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theory of elastostatic plane stress — of the deformations and stresses near
the tins of a traction-free interface-crack between two dissimilar semi-infinite

Neo-Hookean sheets. The results obtained are free of oscillatory singularities

T i T

of the kind predicted by the linearized theory, which would require the two

-3 deformed faces of an interface-crack to gverlap in the vicinity of its tips.
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Instead, the crack is found to open smoothly near its ends, reqardless of the

specific loading at infinity.
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1. Introduction

Owing to its importance in fracture mechanics, the plane problem of one
or more interface-cracks between two dissimilar elastic slabs has received
repeated attention in linearized e]astostatics.1 The earliest such investiga-

tion appears to be due to Williams [1] (1959), who examined the local character

b
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near a tip of a traction-free interface-crack of elastostatic fields compatible
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%L- *The results communicated in this paper were obtained in the course of an in-

5 vestigation supported in part by Contract N00014-75-C-0196 with the Office of

%; Naval Research in Washington, D.C.

.SE ]A complete bibl “qraphy of the extensive literature on this subject is beyond .
3 the scope of thi aper. Additional references can be found in those listed z

'
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at the end of the paper,
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with the governing field eauations, as well as with the appropriate boundary

and bond conditions. The analysis in [1] is based on an asymptotic scheme,
originated by Knein [2], which Williams [3] had employed previously to explore
two-dimensional corner singularities possible in homogeneous elastic slabs.

The scheme here alluded to leads from the biharmonic equation satisfied by the
generating Airy stress function to an eigenvalue problem for an ordinary fourth-

order differential equation. 1In [1] the prevailing boundary and continuity

conditions give rise to a sequence of complex eigenvalues that induces oscil-

latory singularities at a tip of an interface-crack in the associated seguence

of displacement and stress fields.]

A global solution to the problem of a uniformly pressurized interface-
crack of finite length, between two homogeneous and isotropic (linearly elastic)
semi-infinite slabs of possibly distinct material properties, was deduced by
England [4] (1965). Let 2t be the lenath of the crack ard choose rectangular
Cartesian coorainates (x]‘xz) as indicated in Fig.1. Next, let H, and Hy
be the half-planes Xo > 0 and Ro < 0, occupied by the interior of the middle
cross-section of the upper and lower slab, respectively, while denoting by Ui

and Vi (k=1,2) the corresponding shear moduli and Poisson-ratios of the two

slabs.2 If Uy and 0,5 are the components of displacement and stress in the

underlying coordinate frame, England's solution conforms to the followina formu-

jation of his problem: it satisfies the two-dimensional displacement-stress

relations and stress equations of equilibrium (in the absence of body forces),

]Simi1ar oscillatory singularities — likewise traceable to complex eigenvalues —
are encountered in f3] in connection with certain mixed boundary conditions.
2FrOm here on the "material index" k, as well as all Greek subscripts, are

understood to take on the values (1,2); further, Greek subscripts are subject
to the usual summation and differentiation conventions.
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where 6aa is the Kronecker delta and

Ky = 3- 4vk for plane strain,

(1.2)
KRN
R ITFS for generalized plane stress ;
it obeys the loading conditions
UZB(X]sO'x):‘ﬁZBUi (0>0)s \|X1l <9') »
(1.3)

°as(xl’x2)=°“) as x$+.:§+m ,

in which ¢ is the constant pressure applied to either crack-face, and it

meets the bond conditions

ua(x] 904’):“0()(] ,0-), UZB(X] ,0+)=023(x] ,0-) (lx]| >t) . (1.4)

In addition, u, is twice continuously differentiable on Hk’ the Timits
ua(x],O:) exist and depend continuously on X3 for -o00 <Xy <@, whereas
the limits cde(x],Oi) exist and are continuous for all x, # 1.

It should be recalled that the generalized plane-stress solution pertains
to "thin" slabs (elastic sheets). In this instance ua(x],xz), °ua(x1’x2)
at once approximate the thickness-averages and the mid-plane values of the

corresponding displacements and stresses.

THere Uia,g): (ua

84-u8 a)/Z are the infinitesimal strains.
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We now introduce local polar coordinates (r,8) with the origin at
Xq = L Xp =0 (see Fig.1) and describe the asympotic behavior near the right-
hand crack-tip of the solution obtained in [4]. If this tip is fixed by super-

position of a suitable rigid translation upon the displacement field at hand,

one has as r-0,

u, ~/r {¢ (8)cos(ylogr) +y (8)sin(ylogr)]

(1.5)
O™ J—F[%B(e)cos(y Togr)+y .(8)sin(ylogr)}

where Pyr Vor Popr Vup 2TE fully determinate functions of the polar angle
8, and y is the material parameter defined by

] S*x 4
y=gloga.a=1+—sk_z,s=— . (1.6)

s being the shear stiffness-ratio of the two slabs. Equations (1.5) bring
into evidence the unboundedness of %ua at the crack-tips, as well as the
oscillatory nature of the resulting crack-tip sinqularities.

With a view toward examining the difficulty that led England to reject
his solution as physically inadmissible, wecite from [4] the formula for the

relative normal displacement of the two crack-faces:

Az(x] )= uz(x] ,04) - uz(x] ,0-) =

T4k, T4k L4 x
?(1+a5[ U + g }\/l - X COS<Y109 ——Q_X]) (|x][<g) . (.

When y#0, (1.7) reveals an infinity of oscillations in the sign of Az(x])

as Xy 12 and thus implies wrinkling of the faces of the crack in the

T
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vicinity of its ends.” In order to infer the unacceptable prediction of
overlapping crack-faces it is essential to consider also the corresponding
relative tangential displacement, which is readily computed with the aid of

results given in [4]:
A](x]) s u](x] LO4) - u.l(x.l ,0-) =

1+« 1+« L+X
[ LI 2] ¢22-x]2 sin<Y109 E‘_x—]) (|X]!<1) - (1.8)
1

e

[+3
4'(!)

- g
Z(T U] uz

Equations (1.7), (1.8) evidently imply the presence of interpenetration if

there is a value of X satisfying

A](x])=0, Az(x])<0, ix]| <t . (1.9)

If v#0, one confirms easily that (1.9) in fact possess a doubly infinite

sequence of roots supplied by

x%‘j)=ltanh(j~n/2-y) (j=21,£3,#5,...) . (1.10)
From (1.10) follows

s=max e~ [x9] =201 - tanh(n/2]y])] (1.11)
N

8

and one finds that 5/2<4x10°° for all physically realistic values of the

elastic consta\nts.2 Consequently, the roots of (1.9) are confined to

1;nce ug >0, -T<vgs1/2, it is clear from (1.2), (1.6) that the material
parameters «y, S, and a are positive; 1z« <7 for plane strain, while
5/3sxk<oo for generalized plane stress. Thus A7(xy) cannot vanish iden-
tically.

2uk>0, 0=vsi/2.

E
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5 exceedingly small intervals adjacent to the ends of the crack. Nevertheless
| the presence of any overlap violates the physical requirement that the re- {.
sulting deformation mapping be one-to-one and thus — as pointed out in [4] —
invalidates the solution.
Evidently, the foregoing violation disappears if and only if y=0 or, J

equivalently,

sty =145k, (S=u1/u2) , (1.12)

in which instance the enwuti.g singularities are no longer oscillatory and

A'l(x1)=0 ’ Az(x])>0 (lx‘\l‘l) . (].13)

Condition (1.12) is met in particular for plane strain, regardless of the
value of s, in the limiting case of two incompressible slabs, since
vy = v2=1/2 here implies Ky = .<2=l. In contrast, it is essential for our

purposes to observe that (1.12) fails to hold for generalized plane stress

AT S

of two incompressible sheets, unless the two materials are 1dentica1.]

ELG AR

We turn next to the analogous problem for a traction-free interface-

I R 1

g crack between two semi-infinite slabs that are subjected to loads at infinity,

In this connection we confine our attention to the case in which the loading

A e g

conditions (1.3) give way to

J

028(’(]:03):0 ('X]l<1) s

g L

cn(x],xz)=3%){)+o(1) as x$+x§+co, (x1.x2)€Hk . &(1.14)

S 2 2 @
°23(x1'x2)=628022+°“) a5 X *+ X5+ 0 (022>0) )

1Not:e from the second of (1.2) that vx=1/2 now gives «xy=5/3, so that (1.12)

demands M7 S Mo
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As was made clear by Rice and Sih [5], an arbitrary assignment of the constants
355) and 322 (322> 0) s in general inconsistent with the bond conditions
(1.4), the first of which demands the continuity across the bonded interface of
the extensional strain SIRE In view of the displacement-stress relations

(1.1) this requirement leads to the loadina constraint

(a3 s e )88 e [ 232500, -3136,520 . (115)]
Observe that c.ﬁ) =0 is admitted by (1.15) if and only if

x]-3=s(.-.2-3), (s=u]/u2) . {1.16)

Accordingly, the problem of an interface-crack in a uni-axial tension field
(at right angles to the interface) cannot possibly possess a solution unless
(1.16) holds.?

When the given load parameters 3§$), 322 obey (1.15), the solution to

the problem governed by (1.1), (1.4), (1.14) is obtained at orce by superposition

upon England's [4] solution for the uniformly pressurized crack with o= 322
of the piecewise homogeneous deformation with the displacements and stresses:
. =(k) =
"1‘81:[("1(”)011 + (k- D3] )
u=‘[(.<+1)8° + (xp - 35 x] > (1.17)
2 B'u_ k 22" %k 11 72 '
cn(k) =g = =0
O\ TOY) s 927 0gpr 9127018 on H .

1This relation is equivalent to Eq. (19) in [5]). Mo additional constraints on

the load parameters arise if o5 =0y, tends to a constant non-zero value

o at infinity.

12

2Th1s fact appears to go unnot1ced in some papers. Note that (1.16) is satisfied
not only in the special case s=1, vy=v (1dent1ca1 materials) but also for
Vi 0 (.ck= 3), regardless of the value of
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Since u_ in (1.17) is continuous across the entire x,-axis, it is
clear that (1.7), (1.8) and the discussion followina these equations remain
valid also for the problem of the traction-free crack under present consid-
eration., Further, the asymptotic results (1.5) evidently continue to hold
in the present circumstances. Indeed, the right-hand members in (1.5) are
consistent with the displacements and stresses appropriate to the only member
of the sequence of elastostatic fields deduced by Williams [1] that has con-
tinuous displacements but unbounded stresses at the crack-tip.] This field
encompasses at the same time the asymptotic structure near a crack-tip of the
global solution associated with an all-around uniform shear loading at in-

3

fim'ty,2 which is once again described by (1.5).

