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1. INTRODUCTION

For experimental studies of target response to high energy blast, one
needs an accurate definition of the blast field which provides the load on the
target. The general features of the flow in a blast field can be predicted by
solving numerically the governing equations of the flow. However, the accuracy
of such calculations is limited because the early stages of an explosion are
difficult to model, and the results of the early stage calculations influence
subsequent computations for later times. Therefore, direct measurements of
the complete flow field would be most desirable; but such measurements are
usually restricted, for technical reasons, to pressure history observations,
and to shock arrival time and incident shock pressure measurements at various
stations. Hence, one has the task to compute other flow variables; e.g., the
density and the particle velocity, from the measured pressures.

Directly computable from pressure history observations is the history of
the dynamic pressure (internal energy density), if simultaneous measurements
of incident and stagnation pressures are available. However, the results are
very sensitive to observational inaccuracies. Typically, the relative standard
error of the calculated dynamic pressure is ten times as large as the relative
standard errors of the pressure observationsl. Also, the calculations do not
provide any other flow variables besides the dynamic pressure.

Generally, one can improve the accuracy of computed results by using
additional information. For the present problem, such information is available
from two sources: from pressure history observations at stations adjacent to
the station of interest and from the governing equations of the flow. Compared
to the governing equations of the early stages of the explosion, the governing
equations for late stage flow are relatively simple and amenable to numerical
solution. Times and distances that are of interest for target response studies
typically are within this flow stage. Therefore, one can formulate the prob-
lem as a task to solve numerically the governing equations with boundary con-
ditions derived from pressure history and shock observationms.

In this formulation, the task is a mathematically ill-posed problem because
the boundary conditions overdetermine the solution in some parts of the flow
field, and at the same time may not be sufficient to compute the complete flow
history for the full duration of a pressure history observation at some other
station.

Regularizations of the problem have been achieved by using two opposite
approaches. 1In one approach, one deletes all data that would overdetermine
the problem. In the other approach, one uses all pertinent data, but deletes
one of the governing equations, using it later for control calculations. The
former approach has been used by Gottlieb and Ritzel2. The latter approach is
described in this report.

JGeorge D. Teel, "Free-Field Airblast Definition - Event DICE THROW," Proceedings
of the DICE THROW Symposium 21-23 June 1977, Volume I, Defence Muclear Agency
Report DNA 4377P-1, pp. 7-76, July 1977.

2James J. Gottlieb and David V. Ritzel, "Flow Properties of a Spherical Blast
Wave," presentation at the Sixieme Symposium International sur les applications
militaires de la simulation de souffle, Cahors, France, 25-27 June 1979.
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An advantage of the approach by Gottlieb and Ritzel is that the problem
is immediately reduced to a standard task in numerical mathematics. A disad-
vantage is that, in a simplistic application of the method, all observational
inaccuracies enter directly into the calculations and might be amplified. In
order to obtain reasonable results, one has to smooth judiciously the data or
to introduce viscosity into the computing scheme. A smoothing of data can be
done in different manners so that in effect one may have to manipulate the
data in order to obtain reasonable results. The data that are not used for
smoothing or as boundary data, could be used for a subsequent check on the
calculations, but results of such tests have not been reported in Reference 2.

In our approach, the problem is regularized by discarding one of the
governing equations, but using all pressure observations within a region of
interest. We assume that the observations suffice to determine a pressure
field function p(r,t) within the region. The function is found by a least
squares model fitting, which takes the rdle of the data smoothing in the Gottlieb
and Ritzel approach. The pressure field function then is substituted into the
governing equations which in turn determine the other flow variables. Problems
of this type were considered by Makino3 who observed that one does not need
the continuity equation for the flow calculation if p(r,t) is known. We have,
in essence, followed Makino's theoretical ideas and established computer pro-
grams that compute the flow in the aforementioned manner. The continuity equa-
tion is used at the end of the calculations to check the accuracy of the results.
We also carried out an analysis of the sensitivity of the results to observational
inaccuracies, and included computations of accuracy estimates in the computer
programs. In typical examples, the results were found to be quite insensitive
to this type of inaccuracy. For example, the relative standard error of the
dynamic pressure was found to be of the same order or less than the relative
standard error of the overpressure observations.

This report outlines the theory of the flow calculations from pressure
measurements (Sections 2 through 6) and demonstrates its application in two
examples (Sections 7 and 8). The first example treats a theoretically computed
strong blast field. The second example is an application of the technique to
real observations.

A description of the use of the computer programs will be published in a
forthcoming users' manual.

2. BASIC ASSUMPTIONS AND THEORY

We seek to determine certain parts of the flow field within a blast bubble
in air. The area of interest is a relatively narrow strip in the r,t-plane
behind the initial shock trajectory at a distance where the shock strength is
only moderate. We shall assume that the following conditions are satisfied
within the area of interest:

(A) the flowing medium is an ideal gas with zero viscosity and no heat
conduction, and

3Ray C. Makino, "An Approximation Method in Blast Calculations, ' BRL Memorandum
Report 1034, February 1956. (AD #114875)
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(B) the event is spherically symmetric and the flow has only a radial
velocity component u.

The first assumption is satisfied in most applications because typically
the maximum overpressure at the target is only of the order of one megapascal.
Within this pressure regime, air behaves like an ideal gas. The second condi-
tion is nearly satisfied in most experiments, because usually the explosion
source and the targets are positioned on the same plane, and the blast bubble
is a hemisphere. Deviations from spherical flow symmetry within the bubble
may be caused by local surface disturbances, by wind, and by the presence of
dust in the flow near the ground surface. The present technique cannot be
applied to cases where such disturbances are not negligible.

The governing equations for a flow satisfying the conditions (A) areA:

the continuity equation

dp ; =
0 + p div u 0, (2.1)

the momentum equation

du

B + grad p = 0 , (2.2)

P

the energy equation

de p dp

PpetrgE - 2 s (2.3)

and the equation of state

e =

° o

1
o= (2.4)

In Egqs. (2.1) through (2.3) we have used the material derivative symbol

)
o SE-+ (u-grad) . (2.5)

Because the flow is assumed to be spherically symmetric (condition (B)), we
also have the definitions

4Richard von Mises, "Mathematical Theory of Compressible Fluid Flow," Academic
Press, NY, 1958.



div u = = 5;-(r u) , (2.6)
T
and
= 9p
grad p o 2.7)

Eliminating the specific internal energy e between Eqs. (2.3) and (2.4)
one obtains

s

1 1dp _
> = S o 0. (2.8)

(=W

t

Eq. (2.8) can be integrated along a particle path line. The result is the well
known formula for a particle in an adiabatic flow:

1/y
L= <B—> , (2.9)
PA \Pa

where the subscript A indicates reference values at a point A on the particle
path.

The momentum Eq. (2.2) can be reformulated by substituting in it the
expression (2.9). The result is

1/y
du _ L (PAYMap (2.10)
dt pA P or

If the pressure function p(r,t) is given, e.g., by measurements, then the
right-hand side of Eq. (2.10) is a known function of r and t. 1In that case,
the equation can be integrated numerically together with the path line equation

dr
L= u - (2.11)

The integration provides the path line starting at a point A and the particle
velocity along it. The density along the same path line is given by Eq. (2.9).
All other flow variables, such as, internal energy, dynamic pressure, and
sound speed can be computed from p, u, and p.

10



The continuity Eq. (2.1) is not needed for the described calculation of
the flow corresponding to an observed pressure field p(r,t). One can use the
equation to test the calculated results, as suggested by Makino3. 1In fact, if
the pressure p(r,t) is measured precisely then this test provides a check of
the validity of the assumptions (A) and (B) about the flow field. In practice,
test calculations based on the continuity equation cannot provide exactly the
same result as the integration along path lines because the pressure field
function p(r,t) contains observational as well as systematic errors. The
effects of the former are estimated in our approach using input information
about the data accuracy. Systematic errors may manifest themselves by differ-
ences between original and control calculations that are larger than predicted
by the observational error analysis.

