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under Project 2404, "Aeromechanics," Task 24040730, "Aerodynamic
Prediction Methods."

The evaluation reported herein used methodology developed by the
Aerophysics Research Corporation, authored by F. A. Woodward and by the
McDonnell Douglas Corporation, authored by A. E. Gentry, D. N. Smith, and
W. R. Oliver. The experimental data necessary to evaluate these method-
ologies were extracted from technical reports published by the Air Force
Armament Laboratory, authored by C. B. Butler, E. S. Sears, and S. G.
Pallas; NASA, authored by E. J. Landrom; and AEDC, authored by D. C. Baker
and D. E. Reichenau. The evaluation reported herein was conducted
between October 1979 and July 1980.
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SECTION 1

INTRODUCTION

An engineer is often faced with 4 Jifficult task in selecting the
analysis method that will provide guod and consistent re.ults., One of the
things that complicates the selection is model geometry complexities, such
as irrequiar body shapes and control surfaces that lead to complex flow
fields beyond the analysis capabilities of the more simplified analytical
procedures. A relative comparison between analytical methods should be
made with simple geometries so that under these relaxed conditions com-
parisons between various methods might lead to some insights into their
relative capabilities and restrictions. Thus for the present study,
slender ogive/cylindrical body combinations without control surfaces,
nozzles, etc., were selected to study the relative merits of analysis
methods that the Flight Dynamics Laboratory often uses to analyze more
complex configurations. Low supersonic Mach numbers were selected for
this study as well as a subsonic case because experience has shown that
these two cases are the most difficult to predict. Selected for
evaluation in this study were the Unified Subsonic-Supersonic Aerodynamic
Computer Program {USSAERQ) of Reference 1 and the Supersonic-Hypersonic
Arbitrary Body Program (HABP) of Reference 2.

The objective of the present study is to take a detailed look at the
capabilities of the above programs for predicting overall aerodynamic
characteristics. Such things as detailed pressure coefficient predictions
around the body are compared with the experimental data to determine where
the analysis would benefit from improvement. Configuration geometry
variables such as nose bluntness and fineness ratio are varied in the
supersonic case to study their impact on the analysis. Comparisons are made
at a subsonic Mach number of 0.4 and supersonic Mach numbers beginning with a
low value of 1.50 and progressively increasing to 4.6. The comparisons in
the present study have been restricted to the merits of the inviscid
mnethods because inclusion of the viscous analysis techniques would have
complicated the evaluation and perhaps led to confusion in interpreting
the results contained herein.
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SECTION I1

MODEL DESCRIPTIONS

1. N2B1 (FROM MX TESTS)

A large number of missile configurations were used in the present
investigation for the data/theory comparisons. Complete descriptions of
these models and their instrumentation can be found in References 3, 4,
and 5. A brief description is repeated here for completeness. For the
subsonic comparisons, the configuration was the NZB1 configuration
(Reference 3). The model had an ogive nose with a fineness ratio, Ly,/Ds i 1
of 2.545 fineness ratio and an aft body of 7.754 fineness ratio for a

combined fineness ratio of 10.3. The bluntness ratio RN/RB, was .03.
Figure 1 shows a sketch of the model geometry and pressure orifice

locations.

2. CAC AND BNC (FROM NASA TESTS)

For the supersonic pressure prediction comparisons, two models from
Reference 4 were selected. They are the circular-arc-cylinder {designated
CAC in the present study) model and the Hlunt-nose-cylinder (designated
BNC) model, with a bluntness ratio of 0.17. The geometrical description

of these two configurations are as follows:

Circular-Arc-Cylinder (CAC)

FIL =1 3125)2 ¢ (0/L)(0.9 - X/L) - 1.3125 (0 < X/L < 0.45)
r/L = 0.075 (0.45 < X/L < 1.0)
Blunt-Nose-Cylinder (BNC)

F/L = 0.1118 (x/1) /2 (0 < X/L < 0.45)
r/L = 0.075 (0.45 < X/L < 1.0)

A sketch of these two models showing model orifice locations is seen in
Figure 2.
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3. AFATL MODELS

For the force/moment comparisons at supersonic speeds a large
selection of configurations were available from tests conducted by the
Air Force Armament Test Laboratory (AFATL) as reported in Reference 5.
The models selected for the present comparisons consisted of 20 nose
geometries with fineness ratios varying from 1 to 4 and one aft body
with a fineness ratio of 10. Bluntness ratios (RN/RB) varied from sharp
0.0 to 1.0. The geometrical description and designations of the models

are presented in Figure 3.
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SECTION 111
METHODOLOGY OVERVIEW

1. UNIFIED SUBSONIC-SUPERSONIC AERODYNAMICS PROGRAM (USSAERO)

A complete description of the theory and computer program may be
obtained from Reference 1. Presented here is a brief summary of the
general theory used for body alone applications. Axis and coefficient

nomenclature is presented in Figure 4.

