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This paper contains an asymptotic investigation -within the nonlinear

theory of elastostatic plane stress - of the deformations and stresses near

the tips of a traction-free interface-crack between two dissimilar semi-infinite

Neo-Hookean sheets. The results obtained are free of oscillatory sinqularities

of the kind predicted by the linearized theory, which would require the two

deformed faces of an interface-crack to overlap in the vicinity of its tips.

Instead, the crack is found to open smoothly near its ends, regardless of the

specific loading at infinity.

1. Introduction

Owing to its importance in fracture mechanics, the plane problem of one

or more interface-cracks between two dissimilar elastic slabs has received

repeated attention in linearized elastostatics. The earliest such investiga-

tion appears to be due to Williams [l] (1959), who examined the local character

near a tip of a traction-free interface-crack of elastostatic fields compatible

S*Thp results communicated in this paper were obtained in the course of an in-

vestigation supported in part by Contract N00014-75-C-0196 with the Office of

Naval Research in Washington, D.C.

IA complete bibl*'qraphy of the extensive literature on this subject is beyond
the scope of thi 3per. Additional references can be found in those listed
at the end of the paper.
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with the governing field equations, as well as with the appropriate boundary h

and bond conditions. The analysis in [1] is based on an asymptotic scheme,

originated by Knein [2], which Williams [3] had employed previously to explore

two-dimensional corner singularities possible in homoqeneous elastic slabs. F

The scheme here alluded to leads from the biharmonic equation satisfied by the

generating Airy stress function to an eigenvalue problem for an ordinary fourth-

order differential equation. In [1] the prevailing boundary and continuity

conditions give rise to a sequence of complex eigenvalues that induces oscil-

latory singularities at a tip of an interface-crack in the associated sequence

of displacement and stress fields. 1

A global solution to the problem of a uniformly pressurized interface-

crack of finite length, between two homogeneous and isotropic (linearly elastic)

semi-infinite slabs of possibly distinct material properties, was deduced by

England [4] (1965). Let 2z be the length of the crack and choose rectangular

Cartesian coordinates (x 1 1x2 ) as indicated in Fio.l. Next, let H1  and H2

be the half-planes x2 >0 and x2<0, occupied by the interior of the middle

cross-section of the upper and lower slab, respectively, while denoting by 'k

and vk (k=l,2) the corresponding shear moduli and Poisson-ratios of the two

slabs. 2  If ua and are the components of displacement and stress in the

underlying coordinate frame, England's solution conforms to the followinq formnu-

lation of his problem: it satisfies the two-dimensional displacement-stress

relations and stress equations of equilibrium (in the absence of body forces),

1Similar oscillatory singularities - likewise traceable to complex eigenvalues -

are encountered in [3] in connection with certain mixed boundary conditions.

2 From here on the "material index" k, as well as all Greek subscripts, are

understood to take on the values (1,2); further, Greek suhscripts are subject
to the usual summation and differentiation conventions.
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so that

CF +2u (C[IO I a a0 on Hk (k.1)1

where 6 8L is the Kronecker delta and

K = 3- 4k for plane strain,

(1.2)

KkC 1+ k for generalized plane stress

it obeys the loading conditions

r2 (xi,0+):-62, (a>O), ((a >l)) 1
(1.3)

a(x1 9x2 o ) as x 2+.,,2 . CD J
in which a is the constant pressure applied to either crack-face, and it

meets the bond conditions

ua(xI ,o+) = u (xI ,O-), I 2 8(x Q0+) = (a28 (xI .0-) (Ix11 > L) (1.4)

In addition, u is twice continuously differentiable on Hk9 the limits

u (xX1 ,O±) exist and depend continuously on xI for -oo < xI <io, whereas

the limits a ae(xiO±) exist and are continuous for all x, .+±.

It should be recalled that the generalized plane-stress solution pertains

to "thin" slabs (elastic sheets). In this instance u(xl'X2 ), aa(x1 'X2 )

at once approximate the thickness-averages and the mid-plane values of the

corresponding displacements and stresses.

""Here u(ae,O) (u0 8 + ua,a)/2 are the infinitesimal strains.

, m m m u - - - m m m m- m m i n im~4.'-- l l l -
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We now introduce local polar coordinates (r,e) with the origin at

x1 X, x2 =0 (see Fig.l) and describe the asympotic behavior near the right-

hand crack-tip of the solution obtained in [4]. If this tip is fixed by super-

position of a suitable rigid translation upon the displacement field at hand,

one has as r-'0,

u -r J,+ (6)cos(y log r) + (E))sin(y ion r)] , -UCL

(1.5) r
1 [Y(e)cos(ylogr)+4 (e)sin(ylogr))

%8 ,Ijts( u

where po , * O, y8 9 *8 are fully determinate functions of the polar angle

e, and y is the material parameter defined by

Ss + K.1 l ,

"- 2L logca, a= + Sk=' s 2  (1.6)

s being the shear stiffness-ratio of the two slabs. Equations (1.5) bring

into evidence the unboundedness of a 8  at the crack-tips, as well as the

oscillatory nature of the resulting crack-tip singularities.

With a view toward examining the difficulty that led England to reject

his solution as physically inadmissible, wecite from [4] the formula for the

relative normal displacement of the two crack-faces:

A2 (x,) u2(x ,0+) - u2(xI ,0-) =

' VC l+tl ++2 cos 2 +-Xl\ (x,< z) (1.7)
2(1 + a) jlv*l- 12] ix, 1

: When yO, (1.7) reveals an infinity of oscillations in the sign of

as ±•-t± and thus implies wrinkling of the faces of the crack in the

- -•-.. -- -.-
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vicinity of its ends. 1  In order to infer the unacceptable prediction of 14overlapping crack-faces it is essential to consider also the corresponding '1
relative tangential displacement, which is readily computed with the aid of

results given in [4]: 1

-A

1,(Xl ul(xl 0+)- ul(xl,0-) a

a ___ L + /2 ' 1 sin 1oo '- i ) (I) . (1.8)

Equations (1.7), (1.8) evidently imply the presence of interpenetration if

there is a value of xI satisfying

A(xl)= 0, x AXl c, (1.9)

If y#0, one confirms easily that (1.9) in fact possess a doubly infinite

sequence of roots supplied by

x(j)Itanh(j-/2y) (j=_+,_3,+5,...) (1.10)

From (1.10) follows

6=max[I- Ix}J)t] =t[1-tanh(,/2{y{)] (1.11)

and one finds that a/t<4xl0-8  for all physically realistic values of the

elastic constants.2 Consequently, the roots of (1.9) are confined to

Since wk>0, -l cvksl/ 2 , it is clear from (1.2), (1.6) that the material
parameters Kok, s, and a are positive; l K£k< 7  for plane strain, while5/3 1Ck<c00 for generalized plane stress. Thus A2 (xl) cannot vanish iden-
tically.

2Ilk >0, 0 1s / 2.
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exceedingly small intervals adjacent to the ends of the crack. Nevertheless

the presence of any overlap violates the physical requirement that the re-

suiting deformation mapping be one-to-one and thus - as pointed out in [4] -

invalidates the solution.

Evidently, the foregoing violation disappears if and only if y =S0 or,

equivalently,

S+,I=I+sKc2  (ShilIa2 ) , u1.12)

in which instance the en.ulig singularities are no longer oscillatory and

A 1(Xl):0 , A2(Xl)> 0 (lXll < Z) ( .

Condition (1.12) is met in particular for plane strain, regardless of the

value of s, in the limiting case of two incompressible slabs, since

11  \2 = 1/2 here implies Kl = K2 2 . In contrast, it is essential for our

purposes to observe that (1.12) fails to hold for generalized plane stress

of two incompressible sheets, unless the two materials are identical. 1

We turn next to the analogous problem for a traction-free interface-

* crack between two semi-infinite slabs that are subjected to loads at infinity.

In this connection we confine our attention to the case in which the loading

conditions (1.3) give way to

02a(xlO)0 ((Xtj(< )

~(k)2 2"al1 (x1 ,X2 )+-o1  +o(l) as x2l+2 OD, (xl,x 2 )Hk , (1.14)

(x x) 6 +00l) a o (a >
02a 1,2 2) 22 as x1 +x 2 = (222>0)

1Note from the second of (1.2) that vk=1/ 2  now gives Kk= 5 / 3 , so that (1.12)
"demands 'J u2"
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As was made clear by Rice and Sih [5], an arbitrary assignment of the constants

;(k) and >0) is in general inconsistent with the bond conditionsI' •22 (w22 qener

(1.4), the first of which demands the continuity across the bonded interface of

the extensional strain u1,1 . In view of the displacement-stress relations

(I.1) this requirement leads to the loadinq constraint

(0+ cl)(I) +l (2) - . (1,15)1112 *Cll -SOl ++ [1c+[ -l3 - s('2-3]2 11)

Observe that G(k)= 0  is admitted by (1.15) if and only if

Kl -3=s(:2-3), (s - Pl/1 2 ) . (1.16)

Accordingly, the problem of an interface-crack in a uni-axial tension field

(at right angles to the interface) cannot possibly possess a solution unless

(1.16) holds. 2

When the given load parameters 1(k)all * a22 obey (1.15), the solution to

the problem governed by (1.1), (1.4), (1.14) is obtained at once by superposition

upon England's [4] solution for the uniformly pressurized crack with O=022

of the piecewise homogeneous deformation with the displacements and stresses:

u2 .1 [(IK~l~2 a "- 3)-(k2] (1.17)u2 lik (k + I)'22 + (Kk 3111k)x(I17

a 1 1 '3220 221 0212 =2= on k

IThis relation is equivalent to Eq.(19) in [5]. No additional constraints on

the load parameters arise if 021 ý012 tends to a constant non-zero value
Il2 at infinity.
2 This fact appears to go unnoticed in some papers. Note that (1.16) is satisfied

not only in the specidl case s=1,, vj=v 2  (identical materials), but also for
Svk '0 (K = 3) regardless of thevalu of .
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Since u in (1.17) is continuous across the entire x -axis, it is

clear that (1.7), (1.8) and the discussion followino these equations remain

valid also for the problem of the traction-free crack under present consid-

eration. Further, the asymptotic results (1.5) evidently continue to hold

in the present circumstances. Indeed, the right-hand members in (1.5) are

consistent with the displacements and stresses appropriate to the only member

of the sequence of elastostatic fields deduced by Williams [l] that has con-

tinuous displacements but unbounded stresses at the crack-tip. This field

encompasses at the same time the asymptotic structure near a crack-tip of the

global solution associated with an all-around uniform shear loading at in-

finity,2 which is once again described by (1.5). 3
4{

The objections raised in [4]4 to violations of the impenetrability re-

quirement apply to a host of papers on various interface-crack problems that

have appeared in the literature. These misgivings have prompted a renewed

theoretical concern with interface-cracks in recent years. Thus Comninou

[7]5 (1977), [8] (1978) sought to remove the inadmissible field oscillations

on the basis of the ad-hoc assumption tt*t the crack-faces remain in friction-

less contact over two sub-segments (adjacent to the two ends of the crack)

of initially undetermined length. Still more recently Achenbach, Keer, Khetan,

and Chen [9] (1979) relied on the Dugdale-Barenblatt [10], [11] model of

111 should be recalled that the results in [1] involve certain undetermined

amplitude coefficients which elude the local analysis carried out there.