The objections raised in [4]4 to violations of the impenetrability re-

Lz

quirement apply to a host of papers on various interface-crack problems that

G

have appeared in the literature. These misgivings have prompted a renewed

theoretical concern with interface-cracks in recent years. Thus Comninou

[7]5 (1977), [8] (1978) sought to remove the inadmissible field oscillations

A e

i on the basis of the ad-hoc assumption tk:* the crack-faces remain in friction-

1.9 P

less contact over two sub-segments (adjacent to the two ends of the crack)

of initially undetermined length. Still more recently Achenbach, Keer, Khetan,

T R 1 W W DR )

and Chen [9] (1979) relied on the Dugdaie-Barenblatt [10], [11] model of

1It should be recalled that the results in [1] involve certain undetermined
amplitude coefficients which elude the local analysis carried out there.

2
3

In this instance ¢, vgs Pugr Y,g are no longer the same functions of the L
polar angle as before. :

{ :

See [5], where such a loading is included,

The same criticism was voiced independently by Malyshev and Salganik [6].

5This publication contains a fairly extensive 1ist of references to earlier work.




T e e S e e e . e o Tia s - T b e £ Ens cepe e

inelastic behavior near the tips of a crack in order to eliminate unbounded

stress singularities altooether from problems involving interface-cracks.

In the current paper we adhere to strictly elastic behavior but relinquish
the hypothesis of infinitesimal deformations, which is in fact violated by solu-
tions exhibiting locally unbounded stresses and hence unbounded displacement
gradients. We aim to show that the offensive oscillatory sinaularities arisina
in interface-crack problems stem from the linearization of such problems, as ;i
conjectured by Ergland [4], rather than from the assumption of perfect elasticity i3
or the particular idealization underlying the formulation of the boundary and

bond conditions. With a view toward accomplishing this purpose in an analyti-

ST i

cally amenable setting we deal asymptotically with the elastostatic field near

a tip of a traction-free crack between two otherwise bonded incompressible

slabs of Neo-Hookean material. Furthermore, the present study is carried out
within the nonlinear theory of elastostatic plane stress since a plane-strain
analysis appropriate to incompressible slabs would be point1ess.] To be sure,
the theory of plane stress — in contrast to plane strain — is approximate and

presupposes the slab-thickness to be small compared to a characteristic in-plane

dimension of its cross-section. Objections based upon the approximate nature

e LI

of this theory, which might be raised especially in connection with crack prob-
lems, however apply equally to linearized and finite elastostatics and do not
: interfere with our primary purpose.

The method used in pursuing the local issue at hand is an adaptation to

I S A

the nonlinear theory of the asymptotic scheme underlyino [1], [2], [3]. The

same approach was employed in a sequence of previous studies of crack-problems

A e T A R A B It o -

TRecaH from the discussion following (1.13) that the linear theory does not
lead to oscillatory singularities in these circumstances.

TR Ci | L
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in the nonlinear equilibrium theory, under various loading conditions and

diverse constitutive assumptions. These papers are referenced and briefly

Particularly pertinent

summarized in two recent survey articles [12], [13].

to the present study is a related asymptotic exploration [14] of elastostatic

singularities induced by certain mixed boundary conditions of the kind arising

While the 1inearized theory in these

in the problem of the “rough punch“.

circumstances predicts oscillatory singularities, their absence is shown in

(14] to be consistent with the nonlinear theory of plane strain for compres-

I [~

sible materials of the harmonic type.

The present work is also closely related to a paper by Wong and Shield
In [15] an ap-

[15] (31969) that predates the publications mentioned above.

proximate global plane-stress solution is deduced for the problem occasioned

by a finite crack in an all-arcund infinite Neo-Hookean sheet, subjacted to

The approximative approach adopted there re-

bi-axial tensign at infinity.

quires the deformations to be large throughout the sheet. OQur local results

*

pertaining to an interface-crack between two distinct Neo-Hookean sheets,

upon proper specialization, are found to be in asymptotic agreement with the

solution reported in [15].

The chief conclusion reached by us concerns the absence of oscillatory

singularities in the present nonlinear setting of the interface-crack problem.

R g e S I e s

Somewhat surprisingly we find that a result arrived at in [15], according

to which the crack opens up smoothly under the symmetric loading considered

there, continues to hold true for the interface-crack — regardless of the
1

particular loading conditions.

Twe exclude degenerate loadings that give rise to finite displacement gradients
at the crack-tips, such as uni-axial tension paraliel to the crack-faces and

compatible with (1.15).
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Finally, as a by-product, the analysis presented in this paper yields
certain results of interest in connection with the Mode II crack protlem for
a single (homogenecus) Neo-Hookean sheet. The global solution of this problem
within the infinitesimal theory predicts that the crack-faces fail to separate
in this instance and that a Mode 1I loading of simpie shear at infinity leads
to an elastostatic field which is anti-symmetric with respect to the crack-
axis. Both of these predictions are found to be in c¢conflict with the Tocal
results astablished in this paper and hence reflect degene->cies stemming from
the linearization of the problem. Analogous conclusions regarding the Mode II
crack problem were arrived at previously by Stephenson [16] in a nonlinear
asymptotic study encompassing a class of incompressible materials under con-
ditions of plgﬂg_g}ggjg,] In particular, Stephenson succeeded in provina that
the global nonlinear Mode Il crack problem for plane strain of a Neo-Hookean

material cannot admit a solution anti-symmetric about the crack-axis.

2. Preliminaries from the theory of plane stress in finite elastostatics,

Neo-Hookean materials.

As orereguisites for the analysis to follow, we assemble in the present,
largely expository, section, some basic ingredients of the nonlinear equilib-

rium theory of plane stress2 and in this connection confine our attention to

incompressible, homogeneous and isotropic, elastic solids.

Let (x1,x2,x3) be rectanguiar Cartesfan material coordinates and con-

sider a body which, in an undeformed configuration, occupies the closed

]See also [17], where nonlinear effects bearing on the question as to whether

or not a crack opens up in the presence of a Mode II loading are explored further.

2An account of this approximate theory, couched in general tensor notation, is

contained in a paper by Adkins, Green, and Nicholas [18] (1954), who cite per-
tinent earlier work. See also [15].
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cylindrical region R described by
k= (1] (x)4%,) €T, ~t/2 £x; 5 /2] (2.1)

where NI 1is the cross-section of R 1in the mid-plane x3=0 and t the

constant thickness of the cylindrical slab.

A locally volume preserving deformation of the body is characterized by

y(i)=£+g_(~) for all xer (2.2)2

detF=1, F=9y on R, (2.3)

in which u and F stand for the displacement vector fi2ld and the deforma-
tion-gradient tensor field, respectively. We shall temporarily take for
granted that the mapping Y is twice continuously differentiable and uniquely
invertible on R. If ¢ 1is the nominal (Piola) stress field accompanying

the deformation, equilibrium — in the absence of body forces — demands that
divg=0 on R . (2.4)

Further, g 1s linked to the corresponding actual (Cauchy) stress field

by means of

=2£T on & (2.5)3

T
~

TFor the time being, Tetters in boldface denote vectors and second-order tensors
in three dimensions.

2Thus yi({x) (1=1,2,3) are the spatial coordinates of the material point
%= (x1 "‘2”‘3) after the deformation.

3

A superscript T indicates transposition. Note that at present I

is re-
garded as a function of position on R.
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Next, call G the left Cauchy-Green deformation tensor associated with the
deformation (2.2) and let 13. 12, 13 designate the fundamental scalar in-

variants of Q. Thus,

T

G=FF on R ,

(2.6)
=trG, I= H(trg)?-tr?], 1;=detg=1
Suppose now the body at hand possesses an elastic potential N(II’IZ)‘ S0
that N(I1,12) represents the strain-energy density per unit undeformed

volume. The appropriate constitutive law then takes the equivalent alterna-

tive forms
£=Ag- 867~ pl, o= AE-BIE-pETT (2.7)!
where
A=2(wI]+1]wIz),B=2wIZ , (2.8)°

while p stands for the arbitrary scalar pressure needed to accommodate the

kinematical constraint of incompressibility.

Finally, we recall that if A (i=1,2,3) are the local principal
stretches associated with the deformation (2.2), their sauares are the local
eigenvalues of the symmetric positive-definite tensor field G. Accordingly,

(2.6) gives

AoX

1 T

Here 1 1s the idem tensor and F ' the transposed inverse of F.

zwe write wI and wI for the partial derivatives of W with respect
to the corresponding deformation invariants.

T U < ] A
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At this stage we subject the deformation (2.2) to the following special-
izing assumptions:

(a) it is symmetric about the mid-plane Xq% 0, so that ya(x],xz,x3)
is an even, and ya(xl,xz,x3) an odd function, of X33

(b) it is consistent with the requirement that the deformed faces of

the cylindrical slab be free of tractions, whence

013(x1,x2,:t/2)= 0, (xl,xz) en, (i=1,2,3) . (2.10)

In addition, we suppose the cylindrical slab to be "thin™ in the sense that
t 1is small compared to a characteristic dimension of its mid-section 1.
Motivated by this supposition, as well as by (a) and by (2.10) with i=3,

we adjoin to (a) and (b) the approximative assumption

(c) o33 * 0 on 1, o =0 on R . (2.11)

aB,3

If f 1is a function defined on R, we shall write ; for the restric-
tion of f to n. The relevant theory of plane stress aims at an approxi-
g and 3u6 (in the present constitutive
setting) on the basis of assumptions (a), (b), (c).

