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SUMMARY
The development of a procedurefor estimating aircraft dynamic states and instrument

systematic errors from flight test measurements is described. The method has particular
application in non-steady performance estimation for reconstructing aircraft flight path
and in the estimation of aerodynam;c characteristics using the "equation error" parameter
estimation method. The state estimator can be extended to determine systematic measure-
ment errors in the recorded data, giving a set of data which is compatible according to
the kinematic equations which relate the measurements. The effectiveness of the procedures
cannot be specified in a general way, since the results depend upon the representation of
the input and output noise characteristics and on the choice of initial conditions for a
given problem.

This note has been written to allow users to apply the state estimation procedure to
practical problems. A description of the Carlson Square Root Filter and its application to
the kinematic equations of aircraft motion is given. The documentation of the computer
program for state estimation is also presented.
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NOTATION

A state matrix

ax, ay, as longitudinal, lateral and normal components of acceleration, m/secz

B matrix of input coefficients

by constant bias error in variable y

E { } expected value

f( ) function which represents model

g acceleration due to gravity, m/sec2

H h( )/X evaluated along reference trajectory

h altitude, m

h( ) function which represents measurement system

I identity matrix

K Kalman filter gain

k discrete time index

m number of output measurements at each time

n number of system states

nv output measurement noise vector

nw input measurement noise vector

ny measurement noise associated with variable y

P(k+ I) state covariance matrix

P(t) represents state covariance matrix in a continuous system

p, q, r roll, pitch and yaw velocities, rad/sec

Q(t) represents process noise covariance matrix in a continuous system

Q(k± I) process noise covariance matrix

R(t) represents measurement noise covariance matrix in a continuous system

R(k+ I) measurement noise covariance matrix

S(k) square root of state covariance matrix

I time, sec

v(k+ 1) measurement noise vector

V true airspeed, m/sec

u, V, w longitudinal, lateral and vertical components of airspeed m/s

W(k+ 1) intermediate square root matrix for state covariance

X state vector

XA augmented state vector



7xb, Yb, zb linear position co-ordinates of aircraft, m

xA, xp longitudinal position of incidence and sideslip sensors, m

Y output vector

y output variable

yOC lateral position of incidence sensor, m

ZE measurement vector

zpq vertical position of sideslip sensor, m

z measurement variable

OLV incidence angle sensor measurement, rad

9V sideslip angle sensor measurement, rad

r input noise matrix

input vector

0 vector of unknown parameters

60 pitch angle

P Iy scale factor error in variable y

vector of measurement residuals

a2  variance

time lag

0 state transition matrix for linearised equations

0 roll angle, rad

x(k+ 1) covariance of the input measurement noise

0 yaw angle, rad

to(k + I) process noise vector

Subscripts

E measured quantity

index in matrices

j index in matrices

0 zero time

Superscripts

T matrix transpose

-1 matrix inverse

+ denotes values updated by measurements

Mathematical notation

over symbols denotes derivative with respect to time

-over symbols denotes estimated value

A incremental value

(k) denotes the value at time t = kAt

(k + I, k) denotes prediction of values at the (k + I)th time based on values at the (k)th timeILI'A



& 1. INTRODUCTION

An important function of the Aircraft Behaviour Studies-Fixed Wing Group of Aero-
dynamics Division is the determination of aircraft aerodynamic characteristics from flight test
measurements. To extend the present analysis capability, a method for aircraft state estimation
has been developed under Task D.S.T. 79/105.

Significant advances have been made since 1960 in the analysis of aircraft flight test measure-
ments for the determination of aircraft handling and performance characteristics. Many of the
techniques developed during this period are now used as standard analyses methods in flight
test centres. One of these techniques, for the estimation of aircraft states and instrument systematic
errors, is described in this Note. The technique has been programmed on a digital computer,
and is intended to augument methods currently used at the Aeronautical Research Laboratories
for aircraft parameter estimation.

For the accurate estimation of aircraft handling and performance characteristics, a compre-
hensive knowledge of the aerodynamic forces acting on the aircraft is required. A comparison
of wind tunnel and flight test methods shows the contrasting nature of the two approaches and
illustrates the particular problems associated with making flight test measurements. When
testing aircraft models in a wind tunnel, it is possible to measure the forces required directly,
and in many cases, to a high degree of accuracy. In addition, it is possible to determine the
contributions made to the total forces by individual components of the model. Unfortunately,
there are limitations in the accuracy with which the flow field of the full scale aircraft can be
represented and this leads to inaccuracy in the prediction of full scale aircraft characteristics.
With the flight testing of aircraft, it is only practicable to determine the total aerodynamic forces,
and these are calculated indirectly from measurements of aircraft motion. The aerodynamic
forces are then determined mathematically from a knowledge of the equations (or mathematical
model) relating the forces and motion of the airciaft. Often, the motion variables which can be
measured adequately are not the variables, called state variables, which characterise the system
state or condition at any instant. In these cases additional algebraic relations are required in
the model. During the analysis, inaccuracies within the measurement can lead to large inaccu-
racies in the estimated forces. Until recent years, simple mathematical models have been used
for flight test analysis and the flight test manoeuvres have been limited to a number of steady
flight conditions, for example, steady level or steady turning flight. By assuming simple flight
conditions, analysis errors are reduced, but the difficulty of satisfying the assumption of steady
flight in practice, introduces additional modelling errors. The complete description of forces
acting on an aircraft is taken as the aggregate of the results from a number of different tests.

