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SUMMARY

The maximum signal-to-noise ratio array processor is formulated
in beam space. Expressions for the optimum narrowband weight
vectors and array gain are derived. Some general properties
of the beamspace formulation are derived and conditions for the
equivalence of the array and beam space formulations are proved.

Examples using both simulated and sonar data are given to compare
the beam and array space formulations.
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1. INTRODUCTION

The performance of an array beamformer may often be improved by multiplying the
recciver outputs by a set of weighting (or shading) coefficients prior to addition.
In particular Edelblute, Fisk and Kinnison(ref.1) have derived a set of weights
which for a known noise field, maximise the output signal-to-noise ratio of a

beam steered in a given direction. These weights are determined by the crosspower
spectral matrix of the receiver noise outputs and hence reflect the angular
distribution of noise sources.

In practice the receiver outputs may not be accessible and so an estimate of the
receiver noise crosspower spectral matrix cannot be directly obtained. One
important practical case is where only beamformed outputs (ie conventional beams)
are available. A set of weighting coefficients which maximise the output signal-
to-noise ratio are derived in this paper from conventional beam rather than receiver
outputs. Expressions for the array gains are also derived. The expressions
derived are a generalisation of the equations obtained by Vural(ref.2) using a point
constrained minimum power criterion.

In general the array space and heam space formulations are not equivalent. However
as the number of independent beams used in the beam space formulation increases the
beam space gains approach the array space gains. In Section 3 the equivalence of
the two approaches is proved under some general conditions.

Some general properties of the heam space formulation are derived in Section 4.

In Section 5 some theoretical and simulated examples are presented to illustrate
the relationship of the conventional, the optimum array space and the optimum beam
space processors. The simulation examples illustrate some practical limitations
on the gains that can be achieved using the beam space methods. Finally in
Section 5 some examples of the application of the beam space optimisation to sonar
data are given.

This work is part of a continuing RGD programme in signal processing for underwater
detection and has been carried out under task DST 79/069.
2. DERIVATION OF OPTIMUM BEAM WEIGHTS
2.1 Notation

Let y denote the vector of M conventional beam outputs at a frequency f, and

let y be a weighted scalar sum of these beam outputs, ie

y = wy

where w i5 the (in general complex) vector of weights.t If

where si and ni (i=1,2,...M) are the signal and noise components in the i-th

beam, then the crosspower spectral matrices of the signal and noise beam
components are defined by

t The superscript H denotes the Hermitian transpose of a matrix or a vector.
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and
*
(R}).. = <n,n, >
1) 13
respectively, where < > denotes ensemble averaging and i,j = 1,2,...,M where

M is the number of (preformed) beams used.

If the signal is a narrowband plane wave (of unity amplitude) then

H

Q = ss
where
s = Wve,
_ -2mifr .
and

vk(0] - e-21rif1'k(0)

where k=1,2,...,K and K is the number of receivers.

The time delay 7 is the time delay relative to some arbitrary reference

Kj
point, at the k-th receiver of a plane wave from th- j-th direction (corres-
ponding to one of the chosen steer directions for the M preformed beams).  The

delays 7, (0) are the time delays corresponding to the steering direction, 0,
of the optimally weighted beam.

The signal-to-noise ratio in the derived beam, y, is defined as

wHQw

wl lRw

SNR =

Array gain is defined by

(SNR) beam

(SNR) omnidirectional receivers.

2.2 Dlerivation

It can readily be shown that the SNR in the derived beam, ;; is maximised by
choosing w such that
wIlQw

wHRw

Rw (1)

Q=
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Equation (1) is satisfied if
w = AR's (2)

wherc A is any constant. Imposing the constraint of a fixed (ie unity) responsc
in the steering dircction defined by vj(o) implies that

This constraint is imposed to ensure that the signal power in the optimum beam

increases as the signal power increases. Consequently equation (2) becomes
K's
Wo =
stiets
B r! VHV
v vty (3)

As discussed in Appendix A the case where R is singular and V is of full rank

can also be treated and an appropriate generalisation of equation (3) is to

replace R™! by R, the Moore Penrose pseudoinverse(ref.3) which, in addition ‘
to maximising the output SNR also minimises the superdirectivity of the weights.

