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SUMMARY

The maximum signal-to-noise ratio array processor is formulated
in beam space. Expressions for the optimum narrowband weight
vectors and array gain are derived. Some general properties
of the beamspace formulation are derived and conditions for the
equivalence of the array and beam space formulations are proved.

Examples using both simulated and sonar data are given to compare
the beam and array space formulations.
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1. INTRODUCTION

The performance of an array beamformer may often he improved by multiplying the
receiver outputs by a set of weighting (or shading) coefficients prior to addition.
In particular Edelblute, Fisk and Kinnison(ref.1) have derived a set of weights
which for a known noise field, maximise the output signal-to-noise ratio of a
beam steered in a given direction. These weights are determined by the crosspo%,cr
spectral matrix of the receiver noise outputs and hence reflect the angular
distribution of noise sources.

In practice the receiver outputs may not be accessible and so an estimate of the
receiver noise crosspower spectral matrix cannot be directly obtained. One
important practical case is where only beamformed outputs (ie conventional beams)
are available. A set of weighting coefficients which maximise the output signal-
to-noise ratio are derived in this paper from conventional beam rather than receiver
outputs. Expressions for the array gains are also derived. The expressions
derived are a generalisation of the equations obtained by Vural(ref.2) using a point
constrained minimum power criterion.

In general the array space and beam space formulations are not equivalent. However
as the number of independent beams used in the beam space formulation increases the
beam space gains approach the array space gains. In Section 3 the equivalence of
the two approaches is proved under some general conditions.

Some general properties of the beam space formulation are derived in Section 4.
In Section 5 some theoretical and simulated examples are presented to illustrate
the relationship of the conventional, the optimum array space and the optimum beam
space processors. The simulation examples illustrate some practical limitations
on the gains that can be achieved using the beam space methods. Finally in
Section 5 some examples of the application of the beam space optimisation to sonar
data are given.

This work is part of a continuing R&D programme in signal processing for under',ater
detection and has been carried out under task DST 79/069.

2. DERIVATION OF OPTIMUM BEAM WEIGHTS

2.1 Notation

Let y denote the vector of M conventional beam outputs at a frequency f, and

let y be a weighted scalar sum of these beam outputs, ie

H
y = wy

where w is the (in general complex) vector of weights.t If

y = s+n

where s. and n. (i=l,2,...M) are the signal and noise components in the i-th2. 1

beam, then the crosspower spectral matrices of the signal and noise beam
components are defined by

(Q)ij < s.s. >

Ht The superscript denotes the Hermitian transpose of a matrix or a vector.
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and

(R)ij < n.n. >iJ 1 .1

respectively, where < > denotes ensemble averaging and i,j = 1,2,...,M where
NI is the number of (preformed) beams used.

If the signal is a narrowband plane wave (of unity amplitude) then

Q = ss

where

s = vH v(O),

(V)kj e e-2rifr kj

and

vk(O) = e- 2 1ifrk( 0 )

where k=l,2,... ,K and K is the number of receivers.

The time delay Tki is the time delay relative to some arbitrary reference

point, at the k-th receiver of a plane wave from th j-th direction (corres-
ponding to one of the chosen steer directions for the M preformed beams). The
delays Tk(0) are the time delays corresponding to the steering direction, 0,
of the optimally weighted beam.

The signal-to-noise ratio in the derived beam, y, is defined as

HwHQw .
SNR w

w Rw

Array gain is defined by

g -_ (SNR) beam

(SNR) omnidirectional receivers.

2.2 HDerivation

It can readily be shown that the SNR in the derived beam, y, is maximised by
choosing w such that

Qw = wIQw Q w (1)

w tRw

I
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Equation (1) is satisfied if

w sit()
0

where X is any constant. Imposing the constraint of a fixed (ie unity) response
in the steering direction defined by v (O) implies that

w s1 = S
0

This constraint is imposed to ensure that the signal power in the optimum beam
increases as the signal power increases. Consequently equation (2) becomes

gr I H sw -

1 vHv

vlI IM I VHv .(3)

As discussed in Appendix A the case where R is singular and V is of full rank

can also be trealed and an appropriate generalisation of equation (3) is to
replace R- 1 by R , the Moore Penrose pseudoinverse(ref.3) which, in additionto maximising the output SNR also minimises the superdirectivity of the weights.

