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TILT AND SHIFT MODE STABILITY WITH LINE TYING

I. INTRODUCTION

A spheromak is a compact torus magnetic configuration

whose toroidal and poloidal magnetic fields are produced
1

by plasma currents confined by an external vertical field.

The advantages it shares with other compact torus designs

are compactness and simplicity of design of external coils,

walls and plasma, as well as a natural divertor. A plot

of the flux surfaces of a typical spheromak configuration

is shown in Fig. 1. Note the two classes of field lines,

those on closed flux surfaces and the open field lines,

separated by a surface we call the separatrix.

It has been found that a spheromak can be stable to

internal modes if it is oblate.1'2 Even an oblate spheromak

requires an external conductor to stabilize the free-

boundary modes. The question of how close the conducting

shell must be and what shape it is allowed to take has an

important bearing on spheromak experiments, and on the

viability of proposed spheromak reactor designs. The
3

moving ring field reversed reactor, for example, would

require a cylindrical shell, with the ends of the cylinder

either far away or dbsent altogether. More conventional

reactor designs would allow a shell which almost completely

surrounds the plasma, but would nonetheless place constraints

on how far the shell must be from the fusion plasma.
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In this paper we numerically study wall stabilization

of the external n = 1 magnetohydrodynamic (MHD) modes of the spheromak,

with the effect of line tying due to plasma on the open field

lines. Previous work indicates that the n = 1 modes are

the most difficult of the external ideal ,M4HD modes to

stabilize.4  The n - 1 tilt 5,6 ,7 and radial shift 5 modes

have also been seen in spheromak experiments.

The first studies of MHD stability of spheromaks,

using a nearly spherical equilibrium with V x pt and

constant, are due to Rosenbluth and Bussac. 2  They

found that :.lightly prolate equilibria are unstable to an

internal tilting mode, while slightly oblate equilibria

require a shell of radius R(l-0.2) to stabilize the

external tilting mode, where R is the plasma radius and

E is the ellipticity of the elliptical plasma surface.

Later work by Finn et al.8  and by Bondeson et al. 9 has

shown that in a cylindrical conducting wall with endplates

the internal tilt mode is unstable as long as the ratio

of length to radius exceeds 1.67.

The existence of a q - I surface in the plasma (q

is the usual safety factor) has been shown to be a destabi-
4

lizing factor in oblate plasmas. The equilibria studied

in the present paper have q less than unity at the O-point

and q decreasing toward the plasma edge, so that no such

q - 1 surface exists. Our equilibria are force-free.

V
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Tilting modes have been observed in several experi-

ments to date, notably on the PS-I device at the University

of Maryland5 and on plasmas produced by magnetized coaxial
6 7

plasma guns at Los Alamos and Livermore. On the PS-1

experiment another n = 1 instability has also been observed,

a radial shift mode.5 (This should be distinguished from

the axial shift, which is axisymmetric.)

The study described in this paper extends that of

Rosenbluth and Bussac in considering more general separatrix

shapes and in including two additional physical effects

that turn out to be quite stabilizing. The first effect

is that we consider equilibria whose current goes to zero

smoothly at the separatrix, or even at an inner flux

surface (so that there is a "flux hole"); i.e., u = p(*).

This smoothing of the current profile, which is almost

certainly present in experiments, has an important stabi-

lizing effect. This is plausible because a large part of

the free energy for the free boundary tilt is due to the

magnetic pressure imbalance at the perturbed X-point.

The second physical effect we include is line tying

of the open field lines. That is, we consider the external

region to be filled with conducting plasma (carrying zero

equilibrium current) rather than vacuum. Since there is

a normal component of magnetic field at the conducting

walls (see Fig. 1), this effect is stabilizing. Note that

4



this configuration avoids a serious problem of conventional

line-tied systems, that impurities can flow into the hot

plasma from the metal wall. Although the closed field

lines on which the equilibrium current flows are not them-

selves line-tied, we find that line tying of the open field

lines greatly improves stability to n = 1 modes.

Recently, other groups have also performed stability

computations on the tilt and radial shift modes.1 0 '1 1 The

equilibrium models permitted a flux hole but did not permit

finite current arbitrarily close to the separatrix. But

the most important difference between this work and the

work we present in this paper is our inclusion of the

stabilizing effect of line tying of the open field lines.

Our results without line tying (i.e., with a vacuum

exterior) are consistent with the results of Refs. 10 and 11.

(Exact comparison is difficult due to differences in pro-

files and wall shapes.) However, we find that the equi-

libria are considerably more stable with line tying. For

example, one of our equilibria optimized for tilt and shift

modes is marginally stable without line tying when the wall

radius is 1.4 times the separatrix radius and the spacing

between the axial walls is 1.1 times the separatrix length.

With line tying, the last figure is 1.5.

In Section II we describe the equilibrium model,

in particular the profiles and boundary conditions used.

Li<I



In Section III we describe modified linear magneto-

hydrodynamic equations for force free plasmas and the time

dependent code FFMHD that we use to integrate these equa-

tions of motion. We describe the special properties of

the modified magnetohydrodynamic equations that make them

particularly suitable to a system, such as the spheromak,

that has magnetic neutral points (the X points on the

symmetry axis). We also describe how the exterior region

may be conveniently treated as a perfectly conducting

plasma or a vacuum in this framework.

In Section IV we discuss the physical properties of

the tilt and radial shift modes; in particular we show

results from FFMHD pertaining to the stabilizing effect

on the tilt mode of smoothing the current near the

separatrix.

In Section V we describe in detail results obtained

using FFMHD on the effect of elongation of the separatrix

on the tilt and shift modes. There is an optimum elonga-

tion (separatrix half length to radius ratio), equal to

about 0.6, nearly independent of other parameters. The

optimum elongation without line tying is approximately

the same, but the walls must be much closer to achieve

stability. We also present marginal stability results in

which we vary the elongation of the cylindrical wall. We

find that line tying allows the axial wall to be removed

6



to a large distance, as required by the moving ring reactor

scheme. We conclude that line tying in the radial wall is

particularly stabilizing.