It directly follows from the generalised version of equation (3) that the .
maximum output SNR for a unit amplitude signal is given by ;

- H_+ i
(SNR) .. = SR's.

For these optimally weighted beams the expression for array gain reduces to

H_+ !
y S Rs
g, *
N
o
where No is the omnidirectional noise power at any receiver. (The assumption

of a homogeneous medium and identical receivers, ie no shading, has been made).

Furthermore if R, the beam noise crosspower spectral matrix hashbeen derived
from normalised receiver outputs ie, the noise output of the jt receiver,
L)

J

, is transformed

) o ()
J J < ngx) ngx)* > 1 ;

J J

.
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then the optimum array gain in the steer direction specified by s is

y _ _H+
go = § R s,

3. SOME EQUIVALENCES OF THE ARRAY SPACE AND BEAM SPACE FORMULATIONS

For narrowband signals the conventional beam outputs Yy i=1,2,...M can be

related to the receiver outputs X i=l,...,K by the cquation
H
y = Vx (4)
where V is defined in the previous section. The crosspower spectral matrix of

the M beam outputs, Ry’ is defined by

*

R).. =< e (g >

(R 7 @n
for i,j=1,2,...,M and the crosspower spectral matrix of the K receivers is
defined by

= < (x) (x)* >

(Rx)ij n, (f)nj (f)

for i,j=1,2,...,K where ngx) and n§Y) are the i-th normalisedt receiver noise

outputs and j-th beam noise outputs respectively.

Assuming the signal and noisec are uncorrelated it follows from cquation (4) that
R = V“R V.
y X

From reference 1 the optimum weight vector, wz, using receiver outputs is

R;‘v

. S (5)

Ve iy
X

. . X . .
and the corresponding array gain, g,» 1s given by

& = ety 6)

-

* The use of normalised receiver outputs as defined in the previous section is
simply a convenience which allows simple expressions for the crosspower spectral
matrices and a concise formulation of array gain within beam space,

snbenentilily
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From the previous section the optimum weight vector, wz, using beam outputs is

+

R s
Wy = Yy (7)
° 1o+
s R s
Y
where s = VHV. Also the corresponding array gain, gz, is given by
Yy H_+
go s Rys (8)

Two conditions under which equations (5) and (7) and (6) and (8) become identical
will now be proved.

Case A: K = M and V nonsingular.

Since Rx is assumed nonsingular it follows that

R = ke vty
y y X
It then follows that
y H, +
g, ~ s Rys

iy v R;'V"“ vily

Also the optimally weighted beam output is identical to the optimally weighted
array output, ie

H +H
v VR
S y?”
[0}
Rt vy
Yy
iy v ! RV
My v € vl iy
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Thus for K = M and V nonsingular the two techniques are equivalent,
tase B: M > K and V is of rank K

In this case only K of the M beams formed are independent. For most arrays this
can be satisfied by choosing the M steering directions to be distinct(ref.4).
Since V has K independent rows it follows(ref.3} that

vioo vty

and consequently

\s a result it can readily be proved that

+

R _ V+R—1V+H. .
Yy X

it then follows that

vy vt K TALLRTLLY

- My
X

X

= go,

In a similar manncr to the previous section the optimally weighted receiver and
beam outputs can also be shown to be identical, ie

yH 1 H. _+H
W = — Vv VR
o’ y y 7

gO

= 1 Myt
X
X
g

(o]
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- L v“K 'ox
X X
g,
xH
= w X
o

These examples imply that if the number of independent beams is grcater than or
equal to the number of receivers then in principle it is possible to achicve the
full array space gains using the beam space approach. Furthermore as discussed
in reference 4 choosing the steering directions to be distinct implies linear
independence of the steering vectors. This implies that at any frequency the
full array gains can be achieved by increasing the number of beams used. In
practice the finite precision used in the calculations prevents this and in
Section 5 some examples are given to illustrate this difficulty.

