1he "while" looping invariant 1s clearly stated at the
top of each loor. Using this limited number of primitives encourages

simplier programming, tewer "tricks" and no GUT(O sStatements,

The thiro technique ysed was to select a programming language

suited to the ¢t¢hilosophy., PASCAL was selected because of {ts plock

—— -

INITIALIZE VARIABLES

|
|
t
i
|
|

(I < 101) AND (J < 101)

AL L L E N LY R EL R LR LY F RS Y E LY LYY N ¥

A{l}] < B[1]l ?

|
J
| yes

no

-------.--------------l

{ ClK):=A([1] | Clk}:=BI(J] {

l I:s]+1 | Jizsd+l [

{ K:sK+1 |

1 =101 72

yes P no

J < 101 | I < 101 |

crerscccnnsnencsenne | ceresmroscacventanns |
| CiKl:=plJ] | | ClK):=Al1] !
» |=-=reeccancccvercacan| |ewrwmrcenaccnncncan|
| JeizJd+l { | I:=l+1 |
|ecereecceccocancnaca| |seemececsccenccnnn|

{ K$=K+1 | | KRizKel |

CLUSE PROUGRAM !
|

LA E L L AL E IR LR R PR AL ES LR LR R LY R P AR R L LY Y TN)

' Filgure &8, Structured flowchart for merging two sortec arrays
(A and B) into a single array (C).

38

structure, its control mechanisms (FUR, WHILE, and REPEAT. UNTIL
statements) and its cacability to detine heteroaeneous data structures,
PASCAl ‘s weaknesses, string manipulation and input/output, causeo some
troviems in parsing the user input, However, the capability to detine
elaborate symbol tables (see section 2,.5,3) compensated for these

weaKknesses.

The tinal technique was to use the work in program veritication
(see floya (S]], Hoare [8], and Yeh [21]) as a guide towards writing
correct code, Individual procedures in the Source to S2K conversion
system were not tormally proven., However, each procedure was written

with certain veritication rules and steps in mind. These steps were:

1. Examine the algorithm/task to be programmed ana find the loop,

2. It there is a loop, establish a loop invariant., This invariant
is that <condition (B) w«hich remains true throughout the
processinag of the loop, and becomes false when the 1loop
terminates.

3. 1Initialize all varjables betore enterina the loog, insuring the
invariant (b) remains true, 1If it does not, the initialization
is in error or the invarfant is not correct.

4. Ensure the <code contained within the loop approaches the

corcitior NOT (B), This step is taken to guarantee the loop
will terminate,

The above steps, as well as the other techniques discussed,
gives credence to the vprogramming philosophy presented, These
tecnhnigues were not Jjust investigated, but faithfully used. As a
result, the Source to S2r¥ Conversion System implementatjon is well

structured, can accommodate modification and is believed to be correct.

B e e s kK R

Wiyt

.
-5

RREE X

.,..
FIES 3.5

39
2.5.¢ Basjic Program Structuyre

Figure 9 s a structured flowchart of the Source to SZK
Conversion System progran, The PARSE module reads all of the user
input, checks for syntax errors and builds the symbol tables, 1f an
error is tound ip the user input, no FORTRAN program is generated. It
no errors 4re tourd and the user "asked" for program generation, a
series ot generation modules are called, as shown in tigure 9. Data
neeaded to generate the FURTPAN statements are in the symbol tables ang
other vdriables which were filled by the PARSE module. A line of code
is generated and then written to the program output file FURTSRC,
(FORTKAN Source),., Several situations arose where a line of code npeeded
to ve generated inrediately, but its subsequent write put {t out ot
orqder. txamples of this are generating a subroutine pefore all of tne
"main" code 1is corplete, and generating the beginning and ending of a bDu
loop Ubpefore generating the code contained in the loop. To solve this
provlem, each generated line of code is written with a leading tag.
This tag represents the logical position of the generated line. When
the program is conmpletely generated, a sort utjlity is called to sort
the prograr in rroper tag sequence, This moves all generated lines ot

coie to their propeyr location in the program.

All commror parsing and generation functions were written outsiae
of the main structure of the program and made global to the procedures
neeaing them, These tfunctions 1include searching tfor a particular
character in an input string, putting a series ot characters into an
output line buffer, generation of leading tags, and all {nput and

output. This allowed placing the detalils of many functions in a4 single

[P

»

Figure 9,

|
i INITIALIZE GLUBALS

| PARSE USER INPUT

.«

{
{ yes

| INITIALIZE FILES |

| GELMCRATE FORTRAN HEADER |

| GENERATE SCHEMAS i
'-—-------.------------------ l
| GENERATE INITIALIZATION |
| CODE t

| GENERATE DATABASE UPEN |

|mmveccsrenrsvronvesnrarrsoravas |

{ GENERATE SOURCE RLAD {
[EXELEL TP ELEE FEETEEFEY T T Y '
| GENERATE CONVERSION |
| STATEMENTS i

| GENERATE DATABASE CLOSE |
'------—---.------—----------'
t GENERATE ERROR SUB=- |
| KOUTINES |
|emvcowsevrsroacsraercenecvavonevan |
| GENERATE COMPILE COM=- |
| MANDS FILE |
|*erocccsarncacrmorocscnoancnens|
| GENERATE EXECUTION |
{ COMMANDS FILE |
|=erccwmonrressrressvonnersccow |
| CLOSE ALL FILES l
{ |

no

Syster,

. e e ——

'w-‘----------------—-------------‘-----------------.
| T FULL GENERATION = TRUE
| B AND NOT(ERRORFOQUND) 2

|
{
{
|
|
|
|
|
|
|
|
{
{
|
|
|
|
{
|
|
{
|
{
|
[
|
|
t
|
{
|
|
(
|

Basic program structure of the Soyrce to S2kh Conversion

40

41

location, niding them from the main logic of the program, Uther program

details may be found in the Itemized Procedure Listing (section 2.5.4).

2.5.3 Data Structures Used in the Program

A number of global data structures were declared {n order to
tacilitate communications petween the PARSE and GENERATION routines,
These global structures may be considered the symbol tables ot the
system, The parse routines "fill" the symbol tables with data received
from the user, The generdation routines then "read" this data, thereby
generating a uniaue PL1 FURTRAN program tor the user. This section will

agescribe the layout and meaning of the important global data structures,

The Source to S2K Conversion program declared three primary data
structures: the Source, the Target and the Conversion Symbol Tables,
Several other sinale word arrays were globally declared, but their usage
and description 1is evident upon examination ot the program listing.
Because PASCAL’s declaration notion 1is exceptionably concise and
readapbple, the actual PASCAL declarations for each sympol table will be

presented, with explanation,

Ibe Source Sympbel lable Declaratiana

TYPE
SKCTBLTYPE = RECORD
GRPNUM ¢ 1..MAXGROUUPS:
PARENTINDEX : 1..MAXSRC;
CRIGPOSITION ¢ 1..MAXRECSIZE?
EDITSPEC : CHAR;
DECIMALSPEC ! INTEGER;
FLDSIZE ¢ INTEGER:
REPEATARRAY ¢ ARRAY([1,.MAXREPEATS) OF REPTYPE?;
ENE?

et

-
v

42
KEPTYPL = RECOKD
FEPNUM ! INTEGER;
KEPINCREMENT & INTEGER:
END S
VAR

SUURCELTARLE : ARKAY(1..MAXSRC] UOF SRCTBLTYPEL;

The meaning of the declared fields are:

SRCIBLTYPE = The name of the record type description tor the
Source Symbol Table,
GRPI UM - The group numper Of the group the field resides {n,
PARENTINUEX = The Symbol Table index number of the tield’s group’s
parert,
URIGPUSITION=- The index number of the first occurrence of this field

in the temporary array SRC,

EDI1SPEC The field’s input edit specification,

UECIMALSPLEC The decimal specitication tor a type REAL.

FLLSIZE - The size of the tleld,

FPEPLATARRAY -~ Repeat array data tor the level the tield is at and
all levels above it,

HEPTYFE « The name of the type description for the rereat array.

KEPNUM - 1The number ot times this group repeats.

REPLw(- Total size of the group.

SUURCLTBL - The name of the Source Symbol Table with the layout

as described in the type description SRCIBLTYPE.

Ine larger Symkal lable Qeclararians

TYPLE
TARTBLTYPE = RECORD
NAME : ALFA;

WYL Ao o s

e

R

VAR
TARGETTBL
The
1AR1BLTYPE
! NAME
]
TARGETTYPE
» S1Zt
]
b REPEATED
]
) TARGETTBL
»
»
TYpE
]
]
[]
® VAR
CUNVTBL
@

—— ey

43
TARGETTYPE ¢ CHAR;
S12E ¢ INTEGER;
FEPEATED ¢ BOOLEAN;
EML
ARRAYl 1,,MAXTARGET] OF TARTBLTYPE; -

meanings of the declared fields are:

The rame of the type description ot the Target
Symbol Table.

The component name for this tield, or the data set
name if the entry is a repeating gqroup header,

The tield’s type (i.e. integer, real or character).
The size of tne field in 10 character words. (Type
real and integer always are SIZE = 1 word).

A tlag to indjicate whether the fjeld is contained in
a repeating group.

The rame of the larget Symbol Table as descCcribed by

the type description TARTHBLTYPE,

Ine Copyersiop Sygbal Iable Declaratian.

CUNVTBLTYPE= RECORD

CUNVTYPE ¢ CHAR;
SRCNUM : 0..MAXSRC;
TRGNUM s ALFA;
TEMPTYPE $ CHAR;
CPER 2 0..5;
MISC : ALFA;

END;

ARRAY{ 1..MAXCONV] UF CONVTBLTYPE:?

The meaning ot the declared tields are:

Rl VUL WS L WY WL

TR

CONVIBLTYPE

CUNVTYPE

SRCNUM

TRGNUM

TEMPTYPE

OPER

M1SC

CUNV 1AL

t

44

The type description for the Conversion Symbol

Table,

The type of conversion statement this entry is,

(i.e., a DIRECT, REPLAT, LEVELUP, etc,).

The Source component for the conversion transformation,
It SRCWUM = 0 the source is in the temporary variaple,
The S2K component number for this conversion trans-
torration, If CONVTYPE = STORE, this is the Repeating
Group name to store,

If SKCNUM = 0, this indicates which temporary variaple
holds the source value, (i,e, TEMPREAL, TEMPINT or
TEMFCHAFR) .