A control calculation based on the continuity equation can be carried out
as follows. First, we use Eq. (2.8) and reformulate the continuity Eq. (2.1),
obtaining

. 1 dR _
div u + _YP T o, (2.12)
or
3 2 2 1 3p . rlop
37 (r"u) + (r"u) Y_P- . + Y_P- ot =0 . (2.13)

Eq. (2.13) expresses the dependence of the quantity rzu on r for t = const.
A formal integration of the equation along a line t = const. yields

5 1/y ro i/
2 o c 2 1 2 [p(&,t) 1 ap(&,t)
EUOEE) <p(r,t)> Tele Ty f : < Pg ) p(E,0) ot ¢
5

(2.14)
or
Ta
rc>2 < Pe jJY 1 2 (1/v-1)  3p(&,t)
u(r,t) = u <— S P 9 f £°ep(E,t) . SBAset) gy
C\r p(r,t) r2 N p(r,t)l/Y ] 3t
(2.15)

The subscript C in Eqs. (2.14) and (2.15) indicates function values at a point
C with the coordinates (rC,t). Using Eq. (2.15) one can calculate the particle
velocity u(r,t) by a numerical quadrature along t = const., if an initial

value u, = u(rC,t) and the pressure field function p(r,t) are known.

S .
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In summary, we proceed as follows for the calculation of the flow field.
First, we establish a pressure field function p(r,t) by data fitting, whereby
all data are used that are located in the vicinity of the point of interest,
say B. Next, Egqs. (2.10) and (2.11) are integrated along a particle path AB,
as shown in Figure 1. The integration produces the velocity up at B. The
density pp can be computed using Eq. (2.9), once the path line is established.
(The flow variables up and Pp on the shock are known from the pressure field
function and shock relations.) Finally the calculated velocity up is compared
with another calculation using Eq. (2.15), applied along the line BC. The
velocity u. at the point C is again obtained from shock relations.

3. NUMERICAL INTEGRATION AND ACCURACY ESTIMATES

In most applications, one needs the flow history at some fixed distance,
say rg. We obtain the history, i.e., the values of flow variables at a series
of points along the line r = B, by integrating Eqs. (2.10) and (2.11) along
a number of path lines, each starting at a different point of the shock. The
test calculation of the velocity is dome by integration of Eq. (2.15) along
appropriate lines t = const. Figure 2 shows schematically the integration
lines and the location of the computed nodes in the r,t-plane. The values of
the flow variables at the shock as well as the pressure field function behind
the shock that are needed for these integrations, are obtained by model fitting
of shock and pressure observations, respectively.

Let the result of the shock model fitting be certain functions of the
radial distance r providing shock arrival time tS, shock overpressure Pgs shock
density e and particle velocity ut

tS = tS(r;e) s
P, = ps(r;e) ;
(3.1)
Py = ps(r;e) -
u, = uS(r;e)

In these functions, 6 is a model parameter vector. We shall give, in Section
4, explicit expressions for the functions tS through u_.

The model fitting of the observed pressure histories produces a pressure

field function

p = pf(r,t;e) , (3.2)

12



t
} Domain where p(r,t) is determined from
observations

Figure 1. Integration Paths

The flow variables are obtained at the Point B by integration
along the path Tine AB. The computed velocity is checked at
B by an integration along the line CB.
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DOMAIN FOR PRESSURE -
FIELD FUNCTION :

*~~ OBSERVED SHOCK
TRAJECTORY

Figure 2. Computation of Flow History at a Given Distance

The pressure field function is determined within the indicated domain
from pressure history measurements along the lines AA,, BB3, and CCs,
and from shock observations. For r = rg, the flow history can be
calculated between B and By, and test calculations can be carried out

between B and B].
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that describes the overpressure within a limited region behind the shock. This
function will be handled in detail in Section 6. The pressure field function
and the shock pressure function are related by

ps(r;e) = pf(r,ts(r,e);e) : (3.3)

The differential equations for the path line, Eqs. (2.10) and (2.11), are
in terms of these functions:

dr _
ac Y
(3.4)
du
dt = F(r’t’e) ]
where
P.\Ll/y
F(r,£50) = - 1_(_é> 2,
Pa \P
1
p_(r,;6)+4p Al dp.(r,t;6)
- _ 1 s A o f (3.5)
ps(rA;e) pf(r,t;6)+po or

and P, is the ambient pressure.

The numerical integration of the system (3.4) i1s done by the following
fourth order algorithm:

t4y =t t AL,
T =r + At » u + Atz u, /2 + At3 u/6
k+1 k k k k ’
-~ _ . +o /2
gy T U P AE (o e 0)/2 (3.6)
A Sy SR G -y B A
k+1 ot k+1 k+1 or k+17 >

)

~ 2.0 -
uk+l = U + At (uk - uk+l)/12 3

.

3 3 3 N .
The time derivatives u, and u

k are defined for this algorithm by

k

15



u = F(rk,tk;e) ,
3.7)

I T 3 -
B =3¢ () + o« 57 (w)

The integration errors of the algorithm can be reduced to desired levels
by monitoring the time steps At. However, the accuracy of the solution is
also influenced by the accuracy of the pressure observations which are used to
establish the pressure functions pf(r,t;68) and ps(r;e). This sets a limit omn
the achievable accuracy of any solution of Eq. (3.4).

The basis for the accuracy estimate is an estimate of the variances (or
standard errors) of the overpressure observations, which we assume to be
obtained by an analysis of the measurement process. The least squares model
fitting routinesd use the data variances to calculate an estimate of the
variance-covariance matrix Vg of the parameter vector 6. Using Vg, estimates
of standard errors of pg(r,t;0) and pg(r;0) can be obtained by applying the
linearized law of variance propagation to the formulas for pf and pg, respec-
tively. Thus, an estimate of the standard error ep of Ps is

3¢ 3pe\ T 1/2
ep=w"e(w> ] > (358)

where 3pf/36 is the Jacobian matrix of the function pg(r,t;6). (The Jacobian
matrix is a vector in this case because pf is a scalar.)

In order to calculate an estimate of the standard error of the velocity u
by a corresponding formula one needs to know the derivative vector 3u/30.
Unlike apf/ae, that vector cannot be obtained by formal differentiation because
u is not given by a formula but obtained by solving numerically the equation
system (3.4). Therefore, we differentiate that system producing another system
of differential equations where the unknown functions are the derivatives
3u/30 and 3r/306. The new system is

d_<A£ _ du
dt \36 26

d <3u>_3_F 3F 3r

(3.9)

ac \se /)~ 26 T 3r 28 °

where

5Aivars Celmiys, "A Manual for General Least Squares Model Fitting," USA

ARRADCOM/Ballistic Research Laboratory Technical Report ARBRL-TR-02167, June
1979. (AD #B040229L)

16



ETI) I I DR T S B S [apf+apf.§£]+
36 9r 36 Py .38 v(p,tp ) 36 v(ps+p ) L6~ or 38
2 2
P 3p
il f f 3r
* opg/or [arae * a2 ) ae] . (3.10)

Eqs. (3.9) are integrated numerically concurrently with the path line
Eqs. (3.4), and using the same time steps At. For simplicity, and because high
accuracy is not needed, we use a third-order scheme for the integration of
Eqs. (3.9). The third-order scheme is obtained from the algorithm (3.6) by
setting UK and GK equal to zero.

The initial values for the integration of Eqs. (3.9) are

3r>
(), =0
98/r rA

and

(3.11)

T\ N S
<Sﬁ>r=rA Y uS(rA’e)

The derivatives 3r/38 are zero at the starting point of the path line because
r=r, is a prescribed initial value.