The flight test methods which have recently been developed address the general motion of
an aircraft and therefore use a more comprehensive mathematical model to determine the
aerodynamic forces. The general approach to flight test measurement is known as system identi-
fication and grew from developments in modern control theory, from existing theories of statistical
inference and was made possible by the availability of high speed digital computers and modern
flight data recording systems. System identification techniques permit a greater number of
aerodynamic quantities to be estimated simultaneously, reduce test time significantly compared
with steady state testing techniques, generally produce improvements in the accuracy of estimated

* results, and provide information on the accuracy of the estimates.
Identification has been defined as the determination, based on input and output measure-

ments of a system (or model) to which the system under test is equivalent, and involves the
following three stages. Firstly, characterisation of a mathematical model to describe the system.
Secondly, estimation of the values of parameters used in the model; this stage may reqluire
estimation of the system states from the measured inputs and outputs. Finally, it is necessary
to verify that the results obtained are consistent with the known physical characteristics of the
system. As the range of applications widens increasing research effort is being given to the



important first stage of model characterisation. A number of parameter estimation techniques,
required for stage two, have been developed and used successfully on a wide range of flight
vehicles. For certain applications state estimation methods have also been developed and used.
In this note, a digital computer program for system state estimation is described. The method
has been developed to augment the methods currently used for system identification.

The estimation of system states in the presence Of Process and measurement noise is achieved
essentially by the Kalman Filter first proposed in 1960 in Ref. 1. The filter was derived assuming
a linear (not necessarily stationary) dynamic system in which the system outputs and system
states are also linearly related.

o L Following the publication of Ref. 1, the concepts of prediction, filtering and smoothing
were introduced. These headings describe respectively the estimation of the state from measure-
ments made prior to, coincident with or subsequent to the time considered. Different forms of
smoothing can be used and these can be derived from the Kalman Filter equations. Augmenting
the Kalman Filter with a smoothing process will improve the accuracy of the state estimation
but will introduce additional computation. The selection of an appropriate smoothing method
for the estimation of aircraft dynamic states and instrument bias errors is discussed in Section 3.
State estimation of nonlinear dynamic systems can be realised, as discussed in Refs 2 and 3, by
linearising the system state and measurement equations around the best estimates of states at
each data point. Estimation of measurement bias errors or system parameters can also be realised
by the filter by augmenting the state vector with the unknown parameters. When applied to
nonlinear equations, the filter, is known as the Extended Kalman Filter. Refs 4 and 5 have
demonstrated that Square Root Filters have better numerical properties and give more accurate
results than the Kalman Filter. The Square Root Filter is essentially a Kalman Filter in
which the square root of the state covariance matrix, rather than the matrix itself, is
propagated.

State estimation methods employing Kalman and Square Root Filters have been used
successfully in the estimation of aircraft performance characteristics, Refs 3 and 6, and also for
estimating aircraft parameters from flight test data containing significant process noise, Refs 7
and 8. In certain cases, Refs 2 and 9. the Extended Kalman Filter has been used to estimate
additional parameters such as systematic measurement errors and aerodynamic coefficients.
However, as noted in Ref. 10, the use of the Extended Kalman Filter for estimating parameters
has not received general acceptance.

In this Note a state estimation program is described which can be used for estimating both
aircraft dynamic states and systematic measurement errors. Prior to running the program a
selection can be made which allows state estimation of the full set of motion variables or of the
following subsets: longitudinal motion with speed variable; longitudinal motion with speed
constant and lateral motion. A further selection introduces the augmented state vector to permit
estimation of specified systematic measurement errors. The program can also be used for recon-
structing certain flight records which may have been lost due to instrumentation malfunction or
signal limiting.

The model used for state estimation comprises the nonlinear kinematic equations describing
aircraft motion as formulated in Ref. 2. Measurements of aircraft, position. velocity and
acceleration provide the inputs and outputs to the model. The model states which are augmented
by systematic measurement errors are estimated using the Carlson Square Root Filter developed
in Ref. 4.

As discussed above the state estimation program can be applied to a number of different
flight test analysis tasks. For each application the results depend upon the selection of initial
conditions and of the statistics of the process and measurement noise. Methods for selecting
these values are still under development, e.g. Ref. 13. For these reasons it is not possible to
evaluate the effectiveness of the procedures in a general way. The purpose of this Note is. firstly.
to describe the application of a square root filter to the determination of aircraft dynamic states
using the nonlinear kinematic equations of aircraft motion, and, secondly. to document and
describe the operation of the state estimation computer program so that it can be used and
developed for the practical applications previously described.

Section 2 of this Note discusses the formulation of the model. which is based on the
kinematic equations of aircraft motion and Section 3 describes the identification technique
employed. Section 4 describes the Organisation of the computer program and Section 5 presents
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notes on the verification of the correct operation of the computer program. In Section 6 notes
are provided on the use of the computer program.

2. MATHEMATICAL MODEL

The mathematical model used for state estimation comprises the set of nonlinear kinematic
equations relating the position, velocity and acceleration of a moving rigid body with reference
to a set of flat earth axes. The nine equations for body linear velocity, Euler angles and linear
position, which can be considered to be exact, are:-

= -qw + rv + ax- g sin 0 (1)

v -ru + pw + ay + g cos 0 sin q (2)

w = qu - pv + a, + g cos 0 cos b (3)

p + q sin 0 tan 0+ r cos 0 tan (4)

= q cos - sin q (5)

q sin 0/cos 0 + r cos 0/cos 0 (6)

b = u cos 0 cos 0 + v(sin 0 sin 0 cos 0 - cos 0 sin 4')
+ w(cos b sin 0 cos 0 + sin b sin 0) (7)

Yb = u cos 0 sin 4' + v(sin b sin 0 sin 0 + cos 4 cos 4')
+ w(cos 4 sin 0 sin ' - sin 4 cos 4) (8)

2b = -u sin 0 + v cos 0 sin' -0- w cos 0 cos b (9)

Formulation of the state equations comprising the set of state variables, input variables
and output variables follows that given in Ref. 2.

The input variables are taken to be the aircraft centre of gravity acceleration components
ax, ay and a, and the body rotational rate components p, q and r.

The output variables are flight path velocity V, sideslip sensor angle ftv, incidence sensor
angle oc, the aircraft Euler angles 4, 0, and 0 and aircraft altitude h = -Zb. For flight dynamic
testing, the horizontal displacements xb and Yb are generally of no interest.

The system state variables are the aircraft velocity components u, v, and w, the aircraft
Euler angles 4, 0 and 4 and aircraft altitude h.