If CONVTYPE = LEVELUP, UPER=0 if the term "LAST" is
input. 1f CONVTYPE = UPUOP, OPER indicates the oper=
ation to apply, (i.e. 1=MAX, 2=MIN, 3=AVG, 4=COUNT,
S=TUTAL).

It CONVTYPE = LEVELUP, MISC holds the srecitic oc-
currence numbers tor each repeating group. It
CONVTYPE = DIRECT, MISC holds the optional constant

to be moved.

The name ot the Conversion Symbol Table as descripbed

by the type description CONVIBLTYPE.

2,5.4 Itemized list of Program’s Procedures

As detailed {n Section 2.5.2, the Source to S2K program |{is

45

divided into two main modules, (the PARSE and the GENERATION), witnh the
global symbol tables providing the communication between the two, This
section will discuss each module separately, presenting a "top-down"
view 0ot the procedures, and give some details of the most {mportant

ones.

Brogram’s Iop Lexel Qacumentatdiond

SRCTUSZ2K Program (Source to S2K)
(* main Procedures #)
INITGLUBALS
PARSE
GENERATEALL
(* Utility Procedures Global to All ¥)

CUNVTOCHR (Convert to Character)
CUNVTOINT (Convert to Integer)

JLULIGLOBALS
FUNCLIIUN == All glonal data structures are initialized.

INPUTS/0QUTPUTS == No tormal parameters. Global data structures needing

initialization are altered,

BAKSE

FUNCIIUN == To read the user input, ensure correct syntax and serantics,

(#nhere possible) and fill the symbol taples,

INPUTS/0UTPUTS == The user’s input descriptions are the input, The

output are tilled symbol taples.

P e em . m a

40

GEAERAIEALL

FUNCTIOW == To generate the PLI FORTKRAN program and conctrol command

tiles.

INPUTS/0UTPUTS == The input are the tilled symbol tables, The output

are the text tiles containing the FORTRAN program and control comrmands.,

CONXIQCHRB

FUNCIIUN == To corvert the inputted integer to its character form,

INPUTS/0QUTPUTS == Formal parameter "INT" Is the input integer to be
convertea to character form. The global word "token" is the output wora

where the character torm of the integer is stored,

CUNMKIUINT

FUNCTIUN == To convert the inputted character word to its integer value,

CONVIUINT is declared a type integer function,

INPUTS/Z0UTPUTS == The formal parameter is a 10 character word. The
output is the function name {tself, where the binary value of the

inputted cnaracter form {s stored.

Ine RABSE Bracedure Docugentatians

PARSE

(* Main Procedures %)
CUMMANDMODE
SOURCEMODE

;-.QQ.

47

SZKMUDE
CUNVERS LUNMUDE

(* Utility Procedures Global to PARSE %)
KEADACARD

GETTUKE v

SKIPBLK

EvUALOK

CHKPERIUD

EKKUR

CUMMANQMUQE (Command Mode)

FUNCTJUN == The user’s commana language inputs are parsed and

appropriate global data structures are filled with data.

INPUTS/0UTPUTS == The input is the user‘’s description input file. The

output are globally declared single word arrays filled w~ith data the

generation module will use.

SUUBCL¥URE (Source Mode)

FUNCTIuin ==~ The user’s source input description is read and the source

symuol tapble is build,

INPUIS/GUTPUTS =~ The input is the user’s source file ogescription. The

output is the completed source symbol table,

S2KBURE (system 2000 Mode)

FUNCTIUN =~ The user’s S2k target file description input is parsed here.

Ine target symbol table is also build.

INPUTS/0UTPUIS == The ifnput is the user’s target tile description. The

output is the conpleted target symbol table,

cw -

TU oo il "L L

4

CONMKEBSIONMULE (Cornversion Mode)

FUNCIIUN == The wuser’s conversion statements are parsed ana the

conversion symbol table build.

INPULS/0UTPUTS «= The input is the user’s conversion statements, The

output is the completed conversion symbol table.,

BEARACAKD (read A Card)

FUNCIIUON ==~ To read a record trom an input file and place the record in
4 temporary text file, This text file will act as an input recorc

bufter, 80 characters long.

INPUTS/0UTPUTS == Input formal parameter "FNAME"™ is the text file to be

reaa. [he output is the text record buffer "LINE",

GeIIuBEN (Get Token)

FULCTIUN =~ The function is to scan a line of text and return the next
"token", A token 1is defined as a string of alphanumeric characters
separatea by aeliniters, where a delimiter is any none-alphanumeric

chardacter,

INPUTS/0UTPUTS == lnput formal parameter "KFNAME™ is a text ¢file, fhe
tile 1s 80 characters 1long and represents a single input character
pufter, uUutput is the global word "TOKREN" where the found token is

storec lett Jjustitieod, blank tilled,

SBIEBBLEK (Skip Blanks)

e —————— e o g - I

. |

. e

BT L T I

49

FUNCIIUN == The tunction §is to pass over all consecuytive blank
characters in the input record bufter "LINE", starting #ith the current

character pointer,

INPULS/QUTPUTS == The input is the current character gposition of text

tile "LINEL", 1The cutput IS the new character position of "LINE",

EUUALUE (bqual 0k?)

PUNCTIUN == The tunction is to syntdx check the ©presence of an egual
si3yn, used in many of the user input statements. It the equal sign {is

not present, the prorer error message is given,

INPUTIS/UUTPUTS == The input is the current position of the text tile
"LINE". The output is the new position of "LINE". If the check for the

egudl sign tails, the output also includes an error message,

CeeBeBlUL (Check Ferioa)

FULCIIUN == The function ana inputs/outputs for CHKPERIOD are the same
as those tor ECULALOK, The ditterence in the two procedures is that

CHKPEKIOD checks tor the presence of a period (.).

EkBib

FUNCLION == Tre FUMCTIION Is to write the error message passed it and set

the Jlobal error tlag "ERRORFOUND",

INPUTS/0UTPUTS == The input is an error message constant, S50 characters

longe. The ouput {s the error message being written to the printer ana

B e I R

e e s - o

—— e

b

50

the boolean "FRRUKFUUND" being set to true,

Ine GLAERATIEALL Brocegure uacuZentatioda

GENEMATEALL

(*# Main Procedures %)
LEMHEAUEF

GEi+SCHEMAS

GENINITLAL

GENUPEN

GENKFEAL

GENCUNVERS UL
GENCLUSE

UGENERKUKSIUIBS
GENCMDEFILES

(* Utility Proceocures (Glopbal to GENERATEALL *)
“hrTTAG

AhTwRD

sTINTEGEHE

wkE1TECUNT

GELBEALUEE (Generate Header)

FUMCLIUN == This procedgure generates the heading of the PLI FORIRAN

proygrarm,

INPUTS/UUTPUTS == The inputs are globally definea single woro arrays
containing aata atout the source inputs file, The output 1s the FUKTKAN
grogram statement, which incluades the declaration of external files, and

a program commert explaining the purpose ot the program,

GENSCBENMAS (Generate schema Declaratjons)

FUNCI1UN == This procedure generates the common block declarations for

51

the necessary System 2000 communication areas. Lne common Dblock

declaration is reauired for each declared database repeating grouc,

INPUTS/UUTPUTS == The input data {s the target symool taple. 1he outrut

is the generated common block declarations,

GERIBLIILIAL (Generate Initialization Code)

FUNCLION == This procedure pertorms six generations: 1. generation of
real adeclarations for target database components of type REAL; 2.
aeneration of the global arrays "BUF" and "SRC"; 3, generation ot a
parameter declaration for the "EMPTY" character; 4. generation ot
FUKMAT statemepnts used in the FORTRAN proaran; S, generation of
initialjzation code for the global bufters, ana &, generation ot a

grint header for the FORTRAN program,

INPUIS/0UTPUTS == 1he corresponding inputs for the six generations are:
1, the target symbol table; 2., the source symbol tavle; 3., the
glokally cetineag wora "EMPTY"; 4. no input=-a constant; 5. source
symbol taple, arc 6, globally detined words "DBNAME", and "FILENAME",

The outputs are tre qeneration of the code, as descrivea above,

GEAUBEN (Generate Latabase npen Coae)

FUNCLIIUN == This proCedure generates the code for opening the target S2k
datdabase, Alj of this <code 1is the same for each jor, with only the

datdapase name and rassword being ditterent,

INPULS/UUTPUTS == The inputs are the words "DBNAMLE", and "USLRID",

containiny the database ndame and the passworg respectively, The output

=

-y

52

is the generatea code, as described above.

GEMBEAL (Generate kead Code)

FUNCTIUN == This prrocedure generates the unformatted read statements,
the dagecode statefFents and the format statements used by the decoage
statements. When Generating this c¢ode, each decode statement must
decoae less than 150 characters ot the input record, andg muyst terminate

each aecode statelent on an even 10 character word boundarye.

INPULS/UUTPUTS == The jinput is completely contained in the source symbol

table, Tne output 1is the generated code, as described above,

GENCUNXERSLUN (Gererate Converson Coae)

FUNCIIUN == Each entry ot the conversion symbol tatle {s read and Code
is 4yenerated tor it. A procedure tor each conversion statement {is
declared within GEMCONVERSION, and is called depencing on the statement

type ot tne conversion sympol tdble entry,

InPUTS/0UTPUTS == The inputs are the conversion symbol table and the
source symbol tatle, The source sympol table is needed to determine
which array wora ot "SRC" the source ~+alue resides. The outpuyt 1s the
code to move the source fields into their respective target fields, to
store the data sets using the S2K INSERT commana, and generate FOURTRAN

LU LuubS$S wnich will rproperly iterate through the entire source file,

GENCLUSE (Generate Database (Close Code)

FUNCTLIUN == This procedure proauces the code to close the database and

S e e g R T ey

P

o

£

R

2

TN P

- xS

53

proaduce a4 summary grint out ot the jobo,

INPUTS/0UTPUTS == This code generation is the same tor all Jjob. The
ditterences are the database name and the print header generated. Tne
input, tnerefore, is the word "DBNAME", and the output the generated

code, as described above.

GEMEBRBOESURS (Generate Error Subroutine Code)

FUNCTIUN == This procedure generates the code for the error subroutine,
This subroutine 1is called in the FUORTRAN proaram for all SZ2k datapase
errors detected ouring execution, Because this is a standard

suproutine, the sanve code is generateag tor al]l jobs.

GENCMUEILES (Generate Commandg Files)

FUNCTIUN == Tnis procedure aenerates the tiles "CuMPILC" and "EXECC".
lhese tiles contain the unique UT=2D control commands necessary for the
user to generate the FORTRAN program (file “COMPILC") and execute it
(tile "EXxECC")., ULetails on these processes are contained in the User’s

Manual.