4. PROPERTIES

In this section some general properties of the beam space formulation will be
detailed.

4.1 Gains

The array gains using the beam space formulation ie the gg arc always less than

or cqual to thosc derived from the array space formulation ic gﬁ.

The proof follows from Rao(p.48 ref.5):

X H _, H H
g8, = V R; v = max X VV X
XEIEK x“R X
X
where EK is the vector space of dimension K. Thus for any vector nyk it

follows that

H H
ywy o X
— < g,
H

y R Y

In particular take

y = VR; vy

it then follows that

(V“ v R V“v)’
_ Y

vy rtvH
y

RvRTVY
x oy
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in

From the definition of Ry and the Moore-Penrose pseudoinverse it follows that

H

the LHS of the inequality reduces to v VR; V”v and hence gy <y X The

0 (o}
conditions for the equality to hold have been investigated in the previous

section.
4.2 wvain as a function of number of input beams

In a previous classificd report the author has shown that in array space the
optimum array gain estimates always increase with the addition of extra
receivers. This is not the case in conventional heamforming where at low
frequencies the addition of extra receivers may, provided the array aperture
is not increased, actually result in a poorer array gain.

\ similar result proved in Appendix I1 and generalising the previous derivation,
holds tor the beam space formulation ie, optimum heam space gains in general
increasce when additional input beams are used. However the array gains attain
a raxinun when the number of beams used equals the number of receivers and all
these beams are independent., As shown in Appendix II when Rv formed from using

n+1 heams becomes singular (or when the rank of Ry is not increased by the

additional bheam) then the optimum beam space gain is no longer increased by the
addition of an extra beam.

5. EXAMPLES

thi< scotion, array gain estimates for a conventional beamformer will be¢ denoted
¢ and can rveadily be proved to be given* by
L.

5.1 Uncorrelated receiver noise

In this casec the receiver noise covariance matrix is defined by

It trivially tollows that

for all directions.,

y
(¢}

Furthermore g7 reduces to

!
vivadiy vty

* The assumption that the signal lies in the look direction is made henceforth,
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and consequently the optimum beam space gains will, as would be expected,
depend on the number of beams used and the steer direction.

(a) Singlec beam

Using just a single beam steered in a direction corresponding to the
i-th column of V then

where vy is the i1-th column of V.

Thus
Yy _ H
g = vl vvive

which is just the polar diagram of the array when steered in the i-th
direction. Since only one beam has been used to effect the optimisa-
tion this result is hardly unexpected.

{(b) M orthogonal beams (M < K)

In this case

vy -k Ly, = > (VHV)"

and hence

(o}
x| -

|-

M
/Tv“(o) vjvgl v(0)
1

j

ie the sum of the M polar diagrams.

(¢} Gain in beam directions

f.et p be chosen such that v(8) = vy where vy is some column of V.
Rearranging such that Vi is the first column of V it follows that

1

oy vty -
! 0




WSRI.-0197 IR - 10 -

; (a)

(b)

(¢)

Thus

U

B

Thus the optimum beam space gains in the M directions determined by the
vi's, i=1,2, ... Muwill be equal to the optimum array space and

conventional array gains.
5.2 Simulation results

To investigate the dependance of the beam space gains on the number of input
beams used the crosspower spectral matrix was simulated for a number of noise
fields and the gains were cvaluated. The conventional array gain and the
optimum array space gain were also evaluated. An array of two concentric

’ rings each of 5 receivers (sec figure 1) was uscd for the simulation.

The array gains for a unit receiver noise covariance matrix (corres-
ponding to uncorrelated receiver noisc) are plotted in figure 2 where

r/A = 1/8. The number of heams used in deriving the beamspace gains
was varied from 1 to 5; in each case the heams were equispaced from
0 to 2 m. For M=1 the polar diagram of the array is apparent. For

M>1 a gain of 10 log 10 (seec previous section) is obtained whenever
the steering direction coincides with one of the preformed beam
directions. Furthermorc at this frequency only 5 beams are needed
to achieve the full array gain of 10 log 10.

