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TILT AND SHIFT MODE STABILITY WITH LINE TYING

I. INTRODUCTION

A spheromak is a compact torus magnetic configuration .
whose toroidal and poloidal magnetic fields are produced
by plasma currents confined by an external vertical field.l
The advantages it shares with other compact torus designs
are compactness and simplicity of design of external coils,
walls and plasma, as well as a natural divertor. A plot
of the flux surfaces of a typical spheromak configuration
is shown in Fig. 1. Note the two classes of field lines,
those on closed flux surfaces and the open field lines,
separated by a surface we call the separatrix.
It has been found that a gpheromak can be stable to ;

1,2

internal modes if it is oblate. Even an oblate spheromak

requires an external conductor to stabilize the free-
boundary modes. The question of how close the conducting
shell must be and what shape it is allowed to take has an
important bearing on spheromak experiments, and on the
viability of proposed spheromak reactor designs. The
moving ring field reversed reactor,3 for example, would
require a cylindrical shell, with the ends of the cylinder

either far away or #hsent altogether. More conventional

reactor designs would allow a shell which almost completely
surrounds the plasma, but would nonetheless place constraints

on how far the shell must be from the fusion plasma.
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In this paper we numerically study wall stabilization

of the external n = 1 magnetohydrodynamic (MHD) modes of the spheromak,
with the effect of line tyingdue to plasma on the open field

lines. Previous work indicates that the n = 1 modes are

the most difficult of the external ideal MHD modes to

stabilize.! The n = 1 tiled+6/7

and radial shift5 modes
have also been seen in spheromak experiments.

The first studies of MHD stability of spheromaks,
using a nearly spherical equilibrium with V x B = uB and

u constant, are due to Rosenbluth and Bussac.z

They
found that slightly prolate equilibria are unstable to an
internal tilting mode, while slightly oblate equilibria
require a shell of radius R(l - 0.2€¢) to stabilize the
external tilting mode, where R is the plasma radius and
€ is the ellipticity of the elliptical plasma surface.
Later work by Finn et al.a and by Bondeson et a1.9 has
shown that in a cylindrical conducting wall with endplates
the internal tilt mode is unstable as long as the ratio
of length to radius exceeds 1.67.

The existence of a q = 1 surface in the plasma (q
is the usual safety factor) has been shown to be a destabi-
lizing factor in oblate plasmao.‘ The equilibria studied
in the present papar have q less than unity at the O-point

and q decreasing toward the plasma edge, so that no such

q = 1 surface exists. Our equilibria are force-free.




Tilting modes have been observed in several experi-

ments to date, notably on the PS-1 device at the University

of Maryland5 and on plasmas produced by magnetized coaxial

plasma guns at los Alamos6 and Livermore.7 On the PS-1
experiment another n = 1 instability has also been observed,
a radial shift mode.S (This should be distinguished from
the axial shift, which is axisymmetric.)

The study described in this paper extends that of
Rosenbluth and Bussac in considering more general separatrix
shapes and in including two additional physical effects
that turn out to be quite stabilizing. The first effect
is that we consider equilibria whose current goes to zero
smoothly at the separatrix, or even at an inner flux
surface (so that there is a "flux hole®); i.e., u = u®).
This smoothing of the current profile, which is almost
certainly present in experiments, has an important stabi-
lizing effect. This is plausible because a large part of
the free energy for the free boundary tilt is due to the
magnetic pressure imbalance at the perturbed X-point.

The second physical effect we include is line tying
of the open field lines. That is, we consider the external
region to be filled with conducting plasma (carrying zero
equilibrium current) rather than vacuum. Since there is

a normal component of magnetic field at the conducting

walls (see Fig. 1), this effect is stabilizing. Note that




this configuration avoids a serious problem of conventional
line-tied systems, that impurities can flow into the hot
plasma from the metal wall. Although the closed field
lines on which the equilibrium current flows are not them-
selves line-tied, we find that line tying of the open field
lines greatly improves stability to n = 1 modes.

Recently, other groups have also performed stability

10,11 The

computations on the tilt and radial shift modes.
equilibrium models permitted a flux hole but did not permit
finite current arbitrarily close to the separatrix. But

the most important difference between this work and the

work we present in this paper is our inclusion of the
stabilizing effect of line tying of the open field lines.

Our results without line tying (i.e., with a vacuum

exterior) are consistent with the results of Refs. 10 and 1l.
(Exact comparison is difficult due to differences in pro-
files and wall shapes.) However, we find that the equi-
libria are considerably more stable with line tying. For
example, one of our equilibria optimized for tilt and shift
modes is marginally stable without line tying when the wall
radius is 1.4 times the separatrix radius and the spacing
between the axial walls is 1.1 times the separatrix length.
With line tying, the last figure is 1.5.

In Section II we describe the equilibrium model,

in particular the profiles and boundary conditions used.




In Section III we describe modified linear magneto-
hydrodynamic equations for force free plasmas and the time
dependent code FFMHD that we use to integrate these equa-
tions of motion. We describe the special properties of
the modified magnetohydrodynamic equations that make them
particularly suitable to a system, such as the spheromak,
that has magnetic neutral points (the X points on the
symmetry axis). We also describe how the exterior region
may be conveniently treated as a perfectly conducting
ptasma or a vacuum in this framework.

In Section IV we discuss the physical properties of
the tilt and radial shift modes; in particular we show
results from FFMHD pertaining to the stabilizing effect
on the tilt mode of smoothing the current near the
separatrix.

In Section V we describe in detail results obtained
using FFMHD on the effect of elongation of the separatrix
on the tilt and shift modes. There is an optimum elonga-
tion (separatrix half length to radius ratio), equal to
about 0.6, nearly independent of other parameters. The
optimum elongation without line tying is approximately
the same, but the walls must be much closer to achieve
stability. We also present marginal stability results in
which we vary the elongation of the cylindrical wall. Wwe

find that line tying allows the axial wall to be removed




to a large distance, as required by the moving ring reactor

scheme. We conclude that line tying in the radial wall is

particularly stabilizing.