2 See [5], where such a loading is included.

3In this instance cp, p, y,, ýp, are no longer the same functions of the
polar angle as before.
4The same criticism was voiced independently by Malyshev and Salganik [6].
5This publication contains a fairly extensive list of references to earlier work.
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inelastic behavior near the tips of a crack in order to eliminate unbounded

stress singularities altogether from problems involving interface-cracks.

In the current paper we adhere to strictly elastic behavior but relinquish

the hypothesis of infinitesimal deformations, which is in fact violated by solu-

tions exhibiting locally unbounded stresses and hence unbounded displacement

gradients. We aim to show that the offensive oscillatory sinaularities arisinnt

in interface-crack problems stem from the linearization of such problems, as

conjectured by Ergland [4], rather than from the assumption of perfect elasticity

or the particular idealization underlying the formulation of the boundary and

bond conditions. With a view toward accomplishing this purpose in an analyti-

cally amenable setting we deal asymptotically with the elastostatic field near

a tip of a traction-free crack between two otherwise bonded incompressible

slabs of Neo-Hookean material. Furthermore, the present study is carried out

within the nonlinear theory of elastostatic plane stress since a plane-strain

analysis appropriate to incompressible slabs would be pointless. To be sure, F
the theory of plane stress - in contrast to plane strain - is approximate and

presupposes the slab-thickness to be small compared to a characteristic in-plane

dimension of its cross-section. Objections based UDon the approximate nature

of this theory, which might be raised especially in connection with crack prob-

lems, however apply equally to linearized and finite elastostatics and do not

interfere with our primary purpose.

The method used in pursuing the local issue at hand is an adaptation to

the nonlinear theory of the asymptotic scheme underlying [1], [2), [3]. The

same approach was employed in a sequence of previous studies of crack-problems

IRecall from the discussion following (1.13) that the linear theory does not
lead to oscillatory singularities in these circumstances.

-i
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in the nonlinear equilibrium theory, under various loading conditions and

diverse constitutive assumptions. These papers are referenced and briefly

summarized in two recent survey articles [12], [13]. Particularly pertinent

to the present study is a related asymptotic exploration [14] of elastostatic

singularities induced by certain mixed boundary conditions of the kind arising v

in the problem of the "rough punch". While the linearized theory in these

circumstances predicts oscillatory singularities, their absence is shown in

[141 to be consistent with the nonlinear theory of plane strain for compres-

sible materials of the harmonic type.

The present work is also closely related to a paper by Wong and Shield

[15] (1969) that predates the publications mentioned above. In [15] an ap-

proximate global plane-stress solution is deduced for the problem occasioned I
I.

by a finite crack in an all-around infinite Neo-Hookean sheet, subjected to 1'

bi-axial tension at infinity. The approximative approach adopted there re-

quires the deformations to be large throughout the sheet. Our local results

pertaining to an interface-crack between two distinct Neo-Hookean sheets,

upon proper specialization, are found to be in asymptotic agreement with the

solution reported in [15].

The chief conclusion reached by us concerns the absence of oscillatory

singularities in the present nonlinear setting of the interface-crack problem.

Somewhat surprisingly we find that a result arrived at in [15], according

to which the crack opens up smoothly under the s)ynmetric loading considered

there, continues to hold true for the interface-crack - regardless of the

particular loading conditions.
1

1We exclude degenerate loadings that give rise to finite displacement gradients

at the crack-tips, such as uni-axial tension parallel to the crack-faces and
compatible with (1.15).

** ' " **-,
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Finally, as a by-product, the analysis presented in this paper yields

certain results of interest in connection with the Mode II crack problem for

a single (homogeneous) Neo-Hookean sheet. The global solution of this problem

within the infinitesimal theory predicts that the crack-faces fail to separate

in this instance and that a Mode II loading of simple shear at infinity leads

to an elastostatic field which is anti-symmetric with respect to the crack-

axis. Both of these predictions are found to be in conflict with the local

results established in this paper and hence reflect degene.-Pcies stemming from

the linearization of the problem. Analogous conclusions regarding the Mode II

crack problem were arrived at previously by Stephenson [16] in a nonlinear

asymptotic study encompassing a class of incompressible materials under con-

ditions of plane strain. I In particular, Stephenson succeeded in proving that

the global nonlinear Mode II crack problem for plane strain of a Neo-Hookean

material cannot admit a solution anti-symmetric about the crack-axis.

2. Preliminaries from the theory of plane stress in finite elastostatics.

Neo-Hookean materials.

As prerequisites for the analysis to follow, we assemble in the present,

largely expository, section, some basic ingredients of the nonlinear equilib-2I
rium theory of plane stress2 and in this connection confine our attention to

incompressible, homogeneous and isotropic, elastic solids.

Let (xl,x 2 ,X 3 ) be rectangular Cartesian material coordinates and con-

sider a body which, in an undeformed configuration, occupies the closed

1See also [17], where nonlinear effects bearinq on the question as to whether
or not a crack opens up in the presence of a Mode II loading are explored further.
2 An account of this approximate theory, couched in general tensor notation, is
contained in a paper by Adkins, Green, and Nicholas [18] (1954), who cite per-
tinent earlier work. See also [15].
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cylindrical region a described by 1•

it= [x(x 19x2) En, -t/2sx3 .t/21 , (2.1)1

where In is the cross-section of P in the mid-plane x3 0 and t the

constant thickness of the cylindrical slab.

A locally volume preserving deformation of the body is characterized by

y(x)=x+u(x) for all xEi , (2.2)2
It

with

detF-l, F= Vy on 9 , (2.3)

in which u and F stand for the displacement vector field and the deforma-

tion-gradient tensor field, respectively. We shall tempo-arily take for

granted that the mapping 3' is twice continuously differentiable and uniquely F
invertible on R. If g is the nominal (Piola) stress field accompanying

the deformation, equilibrium - in the absence of body forces - demands that

divo=0 on a (2.4)

Further, a is linked to the corresponding actual (Cauchy) stress field T

by means of

T =F on 6 (2.5)3

1 For the time being, letters in boldface denote vectors and second-order tensors
in three dimensions.
2 Thus yj(x) (i -1,2,3) are the spatial coordinates of the material point
x= (xlox 2 ,x 3 ) after the deformation.

A superscript T indicates transposition. Note that at present T is re-
garded as a function of position on R.

• t-j
S-- .S.W.4.-- -rr
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Next, call G the left Cauchy-Green deformation tensor associated with the

deformation (2.2) and let I1, 12, 13 designate the fundamental scalar in-

variants of G. Thus,

G F F o , 1So,, , } (2.6)

IltrG, I2 •[(trG) 2 -trG2], 13 detGl

Suppose now the body at hand possesses an elastic potential W(ll,1 2 ), so

that W(ll,I 2 ) represents the strain-enerqy density per unit undeformed

volume. The appropriate constitutive law then takes the equivalent alterna-

tive forms

T= AG -BG - o: AF- B3 F- p-T (2.7)

where

A= 2(Wi + I Wi), B 2W (2.8)2
1 2 12

while p stands for the arbitrary scalar pressure needed to accommodate the

kinematical constraint of incompressibility.

Finally, we recall that if Xi (i = 1,2,3) are the local principal

stretches associated with the deformation (2.2), their souares are the local

eigenvalues of the symmetric positive-definite tensor field G. Accordinqly,

(2.6) gives

X2  X2 + X2X2 + 1I X2 2 2 l (2.9)1 1 2 3' 2 1 2 2 33 1 3 1 2 3

IHere 1 is the idem tensor and F-T the transposed inverse of F.

We write W, and W, for the partial derivatives of W with respect

to the corresponding deformation invariants.

- - - - -
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At this stage we subject the deformation (2.2) to the following special-

izing assumptions:

(a) it is symmetric about the mid-plane x3=0, so that y(x,x2,x3)3 1293)H

is an even, and Y3 (xlx 2 ,x 3 ) an odd function, of

(b) it is consistent with the requirement that the deformed faces of

the cylindrical slab be free of tractions, whence

ji3(xl ,x2 ±t/2) =0, (x1 ,x2 ) En, (i =1,2,3) (2.10)

In addition, we suppose the cylindrical slab to be "tnir:" in the sense that

t is small compared to a characteristic dimension of its mid-section n.

Motivated by this supposition, as well as by (a) and by (2.10) with i= 3,

we adjoin to (a) and (b) the approximative assumption

(c) 0330 on n, = 30 on R . (2.11)

If f is a function defined on R, we shall write f for the restric-

tion of f to n. The relevant theory of plane stress aims at an approxi-
C Cmate characterization of y, a8 , and 0 (in the present constitutive

setting) on the basis of assumptions (a), (b), (c).

