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A review has been undertaken of the available data on the subject of the drag
.. of excrescences on aircraft surfaces. Information frora this review has been

summarized and resented in a way that is readily usable for prediction and
design purposeL. The basic characteristics of boundary layers are discussed
and, where possible, the drag of excrescences is related to those charac-
teristics,

In particular, because the size of many types of surface imperfection is
small in comparison with boundary layer thicknesses, the drag of such im-
perfections can be correlated in terms of the properties of inner regions of
the boundary layer. Several previously published analyses of this type are
highlighted and, where possible, extensions to other data sources or other
types of excrescence are presented. The practical problems of applying these
data in the varying velocity gradients existing on aircraft surfaces are
treated and one section is devoted to the drag of auxiliary air i.nlet and
exit openings. Gaps in existing data which offer opportunities for research
effort are pointed out.
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NOMENCLNTURE

a pipe radius
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C local skin friction coefficient, 2z / pw v 2e
f W w 0

C local skin friction coefficient, 2 Pw' 112
fe w w e

CF skin friction coefficient of complete body

CT thrust coefficient, thrust/q 0 A

D drag

A D drag increase due to excrescence

d diameter of excrescence

f projected frontal area of excrescence

2 h+ roughness Reynolds number, u, h/v

boundary layer shape factor, b /6

H boundary layer shape factor, ( 6- 8*)/0

A H loss of total pressure

h height of discrete roughness; mean enthalpy per unit mass

k height of distributed roughness
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ks equivalent %and grain roughness

k crit.1 maximum roughness height which will not cause transition

kcrit. 2  minimum roughness height which will result in transition immediately

behind roughness

K von Karman constant, 0.4-0.41

length proportional to mixing lungth

M Mach number

md drag magnification factor

mm momentum magnification factor

m. inlet nass flow per unit area, V.3. 11.

ma free stream mass flow per unit area, pov0

q dynamic pressure

qoI free stream dynamic pressure

qe local dynamic presst~re at edge of boundary layer

C mean dynamic pressure from surface to height of excrescence

r radius of curvature, or recovery factor

R Reynolds nuihber (subscript indicates characteristic length) C-chord,

0 -momentum thickness, x-length from stagnation point

T temperature (with following subscripts) W-wall e-edge of boundary layer

S pplanform area of excrescence

Sw wing planform area

U. velocity component in stteamwise direction

u local velocty at edge ot boundary layer

Uh local velocity at heignt of roughness element

ur friction velocity, ( T W/ 1, W)1/2

U U/ut

u' fluctuating component of longitudinal velocity

U mean longitudinal velocity
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SV() ,nlisturbed freestream velocity
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SV outlet velocity
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X surface length :roi stagnation point
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O momentum thickness, also submerged ifL1ec. inclinat.or. angle, exhaust flow
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/' v •scosit.y

V kinematic viscosity,pz/.u

3 p mass density
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i. INTRODUCTION

In the highly competitive field of aircraft development and procurement, aerod-

ynamic performance is frequently the outstanding factor in final decisions. It is very

important therefore fur aerodynamic designers, and for technical evaluators, to be able

to predict aircraft drag with the best possible precision. Relatively small advantages

in speed or in fuel consumption can contribute significantly to operational efficiency

of transport aircraft, and for combat aircraft, small margins in performance may be

ultimately decisive. In addition to these basic considerations, conservation of fuel is

becoming a more and more important independent criterion in the design of all types of

aircraft.

Surface imperfections have long been recognized as a drag source and numerous

studies have bnen devoted to quantifying this drag problem. These studies have been

approached in various ways in the course of aerodynamic development with the result that

information on this subject exists in many widely diverse forms. Reference 1.1, first

published in 1951, contains a chapter on drag due to surface irregularities which is an

excellent collection of data available (in later editions) up to about 1955. Since that

time, a greater und'erstanding of boundary layer phenomena and of roughness drag mecha-

nisms has been developed, and through that understanding substantive generalizations

have been made possible in a number of cases. Later experimental work has also been

dedicated to Mach number and Reynolds number regimes which are pertinent to modern air-

craft. Recent useful, if brief, reviews are provided in References 1.5 and 1.6.