II. EQUILIBRIUM MODEL

Since the instabilities under consideration are current
driven, we restrict our attention to force free equilibria,
i.e., those equilibria having 2 = u%. However, we generalize
the equilibria considered in Refs. 2, 8, and 9 by not reguiring
U to be a constant in the plasma and by not requiring the
separatrix to be nearly spherical. 1Instead, we keep only the
obvious requirements that u be constant on flux surfaces and
go to zero continuously as the separatrix is approached from
the inside.

From the general axisymmetric representation in cylindrical

coordinates (r, 6, z)

B = 7y x V8 + g(y)ve (1)
we conclude
j =V XxB
v Y
= - A*YY6 + g (V)7y x Ve , (2)
where primes denote differentiation with respect to .
P o= rAa, the poloidal flux, and A*y = rzv.(r-sz). The

requirement 2 = ul) E gives

uly) = g’ (v), (3a)

A*y = = gly) g”(3). (3b)




The last equation is a specialization of the Grad-Shafranov
equation to force free fields. We choose % = , - R where

wh<0 is the magnitude of the flux hole,

for <0, (4a)

b
=0 for >0, (4b)

where vo<0 is the minimum of 4, which occurs at the

magnetic axis or 0-point; this model gives

aB
w(w) = go ¢ , for :<0, (5a)

) >
0 [(Wwo)z + 52]

=0 for $>0. (5b)

0 (reflection

0 at 2

[}

The boundary conditions are 53u/32

symmetry), v = 0 at r = 0 (from rAe) and the value of
v as a function of z at r = a (the radial wall), and as a
function of r at z = L (the endplate). The separatrix is
given by v = 0. From (5) we see that the equilibrium

current is zero on the open field lines (% > 0), that vu

is nearly constant near J = Yo and that u is linear in .

near the flux hole [(wh = v/ vl g §]. Notice that if

5 =0, = 0, the poloidal current is discontinuous at

I
the separatrix. The svecification of g as a function of
the ratio v/vo as in (4) provides convergence of the itera-

tive scheme used to solve (3b). See Ref. 12.
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One set of boundary conditions at r = a and z = L,
expressed in terms of dimensionless variables , - ;/(Haoaz)

where Bo is a reference field, is

(l—.6e)r83 - (e 4 22)-3/2 (6)

£

For |e|<<l, these boundary conditions, for ! = 0, give the

2
xp:r

+ 5(422 - rz)[-.175r55 - .425rg(r2 + 22)-7/2]

nearly spherical constant u equilibria of Rosenbluth and

2

Bussac,2 with plasma surface given by r = r.(1l + < cos™ .),

d
where x = tan-l(t/z). Equilibria with ¢ > 0 are prolate,
and those with ¢ < 0 are oblate. Another set of boundary
conditions that we use is

_ 2 2
v = Clr (1 + sz ). (7)

For this set of boundary conditions, equilibria with small
C1 have a separatrix which is near the wall. In fact, for
C1 = 3§ = 0, the equilibria are those obtained analytically

8 9

by Finn, Manheimer and Ott and by Pondeson et al. For

Cl > 0, the parameter C2 controls the oblateness of the
equilibrium by specifying the amount of flux passing
through the radial wall r = a between z = 0 and z = L.

The flux surfaces = const. of a typical equilibrium

are shown in Fig. 1. Notice that the separatrix (separating

10
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open field lines and those on closed flux surfaces) intersects
the z-axis at magnetic neutral points, which we call X-f ‘ints,
one on each side of the plane of symmetry z = 0.

Our model (4) produces plasmas with fairly flat
toroirdal current profile. We observe that for all plasmas
oblate enocugh to be stable to the internal tilting mode,
the safety factor q i1s le 3 than unity throughout the plasms.
Therefore, for n = 1| modes no mode rvational surfaces exist
31n the plasma. Furthermore, we 30 noct expect that adding

pressure with a fairly flat profile %0 a plasma with fixed

separatrix will cause the safety factor § to jo above unity.




III. MODIFIED MAGNETOHYDRODYNAMIC EQUATIONS

In this section we describe the modified magneto-
hydrodynamic equations of motion which are integrated in
time by the numerical code FFMHD until the most unstable
mode dominates. For more detail on the code, see Appendix
A. Thae equation of motion for a force free equilibrium

and 1deal Ohm's law are

v, = 1) « B+ ) v B, (8a)
“E + 5 « B =0, (8b)
where ; 1s the Eulerian plasma displacement, . 1s the

density and dots denote derivation with respect to tire.
From (8) and Max- ll's equations, we conclude that the
perturbed fields can be represented by a perturbed vector
potential ‘A= % - B and zero scalar potential. From (8a},

therefore, we find
;i} = sz[,(.)ia - ZJ]L' (9

where i represents components pervendicular to the unper-
turbed field %. This 1s the basic equation of motion for
the plasma which is integrated in time by the numerical

3 L ‘
code FFMHD. The Taylor stabilityl of equilibria with

uniform . was computed in Ref. 8 by integrating (9) without




the operation denoted by a1; it was shown that Taylor
stability of such equilibria is equivalent to ideal mag-
netohydrodynamic stability if no mode rational surfaces
exist in the plasma.8

Because of the toroidal symmetry of the equilibrium
(/58 = 0), the cylindrical components of é or of 2& may
be assumed to behave as exp(in?), where n is called the
toroidal mode number.

For external or free boundary modes, integrating
(9) to obtain ;@ rather than (8a) to obtain the displace-
ment i has a further advantage over those mentioned in
Ref. 8 (for internal modes). As discussed in Ref. 2, a
slightly oblate equilibrium can be unstable to tilting
because the internal tilt motion is nearly marginally
stable, and this motion produces a magnetic pressure
imba’ance across the perturbed X-points. This additional
source of free energy drives the instability. Therefore,
we might expect fairly singular behavior of ; near the
X-points, since ﬁz should be large in that v;cinity, but
must be zero on the Z-axis. (The latter property, which
must hold for every vector with torocidal mode number
n > 1, is discussed further in Appendix A.} The displace-
ment plots shown in Fig. 2 show that this singular behavior

is indeed found, and therefore that numerical problems

would almost certainly be encountered in attempting to

13
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aent, shown in (b) clearly shows that effect of the megnetic pressure
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integrate (8a). On the other hand, Qa is well behaved
near the X-points, and no such numerical problems are
observed in integrating (9). This property and the fact
that no mode rational surfaces exist in the plasma allows
us to use a simple cylindrical (r,z) grid rather than one
matched to the flux surfaces of the equilibrium.