INPUTS/0UTPUTS == The inputs are many globally declared words containing
intormation on the source input file, the target database tile name and
location, and execution options availible to the user, 1his data {is
gained primarily from the user‘’s Command Language input and the first
portion ot the user’s Source Language input, The output are the two
control command files, A complete example of these tiles can be tound

in Appendix 8,

e e g Rt T,

e e ——— e = e e

~

e

54

4BI1lAL (write Tag)

FUNCIION == This grocedure writes the leading tag for each generatea
line of FORTRAN Ccode, This tag is later usea to sort on in orader to

rearrange the generated FORTKAM Code in proper seguence,

INPUTS/UUIPUTS == 1he input 1is the formal parameter "INTAG" which
contains an integer value to output. The output is a 10 character

integer written tc the file "FURTSKC", right justified, zero filled,

aRI (write String)

FUNCT1UN == This procedure writes the string passed to jt, to the
current line of ftile "FORTSEC". FORTSRC is the file containing the

generated FOFTRAN program,

INPUTS/0UTPUTS == The input is the tormal parameter “STRING". Tnis
string is a %0 character constant which will be written, eitnher in full
or until the first percent (%) is found. 1he output 1is the constant

string peing written to the tile "FORTSRC",

aBIlakl (write wora)

FUNCTIUN == 1nis procedure performs the same function as wRT, except |t

will w#rite a word to the file "FURTSRC" instead of a string,

INPUTIS/UUTPUTS == The input is the tormal parameter "wORD" which is a 10
character word, The output is writing this entire word to the tile

"FUKRISKC” or until the first blank i{s encountered.

F T g

A,

-

A N A

55

aRIIMIEGER (write Integer)

FUNCTIUN == This procedure pertorms the same function as WwRT, but it

“rite an inteaer, in character torm, to the tile FORTSKC.

INPULIS/0UTPUTS == The input is the formal parameter "INI" which 1is an
integer, Tris 1integer will be converted to its character torm, thnen
written to FURTSKC. Only as many characters the integer i{s long will pe

written,

ABLILCUNT (write Continue)

FUNCTIUN == This procedure »ill generate a FOKTRAN CONRTIINUE statement

with the tag and lapel as input in the parameters.

INPUTS/UUTPUTS == The inputs 4are the formal pararmeters “INTAG" ana
"EORMATNUM", The output is a FORTRAN CONTINUE statement with the taq ot
INTAG ana the label ot FORMATNUM, This statement is usea as a label to

inaicate the end ot a DO LUOP,

2.6 Final Comments

This report concentrated on 4 specific subset of the aqata
conversion reauirement, This subset was converting a source file to a
detined target oatabase,. The source tile must be hierarchically
describaple and the target database must be defined and maintained by
the System 2000 DBMS, Although the solution to this subset is a system

limited only to the specitic requirement, the ideas, system

C e e e aee oy -

56

architecture, and algorithms presented here are applicable to maeny ocata
conversion requirements, The jidea of 4implementing A small, simple
system to satisty a specitic conversion reguirenent gives the system 4
better chance of succeeding and peing used. As an example, the user's
manual tor ™ichigan’s Data Translation system is 355 pagyes 1long, The
user may be able to write a unique program to satisfy his conversijion
need faster than learning a system as large as Michigan’s. The common
architecture ot data conversioh systems presented in this paper nay be
used as a basis tor design of any new conversion system, The specific
design options taken by the Source to S2K System aprear to be the pest
choices, however, a8 new conversion reguirement would, obviously, afctate
the pest cholce for the deslign ot {its system, #finally, tnhe algoritnms
tor implementing the data transformations are sirple and satistactory

tor @ procedurally oriented system,

The transgportability of the Source to S2K Conversion System s
one ot its weakest points, The system was written in pPASCAL ana
generates a non-ASCIl standard FORTRAN program and job control commands
executanle only by the UT=-2D operating system, These languages were
chosen because they are the best supported languages at the
implementation site, It a conversion system of this type is intendea
for more than onhe organization and/or machine, the system should be
written in CORBOL or ALGUL 60, generate a COBOL PLI program, and generdte
job control commands tor a standard operating system, COBOL allows tor
easier record description and editing than FORTRAN. ALGOL 60 does not
otfer any advantages over PASCAL, but it {s supported on more machines

than YASCAL.

rrrrr e R e e A R e 2o S IR SR T
—— LT)

...,.__..
o i nomddie, Dt o P e

[» @

57
»
The tinal comment to be made is on the philosophy of the Source
‘[to SZk Conversion system, 1t was designed with the philosophy of aiding
> the user in the conversion task rather than completely accomplishing it.
This philosophy has several advantages., First, the implementation is
’ simplified by not designing for unusually complicated conversion
) requirements which might arise, Second, the user’s input is reduced and
simplitied since he does not have to translate some complex portion of
’ his conversion requirement into an even more complex user’s language,
» Finally, the conversion execution may be improved when the user |is
allosec to access the gJgenerated program prior to its execution,
® Cesigning and implementaing these conversion systems with the 1idea of
® helping the user rather than ensuring completeness will give the system
a4 petter chance ot being used.,. The Source to S2K Conversion System has
e .
’ achleved that goal,
®
®
®
®
®
L
[]

U‘.

T Rt A e g T B g T 7 T TP e T Y e . - e e =
- — e - . :

T

(]

La)

APPENDIX A

THE SOURCE TO $2K CONVERSION SYSTEM

USER’S MANUAL

December 1978

56

-y s = - R I Ly

USER’S MANUAL

TABLE OF CONTENTS

1. GENERAL DESCKIPTIUN

A.

Introduction
System Characteristics
System Usage

Loaaing Data To Existing Databases

LANGUAGE DESCFIPTIONS

General Pules and Restrictions
Ccommand Description Language
Source File Definition Language
Target S2K Database Input

Conversion Detinition Language

3. SYSTEM USAGE

INDEX

How to Generate a FORTRAN Program
How to Modifty the Generated FORTRAN Program
How to Execute the Generated Program

Complete Example

59

L - - .. e e e e

page

60

61

61

62

64

65

69

11

78

89

90

90

92

99

~a

-
T

(]

SOURCE TO S2K CONVERSION SYSTEM USERS MANUAL

SECTION 1 == GENEFAL DESCRIPTION

1.A INTRULUCTION:

The Source to S2k Conversion System gives The yser the
capablility o©f gererating a complete S2K PLI FORTRAN program which, when
executed, will loao his defined S2Kk database with his described source
input. The UT=2D control commands needed to execute the PLI program are
also automatically generated. Wwhen the wuser wishes to pertorm the
actual database 1load, a single card input i{s all that is needed, This
two step process, ceneration of the load program and actual execution,
provides the user with added flexibility. Because the generated program
is stored as a perranent file and 1s accessible to the user before
execution, the user may modify the generated program as much or as
little as he desires, For example, should the user wish to generate
only a "skeleton" 1load program and then write his own conversion
routines, this can be done, Or the user may generate the complete

program and then ortimize heavily used routines for improved efficiency.

60

A s -~

General Description 61

The intent is to automatically denerate all source code, vet gqive the

user complete control of the final program,

1.8 SYSTEM CHAFACTIERISTICS:

The syster {s designed to convert a sinale source {input tile
into a single S2kr detined database, It is also possible to append new
source data sets to an existing database. This teature is discussed in
Section 1.0, The system suppOrts a tree like hierarchical data model,.
Thus, all input data must be in a torm that can be described in a
hierarchical manrer, Since S2k is the target database, all database

terminology will be consistent with that used in the S2K documentation.

1.7 SYSTEM USAGE:

In order to generate a complete PLI load program, the user |{is
required to make several inputs, First, descriptions ot the source and
target tiles are necessary. The source file is described wuysing the
Source pescription Lanquage, as detined {n Section 2.C. The target
database is described using the same input as that used when the target
S2¥ database was described to the S2K system, Documentation of this
input is contained in the Basic S2K documentation (see Define Module),
Next, a procedurally oriented Conversion Language is used to detine the
mappings between the source and target data fields, Since no data
movement s autoratically assumed, each target field must have at least

one conversion statement describing how its data values are attained.

i

R, o S5

LN

General Description 62

The three nrajor inputs, the source, target, and conversjion
descriptions, constitute the majority of the user required input. 1In
addition, a Comrmand language is used to tell the system general
characteristics about the job (user ccde, password, etc)., All ot these
languages are tully described, with examples, in Section 2. A

comprenensive exarple of an entire run {s contained in Section 3,

1.0 LUADING DATA TO EXISTING DATABASES:

uccasionally an initial 1load may have several source input
tiles, If it 1is not opractical to combine these files into a single
tile, it is possible to generate several PL]l FORTRAN conversion programs
which will initially load the catabase and then continue to append data
sets Lo the existing database. A boolean expresslon is input which will
identify a level (¢ data set (see Section 2,B == TYPE card). It the
level U data set exists, the new data sets will be appended to it, 1t
the booloean expression 4is not satistied, (i,e. the level 0 data set
does not exist), a8 new level 0 data set will be <created that does
satisfy the expression. Then the input data sets will be appended to
the newly created level 0 data set. Note the restriction that the
booloean expression identities a lexel Q data set. This means that the
adding ot aata sets starts at level 1 (if the level 0 data set already
exists), or level 0 (it it does not already exist). For example,
syppose the inpput source consists of two files, one of DEPARTMENT data
and the other ot EMPLOYEE data, Suppose the target database desires
level 0 data sets of DEPT data and level |1 data sets of the employees

working in that Uepartment. First, the DEPT data would be loaded,

General Description 63

tollowed by a run for the EMPL data, Each employee record would be read
and a sedrch would be made for the department he works in, The search
is expressed by a boolean expression, such as C3 EQ S3 where C3 s
the S2K componenrnt number tor Department Name, and S3 is the Employee
file component nunter for DEPT~WURKS~IN, Obviously, it the employee
tile did not have a field specifying which department he worked {n, {t
would pe impossible to realize the desired target database, Additional
restrictions on the creation ot the boolean exprression are contained in

Section 2.B == TYFE card,

-

[£]

-~

Languayge Descriptions 64

SECIION 2 == LANGUAGE DESCRIPTIONS

2.A GENERAL RULES and RESTRICTIONS:

1. Ilhere are 4 reouired language description modes. ketore submitting

input to any node, input the following card (x starts in col 1):

*¥ <mode name> ,

where <mode name> = CUMMAND (general description)
SUOUKCF (source input tile description)
S2K (52k schema description)

CONVEFSION (source to target mappings)

2. All input must ve submitted on cards. Each language statement must
pe terminated with a perjiod (.), and contained on a single card.
wnenever a single plank is syntactically 1legal, any numper ot

consecutive blanks are also jegal.