When proper attention is paid to design and manufacturing tolerances, the roughness

drag of transport aircraft can be reduced to rat-her small (but still j.Liiificant)

values. Dray attributable to this source on the Lockheed C-5 airplane is estimated to

be approximately 3-1/2% of cruise drag (Reference 1.2). At the time the C-5 was de-

signed, it was felt that the smoothness standards accepted represented a rational

compromise of fabrication costs versus performance benefits. As fuel costs continue to

rise, a reassessment of this question might justify more stringent specifications. On

smaller aircraft the same machining and assembly tolerances of course result in greater

relative roughness, and for fighter aircraft, larger ratios of wetted area to wing area

cause a further escalation.

Reference 1.3 presents a detailed review of three fighter aircraft showing that

roughness drag varied from about 10% to 20% of total drag at subsonic speeds. When

considered in comparison with other configuration changes which could cause the same

drag increment, this roughness drag assumes rather large significance. It is also

apparent that, if all other factors were constant, a fighter aircraft with roughness at

the low end of this range would enjoy a substantial advantage over an adversary at the

high end.

In a paper presented in 1967 (Reference 1.4), HaineE reviewed the drag of a number

of transport aircraft. A breakdown of drag sources on those aircraft indicates contri-

butions from surface imperfections and excrescences varying from 15% to 24-1/2% of

profile drag which probably represents 8% to 12% of cruise drag. A detailed analysis of

the drag effects of excrescences on the VFW 614 aircraft (a small short range aircraft)

in Reference 1.7 leads to a similar penalty of 22% of the profile drag. References 1.2,

1.3, and 1.4 each present details on the specific roughness items which contribute to

this extraneous drag. The outstanding indication from these details, however, is the

fact that the problem is all-pervasive. Roughness drag can be minimized onlý by

aggressive attention to details of the surface condition of all parts of the aircraft.
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The objective of this work is, therefore, to provide up to date information on the

drag of surface imperfections. Modern boundary layer theory is reviewed to highlight

the phenomena underlying dtag due to surface roughnesses to provide an understaiding of

the mechanisms of such drag increases. Tie authors have at tempted to collect the best

available methods for prediction of roughness diag increments in the light of that basic

understanding.

It is expected that this collection 01 information will be of assistance to air-

craft designers who must assess the drag resulting from surface imperfections and make

decisions on cost effective design and manufacturing standards. Finally, 't is hoped

that the review presented here will highlight those areas where data are meager or lack-

ing and will therefore provide the incentive for further research and d,!velopment.
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2. BASIC CHARACTERISTICS OF BOUNDARY LAYURS

2.1 Laminar & Turbulent Bourdary Layers on Smooth Surfaces

2.1.1 Introductory Remarks

In this section we shall briefly review the main features of boundary layers on

smooth surfaces and the associated theories since they are an essential preliminary to

the consideration of the effects of roughness. We shall only present the subject in

summary torm since it is a vast one and is well covered in existing text books (see for

example Referer.ces 2.1, 2.2, 2.3, 2.4). We shall largely confine the discussion to

two-dimensional incompressible flow but shall briefly indicate the extension of the

topics discussed to three-dimensional and compressible flow where convenient.

In most engineering situations involving a body immersed in a fluid moving relative

to it the Reynolds number based on the relative velocity and a typical body length is

very large compared with unity. In such cases we can identify a thin layer of fluid

adjacent to the body surface in which the velocity relative to the body changes rapidly

with distance normal to the surface from zero at the surface (the "no-slip condition")

to the local freestream velocity at the outer edge of the layer. The layer is therefore

a region of large rate of shear and in consequence viscous stresses can be important

within it, but outside the layer these stresses are generally negligible and the flow

behaves as if it were inviscid. This layer is known as the boundary layer.

Over some forward part of the body we find that the flow in the boundary layer is

laminar, i.e. the fluid particles follow smooth paths. Then at some stage, depending on

the pressure distcibution, the level of free stream disturbances and the surface

condition, the flow in the boundary layer more or less rapidly changes to turbulent and

the process of this change is called transition. In turbulent flow the fluid particles

experience random variations in velocity magnitude and direction additional to their

mean motion and typically the fluctuations in velocity magnitude can be of the order of

10% of the mean velocity. These fluctuations introduce momentum transport terms in _he

equations of motion additional to and 3entrally much larger than those associated

directly with viscosity and these transport terms can be regarded as equivalent to

additional stresses usually referred to as Reynolds stresses or eddy stresses. Similar

eddy transport terms arise in the energy equation.