N Y [+] (=]
mate characterization of y , o

In view of (2.2), one has
ﬁa(x1,x2)= xa+ﬁa(x],x2) on T . (2.12)
Further, the equilibrium equation (2.4) implies
t/2
[uae,ﬁ(x],xz,x3)-+oa3’3(x],x2,x3)]dx3= o , (2.13)

-t/2

which, because of (2.10) and the second of (2.11), reduces to

e ame e e . o o mm———— S TR LTI T e S e




«x:-:umﬂamﬂ*“?‘“"rﬁ*f!",ﬁ‘\lﬁ;""”’*‘F'\“-"’ﬁ"*’;'fm’f‘""‘:’"“‘”""W*"‘Ff‘iﬁ*fﬂfiﬂlﬂﬂﬂ‘h""i"‘f"‘ﬁ"ﬂ‘ﬁwﬂ" ! w,:l b i S HEt b it H

v
£
T E
z
H

-15-
8a8’8=o on m . (2.14)
Next, upon putting
A(xl,x2)=.y3’3(x1,x2.0) on m , (2.15)

one draws from (2.3), (2.5), (2.6), (2.7), together with (a), that

F a=Fa =0, Faz=A, G o208y =0, Gqp =2 h
ald 3o v P33 7 A B 37 93,7 Y 933 s
g3a=8a3=0’ 833=]T(A>‘2'ﬁ7‘4‘5) ’ > (2.16)
[ o ° _ .0
1,37 T3 0, Ta3 = )\033 on 1 J

Accordingly, 12 is a principal value of G at all points of 1, with the

x3-axis as an associated principal axis. This identifies A as the transverse

principal stretch on I and entitles us to take
_ 1
A3=A on . . (2.17)
Also, since

333= 0 by the first of (2.11), one infers from (2.16) that

p= ml-g on 1. (2.18)

Bearing in mind (2.6), (2.9), and (2.16), we set
- o -02 02 _ Q —00
1= tr[GaB]-x1 * 2o, J-det[FuB]- A > 0 (2.19)

and note with the aid of (2.3),(2.17), (2.9) that

1Note that A <1 represents a thinning, and 2>1 a thickening, of the sheet.

(Hpayvron e [ K0 I NP
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\ I]=I+J'2, ?2=J2+1J‘2 . (2.20)

We now evaluate Sas by means of (2.7), making use of (2.18), (2.20), and

thereafter appeal to (2.19) and the Cayley-Hamilton theorem in two dimensions
0
in order to eliminate GaB from the resulting stress-deformation relation.

This computation yields

o
[s) =
a

) o o o _ Ao
(A - EI)FQB+ (2% - AJ"2+ BY 4)FBl (2.21)]

Finally, (2.5) and (2.16) justify

Q

=]
o6~ %oy 8y on I . (2.22)

Q

For convenience we summarize at this point in coordinate-free notation
the equations governing the approximate two-dimensional theory of plane stress
reviewed above. To this end we shall from here on let x, y, u and i, g,

g, 1 denote the two-dimensional vector and tensor fields with the components

-] o
.U and F ., G , & ., % . At the same time we omit henceforth
a af aB aB afB

the superscript zero from symbols that denote restrictions to n of functions

x ]
a' ya

originally defined on the cylindrical region R.

Thus, (2.12) and (2.14) now become
(x)=x+u(x) on 1m , (2.23)
divg=0 on 1 . (2.24)

Next, keeping (2.19), (2.20) in mind, we introduce the plane-stress elastic

potential U through

1§-T °_T

Ba stands for the components of F ".
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U(1,9) = W(Ty, 1) = w(1+ 372,02 4 1372

Equation (2.21) then readily leads to

Fevy . g=fE .

~

(2.27)

2,.2

I=tr§=x]+xz, J=det£=>\])\2=1/:\ on nm ,

while UI and UJ designate the corresponding partial derivatives of U(I,J).

Further, (2.22) implies

1=gF on 1 . (2.28)
Suppose now T 1is a reqular arc in N and T*=y(r) its deformation
image in n*=y(n). Moreover, Tet n and n* be the orienting unit normal

vectors of T and T*, respectively. Then (2.28) is easily found to imply

in*=0 on r* if and only if gn=0 on T , (2.29)

~ ~

so that the vanishing of the nominal tractions on T s necessary and suf-
ficient in order that the actual tractions vanish on T*, Note that the three-
dimensional counterpart of this result was used earlier in writing the boundary
conditions (2.10).

We alsp recall parenthetically that (2.26) becomes identical with the
analogous two-dimensional constitutive relation for plane strain of a homo-

geneous and isotropic compressible material, provided U(I,J) 1is regarded as

LTI i PR

SN

g

o

AT, SN WA W T O




L
E.
:
s
E
%
E
£
13
&
é
£
.

-18-

the plane-strain elastic potential.

We now deduce an implication of the constitutive relation (2.26) that

will play an essential role later on, Let M and N be the invariants of

gg defined by

M=tr(gg'), N=detg . (2.30)!
From (2.26), (2.27) follows

2,21
G+ 4 U L +0UIET (2.31)

Now G satisfies the Cayley-Hamilton equation

6 - (trG)G+ (det§)1=0 , (2.32)

so that, upon post-multiplying (2.32) by §:], one arrives at

trg ! = aelt-gtrg_=J'2trQ= w? (2.33)
whence (2.30), (2.31) yield
M= (a+vd)1+ 80 U0 (2.34)
1Y Yo - '

On the other hand, post-multiplication of (2.26) by ET at once gives

J det g = det(2U;,G+JU,1) . (2.35)

With the aid of the characteristic polynomial of the tensor ZUIQ, (2.35) is

seen to furnish

Ti‘hus M and N are anangous to the scalar invariants I and J of the
deformation tensor G=F

~
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2

2,2
Cdetg (2.36)

Jdet g = J°US+ 20U U tr g+ 4y

so that (2.27) and the second of (2.30) enable one to write

N=2U uJ1+(4u§+u2)a . (2.37)

1 J

Elimination of the explicit dependence on I between (2.34) and (2.37) results

in the identity

2

20U tr (gq)) - (403 +Ud)det g+ (a2 -U5)%=0 (2.38)

1-Y)
which is the desired consequence of (2.26).
We conclude this section by considering as a special case the Neo-Hookean

material, with which we shall be concerned hereafter. In this instance the

three-dimensional elastic potential is given by

w(11,12)=5—(1] -3) , (2.39)

where u>0 1is the material's shear modulus. In view of (2.25), the cor-

responding plane-stress elastic potential takes the form
U -2
U(1,0) =% (1+37°-3) (7.40)

and (2.26), in component form, thus reduces to

. 2.-1 - _ =)
%8 “(Fue' A FBG), Fae Yo, * 2= . (2.47)
But
-] _ _
IF e ™ Eanfavfun? J= det[Fue] >0 (2.42)
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if o is the two-dimensignal alternator (en Segp = 0, €12 "€21 = 1).
Hence (2.41) yield

- 3 2
OuB"u(ya,B A eauEvau,v) ' (2.42)

while according to (2.28), (2.41), the actual stresses obey

_ 2
TGB-U(.YQ’Y.YB,Y')‘ 608) . (2.44)
Substituting from (2.43) into the component version of (2.24) and remembering
the first of (2.27), one arrives at the equilibrium equations in terms of the

spatial coordinates:

vz_ya= (x3)’Beaueryu'v (2.45)

or
2
LR 2 Tl (A3)’].V2,2‘(>\3)'2y2,]

(2.46)
Pyp= 00 -0y

Further, in view of (2.40) and since J=1/%, the relation (2,38) here becomes

12 6 4

A -—lz(x7+x)N-2x “]Z" M+1=0 |, (2.47)
] u
while (2.30), (2.43) lead to
= _ . 2,.5, -1 3
N-det[a“B]-u (A7 +277 - ‘yu,Bya,B) ,

(2.48)

- - 2 0 - a8
M=o 9.8 ¥ ((1T+2 )ya'syu.a LN
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The foregoing equations agree with the analogous equations in the paper
by Wong and Shield [15].] In particular, (2.47) is in agreement with Eq.(5.4)

of [15], which is deduced there in a different manner.
Finally, it will be helpful to recall the response of a Neo-Hookean

material to a three-dimensional homogeneous deformation corresponding to simple

shear or uni-axial stress. For this purpose we first note with the aid of

(2.3), (2.6), (2.8), and(2.39) that the first of the constitutive relations

(2.7) at present raduces to

L= EE

-pl, F=vy . (2.49)

A simple shear parallel to the plane Xq= 0 1is represented by the mapping
y1=x]+kx2, Yp=Xos ¥3=Xg (2.50)

where k 1is the amount of shear (shearing strain). According to (2.49) this

deformation induces the true stresses

r]2=uk, T93 % 13) ={, m =uk2, 122=r33=0 . (2.51)

provided the arbitrary hydrostatic pressure p 1is adjusted so as to enforce

the vanishing of the transverse normal stress T33-
The deformation appropriate to uni-axial stress paraiiel to the xz-axis.

in turn, takes the form

.y] =X-|//7\-. _Y2= xzs .Y3=x3/'/x (»>0) , (2.52)

]It should be noted, however, that the plane-stress elastic potential employed
in [15] is tu(l,2), if U 1is the potential defined in (2.40). Further, in
[15] the equations are cast in terms of thickness stress-resultants (forces

per unit length), rather than in terms of stresses. Also t is not restricted
to be constant in [15].
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so that the associated principal stretches obey

xznx.x]=x3=1//f . (2.53)
Moreover, p in (2.49) must now be chosen so as to insure that 1,,=14, 0.
In this manner one arrives at the true stresses
tzzzt(k)=u(kz-)‘-]). m =133=0 .
(2.54)

2= T3 731 "0

A graph of the first of (2.54), depicting the axial stress t as a function

of the axial stretch 1\, is given in Fig.2.

3. The global nonlinear interface-crack problem for two Neo-Hookean sheets.

Local analysis.

Here we first formulate, within the finite theory of plane stress for
Neo-Hookean materials, the global interface-crack problem whose local analysis
constitutes our objective. Figure 1 is henceforth taken to refer to two semi-
infinite Neo-Hookean sheets, the interiors of which occupy the open halT-planes
Hy and H, in an undeformed configuration, while (x1,x2) now represent
material coordinates in this configuration. Further, ¥ and My at present
denote the respective shear moduli of the two sheets. The latter are bonded
along the xl-axis but for the crack of length 2%, which is assumed to be
traction-free, each sheet being subjected to a homogeneous deformation at
infinity.

One is thus required to find a deformatiocn yu(x],xz) that satisfies
the equilibrium equations (2.45) on Hk and — through (2.43) — generates a

nominal stress field
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=y (v <33 .
%8 uk(‘)m.B )‘:aut'evyu.v) on Hk ’

(3.1)
x=0l, 0= detly J
obeying the boundary conditions
1
oaz(x],Ot)=O (|x]|<9.) . (3.2)

In addition, the desired deformation is to conform to the kinematic loading

conditions

yu(x1.x2)=?§:)x8+o(l) as x$+x§+m. (x1.x2)6Hk . (3.3)

in which ?i:) are pre-assigned constants, and yq(xl,xz) must meet the

bond conditions

Yo 00:04) =y (x720-)s 0 p(%0,08) =0 5(x00-)  (Ixgl>2) . (3.4)°

Finally, y and ¢ are to have the same smoothness as u_ and o in
a af a ag
England's prob]em.3

The gradient components ?iz) of the homogeneous deformation at in-
finity cannot be assigned at will since (3.3) must be compatible with the
bond conditions (3.4). With the aid of (3.1) one is thus led to the four

conditions

Tsee the remark following (2.29), according to which (3.2) assure that the

deformed crack-faces are free of actual tractions.

