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1.  INTRODUCTION 

For experimental studies of target response to high energy blast, one 
needs an accurate definition of the blast field which provides the load on the 
target.  The general features of the flow in a blast field can be predicted by 
solving numerically the governing equations of the flow.  However, the accuracy 
of such calculations is limited because the early stages of an explosion are 
difficult to model, and the results of the early stage calculations influence 
subsequent computations for later times.  Therefore, direct measurements of 
the complete flow field would be most desirable; but such measurements are 
usually restricted, for technical reasons, to pressure history observations, 
and to shock arrival time and incident shock pressure measurements at various 
stations.  Hence, one has the task to compute other flow variables; e.g., the 
density and the particle velocity, from the measured pressures. 

Directly computable from pressure history observations is the history of 
the dynamic pressure (internal energy density), if simultaneous measurements 
of incident and stagnation pressures are available.  However, the results are 
very sensitive to observational inaccuracies.  Typically, the relative standard 
error of the calculated dynamic pressure is ten times as large as the relative 
standard errors of the pressure observations^.  Also, the calculations do not 
provide any other flow variables besides the dynamic pressure. 

Generally, one can improve the accuracy of computed results by using 
additional information.  For the present problem, such information is available 
from two sources:  from pressure history observations at stations adjacent to 
the station of interest and from the governing equations of the flow.  Compared 
to the governing equations of the early stages of the explosion, the governing 
equations for late stage flow are relatively simple and amenable to numerical 
solution.  Times and distances that are of interest for target response studies 
typically are within this flow stage.  Therefore, one can formulate the prob- 
lem as a task to solve numerically the governing equations with boundary con- 
ditions derived from pressure history and shock observations. 

In this formulation, the task is a mathematically ill-posed problem because 
the boundary conditions overdetermine the solution in some parts of the flow 
field, and at the same time may not be sufficient to compute the complete flow 
history for the full duration of a pressure history observation at some other 
station. 

Regularizations of the problem have been achieved by using two opposite 
approaches.  In one approach, one deletes all data that would overdetermine 
the problem.  In the other approach, one uses all pertinent data, but deletes 
one of the governing equations, using it later for control calculations.  The 
former approach has been used by Gottlieb and Ritzel2.  The latter approach is 
described in this report. 

2 
George D.   Teel3   "Fvee-Field Airblast Definition - Event DICE THROW, " Proceedings 
of the DICE THROW Symposium 21-2Z June 1977,   Volume I,  Defence Nuclear Agency 
Report DM 4377P-1,  pp.   7-76,   July  1977. 

2 
James J.   Gottlieb and David V.  Ritzel,   "Flow Properties of a Spherical Blast 
Wave," presentation at the Sixieme Symposium International sur les applications 
militaires de la simulation de souffle,  Cahors,  France,   25-27 June 1979. 



An advantage of the approach by Gottlieb and Ritzel is that the problem 
is immediately reduced to a standard task in numerical mathematics.  A disad- 
vantage is that, in a simplistic application of the method, all observational 
inaccuracies enter directly into the calculations and might be amplified.  In 
order to obtain reasonable results, one has to smooth judiciously the data or 
to introduce viscosity into the computing scheme.  A smoothing of data can be 
done in different manners so that in effect one may have to manipulate the 
data in order to obtain reasonable results.  The data that are not used for 
smoothing or as boundary data, could be used for a subsequent check on the 
calculations, but results of such tests have not been reported in Reference 2. 

In our approach, the problem is regularized by discarding one of the 
governing equations, but using all pressure observations within a region of 
interest.  We assume that the observations suffice to determine a pressure 
field function p(r,t) within the region.  The function is found by a least 
squares model fitting, which takes the role of the data smoothing in the Gottlieb 
and Ritzel approach.  The pressure field function then is substituted into the 
governing equations which in turn determine the other flow variables.  Problems 
of this type were considered by Makino3 who observed that one does not need 
the continuity equation for the flow calculation if p(r,t) is known.  We have, 
in essence, followed Makino's theoretical ideas and established computer pro- 
grams that compute the flow in the aforementioned manner.  The continuity equa- 
tion is used at the end of the calculations to check the accuracy of the results. 
We also carried out an analysis of the sensitivity of the results to observational 
inaccuracies, and included computations of accuracy estimates in the computer 
programs.  In typical examples, the results were found to be quite insensitive 
to this type of inaccuracy.  For example, the relative standard error of the 
dynamic pressure was found to be of the same order or less than the relative 
standard error of the overpressure observations. 

This report outlines the theory of the flow calculations from pressure 
measurements (Sections 2 through 6) and demonstrates its application in two 
examples (Sections 7 and 8).  The first example treats a theoretically computed 
strong blast field.  The second example is an application of the technique to 
real observations. 

A description of the use of the computer programs will be published in a 
forthcoming users' manual. 

2.  BASIC ASSUMPTIONS AND THEORY 

We seek to determine certain parts of the flow field within a blast bubble 
in air.  The area of interest is a relatively narrow strip in the r,t-plane 
behind the initial shock trajectory at a distance where the shock strength is 
only moderate.  We shall assume that the following conditions are satisfied 
within the area of interest: 

(A)  the flowing medium is an ideal gas with zero viscosity and no heat 
conduction, and 

7 

Ray C.  Makino,   "An Approximation Method in Blast Calculations, " BRL Memorandum 
Report 1034,  February 1956.   (AD #114875) 
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(B)  the event is spherically symmetric and the flow has only a radial 
velocity component u. 

The first assumption is satisfied in most applications because typically 
the maximum overpressure at the target is only of the order of one megapascal. 
Within this pressure regime, air behaves like an ideal gas.  The second condi- 
tion is nearly satisfied in most experiments, because usually the explosion 
source and the targets are positioned on the same plane, and the blast bubble 
is a hemisphere.  Deviations from spherical flow symmetry within the bubble 
may be caused by local surface disturbances, by wind, and by the presence of 
dust in the flow near the ground surface.  The present technique cannot be 
applied to cases where such disturbances are not negligible. 

4 
The governing equations for a flow satisfying the conditions (A) are : 

the continuity equation 

|£-+ p div u = 0 , (2.1) 

the momentum equation 

p |^ + grad p = 0 , (2.2) 

the energy equation 

de  p dp   „ ,0 0. 
pdF   pdr=0' (2-3) 

and the equation of state 

e--i- £■ . (2.4) 
Y-l  P 

In Eqs. (2.1) through (2.3) we have used the material derivative symbol 

^ = |^+ (u-grad) . (2.5) 

Because the flow is assumed to be spherically symmetric (condition (B)), we 
also have the definitions 

Richard von Mises,   "Mathematical Theory of Compressible Fluid Flow^ " Academic 
Press,  NI3   1958. 



1^2 
div u = -y — (r u) , (2.6) 

r 

and 

grad P " gj • (2.7) 

Eliminating the specific internal energy e between Eqs. (2.3) and (2.4) 
one obtains 

1 dp    1 dp  „ 
pdt-^dr=0- (2-8) 

Eq. (2.8) can be integrated along a particle path line.  The result is the well 
known formula for a particle in an adiabatic flow: 

HO" • 
where the subscript A indicates reference values at a point A on the particle 
path. 

The momentum Eq. (2.2) can be reformulated by substituting in it the 
expression (2.9).  The result is 

du    1 /PA\1/Y^ 

If the pressure function p(r,t) is given, e.g., by measurements, then the 
right-hand side of Eq. (2.10) is a known function of r and t.  In that case, 
the equation can be integrated numerically together with the path line equation 

dr 
dT" u • (2-11) 

The integration provides the path line starting at a point A and the particle 
velocity along it.  The density along the same path line is given by Eq. (2.9) 
All other flow variables, such as, internal energy, dynamic pressure, and 
sound speed can be computed from p, u, and p. 

10 



The continuity Eq. (2.1) is not needed for the described calculation of 
the flow corresponding to an observed pressure field p(r,t).  One can use the 
equation to test the calculated results, as suggested by Makino^.  in fact, if 
the pressure p(r,t) is measured precisely then this test provides a check of 
the validity of the assumptions (A) and (B) about the flow field.  In practice, 
test calculations based on the continuity equation cannot provide exactly the 
same result as the integration along path lines because the pressure field 
function p(r,t) contains observational as well as systematic errors.  The 
effects of the former are estimated in our approach using input information 
about the data accuracy.  Systematic errors may manifest themselves by differ- 
ences between original and control calculations that are larger than predicted 
by the observational error analysis. 