3. The tormal syntax i{s described using a *"raflroad track” notation.
Syntactically legal statements are derived by traveling the track from
lett to right. All required entries are in ©bold print, Entries
contained 1in brackets ((}) indicate there are several options and to

chooOse one,

4, Any error found in any description will prevent generation of the
FORIRAN program, All source input will, however, continue to be checked

for syntax.

1. 1his notation 1is wused by the Bburrouagchs Corporation {n their
Programming Language Manuals. Niklaus Wwirth alsd uses this notation in
his description of PASCAL, reterring to it as "syntax diagrams" (1],

i - - Tt/ T T T

Command Language 65

2.4 CUMMAND DESCRIFTION LANGUAGE

PURPUSE:

The Command Description Language s used to provide general
intormation needec by the Ssystem, The only c¢ard required is the

LOCATIUN card.

LOCAIIUN Cardz

The UT=2D system reauires the S2K database to be stored under a
specific tile nare and permanent library ID. The LOCATION Card is used

to srecity these inputs.

SYNTAXS

===« LUCATION = e=e<fjlenamed==/==<libr, i{idd=e/==<passSwordde=== .

ahere <filename> = The tile name the S2K detinition is stored and
and the S2K database itself will be stored,
The permanent library id number where the
above tile name resides.

The password tor the permanent library id.

<libr. id>

]

<password>»

EXAMPLE:

LOCATION = DUNSDBr9294/1234.

The tollowing ortional cards may be input:

[

m—

Comrand Languaqe 66

BUN lype Cardal

The FUN type card specities whether to0 generate a FORTRAN
program and the UT-200 control commands, or check for syntax only,.

Default is full generation.

SYNTAX:

vhere S = Syntax only
F = Full ceneratjion (default)

EXAMPLE:
FUN = S.

1XB: Leperatiop Lards

The TYPE generation card specifies whether the generated program
is an (jinitial 1locad or an update program. If it is an update program
(see Section 1.D), a correct boolean expression must be included which
identities a level 0 data set the new data i{s to be attached to. It the
boolean expression is not satistied, a new level 0 data set (s created
which does satisty the expression, 1f more than one data set satisfies
the boolean expressjon, the first data set fouynd will be used to attach
the new data tc, The user 1s advised to select a boolean expression

wnich will uniaquely ldentity the desired level 0 data set, This will

~

RN

“‘\

-—— -~

Command Langquage o1

preclude erroneous database construction due to unknown input tile
recora order. Since the boolean expression will be {ncluded in the
FORTKAN proaram unaltered, its syntax should be the same as that
gescribed in the bkasic S2K Documentation, (see Procedural Language
Fortran, PLF 6.6), The following additonal restrictions should be
followed:

a.) No rore tran 10 S2K components may be used in a single boolean
expression,

b.) Use complete Source component numbers (see section 2,C) and S2K
component numbers, (no componént names allowed).

c.) All S2K components must be in the level 0 data set,

SYNTAX:
11 |
wewe TYFE = wees| | mo—-—
| U <boolean expr> |
shere 1 = initial load (default)
U = ypdate load

<poolean expr> a boolean expresxion which identities

a level 0 data set.

EXAMPLE:

TYPE
TYPE

1'
U C2 .EQ., 10HPROGRAMMER,

-

Command Lanauaaqe o8

LMEIa kielg Characlers

This card is used to identity which input source character will

signity null, or enmpty cata, The default empty character is blank,

SYNTAX:

e=e= EMPTY = =e=<characterd>e==- ,

where <character> = Any legal CDC character,

EXAMPLE
EMPTY = %.
COMMAND LANGUAGE EXAMPLE:
*x CUMMAND, (enter command mode,)
LUZATION = DR/9592/1234. (the S2K file name and location)
RUN = £, (generate FURTRAN prodaram)
TYPE = 1, (initial load run)
EMPLY = O, (the 1lnput source character 0 means no data)

At 4

Source Detinition Larngjuage 09

2.C SOURCE FILE DEFINITION LANGUAGE

PURPOUSE :

The purpose of the Source Definition Language is ¢to provide a
means of descriting the logical, storage, and physical characteristics
of the incoming file. A thorough knowledge of the incoming source tile

is necessary.

GENEKAL RULES and FESTRICTIONS:

1. The first input statement must be ¥¥ SQOURCE.

2. All Source statements must be on a single card, one per card, each
enaing with a rgeriod, All input after the period is treated as a

comment,

3. No variable length records may be described.

4, 1t tne source tile originated on the UT CDC 6400-6600 under control
of the operating system UT-2D, the system will handle the file without
any user intervention, 1f, however, the file originated elsewhere, the
user may have to examine the generated FORTRAN READ module prior to
actual execution of the conversion., This {s because the UT=-2D0 file
system uyseS unhicue end-ot-line and end=of=-file markers. Foreign file
tormats may need to be read in an unorthodox manner to get the proper
results, The user {s advised to get the "toreign file" 1into a

compatiple CDC ana UT=2D format,

B o~ i i ettt it NS

e

L

—a

a

-

Source Detinition Language 70

SOUKRCE DEFINITION LANGUAGE STATEMENTS:

The stolrage and physical characteristics of the tile are {input
first. These incluade the File 1D and the Device Type. 1f the Device
Type is TAPE, several additional statements must be input describing the

tape'’'s characteristics,

ElLL 1d Cardl

The FILF ioc card is used to indicate the name of the {input
source file ana its permanent library id or local tape id. 1If the tile
is a tape, input its tape number and password in place of the permanent
library 1ia and password. 1If the file has no name (such as a card file)

then input the word NONE,

SYNIAX:

eewe [FILE = e==<fjile Nnamede=/==<libr, jdd==/==<passwordr=== ,

where <tile name> = The name of the input source file,
<libr, i8> = The permanent librarv id or the local tape
id tfor disk and tape files,
<password> = The password for the permanent library id or
local tape {d,
EXAMPLES:
FILE = DATA1/9294/1234. (disk file)
FILE = NONE,. (card deck)
FILE = NOUNE/1234/5555, (unlabeled tape)

s Rt

[PV p——

Source Definition Language 71

OEMICE Iype Carda

The ipput file device type can be either READER, DISK, or TAPE.

No other device types can be handled,

SYNTAX:
| READER |
==== DEVICE = ===| DISK |m=ee |
| TAPE |
EXAMFLE:

DEVICE = READER.

1f the Device Type is TAPE, the tollowing statements should be input,

where approrriate,.

Jage OKIGLi.Cards

The tape’s origin must be identified, This will tell the system

whether the tape is in UT-2D tape format or a "foreign format",

SYNTAX:
| uT |
oene ORIGIN = ---' l---- .
| OGTHER |
where utT = The tape was written under
UT=2D control (cefault),
ONTHER = The tape was not written under
UT=2D control.
EXAMPLE:

ORIGIN = OTHER.

e i T — — —— "

»~a

source Detinition Language

RECLBD._Size Cards

If the tape origin is not UT, then the file’s physical

72

record

size must be given, This card should not be used if the tape origin is

uT.
SYNTAX:
om-- RECOPD = ---(n)---- .
where n = The decimal integer value of
the physical record length in
units of 12-bjit bytes.
EXAMPLE:

RECORD = 100,

MULIJIRBEEL Cardl

The system must be notified if the input source file |is

than one reel long. The default is single reel.

SYNTAX:
| YES |
ceee MULTIREEL = ===| |eme=
| NO)
where YES = The file is more than 1 reel long,
NU = The tile is 1 reel long (default).
EXAMPLE:

MULTIREEL = YES.

more

~

-

oo

Source Detinition Language 73
LEAMSIIX _Cardl
The tape’s density must be input if it is not the default value
of 556 BPIl.
SYnTAX:
| LO |
w=ew DENSITY 3 =<=| H] (===,
I HY
snere LO = 220 EPI1,
Hl = 556 BP],
HY = 800 BP1,
EXAMPLE
DENSITY = LO,
CONIINUE atter Barity Cards
The option of continuing processing after a parity error has

been encountered is avallible.

run if a parity error occurs,

SYNTAX:

The default option is to terminate the

{ YES |

CX Y ¥4 CUNTINUE = ---' .--- .
I NO

where YES = Processing will continue regardless
of num of parity errors.
NO = Processing will halt on occurrance of
first parity error., (default)

EXAMPLE
CONTINUE = YES,

. A IRERIIEL >~ T AR AT W g | nw Wt iy o 4= T Yoo

Y

-

Source petinition Language 74

EXAMPLES OF STURAGE and PHYSICAL DESCRIPTIONS:

l. Source tile is a card deck.

¥% SOURCE.
FILE = NORE.
DEVICE = READER.,

11, Source file is a8 single reel, UT produced tape,

** SOURCE.

FILE = DATA2/1346/1441,

DEVICE = TAPE,
DENSITY = HI.
ORIGIN = UT,
CONTINUE = YES.

IJ1. Source tile is a foreign multireel tave. Each record contains

1440 pits.

*% SOURCE.

FILE = NONE/1334/1234,

LEVICE = TAPE,
DENSITY = HY,
ORIGIN = UTHEK,
RECURDL = 120,
MULTIREEL = YES.

LOGICAL DESCRI1PTICN

The loaical

layout, Since only

of the SOURCE FILE:

adescription of the file i{s, essentially, 1its ¢file

tixed length records may be detined, the description

language is quite straight forward. All fields must be identified with

an "S" and a uniaue integer, starting with i1 and incrementing by 1. ToO

descrioe the field’s contents, an editing identifier is wused, followed

by the tield’s size, For example, if the first source field were

Na—ea

Source Detinition languaqge 75

-NAME=, a 25 alphanumeric character tield, the source definition would
be S1 A25. This syntax is very similiar to FORTRAN FORMAT conversion
and editing specitications, 1f a field or aqroup of fields repeat
themselves in the file layout, the REPEAT <n> BEGIN ,,. END verbs may be
usea, The tields described between the BEGIN and END statements will be
repeated n times, when using the REPEAT verb, the REPEAT, the field

description statements, and the END card must all be on seperate cards,

SYNTAXS
j== KEPEAT <n> BEGIN ==| |==<tjeld desc>==| |== END e=|
| (| I [|
eovew ' cevTeTronvoerTeroeeswee e | -mw | PeoTenercews e e ® ‘ e ' Y I R . .-
where T |)
I o |
<tield QesC>ii= ==+ § KSN> ~=w=| 7 (|==Ktjeld wddew=
I A)
I F
= -l
<n> = Trhe numper of times the fields are to be
repeated,
<snh> = The unique fjield number, starting with 1,

incrementing by 1,

This integer represents the number
ot pytes in the field, 1I1f the
editing specification is F, the
numpber of digits to the right of
the decimal point must be input,
ie, 9.3,

<fla wd>

Editing Specifications:

Field’s bvtes represent an integer.