2The second of (3.4) is easily seen to imply the continuity of the actual
tractions across the deformed bonded portions of the interface.

3See the regularity assertions following (1.4).
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2(1) £(2) 3
Fa1 = Fa1 o
{3.5)
T RN R N
where
s=t, O geeK)y, 0 (3.6)"
Mo aB

The relations (3.5) are a counterpart in the present nonlinear setting ~f

the loading constraint (1.15),

If My =My (s=1), so that one is dealing with a crack in a single

all-aroung homogeneous Neo-Hookean sheet, (3.5) are automatically satisfied,

provided

Fu) _g(2)
FaB B FaB =F

(3.7)
Moreover, the particular assignment
X, 0
[FQB]= N (3.8)
0 Ao
corresponds to a Mode I loading with the principal stretches T1, ;2 at
infinity, while
SR T
FF (3.9)

constitutes a Mode II loading, K being the amount of shear applied at

]The inequality in (3.6) follows from the inequality in (2.41).
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infinity.

With a view toward an asymptotic analysis of the elastostatic field
near the right-hand crack-tip, it is expedient to regard the spatial coordi-
nates Yo from here on as functions of the local (material) polar coordinates

(r,8) (see Fig.1) and to introduce the compliex spatial coordinate

y(r,8) =y (r.0) +iy,(r,8) (r>0, -nsgsn) . (3.10)
One then has
= 3y 3y =3}
J=detly, J=r {ar O S (3.11)

provided 3y/ar stands for the complex conjugate of ay/ar. The equilibrium

equations (2.45) are equivalent to

2yaifay 2y a® )
YE¥\ar 38 " 36 3r ’
\ (3.12)
grt rar ;E 26° J

while the constitutive relations (2.43) lead to

oy) * 109 u[%-yr—(cos 6+1ir3sing) - 1Fg%(sin 8 - ix3cos e)] ,

(3.13)

3

o]2+i022=;4%¥(sine-ix cose)+ (cose+1x3s1neﬂ

r 39

From (3.13) one deduces formulas for the polar comporents of rominal stress:
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- .18 )3y 31 3y
Opp ¥ { +I R e} ’
(3.14))
-ie J1 3y .,3 3y
rg ¥ 1% rae " ar}
Further, (2.48) at once yield
., 2
N=det[oaB]=u2{x°+x"-x3(l§-'él l I)} , |
> (3.15)

2 2
- e 2 6y (3 1,3y N
M=o g%pa =¥ {(1+x )(l#l +Y,2|39‘ ) 4A} .

Equations (3.12) hold for O<o6<w, as well as for -m<e8<0. On the
other hand, (3.13), (3.14), and (3.15) apply to O0=esn with W=y, and
to -mses0 with u=u,. Moreover, because of (3.2), (3.13), one has the

boundary conditions

[lé)’--n3f’l]( )=0 (O<r<2e) , (3.16)
r,xn

whereas (3.4), (3.13) furnish the bond conditions

y(r,0+)=Y(T,0') ]
(3.17)

Vay .33y {13y 4,33y
s|—= - i =1~ 2L ~ i) (r>0) ,
[l" a8 ar (Y‘,O"') [I" 36 ](Y',O')

and analogous bond conditions at o= tw.

Taking for granted the existence of a solution to the global interface-

1The subscripts in the left members of (3.14) are exempted from the range
and summation conventions adopted earlier for Greek indices.
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crack problem stated at the beginning of this section, we now assume that

this solution admits an asymptotic representation of the form

Y(Y.B)~9.+rmv(e) as r-0 (O0saesnm) |,
, (3.18)]
y(r.e)~9.+r‘m vie) as r+0 (-ns8s<0) ,

m=a+ig, m'=a’ +i8° (a,a’ and 8,8" real) , (3.19)

so that the exponents m and m’ are permitted to be complex numbers,
while v is a complex-valued function, twice continuously differentiable on
[0,n] and on [-v,0], that fails to vanish identically on either of these

two intervals. Further, we stipulate that

a=Rem>0, a’=Rem’>0 (3.20)

accordingly the displacements are required to be continuous as r>0 and the
elastostatic field at hand is taken to have been normalized by means of a

suitable rigid translation so as to keep the crack-tip at r=0 fixed.

Note that (3.18), (3.19), (3.10) furnish

yy(r,8) ~2+ r“{v](a)cos(s logr) - v,(e)sin(slogr)} ,

(3.21)%
yp(r.e) ~r‘a{V1(9)sin(e log r) + v,(8)cos(s log r)]

when 0=0sw; if -vr2620, o« and g in (3.21) are to be replaced by o

1
Here and in the sequel the asymptotic equality symbol "~" is used in the
following connotation: the first of (3.18) means that for O<g=xm,

y(r,8)=2+r™(e)+o(r™ as rs+0 ,

where o(rm)=o(]rml)=o(r°‘), if a=Rem.

A1 asymptotic iqualities and order-of-magnitude estimates are henceforth
understood to refer to the limit as r-=0.
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and 8‘, respectively. Equations (3.21) exhibit the structure of the oscil-
latory behavior admitted by the Ansatz (3.18). Clearly, the right-hand
members in (3.21) are non-oscillatory if and only if m and m'. are both
real (8=8'30). Observe also that (3.18) encompass the possibility that
yl(r,e)- 2 and yz(r,e) are of different dominant orders of mangitude as
r>0, for a fixed value of 0. For example, according to {3.21), 8=0
together with v,=0 on [0,r] gives yq(r.8) - zrvr“v1(e), but y,(r.e)
in this instance vanishes to a higher order as r-+0,

To (3.18) we adjoin an additional asymptotic assumption concerning the

transverse stretch A by requiring that

A(r,8)=1/3(r,0) =0(r9) as r+0 (-rsesnr) for some q>0 . (3.22)

At the same time we demand the validity of the asymptotic equalities resulting

from two consecutive formal differentiations of {3.18) with respect to r or

"9, as well as the "differentiability” of (3.22).' Equation (3.22) implies

that J(r,s) becomes unbounded as r~+0 and hence anticipates that not all
deformation-gradient components remain bounded in this limit, so that o<1,
a’<1. Since a(r,8) tends to zero as r—0, in view of (3.22), the deforma-
tion prevailing in the vicinity of the crack-tip entails an extreme thinning
of each sheet. Evidently (3.22) excludes all regular deformations — in parti-
cular homogeneous deformations — from our present considerations.

Aiming at the lowest-order asymptotic near-field behavior, we now seek
to determine v(r,8), as well as the exponents m, m’ with the smallest real
parts, consistent with (3.18), (3.20), (3.22), the governing equilibrium

equation (3.12) and the accompanying boundary and bond conditions (3.16),

1

Thus vx(r,e)=0(rq']) ‘s r+0 (0<io]<m).
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(3.17). On account of (3.18) and (3.22), the nonlinear A3-terms in (3.12),
(3.16), (3.17) do not come into play in the lowest-order analysis. Upon
entering (3.12), (3.16) with (3.18), (3.22), one readily arrives at

ii+m2v=0 on (0,n),V+(m‘)2v=0 on (-w,0) , (3.23)1

v(in)=v(-r)=0 ., (3.28)
From (3.23) follows
v(ie)=asinmo+bcosme (0<esn) ,
(3.25)

v(ie)=a‘sinm'a+b'cosm’'s  (-rse<0) ,

in which a, b and a‘, b’ are complex constants. On the other hand, (3.18),
(3.22) in conjunction with the bond conditions (3.17) and (3.25) give
br+o(r*)=b’ ¥" +o(r® ) -,

(3.26).

4 ¢
smar™!4o(r® ) ama'¥™ Tao(rt T

If ofa’, (3.26), (3.20) imply that a, a’, b, b’ vanish simultaneously,

which is inadmissible since in this instance v=0 on [-w,r]. Therefore,
a=Rem=a’ =Rem’ . (3.27)

Further, (3.26), (3.27) necessitate that

rHere and in what follows superior dots connote differentiation with respect
to the polar angle o.

i btk L

Hm -

9O 1T T COz e R

£ v

T L e T o

BRI ER T B (el TR L A LA B EE




-30-

beo(1)=b'ri(B-8")

(3.28) 1
sma+o(1)=m'a'ri(68") . 3
£
and the left members in (3.28) tend to b and sma, respectively, as r-0, -
whereas the right members fail to possess limits unless B8=g’. Consequently, 7
one draws from (3.27) and (3.28) that 4
m=m’, sa=a’, b=b’ . (3.29) F.
Combining (3.29) with (3.25), invoking (3.24), and recalling that m=0 is
precluded by (3.20), one has _§
acosmr-bsinmr=0 , ﬁ
(3.30)
sacosmr+bsinmm=0 3
E
3
Thus, since s>0 and a=b=0 1is ruled out by v#0 on [O0,n], '
.
sin2mr=0 , (3.31)
i whence m is real. The smallest positive root of (3.31) is :
f ¥
i ]
| m=azy , (3.32)

-

and (3.30), (3.32) lead to b=0, while the constant a remains arbitrary.
Also, (3.32), (3.29), (3.25), and (3.18) yield

e

y(r,0)~me+r1/2(8)  (-nsosm) 1

(3.33)

vw)=ahw)ﬂn% (-msesn) , J
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in which a#0 is an arbitrary compliex constant and h is the step-function
defined by

h(e)=1 (0sesnx), h(e)=s (-r<e<0), S=u]/u2 . (3.34)

On setting a=a,+ia, and referring to (3.10), one finally concludes that

2 (r,0) ~2+a]r1/2h(e)sin % R

(3.35)
yz(r,a)~a2r]/2h(e)sing— (enso=n) ,

where a,, a, are arbitrary real constants with a$+a§> 0.