Providing that the input measurements are available, then by straightforward integration
of Eqns (I) to (9) the state variables X, and hence the output variables Y can be estimated.
This estimate can be improved by use of the Kalman Filter if one or more of the output variables
are available. The filter provides an optimal estimate k of the state X based on the noise statistics
of the state variables, including input noise characteristics, and of the output measurements.
In addition to the random noise, the input and output measurements also contain systematic
errors, due to instrument bias and scale errors. It is assumed therefore, that each measurement
can be expressed as:

z=(I -- Ay)y by 4-ny (10)

where y is the true value of the output;

A. is an unknown scale factor error;

by is an unknown bias error,

n, is the measurement noise.

The term Ay can be used to represent an error in the first order coefficient of a transducer
calibration curve. It can also be used to account for errors in the measurement of airspeed (V),
sideslip angle (P) and incidence angle (m) because of differences between the local flow at the
sensors and the free stream flow. In the formulation of the equations given below, it will be
assumed that the instrument calibrations are accurate except for an unknown bias error by.
The errors in V, f, and m due to local flow conditions at the sensors will be assumed to be linear
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and will be represented by A,, A., A ,. The total number of unknown parameters, comprising
the instrument bias errors and scale factor errors, is sixteen.

Replacing the input variables in the state equations by their measured values, ZE, gives
the following set of equations:

[* I [ 0 rR - b, - (qE - b) 01 u1 -(r -- b,) 0 p- bp 0 vqffi- bq - (pE - bpo) 0 0 ) w

sinsne cos 0sing -cos0cos# 0] [hJ

[ -gsinO +aZ ax, 1 N, 0 W -V0
g cos 0 sin -+ae ba, w+ W 0 nq ay
gcos0cosb -a,, +b., [ v -U 0 0 na0 0 0 0 0 0 0

(I la)
[] [I sinqotanO coso .tan 0 [PR -bp +nv]
= cos0 - sin# x qE -be +nq (lib)

IvJ 0 sino/cos0 cos r/cos J rE - br + nr

Positive az is defined in the negative z direction to be consistent with flight test and instru-
mentation convention.

The output equations take the form:

V = (I +A,) ./(u2 + v2 + wZ) + b,

9v = (I + A,) tan-[ v + (re - br)x,_ - (ps - bp)z +bU _I

S(I t A) tan- 1 - (qg - 1 + bat (12)

OUTPUT STATE bh

Substituting the measured values into the state equations introduces process noise, which
in practice, is both non-stationary and cross correlated. To permit application of the Kalman
Filter, it is assumed that the cross correlation is zero and that the process noise is purely random,
with zero mean but with time varying covariance. It is also assumed that the output measure-
ments do not include the effects of atmospheric turbulence. In addition the random errors in
the measured rotational rates have been neglected in the corrections for sensor location in the
P.v and a, output equations.

The general form of the system equations can be written:

state equation X = f(X, 77E, e, t) + w(f) (13)

output equation Y = h(X, 'E, 9) (14)

measurement equation ZE = Y + n,.(t) (15)

w(t) and nr(t) denote the system process noise and the output measurement noise respectively.
For the system equations under consideration it is shown in Appendix A that w(t) is due
predominantly to the input measurement noise n,(t).

For the complete set of equations, the system vectors are:

state vector XT = [u, v, %, h, 4, 0, 0]

input vector '?FT = [axE, ayE, azE, PE, qE, rE]

output vector yT = [V, 9,., o,, h, 0, 0, 0]
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measurement vector ZET [VE, Pf , ot'E, hE, E, OE, OE]

vector of unknown parameters

e = [bax, be,, ba,, b,, bq, br, by, bp,

b., bh, bo, bo, bo, A,, AA, A.)

A reduced set of equations and number of states to be estimated can be selected, depending on
the input measurements available.

3. IDENTIFICATION TECHNIQUE

Estimation of the states and unknown parameters of the dynamic system described by
Eqns (13), (14) and (15) is achieved by using a square root formulation of the Kalman Filter,
with an extension to account for system nonlinearities.

3.1 The Kalman Filter
For a linear system, represented by a set of discrete equations, an estimation of the state

and state covariance can be obtained from the following equations. The discrete state equation

for the system is:

X(k+ 1) - 0(k+ 1, k) X(k) + w(k-+-1) k = (0, 1, 2...) (16)

where X(k) is the n by I state vector at the kth time;

0(k+ 1, k) is the n by n state transition matrix from the kth to the (k+ l)th time;

w(k -; I) is the n by I vector of process noise having a constant value between the kth
and (k+ l)th time.

It is assumed that ,o(k+ I) is a sample from a purely random noise process with zero mean and
covariance Q(k + 1). Associated with the state equations are the linearised measurement equations.

Z E(k-l) Y(k+l) - v(k-i I)

H(k+-l)(k+l) v(k---l) (k =0,1,2, ... ) (17)

where ZE(k--I) is the m by 1 measurement vector;

Y(k-- I) is the in by I output vector:

H(k--- I) is the in by n output matrix;

v(k j- I) is the m by I vector of measurement noise at the (k-+; I)th time.

The noise vector v(k+ 1) is assumed to be a sample from a purely random measurement
noise process n.(t) and has zero mean and diagonal covariance matrix R(k + 1).

To determine an optimal estimate for X(k), denoted k(k), it is necessary to provide an
initial estimate of the state X(0) and an initial value of the state covariance matrix P(0).

With the assumptions given above for the process noise Q(k4 I), the Kalman Filter
propagates the estimated state k(k -1) and state covariance P(k) to the (k -- I)th time according
to the equations:

R(k 1) 0 (k l, k) 9(k) (18)

P(k .1) 0(k l,k)P(k) 0(k L 1,k)T - Q(k -1) (19)

superscript T denotes transpose.

The derivation of the process noise matrix Q(k I) is given in Appendix A.
At the (k - l)th time the information contained in the measurement vector ZE(k+ I) is

incorporated by computing the optimal gain matrix K(k + I) according to the following equation
Klk. -I)- P(k , 1)Hlk - J)T [H(k , 1) P(k 1 ) H(k-+ I) "  - R(k- 1)] 1 (20)

superscript - I denotes matrix inversion.
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The derivation of the measurement noise matrix R(k-- I) is given in Appendix A.

