	AD-A106 154 UNCLASSIFIE	NAV	AL RESE PUTATIO 81 R -MR-464	ARCH LA NAL STU J BARKE 2	B WASH DY OF N R, S A	INGTON	DC C DAM E EIN, A	FFECTS T DROBO	IN A H	IGH IMP	F/G EDANCE	20/7 ETC (U)
_	40 A 40 A 108154	5											
						3 3	à St		ä.	<u>.</u>			
	END Date Fixed II -,811 DTIC												
			<u></u>										

Computational Study of Magnetic Dam Effects in a High Impedance Diode

Contraction of the second

2

ILE CON

R. J. BARKER AND SHYKE A. GOLDSTEIN

JAYCOR, Inc. Alexandria, VA 22304

A. T. DROBOT

Science Applications, Inc. McLean, VA: 22102

October 14, 1981

This manasch was sponsored in part by the Defense Nuclear Agency under Subject TVNQAXLACI 4, work unit 46, and work unit title "Ion Been Generation," and by the Department of Energy, Washington, DC.

() REPORT DUCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
REPORT NUMBER 2 GOVT ACCESSION NO	3 RECIPIENT'S CATALOG NUMBER
NRL Memorandum Rep 2,4642	2 4 5 4
TITLE (and Sublishe)	S TYPE OF REPORT & PERIOD COVERED
COMPUTATIONAL STUDY OF MAGNETIC DAM	Interim report on a continuing
EFFECTS IN A HIGH IMPEDANCE DIODE	NRL problem.
	6 PERFORMING ORG REPORT NUMBER
AUTHOR(#)	S CONTRACT OR GRANT NUMBER(*)
R.J. Barker , Shyke A. Goldstein A.T. Drobotz	11) 14 Ozt 81
S. PERFORMING ORGANIZATION NAME AND ADDRESS	10 PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Naval Research Laboratory	47-0875-01; ES-77-A-01-6021;
Washington, DC 20375	47-0879-01
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Department of Energy Defense Nuclear Agency	Uctober 14, 1981
Washington, DC 20545 Washington, DC 20305	40 (2) 41
14 MONITORING AGENCY NAME & ADDRESS(II dilterent from Controlling Office)	15. SECURITY CLASS (of this report)
14: NRL-MR- 4642	UNCLASSIFIED 15a. DECLASSIFICATION DOWNGRADING SCHEDULE
16 DISTRIBUTION STATEMENT (of this Report)	<u></u>
Approved for public release; distribution unlimited.	
T. DIST BIR. T. D.L. ST AT SUENT on the abarray and an Black 20. If different for	P. Panet)
17. DISTRIBUTION STATEMENT (of the abouted onlored in Black 20, if different ind 18. SUPPLEMENTARY NOTES *Present address: Jaycor Inc., Alexandria, VA 22304	an Report)
17. DISTRIBUTION STATEMENT of the aboutest entered in Black 20, it different fro 18. SUPPLEMENTARY NOTES *Present address: Jaycor Inc., Alexandria, VA 22304 †Present address: Science Applications, Inc., McLean VA	22102
7. DISTRIBUTION STATEMENT (of the aberres) entered in Block 20, it different fro • SUPPLEMENTARY NOTES *Present address: Jaycor Inc., Alexandria, VA 22304 †Present address: Science Applications, Inc., McLean VA	22102 (Continues)
17. DISTRIBUTION STATEMENT (of the observed on block 20, it different fro *Supplementary notes *Present address: Jaycor Inc., Alexandria, VA 22304 †Present address: Science Applications, Inc., McLean VA * KEY WORDS (Continue on reverse side if necessary and identify by block number)	22102 (Continues)
17. DISTRIBUTION STATEMENT (of the abetrest entered in Block 20, it different in *Present address: Jaycor Inc., Alexandria, VA 22304 †Present address: Science Applications, Inc., McLean VA 9. KEY WORDS (Continue on reverse side if necessary and identify by block number) Numerical simulation Intense ion beams	22102 (Continues)
 DISTRIBUTION STATEMENT (of the absiliant entered in Block 20, if different like *Present address: Jaycor Inc., Alexandria, VA 22304 *Present address: Science Applications, Inc., McLean VA *KEY WORDS (Continue on reverse side if necessary and identify by block number) Numerical simulation Intense ion beams ABSTRACT (Continue on reverse side if necessary and identify by block number) Computer simulations have been conducted to test for means for boosting the overall ion efficiency of high impusits of a cell located immediately behind the anode foil caxis which carries a current flowing in a direction opposit azimuthal magnetic field generated by the wire current, I the foil back into the A-K gap at higher radii where their 	the "magnetic dam" concept as a edance diodes. The "dam" con- containing a wire along its central te to that in the diode gap. The w, reflects the electrons crossing space charge can enhance ion

i

To Environ

ł

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

18. Supplementary Notes (Continued)

This research was sponsored in part by the Defense Nuclear Agency under Subtask T99QAXLA014, work unit 46 and work unit title "Ion Beam Generation" and by the Department of Energy, Washington, DC.

20. Abstract (Continued)

emission over relatively large areas. Significant increases in the ion current were observed for several values of I_w but a simultaneous increase in electron current prevented gains in overall ion efficiency. Instead, only decreased impedances were observed. The cause of this phenomenon is explained and indicates solutions which could benefit a wide range of future diode designs.

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

CONTENTS

.

I.	INTRODUCTION	1
II.	THEORY OF THE MAGNETIC "DAM"	3
Ш.	THE NUMERICAL SIMULATION	6
IV.	RESULTS	14
REF	ERENCES	30

COMPUTATIONAL STULY OF MAGNETIC DAM EFFECTS IN A HIGH IMPEDANCE DIODE

I. INTRODUCTION

The NRL Light Ion Fusion Program has experimentally demonstrated high efficiencies for the production of light ion beams using low impedance diodes. On Gamble II in 1-2 ohm operation well over 70% of the diode power is typically carried by the ions.^{1,2} Current and planned experiments call for the design and use of diodes on the high impedance pulsed power generators of Harry Diamond Lab's AURORA and Sandía National Lab's PBFA II modules. Since impedance matching is essential for efficient transfer of power from the machine to the diode, these new diodes must be designed for 4-20 ohm operation. Unfortunately, it has been experimentally determined that efficiencies of only 20-50% can be obtained in this operating regime using traditional axial diode configurations.³ The development of techniques for boosting these relatively low ion production efficiencies is today the subject of intense research and speculation. This paper reports on the results of one such theoretical effort. Although the specific diode design which was simulated did not achieve the desired boost of ion efficiency, an examination of its shortcomings clearly indicates both a cause as well as possible solutions. These observations bear on high impedance axial diodes in general and lend a new insight into their peculiarities which may eventually assist in a design breakthrough.

Specifically, the diode geometry under consideration here would be suitable for operation on AURORA. It is drawn to scale in Figure 1 with all significant dimensions given, as indicated, in centimeters. Although the latest NRL/AURORA ion diode has an anode stalk almost 25 cm in radius, its cathode shank remains about 5 cm in radius. The differences caused by modifications to the electric field beyond R = 7 cm are assumed to be minor, since they do not directly effect electron motion in the active anode-cathode(A-K) gap. The diode modeled was chosen for positive polarity operation. That is, the resultant ion beam would be traveling through the cathode shank in a direction away from the generator and pulse-forming line. The inner and outer radii of the vacuum feed line are 8.0 and 10.0 centimeters, respectively. The anode is a simple hollow cylinder with a wall one-half centimeter thick which is capped by two 4 mil. polyethylene foils separated by a one-quarter centimeter vacuum gap. It is important that the electron beam traveling through the cell behind the anode foil be charged and current neutralized. It is widely believed that a gas fill at several torr pressure could provide the assumed neutralization. A thin wire is located along the anode's central axis and is electrically connected to it via the inner foil. Current of arbitrary magnitude may be fed through this wire from an external source which is independent of the pulsed power generator. Such a current of I, amperes will create an azimuthal magnetic field behind the foil of

Manuscript submitted August 24, 1981.