A control calculation based on the continuity equation can be carried out 
as follows. First, we use Eq. (2.8) and reformulate the continuity Eq. (2.1), 
obtaining 

A- 1 do div u H r1- 
YP dt 

(2.12) 

or 

^— (r u) + (r u) — ^ H rr = 0 
3r Yp 3r  YP 9t 

(2.13) 

Eq. (2.13) expresses the dependence of the quantity r u on r for t = const. 
A formal integration of the equation along a line t = const, yields 

r u(r,t) = 
P(r,t) 

vl/Y 

:uc + y J 
-2/pa.t) 

,I/Y 
3p(g,t) 

p(c,t)     at d5 

or 

u(r,t) = u 1-^ 

(2.14) 

UcVr ; ^(r,^     r2 Y p(r}t)l/Y J    t    ^'V dt 

(2.15) 

The subscript C in Eqs. (2.14) and (2.15) indicates function values at a point 
C with the coordinates (rc,t).  Using Eq. (2.15) one can calculate the particle 
velocity u(r,t) by a numerical quadrature along t = const., if an initial 
value u = u(r ,t) and the pressure field function p(r,t) are known. 

Ibid. 
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In summary, we proceed as follows for the calculation of the flow field. 
First, we establish a pressure field function p(r,t) by data fitting, whereby 
all data are used that are located in the vicinity of the point of interest 
say B.  Next, Eqs. (2.10) and (2.11) are integrated along a particle path AB, 
as shown in Figure 1.  The integration produces the velocity uB at B.  The 
density pB can be computed using Eq. (2.9), once the path line is established. 
(The flow variables uA and pA on the shock are known from the pressure field 
function and shock relations.)  Finally the calculated velocity uR is compared 
with another calculation using Eq. (2.15), applied along the line BC.  The 
velocity uc at the point C is again obtained from shock relations. 

3.  NUMERICAL INTEGRATION AND ACCURACY ESTIMATES 

In most applications, one needs the flow history at some fixed distance, 
say rB.  We obtain the history, i.e., the values of flow variables at a series 
of points along the line r = rB> by integrating Eqs. (2.10) and (2.11) along 
a number of path lines, each starting at a different point of the shock.  The 
test calculation of the velocity is done by integration of Eq. (2.15) along 
appropriate lines t = const.  Figure 2 shows schematically the integration 
lines and the location of the computed nodes in the r,t-plane.  The values of 
the flow variables at the shock as well as the pressure field function behind 
the shock that are needed for these integrations, are obtained by model fitting 
of shock and pressure observations, respectively. 

Let the result of the shock model fitting be certain functions of the 
radial distance r providing shock arrival time t , shock overpressure p , shock 
density p , and particle velocity u : S s 

t  = t (r;e) , 
s   s 

Ps = ps(r;e) , 

Ps = Ps(r;e) ' 

u  = u (riO) . 
s    s  ' 

(3.1) 

In these functions, 6 is a model parameter vector.  We shall give, in Section 
4, explicit expressions for the functions t  through u . 

s     0  s 

The model fitting of the observed pressure histories produces a pressure 
field function 

Pf(r,t;G) (3.2) 

12 



Domain where p(r,t) is determined from 
observations 

Shock 

Figure 1. Integration Paths 

The flow variables are obtained at the Point B by integration 
along the path line AB. The computed velocity is checked at 
B by an integration along the line CB. 
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A t 

DOMAIN FOR PRESSURE 
FIELD FUNCTION 

^9 

^ OBSERVED PRESSURE 
^ HISTORY 

OBSERVED SHOCK 
TRAJECTORY 

Figure 2. Computation of Flow History at a Given Distance 

The pressure field function is determined within the indicated domain 
from pressure history measurements along the lines AA3, BB3, and CC3, 
and from shock observations. For r = rg, the flow history can be 
calculated between B and B2, and test calculations can be carried out 
between B and B-,. 
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that describes the overpressure within a limited region behind the shock.  This 
function will be handled in detail in Section 6.  The pressure field function 
and the shock pressure function are related by 

Ps(r;e) = pf(r,ts(r,e);e) . (3.3) 

The differential equations for the path line, Eqs. (2.10) and (2.11), are 
in terms of these functions: 

dr 
dF= U ' 

(3.4) 

^ = F(r,t;e) , 

where 

i     /ps(rA;e)4po \1/Y ^f^'t;0) 
Ps(rA;e) ^(r.t^+pj      Si ' (3'5) 

and p is the ambient pressure, 
o 

The numerical integration of the system (3.4) is done by the following 
fourth order algorithm: 

Vi = \ + ht' 

2 • #,-, ,  . ^3 .» 
k-K ' Uk + At Uk/2 + At V6 r, ,, = r, + At 

\+l  
= Uk+At   •   (\ + \+l)/2   ' ^ (3-6) 

'u*k+i= IF ^k+i) + \+i 1; (,1k+i) > 

Vi'\+i + At2(\-Vi)/12 - 

The time derivatives u, and u, are defined for this algorithm by 

15 



uk= F(rk'V9) ' 

uk= IF (V +\' h c\) • 
(3.7) 

The integration errors of the algorithm can be reduced to desired levels 
by monitoring the time steps At.  However, the accuracy of the solution is 
also influenced by the accuracy of the pressure observations which are used to 
establish the pressure functions pf(r,t;e) and ps(r;e).  This sets a limit on 
the achievable accuracy of any solution of Eq. (3.4). 

The basis for the accuracy estimate is an estimate of the variances (or 
standard errors) of the overpressure observations, which we assume to be 
obtained by an analysis of the measurement process.  The least squares model 
fitting routines^ use the data variances to calculate an estimate of the 
variance-covariance matrix V9 of the parameter vector 6.  Using VQ, estimates 
of standard errors of pf(r,t;e) and ps(r;e) can be obtained by applying the 
linearized law of variance propagation to the formulas for pf and ps, respec- 
tively.  Thus, an estimate of the standard error e of p.. is 

P    f 

96 
(!MT1 1/2 

(3.8) 

where 3pf/9e is the Jacobian matrix of the function pf(r,t;e).  (The Jacobian 
matrix is a vector in this case because p is a scalar.) 

In order to calculate an estimate of the standard error of the velocity u 
by a corresponding formula one needs to know the derivative vector 9u/3e. 
Unlike 3pf/96, that vector cannot be obtained by formal differentiation because 
u is not given by a formula but obtained by solving numerically the equation 
system (3.4).  Therefore, we differentiate that system producing another system 
of differential equations where the unknown functions are the derivatives 
9u/9e  and 9r/9e.  The new system is 

d_/9r\ _ Jhi 
dtV99/ '" 96 

d_ 
dt 

£U 
3 9 

j3F   9F__9£ 
99   9r 96 

(3.9) 

where 

Aivars Celmiy.sy   "A Manual for General Least Squares Model Fitting," USA 
AREADCOM/Ballistic Research Laboratory Technical Report ARBRL-TR-02167,,  June 
1979.     (AD #B040229L) 
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3F  3g 3r m 

96   8r 89 86 
+ 

9P. 

Y(PA+P0) 86 Y(pf+P0) 

8P< 
+ 

3r 
3r 
86 

+ 

8pf/8r 

2     2 
3 Pf  3 Pf 

8r8e +  ' 2 * "86 
8r 

8r (3.10) 

Eqs. (3.9) are integrated numerically concurrently with the path line 
Eqs. (3.4), and using the same time steps At.  For simplicity, and because high 
accuracy is not needed, we use a third-order scheme for the integration of 
Eqs. (3.9).  The third-order scheme is obtained from the algorithm (3.6) by 
setting U and (1 equal to zero. 

The initial values for the integration of Eqs. (3.9) are 

(HU-° • 
and (3.11) 

— 1    = — u (r : 6 ) 
86A:=r4  86  svtA' 7 

A 

The derivatives 8r/86 are zero at the starting point of the path line because 
r=r is a prescribed initial value. 

The integration of Eq. (3.10) with the initial conditions (3.11) yields 
numerical values of the vectors 8u/86 and 8r/86 at any point along the path 
line.  Of particular interest is the accuracy of the flow at the end point, 
where the line intersects with r=rg.  The end point itself has an uncertainty 
in the t-direction only that can be estimated by the linearized law of vari- 
ance propagation, if the derivative 8t/88 is known.  We obtain a formula for 
8t/8e at the end point as follows.  For a given path line the time value t at 
r is a function of the type 
B 

" ^ + ^A'V (3.12) 

Its derivative with respect to 6 is 

86 

at 

89 
A   8T 

8r, 
fir\    + ^T_ /^r \ 
V8eyr=r.   8^ V86/r=i 

or, because of Eq. (3.11), 

86 ^VV^HfU (3.13) 
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The derivatives Spg/SE), that are needed for the estimation of the 
accuracy of p at the end point, can be calculated by a differentiation of Eq. 
(2.9): 

!!B 
96  " PB LpA3e 

9P. 