One confirms with the aid of (3.11) that the Jacobian determinant of the
right members in (3.35) vanishes identically. Therefore the lowest-order
approximation to the local deformation (near the crack-tip) obtained above
does not constitute a mapping that is one-to-one. Furthermore, since
A=1/J, the one-term asymptotic solution (3.35) fails to supply an estimate
for the transverse stretch. These inadequacies make it necessary to seek at
Teast a two-term approximation to the elastostatic field in the vicinity of

the crack-tip.

In preparation for this task we show first that (3.33), together with

(2.47) and (3.22), in fact enable one to deduce an estimate for A(r,zn) as
r+0, i.e. for the transverse stretch along the faces of the crack.] Indeed,

the boundary conditions (3.2}, referred to the polar coordinates (r,e), give

N(r,rn)=det[oae(r,tn)]=0 (0<r<2e) , (3.36)

1;his appeal to the identity (2.47) was suggested by Wong and Shield [15], who

use (2.47) in a similar manner in their treatment of a Mode I problem for a
crack in an all-around homogeneous Neo-Hookean sheet.
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so that (2.47) supplies
w 12 ,.6
- =1+2%-22" at 8=a (0<r<2e) . (3.37)
H
1

Next, (3.33), (3.22), and the second of (3.15) are found to imply

u8]al?
M=GaBGaB~_TY‘—_ (-nsesn), a#0 . (3.38)

Keeping in mind that A(r,8)=0(1) for -rsssu and combining (3.38) with

(3.37), as well as with its companion for o= -w, one readily confirms that

AMr,n) ~ ’ﬁ r]“, A(r,-n) ~|/-sﬁ rl/4 as r+0 , (3.39)

which is consistent with (3.22) and necessitates q=x=1/4. Guided by (3.39),

we now refine the original a priori assumption (3.22) by anticipating that

J\(P‘.B)=O(r]/4) as r+0 (-msesn) ,

(3.40)

174y

i (r,0) =0(r as r-+0 (0<|s|<m)

It is helpful to observe that (3.40), (3.33) imply

A3%%=0(r1/4) as r+0 (-vsesn) ,

3 3
N E N VI BRI 0 .
F(ar 20 a8 Jr ) o(r } as r+0 (-msesa)

Proceeding to the second-order asymptotic analysis, we set
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1/2

y(r,8) ~2+r/cv(e) +r"w(s) (O-SeSn) ,

(3.43)
1/2

y(r,8) ~2+r "“v(e) +rnlw(e) (-ns0s0)

Here v is known from (3.33), n and n’ are as yet unknown complex ex-

ponents obeying
- 1 . e 1
y=Ren> 5, y =Ren’> 5 , (3.44)

and w is an initially undetermined complex-valued function that is not
permitted to vanish identically en [0,7] or [-7,0]. Further, w and (3.43)
are subject to the same differentiability hypotheses made previously in con-
nection with v and (3.18).

Our current objective is to find w on [-v,r] and n, n‘, with the
smallest real parts admitted by (3.44), consistent with (3.12), (3.16), (3.17),
and (3.40). In view of (3.41), (3.42), (3.43), and because v satisfies

(3.23), (3.24), the equilibrium equation (3.12) and the boundary conditions
(3.16) require

P"2rate) + nfw(e) ] +o(r" %) = 0(r %) (0<e<n)

(3.45)
= 2riice) + (n)2w(0)]+o(r" "2 s o(r ) (crca<0)
i@ +or™ Ny =o(e Yy

(3.46)
M Ta(em) +o (e Ty < 0(r1/4)
1f
Ren<%, Ren'<%— , (3.47)
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as we shall temporarily take for granted, (3.45), (3.46) evidently imply
(3.23), (3.24) - and hence (3.25) — with v, m, m’ replaced by w, n, n’,

respectively., Also, (3.47) in-ure that the nonlinear A3-terms in the bond

conditions (3.17) likewise fail to entaer the second-crder analysis explicitly.
An argument strictly parallel to that following (3.25) easily completes

the second-order asymptotic solution. In particular one finds in this manner

that

n=n’, sin2nn=0 , (3.48)

whence n and n’ are real. The smallest root of (3.48) conforming to (3.44)
is
n=n =Y=Y’=] » (3.49)

and since (3.49) 1s consistent with (3.47), there is no need to explore the
complementary ranges y=z25/4, y'25/4. The second-order approximation thus

emerging is given by

1/2

y(r,8) ~2+r ' “v(s) +rw(s) (-nsosn) ,

(3.50)
v(e)=ah(e)sin%, w(e)=bcose (-msesm) ,

in which a#0 and b#0 are otherwise arbitrary complex constants, while
h again stands for the step-function introduced in (3.34). From (3.50),
(3.10) finally follows:

yl(r,e) ~z+a]r]/2h(e)sin% + b]rcos 8 .

(3.51)

yz(r.e)~a2r]/2h(e)sin%+b2rcose (-rse=sn) ,
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with

af+a§>o. bZ+b2>0 (3.52)

T T AT e i S F TR e

LI P and b'l' b2 being otherwise arbitrary real constants.

Upon using (3.11) to compute the Jacobian determinant on the basis of

the two-term asymptotic solution (3.50), one arrives at the estimate

L T S n P ] T e e
. d n Y. B iy ot o i L b sl e b a0 L ottt LR

§ J(r,e)~Ar'”2h(e)cos% (-nsesw) (3.53) 3
;’; in which ‘
§ ] £
. 1

TP
7

the inequality being a consequence of the requirement J>0. The approximation

(3.53) gives merely J(r,e)=o(r']/2) (~rs06sn) unless A>0, as we shall

[PE R I §
it

L L PR

assume until further notice.] From (3.53) one draws the asymptotic charac-

$

terization of the transverse stretch A=1/J:

r1/2

X(Y‘»e)“m (-m<8<n) if A>0 ,

(3.55)

P e

which is consistent with the a priori assumption (3.40) employed in the deri-
vation of (3.50). Equations (3.53), (3.55), (3.34) reflect the discontinuity

H
:
(3
H

in J(r,0) and i(r,8) at 8=0 {if s#1 (u]fuz).

Although (3.55) and (3.39) together furnish estimates of A(r,s), as
r+0, for each fixed 8 1in the complete range [-v,m], the approximation
given by (3.55) evidently deteriorates severely near the crack-faces 6= in,

In order to obtain a crack-tip estimate for ) that is free of this deficiency

L rrﬂr!‘ﬁﬂlﬂﬂ'ﬂz‘mmn—-rwmrnmmew,.‘,_.,qmmm_. .
. . P . [T
Coar, ‘ - '
4

]The special case A=0 will be treated in the next section,
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and that at the same time reveals the nature of the transition from (3.55)
to (3.39) as 8-z:n, one may once again appeal to the identity (2.47) used
earlier to deduce (3.39). Since (3.22) implies A(r,8)=o(1) as r-0,
(2.47) near r=0 is approximated by

Mr, o0t e N(ra)a-ui=0  (0sesn) . (3.56)"
This suggests that
A(r,e)-xo(r,e) as r+0 (0sesw) , (3.57)

where Ay is the unique positive root for  of (3.56), as is not difficult

to confirm rigorously. On setting
x =y o1/ 4, EIRLIL A W (3.58)

(3.56) becomes

deyn-1=0 . (3.59)

Let n=¢(x) be the unique positive root of (3.59)% so that (3.58), (3.57)

give

Mr,0) mul 2 VAo ¥ ) (0sesm) (3.60)

The desired estimaie for A 1is obtained by inserting small-r approxi-

mations for M(r,8) and N(r,8) into (3.60). Such an approximation to

—

We sketch in detail only the analysis pertaining to the upper sheet (0Os=p=sm).

Recall from (2.48) that "'°ua°a8>0’ N-det[ouB].

2An explicit elementary representation for ¢(x) 1is readily established, but
serves no particular purpose here.
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M(r,8) 1is available from (3.38). On the other hand, an analogous estimate
for N(r,e)-det[a“] is computable, without recourse to (3.55), from (3.50)
and (3.13) by relying merely on (3.40). In this manner one obtains

1/2

N(r.e)~u12Ar' cos-g- (Ose<w),N(r.n)=o(r'”2) . (3.61)1

Substitution from (3.38), (3.61) into (3.60), along with a parallel argument
applied to the lower sheet, results in

x(r,e)~r]/4g(e)q>(r']“Ag(e)cos(e/Z)) ,

9(9)’V5/|dlh(8) (-nses<n), A>0

(3.62)

Under suitable assumptions concerning the uniformity in 6 of the Ansatz
(3.43), one can show that the estimate (3.62), the validity of which is con-
tingent upon our current supposition that A>0, holds uniformly for
RTIFLR

Finally, we note that one recovers from (3.62) through appropriate
specialization, the previous estimates (3.39) and (3.55), which apply to

g=2r and -n<@<n separately. To see this we infer from (3.59) that

(0) =1, ¢'(x)<0 (-00<x<m).q>(x)~]; as x-+@m . (3.63)

The first of (3.63) reveals that (3.62) reduces to (3.39) for o=1ztw; the
last of (3.63) leads immediately from (3.62) to (3.55).
Although we have not determined in detail any further terms in the ex-

pansion (3.50), we have ascertained that additional terms of orders rs/d,

1

Here A 1is again the auxiliary amplitude parameter defined in (3.54).
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3/2 7/4

r’®, and r can be obtained by arguments parallel to those used in this

and the preceding secivion., If one attempts to continue the expansion beyond

7/4, however, one encounters difficulties since at that

the term of order r
stage the Aa-terms in the edui]ibrium equation (3.12) begin to enter ex-

plicitly into the asymptotic analysis. Indeed, it appears from the structure
of the uniform approximation (3.62) for A that such higher-order terms can

no 1onger be of the "factored" form rkf(e).

4. Rotation of the deformed composite sheet, The degenerate case A=0.

The complex version (3.50) of the two-term asymptotic approximation de-
duced in Section 3 involves the complex amplitude parameters a and b
(a# 0, b# 0), the determination of which eludes the local analysis carried
out there. The values of these two parameters are bound to depend on the
material parameters by and Hos the crack-length 22, as well as on the
particular loading at infinity, which has not entered the derivation of
(3.50). Indeed, these local results are not cunfined to semi-infinite sheets
and encompass essentially arbitrary loadings applied to the outer boundary.
We show presently that (3.50) may, without loss of generality, be simplifieu
by subjecting the deformed composite sheet to a rigid rotation about the
crack-tip at r=0. Moreover, this transformation — as will become evident —
renders the intrinsic content of the asymptotic solution (3.50) more trans-
parent.