In view of (2.2), one has

ya(xl,x2)=x +u (xlx2) on n (2.12)

Further, the equilibrium equation (2.4) implies

t/ 2f [%8 (x1 .Xx2 3  )+a 3 , 3  x1 x2 x)Jdx3 = 0 (2.13)
..t/2

which, because of (2.10) and the second of (2.11), reduces to
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B, 0 on I (2.14)

Next, upon putting

X(xl,x 2 )=y 3 3 (xlx 2 ,0) on II , (2.15)

one draws from (2.3), (2.5), (2.6), (2.7), together with (a), that

0 0 0 0 0 0 2
F o F3 OF , F3 3 =,G G G 3 G , G3 3 = ,

0 0 :o o 2 -4
3 3 O 33 -(A) (2.16)

"03a T33);O33

=T =0,T on nI.

•.2.

.47 Accordingly, X2 is a principal value of G at all points of RI, with the

x3- axis as an associated principal axis. This identifies X as the transverse

principal stretch on ni and entitles us to take

E ~01
O-- X f=X on n (2.17)1

Also, since 033=0 by the first of (2.11), one infers from (2.16) that

p AX BX on R1 (2.18)

Bearing in mind (2.6), (2.9), and (2.16), we set

0 0 °202 Fe[ ) =
tr[G = + A = det[B > 0 (2.19)

and note with the aid of (2.3),(2.17), (2.9) that

Note that X< 1 represents a thinning, and X> I a thickening, of the sheet.

A
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1 -2 2 -2 2
X I 1 12 z IJ-2 (2.20)

We now evaluate 06r by means of (2.7), making use of (2.18), (2.20), and

thereafter appeal to (2.19) and the Cayley-Hamilton theorem in two dimensions

in order to eliminate G from the resulting stress-deformation relation.

This computation yields
o ooo o o o o,

0 +(A-BI)F +(BJ 2 -A0- 2 +Bj' 4 )F 1  (2.21)1

Finally, (2.5) and (2.16) justify

0 0

Ta =a OyF y on II (2.22)

For convenience we summarize at this point in coordinate-free notation

the equations governing the approximate two-dimensional theory of plane stress

reviewed above. To this end we shall from here on let x, y, u and F, G,

0, T denote the two-dimensional vector and tensor fields with the components
0 0o 0 0

x , ,C' 6 and Fae, Gass gB T ae' At the same time we omit henceforth

the superscript zero from symbols that denote restrictions to n of functions

originally defined on the cylindrical region R.

Thus, (2.12) and (2.14) now become

y(x)=x+u(x) on n , (2.23)

div =O on nI (2.24)

Next, keeping (2.19), (2.20) in mind, we introduce the plane-stress elastic
F

potential U through

F stands for the components of F.T.
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U(I,J) =W(Il , 2 ) W(I + 2,1J
2 + j- 2) (2.25)

Equation (2.21) then readily leads to

-T/02U IF +JU F on _T (2.26)

where

TF=Vy , GFF F

So (2,27)

I =trG=X , J=detF- = 1=I/X on ( 71 2 1 2

while UI and U designate the corresponding partial derivatives of U(I,J).

Further, (2.22) implies

= F T on IR (2.28)

Suppose now r is a regular arc in IR and r*=y(r) its deformation

image in n*=y(n). Moreover, let n and n* be the orienting unit normal

vectors of r and r*, respectively. Then (2.28) is easily found to imply

-cn*--0 on r* if and only if an= 0 on r , (2.29)

so that the vanishing of the nominal tractions on r is necessary and suf-

ficient in order that the actual tractions vanish on r*. Note that the three-

dimensional counterpart of this result was used earlier in writing the boundary

conditions (2.10).

We also recall parenthetically that (2.26) becomes identical with the

analogous two-dimensional constitutive relation for plane strain of a homo-

geneous and Isotropic compressible material, provided U(I,J) is regarded as

---------------.-±.'
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the plane-strain elastic potential.

We now deduce an implication of the constitutive relation (2.26) that

will play an essential role later on. Let M and N be the invariants of
T

a defined by

M tr(aT N det (2.30)l

From (2.26), (2.27) follows

T = 4U G2+ (2.31)

Now G satisfies the Cayley-Hamilton equation

G2 - (trG)G+(detGj)l , (2.32)

so that, upon post-multiplying (2.32) by Gl one arrives at

tr• • tr G= 2 tG I=J" 2  , (2.33)

whence (2.30), (2.31) yield

M= (4U1 +U2)I + 8UIUjJ (2.34)

On the other hand, post-multiplication of (2.26) by F at once gives

J det a•det(2UiG+ JU) 1 (2.35)

With the aid of the characteristic polynomial of the tensor 2UIG, (2.35) is

seen to furnish

1Thus M and N are analogous to the scalar invariants I and J of the

deformation tensor G F FF'

÷ . . ..
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2 2 2JdetZ-J U + 2JUIUJ trG+ 4U detk, , (2.36) iI
so that (2.27) and the second of (2.30) enable one to write

N-2UU '+(4U +UU ) . (2.37)

Elimination of the explicit dependence on I between (2.34) and (2.37) results

in the identity

2U1U i tr (g~)-(4U I +U U )det a + (4UI - U)J =0 ,(2.38)

which is the desired consequence of (2.26).

We conclude this section by considering as a special case the Neo-Hookean

material, with which we shall be concerned hereafter. In this instance the

three-dimensional elastic potential is given by

W(1l9I R -- ( 1 -3) ,(2.39)

where P> 0  is the material's shear modulus. In view of (2.25), the cor-

responding plane-stress elastic potential takes the form

U(I,J) = (I + J-2 .3) (2.40)

and (2.26), in component form, thus reduces to

GCB ji(F - 2 F-1l CsY(.1

But

JFoa: LP CF , J= det[F a >0 , (2.42)

-. . .,. .. , .. -- • i.. i -• i f • • - - - .. • - ... ,y
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if CCI is the two-dimensional alternator ( =I 22= 0, E1 2 =-21=I).

Hence (2.41) yield

0s= -Y CL'i E C iu (2.43)

while according to (2.28), (2.41), the actual stresses obey

To' = U(,y " S x26s) (2.44)

Substituting from (2.43) into the component version of (2.24) and remembering

the first of (2.27), one arrives at the equilibrium equations in terms of the

spatial coordinates:

V2y = (x),' B~yV,• (2.45)

or

2 Yl "- (x3 ),ly2 ,2 -m 3),2y2 ,1

v2 y2  (x3 ), 2 y 1 l - (x3 ),lyl 2 (2.46)

Further, in view of (2.40) and since J=dm/, the relation (2.38) here becomes

)12 1_ ()7 + ON- 2x6 -_ 1 4M + 1= , (2.47)

while (2.30), (2.43) lead to

N= det[ a]= U u 2 (X 5 +A•-1  3 A 1y•, ,) (2.48)

Mc, ao 010 (l+ X)yyys 4x

a8 ci8 ,8 ct-

.... •-
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The foregoing equations agree with the analogous equations in the paper

by Wong and Shield (15].1 In particular, (2.47) is in agreement with Eq.(5.4)

of [15], which is deduced there in a different manner.

Finally, it will be helpful to recall the response of a Neo-Hookean

material to a three-dimensional homogeneous deformation corresponding to simple
shear or uni-axial stress. For this purpose we first note with the aid of

(2.3), (2.6), (2.8), and(2.39) that the first of the constitutive relations

(2.7) at present reduces to

=uFFFTpl, F=vy . (2.49)

A simple shear parallel to the plane x3 =O is represented by the mapping

yl zx *+kx2 $ Y2 =x 2 , Y3 =x 3  ' (2.50)

where k is the amount of shear (shearing strain). According to (2.49) this

deformation induces the true stresses

T12 = Uik, T2 3 =T 3 1  0, tl = k T22 -T 3 3 0 , (2.51)

provided the arbitrary hydrostatic pressure p is adjusted so as to enforce

the vanishing of the transverse normal stress T33.

The deformation appropriate to uni-axial stre, , parallel to the x2 -axis,

in turn, takes the form

Yl= xl/xlV ' Y2 = x2, Y3 = x3 / VA (A > ) , (2.52)

I It should be noted, however, that the plane-stress elastic potential employed

in [15] is tU(IJ), if U is the potential defined in (2.40). Further, in
[15) the equations are cast in terms of thickness stress-resultants (forces
per unit length), rather than in terms of stresses. Also t is not restricted
to be constant in [15].
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so that the associated principal stretches obey

2 x1= 3=lv (2.53)

Moreover, p in (2.49) must now be chosen so as to insure that TII =T 0.

In this manner one arrives at the true stresses

ul2 1 ;

t2 2 )T(X) - 1x-- , t 3 3  0
(2.54)

"•12 =T 23 T 31 2 0 •

A graph of the first of (2.54), depicting the axial stress T as a function

of the axial stretch X, is given in Fig.2.

3. The global nonlinear interface-crack problem for two Neo-Hookean sheets.

Local analysis.

Here we first formulate, within the finite theory of plane stress for

Neo-Hookean materials, the global interface-crack problem whose local analysis

constitutes our objective. Figure 1 is henceforth taken to refer to two semi-

infinite Neo-Hookean sheets, the interiors of which occupy the open hal.k-planes

H1 and H2 in an undeformed configuration, while (xl,x 2 ) now represent

material coordinates in this configuration. Further, ul and u2 at present

denote the respective shear moduli of the two sheets. The latter are bonded

along the xl-axis but for the crack of length 2k, which is assumed to be

traction-free, each sheet being subjected to a homogeneous deformation at

infinity.