It directly follows from the generalised version of equation (3) that the
maximum output SNR for a unit amplitude signal is given by

(SNR)max  = sHR+s .

For these optimally weighted beams the expression for array gain reduces to

H +

Y sRs
0 N

0

where N is the omnidirectional noise power at any receiver. (The assumption0

of a homogeneous medium and identical receivers, ie no shading, has been -lade).

Furthermore if R, the beam noise crosspower spectral matrix has been derived
from normalised receiver outputs ie, the noise output of the jth receiver,

n(x), is transformed

n x) nx)
n ( < x) (~x)* >nn.-n.n.

i J J
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then the optimum array gain in the steer direction specified by s is

Y= stR+s.

3. SOME EQUIVALENCES OF THE ARRAY SPACE AN) BEAM SPACE FORMULATIONS

For narrowband signals the conventional beam outputs y,, i=l,2,...M can be

related to the receiver outputs xi, i=l,...,K by the equation

y = VIlx (4)

where V is defined in the previous section. The crosspower spectral matrix of
the Ni beam outputs, Ry, is defined by

(Ry~j =< n!Y)1 (f)n~y ) * ( f ) >

Ry )ii i

for i,j=l, 2 ,...,M and the crosspower spectral matrix of the K receivers is
defined by

(Rx. = <n(x) (f)nx)* (f) >
x ij i .1

for i,j=l,2,...,K where n.x ) and n (y ). are the i-th normalisedt receiver noise
1 i

outputs and j-th beam noise outputs respectively.

Assuming the signal and noise are uncorrelated it follows from equation (4) that

R V It R V.

y x

From reference 1 the optimum weight vector, wo, using receiver outputs is

x Xw0 = - (5)

x

xand the corresponding array gain, go, is given by

= vHxR- Iv (6)

f The use of normalised receiver outputs as defined in the previous section is
simply a convenience which allows simple expressions for the crosspower spectral
matrices and a concise formulation of array gain within beam space.
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From the previous section the optimum weight vector, wy, using beam outputs is

+0

R s
wy = Y (7)

y

where s = V tv. Also the corresponding array gain, gy , is given by

Y = s 1R s (8)
g0 y

Two conditions under which equations (5) and (7) and (6) and (8) become identical

will now be proved.

Case A: K = M and V nonsingular.

Since R is assumed nonsingular it follows that
x

R = R = V- 'It I".
y y x

It then follows that

Y= s HR+s
g0 y

I1 IfV - I V " \r I vltv= v VV" v-''
x

H,
= vHR* v

x

x
=go

Also the optimally weighted beam output is identical to the optimally weighted
array output, ie

vH V+H
wYyHy - Hy

v0v R V Vy

x

OVV - II V 
X
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vil n x
x

v vrx
x

- w x. 
50

lhus for K M and V nonsingular the two techniques are equivalent.

Case B: NI > K and V is of rank K

In this case only K of the M beams formed are independent. For most arrays this
can be satisfied by choosing the M steering directions to be distinct(ref.4).
Since V has K independent rows it follows(ref.3) that

V = V (VV
11Y

and consequently

VV+ V+ II VHt

\s a result it can readily be proved that

R+ = v+ R-i ~v~ tl

+ +

it then follows that

Y = s Rsgo RyS

= vtv V+ gr- V+H V1t vx

x

x
- go

In a similar manner to the previous section the optimally weighted receiver and
beam outputs can also be shown to be identical, ie

w~ll 1 vH V R+ H yo y y

- v VV+R- 'I V+  VHIx

, , , , , , i i i Il I-I Il90
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-v"IT xx x
90

xli
w x

0

These examples imply that if the number of independent beams is greater than or
equal to the number of receivers then in principle it is possible to achieve the
full array space gains using the beam space approach. Furthermore as discussed
in reference 4 choosing the steering directions to be distinct implies linear
independence of the steering vectors. This implies that at any frequency the
full array gains can be achieved by increasing the number of beams used. In
practice the finite precision used in the calculations prevents this and in
Section 5 some examples are given to illustrate this difficulty.