We have two optional ways of treating the exterior
region of open field lines. The first, called the line
tying option, is to treat the region as a perfectly con-
ducting plasma carrying no equilibrium current. That is,
since u(¥) is zero on the open field lines [c.f. equation
(5], w. mer=ly integrate (9) over the whole region without
regard to the location of the separatrix. The boundary
conditions A x QF =0, n - % = 0 at the conducting impene-
trable wall, together with the fact that 4 - g is not zero
imply é = 0 at the wall; this with the condition 5 . éQ = 0
yields the boundary condition on the vector potential
%} = 0. Using this boundary condition it is easy to see
that (9) has the usual energy principle, namely that the

normal modes are extrema of

w% = /T, (10)
where
W = %f[eez - u(v)A 5@]d3x . (11a)
T = %f(o/sz)uz a3x (11b)
4"
18
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and whera Qﬁ satisfies the constraint 2 . af = 0. Using
the toroidal symmetry of the equilibrium, we can write the
toroidal dependence explicitly, i.e., Qe = Qﬁr cos né -
sA* sin ng, B = sB* cos ne - §B' sin no. Using these real
N N N 4"
variables in (10), (ll) is equivalent to using the complex
variables 5a = (5AF + isa')exp(ind), 6B = (BT + isB')

V) 4" N N N v

exp(in8) with (10) but with

AW = %Jr[liglz - u(y) Re (Q@ . Q@*)]d3x ’ (12a)

) Y 2 3
'r=-5f(~/3)|53( d’x ,

and B - 5A = 0.
N N
The exterior plasma model includes the important
stabilizing effect of line-tying of the open field lines.
One way to see that this is a stabilizing influence is to

note that having conducting plasma in the exterior region

requires that the ideal magnetohydrodynamic flux constraint

QP = 7 « (é x E) or 5E||= 0 holds throughout the region,

while this is not the case if the exterior region is
vacuum. Also recall that the boundary condition @@t = 0,
together with (8a) and 2 = “2 implies that the total plasma
displacement % is zero at tte wall. (If the wall is a

flux surface, only the normal component of é must be zero.)
As we shall discuss further, the »oundary conditions when

the conducting wall surrounds a vacuum are fi x §§ = 0,



g

regardless of whether a normal component of the equilibrium
field exists. In Appendix B we establish more rigorously
the stabilizing effect of line tying.

Various different normalizations, i.e., models for
the density p(r,z) are possible. The choice affects growth
rates but not, of course, marginal stability. The simplest
such model has p = const. Another model which is ver
useful has Bz/o = vi = const. (the Alfvén speed). Whereas
this model has the unphysical effect of allowing equilibrium
density variations along the field lines, it has the advan-
tage of producing growth rates of the order of three times
those of the constant density model. This advantage is
due to the fact that the density goes to zero at the X-
points, where a large destabilizing contribution occurs.
Any model having p = p(y) and with small density near the
X-points would have a very large Alfvén speed v, near the
separatrix and would therefore have a very stringent
Courant condition. For more details see Appendix A. Of
course, the unphysical nature of the second model has no
effect on the marginal stability computations. We expect
that the growth rates for a system whose density decreases

monotonically to a finite value at the separatrix would be

bounded by the growth rates of our two extreme models.

17
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The alternative model for the exterior region is a

14

vacuum. The usual energy principle treatment of the vacuum

is to minimize the vacuum contribution to W,
oW =f(v « ¢a)2 adx, (13) ‘
v LW 1

that is satisfy Vv x 7 x if = 0, subject to the boundary
conditions A - s 2 = - fi x i? at the plasma-vacuum inter-
face and i x gf = 0 at the conducting wall. Then, stability

is determined by minimizing

w? = 6W/T, (14)

where JSW consists of the plasma contribution (lla) plus
SW, and where T is still given by (11lb) or %fcizd3x. Our
method, using the time dependent code FFMHD, is to inte-
grate (9) on the closed flux surfaces and, on the open

field lines, to integrate
A=-p2lq - - 3
péA = B [41 exp ( pW)SQH] ' (15)

where p is an adjustable parameter and || denotes components
parallel to Q. Clearly the total differential equation (9),
(15) is continuous across the separatrix ¥ = 0. Far from
the separatrix, specifically when the exponential factor

in (15) is negligible, (15) reduces to the form of the

equation of motion without the constraint 2 . Qé = 0, We

18




generally pick p large so that there is only a very small
region immediately outside the separatrix where the expo-
nential factor in (15) is nonnegligible. There are cases,
in fact, in which p can be so large that the exponential
factor is negligible at every grid point in the exterior
region. However, occasionally it is necessary to use a more
moderate value of p to avoid numerical instabilities.

Taking the exponential factor in (15) to be zero,
we easily see that equations (9), (15) have an energy
Evinciple represented by uz = 3W/T°, where IW consists

of the same plasma and vacuum terms as in (14) but where

T ’/“’/32’5{‘2 a3x +/(D/Bz)6’\4‘\2 adx. (16)

P v

Here, the notation serves to emphasize the fact that

B - %ﬁ = 0 ir iide the plasma, but that -no such constraint
exists in the vacuum. In Appendix B we show that the condi-
tion that A x §@ be continuous across the separatrix (equiv-
alent to i - 2 g = - f x gb) is indeed satisfied by (9),

(15) even when exp(-pv) is taken to be zero. The density

o in the vacuum is, of course, fictitious; however W con-
sists of the same two terms as the conventional energy
principle and therefore predicts marginal stability correctly.