7
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II. EQUILIBRIUM MODEL

Since the instabilities under consideration are current

driven, we restrict our attention to force free equilibria,

i.e., those equilibria having j = j;B. However, we generalize

the equilibria considered in Refs. 2, 8, and 9 by not requiring

u to be a constant in the plasma and by not requiring the

separatrix to be nearly spherical. Instead, we keep only the

obvious requirements that vi be constant on flux surfaces and

go to zero continuously as the separatrix is approached from

the inside.

From the general axisymmetric representation in cylindrical

coordinates (r, 8, z)

B = 7V x 78 + g( )Ve (1)

we conclude

j =V x B

*- A,.Ve + g'( )7,) x ve , (2)

where primes denote differentiation with respect to

p = rA, the poloidal flux, and A*' = r2 V.(r-2 71). The

requirement - u() B gives

( = g (y), (3a)

P= - g(,,) g,(:) (3b)

8
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The last equation is a specialization of the Grad-Shafranov

equation to force free fields. We choose - where

h <0 is the magnitude of the flux hole,

= [ /- ) for ;10, (4a)

=0 for :>0, (4b)

where ' 0<0 is the minimum of , which occurs at the

magnetic axis or 0-point; this model gives

aBo0 _ for :<0, (5a)

2 2]0 (/.0 )  + I2

=0 for >0. (Sb)

The boundary conditions are -,,/-z = 0 at z = 0 (reflection

symmetry), ' = 0 at r = 0 (from - = rA) and the value of

'p as a function of z at r = a (the radial wall), and as a

function of r at z = L (the endplate). The separatrix is

given by 1w = 0. From (5) we see that the equilibrium

current is zero on the open field lines ('p > 0), that u

is nearly constant near P = p0 and that u is linear in

near the flux hole [<h - 5])/.0 1 < 5]. Notice that if

5 = 0, 'Vh = 0, the poloidal current is discontinuous at

the separatrix. The specification of g as a function of

the ratio /'p0 as in (4) provides convergence of the itera-

tive scheme used to solve (3b). See Ref. 12.

9
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One set of boundary conditions at r a and z - L,

expressed in terms of dimensionless variables 4 - ;/(SBoa2

where B0 is a reference field, is

= r2 (1-.6E)r03 - (r2 + z2)-3/2

+ E(42
2 _ 0 -5 425r 2 (r2 2-7/21!.

0  0

For IEI<<l, these boundary conditions, for 0, give the

nearly spherical constant w equilibria of Rosenbluth and
2 2

Bussac, with plasma surface given by r = r0 (1 + P-'cos . ,

-l
where X = tan (r/z). Equilibria with ; > 0 are prolate,

and those with E < 0 are oblate. Another set of boundary

conditions that we use is

= C1r 2(1 + C2z ). (7)

For this set of boundary conditions, equilibria with small

C1 have a separatrix which is near the wall. In fact, for

C1 = = 0, the equilibria are those obtained analytically

by Finn, Manheimer and Ott 8  and by Pindeson et al.9  For

C1 > 0, the parameter C2 controls the oblateness of the

equilibrium by specifying the amount of flux passing

through the radial wall r = a between z - 0 and z = L.

The flux surfaces - = const. of a typical equilibrium

are shown in Fig. 1. Notice that the separatrix (separating

10



open field lines and those on closed flux surfaces) intersects

the z-axis at magnetic neutral points, which we call X- ,ints,

one on each side of the plane of symetry a - 0.

Our model (4) produces plasmas with fairly flat

toroidal current profile. We observe that for all plasaas

oblate enough to be stable to the internal tilting mode,

the safety factor q is le i than unity throughout the plasto.

Therefore, for n 1 modes no mode rational surfaces exist

in the plasma. Furthermore, we do not expect that adding

pressure with a fairly flat profile to a plasaa with fixed

separatrix will cause the safety factor j to ;o above 4nity.

11



III. MODIFIED MAGNETOHYDRODYNAMIC EQUATIONS

In this section we describe the modified magneto-

hydrodynamic equations of motion which are integrated in

time by the numerical code FFNIHD until the most unstable

mode dominates. For more detail on the code, see Appendix

A. The equation of motion for a force free equilibrium

and ideal Ohm's law are

B " B, (a)

" + a O, (8b

where is the Eulerian plasma displacement, is the

density and dots denote derivation with respect to time.

From (8) and Max-* 1l's equations, we conclude that the

perturbed fields can be represented by a perturbed vector

potential -A B a and zero scalar potential. From (a),

therefore, we find

%A 2 ..L)_ .B.a (9)

where j. represents components perpendicular to the unper-

turbed field B. This is the basic equation of motion for

the plasma which is inteqrated in time by the numerical

code FFMHD. The Taylor stability 1 3 of equilibria with

uniform was computed in Ref. 8 by integrating (9) without

4 S



the operation denoted by i: it was shown that Taylor

stability of such equilibria is equivalent to ideal mag-

netohydrodynamic stability if no mode rational surfaces

exist in the plasma.
8

Because of the toroidal symmetry of the equilibrium

(1/) - 0), the cylindrical components of c or of A may

be assumed to behave as exp(ine), where n is called the

toroidal mode number.