If y(r,8) is the complex spatial coordinate {in the original fixed
Cartesian frame) of a material point (r,s) after such a rotation through

an angle J, one has

§lr,e)=e+e(y(r,0)- 1) (4.1)
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we now take 5ﬁ

"3"5“5 ’ , (4.2,
where ¢ 1s the argunent of the complex parameter a, whence
. i
a=a]+1az=|a|eE . (4.3)

For this choice of ¢, equations (4.1), (3.50) imply

9(r,e)~1+ar”2h(e)sin%+Brcose (-rsesn) , (4.4)
a=1ilal, b=1iab/|a] (afo, b#0) . (4.5)
rrom (4.5) follows
d=d,+18,, 4,20, 4,=a| >0 , )
(4.5)
6=61+1‘2, B]=2A/|a|k0, by =28/]a| ,
where
=1 =1
A'2(32b1°a~|b2)20’ B'z(a]az"'b]bz) ] (4'7)

so that A is the non-negative auxiliary amplitude parameter originally
introduced in (3.54). Also, (4.6) give
-~ - A_] A A A A _
|a|'|al, A‘Z’(azb]"a]bz)"A »
(4.8)
- ] A-'I A~ - A _
|bl='|b|a B"z(a]b]"'azbz)‘a ’

which assert the invariance of |a|, |b|, A, and B under the rotation (4.1).

To avoid cumbersome notation we henceforth write y, a, b 1in place of

P
;
s
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¥, a, b an¢ thus note that (4.4), on account of (4.6), leads to

y](r,e) ~f 4+ b]re:os 8
(4.9)

T/Zh(

yz(r,e)~a2r a)sin%+b2rcose (-rse=sn) |,

where

a,> 0, b]ZO (b]=2A/a2) \ (4.10)

and a5, b], b2 are otherwise arbitrary real constants. As is now apparent,
o generality is lost in the original two-term asymptotic approximation (3.51)
by setting a,=0. whilesubjecting @, and b; tothe inequalities in (4.10)
In view of (4.10), the exceptionai case A=0, which was excluded in
establishing the estimates (3.55) and (3.62) for the transverse stretch i,
corresponds to b1= 0 in (4.9). On the other hand, when by = 0, the approxi-
mating deformation supplied by (4.9) isno 1ongerone-to-one]and the current

appioximation to y](r,e) degenerates into the weak estimate
y](r,e)-uo(r) as r+0 (-rsosw) , (4.11)

which is inadequate. The case A=0 (bl =0) thus entails an essantial de-
terioration of the asymptotic solution (4.9) and necessitates higher-order
considerations.

Motivated by the foregoing observations and bearing in mind (4.9), (4.10)
with b] =0, we now adopt the three-term asymptotic Ansatz:

1S‘Ince J 1is dinvariant under the rotation (4.1), the Jacotian determinant of
this mapping 1s given by the right member in (3.53), which vanishes for A=0.
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1/2

y(r,e)~£+1a2r sin%+1‘b2rcose+rpz(e) (0sesm) ,

(4.12)

'

y{r,8) ~2 + isazr]/zsin% +1ib,rcos o+ rPz(8) (-nses0) ,

a2>0, Rep>1, Rep'>1 , (4.13)

while the as yet unkiown complex-valued function z= 214-1'22 must not vanish
jdentically on [0,7] or [-n,0] and is required to be twice continuously
differentiable on each of these two interva1s.]

From (4.12) one gathers

v2y~rp'2{i+pzz} (O<eo<w) , ]

Wiy merP 24 (p)%2) (-m<s<0) . J

Consequently, the equilibrium equation (3.12) together with the estimate

(3.42) enables one to coriclude that
i+p22=0 (0<e<w) if 1<Rep<5/4 , (4.15)
i+(91)22=0 (-x<8<0) {if 1<Rep’'<5/4 . (4.16)

Further, on applying the boundary conditions (3.16) to (4.12) and taking

account of the estimate (3.41), one has

z(r)=0 if 1<Rep<5/4 , (4.17)

1We take for granted the "differentiability" of the asymptotic identities
(4.12).
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2(-n)=0 if 1<Rep'<5/4 . (4.18)

Next, imposing the transition conditions (3.17) on (4.12) and appealing once

again to (3.41), we see that
2(0+)=2(04)=0 if 1<Rep<5/4, Rep<Rep’ ., (4.19)
2(0-)=2(0-)=0 if 1<Rep’<5/4, Rep'<Rep . (4.20)

But, according to (4.15), (4.17), (4.19), the inequalities in (4.19) demand
that 2=0 on [0,n], which is inadmissible; similarly, the inequalities in
(4.20), in view of (4.16), (4.18), (4.20), necessitate z=0 on [-n,0],
which is also unacceptable. On the other hand, the transition conditions

(3.17) reduce to
z(0+) = z(0-), sz2(0+)=z(0-) if 1<Rep=Rep<5/4, (4.21)

and in this event (4.15) to (4.21) require that z=0 on [-m,m].

The preceding conclusions entitle us to claim thac Repz5/4, Re p'z5/4.
Moreover, since our present objective is an asymptotically consistent three-
term approximation of the form (4.12) in which the exponents p and p’
have the smallest real parts admitted by (4.13), there is no need to consider
Rep>5/4, Rep’>5/4 1if we succeed in determining z(8) on the supposition

that Rep=Rep'=5/4, We are thus led to set

p=g+1s, p'=15[+16’ (6,6 real) . (4.22)

Calculating the Jacobian determinant J(r,e) from (4.12) by means of

(3.11) and using (4.22), one arrives at
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a
J(r,8) ~ —ég-r']/“m(r,e) (0<osm) , (4.23)

provided

m(r,e)=Re{(%- -is)r'i‘si(e)cos% -risi(e)sin%} . (4.24)
If 6§#0, Eqs.(4.23), (4.24) are easily found to yield two alternative impli-
cations: either J(r,8) changes sign infinitely often as r-+0 for each o

in (0,7] or 2z(e) 1is such that w(r,8) vanishes identically on this interval.

The first of these eventualities is precluded by the requirement J(r,8)>0;

L7 (P e T

the second alternative leads to r]/4J(r,e)+0 as r-+0 and hence gives
r']/4x(r.e)+m as r+0, for each 8 1in (0,7], which is incompatible with
(3.40). Therefore &§=0 and p must be real. One shows analogously that

7

p’ has to be real as well, so that (4.22) now reduce to

NPV R N A T B

p=p‘=5/4, §=68=0 ., (4.25) -

With (4.25) in force one infers from (4.23), (4.24) and their counterpart for
-ms8<0 that

ro)~r 400)  (-rsesn) (4.26)

o(0) = g a,n(0){ 52, (8)cos § - 2 (8)sin§] (4.27)!

in which h(e) is the staep-function defined in (3.34) and 21(9) is the

real part of z(e). Since Ar(r,8)=1/3(r,8), a zero of w(6) anywhere on

[-m,x] would contradict (3.40), so that

TAs w(r,0) 1is now independent of r, we write w(e) in place of w(r,s).
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1/4

A(r,8)~r /' 7fu(6), w(e)>0 (-rsesx) . (4.28)

We are now in a position to use the equilibrium equation (3.12) in con-
junction with (4.14), (4.25). (4.27) to obtain the differential equation
governing 2z(8). In contrast to the lower-order analyses carried out in
Section 3, the right and left sides of (3.12) now balance asymptotically,

and one arrives at

L. 25, 3% W8 - . B
z+1—6—z=5:¢h(a){1cosaz-msm?} (0<le| <m) , (4.29)

where o is related to z through (4.27). The boundary conditions (3.16),

in turn, lead from (4.12), by virtue of (4.25) and (4.28), to the requirements

2(-n) = gpsae o (-n), #(n)=-Faw n) . (4.30)

while the transition conditions (3.17) are found to yield
z(04) = 2(0-), sz(0+) = 2(0-) . (4.31)

Since the right members in (4.29) and (4.30) are real-valued functions,

it follows with the aid of (4.31) that 2y = Imz must satisfy
3,4222.20  (0<|e|<n) (4.32)
27162 i )

subject to the boundary and transition conditions

22(-w)=22(w)=o, 2,(0+) = 2,(0-), s2,(0+) = 22(0-) . (4.33)

This homogereous liner boundary-value problem admits only the trivial solution
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2,(8)=0  (-nsess) . (4.34)

The boundary-value problem governing Z) = Rez 1is obtained by taking
real parts in (4.29), (4.30), (4.31). The resulting problem can be cast
into a more convenient form by means of a suitable rescaling of z,. To

this end we set

2,(8) =223V %31/ %(6)  (ensesm) (4.35)
and note first that (4.27) now becomes

o(8) =2 Y2315 Pn(o)y(e)  (rsesn) (4.36)

provided

xp(e)=5c(e)cos%-4i(e)sin% (-msesn) . (4.37)

Further, in view of (4.36) and the positivity of w(8), one has to stipulate
that

p(6)>0 (-msosn) . (4.38)

On equating real parts in (4.29) and making use of (4.35), (4.36), (4.37),

one obtains the differential equation to be satisfied by g:
2 4 . . e
[B(1-cose)+h“(e)y (8)] -4sineg
+ [3(1 - 3cos o) + Bi(e)et(e)le=0  (0< o] <x) . (4.39)

The boundary and transition conditions accompanying (4.39) follow from (4.33)

by recourse to (4.35) to (4.38). In this manner one deduces
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Heom) = g3 /A2 = gl (4.40)]

£(0+) = g(0-), sz(0+)=z(0-) . (4.41)

We thus seek a solution z(8) of the nonlinear boundary-value problem con-
sisting of (4.39) subject to (4.40), (4.41), such that w(e) — defined by
(4.37) — is strictly positive on [-m,n].

As far as the numerical determination of z(6) is concerned, the problem

at hand is awkward because (4.40) prescribe the boundary values of the derivative

of the unknown function, rather than cz(zn). For this reason we now convert the
foregoing problem for ¢(6) to one for y(8) that circumvents this difficulty.

With this aim in mind we note first that (4.37), (4.40) give

p(en)=2x3" V4" V2 Ly =2x3 1%, (4.42)

We observe parenthetically that the above boundary values of y(6) are con-
sistent with the asymptotic formulas for A(+r) arrived at in (3.39), as is
seen, on setting la|= a, in (3.39)2, by comparing this estimate with (4.28)
and by referring to (4.36). Next, we differentiate (4.37) with respect to

8 and eliminate % from the ensuing identity by means of (4.39). The equation
thus obtained relates ¢, ¢ to v, ¥, is linear in the former two variables,
and may be employed along with (4.37) to express ¢z, ¢ in terms of v, ¢ and

trigonometric functions of 6. In this manner one finds that

T arve that (4.37), (4.38)'necessitate z(-1)>0 and z(n)<0.