Fig. 1 - A scale drawing of the magnetic dam diode. (All dimensions are in centimeters.)

magnitude $\frac{0.2I_W}{r}$ gauss. If sufficiently strong, this B_{θ} can bend the

trajectories of electrons entering the anode gas cell near r = 0 in such a way as to "reflect" them out of the anode foil again at a higher radius. This effective barrier against axial electron flow is the essence of the magnetic dam concept. It is seen as a possible mechanism for increasing the average lifetime of a typical electron in the anode-cathode (A-K) gap. This should increase electron space charge for a given electron current, increasing the net ion emission.

In the given diode, the A-K gap was chosen to be one centimeter to allow approximately 6-8 ohm impedance at the fixed 4 megavolts applied. Finally, the hollow cathode has an outer radius of 5.0 cm. with 1.0 cm. shank thickness. A 4 mil polyethylene foil is recessed 0.6 cm into the shank to enclose a low-pressure gas fill similar to that of the anode and serving a similar charge/current neutralization role for the emerging ion beam. This cathode gas cell plays no part whatsoever in this simulation.

The analysis of this diode begins in Section II with a theoretical discussion of the "magnetic dam" principle. This will explain the motivation for conducting the simulation. Section III will transition into the actual numerics of the modeling, examining the details of the code that was employed. Specific approximations and assumptions used in the model will be pointed out. This report will conclude in the fourth section with a presentation of the simulation results complete with suggestions for follow-on work.

II. THEORY OF THE MAGNETIC "DAM"

The treatment of electron trajectories in an azimuthal magnetic field and in the absence of an electric field may be derived from an analysis of ion orbits due to Goldstein and Ottinger.⁴ The particle orbits may be determined from a simple conservation of energy principle. Consider an electron traveling at velocity, \vec{v} , impinging on the anode foil at some angle, \hat{e} , and entering the anode gas cell at radius, R_0 , as shown in Figure 2. In the gas cell, it is assumed to be acted upon only by the azimuthal magnetic field there. Its energy must therefore remain constant and

$$\gamma = (1 - \frac{v^2}{c^2})^{-\frac{1}{2}} = \text{constant},.$$
 (1)

where

$$v^2 = v_r^2 + v_z^2$$
 (2)

For an electron which has just crossed a cathode-anode gap with electric potential difference, V, in megavolts, it may be further written that

$$\gamma = 1 + \left| \frac{V}{0.511} \right|. \tag{3}$$

From Figure 2,

$$\mathbf{v}_{\mathbf{z}e} = \mathbf{v} \, \sin\theta. \tag{4}$$

Combining Eqs. (1), (3), and (4) yields

$$v_{zo} = c \sin \theta \sqrt[4]{1 - \left(\frac{0.511}{v+0.511}\right)^2}$$
 (5)

Furthermore, Eqs. (2) and (4) give a direct expression for the time dependence of the electron's radial velocity in the gas cell,

$$v_r(t) = \frac{1}{2} \sqrt{v_{z_0}^2 \sin^{-2} \theta - v_z^2(t)}$$
 (6)

The force acting upon the electron is given by the relativistic Lorentz Law to be

$$\gamma m_0 \frac{dv_z}{dt} = -\frac{e}{c} \overrightarrow{v}_r \times \overrightarrow{B}_{\theta}(r) = -\frac{e}{c} \frac{dr}{dt} B_{\theta}(r) .$$
 (7)

where m_0 is the electron rest mass. This equation may be rearranged and integrated from the foil entry point $(0, R_0, 0)$ out to some point along the electron's trajectory in the cell to yield

$$\mathbf{v}_{z}(t) - \mathbf{v}_{zo} = \frac{-e}{m_{o}c\gamma} \int_{P_{o}}^{r} \mathbf{B}_{\theta}(r) dr . \qquad (8)$$

As stated previously, the magnetic field in the gas cell generated by a current, I_w , flowing through the axial wire is simply $B_{\theta}(r) = 0.2 I_w/r$. Equation (8) may thus be rewritten as

$$\mathbf{v}_{z} = \cdot \mathbf{v}_{zo} \left(1 - \chi \left(r \right) \right)$$
(9)

where

$$\chi(\mathbf{r}) \equiv \frac{0.2 \, \mathrm{e}}{\mathrm{m}_{\mathrm{o}} \, \mathrm{c} \, \mathrm{v}_{\mathrm{zo}} \, \mathrm{\gamma}} \, \mathrm{I}_{\mathrm{W}} \, \ln \frac{\mathrm{r}}{\mathrm{R}_{\mathrm{o}}} \tag{10}$$

with I_w expressed in amperes and all other quantities in c.g.s. units. The orbit expression linking r explicitly to z is simply the ratio of the respective velocity components given in Eqs. (6) and (9),

$$\frac{dr}{dz} = \frac{v_r}{v_z} = \frac{\pm \sqrt{\sin^{-2} (\theta - 1 + \chi(r))(2 - \chi(r))}}{1 - \chi(r)}$$
(11)

The integration of Eq. (11) yields the exact trajectory of an electron traversing the gas-filled anode for specific values of θ , V, I_W , and R_0 .

It is instructive to calculate sample orbits for various combinations of parameters. In all cases, V is fixed at 4.0 megavolts in order to correspond to realistic AURORA ion diode operations. Useful choices for I_{u} can be estimated by a rather simple calculation. Consider a 4 MeV electron with an entrance angle of 90° beginning its gas cell trajectory at a radius of 1.0 centimeter. Assume that it remains in a uniform azimuthal magnetic field of magnitude equal to that found at the exact center of its circular gyration in the actual gas cell. Therefore, for a desired exit radius of 5.0 centimeters, the value of B_{θ} (r) at r = 3.0 cm. is taken as a constant over the entire electron trajectory. In order to generate the field strength needed for a 2.0 centimeter relativistic gyroradius, a wire current of 63.75 kiloamps is required. This reasoning leads to the following selection of values for I_{w} to be tested: 65 kA, 130 kA, and 300 kA.

For the first set of sample orbits, an entrance angle of $\theta = 90^{\circ}$ is chosen. This choice leads to an orbit equation given by

$$\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}z} = \pm \sqrt{\frac{\chi(\mathbf{r})(2-\chi(\mathbf{r}))}{1-\chi(\mathbf{r})}}$$
(12)

The trajectories for $R_0 = 1.0$ and $R_0 = 2.0$ cm. are plotted in Figure 3. It can be seen that $I_W = 65$ kA generates too weak a field to reflect electrons with R_0 greater than 1.0 cm. back into the A-K gap. The orbit for $R_0 = 1.0$ cm is marginal. On the other hand, $I_W = 130$ kA produces the desired effect for R_0 less than 2.0 cm and the $I_W = 300$ kA case is even better.

