SHOCK CAPTURING USING FLUX-CORRECTED TRANSPORT ALGORITHMS WITH ETC (U)

OCT 81

M. FRY, J. TITTLEWORTH, A. KUHL, D. BROOK
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
A numerical technique has been developed for capturing complex, nonsteady shock structures in multidimensions. The technique relies on moving the computational mesh with the shock wave so that the features of principal interest appear approximately stationary. The method has been implemented using coordinate-split Flux-Corrected Transport (FCT) algorithms which allow the mesh to evolve arbitrarily with respect to the fluid in each coordinate. The grid may thus be optimized in response to the needs of a
given problem. Synchronizing the grid and fluid motions permits significant reduction of numerical transients and eliminates numerical diffusion. Shocks develop naturally, with no fitting. The method is illustrated by calculating complex, two-dimensional Mach reflection phenomena associated with airblasts and shock diffraction on wedges. The numerical results are in good agreement with available experimental data.
CONTENTS

INTRODUCTION ... 1
SHOCK-ON-WEDGE CALCULATIONS 3
HEIGHT OF BURST CALCULATIONS 5
SUMMARY AND CONCLUSION 8
ACKNOWLEDGEMENT ... 8
REFERENCES .. 9
A numerical technique has been developed for capturing complex, nonsteady shock structures in multidimensions. The technique relies on moving the computational mesh with the shock wave so that the features of principal interest appear approximately stationary. The method has been implemented using coordinate-split Flux-Corrected Transport (FCT) algorithms which allow the mesh to evolve arbitrarily with respect to the fluid in each coordinate. The grid may thus be optimized in response to the needs of a given problem. Synchronizing the grid and fluid motions permits significant reduction of numerical transients and eliminates numerical diffusion. Shocks develop naturally, with no fitting. The method is illustrated by calculating complex, two-dimensional Mach reflection phenomena associated with airblasts and shock diffraction on wedges. The numerical results are in good agreement with available experimental data.

INTRODUCTION

Numerical solution of transient multidimensional gas dynamics problems is always nontrivial. When, in addition, the problem involves reflecting supersonic flows, large variations in length scales in both space and time, or phenomena for which neither analytic solutions nor detailed experimental observations are at hand, the state of the computational art is challenged. Such a problem arises in calculating the oblique reflection of shocks from solid surfaces in planar geometries (e.g. shock tube experiments) or axisymmetric geometries (e.g. airblasts). The complications arise mainly from the presence of Mach reflections which occur when a shock front impinges on a reflecting surface at angles of incidence sufficiently far from normal. The formation of a Mach stem and, consequently, of a slip surface intersecting the triple point (the confluence of the incident, Mach, and reflected waves) results from the requirement that the flow behind the reflected shock be parallel to the reflecting surface, which cannot be achieved through regular reflection.

Attempts to calculate the properties of the flow in Mach reflections date back at least to von Neumann and the research which grew out of the wartime explosive studies. For the simplest problem, that of a planar shock.
reflecting from a plane surface, Jones, Martin, and Thornhill5 noted that it
is possible to reduce the number of independent variables to two by transform-
ing to the similarity variables x/t, y/t, a device that was also used by
Kutler, et al6. Ben-Dor7 developed a theory which used shock polars to explain
some of the features of this problem, and solved the system of algebraic equations
obtained by combining the jump conditions across the various disconti-
nuities (Courant and Friedrichs)8 to describe the flow in the neighborhood of
the triple point. To date, no satisfactory treatment of the complete flow
field has been published, although some features (like the shape of various
waveforms) are quite easy to model.

In connection with studies of both chemical and nuclear explosions there
have been many attempts to model a spherical blast wave reflecting from the
ground, the so-called height-of-burst (HOB) problem. The hydrodynamic pheno-
mena in the two cases are identical, although nonideal effects (primarily ex-
plusive afterburn in the first instance and radiation preheating in the second)
are different. Previous attempts to model two-dimensional complex shock re-
fection have suffered from restriction to describing part of the system, the
use of a special assumption like that of self-similarity, or less than satis-
factory agreement with experimental data.9

The calculations discussed here represent a step forward in overcoming
these difficulties. They differ from previous numerical work in incorporating
two important computational developments: Flux-Corrected Transport (FCT)10 and
an adaptive regridding procedure, called "sliding rezone",11 which optimizes
the mesh point distribution and hence the resolution of surfaces of disconti-
nuity.