The configuration surface is subdivided into a large number of
panels, each of which contains an aerodynamic singularity distribution.
A constant source distribution per unit area is used on each body panel.
The position of the source within each panel relative to a coordinate
system lying in the plane of the panel is denoted by (£, =n, 0). The
radius connecting an arbitrarily located source within the quadrilateral
with a point in the flow field P(X, Y, Z) is given by

h=[(x - )+ (y-n)?+ 2272 (1)

for incompressible flow applications. Details for the compressible flow
case can be found in Reference 1 and will not be summarized here. The
general approach, however, is to apply Gothert's rule to the incompressible
velocity components described in this section. The incremental perturbation
potential arising from an increment of area (d:dn) located at the source
point (£, n) is

-1
de = Ih dedn (2)
Thus
-1 dgdn
0= = ) (3)

A Ux -6+ (y-nle221172

The general approach of the method is to calculate the velocity components
at the centroid of each panel by partial differentiation of the potential
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defined in Equation 3 with respect to x, y, z. The pressure
coefficient at the centroid of the jth panel is then calculated as

follows
_ 2
Cp =1 - Q] (4)
J
where
qg = (V. + c05u)2 +V N (v, + sinq)2
I & %

The total force and moment coefficients are then obtained by summing the
products of the pressure coefficient over the entire body geometry.
Details of the mathematics required to obtain the velocity components on
each of the panels are shown for the incompressible case in Section I of
the Appendix.

2.  SUPERSONIC-HYPERSONIC ARBITRARY BODY PROGRAM (HABP)

The Mark IV Supersonic-Hypersonic Arbitrary Body Program (HABP) is a
computer program that is capable of calculating the aerodynamic character-
istics of arbitrary complex three-dimensional shapes. A complete
description of the program and its various pressure coefficient options is
provided in Reference 2. Although the program is most accurate at hyper-
sonic speeds, its capabilities have been extended down to supersonic speeds
by use of slender body theory and empirical techniques that are described
in this section. As with USSAERO the body is described by a large number
of panels. Element area, centroid, and a unit normal are then calculated
from the four points describing the quadrilateral surface. Before the
program calculates the pressure on each surface element, it checks to see
if the element is facing the flow (in an impact region). This is done
by checking if the sign of the angle : between the freestream velocity
and the outward directed unit normal vector to the surface is positive.

If the sign is negative, the selected expansion method is used. The unit
outward directed normal on each of the surface elements is

- ._.\ .'n >
n=n, i+ nyJ + ”zk (5)
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where e My and n, are the direction cosines of the surface element

normal necessary to obtain the components of the force on each quadrilateral.
The mathematical details for obtaining these direction cosines is outlined

in Reference 2.

A common parameter necessary to all of the inviscid methods in HABP

is the angle & that a tangent to the element makes with the freestream
velocity. Once the unit outward directed normal expressed in Equation 5
is obtained on a particular quadrilateral, the tangent angle is determined
simply as follows:

£o= % - (6)
where

—
v !

-
. Vm)
i

There are 15 inviscid compression pressure methods and nine expansion
pressure methods available as an option to HABP users. The selection of
the proper method in a given application depends upon the vehicle component
and flight condition and is selected on the basis of knowledge and
experience in the use of each method.

For the present study, three combinations of compression/expansion
inviscid pressure methods have been selected for comparison with data on
the lower end of the Mach number range {Mach 1.5 to 4.63). They are as
follows:

Compression Methods

1 - Newtonian
5 - Approximate Cone (Slender Body plus Hammitt-Murthy)
14 -~ Modified Dahlem/Buck
Expansion Methods

1 - Newtonian (Cp = 0.)
3 - Prandtl -Meyer

5 - Van Dyke Unified
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In the comparisons with the data, a combination of a compression method
and an expansion method is designated by a twoenumber sequence. The
first number represents the impact method and the second number the

expansion method.

a. Newtonian Compression Method

The Newtonian theory on the impact surfaces gives the pressure
coefficient as a direct function of the tangent angle ¢ (Equaticn 6) as

follows

KsinZs (7)

(@]
[}

where

+3 2 -2
+ 1 [ - Yy + 3 M.

b. Approximate Cone Compression Method

This method is used in HABP to improve the low Mach number
pressure coefficient prediction capabilities. Three approximate cone
techniques are used. Specifically, second-order slender body theory
(Reference 6) is used in the low supersonic range and the technique
described in Reference 7 is used in the higher supersonic range. In
addition, an empirical tangent cone method described in Reference 2 is
used for large incidences where the flow becomes detached.