In a realistic pinch reflex diode configuration such as that being modeled, one expects to see a focused electron flow in which electrons magnetically self-pinch to smaller radii as they cross the gap. It is therefore important to attempt a similar orbit calculation for non-normally incident electrons. A reasonably straightforward, yet probably illustrative example would be electrons entering the gas cell at 45° . This choice of θ reduces Equation (11) to

$$\frac{dr}{dz} = \frac{\pm \sqrt{1 + \chi(r) (2 - \chi(r))}}{1 - \chi(r)}$$
(13)

A new set of sample orbits is calculated and shown in Figure 4.

Comparison of the two sets of plots reveals immediately that nonperpendicular injection leads to electrons exiting the gas cell at significantly lower radii. This is reasonable considering the longer period of time a given electron spends in regions of relatively higher magnetic field strength. Their orbits consequently experience greater londing. The overall effect for all but the 65 kA cases is the satisfactory reflection of all electrons with $R_0 \leq 2.0$ cm back into the anode-cathode gap where they can enhance ion emission.

III. THE NUMERICAL SIMULATION

A. The Simulation Code

The computer code utilized in these studies is a 2-D version of the 2½-D DIODE2D⁵ particle-in-cell (P.I.C.) code. Inhomogeneities are allowed in the radial (r) and axial (z) spatial dimensions. Complete azimuthal symmetry is assumed. In addition , the r- and z- momentum components are retained. The "particles" in this model are axially-centered rings of charge. In reality they are macroparticles carrying many times an elementary charge

but retaining the physical charge-to-mass ratios of the protons and electrons which they represent. Area weighting (i.e., linear interpolation) is used to couple these charges with the electric and magnetic fields calculated over a fixed set of grid-points in the region of interest. The fields thus interpolated to the particle positions act on these charge-current rings by way of the relativistic Lorentz force equation. The field treatment is electrostatic. In this sense the code does not perform a true "simulation" since the time-dependent equations are not observed. Rather the treatment is "quasistatic". Equillibrium solutions to various diode geometries are sought. The "timesteps" which appear in the code are actually snapshots of the system while it seeks to relax toward its steady-state configuration. In order to determine the electric field within the diode region, particle charge densities are distributed over a fixed grid and the discrete Poisson's equation is solved.⁶ The code permits irregular conducting boundaries inside the computational region. The treatment of such internal boundaries entails the use of a "capacitance matrix". The internal surfaces thus created are held at predetermined electric potential values. Direct radial integration of the axial current densities over the mesh yields the azimuthal magnetic field via Ampere's Law. The outer radial boundary of the diode region may be either conducting or free-space. The electrostatic potential, φ , is set constant along all conducting boundaries. Along radial free-space boundaries, φ is graded logarithmically and along axial ones, linearly.

At the start of a typical computer run, the computational diode region is a complete vacuum devoid of particles. The electric potential is pre-set along the entire boundary as well as along all internal conducting surfaces. The emission of the ions is permitted anywhere along fixed regions of the anode surface. Electrons are emitted along the entire cathode, including the inner and outer shank surfaces. The value of the perpendicular electric field at a given emission point determines the total charge (i.e., number of particles) that will be emitted there. At the beginning of a timestep, the electric field at a surface specifies the net charge density on the surface via Gauss' Law. The surface integral of this density over a cell width around a given grid point yields the net charge which is emitted there for that timestep. Prior to the actual particle-pushing the electric field is recalculated taking into account the newly emitted charge.

All particles are then pushed according to the relativistic Lorentz force law using the area weighted electric and magnetic field values interpolated at the particle position from the four nearest grid points. After pushing in each timestep a position check is performed on each particle to determine if it is inside a conductor or outside the mesh boundaries. If so, the particle is appropriately absorbed and so recorded On the other hand if it is an electron in an anode foil, then it is passed to a scattering subroutine which employs a one-step Monte Carlo algorithm to calculate energy loss and deflection. Upon completion of this sorting process, the charge and current density associated with each unabsorbed particle is distributed over the four nearest grid points using the same linear interpolation scheme in reverse. This yields a complete array of values for the charge density, ρ , and the current density, J $_{\rm Z}$, over the computational mesh. Poisson solving these arrays yields φ from which E_p and E_z are calculated. The azimuthal component of \overline{B} is obtained through direct integration of J, over the grid. Quantities of interest are then extracted and output via diacnostic

subroutines. The code then cycles to the next timestep for particle emission.

Finally, it should be noted that the numerics of the particle pushing as well as the potential solving has been completely "vectorized". Thus, the momentum, position, and fiel.³ components associated with the entire ensemble of particles are treated as macro-vector quantities. Arithmetic operations performed with them are accomplished in a completely vector-array format. This property of the code permits efficient running times on the most advance scientific computers. (Of course, the interpolation of \vec{P} , \vec{J} , \vec{E} , and \vec{B} values between particle positions and grid points requires random accessing of array points and this process cannot be vectorized.)

B. The Computational Experiment

At the outset of this simulation, as with any other, great care was taken to minimize the numerical complexity/cost while preserving all aspects of the essential physics to be treated in the problem. It was this desire to minimize expense that motivated the use of a 2-D version of DIODECD rather than its standard 24-D form. (The standard version allows for solution of self B_r and B_r field components which are never generated here.) The second most significant economization involved the minimization of the physical size of the computational region. It was deemed uneconomical as well as physically unimportant to fill the entire diode cavity with the numerical grid. As can be seen from Figure 1, that would result in a mesh measuring about six centimeters axially by ten radially and would waste computational effort by including space devoid of particles. Instead, the axial extent of the grid was bounded by the plane of the cathode foil and by the inner anode foil. Similarly, its radial limit was set as the inner radius of the anode cylinder. The only obstacle to this reduction of grid extent was the free-space part of the new, artificial boundary. DIODE2D's field solving algorithm requires fixed potential values along all the boundaries. For the full diode with its conducting walls this is, of course, no problem. Even the open segment of the vacuum feed line entrance is trivial, since a simple logarithmic potential grading can be used there (assuming the presence of no particles there). The setting of potential values along the new, ad hoc boundaries cannot be accomplished intuitively. Instead, a two-step process is employed. First, a capacitance matrix field-solve is carried out for the entire diode cavity as pictured in Figure 5. It is assumed that no "sources" (i.e. charges or currents) are present anywhere. Then the new "boundaries" are located as indicated by the dotted lines, and the free-space potential values are noted. Finally the new computational region is set up with those values imposed along the appropriate edges. As long as no particles stray too "near" those ends, ϕ should remain fairly constant there. In any case, the bulk ion and electron flow should be too "remote" to feel any peripheral abnormalities. The vacuum potential solution for the actual simulation grid is shown in Figure 6. Note that the axial scaling is much finer than the radial in order to more fully appreciate the field profiles.

The final computational grid is depicted in Figure 7. It is spanned by 66 data cells in the axial dimension and 77 radially. Poisson-solving is accomplished on the interior 64 X 75 mesh, leaving a monolayer of "guard" cells along the boundary. Simple Gaussian field emission of electrons is permitted all along the heavy-lined surfaces of the cathode as shown in the

Fig. 5 — Vacuum equipotential plot for the entire diode

Fig. 6 - Vacuum equipotential plot for the restricted computational region

figure. The same is true for ion emission along the outer surface of the anode foil. Note that no electron emission is allowed in either the region around point (2,39) of the inner cathode shank surface or along the rear of the outer shank. Electric field values are expected to be too imprecise there. The timestep was fixed at 1.5×10^{-12} second for most of the runs presented although smaller timesteps were used near steady state to test the stability of the equilibria. Another interesting point is the numerical "thickness" of the outer anode foil. Although physically treated as 4.0 mil thick polyethelene by DIODE2D's electron scattering algorithm, this foil spans three full cells spatially. This is an artifact to ensure that no electron will be able to traverse the foil in a single timestep. Since no fields act on particles inside the foil, this false thickness does not impact on the physics of the simulation itself. Among the most important of the code diagnostics are a complete record of time-averaged emission and absorption profiles for each of the surfaces, sample particle position plots, and electrostatic equipotential plots.