4. PROPERTIES

In this section some general properties of the beam space formulation will be
detailed.

4.1 Gains

The array gains using the beam space formulation ic the gV are always less than0

or equal to those derived from the array space formulation ie go"

The proof follows from Rao(p.48 ref.5):

gx = vH - ' v = max x 11vvH x
0x )GE E I xIl

x R x
x

where L is the vector space of dimension K. Thus for any vector yCE it
K K

follows that

H H
y vv y < gx

yHRx Y 
0

In particular take

+ If
y = VR V v

it then follows that

U+ 11 )
(V V R+ V v) 2

v i R+ VH R VR+ V v
y x y
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From the definition of R and the Moore-Penrose pseudoinverse it follows that
y If + I , x

tile IlS of the inequality reduces to v VR V v and hence go g0 The

conditions for the equality to hold have been investigated in the previous
sect ion.

.1.2 t;ain as a function of' number of input beams

In a previous classified report the author has shown that in array space tile
optimum array gain estimates always increase with the addition of extra
receivers. This is not the case in conventional beamforming where at low
frequencies the addition of extra receivers may, provided the array aperture
is not increased, actually result in a poorer array gain.

\ similar result proved in Appendix II and generalising the previous derivation,
hlJs for the beam space formulation ic, optimum beam space gains in general
increase when additional input beams are used. However the array gains attain
a ::aximium when the number of beams used equals the number of receivers and all
these beams arc independent. As shown in Appendix II when R formed from using

n-l beams becomes singular (or when the rank of R is not increased by the
Y

additional beam) then the optimum beam space gain is no longer increased by the
addit ion of an extra beam.

S. EXAMPIES

il t~i- vct iol, array gain estimates for a conventional beamformer will be denoted
s g and can readily be proved to be given* by

K2
9c = 1

vlR Xv

5.1 ilncorrelatcd receiver noise

In this case the receiver noise covariance matrix is defined by

R I.
X

It trivially follows that

x
gc g0  K

for all directions.

Furthermore go r'duces to

v lV (Viv) +V v

Ihe assumption that the signal lies in the look direction is made henceforth.
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and consequently the optimum beam space gains will, as would be expected,depend on the number of beams used and the steer direction.

(a) Single beam

Using just a single beam steered in a direction corresponding to the
i-th column of V then

II
R = v.v. = Ky i

wherc V. is the i-th column of V.

'Thus

go i

which is just the polar diagram of the array when steered in the i-th
direction. Since only one beam has been used to effect the optimisa-
tion this result is hardly unexpected.

(b) M orthogonal beams (M < K)

In this case

VAIv = K IM  > (VIV)- !  11
M K MI

and hence

g = 1v (0) VV v(O)

M
I v v .! v(O)

j--1

ie the sum of the M polar diagrams.

(c) Gain in beam directions

Let 0 be chosen such that v(O) = v. where v. is some column of V.I 1

Rearranging such that v. is the first column of V it follows thatI

(V I v' vv. = I

1 0

0
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Thus g "

0j
0

- K.

Thus the optimum beam >.pace gains in the M directions determined by the
v.'s, i = 1, 2, ... N' vill be equal to the optimum array space and

conventional array gains.

5.2 Simulation results

To investigate the dependance of the beam space gains on the number of input
Sbeams used the crosspower spectral matrix was simulated for a number of noise
fields and the gains were evaluated. I'he conventional array gain and the
optimum array space gain were also evaluated. An array of two concentric
rings each of 5 receivers (see figure 1) was used for the simulation.