One is thus required to find a deformation y (xV,x2 ) that satisfies

the equilibrium equations (2.45) on H1k and - through (2.43) - generates a

nominal stress field

! "*
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aeB=k~y(•,8- ycC ,V) on H 1
(3.1)

),-IJ= det[vy6

ca,8

obeying the boundary conditions

1I

a 2 (x1 ,O-9±)o (Ix1 <) (3.2)]

1o

In addition, the desired deformation is to conform to the kinematic loading

conditions

yI(x1x2)-F MO +0(1) as x2 +x 2-, (x 1,x 2 ) EHk , (3.3)

in whiich (k) are pre-assigned constants, and y (xl,x 2 ) must meet the

bond conditions

YO (x + Y-(,.0)-a(XlO0+) =a .(xl,o-) IXll I " ) . (3.4)2

Finally, y and a8  are to have the same smoothness as u and a in

England's problem. 3

The gradient components ?(k) of the homogeneous deformation at in-

finity cannot be assigned at will since (3.3) must be compatible with the

bond conditions (3.4). With the aid of (3.1) one is thus led to the four

condi tions

1See the remark following (2.29), according to which (3.2) assure that the
deformed crack-faces are free of actual tractions.

2The second of (3.4) is easily seen to imply the continuity of the actual
tractions across the deformed bonded portions of the interface.

3See the regularity assertions following (1.4).
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t~I.
-(l)I -(2

C& aw U1u a2 (IV 0li

where
J(k)_det )) (3.6)

)= J2 a.s

The relations (3.5) are a counterpart in the present nonlinear settin. nf

the loading constraint (1.15).

If L1 =--2 (s--1), so that one is dealing with a crack in a sinqle

all-aroung homogeneous Neo-Hookean sheet, (3.5) are automatically satisfied,

provided

F(I) F as -= (3.7)

Moreover, the particular assignment

CO X > 1(3.8)
0 2-

corresponds to a Mode I loading with the principal stretches X1 1 x2 at

infinity, while

constitutes a Mode II loading, k being the amount of shear applied at

1The inequality in (3.6) follows from the inequality in (2.41).
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i nf ini ty.

With a view toward an asymptotic analysis of the elastostatic field

near the right-hand crack-tip, it is expedient to reqard the spatial coordi-

nates y from here on as functions of the local (material) polar coordinates

(r,e) (see Fig.l) and to introduce the complex spatial coordinate

y(r,e)=yl(r,o)+iY2 (r,e) (r>0, -7T e .:O (3.10)

One then has

J=det[y ]-rlIm{. } , X=d-1, (3.11)

provided ay/ar stands for the complex conjugate of ay/hr. The equilibrium

equations (2.45) are equivalent to

y r ar(3.12)

2 +2 l 1 2y

r r ar e2

while the constitutive relations (2.43) lead to

Ili + i21 1[x (cos a+ iX3sinea)- 1F &e(sin e - ix3cos ) ,

(3.13)

a12 + i322: (sin 0- ixa3 cos e) + ' -(cos e + ixasin J

From (3.13) one deduces formulas for the polar comporents of rominal stress:
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arr+ i r e- i + iA3 1

are + i 68 = e i)r }e I
Further, (2.48) at once yield

N~det +)= 2{Xf -3 (j1 I2+

(3.15)

M 2 ((l + X6)(r +r i -421}

Equations (3.12) hold for 0<o<it, as well as for -n<@QO. On the

other hand, (3.13), (3.14), and (3.15) apply to Ooerit with u= v and

to -Tr -eO with P= 12. Moreover, because of (3.2), (3.13), one has the

boundary conditions

[lx-•-i,3 0 (r,± =0 (O<r<2z) , (3.16)r 90 r(r,±,,)

whereas (3.4), (3.13) furnish the bond conditions

- r y(r,O+) y(r,O-) ,
• (3.17)

s X X (r > 0)
r B a(r,O+) r e r f

and analogous bond conditions at B = ±n.

Taking for granted the existence of a solution to the global interface-

1The subscripts in the left members of (3.14) are exempted from the range
and summation conventions adopted earlier for Greek indices.
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crack problem stated at the beginning of this section, we now assume that

this solution admits an asymptotic representation of the form

y(r,e)- L+ rmv(6) as r0 (0s YTi)

(3.18)

y(re) -z+rmv(e) as r+ +0 . e 0)J

M=•+iO, M =a'+1i (a'a, and B,B' real) , (3.19)

so that the exponents m and m' are permitted to be complex numbers,

while v is a complex-valued function, twice continuously differentiable on

[O,r] and on [-w,O], that fails to vanish identically on either of these

two intervals. Further, we stipulate that

a=Rem>O, ci'=Rem'>0 ; (3.20)

accordingly the displacements are required to be continuous as r+O and the

elastostatic field at hand is taken to have been normalized by means of a

suitable rigid translation so as to keep the crack-tip at r =0 fixed.

Note that (3.18), (3.19), (3.10) furnish

yl(re) - + r(v (e)cos(e log r) -v 2 (e)sin(5logr)"
1 1

(3.21)2
y Y(r,o) -r[vl ()sin(s log r) + v2 (e)cos(B log r)J

when 0s0oir; if -7so&O&, a and 8 in (3.21) are to be replaced by •'

IHere and in the sequel the asymptotic equality symbol "-" is used in the

following connotation: the first of (3.18) means that for o T,

y(r,e)=Z+rmv(e)÷o(rm) as rO,+0

where o(rm)mo(Irml)uo(r'), if a =Rem.
2 All asymptotic L.qualities and order-of-magnitude estimates are henceforth

understood to refer to the limit as r-O.

--------------------------
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and B', respectively. Equations (3.21) exhibit the structure of the oscil-

latory behavior admitted by the Ansatz (3.18). Clearly, the right-hand

members in (3.21) are non-oscillatory if and only if m and m'. are both

L real (B=B'=O). Observe also that (3.18) encompass the possibility that

y, (re) - x and Y2 (r,e) are of different dominant orders of mangitude as

r- O, for a fixed value of e. For example, according to (3.21), a=O0

together with v2 =O on [O,Tr] gives yl(r,a) - .- r'v l (e), but y2 (r,e)

in this instance vanishes to a higher order as r- 0.

To (3.18) we adjoin an additional asymptotic assumption concerning the

transverse stretch X by requiring that

(r, )=1/J(r,e)=O(r as r-*O (-irsar-) for some q>O . (3.22)

At the same time we demand the validity of the asymptotic equalities resulting

from two consecutive formal differentiations of (3.18) with respect to r or

e, as well as the "differentiability" of (3.22).1 Equation (3.22) implies

that J(r,e) becomes unbounded as r -O and hence anticipates that not all

deformation-gradient components remain uounded in this limit, so that c <l,

1 <1. Since x(r,e) tends to zero as r -O, in view of (3.22), the deforma-

tion prevailing in the vicinity of the crack-tip entails an extreme thinning

of each sheet. Evidently (3.22) excludes all regular deformations - in parti-

cular homogeneous deformations - from our present considerations.

Aiming at the lowest-order asymptotic near-field behavior, we now seek

to determine v(r,e), as well as the exponents m, m' with the smallest real

parts, consistent with (3.18), (3.20), (3.22), the governing equilibrium

equation (3.12) and the accompanying boundary and bond conditions (3.16),

1Thus vx(r,e)=O(rq-l) s r O (0< el <7r).

-~ 2-~ -- ~ .- i
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(3.17). On account of (3.18) and (3.22), the nonlinear x3-terms in (3.12),

(3.16), (3.17) do not come into play in the lowest-order analysis. Upon

entering (3.12), (3.16) with (3.18), (3.22), one readily arrives at

++m v-o on (0,w), V+(m') v-0 on (-.i,O) , (3.23)1 V

0 o(3.24)

From (3.23) follows

v(e) =a sinme + bcos me (0< e sT)

(3.25)

v(e) = a'sin m'e + b'cos m'e (- a e<O) 0

in which a, b and a', b' are complex constants. On the other hand, (3.18),

(3.22) in conjunction with the bond conditions (3.17) and (3.25) give

br +o(r") b' r +o(r)(3
(3.26)

s ma rm'l +o(ra- 1  m'a'rm'I' +o(r" 7l)J

If •$c', (3.26), (3.20) imply that a, a', b, b' vanish simultaneously,

which is inadmissible since in this instance v-O on E-ni]. Therefore,

cz=Rem-a' =Rem' . (3.27)

Further, (3.26), (3.27) necessitate that

1Here and in what follows superior dots connote differentiation with respect
to the polar angle e.

•_• •,--•.-., --
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b + o(1) b'ri ( -'
(3.28)

sma+o() = mIa'ri(B-8')

and the left members in (3.28) tend to b and sma, respectively, as r+O,

whereas the right members fail to possess limits unless B=8'. Consequently,

one draws from (3.27) and (3.28) that

m=m', sa=a', b=b' (3.29)

Combining (3.29) with (3.25), invoking (3.24), and recalling that m=0 is

precluded by (3.20), one has

a cos mr - b sin mir =0

asJb m (3.30)

s a cos mr + b sinmT=0 1 J
Thus, since s>O and a=b=0 is ruled out by v O on [0,i],

sin2m-r=O , (3.31)

whence m is real. The smallest positive root of (3.31) is

M 1a= , (3.32)

and (3.30), (3.32) lead to b-0, while the constant a remains arbitrary.

Also, (3.32), (3.29), (3.25), and (3.18) yield

y r,e) -z + rl/2v(6) T- 6 T)

S(3.33)

v(9) =ah(e)sin ,-T :i T
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in which a) 0 is an arbitrary complex constant and h is the step-function

defined by

h(e)--I (0O-e s), h(e)=s -x <),S l/2(3.34)

On setting a=a 1 +ia 2 and referring to (3.10), one finally concludes that

Yl (r'O) -i+ a /2rh(°)sin •-f'1

(3.35)
Y(r~o) -r1/ (e)sin (-8 6e•))

2 222

where al, a 2  are arbitrary real constants with a1 +a 2 > 0.