The numerical implementation of the physics of the magnetic dam involved non-trivial manipulation and reorganization of the standard DIODE2D algorithms. The region inside the gas cell, behind the inner anode foil was designed to be completely free of all electric and magnetic fields except for the azimuthal B-field due to the current-carrying wire along the axis. Therefore, no solutions of Poisson's equation nor radial integrations of Ampere's law were necessary there. Only $B_{\theta} = 0.2 I_{w}/r$ need be enforced. Thus, no extension of the field-solving and charge/current apportionment mesh was called for. Instead, the standard electron-absorbing character of the rightmost boundary was changed to complete transparency to electron flow. The particle accounting routines in the simulation were charged, such that an electron hitting that edge was not removed from the "active" particle list. Instead, it was given a special "label" which told the particle pushing subroutine to act on it only with a B_{θ} appropriate to its radial displacement, r, and to the I_{w} chosen for the wire current.

IV. RESULTS

In the initial simulation runs, the diode voltage was set at four megavolts and electron emission was turned on all along those cathode surfaces indicated in Figure 7. To limit the diode impedance, proton emission along the anode foil was not permitted beyond a radius of 5.0 centimeters. The early development of electron and ion flow patterns proceeded as illustrated in Figures 8a and 8b. In each plot of sample particle positions, note that the axial and radial dimension scales are not the same. Each frame measures 7.5 cm radially and just under two centimeters axially. The lower border of each frame is the diode centerline. In looking at these pictures, bear in mind that these are glimpses of a quasi-static simulation of particle flows trying to relax into a steady state. They do not represent the actual evolution of the physical system. Only the final picture for each set of parameters may coincide with experimentally realizable diode operation. It is those final steady-state pictures which comprise the core of the simulation results. One other thing to bear in mind is that in a physical diode, ion emission is not generally initiated simultaneously with electron emission. Rather, time integrated electron flow to the anode foil deposits wither sufficient amounts of energy over the impact regions to cause vaporization

Fig. 8a – Early time evolution of the $I_w = 0$ case

Fig. 8b – Late time evolution of the $I_w = 0$ case

and ionization or sufficient amounts of charge to cause surface flashover and ionization. In either case, the anode plasma thus formed acts as the source for protons in the diode.

Keeping in mind that only the equilibrium state will be "correct" it is nevertheless instructive to follow the sequence of events in Figure 8. At T = 200 At the newly emitted ions have bearly moved. The electron flow governed by its strong self-fields takes the form of two distinct streams. The numerical restriction of particle emission strictly to data cell centers allow for streamline tracing in all but the turbulent regions. In this farfrom-steady condition, the electron current emitted is about 580 kiloamps, while that collected is a mere 240 kA. Emitted ion current is erratic, but appears to be around 150 kA. At T=400 At, the ions have advanced significantly with those at lower radii making up the vanguard due to the electric field enhanced by the focused electron charge near R = 0 at the anode. Attracted by the previously unneutralized ion space charge, the electron flow has unified into a single, neatly reflexing stream. (Note that in this run, the inner anode foil which forms the rightmost boundary of each frame is taken to be an electron-absorbing, solid conductor.) Notice that the regions or densest electron space charge at lower radii correspond to the space occupied by the advancing ion front. The net emitted and collected electron currents are 600 and 300 kiloamps, respectively, while ion emission has risen to about 350 kA. Turning to Figure 8b, T= 600 At reveals the ion front racing along near its full velocity. It is just about to make contact with face of the cathode shank. Two important characteristics of the electron flow deserve mention: 1) this flow is strongly pinched toward the center of the anode without much apparent reflexing (very typical of high impedance diodes), and 2) most of the electron space-charge is concentrated in regions containing ion charge. At this time $(I_e)_{emit} = 600$ kA, $(I_e)_{coll} = 300$ kA, and $(I_i)_{emit} = 230$ kA. Finally, by T = 800 Δt , the near-equilibrium flow has set in. Electrons completely fill the inner diode cavity. The strongly pinched electron flow remains while the ion streams are fairly uniform. A word of caution -- the sparsely dotted area in the ion picture is an artifact of the non-random particle plotter; it does not translate to an actual absence of ions there. This configuration was allowed to continue for additional 200 timesteps. At that point (see Figure 9), the equillibrium currents were I_e = 326 kA and I_i = 287 kA. This total current of 613 kiloamps translated to an impedance of 6.5 Ω which was too low for our desired operating regime.

In order to correct this, ion emission from the anode foil was "turned off" opposite the cathode shank. This could be accomplished experimentally by overlaying the anode foil with a metal foil there. Protons were then only injected from R = 0 out to the last cell just below the shank inner radius, R = 4.0 cm. The system evolved for another 1000 timesteps to the flow pattern depicted in Figure 10. Very little change from the electron flow of Figure 9 can be detected. At this stage, note that the inner anode foil is still taken to be a solid, electron-absorbing surface. The new quasi-static currents were $I_e = 264$ kA and $I_i = 214$ kA, yielding a net impedance of 8.4 Ω for the diode. This was chosen as the reference steadystate against which the magnetic dam results are to be compared.

Fig. 9 – Steady-state particle positions for I $_{\rm w}$ = 0

Fig. 10 – Steady-state particle positions for $I_w = 0$ with restricted ion emission

Retaining the same voltage, geometry and emission surfaces as those used for the 8.4 Ω reference case, the magnetic dam was then "turned on" by sending 65 kA through its central wire. The new particle positions for T= 2400 Δ t are shown in Figure 11. There are two things immediately apparent: first, the radial deflection of the electron flow due to the gas cell is unacceptably large as might have been predicted from Figures 3 and 4 and, second, an improved particle position plotter is required in which the z range is extended into the "gas cell" so that the electrons there can be plotted. To remedy the first problem, I_W was doubled to 130 kiloamps. In order to alleviate the second, the axial width of the plotting page was increased from 64 Δ Z to 100 Δ Z = 3.0 centimeters. Before moving on to this new case, it was recorded that the <u>quasi</u>-static currents were I_p = 309 kA and I_1 = 232.5 kA. A true steady-state had not been reached, but it was decided not to invest additional funds to pursue such a non-promising run.

In addition to the doubling of I_W , the double anode foil configuration was eliminated for the remainder of the simulation runs. Referring back to Figure 1, the inner foil to which the wire was originally attached has now been completely removed. The quarter-centimeter vacuum gap is now treated numerically the same as the rest of the gas cell with the wire now running all the way to the outer anode foil. To accomplish this change in physical set-up required only the shifting of the electron "flag" setting boundary from $Z = 64 \ \Delta Z$ to $Z = 56 \ \Delta Z$ (See discussion at end of Section III). The original double-foil configuration probably contributed little to the magnetic dam physics but only served the practical experimental purpose of retaining a solid I_W current path for use after vaporization of the outer, proton-source anode foil.