Field’s bytes represent 3 bit octal integers,
Fleld’s obytes represent 4 bit nexidecimal int.
Fleld contains alphanumeric characters.

Fleld is a decimal number, Number of

decimal characters must be given in the

<fld wd> specitication , ie. 9.3 would

mean the tjeld {s 9 bytes long, with 3

digits to the right ot the decimal point.

TN D -
i nenn

B

vy

e e ——— e SRR GO

Source petinition Language 76

EXAMPLL:

Input Kecorde=

'------'--.-----I---- l ---v-l--.----- ' .-'.----'--l

i jon 1291 3,601 26415141B1 315144A1 215116A1101

LUGLICAL DtSCRIPTICUN=-=-

S1 Ab. Name (this is a comment field)
S2 12. Age
S3 £9.2. Salary per hr.
S4 U4. Days w~orked
REPEATI 3 BEGIN, Start =SKILLS= FG
S5 AS. Skill code.
So 12. Num years experience at this skill,
ErDe Ena =SKILLS~ KG

ek

ay

70

- o

$2K larget Input 717

2.0 TARGET S2k DATABASE INPUT

PURPUSE :

Tne purpose of inputting the 2K database definition {is to
detine, tor the program, the taryet database, The cards submitted here
rust ve the same define cards used to define the S2K database. These
include the datatase name and database password declaration cards.
Since these inputs should Since these inputs should have already been
submitted to tre 52K system, they are assumed to be syntactically and
semantically correct, If the user described his database interactively

and aoes not have card input, a proper deck may be produced by

1. Chanrae tre S2Kk REPORT tile to a temporary disk file,
2. 1lssue a DESCRIBE command,

3., DbLump the temporary disk file to PUNCH,

52k DATABASE DEFIMITION INPUT EXAMPLE:

x S2K,

< SZ2k datavase definition card deck >

Conversion Detinition Language

2,k CUNVERSION DEFINITION LANGUAGE

PURPUSE :

78

The purpose ot the Conversion Definitjon Language is to describe

how each target tield’s data value is derived and whether there are any

conversion ¢r valication vrrocedures to pe applied to it.

GEilERAL RULFS anc KFESTRICTIONS:

t. The ftirst input statement must be #** CONVERSION,

2., Lacn conversjor statement must be contained on a single
a cara, ending with a perioas. Text after the periocd is

comment,

3, Unly component numbers may be used when referring to

fielus, NO component names may be used,

4, nNO moving of source to target data will take place
expclicit conversion statement, Therefore, there must be

conversion statement for each detined target tile field.

5. lhe systemr nakes no semantic analysis ot the conversion
v ySel must ensure the logical correctness ot {its

cvel .7 1ar «i)ll e in the order of the inputted conversion

card, one to

treated ds a

the target

without an

at least one

statements,
statehents,

statements,

v* e rarer to ensure all desired data transformations are stated

. c.r tarsory LTURE statement is input,

e

by

-

Conversion Definition Language 79
LANGUAGE DESCRIPTION:

lThere are 7 ajfterent conversion statements, grouped into three
categories: Data Transtormations, Conversion and Validation Operations,

dana the special STURE statement,

DATA [KANSFURMATIOM STATEMENTS:

The tasic transformations required to restructure hierarchically
rodelled data structures are:
1. Lateral~=Move values trom source to tarcget fields which are on
the same corresponding level,

2. Down=-Move a single source value into each ot its lower level
(descendant) target tielas,

3. UP==Fove a single occurrence of a lower l=2vel source repeating
group tield wup to a target entity, or perform an operation on all

rembers ot the source repeating group field and move this single result
up to the taralet tield,

The central concept necessary to comprehend data transformations
is tnhat of "correspondence" between the source and target data group
levels, Although & source and a target group may be on different
reirarchical levels, they may be in correspondence, A more tormal
definition ot this concept is:

corresbondence: A target group X corresponds to a source

qroup Y it for every group instance in X there exists
a unlgue grour Iinstance in Y,

Consider tne following source and target file descriptions:

.

L&)

)

Conversion Detinition Language

SOUKCE FILE DESCKIFTION

| DEFT=wAME | DEPT<ADDR | EMPLOYEE RG |

EMPL=NAME | EMPL=AGE | SKILL RG | JOB=HIST RG |

SKILL=-CODE | YRS=EXP |

ceoeveorvsonewereceanreSen

C

S1 Alu,
$§2 A20,
KEPEAT 10 BEGIN.
S3 Aa1S,
S4 12.
KEPEAT 3 BEGIN,
55 AS.
o 12
END .
REPEAT 5 BEGIN.
ST AlS,.
S8 12.
59 FY9.2.
ENU,
END S

Department name,
Lepartment address.

Start EMPLOYEE RG (max 10 sets)

Employee Name,
Employee Age.

start SKILL RG (max 3 sets).

Skill code,

Years experlence at this skill.

E£nd of SKILL RG,
Start JOB=HIST RG.
Company name,

Year started with company.

Yearly Salary.
tnd of JOB~HIST RG.
End EMPLOYEE RG.

TARGET (S2K) FILE DESCRIPTION

| EMPL=NAME | AGE

DEPT | #=SKILLS | PRIM=SKILL

{ JOBHLIST kG

C 9' COMPANY | SALARY | YEAR |

1* EMPL-NAME(NAME X(15))
2% EMPL=AGE (INTEGER 9(2))
3% PRESENT=DEPT (NAME X(10))

4% NUM=OF=SKILLS
5% PRIMAKY=SKILL
6* JUBHIST (RG)

7% COMPANY (NON-
4% SALARY (NON=KEY MONEY 9(9).99 IN b)
9% YEAR=-STARTED (NON<KEY INTEGER 99 in 6)

(NON=KEY INTEGER 9)
(NAME X(5))

KEY NAME X(15) IN 6)

COMP | YR | SAL

Conversion Detinition Language 81

The source file contains three hierarchical 1levels, while the
target file <contains two. Ihe source tile‘’s second level {(EMPLOYEEL
recora) corresponds to the target‘’s first 1level (EMPLOYEE). Thus,
desired data on the tirst source level would have to be moved "down" to
the target file (i.e. DEPT=-NAME to DEPT). Likewise, desired 1level 3
source data would either be moved up (i.e. NUM=OF=SKILLS) or moved
laterally across (i,e, all tields 1in JOBHIST repeating group).
Specific examples of these operations are presented with the discussions

ct each data transformation operation,

LlRECL Statementl

DIRECT will perform the "lateral" data transtformation, as
previously defined, Both source and target fields must be on the same
corresponding levels, If a constant value is desired in a target field,
the constant may be fnput in place of a source component number, This
shoula be a legal FURTRAN constant, i.e. nH should precede character

typea gata,

SYNH1AK:
LA L |=<temp>=|
| <constant> | | |
== LIRECT =-=I |ewm|emacccns|ea TO ==<tIgt #>==
| <src &> |

where <src > A componént number from the

source file detinition,

<conhstant® = Any legal value which will be placed in
all occurrences of the target field,

<temp> = A FURTRAN variable used in a user
written CONVERSION statement.

<trgt 4> = A component number from the target

S2K database definition.

—— — e — et - —— .

Conversion Definition Languaqge 82
EXAMPLES

DIKECT S3 TO Ci. Emplovee Name,

DIRECT 87 TO C7. Company name (JOBHIST RG).

DIRECT S9 TEMPREAL TO C8, Converted Salary,

DIRECT 9999,99 TO C8. Constant put in Salary.

REREAL Starepentl

REPEAT will perform the "“down" data transtormation, as
previously detined, The source field, which {is at a higher
corresponding level then the target field, will be moved "down" to the

target field,

SYNTAXC
|=<temp>=|
| |
e REPEAT --(src a)-'--.------'-QIN --(trqt o= .

where <«src #> = A component number from the
source file definition,
A FORTRAN variable used in a user
written CONVERSION statement.
<trgt %> = A component number from the

S2K database definition,

<temp>

EXAMPLESS

REPEAT S1 IN (C3, Dept=name,
REPEAT S1 TEMPINT IN C3, Converted Deptename,

e e cw e ey - e

—

Conversion Detinition Language 83

LEXELUE Starelents

LEVELUP performs the "up" data transformation for the case ot
moving a specific occurrence 0f a source repeating group tield up to the
target field. The specific occurrence is indicated by the <clause
"1=<ni,n2,+..0n0>", The values of <nl,n2,...> represent the specific
occurrences ot each ot the tield’s ancestor data sets, with the last
value <«<nn> representing the ocCcurrence of the field’s repeating group
itselt. 1Tne order ot "n" should be input in the same hierarchical order
as the ogatabase schema, Therefore, the first occurrence of a field
which is two levels down would be indicated by "I=n,i", where "n"
represents the occurrence of the field’s parent. 1f the parent’s third
occurrence is desired, "I=3,1" would be the vproper {input, In most
cases, the LEVELUP transformation will move source fields that are only
one level away, For example, the proper input for the second occurrence
of a repeating group only one level down would be "[=2", All
occurrences must be referenced by an integer except the "last”
occurrence in a repeating group. Since the last occurrence may be a
difterent relative number for each set, the term "LAST" may be used {n
place of the integer "n",

SYNIAX:?
l=<temp>=|

t |
o= LEVELUP ==<SrcC #>== [2=<n]1,N2,),¢.NN> == |evcancexjee TO ==trgt #d>=~,

A component number from the
source definition,

where «<src >

<temp> = A FORTRAN variable used in a user
written CONVERSION statement,
<trgt s> = A component number from the target

S2k database definition,

<ni,n2..>= The relative occurrence number for the tield’s
ancestor groups and the groups the field resides
in. "n" may also be the term "LAST",

———— P U

L

fe ey

Conversion Detinition Language

84

transformation ftor

operatjion,

The avallible

EXAMPLE
N LEVELUF 85 I=1 TO CS. First Skill Code.
LEVELUP 85 I=LAST TOU CS. Oldest (last) Skill Code.
¢ LEVELUP S5 I=1 TEMPCHAR TD CS5. Converted Skill Code.
]
t URQR Statempmentd
{
UPOP (Up=operation) performs the "uyp" data
the case where &an operation is performed on all occurrences of a source
repeating group tield, deriving a single result from the
This single result is then moved up to the target field.
operations include MAX, MIN, AVG, COUNT and TOTAL.
SYNTAX:
s | MAX { j=<temp>=|
' i MIN | | |
- UPUP --‘ AVG '-.(src “)--l----.---'-- TO --(trqt ')--.
I COUNT |
| TOTAL |
t
where MAX = The source field’s largest value in the RG,
MIN = The source tield’s smallest value in the RG,
AVG = The source field’s average value.
COUNT = The number of sets Iin the source RG where the
source field’s value s anything but =nulle-.
¢ TUTAL = The total of the source field’s values in the RG.
EXAMPLE:

RN

UPCP CCUNT S5 TO C4.