The integration of Eq. (3.10) with the initial conditions (3.11) yields
numerical values of the vectors 3u/38 and 3r/38 at any point along the path
line. Of particular interest is the accuracy of the flow at the end point,
where the line intersects with r=rp. The end point itself has an uncertainty
in the t-direction only that can be estimated by the linearized law of vari-
ance propagation, if the derivative 3t/36 is known. We obtain a formula for
9t/98 at the end point as follows. For a given path line the time value t, at

Iy is a function of the type 0

tB = tA + T(rA,rB) 5 (3.12)

Its derivative with respect to 8 is

e L 3T <§£) L T (g;)
98 38 arA 390 =1, arB 398 /r=r

B

or, because of Eq. (3.11),

_B__3 . 1 (ar
26 28 ts(rA’e) + u <ae>r=r : (3.13)



The derivatives 3pg/96, that. are needed for the estimation of the

accuracy of p at the end point, can be calculated by a differentiation of Eq.
(2.9):

i o - [1— o o By i BPB] (3.14)
36 B Py 98 Y(PA+P0) 36 v(pgtp ) 96
where
ap
A D
S ) 3
90 50 "s(Tp30) (3.15)
ap
A 3
3 = 36 Ps(Fa3®) 3-19)
and
] s) ot
B_ 3 3 B
35~ 35 Pelrprty®) + 30 [prrptgs®)] 55 - —

The flow at the end point of the path line, i.e., at its intersection

with the line r=r, is defined by the four component vector

_ g
H - (tB’ pB’ uB’ pB) . (3-17)

The accuracy of the vector can be characterized by a variance-covariance matrix
VH of the components of H, that can be calculated from Ve by the formula

T
oH oH
VH —ﬁve <36> . (3.18)

Vy estimates the uncertainties of the flow field that are caused by measurement
inaccuracies. The elements of the Jacobian matrix 3H/3¢ in (3.18) are given
by the solution of the equation system (3.11) and the formulas (3.13), (3.14),
and (3.16), respectively.

4. DETERMINATION OF SHOCK FUNCTIONS BY MODEL FITTING

In order to compute the complete blast field by the method described in
previous sections, one needs the pressure field function ps(r,t;8) within the
region of interest. We determine that function by a model fitting to pressure

18



observations, most of which consist of overpressure history recordings at di-
verse stations. The initial value of most overpressure history recordings is
the incident shock overpressure. From the viewpoint of data handling, it is
advantageous to use these initial values separately from the rest of pressure
data for a determination of the shock functions (3.1). Then one can obtain a
shock description that is accurate within a large distance range and use the
same shock functions for different field fittings, as will be described in the
next sections. Also, in a separate shock fitting one can easily make use of
incomplete records from which either the pressure observation or the shock
arrival time observation is missing. (Incomplete records do occur occasionally
in blast field experiments.) The use of all available data makes the shock
functions less sensitive to individual observational inaccuracies. Since the
shock functions also can be approximated very accurately by simple expressions,
a separate shock fitting is more practical than a concurrent determination of
shock and field functions. Details of the shock fitting algorithm will be
given in this section. The complementary pressure field fitting will be de-
scribed in Sections 5 and 6.

The medium into which the shock propagates is assumed to be an ideal gas,
characterized by its molar mass M and the ratio y of its specific heats. We
describe the initial state of the gas by its pressure P, and temperature T .
The corresponding initial density is ©

o

_ o M
T "R (4.1)
o g
where R, = 8.31434 J/(mole-K) is the universal gas constant. The sound speed

in the ambient gas is

c, = \/YPO/DO = \/YTORg/M . (4.2)

Let pg be the incident shock overpressure. Then the shock velocity,
particle velocity and density behind the shock are given in terms of P by the
following set of formulas4,

Shock velocity:

_ v+l Pg 1/2 I Pg 2y P 1/2 (4.3)
U=c {1+ = |=-=1{1 + =L =
o 2y p 2" Y+l p ;
Particle velocity behind the stock:
P c E P 1
P -
u =l_S_=_g_!.__S=_2__U l+£Y__0. (44)
s U p U yp +1 Y+l p *
o s

‘mid. p. 200 ff.
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Density behind the shock:

e
[©2]

1]

o)

o]
TN
'—I
+
N =

+
'—I
|
~———
S
N =
=<1
'—I
° |
0
\-/I
'—I

P Pyl
=0, i <1 + —21 —9> <1 A —3) . (4.5)

The shock arrival time ts(r) at a distance r from the center of the ex-
plosion and the shock velocity U are related by

L
_ dr
ts(r) = e +/ o) ) (4.6)
i

For the numerical treatment of shock data we choose a rational function
of r as an approximation of the shock overpressure function ps(r). The rational
function has three parameters and an asymptotic behavior for small and large
r as predicted by blast theory. The function is

ps(r;a,b,c) = afr + b/r2 + c/r3 . (4.7)

The corresponding shock arrival time function tg(r) is obtained by substi-
tuting the expression (4.7) into the shock velocity formula (4.3) and the re-
sulting function into the integral (4.6). The final result is

r

ts(r;a,b,c,d) =d + J/. dx , (4.8)

v+1 2 3
L <, ‘/1 + Zvp (a/x + b/x" + c/x7)

r
(o]

The integral in Eq. (4.8) must be evaluated numerically, and the evaluation
provides the shock arrival time tg at any given distance r. (In the computer
programs for shock fitting, the quadrature is done by a Romberg algorithm.)

The lower limit r; of the integral in Eq. (4.8) can be chosen arbitrarily,
e.g., it may be set equal to the smallest observed distance. Once ry is fixed,
then both model functions, p (r) and ts(r), are completely determined by the
four components of the model parameter vector 6 = (a,b,c,d)T.

Appropriate values of the four parameters were found by a least squares
data fitting that uses the shock observations as data. Each shock observation
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is a three component vector (Pg, Tg» Rg), i.e., the observed shock overpressure,
arrival time, and distance. The model constraints for the observations are
Eqs. (4.7) and (4.8). They may be formulated as the equation system

|
o

fl(PS,TS,RS;O) P - ps(Rs;e) =

(4.9)

[]
o

£,(B_,T_,R_;8) = T_ - t_(R_;6)

or in some other equivalent form consisting of two simultaneous équations for
each three-component vector of observations. Problems of this type can be
solved numerically with the aid of the utility program COLSMUS, that was also
used in the present task. The program is sufficiently flexible to accommodate
observation sets from which either the pressure or the time observation is
missing. (The constraint for such an incomplete set consists of only one of
the two equations (4.9).)

The first constraint in Eq. (4.9) was formulated for the model fitting
task as follows:

fl(p,t,r; a,b,c,d) = r3p - rza -rth-c=0. (4.10)

The first order derivatives of fl are

Bfl/a(p,t,r) = (r3, o, 3r2p - 2ar - b) (4.11)

and

2£,/3(a,b,c,d) = (-x2, -r, -1, 0) . (4.12)

The non-zero second order derivatives of fl are

azfl/ar2 = 6rp - 2a ,

azfll(arap) = B }
(4.13)
azfl/(araa) = -2r ,
)
) fll(arab) = -1.
S Ibid,
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The second constraint in Eq. (4.9) was used in the model fitting task in
the following form ‘

r
fz(P’t’r; a,b,c,d) = J/P dx + (d—t)Co =0 ’ (4.14)
= Vl + F-(a/x+b/x2+c/x3T
1
where
5= 1)/(2YP0) : (4.15)
Let
Q) = Jl + T -(a/x + b/x2 + c/xy) . (4.16)

Then the first order derivatives of the model function f2 are

3f2/3(Pstsr) = (09 _CO’ 1/Q(r)) (4-17)
and
r r r
af
2 . r / dx T dx r / dx
——— = - —_—, - y — ™5 ; e (4.18)
3{a,b,c,d) 2 / XQ3 2 / X2Q3 2 X3Q3 o
1 rl r1
The non-zero second order derivatives of f2 are
82f2/8r2 =% T -(a+2b/r+3c/r2)/(r2Q3(r)) ! (4.19)
azfz/(araa) = - %—F/(rQ3(r)) >
Bzle(arab) - % r/ 23 @Yy (4.20)
3°€,/(rde) = - 21/ @)
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a2, /2a = 2 2/dx/(xzqs(xn ,
Bzle(aaab) - %—P%/rdx/(XSQS(X)) 5

22¢,/ (dadc) = 2 rzfdx/(x‘*QS(x)) :

£

(4.21)
82f2/8b2 = Bzle(aaac) ,

r2 f dx/ (°Q (%)) ,

82f2/8c2 -% ./rdx/(x Qs(x)) .