(a) The array gains for a unit receiver noise covariance matrix (corres-
ponding to uncorrelated receiver noise) are plotted in figure 2 where
r/X = 1/8. The number of beams used in deriving the beamspace gains
was varied from 1 to 5; in each case the beams were equispaced from
U to 2 ir. For M=I the polar diagram of the array is apparent. For
M > I a gain of 10 log 10 (see previous section) is obtained whenever
the steering direction coincides with one of the preformed beam
directions. Furthermore at this frequency only 5 beams are needed
to achieve the full array gain of 10 log 10.

The limiting number of beams needed is a function of frequency and are
plotted in figure 3. This limiting number was calculated as the
minimum number of beams used such that the beamspace gains lay within
an average* of 4 dB of the limiting array space gains. For such a
noise field this gives the maximum number of beams that need be used
at any given frequency.

(b) Uncorrclated receiver noise and a single interference

The array gains for the case where the above noise field has also a
10 dB interference at 1800 are plotted in figure 4 where the analysis
parameters are the same as figure 2. The number of beams necessary
to achieve the limiting array gains are plotted as a function of
frequency in figure 3. Comparing the two plots of figurp 3 it can be
seen that the interference requires roughly an additional beam (particu-
larly at very low values of r/X) to be used in order to achieve the full
array gains.

(c) Isotropic noise

For an isotropic noise field the cross-correlation between any two
receivers separated by a distance of d is given by

sin 21d/X

21!d/X

* averaged over the azimuth angles 0-29
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The array gains for the array of figure 1 in such a noise field are
plotted in figure 5 where the number of beams used was varied from
1 to S and r/X = 1/8. The number of beams necessary to achieve
the limiting array gains are plotted as a function of r/ in figure 3.
Apart from very low values of r/X the values are the same as for the

uncorrelated receiver noise case.

(d) Isotropic noise and a single interference

As discussed earlier it is in principle always possible to obtain the
full array ga ins by iuicrca ing the number of' beams used in the
bcamspacc apprch. Ilowever in thi s case it was fouind that as the

nunbcr of' beams increased the I'actorisat iout of thc beam crosspowcr
spectral matrix failed.

A method that was partially successful in overcoming this difficulty
was to perturb the diagonal elements of Ry by a small positive number
(lt 5). This permitted factorisation when r/X > 1/6 and in these
cases the full array gains were achieved using either 9 or 10 beams
depending on frequency. Increasing the perturbation (lIf4 ) permitted
factorisation at most lower values of r/X. However in general, the
limiting beamspace gains (at r/X = 1/8) were significantly lower than
those achieved in the array space and often as the example of figure 6
shows the limits could be achieved using less than 10 beams (eg 5 in
figure 6).

The inference from these results is that all 10 beams are needed at
all frequencies to achieve the maximum gains. At lower frequencies
the ill-conditioning of the matrices limits the gains that can be
achieved in practice. However if uncorrelated receiver noise is also
present (and in practice this certainly will always be the case) then
the limiting gains may be achievable. If -10 dB (re the isotropic
noise power) of uncorrelated receiver noise is added in the above
example then figure 7 is obtained and it can be seen that using 10
beams allows the full array gains to be achieved.

5.3 Application to real data

The methods described have been used to estimate the optimum gains from the
array described in the previous examples when processing sonar data. A
block diagram of the processing is given in figure 8. After narrowband
filtering the data (by means of the FFT) to a 5 lz binwidth, the receiver
crosspower spectral matrix, R., was estimated and normalised at each frequency

of interest. This was factored and the factored matrix was used to estimate
the conventional and optimum array space gains. The factored matrix was also
premultiplied by the matrix (V) of phase delays whose columns corresponded to
the steering directions. From this R was derived (see figure 8), factoredY
and inverted and hence the array gain estimates go were evaluated.

