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QUANTILE ESTIMATION IN DEPENDENT SEQUENCES

by

P. Heidelberger P. A. W. Lewis
IBM Research Center Naval Postgraduate School
Yorktown Heights, NY 10598 Monterey, CA 93940

ABSTRACT

Standard nonparametric estimators of quantiles based on

order statistics can be used not only when the data are i.i.d.,

but also when the data are from a stationary, *-mixing process

of continuous random variables. However, when the random vari-

ables are highly positively correlated, sample sizes needed for

acceptable precision in estimates of extreme quantiles are com-

' putationally unmanageable. A practical scheme is given, based

on a maximum transformation in a two-way layout of the data,

which redqces the sample size sufficiently to allow an experi-

menter to obtain a point estimate of an extreme quantile. Three

schemes are then given which lead to confidence interval esti-

mates for the quantile. One uses a spectral analysis of the

reduced sample. The other two, averaged group quantiles and

nested group quantiles, are extensions of the method of batched

means to quantile estimation. None of the schemes requires that

the process being simulated is regenerative.
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QUANTILE ESTIMATION IN DEPENDENT SEQUENCES

1. INTRODUCTION
I

Let {Xn J be a sequence of random variables which is

assumed to be stationary with marginal distribution

Fx(x) = P{Xn < x} For any p , 0 < p < 1 , the p-quantile

of Fx(X) satisfies the equation p = Fx(x p) if Fx (X) has

a positive density in a neighborhood of x This paper is
p

concerned with the estimation of quantiles x pfrom samples

X , n=l,...,N. In particular the paper is concerned with both
n

point estimates and confidence interval estimates for quantiles

when the Xn 's are highly correlated. This is the usual case

when the Xn's are the outputs from a simulation of a stochastic

system, for example the waiting times in a queue.

In the case of independent X 's , methods for quantilen

estimation are well known (e.g. Connover, 1980, pp. 71). Thus

let X(n) denote the order statistics from the sample of size

N , and let LxJ denote the greatest integer less than or equal

to x . Then a standard nonparametric estimator

Xp =(Lp N + l)

is a consistent, asymptotically normal, estimator of x with
p

bias which is O(N - 1) and variance [p(l-p)]/[f 2 (x)NI + O(N- 2 )

where fx(xp) is the derivative of Fx(X) at xp This vari-

ance can be estimated by estimating fx(xp) , but nonparametric

confidence intervals can also be obtained for x using the

order statistics of the sample (Connover, 1980, pp. 111-116).
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The difficulty with these estimation methods is that

they require a large amount of computer storage and computing

time to sort the sample. Also for high or low p , the order-

statistic estimator might be biased and very non-normal. A

solution is to use the maximum transformation (Goodman, Lewis

and Robbins, 1971). This not only moves the problem back to one

of estimating a median, but also allows the use of stochastic

approximation (Robbins-Monro) methods. A very satisfactory

method of this type using a minimal amount of memory and giving

both point and confidence interval estimates for the unknown

quantile xp has been given by Robinson (1975).

For the case of dependent Xn's , the usual situation

encountered in system simulation studies, quantile estimation

is much more difficult than in the independent case. The point

estimate x is still valid; however its variance is inflated
p

by a factor p(0;xp) . Here p(0;xp) is the initial point on
p p

the spectrum of the binary process {In (xp) , defined for each

n to be 1 if Xn< x and zero otherwise. More directly it istbe1i n _p

p(0;xp) = lim n Var{(ll(x) x ))/n}
n- o

The nonparametric confidence interval estimation procedures are

no longer directly applicable. However it is possible to esti-

mate p(0;xp) using methods of Heidelberger and Welch (1980,
p

1981) and to estimate the density f(xp) by standard methods;

used together these give an estimate of the variance of x

3



and large-sample confidence intervals. The main problem with

these order-statistic estimates is, however, that the sample

sizes required to obtain reasonable precision with the estimates

are prohibitive when the s are highly positively correlated.

The basic scheme considered in this paper to handle the

sample size problem for dependent, 0-mixing sequences is to set

out the data in a (conceptual) v x m array

Xk = X.k,i i + (k-l)m

for k = l,...,v and i =,... m = N/v , where v is often

but not necessarily chosen so that p = 0.5 . Then if m(and N)

is large enough so that Xn's which are m apart are approxi-

mately independent, the table can be collapsed by taking maxima

down the columns. The maxima

Yi = max X
1 l<k<v k,i

for i = l,...,m are now a reduced sample whose q=pv quantile, yq

corresponds to the desired quantile, xp , of the {X } process.

The main point of this procedure is that it gives a very sub-

stantial sample size reduction. In addition, there is generally

slightly less overall correlation in the Y. sequence and this

counteracts the increase in variance which occurs with the use

of the maximum transformation and order statistic estimates of

the quantile x .

4
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Since the Y.'s (the maximum transformed sample) are
1

still correlated several problems remain, notably estimating

the variance of the point estimate yq 'the q=pV sample quantile of

the Yi's) and obtaining confidence interval estimates of xp

Three confidence interval schemes are considered; averaged group

quantiles, nested group quantiles and a scheme based on esti-

mating the probability density function of the Y1 's at xp
^p

and the initial spectral point, p(O;yq) of the binary process
q

obtained from comparison of the Yi's to yq . i.e. I i(Yq )

Extensive empirical sampling studies using M/G/I queues

and stationary sequences of autocorrelated exponential random

variables show that the above schemes provide a reliable method

for estimating a quantile in a dependent sequence {Xn }

n

2. QUANTILE ESTIMATION AND THE MAXIMUM TRANSFORMATION

1. Quantile estimation for i.i.d. :,equences.

Let Xl,... ,Xn, ...,XN be a sample of i.i.d. random

variables from a continuous distribution F x) with

probability density function F (x) For 0 < p < 1 let

FXX

(2.1) xp inf{x F x(x) p) F - )(')

where Fx (p) is the inverse of Fx X) with derivative

1/f(X )(x). The quantity xp is the pth quantile of Fx (x)

p

!r
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Let X < ,...,< X < ,...X(N ) be the order stat-

istics corresponding to the sample. The usual nonparametric

point estimator of xp is the pth sample quantile

(2.2) Xp = X(LNp+lj) , 0 < p < 1

where Lzj denotes the integral part of z The following

properties of x are well known (David, 1970, 65-67):

(2.3) E(xp) = Xp - 2f3(x) +
2fx x[1

(2.4) var(x = 2p + Nf22(
p P Nf (x IN)

and
N D 2

(2.5) N (Xp - Xp N (0, Nop

as N -

Nonparametric confidence intervals for x are basedP

on the identity (see e.g. Connover, 1980, pp. 111-116)

(26 < X } = U pJ (l_-
(2.6) P{X(L) xp < X(U) j=)

with L < U chosen in such a way as to make the probability as

close as possible to the desired coverage (1-a)

6



Another method for estimating quantiles uses the method

of stochastic approximation (Robbins and Monro (1981)). This

provides a method of quantile estimation which avoids sorting

and requires only a minimal amount of storage. The asymptotic

variance of the stochastic approximation estimate is given by

(2.4). A very satisfactory development of this method is given

in Robinson (1975). Since it is not extendable to dependent

data, it is not described. The key idea in the method, however,

is the use of the maximum transformation, and since this is of

use in the present context, it is described next.

2.2. The maximum transformation

The maximum (minimum) transformation is a computationally

simple transformation and compaction of i.i.d. data which trans-

forms the problem of estimating an extreme quantile of a random

variable into that of estimating a more central quantile, e.g.

the median. Thus assume that p > 1/2 , and let

Y = max(Xl,...,Xv) (When p < 1/2 a minimum transformation is used).

Then

(2.7) P{Y < x p} = F y(x) = {FX (x v pVr q

Thus the pth quantile of F is the q = pvth quantile of the
x

Y variable. In particular let v = L~n(l/2)/kn(p)J ; then x

is approximately the median of the Y variable. Details are

given in Goodman, Lewis, and Robbins (1971).