By using the optimal gain, updated values of the state and covariance are calculated from:

k ,(k-7 1) - k(k 1 1) ,- K(k I) [ZE(k ,1) - H(k- i) 9(k I)] (21)

P (k -1) -- P(k I) - K(k l1)H(k-f 1) P(k-1 1) (22)

superscript -f denotes values updated by incorporating the measurements at the (k - I)th time.

The procedure described by Eqns 18 to 22 is illustrated in the following diagram:

[ measurement
-qlk 1 I) ZE:

91k) o 9k- 1) 9 -(k-1)

prss noise meurement noie

Q(k I) R(k .-1)

oianceP(k) 3P P(k 1) P-(kTl)

time update - measurement update

The accuracy of the estimates from the Kalman Filter depends strongly upon the values
specified for the process noise covariance Q(k-I) and the measurement noise covariance
R(k+l). To assist in selecting appropriate values, use can be made of the output residuals,
v which are defined as the difference between the measured variables, ZE, and the predicted
measurements Y. That is: v(k4 1) = Z(k - 1) - Y(k- 1). (23)

As discussed in Ref. 2, with the correct values of process and measurement noise, and
assuming that the system is modelled correctly, then the residuals should approach a random
Gaussian white sequence with zero mean and a variance consistent with the values calculated
from the filter, Eqn (20), ic.:

E *(k ; 1)v(k l)I H(k -- )P(k -l)H(k 1)T R(k , 1) (24)

Since the matrix P(k * I) includes the effect of the process noise, then a comparison of the
calculated residuals from Eqn (23) and their expected variance from Eqn (24) can be used to
adjust the initial choice of process and measurement noise, which are not known a priori.

3.2 The Carlson Square Root Formulation of the Kalman Filter

A practical problem in the use of Eqn (22) is discussed in Refs 4 and 5. By definition, P(k)
is positive definite since P(k) - Et9(k) g(k)T

} and Eqns (18) to (22) will propagate a positive
definite matrix; however, because of the finite word length of computers, the matrix subtraction
in Eqn (22) often yields a non-positive unsymmetric matrix after propagation through a number
of time points. This results in a non-optimal estimate for R°(k) which can diverge from realistic
values. In Ref. 4 Carlson has developed an algorithm for propagating the square root of the
state covariance matrix S(k) where

S(k) S(k) T - P(/) (25)

This procedure ensures that P(k) cannot be unsymmetric or indefinite. The algorithm has
been evaluated in Ref. 5 and has been shown to give greater precision than the Kalman Filter
Eqns (18) to (22).
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The Carlson Filter has been formulated to minimise run time and computer storage by
ensuring that the square root of the state covariance matrix S(k) remains triangular during
measurement updating. By careful programming, as detailed in Ref. 4, the computational speed
is shown to be better than most square root filters and comparable with the speed of the Kalman
Filter. Details of the computer program for the Carlson Filter are given in Section 4.

In the Carlson Filter, Eqn (19), which is used for the time updating of P(k), is replaced
by the following equations:

W(k I) -(k : I, k) S(k) (26)
S(k. 1) [W(k l ) W(k i I) T  Q(k+ t )]' (27)

where [ ] denotes formation of the square root matrix.
In the Carlson Filter a Choleski decomposition is used to generate S(k t- I) in upper triangular
form. This can be accomplished with a finite procedure since the state covariance matrix is

positive definite.
In the computer program, the upper triangular matrix S(k -I) is stored columnwise and

accessed as a vector. 0(k - I), W(k - 1) and Q(k j- I), although square n by n matrices, are
partitioned and only the segments containing non-zero elements are stored.

The equations for measurement updating in the Kalman Filter, Eqns (20) to (22) are
replaced by the following equations:

Pk 1) S(k • I)T f' j (k , l) (28)

z. I) Cycle (29)

b(kI) -0 j =In (30)

X, X, I J"(k :1) Cycle at (31)

I' =- In each

for time (32)

f(A • I) each interval

(2i I XW) measurement (j) (33)

b, (k . I) bi l(/,: 1) •Sj(k .- I)fi(k i1) (34)

S(k I) S(k 1)ai - b1 (k -- 1 )-'- 1 " (35)

t (k. 1) -(k 1) (38)

S (k - I)) S(kk I (39)

oi, xi, aj and cj for (I _< i < n) are scalars:

bo(k +, I) and b1(k tI) for (I < i < n) are n dimensional vectors;

f(k + 1) is the ith component off(k 1):

S,(k--l) is the ith column of S(k ; I):

H1 (k .1) is the jth row of 11(k i 1):

Rj(k I) is thejth diagonal element of R(k - I):

ZE,(k i 1) is the jth component of Z{k , 1)

AZ(k I) is a scalar.

The updated matrix SAkA I) remains upper triangular but this does not eliminate the
need for the Choleski decomposition unless the process noise Q(k I), which is added in
Eqn (27), is zero.
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3.3 Estimation of System Parameters

To extend the estimation technique to include the systematic error terms in Eqns (11)
and (12), the system state vector X is augmented with the vector of unknown parameters 0
giving the augmented state vector

X.4 (40)

This extension introduces non-linearities into the system equations which already have
intrinsic non-linearities from the kinematic equations. To estimate the augmented state vector
for the set of non-linear equations, the Extended Kalman Filter is used. In this approach the
system state and output equations are linearised about the best estimate of the state at each
data point as described in Appendix B.

The state and output equations fEqns (13) and (14)] are changed to:

+ (41)

Y = h(XA, '?E) (42)

Time updating of the system state [given by Eqn (18) for the linear case] is now carried out
by numerical integration of Eqn (41).

The state transition matrix required for updating of the state covariance matrix by Eqn (19)
for the Kalman Filter, or by Eqn (26) for the Carlson square root formulation, is obtained by
linearising Eqn (41) as shown in Appendix B.

From Eqn (41) it can be seen that the appended state variables 9 and their associated
covariances will remain unaltered during time updating. This will have the following implications
on the choice of initial conditions. Measurement updating in the Kalman Filter is carried out
by Eqns (20) to (22).