In principle, this fictitious density could be made small

in order to compute actual growth rates, but the resulting




. intiien

large Alfvén speed wnuld produce a very stringent Courant

condition.

There are two other features of the code FFMHD worth
discussing. The first is that we generally add an addi-
tional term Yg p Q@ to the right hand side of the equations
of motion (9) in the case of plasma exterior and (9), (15)
in the case of vacuum exterior. This modification speeds
up convergence, i.e., the evolution to a pure normal mode,
if only one unstable mode exists. In this case the optimum
value of v, is luz!, where =, is the frequency of the
seccond normal mode, the mode with the second largest

eigenvalue —wz. If two unstable normal modes exist, or if

the second mode has w ~ 0, this additional term does not
help. Indeed, we have observed that when a q = 1 surface
exists in the plasma, where g is the usual safety factor,

the convergence rate to n = 1 instabilities Is not aided

by having finite Yoo presumably because continuum eigen-
functions with wz n~ 0 exist. However, throughout this paper
we deal with short (oblate) plasmas where q < 1 throughout
the plasma. In addition, in cases for which no unstable
normal mode exists, using Yo enables us to compute the
normal mode with smallest uz.

The other noteworthy feature of the code is that we
compute growth rates, for the purpose of extrapolation to

marginal stability, by (10) rather than merely observing the




exponential growth rate directly after a pure mode is
obtained. We call the former growth rate Yn and the latter
Yo That is, our code is essentially an energy principle
code where the optimum trial function is obtained by inte-
grating the modified equations of motion. Our expectation
that the growth rates Yn computed by this method will be
more accurate is based on Rayleigh's principle, namely that
the error in the eigenvalue computed by a variational prin-
ciple is of the order of the square of the error (e.g.,
grid errors) in the eigenfunction. On the other hand, the
growth rate Te observed directly in the code should have
errors of the same order as the eigenfunction. We have
performed convergence tests with increasingly finer grids
in r,z and we have always found that Yn is more accurate.
For more detail see Appendix A.

Computing growth rates Yo by (10) also allows us to
run for shorter times, since a first order error in
the eigenfunction due to incomplete convergence to the
most unstable normal mode leads only to second order errors
in the growth rate. This property also holds for Ye if
the growth rate is computed by observing the e-folding
rate of T (11b), because of orthogonality. This property
does not hold for any other quadratic form. However, the
errors in this method of computing the growth rate become

amplified near marginal stability if Yo is finite. 1It is

21
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] easily shown that the error in Ye relative to Yo Fecomes
first order in the error in the eigenfunction near marginal

stability. The error in y, reclative to v_ itself is, of
t

t
course, even larger.




Iv. TILT AND SHIFT MODES

In this section we present numerical studies of the
stability of free boundary n = 1 modes with line tying on
the open field lines. We restrict this study to oblate
equilibria because prolate equilibria are unstable to
internal tilt modes. For the equilibria we consider (4),
the safety factor q is below unity throughout the plasma,
and therefore the rather singular behavior near the q = 1

4,9 does not occur.

surface typical of internal kink modes
As we have discussed in a different context i- Sec.
II1I, a free boundary tilt motion may be unstable with walls
fairly close to the plasma because the nearly marginal internal
tilt motion produces a magnetic pressure imbalance across
the perturbed X-points. A modification of the displacement
% to take advantage of this free energy cain provide 8§W<O0,
i.e., instability.2 In fact, the method of Rosenbluth
and Bussac2 of computing stability of equilibria with
uniform u is based on computing this magnetic pressure
imbalance. However, their method does not generalize to
g (v) in Aany obvious way.
The poloidal displacement ép = grf + gzﬁ of a tilt
mode in a typical equilibrium is shown in Figure 2. (The
displacement is computed from the growing solution éé of

(9) by § = B x éQ/BZ.) Notice that the imaginary part of

, i.e., the sin ¢ Fourier component is indeed a nearly

5
AL




rigid rotation together with an inward motion at the
rotated X-point. The real part, i.e., the cos 8 component,
is a nearly rigid radial shift.

Our general procedure for studying stability for a
given equilibrium is to fix the position of the radial wall ;
r=r, and perform several stability runs with the axial

wall z = z, successively closer. We then extrapolate to

marginal stability. The square of the growth rate yi = —wz

from (10) is usually quite linear near marginal stability.

Typical growth rates found for tilting modes with
normalization vi = Bz/p = const. have *(L/vA ~“ 1. For B n {
2 kg, nn lO14 and L v 50 cm, as in the Los Alamos experiment,
we find vy ~ lO6 sec-l. ks we have discussed earlier, with

the p = const. normalization, this is lower by a factor of

order 3.

f Constant u equilibria of Ref. 2, i.e., with (4),

j: § =0, yh = 0, with boundary conditions (6) with ¢ < 0
required a tight fitting shell. For example for = = -0.4,

with the radial wall nearly touching the separatrix at the

midplane r = r_, marginal stability occurs when the axial

w s
wall nearly touches the separatrix at the X-point, i.e.,

z, = 2g- This is in qualitative agreement with the results

of Ref. 2, namely that a spherical wall must be at

(r2 + 22)% =r (1 + .2|¢|) for marginal stability. Of

course, qualitative agreement is all we expect since our




wall is cylindrical rather than spherical and since ¢ = -0.4

is not small enough in absolute value for the treatment of
Ref. 2 to be accurate.

In Figure 3 we show zw, the position of the axial wall
required for stability as a function of ¢, the parameter of
(4), (5) that determines the smoothing of the poloidal current
(which is discontinuous if & = 0) near the separatrix. The
radial wall was nearly touching the separatrix, rw/rs = 1.01.
The stability, as measured by zZ, improves dramatically with
£. Notice that the point zg where the separatrix intersects
the z-axis (at the X-points) decreases with !, because the
total current decreases. This stabilization due to smoothing
the current in the neighoborhood of the separatrix 18 plausible,
because the destabilizing force, namely the pressure imbalance

at the X-points, is localized near the separatrix.