There is a price paid with this transformation in infla-

tion of the leading term of the variance (2.4). Thus let v

7



divide N , so that N/v = m Then the X sample is reduced

to a sample Y, ...,Ym by application of the maximum transfor-

mation to each successive non-overlapping ginup of X. s of
1- v-

size v . Then the density of the Yi's is fy (X) = v fx(Xp) pv-i

and the variance of the order statistic estimator, yq

of xp in the sample Yl ...,Ym is

^ p(l-p) -(l-pv )  ^ (l-Pv )
(2.8) var(yq) ~ N(-p) (lp) var(x )

x p

The right-hand multiplicative factor in this last expression is

approximately 1.4 if v is chosen to make q = pV approximately

0.5

When using stochastic approximation, shifting to the neigh-

borhood of the median is essential for the method to be a well-

behaved estimation procedure. For estimating several quantiles

simultaneously, the method is applicable in a nested scheme

which is very efficient with respect to storage and speed.

For p < 1/2 a minimum transformation is used. Next-

to-maximum and maximum-minimum schemes give more flexible and

robust schemes but are not discussed in the present paper.

2.3. Dependent Data: General Considerations and Order Statistics

Quantile estimation in dependent data is an order of

magnitude more difficult than in independent data. Fishman

(1978, p. 270 ) notes that no satisfactory solution exists.

Iglehart (1976), Seila (1976) and Moore (1979) have given special

8



methods for processes [Xn } with regenerative structure, i.e.

processes for which there exist random time points at which the

process restarts probabilistically. An example is the waiting '

time process {Wn } in the M/G/l queue which regenerates every

time a customer arrives to find the queue empty, so that the

waiting time of that customer is zero.

It is possible to use the order statistic estimator x

given at (2.2), where we ignore for now the problem of the

initial transient which is usually encountered in simulations.

Conditions for convergence and Central Limit Theorems for sample

quantiles are well known (Sen, 1972; Babu and Singh, 1978).

Thus let

(2.9) I n (x) = 1 if Xn  X

= 0 otherwise

N
(2.10) I(x) = I I (x)/N

n=l n

the empirical c.d.f. at x , and

(2.11) p(0;x) = lim {N var I(x)}

= [I Yk(x) ,
k= -oo

where

(2.12) Yk(x) = cov{I n(x), In+k (x)l k = 0,+l,...

- :: " X < + ,

9



= P{X n < X , Xn+k < x} - P{X n < x} P(Xn+k < x}

The notation p(O;xp) comes from the fact that this

quantity is the initial point (f=O) of the spectrum of the

process {In (x } H

00

(2.13) p(f;x) = [ cos(2nfk) Yk(X) , - < f < 1/2
k-oo

Now the Central Limit Theorem for x = XVP ( Inp+lJ )

(Sen, 1972) states that if fx(x) is continuous,

bounded and non-zero in some small neighborhood of x ,and if

fx(x) is bounded in this neighborhood, then

N1 / 2 (x - x)
(2.14) p p N(0,1)(p (0 ;p) )) 1/2 /f x (xp)

if the process {Xn I is q-mixing and

(2.5)2 2(2.15) OX2 = p(O;Xp)/{fx (X) } 2

is finite. For details on -mixing see Sen (1972) and

Billingsley (1968); some discussion is given in Section 2.4.

Regenerative processes such as the M/G/l queuing

system waiting time {W n  are q-mixing.

The problem with using xp as an estimator in positively

correlated sequences is that the sample sizes required for

adequate precision are prohibitively large. Both sorting times

10



and memory times are then unrealistic. A measure of the infla-

tion of sample size over the independence case is the ratio of

p(0;xp) to its value p(l-p) for the i.i.d. process with
p

identical marginal distributions. This has been investigated

by Blomqvist (1967) for the M/G/l queue. For extreme quantiles

of the M/M/l queue with traffic intensity p = 0.9 this ratio

is 400 . Greater ratios are possible, depending on the traffic

intensity and the skewness of the service time distribution.

Specifically, the M/M/1 queue with p = 0.9 requires a sample

size of roughly 500,000 customers to estimate the 0.99 quantile

of the waiting time distribution to within plus or minus 10%

accuracy. This is derived from Table 8 of Blomqvist (1967); more

precisely this is the sample size required for a 90% confidence

interval for x 9 9  to have a relative half-width of 0.10 . For

the 0.999 quantile the required sample size is approximately

2,300,000. Clearly storing and sorting the entire sequence is

impractical in such cases. Actually to produce an order-statistic

point estimate of xp requires storing only the largest (l-p)N

values of the sequence. However, this ordering must be dynam-

ically maintained as the sequence is generated, a computationally

expensive operation. Additional storage is required to estimate

the variance term p(0;x ) the positions in the sequence at

which the (l-p)N largest values occur must also be saved in
order to construct the binary sequence {I (x )I Furthermore,

n p
the Discrete Fourier Transform of the extremely long sequence

{In (x) , n = 1,... ,N} must be taken to accomplish the variance

estimation.

11



Some of the storage and sorting problems could be re-

lieved by using stochastic approximation . However properties

of the stochastic approximation, particularly its asymptotic

variance, are unknown for dependent data. More importantly

direct application of the maximum transformation to bring the

quantile estimation down to a problem of estimating the median

requires independence of the Xn' •

We now present a method for using the maximum transfor-

mation t- achieve sample size reduction and a practical scheme

for point and confidence interval estimates with dependent data.

2.4. The maximum transformation in the aependent case

The basic idea behind the use of the maximum transfor-

mation is to combine elements of X , n = 1,2,..., in a 4-n
mixing process which are sufficiently far apart so as to be

approximately independent. To define 0-mixing let Mn and

M n+m be respectively the a-fields generated by {Xi; i < n}

n0and {Xi; i > n + m) If E 1 M_ and E2 EM+ , then

{Xn } is Q-mixing if for all n(-- < n < w) and m(> 1)

(2.16) IP(E21E I) - P(E2 )I O(m) , p(m) > 0

where 1 > O(l) > p(2) >... and lim (m) = 0

Thus we set out the data in a vxm array, where

m = N/v, as

12
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(2.17) X k = X i(-~
217 Xk,i = ie(k-l)m k=l,... ,v; i1,l ... ,m.

We assume for the moment that elements in the m columns

are independent; since we are assuming that v is fixed and

the process {Xn } is q-mixing this will certainly be true as

N (and m) get very large. Now applying the maximum transform

down the columns we get a reduced series Y. , where1

(2.18) Y = max Xk i = 1,2,...,m
1 l<k<v

Values of v required to reduce the problem to that of esti-

mating the median of the Yi's are given in Table 2.1

Table 2.1

VSize of v for p 1/2

p 0.900 0.950 0.975 0.980 0.990 0.995 0.998 0.999

v 6.6 13.5 27.4 34.3 69.0 138.3 346.2 692.8

We emphasize here that transformations to points other

than the median are possible, and are essential when considering

simultaneous estimation of several quantiles or estimation of

the median of the X 's However in what follows transforma-

tion to the median is usually assumed. There will be an

attendant bias because p will never quite be 1/2

The purposes of the maximum transformation are

(i) to reduce the attendant sample size. It should be kept in mind

13
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that for higher quantiles larger sample sizes are needed for

given precision. The result is that for fixed precision the

Yi series is roughly the same length for all p > 0. In

particular for p = 0.999 the reduction of the sample size is

by a factor of 693 which is sufficient to reduce a series of

completely unmanageable length to one which can clearly be

accommodated in a digital computer (see Section 5).

(ii) To reduce the problem to estimation of a median rather

than an extreme quantile. Since stochastic approximation is

not used with the Yi series, this is not essential for point

estimates. It is, however, helpful in obtaining confidence

interval estimates.