) that a,=0, a,>0. See (4.10) and the remarks following (4.10).
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g= m ([3n%(e)w* - 8cos o +8]¢cos%
+alh?(e)y? -8cos 8 +8lising)  (-rsesm) (4.43)
c= —-—2]—4( {[8+8cos e -3h2(e)¢4]wsin%
12h°(8)w
+4[h2(e)w4_8cose+8]¢cosg-} (‘-nsesn) . (4.44)

Differentiating (4.43) and equating the result to ¢ given by (4.44), one is

led to the differential equation for y:

[hz(e)w4+ 8(1-cose)jy-32(1-cos e)w"&z

-4siney -3 (3-cos8)e+ phi(e)i®=0  (0< o <n) . (4.45)

Finally, (4.41) together with (4.43), (4.44) furnish the transition conditions

appropriate to y:
v(0+) = (0-), sp(0+) = §(0-) . (4.46)

It is readily shown that (4.45), accompanied by conditions (4.42), (4.46) and
supplemented by (4.43), in turn implies (4.39), (4.40), (4.41), as well as
(4.37).

The completion of the three-term asymptotic representation (4.12) of
y(r,68) pertaining to the special case b] =0 has thus been reduced to the
task of finding a solution w(e) of the nonlinear second-order differential

equation (4.45) that is positive for -rsesn and meets the boundary and

transition conditions (4.42), (4.46). Assuming for the moment that y(e)
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has been so determined, t(6) 1is then supplied by (4.43), z](e) follows
from (4.35), while zz(e) vanishes identically according to (4.34). Further,
the exponents p and p’ are given by (4.25). Taking real and imaginary
parts in (4.12) one therefore has the following asymptotic results for the

degenerate case b] =0 (A=0):

ypre) meverd(e)
(4.47)
(r,0)~ r”zh(e)sine'rb rcos o (-nsesm)
Ya\ra9)~a, 70 m LR

with

c=23/23]/4a5”2, a,>0 . (4.48)

The first of (4.47) supplants the weak estimate (4.11) for y](r,e) furnished
by (4.9) when by =0. Note from (4.41) that ¢(e) 1is continuous at 6=0,

although its derivative suffers a finite jump-discontinuity there. On account
of (4.26), (4.28), (4.36), and (4.48), J(r,e) and i(r,6) at present conform

to the estimates

178

Hrao)~ L no)u(e)  (-rsasy) (4.49)

A(r,0) ~cr /2 [n(6)u(8)]!  (-nsosn) (4.50)

whereas (3.53) gives merely the inadequate estimate J(r.e)=o(r']/2)

(-rs6snv) when A=0. The result (4,50) reduces to (3.39) for 6=:r and
is consistent with the a priori assumption (3.40). Since the right member in
(4.49) is the Jacobian determinant of the right members in (4.47), the posi-
tivity of ¢ on [-n,n] assures that (4.47) furnish a one-to-one approxi-

mation to the local deformation map.
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Our attempts to deal analytically with the highly nonlinear two-point
boundary-value problem (4.45), (4.42), (4.46) .or w(8) have remained un-
successful, In contrast, no particular difficulties were encountered in its
numerical solution. The results thus obtained leave no doubt as to the exist-
ence of a solution; although its uniqueness cannot be taken for granted, there
is no indication of non-uniqueness.

Figure 3 and Figure 4 display illustrative graphs of v(8) and <z(e)
for -ws<esgq, appropriate to two choices of the stiffness-ratio s-= “1/“2‘

In Figure 3, s=1/2, whereas Figure 4 pertains to s=1, that is to an all-
around homogeneous Neo-Hookean sheet. In the latter instance both y(6) and
t(e) are even functions and there is no discontinuity in the slope of the

corresponding curves at 6=0,

5. Discussion of the elastostatic field near the tip of the interface-crack.

The special case s=1,

In this section we first examine the structure of the deformation field
near the tip of an interface-crack as predicted by thenonlinear theory of plane
stress for Neo-Hookean sheets. Thereafter we shall discuss the associated
near-field of stress.

For the purpose at hand it is convenient to put the asymptotic results

(4.9) and (4.47) into a non-dimensional form by means of the scaling

E] = (X] - L)/ag, 52‘-" xz/ago p= r'/ag
(5.1)
2 2
n] = (,Y'l - 2)/32: ﬂ2=y2/32

Then (4.9), (4.10) yield
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n](p,e)~b]pcose (b.|>0) ,

nz(p,e)~p]/2h(e)s1n%+bzocose (-nsesn) |,

while, in the event that b] =0, (4.47), (4.48) give

ny(p,8) ~23/231/8.5/4(4)

1/2h(

n2(0.6)~p e)sin%*-bzpcose (-msesm)

We observe to begin with that the foreqoing asymptotic results are en-

tirely free of oscillations of the kind arising in the treatment of the

linearized problem and discussed in Section 1. Mathematically, the absence
of this ascillatory singular behavior can be traced to the fact that the
initially undetermined exponents m, m’, n, n’, and p, p’ introduced in
(3.18), (3.43), and (4.12) were all found to be real-valued.

Of particular interest is the shape of the deformed upper and lower
crack-face in the vicinity of the (fixed) end of the crack. From (5.2) and

{3.34) one has

n](p,ﬂ)~b]p, nz(piﬂ)"‘pllz ’

n-l(o.-ﬂ)"'-b]o.nz(p.-ﬂ)"--so]/z , L (5.4)

b«|20, 5=U]/u2

J

Elimination of o between the first two and the second two of (5.4) leads
to the subsequent approximate description of the curves into which the

crack-faces at 8=+ and 6=-n are deformed:
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n]=-b-|n§, n220 for o=w
(5.5)
by 2
n.|=-;2-n2, nzso for 6=-n

In the non-degenerate case b1 >0 this description is adequate and asserts
that each crack-face, after deformation, is locally approximated by an arc
of a parabola, as indicated in Fig.5. The two parabolic arcs determined by
(5.5) join up with a common tangent at the crack-tip, this tangent being
perpendicular to the crack-axis following the rigid rotation that led from
(3.51) to (4.9). The deformed upper and lower crack-faces, when s#1, are
seen to 1ie on two distinct parabolas, both of which are concave toward the
undeformed crack.

In the degenerate case b]= 0, one draws from (5.3) and (3.34) that

n1(o,w)'~23/23]/405/4c(ﬂ). nz(o.N)'~p]/2 ,
(5.6)
n](o.-n)'~23/231/405/4c(-w). nz(o.-ﬂ)ﬂ--sollz .
whence in first approximation
ny = 2/231/ 8 (1)03/2, n,20 for e=n |
(5.7)

ny = 23/231/4c(_“)s-5/2(_n2)5/2. ny <0 for e=-n

Thus once again the deformation images of the upper and lower crack-faces
have a common tangent at the tip of the crack. Figure 6 illustrates the
shape of the deformed crack-faces when b]= 0, for the two stiffness-ratios

s=1/2 and s=1 (homogeneous sheet). As is apparent from the graphs in
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Fig.3 and Fig.4,

t(n) <0, z(-n)>0 for s= u/up =12,

(5.8)
g(n)=¢(-7)>0 for s=1

These inequalities, in conjunction with (5.7), imply that the bouﬁdary of
the sheet near the tip of the crack, when b1= 0, is deformed into an :
S-shaped curve for s=1/2, whereas for s=1 the region occupied by the fé
deformed sheet is locally convex. Accordingly, the special case b1= 0

marks the transition from circumstances in which the deformed sheet is wholly ;
concave sufficiently close to the crack-tip to conditions under which this 3
is no longer true. As will besome clear later on, b] >0 in the particular ;»
crack-problem for a homogeneous sheet (s=1) treated by Wong and Shield [15]. ?5
It is not obvious, however, whether or not there exist giobal loading and
2: sheet geometries that induce the degeneracy b]= 0.

A In view of the primary purpose of this study, the most important con-

clusion emerging from the preceding results is that — at least for an inter-

face-crack between Neo-Hookean sheets — the finite theory of plane stress does

PN T PRTPRIE% 1 R T

not give rise to interpenetration of the deformed crack-faces in the vicinity

of the crack-tips. The prediction of such an unacceptable overlap is thus

seen to stem from the linearization of this singular problem. [ndeed, some-

what surprisingly, the crack is found to open smoothly even if s#1.

As is apparent from (5.2), (5.3), the leading term in the corresponding

approximations for Ny vanishes when 6=0. Consequertly, a more detailed

e L e ST e, SR

discussion of the deformations in the vicinity of the crack-tip at =0

ety

necessitates that one take account of the second term, whase coefficient b2

ppelimntvirt it

in particular enters into the lowest-order approximation to the {
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deformation-image of the bonded interface. Confining this discussion to the

non-degenerate case b]> 0, we gather from (5.2) and (5.1) that
| /2 2 1/2
Yl] ~b]€]: “2"“(52){ 5]4'52 'E]] +b251 ’ (5-9)

provided H s the step-function defined by

H(52)=1//§ if &£,>0, H(52)=-s//2‘ if g,<0 . (5.10)

Equations (5.9) reveal that the material coordinate lines gy = constant
are — in first approximation — carried into the straight lines n, = b151,
while the coordinate lines £2==constant are deformed into the family of

curves approximated by
ny = H(E) [Yny/61)% + €5 sy} MZ 4 byn /by (5.11)

Within this approximation the deformation-image of the interface £o = 0,

£y 0 1is rectilinear and furnished by
n2=b2ﬂ]/b~|, ﬂ'l>0 . (5.]2)

Figure 7 displays qualitative sketches, based on (5.9) to (5.12), of the
deformed material lines 5]= constant and £2= constant, appropriate to
b]> 0, for b2> 0, b2= 0, and b2< 0, depending on whether the stiffness-
ratio s<1 or s=1,

We conclude the discussion of the near-field deformations with some

observations concerning the transverse stretch-ratio A, which reflects

the local thinning of the two sheets. The asymptotic behavior of A(r,s8),

as r-+0, is supplied by (3.62) if by >0 (A>0) and follows from (4.28),
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(4.36)] when by =0. In either instance r{r,e), at any fixed value of o
in [-n,m], is an increasing function of r near r=0, so that the thinning
becomes more severe as the crack-tip is approached. Barring the degenerate
case b] = 0, we note that A(r,8), for any fixed (sufficiently small) value
of r, is smallest at 6=0 and increases steadily with |e| as |&|-m.
Consequently the thinning is most pronounced at the interface and less prom-
inent at the crack-faces. If s<1 (u;<u,), the Tocal thinning is more
prevalent in the upper than in the lower sheet, as is to be anticipated.