Number of Skills

§ e o ——————— .

e s — e e g -

———

— —

Conversion Definition Language 85

VALLIDATION AND CONVERSION STATEMENTS:

Occaslonally the source data values are not in the format or
content desired for the target record, Also, editing ot the source
input is sometimes desired to provide increased data integrity. These
t#o capabilities are provided by the CONVERSON and VALIDATE statements,
Because it is impossible to predict the type of conversion or validation
routine a user may need, these statements only provide the means for the
user to write the actual conversion/validation code necessary, The user
written code s incorporated in the generated FORTRAN program,unaltered
(except for the source component number). Thus, the user must adhere to

proper syntax, column spacing, etc.

COudbRBSOION. . Statementl

The CONVEFSION statement gives the wuser the capablility ot
inputting FORTFAN source code which will execute desired conversions on
source tields, 1If possible, the results of the conversion should be
placed in the original source field. 1If however the result is a value
which will not legally fit in the original source field, the Tresult
shoula be placed iIn a temporary variable, This temporary variable

should be one of tre following, depending on the type of the resuilt:

lf.result s Use.tenporary
integer TEMPINT
real TEMPREAL
character TEMPCHAR(1.,N)

If the result is character, left justify the characters, (10 characters

-

wrwsianmpibe

AT s

A

™

Conversion Definition Language 86

per word), in the varjiaole "TEMPCHAR" starting with index number 1. The
proper TEMPCHAR subtscripts must be used in the user written FORTRAN
code. Howéqer. no subscript should be input when referring to TEMPCHAR

in a4 data transforration statement. Subscript "1" wil.pe assumed,

Since the\CONVERSIDN statement only alters the value of the
source field, a data transformatjion statement must be used to actually
rove the converted value to a target flield.« If a temporary variable |{s
used, both the original source field component number and the temporary
name must pe included in the transformation statement, The temporary
name must be in the statement to tell the system the source value is {n

the temporary and not the source field,

\
SYNTAX:
ee=e CONVERSION BEGIN, eve=-
ees==Cyser written FORTRAN codede=e~-

cces END, ===~
EXAMPLES

CONVERSION BEGIN,

ccc
c Add | vear tc each EMPLOYEE~=AGE.
ccc
TEMPINT = 5S4 ¢+ 1
END.

DIRECT TEMPINT TG C2.

CONVERSION BEGIN,

CCC
C Change all "S661B" skill codes to "966ig"
cccC
IF (SS5.EQ,.5H5661B) S5=5H9661B
END,

LEVELUP §5 12! TO C5,

. e e - - ———

ey o

~~

~

~-

i

>

Conversion Definition Language 87

MALIDALE statementl

VALIDATE gives the user the capability of validating a
particular source field value before it is stored in the database. The
user must write the validation code, Jjust as {s necessary £for the
Conversion statement, Somewhere within the wuser written code the
FORIRAN variable FAIL must be set to TRUE or FALSE. If the validation
of the source tield fails (i.e, FAIL = TRUE), the user may choose (o
reject the data set being processed (REJSET) or put nulls in the source
field and continue processing the data set (REJFLD), 1t the user wishes
no action to be taken on a validation failure, the Conversion statement
shoula be used instead ot the Validation statement. No data
transtormation operation is associated with the validation statement, as
is the case with the (onversion statement, Thus, the proper data

transtormation operation must be input following the validation

statement,
SYNTAX:
swee VALIDATE BEGIN, eowe=
~-==Cuser written FORTRAN Codeédw===
| REJSET |
ewe= END FAIL 5 e===| jo=- ,
| REJFLD |
EXAMPLE

VALIDATE BEGIN,
CCC
C Validate AGE~-= 18<=AGE«<=75
CCC
FAIL=.FALSE,
1F (s4,LS.18 ,OR, 854.GT.75) FAIlL=s,TRUE.
END FALIL = REJFLD,
DIRECT sS4 T0 C2.

. e ama —— - . [P

v

e —— e e s oy e -

~~n

L)

Conversion Definition Language 88

SIuBk_Statenpentl

S2K data sets must be built in the hierarchical order that they
are defined. A Level 0 data set must be created before its descendant
data sets may be "attached" to it, Data sets are created by loading the
fields with the desired data and "storing" the data set, Using this
system, the user loads the data fields using the data transformation
statements previously defined, He must also "store" the data set py
inputting the STORE statement, These statements should be input
immediately after the data transformation statement for the last field
in each data set, 'The set name should be the same as that used 1in the
S2K datapbase definition, Use the name "LEVELO" for the Level 0 set

name,

SYNTAX:

m~ewe= STORE ===~<data Set namede==- ,

where <data set name> = The name of the data set, as defined
in the S2K databaseinput,

EXAMPLES:
STURE LEVELO,
STORE JUBHIST.

—— e m v

System Usage 89

SECTIUN 3 == SYSTEM USAGE

This section will give instructions on how to generate & FORTIRAN
program, how to review and modify it, and how to execute it, A complete

example input and resulting generated program {s then presented.

3.A HOw TU GENERATE A FORTRAN PROGRAM

To generate a FORTRAN program, the user must tirst have a card
deck containing the required Command language input, Source and Target
tile descriptions, and the Conversion language inputs, (see Sections 1
and 2 ot this manual). This deck will serve as input to the system,
Tne complete job set-up is shown below, Note that the user is reguired
to input only & single command card with the input card deck. All of

the other commands needed are supplied by the Source to S2K System.

Job Set~-up tor Gernerating a FOKTRAN Program:

<yser id>
<password card>

<run card> (optional)
READCCF, 9294, GENRATE

7/879 (multi=-punched)
<ysers complete {nrput card deck>

6/77/8/9 (multiepunched)

The user will receive output from the system showing what was input and
any error messages, If there were no errors, a FORTRAN program is
generated and passed to the compiler, The user will then receive the

compiler output, It {is possible to have FORTRAN syntax errors in the

—y

System Usage 90

generated program due to erroneous user input the Source to S2K System
did not tind, The user may correct these errors in two ways, The first
is to correct the original input ana generate a new FORTRAN program.
The second is to modify the generated FORTRAN program itselt, This

procedure is described in Section 3.B.

3.8 HOW TO MODIFY THE GENERATED FURTRAN PROGRAM

Each aenerated FOUORTRAN program must have a unique name,
otherwise difterent wusers would be erasing each others’s files. Thus,
the name ot the generated FORTRAN program is the first four Jetters of
the aatabase name followed by the letters "SRC" (for source). For
example, if the datapase name is EXAMPL1, the generated FURTRAN program
woula be stored under file name "EXAMSRC", All source files are stored
on permanent litrary 9294, Thus, in order to edit the FORTRAN program
tor the tXAMPL1 database, the command

READPF, 9294, EXAMPLI1
is all that is needed., The user can then modify this ¢tile wuysing the
JUT=2D0 editor EDIT. If batch editing is required, dumping the file to

PUNCH will produce a card deck 0f the source FORTRAN program,

3.C HUW TU EXECUTE THE GENERATED PROGRAM

Once the generated program is free of errors, the user is ready

to pertorm the actual conversion. A file containing all of the required

P

il A

,..‘-
e i

e

Y

.

System Usage 91

control commands tor each job is generated by the Source to S2K System
at the same time it generates the FUORTRAN program. Since the file must
have a unique name, {t is made up ot the letters "EX" (for execute)
followed by the tirst four letters of the database name, Using the
example database EXAMPL1, the denerated command file name would be
"EXEXAM", This file will also be stored on permanent library 9294. The
only 1lnput needed to execute the generated conversion program is shown
below, 1f the source input is on cards, they should be included in the

deck atter the 7/8/9 multi-punched card,

Jonh Set-up for Executing the Generated FORTRAN Program

<yser iia>

<password cara>

<run card> (optional)

KEADCCE, 9294, EXEXAM (file name will be different for each job)
T/78/9 (multi-punched card)

<if source input is cards, input them here>

6/7/8/9 (multi-punched card)

txecution ot the above job deck would result in execution of the
generated FORTRAN program as well as saving the 52K database on the
permanent library (as directed by the LOCATION card, see Section 2.B).
Should the user need to modify the generated command file, it may be
done in tne same manner as modifying the generated FORTRAN program (see

Section 3.8),

AD-AL06 282

UNCLASSIFIED

AIR FORCE INST OF TECH WRISHT=PATTERSON AFB OH
THE SOURCE TO S2K CONVERSION SYSTEN. (U)

OEC 78 J L STEVENS

AFIT=Cl=T9=2627

F/6 9/2

NL

System Usage 92

3.0 CuMPLETE EXAMPLE

This example will use the source and target databases described
in Section 2.E, The system will generate a program to convert the
source input file "DBINPUT" to the ©S2K database "EXAMPLI1", The S2K
database description is stored in file "EXIDESC" on permanent library
9899 (password 1221), The source file (DBINPUT) 1Is a oaisk ¢file on
permanent library 6656 (password 1334)., A null fleld will be indicated

by the pblank character,

Job Input tor Datakase EXAMPLI,

*x COMMAND,

LOCATION = EXIDESC/9899/1221,
RUN = F,

TYPE = 1.