Y(PA+P0) ^ 
+ __1 ^B] 

Y(PB+P0) 86 J (3.14) 

where 

dp 
A   3 

36   36  sv A 
ps(rA;e) , (3.15) 

9p 
A   3 

36    36 's' A pJrA;e) (3.15) 

and 

3Pl 

36 — pf(rB.tB;e) + — e) +^ [Pf^B'S'^] 36 
(3.16) 

The flow at the end point of the path line, i.e., at its intersection 
with the line r=r  is defined by the four component vector 

H = (tB' PB' UB' V (3.17) 

The accuracy of the vector can be characterized by a variance-covariance matrix 
V of the components of H, that can be calculated from V by the formula 
H 8 

v  =9HV  /9H\ 
H   36  9 \dQJ (3.18) 

VJJ estimates the uncertainties of the flow field that are caused by measurement 
inaccuracies.  The elements of the Jacobian matrix 3H/3(|) in (3.18) are given 
by the solution of the equation system (3.11) and the formulas (3.13), (3.14), 
and (3.16), respectively. 

4.  DETEEMINATION OF SHOCK FUNCTIONS BY MODEL FITTING 

In order to compute the complete blast field by the method described in 
previous sections, one needs the pressure field function pf(r,t;e) within the 
region of interest.  We determine that function by a model fitting to pressure 
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observations, most of which consist of overpressure history recordings at di- 
verse stations.  The initial value of most overpressure history recordings is 
the incident shock overpressure.  From the viewpoint of data handling, it is 
advantageous to use these initial values separately from the rest of pressure 
data for a determination of the shock functions (3.1).  Then one can obtain a 
shock description that is accurate within a large distance range and use the 
same shock functions for different field fittings, as will be described in the 
next sections.  Also, in a separate shock fitting one can easily make use of 
incomplete records from which either the pressure observation or the shock 
arrival time observation is missing.  (Incomplete records do occur occasionally 
in blast field experiments.)  The use of all available data makes the shock 
functions less sensitive to individual observational inaccuracies.  Since the 
shock functions also can be approximated very accurately by simple expressions, 
a separate shock fitting is more practical than a concurrent determination of 
shock and field functions.  Details of the shock fitting algorithm will be 
given in this section.  The complementary pressure field fitting will be de- 
scribed in Sections 5 and 6. 

The medium into which the shock propagates is assumed to be an ideal gas, 
characterized by its molar mass M and the ratio y  of its specific heats.  We 
describe the initial state of the gas by its pressure p and temperature T . 
The corresponding initial density is 

Po   M //IN 
po = T--ir ^ 

o   g 

where R„ = 8.31434 J/(mole*K) is the universal gas constant.  The sound speed 
in the ambient gas is 

Co " VYPo/po ■ V ^ToRg/M   • (4-2) 

Let ps be the incident shock overpressure.  Then the shock velocity, 
particle velocity and density behind the shock are given in terms of p by the 
following set of formulas^. 

Shock velocity: 

D = c     M+I±i^1/2 
0
  \ 2Y  P0 

' ...1 P  /    o P M1/2 Y+l  s /1    2y    o  N 

po V1 + Y+1 Ps 

(4.3) 

Particle velocity behind the stock: 

u = 

2 

U po   U  Y Po  Y+1 " \" ' ■Y+1 p 

i!£.!a_i!..^D/1 + 2x - o (4.4) 

4Ibid.   p. 200 ff. 

19 



Density behind the shock: 

o \   2Y P0/\   2Y P0 

o Y-l \   Y+l Ps / \   Y-l Ps / 

The shock arrival time ts(r) at a distance r from the center of the ex- 
plosion and the shock velocity U are related by 

r. 
V^ ;: 4 + / urfy   • (4-6) 

For the numerical treatment of shock data we choose a rational function 
of r as an approximation of the shock overpressure function ps(r).  The rational 
function has three parameters and an asymptotic behavior for small and large 
r as predicted by blast theory.  The function is 

ps(r;a,b,c) = a/r + b/r2 + c/r3  . (4.7) 

The corresponding shock arrival time function ts(r) is obtained by substi- 
tuting the expression (4.7) into the shock velocity formula (4.3) and the re- 
sulting function into the integral (4.6).  The final result is 

t (r;a,b,c,d) = d H              dx (4.8) s 
/ Vl + T^a/x + b/x2 + c/x3) 

O  '      ZYP r^     o ;i    2YP 

The integral in Eq. (4.8) must be evaluated numerically, and the evaluation 
provides the shock arrival time ts at any given distance r.  (In the computer 
programs for shock fitting, the quadrature is done by a Romberg algorithm.) 
The lower limit r^ of the integral in Eq. (4.8) can be chosen arbitrarily, 
e.g., it may be set equal to the smallest observed distance.  Once r-i is fixed, 
then both model functions, Ps(r) and ts(r), are completely determined by the 
four components of the model parameter vector 6 = (a,b,c,d)T. 

Appropriate values of the four parameters were found by a least squares 
data fitting that uses the shock observations as data.  Each shock observation 
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is a three component vector (Ps, Ts, Rs), i.e., the observed shock overpressure, 
arrival time, and distance.  The model constraints for the observations are 
Eqs. (4.7) and (4.8).  They may be formulated as the equation system 

f^P ,T ,R ;e) = P - p (R ;e) = 0 , 
1  s  s  s      s   s  s       ' 

f0(P ,T ,R ;0) = T - t (R ;e) = 0 2  sss      s   ss 

(4.9) 

or in some other equivalent form consisting of two simultaneous equations for 
each three-component vector of observations.  Problems of this type can be 
solved numerically with the aid of the utility program COLSMU^, that was also 
used in the present task.  The program is sufficiently flexible to accommodate 
observation sets from which either the pressure or the time observation is 
missing.  (The constraint for such an incomplete set consists of only one of 
the two equations (4.9).) 

The first constraint in Eq. (4.9) was formulated for the model fitting 
task as follows: 

3    2 f..(p,t,r; a,b,c,d) =rp-ra-rb-c = 0 (4.10) 

The first order derivatives of f are 

3f /9(p,ttr) = (r3, 0, 3r2p - 2ar - b) (4.11) 

and 

9f1/9(a,b,c,d) = (-r , -r, -1. 0) (4.12) 

The non-zero second order derivatives of f1 are 

92f1/3r
2 = 6rp - 2a , 

32f1/(3r9p) = 3r2 , 

9 f1/(9r9a) = -2r , 

9^f1/(9r9b) = -1 

(4.13) 

Ibid. 
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The second constraint in Eq. (4.9) was used in the model fitting task in 
the following form 

f
9(p.t,r; a,b,c,d) = 7 dx 

JT      Vl + r-(a/x+b/x2+c/x3) 

+ (d-t)co = 0  ,       (4.14) 

where 

r = (y + 1)/(2YPO)    . (4.15) 

Let 

!(x)  = yjl + T   -(a/x + b/x2 + c/x3) (4.16) 

Then the first order derivatives of  the model function f    are 

3f2/a(p.t,r)  =   (0,  -c  .   1/Q(r)) (4.17) 

and 

3f, 

8(a,b,c,d) 

r r 

/dx [     f    dx r     / dx 

x  Q 
(4.18) 

The non-zero second order derivatives of f  are 

a2f2/9r
2 = | F •(a+2b/r+3c/r2)/(r2Q3(r)) , (4.19) 

32f2/Or9a) = - | r/(rQ3(r)) , 

8 f2/Or9b) - | r/(r2Q3(r)) , 

9 f2/(9r9c) = ^ r/(r3Q3(r)) , 

(4.20) 
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(4.21) 

82f2/3a
2 = | rydx/(x2Q5(x)) , 

92f2/Oa3b) = | r2ydx/(x3Q5(x)) , 

92f2/(3a3c) = | r
2ydx/(x4Q5(x)) , 

82f2/3b
2 = 32f2/(3a3c) , 

32f2/(3b3c) = | F^dx/CxVCx)) , 

32f2/3c
2 = | r2ydx/(x6Q5(x)) . 

The limits of the integrals in Eq. (4.21) are the same as in the constraint 
Eq. (4.14).  All Integrals are evaluated numerically by Romberg algorithms. 

5.  ANALYSIS OF PRESSURE HISTORIES 

The data for a determination of the pressure field function consist of a 
number of pressure histories observed at various locations within an area of 
interest.  Before determining a field function pf(r,t) that describes the pres- 
sure p as a function of r and t within the whole area, we find functions ph(t) 
that fit the observed individual pressure histories.  The purpose of the fitting 
of the individual histories is to obtain trends of the histories for increasing 
distance from the explosion.  These trends are needed to construct the pressure 
field function p (r,t), as will be described in the next section. 

The model function chosen to fit the individual overpressure histories is 

Ph(t; A,B,C) = (ps-C).exp| A(t-ts) + B(t-ts)
2l+ C , (5.1) 

where A, B, and C are model parameters, ps is the shock overpressure, and t 
is the shock arrival time.  The values of ps and ts depend on the location of 
the pressure gage, i.e., on the distance r.  They are calculated using the 
formulas (4.7) and (4.8). 

The data consist of two-component vectors (p,t) giving the overpressure p 
for various time values t.  The model fitting problem can be solved numerically 
by the utility routine COLSAC^.  The resulting parameters A, B, and C are valid 
only for the particular history used as input, and they have no general physi- 
cal significance. 