FCT is a finite-difference technique for solving the fluid equations in
problems where sharp discontinuities arise (e.g. shocks, slip surfaces and
contact surfaces). It modifies the linear properties of a second- (or higher)
order algorithm by adding a diffusion term during convective transport, and
then subtracting it out "almost everywhere" in the antidiffusion phase of each
time step. The residual diffusion is just large enough to prevent dispersive
ripples from arising at the discontinuity, thus ensuring that all conserved
quantities remain positive. FCT captures shocks accurately over a wide range
of parameters. No information about the number or nature of the surfaces of
discontinuity need be provided prior to initiating the calculation.

The FCT routine used in the present calculations, called JPBFCT (an ad-
vanced version of ETBFCT)12, consists of a flexible, general transport module
which solves 1-D fluid equations in Cartesian, cylindrical, or spherical geo-
metry. It provides a finite difference approximation to the conservation laws
of the general form:

$$\frac{\partial}{\partial t} \int \phi dV = -\int \phi \left(u - \bar{u} \right) \cdot dA + \int T dA$$ \hspace{1cm} (1)

where ϕ represents the mass, momentum, energy or mass species in cell $\Omega(t)$,
u and \bar{u} represent the fluid and grid velocities, respectively, and T repres-
sents the pressure/work terms. This formulation allows the grid to slide with
respect to the fluid without introducing any additional numerical diffusion.
Thus, knowing where the features of greatest interest are located, one can
concentrate fine zones where they will resolve these features most effectively
as the system evolves (Fig. 1).

In the next section we describe the computational techniques used to solve
the wedge problem and present the results of four simulations carried out to
reproduce experimental results of Ben-Dor and Glass.13 In Section III we pre-
sent a parallel discussion for a HOB calculation. Finally, in Section IV we
summarize our conclusions.
Fig. 1. Adaptive grids for a) planar shocks on wedge (double Mach shock features are indicated); b) and c) HOB problem initially and at transition point (grid lines in fine-zone region are indistinguishable).

SHOCK-ON-WEDGE CALCULATIONS

The JPBFCT algorithm was used in a 2-D Cartesian version of the FAST2D code to model the reflections of planar shocks from wedges of 20° to 60° and varying shock strengths. Four general classes which include regular, single, complex and double Mach reflection were calculated (referred to as cases a,b,c,d respectively). The bottom of the mesh, treated as a reflecting boundary, modeled the surface of the wedge. Quantities on the right hand boundary and on the top were set equal to the ambient values. The remaining boundaries were treated as permeable. In the single, complex, and double Mach reflection cases, the mesh was anchored on the left, essentially at the wedge tip where the incident shock first strikes, while the zones were stretched by a scaling factor proportional to \(t \) as soon as the reflection region filled a substantial portion of the grid. In case (d), the double Mach reflection case, the opening angle is so small that the incident shock has to traverse many zones before the mach stem has grown large enough to be well resolved. For this reason, the problem was solved on a uniform mesh in the frame of reference fixed.
to the reflection point, with stretching being initiated after the first Mach stem reached \(\approx 20 \) cells in length. The timestep was recalculated at every cycle with a Courant number of 0.5.

Figure 2 shows the pressure and density contours and the velocity field for cases a, b, c, d. The pertinent shock phenomena can be easily identified: incident shock, contact surface, first and second Mach stems. As shown in Fig. 1, the zoning is particularly sparse except for the region of interest. Adequate resolution of the key surfaces (contact and second Mach stem) is obtained with 5 zones in each direction. The accuracy can be evaluated by comparing the experimental density distributions along the wall (Fig. 3).