In Figure 4 we show the axial wall position z, requirad
for stability, for rw/rs =1.01 and : = 0.15, as a function of
the elongation parameter < of (6). Note that there is a
dramatic improvement with oblateness that begins around
£ = ~.15. Improvement for large -. 1s reasonable, since
the results of Ref. 8 show that the eneryy of the n = 1
internally tilted equilibrium continues to rise relative
to the axisymmetric state as the plasma length decreases,
until extremely short plasmas are obtained. It is worth

mentioning here that there are no instances in which z,
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g 3 - of axial wall required for stability to tilt and separatrix
position as a function of the current smoothing parameter 5 of eqs. (4), (5);
e=-0.4.




must be less than L i.e., the axial wall intersecting the
separatrix, to stabilize external tilting modes, even though
having z, slightly less than zg would still leave quite a
large exterior region. .his is probably due to the fact

that the displacement of the boundary is large in a neighbor-
hood of the X-point on the z-:z is This feature is illus-
trated in Figure 4, where z, = 2z is required for marginal

stability over a fairly large range of ¢, -0."'5 < ¢ < 0,

even though z is decreasing with ¢
The results shown in Figures 3 and 4 illustrate well
the stabilizing influence of current smoothing and oblate-
ness. However, we should emphasize that the radial wall
was touching the separatrix, that the separatrix had only
modest oblateness, and that line tying was present, i.e.,
the exterior region was plasma. In the next section we
present studies of stability of the tilt mode with walls
further removed with and without line tying.
When our equilibria are made more oblate (i.e.,
larger |:z]) than those shown in Figure 4, a new instability,
the radial shift mode, appears.ls From Figure 5, we see
that the real part (i.e., cos § Fourier component) of the
poloidal displacement Ep is roughly a rigid radial shift
of the plasma. The imaginary part of EP (the sin 6 com-

ponent) is again tilt-like. One way to understand the

appearance of this instability for more oblate plasmas is
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Fig. 4 — Position of axial wall required for stability to tilt and ‘
separatrix position as & function of oblateness parameter ¢; b
8§ = 0.15. :
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Fig. 6 — Poloidal displacement § for a shift eigenmode. The real (cos 6)
component shown in (a) shows again the effect of magnetic pressure imbal-
ance near the perturbed X-points. The imaginary (sin §) component shown
in (b) is somewhat tilt-like.




to note that oblate plasmas are produced from boundary |
conditions (6) or (7) by increasing the amount of (negative) !
flux passing through the radial wall, i.e., by increasing
32;/522 at r = a. This is achieved by decreasing ¢ in (6)

or by increasing c, in (7). Thus, for 32¢/322 > 0, the

2
Grad-Shafranov equation (3b) with g(u) = 0 implies

r 3/3r [(1/r) 3¥/3r}< 0 or 3Bz/3r < 0, that is that the field
index is negative. On this basis, we might expect a radial
instability like the radial precession mode in Astron type

geometries.16

The simplest model for this instability
applies to a rigid ring of current so weak that its self
forces are negligible. For this model instability occurs
if Bz(Ne)2/4nMc I +v < 0, where Ne is the total charge of
the current carrying species, M is the total ring mass, I
is the current carried by the ring and v = rB;/Bz is the
(external) field index. (The first term in this inequality
is in essence a finite Larmor radius effect and may be
neglected if the Larmor radius is small or if dissipation
is present.ls)

A related approach to understanding the shift insta-
bility is to note that very oblate equilibria are confined
radially by strong magnetic fields away from the midplane

2z = 0 but by rather weak fields near the midplane, so that

even a stable rigid shift motion may have a weak restoring

force, i.e., be nearly marginally stable. However, such a ;




N

shift produces magnetic pressure imhalance at the perturbed
X-points, which can be strong enough to destabilize the mode.
This mechanism is closely related to the mechanism by which

2 The

| the externa) tilt in oblate plasmas is destabilized.
inward displacement in response to this pressure imbalan: 2

is clearly evident in Figure 5.
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V. OPTIMUM PARAMETERS FOR STABILITY

In this section we present results of a systematic
search for optimum parameters for stability to both the
tilt and the shift mode. We have performed these studies
using both models for the exterior region, namely plasma
exterior (i.e., with line tying) and vacuum exterior.

In Section IV we studied the behavior as a function
of §, the current smoothing parameter, and found that
stability as measured by the position of the axial wall
required for marginal stability, improved monotonically

with §. For

3 = .25,

wh = 0, this behavior has a plateau at about

In Figure 6 we show the axial wall position required

for marginal stability as a function of separatrix shape with 'JJh =0

for § = .15 and § = .25. On the vertical axis is the ratio
zw/zs, where z, is the position of the axial wall and zg

is the position of the X-point, where the separatrix inter-
sects the z-axis. On the horizontal axis is the shape
parameter, the ratio of half length to radius zs/rs (=1

for a spherical separatrix). Both sets of runs were done
with line tying and with the position of the radial wall
relative to the radial position of the separatrix rw/rs
fixed at 1.25. Note that in both cases stability is
optimal for z/r %0.6. The equilibrium with § = .25 is

clearly more stable than that with £ = .15. We have also
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Fig. 6 — Axial position of wall required for stability (relative to separatrix
half length) as a function of the elongation parameter x,/r,, with vy = 0,
: Yy /ty = 1.25, and § = 0.15, 0.25, with line tying. For plasmas longer than
b . the optimum z,/r, ~ 0.6, the most unstable mode is the tilt; otherwise it is
' the shift.




done a set of runs with § = .35, and have found that the

marginal stability voints with line tying lie very close L

Without line tying, stability is again optimal at roughly

to the § = .25 plot shown in Figure 6.

Figure 7 shows the stability for y, = 0, and § = .25 !l
both with and without line tying. The plot with line tying

is just the same as the § = .25 curve shown in Figure 6.

zs/rs = 0.6. Clearly, line tying greatly improves the
stability. 1In this case, with our fixed radial wall, the
axial wall is permitted to be about nine times further from
the separatrix with line tying than without.