One confirms with the aid of (3.11) that the Jacobian determinant of the

right members in (3.35) vanishes identically. Therefore the lowest-order

approximation to the local deformation (near the crack-tip) obtained above

does not constitute a mapping that is one-to-one. Furthermore, since

X =I/J, the one-term asymptotic solution (3.35) fails to supply an estimate

for the transverse stretch. These inadequacies make it necessary to seek at

least a two-term approximation to the elastostatic field in the vicinity of

the crack-tip.

In preparation for this task we show first that (3.33), together with

(2.47) and (3.22), in fact enable one to deduce an estimate for x(r,±_r) as

r -0, i.e. for the transverse stretch along the faces of the crack. Indeed,

the boundary conditions (3.2), referred to the polar coordinates (r,e), give

N(r,±•r)-=det[a 0(r, ±n)]=0 (O<r<2R) , (3.36)

IThis appeal to the identity (2.47) was suggested by Wong and Shield [15], who
use (2.47) in a similar manner in their treatment of a Mode I problem for a
crack in an all-around homogeneous Neo-Hookean sheet.

Y,
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so that (2.47) supplies

M=Xl 2 -2X6  at 6=1T (0<r<29) (3.37)

Next, (3.33), (3.22), and the second of (3.15) are found to imply

2 2
M:= B• (I'4"- a(-•o 1 r.a ),T a 0 (3.38)

Keeping in mind that X(r,e)=o(l) for -Tsas1 and combining (3.38) with

(3.37), as well as with its companion for 8=-7, one readily confirms that

(r)(r-) r as r - , (3.39)

which is consistent with (3.22) and necessitates q<1/4. Guided by (3.39),

we now refine the original a priori assumption (3.22) by anticipating that

X(r,e)--O(rI/4) as r--O (-7irs!i ) s

(3.40)
vx(r,e)=O(r" /4) as r-O (0< lei<n) . j

It is helpful to observe that (3.40), (3.33) imply

3 1/4
= O(rl ) as r+O (-nses ) , (3.41)

Ji (rB3 ByB3:Or34S- Y -- O(r3 4) as r÷O (--67r ) (3.42)

r r as t a s we ;re

Proceeding to the second-,order asymptotic analysis, we set
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y(r,o) -z + r /2v(e) + rnw(e) (0oes) so4
(3.43)

1/2 ny(r,e) -z + r v(e) + r w(e) (-n e O) 7 J

Here v is known from (3.33), n and n' are as yet unknown complex ex-

ponents obeying

y=Ren> > , y Ren > (3.44) V

and w is an initially undetermined complex-valued function that is not

permitted to vanish identically on [O,vr] or [-ir,O]. Further, w and (3.43)

are subject to the same differentiability hypotheses made previously in con-

nection with v and (3.18).

Our current objective is to find w on [-nT] and n, n', with the

smallest real parts admitted by (3.44), consistent with (3.12), (3.16), (3.17),

and (3.40). In view of (3.41), (3.42), (3.43), and because v satisfies

(3.23), (3.24), the equilibrium equation (3.12) and the boundary conditions

(3.16) require

rn' 2 [(e)+n2w(e)]+o(rn- 2 )=0(r' 3 / 4 ) (0<e<T)O

n'-2.2 n'234J
r n [w()+(n' ) 2w(e)]+o(r "2)=0(r3) (-34<0<0)

r n%(,) + o(rn" ) =(r 11 4 )

(3.46)

rn'-1 (-r)+o(rn' -l )=o(rl/ 4 )

If

Ren <5, Ren' <5 (3.47)
4 4
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as we shall temporarily take for granted, (3.45), (3.46) evidently imply

(3.23), (3.24) -and hence (3.25) -with v, m, m' replaced by w, n, n,.
respectively. Also, (3.47) in-ure that the nonlinear 3-terms in the bond

conditions (3.17) likewise fail to enter the second-order analysis explicitly.

An argument strictly parallel to that following (3.25) easily completes

the second-order asymptotic solution. In particular one finds in this manner

that

n n" , sin 2nit=0 ,(3.48)

whence n and n' are real. The smallest root of (3.48) conforming to (3.44)

is

n=n1=y=y' , (3.49)

and since (3.49) is consistent with (3.47), there is no need to explore the

complementary ranges ya5/4, y'a5/4. The second-order approximation thus

emerging is given by

y(r,e) -k• + rl1/2 v(8) + rw(O) (-r r. a ) ,:i 7(.0)

~ (-1~6~.r) } (3.50)
v(e) =a h(e)sin• y w(e) = bcos e e-o•

in which a# 0 and b# 0 are otherwise arbitrary complex constants, while

h again stands for the step-function introduced in (3.34). From (3.50),

(3.10) finally follows:

yl(r,e) -k + arl/2 h(e)sin 0 + blrCS co e51

a /2h +

y2(r,e) -a r 12h(O n + b r cos 0 (-ITes



L -35-

with
22 2 2

Lal & > 0. b + b2 > , (3.52)

a, a2  and b, b2  being otherwise arbitrary real constants.2 -2

Upon using (3.11) to compute the Jacobian determinant on the basis of

the two-term asymptotic solution (3.50), one arrives at the estimate

J (r,e) ~Ar' 2 h(e)cos- (- ae -s) (3.53)

in which

A= (a2 bl-alb2 ) 0 (3.54)

the inequality being a consequence of the requirement J> 0. The approximation

(3.53) gives merely J(r,e)--o(r"I 2 ) (- rT £6 ) unless A>0, as we shall

assume until further notice. From (3.53) one draws the asymptotic charac-

terization of the transverse stretch x = l/J:

1/2
x(r,e) ~Ah(e)cos(e/2)T (-i<O<i) if A>0 , (3.55)

which is consistent with the a priori assumption (3.40) employed in the deri-

vation of (3.50). Equations (3.53), (3.55), (3.34) reflect the discontinuity

in J(r,e) and x(r,a) at e=0 if s01 (u1# 2)

Although (3.55) and (3.39) together furnish estimates of X(ro), as

r-1.0, for each fixed e in the complete range £-7r,Tr], the approximation

given by (3.55) evidently deteriorates severely near the crack-faces O= ±_R,

In order to obtain a crack-tip estimate for X that is free of this deficiency

IThe special case A= 0 will be treated in the next section.

•2[

I I-I I
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and that at the same time reveals the nature of the transition from (3.55)

to (3.39) as 9-±w, one may once again appeal to the identity (2.47) used

earlier to deduce (3.39). Since (3.22) implies x(r,e)-o(l) as r- 0,

(2.47) near r-0 is approximated by
12

4 2
M(re)x +N(r,e)x-u 0 (0e:r) . (3.56)

This suggests that

k(r,e),-x0 (r,e) as r-o.O (0es. ) , (3.57)

where X o is the unique positive root for x of (3.56), as is not difficult

to confirm rigorously. On setting

X /4N, 11/2M1/4X (3.58)

(3.56) becomes

n 4 xn- 1 0  (3.5g)

Let n= o(x) be the unique positive root of (3.59)2 so that (3.58), (3.57)

give

1/2o.-1/4 , 3/2 M-1/4=• (~ )( 0
x(r,e)--u MI cp) . (3.60)

The desired estimate for X is obtained by inserting small-r approxi-

mations for M(r,e) and N(r,e) into (3.60). Such an approximation to

IWe sketch in detail only the analysis pertaining to the upper sheet (Oe sw).

Recall from (2.48) that M- a a >0, N-det[o ad.
2 An explicit elementary representation for cp(x) is readily established, hut

serves no particular purpose here.
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M(re) is available from (3.38). On the other hand, an analogous estimate

for N(r,e)-det[a ] is computable, without recourse to (3.55), from (3.50)

and (3.13) by relying merely on (3.40). In this manner one obtains

N(re)~ulAr/CosT (O&e w) Nlr,,) o(r- ) 2 . (3.61)1

Substitution from (3.38), (3.61) into (3.60), along with a parallel argument

applied to the lower sheet, results in

X(r,e) ~rl/4 g(e)tp(r'I1/4 Ag(e)cos(o/2))

(3.62)

g(e)=/ /Iaih(e) f.e s.7), A > 0

Under suitable assumptions concerning the uniformity in 6 of the Ansatz

(3.43), one can show that the estimate (3.62), the validity of which is con-

tingent upon our current supposition that A> 0, holds uniformly for

Finally, we note that one recovers from (3.62) through appropriate

specialization, the previous estimates (3.39) and (3.55), which apply to

B=e and -,R < < w separately. To see this we infer from (3.59) that

II

9(0)-I, p'(x)<O (-00<x<OD), $(X) - as X--- . (3.63)

The first of (3.63) reveals that (3.62) reduces to (3.39) for e=a-r; the

last of (3.63) leads immediately from (3.62) to (3.55).

Although we have not determined in detail any further terms in the ex-

pansion (3.50), we have ascertained that additional terms of orders r5/4

1Here A is again the auxiliary amplitude parameter defined in (3.54).

L -
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r and r 714  can be obtained by arguments parallel to those used in this

and the preceding sec-ion. If one attempts to continue the expansion beyond
r7/4'i

the term of order r however, one encounters difficulties since at that

stage the X)-terms in the equilibrium equation (3.12) begin to enter ex-

plicitly into the asymptotic analysis. Indeed, it appears from the structure

of the uniform approximation (3.62) for X that such higher-order terms can

no longer be of the "factored" form rkf(e).

4. Rotation of the deformed composite sheet. The degenerate case A--O.

The complex version (3.50) of the two-term asymptotic approximation de-

duced in Section 3 involves the complex amplitude parameters a and b

(a$ 0, b# 0), the determination of which eludes the local analysis carried

out there. The values of these two parameters are bound to depend on thE

material parameters ul and u2, the crack-length 2t, as well as on the

particular loading at infinity, which has not entered the derivation of

(3.50). Indeed, these local results are not confined to semi-infinite sheets

and encompass essentially arbitrary loadings applied to the outer boundary.

We show presently that (3.50) may, without loss of generality, be simplifie6

by subjecting the deformed composite sheet to a rigid rotation about the

crack-tip at r=-0. Moreover, this transformation - as will become evident -

renders the intrinsic content of the asymptotic solution (3.50) more trans-

parent.