The second-order slender body solution of Reference 6 is used
whenever (Mmsiné) < a where a = 0.2 for freestream Mach numbers less than
3.0 and a = 0.3 for larger freestream Mach numbers. Then from Reference 6
the pressure coefficient is a function of § and M_ and is determined as
follows:

c = tanza{(Zg - 1.0) + tan25[3(e&)2 - (SME - 1) + A} (8)

p
Cone(2nd order)

where § is determined as in Equation 6 and

_ 2
&=\ Stans
8 = M2 -1

>
]

M\ 2
3.25M2 + 0.5 + (y +1) (B—“"-)
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For the higher Mach number the Hammitt-Murthy solution of Reference 7 is
used whenever (M sins) > 0.325. In this method the shock cone angle,
O¢» and surface Mach number, MC, is first determined. Results from
Reference 8 are then used to obtain the pressure ratio and local Mach
number behind the shock. Isentropic relations between the shock and
body are then used to obtain the pressure ratio on the surface, PC/P“.
The pressure coefficient is then found as follows:

(p./P) - 1.0
_ HM
o = - (9)
pcone 1/2 M2
(Hammitt-Murthy) s

The mathematical details of the Hammitt-Murthy solution are presented
in Section 2 of the Appendix. If the flow is detached a different
procedure is used to obtain O - Details are also found in Section 2
of the Appendix. If (M sins) is between 0.3 and 0.325, a transition
solution between the second-order results and the Hammitt-Murthy
solution is determined. The details are found in Section 2 of the
Appendix.

c. Modified Dahlem/Buck Compression Method

For high Mach number (> 20) this method uses an empirical
relationship that approximates tangent-cone pressures at low impact
angles and approaches Newtonian values at high impact angles. The
refationship is

Cp = Ksin's o M_ > 20 (10)
where
k=] —LL v 10| for s < 22.5°
(sings) "
and = 2.0 for § > 22.5°
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For small values of & the upper limit of the bracketed term is not
allowed to exceed 5.0. The method is extended to lower Mach numbers

by assuming that the empirical pressure coefficient of £quation 10 varies
with Mach number in the same manner as the pressure coefficient for a
right circular cone.

This gives

pcone(M_ . 20)
= CP el — (1)

C
(Eq 10) Pcone(M = 20)

a

c
Pube

The term in brackets in Equation 11 was determined empirically in
Reference 9 to be

Cp
cone(Mm < 20) a
T T oo 5 in degrees (12)

Pcone(Mm = 20) s

where
ln(Mm) - 0.588u
a=(6.0-0.34) + sin T2
and
. IY)(MOO) - 0.9]6”
n=1,15+ 0.5 sin 379

d. Newtonian Expansion Method

This method substitutes a lower limit on the expansion pressure
equal to the freestream value. Thus, for § < 0 the pressure coefficient,
CP, is set equal to zero.

e. Prandtl-Meyer Expansion Method

This method utilizes the relationships of Reference 8 to expand
the freestream Mach number to a surface Mach number, MC. With MC thus
obtained the familiar isentropic relationships of Reference 8 are then
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used to calculate the ratio of the surface pressure to total pressure.
The pressure coefficient is then calculated as follows:

;E - 1.0 ;E;;I-— 1.0
=~ -t (13)
PM Y e
z M. z M.
i} ZY/(Y - ]) - 1.0 (]4)
5u

where

LAV
7=+ 2 M)
X:l,M2

(r+ 2 "c)

Details of the expansion process are found in Section 3 of the Appendix.

f. Van Dyke Unified Expansion Method

This method for expansion flow is derived in Reference 10.

The results are i

252 y - 1H 2v/ (y-1)
Cp = L5100 - ——) - 1.0 ) for H > 2/(y-1) (18)
VAN DYKE YH
where
H= (VM2 . 1.0)s
and
¢ = ~% for H < 2/(y-1)

Pvan ovee
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SECTION IV

COMPARISONS OF THE ANALYSIS WITH EXPERIMENT

It should be noted that, in all of the comparisons to follow, base
pressure has been subtracted out and skin friction has not been included
in the USSAERO comparisons or the integrated pressure HABP results.