(iii) To possibly reduce correlation. It will be shown that

the correlations in the {Yi} series are slightly less than

the correlations in the {X } series. Though a small effect,

it is usually sufficient to offset inflation in variances due to

use of the maximum transformation. To see this assume that the

structure of In (x p ) is Markovian with p(0;xp) p (l+p)/(l-p)

If I = 0.99 this equals 199. If p for the Yi process

chopped at its median, i.e. {In (x0.5 )} , is reduced to only 0.98,

then the new p(O;xp) p 99

Clearly if m is too small, the assumption of inde-

pendence down the column will be violated. Some analysis of

this effect is possible. Expanding the definition (2.18) to

account explicitly for the parameter v , the number of Xn s

v apart, over which the maximum is taken, so that

Yi(v) = max Xk,i ' i=i,2,...,m we have from Billingsley

l<k-~vki

(1968, pp. 174, 20.49) that

14
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(2.19) l Yi (v) < x p - pV}j< vO(m)

Thus we want m as large as possible and, for given v , the

difference in the probabilities goes to zero as m , by the

definition of mixing. A slightly tighter bound is given by the

v-2

Lemma. IP{Yi (v) < Xp} - pV} < j (m) p p
k=O

for v > 2.

A straight forward proof of this is obtained using induction.

The point estimate used for x is
p

Yq = Y(Lmq+IJ+l)

Vwhere q = p Since the Y.'s are dependent the properties

of this estimator are given as at (2.14) and (2.15) , with

proviso for some peculiarities in the structure of the {Yi

process which we discuss now. Finite sample properties of the

estimator yq are studied by simulation in Section 5.

2.5. The maximum-transformed process {Yi}

The maximum-transformed process {Yi , obtained from

the {X process by taking the maximum of Xn 's which are m
nn

apart, is not a stationary process in the same sense that the

{X n  process is stationary. To see this consider

15



(2.20) Y = max Xk  = max{X 1 ,X 11 ... ,X }l k~v ,l X~'' (v-l)m+l
l<k<v

It will be correlated with successive Yi's , and this correla-

tion can be expected to decrease since the fXn} process is

mixing. However, the correlation will eventually increase because

(2.21) Y = max{X mX 2m'',X 'vm

is coupled to Y1  by the v-i dependent pairs

XmX m+l... {X (vXl)m X(vl)m+l . Thus the {Yi} process

is circular. However, it is not stationary in a circular sense

because the correlation between Y1 and

Y2 = max{X2'X m+2'' ''X (v-l)m+21  is through the v dependent

pairs {X1 1X2 }, {Xm+ 1 Xm+2},...,{X(v-l)m+lX(v-l)m+2} , and is

therefore different from the correlation between Y1 and Ym

In a circularly stationary process these correlations would be

the same. Towards the middle of the process, say i = m/2

the lag one correlations will be the same and there will be no

"edge effect" because, if m is large enough, the correlation

between Ym/2 and Y1 I and Ym/2 and Ym will be zero.

Without belabouring this "edge effect" and circularity

in the {Y. I process there are two main points to be made.

(i) For finite m it will introduce bias because, for

instance, methods using spectral techniques for estimating

p(0;x) in Section 3 are based on assumptions of stationary.

16
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Note, however, that {Yi } is marginally stationary, so density

estimation techniques for f (x) are not affected.
y

(ii) For m large the effect will be negligible and

the asymptotics go through in the usual way by ignoring a fixed

(or slowly increasing) set of Yi's at the beginning and end of

the process. The usual assumption is that the extent of this

set is smaller than the extent of the dependence in the {Yi }

process.

17



3. CONFIDENCE INTERVALS FOR QUANTILES IN DEPENDENT DATA

In the previous section we gave a point estimator yq

for the quantile of the marginal distribution in a stationary

time series. In this section we consider three methods for

generating confidence interval estimates for these quantiles.

The first method is an extension of the spectral method of

Heidelberger and Welch (1980; 1981). The second and third methods

are extensions of the method of batch means (see e.g. Law and

Carson (1979) or Fishman (1978)). These last two methods also

give two new point estimates.

These methods for generating confidence interval esti-

mates do not rely upon use of the max-transform and the case

v = 1 corresponds to working with the original time series.

Moreover, if the max-transform is used we do not require that

pv 0.50, i.e. v - kn.5/Zn p There are considerable compu-

tational savings, however, from using some maximum transformation.

This and statistical considerations will generally dictate a

maximum transformation using a v slightly less than the median

transform v Another determing factor is that one generally

wants to estimate more than one quantile. This factor will be

considered elsewhere.

3.1. A Spectral Method

Let {YI,...,Ym} be the sequence of max-transformed

variables as defined by equation (2.18). The point estimate of

X Pis the qth order statistic of {YI ...,Ym, yq, where

vq = P Let f y(x) be the stationary density function of Y.

18



and let p(O;x) be the stationary spectral density of the in-

dicator function process Ii(x) associated with {Yi at zero

frequency as defined by equation (2.13). Here edge effects

because of the quasi-circularity of the Yi process are ignored. '
For large values of m (see Sen (1972) and Babu and Singh (1978))

,/M (yq - x p)/(p(;x p)/f (x p)) I/2 has a normal distribution with

mean zero and variance one. Confidence intervals for x basedP

on this Central Limit Theorem are generated by estimating both

p(0;x p) and fy (x p) at the estimated quantile This is the

first method alluded to above.

The quantity p(0;xp) is estimated using the spectral
p

method of Heidelberger and Welch (1980; 1981) applied to the

sequence {Ii(Y ) , i=l,..,m} This method uses least squares

to fit a low order polynomial of degree d to the logarithm of

the first K values of the averaged periodogram of {Ii(Yq)H

As suggested in Heidelberger and Welch (1980; 1981) we used

K = 25 and d = 2 , although for extreme quantiles in highly

congested queues with short run lengths, d = 3 was required

to produce valid confidence intervals. This point is discussed

more fully in Section 4.

We found little or no loss in confidence interval cov-

erage by using the estimated quantile yq with the sequence

{Ii(Y q) } rather than using the known quantile x with the
Sq p

sequence {Ii (xp)I . However, a proof of the convergence of
Sp

the distributional properties of the periodogram of IIi(Yq )I

appears difficult.
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The density fy (x p) of the max-transformed variables

YI'''''Y m may be estimated using a standard kernel density

estimator (see Parzen (1962) and Rosenblatt (1956)). Specifically,

let W(x) be a weighting function such that '

0 < W(x) < W <

00

(3.1) f W(x)dx = 1

lim IxW(x) i 0

Let b(m) be a sequence of bandwidth constants satisfying

lim b(m) = 0 and lim mb(m) = . For any x the kernel

density estimate of f (x) is defined by
m

(3.2) fy W I W((x-Yj)/b(m))
jlb(m)

Under the conditions (3.1) and if Y (n)I/2 < , where the
n=0

(n)'s are defined at (2.16) , then f (x) converges in prob-Y

ability to f (x)Y

In our case we require a density estimate at the unknown

point xp . Simple Taylor series expansions show that f y(yq)

converges in probability to f (x ) if the first k derivatives,
y p

W (k) (x) , of W(x) satisfy jw(k) (x) < W < , if

I W( k) (x)ldx < - and lim ixW(k) (x) = 0 and if
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-c
b(m) = Zmm- where Zm converges in probability to a positive

constant and 0 < c < k/2(k+l) If the weighting function

W(x) does not satisfy the different ability conditions then

more delicate arguments are required to show convergence of

f y(x p) (see, for example, Robinson (1975)).

We have experimented with two weighting functions, a

triangular window

fl - 1x xl <1

(3.3) W(x) = --toIxi > 1 ,

and a cosine window

f1/2 cos(x) jxi < Tr/2

(3.4) W(x) = /x/ > /2

Bandwidth sequences b(m) had the form b(m) = Z m-cm

for various powers of 0 < c < 1/2 and random variables Zm

which ranged from constants to measures of the spread of the

distribution of the Y.'s We found the density estimates toJ

be relatively insensitive to both the shape of the weighting

function and the parameters of the bandwidth sequence. For

small samples they tended to slightly overestimate fy (x p) but

converged to f (xp) for large samples. In Section 4 we report
y p

the results of experiments using the triangular window with

c = 1/3 and Zm  equal to the inter-quantile range of the

Y3's , i.e. b(m) = .(L.75m+lj) Y (L.25m+lj) m
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3.2. Averaged and Nested Group Quantiles: Definition

We now describe two methods of generating confidence

intervals for the quantile x which do not require direct es-
P

timation of p(O;x p) for the {Yi} sequence. These methods,

which we call averaged group quantiles (agq) and nested group

quantiles (ngq), are extensions of the method of batch means to

quantile estimation. Seila (1976) considered a version of agq

without the max transform (v=l) for regenerative processes.