If &(r,e) is the complex spatial coordinate (in the original fixed

Cartesian frame) of a material point (r,O) after such a rotation through

an angle 0, one has

id,

z(~e +te [y(r,e) - (4.1)
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we now take

where £ is the argument of the Lomplex paramleter a, whenceiIa = al,+ ia2 a Ia ei . (4.3)

For this choice of 6 , equations (4.1), (3.50) imply

S(r,,e)-R+Arlh(+)sin +brcos8 (-6s) (4.4)

iilal,= ia-b/IaI (a~o, b#O) (4.5)

From (4.5) follows

a=a 1 +ia 2 9 al =0, a2= a >0,

b= 6
1 +1 6

2 , 61 -2A/laiOk ,6 2 =2B/laI I (4.5)

where

A=(a 2 b, -alb 2 )aO, B=-(ala2 +blb 2 ) (4.7)

so that A is the non-negative auxiliary amplitude parameter originally

introduced in (3.54). Also, (4.6) give

I• = la[, A= (azbl -6 1l 2 )=A ,

Ibr IbI, B=--(albl +a^22) =B ,

which assert the invariance of Jal, Ibl, A, and B under the rotation (4.1).

To avoid cumbersome notation we henceforth write y, a, b in place of
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y, a, b and thus note that (4.4), on account of (4.6), leads to

Yl(r,)z + bbr cose 1
¶:. (4.9)

y2 (r,e) -a 2r h(a)sin + b2 r cos a (-r Tesir)

where

a 2 >O, blŽ0 (bl=2A/a 2 ) , (4.10)

and a2 , bi, b2 are otherwise arbitrary real constants. As is now apparent,

r;o generality is lost in the original two-term asymptotic approximation (3.51)

by setting a 1=O. whilesubjecting a 2 and b1  tothe inequalities in (4.10)

In view of (4.10), the exceptional case A=O, which was excluded in

establishing the estimates (3.55) and (3.62) for the transverse stretch X,

corresponds to b1 = 0 in (4.9). On the other hand, when b- = 0, the approxi-

mating deformation supplied by (4.9) is nolongerone-to-one and the current

app;'oximation to yl(r,e) degenerates into the weak estimate

yl(r,e)-cz+o(r) as r-O (-ffs.e ) , (4.11)

which is inadequate. The case A= 0 (bI = 0) thus entails an essential de-

terioration of the asymptotic solution (4.9) and necessitates higher-order

considerations.

Motivated by the foregoing observations and bearing in mind (4.9), (4.10)

with b1 =0, we now adopt the three-term asymptotic Ansatz:

Since J is invariant under the rotation (4.1), the Jacobian determinant of
this mapping is given by the right member in (3.53), which vanishes for A=0.
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yre P+i2r/sn+irco +o op~e (0 .T ) :_
(4.12)

1/2 . p I
y(r,e)~z+isa 2r sin + ib 2rcose+rrZ(o) 0)

where

a2 >O, Rep>l, Rep'>l, (4.13)

while the as yet unkiown complex-valued function z= z+ iz 2 must not vanish

identically on [O,v] or [-r,O] and is required to be twice continuously

differentiable on each of these two intervals. 1

From (4.12) one gathers

V 2 y -r 2( i+p2z ( < ) 0<TO(4.14)

v2y-.rp' 2U+(p,) 2z) (-7<e<O) f

Consequently, the equilibrium equation (3.12) together with the estimate

(3.42) enables one to coriclude that

j+p 2z=0 (0<0<n) if l<Rep<5/4 , (4.15)

Y+(p') 2z=O (-w<e<O) if l<Rep¼<5/4 (4.16)

Further, on applying the boundary conditions (3.16) to (4.12) and taking

account of the estimate (3.41), one has

-(i)=0 if l<Rep<5/4 , (4.17)

IWe take for granted the "differentiability" of the asymptotic identities
(4.12).
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0(-i)= if 1<Rep'<5/4 (4.18)

Next, imposing the transition conditions (3.17) on (4.12) and appealing once

again to (3.41), we see that

z(0+)=i(0+)=O if 1 <Rep<5/4, Rep<Rep' , (4.19)

z(O-) i(0-)=0 if 1 <Rep'<5/4, Rep'<Rep (4.20)

But, according to (4.15), (4.17), (4.19), the inequalities in (4.19) demand

that z=0 on [O,ir], which is inadmissible; similarly, the inequalities in

(4.20), in view of (4.16), (4.18), (4.20), necessitate z=0 on [-7T,0],

which is also unacceptable. On the other hand, the transition conditions

(3.17) reduce to

z(O+) = z(-), si(0+) = i (0-) if l < Re p Re p'< 5/4 , (4.21)

and in this event (4.15) to (4.21) require that z=0 on [-r,].

The preceding conclusions entitle us to claim thdc Repk5/4, Rep's5/4.4.

Moreover, since our present objective is an asymptotically consistent three-

term approximation of the form (4.12) in which the exponents p and p'

have the smallest real parts admitted by (4.13), there is no need to consider

Rep> 5/4, Rep'> 5/4 if we succeed in determining z(o) on the supposition

that Rep=Rep'=5/4. We are thus led to set

15 , p1  +16, (6.6' real) (4.22)
T?

Calculating the Jacobian determinant J(r,e) from (4.12) by means of

(3.11) and using (4.22), one arrives at
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J(r,e)- 2-r'1/4 (r,e) (0O<i<) , (4.23)

provided

w(r,e) =Re~(Q-- r &i(e)cos -r'
6i(e)sin~- (4.24)

If 6f.O, Eqs.(4.23), (4.24) are easily found to yield two alternative impli-

cations: either J(r,e) changes sign infinitely often as r-*O for each e

in (0,ir] or z(e) is such that w(r,O) vanishes identically on this interval.

The first of these eventualities is precluded by the requirement J(r,e)>O;

the second alternative leads to rl/ 4J(r,e) -O as r O and hence gives

r-I/4x(r,e)- co as r+O, for each 8 in (0,iT], which is incompatible with

(3.40). Therefore 6= 0 and p must be real. One shows analogously that

p' has to be real as well, so that (4.22) now reduce to

p p'=5/4, 5 S'=O . (4.25)

With (4.25) in force one infers from (4.23), (4.24) and their counterpart for

- 6 < 0 that

J(r,e)) -r'I/!(e) /-4) , (4.26)1/4

in which h(e) is the step-function defined In (3.34) and zl(e) is the

real part of z(e). Since x(r,e)= l/J(r,e), a zero of w(e) anywhere on

[-•,•] would contradict (3.40), so that

1As w(r,e) is now independent of r, we write w(e) in place of w(r,o).

S-• "F• ... I-• •" =•'•'"; ••i"'° '•"• -•------------------------------------------------------------------------------...--"------i---- .. ..-'---'•
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X(r, )~-r 1/4/ (e), ,.(O)> 0 (-'r e.6 )s (4.28) :

We are now in a position to use the equilibrium equation (3.12) in con-

junction with (4.14), (4.25). (4.27) to obtain the differential equation

governing z(O). In contrast to the lower-order analyses carried out in

Section 3, the right and left sides of (3.12) now balance asymptotically,

and one arrives at

25 3a2+ (0 < I a , (4.29)

where w is related to z through (4.27). The boundary conditions (3.16),

in turn, lead from (4.12), by virtue of (4.25) and (4.28), to the requirements

i(-70= (-s) i(T)=- a (4.30)

while the transition conditions (3.17) are found to yield

z(O+) =z(O-), sz(O+): = (O-) (4.31)

Since the right members in (4.29) and (4.30) are real-valued functions,

it follows with the aid of (4.31) that z2 Imz must satisfy

25z2 ,Vz 2 =0 (0< Ile <W) , (4.32)

subject to the boundary and transition conditions

z2 (-ir) = z2 (7r) = 0, z 2 (0+)= z2(0-), s' 2 (0+) 2 (0-) . (4.33)

This homogereous liner boundary-value problem admits only the trivial solution
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z2(6) =0 (-7r :r :r .'T (4.34)

The boundary-value problem governing zI Re z is obtained by taking

real parts in (4.29), (4.30), (4.31). The resulting problem can be cast

into a more convenient form by means of a suitable rescaling of zI. To

this end we set

Z, (e) 23/231/4a2-1/2;() (- 6 res.) (4.35)

and note first that (4.27) now becomes

w(e)=2-3/ 231/ 4 a 1 /2h(e),(e) (-1Tses-r) , (4.36)
2

provided

ý(e) = 5ý(O)cos -4•(e)sin• (-,ff --.6 )T (4.37)

Further, in view of (4.36) and the positivity of w(e), one has to stipulate

that

,( ) > 0 it S. T) (4.38)

On equating real parts in (4.29) and making use of (4.35), (4.36), (4.37),

one obtains the differential equation to be satisfied by •:

[8( - cos e) + h 2(e) 4(e)]Z - 4sin eO

+[ (l -3cose)+ L5 h2 () 4 (e)]ý=0 (0< 161 <1) (4.39)
2 16

The boundary and transition conditions accompanying (4.39) follow from (4.33)

by recourse to (4.35) to (4.38). In this manner one deduces
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3--r) 31/4s1/2, ) /4  (4"4°) I1
S: 3 (4.40) =

( O-), Sý(O+) = ý(O-) -(4.41)

We thus seek a solution ý(e) of the nonlinear boundary-value problem con-

sisting of (4.39) subject to (4.40), (4.41), such that tp(e) - defined by

(4.37) - is strictly positive on

As far as the numerical determination of ý(O) is concerned, the problem

at hand is awkward because (4.40) prescribe the boundary values of the derivative

of the unknown function, rather than C(±7). For this reason we now convert the

foregoing problem for r(O) to one for p(O) that circumvents this difficulty.