1. USSAERG MX DATA

Selected portions of the data base from Reference 3 were utilized
to compare the USSAERO capability to predict the detailed pressure
coefficients and forces on typical ogive nose shapes. The comparisons
of the analysis and experiment are described here for the nose geometry
shown in Figure 1 and for Mach 0.4 freestream flow.

Figure 5 shows the comparison of USSAERG with measured pressure
coefficients at 20 degrees angle of attack and the total integrated
normal coefficients for an angle of attack range from 0 to 20 degrees.
For mode]l stations between X/D = 0.46 and 1.84 the theory compares very
well with the measured results for pressure coefficients. On the remaining
20 percent of the nose, however, USSAERO predicted negative pressure
coefficients on the windward meridians and positive pressure coefficients
on the leeside. This results in the prediction of large negative loads
on the aft end of the nose with a resulting under-prediction of the
total normal force coefficient as evidenced on the right in Figure 5.
Included for comparison purposes is the simple expression from Reference 11
that relates the normal force to angle of attack and the crossflow drag
coefficient. As seen from the figure, the inclusion of the crossflow
drag component improves the correlations. Analytical studies using a
source distribution approach similar to Woodward's method (References 12,
13) experienced the same problem on short axisymmetric bodies. These
studies attributed the source of the problem to the lack of proper
modeling of the body wake. The correction used in these studies was to
model the base streamlines as part of the body description. This was
done by extending the body and then closing it with a wake of the same
shape as the nose.

1
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In the present study, the effect of extending the body downstream
without closure was made to determine its effect on the Woodward analysis.
Pressure coefficient data was available from Reference 3 for cylindrical
body extensions to the nose geometry of Figure 1. The nose had a fineness
ratio of LNOSE/D = 2.55. Cylindrical body extensions of 0.25 diameters
and 2.25 diameters were added to the N2 nose producing two additional
configurations with total fineness ratios of 2.2 and 4.8, respectively.

long

An additional comparison was made with the N2 with a 7.75 diameter
afterbody added to produce a configuration with a total fineness ratio of
10.3. The result seen on the left side of Figure 6 shows the effect of

the small aft body extension (fineness ratio = 2.8) and the larger

1

extension (fineness ratio = 4.8) on the lloodward predictions at the
nose/body juncture (X/D = 2.3) and on the extended cylindrical body.

As noted in the figure the addition of the 2.25 body extension corrected
the negative load prediction at the base of the N2 nose (denoted as the
nose/body juncture in this figure}. In implementing this procedure
another problem in the Woodward analysis became apparent. This can be
seen on the left side of Figure 6 for the pressure coefficient comparisons
on the body. Note that while the angle of attack is 20 degrees the
Woodward analysis predicts a nearly symmetrical pressure distribution on
the extended nose/body combination of L/D = 4.8; thus resulting in zero
normal force on the cylinder. This problem can most likely be attributed
to the absence of a solution to the 2-D Laplace equation in the Y, Z
crossflow plane in the Woodward analysis. Without this addition one
might not expect good agreement with data at angles of attack greater
than about four degrees.

This is indeed the case as evidenced on the right of Figure 6
where lack of agreement for angles of attack above four degrees become
significant for longer bodies as the comparisons with the 10.3 fineness
ratio configuration show.

Thus, the present study shows that (1) for a small fineness ratio
nose, extending the nose downstream one or two diameters will correct
the negative loads on the aft end, however, (2) when attempting to
predict the loads on nose/body combinations, the absence of a crossflow

12
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solution in the subsonic Woodward analysis at low Mach numbers may
result in significant errors in predicting the normal force coefficient
at angles of attack above four degrees (especially for large fineness
ratio nose/body combinations). No additional analysis was made to
determine if closing the base with an extension of the same shape as the

nose, such as done in References 12 and 13, would improve the correlations.

2. HABP-NASA PRESSURES

The remaining studies of this report compare supersonic predictions
using various combinations of the HABP compression and expansion methods
outlined in Section II]l and in the Appendix. The comparisons are made for
the two nose/body combinations shown in Figure 2 and for the large
variety of nose shapes shown in Figure 3. Results are presented over a
number range between 1.63 to 4.63 fur the nose/body combinations and
consist of comparing the predictions with the detailed pressure coefficient
data from Reference 4. For the various nose shapes seen in Figure 3, the
comparisons consist of total force and moment comparisons. This data was

obtained from Reference 5 at Mach numbers from 1.5 to 4.0.