Ibid. 
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The constraint function for the model fitting of history data was formu- 
lated as follows 

f(p,t; A,B,C) = (Ps-C).exp (k'(,t-tg)  +  B-(t-ts)
2)+ C - p .        (5.2) 

Let 

E = exp (A-(t-ts) + B-(t-ts)
2) . (5.3) 

Then the first order derivatives of the constraint function (5.2) are 

3f/3(p,t) = f-1,  (A + 2B(tg-t)).(ps-C) • E) (5.4) 

and 

3f/3(A,B,C) = f(t-t )(p -C)E, (t-t )2(p -C)E, -E + l) . (5.5) 
\    s   s s    s / 

The non-zero second order derivatives are 

82f/3t2 = [(A + 2B(t-t ))2 + 2B](p -C)E , (5.6) 

32f/3A2 = (t-t )2(p -C)E , 
s    s 

32f/(9A3B) = (t-t )3(p -C)E , 
s    s 

92f/OA3C) = - (t-ts)E , )  (5.7) 

32f/9B2 = (t-t )4(p -C)E , 
s   s 

32f/OB3C) = - (t-t )2E , 
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92f/Ot9A) = [l + (A + 2B(t-t ))(t-t )](p -C)E , 

82f/(9t3B) = [2 + (A + 2B(t-t ))(t-t )](t-t )(p -C)E , 
\ S /    s      s   s (5.8) 

32f/Ot9C) = - fk +  2B(t-t ))E . 

After the values of the parameters A, B, and C are obtained for all his- 
tories within the area of interest, their trends as functions of the distance 
r are analyzed.  The analysis consists of finding for each parameter a power 
function of r as an approximation.  Let, for example, A^ be the value of the 
parameter A obtained from a history fitting at the distance r-^.  Then one can 

The determine a function Ar A that approximates the data sets (|Ai|, r^), 
function is determined by minimizing an object function W, that is defined as 
follows 

W = ^ (InlAj - ln|A| - n^n r^V (5.9) 

The solution of the minimization problem is given by the formulas 

B^A/^lnr^^^AAnrJ2, (5.10) 

A    = ^(A2ln I A. 1 ^(A.lnr .) 2-][}A2ln | A. |   Inr.^ujlnr.: 
*-    1 

'D,  (5.11) 

nA = ZAiX)(A2iln' Ai'lnr i) -J^&^Jjfa I Ai I (5.12) 

The sign of A is set equal to the sign of that parameter A. which corresponds 
to the smallest distance r.. 1 

1 

Trends of the parameters B and C are calculated by identical formulas that 
yield the values of B, nB, C, and nc,  respectively.   The exponents nA, nB, 
and nc, are used for the construction of the pressure field_function pf(r,t), 
as described in the next section.  The values of A, B, and C are used as initial 
approximations of certain parameters of that function. 
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Numerical experiments with different data sets have shown that the expon- 
ents n^, ng, and n^ need not be determined very accurately.  Equally good 
approximations of pressure data can be obtained using field functions with 
exponents that vary within relatively large ranges.  The exponents have no 
physical significance, because the parameters A^, B^, and C^ depend, not only 
on the distance r^, but also on various other factors such as the duration of 
the observed history, its noise level, the number and distribution of the ob- 
servations, etc. 

6.  DETERMINATION OF PRESSURE FIELD FUNCTIONS BY MODEL FITTING 

A pressure field function describes the overpressure in the blast field 
as a function of the distance r and the time t.  The function is obtained by 
data fitting of pressure observations and it is, therefore, a valid approximation 
to the actual pressure field only within the limited region from which the data 
are selected.  In an analysis of a given event, one may use several pressure 
field functions, each representing the pressure in a different region. 

In the present problem, we have used the following five parameter model 
function as a representation of the overpressure field: 

pf(r,t;A1,A2,B1,B2,C1) = [p^-CCr;^)] exp (Q(r^^A^B^B^)-K^r^) , 

(6.1) 

where 

Q = [t-t^r^CA^A^.rX^-t^r^^B^r).^ (6.2) 

and 

C = C^r1^  . (6.3) 

The functions p (r) and t (r) are the shock overpressure and shock arrival 
time functions, respectively.  Both are determined by shock fitting (Section 4). 
The exponents n^, ng, and n^ are assumed to be known from an analysis of the 
trends of individual history fittings, as described in Section 5.  The remaining 
five parameters, A^, A2, B^, B2, and C-^ are determined by model fitting to over- 
pressure observations within regions of interest. 

The data for the determination of the model parameters are the observed 
overpressure, time, and distance, i.e., the data are three component vectors 
(p,t,r).  The constraint function is used for the data fitting in the following 
formulation: 
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f(p,t,r;A1,A2,B1,B2,C1) = (ps-C)e
Q + C-p  , (6.4) 

where Q and C are defined by Eqs. (6.2) and (6.3), respectively.  The constraint 
equations are scalar and, therefore, the model fitting problem can be solved 
numerically by the utility routine COLSAC^ for standard least squares problems. 

The first and second order derivatives of the constraint function f can 
be conveniently expressed by the following formalism.  Let x and y be any two 
of the eight arguments of f, and let derivatives with respect to x and y be 
denoted by corresponding subscripts.  Then 

=eQ[(ps-C) Qx+ (Ps-C)x]- (p-C)x  , (6.5) f = 
x 

and 

f  = eQr(p -C)(Q +Q Q )+(p -C) Q +(p -C) Q +(p -C)  Xp-C)   . (6.6) 
xy     L rs   xxy xxxy  rs  x^y 's  yxx rs  xyJ  r  xy 

The derivatives of Q, p (r), p and C(r;C1) can be easily computed. 

The pressure field fitting provides an optimal set of the field parameters 
A-^, A2, B-^, B2, and C-^, and their estimated variances and covariances.  The 
overpressure p^, computed with the formula (6.1), depends, however, also on 
the four shock parameters a, b, c, and d through the shock functions ps(r) and 
ts(r).  Therefore, when one estimates the accuracy of p^, one has to take into 
account the variances and covariances of all nine parameters, namely, the four 
shock parameters and the five field parameters.  Let 9 be the vector of all 
nine parameters and let VQ be the corresponding variance-covariance matrix of 
the components of 6.  Then an estimate of the variance of p is the square of 
Eq. (3.8), viz., 

T 
3pf    3pf 

V
P
=^VG a?-;   • (6-7) 

The matrix VQ was composed as follows from the estimated variance-covariance 
matrix Vs^oc^ of the shock parameters, and from the corresponding matrix V 
of the field parameters: 

V^l^^   0      1 • (6.8) 

0      Vfield 

In the matrix (6.8), correlations between shock parameters and field parameters 
have been neglected.  In reality correlations between both parameter groups 

Ibid. 
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exist, because the shock fitting results were used to obtain the field param- 
eters.  The neglect of the correlations most likely results in an overestimate 
of the pressure variance. 

The reason for the neglect of the correlations is programming expediency. 
The correlation could be obtained, e.g., by a joint adjustment of all data 
(shock data and pressure history data) using the utility program COLSMU5.  How- 
ever, this would require an unacceptable investment in programming because of 
the heterogeneity of the data and constraints.  Also, algorithmic difficulties 
can be expected for this problem, because of the nonlinearities involved, re- 
quiring additional effort for their resolution. 

7.  A THEORETICAL TEST EXAMPLE 

The blast field computation method was tested on two examples:  on a 
theoretical strong shock flow field and on real measurements.  The former test 
is described in this section. 

The theoretical flow field was obtained by using the computer programs 
described in Reference 6.  The programs are based on self-similar solutions of 
flow equations7»8 that approximate the flow of strong blasts.  The theory of 
the approximation is limited to blasts in ideal gas that are generated by point 
explosions, and for which the ambient pressure is negligible compared to the 
incident shock pressure.  The latter assumption makes the numerical results of 
the theory ambiguous, because the theoretically computed pressure can be inter- 
preted either as overpressure or as pressure.  In our test example, we chose 
the latter interpretation.  Consequently, the overpressure "observations" for 
the example were obtained by subtracting the ambient pressure from the theoreti- 
cal pressure values which were supplied by the strong blast computer programs. 

The explosion in the test example was assumed to be generated by the 
release of 209.2'lO12 J of energy (equivalent to a 50 kton TNT explosion). 
Table 1 gives the ambient ideal gas specification and the assumed locations 
and durations of overpressure observations.  The example was chosen such that 
the strong blast assumption was satisfied reasonably well.  (The pressure ratio 
ranges from 190 at the beginning of the 120 m history reading to 60 at the 
beginning of the 170 m history.)  The locations of the history readings in the 
r,t-plane are shown in Figure 3 and the assumed data accuracies are listed in 
Table 2. 

Ihid. 