Fig. 2 - Pressure and density contours and flow velocity vectors (in frame of reflection point) for planar waves with Mach number \(M \) reflecting from wedges with angle \(\theta \) for (a) \(M=2.03, \theta=60^\circ \); (b) \(M=2.82, \theta=20^\circ \); (c) \(M=5.29, \theta=30^\circ \); (d) \(M=7.03, \theta=50^\circ \).
Fig. 3. Comparison of density (in units of ambient density ρ_0) for cases (a), (b), (c), (d) of Fig. 2 vs. distance from corner. Points are measured values reported in Ref. 13.

HEIGHT OF BURST CALCULATIONS

Next, we performed a numerical simulation of a 1KT nuclear detonation at 31.7 m HOB, a case which could be readily compared with high explosive data. A constant ambient atmosphere was used with a density of 1.22×10^{-3} g/cm3 and pressure 1.01×10^6 dynes/cm2. To relate the energy and density to the pressure, a real-air equation of state (EOS) was used. This table-lookup EOS was derived from theoretical calculations by Gilmore14,15 for equilibrium properties of air and has been vectorized for the Advanced Scientific Computer.16 The internal energy density used in the call to the EOS is found by subtracting kinetic energy from total energy; this can be negative due to truncation (phase) errors. When this occurred, the value of the pressure was reset to zero.

The transition from regular reflection to double Mach reflection occurs at a ground range approximately equal to the HOB. The size of the mesh should
therefore be roughly twice the HOB in both directions. The upper boundary should be far enough away from the blast front to be non-interfering. We chose boundaries of 55 m for the radial direction and 103.5 m for the axial direction. The fine grid in the radial direction contained 140 out of 200 total zones, each 5 cm in length. The rightmost zones were 80 cm in length, and a smoothing involving 40 zones was performed between the regions to guarantee that the zone sizes varied slowly. In the axial direction the fine grid contained 75 out of 150 total zones, each 5 cm in length. Beyond that region the zones were geometrically increased by a factor of 1.112.

Placement of the fine grid at the origin of the mesh (ground zero, the point at which reflection first occurs) was determined to be optimum for capturing peak pressure in the airblast wavefront. Thus, as the expanding wave moves along the ground surface, the fine grid is always locked to it and each point along the blast front encounters the same spatial gridding as it approaches the ground. By treating each point of the incident front in the same manner, we insure that the calculation is internally consistent and that the computed transition point is accurate to within the limits of the resolution.

The initialization provides a strong shock with approximate Mach number $M=12$. This speed and the need for restart capability led to the choice of 200 timesteps as an interval for the spatial display (snapshots). The dump interval that resulted was $\Delta t \approx 0.3$ milliseconds (ms). These dumps were stored on magnetic tape and post-processed.

A fit to the 1-D nuclear blast flow field (Ref. 17) was used to initialize the energy and mass density and velocity field at 3.76 ms. The corresponding peak overpressure was 113 bars. After the 1 KT flow field was laid down inside a radius of 31.6 m, the fine-zone grid was activated to follow the peak pressure as it moved along the ground surface, modelled as a perfectly reflecting boundary. This region comprised 140 zones, and a switch was set to keep 40 of these zones ahead of the reflection point. Permeable boundary conditions are used on the top and right edges of the mesh, i.e., density, pressure and velocity are set equal to ambient preshock conditions. Reflecting conditions were applied to the left and bottom. The total elapsed physical time in the 2-D calculation, 7.6 ms, required 5600 cycles. Times are referred to $t=0$ at the start of the calculation.

The numerical simulation begins just before the shock first reflects from the ground. Fig. 4a indicates the pressure and density contours and velocity vectors at time 3.18 ms. In Fig. 4b the reflected shock is shown moving upward, the outward flow begins to stagnate at the ground (transition). Fig. 4c, $t=5.99$ ms, shows an enlargement of the shockfront, and the development of the Mach stem, slip surface and second Mach stem. The angle of the shock front with respect to the ground is increasing with time so that the effective wedge angle is decreasing. From Ben-Dor and Glass one expects a transition to double Mach stem to occur at approximately 45°. The angle in Fig. 4b is about 45° and the shock front has entered the transition phase. Figure 4d shows the fully developed shock structure at 7.79 ms. Clearly visible is the second Mach stem and a vortex region behind the first Mach stem. Toeing out of the first Mach stem can be also seen in the contours of Fig. 4d and occurs as the fluid rolls forward where the slip line would otherwise intersect the ground. The velocity field in Fig. 4d also shows this detail.