Substituting Eqn (20) into Eqn (22) gives:

P.(k- 1) -

P(k - I) - P(k-- I) H(k I)T[H(k+) P(k+l) H(k I)T + R(k+1)]-l H(k+I) P(k+l)

(43)

which can be written

P'(k- I ) 1 = P(k+ 1) 1 + H(k+ I)T R(k+ I)- l H(k-, 1) (44)

It can be seen from Eqn (44) that the state covariance matrix after measurement update is
never larger than the value before update, since H(k+I)T R(k+l) - 1 H(k+l) is at least a
positive semi-definite matrix. Thus the act of measurement on the average, never increases the
uncertainty in the knowledge of X(k). Since the covariance of the unknown parameters remain
unaltered during the time updating stage, it is necessary to choose initial values for these
covariances which are greater than zero. Selection of initial conditions for the filter is discussed
in Section 6.

3.4 State Smoothing

The "filtering process" which, by definition, calculates the best estimate of the state at a
given time from all the measurements up to that time, can be augmented with a "smoothing
process". The smoothing process enables estimates 9(k, k - I) and P(k, k+ I) to be made:

that is, the information added at the (k + I)th time can be used to give an estimate at the kth
time, and if required, at all previous times. In Ref. 2 single-stage smoothing and local iteration
of the state estimate R°(k) was carried out, in an attempt to reduce the bias which is inherent
within the Extended Kalman Filter. In addition, fixed point smoothing was used to update
initial conditions after each pass through the filter. A smoothing procedure has not been included
in the program described in this Note. The program can be developed to include the appropriate
smoothing procedure for each application.

8



4. DESCRIPT'ION OF THE STATE ESTIMATION COMPUTER PROGRAM

Effort has been made in the computer program to take advantage of matrix symmetry and
triangularity in the updating of the square root covariance, matrix S(k) and of general blocks of
zeroes in the state transition matrix, to minimise computation and storage requirements. A
summary of operations performed by the program is given in Fig. 1.

Only the storage and computation of the first i entries in each column of S1(k) is required.
In addition, it is only necessary to store the 011, 12 elements of the state transition matrix since
the identity matrix 0.- is implicit in Step 9.4 of Fig. 1. Numerical integration of the state
variables is carried out by the variable step size integration routine described in Ref. 11. The
calculation of the state matrix A is carried out during the integration step; when only a subset
of the equations, for example the kinematic equations for longitudinal motion, or when a$ reduced number of states are to be estimated, only the associated equations are computed and
integrated. Similarly during measurement updating, calculations are only performed for the set
of output measurements specified in the program set-up data.

5. VERIFICATION OF COMPUTER PROGRAM

The integrity of the computer program has been checked by successively expanding the

size of the system equations from a simple set which is amendable to analytic solution. Initially
the prediction of the state and state covariances for a second-order system without measurement
updating, were compared with the analytic solutions given in Ref. 12. Measurement updating
was then added and the results were compared with the numerical solutions also given in Ref. 12.

Using the Kalman Filter equations and matrix routines verified in the two degrees of freedom
filter, a state estimation program was written with the kinematic equations for the motion of a
body [Eqns (11) and (12)] as the system model. The same system of equations was also pro-
grammed using the Carlson square root formulation of the Kalman Filter, and particular effort
was made to minimise computation and storage requirements, as discussed in Section 4. The
results from the Kalman Filter were used to verify the scalar algorithms employed in the Carlson
Filter. Finally the Carlson Filter was expanded to include the estimation of systematic errors in
the input and output measurements.

Because of the large number of permutations of model complexity and of states which can
be estimated, and because of the dependence of the estimates on the set-up data, the general
performance of the filter has not been assessed. Refs 3 and 6 have demonstrated satisfactory
results for the estimation of the state variables of longitudinal motion of an aircraft and esti-
mation of three instrument bias errors. In Ref. 2, good results were claimed for the estimation
of the lateral response of aircraft motion with five states and ten parameters. So far satisfactory
estimation of the full set of seven states and twenty-three parameters from measured data has
not been demonstrated.

6. NOTES ON THE USE OF THE STATE ESTIMATION COMPUTER PROGRAM

Set up information for the state estimation program called FILTER is prepared by running
program CHOICE. A copy of the set up data is presented in Appendix C. Experience with the
Kalman Filter shows that the accuracy of the filter, particularly when the augmented state vector
is included, is critically dependent upon the values specified in the set up data for the initial
state conditions and the input/output measurement noise.

Stage I of CHOICE requires selection of the values for the input and output measurement
noise variances. Initial estimates are made from a knowledge of the precision of the instru-
mentation system producing the measurements. These estimates can be refined by an analysis of
the residuals following state estimation, by using Eqns (23) and (24).

Stage 2 of CHOICE requires specification of the input and output measurement channels
to be used. Depending upon the particular input measurements available, four different com-
binations of the filter equations are available as shown in Table I. If a particular measurement

is not available, the status of that channel is set at zero, and its steady state value has to be

9



TABLE 1

4 Possible Selections of States to be Estimated

Longitudinal Longitudinal Lateral Complete
Equations- Equations- Equations- Longitudinal and

Speed and Height Speed and Height Speed and Height Lateral
Value Constant Variable Constant Motion

Input Measurements Required

ay 
•

azP1

States which can be estimated

h 0

440.,: b.,

ba, 0 S 0

b,

* bI S

bh •

bo 0 0b, 0

5f 0

Outputs which can be calculated

V 0 0 5

0 00
h * S

0 0 S
~, 

•0
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supplied. If no output measurements are available, the program is run purely as a state predictor.
As the number of output channels to be included is increased, the estimation of the state is
improved.