Aivars CelmiyS,   "Strong Blast Wave Computer Programs," USA ARRADCOM/Ballistic 
Research Laboratory Technical Report ARBRL-TR-02264,  September 1980.  (AD #A092346) 

7 
L.I.  Sedov,   "Similarity and Dimensional Methods in Mechanics," Academic Press, 
NY,   1959. 

Q 

0.  Laporte and T.S.   Chang,   "Curved Characteristics Behind Strong Blast Waves," 
Physics of Fluids,   IS,  pp.   502-504,   1972. 
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TABLE 1.  PARAMETERS OF THE THEORETICAL TEST EXAMPLE 

Explosion 

E = 209.2 TJ 

Ambient Gas 

Molar mass M = 28.96 g/mole 

Specific heat ratio y  = 1.40 

Temperature T = 293 K 

Pressure p = 101.325 kPa 
o 

Range of Shock Observations 

90-170 m 

History Observations 

Distances Times 

120 m 11.0 - 15.0 ms 

130 m 13.4 - 17.9 ms 

140 m 16.2 - 21.5 ms 

150 m 19.2 - 27.2 ms 

160 m 22.6 - 29.6 ms 

170 m 26.3 - 32.0 ms 

TABLE 2.  ASSUMED ACCURACY OF THE THEORETICAL DATA 

Time:  + 0.1 ms 

Pressure: + 5% 

Distance:  + 0.1 m 

Elevation:  + 0.01 m 
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Shock arrival times and pressures were assumed to be observed between 
90 m and 170 m at 2.67 m intervals.  In order to test the program's capability 
to handle incomplete data sets, it was assumed that from some sets either the 
pressure or the time observation was missing.  Figures 4, 5, and 6 show the 
shock data and the fitting curves with their three standard error confidence 
limits.  The least squares values of the shock fitting parameters are given in 
Table 3. 

The figures show that the confidence intervals for the fitted curves become 
very large outside the range of observations.  The rapid increase is caused by 
the redundancy of the parameters a and b, which is manifested also by their 
large standard errors and the close correlations between the three parameters 
a, b, and c.  (See Table 3.)  The reason for the redundancy is the fact that 
the theoretical shock pressure formula for the strong shock is p = c/r^.  One 
can expect that the increase of the confidence intervals will be less pronounced 
in cases where the observations are not restricted to either the strong shock 
regime or to the weak shock regime (pssa/r). 

The next step towards the flow field determination is a fitting of indi- 
vidual pressure histories, as described in Section 5.  Figures 7 and 8 show two 
samples of the results of the fitting. 

Each history fitting provides values of three parameters, A, B, and C, 
which determine the model function (5.1).  Figure 9 shows log-log plots of the 
three parameters versus the distances at which the history recordings were 
made.  The field fitting program calculated trends of the parameters by fitting 
a power of the distance to the curves shown in Figure 9.  The exponents were 
calculated using Eq. (5.12) and the following results were obtained: 

nA = -2.3 , 

nB = -4.5 , 

nc = -2.9 . 

The corresponding five parameter overpressure field function is 

= (ps(r) - C1/r
2-9) eQ + C^r2'9 (7.1) Pf 

with 

Q = (t-ts(r))(A1+A2r)/r
2'3 + (t-t^r))2 (B^r)/r4'5 , (7.2) 

where Ps(r) and ts(r) are the shock overpressure and arrival time, respectively. 
The numerical results of the pressure field fitting are listed in Table 4.  The 
large parameter error estimates and close correlations between parameters again 
indicate that probably some of the parameters are redundant for this example. 

31 / i 



10 8 

UJ 
DC 

iio7 

UJ 
en 

10* 

F 

_ 

10 

T 1—i—n 

J I I L.   I   I   L I 

10^ 

DISTRNCE 

111(1 

i   i  i i u 

10' 

BLRST  FIELD  BY  SBL-ROUTINES 

CONFIDENCE LIMITS FOR 3,0 STflNCflRD ERRORS 
WITHOUT THE EftCTOR ER2 =  ,017 
RDJUSTED ARE OBSERVATIONS OF 
PRESSURE. DISTANCE AND TIKE 

! 

Figure 4.  Shock Overpressure vs. Distance in Theoretical Test Example 

0 Complete observation set 
X Set with missing time observation 

Distance is expressed in meters and pressure is expressed in pascals. 

32 



10 8 

UJ 

iio7 

UJ 

I 1—i—r-rT 

- 

L 

10* 
10 -3 

6  1 1 1 I I I I I 

TIME 

BLRST  FIELD  BY   SBL-ROUTINES 

CONEIDEhJCE LIMITS FOR     3.0  STANDARD  ERRORS 
WITHOUT  THE EftCTOR ER2 =     ,017 
RD JUS TED ftRE  OBSERVPOTONS OF 
PRESSURE.DISTftNCE  ftND  TIME 

Figure 5.     Shock   Overpressure vs.   Time  in Theoretical Test Example 

Time is expressed in seconds and pressure is expressed in pascals. 

33 



•   icr 

u u z: 
CE 

SlO2 
»—t 

Q 

101 

10 -3 

T 1—i—r T i in 

J I    I I   I I 1 I I 

icr2 

TIME 

T 1 1    I   t   I  I 

J I I I    I   I   I. I 

10 -I 

BLAST  FIELD  BY  SBL-ROUTINES 

CONFIDENCE LI KITS  FOR     3.0 STRNDfiRD  ERRORS 
WITHOUT  THE EftCTOR ERZ =     .017 
ADJUSTED P1RE  OBSERVRJIONS  OF 
PRESSURE.DTSTfiNCE AND  TIME 

Figure  6.     Shock Distance vs.   Time  in Theoretical Test  Example 

■    Complete observation set 
X    Set with missing pressure observation 

Time  is  expressed  in seconds  and distance  is  expressed  in meters, 

34 



TABLE 3.  SHOCK PARAMETERS OF THEORETICAL EXAMPLE 

The model is given by Eqs. (4.7) and (4.8).  The range of 
fitting is 90 m through 170 m. 

Parameters and Standard Errors 

a = (-26.3 + 659.6)-10 Pa-m 

b = ( 1.13 + 171.5)-lO9 Pa«m2 

c = (32.81 + 10.94)-lO12 Pa-m3 

d = (5.380 + 0.044) ms = arrival at 90.0 m 

The standard error of weight one, m = 0.01674, is not 
included in the standard errors of the parameters. 

Correlation Matrix of the Parameters 

1.0 

-0.99682773 

0.98588603 

0.04936359 

-0.99682773 

1.0 

-0.99598531 

-0.08560247 

0.98588603 

-0.99598531 

1.0 

0.13819642 

0.04936359 

-0.08560247 

0.13819642 

1.0 

NOTE:  The standard error of weight one, m0, depends on the scatter of data as 
well as on systematic differences between the model and measurement.  For this 
example the data scatter is zero, because theoretical flow values were used 
as data.  Therefore, the listed m0 characterizes only the systematic differ- 
ence between the pressure model and the strong blast pressure.  Because this 
difference is small, the value of m0 is also small.  The listed standard errors 
of the parameters are estimates of the parameter inaccuracies that would be 
caused by data scatter (standard errors) as specified in Table 2. 
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around  each observed point.) 

Time  is  expressed  in seconds  and pressure  is  expressed   in pascals, 
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A test fitting, for which A2=B2=0 was assumed, produced indeed an almost as 
good approximation to the overpressure field as the function defined by Eqs. 
(7.1) and (7.2).  For subsequent calculations, however, the full parameter set 
of Table 4 was used, because all five parameters are likely to be needed for 
real life observations. 

Finally, the results of the field fitting and shock fitting were used to 
compute flow field histories at 150 m and 160 m from the explosion. 

TABLE 4.  OVERPRESSURE FIELD PARAMETERS OF THE THEORETICAL TEST EXAMPLE 

The model is given by Eq. (7.1) 
The total number of observed (p,t,r)-sets is 92 

Parameters and Standard Errors 

A- = (-3.706 + 0.918)-lO7 m2'3/s 

A2 = (2.210 + 6.111)-lO
4 m1'3^ 

B1 = (1.027 + 1.231)-lO
14 m4,5/s 

B2 = (-2.384 + 8.292)-lO
11 m3,5/s 

C1 = (3.840 + 0.301)-lO
12 m2*9'Pa 

Standard error of weight one, m0 = 0.1650, is not 
included in the standard errors of the parameters, 
(See NOTE in Table 3) 

Correlation Matrix of the Parameters 

1.0 

-0.98719841 

-0.93452111 

0.92814584 

-0.09747745 

-0.98719841 

1.0 

0.94741921 

-0.94678284 

-0.05480633 

-0.93452111 

0.94741921 

1.0 

-0.99916227 

-0.07989523 

0.92814584 

-0.94678284 

-0.99916227 

1.0 

0.11085262 

-0.09747745 

-0.05480633 

-0.07989523 

0.11085262 

1.0 
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The flow histories of 150 m are shown in Figures 10 through 14.  The length 
of the computable history is limited to the end time of about 22 ms, at which 
time the leftmost particle path reaches the distance 150 m (see Figure 3).  If 
the field history at 150 m is needed beyond 22 ms, then additional observations 
are necessary at distances closer than 110 m to the explosion.  The pressure 
history, Figure 10, shows close agreement between fitted values and theoretical 
values.  The magnitude of the estimated variances of the pressure is of the 
same order (5 percent) as the assumed accuracy of pressure observations, indi- 
cating that excessive error amplification does not take place. 