Let N be the total sample size and divide {X1 ... X }

into G non-overlapping groups with mv observations in each

group (N = Gmv) Define

(3.5) XZj,k X(-l)mk+j+(k-l)m for =i, ... ,G,

j=l,...,m,
k=l,...,v.

The subscript 9 refers to the group number, and the data in

each group can be thought of as forming a matrix of dimension

v by m The first row of this matrix is formed from the

first m observations in the group, the second row is made up

of the second m observations in the group, etc. For any fixed

values of Z and j the points X ,j,k  and X ,j,k+l (1<k<v)

are at lag m (i.e., separated by m-l observations) and for

large values of m, X ,j, I , X,j,2 . X,j,k  are approximately

independent. Define YZj= l<k<v ,j,k ; thus is the

jth max-transformed variable in the Zth group. For large m

P{Y j x } ' q = pV with PY X - qj < q(m)v as in
9'j p 9.j - p_

Section 2.
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For each Z=l,...,G let YZ(1) <Yj( 2 )
" ' < Y(m) be

the order statistics of {Y.1, Y Z2,' Y 9} and define

YqZ = Yz(Lmq+lj ) , i.e. yqY is an order statistic estimate of

xp derived from the Zth group. We call yq, a group quan- i

tile estimate. As in the case of batch means, for large values

of m , Yql,...,YqG } will be distributed as i.i.d. normals

2with mean x and variance p(O;x )/mf (x ) This suggests
p p y p

several point and interval estimates for x
p

The averaged group quantile estimate is defined by

G ^
(3.6) agq(x ) G =

p.~u G =l Yqk

A confidence interval for xp is formed by assuming that

(3.7) /G (agq(x p) - x p)/S(agq)

has a students-t distribution with G-1 degrees of freedom

where

2 1 G A2

S2 (agq) = (y -agq(x )) 2

This confidence interval is valid if {Yql,***YqG} are i.i.d.

normals with mean x and finite variance.

ppPP

defined to be the median of yql,*..YqG , i.e. if

Yq(1) i "'" <q(G) are the order statistics of Yql,...,qG
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then the ngm is defiried by (assuming G is odd)

(3.8) ngq(xp) = yq([.5G+lj)

An approximate 100x(l-a)% confidence interval for x from

(2.6) is

(3.9) (Yq(L) , Yq(U) )

where for any L < U, a is defined as at (2.6), by

G- .)k G-k

(3.10) 1 - = U-1 ( G)(.5 (.5)

k= L

This confidence interval is valid if {y ql".YqG} are mutually

independent with P{y x < xp} = 0.5 For large samples this

is guaranteed by the asymptotic normality of order statistics.

As m-, agq(x p) and ngq(x p are asymptotically un-

biased and their confidence intervals are asymptotically valid,

since the sequence {Xn I is assumed to be mixing. Notice that

if G = 1 , then agq(xp) = ngq(xp) = yq where yq is defined

by equation (2.20), though clearly G = 1 is not reasonable if

a confidence interval estimate is required. Furthermore, as with

yq, these point and interval estimates are valid if the max-

transform is not used (v=l) in which case one is working with

group quantiles of the original sequence {Xk I If the max-

transform is used there is no requirement that pV = 0.5
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3.3. Averaged and Nested Group Quantiles: Discussion

There are a number of possible sources of error in the

above two confidence interval procedures. First, if m is

small then, because of dependence, P{Y < x will differ
Z p

from q = pv by a significant amount and E(yq£) 3 Xp Notice

that with G > 1 , m for ngq(x p) and agq(x p) is smaller

than the m for yq and therefore this source of error is

more likely with ngq(xp) and agq(xp) than with yq Second,
p pq

even if the yqZ sequence consists of i.i.d. observations, if

m is small E(yq£) X due to the bias in order statistics for

small samples. This bias will be more severe at the tails of the

distribution. This problem is again potentially more serious with

ngq(x p) and agq(x p) than with y q Third, the random vari-

ables yql,...,YqG may be correlated. All three of these fac-

tors suggest that the number of groups, G , should be as small

as possible. The choice G = 5 is the smallest value of G

for which Pyq() Yq(G) > 0.90 (for L = 1, U = G = 5

the confidence level is 0.9375). Given that G should be small,

any independence tests for Yql,...,YqG will have very low

power. The sampling experiments described in Section 4 use

G = 5 for both agq(x p) and ngq(x p) and the correlations

measured between the y 's have been very low even for strongly
qj

correlated sequences of X's (for these experiments the sample

sizes were such that m > 200). Any residual correlations

between the group medians could be further reduced by deleting

observations between groups, i.e. by discarding observations

before starting the next group.
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3.3. Theoretical Comparisons

It is interesting to compare the expected confidence

interval widths using these three methods under the assumption

that each method is valid. Let m = N/v and mG = N/vG = m/G

and assume (without loss of generality) that p(O;xp)/mGf (X ) = 1

Let G = 5 and assume that yql,. .. yqG are i.i.d. normals

with mean x and variance p(0;x 2 ) = 1 Then the

expected ngq confidence interval half-width is 1.163

(Pearson and Hartley (1966), Table 28, p. 190). Consider now

the agq method. The t-multiplier for a 93.75% confidence inter-

val with 4 degrees of freedom is 2.562 so, assuming an unbiased

estimate of the standard deviation, the expected half-width is

2.562/V = 1.145 Finally assuming the spectral method with

K = 25 and d = 2 produces an unbiased estimate of the point

estimates' standard deviation, (p(0;Xp)/mf2(xp)I/ 2 = i/VS

Then the confidence intervals expected half-width is

2.214// = .99, since the effective number of degrees of freedom

for the variance estimate was shown in Table 1 of Heidelberger

and Welch (1981) to be 7.

Thus, given the assumptions the spectral confidence

intervals (with d = 2) will on the average be narrower than both

the agq and ngq intervals and the agq intervals will be slightly

narrower than the ngq intervals. If a cubic polynomial is used

in the spectral method then the spectral confidence intervals can

be shown to be somewhat wider than the agq and ngq intervals.

These relationships are empirically verified in Section 4.
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4. EMPIRICAL STUDIES

All the quantile estimation methods given in the previous

section are asymptotically valid under the -mixing assumption.

The crux of the matter though is whether they work with sample

sizes required for the usual precisions required in systems simu-

lations, say 10% to 5% as measured by ratio of the confidence

interval half-width to the point estimate. In this section we

use empirical sampling (simulation) to study the bias and stand-

ard deviations of the three quantile point estimators and the

confidence interval coverages and widths of the three quantile

interval estimators described in Section 3. The tests were con-

ducted on stationary sequences of correlated, exponentially dis-

tributed random variables (NEAR(l) and GNEAR(1) processes; see

Lawrance and Lewis (1981a) and (1981b)) and on waiting time se-

quences in heavily congested single server queues. For each

process the 0.50, 0.90, 0.99 and 0.999 quantiles were estimated.

4.1. Processes Simulated

The NEAR(l) process {Xn} with parameters a and 8
is defined as follows. Let {E } be a sequence of i.i.d. ex-

ponentials with mean 1 and let {I n  and {KnI be mutually

independent sequences of random variables for which

PIK = 1} = 1 - P{K = (l-a)6} = 6, where 6 i-)/(-(-e)8),n n

and P{I = 1 - P{I = 01 = a Set X = E0 ; thenn n

(4.1) Xn = InXn_1 + KnE , n> 0
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is a Markovian sequence of exponentially distributed random

variables with mean one and correlation structure

(4.2) Pk= corr(Xn'Xn+k) = k > 0, n > 0

The GNEAR(l) process yields a process with exponential

marginals and alternating positive and negative correlations.