For external or free boundary modes, integrating

(9) to obtain A rather than (8a) to obtain the displace-

ment Z has a further advantage over those mentioned in

Ref. 8 (for internal mo'es). As discussed in Ref. 2, a

slightly oblate equilibrium can be unstable to tilting

because the internal tilt motion is nearly marginally

stable, and this motion produces a magnetic pressure

imba'ance across the perturbed X-points. This additional

source of free energy drives the instability. Therefore,

we might expect fairly singular behavior of near the

X-points, since Z should be large in that vicinity, but

must be zero on the Z-axis. (The latter property, which

must hold for every vector with toroidal mode number

n > 1, is discussed further in Appendix A.) The displace-

ment plots shown in Fig. 2 show that this singular behavior

is indeed found, and therefore that numerical problems

would almost certainly be encountered in attempting to

13
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integrate (Sa). On the other hand, A is well behaved

near the X-points, and no such numerical problems are

observed in integrating (9). This property and the fact

that no mode rational surfaces exist in the plasma allows

us to use a simple cylindrical (r,z) grid rather than one

matched to the flux surfaces of the equilibrium.

We have two optional ways of treating the exterior

region of open field lines. The first, called the line

tying option, is to treat the region as a perfectly con-

ducting plasma carrying no equilibrium current. That is,

since u(w) is zero on the open field lines [c.f. equation

(5,], w, merely integrate (9) over the whole region without

regard to tho location of the separatrix. The boundary

conditions t x 6E - 0, f t - 0 at the conducting impene-

trable wall, together with the fact that ft • B is not zero

imply = 0 at the wall; this with the condition B - 6A - 0

yields the boundary condition on the vector potential

IA = 0. Using this boundary condition it is easy to see

that (9) has the usual energy principle, namely that the

normal modes are extrema of

2w SW/T , (10)

where

6W - 1 6B2 wA-2()5A d3x (11a)

T - 1f i)/B 2)SA 2 d 3x (11b)

15



and where 6A satisfies the constraint B • 6A - 0. Using

the toroidal symmetry of the equilibrium, we can write the

toroidal dependence explicitly, i.e., SA k 4 Ar cos ne

SAi sin nO, cB = 6Br cos ne - 6Bi sin nO. Using these real

variables in (10), (11) is equivalent to using the complex

variables 6A = (5Ar + i6A 1)exp(inf), 68 = ( Br + i6B I

exp(in6) with (10) but with

6W = 14r6BI 2 - p) Re (6A - 6B*)ld 3X ,(12a)

T = 1f(/B 2)ISAI 2 d3 x

and B - SA = 0.

The exterior plasma model includes the important

stabilizing effect of line-tying of the open field lines.

One way to see that this is a stabilizing influence is to

note that having conducting plasma in the exterior region

requires that the ideal magnetohydrodynamic flux constraint

!B = 7 x ( x B) or 6E1 = 0 holds throughout the region,

while this is not the case if the exterior region is

vacuum. Also recall that the boundary condition SAt =

together with (Sa) and = iB implies that the total plasma

displacement E is zero at tre wall. (If the wall is a

flux surface, only the normal component of must be zero.)

As we shall discuss further, the "oundary conditions when

the conducting wall surrounds a vacuum are A x 6A - 0,

16
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regardless of whether a normal component of the equilibrium

field exists. In Appendix B we establish more rigorously

the stabilizing effect of line tying.

Various different normalizations, i.e., models for

the density P(r,z) are possible. The choice affects growth

rates but not, of course, marginal stability. The simplest

such model has P = const. Another model which is ver,

useful has B2/0 v2 = const. (the Alfvdn speed). Whereas

this model has the unphysical effect of allowing equilibrium

density variations along the field lines, it has the advan-

tage of producing growth rates of the order of three times

those of the constant density model. This advantage is

due to the fact that the density goes to zero at the X-

points, where a large destabilizing contribution occurs.

Any model having p = p(*) and with small density near the

X-points would have a very large Alfven speed vA near the

separatrix and would therefore have a very stringent

Courant condition. For more details see Appendix A. Of

course, the unphysical nature of the second model has no

effect on the marginal stability computations. We expect

that the growth rates for a system whose density decreases

monotonically to a finite value at the separatrix would be

bounded by the growth rates of our two extreme models.

17
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The alternative model for the exterior region is a

vacuum. The usual energy principle treatment 14 of the vacuum

is to minimize the vacuum contribution to SW,

6W = f(V x 6A) 2 d3 x, (13)

that is satisfy V x 7 x 5A = 0, subject to the boundary

conditions R • B = - ft x 5A at the plasma-vacuum inter-

face and ft x 6A = 0 at the conducting wall. Then, stability

is determined by minimizing

2 = 6W/T, (14)

where 6W consists of the plasma contribution (Ila) plus

3W and where T is still given by (llb) or fC 2d3 x. Our

method, using the time dependent code FFMHD, is to inte-

grate (9) on the closed flux surfaces and, on the open

field lines, to integrate

06A =- B2 [1 - exp(-p )6qo ,] , (15)

where p is an adjustable parameter and fl denotes components

parallel to B. Clearly the total differential equation (9),

(15) is continuous across the separatrix W = 0. Far from

the separatrix, specifically when the exponential factor

in (15) is negligible, (15) reduces to the form of the

equation of motion without the constraint B 6A - 0. We

is!



generally pick p large so that there is only a very small

region immediately outside the separatrix where the expo-

nential factor in (15) is nonnegligible. There are cases,

in fact, in which p can be so large that the exponential

factor is negligible at every grid point in the exterior

region. However, occasionally it is necessary to use a more

moderate value of p to avoid numerical instabilities.

Taking the exponential factor in (15) to be zero,

we easily see that equations (9), (15) have an energy

principle represented by w 2 = 6W/T', where W consists

of the same plasma and vacuum terms as in (14) but where

T- =f(/B 2)6A 2 d'x + f(o/B2) 6A2 d'x. (16)

p v

Here, the notation serves to emphasize the fact that

B • jA = 0 ir ;ide the plasma, but that no such constraint

exists in the vacuum. In Appendix B we show that the condi-

tion that A x 5A be continuous across the separatrix (equiv-

alent to f t B - - x 6A) is indeed satisfied by (9),

(15) even when exp(-p4) is taken to be zero. The density

o in the vacuum is, of course, fictitious; however SW con-

sists of the same two terms as the conventional energy

principle and therefore predicts marginal stability correctly.