The limiting number of beams needed is a function of frequency and are
plotted in figure 3. This limiting number was calculated as the
minimum number of beams used such that the beamspace gains lay within
an average* of % dB of the limiting array space gains. For such a
noisc field this gives the maximum number of beams that need be used
at any given frequency.

Uncorrcluted receiver noise and a single interfercnce

The array gains for the case where the above noisc ficld has also a

10 dB interference at 180 are plotted in figure 4 where thc analysis
parameters are the same as figure 2.  The number of beams necessary

to achieve the limiting array gains are plotted as a function of
frequency in figure 3. Comparing the two plots of figure 3 it can be
seen that the interference requires roughly an additional beam {particu-
larly at very low values of r/A) to be used in order to achieve the full
array gains.

Isotropic noise

For an isotropic noise field the cross-correlation between any two
receivers separated by a distance of d is given by

sin 2md/X
2rd/A

* avcraged over the azimuth angles 0-27

K
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The array gains for the array of figure 1 in such a noise field are

plotted in figure 5 where the number of beams used was varied from

1to5and r/A = 1/8. The number of beams necessary to achieve

the limiting array gains are plotted as a function of r/X in figure 3.

Apart from very low values of r/A the values are the same as for the

uncorrelated receiver noise case. '

(d) Isotropic noise and a single interference

As discussed carlier it is in principle always possible to obtain the
full array gains by increasing the number of beams used in the
beamspace approach., llowever in this case it was found thiat as the
number of heams increased the factorisationt ot the beam crosspower
spectral matrix failed.

A method that was partially successful in overcoming this difficulty
was to perturb the diagonal elements of Ry by a small positive number
acsy. This permitted factorisation when r/A > 1/6 and in these
cases the full array gains were achieved using either 9 or 10 beams
depending on frequency. Increasing the perturbation (10 *) permitted
factorisation at most lower values of r/A. However in general, the
limiting beamspace gains (at r/A = 1/8) were significantly lower than
those achieved in the array space and often as the example of figure 6
shows the limits could be achieved using less than 10 beams (eg 5 in
figure 6).

The inference from these results is that all 10 beams are needed at
all frequencies to achieve the maximum gains. At lower frequencies
the ill-conditioning of the matrices limits the gains that can be
achieved in practice. However if uncorreclated receiver noise is also
present (and in practice this certainly will always bhe the case) then
the limiting gains may be achievable. If -10 dB (rc the isotropic
noise power) of uncorrelated receiver noisc is added in the above
example then figure 7 is obtained and it can be seen that using 10
beams allows the full array gains to be achieved.

5.3 Application to real data

The methods described have been used to estimate the optimum gains from the .
array described in the previous examples when processing sonar data. A

block diagram of the processing is given in figure 8. After narrowband

filtering the data (by means of the FFT) to a 5 Hz binwidth, the receiver

crosspower spectral matrix, Rx’ was estimated and normalised at each frequency

of interest. This was factored and the factored matrix was used to estimate
the conventional and optimum array space gains. The factored matrix was also
premultiplied by the matrix (V) of phase delays whose columns corresponded to
the steering directions. From this Ry was derived (see figure 8), factored

and inverted and hence the array gain cstimates gg were evaluated,

The array gain estimates as a function of azimuthal angle for the array of
figure 1 are shown in figures 9 and 10 for r/A equal 0.125 and 0.42 respectively.
Since one of the outer ring hydrophones was faulty only 9 hydrophones were used
in the analysis. The data also contained random phase errors and this tended
to bias the optimum array gain estimates positively. In both these examples

no problems were encountered in the beam crosspower matrix factorisation
although at other lower values of r/A and also when using arrays with a larger
number of hydrophones on the same data the matrix factorisation failed and the
perturbation technique of the previous section had to be used.