For Figure 8 we have taken the equilibrium corre-~
sponding to optimal stability with line tying in Figure 7
(ro = .99999 and ¢ = -8.2 in equation 6), and have deter-
mined the radial wall position required for marginal
stability as a function of the axial wall position. Note
again that line tying greatly improves the stability.
These results indicate that, in the presence of line tying,
the radial wall alone may be sufficient to stabilize the
n = 1 modes. Our code does not, of course, allow us to
verify this directly, because we require a finite number
of axial grid points. 1In any case, it is clear that line

tying does allow us to remove the axial wall to a large L

distance, as required by the moving-ring reactor scheme.
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Fig. 7 — Axial position of the wall required for stability as a function of
elongation with and without line tying; y, = 0, ¢ = 0.265, and r, /r, = 1.25.




The results shown in Figure 8 show clearly that when the
axial wall is removed to a large distance, line tying in
the radial wall is responsible for stability.

Finally, we have loocked at the effect on stability
of a flux hole. Our results with current smoothing near
the separatrix suggest that the introduction of a flux
hole should be stabilizing, and we find that that is indeed
the case. Again, our results make sense if we recall that
the displacement near the X-point plays an important role
in destabilizing both the tilt and the shift mode.

Figure 9 shows axial wall position required for
marginal stability plotted against separatrix shape, with
vy, = .2, § = .05, and rw/rS = 1.4. The optimally shaped
equilibrium is somewhat more stable than in Figure 8, where
Vh + § has the same value but Wh = 0. Now, because the sur-
face of our current carrying equilibrium plasma lies some-
what inside the separatrix, the wall is actually somewhat
further away from the plasma than indicated by our plot.
This can be seen in Figure 1, which shows the equilibrium
corresponding to optimal stability with line tying in
Figure 9 (Cl = 0.25 and C2 = 6.0 in equation 7). Equilib-
rium currents flow only in the shaded region, with the
dashed lines showing the position of the walls at marginal
stability. Once again, line tying greatly improves the

stability. The results of our runs for these equilibria
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Fig. 8 — Axial position of wall vs. radial position at marginal stability, both
scaled to the relevant separatrix dimension; § = 0.25, e = -8.2 (z,/r; = 0.59).
Results are shown with and without line tying of the open fieid lines.
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Fig. 9 — Axial wall position required for stability as a function of elongation
with and without line tying; v, = 0.2,8 = 0.06, and v /r; = 1.4
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A

without line tying are consistent with the results obtained

by others for similar equilibria.lo’ll’15

(For comparison
with the results of other authors, we caution that the wall
radius is sometimes expressed as the distance of the wall
to the plasma, ¥ = ¥,,» relative to the minor plasma radius.
In this normalization, the radial wall of Fiqure 9 is a
distance of approximately 1.2 from the plasma, and the
maximum distance of the axial wall without line tying is
about .8.)

Note that in Figure 8, with rw/rs = 1.4, the marginal
position of the axial wall for the equilibrium without a
flux hole is given by zw/zs ~ 1.2. Comparing with Figure 9,
we see that the flux hole allows us to move the walls
further from the separatrix, this despite the fact that

the surface of the current distribution has moved inside

the separatrix.
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VI. SUMMARY

Our tool for studying the st:bility of force free
spheromak equilibria to the current driven tilt and radial
shift modes is the time dependent magnetohydrodynamic code
FFMHD. This code integrates the perturbed vector potential
6ﬁ(= E x E) in time rather than the displacement é. For
this reason it is well suited to the treatment tilt and
radial shift modes, whose displacement can be singular at the
magnetic neutral points (X-points) on the axis of symmetry.
The external region may either be treated as a vacuum or
as a conducting plasma with zero equilibrium current.
Eguilibria treated by the latter model are generally more
stable due to line tying of the open field lines.

We find that nearly spherical "Taylor equilibria,"
having Vv x 5 = uE with u uniform require a tightly fitting
cylindrical wall for stability, even with line tying. For
equilibria whose current goes to zero more smoothly near the
separatrix, and with a conducting plasma in the exterior
region, the walls may be removed a considerable distance.

The optimum plasma shape for stability to both the
tilt and the radial shift modes has ratio of half length
to radius 0.6, nearly independent of other equilibrium
parameters. With line tying on the open field lines, the
radial and axial walls can be removed from the plasma by at

least 50 percent, relative to the total radius and length
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of the separatrix. The axial wall may be removed to at
least several times the plasma length with the radial wall
at a distance of over 1.2 times the plasma radius. These
| results are summarized in Figure 8. With vacuum on the
open field lines, the optimum shape is about the same, but
the walls must be considerably closer.
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APPENDIX A: NUMERICAL CODE

The numerical code FFMHD integrates (9) throughout
the region enclosed by the walls or (9), (15), depending
upon whether the exterior is modeled by a conducting
plasma or a vacuum (possibly with a small matching region).
The finite difference equations used are based upon the
simplest central differences for derivatives with respect
to t, r, and z. Errors are of order Atz, Arz, Azz. The
Courant condition which cne might expect for such a scheme,
when Bz/o = vi = const., is At < min (ir, Az)/vA. Empirically,
we find that a slightly smaller time step is required for
numberical stability. For the alternate normalization
p = const., the required time step is about 20 percent
smaller (where v, NOw represents the maximum Alfvén speed).
As discussed in Section III, we expect that a model with
low density in the exterior region [in order to obtain
correct growth rates with (16)] would require extremely
short time steps.

The boundary conditions on the perturbed vector
potential GQ at the conducting walls have been discussed
in Section III. Boundary conditions are also required on
the symmetry axis r = 0 because of the coordinate

singularity.
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We describe the boundary conditions at r = 0 for

each toroidal mode number n separately. Assuming the
components SAx, éAy, GAZ to be analytic in x, y, z, i.e.,

expanding for fixed z

SAx = A 4+ BxXx +Cy + +--,
N =D+ Ex + Fy + =+, (Al)
A, = H + Ix + Jy + -+,

Z

we find
éAr = %(B + F)r + A cos 8§ + D sin 6
1 1 ,
+ E(B - F)r cos 26 + E(C + E)r sin 28 + ..,
5Ae = %(E - C)r + Dcos 8 - A sin & (A2)
1 1 .
+ E(E + C)r cos 268 + E(F-B)r_51n 29 + <o,
SAZ = H + I rcos @+ Jr sin 8 + <<,

As in Section III, we write 1A = Re[(aﬁr + ig&l)exp (ins9)]

= Q?r cos n 3 - 3At sinn 5. For n = 0 we conclude
N
A =D =0 and therefore EA; = SAg = 0. (Imaginary parts

are automatically zero.) Also, since the neglected terms

of éAz are O(rz), we have (3/3:)5A§ = 0.