With this aim in mind we note first that (4.37), (4.40) give

2(-)2x3- 1 / 4s'/2, 2•()2x3-1/4 (4.42)

We observe parenthetically that the above boundary values of *(o) are con-

sistent with the asymptotic formulas for A(±w) arrived at in (3.39), as is

seen, on setting jal =a 2 in (3.39) , by comparinq this estimate with (4.28)

and by referring to (4.36). Next, we differentiate (4.37) with respect to

o and eliminate ' from the ensuing identity by means of (4.39). The equation

thus obtained relates r, c to p, , is linear in the former two variables,

and may be employed along with (4.37) to express i, • in terms of i, • and

trigonometric functions of 8. In this manner one finds that

-,.~

orve that (4.37), (4.38) necessitate ý(-r) >0 and (r) <0.

.1 that a,=0, a2 >0. See (4.10) and the remarks following (4.10).
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-: 15h (0€4 C[3h (e)64 48cos 6 +8],cos%
15h (64~

+ 4[h2 (e)0 4 -8cos e + 8]isin4_ (-noe•) , (4.43)

([8+ 8cos e -3h 2 (e)644 ]*sin a
12h 2(,4 

T

+4[h2 (6)w4 8cose+8]8iCcos ] ( -. IT) (4.44)

Differentiating (4.43) and equating the result to c given by (4.44), one is

led to the differential equation for i:

[h ()•4 + 8(0 - cos e)jj - 32(1 - cos e), Y'l

-4sin 6;-½(3 -cos flý+ 9-h2 (0)*5= 0 (0 < I <1• (4.45)
1-6

Finally, (4.41) together with (4.43), (4.44) furnish the transition conditions

appropriate to 4:

'ý(0+) = P(0-), s;(O+) = ;p(O-) (4.46)

It is readily shown that (4.45), accompanied by conditions (4.42), (4.46) and

supplemented by (4.43), in turn implies (4.39), (4.40), (4.41), as well as

(4.37).

The completion of the three-term asymptotic representation (4.12) of

y(r,e) pertaining to the special case bI = 0 has thus been reduced to the

task of finding a solution p(e) of the nonlinear second-order differential

equation (4.45) that is positive for -wi66ir• and meets the boundary and

transition conditions (4.42), (4.46). Assuming for the moment that *(e)
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has been so determined, c(e) is then supplied by (4.43), Z1 (e) follows

from (4.35), while z2(e) vanishes identically according to (4.34). Further,

the exponents p and p' are given by (4.25). Taking real and imaginary

parts in (4.12) one therefore has the following asymptotic results for the

degenerate case b = 0 (A= 0):

y, (r,e) -x + cr/ 4 (e) (4

(4.47)

Y2 (r,e) a2 r 1/ 2h(e)sln + b2 rcos e (-ITeS e )

with

cm23/231/4a-I/2, a2 >0 (4.48)

The first of (4.47) supplants the weak estimate (4.11) for yl(r,e) furnished

by (4.9) when b1 =0. Note from (4.41) that ;(e) is continuous at o=0,

although its derivative suffers a finite jump-discontinuity there. On account

of (4.26), (4.28), (4.36), and (4.48), J(ro) and x(r,e) at present conform

to the estimates

J(r,e)~-l r-I/4h(e)i(e) (-isesr) , (4.49)c

A(r,o) -crl/4[h(e),(1)]-I z (4.50)

whereas (3.53) gives merely the inadequate estimate J(re)=o(r 1/2)

(-IsOsT r) when A=-O. The result (4.50) reduces to (3.39) for e--=ir and

is consistent with the a priori assumption (3.40). Since the right member in

(4.49) is the Jacobian determinant of the right members in (4.47), the posi-

tivity of p on [-n,,] assures that (4.47) furnish a one-to-one approxi-

mation to the local deformation map.

,.L.im-. ....-.c. - ..-.
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Our attempts to deal analytically with the highly nonlinear two-point

-* boundary-value problem (4.45), (4.42), (4.46) or J,(e) have remained un-

successful. In contrast, no particular difficulties were encountered in its

numerical solution. The results thus obtained leave no doubt as to the exist-

ence of a solution; although its uniqueness cannot be taken for granted, there

is no indication of non-uniqueness.

Figure 3 and Figure 4 display illustrative graphs of i(e) and ;(e)

for -Tes, appropriate to two choices of the stiffness-ratio Il/2

In Figure 3, s=1/2, whereas Figure 4 pertains to s=l, that is to an all-

around homogeneous Neo-Hookean sheet. In the latter instance both *(0) and

c(e) are even functions and there is no discontinuity in the slope of the

corresponding curves at e= 0.

5. Discussion of the elastostatic field near the tip of the interface-crack.

The special case s=l.

In this section we first examine the structure of the deformation field

near the tip of an Interface-crack as predicted by the nonlinear theory of plane

stress for Neo-Hookean sheets. Thereafter we shall discuss the associated
near-field of stress.

For the purpose at hand it is convenient to put the asymptotic results

(4.9) and (4.47) into a non-dimensional form by means of the scaling

2 2 2
ýl(x, - f)/a2, ý2 = x2/a2 , P = /a 2

2 2

n, (Y" - z)/a 2 , n2 =y 2/a 2

Then (4.9), (4.10) yield

-- - -.- - .,~
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n1 (p e'b, Pcos 0 (b1 >0)(52

while, in the event that b 0, (4.47), (4.48) give

n2 (P 16) 'P h(e)sin ~+ 2PcosO (-ies

We observe to begin with that the foregoing asymptotic results are en-

tirely free of oscillations of the kind arising in the treatment of the

linearized problem and discussed in Section 1. Mathematically, the absence

of this oscillatory singular behavior can be traced to the fact that the

initially undetermined exponents m, mn', n, n', and p, p' introduced in

(3.18), (3.43), and (4.12) were all found to be-real-valued.

Of particular interest is the shape of the deformed upper and lower

crack-face in the vicinity of the (fixed) end of the crack. From (5.2) and

(3.34) one has

1/2

Elimination of p between the first two and the second two of (5.4) leads

to the subsequent approximate description of the curves into which the

crack-faces at e = r and = -Tr are deformed:
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I:
nT1 -bn•, 2 O for e ,w

(5.5)
bl2

n, - n2 n2 0 for 6=- -

S

In the non-degenerate case bI > 0 this description is adequate and asserts

that each crack-face, after deformation, is locally approximated by an arc

of a parabola, as indicated in Fig.5. The two parabolic arcs determined by

(5.5) join up with a common tangent at the crack-tip, this tangent being

perpendicular to the crack-axis following the rigid rotation that led from

(3.51) to (4.9). The deformed upper and lower crack-faces, when s# l, are

seen to lie on two distinct pa'abolas, both of which are concave toward the

undeformed crack.

In the degenerate case b1  0, one draws from (5.3) and (3.34) that

:- nl(P,•).•23/231/4 5/4 1•,n(')P/2

ý n (r R) -P (5.6)

nI (p,-,r) - 23 / 2 31 / 4P 5/ 44(-71), Tn2 (P ,t)_ -so1/2

whence in first approximation

nI = 231 231 / 43(Tr)n1 2, for e=ir ,

(5.7)

n=23 / 2 31/ 4 •(.)s'5/ 2 (-n 2 )5 /2 , n2sO for e=-YJ

Thus once again the deformation images of the upper and lower crack-faces

have a common tangent at the tip of the crack. Figure 6 illustrates the

shape of the deformed crack-faces when b1 = 0, for the two stiffness-ratios

s =1/2 and s = 1 (homogeneous sheet). As is apparent from the graphs in

--T-..
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Fig.3 and rlg.4,

i(0)<0, -(-iT)>0 for s1I/i 2 -- /2 I

(5.8)
(i.)=•(-T )0 for s~l

These inequalities, in conjunct'on with (5.7), imply that the boundary of

the sheet near the tip of the crack, when bI 0, is deformed into an

S-shaped curve for s = 1/2, whereas for s = I the region occ.•pied by the

deformed sheet is locally convex. Accordingly, the special case b= 0

marks the transition from circumstances in which the deformed sheet is wholly

concave sufficiently close to the crack-tip to conditions under which this

is no longer true. As will become clear later on, bI >0 in the particular

crack-problem for a homogeneous sheet (s= 1) treated by Wong and Shield [15].

It is not obvious, however, whether or not there exist global loading and

sheet geometries that induce the degeneracy bI = 0.
In view of the primary purpose of this study, the most imiportant con-

clusion emerging from the preceding results is that - at least for an inter-

face-crack between Neo-Hookean sheets - the finite theory, of plane stress does
not jive rise to interpenetration of the deformed crack-faces in the vicinity

of the crack-lips. The prediction of such an unacceptable overlap is thus

seen to stem from the linearization of this singular problem. Indeed, some-

what surprisingly, the crack is found to open smoothly even if s tl.

As is apparent from (5.2), (5.3), the leading term in the corresponding

approximations for n2 vanishes when e= O. Consequently, a more detailed

discussion of the deformations in the vicinity of the crack-tip at p = 0

necessitates that one take account of the second term, whose coefficient b2

in particular enters into the lowest-order approximation to the
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deformation-image of the bonded interface. Confining this discussion to the

non-degenerate case bI>0, we gather from (5.2) and (5.1) that I

nil--blj, -- H Z•l 1 2 +b2 l , (5.9) 4

provided H is the step-function defined by

H( = W //v if E2 >0 H(&2 )=-s/V if <2 0 (9.10)

Equations (5.9) reveal that the material coordinate lines {l constant

are - in first approximation - carried into the straight lines nl--blrl,

while the coordinate lines t2=constant are deformed into the family of

curves approximated by

n2 H( 2 )( (Tl/bl)2+ &2 - nl/bl3 112 + b2 nl/b, (5.11)

Within this approximation the deformation-image of the interface ý2= 0,

& >0 is rectilinear and furnished by

n2=b 2nl/b 1 , Tl>0 (5.12)

Figure 7 displays qualitative sketches, based on (5.9) to (5.12), of the

deformed material lines El = constant and {2 constant, appropriate to

b >0, for b2 >0, b2  0, and b2 < 0, depending on whether the stiffness-

ratio s<I or s=l.