As already stated, the first run using this new configuration was carried out for the case of $I_w \approx 130$ kiloamperes. Snapshots of the equilibrium electron and ion flows are shown in Figure 12. It appears that significant electron flow still extends beyond the right boundary, 1.32 centimeters from the anode foil. Referring back to Figure 4, this should not be surprising. Electron trajectories beginning at R = 2.0 cm at 45° extend almost 1.9 cm. into the gas cell. The even steeper angle injection suggested by the cathode-to-anode electron streaming should easily account for even wider ranging electrons at lower radii. One particularly disappointing aspect of the picture is the configuration of the electron charge density at the anode. An enhanced electron cloud can clearly be seen behind the anode foil, in the gas cell. Only a very thin electron layer appears in front of the foil where it is needed to enhance the ion emission. This observation is borne out in the equilibrium diode currents of I_{e} = 330 kA and I_{i} = 244 kA. The ion current increase is modest over the $I_w = 0$ case. Much more significant, however, is the even greater increase in the electron current. The net result has been a decrease in diode impedance of over one ohm while the ion production efficiency has actually dropped slightly. This is a crucial point which will be discussed later.

One obstacle that may be impeding the increase of ion efficiency is the wide disparity between the strengths of the oppositely directed B_{Θ} fields on either side of the anode foil. These fields are proportional to the respective axial currents which, inside R=5.0 cm, are -574 kA on the left-hand side, and +130 kA on the right-hand side. Clearly, any electron

Fig. $12 - \text{Steady-state particle positions for } I_w = 130 \text{ kA}$

reflected back into the A-K gap will be quickly turned back into the gas cell. It "r" position will also be increased, resulting in a net outward radial electron flow. Thus, judging from the orbits of Figure 3 and 4, a typical electron might be bent back into the anode-cathode gap once below a radius of four centimeters. There, it will see a reverse B_{Θ} approximately three times as great as that in the dam gas cell. After a gap drift time relatively short in comparison to that in the gas, the electron will be reflected back through the foil into a B_{Θ} considerably weaker than that it had experienced in its previous trek through the gas. Thus, this "relative dwell time" problem snowballs with increasing radius as the gas B_{Θ} decreases, while the gap B_{Θ} increases. Reflected electrons spend progressively less a fraction of their time in the gap and progressively more in the gas at larger values of "r" where the larger electron gap dwell times would be felt over larger ion emission areas. In an attempt to redress this imbalance, a larger value of I_{W} was tested.

Although it would probably be somewhat difficult to accomplish experimentally, the current in the anode cell wire was boosted to 300 kA and the simulation was allowed to continue. A steady state was arrived at about T = 4800 At. The respective new flow patterns are presented in Figure 13. It would appear that an almost symmetric electron space-charge now hovers around the anode foil above about 1.5 centimeters radius. However, a large fraction of the electrons still penetrate a centimeter or more into the gas cell before reflection. This is in agreement with the predictions of Figure 4. The new currents are $I_{\rm e}$ = 338 kA and $I_{\rm i}$ = 256.5 kA yielding an even lower impedance and only slightly greater ion efficiency than those for the $I_{\rm w}$ = 130 kA case. The problem seems to be essentially the same as that for the previous case. An additional difficulty is suggested by the serious distortion of the mainstream shank electron flow away from the upper anode foil. This could easily cause degradation of the resultant ion emission.

All of these numerical results are summarized in Table 1. In this table, the term "ion production efficiency" is simply defined as $I_{\rm ion}/I_{\rm diode}$. Given the fixed voltage of the device, this ratio represents that fraction of the net diode power that has been imparted to the ions. The final two items in the tables are the total specie charges, Q, present in the diode/gas cell system. When these quantities have only small fluctuations during a simulation, one knows that the diode has reached an equilibrium state. Note the jump in $Q_{\rm e}$ when electrons are allowed to fill the gas cell for the $I_{\rm W} = 65$ kA case. The steady reduction of $Q_{\rm e}$ in the subsequent two cases is indicative of the decreased volume accessible to the electrons in their more constrained excursions into the gas cell. Both $I_{\rm i}$ and $Q_{\rm i}$ steadily increase for increasing $I_{\rm W}$, establishing the effectiveness of the dam at enhancing ion emission. The disappointing stagnation of the ion efficiency, combined with the consistent drop in diode impedance, however, indicates a proportional enhancement of electron emission.

The modest nature of the ion emission enhancement is obviated by Figure 14. For the higher values of I_W , otherwise significant gains in J_1 on some regions of the anode foil are offset by the strong suppression of emission in other regions. This suppression is probably due to the deflection of the main cathode-shank-to-anode electron stream away from certain areas of the anode foil face. Neverthcless, there is a net gain in ion current. Thus, the true

I _{wire} (kA)	0	65	130	300
Simulation Timestep	2000	2400	3600	4800
I _{electron} (kA)	263.5	309	330	338
I _{ion} (kA)	214	232.5	244	256.5
I _{dicde} (kA)	477.5	541.5	574	594.5
Ion Efficieny	0.448	0.429	0.425	0.431
Diode Impedence	8.4	7.4	7.0	6.7
Net Electron Charge (kilostatcoulombs)	-613	-898	-879	-782
Net Ion Charge (kilostatcoulombs)	+498	+539	+593	+615

Table 1

ł

.......

obstacle to higher ion efficiency is the steady, net gain in electron current which results in a mild "bootstrapping"⁷ of the total diode current with increasing I_w .

Some insight into the cause of this phenomenon may be derived from a comparision of the respective equilibrium equipotential plots for each of the four cases. These are presented in Figure 15. The plot for $I_W = 65$ is something of an anamoly. This is understandable, since it has not yet reached a true steady state. The other three plots, however, show a definite migration of the potential contours toward the face of the cathode shank. This corresponds to an increased emission there. Electron emission also increased along the cathode foil for larger values of I_W . Interestingly enough, the inner and outer shank surfaces showed a decrease in emitted electron current, perhaps due to the stronger insulating B_{Θ} fields which accompanied the larger net diode currents.

In order to propose more meaningful solutions, it is first necessary to more closely isolate the source of the excess I_e . For that purpose, the radial profiles of emitted electron current densities along the cathode shank face are plotted in Figure 16. Above 4.7 centimeters, the curves are virtually identical. On the lower half of the face, however the difference is marked. This agrees with the electric field enhancement there suggested in Figure 15. In fact, a full 75% of each increase is accounted for by the increase of I_e from the shank face. Specifically, $(I_e)_{total}$ increased 66.5 kA between the $I_W = 0$ and $I_W = 130$ kA cases; the shank face electron emission had increased by 49 kA. The total increase between $I_W = 130$ kA and $I_W = 300$ kA amounted to only 8kA of electron current; 6 kA of this difference can be attributed to the shank face. Simply stated, it appears that enhanced ion emission at higher radii increases the positive ion space charge in the A-K gap near the shank face sufficiently to enhance electron emission there. This, in turn, prohibited any increase in net ion production efficiency.

In conclusion, therefore, the dam diode pictured in Figure 1 does not appear to be effective in boosting ion efficiency in its present form. It does produce enhanced ion current but does not simultaneously reduce the diode electron current. A large part of the blame rests on the rapid outward radial migration of electrons along the anode foil and on the large disparity between typical electron lifetimes in the gas cell versus those in the map. This limits the number of electrons available in the upper A-K gap to neutralize the positive space charge arising there due to the increased ion flow. Hence electric fields and electron emission along the lower face of the cathode shank are made larger.