For n =1, we find B+ F =B ~-F=0,C+E=C-ESH=

0, so that (3/3r)5Ar = (3/ar)6Ae = 0 for real and imaginary

r
e.
For n = 2 we find 5Ar ~ éAe “rasr ~ 0 and éAz N or

We also find dA: = EA: = 0.
2

sal 2 sal ol o
parts and SA_ SAL, AL SA

as r + 0. It is easy to see that for n > 2 this generalizes

Al A, eh.

to SAr ~ GAe v
The conditions for n = 0 are easily implemented in
the code. Similarly, for n > 2, it is adequate to set all
three components of SQ equal to zero at r = 0. For n =1
the issue is complicated by the fact that the conditions

given overdetermine GAr and ¢A, at r = 0, and implementing

8
any subset of these conditions leads to numerical instability.

We were able to overcome these difficulties by setting EAE

and SA; both equal to the average of the values of SAE and
fA; obtained by using the conditions (B/Br)SAi = (S/Sr)EA; = 0.

The analogous procedure was used for SAi and SAg.

When the code is run with the option that initial
conditions are generated in the code, we insure that the
initial conditions obey the boundary conditions at r = 0
as well as those at the conducting wall. (The other option,

which speeds up convergence to the most unstable mode, is

to input the vector potential from a previous run.)
The typical grid we use to integrate the finite

difference form of (9) or (9),(15) has 40 or 50 points

radially and 100 points axially. We have performed




convergence tests on finer grids (up to 70 x 170) and con-

clude that the relative grid error in fn = (-6W/T)5 is
less than three percent. In the same set of runs the
improvement in the accuract of Ve (see Section III) was
much more pronounced. In the transient phase, i.e., for
short times, energy is conserved in the code to within a
few percent (the change in total energy relative to the
change in kinetic energy) for a 40 x 100 grid and to with-
in a fraction of a percent for a 70 x 170 grid. By the
time an unstable normal mode has evolved, energy conser-
vation is worse. We trace this behavior to singular
behavior near the X-points. However, in no cases that we
have tested does this reflect itself in poor accuracy for

Yn-
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APPENDIX B: EXTERIOR REGION MODELS

Our purpose here is to explain in more detail various
properties of our modified magnetohydrodynamic equations
in the exterior region. Specifically, we prove that normal
modes of (9),(15) have continuous tangential components of
GQ, and that the model with plasma exterior is more stable
than the one with vacuum exterior because of line tying.
We first prove that regular (i.,e., bounded) normal
rnodes of the system with a vacuum exterior described by
(9),(15) have continuous tangential components A x GQ at
the separatrix, even when the exponential factor in (15)
is zero. We identify three components of the perturbed

vector potential at the separatrix Sgn, and Sﬁt

Y
Revrr 2
These are, respectively, the normal component, the tangen-

tial component parallel to E, and the tangential component
perpendicular to Q. We also split the curl operator into

tangential and normal components, so that B = V x SA =
Y Y

) & = = &
°En + ‘Et' where égn Vt X 5Qt' and SEt Vt X VQn +

-

¥ c- . 0] n e y 5 . o
A X Ql We also find Of\‘j =7 x ’\,B = §3 + § !l . where
’5 . - 7 o r S 2 4 - l:
% = t X Jl X(SQ + 7| X 9 X 'I: and 0’%' —Vl x$| X Ié
i é é .
v X 7| X Q + V X Vv X }'\‘:| Therefore the normal mode

equations (9),(15), with Bz/p constant for convenience,

and near the separatrix where u(y) can be neglected, are

+




2., . _ ..
Y Gﬁn = G%n {Bl)
y25A. . = - 33 (B2)

~At2 %tZ

Sétl = 0 for v < O (B3)
szA = - %) for y > 0

“atl “Atl

Now, for contradiction, assume Sﬁtz is discontinuous at

v = 0. Then, from (B2), either SQtz must behave like

3°(y) or 5Qn must behave as §()). Both of these conclusions
contradict the assumption that SQ is bounded, so that 6Qt2
is continuous. Next, assume that éétl is discontinuous at

w = 0. Then, from (Bl) and since 5Qt2 is continuous, we

see that SQn must behave as 3(v), which is again a contra-
diction. Therefore the tangential components of SQ are
continuous at v = 0. Incidentally, a similar argument
cannot be applied to prove the continuity of the normal

component of ¢A, because the only normal derivative of
~

5Qn' in Sjt, is balanced by a second normal derivative of
Sbt‘ The fact that the system (9),(1l5) requires continuity

of 5Qt but allows discontinuity of SQn explains why FcMHD
has no numerical problems when run in the exterior vacuum
mode, even when the exponential factor in (15) is so small

that it is essentially zero on every grid point in the
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exterior region. Also, it is easy to see that the above

proof does not require that 82/0 be constant, or even that

l p be continuous at % = 0. (Note that if we pick the fic- 4
. titious density p so that vi = c2 in the exterior region,

then (15) merely states that V x QP is balanced by the
displacement current in the exterior, and therefore that
the perturbed current is zero.)

In the previous paragraph we have completed the
proof that the system (9),(15) has identical magnetohydro-
dynamic stability properties as the physical system with
vacuum on the open field lines, since it has the same con-
tributions to éW in plasma and in vacuum [c.f. (11)] and
since the usual boundary condition fi x Q@ =n X (% x g) =
-4 - s 2 holds. We now turn to a proof that the system
described by alternate equations of motion (%), with a
plasma cn the open field lines, is more stable than the
system with vacuum exterior. This stabilizing influence

is due to the fact that we have a normal component of the

equilibrium field E at the walls, i.e., we have line tying.