We turn now to the determination of the stresses near the crack-tip.

Asymptotic results for the cartesian components of nominal stress are readily

obtainable from (4.9) with the aid of (3.13) and (3.40). Thus,

oy by g L2
Ty THEY ey C2ze o cosztell) 1

(5.13)
b g b
—1~2-=0('|). —2L~--]2-D-]/251n%+m-2—7 (-rsesn) , J

where p is the dimensionless radial coordinate introduced in (5.1). The

associated components of actual stress are deducible from (4.9) by means of

(2.44) and (3.40). This computation yields:

-1/2 8

T T
Azo(p-]/z)’ 22 1 51n2' )

-1
ny IJ—]_"ID h(e)-bzp
(5.14)

T T b
.%3:72]1_~-—21p']/251n% (-n=8=n)

lsee also Fig.3 and Fig.4, where v(8) fis plotted for s=1/2 and s=1.
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Evidently, the expansion (4.9) is insufficient to produce a dominant estimate
for 912 and T also, when b1= 0, one merely infers from (5.13), (5.14)
that M and T2 tend to zero as op-~0.

Equations (5.14) lead to the following asymptotic results for the actual

principal stresses:

T T
LoV, 2]

-1 -1/2
u_, E]‘“‘ID h(e)‘bzo

sin% (-rsosa) . (5.15)

The above weak estimate for Ty can easily be improved if by > 0. To this
end we first draw from (2.28) that

det 1 = r-l‘rz=d8t£detg=~]detg (5.16)

and then invoke (4.10), (3.53), as well as {5.13), to see that

r]rz--}ufb%p']hz(e)cosz% (5.17)
On the other hand, (5.17) and the second of (5.15) justify
2 2
;—~bﬂﬁekos(w2) (-nsosm) . (5.18)
1

Since the deformed crack-faces are free of tractions, the fact that 7
vanishes at e=1ix 1is not accidental.

It is of interest to examine the dependence — to dominant order -- of
the primary actual normal stress Tpp upon the radial distance from the
crack-tip after deformation, i.e. upon the spatial radial coordinate. We
do so merely for an approach to the tip along the interface 8=0 and for

this purpose gather from (5,2) that

YL .

e T T L T
b islin d S uadobi AL

Hr R

AT TR e E T

0

3R )

i
1%
:
;




ST TR s T R TR -0 5 - 3o PP 2o o s oo
|
-56- i3
Py = ln(0.0)|~|blpg n=n]+in2 . (5~]9)
Hence (5.14) now give é
N -1 M -1

Tzz(D:Ot)"' Th(Oi)D "'mh(Ot)D* ’ (5-20)

so that 122(0,0) is both O(p-]) and O(o;]) as p=+0. The conclusion i

that this singularity is stronger than the analogous square-root singularity

arising in the linearized theory is consistent with earlier findings con- ﬁ
1 v

cerning crack-tip singularities in hardening materials.

We record next the asymptotic behavior of the strain-energy density.

By (2.40), (2.41),

u=%(1u2-3) , (5.21)

with u= Hq and u= Mo in the upper and lower half-plane, respectively.

Bl le ik 5 ot T Toatial LA 2o el T

Further, from (2.27), (3.10), (4.9), and (3.40), one has

i

2 1 -1.2 1/4

L=y, oY= 117 ~go7 'h(e), 2=06""7) (5.22) %

whence E
Um Lo Thie) (5.23) |

k2 i

which reflects the jump discontinuity in U at e=0.

The foregoing asymptotic results involve the three real amplitude i

]See (1231, [13]. The Neo-Hookean material is "hardening" in the sense that
the slope of the response curve in Fig.2 is steadily increasing for a>1.
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parameters ays b], b2’ the first of which — in view of (5.:) — governs the
length-scale of the near-field approximations under discussion. As has been
pointed out earlier,] these parameters elude the local analysis aw?. for an

interface-crack between two semi-infinite sheets, are bound to depend : -

the stiffness-ratio s-= u]/uz, the crack-length 22, as well as on thes,..ific
loading at infinity.

The primary amplitude parameter a, can, in the usual manney, be ex-
pressed in terms of an appropriate path-independent "g-integral" by recourse
to a familiar conservation law of finite elastostatics. Let C] and C, be
the two simple closed curves shown in Fig.8, which 1ie in the respective half-

planes H] and H2' The conservation law alluded to above then assures that

{,’(k) ':‘J (Un] -0
Cx

W"Yo,)00 (k=1.2) (5.24)

where n is the unit outward normal vector of Ck. Next, let Lk(e) and
rk(e) designate the rectilinear and circular portions of Ck labeled in
Fig.8. Noting that ny = 0 along Lk(e) and recalling the boundary conditions
(3.2) together with the bond conditions (3.4), one infers that the contribu-

tions to 9(1)4-;(2) stemming from L,(e) and L,(e) vanish, whence

7 EJ (Un] - aaBnBya'])d‘= J 0 (Un] - OQBnByG,])d4 s (5.25)
C T{e

provided C and T(e) are the two curves (see Fig.8) defined by

C=Cy+Cy-Ly(e) - Lyle) - T(e), Fle) =Ty(e) #Tple) . (5.26)

Tgée the introductory remarks in Section 4.
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Passing to the 1imit as e¢+0 in (5.25) and making use of {5.1), (5.2),

(5.13), and (5.23), one readily arrives at

2 _ 8 0 o=
a2-.111 +s "';-J (Un'l-oaBnBua.'l)d‘ ’ (8.27)

in which C s any simple curve issuing from an interior point of the crack,
terminating at such a point, and surrounding the crack-tip situated at
Xp = .

The conservation law underlying (5.25), and hence also this identity,
is equally valid in the infinitesimal theory of (generalized) plane stress.
One may therefore calculate from (5.25), by letting e tend to zero, the
value of g appropriate to an available global solution of the linearized
interface-crack problem for particular loading conditions. Moreover, this
value of J 1in conjunction with the first of (5.27) would yield a small-
load estimate for a, if one could take for granted that the integrand in
the second of (5.27) is approximated uniformly on C — at small loads — by
its counterpart in the solution of the corresponding linearized problem.
While such an assumpticn is plausible in case Hy = Hos it is no longer
tenable when u]# up for curves C that come sufficiently close to the
crack-tip since the elastostatic field predicted by the linear theory is
oscillatory in any small enough neighborhood of the tip, whereas no such
oscillations occur at least at suitably small distances from the tip ac-
cording to the finite theory. For this reason, no matter how small the
loads, the linear theory cannot even supply a pointwise approximation con-
sistent with the finite theory at all material points.

It is conceivable, however, that despite these circumstances, linear-

ized elastostatics furnishes a valid approximation to 5 at small lcads.
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Thus, the global solution based on the infinitesimal theory might uniformly
approximate the elastostatic field emerging in the nonlinear theory on every
material point set that is sufficiently remote from the tips of the crack.

The precise approximative status of solutions to linearized problems in-

volving interface-cracks remains an intriguing issue.

Although the special case s=1 (u]= “2)' encompassed by the asymptotic
analysis carried out in this paper, has been included in the preceding dis-
cussion of the results obtained, certain aspects of the crack problem for an
all-around homogeneous Neo-Hookean sheet merit additional attention. If

s=1, equations (3.34), (5.1), (5.2) give

n](p,e)'vb]p cos®

(5.28)

2

n?_(o.e)~o” sin%+bzpcose (-nSB Sn) N

where
0= r/ag. ny = (¥ - z)/ag. n2=y2/ag . (5.29)

Consider now, in particular, the Mode I problem governed by (3.8), so
that the loading at infinity is one corresponding to a pure homogeneous
deformation with the X -axes as principal axes and ?a as principal
stretch-ratios. In this instance one would anticipate the global solution
to be symmetric about the x]-axis. Hence b2==0 and the near-field of

deformation predicted by (5.28) be-rmes

n(0,0) ~byp 08 0, nylo,8)wp'/2sin G (-msosn) | (5.30)

This conclusion is found to be in asymptotic agreement with the lowest-order
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approximation to the global solution deduced by Wong and Shield [15],] pro-
vided their results are adjusted to keep the crack-tip at Xo =% fixed,

and provided one takes
by=2s 35 AZ/EZ . (5.31)

In the analogous Mode II problem (3.9) is in force, the loading at
infinity being one appropriate to a homogeneous deformation of pure shear
of amount :, parallel to the xl-axis. The well-known solution to the
linearized version of this problem is anti-symmetric about the crack-axis,

ji.e. its displacement field
ua(x1,x2)=ya(x],x2)-xu (5.32)
obeys the parity relations
Uy (xyaxg) = =ty (X0 = xp) s Up(xqxp) = up(xgs = xp) (5.33)

Since the amplitude parameters in (5.28) cannot be chosen so as to render
this local expansion compatible with (5.33), the global solution to the
nonlinear Mode II problem at hand apparently cannot possess the anti-sym-
metry exhibited by its counterpart in the linear theory. This inference is
also supported by the observation that the nonlinear equilibrium equations
(2.46), when cast in terms of displacements, fail to be invariant under the
parity transformation (5.33). Further, whereas the crack-faces fail to
separate in the Mode II problem according to infinitesimal elastostatics,

the present nonlinear asymptotic analysis predicts that the crack does open

Tﬁeca]] that the iterative scheme employed in [15] presupposes large deforma-

tions throughout the sheet.
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at least in a neighborhood of its ends.

The foregoing conclusions regarding the Mode II problem for a Neo-
Hookean sheet are strictly paraliel to results arrived at eavlier by
Stephenson [16] in an asymptotic study pertaining to finite plane strain
for a class of incompressible elastic materials. Moreover, Stephenson
succeeded in proving the non-existence of an anti-symmetric global solution

to this problem for a Neo-Hookean material.
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FIGURE 2. RESPONSE OF A NEO-HOOKEAN
MATERIAL UNDER UNI-AXIAL STRESS
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FIGURE 7. DEFORMED MATERIAL COORDINATE
LINES FOR b,>O0.
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