In principle, this fictitious density could be made small

in order to compute actual growth rates, but the resulting

1O
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large Alfv~n speed would produce a very stringent Courant

condition.

There are two other features of the code FFMHD worth

discussing. The first is that we generally add an addi-

tional term p 6A to the right hand side of the equations0 \
of mot>on (9) in the case of plasma exterior and (9), (15)

in the case of vacuum exterior. Thiq modification speeds

up convergence, i.e., the evolution to a pure normal mode,

if only one unstable mode exists. In this case the optimum

value of y0 is t21, where x2 is the frequency of the

sccond normal mode, the mode with the second largest
2

eigenvalue -w . If two unstable normal modes exist, or if

the second mode has w x, 0, this additional term does not

help. Indeed, we have observed that when a q = 1 surface

exists in the plasma, where q is the usual safety factor,

the convergence rate to n = 1 instabilities 's not aided

by having finite y0 ' presumably because continuum eigen-

functions with w2 % 0 exist. However, throughout this paper

we deal with short (oblate) plasmas where q < 1 throughout

the plasma. In addition, in cases for which no unstable

normal mode exists, using y0 enables us to compute the
2

normal mode with smallest 2

The other noteworthy feature of the code is that we

compute growth rates, for the purpose of extrapolation to

marginal stability, by (10) rather than merely observing the



exponential growth rate directly after a pure mode is

obtained. We call the former growth rate y n and the latter

t" That is, our code is essentially an energy principle

code where the optimum trial function is obtained by inte-

grating the modified equations of motion. Our expectation

that the growth rates y n computed by this method will be

more accurate is based on Rayleigh's principle, namely that

the error in the eigenvalue computed by a variational prin-

ciple is of the order of the square of the error (e.g.,

grid errors) in the eigenfunction. On the other hand, the

growth rate yt observed directly in the code should have

errors of the same order as the eigenfunction. We have

performed convergence tests with increasingly finer grids

in r,z and we have always found that " n is more accurate.

For more detail see Appendix A.

Computing growth rates y n by (10) also allows us to

run for shorter times, since a first order error in

the eigenfunction due to incomplete convergence to the

most unstable normal mode leads only to second order errors

in the growth rate. This property also holds for yt if

the growth rate is computed by observing the e-folding

rate of T (llb), because of orthogonality. This property

does not hold for any other quadratic form. However, the

errors in this method of computing the growth rate become

amplified near marginal stability if y0 is finite. It is

21



easily shown that the error in yt relative to Y0 becomes

first order in the error in the eigenfunction near marginal

stability. The error in yt relative to Yt itself is, of

course, even larger.

22
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IV. TILT AND SHIFT MODES

In this section we present numerical studies of the

stability of free boundary n = 1 modes with line tying on

the open field lines. We restrict this study to oblate

equilibria because prolate equilibria are unstable to

internal tilt modes. For the equilibria we consider (4),

the safety factor q is below unity throughout the plasma,

and therefore the rather singular behavior near the q = 1

surface typical of internal kink modes 4'9 does not occur.

As we have discussed in a different context i. Sec.

III, a free boundary tilt motion may be unstable with walls

fairly close to the plasma because the nearly marginal internal

tilt motion produces a magnetic pressure imbalance across

the perturbed X-points. A modification of the displacement

r to take advantage of this free energy ran provide SW<O,
2

i.e., instability. In fact, the method of Rosenbluth

2
and Bussac of computing stability of equilibria with

uniform ' is based on computing this magnetic pressure

imbalance. However, their method does not generalize to

w(1) in any obvious way.

The poloidal displacement p = rk + z of a tilt

mode in a typical equilibrium is shown in Figure 2. (The

displacement is computed from the growing solution 6A of

(9) by = B x 6A/B 2.) Notice that the imaginary part of

,, i.e., the sin e Fourier component is indeed a nearly

23



rigid rotation together with an inward motion at the

rotated X-point. The real part, i.e., the cos e component,

is a nearly rigid radial shift.

Our general procedure for studying stability for a

given equilibrium is to fix the position of the radial wall

r = rw and perform several stability runs with the axial

wall z = z successively closer. We then extrapolate tow
2 2

marginal stability. The square of the growth rate y = -w
n

from (10) is usually quite linear near marginal stability.

Typical growth rates found for tilting modes with

normalization v2 = B2/P = const. have yL/vA % 1. For B

2 kg, n '\, 1014 and L ^- 50 cm, as in the Los Alamos experiment,

we find y %' 106 sec - I . s we have discussed earlier, with

the P = const. normalization, this is lower by a factor of

order 3.

Constant p equilibria of Ref. 2, i.e., with (4),

6 = 0 h = 0, with boundary conditions (6) with e < 0

required a tight fitting shell. For example for = -0.4,

with the radial wall nearly touching the separatrix at the

midplane rw = rs , marginal stability occurs when the axial

wall nearly touches the separatrix at the X-point, i.e.,

zw = zs . This is in qualitative agreement with the results

of Ref. 2, namely that a spherical wall must be at

(r2 + z2) = rs (1 + .21zl ) for marginal stability. Of

course, qualitative agreement is all we expect since our

24



wall is cylindrical rather than spherical and since c - -0.4

is not small enough in absolute value for the treatment of

Ref. 2 to be accurate.

In Figure 3 we show zw, the position of the axial wall

required for stability as a function of , the parameter of

(4), (5) that determines the smoothing of the poloidal current

(which is discontinuous if 6 = 0) near the separatrix. The

radial wall was nearly touching the separatrix, rWr. = 1.01.

The stability, as measured by zw , improves dramatically with

5. Notice that the point zs where the separatrix intersects

the z-axis (at the X-points) decreases with ., because the

total current decreases. This stabilization due to smoothing

the current in the neighborhood of the separatrix is plausible,

because the destabilizing force, namely the pressure imbalance

at the X-points, is localized near the separatrix.