The particle velocity history is shown in Figure 11.  The figure also 
contains, as a dashed line, the results of the control calculation by the 
quadrature (2.15).  The difference between both velocity curves is of the same 
order as the estimated standard error of the velocity.  Therefore, one can con- 
clude from the test that the pressure field model is consistent with the assumed 
accuracy of the data.  Also shown in the figure is the theoretical particle 
velocity as predicted by the strong blast theory.  The deviation between the 
calculated velocity and the theoretical velocity is always in the same direc- 
tion, indicating a systematic cause for the difference.  A systematic reason 
is indeed present, because for the strong blast theory one sets in all formulas 
the ratio p0/ps equal to zero, whereas, the present calculation takes the ratio 
properly into account.  The difference in the result can be easily checked at 
the initial point of the velocity history.  One obtains the value of the veloc- 
ity as predicted by strong blast theory by using Eqs. (4.3) and (4.4) with 
Po/Ps = 0> whereas the full formulas produce the value shown as "calculated 
result."  It is apparent from this comparison that a shock pressure ratio of 
about 0.01 cannot be neglected for the calculation of details of the blast 
field. 

Figure 12 shows the density history at 150 m.  The calculation of the 
density makes use of both the pressure and velocity calculation results. 
Nevertheless, the estimated variance of the result is moderate, indicating that 
the computing method is numerically stable.  A systematic deviation between the 
calculated density and the strong blast density is again present and caused by 
the neglect of the ratio p0/ps in the strong blast theory.  The effect of the 
ratio on Eq. (4.15) is stronger for lower shock pressures and, therefore, the 
difference is larger at the beginning of the density history, where the parti- 
cles have been subjected to a less strong shock. 

The dynamic pressure history at 150 m is shown in Figure 13.  The dynamic 
pressure is computed from the velocity and density and, therefore, one obtains 
the same systematic deviation as discussed above between the calculated result 
and the strong blast theory.  More interesting is the estimated variance of 
the calculated dynamic pressure.  It is of the order of five percent, i.e., of 
the same order as the assumed accuracy of the pressure data.  This result is 
very encouraging for the application of the method to field experiments, be- 
cause it shows that the computation method is sufficiently stable to produce 
accurate dynamic pressure histories from overpressure observations with typi- 
cal uncertainties. 

Figures 14 through 17 show the calculated field histories at 160 m distance 
from the explosion.  The results are similar to the corresponding results for 
150 m distance, and the same comments apply as before to the systematic differ- 
ences and estimated variances of the calculated histories. 
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BLAST FIELD BY  SBL-R3UTINES 
DISTANCE FROM THE EXPLflSISN  150.00 

ERROR LIMITS CORRESPOND TO 2-00 STANDARD ERRORS 

190   19H 198   202   206 
TIME 

210   214   218x10-^ 

Figure 10.  Pressure History at 150 m in Theoretical Test Example 

Field fitting results with confidence limits 

Strong blast theory 

Time is expresses in seconds and pressure is expressed in pascals. 
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BLRST FIELD BY SBL-ROUTINES 

DISTWCE FROM THE EXPLOSION  150.00 

ERROR LIMITS CORRESPOND TO  2.00 STRNDfiRD ERRORS 

a 
o 

> 

Figure 11.  Particle Velocity History at 150 m in Theoretical 
Test Example 

Calculated result with confidence limits 

,, -' Control calculation 

_i^-H  Strong blast theory 

Time is expressed in seconds and velocity is expressed in m/s. 
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BLAST FIELD BY SBL-ROUTINES 

DISTRNCE FROM THE EXPLOSION  150.00 

ERROR LIMITS CORRESPOND TO 2.00 SfflNDRRO ERRORS 

>■ 

h- 

cn 
2 
UJ 
Q 

190   19H   198   202   206 
TIME 

210   214   218*10-'* 

Figure 12.  Density History at 150 m in Theoretical Test Example 

Calculated result with confidence limits 

Li-H-H" Strong blast theory 

Time is expressed in seconds and density is expressed in kg/m3. 
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BLAST FIELD BY 5BL-R0UTINES 
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Figure 13.  Dynamic Pressure History at 150 m in Theoretical Test Example 

Calculated result with confidence limits 

i^-f-f- Strong blast theory 

Time is expressed in seconds and dynamic pressure is expressed in pascals. 
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BLAST FIELD BY SBL-ROUTINES 

DISTANCE FROM THE  EXPLOSION     160,00 

ERROR LIMITS CORRESPOND  TO    2,00 STANDARD ERRORS 
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CO 
UJ 

22 23 2H 25 
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26 27    *10^ 

Figure  14.     Overpressure History at  160 m in Theoretical Test  Example 

Field  fitting with confidence limits 

liLj-4-'f'   Strong blast  theory 

Time  is expressed  in seconds  and pressure is expressed  in pascals. 
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BLAST  FIELD BY  SBL-ROUTINES 

DISTANCE  FROM  THE  EXPLOSION     160.00 

ERROR  LIMITS CORRESPOND  TO     2.00 STfiNDflRD ERRORS 
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Figure  15.     Particle Velocity History at 160  m in Theoretical Test  Example 

Calculated  result with confidence limits 

_ — — ■"    Control calculation 

,rjr^-H'    Strong blast  theory 

Time  is expressed  in  seconds  and velocity  is  expressed  in m/s. 
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Figure 16.     Density History at  160 m In Theoretical Test Example 

Calculated result with confidence limit 

LL^-t+H"   Strong blast  theory 

o 
Time is expressed in seconds and density is expressed in kg/m . 
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BLAST  FIELD BY  SBL-ROUTINES 

DISTANCE FROM  THE EXPLOSION     160.00 

ERROR LIMITS CORRESPOND  TO    2.00 STANDARD ERRORS 

fLO e 

22 23 2H 25 
TIME 

26 27    «10^ 

Figure 17.     Dynamic Pressure History at  160 m in Theoretical 
Test Example 

Calculated result with confidence limit 

i L-f-f-t-^     Strong blast  theory 

Time  is expressed  in seconds and dynamic pressure  is expressed  in pascals, 
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8.  APPLICATION TO DATA FROM MISERS BLUFF II 

In order to test the applicability of the flow field calculation method 
and corresponding computer programs to real problems, we used the computer pro- 
grams on data from the event MISERS BLUFF 11^. 

For the shock fitting, we used data consisting of 18 shock arrival times 
and overpressure measurements at ranges between 89.7 m and 715 m.  The shock 
data and data describing the ambient conditions are listed in Table 5.  Table 6 
gives the numerical results of the shock fitting. Comparing the results with 
corresponding results in Table 3 for the theoretical test example, one notices 
that now there are no indications of a redundancy of parameters.  Their esti- 
mated standard errors are relatively small and correlations between them are 
less strong than in the theoretical example.  The standard error of weight one 
has a value close to one, indicating that the estimated standard errors of the 
observations are consistent with the shock model and with the scatter of the 
data. 

Figures 18, 19, and 20 show the shock fitting results graphically.  The 
increase of the estimated confidence interval outside the fitting region is 
much more gradual than in the theoretical test example (Figures 4, 5, and 6). 
This behavior of the confidence limits can be attributed to the fact that the 
model contains no redundant parameters for the treatment of the given data set. 

In order to test and illustrate the flow field calculation capability of 
the computer program we assumed that the stations of interest were located at 
120 m and 150 m from the explosion; i.e., we assumed that the goal is to com- 
pute flow histories at these distances. Then the first step is to establish 
pressure field functions in the vicinity of the stations of interest. Available 
were overpressure history data at eight stations between 89.7 m and 211 m, as 
shown in Figure 21. 

The overpressure history data and fitting curves for the individual his- 
tories are shown in Figures 22 through 29-  For this data fitting, as well as 
for the subsequent pressure field fitting, we assumed the following standard 
errors of the data: 

Pressure:  5% of the initial overpressure 

Time:  1 ms 

Range and Elevation:  1 m 

g 
G.  Teel,   "Free Field Airblast Definition," Proceedings of the MISEES BLUFF 
Phase II Results Symposium,   27-29 March 1979,  Defence Nuclear Agency Report 
FOR 7013-1,   1979. 