Bzle(abac) =

~lw

The limits of the integrals in Eq. (4.21) are the same as in the constraint
Eq. (4.14). All integrals are evaluated numerically by Romberg algorithms.

5. ANALYSIS OF PRESSURE HISTORIES

The data for a determination of the pressure field function consist of a
number of pressure histories observed at various locations within an area of
interest. Before determining a field function pf(r,t) that describes the pres-
sure p as a function of r and t within the whole area, we find functions Py (L)
that fit the observed individual pressure histories. The purpose of the fitting
of the individual histories is to obtain trends of the histories for increasing
distance from the explosion. These trends are needed to construct the pressure
field function pf(r,t), as will be described in the next section.

The model function chosen to fit the individual overpressure histories is

p, (t; A,B,C) = (pS—C)-exp-{A(t—tS) + B(t—ts)z} w2 3 (5.1)

where A, B, and C are model parameters, pg is the shock overpressure, and g
is the shock arrival time. The values of pg and tg depend on the location of
the pressure gage, i.e., on the distance r. They are calculated using the
formulas (4.7) and (4.8).

The data consist of two-component vectors (p,t) giving the overpressure p
for various time values t. The model fitting problem can be solved numerically
by the utility routine COLSAC5. The resulting parameters A, B, and C are valid
only for the particular history used as input, and they have no general physi-
cal significance.

5

Ibid.
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The constraint function for the model fitting of history data was formu-
lated as follows '

f(p,t; A,B,C) = (PS—C)-exp (A'(t-ts) + B'(t-ts)z)-+ C-p. (5.2)
Let
E = exp (Ar(t-t ) + B-(t-ts)z) : (5.3)

Then the first order derivatives of the constraint function (5.2) are

3E/3(p,t) = <;1, (& + 28 -0)) (o -0) - E) (5.4)

and

3f/3(A,B,C) = <(t-ts)(pS—C)E, (t—ts)z(pS—C)E, -E + 1) ! (5.5)

The non-zero second order derivatives are

2’£/3t% = [(a + 2B(e-t )% + 28](p_—0)E , (5.6)
2,2 2

2£/3A° = (t-t ) (p_-O)E ,

2 ) 3

22£/(3A3B) = (t-t ) (p_-O)E ,

22£/(383C) = - (t-t)E , (5.7)

32£ /582 = (t—tS)A(pS-C)E )

52£/(5B3C) = - (t—tS)zE ,
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Bzf/(BtBA) =[1+ (A * ZB(t—tS)) (t—ts)](ps—C)E .

a2/ (araB) =2 + (A + zB(t-ts)) (t-e )] (t-t ) (p ~O)E , (5.8)

Bzf/(atBC)

C (A + 2B(t—ts)>E .

After the values of the parameters A, B, and C are obtained for all his-
tories within the area of interest, their trends as functions of the distance
r are analyzed. The analysis consists of finding for each parametér a power
function of r as an approximation. Let, for example, A4 be the value of the
parameter A obtained from a history fitting at the distance rj. Then one can
determine a function Ar™ that approximates the data sets (|Aj|, ri). The

function is determined by minimizing an object function W, that is defined as
follows

- 2002
W= Z (1n|Ai| - 1n|A| - n,Inr.)"A" . (5.9)

i

The solution of the minimization problem is given by the formulas

_ 2 2 2 2
D= Z Ai Z(Ailn ri) —[Z Ai In ri] , (5.10)
i i

i

|&| = [Z(AilnlAil )Z(Ailnri) Z_Z(AilnlAil inr i)Z(Ailnri):, /D , (5.11)
T 1 i 1
2 2 2 2
nA =|:ZAiZ(AilnlAi l 1nri) —Z(Ailnri)Z(AilnlAi| ):,/D ) (5.12)
i1 1 1 |

The sign of A is set equal to the sign of that parameter Ai which corresponds
to the smallest distance .

Trends of the parameters B and C are calculated by identical formulas that
yield the values of B, ng, C, and nc, respectively. The exponents np, ng,
and ng, are used for the construction of the pressure field function pe(r,t),
as described in the next section. The values of A, B, and C are used as initial
approximations of certain parameters of that function.
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Numerical experiments with different data sets have shown that the expon-
ents np, ng, and ng need not be determined very accurately. Equally good
approximations of pressure data can be obtained using field functions with
exponents that vary within relatively large ranges. The exponents have no
physical significance, because the parameters A, By, and Cq depend, not only
on the distance ry, but also on various other factors such as the duration of
the observed history, its noise level, the number and distribution of the ob-
servations, etc.

6. DETERMINATION OF PRESSURE FIELD FUNCTIONS BY MODEL FITTING

A pressure field function describes the overpressure in the blast field
as a function of the distance r and the time t. The function is obtained by
data fitting of pressure observations and it is, therefore, a valid approximation
to the actual pressure field only within the limited region from which the data
are selected. In an analysis of a given event, one may use several pressure
field functions, each representing the pressure in a different region.

In the present problem, we have used the following five parameter model
function as a representation of the overpressure field:

pf(r’t;Al,AZ’Bl’BZ’Cl) = [Ps(r)-c(r;cl)] exp (Q(r’t;AlsA23B13B2)>""C(r;cl) ’

(6.1)
where
Q = [t-t (0] (A +A,0) r ™A -t _(r)] 2(B,+B,1) -x™® (6.2)
s 172 s 7 172 )
and
C=cC,-r"C . (6.3)

The functions p (r) and t _(r) are the shock overpressure and shock arrival
time functions, respectively. ~Both are determined by shock fitting (Section 4).
The exponents n,, npg, and ng are assumed to be known from an analysis of the
trends of individual history fittings, as described in Section 5. The remaining
five parameters, A], Ay, Bl, B2, and C; are determined by model fitting to over-—
pressure observations within regions of interest.

The data for the determination of the model parameters are the observed
overpressure, time, and distance, i.e., the data are three component vectors
(p,t,r). The constraint function is used for the data fitting in the following
formulation:
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£(p,t,13A;,4,,8,8,,C) = (p_-C)e’ + Cp (6.4)

where Q and C are defined by Egqs. (6.2) and (6.3), respectively. The constraint
equations are scalar and, therefore, the model fitting problem can be solved
numerically by the utility routine COLSAC® for standard least squares problems,

The first and second order derivatives of the constraint function f can
be conveniently expressed by the following formalism. Let x and y be any two
of the eight arguments of f, and let derivatives with respect to x and y be
denoted by corresponding subscripts. Then

£ = e[ 0 Q + (0 -0) ]~ (GO , (6.5)
and

-
foy = © [(Pg=0)(Q+Q,Q)+(p -C) 0 +(p_-C) Q +(p -C) ]-(p-C)_ _ . (6.6)

The derivatives of Q, ps(r), p and C(r;Cl) can be easily computed.

The pressure field fitting provides an optimal set of the field parameters
Ay, Ay, By, By, and Cy, and their estimated variances and covariances. The
overpressure pg, computed with the formula (6.1), depends, however, also on
the four shock parameters a, b, ¢, and d through the shock functions pg(r) and
ts(r). Therefore, when one estimates the accuracy of Pg¢, one has to take into
account the variances and covariances of all nine parameters, namely, the four
shock parameters and the five field parameters. Let 6 be the vector of all
nine parameters and let Vg be the corresponding variance-covariance matrix of
the components of 6. Then an estimate of the variance of Pe is the square of
Eq. (3.8), viz.,

Spf Spf 2
Vp =—8—6—Ve —8—6— g (6.7)

The matrix Vy was composed as follows from the estimated variance-covariance
matrix Vg . of the shock parameters, and from the corresponding matrix V

of the field parameters: Figld
\Y 0
Ve - shock . (6.8)
0 Viield

In the matrix (6.8), correlations between shock parameters and field parameters
have been neglected. In reality correlations between both parameter groups

S Ibid.
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exist, because the shock fitting results were used to obtain the field param-
eters. The neglect of the correlations most likely results in an overestimate
of the pressure variance.