The particular HABP compression/expansion prediction combination
used in the comparisons are identified in all of the remaining figures as
a twoedigit number (c, e) where ¢ denotes the compression method and e
the expansion method. The following numbers have been selected to

identify these selections.

Compression

c =1 Newtonian

c =5 Approximate Cone

c =14 Modified Dahlem/Buck
Expansion

e =1 Newtonian (Cp = 0)

e =3 Prandtl-Meyer

e =5 Van Dyke Unified

Comparisons for the pressure coefficient predictions are presented in
Figures 7 through 19. The solid and dashed lines show the theoretical
predictions. The circles represent the experimental data from Reference 4.

13
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To be consistent with the data format in Reference 4 the nomenclature of
the circumferential location, ¢, differs from that presented in Figures 5
and 6 of this report. The nomenclature of  in Figures 7 through 17 is
as shown in Figure 2. ¢ = 0° is the centerline on the upper surface and
0 = 180° is the lower surface centeriine.

Each fiqure is arranged to show relative effects of Mach number and
nose bluntness at a selected angle of attack for a particular X/L location
corresponding to the instrumentation stations in Figure 2. For example,
in Figure 7a comparisons between the blunt and sharp model are shown on
the left of the figure for Mach 1.6 while the same comparisons are made
on the right for Mach 4.63. All of these comparisons are made for X/L
values from 0.075 to 0.225. Identical comparisons are shown for the
remaining axial stations in Figures 7b through 7d. All comparisons in
Figure 7 are for alpha equal to -4 degrees. Figure 8 shows the distributed
loads obtained by integrating the experimental and predicted pressure
distributions from Figure 7 along the body. Figures 9 through 18 repeat
this pattern for the remaining angles of attack through alpha - 16 degrees.
Finally, the total integrated loads at each of the angles of attack are
shown in Figure 19.

A careful study of the pressure comparisons show that methods
(5,3) and (14,5) are generally more accurate on the nose (X/L between
0.125 and 0.425) while method (1,1) is in better agreement on the
cylindrical aft body. On the cylinder the expansion prediction CP=0
is in general agreement with the data. The overall correlations improve
with increasing Mach number. The resulting total force and moment
characteristics as shown in Figure 19 reflect that method (1,1) provides
better agreement with CN and CM because they are more influenced by
pressure prediction accuracy on the cylinder. The remainiing two methods
have more accuracy for the CA predictions since the axial force is more
influenced by the nose pressure prediction accuracy. Figure 19 shows that
methods (5,3) and (14,5) were more accurate in predicting CA for the
sharp model than for the blunt model. However, since these comparisons
are only for one bluntness ratio (RN/RB = 0.17) and one fineness ratio
(LN/D = 3.2), an expanded data base comparison featuring variations in
these variables will be presented in the remaining paragraphs.

14




AFWAL-TR-81-3035

3. HABP-AFATL FORCE AND MOMENTS

The data base from Reference 5 was selected for the geometrical
comparisons because of the large selection of nose bluntness and fineness
ratios available as seen from Figure 3. The unit Reynolds number for
this data was Re/ft = 1.8 x 106 for all Mach numbers. The boundary layer
was assumed to be turbulent and the reference enthalpy skin friction
option was selected in the remaining HABP predictions. The predicted
skin friction coefficient variation was about the same for all of the
configurations analyzed and varied nominally from 0.04 at Mach 1.5 to
0.03 at Mach 4.0. Since the skin friction coefficient was nearly the
same for each of the nose shapes at a particular Mach number, the
relative comparisons of predicted CA are sensitive to the inviscid
method selected. The comparisons in the following figures are made from
the experimental data with the base pressure drag subtracted. Since most
of the ogive nose surface experiences a compression in the angle of
attack range from 0 to 16 degrees, the remainder of the study focused on the

HABP compression methods. The Newtonian expansion method (C, = 0) was

P
arbitrarily selected for each combination of compression methods and

remained fixed for al)l of the geometrical comparisons.