In Figure 4 we show the axial wall position zw requirad

for stability, for rW/r = 1.01 and = 0.15, as a function of

the elongation parameter of (6). Note that there is a

dramatic improvement with oblateness that begins around

-7 = -. 15. Improvement for large - is reasonable, since

the results of Ref. 8 show that the energy of the n = 1

internally tilted equilibrium continues to rise relative

to the axisymmetric state as the plasma length decreases,

until extremely short plasmas are obtained. It is worth

mentioning here that there are no instances in which z
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must be less than z, i.e., the axial wall intersecting the

separatrix, to stabilize external tilting modes, even though

having zw slightly less than zs would still leave quite a

large exterior region. his is probably due to the fact

that the displacement of the boundary is large in a neighbor-

hood of the X-point on the z-z is This feature is illus-

trated in Figure 4, where zw = z is required for marginal5

stability over a fairly large range of E, -0."5 < E < 0,

even though z is decreasing with :Ej.
5

The results shown in Figures 3 and 4 illustrate well

the stabilizing influence of current smoothing and oblate-

ness. However, we should emphasize that the radial wall

was touching the separatrix, that the separatrix had only

modest oblateness, and that line tying was present, i.e.,

the exterior region was plasma. In the next section we

present studies of stability of the tilt mode with walls

further removed with and without line tying.

When our equilibria are made more oblate (i.e.,

larger IzI) than those shown in Figure 4, a new instability,
15

the radial shift mode, appears. From Figure 5, we see

that the real part (i.e., cos 0 Fourier component) of the

poloidal displacement r is roughly a rigid radial shift

of the plasma. The imaginary part of (the sin 6 com-

ponent) is again tilt-like. One way to understand the

appearance of this instability for more oblate plasmas is
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FP*. 4 - Position of axial wall rquird for stability to tilt and
aparatrix position as a function of oblateness parameter e;
a 0.15.
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Fig. 5 -Poloial displacement ,~for a shift eigenmode. The real (cos 0)
component shown in (a) shows again the effect of magnetic pressure imbul-
ance neor the perturbed X-polnts. The imaginary (mink 9) component shown
in (b is somewhat tilt-like.
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to note that oblate plasmas are produced from boundary

conditions (6) or (7) by increasing the amount of (negative)

flux passing through the radial wall, i.e., by increasing

2 2.; /z at r = a. This is achieved by decreasing E in (6)

or by-increasing c2 in (7). Thus, for 32 /3Z2 > 0, the

Grad-Shafranov equation (3b) with g(;y) = 0 implies

r 3/3r[(l/r) ;/3r]< 0 or 3Bz/3r < 0, that is that the field

index is negative. On this basis, we might expect a radial

instability like the radial precession mode in Astron type

16geometries. The simplest model for this instability

applies to a rigid ring of current so weak that its self

forces are negligible. For this model instability occurs

if B z(Ne) 2/4'Mc I + v < 0, where Ne is the total charge of

the current carrying species, M is the total ring mass, I

is the current carried by the ring and v = rB'/B is the

(external) field index. (The first term in this inequality

is in essence a finite Larmor radius effect and may be

neglected if the Larmor radius is small or if dissipation
16

is present. 1

A related approach to understanding the shift insta-

bility is to note that very oblate equilibria are confined

radially by strong magnetic fields away from the midplane

z = 0 but by rather weak fields near the midplane, so that

even a stable rigid shift motion may have a weak restoring

force, i.e., be nearly marginally stable. However, such a
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shift produces magnetic pressure imbalance at the perturbed

X-points, which can be strong enough to destabilize the mode.

This mechanism is closely related to the mechanism by which
2

the external. tilt in oblate plasmas is destabilized. The

inward displacement in response to this pressure imbalana

is clearly evident in Figure 5.
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V. OPTIMUM PARA-METERS FOR STABILITY

In this section we present results of a systematic

search for optimum parameters for stability to both the

tilt and the shift mode. We have performed these studies

using both models for the exterior region, namely plasma

exterior (i.e., with line tying) and vacuum exterior.

In Section IV we studied the behavior as a function

of 6, the current smoothing parameter, and found that

stability as measured by the position of the axial wall

required for marginal stability, improved monotonically

with 6. For ph = 0, this behavior has a plateau at about

5 = .25.

In Figure 6 we show the axial wall position required

for marginal stability as a functionof separatrix shape withPh= 0

for 6 = .15 and 6 = .25. On the vertical axis is the ratio

z/z s , where zw is the position of the axial wall and zs

is the position of the X-point, where the separatrix inter-

sects the z-axis. On the horizontal axis is the shape

parameter, the ratio of half length to radius z s/r s (=1

for a spherical separatrix). Both sets of runs were done

with line tying and with the position of the radial wall

relative to the radial position of the separatrix r w/r s

fixed at 1.25. Note that in both cases stability is

optimal for zs/r % 0 .6. The equilibrium with 6 = .25 is

clearly more stable than that with S = .15. We have also
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done a set of runs with 6 = .35, and have found that the

marginal stability points with line tying lie very close

to the 6 = .25 plot shown in Figure 6.

Figure 7 shows the stability for h = 0, and 6 = .25

both with and without iine tying. The plot with line tying

is just the same as the 6 = .25 curve shown in Figure 6.

Without line tying, stability is again optimal at roughly

z s/rs = 0.6. Clearly, line tying greatly improves the

stability. In this case, with our fixed radial wall, the

axial wall is permitted to be about nine times further from

the separatrix with line tying than without.

For Figure 8 we have taken the equilibrium corre-

sponding to optimal stability with line tying in Figure 7

(r0 = .99999 and E = -8.2 in equation 6), and have deter-

mined the radial wall position required for marginal

stability as a function of the axial wall position. Note

again that line tying greatly improves the stability.