EMPTY =

** SUURCE.

FILE = DBINPUT/6656/1334,
DEVICE = DISK,

St AlO, Department name,
S2 A20, Department address.
KEPEAT S BEGIN, Start EMPLOYEE RG (max S sets).
S$S3 AlS. Employee name,
S4 12. Employee age,
REPEAT 3 BEGIN. Start SKILL RG (max 3 sets).
S5 AS. Skill code,
Se 12, Years exp, at this skill.
END, End of SKILL RG,
REPEAT 3 BEGIN. Start JOBHIST RG,
S7 AlS, Company nhame,
S8 12. Year started with companvy.
S9 F9.2, Yearly salary,
END, End of JOBHIST RG,
END. End ot EMPLOYEE RG,
% 52K,
USER,PASS1

NEW DATA BASE IS EXAMPL1

1¥ EMPL=NAME(NAME X(15))

2% EMPL=AGE (INTEGER 9(2))

3x PRESENT=DEPT (NAME X(10))

4% NUM=(UF=SKILLS (NON=KEY INTEGER 9)

5%« PRIMARY=SKILL (NAME X(5))

6% JUBHIST (RG)

7% COMPANY (NON-KEY NAME X(15) IN 6)
8% SALARY (NON=KEY MONEY 9(9).99 IN b)

Iy) .
t
System Usage 93
L
9% YEAR=STARTED (NON=KEY INTEGER 99 IN 6)
1 %+ CONVERSION,
' DIRECT S3 TO C1. (Employee Name)
DIKECT sS4 TO C2. (Employee age)
¢ REPEAT S51 IN C3. (Department name)
UPOP COUNT S5 TO C4, (Number of skills)
LEVELUP S5 1=1 TO CS5, (Primary skill)
) STUKE LEVELO, (End ot LEVELO data set)
DIRECT 87 TO C7. (History=company name)
DIRECT s9 TO (8. (History=salary)
¢ DIRECT s8 TO C9. (History=year started)
STORE JOBHIST, (End of JOBHIST data set)
]
1
The following FORTRAN program was generated by the Source to S2K
Conversion System as a result of the above {nput.
i PROGRAM PROGEX1 (DBINPUT, OUTPUT, TAPEI1=DBINPUT)
IMPLICIT INTEGER (A=2Z)
C
] C ¥ % X %x % % % & % X % % ¥ ¥ ¥ % %X X ¥ ¥ % ¥ % % & ¥ % % %
C *
C # THIS PROGFAM WILL READ FILE "DBINPUT" AND CONVERT
1 C = IT TO THE 82K DATABASE "EXAMPL1", THE NEWLY
C * BUILT DATABASE WILL BE STORED UNDER THE FILENAME
C % "EXIDESC" ON PERMANENT FILE NUMBER 9899,
C *
{ C * X ¥ % % % % ¥ % ¥ X ¥ ¥ x ¥ % %X %X ¥ & ¥ % ¥ % %X % ¥ ¥ %
C
C C =+ COMMON BLOCK DECLARATION e=
> *PL COMMBLOCK/EXAMPL1/ SCHNME, RCODE, FILLER, LDSET, PASSW, NUMRG,
*PL RGPOS, LEVEL, TIMEX, SDATE, CYCLE, SEPSYM,
(*pL ENDTERM, STATUSX,
C
C SCHEMA NAME == LEVELO o=
t *pPL SCHEMA/LEVELO OF EXAMPL1/ C1(2), C2, C3, C4, C5.
C
C SCHEMA NAME == JOBHIST ==
 § *PL SCHEMA/JOBHIST OF EXAMPLt/ C7(2), C8, C9.
C
*PL EnD SCHEMAS.
t C
C == REAL DECLARATIONS FOR SCHEMA e=e
REAL C8, TEMPREAL, AVG
i C
{ C == GLOBAL DECLARATIUNS ==
DIMENSION BUF(61), SRC(108)
r
o

System Usage 94
d
C
y - C = PARAMETER DECLARATIONS ==
- EMPTCHR = |}
C
¢ C ve MISCELLANEQUS FORMATS ==
60 FORMAT(X,* INITIAL LOAD OF THE EXAMPL1 DATABASE*,//)
62 FORMAT(X,¥ TIME = ¥,A10,/,X,% DATE = ¥,A10,/)
] 1300 FORMAT(// ,X,¥== EOF ==%¥,/)
1320 FORMAT(//,%,¥== CLEARED DATABASE. CYCLE = ¥,14)
1500 FQRMAT(//,X,*== PARITY ERROR ON LAST READ. BUF = ¥,/)
e 1520 FORMAT(//,X,¥== FORMAT ERROR ON LAST DECODE. BUF = ¥,/)
5000 FURMAT(//,X,¥== SUMMARY OF INITIAL LOAD RUN FOR EXAMPL1%,/)
5010 FORMAT(X,*NUMBER OF SQURCE RECORDS READ = *,16)
t 5020 FORMAT(//,X,*NUMBER OF 1/0 ERRORS = ¥,16)
C
C == INITIALIZE LOCAL DATA ==
$ DO 55 1=1,108
SRC(1) = 10K
55 CONTINUE
ERR = 0
ICNT = O
C
. C e= PRINT INITIAL PROGRAM HEADER ==
‘ PRINT 60
CALL TIME(I,J)
, CALL DATE(J)
) PRINT 62, I, J
C
1 C e= OPEN DATABASE =~
¥P}, START S2K.
PASSW = 10HPASSI
{ Py OPEN EXAMPLI1.
IF (RCODE.EQ.0 ,AND. STATUSX.EQ.0) GOTQ 70
CALL PRTEREK(1,1,RCODE)
s GOTO 999
C
70 CONTINUE
« C
C = PUT IN QUEUE MODE ==
*PL QUEUE.
¢ C
C -« MAJOF READ LOQP ==
100 CONTINUE
t ICNT = ICNT + |
READ(END=900,1) 8BUF
C
| C = CHECK FOR PARITY ON LAST READ =-
IfF (1OCHEC(1).,NE.O0) GOTO 950
C
L C = ECHO PRINT INPUT (EVERY TENTH RECORD) ==
I1sMUD(ICNT,10)
Ir (1 +EQ. 0) PRINT *, BUF
C
“t C = DECUDE STATEMENT NUMBER | ==
NUMCHAR = 120
L

= ~zazTEomT

Ps G

~a

~

-

System Usage 95

DECUODE(.,ERR.%960, NUMCHAR, 2010, BUF) (SRC(I1), 1=1,20)
2010 FORMAT(A10,A20,A15,12,A5,12,A5,12,A5,12,A15,12,

- F9.2,A15,12,F9,2)
C
C w= SHIFT REST OF BUFFER TO WORD QNE =~
J=1
DO 151 I = 13,61
BUF(J) = BUF(I)
J=Jg+1
151 CONTINUE
C
c - DECODE STATEMENT NUMBER 2 ==

NUMCHAR = 90
DECODE(.ERR.=960, NUMCHAR, 2020, BUF) (SRC(I1), 1=21,37)
2020 FORMAT(A15,12,F9.2,A15,12,A5,12,A5,12,A5,12,A1S5,

- 12,F9.2)
C
C we SHIFT REST OF BUFFER TO wORD QONE ==
J=1
DO 152 1 = 22,61
BUF(J) = BUF(1)
JaJd+i
152 CONTINUE
C
C e DECCDE STATEMENT NUMBER 3 ==

NUMCHAR = 90
DECODE(.ERR.=960, NUMCHAR, 2030, BUF) (SRC(1), 1=38,54)
2030 FORMAT(A15,12,F9.2,A15,12,F9.,2,A15,12,A5,12,A5,12,

- AS5,12)
C
C == SHIF1 REST OF BUFFER TO WORD ONE =~
J=1
DO 153 1 = 31,61
BUF(J) = BUF(1)
J=J+1l
153 CONTINUE
C
C = DECUDE STATEMENT NUMBER 4 ==

NUMCHAR = 100
DECODE(,ERR,=960, NUMCHAR, 2040, BUF) (SRC(I1), 1=55,70)
2040 FURMAT(A15,12,F9.2,A15,12,F9,2,A15,12,F9,2,A15,12,A5)

C e= SHIFT REST OF BUFFER TO WORD ONE ==
Jsi
DO 154 I = 41,61
BUF(J) = BUF(1)
JsJ+l
154 CONTINUE

C == DECCDE STATEMENT NUMBER 5 ==
NUMCHAR = 130
DECUDE(.ERR,=960, NUMCHAR, 2050, BUF) (SRC(I), I871,95)
2050 FORMAT(I2,A5,12,A5,12,A15,12,F9.,2,A15,12,F9.2,A15,
- 12,F9.2,A15,12,R5,12,A5,12,A5)
C

v e
Ty

)

-~

T T e e S R, Y . Tt

System Usage 96

155

2060

(e NeoNeXe]

300

330

*PL

400

*PL

410

== SHIFT REST OF BUFFER TO WORD ONE e=
J=1
DO 155 I = 54,61
BUF(J) = BUF(I)
J=J+1l
CONTINUE

== DECODE STATEMENT NUMBER 6 ==
NUMCHAR = 80
DECODE(,ERR,=960, NUMCHAR, 2060, BUF) (SRC(1), 1=96,108)
FORMAT(I2,A15,12,F9.2,A15,12,F9,.2,A15,12,F9.2)

== CONVERSION PROCESSING ==

== LEVELO DATA SET ==
CONTINUE
DO 320 12 = 1,5
INDEX2 = 4 ¢+ (12-1)%21
C1 = SRC(INDEX2)

INDEX2 = 5 + (12«1)%2%
C2 = SRC(INCEX2)

INDEX1 = 1
C3 = SRC(INDEX1)

COUNT=O0

DO 330 13 = 1,3

INDEX3 = 7 + (12-1)%21 + (13=1)%2

I¥ (SRCCINDEX3) (EQ., EMPTCHR) GOTO 330
COUNT=COUNT+1

CONTINUE

C4 = COUNT

INDEX3 = 7 + (12-1)%21 + (1=1)%2
C5 = SRC(INDEX3)

INSERT LEVELO, !
IF (RCODE.NE.O) CALL PRTERR(2,1,RCODE)

== JOBHIST DATA SET ==
CONTINUE
DO 410 14 = 1,3
INDEX4 = 28 ¢ (12=1)%21 + (14~-1)%12
C7 = SRC(INDEX4)

INDEX4 = 30 + (12-1)%21 + (l4-1)%12
C8 = SRC(INDEX4)

INDEX4 = 29 + (12-1)%21 + (14-1)%12
C9 = SRC(INDEX4)

INSERT JOBHIST,

IF (RCODE.NE.O) CALL PRTERR(2,2,RCODE)
CUNTINUE

TR TN T L e .

!