The array gain estimates as a function of azimuthal angle for the array of
figure 1 are shown in figures 9 and 10 for r/) equal 0.125 and 0.42 respectively.
Since one of the outer ring hydrophones was faulty only 9 hydrophones were used
in the analysis. The data also contained random phase errors and this tended
to bias the optimum array gain estimates positively. In both these examples
no problems were encountered in the beam crosspower matrix factorisation
although at other lower values of r/X and also when using arrays with a larger
number of hydrophones on the same data the matrix factorisation failed and the
perturbation technique of the previous section had to be used.

t The matrix factorisation arithmetic was effected in double precision on
single precision inputs on a 4 byte word machine.
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The two examples were chosen to illustrate two different environments; in
the first example (figure 9) the noise field exhibited only a weak azimuthal
dependance whereas in figure 10 the presence of a strong interference at

06-1 implied a strong azimuthal dependance of tile noise field. Both result,
showed an improvement in the beamspace array gain estimates as the nunber of
beams used was increased. When the number of beams equalled the number of
receivers (figure 9) then the full optimum array space gains were achieved in
both cases. Both examples showed distinct dips in the gain estimates when
only a small number of beams were used (eg 3 in figure 9 and 4 in figure 10).
Care should be taken to avoid associating these dips with an azimuthal
variation of the noise field; they are simply a result of using an insufficient
number of beams. Figure 10 differs from figure 9 in that significant improve-
ment over the conventional gains can be achieved by using only a few beams,
eg 4, whereas in figure 9, the gains resulting from using just 3 beams are
often significantly lower than the conventional array gains. This is because
only a single beam pointed ac or near the interfering source is sufficient
to partially null it and hence produce the significant array gains of figure 10.

Two further features are of particular interest in figure 10. The first is
the depth of the null as a function of the number of beams used; this depth
is a good indication of the sensitivity of the technique to receiver errors.
As the number of beams increases the depth of themll decreases indicating
increased sensitivity as the nu;ber of beams used increases. The second
feature also of interest is the distinct dip at 680 in the array gain estimate
for the 6 beam case. It is common to associate such dips in array gain
estimates with interfering targets, however as indicated by both the conventional

0
and optimum array space gains there is no interference at 68 . Thus as
discussed above for the three and four beam case this dip must be a result of
using an insufficient number of beams. This again illustrates the importance
of choosing the number of beams correctly if the array gain estimates are to
be used for the detection of interferences.

0 . SUMMARY

Ihe optimum signal-to-noise ratio processor has been formulated using only narrowband
preformed beam outputs. The relationship of this to the array space formulation
has been investigated, and in priciple the full array space gains can be recovered
from the beamspace formulation provided the number of beams is chosen appropriately.
A number of theoretical properties together with examples illustrating these
properties have been given. Some practical limitations of the beamspace methods
are also illustrated. The method has been applied to sonar data from an array of
hydrophones to verify its viability and demonstrate some of the theoretical
predictions. The results indicate that a trade-off of increased sensitivity
versus more uniform (in an angular sense) array gain estimates must be made. This
problem of choosing the correct number of beams is receiving further attention.

7. ACKNOWLEDGEMENTS

The software was developed from that supplied by Dr A.K. Steele who also contributed
to a number of tetchnical discussions.



I I I iII II iiHE

13 - WSRL-O197-TRI

REFERENCES

No. Author Title

1 Edelblute, D.J., "Criteria for Optimum-Signal-Detection
Fisk, J.M. and Theory for Arrays".
Kinnison, G.L. J. Acous. Soc. Amer. 41, 199, 1967

2 Vural, A.M. "An Overview of Adaptive Array Processing
for Sonar Applications".
IEEE EASCON '75 Record, pp.34A, 34M

3. Albert, A. "Regression and the Moore-Penrose
Pseudoinverse".
Academic Press, New York, 1972

4 Godara, L.C. and "On the Uniqueness and Linear Independence
Cantoni, A. of Steering Vectors in Array Space".

University Newcastle Department of
Electronic Engineering Technical Report

No. EE8011, May 1980

5 Rao, C.R. "Linear Statistical Inference and its
Applications".
J. Wiley 4 Sons, New York, 1965

6. Rao, C.R. and "Generalised Inverse of Matrices and its
Mitra, S.K. Applications".

J. Wiley Sons, New York, 1971



WSRL-0197-TR 14 -

APPENDIX I

DERIVATION OF MAXIMUM SIGNAL-TO-NOISE RATIO
PROCESSOR FOR A SINGULAR BEAM COVARIANCE MATRIX

Let R he a positive definite matrix and define R byx y

R RV (.)y x

where V is an K x NM matrix and M > K.