A modification which could possibly rectify this situation would be to invert the radial dependence of the magnetic field strength in the anode gas cell. If it were directly rather than inversely proportional to radius, then electron gyroradii would progressively decrease as they moved outward, increasing the "dwell time" of electron space charge in the crucial region between R = 3.0 and R = 5.0 centimeters. That would accomplish both an enhancement of ion emission over relatively large surface areas of the anode foil and also a probable suppression of electron emission along the cathode sheak face located only one centimeter away. A possible alternative, and one easier to realize experimentally, is to absorb all electrons hitting the anode

Fig. 16 - Radial profiles of electron emission along face of cathode shank

foil above, say, 3.0 centimeters while leaving the dam field inversely proportional to radius. This reduces the electron space charge near the anode foil above r=3, reducing the ion emission above r=3, reducing ion space charge in the gap above r=3, reducing electric field strengths at the cathode shank face, reducing electron emission there. This mandates an increase of this diode's impedance for a fixed gap and voltage. Both of the above modifications will be simulated in future computational experiments to test their ability to boost the ion production efficiency.

REFERENCES

- 1. S. J. Stephanakis, D. Mosher, Shyke A. Goldstein, W. F. Oliphant, Roswell Lee, and G. Cooperstein, Bull. Am. Phys. Soc. 22, 1130 (1977).
- S. J. Stephanakis, J. R. Boller, G. Cooperstein, Shyke A. Goldstein, D. D. Hinshelwood, D. Mosher, W. F. Oliphant, F. Sandel, and F. C. Young, Bull. Am. Phys. Soc. 23, 907 (1978).
- S. J. Stephanakis, J. R. Boller, G. Cooperstein, Shyke A Goldstein, D. D. Hinshelwood, D. Mosher, W. F. Oliphant, F. C. Young, R. D. Genuario, and J. E. Maenchen, Bull. Am. Phys. Soc. 24, 1031 (1979).
- 4. S. A. Goldstein and P. F. Ottinger, JAYCOR Report No. TPD200-80-003-FR, (1980).
- 5. R. J. Barker, A. T. Drobot, Roswell Lee, and S. A. Goldstein, <u>Proc. 9th</u> Conference on the Numerical Simulation of Plasmas, Evanston, Ill. (1980).
- 6. R. J. Barker, Banach Center Publications 3, 255, Warsaw, Poland (1975).
- 7. R. J. Barker, S. A. Goldstein, and R. E. Lee, IEEE Int. Conf. on Plasma Science, Montreal, Canada (1979).

DISTRIBUTION LIST

Director Defense Intelligence Agency Washington, DC 20301	,	CODY	Commander Harry Diamond Laboratories 2800 Powder Mill Road Adelphi, MD 20783	
Attn: Dilli Robert I. Rubenstein	4	cupy	(CNWDI-INNER ENVELOPE: ATTN: DELHD-RBH)	
Defense Advanced Research Project Agency 1400 wilson Blvd. Arlington, VA 22209 Attn: J. Bayless	1	сору	Attn: DELHD-NP DELHD-RCC J. A. Rosado DRRDD-RBH P. A. Caldwell DRRDD-RBH D. Schallhorn DRXDD-RBH D. Schallhorn DRXDD-FI Tech Lib. S. grayoill	1 copy 1 copy 1 copy 1 copy 1 copy 1 copy 1 copy
Director				
Washington, DC 20305			Commander Picatinny Arsenal Dover, NJ 07801	
Attn: FUPR STVL TISI Archives	1	сору сору сору	Attn: SMUPA ND-N-E	1 сору
TITL Tech. Library J. Z. Farber (RAEV) R. L. Gullickson (RAEV)	3 1 1	copies copy copy	U. S. Air Force Office of Scientific Resea Physics Directorate Bolling A.F.B., DC 20332	rch
Defense Technical Information Center Cameron Station 5010 Duke Street Alexandria, VA 22314			Attn· A. K. Hyder M. A. Stroscio	1 сору 1 сору
Attn: T. C.	12	copies	Commander U. S. Army Missile Command Redstone Arsenal, AK - 35809	
Under Sec'y of Defense for RSCH and ENGRG Department of Defense Washington, DC 20301			Attn: Redstone Scientific Information CTR DRCPM-PM-PE-EA	1 сору
Attn: S&SS(OS)	1	copy		
			Commanger 11 Semu Suclean Agency	
Chief Livermore Division Fld Command DNA Lawrence National Laboratory P. O. Box SO8			7500 Backlick Road Building 1973 Springthela, 7A 22150	
Livermore, CA 94550			Attn: ATUN-W	1 сору
Attn: FCPRL	1	copy		
National Technical Information Service U.S. Department of Commerce			Lommander U. S. Army Test and Evaluation COMD Aberdeen Proving Ground, MD 21005	1
Springfield, VA 22161	24	copies	ALTH: URLIGEC	1 сору
Commander BMD System Command D 1 Roy 1500			Commander Naval Electronic Systems CMD HQS Washington, DC - 20360	
Huntsville, AL 35807			Attn: Code 5032	1 сору
Attn: SSC-TEN	1	copy	Commany to Otficer	
DEP Chief of Staff for RSCH DEV & ACQ Department of the Army Wasnington, DC 20310			Naval Intelligence Support Center 4301 Suitland Road - Building 5 Washington, DC 20390	
Attn: DAMA-CSM-N	1	copy	Attn: NISC-45	1 сору

....

Naval Research Laboratory Addressee: Attn: Name/Code Code 2628 - TIC-Distribution Code 4020 - J. Boris Code 6682 - D. Nagel	25 copies 1 copy 1 copy	SAMSO/DY Post Office Box 92960 Worldway Postal Center Los Angeles, CA 90009 (Technology)	
Code 4700 - T. Coffey Code 4707 - J. Davis Code 4730 - S. Bodner Code 4740 - V. Granatstein Code 4740 - V. Granatstein Code 4760 - B. Robson Code 4761 - C. Kapetanakos Code 4770 - Branch Head Code 4770 - E. Koung	26 copies 1 copy 1 copy 1 copy 1 copy 1 copy 10 copies 1 copy	Attn: DYS SAMSO/IN Post Office Box 92960 Worldway Postal Center Los Angeles, CA 90009	1 сору
Code 4770 - S. Stephanakis Code 4771 - D. Mosher Code 4773 - G. Cooperstein Code 4790 - D. Colombant Code 4790 - I. Haber Code 4790 - M. Lampe	1 copy 10 copies 10 copies 1 copy 1 copy 1 copy	Attn: IND MAJ D. S. Muskin SAMSO/MN Norton AFB, CA 92409 (Minuteman)	1 сору
Code 4770 - R. Barker (Jaycor) Code 4770 - S. Goldstein (Jaycor) Code 4770 - R. Meger (Jaycor) Code 4770 - P. Ottinger (Jaycor) Code 4770 - F. Sandel (Jaycor) Code 4770 - A. Drobot (SAI)	1 copy 1 copy 1 copy 1 copy 1 copy 1 copy 1 copy	Attn: MNNH SAMSO/SK Post Office Box 92960 Honidupu Postal Conter	1 сору
Officer-in-Charge Naval Surface Weapons Center White Oak, Silver Spring, MD 20910		Norldway Postal Center Los Angeles, CA 90009 (Space Comm Systems) Attn: SKF P. H. Stadler	1 сору
Attn: Code WR43 Code WA501 - Navy Nuc Prgms Off	1 сору 1 сору	U. S. Department of Energy Division of Inertial Fusion Washington, DC 20545	
Chief of Naval Operations Navy Department Washington, DC 20350		Attn: G. Canavan T. F. Godlove S. L. Kahalas	1 copy 1 copy 1 copy
Attn: R. A. Blaise 604C4	1 сору	R. L. Schriever	1 сору
Commander Navai Weapons Center China Lake, CA 93555		Argonne National Laboratory 9700 South Cass Avenue Argonne, Illinois 60439	
Attn: Code 533 Tech Lib.	1 сору	Attn: G. R. Magelssen R. J. Martin	1 сору 1 сору
AF Weapons Laboratory, AFSC Kirtland AFB, NM 87117		Brookhaven National Laboratory Upton, NY 11973	
Attn: CA ELC NT	1 copy 1 copy 1 copy 1 copy	Attn: A. F. Maschke	1 сору
DYP J. Darrah W.L. Baker	I сору 1 сору 1 сору 1 сору	Lawrence Berkley Laboratory Berkeley, CA 94720 Attn: D. Keefe	1 сору
HQ USAF/RD		Lawrence Livermore National Laboratory	
Washington, DC 20330 Attn: RDOSM	1 copy	P. O. Box SO8 Livermore, CA 94550	
Director	* •	Attn: L-18 L-153	1 сору 1 сору
Joint Strat TGT Flanning Staff JCS OFFUTT AFB Omana NB 68113		R. O. Bangerter R. J. Briggs E. P. Lee	1 CODY 1 CODY 1 CODY
Attn: JSAS	1 сору	J. H. Nuckolls S. S. Yu Tech Info Dept. L-3	1 copy 1 copy 1 copy