Indeed, it is shown in Ref. 8 that if A - E = 0 at the

' walls, and if no mode rational surface exists in the plasma,

the condition B - §§ = 0 can always be satisfied by a gauge

transformation.




The remaining question is whether the additional con-
straints on the vector portential in the exterior plasma
model, namcly E . Q@ = 0 and continuity of éﬁn at the
separatrix, are physical constraints (i.e., constraints
on the fields) or whether they can be imposed by a gauge
transformation. If we try to impose the former condition,

i.e., try to satisfy 2 « Uy + E . aﬁ = 0, we find
x =C - jrgg . q& (B4)

where the integral is along a field line and C is the value
of x at the wall (this must be a constant by the condition
that the tangential component of ﬁ% in both gauges must
vanish at the wall). Therefore, for any field line that
rasses through the walls twice (see Figure 1) we must have
Jrag . q& = 0. For n = 0 (axisymmetric) modes this means
that the perturbed toroidal fluXJf.i? + fidA between any
two flux surfaces 7y = const. in the exterior region must
be zero. For modes with n # 9 we have, from Appendix A,
SAZ = 0 on the axis r = 0. Therefore the perturbed
toroidal flux enclosed by the z-axis and any flux surface
¥ = const. that intersects the walls must be zero. There-
fore the constraint E . §§ = 0 is a physical constraint
and has a stabilizing influence. As an aside, we comment

that any closed flux surfaces in the flux hole y > Yh
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[c.f. equation (4)] may be considered to be in vacuum or
to contain plasma. For such flux surfaces, with Be = 0,
the condition % . SQ = 0 can be imposed by a gauge trans- -
formation only if the integral over the closed field line
| jfse.~ q& = 0. Since this implies that the perturbed
toroidal flux is zero within the flux surface, having
! plasma on the closed field lines in the flux hole is also
stabilizing. (This is a special case of the theorem of

Reference 8, that the constraint B - &8A = 0 is stabilizing

if a mode rational surface—here q = 0—exists.)

Finally, the boundary condition on GQn is a further
| physical constraint. Indeed, let us require that the same

A

gauge function of (B.4) satisfy 3y/3n = (SAp - 6aA) - 1A i

p =& XR

is the vector potential inside the plasma (v < 0) and SAV

P <

at v = 0, where 3x/3n is the normal derivative, ¢

is the vacuum vector potential. We find from (B4)

ﬁA-da=~Aﬁ-aA, (B5)
A N n P

The integral on the left is over a curve consisting of the
z-axis exterior to the plasma and part of the separatrix

up to the point in question, and returning on a nearby
field line, separated by a distance A at the terminal point

on the separatrix. Thus, the continuity boundary condition




on SQn imposes a physical constraint on the flux through
the area bounded by this curve, and is therefore also

stabilizing.




REFERENCES

M.N. Bussac, H.P. Furth, M. Okabayaski, M.N. Rosen-
bluth, and A.M.M. Todd, in Plasma Physics and
Controlled Nuclear Fusion Research (International
Atomic Energy Agency, Vienna, 1979), p. 249.

M.N. Rosenbluth and M.N. Bussac, Nucl. Fusion 19,

489 (1979).

A.C. Smith, G.A. Carlson, H.H. Fleischmann,

W. Grossman, T. Kammash, K.R. Schultz and D.M. Woodall,
Proceedings of the Third Symposium on the Physics
and Technology of Compact Toroids, Los Alamos (1980),
p. 12.

P. Gautier, R. Gruber, and F. Troyon, to be publigshed.

H. Bruhns, Y. Chong, G. Goldenbaum, G. Hart, and

R. Hess, Proceedi gs of the Third Symposium on the
Physics and Technology of Compact Toroids, Los Alamos
(1980), p. 97.

I. Henins, H. Hoida, T. Jarbo~, R. Linford,

J. Marshall, K. McKenna, D. Platts, and A. Sherwood,
Ibid, p. 101.

W. Turner, G. Goldenbaum, E. Granneman, C. Hartman,
D. Prono, J. Paska, and A. Smith, Ibid, p. 113.

J.M. Finn, W.M. Manheimer and E. Ott, to appear in
Phys. Fluids.

A. Bondeson, G. Marklin, 2. An, H.H. Chen, Y.C. Lee,

and C.S. Liu, to appear in Phys. Fluids.




—

13.
14.

15.

16.

M.S. Chance, R.L. Dewar, R.C. Grimm, S.C. Jardin,

J.L. Johnson, and D.A. Monticello, Proceedings of
the Third Symposium on the Physics and Technology

of Compact Toroids, los Alamos (1980), p. S6.

H.E. Dalhed, Ibid, p. 60.

L. Sparks, J.M. Finn and R.N. Sudan, Phys. Fluids
3, 611 (1980).

J.B. Taylor, Phys. Rev. Lett. 33, 1139 (1974).
I.B. Bernstein, E.A. Frieman, M.D. Kruskal, and
R.M. Kulsrud, Proc. Roy. Soc. London Ser. A244,

17 (1958).

§.C. Jardin, M.S. Chance, R.L. Dewar, J.L. Johnson
and D.A. Monticello, Bull. Am. Phys. Soc. 25,

861 (1980).

J.M. Greene and B. Coppi, Phys. Fluids 8, 1745

(1965); H.P. Furta, Phys. Fluids 8, 2020 (1965).




acre g e g s

DISTRIBUTION LIST

DOE
P.0. Box 62
Oak Ridge, Tenn. 37830

UC20 Basic List (116 copies)
UC20f (192 copies)
UC20g (176 copies)

NAVAL RESEARCH LABORATORY
Washington, D.C. 20375

Code 4700 (26 copies)
Code 4790 (150 copies)

DEFENSE TECHNICAL INFORMATION CENTER
Cameron Station

5010 Duke Street
Alexandria, VA 22314 (2 coples)

5b