Since R is a nonsingular it follows thatx

H
u R u = 0 >u= 0. (1.2)x

However from equation (I.1) the rank of R is K and hence there exist (M-K) vectors
u' such that Y

u R u = 0.

Substituting equation (I.1) in the above expression it follows from equation (1.2)
t ha t

Vu = 0.

The general solution to the above equation is(ref.3)

u = (I - V+V):.

where z is arbitrary and V+ is the Mfoore-Penrose pseudoinverse of V.

let s(0) = V 1v(O) be the steering vector, it thus follows that

II ' vH )
s u V v (0) V(I-V+V)z

-0

since VV+V = I

Thus it follows that any vector which completely nulls out the noise power also
nulls out the signal power.

This important conclusion now allows a derivation of the maximum SNR processor for
R singular to be effected. That is the expression for the SNR in a given output

Ybeam ie

*
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II Iw Ss w
(SNR)IaQ lR

can be maximised subject to the constraint of a finite response (say unity) in
the look direction.

This is a formulated equivalently as minimising w R w subject to the constraint
y

s = 1 (1.3)

Solving in the usual way by introducing a Lagrangian multiplier and differentiating
H .with respect to w implies that

R w = Xs
y

Any solution of this equation can be expressed in the form

w = XRs + (I - R )z
y yy

+

where z is arbitrary and R is the pseudoinverse of R
y y

For the case of N! > K but V of full rank it can be shown that (see Section 3)

R+ = V +  - v +H

y x

and consequently that

R+ R V+R+R = V+V

yy

Thus w = XR+s + (I - V+V)z and so
y

sIw =,sXSR s + v11V(I - V+V) xY

= AsIR + s.

y

Choosing X such that equation (1.3) holds then implies that a possible solution for
w is

0

RI +0 s IfR +s
and consequently

(SNR) s I R s.
max
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APPENI)IX II

INCRlASE IN o1PAMUIM ARRAY (;AINS BY 'I'll): AlI)ITI(ON 01 AN IX'i'A INPIJT

Let Rn denote the crosspower spectral matrix formed using n 'normalised' input

channels. These could be either array elements or conventional beams. Let

R be the crosspower spectral matrix formed using the same, n, input channels
n+l

plus an additional channel. It follows that Rn+I can be written in the form:

Rn+ 1 = ( nb

1) [1 d/

where

b. = <X X >tn+1

d = <Xn+ Xn+i >

and the X. 's are the Fourier transforms of the 'normalised' ith channel outputs.1

If u is any 'steering vector' for n input channels then the optimum array gain is

given by

n II +g = u R u0 11

where R+ is the Moore-Penrose pseudoinverse of R . Similarly for the n+l input
n n

channels the array gain is

n+l u)(11.1)

90 (u n a) (u

wlhere a is the complex weight required by the additional channel.

No since Rn+ 1 is positive semidefinite then

R n = A An+l

and A can he partitioned A = (A : a) where A is n x n-l and a is n x 1. Thus

R1n+ I ANi Aa

iA

F-. 4-
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It can easily be verified that theoremt 3.(.3 (p.66 of II~o dlld Mitra) ;1lo hold'
for the pseudoinverse and hence

R ( (A H A)+ +6bhh I 6n+l 6h

where

h = (A11 A)+ A

A a,

and

6 = (a a _ a AA+a -  if a M(A)

= 0 if a e M1(A)

where M(A) denotes the column space spanned by the columns of A.

Thus it follows that the pseudoinverse of R 1 is given by

R+ R + 6R+ bbhI R+ 6R+ b
j+l n n n n

6b HR

Then substituting in equation (11.1) it can be shown that

n+l = uH Rnu + 6(w-a*) (w*-a) (112)

where w = -uH Rnb. Thus provided 6 >, 0 then gn + > uH R +i and so the arrayn 0 ngain is never decreased by the addition of an extra input channel.