Los Alamos National Laboratory P. O. Box 1663 Los Alamos, NM 87545		EG&G, Inc. Albuquerque Division P. O. Box 10218 Albuquerque, NM 87114	
Attn: D. 8. Henderson R. 8. Perkins L. E. Thode	1 сору 1 сору 1 сору	Attn: Technical Library	1 сору
National Science Foundation Mail Stop 19 Washington, DC 20550		Ford Aerospace & Communications Operation Ford & Jamporee Roads Newport Beach, CA 92663 (Formerly Aeronutronic Ford Corporation)	s
Attn: D. Berley	1 сору	Attn: Tech Info Section	1 сору
Sandia National Laboratories P. O. Box 5800 Albuquerque, NM 87185		General Electric Company Space Division Valley Forge Space Center Goddard Blvd., King of Prussia P. D. Boy 8555	
Attn: J. R. Freeman / 4241 S. Humphries / 4253 D. J. Jonnson / 4244 G. W. Kuswa / 4240 P. A. Miller / 4244	1 сору 1 сору 1 сору 1 сору 1 сору 1 сору	Philadelphia, PA 19101 Attn: J. C. Penden VFSC, Rm. 4230M	1 сору
J. P. Vandevender / 4252 G. Yonas / 4200 Doc Con for 3141 Sandia RPT Coll	1 сору 1 сору 1 сору	General Electric Company Tempo-Center for Advanced Studies 816 State Street (P. O. Drawer QQ) Santa Barbara, CA 93102	
AVCO Research and Systems Group 201 Lowell Street Wilmington, MA 01887		Attn: DASIAC	1 сору
Attn: Research Lib. A830 Rm. 7201	1 сору	Grumman Aerospace Corporation Bethpage, NY 11714	
BDM Corporation, The 795 Jones Branch Drive McLean, VA 22101		Attn: P. Suh Institute for Defense Analyses	1 сору
Attn: Tech Lib.	1 сору	400 Army-Navy Drive Arlington, VA 22202	
Bechtel Group, Inc. P.O. Box 3965 San Francisco, CA 94119	1	Attn: IDA Librarian R S. Smith Ion Physics Corporation South Beford Street	1 сору
Attn: W. U. Allen	Гсору	Burlington, MA 01803	1
Boeing Company, The P. O. Box 3707		ALDI. H. HIIGE	гсору
Seattle, WA 98124 Attn: Aerospace Library	1 сору	IRT Corporation P. O. Box 91087 San Diego, CA 92138	
Cornell University Ithaca, NY 14850		Attn: R. L. Mertz	1 сору
Attn: D. A. Hammer R. N. Sudan J. Maenchen	1 сору 1 сору 1 сору	JAYCOR, Inc. 205 S. Whiting Street Alexandria, VA 22304 Attn: E. Alcaraz	1 conv
The Dikewood Corporation 1613 University Blvd., NE Alburguerque, NM 87102		J. Guillory R. Hubbard R. Sullivan D. A. Tidman	1 copy 1 copy 1 copy 1 copy 1 copy
Attn: L. Wayne Davis	1 сору	JAYCOR, Inc. 11011 Torreyana Road San Diego, CA 92121	
		Attn: E. Wenaas	1 сору

Kaman Science Corporation P. O. Box 7463 Colorado Springs, CO 80933		Northrop Corporation Northrop Researcn and Technology Ctr. 3401 West Broadway Namitherno CA 40205	1 сору
Attn: A. P. Bridges	1 copy	Hawthorne, CA Socos	
D. H. Bryce	1 CODY	Obucical Dynamics	
J. R. Hottman	1 copy	P.O. Box 556	
R. L. Wale		La Jolla, CA 92037	
		Attn: S. Jorna	1 сору
Lockheed Missiles and Space Co., Inc.			
3251 Hanover Street		2700 Merred Street	
Paid Aild, CK 34304		San Leandro, CA 94577	
Attn: L. F. Chase	l copy		1
		Attn: J. Benford	1 copy
Nerve the techitute of Topheology		8. Bernstein	1 CODY
Massachusetts Institute of Technology		G. Frazier R. Genuario	1 copy
Campridge, Mr. 02139		E. B. Goldman	1 copy
Attn: R.C. Davidson	1 copy	R. Huff	1 copy
G. Bekefi	1 copy	A. J. Toepfer	1 copy
D. Hinshelwood	1 сору		
		Pulsar Associates, Inc.	
Maxwell Laboratories, Inc.		11491 Sorrento Valley Blvd.	
9244 Balboa Avenue		San Deigo, CA 92121	
San Diego, CA 92123		Atta, C. H. Jones Ir	1 CODY
Atto: P W Clark	1 copy	Recht. C. H. Cones, Cr.	
A. C. Kolb	1 copy		
P. Korn	1 copy	Princeton Plasma Physics Laboratory	
A. R. Miller	1 copy	James Forrestal Campus	
J. Pearlman	1 CODA	P.O. Box 451 Princeton, N.J. 08540	
McDonnell Douglas Corporation		Attn: R. Kulsrud	1 сору
5301 Bolsa Avenue			
Huntington Beach, CA 92647		n las fainnas Inc	
Atta S Schneider	1 CODY	1615 Broadway, Suite 610	
Attn: 3. Schneider	2 0000	Oakland, CA 94612	
Mission Research Cornoration		Attn: I. Smith	1 copy
1400 San Mateo Blvd. SE		P. Spence	1 copy
Albuquerque, NM 97108		S. Putman	I CODA
Attn: B. B. Godfrey	1 copy		
		R&D Associates	
at the Decembra Componention San Diago		P. U. BOX 9095 Manina Dol Rev. CA. 90291	
Mission Research Corporation-San Diego		Marina ber key, ok joest	
[a, b, 1] = CA - 92038		Attn: W. R. Graham, Jr.	1 copy
		M. Grover	1 copy
Attn: V.A.J. Van Lint	1 copy	C. MacDonald	1 CODY
		E. Martinelli	1 0000
Mission Research Corporation			
735 State Street		R&D Associates	
Santa Barbara, CA 93101		Suite 500	
	• • • • • •	1401 Wilson Blvd.	
Attn: W. C. Hart	L COPY	ATTINGTON, VA 22209	
L. L. Lungmire	I COPY	Attn: P. J. Turchi	1 copy
		Colore Applications Inc	
Northrop Corporation		Science Applications, inc.	
Electronic Ulvisium		La.1011a. CA 92038	
Hawthorne, CA 90250		Lever and the second	
INMARIAL CONTRACTOR	•	Attn: J. Robert Beyster	1 COPY
Attn: V. R. DeMartino	1 CODA		