One should also note the reflected shock properties. The reflected shock propagates rapidly through the high temperature fireball, due to the high local sound speed. The shape of this reflected wave is a primary difference between the ROB case and the wedge case. The other major difference, of course, is the spherically expanding blast wave which decreases in strength approximately proportional to r^{-2}.

6
Finally we consider the pressure/distance relation for the HOB case. In Fig. 5 we compare the results of the numerical simulation with the data of Carpenter and with empirical analysis. Carpenter's data are based upon careful HOB experiments with 8 lb PBX9404 spheres. The empirical analysis was based on a 1 KT nuclear free air curve and HOB construction factors. The calculated values in the regular reflection regime are 20% low and may be attributed to a combination of FCT clipping, the resolution of the grid, and inaccuracies in the initialization of the flow field. During and after Mach reflection, the peaks remain low until the Mach stem structure has grown large enough to be resolved on the mesh. By the time it occupies a region of 15 cells high and 35 cells wide, the peak pressures are in good agreement with the HE data and the empirical analysis.
SUMMARY AND CONCLUSION

The complex 2-D Mach reflection phenomena associated with shock diffraction on wedges and height-of-burst explosions have been modeled with the FAST2D computer code. Four wedge cases—regular, single, complex and double Mach reflection—have been calculated and the results compared to experiments. A nuclear detonation (1 KT at 31.7m HOB) was also simulated. The results give insight into the formation and subsequent evolution of the Mach stem, the triple point and the contact discontinuity. The transition from regular reflection to double Mach reflection is predicted. Excellent agreement with Ben-Dor's data is obtained. We suggest that the first signal for transition is the appearance of a second peak behind the shock front due to stagnation in the flow. Calculated first and second pressure peaks versus distance in the HOB case agree both with the HE data and analysis to within 20%.

The use of the adaptive regridding procedure, called "sliding rezone", along with the FCT algorithm allows one to accurately predict the nonsteady shock structures in two dimensions for diffractions on wedges and HOB cases. Comparison with data for both wedges and HOB yields the best results obtained to date.

ACKNOWLEDGEMENT

This work was supported by the Defense Nuclear Agency under Subtask Y99QAXSG, Work Unit 00001, and Work Unit Title "Flux-Corrected Transport."
REFERENCES

9/10
DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

ASSISTANT TO THE SECRETARY OF DEFENSE (ATOMIC ENERGY)
WASHINGTON, DC 20541
OICY ATTN EXECUTIVE ASSISTANT

DIRECTOR
DEFENSE COMMUNICATIONS AGENCY
WASHINGTON, DC 20325
LAPP 9 640 ATTN CODE 240 FCO
OICY ATTN CODE 570 6 LRR

DIRECTOR
DEFENSE INTELLIGENCE AGENCY
WASHINGTON, DC 20311
OICY ATTN P-2A (TECH 110)
OICY ATTN 111
OICY ATTN 112
OICY ATTN 7-2
OICY ATTN DB 4G C GEARRELL

DIRECTOR
DEFENSE NUCLEAR AGENCY
WASHINGTON, DC 20315
OICY ATTN SS55
OICY ATTN SS55 C ULRICH
OICY ATTN SS55 T CEEVY
OICY ATTN TTTI

DEFENSE TECHNICAL INFORMATION CENTER
CAMERON STATION
ALEXANDRIA, VA 22314
(12 IF OPEN PUB, OTHERWISE 2 - NO MAINTEL)
OICY ATTN DD
DEPARTMENT OF NAVY