Stage 3 of CHOICE allows specification of the particular states to be estimated. Based
upon this selection, only those states and associated covariance elements are computed and
integrated. During selection of the states to be estimated it is also necessary to specify the initial
values of the state covariance matrix P(k). Generally it is sufficient to specify only the variance
or leading diagonal of P(k) and for the unaugmented state vector, an arbitrary positive definite
choice is satisfactory. When the augmented state vector is included, the initial variances for the
additional states should be greater than zero as discussed in Section 3.3. Tests on a second-order
system with the state vector augmented by two bias error parameters, showed that satisfactory
estimates were only achieved when the initial state variances exceeded their final steady values.

~1 In addition to the set-up data, the program FILTER requires a data file of the measurements

in the order specified in the vectors 77 and ZE (see Section 2), and also the following information
at run-time:

1. RES -an integer which, if greater than 0, instructs the program to calculate
residuals;

2. TSTART -- specifies start time referred to the beginning of the measurement data file;

3. TTOT -specifies the length of measurement record to be filtered-,

4. AQR -specifies the data acquisition rate;

5. No. OF PASSES-an integer which specifies the number of repeated passes through the filter.

After each pass, the initial values of the variables in the extended part of the state vector and
the variances of the basic state variables are set to the final values reached in the preceding pass.
Initial conditions are used for the basic states and for the variances of the augmented states.
Tests with a second-order system, which has the state vector augmented by two bias error
parameters, showed that a single pass was sufficient. However, tests on a three degrees of freedom
system with the state vector augmented by eight bias states, reported in Ref. 2 showed that
continued improvements in the estimates were achieved with up to four passes through the filter.

The output of program FILTER is a file containing the estimated states, and state variances
and a file of bias errors. The bias errors are the average of the bias states calculated over the
final sixty data points.

The output files from program FILl ER are used by program FLIGHT to form a file of
compatible data of all the measured quantities and also plotting files of the compatible data,

state variables, state variances or residuals if this option has been requested. The compatible data
* 1 is a file equivalent to the file of measurement data, but with the input variables corrected for

bias errors, and the output measurements constructed from the estimated states. An example of
the compatible data, estimated using the Carlson Filter together with the measured data for a set
of simulated measurements, is plotted in Fig. 2. The input information to program FLIGHT
is an integer, greater that 0 if residuals have been calculated, followed by start time, total record
time and acquisition rate for the data. A selection of the output files required for plotting can
also be made.

When the option to calculate residuals is selected, the computer program FILTER calculates
the estimated standard deviation of the residuals from Eqn (24) and stores the results in place
of the state variances in channels 7 to 13. The average of the stored values is calculated over the
final sixty data points of the time history and is stored with the file of bias errors. When program
FLIGHT is informed that residuals have been selected, then, the actual residuals are calculated
and plot files of estimated and calculated standard deviations for the full time history are calcu-
lated and stored in place of the compatible data and state variance information respectively.
A file named RESID is also produced which presents the average standard deviation for the
estimated and calculated residuals calculated over the final sixty data points.

When the option to calculate residuals is not selected, the calculations described above are
by-passed.



7. CONCLUDING REMARKS

A state estimation computer program has been written for the estimation of aircraft dynamic
states and instrument systematic errors from flight test measurements. The program can be used
with parameter estimation methods for the determination of aircraft handling and performance

characteristics. It has particular application in non-steady aircraft performance estimation, for
the reconstruction of aircraft flight path, and in the estimation of aerodynamic characteristics
in situations where "equation error" rather than "output error" parameter estimation methods

are preferred. The state estimator can be extended to determine measurement bias errors in the
recorded data, giving a set of data which is compatible according to the kinematic equations
which relate the measurements. Used in this way, the filter has the potential to check the correct
operation of channels of flight instrumentation from measured data prior to commencing test
manouevres. The state estimator can also be used to reconstruct certain flight records which
may have been lost due to instrumentation malfunction or signal limiting. The routines which
have been developed for the state estimation program can be used to modify existing parameter
estimation programs to include the effects of process noise due, for example, to atmospheric
turbulence.

Three subsets of the full equations can be selected which permit separate analysis of
longitudinal motion, with or without constant forward speed or analysis of purely lateral motion.
The accuracy of the state estimates depend strongly upon the estimated input and output noise

characteristics and the initial conditions specified in the set-up data. A rigorous approach to the
selection of these quantities has not yet been developed, and so the effectiveness of the procedures
can only properly be established through application to particular problems. The present Note
provides a description of the method used for estimating the states of a non-linear model using
a square root filter, and documents a computer program based on this method. For particular
problems, the following possible program developments may be of benefit: firstly, inclusion of
a smoothing algorithm, either as a single stage procedure or for updating the initial conditions;
secondly, replacement of the variable step size integrator with a fixed-step integrator to reduce
program run time; thirdly, development of procedures for the analysis of residuals to aid in
the specification of input and output noise statistics.
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APPENDIX A

Calculation of the Process Noise and Measurement Noise Covariance Matrices

In Section 3 the discrete Kalman Filter equations are developed for a linear system
represented by the discrete state equation

X(k 1 I) 0(k- 1, k) X(k) + w(k -1) k = (0,1,2 .... ) (A.1)

w(k + 1) is the process noise and accounts for noise in the input signal, for noise within the
process itself, i.e. unmeasured disturbances, and can also be used to account for differences

between the model and the actual system. For systems which are accurately modelled and in
which the unmeasured disturbances are small, such as the kinematic relations represented by
Eqns (13) to (15), it is assumed that the process noise is predominantly caused by noise in the
measured inputs nj(k).

Therefore the process noise
to(k + 1) = r(k + 1) n,,,k + 1) (A.2)

and the process noise covariance matrix

Q(k+ 1) = F(k+ 1) X(k+ I) rT(k+ 1) (A.3)

x(k-+ i) is a diagonal matrix with elements equal to the variances of the input noise n(k+ 1).
r(k+ I) is derived in Appendix B.

The measurement noise is simply the noise in the measured outputs

v(k + 1) = nr(k +1) (A.4)

and the measurement noise covariance matrix R(k+ I) is a diagonal matrix with elements equal
to the variances of the output measurement noise n,,(k + I).

In the program validation described in Section 5, the solution for a continuous process was
approximated by the discrete Kalman Filter. For this case, it is shown in Ref. 12 that the process
and measurement noise covariances are determined as follows.