If x denotes the distance from the forward stagnation point along a body surface in

the streamwise direction and 8 denotes the boundary layer thickness then for a laminar

boundary layer 
6
/x a RH -1/2, where Rx . Vo x/ V, being the undisturbed main stream

velocity and v the kinematic viscosity. if tw denotes the shear stress at the surface

(or skin friction) then we define the skin friction coefficient as ct = 2 w/PVo , where

1) is the fluid density, and we find that likewise cf U Rx-112 for a laminar boundary

layer. With the boundary layer turbalent we find that to a good approximation 6/xa R xn

and cf t R -n, where n is about 1/5. Thus, for a flat plate at zero incidence in a uni-

form stream and hence with zero pressure gradient:-

6/x - 5RX- 1/ 2 and cf = 0.664 Rx - 1 / 2, with the boundary layer laminar, and

,/x n-0.37 R x-/ and cf - 0.06 R15 , with the boundary layer turbulent. These figures

illustrate how thin the boundary layer is in most practical applications whnre the

characteristic Reynolds number is rarely less than 104 and can reach values of the order

of 109.
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The thinness of the boundary layer and the associated high rate of shear are used

to justify approximations to the kquationo of motion of a viscous fluid (the

Navier-Stokes equations) as well as the equation of energy which lead to the so-called

boundary layer equations. In particular velocity and temperature gradients with respect

to x are treated as small compared with the gradients with respect to y, the distance

normal to the surface, and this is reflected in the relative magnitudes of the

corresponding stresses and heat conduction terms. A consequence is that the pressure

change across the boundary layer can generally be neglected. It is also inferred that

the thin boundary layer displaces the external "inviscid" flow outwards by a small

amount (the so-called "displacement thickneso") and hence slightly displaces the

effective boundary of the external flow from the body surface. However, for many

purposes this weak interaction between boundary layer flow and external flow can be

ignored.

The above discussion relates strictly to unseparated boundary layers. But in the

presence of a strong enough streamwise rise in pressure the innermost regions of the

boundary layer can be so retarded as to reverse in flow direction beyond some point and

then the boundary layer develops into a separated shear layer moving away from the

surface over an inner region of upstream moving flow. The boundary layer is then said

to be separated, and if the external flow is not time-dependent the point at the

surface where the gradient of the streamwise velocity component (u) with respect to y is

zero is referred to as the separation point. With a separating boundary layer the

interaction between it and the external flow can be strong, since the separated boundary

layer can move a considerable distance fru.m the body and so profoundly modify the

effective shape of the boundary which determines the external flow. Thus, flow

separation from a wing at high enough incidence is the cause of the stall and is

associated with a marked reduction of lift, an increase of drag and develuijuent of

pressure fluctuations and buffeting. The reversed flow plus the ir. er region of the
separated shear layer comprise a relatively large scale eddy which tends to be unstable

and is convected downstream whilst it breaks up into smaller eddies, meanwhile a new

eddy forms from the wing surface to take its place and so on. Eence the as3ociated

pressure fluctuations and bucfeting.

The streamwise extent of the region over which the transition from laminar to

turbulent flow takes place depends strongly on the Reynolds number. At Reynolds numbers

less than about 106 in terms of body length the transition region can be of significant

extent, but for Reynolds numbers greater than about 2 x 106 it is sufficiently small to

be regarded as a point (or line in three dimensions) referred to as the transition point

(or line). Laminar and turbulent boundary layers have very different characteristics.

The turbulent boundary layer is fuller in velocity profile, grows at a faster rate, has

a greater frictional stress at the surface and is much less easily caused to separate

than the laminar boundary layer. The transition process is a manifestation of the

tendency to instability of the laminar boundary layer and this tendency is enhanced not

only by increase of Reynolds number but by positive (adverse) pressure gradienits and

surface imperfections.

The main effects of such imperfections and excrescences in general on drag are

threefold. Firstly, they can cause transition to occur upstream of its position on a

smooth surface, and to that extent they increase the drag because of the greater

streamwise extent of turbules; boundary layer flow. Secondly, local flow separations

may occur from the excresenc35 which involve increased momentum losses and therefore

increased drag. If the excrescences are well immttersed in the boundary layers the eddies

associated with these separations are small, being of scale comparable to the

excrescence size and they are then readily absorbed into the general structure of the

boundary layer turbulence. If the excrescences are large in relation to the boundary



layer then thay will result in correspondingly large eddying wakes which can strongly

interact with the external flow. Thirdly, under conditions of strong, positive pressure

gradients surface imperfections and excrescences even when well immersed in the boundary

layer, may by virtue of their effect on the boundary layer trigger an earlier flow

separation from the surface than would occur if the surface were smooth.