49 



TABLE 5.  AMBIENT AND SHOCK DATA OF MISERS BLUFF II 

Ambient Conditions 

Molar mass M = 28.94 g/mole 

Specific heat ratio  y = 1.4 

Temperature T = 312.05 K 

Pressure Po = 

Charge 

■■  92. 92 kPa 

Released Energy     418. 4 GJ 

Elevation 0. 0 m 

Shock Observations 

Range 
(m) 

Elevation 
(m) 

Overpressure 
(kPa) 

Time 
(ms) 

89.7 0.0 478 56.6+1 

96.0 0.0 340 64.8+1 

103.0 0.0 294 75.0+1 

114 0.0 198 92.4+2 

114 0.0 204 95.7+2 

120.3 0.0 149 104+2 

150.3 0.0 83.1 164+2 

174 0.0 57.3 217+2 

190 0.0 49.2 254+2 

206 1.22 42.1 292+2 

206 2.44 41.1 293+2 

211 0.0 38.9 304+3 

264 0.0 25.8 436+3 

309 1.22 19.8 551+3 

344 0.0 19.4 643+3 

388 0.0 14.6 760+4 

532 0.0 9.78 1150+5 

715 0.0 6.59 1660+10 

The range and elevation accuracies were assumed to be 1.0 m. 
The overpressure accuracy was assumed to be 5 percent. 
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TABLE 6.  SHOCK PARAMETERS OF MISERS BLUFF II 

The model is given by Eqs. (4.7) and (4.8) 
The data are listed in Table 5. 

Parameters and Standard Errors 

a = (6.093 + 0.435)-10 Pa' m 

b = (-1.134 + 0.217)-lO9 Pa-m2 

c = (3.343 + 0.235)-lO11 Pa-m3 

d = 57.934 + 0.766 ms = arrival time at 89.7 m 

The standard error of weight one, m0 = 1.156, 
is included in the quoted standard errors. 

Correlation Matrix of the Parameters 

1.0 

-0.93948052 

0.83556376 

0.01536038 

-0.93948052 

1.0 

-0.96070389 

-0.03520487 

0.83556376 

-0.96070389 

1.0 

0.09994155 

0.01536038 

-0.03520487 

0.09994155 

1.0 

NOTE; In this example, the standard error of weight one. m, O' is close to one. 
indicating that the data scatter is consistent with the data standard error 
as specified by input.  However, because m0 is larger than one, the inaccuracies 
might have been slightly underestimated.  We have multiplied the calculated 
standard errors of the parameters by m in order to account for the possible 
underestimate. 0 
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Figure  18.     Shock Overpressure Versus Distance in MISERS BLUFF II 

Distance  is  expressed  in meters  and pressure  is  expressed  in pascals, 
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Figure  19.      Shock Overpressure Versus Time  in MISERS BLUFF TT 

Time is expressed  in seconds and pressure  is expressed  in pascals. 
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Figure  20.     Shock Distance Versus Time  in MISERS BLUFF  II 

Time  is  expressed  in  seconds  and distance  is  expressed   in meters. 
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Figure 21.  Locations of History Observations in MISERS BLUFF II 

Distances are expressed in meters and times are expressed in seconds, 
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Figure 22.  Fitting of Pressure at 89.7 m in MISERS BLUFF II 

The data accuracy is indicated by a two-standard error 
ellipse around each observed point. 

Time is expressed in seconds and pressure is expressed in pascals. 
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Figure 23.  Fitting of Pressure at 103 m in MISERS BLUFF II 

The data accuracy is indicated by a two-standard error 
ellipse around each observed point. 

Time is expressed in seconds and pressure is expressed in pascals. 
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Figure 24,  Fitting of Pressure at 114 m in MISERS BLUFF II 

The data accuracy is indicated by a two-standard error 
ellipse around each observed point. 

Time is expressed in seconds and pressure is expressed in pascals 
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Figure 25.  Fitting of Pressure at 120.3 m in MISERS BLUFF II 

The data accuracy is indicated by a two-standard error 
ellipse around each observed point. 

Time is expressed in seconds and pressure is expressed in pascals 
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Figure 26.  Fitting of Pressure at 150.3 m in MISERS BLUFF II 

The data accuracy is indicated by a two-standard error 
ellipse around each observed point. 

Time is expressed in seconds and pressure is expressed in pascals. 

60 



MIS£RS BLUFF [I 
174 PS 

FITTED CURVE WITH 2.0 STRSDRRD ERRORS 

KlO n 

5.S 

4.5 

r) 
in 
to u 
£ 2-5 

1.5 

Figure 27.  Fitting of Pressure at 174 m in MISERS BLUFF II 

The data accuracy is indicated by a two-standard error 
ellipse around each observed point. 

Time is expressed in seconds and pressure is expressed in pascals. 
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Figure 28.  Fitting of Pressure at 206 m in MISERS BLUFF II 

The data accuracy is indicated by a two-standard error 
ellipse around each observed point. 

Time is expressed in seconds and pressure is expressed in pascals. 
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Figure 29.  Fitting of Pressure at 211 m in MISERS BLUFF II 

The data accuracy is indicated by a two-standard error 
ellipse around each observed point. 

Time is expressed in seconds and pressure is expressed in pascals. 
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Comparing the overpressure histories, one notices that the last two histories, 
Figures 28 and 29, have shapes that are different from the other curves. This 
observation is confirmed by the plots of the individual history fitting param- 
eters versus distance. Figure 30. The parameters corresponding to the last 
two histories do not follow the trends of the other parameters. Based on this 
observation, one should check the experimental setup and see if any causes for 
the different behavior of the last two histories can be detected that may ren- 
der the observations less reliable. For the present example, we assumed that 
all data are valid and equally accurate. 

The next step in computing the flow history at, say, 120 m is to choose a 
range of observations for the overpressure field fitting.  The range should be 
sufficiently large to enable one to calculate the flow and the test velocity 
for the time interval of interest.  On the other hand, the range should not be 
too large, because systematic differences between the model and the solution 
of the governing equations may become excessive in a large fitting region.  We 
illustrate the choice of a fitting region by using two regions for the 120 m 
history.  One region includes all histories between 89.7 m and 174 m, and the 
other region includes histories between 103 m and 174 m.  (Figure 21 shows that 
the 174 m history data must be included, at least partially, in order to com- 
pute the test velocity for the total duration of the 120 m observation.) 

Results based on field fitting in the first region (89.7 m - 174 m) are 
shown in Figures 31 through 34.  The dynamic pressure, which is an important 
quantity for applications, has in Figure 34 very reasonable estimated confi- 
dence limits.  However, the test velocity in Figure 32 deviates from the particle 
path velocity by two standard errors throughout the history.  Because the test 
velocity is computed using data at distances beyond 120 m, the difference in- 
dicates a discrepancy between data below 120 m and beyond 120 m, respectively. 

This discrepancy indication disappears if one uses field data only between 
103 m and 174 m; i.e., if the history at 89.7 m is not used.  The results of 
such a computation are shown in Figures 35 through 38.  The velocity plot in 
Figure 36 now shows good agreement between the original and the test velocities. 
Comparing Figure 36 with Figure 32, one sees that the test velocity in both 
figures is practically equal, whereas the original velocity, which depends more 
directly on data below 120 m, has changed by the exclusion of the 89.7 m his- 
tory.  Short of other information about the experiment, one should in such a 
case use only field data between 103 m and 174 m to calculate histories at 
120 m, because then the results are self consistent.  We notice, in passing, 
that the absolute differences between the dynamic pressures in both calculated 
cases are small, although they are of the order of two standard errors. 

For the computation of the flow histories at 150 m range, again two dif- 
ferent pressure field functions were used.  One function was obtained by fitting 
overpressure data from ranges between 120.3 m and 206 m.  This corresponds to 
the minimum coverage of the pressure field that is necessary for the computation 
of the histories at 105 m for the complete duration of the pressure observations. 
The computed histories are shown in Figures 39 through 42. 

Another pressure function was obtained by adding two more observed over- 
pressure histories to the data base, one at each end of the range covered. 
Now, the overpressure field function was fitted to data between 114 m and 211 m. 
The corresponding histories at 150 m were found to be identical within the 
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MISERS BLUFF 11/  C89,7-17M. M) 

DISTRNCE FROM THE EXPLOSION  120.00 

ERROR LIMITS CORRESPOND TO 2.00 STRND9RD ERRORS 
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Figure 31 .  Pressure History at 120 m in MISERS BLUFF 11/(89.7-174 m) 

Time is expressed in seconds and pressure is expressed in pascals. 
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Figure 32 .  Velocity History at 120 m in MISERS BLUFF 11/(89.7-174 m) 

^^^^^  Velocity and confidence limits computed along particle paths 

^-  — Control calculation 

Time is expressed in seconds and velocity is expressed in m/s. 
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MISERS BLUFF 11/ C 89-7-1.74. M) 

DISTRNCE FROM THE EXPLOSION  120.00 

ERROR LIMITS CORRESPOND TO 2-00 STfiNORRD ERRORS 
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Figure 33.  Density History at 120 m in MISERS BLUFF 11/(89.7-174 m) 

Time is expressed in seconds and density is expressed in kg/m3. 
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Figure 34'.  Dynamic Pressure History at 120 m in MISERS BLUFF 11/(89.7-174 m) 

Time is expressed in seconds and dynamic pressure is expressed in pascals, 
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mSERS BLUFF 11/  C 103.-174. M3 