Now since R n is non-negative definite it follows that

Uil

R nl =  A n+1

where U is a unitary matrix and A n+1 is a diagonal matrix such that

= (A n+l)ii > 0.

t Two typographical errors occur on p.66 of reference 6, a is an m vector and
a E l(A) should read a I M(A).



WSRI-0197-TR 18 -

It holds that

+ +

R t= l 1 A~ 1n+l n+l

where A +l is diagonal and

+ 
1

A n+l)ii = - i f  i" '

= if X. = o.

Thus R + is non-negative definite and so

H+
x Rn+ x> 0 V x.

n+ 1

t{
Tfaking x = (0, 0, ..., 1) it follows that

(R~ +
n+l n+l, n+l > 0,

ie 6 >0.

Fie case of 5=0 corresponds to the case of where the rank of Rn+ 1 equals that of

1%1 . In this case the array gain is not increased because no additional informa-
-I

tion is contained in R that was contained in R .

If the rank of R n+ is greater than that of R then 6 > 0 and hence, in general,nn

the array gain will increase since w 'v a* for all steering vectors u.

L
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Figure I

rr

Figure 1. 2-ring array of 10 elements
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Figure 2
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Figure 2. Array gains in uncorrelated receiver noise when r/X 1/8
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Figure 3
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Figure 3. Limiting number of beams as a function of r/X
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Figure 4
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Figure 4. Array gains in uncorrelated receiver noise
plus 10 dB interference when r/X = 1/8

K



II

ip,uJr, 5

Conventional
C.] Optimum array space
(D Optimum beam space M=I
A Optimum beam space M=2
+ Optimum beam space M=3
X Optimum beam space M=4

> Optimum beam space M=5

15.0

12.5

10.0

7.5

5.0

2.5-4

0.0 .. .... .

. '. 8. 1 - l. . - . 2D. 2 . 320. 360.
RIIMUTH IDEGI

Figure 5. Array gains in isotropic noise when r/X = 1/8
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- Conventional
EO Optimum array space
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Figure 6. Array gains in isotropic noise plus 10 dB interference when r/A = 1/8

L ,4



WSRL-0197- IR

Figure 7
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Figure 7. Array gains in isotropic noise plus 10 dB interference
plus -10 dB receiver self noise at r/X' 1/8
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Figure 9. Array gain estimates for r/? = 1/8
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Figure 10
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Figure 10. Array gain estimates for r/?A 0.42

IT r



WS1I-0197- IR

DISTRIBUTION

EXTERNAL,
Page No.

In Ilnited Kingdom

I)cfencc S-itntific and Technical I Represcltnat ive', I.ondon No copy

Dr C. Hart, (RN3 I)iv) Royal Aircraft Establishment, Farniborough I

Dr D. Nunn, Department of Electronic Engineering,
Southampton University, Southampton 2

Dr J. Hudson, Department of Electronic Engineering,

Laughborough University, Laughborough 3

British Library Lending Division, Boston Spa, Yorkshire 4

Dr I. Roebuck, Admiralty Underwater Weapons Establishment,
Portland, Dorset 5

Dr D. Stansfield, Admiralty Underwater Weapons Establishment

Portland, Dorset 6

In United States of America

Counsellor, Defence Science, Washington No copy

Dr ). Edelblute, Naval Ocean System Centre, San Diego, Ca. 7

Dr J. Kinnison, Naval Ocean System Centre, San Diego, Ca. 8

National Technical Information Services, Springfield, Va. (0

Engineering Societies Library, New York NY 9

Cambridge Scientific Abstracts, Riverdale Md 10

In Australia

P.of R.G. Keats, Maths Department, University of Newcastlc 11

Dr A. Cantoni, Department of Electronic Engineering,
University of Newcastle 12

Chief Defence Scientist 13

Deputy Chief Defence Scientist 14

Superintendent, Science and Technology Programmes 1s

Director, Joint Intelligence Organisation (DDSTI) 16

Navy Scientific Adviser 17

Superintendent, Central Studies Establishment 18

Superintendent, RAN Research Laboratory 19

Defence Library, Campbell Park 20

Library, Aeronautical Research Laboratories 21

Library, Materials Research Laboratories 22

Defence Information Services Branch (for microfilming) 23

Defence Information Services Branch for:

United Kingdom, Ministry of Defence
Defence Research Information Centre (DRIC) 24

United States, Defense Technical Information Center 25

Canada, Department of National Defence,
Defence Science Information Service 26

i /



WSRI,- 0197- FR

Page No.