2.1.2 Boundary Layer Velocity Profiles and Basic Skin Friction Laws

For the attached laminar boundary layer on a surface with prescribed pressure

distribution the velocity distribution at any streamwise station can be determined as

accurately as one wishes from the boundary layer equations and prescribed boundary

conditions (see Section 2.1.3) since they require no further assumptions for their

solution. The velocity profile on a flat plate in a uniform pressure distribution in

incompressible flow is illustrated in Figure 2.1 where u/ae is plotted as a function of

- y/2 'ue/vx, ue is the free stream velocity at the outer edge of the boundary

layer. It can be approximately, fitted by various formulae of which the simplest

offering a tolerably good fit in terms of y/6 is

u

where h is the boundary layer thickness. The thickness b cannot be defined exactly

since strictly the boundary layer extends to infinity in the y direction, but in

practice at all but small distances depending on the Reynolds number the difference in

velocity (ue - u) is small enougn to be neglected. Thus we may choose to define b as

the value of y for which u = 0.995 u e, say; this provides a unique definition and b is

then small enough in relation to x for the boundary layer assumptions to be seen to be

valid for Reyrnods numbers of normal engineering interest.

1.0

u
uue

0.4-

0.2-

0 1.0 2.0 3.0

•,y u y 1/2

2 px/ 2x x

Figure 2. 1. Velocity Distribution in Laminar Boundary Layer on Flat Plate at Zero
Incidence (Blasius Profile)

In the presence of a negative (favourable) pressure gradient the velocity profile

is fuller than that for zero pressure gradient, whilst with a positive (adverse)

Spressure gradient the profile is less full and develops a point of inflection. We have

already noted that in a sufficiently strong adverse pressure gradient, there can dew lop

- a reversal with separation of the boundary layer (see Figure 2.2).
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A PRESSURE GRADIENT

u I . NEGATIVE (FAVORABLE)
C B ZERO

0U , C POSITIVE, SEPARATION
IMMINENTD STRONGLY POSITIVE,

IBBL IS SEPARATED

0 0.2 0.4 0.6 0.8 1.0
y/ 6

Figute 2.2. Typical Velocity Distributions for Laminar Boundary Layer in Negative
Zero and Positive Pressure Gradients

A typical turbulent boundary layer profile is much fuller than a laminar boundary
layer profile and consequently has a higher shear stress at the surface. This is
because the vigorous mixing associated with the turbulence helps to even out the
velocity distribution across the boundary layer. Figure 2.3 shows a typical profile for
a turbulent boundary layer on a flat plate in zero pressure gradient in incompressible
flow compared with that for a laminar boundary layer. Adverse and favourable pressure
gradients change the profile in the same sense as for a laminar boundary layer but to a
much smaller degree, and it generally requires a much greater pressure rise to cause a
turbulent boundary layer to separate.

1.0 U!T
.TURBU LENT

0.8.

u 0.6 LAMINAR
u 0.4M

0.2

0 0.2 0.4 0.6 0.8 1.0

y/ 6

Figure 2,3. Typical Velocity Distributions for Laminar and Turbulent Boundary
Layers on a Flat Plate at Zero Incidence

An empirically determined overall approximation to a turbulent boundary layer
velocity profile in incompressible flow in zero or small pressure gradients is the

so-called power law:-

U =C~y 1/n(2l--- 
2 (2)

where ut : iw/?, (the friction velocity) and C1 is a constant. The number n is

usually taken as 7 for a range of Reynolds numbers in terms of x from about 5 x 105 to
7 6 810 , with C = 8.74. For higher Reynolds numbers in the range 10 to 108 a closer fit

to experimental data Is given by n = 9 with C1 = 10.6. From 2(2) it follows that

u . 1/2n
UTr= 2(3)
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SFrom equation 2(2) and the use of the mcmeium )r.tegral equ.ation (see lectlon

2.1.3) cne can readily deduce a number of useful empirical relations between 6 , c1 ,