The remaining force and moment comparisons are shown in Figures 20
to 26. Each figure is arranged to show the effect of nose bluntness
and Mach number for a particular fineness ratio. For example, Figure 20a
shows comparison between the sharp nose and a nose with bluntness ratio
of 1.0. The nose fineness ratio is also 1.0. Comparisons on the left
are for Mach 1.50 while those on the right of the figure are for Mach 2.0.
Figure 20b continues these comparisons for Mach 3.0 and Mach 4.0. The
remaining figures follow the same pattern of presentation for successively
increasing fineness ratios. For the higher fineness ratio nose shapes,
a larger selection of nose bluntness data was available for comparison:
generally ranging between RN/RB = 0.25 to 0.75.

A study of the comparisons shows that each of the compression methods

has satisfactory agreement with the CA data for bluntness ratios less than
0.4, even down to Mach numbers as low as 1.5. For RN/RB = 1.0 and 0.75
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each of the compression methods generally over-predicted the axial force
at all Mach numbers. For smaller bluntness ratios, this was not always
true, especially with the Newtonian compression method. With one
exception, Mach 1.5, each of the three methods under-predicted axial
force for the sharp nose models at all Mach numbers. By comparing the

sharp model results for progressively higher fineness, one can note a
slight improvement in CA predictions as fineness ratio increases. The
bluntness ratio is the dominant geometrical variable affecting the
analysis capability, and the agreement improves for all of the methods

as the Mach number increases. The Newtonian compression method (C = 1)
was the most accurate in predicting the normal force and pitching moment
coefficients over the entire Mach number range; this was the same

result obtained in the nose/body configuration studies (Figures 7 through
19).




AFWAL-TR-81-3035

SECTION v

CONCLYUSTONS

An evaluation has been made on two aerodynamic analysis programs
that one might use to predict the aerodynamic characteristics of simple
slender bodies without complexities such as control surfaces, nozzles,
etc. Specifically, in the subsonic range USSAERQ (Reference 1) which
subdivides the body into a large number of panels with a constant
source distribution on each panel, was se'ected for evaluation. In
the low supersonic regime (M = 1.5 to 4.63) three impact methods and
three shadow methods, available in the Supersonic-Hypersonic Arbitrary
Body Program, referred to as HABP, were studied. From this study a
number of conclusions were reached and are presented as follows:

The USSAERG program gave satisfactory subsonic predictions on the
ogive nose geometries for angles of attack less than eight degrees.
For higher angles of attack, two problems were encountered. The first !
problem was a large negative load predicted on the aft end of the nose. i
This was a result of negative pressure coefficients on the windward rays
and positive pressure coefficients on the leeward rays being predicted.
The problem was corrected by extending the nose 2.25 diameters downstream
with a cylindrical afterbody. In implementing this procedure, a second
problem in the USSAERO analysis became evident. The second problem was
the prediction of zero normal loads on the cylindrical extensions even
at angles of attack up to 20 degrees. This was a result of predicted
symmetrical pressure distributions on the cylindrical extensions. It is
felt that this is due to the 2D crossflow plane solution not being
present in the subsonic USSAERO analysis.

Three compression and three expansion HABP prediction methods were
evaluated from Mach 1.5 to Mach 4.63 for a large variety of ogive nose
shapes. The primary variables were nose bluntness and fineness ratio.

In addition comparisons were made for a nose/body combination of overall
fineness ratio of 6.67 with both a sharp and blunt nose. The results for
the nose/body combination showed that approximate cone and modified
Dahlem/Buck compression predictions methods in conjunction with

]7 i
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Prandtl-Meyer and Van Dyke Unified expansion methods were more accurate
than the Newtonian predictions for CA due to the larger contribution of
the nose on the predictions. On the cther hand, the Newtonian methods
were superior for the CN and CM predictions which are influenced more by
the cylindrical afterbody than the nose.

Comparisons for a large variety of ogive nose shapes, with nose
bluntness and fineness ratio being the primary variables, showed that
nose bluntness was the significant geometrical variable that determined
prediction accuracy. For bluntness ratios above RN/RB = 0.4 all of the

methods over predicted C The sharp nose exhibited slight sensitivity

A
to nose fineness ratio in predicted CA. The normal force coefficient,
CN, and the pitching moment coefficient, CM’ predictions were relatively

insensitive to these geometrical variables.
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APPENDIX

DETAILED FORMULATION OF METHODS

Some of the intermediate procedures necessary in obtaining the
pressure coefficients in Section IIl are included here for completeness.

1. USSAERQ/DISTRIBUTED SGURCES

As seen in Equation 4 the pressure coefficient acting at the
centroid of each panel is determined by the components of velocity in
the X, Y, and Z direction. These are obtained by the partial differen-
tiation of the source potential defined in Equation 3 with respect to
the x, y, and z coordinates referenced to the leading of each panel as
shown in the following sketch. The resulting velocities are then trans-
ferred to the components in the X, Y, Z coordinate system.