New Zealand, Ministry of Defence 27

Australian National Library 28

United Kingdom representative, Canberra 29

United States representative, Canberra 30

Canadian representative, Canberra 31

New Zealand representative, Canberra 32

Director, Industry Development, Regional Office, Adelaide 33

W ITI IN

Chief Superintendent, Weapons Systems Research Laboratory 34

Superintendent, Electronic Warfare Division 35

Senior Principal Research Scientist, Radar 36

Senior Principal Research Scientist, Marine Studies 37

Dr M. Lees, Jindalee Project Group 38

Principal Officer, Underwater Detection Group 39

Principal Officer, Signal and Processing Classification Group 40

Ir 1).R. Sweet, Signal and Processing Classification Group 41

Dr 1. Kewley, Underwater Detection Group 42

Mr A.P. Clarke, Signal and Processing Classification Group 43

Dr A.K. Steele, Signal and Processing Classification Group 44

Dr D.(;. Nichol, Signal and Processing Classification Group 45

Author 46

1RCS Library 47 - 48

Spares 49 - 58

-I '



I)CUMFNT C'ONTROL DJA I A Slll:Ir

seua; in cIlawslitiioii of this paige UNCLASSIFIHD

I f I('UMI-NNMII.RS 2_ 21 SE) IJRIY CIA___ICIJO

AR AR-002-54S a. (omplete Unclassified
Nurnbcr: Documnrt:

ReporTI b. Title in
Number: WSRL0197-TR Isolation: Unclassified

0t her C. skiiio y it)
Numbes: Isoilation: Unclassified

3TTL

BEAM SPACE FORMULATION OF THE MAXIMUM SIGNAL-TO-NOISE RATIO ARRAY PROCESSORj

4 JPE7R.SO NA 1. AU11T HO0R(S): 5 DOCUMENT D)ATE:

D.A. Gray

OF PAGES 29

0.2 NUMBER OF 6

7F7 CORPORATE AUTHOR(S): 8 RFENCE NUMIBERS

Weapons Systems Research Laboratory 
a ak

b. Sponsoring
Agency:

7.2 DOCUMENT SERIES
AND NUMBER q FCOSTUCODF:

Weapons Systems Research Laboratory

0197 -TR

10 FiMPRINT (Publishing, organisation) II COMPUTER PROGJRAM(S)

Defence Research Centre Salisbury

12 REiFLE AS:II MI TATIONS j oft the document):]-

Approved for Public Release

12.0 OVFRSE AS NRT F -1I'IIAj IJJ I ( jj~ II
Security classificatio~n of this page: UNCLASSIFIEDf



S.-unty classification of this page: UNCLASSIFIED 1

13 ANNOUNCEMENT UMITATIONS (of the information on these pages):

No limitation

14 FDUC IPTO151 COSATI CODES]

a. FJCThesaurus Signal to noise ratio

Terms Beams (radiation)
Arrays
Signal processing
Acoustics 2001

b. Non-Thesaurus
Terms Array space

Beam space

l [ LIBRARY LOCATION CODES (for libraries listed in the distribution):

0 SUMMARY OR ABSTRACT:
(it this is security classified, the announcement of this report will be similarly classified)

The maximum signal-to-noise ratio array processor is formulated in beam space.

Expressions for the optimum narrowband weight vectors and array gain are
derived. Some general properties of the beamspace formulation are derived
and conditions for the equivalence of the array and beam space formulations
are proved.

Examples using both simulated and sonar data are given to compare the beam and

array space formulations.._

S4

Se curity classification of this mge: UNCLASSIFIED



ATE

ALMED