CF, , and R for the basic case of a flat plate at zero incidence in incompressible

flow. Here CF i' the overall skin friction coefficient for one face of a plate of chord

c (iLe. CF I/cfo Cf. dn),

Rc =UeC/ , R0  Ue9/v, and 9 is the momentum thickness:-

e $ ( - (1-) dy
0 e

These relations are

6/x0=.37 R-1/5 'c f0.0592 R"1/5 C -0074R-1/5
X f X for n =7

12'4
c- =0.026 Re-1,2()

and V/=0.27R-16 c =.0375Rxi/ C =0.0450,R-/x ' X f, n =9

cf = 0.0176 Re-1/5,

Somewhat closer and more general epproximations to experimental data for the skin

friction coefficients are provided by the Prandtl-Schlichting semi-empirical relations:-

f (2 IglogR - 0.65)-2.
3

CF 0. 4 55(lag R )-2.58. 2 (5)
F10 C )

These relations are compared with the corresponding ones for a laminaL Lboundary

layer in Figure 2.4 & 2.5.
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A detailed examination ot the struct'.re of the turbulent boundary layer on a smooth

surface reveals that it can be conveniently regarded as made up of three regions.

Adjacent the surface there is the vircous sub-layer in which the turbulent fluctuations

are relatively small and the dominant shear stress is the purely viscous one, T, =PLu/ay,

which is generally regarded as constant across the sub-layer. This layer is very thin,

its thickness y, is given by Yt ut/V = 0(10) and is of the order of one hundredth of the

boundary layer thickness. Above the sub-layer there is an inner region of the boundary

layer about 0.4 8 in thickness in which the turbulence intensity is large, the flow is

continuously turbulent and the dominant shear stress is the Reynolds stress, It =

-pu' v'. Here, dashes denote the turbulence velocity components, and a bar denotes a

time mean. A wide spectrum of eddy sizes and frequencies are present in this region.

From about 0.4 6 upwards there is an outer region characterised by large low frequency

eddies. The outer edge of the boundary layer therefore presents a convoluted appearance

at any instant and the smooth curve with which it is normally represented is really a

time mean. The turbulence at any point in this outer region is not continuous but

intermittent reflecting the passage of large eddies with intervals of laminar flow

between them. We speak of an intermittency factor Y , which is the fraction of time

that hot wire measurements at a point show the flow there to be turbulent, and

decreases from 1.0 at about y = 0.46 to zero at about y = 1.26 (see Figure 2.6 from

Ref rence 2.5). The Reynolds stress continues to be far greater than the viscous stress

in the outer region just as it is in the inner region. It should be emphasised that the

three regions merge into each other, the boundaries between them cannot be identified

with any precision and can change with changes in external pressure distribution or
surface condition.

I I...........
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There is an alternative if complementary way of looking at the structure of the

turbulent boundary layer. Within the lowest one-tenth or so of the boundary layer the

so-called law of the wall holds. There it is argued that the velocity distribution is

determined solely by the distance y from the wall, the velocity u, (since the shear

stress is practically constant over this region) and the kinematic viscosity V . The

presence of the wall therefore dominates the flow in this region. Dimensional reasoning

then leads to the relation

U~ - fl /YJ.T

or + + yu 2(6)or u =f (),whereu+u ,y=_Yr

U'r v

and f denotes some function to be determined. This is the law of the wall in its most

general form. In the viscous sub-layer where T = glu/ay = •w' the law of the wall

takes the particular simple form

+ + 2 (7)u = y

To determine the form of the function f in the rest of the law of the wall region

we can appeal to a numbtr of different turbulence models and associated processes of

reasoning of which the simplest if crudest is based on the concept of the turbulence

mixing length, analogous to the mean free path of moleculai motion. Thus, it is

postulated that there is an average length normal to the wall over which a fluid

particle moves retaining its initial mean momentum and then it mixes with its

surrounding flow. The mixing length is assumed small compared with the boundary layer

thickness. This simple picture does not reflect in any realistic sense the complexities

of turbulent shear flow but it yields semi-empirical relations of proven practical

value. It readily leads to the result

t =-Puv 22(8)

where £ is a length proportional to the mixing length. This can be written

rt =P t (dU/ay) 2 (9)

• I I I II



II0

where ILt - /2 lau/ayj can be regarded as an effective eddy viscosity coefficient.

It is however a variable of the mean flow unlike the ordinary viscosity coefticient Ix

Two further assumptions are made. Firstly, that in the region of the law of the

wall (other than in the viscous sub-layer)

SKy 2 (10)
t

where K is a constant, the Von Karman constant, found experimentally to be 0.4 - 0.41;

secondly that in this region Tt = w It can then be readily deduced that

U - Iny +const
K

If, proceeding further, we take account of the presence of the viscous sub-layer, we

arrive at

uy÷ in~ 2 (11)
u = UT =j -lny + B (1

where B is a constant. This is the so-called logarithmic form of the law of the wall.