The reason for the neglect of the correlations is programming expediency.
The correlation could be obtained, e.g., by a joint adjustment of all data
(shock data and pressure history data) using the utility program COLSMU®. How-
ever, this would require an unacceptable investment in programming because of
the heterogeneity of the data and constraints. Also, algorithmic difficulties
can be expected for this problem, because of the nonlinearities involved, re-
quiring additional effort for their.resolution.

7. A THEORETICAL TEST EXAMPLE

The blast field computation method was tested on two examples: on a
theoretical strong shock flow field and on real measurements. The former test
is described in this section.

The theoretical flow field was obtained by using the computer programs
described in Reference 6. The programs are based on self-similar solutions of
flow equations’/»8 that approximate the flow of strong blasts. The theory of
the approximation is limited to blasts in ideal gas that are generated by point
explosions, and for which the ambient pressure is negligible compared to the
incident shock pressure. The latter assumption makes the numerical results of
the theory ambiguous, because the theoretically computed pressure can be inter-
preted either as overpressure or as pressure. In our test example, we chose
the latter interpretation. Consequently, the overpressure "observations' for
the example were obtained by subtracting the ambient pressure from the theoreti-
cal pressure values which were supplied by the strong blast computer programs.

The explosion in the test example was assumed to be generated by the
release of 209.2-1012 7 of energy (equivalent to a 50 kton TNT explosion).
Table 1 gives the ambient ideal gas specification and the assumed locations
and durations of overpressure observations. The example was chosen such that
the strong blast assumption was satisfied reasonably well. (The pressure ratio
ranges from 190 at the beginning of the 120 m history reading to 60 at the
beginning of the 170 m history.) The locations of the history readings in the
r,t-plane are shown in Figure 3 and the assumed data accuracies are listed in
Table 2.

S

6Aivars Celming, "Strong Blast Wave Computer Programs," USA ARRADCOM/Ballistic
Research Laboratory Technical Report ARBRL-TR-02264, September 1980. (AD #A092346)

7L.I . Sedov, "Similarity and Dimensional Methods in Mechanics," Academic Press,
Ny, 1959.
8

0. Laporte and T.S. Chang, "Curved Characteristics Behind Strong Blast Waves,"
Physics of Fluids, 15, pp. 502-504, 1972.
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TABLE 1. PARAMETERS OF THE THEORETICAL TEST EXAMPLE

Explosion
E = 209.2 TJ

Ambient Gas
Molar mass M = 28.96 g/mole
Specific heat ratio vy = 1.40
Temperature T = 293 K
Pressure po = 101.325 kPa

Range of Shock Observations
90-170 m

History Observations

Distances Times
120 m 11.0 - 15.0 ms
130 m 13.4 - 17.9 ms
140 m 16.2 - 21.5 ms
150 m 19.2 - 27.2 ms
160 m 22.6 - 29.6 ms
170 m 26.3 - 32.0 ms

TABLE 2. ASSUMED ACCURACY OF THE THEORETICAL DATA

Time: + 0.1 ms

5%
0.1m
Elevation: + 0.01 m

Pressure: fur
i

Distance:
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Shock arrival times and pressures were assumed to be observed between
90 m and 170 m at 2.67 m intervals. In order to test the program's capability
to handle incomplete data sets, it was assumed that from some sets either the
pressure or the time observation was missing. Figures 4, 5, and 6 show the
shock data and the fitting curves with their three standard error confidence

limits. The least squares values of the shock fitting parameters are given in
Table 3.

The figures show that the confidence intervals for the fitted curves become
very large outside the range of observations. The rapid increase is caused by
the redundancy of the parameters a and b, which is manifested also by their
large standard errors and the close correlations between the three parameters
a, b, and c¢. (See Table 3.) The reason for the redundancy is the fact that
the theoretical shock pressure formula for the strong shock is p = c/r3. One
can expect that the increase of the confidence intervals will be less pronounced
in cases where the observations are not restricted to either the strong shock
regime or to the weak shock regime (p=a/r).

The next step towards the flow field determination is a fitting of indi-
vidual pressure histories, as described in Section 5. Figures 7 and 8 show two
samples of the results of the fitting.

Each history fitting provides values of three parameters, A, B, and C,
which determine the model function (5.1). Figure 9 shows log-log plots of the
three parameters versus the distances at which the history recordings were
made. The field fitting program calculated trends of the parameters by fitting
a power of the distance to the curves shown in Figure 9. The exponents were
calculated using Eq. (5.12) and the following results were obtained:

nA = -2.3,
ng = -4.5 ,
nC = -2.9 .

The corresponding five parameter overpressure field function is

pe = @ (0 - cy/e”) & w e pt? (7.1)

with

.3

q = (t—ts(r))(Al+A2r)/r2 n (t—ts(r))z (Bl+52r)/r"'5 , (7.2)

where p (r) and t (r) are the shock overpressure and arrival time, respectively.
The numerical results of the pressure field fitting are listed in Table 4. The
large parameter error estimates and close correlations between parameters again
indicate that probably some of the parameters are redundant for this example.
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TABLE 3. SHOCK PARAMETERS OF THEORETICAL EXAMPLE

The model is given by Eqs. (4.7) and (4.8). The range of
fitting is 90 m through 170 m.

Parameters and Standard Errors

(-26.3 + 659.6)+10° Pa-m

a =

9 _ 2
b= ( 1.13 + 171.5)-10" Pa°m
¢ = (32.81 + 10.94) -10*? pa-m’

d = (5.380 + 0.044) ms = arrival at 90.0 m

The standard error of weight one, m, = 0.01674, is not
included in the standard errors of the parameters.

Correlation Matrix of the Parameters

1.0 -0.99682773 0.98588603 0.04936359
-0.99682773 1.0 -0.99598531 -0.08560247
0.98588603 -0.99598531 1.0 0.13819642
0.04936359 ~-0.08560247 0.13819642 1.0

NOTE: The standard error of weight one, m,, depends on the scatter of data as
well as on systematic differences between the model and measurement. For this
example the data scatter is zero, because theoretical flow values were used

as data. Therefore, the listed m_ characterizes only the systematic differ-
ence between the pressure model and the strong blast pressure. Because this
difference is small, the value of my is also small. The listed standard errors
of the parameters are estimates of the parameter inaccuracies that would be
caused by data scatter (standard errors) as specified in Table 2.

35



BLAST FIELD BY SBL-ROUTINES
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Figure 7. Fitting of Pressure at 120 m in Theoretical Test Example
(The data accuracy is indicated by a.two standard error ellipse

around each observed point.)

Time is expressed in seconds and pressure is expressed in pascals.
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Figure 8. Fitting of Pressure at 170 m in Theoretical Test Example

(The data accuracy is indicated by a two standard error ellipse
around each observed point.)

Time is expressed in seconds and pressure is expressed in pascals.
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A test fitting, for which A,=B9=0 was assumed, produced indeed an almost as
good approximation to the overpressure field as the function defined by Egs.
(7.1) and (7.2). TFor subsequent calculations, however, the full parameter set
of Table 4 was used, because all five parameters are likely to be needed for
real life observations.

Finally, the results of the field fitting and shock fitting were used to
compute flow field histories at 150 m and 160 m from the explosion.