To begin the procedure consider the geometry of each panel as
defined by the following sketch

S—

) 3
)y
Yy, X y=bHm,x
2 4
X "P(x,y,2)

19
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differentiating Equation 3.

Yo, L
Vw X 4q
v

_-x = Q = .]_.
v y 4=
-V—Z = ¢, = _]_
v b4 4n

Complete details of the derivation may be found in Reference 1.
tre result for a typical corner is included here for completeness.

a:

r-'""""“-'----—----u--—-—--...._,

The velocity components in the x, y, z directions are obtained by

The resulting expressions are:

(x-£)dg dn

If (A-1)
A [(x-2)% + (y-n)? + 287372
(y-n)de dn
Ir (A-2)
A [x-0) 4 (y-m)? 4 227302
1 dedn
%) (A-3)
A [(x-2)? + (y-n)? + 2872
However,
With

tans (where § is found as in Equation 6) and m, = the body panel edge

slope dy/dx, the three velocity components at each of the four corner

points are determined as follows in the X, Y, Z coordinate system.

(Vx) 1.0

X . : [m, G-H-aF],i=1to4 (A-4)

v, 1 4n() + a2)1/2 i
v 2,172

(V!) = 'Gﬂ4: a’) ,1=1t¢to04 (A-5)
%

(!Z) = 1.0 [F+a (mG-H)],i=1tod (A-6)
v, 41 + a2)]/2 i i
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where

1/2
.- tan-] (z - ax)(x2 + y2 + 22) )
-X (y—mi X) - z (ay—miz)

+my +
1.0 X m1y az

.-
G = sinh
(1 + a2 + m‘?)]/2 ( [(y—mix)2+(ay-miZ)2+(z-ax)2]]/%>

R y )
H = sinh
((x2 + z2)1/2

The velocity components at each of the four corner points are found
by applying the above formulas with the origin shifted to the corner under
consideration and using the appropriate edge slope. The influence of the
panel is obtained by summing the influences of the four corners and applying
the resulting velocity to the centroid of the panel. Thus, for the jth

panel
ij = (vxl - vx2 - Vx3 + VX4)j (A-7)
VYj = (VY] - VY2 - VY3 + VY4)j (A-8)
sz = (VZ] - V22 - VZ3 + VZ4)j (A-9)

These velocity components are then substituted into Equation 4 to deter-
mine the pressure coefficient at tne centroid of the panel.

2. HABP/HAMMITT~MURTHY

The objective of the Hammitt-Murthy solution is to determine the
surface pressure ratio, Pc/Pm, for application in Equation 9 to calculate
the surface pressure coefficient. T[he procedure used is to determine the
shock cone angle, Os’ and surface Mach number Mc’ as outlined in
Reference 7. The pressure ratio and local Mach number behind the shock
are next obtained followed by an isentropic relation between the shock

and surface to obtain PC/Pm.

O
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To determine Os the basic equation to be solved is, from Reference 7,
the quadratic

H] hS + (2 sin 28) hs + H2 =0 (A-10)
where
hS = (oS - 8)
_ . 2
H1 =2 - (y +5) sin” ¢

% + 2/M2)

x
"

5 = -[{y-1) sin

Note that once hS has been calculated and § has been found from Equation 6,
oS is then determined. Equation A-10 is first checked to see if the

roots are real or imaginary. If the roots are imaginary the flow is
detached and the Tangent Cone Empirical method of Reference 2 is used,

as foliows:

(KM, sin s + e NcMa STy (A-11)

oo

sino
S

where

=~
H

2(v+1)/(y+3)

If the roots of Equation A-10 are real then the solution is taken as
the quadratic root

. H, H 1/2
o, =6 - S0 10 1.0+ —2— (A-12)
1 sin® (2s)
If H]+0, then the term within the brackets in Equation A-12 is expanded
into a power series and the solution becomes ﬂ
0, =6 + "2 [1.0 - L H.H, (1.0 LTS (A-13)
s 2sin(26) L'V T4 T2 VoV T 2 N2
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The surface Mach number is determined as

Hﬁ coszoS (1+2h§) 1/2
Moo= (A-14)
c Y=1 12 1.2 52 2,
1+ 5= M (sin"o, - 2h, cos"o)

The pressure ratio behind the shock is determined next from Reference 8

=& sipl0 .12t .
PP, = Y M, sin“o, oy (A-15)

Next the isentropic relations of Reference 8 are used between the shock
and surface for constant TT. First, the surface temperature ratio is
determined.