DISTRWCE FROM TH£ EXPLOSION  120.00 

ERROR LIMITS CORRESPOND TO 2.00 STRNQPRD ERRORS 
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Figure 35 .  Pressure History at 120 m in MISERS BLUFF 11/(103-174 m) 

Time is expressed in seconds and pressure is expressed in pascals. 
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MISERS BLUFF 11/   (103.-174. M) 
DISTRNCE FROM THE EXPLOSION  120-00 

ERROR LIMITS CORRESPOND TO 2.00 STRNDRRD ERROSS 
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Figure 36.  Velocity History at 120 m in MISERS BLUFF 11/(103-174 m) 

Velocity and confidence limits computed along particle path 

^ —■ Control calculation 

Time is expressed in seconds and velocity is expressed in m/s. 
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MISERS BLUFF 11/  C103.-174. MJ 
DISTANCE FROM THE EXPLOSION  120.00 

ERROR LIMITS CORRESPOND TO 2-00 STANDARD ERRORS 
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Figure37'.  Density History at 120 m in MISERS BLUFF 11/(103-174 m) 

Time is expressed in seconds and density is expressed in kg/m • 
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DISTRNCE FROM   THE EXPLOSION     120.00 

ERROR  LIMITS CORRESPOND  TO    2.00 STRNDRRD ERROgS 
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Figure 3S.     Dynamic Pressure History at  120 m in MISERS  BLUFF   11/(103-174 m) 

Time  is expressed  in seconds and dynamic pressure  is expressed  in pascals. 
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MISERS BLUFF 11/   C120-3-206. M 
DISTRNCE FROM THE EXPLOSION  150.00 

ERROR LIMITS CORRESPOND TO 2.00 STRNDRRD ERRORS 
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Figure   39.     Pressure History at  150 m in MISERS  BLUFF  11/(120.3-206 m) 

Time  is  expressed  in  seconds  and pressure  is  expressed  in pascals, 
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MISERS BLUFF 11/ C120.3-206. M 

DISTANCE FROM THE EXPLOSION  150,00 

ERROR  LIMITS  CORRESPOND  TO     2.00 STRNDf^D ERRORS 
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Figure 40.  Velocity History at 150 m in MISERS BLUFF 11/(120.3-206 m) 

Velocity and confidence limits computed along particle paths 

__ _ ■—"  Control calculation 

Time is expressed in seconds and velocity is expressed in m/s. 
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MISERS BLUFF 11/ C120.3-206. M 
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Figure 41.  Density History at 150 m in MISERS BLUFF 11/(120.3-206 m) 

Time is expressed in seconds and density is expressed in kg/ m 

76 



MISERS BLUFF   11/  (120.3-206.  M 
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Figure   42.     Dynamic Pressure History at  150 m in MISERS BLUFF  11/(120.3-206 m) 

Time  is  expressed  in seconds and dynamic pressure is expressed  in pascals, 
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plotting accuracy to those of the previous calculation,  A closer inspection 
of the numerical output indicates that the variance estimates are slightly 
reduced by the addition of the two observed histories.  However, the difference 
between streamline velocity and test velocity is increased.  The latter obser- 
vation confirms the experience with history calculations at 120 m, where it was 
also found that best results are obtained when the range for the fitting of the 
pressure field function is as small as practically possible. 

Of some concern in the present example is the large difference between 
the original and test velocity, which is of the order of two standard errors. 
This difference may be attributed to disturbances in the flow field at ranges 
beyond 150 m, that can violate some of the basic assumptions for the flow model, 
e.g., the spherical symmetry.  In a practical application, one would reexamine 
the data and then decide, depending on the purpose of the history calculations, 
whether the proposed analysis is adequate. 

The example makes it clear that one needs a good definition of the pres- 
sure field around the reference ground range where the flow history is of 
interest.  The range interval in which additional pressure histories should be 
recorded depends on the size of the explosion, on the reference range, and on 
the anticipated duration of the history observation.  For a planned experiment, 
one may assume that typically the duration of interest will approximate the 
duration of positive overpressure.  Estimates of positive overpressure duration 
are available from past experiments.  Figure 43 shows such an estimatelO for 
an 0.1 kton TNT experiment, like MISERS BLUFF. 

Estimates of corresponding range intervals can be calculated, e.g., assuming 
that the shock trajectory and the particle paths are straight lines within the 
area of interest.  Range intervals computed with this assumption are overesti- 
mates, as can be seen from Figure 21.  The results are as follows. 

The downstream range interval that is needed to carry out the control cal- 
culation for a history of duration At can be estimated by 

Ar     , = At • U (8.1) control 

where U is the shock velocity.  The corresponding upstream interval that is 
needed to compute the flow field history at the reference range for the duration 
At can be estimated by 

Ar     .   = At(l/u - 1/U)"1 = At ♦ U • (U/u - I)"1   , (8.2) computing        s s 

where us is the particle velocity behind the shock. Using the shock formula 
(4.4) one can also express Eq. (8.2) in the form 

Ar    ,.   = At • U^ fl+^L^V1 (8.3) computing y P  \    2Y p / \"-->J 

10 
Klaus Opalka,   Terminal Ballistics division,  USA ARRABCOM/Ballistic Research 
Laboratory,  private communication,  March 1981. 
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where ps is the shock overpressure and p0 is the ambient pressure.  The esti- 
mates (8.1) and (8.3) of the downstream and upstream range intervals are plotted 
in Figure 44 as functions of the reference range, using the At from Figure 43. 

In order to check the quality of the approximate range interval formulas, 
we also have determined the range intervals by an analysis of Figure 21.  The 
resulting upstream intervals are plotted in Figure 44.  The plot shows that 
for close ranges the approximate formulas overestimate the range interval by 
more than a factor of two.  For ranges larger than 200 m the factor is smaller 
because the path line curvatures decrease with increasing range. 

The downstream range intervals computed by an analysis of Figure 21 differ 
only insignificantly from the curve in Figure 44 and, therefore, are not plotted. 

9.  CONCLUSIONS 

A distinct feature of the described method for blast field reconstruction 
from overpressure measurements is the calculation of variance estimates of all 
field variables concurrently with the calculation of the variables themselves. 
The estimates can be used in the planning of blast experiments; e.g., to deter- 
mine pressure gage arrangements that enhance the predicted accuracy of the 
calculated flow field.  In examples where the method was applied to actual 
measurements, it was found that the sensitivity of the computed results to 
observational inaccuracies was up to ten times smaller than that of some pre- 
vious methods. 

Another unique feature of the method is the control calculation of a flow 
velocity based on the continuity equation.  The control calculation provides 
an indicator for the consistency of the data with the basic assumption for the 
mathematical model.  Numerical experimentation with this indicator shows that 
more consistent results can be expected when the pressure field function is 
fitted to data covering smaller ranges of distances.  This means for the planning 
of experiments that one should provide a sufficient number of pressure history 
observations in the vicinity of the range of interest.  Favorable arrangements 
of stations and durations of pressure recordings can be obtained from test runs 
of the field calculation programs on approximate expected data sets. 

The nine parameter pressure field function of this report was found to be 
sufficiently flexible for the description of the pressure within a wide range 
of theoretical and real problems. 

One part of the analysis, having independent applications, is the deter- 
mination of shock functions from shock data.  The method described in this 
report has the advantage of using all available data, including incomplete 
sets and adjusting simultaneously measurements of pressure, time, and distance. 
The method can be expected to produce more reliable results than previous nu- 
merical shock fittings. 
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LIST OF SYMBOLS 

(a,b,c,d) - shock parameters 

(A,B,C) - overpressure field parameter functions 

(A ,A2,B.. .B-jC.) - overpressure field parameters 

c - sound speed (m/s) 

e - specific internal energy (J/kg) 

E - function defined by Eq. (5.3) 

f - model function for data fitting 

H - flow field vector defined by Eq. (3.17) 

M - molar mass (kg/mole) 

p,P - pressure (Pa) 

p  - overpressure field function (Pa) 

p. - overpressure history function (Pa) 

Q - function defined by Eq. (4.16) 

r,R - distance from the center of explosion 

t,T - time after explosion (s) 

T - ambient temperature (K) 

u - particle velocity (m/s) 

U - shock velocity (m/s) 

V - variance-covariance matrix 

Y - ratio of specific heats 

F = (Y+1)/(2YP ) - constant in Section 4 (Pa~ ) 

9 - parameter vector for model fitting 

3 
p - density (kg/m ) 

SUBSCRIPTS 

s - pertaining to shock 

o - pertaining to ambient conditions 
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USER EVALUATION OF REPORT 

Please take a few minutes to answer the questions below; tear out 
this sheet, fold as indicated, staple or tape closed, and place 
in the mail.  Your comments will provide us with information for 
improving future reports. 

1.  BRL Report Number 

2.  Does this report satisfy a need?  (Comment on purpose, related 
project, or other area of interest for which report will be used.) 
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to your needs, more usable, improve readability, etc.) 
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please fill in the following information. 
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