TABLE 4. OVERPRESSURE FIELD PARAMETERS OF THE THEORETICAL TEST EXAMPLE

The model is given by Eq. (7.1)
The total number of observed (p,t,r)-sets is 92

Parameters and Standard Errors

Ap = (-3.706 + 0.918)-10" n”*%/s
A, = (2.210 + 6.111)-10" n'*%/s
B, = (1.027 + 1.231)-10" n**?/s
B, = (-2.384 + 8.292)-10" n>*>/s
¢, = (3.840 + 0.301)-10"% n***+Pa

Standard error of weight one, mj = 0.1650, is not
included in the standard errors of the parameters.
(See NOTE in Table 3)

Correlation Matrix of the Parameters

1.0 -0.98719841  -0.93452111 0.92814584  -0.09747745
-0.98719841 1.0 0.94741921 -0.94678284  -0.05480633
-0.93452111 0.94741921 1.0 -0.99916227 -0.07989523

0.92814584  -0.94678284  -0.99916227 1.0 0.11085262
-0.09747745 -0.05480633 -0.07989523  0.11085262 1.0
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The flow histories of 150 m are shown in Figures 10 through 14. The length
of the computable history is limited to the end time of about 22 ms, at which
time the leftmost particle path reaches the distance 150 m (see Figure 3). If
the field history at 150 m is needed beyond 22 ms, then additional observations
are necessary at distances closer than 110 m to the explosion. The pressure
history, Figure 10, shows close agreement between fitted values and theoretical
values. The magnitude of the estimated variances of the pressure is of the
same order (5 percent) as the assumed accuracy of pressure observations, indi-
cating that excessive error amplification does not take place.

The particle velocity history is shown in Figure 11. The figure also
contains, as a dashed line, the results of the control calculation by the
quadrature (2.15). The difference between both velocity curves is of the same
order as the estimated standard error of the velocity. Therefore, one can con-
clude from the test that the pressure field model is consistent with the assumed
accuracy of the data. Also shown in the figure is the theoretical particle
velocity as predicted by the strong blast theory. The deviaticn between the
calculated velocity and the theoretical velocity is always in the same direc-
tion, indicating a systematic cause for the difference. A systematic reason
is indeed present, because for the strong blast theory one sets in all formulas
the ratio po/pS equal to zero, whereas, the present calculation takes the ratio
properly into account. The difference in the result can be easily checked at
the initial point of the velocity history. One obtains the value of the veloc-
ity as predicted by strong blast theory by using Eqs. (4.3) and (4.4) with
Po/Ps = 0, whereas the full formulas produce the value shown as "calculated
result." It is apparent from this comparison that a shock pressure ratio of
about 0.0l cannot be neglected for the calculation of details of the blast
field.

Figure 12 shows the density history at 150 m. The calculation of the
density makes use of both the pressure and velocity calculation results.
Nevertheless, the estimated variance of the result is moderate, indicating that
the computing method is numerically stable. A systematic deviation between the
calculated density and the strong blast density is again present and caused by
the neglect of the ratio po/pS in the strong blast theory. The effect of the
ratio on Eq. (4.15) is stronger for lower shock pressures and, therefore, the
difference is larger at the beginning of the density history, where the parti-
cles have been subjected to a less strong shock.

The dynamic pressure history at 150 m is shown in Figure 13. The dynamic
pressure is computed from the velocity and density and, therefore, one obtains
the same systematic deviation as discussed above between the calculated result
and the strong blast theory. More interesting is the estimated variance of
the calculated dynamic pressure. It is of the order of five percent, i.e., of
the same order as the assumed accuracy of the pressure data. This result is
very encouraging for the application of the method to field experiments, be-
cause it shows that the computation method is sufficiently stable to produce
accurate dynamic pressure histories from overpressure observations with typi-
cal uncertainties.

Figures 14 through 17 show the calculated field histories at 160 m distance
from the explosion. The results are similar to the corresponding results for
150 m distance, and the same comments apply as before to the systematic differ-
ences and estimated variances of the calculated histories.
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Figure 10. Pressure History at 150 m in Theoretical Test Example

;EEEEEE- Field fitting results with confidence limits
NS Strong blast theory

Time is expresses in seconds and pressure is expressed in pascals.
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Figure 11. Particle Velocity History at 150 m in Theoretical
Test Example

;EEEEEE Calculated result with confidence limits

. — Control calculation

—r

_FF++4' Strong blast theory

Time is expressed in seconds and velocity is expressed in m/s.
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DENSITY
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Figure 12. Density History at 150 m in Theoretical Test Example

/. R R
:::;::> Calculated result with confidence limits
—P+++++f Strong blast theory

Time is expressed in seconds and density is expressed in kg/m3.
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DYNAMIC PRESSURE RHOwVxuaw2/2

BLAST FIELD BY SBL-ROUTINES
DISTANCE FROM THE EXPLOSIGN 150.00
ERROR LIMITS CORRESPOND TO 2.00 STANDARD ERRORS

LR (SH e I N S H B B E S S S S B m w—
=t - -1
22 -
20 -
18 | 1
i | -
14 .
12 | i
10 |-

a8 I

3 1
g -
2 [~ =
0 10 T N N NN N SN AN NN JNN S MY S N

190 1 9Y 198 202 208 210 21y 218x10-%
TIME

Figure 13. Dynamic Pressure History at 150 m in Theoretical Test Example

_‘é Calculated result with confidence limits

_H,H—-f— Strong blast theory

Time is expressed in seconds and dynamic pressure is expressed in pascals.
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Figure 14. Overpressure History at 160 m in Theoretical Test Example

TEEEEEEi Field fitting with confidence limits
—P**A/k#’ Strong blast theory

Time is expressed in seconds and pressure is expressed in pascals.
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Figure 15. Particle Velocity History at 160 m in Theoretical Test Example

— Calculated result with confidence limits
——

— — — — Control calculation

H“**H— Strong blast theory

Time is expressed in seconds and velocity is expressed in m/s.
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Figure 16. Density History at 160 m in Theoretical Test Example

/ . s
:::::::L Calculated result with confidence limit

4—F+++++ Strong blast theory

Time is expressed in seconds and density is expressed in kg/m3.

47
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Figure 17. Dynamic Pressure History at 160 m in Theoretical
Test Example

25555553 Calculated result with confidence limit

4_F+++4 Strong blast theory

Time is expressed in seconds and dynamic pressure is expressed in pascals.
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8. APPLICATION TO DATA FROM MISERS BLUFF II

In order to test the applicability of the flow field calculation method
and corresponding computer programs to real groblems, we used the computer pro-
grams on data from the event MISERS BLUFF I1I-.

For the shock fitting, we used data consisting of 18 shock arrival times
and overpressure measurements at ranges between 89.7 m and 715 m. The shock
data and data describing the ambient conditions are listed in Table 5. Table 6
gives the numerical results of the shock fitting. Comparing the results with
corresponding results in Table 3 for the theoretical test example, one notices
that now there are no indications of a redundancy of parameters. Their esti~
mated standard errors are relatively small and correlations between them are
less strong than in the theoretical example. The standard error of weight omne
has a value close to one, indicating that the estimated standard errors of the
observations are consistent with the shock model and with the scatter of the
data.

Figures 18, 19, and 20 show the shock fitting results graphically. The
increase of the estimated confidence interval outside the fitting region is
much more gradual than in the theoretical test example (Figures 4, 5, and 6).
This behavior of the confidence limits can be attributed to the fact that the
model contains no redundant parameters for the treatment of the given data set.

In order to test and illustrate the flow field calculation capability of
the computer program we assumed that the stations of interest were located at
120 m and 150 m from the explosion; i.e., we assumed that the goal is to com-
pute flow histories at these distances. Then the first step is to establish
pressure field functions in the vicinity of the stations of interest. Available
were overpressure history data at eight stations between 89.7 m and 211 m, as
shown in Figure 21.