Spire Corporation P. O. Box O Bedford, MA 01730		University of Rochester Laboratory of Laser Energetics River Station, Hopeman 110	
Attn: R. G. Little	1 сору	Attn: M. J. Lubin	1 сору
SRI International 333 Ravenswood Avenue Menlo Park, CA 94025 Attn: Setsup Odairaki	1 сору	University of Scranton Dept. of Physics Scranton, PA 18510	
	2 0000	Attn: F. Murray	1 copy
Stanford University SLAC P. D. Roy 4349		U.S. Department of Energy P. D. Box 52	
Stanford, CA 94305		Oak Ridge, TN 37330	50 copies
Attn: W. B. Hermannsfeldt	1 сору	Vought Corporation Michigan Division	
Systems, Science and Software, Inc. P. O. Sox 1620 LaJolla, CA 92038		Sterling Heights, MI 48077 (Formerly LTV Aerospace Corp)	
Attn: A. R. Wilson	1 сору	Attn: Tech Lib	1 copy
Texas Tech University P. O. Box 5404 North College Station Lubbock, TX - 79417		Atomic Weapons Research Establishment Building H36 Aldermaston, Reading RG 7 4PR United Kingdom	
Attn: T. L. Simpson	1 сору	Attn: J. C. Martin	1 сору
TRW Defense and Space Sys Group One Space Park Redondo Beach, CA 90278		Bhabha Atomic Research Centre Bombay - 400085, India	
Attn: Tech Info Center/S-1930 Z.G.T. Guiragossian D. Arnush	1 сору 1 сору 1 сору	Attn: B. K. Godwal A. S. Paithankar	1 сору 1 сору
University of California Dept. of Physics La Jolla, CA 92037		CEA, Centre de Etudes de Lemeil B, P. 27 94190 Villeneuve, Saint George France	
Attn: K. Brueckner W.B. Thompson	1 сору 1 сору	Attn: A. Bernard A. Jolas	1 сору 1 сору
University of California Boelter Hall 7731 Los Angeles, CA 90024		CEA, Centre de Etudes de Valduc P. B. 14 21120 Is-sur-Tille France	
Attn: F.F. Chen	1 сору	Attn: J. Barbaro	1 copy
University of California Irvine, CA 90024		N. Camarcat C. Patou C. Peugnet	1 сору 1 сору 1 сору 1 сору
Attn: G. Benford N. Rostoker	1 сору 1 сору	Centro Di Frascati C.P.N. 65	
University of Illinois Urbana, IL 61301		00044 Frascati (Roma) Italy	
Attn: G. H. Miley J. T. Verdeyen	1 сору 1 сору	Attn: J.P. Rajer	l copy

Culham Laboratories UKAEA Ebingdon, Birks. England		Institute of Nuclear Energy Research Atomic Energy Council P.O. Box 3 - Lung-Tan, Taiwan Republic of China	
Attn: N. J. Peacock	1 сору	Attn: C. Chang	1 сору
Ecole Polytechnique Labo. PMI 91128 Palaseau Cedex France		Instituto De Investigaciones Cientificas De Las Fuerzas Armadas Aufriategui y Varela V. Martelli 1603	: Y Technicas
Attn: J. M. Buzzi H. Doucet	1 сору I сору	Attn: N. B. Camusso	1 сору
Ecole Polytechnique Labo. PMI 91128 Palaseau Cedex France		Max-Planck-Institut fur Plasmaphysik 8046 Garching bei Munchen West Germany	
Attn: J.M. Buzzi H. Doucet	1 сору 1 сору	Attn: R. Lengyel I. Hofmann	1 сору I сору
Institut d'Electronique Fondamentale Universite' Paris XI-Bat. 220 F91405 Orsay		Physical Research Laboratory Navrangpura Ahmedabad - 380009 - India	
France Attn: G. Gautherin	1 сору	Attn: V. Ramani P. I. John	1 сору 1 сору
Institut fur Angewandte Physik Robert Mayer Str. 2-4 26000 Forstking		Shivaji University Kolhapur, India	
West Germany		Attn: L. N. Katkan	1 сору
Attn: H. Deitinghoff H. Klein Institut Fur Neutronenphysik	1 сору 1 сору	Tokyo Institute of Technology The Graduate School at Nagatsuta 4259 Nagatsuta, Midori-Ku Yokohama 227 Janan	
Postfach 3640 Kernforschungszentrum D-7500 Karlsruhe 1 West Germany		Attn: K. Niu S. Yamaguchi	1 сору 1 сору
Attn: H. Bluhm H. U. Karow W. Schmidt	1 сору 1 сору	Weizmann Institute of Science Rehovot, Israel	
K.W. Zieher	I сору I сору	Attn: A. E. Blaugrund E. Nardi Z. Zin <i>amon</i>	1 сору 1 сору 1 сору
Institute of Atomic Energy Academia Sinica			
P.O. Box 2125 Beijing People's Republic of China		Near Kanchan Bhawan Var Ruchi Marg, Madhav Nagar, Ujjain, (M.P.) INDIA	
Attn: W. Ganchang, Director R. Hong	2 copies 1 copy	Attn: Dr. R. K. Chhajlani	1 сору
Institute of Laser Engineering Osaka University Yamadakami Suita Suita			
usaka pob, Japan			
uttn: K. Imasaki S. Nakai	1 сору 1 сору		

Stevens Institute of Technology JAYCOR, Inc. Dept of Physics 11011 Torreyana Road Castle Point Station San Diego, CA 92121 Hoboken, NJ 07030 Attn: S. S. Wang 1 copy Attn: W. Bostick 1 copy V. Nardi 1 copy Los Alamos National Laboratory P. O. Box 1663 Los Alamos, NM 87545 Texas Tech University P. O. Box 5404 - North College Station Attn: C. Barnes 1 copy Lubbock, TX 79417 Mission Research Corporation Attn: M. Kristiansen 1 copy Capitol Building II, Suite 201 5503 Cherokee Avenue US Air Force Academy Alexandria, VA 22312 Dept. of Physics Colorado, 80340 Attn: B. Goplen 1 copy Attn: J. T. May 1 copy Sandia National Laboratories D. Murawinski 1 copy P. O. Box 5800 Albuquerque, NM 87185 Attn: J. Quintens/4252 1 copy SRI International 333 Ravenswood Avenue Menlo Park, CA 94025 Attn: R. J. Vidmar 1 copy Stanford University Dept. of Electrical Engineering Stanford, CA 94305 Attn: O. Buneman 1 copy Stanford University Dept. of Mechanical Engineering Stanford, CA 94305 Attn: M. Mitchner 1 copy S. A. Self 1 copy Stanford University Hoover Institution Stanford, CA 94305 Attn: D. L. Bark 1 copy