This process is defined by X0 = E0 and

(4.3) Xn =Kn En + In 1 n > 0

where Xn  - kn(l - exp(- Xnl) . For the GNEAR(1) process

the lag one correlation is

(4.4) Pi u~

2
where r = 1 - 11 /6 - 0.6449 is the maximum negative cor-

relation attainable in a bivariate exponential distribution.

Efficient algorithms for generating the NEAR(l) and GNEAR(l)

are given in Lawrance and Lewis (1981b).

The second class of processes we considered were

(stationary) waiting time sequences in M/G/l queues, where

the service time distribution has a hyperexponential distribu-

tion. Specifically, let Wn denote the waiting time of the

nth customer and let {An , n > 1) and {Sn , n > 0} be the

i.i.d. sequences of interarrival times and service times re-

spectively. We assume that
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(4.5) P{A < x} = 1 - exp(- Xx) , x > 0 , X > t
n_

(4.6) Ps x = I{l - exp(- pix)} + 2{1- exp(- p2 x) ,

where and Hi  are greater than or equal to zero, and

-1
1 1 + n 1 . Let = (hI/h 1 + 12/12) and let P = X/P < 1

be the traffic intensity. Let W0  have the stationary waiting

time distribution (see Kleinrock (1975), p, 205; this distribu-

I tion is a probabilistic mixture of an atom at 0 and two ex-

ponentials); then the waiting time sequence {Wn I is defined

by

(4.7) n+ = (Wn + Sn An+1 ) +n > 0

+

where x = max(x,0)

We considered five processes in testing the estimators.

They are:

(i) NEAR(l) : 0.95;

(ii) NEAR(l) : = = 0.995;

(iii) GNEAR(1) : a = = 0.995;

(iv) M/M/1 : A = 9, pi = 10, 11i 1, p 0.90;

(v) M/G/ X = 9, p= 2, 2 =18, 1  0.10, 0.90;

(the squared coefficient of variation of the service

time distribution is 4.556).

29

-- -- -



The correlation structures of these processes range from moderate

positive correlation (NEAR(l), a = 6 = 0.95, p 9k) to extreme

positive correlation (NEAR(l), a = 6 = 0.995,P k 9 k ; M/M/l

and M/G/1) to extreme negative correlation (GNEAR(l)). These

processes were all simulated using the LLRANDOM II random number

generating package (see Lewis and Uribe (1981)).

4.2. Simulation Results

Tables 2-9 report the results of extensive simulation

studies of the quantile estimation procedures detailed in earlier

Sections. The notation used in the tables is defined as follows.

For each process, quantile level p , value v for the max-

transform, and run length N , R i.i.d. replications were per-

formed (R = 200 for all runs, except runs in which p = 0.999,

and runs in which p = .99 with large values of m). However, the

same random number seeds were used for all processes, p, v and

N so that different entries in the tables are not independent.

Let y (r), ngq(x , r) and agq(xp , r) denote the realiza-q p

tions on the rth replication of yq ngq(x p) and agq(xp

respectively. Let yq , ngq and agq denote the averages
A

over the R replications of yq (r) , ngq(x pr) and agq(x pr)

respectively. For example

R ^
(4.8) yq = yq (r)/R

r=l

Let sd(y q) , sd(ng-) and sd(i-) denote the sample standard

deviations of yq I ng-q and agq respectively. For example
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2- R 2
(4.9) sd (yq ) = q yq(r) - yq) /R(R-l)

r=l

These empirical samplin, point estimates and their re-

spective estimated standard deviations may be used to study the SI
bias in the quantile estimates derived in this paper. For

example, from Table 2, an approximate 90% confidence interval

for E(y ) in the NEAR(l) process with a = = 0.95, p = 0.99,

N = 69000 and v = 69 is y + 1.645 sd(y ) = 4.599 + 1.645 x .009

The true value x 9 9 = 4.605 lies within this 90% confidence

interval, which is (4.584, 4.614).

(i) Table 2; point estimates of quantiles

Table 2 illustrates the effect of the maximum transfor-

mation on yq and its standard deviation, sd(y ) For each

process, run length N and p = 0.90 and 0.99, q and sd(y
q q

were computed using v = 1 (no max transform) and v chosen

so that pv 0.50. The run lengths N were chosen so that

m = N/V = 1000 for the NEAR(l) and GNEAR(l) processes and

m = N/v = 2000 for the M/M/I and M/G/I queues. These yield

conservative values of m. The only case in which the max-

transform introduces apparent bias is the M/M/I queue with

p = 0.90, v = 7, N = 14000; in this case yp differs from xp Xp

by 2.45 times the estimated standard deviation. Since this is

the maximum deviation of 20 experiments, it is probably not

significant.

The column labeled "Actual sd inflation" is (with p

and N fixed) the ratio sd(ql pv Z 0.50)/sd( qlv=l) This

ratio measures the increase in standard deviation in dependent
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sequences due to the max-transform. For example, for the NEAR(l)

with a = 0 = 0.995 , p = 0.99 and N = 69000 this ratio is

.0090/.0087 = 1.03 .

The column labeled "Theoretical sd inflation for i.i.d.

samples" is the inflation in standard deviation due to the max-

transform for a sequence if i.i.d. random variables; see

equation (2.8). Recall that the max-transform changes the cor-

relation structure of the process so that its effect on the

standard deviation in dependent sequences may differ substantially

from its effect in independent sequences. In most cases the

actual inflation in variance is very slight and in several cases

a small variance reduction is achieved. Only for the M/M/I

queue is the inflation greater than what it would be for an i.i.d.

sequence, and even in this case it is, considering the storage

and computational savings of the max-transform, an acceptable

1.35

From Table 2 we conclude that, for sensibly large values

of m , the max-transform introduces very little, if any, bias

and that the inflation in variance is modest.

(ii) Tables 3-8; confidence interval estimates

Tables 3-8, in addition to reporting the estimated means

and standard deviations of the quantile point estimates,

compile the results of confidence interval coverage studies for

the three quantile confidence interval procedures. For each

process, p , v , N and replication number, confidence inter-

vals for x were generated using the spectral method, nested

group quantiles, and averaged group quantiles as described in

Section 3.
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For these studies, G , the number of groups was set at

5 For this value of G , under the assumptions of Section 3

the ngq confidence interval has nominal coverage 0.9375, i.e.

PtYq(1) I Xp < Yq(5) 0.9375. For comparison purposes we also

formed 93.75% confidence intervals using the spectral and agq

confidence intervals. Let CI (Y ) , CI r(ngq) and CI (agq)rC rr(a)

denote the confidence interval on the rth replication using

the spectral, ngq and agq methods respectively and let

ICIr(yq)I I I CIr (ng q ) I and ICIX(agq) I denote the widths of

these intervals. For each confidence interval procedure

Tables 3-8 report the estimated average confidence interval

relative half-width (labeled hw-/x) . For example, for the
p

spectral confidence intervals

R
(4.10) i-W/xp = (l/R) ICIlY q )I/2xi=l q p

These tables also report the fraction of these confidence

intervals which actually contain x This fraction is calledP

an (estimated) 93.75% coverage and it should be close to

0.9375 if valid confidence intervals are being formed. A one

sided confidence interval for a coverage, based on the normal

approximation to the binomial distribution, can be used to test

the hypothesis that the actual coverage is less than 0.9375

For R = 200 (Tables 3,4,5,6 and part of 8) estimated coverages

less than or equal to 0.91 are significantly low at the 0.90

level while for R = 100 (Table 7 and part of 8) estimated

coverages less than or equal to 0.89 are significantly low at
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the 0.90 level. However, in practice, the importance of cover-

age in judging the quality of a confidence interval procedure

depends very much on the accuracy (as measured by relative half-

width) of the confidence intervals. Thus low coverage is not a

serious drawback if the procedure generates confidence intervals

which are very wide (very inaccurate) and therefore provide very

limited information about the quantity being estimated. In fact,

the most useful information such a confidence interval often

provides is that the run length is too short. As the relative

half-width decreases, the importance of coverage for the va-

lidity of a procedure increases. We note that it would also be

possible to plot the coverage functions for the spectral and

agq confidence intervals (Schruben (1980)); however, reporting

the individual 93.75% coverages is representative of the cover-

age function and more compact.