The overpressure history data and fitting curves for the individual his-
tories are shown in Figures 22 through 29. For this data fitting, as well as
for the subsequent pressure field fitting, we assumed the following standard
errors of the data:

Pressure: 5% of the initial overpressure

Time: 1 ms

Range and Elevation: 1 m

9G. Teel, "Free Field Airblast Definition," Proceedings of the MISERS BLUFF
Phase II Results Symposium, 27-29 March 1979, Defence Nuclear Agency Report
POR 7013-1, 1979.
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TABLE 5. AMBIENT AND SHOCK DATA OF MISERS BLUFF II

Ambient Conditions

Molar mass M = 28.94 g/mole
Specific heat ratio Yy = 1.4
Temperature T = 312.05 K
Pressure P, = 92.92 kPa
Charge
Released Energy 418.4 GJ
Elevation 0.0 m
Shock Observations
Range Elevation Overpressure Time
(m) (m) (kPa) (ms)
89.7 0.0 478 56.6+1
96.0 0.0 340 64.8+1
103.0 0.0 294 75.0+1
114 0.0 198 92.4+42
114 0.0 204 951, 7462
120.3 0.0 149 104+2
150.3 0.0 83.1 164+2
174 0.0 57.3 21742
190 0.0 49.2 254+2
206 1,22 42,1 29242
206 2.44 41.1 29342
211 0.0 38.9 30443
264 0.0 25.8 436+3
309 1.22 19.8 551+3
344 0.0 19.4 64343
388 0.0 14.6 760+4
532 0.0 9.78 1150+5
715 0.0 6.59 1660+10

The range and elevation accuracies were assumed to be 1.0 m.
The overpressure accuracy was assumed to be 5 percent.
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TABLE 6. SHOCK PARAMETERS OF MISERS BLUFF II

The model is given by Eqs. (4.7) and (4.8).
The data are listed in Table 5.

Parameters and Standard Errors

(6.093 + 0.435)-10° Pa-m

a =

9 2
b = (-1.134 + 0.217)-10° Pa'm
¢ = (3.343 + 0.235)-10"1 Pacm

d = 57.934 + 0.766 ms = arrival time at 89.7 m

The standard error of weight one, m, = 1.156,
is included in the quoted standard errors.

Correlation Matrix of the Parameters

1.0 -0.93948052 0.83556376 0.01536038

-0.93948052 1.0 -0.96070389 ~-0.03520487

0.83556376 -0.96070389 1.0 0.09994155
0.01536038 -0.03520487 0.09994155 1.0

NOTE: 1In this example, the standard error of weight one, m,, is close to one,
indicating that the data scatter is consistent with the data standard error

as specified by input. However, because my, is larger than one, the inaccuracies
might have been slightly underestimated. We have multiplied the calculated
standard errors of the parameters by m_ in order to account for the possible
underestimate. ©
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Figure 18. Shock Overpressure Versus Distance in MISERS BLUFF II

Distance is expressed in meters and pressure is expressed in pascals.
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Figure 21. Locations of History Observations in MISERS BLUFF II

Distances are expressed in meters and times are expressed in seconds.
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Figure 22. TFitting of Pressure at 89.7 m in MISERS BLUFF II1

The data accuracy is indicated by a two-standard error
ellipse around each observed point.

Time is expressed in seconds and pressure is expressed in pascals.
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MISZRS BLUFF II
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Figure 23. Fitting of Pressure at 103 m in MISERS BLUFF II

The data accuracy is indicated by a two-standard error
ellipse around each observed point.

Time is expressed in seconds and pressure is expressed in pascals.
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Figure 24. Fitting of Pressure at 114 m in MISERS BLUFF II
The data accuracy is indicated by a two-standard error

ellipse around each observed point.

Time is expressed in seconds and pressure is expressed in pascals.
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Figure 25. Fitting of Pressure at 120.3 m in MISERS BLUFF II

The data accuracy is indicated by a two-standard error
ellipse around each observed point.

Time is expressed in seconds and pressure is expressed in pascals.
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Figure 26. Fitting of Pressure at 150.3 m in MISERS BLUFF II

The data accuracy is indicated by a two-standard error
ellipse around each observed point.

Time is expressed in seconds and pressure is expressed in pascals.
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Figure 27. Fitting of Pressure at 174 m in MISERS BLUFF II

The data accuracy is indicated by a two-standard error
ellipse around each observed point.

Time is expressed in seconds and pressure is expressed in pascals,
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Figure 28. Fitting of Pressure at 206 m in MISERS BLUFF II

The data accuracy is indicated by a two-standard error
ellipse around each observed point.

Time is expressed in seconds and pressure is expressed in pascals.
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Figure 29. Fitting of Pressure at 211 m in MISERS BLUFF II

The data accuracy is indicated by a two-standard error
ellipse around each observed point.

Time is expressed in seconds and pressure is expressed in pascals.
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Comparing the overpressure histories, one notices that the last two histories,
Figures 28 and 29, have shapes that are different from the other curves. This
observation is confirmed by the plots of the individual history fitting param-
eters versus distance, Figure 30. The parameters corresponding to the last
two histories do not follow the trends of the other parameters. Based on this
observation, one should check the experimental setup and see if any causes for
the different behavior of the last two histories can be detected that may ren-
der the observations less reliable. For the present example, we assumed that
all data are valid and equally accurate.

The next step in computing the flow history at, say, 120 m is to choose a
range of observations for the overpressure field fitting. The range should be
sufficiently large to enable one to calculate the flow and the test velocity
for the time interval of interest. On the other hand, the range should not be
too large, because systematic differences between the model and the solution
of the governing equations may become excessive in a large fitting region. We
illustrate the choice of a fitting region by using two regions for the 120 m
history. One region includes all histories between 89.7 m and 174 m, and the
other region includes histories between 103 m and 174 m. (Figure 21 shows that
the 174 m history data must be included, at least partially, in order to com-
pute the test velocity for the total duration of the 120 m observation.)

Results based on field fitting in the first region (89.7 m - 174 m) are
shown in Figures 31 through 34. The dynamic pressure, which is an important
quantity for applications, has in Figure 34 very reasonable estimated confi-
dence limits. However, the test velocity in Figure 32 deviates from the particle
path velocity by two standard errors throughout the history. Because the test
velocity is computed using data at distances beyond 120 m, the difference in-
dicates a discrepancy between data below 120 m and beyond 120 m, respectively.

This discrepancy indication disappears if one uses field data only between
103 m and 174 m; i.e., if the history at 89.7 m is not used. The results of
such a computation are shown in Figures 35 through 38. The velocity plot in
Figure 36 now shows good agreement between the original and the test velocities.
Comparing Figure 36 with Figure 32, one sees that the test velocity in both
figures is practically equal, whereas the original velocity, which depends more
directly on data below 120 m, has changed by the exclusion of the 89.7 m his-
tory. Short of other information about the experiment, one should in such a
case use only field data between 103 m and 174 m to calculate histories at
120 m, because then the results are self consistent. We notice, in passing,
that the absolute differences between the dynamic pressures in both calculated
cases are small, although they are of the order of two standard errors.

For the computation of the flow histories at 150 m range, again two dif-
ferent pressure field functions were used. One function was obtained by fitting
overpressure data from ranges between 120.3 m and 206 m. This corresponds to
the minimum coverage of the pressure field that is necessary for the computation
of the histories at 105 m for the complete duration of the pressure observatiomns.
The computed histories are shown in Figures 39 through 42.

Another pressure function was obtained by adding two more observed over-
pressure histories to the data base, one at each end of the range covered.
Now, the overpressure field function was fitted to data between 114 m and 211 m.
The corresponding histories at 150 m were found to be identical within the
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MISERS BLUFF [[/ (83.7-174. M)
DISTANCE FROM THE EXPLOSION 120.00
ERROR LIMITS CORRESPOND TO 2.00 STANDARD ERRORS
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Figure3l . Pressure History at 120 m in MISERS. BLUFF II/(89.7-174 m)

Time is expressed in seconds and pressure is expressed in pascals.
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Figure 32 . Velocity History at 120 m in MISERS BLUFF II/(89.7-174 m)

\

Velocity and confidence limits computed along particle paths

_ — Control calculation

—

Time is expressed in seconds and velocity is expressed in m/s.
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MISERS BLUFF I[I/ (83.7-174. M)
DISTRNCE FROM THE EXPLOSION 120.00
ERROR LIMITS CORRESPOND TO 2.00 STANDARD ERRCES
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Figure 33. Density History at 120 m in MISERS BLUFF II/(89.7-174 m)

Time is expressed in seconds and density is expressed in kg/m3.
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MISERS BLUFF II/ (88.7-174. M)
DISTANCE FROM THE EXPLOSION 120.00
ERROR LIMITS CORRESPOND TO 2.00 STANDARD ERRORS
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Figure 34. Dynamic Pressure History at 120 m in MISERS BLUFF II/(89.7-174 m)

Time is expressed in seconds and dynamic pressure is expressed in pascals.
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MISERS BLUFF II/ (103.-174. M)
DISTANCE FROM THE EXPLOSION 120.00
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Figure 35. Pressure History at 120 m in MISERS BLUFF II/(103-174 m)

Time is expressed in seconds and pressure is expressed in pascals.