t The matrix factorisation arithmetic was effected in double precision on
single precision inputs on a 4 byte word machine.
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The two examples were chosen to illustrate two different environments; in

the first example (figure 9) the noise field cxhibited only a weak azimuthal
dependance whereas in figure 10 the presence of a strong interference at

2647 implied a strong azimuthal dependance of the noise field. Both results
showed an improvement in the beamspace array guin estimates as the number of
beams used was increased. When the number of beams equalled the number of
receivers (figure 9) then the full optimum array space gains were achieved in
both cases. Both examples showed distinct dips in the gain estimates when
only a small number of beams were used (eg 3 in figure 9 and 4 in figure 10),
Care should be taken to avoid associating these dips with an azimuthal
variation of the noise field; they are simply a result of using an insufficient
number of beams. Figure 10 differs from figure 9 in that significant improve-
ment over the conventional gains can be achieved by using only a few becams,

eg 4, whereas in figure 9, the gains resulting from using just 3 beams are
often significantly lower than the conventional array gains. This is because
only a single beam pointed ait or near the interfering source is sufficient

to partially null it and hence produce the significant array gains of figure 10.

Two further features are of particular interest in figure 10. The first is
the depth of the null as a function of the number of beams used; this depth
is a good indication of the sensitivity of the technique to receiver errors.
As the number of beams increases the depth of themull decreases indicating
increased sensitivity as the number of beams used éncreases. The second
feature also of interest is the distinct dip at 68 in the array gain estimate
for the 6 beam case. [t is common to associate such dips in array gain
estimates with interfering targets, however as indicated by both the conventional
and optimum array space gains there is no interference at 68", Thus as
discussed above for the three and four beam case this dip must be a result of
using an insufficient number of beams. This again illustrates the importance
of choosing the number of beams correctly if the array gain estimates are to
be used for the detection of interferences.

0. SUMMARY

lhe optimuwn signal-to-noise ratio processor has been formulated using only narrowband
preformed beam outputs. The relationship of this to the array space formulation
has been investigated, and in priciple the full array space gains can be recovered
from the beamspacce formulation provided the number of beams is chosen appropriately.
A number of theorctical propertics together with examples illustrating these
properties have been given. Some practical limitations of the beamspace methods
are also illustrated. The method has heen applied to sonar data from an array of
hydrophones to verify its viability and Jdemonstratc some of the theoretical
predictions.  The results indicate that a trade-off of increased sensitivity
versus more uniform (in an angular sense) array gain estimates must be made. This
problem of choosing the correct number of beams is receiving further attention.
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APPENDIX I

DERIVATION OF MAXIMUM SIGNAL-TO-NOISE RATIO
PROCESSOR FOR A SINGULAR BEAM COVARIANCE MATRIX

Let Rx be a positive definite matrix and define Ry by

I}
R = V va (r.1)

where V is an K x M matrix and M > K.

Since Rx is a nonsingular it follows that

uH Rx u = 0 =>u = 0. (1.2)

However from equation (I.1) the rank of R_ is K and hence there exist (M-K) vectors
u' such that Y

Substituting cquation (I.1) in the above expression it follows from equation (I.2)
that

The gencral solution to the above ecquation is(ref.3)

| +
u = (1 - Vv V)

. . + . .
where z is arbitrary and V' is the Moore-Penrose pseudoinverse of V.

Let s(0) = V“v(0) be the steering vector, it thus follows that

b
S

u oy va-vtyyz

since wlv o= 1

Thus it follows that any vector which completely nulls out the noise power alsa
nulls out the signal power.

This important conclusion now allows a derivation of the maximum SNR processor for
R, singular to be effected. That is the expression for the SNR in a given output

beam ie




i
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(bNR)houm B I
w

can be maximised subject to the constraint of a finite response (say unity) in
the look direction.