For the spectral method and the M/M/l and M/G/l queues

the coverages using both degrees d = 2 and d = 3 are given

whereas for the NEAR(l) and GNEAR(1) processes only d = 2 is

given. For example, from Table 4, the coverages for x in the
p

M/M/l queue with p = 0.90, v = 1 and N = 14000 for the

spectral method using degrees d = 2 and 3 , nested group

quantiles and averaged group quantiles are .905, .910, .880

and .870 respectively. The average relative half-widths are

.549, .570, .429 and .403 respectively. Thus to increase the

precision from its current value of about 50% to a desired value

of 10%, we estimate that the sample size would have to be in-

creased by a factor of 25 to a total of 350,000 observations.
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It would clearly be impractical to store and sort all of these

observations. Thus to increase the precision to an acceptable

level requires the max-transform to reduce the sample to a

manageable size. i

Notice that when the coverages of all methods are valid

(for example in Table 5 for all run lengths of the NEAR(l) and

GNEAR(1) processes and large run lengths of the queuein processes)

that the relative widths of the confidence intervals are generally

as predicted in Section 3, namely that

hw(spectral, d=2) < hw(agq) < h-w(ngq) < h-w(spectral, d=3)

Tables 3 and 4 list results of experiments for estimat-

ing the median and 0.90 juantile respectively without using the

max-transform (v = 1). The run lengths used were small enough

to accommodate storing and sorting the full sequences.

In Table 3 all coverages are either acceptable (i.e.,

not significantly less than 0.9375) or nearly acceptable (i.e.,

wide confidence intervals with coverage close to, but signifi-

cantly less than 0.9375) with the exception the GNEAR(l) process

using the spectral method. The reason for the low coverage in

this case is that the sequence of indicator functions {Ik (X

is very nearly a deterministic sequence of alternating zeros

and ones due to the strong alternating negative and positive

correlation structure of the GNEAR(1) process. This phenomenon

appears to be peculiar to the median (the coverage for the 0.90

quantile using the spectral method in Table 4 is acceptable) but

should be kept in mind when dealing with processes having this

type of correlation structure.
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The coverages for the 0.90 quantiles in Table 4 are all

acceptable or nearly acceptable. However, agq and ngq exhibit

substantial bias in the M/G/l queue. In both Tables 3 and 4

notice the very large mean relative half-widths in the M/M/l

and M/G/l queues, again implying the need for the max-transform

to deal with the much larger sample sizes required for estimates

of acceptable precision.

Tables 5, 6 and 7 compile results of experiments for

estimating the 0.90, 0.99 and 0.999 quantiles, respectively,

using the max-transform with v chosen so that p - 0.50

The ngq and agq confidence interval estimate coverages

are generally acceptable throughout these tables. However, as

in the case of v = 1 , ngq and agq show that there is sub-

stantial bias in the ngq and agq point estimates in the

M/G/I queue for small N. For N = 224,000 this bias has dis-

appeared even though the precision (about 20%) is still relatively

high. The estimates x show little, if any, bias. The cover-
p

ages of the confidence interval estimates in the M/G/I queue

are high despite the bias due to the extreme width of the confi-

dence intervals at the small run lengths.

For the spectral method the coverages for the NEAR(l)

and GNEAR(1) processes are acceptable. However, the small sample

coverages for the queues, particularly the M/G/I queue, are

disappointing. Even using a cubic polynomial to fit the log of

the periodogram does not yield acceptable coverages for the

M/G/l queue when N is small. The low coverage is explained

by the fact that the spectrum of the max-transformed variables
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{yk } is still very steep near f 0 (i.e., the Yi's are

highly correlated) even for large values of v Since N = my

if v is large then m is small and the least squares fits to

the log of the periodogram is done over a relatively large fre-

quency range. If log (p(f ;x ))is very steep then it may not
p

be well approximated by a low order polynomial over a wide fre-

quency range.

Figure 1 illustrates this problem in the case of the

NEAR(l) process with e = 0.995 The log of the spectrum

of the max-transformed variables (v 693) is seen to be still

quite steep near f = 0 Compare this to the almost flat log

of pB(f), the spectrum of the process of batch meanE XB(k)

where

1 kB
XB~k ) - B =(k-l)B+l(4.11) -x

These batch means would be used to place a confidence interval

on E(X.) (see Heidelberger and Welch (1981)).

The problem can be avoided by making v smaller, and

thus m larger. The least squares fit is then done over a

narrower frequency range and the coverage improves. This effect

is seen by comparing the coverages for x 9 0  in the M/G/l

queue with N = 14000 and v = 1 (Table 4) to those usina v = 7

and N = 14000 (Table 5). (Again note that the precision is

unacceptably high). It is also seen in Table 8 which, for the

M/M/l and M/G/l queues, compares the coverages for x
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Figure 1. Effect of the maximum transform and batching
on the log-spectrum. Figure la gives the log
of the spectrum of a NEAR(l) process with

= = 0.995. Figure lb shows the log of
the spectrum after the maximum transformation
with v = 693. A small but significant effect
can be seen'at f = 0. Figure lc shows the
log of the spectrum after batching, with batch
sizes of v = 693. Batching reduces the initial
point of the spectrum much more than the maximum
transformation.
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Figure 1. Effect of the maximum transform and batching
on the log-spectrum. Figure la gives the log
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Figure 1. Effect of the maximum transform and batching
on the log-spectrum. Figure la gives the log
of the spectrum of a NEAR(1) process with
a = 6 = 0.995. Figure lb shows the log of
the spectrum after the maximum transformation
with v = 693. A small but significant effect
can be seen at f = 0. Figure lc shows the
log of the spectrum after batching, with batch
sizes of v = 693. Batching reduces the initial
point of the spectrum much more than the maximum
trans formation.
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using v = 69 to those using v = 17 and v 8 , and the

coverages for x 9 9 9  using v = 693 to those using v = 173

and v - 86 (the slight differences in N are to make m

highly composite which increases the computational efficiency of

the Discrete Fourier Transform used to calculate the periodogram).

Thus the full storage and computational savings of the max-

transform (i.e. moving the quantile back to the median) cannot

be realized in highly correlated sequences without sacrificing

confidence interval coverage. Significant savings can be realized

however. For example the max-transform with v = 173 reduces

the 1,384,000 observations to a sample size of just 8000 for

estimating x 9 9 9  in the M/G/l queue.

In Table 8 two simulations are also shown with

N = 5,536,000 and v = 173 for both the M/M/l and M/G/l

queues for the extreme case of the .999 quantiles. This sample

size is large enough to obtain almost 10% precision. To within

the precision of the empirical sampling experiment (R = 100), it

should be noted that all point and confidence interval estimates

are valid. Note that the maximum transformation reduces the

sample size from 5,536,000 to 32,000!!

4
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5. SUMMARY AND CONCLUSIONS

In this paper we have investigated point and interval

estimates for a single quantile in a fixed length sequence of

dependent observations. For large sample sizes it becomes im-

practical to store and sort the entire sequence. For extreme

quantiles, these limitations can be overcome by using the maxi-

mum transformation which requires storing only a sequence of

maxima. This sequence is defined by laying the data out into a

v by m array and storing only the maximum element in each

column. Storage requirements are thus reduced by a factor of v

observations at lag m are assumed to be independent and the

max-transform changes the problem of estimating the p quantile

of the original sequence into one of estimating the pv quantile

of the max-transformed sequence.

Three confidence interval methods which can exploit the

sample size reduction produced by the max-transformation were

described and tested; the spectral method and two extensions to

the method of batch means called nested group quantiles (ngq)

and averaged group quantiles (agq). The three methods produced

valid confidence intervals if the sample sizes were large enough

to produce 10% precision in the estimates.