MISERS BLUFF II/ (103.-17H. M)
DISTANCE FROM THE EXPLOSION 120.00
ERROR LIMITS CORRESPOND TO 2.00 STANDARRD ERRORS
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Figure 36. Velocity History at 120 m in MISERS BLUFF I1/(103-174 m)

é Velocity and confidence limits computed along particle path

_ ~— Control calculation
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Time is expressed in seconds and velocity is expressed in m/s.
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MISERS BLUFF II/ (103.-1"7M. M}
DISTANCE FROM THE EXPLGSION 120.00
ERROR LIMITS CORRESPOND TO 2.00 STANDARD ERRORS
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Figure 37°. Density History at 120 m in MISERS BLUFF II/(103-174 m)
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Time is expressed in seconds and density is expressed in kg/m”.
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DISTANCE FROM THE EXPLOSION 120.00
ERROR LIMITS CORRESPOND TO 2.00 STANDRRD ERRORS
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Figure 3§5. Dynamic Pressure History at 120 m in MISERS BLUFF II/(103-174 m)

Time is expressed in seconds and dynamic pressure is expressed in pascals.
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Figure 39. Pressure History at 150 m in MISERS BLUFF II/(120.3-206 m)

Time is expressed in seconds and pressure is expressed in pascals.
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Figure 40. Velocity History at 150 m in MISERS BLUFF II/(120.3-206 m)

__—;__:’2. Velocity and confidence limits computed along particle paths

— Control calculation
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Time is expressed in seconds and velocity is expressed in m/s.
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Time is expressed in seconds and density is expressed in kg/m3.
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Figure 42. Dynamic Pressure History at 150 m in MISERS BLUFF II/(120.3-206 m)

Time is expressed in seconds and dynamic pressure is expressed in pascals,
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plotting accuracy to those of the previous calculation. A closer inspection

of the numerical output indicates' that the variance estimates are slightly
reduced by the addition of the two observed histories. However, the difference
between streamline velocity and test velocity is increased. The latter obser-
vation confirms the experience with history calculations at 120 m, where it was
also found that best results are obtained when the range for the fitting of the
pressure field function is as small as practically possible.

0f some concern in the present example is the large difference between
the original and test velocity, which is of the order of two standard errors.
This difference may be attributed to disturbances in the flow field at ranges
beyond 150 m, that can violate some of the basic assumptions for the flow model,
e.g., the spherical symmetry. In a practical application, one would reexamine
the data and then decide, depending on the purpose of the history calculations,
whether the proposed analysis is adequate.

The example makes it clear that one needs a good definition of the pres-
sure field around the reference ground range where the flow history is of
interest. The range interval in which additional pressure histories should be
recorded depends on the size of the explosion, on the reference range, and on
the anticipated duration of the history observation. For a planned experiment,
one may assume that typically the duration of interest will approximate the
duration of positive overpressure. Estimates of positive overpressure duration
are available from past experiments. Figure 43 shows such an estimatelO for
an 0.1 kton TNT experiment, like MISERS BLUFF.

Estimates of corresponding range intervals can be calculated, e.g., assuming
that the shock trajectory and the particle paths are straight lines within the
area of interest. Range intervals computed with this assumption are overesti-
mates, as can be seen from Figure 21. The results are as follows.

The downstream range interval that is needed to carry out the control cal-
culation for a history of duration At can be estimated by

= At + U (8.1)

where U is the shock velocity. The corresponding upstream interval that is
needed to compute the flow field history at the reference range for the duration
At can be estimated by

= _l = . . _ _l
T LT At(l/uS -1/U) " =AMt - U (U/uS 1) R (8.2

where ug is the particle velocity behind the shock. Using the shock formula
(4.4) one can also express Eq. (8.2) in the form

p o= 15 Yo
= At - U% <1+Ll—s> 1 (8.3)

r =51
computing P, 2y Py

10 A o N 5. " . |
Klaus Opalka, Terminal Ballistics Division, USA ARRADCOM/Ballistic Research

Laboratory, private communication, March 1981.
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where p_ is the shock overpressure and Po is the ambient pressure. The esti-
mates (8.1) and (8.3) of the downstream and upstream range intervals are plotted
in Figure 44 as functions of the reference range, using the At from Figure 43.

In order to check the quality of the approximate range interval formulas,
we also have determined the range intervals by an analysis of Figure 21. The
resulting upstream intervals are plotted in Figure 44. The plot shows that
for close ranges the approximate formulas overestimate the range interval by
more than a factor of two. For ranges larger than 200 m the factor is smaller
because the path line curvatures decrease with increasing range.

The downstream range intervals computed by an analysis of Figure 21 differ
only insignificantly from the curve in Figure 44 and, therefore, are not plotted.

9. CONCLUSIONS

A distinct feature of the described method for blast field reconstruction
from overpressure measurements is the calculation of variance estimates of all
field variables concurrently with the calculation of the variables themselves.
The estimates can be used in the planning of blast experiments; e.g., to deter-
mine pressure gage arrangements that enhance the predicted accuracy of the
calculated flow field. 1In examples where the method was applied to actual
measurements, it was found that the sensitivity of the computed results to
observational inaccuracies was up to ten times smaller than that of some pre-
vious methods.

Another unique feature of the method is the control calculation of a flow
velocity based on the continuity equation. The control calculation provides
an indicator for the consistency of the data with the basic assumption for the
mathematical model. Numerical experimentation with this indicator shows that
more consistent results can be expected when the pressure field function is
fitted to data covering smaller ranges of distances. This means for the planning
of experiments that one should provide a sufficient number of pressure history
observations in the vicinity of the range of interest. Favorable arrangements
of stations and durations of pressure recordings can be obtained from test runs
of the field calculation programs on approximate expected data sets.

The nine parameter pressure field function of this report was found to be
sufficiently flexible for the description of the pressure within a wide range
of theoretical and real problems.

One part of the analysis, having independent applications, is the deter-
mination of shock functions from shock data. The method described in this
report has the advantage of using all available data, including incomplete
sets and adjusting simultaneously measurements of pressure, time, and distance.
The method can be expected to produce more reliable results than previous nu-
merical shock fittings.
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LIST OF SYMBOLS
(a,b,c,d) - shock parameters
(A,B,C) - overpressure field parameter functions
(Al’AZ’Bl’BZ’Cl) - overpressure field parameters
¢ - sound speed (m/s)
e - specific internal energy (J/kg)
E - function defined by Eq. (5.3)
f - model function for data fitting
H - flow field vector defined by Eq. (3.17)
M - molar mass (kg/mole)
P,P - pressure (Pa)
Py - overpressure field function (Pa)
p,, - overpressure history function (Pa)
Q - function defined by Eq. (4.16)
r,R - distance from the center of explosion
t,T - time after explosion (s)
To - ambient temperature (K)
u - particle velocity (m/s)
U - shock velocity (m/s)
V - variance-covariance matrix
Y - ratio of specific heats
r = (y+l)/(2ypo) - constant in Section 4 (Pa-l)
8 - parameter vector for model fitting

p - density (kg/m3)

SUBSCRIPTS
s - pertaining to shock

0 - pertaining to ambient conditions
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