System Usage 97

* OO nNnoon on (o]

[aNaXe!

AN nNnOnnn

C

3z2v

950

900

999

CONTINUE

= FINISHED WITH TH1S RECORD. LOOP BACK UPe ==
GO TO 100

e= EQF CETECTED ON LAST READ ==

PRINT 1300
== CLGSE UP DATABASE =~
IERMINATE.
IF (RCODE.NE.O) CALL PRTERR(4,1,RCOPE)
CLEAR.,

PRINT 1320, CYCLE

CLOSE EXAMPL1,

IF (RCODE,NE.0) CALL PRTERR(3,1,RCODE)
END PROCEDUKE.,

GOTO 999

e~ PARITY ERROR DURING LAST READ ==
PRINT 1500
PRINT *, BUF
GOTO 100

-« FORMAT ERROR DURING LAST DECODE =~
PRINT 1520
PRINT ¥, BUF
ERR=ERR+}
GOTO 100

e« PRINT JOB SUMMARY ==
CONTINUE
PRINT 5000
PRINT 5010, ICNT
PRINT 5020, ERR
END

~= SUBROUTINE PRTERR (PRINT ERROR) ==

THe PARAMETERS ARE:

INST : INSTRUCTION NUMBER, WHERE
1s0PEN, 2sINSERT, 3=CLOSE, 4=TERMINATE
LOC ¢ THE LOCATION IN THE PROGRAM THE ERROR
wAS DETECTED.
RTNC ¢ THE RETURN CUDE THE S2K SYSTEM RETURNED,

SUBROUTINE PPTERR(INST, LOC, RTNC)

9000 FORMAT(/,X,* ===«= DATABASE ERROR cveenk,/)
9010 FORMAT(X,*INSTRUCTION = ¥,13,% LOCATION = %,13,

- ¢ RETURNCODE = #%,13)

7

n, A

LY

"D.

™

™

System Usage

PRINT 9000

PRINT 9010, INST, LOC, RTNC
RETURN

END

98

- - “~
Index
{
H
-
[
¢
|
Command .
' Continue .
Conversion
Conversion
Density .
Device , .
* Dil'eCt L) L]
.
eEditing .
) Empty .
(End [] * *
! Flela . .
(‘ File L]] L]
4 Levelup .
oca (o] .
4 Location
Logical .,
”: Mode name
L 4

INDEX

page

o e e s B

99

-1

Index

Multireel . o .

Origin , « « . &

Record , « « o o

Repeat , « « o o

Run] [] [. [}

Source, 5 o s o

Store ., . . o .

System ysage . .

Target , « « .
Transtormations

Type......

UPODP o« & o o o &

Validate

72

71

12

15,

66

69

g8

61

77

79

66

84

87

82

100

APPENDIX ©

Generated Command File Examples

I'he following example file listings contain UT=2D commdands

generated by the Source to S$2K Conversion System.

FILE "GENRATE"

File "GENRATE" i5 called by the user to read his input

and dgenerate a conversion program,

"GENRATE"™’s commands, as listed below, are the same for each user

and database,

File GENKAITE
EXECPF, 9294, SRCTS2K
READCCF, 9294, COMPILC

FILE "COMPILC" 1

File "COMPILC" is called by file “GENRATE" dyring the

conversion program generation phase. This tile is unique to each

101

|

102

database user. The database name for this example {s "DUNS".
Note the nare of the generated conversjon program ("DUNSSKC") and

generated execution commands file ("EXDUNS"),

File COMPILC
REWIND FORTSRC
SURTPRG
RENAME FORTSRC DUNSSRC
SAVEPF, 9294, 3217, DUNSSRC
KENAME EXECC EXDUNS
SAVEPF, 9294, 3217, EXDUNS
REWIND DUNSSRC
PUKLIC, PLF, 1=DUNSSRC, B=DUNSOBJ, P,E=3

FILE "EXDUNSY

File "EXDUNS" is a unique file and unigue file name for
each dataktase user, Note the ¢file recompiles the generated
conversion program, readies the database tiles, readies the input
source tile, executes the generated conversion program and
tinally, saves the database, The following data is relevent to

this example:

Database Name: DUNS

File Kame [atabase 1s Stored Under: DUNSDB

Database File Library Number and Password: 9299736472

Source File Name: INFILE

Source File Device: TAPE

source File Tape Number and Password: 8868/1648

sSource File Characteristics: Foreign Tape:; Density=800BPI:’
Record Length = 1200 bytes

PRI

o T T WA

|

“'»‘.

File

"EXDUMNSY

103

READPF, 9294, DUNSSRC

PUBLIC, PLF, 1=DUNSSRC, B=DUNSOBJ, P,E=3
READPE, 9299, DUNSDB

S2KkS, DR, DUNSDB

PEQUEST, INFILE, 8868/1648, RO, Hl, B, 100,
DUNSORJ

S2KRS, DS, DUNSCBHB

SAVEPF, 9299, 3642, DUNSDH

J—

n ity B San, O AT o nde

{21

(4)

(5]

(o]

(7]

(K4

{9

t1o]

REFERENCES

BARKOM, David k.,

"Implementation of a Prototype Generalized File Translator"”,
Honeywell 1Information Systems, Inc., Brac. 1915 ACM SIGMOL InLt.
Cant. oD Mapagement ot bLata, San Jose, Cal., 1975, pp, 99-110,

BUNEMAN, Peter U,, et al.,

"ASAP to REl: Efticient Relational Data Bases trom Very Large
Files", Uriversity of Pennsylvania, MNaxal BResearch lechnicdl
Eeporl LB=049=414, January 1975,

COpS User Gulide,
Systems Development Corporation, November 14, 1975,

UIJKSTRA, E.w,,
"The liumble Programmer"”, Communicatians at the ACK, Vol. 15, No.
10, rp. 859Y~866, Uctober 1972,

FLOYD, ReWe,

"Assignina Meanings to Frograms®, Brocedures of Aperican
darpapatical Saciety Sybpasiun. Annlied Matbematics, Vol. 19,
pp. 19-31, 1967,

FrRY, James F., et al.,

"p Developmental Model for Data Translation", RBrace 1322
SIGEELDEl bkorkshop on DRata Descrintiop. Aaccess and Control,
venver, Colo., pp. 77=105, 1972,

FRY, James P., et al.,,

"“An Approach to Stored Data Detinjition and Translation®,
University ot Michigan, Adr bEaorce Qffice of Scientlific Besearch
Keport 412=2219, December 1972.

HUAR"!I C.A.P.,
“aAn Axiomatic Basis for Computer Progqramming", Cagmunicatians at
the acy, vVol., 12, No. 10, op. 576=583, October 1969,

JENSKN, ke, and WIKTH, N,,
RASCAL User Manual Report, Springer-Verloa, New York, 1974.

kOEHP' G'\)Ol et' alll

uata Mapagement systems Catalag, The Mitre Corporation, Bedtford,
Mass., January 1973,

104

Wbl S i

il

..

e mne o T ey

&a
»

~™

{11)

(12])

(13)

(14)

(151

{16}

(17)

(18]

(19]

(20)

105

MERTEN, Alarn G., et.al.,

"A Deta Description Language Approach to File Translation", Data
Translation Project, PRroceedings ACM SIGMUD AsQorkshop QD Lata
ldescription, 4ccess and Caotral , Ann Arbor., Michigan, po.
191=205, may 1974,

MERTEN, Alar G,,
“A Theoretical Analysis on Data Definition and Translatjon", Adr

Eaorce QOffice of Scientific Besearch Beport £16=0558, Lecember
1976.

NAVATHE, Shamkant B., et. al.,
"Restructuring for Large Databases: Three Levels of

Abstractions®, ACM Iransactiabns an lDatabase sysiems, vol. 1, Nu,
2' PD . 138-1581 June 197bo

PARNAS, D.L.,

"On the Criteria To Be Used In Decomposing Systems Into Modules”,
Compupications of tbe ACM, Vol. 15, No, 12, pp., 146=151,
December 1972,

RAMLRIZ' J.A.' et.o alo'
Autonatic Generation af Rata Copxersion PBraograpms Using &8 Lata

Descriptiop Lapguage. Yols 1. 1l, University of Pennsylvania,
Pniladelphia, Pa,, May 1973,

RAMEFIZ, J.2.,

"Automatic Generation of Conversion Programs Using a Data
Description Language (DDL)", Ph.D. Dissertation, Unjversity ot
Pennsylvania, 1793,

RUUT, David J.,
"Converting from Rectangular to Relational Data Bases",

University of Pennsylvania, UOffice af bdNaval Research Report
AMR=049=212, September 1976,

SHUSHAN], A.,

"A Logical=Level Approach To Data Base Conversion", Systems
Development Corporation, PRroceedings 1315 ACM SI1GMAD Conference
op Mangement gf Rata, San Jose, Cal., pp. 112=-122, 1975.

SHU, N.,C.,» et. al.,
"EXPKESS: A Data EXtraction, Processing and REStructuring

System®, ACM Iransactiaobns ab Database Systems, Vol, 2, No, 2,
pp. 134=-174, June 1977,

WIRTH; Ney
"program™ Development by Stepwise Refinement”, Compupicatiols at
Lbhe ACM, Vol. 14, No 4, pP. 221-227, April 1971,

e e e et e e e e el — ol v il SN

Lé* . .
» L o
]
100
‘t"
!', [21] YLH' ROTQ' and BAS“, SOK.'
o ' "Strong Veritication of Programs", lEEE Irapnsactions gn Sottisare
- engipeerding, Vol., SE=-1, No. 3, pp. 339-346, September 1975,
]
3‘.

&
)

VITA

Jondtnan Lee Stevens was born in Roswell, New Mexico on
July 24, 1948, the son of Jack D, and yYyvonne kK, Stevens. After
graduating trom Lakenheath High School, Lakenheath England, he
attended the University ot wWashington, Seattle washington, for
one year. He then received a Presidential appointment to the
United States Air Force Academy, entering in June 1967, He
graduated with the degree ot HBachelor ot Science in Conputer
Science and the rank of 2nd Lieutenant in the United States Air
Force. From August 1971 to October 1973 he was assigned with the
4629th Supprort SAGE Squadron as a Computer Programmer, and was
promoted to lst Lieutenant. From October 1973 to August 1977 ne
worked as a Systems Analyst at the Military Personnel Center and
was promoted to Captain. In Augqust 1977 he entered the Graduate

School of the University ot Texas,

Permanent Address: 9117-189th Place, S.w.
Edmunds, washinagton, 98020

107