Problems which were not addressed in this paper and are

the subject of ongoing research involve questions of multiple

quantile estimation and the incorporation of these fixed run

length procedures into sequential procedures for, say, simulation

run length control. Among the issues involved here are:
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(i) Testing the adequacy of the spacing parameter m

so that Xk and Xk+m are approximately independent.

(ii) Organizing the data so-that m can be increased
I

as the sample size increases.

(iii) Organizing the data so that multiple quantiles can

be efficiently estimated, for example, estimating a 0.50 and

0.999 quantile for the same set of observations (this probably

involves the use of a max-min transformation).

(iv) Determining the sensitivity of these schemes to

an initial transient which is often encountered in simulation.
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Table 2. Comparison of point estimates and standard deviations of point estimates
using full sample order statistic and max-transformed sample order statistic
(R - 200 replications). Here q = pV The fact that the actual ad inflation
is generally less than the theoretical sd inflation for i.i.d. sequences is
because of the decrease in correlation in the series induced by the maximum
transformation.

Actual Theoretical sd
sd inflation for

Process p xp N V yq sd(y ) inflation i.i.d. sequences

NEAR(l) 0.90 2.303 7000 1 2.304 .0104
ct-5-0.95 0.90 2.303 7P00 7 2.320 .0106 1.02 1.18

0.99 4.605 69P00 1 4.610 .0087
0.99 4.605 69000 69 4.599 .0090 1.03 1.20

NEAR(l) 0.90 2.303 7,000 1 2.344 .0325
a-6-0.995 0.90 2.303 7P00 7 2.340 .0356 1.1I0 1.18

0.99 4.605 69P00 1 4.540 .0275
0.99 4.605 69,000 69 4.607 .0299 1.09 1.20

GNEAR(1) 0.90 2.303 7,000 1 2.282 .0132
p-ff0.995 0.90 2.303 7,000 7 2.291 .0121 0.92 1.18

negative

correlation 0.99 4.605 69,000 1 4.605 .0046
0.99 4.605 69000 69 4.600 .0050 1.09 1.20

M/M/I 0.90 2.197 14000 1 2.222 .0277
P=0.90 0.90 2.197 14,000 7 2.289 .0375 1.35 1.18

!0.99 4.500 138,000 1 4.514 .0368
I0.99 4.500 138,000 69 4.558 .0455 1.24 1.20

M/G!1 0.90 6.311 14,000 1 6.466 .1682

p-0.90 0.90 6.311 14000 7 6.572 .1759 1.05 1.18

0.99 13.130 138,000 1 13.182 .2077
0.99 13.130 138000 69 13.398 .1975 0.95 1.20
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Table 3. Point estimates, standard deviations of point estimates, 93.75%
coverages, and average confidence interval half-width/x for the
three methods. Here p = 0.50, v 1 1, G = 5, and R, the number
of replications, is 200.

Spectral Method Nested Group Averaged Group
_ _Quantiles Quantiles

degree of polynomial
3 2

p coverage coverage ngq coverage ngq coverage

Process x N sd(xp) hw/x hw/x sd(ngq) hw/x sd(agq) hw/x
p p p p p p

NEAR(l) 0.693 700 .696 .935 .700 .935 .706 .945
ct-= 0.95 (.003) (.149) (.004) (.180) (.003) (.167)

NEAR(l) 0.693 7,000 .735 .865 .744 .905 .809 .910
a-z-0.995 (.012) (.517) (.015) (.598) (.013) (.565)

GNEAR(l) 0.693 7,000 .692 .795 .693 .945 .689 .985
a-a"0.995 (.001) (.006) (.002) (.112) (.002) (.102)

(negative
correlation

-------------------------------------------- -------- ---------------------------- I

M/MIl 0.588 14P00 .601 .950 .950 .598 .945 .640 .940
p-0.90 (.006) (.452) (.352) (.007) (.443) (.008) (.413)

M/G/l
p-0.90 1.545 14P00 1.607 .950 .940 1.562 .930 1.943 .940

(.033) (.878) (.647) (.036) (1.013) (.055) (.961)
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Table 4. Point estimates, standard deviations of point estimates, 93.75%
coverages, and average confidence interval half-width/x pfor the
three methods, no maximum transform. Here p - 0.90, v =1
G =5 and R, the number of replications, is 200.

Spectral Method Nested Group Averaged Group
Quantiles Quantiles

degree of polynomial
-3 2

x
p coverage coverage ngq coverage ngq coverage

Process x N sd(x ) hw/x hw/x sd(ngq) hw/x sd(agq) hw/x
p p p p p p

NEAR(l) 2.303 7,000 2.304 .930 2.287 .925 2.296 .915
a-0-0.95 (.010) (.129) (.013) (.156) (.010) (.145)

NEARMl 2.303 7,000 2.344 .935 2.189 .955 2.264 .940
a-a.0.995 (.032) (.468) (.038) (.469) (.030) (.435)

GNEAR(l) 2.303 7,000 2.305 .925 2.282 .955 2.267 .955
a-0-0.995 (.010) (.141) (.013) (.181) (.011) (.168)
(negative
correlatia4

M/M/l 2.197 14,000 2.222 .910 .905 2.066 .880 2.229 .870
P-0.90 (.028) (.570) (.549) (.027) (.429) (.027) (.403)

M/G/l 6.311 14,000 6.466 .890 .845 5.266 .865 5.843 .815
P-0. 90 (.168) (1.069) (.669) (.090) (.496) (.099) (.466)
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Table 5. Point estimates, standard deviations of point estimates, 93.75%
coverages, and average confidence interval half-width/x for the
three methods. As in Table 4, p = .90, but here v = 7;p thus pV 0.50
Also G = 5 and R, the number of replications, is 200.

Spectral Method Nested Group Averaged Group
Quantiles Quantiles

degree of polynomial
3 2

yq coverage coverage ngq coverage ngq coverage
Process x N sd(y q) hw/x p hw/x p sd(ngq) hw/x P sd(agq) hw/x P

NEAR(l) 2.303 7,000 2.320 .945 2.310 .940 2.328 .940
aca80.95 (.011) (.156) (.015) (.179) (.012) (.164)

28,000 2.304 .940 2.303 .920 2.305 .915
(.006) (.075) (.007) (.089) (.006) (.083)

112,000 2.300 .930 2.296 .920 2.300 .935
(.003) (.037) (.003) (.044) (.003) (.040)

----------------------------------------------------- 
..--------

NEAR(l) 2.303 7,000 2.340 .800 2.253 .940 2.414 .945
a=0=0.995 (.036) (.342) (.038) (.519) (.033) (.488)

28,000 2.311 .935 2.297 .960 2.350 .940
(.017) (.246) (.020) (.279) (.017) (.260)

112,000 2.289 .970 2.301 .945 1 2.309 .945
(.008) (.127) (.010) (.142) (.008) (.131)

------------- --------------------------------------------------------- --- --------
GNEAR(1) 2.303 7,000 2.291 .960 2.316 .935 2.287 .940
a-a-0.995 (.012) (.199) (.013) (.192) (.012) (.178)

28,000 2.306 .940 2.312 .940 2.299 .935
(negative (.006) (.078) (.007) (.097) (.006) (.090)
correlation) 112,000 2.304 .925 2.306 .925 2.304 .935

(.003) (.040) (.003) (.047) (.003) (.043)
-------------------------------------------------------------------------------------- - ------

M/M/1 2.197 14,000 2.289 .940 .815 2.206 .955 2.331 .930P-0.90 (.037) (.500) (.306) (.033) (.461) (.032) (.422)

56,000 2.231 .975 .950 2.220 .945 2.316 .935
(.016) (.325) (.240) (.020) (.296) (.020) (.274) i

224,000 2.206 .965 .950 2.204 .955 2.227 .945
(.008) (.142) (.1l6) (.00d) (.138) (.008) (.127)

-------------------------------- --------------------------------------
M/GIl 6.311 14,000 6.572 .695 .525 5.657 .865 6.112 .860
0-0.90 (.176) (.399) (.219) (.123) (.500) (.110) (.472)