The state equation for the continuous linear system is

X = A(t)X F w(t) (A.5)

where wo(t) is a Gaussian purely random process

with E[o(t)] - 0

E[-(t) _T(T)] = Q(t) a(t- T)

Q(t) is a non-negative definite matrix representing the integral of the random process cu(t) and
S(t-7) is the Dirac delta function.

Using the discrete approximation given by Eqns (A.1) to (A.3) and choosing to make the
state covariance matrix for the discrete system P(k) equivalent to its counterpart P(t) in the
continuous system, Ref. 12 shows that

x(k) = QQt)/At (A.6)
where At is the stepsize.

Similarly it is shown that the measurement noise v(t) which is assumed to be a Gaussian
purely random process with

Ely(t)] = 0
E[i'(t) O'(r)] = R(t) 8(t-r)

is represented in the discrete system by

R(k) = R(t)/At (A.7)
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In a practical situation the statistics of the process and measurement noise are not usually
known sufficiently accurately prior to state estimation. This can lead to large estimation errors
or even to a divergence of the errors. The problem is discussed briefly in Ref. 2 and in more
detail in Ref. 13. For the filter discussed in this Note the process and measurement noise is
chosen from a comparison of the output residuals, as discussed in Section 3.1.
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APPENDIX B

Linearisation of the Kinematic State and Output Equations

For the Extended Kalman Filter, the system state and output equation, are linearised
about the best estimate of the state at each data point 9A.

For the kinematic equations, in which the process noise is assumed to be due solely to
noise in the input measurements, as discussed in Appendix A, the upper segment of the state
equation (Eqn (41)] can be written

IA =f(XA, '
7E, 1) + Bn.(t) (B.1)

where B is a matrix of input coefficients from Eqn (I1).
Neglecting differences of second order and higher, equation (B.1) can be approximated by

the expansion
bf

)?A =f(9'?, '7 kt) + (XA-kA) + Bn.(t) (B.2)
XA!9A

RA + zb (XA-A) + Bn.(t)

(VA-A) = (XA-kA) + Bnr.(t)
bXA'9.

i.e. AXA = A AXA + Bn,(t) (B.3)

The discrete form of Eqn (B.3) is

AXA(k + l) = 0(k+ 1, k) AXA(k) + P(k+ 1) n(k) (B.4)
where 0 (k + 1, k) =eA  (B.5) :
and

r(k 1 1) f'eAf,-7 B(7)di' (B.6)

Similarly, the output equation [Eqn (42)] can be approximated as

Y = h(,kA, "IE) + MX-a (XA-9A) (B.7)
iXA ,kA

where, from Section 2, it is noted that the random errors in the rotational rate inputs have
been neglected in the output equations for , and atr..

h

.Y - XA (A--kA)

A Y = H AXA (B.8)
or in discrete form

A Y(k + 1) = H AXA(k + I) (B.9)

As can be seen from Fig. I it is only necessary to determine A for the thirteen by thirteen state
transition matrix 011, 12(k+ I, k). Within the computer program, only those elements of A and B
which define the states selected for estimation are calculated. Similarly only those elements of
H which define the outputs for which measurements are available are calculated.



For the case when all twenty-three states in XA are to be estimated and when all seven
measurement channels in ZE are available, the following differentials are calculated. The
arguments in the notation A(i,j) used below, denote the dependent and independent variables
of the partial differentials in the linearised equations respectively. For the linearised state
equation:

A(u, v) = (rE-br)

A(u, w) = -(q-bq)
A(u, 6) = -g cos 0

A(u, ba,) = -- "0
A(u, bq) = w
A(u, br) = -v

A(v, u) = -(rE-br)

A(v, w) = (pB-bp)

A(v, 0) = g cos 0 cos {
A(v, bay) = -1.0

A(v, 0) = -g sin 0 sin {
A(v, bp) = -w
A(v, br) = u

A(w, u) = (qE-bq)
A(w, v) = -(PE-b,)
A(w, 0) = -g cos 0 sin {

A(w, 0) = -g sin 0 cos
A(w, ba,) = 1.0
A(w, bp) = v
A(w, bq) = -u

A(h, u) = sin 0
A(h, v) = -cos 0 sin q,
A(h, w) = -cos 0 cos {
A(h, ) -v cos 0 cos + w cos 0 sin
A(h, 0) u cos 6 + v sin 6 sin { + w sin 0 cos

A(O, '0) = (qE-bq) cos , tan 0 - (rE-b) sin 0 tan 0
A({, 0) = (qE-bq) sin 9,/cos 2 0 + (rE-br) cos {/cos 2 0

A(O, by)= -. 0
A(O, b,) = -sin , tan 0
A(O, b,) = -cos 0 tan 6

A(O, 0S) = (qE-bg) sin { - (rF-br) cos #
A(O, bq) = -cos {
A(O, b,) = sin {,

A(, {,) = (qE-bq) cos 0/cos 0 - (rs-br) sin {/cos 0
A(#, 0) = (qg-bq) sin 0 tan 0/cos 0 + (rv-be) cos { tan 0/cos 0

A(, bq) = -sin 0,/cos 0
A (, br) = -cos 0./cos 0

For the linearised output equations:

H(V, U) = (I +A ) u(u2 +V2 +w 2) - *

H(V, v) = (I +Av) v(u 2 +v 2 +w 2 )-*
H(V, w) = (I +Av) w(u 2 +v2 +w 2) -

H(V, bv) = 1'0
(V, AVv) = (u2+ 2 + W2 )*



denoting f [t' + (rE -br) xu - (px -bp) z#]/u

H(P, u) = -(I -( f2) A u

(I If2)U

H(., v) = (I + A )f .I .I

P)U
H(f, bo) =(I + A,6) -_ -- z _

I x#
H(P, br) = -( +A) ....