These results indicate that, in the presence of line tying,

the radial wall alone may be sufficient to stabilize the

n = 1 modes. Our code does not, of course, allow us to

verify this directly, because we require a finite number

of axial grid points. In any case, it is clear that line

tying does allow us to remove the axial wall to a large

3
distance, as required by the moving-ring reactor scheme.
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Fig. 7 - Axial position of the wall required for stability as a function of
elongation with and without line tying; ' h 0 0, e = 0.25, and rw /r = 1.25.
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The results shown in Figure 8 show clearly that when the

axial wall is removed to a large distance, line tying in

the radial wall is responsible for stability.

Finally, we have looked at the effect on stability

of a flux hole. Our results with current smoothing near

the separatrix suggest that the introduction of a flux

hole should be stabilizing, and we find that that is indeed

the case. Again, our results make sense if we recall that

the displacement near the X-point plays an important role

in destabilizing both the tilt and the shift mode.

Figure 9 shows axial wall position required for

marginal stability plotted against separatrix shape, with

Wh = .2, 6 = .05, and rW/r s = 1.4. The optimally shaped

equilibrium is somewhat more stable than in Figure 8, where

p h + 5 has the same value but i h = 0. Now, because the sur-

face of our current carrying equilibrium plasma lies some-

what inside the separatrix, the wall is actually somewhat

further away from the plasma than indicated by our plot.

This can be seen in Figure 1, which shows the equilibrium

corresponding to optimal stability with line tying in

Figure 9 (C1  0.25 and C2 = 6.0 in equation 7). Equilib-

rium currents flow only in the shaded region, with the

dashed lines showing the position of the walls at marginal

stability. Once again, line tying greatly improves the

stability. The results of our runs for these equilibria
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Fig. 8 - Axial position of wall vs. radial position at marginal stability, both
scaled to the relevant separatrix dimension; 6 = 0.25, e = -8.2 (z./r. 0.50).
Results are shown with and without line tying of the open &iWl lines.
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Fig. 9 - Axial wall position required for stability as a function of elongation
with and without line tying; ~h = 0.2, 6 0.05, and rw /rs 1.4.
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without line tying are consistent with the results obtained

by others for similar equilibria. 0 ,11, 15  (For comparison

with the results of other authors, we caution that the wall

radius is sometimes expressed as the distance of the wall

to the plasma, 'h = h' relative to the minor plasma radius.

In this normalization, the radial wall of Figure 9 is a

distance of approximately 1.2 from the plasma, and the

maximum distance of the axial wall without line tying is

about .8.)

Note that in Figure 8, with r w/r s = 1.4, the marginal

position of the axial wall for the equilibrium without a

flux hole is given by zW/z s s 1.2. Comparing with Figure 9,

we see that the flux hole allows us to move the walls

further from the separatrix, this despite the fact that

the surface of the current distribution has moved inside

the separatrix.
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VI. SUMMARY

Our tool for studying the st ibility of force free

spheromak equilibria to the current driven tilt and radial

shift modes is the time dependent magnetohydrodynamic code

FFMHD. This code integrates the perturbed vector potential

SA(= x B) in time rather than the displacement . For

this reason it is well suited to the treatment tilt and

radial shift modes, whose displacement can be singular at the

magnetic neutral points (X-points) on the axis of symmetry.

The external region may either be treated as a vacuum or

as a conducting plasma with zero equilibrium current.

Equilibria treated by the latter model are generally more

stable due to line tying of the open field lines.

We find that nearly spherical "Taylor equilibria,"

having V x B = I4B with u uniform require a tightly fitting

cylindrical wall for stability, even with line tying. For

equilibria whose current goes to zero more smoothly near the

separatrix, and with a conducting plasma in the exterior

region, the walls may be removed a considerable distance.

The optimum plasma shape for stability to both the

tilt and the radial shift modes has ratio of half length

to radius 0.6, nearly independent of other equilibrium

parameters. With line tying on the open field lines, the

radial and axial walls can be removed from the plasma by at

least 50 percent, relative to the total radius and length

40
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of the separatrix. The axial wall may be removed to at

least several times the plasma length with the radial wall

at a distance of over 1.2 times the plasma radius. These

results are summarized in Figure 8. With vacuum on the

open field lines, the optimum shape is about the same, but

the walls must be considerably closer.
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APPENDIX A: NUMERICAL CODE

The numerical code FFMHD integrates (9) throughout

the region enclosed by the walls or (9), (15), depending

upon whether the exterior is modeled by a conducting

plasma or a vacuum (possibly with a small matching region).

The finite difference equations used are based upon the

simplest central differences for derivatives with respect

to t, r, and z. Errors are of order At 2 , r 2 , Az2 . The

Courant condition which one might expect for such a scheme,

2 2when B /0 = vA = const., is At < min (Ar, Az)/v . Empirically,

we find that a slightly smaller time step is required for

numberical stability. For the alternate normalization

P = const., the required time step is about 20 percent

smaller (where vA now represents the maximum Alfv4n speed).

As discussed in Section III, we expect that a model with

low density in the exterior region [in order to obtain

correct growth rates with (16)] would require extremely

short time steps.

The boundary conditions on the perturbed vector

potential 6A at the conducting walls have been discussed

in Section III. Boundary conditions are also required on

the symmetry axis r = 0 because of the coordinate

singularity.
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d.