56,000 6.373 .950 .870 6.184 .940 6.680 .935
(.079) (.471) (. 300) (.079) (.44-0 (.085) (.417)

224,000 6.388 .970 .955 6.367 .965 6.559 .960

(.042) (-60) (.209) (.047) (.243) (.047) (.227) 4



Table 6. Point estimates, standard deviations of point estimates, 93.75%
coverages, and average confidence interval half-width/x for the

three methods. Here p = 0.99, v - 69, so that

q , pV - 0.50 . Also G - 5 and the number of replications, R,
is 200. However R = 100 if the run is marked t

Spectral Method Nested Group Averaged Group ,
Quantiles Quantiles

degree of polynomial
3 2

yq coverage coverage ngq coverage ngq coverage

Process x N sd(y q hw/x p hw/x p sd(ngq) hw/x s d(agq) hw/xp

NEAR(l) 4.605 69,000 4.599 .960 4.606 .920 4.627 .915a-0-0.95 (.009) (.063) (.011) (.073) (.009) (.067)

138,000 4.608 .945 4.604 .950 4.608 .950
(.006) (.043) (.007) (.054) (.006) (.050)

276,000 4.604 .930 4.603 .945 4.608 .950
(.004) (.031) (.005) (.037) (.005) (.034)

NEAR(l) 4.605 69,000 4.607 .890 4.606 .965 4.692 .965
(.030) (.180) (.032) (.248) (.029) (.229)

138,000 4.653 .930 4.653 .905 4.685 .925
(.023) (.140) (.027) (.173) (.024) (.160)

276,000 4.620 .940 4.613 .945 4.629 .935
(.014) (.099) (.016) (.111) (.014) (.102)

GNEAR(l) 4.605 69,000 4.600 .955 4.596 .950 4.594 .940
a-8-0.995 (.005) (.035) (.006) (.040) (.005) (.037)

138,000 4.605 .920 4.605 .925 4.601 .910
(negative (.004) (.023) (.005) (.028) (.004) (.026)
correlation) 276,000 4.608 .950 4.604 .930 4.605 .935

(.003) (.017) (.003) (.020) (.003) (.019)
------------------ ---------------------------- ------------ --- --

M/M/l 4.500 138,000 4.558 .865 .730 4.351 .920 4.538 .905
(.045) (.262) (.153) (.035) (.267) (.035) (.250)

276,000 4.513 .955 .895 4.472 .930 4.598 .930
(.027) (.236) (.148) (.032) (.222) (.028) (.207)

552,000 4.525 .955 .945 4.511 .945 4.608 .935
(.020) (.190) (.132) (.024) (.178) (.023) (.166)

2,208,000 4.481 .980 .960 4.495 .960 4.510 .950

(.012) (.084) (.067) (.015) (.076) (.013) (.070)

M/G/l 13.13C 138,000 13.398 .675 .490 11.713 .820 12.174 .815
(.198) (.243) (.129) (.125) (.288) (.119) (.270)

276,000 13.359 .845 .635 12.377 .920 12.934 .900
(.154) (.270) (.155) (.107) (.287) (.106) (.267)

552,000 13.271 .935 .815 12.927 .910 13.480 .915

(.106) (.276) (.164) (.103) (.265) (.101) (.247)

t 2,208,000 3.102 .960 .930 13.010 .920 13.241 .900
(.062) (.163) (.123) (.075) (.133) (.066) (.125)
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Table 7. Point estimates, standard deviations of point estimates, 93. 75%
coverages, and average confidence interval half-width/x for the
three methods. Here p =0.999, v = 693, so that

q =pv 0.50 .Also G 5 and the number of replications, R,
is 100.

Spectral Method Nested Group Averaged Group
Quaniles Quantiles

degree of polynomial
-3 2

y 9 coverage coverage ngq coverage ngq coverage

Process x N sd(y q hw/x p hw/x p sd(ngq) hw/x p sd(agq) hw/x

NEAR(1) 6.908 693,000 6.923 .940 6.908 .940 6.912 .940
ot-00.95 (.011) (.034) (.012) (.038) (.010) (.035)

NEAR(l) 6.908 693000 6.950 .960 6.937 .920 7.018 .920
c-a=0.995 (.033) (.117) (.040) (.138) (.037) (.128)

GNEAR(l) 6.908 693,00 6.906 .930 6.899 .930 6.899 .930
a-a00.995 (.005) (.015) (.006) (.018) (.005) (.016)

(negative
correlation)

M/M/l 6.800 1,386P00 6.835 .900 .730 6.648 .930 6.790 .940
P-0.90 (.058) '.181) (.108) (.046) (.172) (.046) (.160)

------------------- ------- ---------------------------------------------------------------------------

H/G/l V,0400 20.693 .700 .520 18.589 .890 19.063 .840
P-0.90 19.94 (.324) (.161) (.093) (.171) (.211) (.157) (.198)
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Table 8. M/M/l queue. Point estimates, standard deviations of point
estimates, 93.75% coverages, and average confidence interval
half-widths/x comparing q = pV - 0.50, q = pv - 0.84 and
q - pv - 0.92 for different sample sizes. Here p - 0.99 and

p = 0.999 and G = 5. The number of replications is R = 200

for runs marked * ,and R = 100 for runs marked t

Spectral Method Nested Group Averaged Group
Quantiles Quantiles

degree of polynomial
3 2

p q coverage overage ngq coverage ngq coverage
IProcess XpN sd(y) h -/Xp hw/xp sd(ngq) hW/xp sd(a) hW/Xp

Pq pp p p
M/M/1 * 0.99 138,000 4.558 .865 .730 4.351 .920 4.538 .905

p-0.90 4.500 69 (.045) (.262) (.153) (.035) (.267) (.035) (.250)

* 0.99 136,000 4.546 .925 .880 4.258 .895 4.409 .890

4.500 17 (.040) (.375) (.246) (.029) (.240) (.029) (.222)

* 0.99 128,000 4.596 .900 .870 4.317 .895 4.470 .875

4.500 8 (.042) (.384) (.306) (.035) (.260) (.037) (.243)

t 0.999 1,386,000 6.835 .900 .730 6.648 .930 6.790 .940

6.800i 693 (.058) (.181) (.108) (.046) (.172) (.046) (.160)

t 0.999 1,384,000 6.855 .910 .870 6.578 .930 6.732 .910

6.800 173 (.059) (.284) (.178) (.055) (.178) (.050) (.165)

t 0.999 1,376,000 6.856 .940 .890 6.657 .900 6.754 .880

6.800 86 (.056) (.232) (.181) (.054) (.156) (.049) (.144)

0.999 5,536,000 6.797 .970 .950 6.743 .930 6.833 .940

6.800 173 (.024) (.112) (.088) (.027) (.108) (.028) (.100)

M/G/1 * 0.99 138,000 13.398 .675 .490 11.713 .820 12.174 .815

p=0.90 13.13C 69 (.198) (.243) (.129) (.125) (.288) (.119) (.270)

* 0.99 136,000 13.24C .850 .725 11.467 .795 12.011 .755

13.13C 17 (.202) (.462) (.274) (.125) (.294) (.124) (.277)

* 0.99 128,000 13.011 .805 .730 11.336 .755 11.762 .720

13.13( 8 (.200) (.758) (.489) (.126) (.286) (.115) (.266)

t 0.999 1,386,000 20.693 .700 .520 18.589 .890 19.063 .840
19.94 693 (.324) (.161) (.093) (.171) (.211) (.157) (.198)

t 0.999 1,384,000 19.951 .890 .800 18.188 .880 18.638 .880
19.94 173 (.230) (.294) (.170) (.159) (.198) (.137) (.185)

t 0.999 1,376,000 19.844 .820 .780 18.053 .800 18.621 .770

19.94 86 (.239) (.385) (.238) (.176) (.198) (.159) (.183)

S0.999 5,536,000 20.152 .950 .920 19.511 .920 19.979 .950
9.94 173 (.146) (.211) (.156) (.138) (.151) (.128) (.142)
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