(I-i+f") u
H(P, b,,) = I.O

H(9, A8) = tan-If

denotingf= [w - (qE- -b) x. ± (pE-bp) j,.]/u

H(7, u) = -(I -t-Ac)(-

(It-f2) U
IIH(h, h) = -(I -A) 0 +f' ) U

H(h, bh) (I X
U

H(#, bp) --(I -A ) (I .f2)U

H(t, b)= 1'0
H(Y.,,A ) tan tf

H(h, h) = 10
H(h, bh)= 1'0

H(O, 4,) 1 i.0
H(,, bo) 1.0

H(O,O0) 1-I0
! H(O, b,) 1 I 0

H(Ob, 0) =1.0
! H(O, bo) 1-I0

The coefficient of the input matrix in Eqn (B.1) are given below. The arguments in the notation

B(i,j) denote the state equation and input variable respectively.

B(u, a_) = -- 0
B(u, q) -r
B(u, r) = -t,

B(r, ay,) = -1I"0

B(v, p) =
B(i, r) = u

B(w t, a,) 1-0

B(w, p) r r
B(w, q) = u



IB BP)= 1 0
Bqq) =sin 4tan (

B(,r) =cos tan

B(9, q) -cos

B(O, r) -sin q

B(#, q) =sin O/cos0
B(o, r) =cos 'k/cos

AL



APPENDIX C

Example of Computer Program Set Up Data

RU CHOICE

PROCESS NOISE VARIANCE

QUANTITY NUMBER VALUE

NX I 0.00010000
NY 2 0.00160000
NZ 3 1-00000000

P 4 0-00010000
Q 5 0-00010000
R 6 0.00010000

MEASUREMENT NOISE VARIANCE

VFP 7 1•00000000
BETA 8 0.00002500
ALPHA 9 0'00002500
HEGHT 10 1000.00000000
PHI I1 0.01000000
THETA 12 0.00250000
PSI 13 0-01000000

TO CHANGE VALUE TYPE I,F
TERMINATE CHANGES WITH 0,0

TYPE -I,0,1 TO REVIEW, TERMINATE, OR VIEW CHANNELS

INPUT MEASUREMENTS AVAILABLE

QUANTITY NUMBER STATUS I/C IF NOT MEASURED

NX I 1 0-00000000
NY 2 2 0.00000000

NZ 3 3 0.00000000

P 4 4 0-00000000
Q 5 5 0•00000000

R 6 6 0.00000000

TO CHANGE STATUS TYPE 1,1 ADD -- 1,F TO CHANGE IiC

TERMINATE CHANGES WITH 0,0

MEASUREMENTS TO BE INCLUDED

QUANTITY NUMBER STATUS IiC IF NOT MEASURED

VFP II 0.00000000

BETA 2 2 0.00000000

ALPHA 3 3 0100000000

HEGHT 4 4 0.00000000

PHI 5 5 0.00000000

THETA 6 6 0.00000000

PSI 7 7 0.00000000

TO CHANGE STATUS TYPE 1,1 ADD -I,F TO CHANGE IC
TERMINATE CHANGES WITH 0,0



STATES TO BE ESTIMATED

STATES WHICH CAN
QUANTITY NUMBER STATUS BE ESTIMATED VARIANCE

CHANGE AS BEFORE ADD -1,F TO CHANGE VARIANCE

U I 1 1.0 4-00000000
V 2 2 1-0 0-00250000
W 3 3 1.0 0.01000000
HEGHT 4 4 1-0 100-00000000
PH-I 5 5 1-0 0-00002500
THETA 6 6 1.0 0-00000400
PSI 7 7 1.0 0-00000400
BAX 8 0 1.0 0-07700000
BAY 9 0 1.0 0-07700000
BAZ 10 0 1.0 0-07700000
BP )l 0 1.0 0-2286000
BQ 12 0 1.0 0-01940000
BR 13 0 1.0 0-07700000
BVFP 14 0 1.0 0-07700000
BBETA 15 0 1.0 0-07700000
BALFA 16 0 1.0 0-07700000
BHGHT 17 0 1-0 0-07700000
BPHI 18 0 1.0 0-07700000
BTHTA 19 0 1.0 0-07700000
BPSI 20 0 1-0 0-07700000
KVFP 21 0 1.0 0-07700000
KBETA 22 0 1.0 0-07700000
KALFA 23 0 1.0 0-07700000

TYPE I OR 0 IF REPEAT IS/IS NOT REQUIRED



PROGRAM STEPS OPE RATION

[11 Initialise program Prepared by program 'CHOICE'

[1.1] Read in set updata

[1.2] Read initial measurements

[2] Initialise state estimates X+ (k) X (0)

[31 nitialise state covariance S+ =

[4] Start filter

[5] Output states and
state variances

[6] Calculate input matrix B (k+1)] and [r(k+1)]

[7] State prediction by A _ (k+l)At^A
numerical integration of X (k + 1 ) = kt f(X (k), ,I e )dt
nonlinear equations L I

[81 Calculation of state [ k )+1,k AAttransition matrix by e
power series approximation

W(k+1) = (V(k+1,k) S+ (k)
[9] Covariance prediction S (k + 1) = W(k+1) W(k+1)T+Q(k+ 1) '/ 2

- +
0 I 0 lj + (k) 12

M atrix partitioning - . .. ...

0 I)22 =I

FIG. 1 SUMMARY OF PROGRAM STEPS



PROG RAM STEPS OPERATION

9.1 (1) 1 x S+ (k 11/12F
=~ Wk)111LW(k +1)1i I W(k +112]

9.2 W(k+1)12-.-P(k+1)12

P (k + 1)i I P (k +1)12

9.3 W(k+1)x W(k+l)T P k+12
P (k +1)11 0 Pk12

9.4 S+(W22 -e- P(k +1)22

r(k+1)]x oX(k~li x r(k+l)T] Q [(k+1]
9.5 Calculation of process0

noise covariance matrix

and

formation ofr
P (k+ 1)11

=P(k+l) Pk+ Ok11P(k+1

P (k + 1+22

2
19.6 CHOLESKI decomposition P (k + 1) \ \S (k + 1)

10 Read in new measurements

FIG. 1 CONTINUED



PROGRAM STEPS OPERATION

Ir
R(k+lf Z]

[I [I Correction of covariance (
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