This is a formulated equivalently as minimising w” Ryw subject to the constraint
sw = 1 (1.3)

Solving in the usual way by introducing a Lagrangian multiplier and differentiating

with respect to wH implies that

Rw = As
Yy

Any solution of this equation can be expressed in the form
w = AR's + (I -R"R)z
y y y
where z is arbitrary and R; is thec pseudoinverse of Ry'

for the case of M > K but V of full rank it can be shown that (sce Section 3)

R = vty
y b
and consequently that
R'R = vy
Yy
+ +
Thus w = XRys + (1 - VV)z and so
s = xs“R;s v - vty x

= As'R's
y

Choosing A such that equation (I.3) holds then implies that a possible solution for
w_is
o

and consequently

Rieka - A

[ RPN
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APPENDIX IT

INCREASE IN OPTIMUM ARRAY GAINS BY TIH: ADDITION OF AN EXTRA INPUT

Let Rn denote the crosspower spectral matrix formed using n 'mormalised' input

channels. These could be either array elements or conventional beams. Let
Rn+l be the crosspower spectral matrix formed using the same, n, input channels

plus an additional channel. It follows that R ,q can be written in the form:
R, = (Rn b>
bH d
where
<X X >
bl B xn+l X ’
+
d : \‘Xn+1 Xn+1 >

. .th
and the X.'s are the Fourier transforms of the 'normalised’ i~ channel outputs.
i

If u is any 'steering vector' for n input channels then the optimum array gain is
given by

n W+

g, ~ Rn u

where R” is the Moore-Penrose psecudoinverse of Rn. Similarly for the n+l input
n
channels the array gain is
n+1 H * +

= a I1.1
g, (%) Ry () (11.1)

where « is the complex weight required by the additional channel.

Now since R, is positive semidefinite then

R . = AMA
n+l
and R can be partitioned R' = (A : a) where A is n x n-1 and a is n x 1. Thus
R = AHA A“
n+l
aHA ala




- 17 - WSRIL-0197 - IR
It can easily be verified that theoremf 3.6.3 (p.066 of Rao and Mitra) also holds
for the pseudoinverse and hence

R, = [t shn'' _ &h
- shlt 5
where
h = (A”A)* A”u
= A+a,
and
§ = (aa - &' mtar!' ifax M@

= 0 if a € M(A)

where M(A) denotes the column space spanned by the columns of A,

Thus it follows that the pseudoinverse of Rn is given by

+1

RY . =/k +8r  bbl RY 8RB
n+l n n n n

- spl Rt 5
n

Then substituting in equation (II.1) it can be shown that

gg’l I R;u + B(w-a*) (w*-a) (11.2)
where w = —uH R;b. Thus provided 8§ = 0 then g2+1 >=uHR;u and so the array

gain is never decreased by the addition of an extra input channel.

Now since Rn+1 is non-negative definite it follows that

where U is a unitary matrix and A.n is a diagonal matrix such that

+1

Moo= (A ) 20

L

t Two typographical errors occur on p.66 of reference 6, a is an m vector and
a € M(\) should read a §x M(A).

L b &
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It holds that

e =%

+ H + ) :
= A ]
R 1y utA |
+ . . ' i i
where A nel 1S diagonal and '
+ 1 . b
= = A .
Ca n+1)ii Ailf i v !
= 0 if A = 0,
1
Thus R;+l is non-negative definite and so
xH R x=Z0V x
n+l
Taking x' = (0, 0, ..., 1) it follows that {
j
+
(Rn+1)n+1, n+l =20,
ic s =20,

e case of 8=0 corresponds to the case of where the rank of Rn+1 equals that of
R]. In this case the array gain is not increased because no additional informa-

tion is contained in Rn that was contained in Rn.

+1

If the rank of Rn is grecater than that of Rn then 8 > 0 and hence, in general, |

+1
the array gain will increase since w ¥ a* for all steering vectors u.
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Figure 3
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Figure 7
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Figure 7. Array gains in isotropic noise plus 10 dB interference
plus -10 dB receiver self noise at r/A = 1/8
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Figure 9
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Figure 9. Array gain estimates for r/A = 1/8
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Figure 10
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