COMMANDER
DAVID TAYLOR NAVAL SHIP R & D CTR
BETHESDA, MD 20084

OFFICER-IN-CHARGE
NAVAL CIVIL ENGINEERING LABORATORY
PORT HUENEME, CA 92041

COMMANDER
NAVAL ELECTRONIC SYSTEMS COMMAND
WASHINGTON, DC 20360

COMMANDER
NAVAL FACILITIES ENGINEERING COMMAND
WASHINGTON, DC 20391

HEADQUARTERS
NAVAL MATERIAL COMMAND
WASHINGTON, DC 20360

COMMANDER
NAVAL OCEAN SYSTEMS CENTER
SAN DIEGO, CA 92152
ASSISTANT CHIEF OF STAFF
INTELLIGENCE
DEPARTMENT OF THE AIR FORCE
WASHINGTON, DC 20330
OICY ATTN JFC A 48930

ASSISTANT CHIEF OF STAFF
STUDIES & ANALYSES
DEPARTMENT OF THE AIR FORCE
WASHINGTON, DC 20330
OICY ATTN AF/SAM1 (TECH 11B)

ASSISTANT SECRETARY OF THE AF
RESEARCH, DEVELOPMENT & LOGISTICS
DEPARTMENT OF THE AIR FORCE
WASHINGTON, DC 20330
OICY ATTN SRA/DD/SEP FOR STRAT & SPACE SYS

BALLISTIC MISSILE OFFICE/MN
AIR FORCE SYSTEMS COMMAND
NORTHERN AFB, CA 92401
(MINUTEMAN)
OICY ATTN WNYH G KALANSKY
OICY ATTN WNYX W CELVECCHIO
OICY ATTN WNNY W CRADTREE
OICY ATTN WNNY D GAGE
OICY ATTN WNNY

DEPUTY CHIEF OF STAFF
RESEARCH, DEVELOPMENT, & ACC
DEPARTMENT OF THE AIR FORCE
WASHINGTON, DC 20330
OICY ATTN AF/DO1 N ALEXANDROW
OICY ATTN AF/DO1
OICY ATTN AF/DO1
DEPARTMENT OF THE AIR FORCE

DEPUTY CHIEF OF STAFF
LOGISTICS & ENGINEERING
DEPARTMENT OF THE AIR FORCE
WASHINGTON, DC 20330
OICY ATTN LEFF

COMMANDER
FOREIGN TECHNOLOGY DIVISION, AFSC
WRIGHT-PATTERSON AFB, OH 45433
OICY ATTN HTIS LIBRARY

COMMANDER
ROYAL AIR DEVELOPMENT CENTER, AFSC
GRIFFIS AFB, NY 13441
(DESIGNS KC CHARTS)
OICY ATTN TSLC

STRATEGIC AIR COMMAND
DEPARTMENT OF THE AIR FORCE
BENTLY AFB, NE 68412
OICY ATTN NOR-STRATEGIC LIBRARY
OICY ATTN XPD8
OICY ATTN INT J MCKINLEY

VEGA MEDICAL CENTER
312 MONTGOMERY STREET
ALEXANDRIA, VA 22314
OICY ATTN G WINDICH

22
DEPARTMENT OF ENERGY/DOE CONTRACTORS

LOVELACE BIO MEDICAL CENTER
ENVIRONMENTAL SCIENCE INSTITUTE, INC.
P.O. BOX 5999
ALBUQUERQUE, NM 87115
OICY ATTN M. HOEY (UNCL. CARY)

OAK RIDGE NATIONAL LABORATORY
NUCLEAR DIVISION
X 10 LAB RECORDS DIVISION
P.O. BOX X
OAK RIDGE, TN 37840
OICY ATTN CIVIL DEF RPS PROJ
OICY ATTN CENTRAL RSC LIBRARY

SANDIA LABORATORIES
LIVERMORE LABORATORY
P.O. BOX 960
LIVERMORE, CA 94550
OICY ATTN LIBRARY & SECURITY CLASSIFICATION DIV.