We describe the boundary conditions at r - 0 for

each toroidal mode number n separately. Assuming the

components SAx , 6Ay, c6A to be analytic in x, y, z, i.e.,

expanding for fixed z

5A = A + Bx + Cy +x

A =D+Ex + Fy + " (Al)Ay

6A z = H + Ix + Jy + "'',

we find

1
Ar = !(B + F)r + A cos 6 + D sin 6

r 2

+ 2-(B - F)r cos 26 + !(C + E)r sin 2e + ... ,

1
5A = !(E - C)r + D cos 6 - A sin e (A2)

1 1
+ !(E + C)r cos 26 + !(F-B)r sin 29 + ... ,

SA = H + I r cos 6 + J r sin e + ....
z

As in Section III, we write !A = Re[(5Ar - i6Ai)exp (in6)]

6Ar cos n 8 - 6A sin n 9. For n = 0 we conclude
A = D = 0 and therefore ;Ar = xAr = 0. (Imaginary parts

r

are automatically zero.) Also, since the neglected terms

of 6A are O(r 2), we have (3/3r)5A r = 0.
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For n - 1, we find B + F = B - F - 0, C + E - C - E -

0, so that ()/.)r)5Ar = ( /ar) 6Ae = 0 for real and imaginary

patsan Ar =5 i Ai .- 6 We also find 6A r .- A 0.parts and 5A ., rA -

2rA 6 - rs r z nd
For n = 2 we find SA r  6A I, r as r - 0 and 6A zA r

as r * 0. It is easy to see that for n >_ 2 this generalizes

to 6A r rn - 1 6Az ,ern, % rn.

The conditions for n = 0 are easily implemented in

the code. Similarly, for n > 2, it is adequate to set all

three components of SA equal to zero at r = 0. For n = 1

the issue is complicated by the fact that the conditions

given overdetermine 6A and A at r = 0, and implementing

any subset of these conditions leads to numerical instability.

We were able to overcome these difficulties by setting .A rr

and 6A1 both equal to the average of the values of 3Ar andr

A obtained by using the conditions ()/ r)SA r = (3/;r):A 1 0.
i r

The analogous procedure was used for .A and 5Ar.r
When the code is run with the option that initial

conditions are generated in the code, we insure that the

initial conditions obey the boundary conditions at r = 0

as well as those at the conducting wall. (The other option,

which speeds up convergence to the most unstable mode, is

to input the vector potential from a previous run.)

The typical grid we use to integrate the finite

difference form of (9) or (9),(15) has 40 or 50 points

radially and 100 points axially. We have performed
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convergence tests on finer grids (up to 70 x 170) and con-

clude that the relative grid error in (n = (-6W/T) is

less than three percent. In the same set of runs the

improvement in the accuract of yt (see Section III) was

much more pronounced. In the transient phase, i.e., for

short times, energy is conserved in the code to within a

few percent (the change in total energy relative to the

change in kinetic energy) for a 40 x 100 grid and to with-

in a fraction of a percent for a 70 x 170 grid. By the

time an unstable normal mode has evolved, energy conser-

vation is worse. We trace this behavior to singular

behavior near the X-points. However, in no cases that we

have tested does this reflect itself in poor accuracy for

Yn"
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APPENDIX B: EXTERIOR REGION MODELS

Our purpose here is to explain in more detail various

properties of our modified magnetohydrodynamic equations

in the exterior region. Specifically, we prove that normal

modes of (9),(15) have continuous tangential components of

iA, and that the model with plasma exterior is more stable

than the one with vacuum exterior because of line tying.

We first prove that regular (i.e., bounded) normal

modes of the system with a vacuum exterior described by

(9),(15) have continuous tangential components R x 6A at

the separatrix, even when the exponential factor in (15)

is zero. We identify three components of the perturbed

vector potential at the separatrix !A ;At,, and SA

These are, respectively, the normal component, the tangen-

tial component parallel to B, and the tangential component

perpendicular to B. We also split the curl operator into

tangential and normal components, so that SB = V x 6A =

6~n + .Bt, where 6n Vt x 6At, and SBt = Vt x SA +

iSB'+'+where whereS

n x .At. We also find 6j = 7 x SB = 5 + t
wher

ij J X 17 X tA + 7 x 7 x 5A and it= 7 x x !A +lun t t n t n INt % t t " t

n x 7 x 6A + V x V x SA. Therefore the normal moden t \,n n n ^Vt

equations (9),(15), with B2 / constant for convenience,

and near the separatrix where p(ii) can be neglected, are
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y26An = Sjn(i

^(B2

5A 0 for < < 0 (B3)t 1

2- for > 0

^,tl

Now, for contradiction, assume SA t2is discontinuous at

0. Then, from (B2), either 5A must behave like%t2

5'(,) or ;An must behave as 5(') Both of these conclusions

contradict the assumption that SA is bounded, so that 6A

is continuous. Next, assume that &A is discontinuous at

0. Then, from (Bl) and since 5At2 is continuous, we

see that iAn must behave as 5(C), which is again a contra-

diction. Therefore the tangential components of .A are

continuous at '# = 0. Incidentally, a similar argument

cannot be applied to prove the continuity of the normal

component of 6A, because the only normal derivative of

An, in lijtt is balanced by a second normal derivative of

5A The fact that the system (9),(15) requires continuity

of SA but allows discontinuity of SAn explains why Fe'MHD

has no numerical problems when run in the exterior vacuum

mode, even when the exponential factor in (15) is so small

that it is essentially zero on every grid point in the
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exterior region. Also, it is easy to see that the above

proof does not require that B 2/p be constant, or even that

p be continuous at 9 = 0. (Note that if we pick the fic-

titious density p so that = c 2 in the exterior region,A

then (15) merely states that V x 6B is balanced by the

displacement current in the exterior, and therefore that

the perturbed current is zero.)

In the previous paragraph we have completed the

proof that the system (9),(15) has identical magnetohydro-

dynamic stability properties as the physical system with

vacuum on the open field lines, since it has the same con-

tributions to 6W in plasma and in vacuum [c.f. (ii)] and

since the usual boundary condition ft x 5A = n x (F x B) =

- f • B holds. We now turn to a proof that the system

described by alternate equations of motion (9), with a

plasma on the open field lines, is more stable than the

system with vacuum exterior. This stabilizing influence

is due to the fact that we have a normal component of the

equilibrium field B at the walls, i.e., we have line tying.