We conclude the discussion of the near-field deformations with some

observations concerning the transverse stretch-ratio X, which reflects

the local thinning of the two sheets. The asymptotic behavior of X(r,e),

as r-*O, is supplied by (3.62) if bl>0 (A>0) and follows from (4.28),
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(4.36)1 when bI=0. In either instance A(r,e), at any fixed value of 6

in [-yi], is an increasing function of r near r=0, so that the thinninq

becomes more severe as the crack-tip is approached. Barring the degenerate

case b1 =0, we notE that X(r,e), for any fixed (sufficiently small) value 4

of r, is smallest at 6-m0 and increases steadily with lel as IeI-' " I

Consequently the thinning is most pronounced at the interface and less prom-

inent at the crack-faces. If s< 1 (,< u.), the local thinning is more

prevalent in the upper than in the lower sheet, as is to be anticipated.

We turn now to the determination of the stresses near the crack-tip.

Asymptotic results for the cartesian components of nominal stress are readily

obtainable from (4.9) with the aid of (3.13) and (3.40). Thus,

all bl a22  1 -1/2
_h() 07 - ~P Cos +o00J

(5.13)

012 -a(I) 21- 1 -1/2 b 2  (-+rF60ir)

where P is the dimensionless radial coordinate introduced in (5.1). The

associated components of actual stress are deducible from (4.9) by means of

(2.44) and (3.40). This computation yields:

"Tll _ 2 h(e) bp-ll 2sin
(1 ), Ill - 1 1 - 2P sin

T12 _ 12 b -1/2

1 I s i n • (- • 0 r. )

S1ee also Fig.3 and Fig.4, where p(e) is plotted for s=l/2 and s=l.
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Evidently, the expansion (4.9) is insufficient to produce a dominant estimate

for 1 2  and ; also, when b,=0, one merely infers from (5.13), (5.14)

that a,, and tend to zero as p-O.

Equations (5.14) lead to the following asymptotic results for the actual

principal stresses:

I ) -I

The above weak estimate for T1 can easily be improved if b1 > 0. To this

dett =T•t 2 det F det c= J det a (5.16)

S+_ and then invoke (4.10), (3.53), as well as (5.13), to see that

1 2 2 -1

TIT -Z~llp Wco 'T(5.17)

On the other hand, (5.17) and the second of (5.15) justify

T: - b 2h (e )cos 2 (e/2) (-T r :k a s ) . (5.18 )

Since the deformed crack-faces are free of tractions, the fact that T,

vanishes at 6 =t±, is not accidental.

It is of interest to examine the dependence - to dominant order -- of

the primary actual normal stress t 2 2  upon the radial distance from the

crack-tip after deformation, i.e. upon the spatial radial coordinate. We

do so merely for an approach to the tip along the interface o= 0 and for

this purpose gather from (5.2) that
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p*= I(p,0)I-Ibp, b (5.19)

Hence (5.14) now give

(22(,0±) - Th(O±)p'l Ili h(0±)Ol (5,20)

22 T 41bi

so that T22 (p,O) is both O(p') and O(p, ) as p- O. The conclusion

that this singularity is stronger than the analogous square-root sinqularity

arising in the linearized theory is consistent with earlier findings con-

cerning crack-tip singularities in hardening materials.l

We record next the asymptotic behavior of the strain-energy density.

By (2.40), (2.41),

u (I+ -3) (5.21)

with v=u, and "m12 in the upper and lower half-plane, respectively.

Further, from (2.27), (3.10), (4.9), and (3.40), one has

Ivy12 l h 2(e), x=O(p- 1 4 ) , (5.22)

whence

"U- h(e) (5.23)

which reflects the jump discontinuity in U at =0.

The foregoing asymptotic results involve the three real amplitude

ISee [12], [13]. The Neo-Hookean material is "hardening" in the sense that
the slope of the response curve in Fig.2 is steadily increasing for A> 1.
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parameters a2, bi, b2, the first of which - in view of (5.'.) - governs the

length-scale of the near-field approximations under discussion. As has been

pointed out earlier, these parameters elude the local analysis &;-.* for an

interface-crack between two semi-infinite sheets, are bound to depend ,I!

the stiffness-ratio S:=ul/P 2 , the crack-length 2t, as well as on the sp...ific

loading at infinity.

The primary amplitude parameter a2  can, in the usual manner, be ex-

pressed in terms of an appropriate path-independent ";-integral" by recourse

to a familiar conservation law of finite elastostatics. Let C1  and C2  be
IC

the two simple closed curves shown in Fig.8, which lie in the respective half-

planes H, and H2 . The conservation law alluded to above then assures that

(k)_f (Un1 - 0,ny 1,)d= 0 (k= 1,2) , (5.24)

Ck

where n is the unit outward normal vector of Ck. Next, let Lk(c) and

rk(E) designate the rectilinear and circular portions of Ck labeled in

Fig.8. Noting that n, = 0 along Lk(c) and recalling the boundary conditions

(3.2) together with the bond conditions (3.4), one infers that the contribu-

tions to ;(1)+;(2) stemming from Li(E) and L2 (e) vanish, whence

J (Un1 -10sneyl)d&=f (Un1 -anBYy)d , (5.25)

C NE)

provided C and r(c) are the two curves (see Fig.8) defined by

C=C 1 +C2 -Ll(c)-L 2 (c) -r(c), r(c) r1 ()+r 2 (c) (5.26)

ISee the introductory remarks in Section 4.
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Passing to the limit as e-.O in (5.25) and making use of (5.1), (5.2),

(5.13), and (5.23), one readily arrives at

a2 (UnI onBu,)d, (5.27)

CI

in which C is AY simple curve issuing from an interior point of the crack,

terminating at such a point, and surrounding the crack-tip situated at

2= 2.

The conservation law underlying (5.25), and hence also this identity,

is equally valid in the infinitesimal theory of (generalized) plane stress.

One may therefore calculate from (5.25), by letting c tend to zero, the

value of ; appropriate to an available global solution of the linearized

interface-crack problem for particular loading conditions. Moreover, this

value of ; in conjunction with the first of (5.27) would yield a small-

load estimate for a2 if one could take for granted that the integrand in

the second of (5.27) is approximated uniformly on C - at small loads - by

its counterpart in the solution of the corresponding linearized problem.

While such an assumption is plausible in case 1l = 12, it is no longer

tenable when I 1 "2 for curves C that come sufficiently close to the

crack-tip since the elastostatic field predicted by the linear theory is

oscillatory in any small enough neighborhood of the tip, whereas no such

oscillations occur at least at suitably small distances from the tip ac-

cording to the finite theory. For this reason, no matter how small the

loads, the linear theory cannot even supply a pointwise approximation con-

sistent with the finite theory at all material points.

It is conceivable, however, that despite these circumstance3, linear-

ized elastostatics furnishes a valid approximation to ; at small lcads.
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Thus, the global solution based on the infinitesimal theory might uniformly

approximate the elastostatic field emerging in the nonlinear theory on every

material point set that is sufficiently remote from the tips of the crack.

The precise approximative status of solutions to linearized problems in- I

volving interface-cracks remains an intriguing issue.

Although the special case s= 1 ( =Pd, encompassed by the asymptotic

analysis carried out in this paper, has been included in the preceding dis-

cussion of the results obtained, certain aspects of the crack problem for an

all-around homogeneous Neo-Hookean sheet merit additional attention. If

s=1, equations (3.34), (5.1), (5.2) give

nl e ~blp Cosa (

(5.28)

n2(pa) -1l/sin +b 2 Pcose (-IT a

where

= 2 2 2p r/a 2 , n, =(y, - t)/a 2 , n2 =Y2/a 2  (5.29)

Consider now, in particular, the Mode I problem governed by (3.8), so

that the loading at infinity is one corresponding to a pure homogeneous

deformation with the x -axes as principal axes and X as principal

stretch-ratios. In this instance one would anticipate the global solution

to be symmetric about the xl-axis. Hence b2 =0 and the near-field of

deformation predicted by (5.28) bL--s

n, (p ,e) -blp Cos Ol n2(P,G)-Pl/sin, - e, (5.30)

This conclusion is found to be In asymptotic agreement with the lowest-order

F..
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approximation to the global solution deduced by Wong and Shield [15],1 pro-

vided their results are adjusted to keep the crack-tip at x2 2= fixed,

and provided one takes

b =X1, a2 = 2& . (5.31) P

In the analogous Mode II problem (3.9) is in Force, the loading at V

infinity being one appropriate to a homogeneous deformation of pure shear

of amount k, parallel to the x 1-axis. The well-known solution to the

linearized version of this problem is anti-symmetric about the crack-axis,

i.e. its displacement field

u ,(xl1x2)y(xl x2) -x. (5.32)

obeys the parity relations

uI (x 1 ,x 2 ) = -u (xl- x2 ), u2 (xI ,x 2 ) = u2 (xI,- x2 ) (5.33)

Since the amplitude parameters in (5.28) cannot be chosen so as to render

this local expansion compatible with (5.33), the global solution to the

nonlinear Mode II problem at hand apparently cannot possess the anti-sym-

metry exhibited by its counterpart in the linear theory. This inference is

also supported by the observation that the nonlinear equilibrium equations

(2.46), when cast in terms of displacements, fail to be invariant under the

parity transformation (5.33). Further, whereas the crack-faces fail to

separate in the Mode II problem according to infinitesimal elastostatics,

the present nonlinear asymptotic analysis predicts that the crack does open

IRecall that the iterative scheme employed in [15] presupposes large deforma-
tions throughout the sheet.
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at least in a neighborhood of its ends.

The foregoing conclusions regarding the Mode II problem for a Neo-

Hookean sheet are strictly parallel to results arrived at earlier by

Stephenson £16] in an asymptotic study pertaining to finite plane strain

for a class of incompressible elastic materials. Moreover, Stephenson

succeeded in proving the non-existence of an anti-symmetric global solution

to this problem for a Neo-Hookean material.
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