SANDIA NATIONAL LAB
P.O. BOX 5800
ALBUQUERQUE, NM 87195
(ALL CLASS ATTN SEC CONTROL OEC FOR)
OICY ATTN A. CHABA
OICY ATTN L. HILL
OICY ATTN CEC 1250
OICY ATTN A. CHABA
OICY ATTN M. HOFFMAN
OICY ATTN 2141
OICY ATTN J. VERTMAN
OICY ATTN J. BANISTER

24
APTEC ASSOCIATES, INC.
26046 EDEN LANDING ROAD
HAYWARD, CA 94545
OICY ATTN S SILL

ASTRON RESEARCH & ENGINEERING
1991 OLD MIDDLEFIELD WAY #15
MOUNTAIN VIEW, CA 94043
OICY ATTN J HUNTINGTON

AVCO RESEARCH & SYSTEMS GROUP
201 LOWELI STREET
WILMINGTON, MA 01887
OICY ATTN LIBRARY 8230

BOW CORP.
7915 JONES BRANCH DRIVE
MCLEAN, VA 22102
OICY ATTN J LAUZACINE
OICY ATTN T MEYERS
OICY ATTN CORPORATE LIBRARY

BOW CORP.
P.O. BOX 9274
ALBUQUERQUE, NM 87119
OICY ATTN D HENSLEY

BOEING CO.
P.O. BOX 3707
SEATTLE, WA 98124
OICY ATTN S STRACK
OICY ATTN AEROSPACE LIBRARY
OICY ATTN M/S 4237 R CARLSON
DEPARTMENT OF DEFENSE CONTRACTORS

CALIFORNIA RESEARCH & TECHNOLOGY, INC.
6269 MAPLE AVENUE
WOODLAND HILLS, CA 91367
OICY ATTN LIBRARY
OICY ATTN K. KREYEMHAGEN
OICY ATTN M. ROSENBRENNER

CALIFORNIA RESEARCH & TECHNOLOGY, INC.
4059 FIRST STREET
LIVERMORE, CA 94550
OICY ATTN D. GOODALE

CALSPAN CORP.
P.O. BOX 900
BUFFALO, NY 14226
OICY ATTN LIBRARY

DENVER, UNIVERSITY OF
COLORADO SEMINARY
DENVER RESEARCH INSTITUTE
P.O. BOX 12127
DENVER, CO 80210
(ONLY 1 COPY OF CLASS RPTS)
OICY ATTN SEC OFFICER FOR J. WISOTSKI

EGS G. WASH. ANALYTICAL SVCS CORP., INC.
P.O. BOX 10210
ALBUQUERQUE, NM 87114
OICY ATTN LIBRARY

28
DEPARTMENT OF DEFENSE CONTRACTORS

ERIC H. HANG
CIVIL ENGINEERING C Sch FAC
UNIVERSITY OF NEW MEXICO
UNIVERSITY STATION
P.O. BOX 25
ALBUQUERQUE, NM 87131
OICY ATTN J. LAMM
OICY ATTN P. LORNE
OICY ATTN N. RAN
OICY ATTN J. KOVARA

GARD, INC.
7440 N. NATCHES AVENUE
NILES, IL 60648
OICY ATTN G. WILKINSON (INC ONLY)

GENERAL ELECTRIC CO.
SPACE DIVISION
VALLEY FORGE SPACE CENTER
P.O. BOX 9555
PHILADELPHIA, PA 19101
OICY ATTN M. GROMPA

GENERAL RESEARCH CORP.
SANTA BARBARA DIVISION
P.O. BOX 6770
SANTA BARBARA, CA 93111
OICY ATTN TIC

H-TECH LABS, INC.
P.O. BOX 1686
SANTA MONICA, CA 90406
OICY ATTN B. HARTENBAUER

29
DEPARTMENT OF DEFENSE CONTRACTORS

HORIZONS TECHNOLOGY, INC.
7830 CLAIREMONT MESA BLVD
SAN DIEGO, CA 92111
OICY ATTN R KAUGER

IIT RESEARCH INSTITUTE
17 W 35TH STREET
CHICAGO, IL 60616
OICY ATTN R ELCR
OICY ATTN W JOHNSON
OICY ATTN DOCUMENTS LIBRARY