Indeed, it is shown in Ref. 8 that if ft • B = 0 at the

walls, and if no mode rational surface exists in the plasma,

the condition B * 5A = 0 can always be satisfied by a gauge

transformation.
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The remaining question is whether the additional con-

straints on the vector p)tential in the exterior plasma

model, namcly B • 6A = 0 and continuity of 6A at the

separatrix, are physical constraints (i.e., constraints

on the fields) or whether they can be imposed by a gauge

transformation. If we try to impose the former condition,

i.e., try to satisfy B • 7X + B • 6A = 0, we find

x C - di (B4)

0

where the integral is along a field line and C is the value

of X at the wall (this must be a constant by the condition

that the tangential component of 6A in both gauges must

vanish at the wall). Therefore, for any field line that

passes through the walls twice (see Figure 1) we must have

f A • dk = 0. For n = 0 (axisymmetric) modes this means

that the perturbed toroidal fluxf B fidA between any

two flux surfaces p = const. in the exterior region must

be zero. For modes with n 7 3 we have, from Appendix A,

'A = 0 on the axis r = 0. Therefore the perturbedz

toroidal flux enclosed by the z-axis and any flux surface

= const. that intersects the walls must be zero. There-

fore the constraint B • ;A = 0 is a physical constraint

and has a stabilizing influence. As an aside, we comment

that any closed flux surfaces in the flux hole > h
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[c.f. equation (4)] may be considered to be in vacuum or

to contain plasma. For such flux surfaces, with B = 0,

the condition B • *A = 0 can be imposed by a gauge trans-

formation only if the integral over the closed field line

f5A - di = 0. Since this implies that the perturbed

toroidal flux is zero within the flux surface, having

plasma on the closed field lines in the flux hole is also

stabilizing. (This is a special case of the theorem of

Reference 8, that the constraint 6J• = 0 is stabilizing

if a mode rational surface-here q 0-exists.)

Finally, the boundary condition on n is a further

physical constraint. Indeed, let us require that the same

gauge function of (B.4) satisfy ;X/ n = (SA - 6Av)-
p

at b = 0, where 'x/'n is the normal derivative, 6A - x

is the vector potential inside the plasma (p < 0) and SA
v

is the vacuum vector potential. We find from (B4)

6A- dk = - *- 6A~ (B5)

=p

= AIBI[

The integral on the left is over a curve consisting of the

z-axis exterior to the plasma and part of the separatrix

up to the point in question, and returning on a nearby

field line, separated by a distance A at the terminal point

on the separatrix. Thus, the continuity boundary condition
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on SA imposes a physical constraint on the flux through• %n

the area bounded by this curve, and is therefore also

stabilizing.

51

Le



REFERENCES

1. M.N. Bussac, H.P. Furth, M. Okabayaski, M.N. Rosen-

bluth, and A.M.M. Todd, in Plasma Physics and

Controlled Nuclear Fusion Research (International

Atomic Energy Agency, Vienna, 1979), p. 249.

2. M.N. Rosenbluth and M.N. Bussac, Nucl. Fusion 19,

489 (1979).

3. A.C. Smith, G.A. Carlson, H.H. Fleischmann,

W. Grossman, T. Kanmnash, K.R. Schultz and D.M. Woodall,

Proceedings of the Third Symposium on the Physics

and Technology of Compact Toroids, Los Alamos (1980),

p. 12.

4. P. Gautier, R. Gruber, and F. Troyon,tobepubed.

5. H. Bruhns, Y. Chong, G. Goldenbaum, G. Hart, and

R. Hess, Proceedi-gs of the Third Symposium on the

Physics and Technology of Compact Toroids, Los Alamos

(1980), p. 97.

6. I. Henins, H. Hoida, T. Jarbo', R. Linford,

J. Marshall, K. McKenna, D. Platts, and A. Sherwood,

Ibid, p. 101.

7. W. Turner, G. Goldenbaum, E. Granneman, C. Hartman,

D. Prono, J. Paska, and A. Smith, Ibid, p. 113.

8. J.M. Finn, W.M. Manheimer and E. Ott, to appear in

Phys. Fluids.

9. A. Bondeson, G. Marklin, Z. An, H.H. Chen, Y.C. Lee,

and C.S. Uu, to appear in Phys. Fluids.

52



10. M.S. Chance, R.L. Dewar, R.C. Grimm, S.C. Jardin,

J.L. Johnson, and D.A. Monticello, Proceedings of

the Third Symposium on the Physics and Technology

of Compact Toroids, Los Alamos (1980), p. 56.

11. H.E. Dalhed, Ibid, p. 60.

12. L. Sparks, J.M. Finn and R.N. Sudan, Phys. Fluids

23, 611 (1980).

13. J.B. Taylor, Phys. Rev. Lett. 33, 1139 (1974).

14. I.B. Bernstein, E.A. Frieman, M.D. Kruskal, and

R.M. Kulsrud, Proc. Roy. Soc. London Ser. A244,

17 (1958).

15. S.C. Jardin, M.S. Chance, R.L. Dewar, J.L. Johnson

and D.A. Monticello, Bull. Am. Phys. Soc. 25,

861 (1980).

16. J.M. Greene and B. Coppi, Phys. Fluids 8, 1745

(1965); H.P. Furtn, Phys. Fluids 8, 2020 (1965).

- - - t



DISTRIBUTION LIST

DOE
P.O. Box 62
Oak Ridge, Tenn. 37830

UC20 Basic List (116 copies)
UC20f (192 copies)

UC20g (176 copies)

NAVAL RESEARCH LABORATORY
Washington, D.C. 20375

Code 4700 (26 copies)
Code 4790 (150 copies)

DEFENSE TECHNICAL INFORMATION CENTER
Cameron Station
5010 Duke Street
Alexandria, VA 22314 (2 copies)

55

______