T (.o+5te

TC T (A-16)
o (1.0 + 32; M)
The ratio Tm/Ts is found as follows (Reference 8)
T, (PP, + A)
T; = Ps Ps (A-17)
'P: (1.0 + A 'p:;)
where
- x-1
A YA

T \v!
PC/PS=(T—C— {3) (A-18)

€= £ 2 (A-19)
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P
=£ is then substituted into Equation 9 to obtain the surface pressure

[
ratio. It was pointed out in the main text that the Hammitt-Murthy

solution is applied for M_sins > 0.325 and the second order solution for
M_sins < 0.3. For values of M sins between these values a transition
solution is obtained. This is found by using a Taylor's series expansion
of the second order solution in the neighborhood of M _sins = 0.3.

Specifically let

CP(x) = Cp for a < M_sins < b (A-20)
CONE
(TRANSITION)
where a = 0.3 and b = 0.325
C.(a) = C for M sins = a (A-21)
P PeoNE =
(2nd-order)
C.(b) = C (A-22)
P P CoNE
(HAMMITTfMURTHY)
X =Msins, aX = X-a (A-23)
and
h = b-a (A-28)

Then the transition solution is found as

2
dC dC
- P p 2 -
Cp(x) = CP(a) gy Ax ¢ " AX (A-25)

The first derivative is found by differentiating Equation 8 with
respect to tans and applying the following chain rule:

dCp - dCp - dCp _d(tans)
dX d(M_sins) ~ d(tans) d(M_sins)
_ 4% d(tans) _ ds
d(tans) ds d(M_sins) (A-26)
dcP sec26 - dcp 1

d(tans) ~ M_coss ~ d{tams) "\, .3,

24
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Upon differentiating Equation 8 with respect to tans and combining with
Equation A-26 the result is

dc

——-E ){J2
dX '

= tanaid(s - 1.0) + tan26[6f (2¢ -1
(A-27)

- (5M§ - 1)(45-1) + 4A]}/(Mmcos3 )

where the terms in this equation are the same as defined in Equation 8.
The second derivative is found from the finite difference relation

2

d°c C, (b) - 2C, (a) + C, (a-h)
2P - P P2 P (A-28)
dx h
where
dCP
CP (a-h) = CP (a) - W - h
dC
2 P
d CP ) CP (b) - CP<(a) - ax— h (A_zg)
dX2 h2

3. HABP-PRANDTL-MEYER EXPANSION

The general procedure for the Prandtl-Meyer expansion from free-
stream is as follows: first, the relations from Reference 8 are used to
obtain the surface Mach number, MC. Then an isentropic relationship is
applied between the freestream and surface to obtain Pc/Pw. This
expansion procedure is used whenever & from Equation 6 is negative.

The Prandti-Meyer angle corresponding to the freestream is

v af BF tan7! X2k (M2-1) - tan!gME-1 (A-30)
. Y-] Y+] oo -
The Prandtl-Meyer angle after expansion is

Ve Ty, o+ [5] (A-31)

25
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The approximate downstream surface Mach number is found as follows

dM_
A At S (A-32)

dM
Differentiating Equation A-30 for ECS' Av and substituting into

Equation A-32 gives

(o) (1 + 5L )
Mo = M T4 > (A~33)
ME-1
where
Av = Ve T Ve T 16)

Equation A-30 can be used with Ve replacing v_ and MC replacing M_ and
rearranged to give

> 1/2
- o/ X .
NC ; 1.0-+(R‘ Y—l) % {(A-34)
ve * tan"' VM§-1.0
where R = tan
y-1

Equation A-34 has the form

M. = g(M.) (A-35)

M -

1 -g'(M) = F (M) (A-36)

or
g(M) = F(MD) =0

and
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Equation A-35 may be solved by iterating for the surface Mach number Mc
using the Newtonian method

F(MC.)
M =M - (A-37)
ci+] Ci F Mci
Mc]_ - g(Mci)
=M.~ Ty (A-38)
¢ 1-g'M
1
g(Mci) - g'(Mci)Mci
) 1T -g'M. ) (A-39)
1

With Equation A-32 used as a starting value, successive iterations of
Equation A-39 will yield the final surface Mach number Mc for a given
value of ve- With MC determined, the pressure coefficient is determined
from the isentropic relationship given in Equation 14.
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