INFORMATION SCIENCE, INC.
123 W PADRE STREET
SANTA BARBARA, CA 93105
OICY ATTN W ROYIAK

INSTITUTE FOR DEFENSE ANALYSES
432 ARMY NAVY DRIVE
ARLINGTON, VA 22203
OICY ATTN CLASSIFIED LIBRARY

J D HALITZANGER CONSULT ENG SVC
841 1066 CIVIL ENGINEERING BLDG
223 N RONINE STREET
URBANA, IL 61801
OICY ATTN N HALL

J. H. WIGGINS CO., INC.
1450 S PACIFIC COAST HIGHWAY
REDONDO BEACH, CA 90277
OICY ATTN J COLLINS

30
DEPARTMENT OF DEFENSE CONTRACTORS

MCDONNELL DOUGLAS CORP.
5111 BOLSA AVENUE
HUNTINGTON BEACH, CA 92647
OICY ATTN: J. HERDMAN
OICY ATTN: P. HALLPIN
OICY ATTN: D. BRIE

MCDONNELL DOUGLAS CORP.
3955 LAKEWOOD BOULEVARD
LONG BEACH, CA 90846
OICY ATTN: M. PETER

HERDIT CASES, INC.
P.O. BOX 1204
FEDLANDS, CA 93372
OICY ATTN: J. HERDIT
OICY ATTN: LIBRARY

METEOROLOGY RESEARCH, INC.
464 W. WOODRUFF ROAD
ALTADENA, CA 91001
OICY ATTN: W. GORE

MISSION RESEARCH CORP.
P.O. Drawer 719
SANTA BARBARA, CA 93102
(ALL CLASS: ATTN: SEC DEC FOR)
OICY ATTN: C. LENDVARY
OICY ATTN: G. MCCARTHY

PACIFIC-SIERRA RESEARCH CORP.
1456 CLOVERFIELD BLVD
SANTA MONICA, CA 90404
OICY ATTN: M. BURKE

32
DEPARTMENT OF DEFENSE CONTRACTORS

PAND CORP.
1700 MAIN STREET
SANTA MONICA, CA 90401
OICY ATTN C "FY"

SCIENCE APPLICATIONS, INC.
RADIATION INSTRUMENTATION DIV
4615 HAWKINS, NC
ALBUQUERQUE, NM 87109
OICY ATTN J OISHCA

SCIENCE APPLICATIONS, INC.
P.O. BOX 2351
LA JOLLA, CA 92038
OICY ATTN M WILSECA
OICY ATTN TECHNICAL LIBRARY
OICY ATTN R SCHLAAG

SCIENCE APPLICATIONS, INC.
101 CONTINENTAL BLVD
FL SEGUINDO, CA 90245
OICY ATTN D MOVE

SCIENCE APPLICATIONS, INC.
2450 WASHINGTON AVE, NW
SAN LEANDRO, CA 94577
OICY ATTN D REYNSTEFN
OICY ATTN D HAYBELL

SCIENCE APPLICATIONS, INC.
P.O. BOX 1202
MCLEAN, VA 22102
OICY ATTN J COCKAYNE
OICY ATTN B CHA4EPS III
OICY ATTN H KNASEL
OICY ATTN W LAYSECH
OICY ATTN R STEVERS

34
DEPARTMENT OF DEFENSE CONTRACTORS

TELDECNE BROWN ENGINEERING
CUMMINGS RESEARCH PARK
HUNTSVILLE, AL 35807
OICY ATTN J RAEFSCRAFT
OICY ATTN J MOHR

TEPRA TEC INC.
420 WAKASS WAY
SALT LAKE CITY, UT 84105
OICY ATTN A ARTHURS
OICY ATTN LIBRARY
OICY ATTN A JONES
OICY ATTN S GREEN

TETRA TECH, INC.
670 N ROSEMEAD BLVD
PASADENA, CA 91107
OICY ATTN L HUANG

TELEDEFENSE & SPACE SYS GROUP
ONE SPACE PARK
REDONDO BEACH, CA 90279
OICY ATTN N LIPPMAN
OICY ATTN TECHNICAL INFORMATION CENTER
OICY ATTN T Muzzella

TELEDEFENSE & SPACE SYS GROUP
P.O. BOX 1310
SAN BERNARDINO, CA 92408
OICY ATTN G HILCHER
OICY ATTN P. DAI
OICY ATTN F WANG