A different approach due to Squire (Reference 2.6) provides a realistic merging

with the viscous suh-layer. He started with the eddy viscosity assumption of equation

2(9) and on dimensional grounds inferred that

Pit =const PuT 0,-yo),

where yo is related to the viscous sub-layer thickness, since it defines the lower

boundary of the law of the wall region in which the eddy stress is domirnant. Further,

on dimensional grounds it is argued that

Yo = const vu/

The total shear stress

T=T +T = + P) ,au/?

•t t t ' w

from which the law of the wall follows in the form

-u 1n Lu (Y--) +L + B, for y>yo 2 (i2)

L. A



Values of K and B are variously quoted in the experimental literature, favoured values

of K are 0.4 and 0.41 whilst corresponding values of B of 5.5 and 5 are often quoted.

These differing values in part reflect experimental errors but there may be some small

dependence of K and B on Reynolds number. With F = 0.4 and B a 5.5, equation 2(12)
gives continuity for u+ at YO with the viscous sub-layer (equation 2(7)) if uy 0 /v - 7.8,
whilst with K = 0.41 and B = 5.0, continuity follows if u.yo/v = 7.17. Equation 2(12)+

and equation 2(11) are in good agreement for y greater than about 30, whilst for values
of y+ between about 7 and 30 equation 2(12) is in good agreement with measurements of
Reichardt in the buffer region between the viscous sub-layer where T, is the dominant
part of - and the fully turbulent part of the law of the wall region whrre It is

dominant,

An alternative approach to encompass the viscous sub-layer is that adopted by Van

Driest (Reference 2.7) who suggested that the relation 1 Ky should be changed to

I =Ky - xp. (-Y+/Ao)] 2(13)

the additional factor F - [1 - exp. (-y +/Ao)], is presumed to account for the damping
effect on the turbulence as the wall is approached. Van Driest found the constant A0
empirically to be 26, although the value 25 is sometimes quoted. The resulting+ +

expression for u is somewhat more complex than 2(11) but tends to it for y greater

than about 100 and to the viscous sub-layer relation (equation 2(7)) for small y

It will be clear from 2(11) that a plot of u + against lny + (or logl 0 y +) will take

the form of a straight line with slope I/K (or I/Klnl0) for the law of the wall region.
With a unifcrm cItcrn-l flow (zero pressuie gAadient) Liii. 5LLdight line extends for+

values of y from about 30 to about 500 depending on the Reynolds number (see Figure

2.7).

Consistent with tiie argument that the law of the wall region is independent of the

external flow conditions it is found that for an attached turbulent boundary layer there
is always a region in which the law of the wall holds whatever the external pressure

distribution. However, the relative extent of that region diminishes as the external
pressure distribution beccmes increasingly adverse and for a boundary layer approaching

separation it becomes difficult to identify a law of the wall region with any confidence
(see Figure 2.7).

0 ZERO PRESSURE
GRADIENT

X ADVERSE GRADIENT

35A- b. 1. ON POINT OF GRADIENT
30. SEPARATION

25-0
40 0u

4 +~
20 K "

u+ 1:5, - (LOG LAW O WALL)

10-A

5
U•- -Y• -CVI•COis SUB-LAYEP)

C - --- L.----
1.0 2.0 3.0 4.0

LOG 10 y

Figure 2.7. Typical Plots )f u - log 10 y+ for Different Prezure Gradientý on a
Snw.tkh Surface



Outside the law of the wall region we have the remiainder of the boundary layer

(some 90% of it in thickness). It is argued that in this region viscosity plays no

direct part and that the velocity defect relative to the external velocity, ue - u, is

salely a function of u1, y, b and some parameter characterising the streamwise pressure

distribution. With a uniform external flow it is therefore interred that

Sf (Y/6) 2(14)

k where f is a fanction to be determined experimentally. Equation 2(14) is well supported

by experimental data and the function f deduced by Coles (Reference 2.8) is illustrated

in Figure 2.8. Equation 2(14) is referred to as the velocity defect relation.

A self-preserving, or equilibrium, turbulent boundary layer is defined as one where

the velocity defect ratio, (Ue-u)/Ut , is the same function of y/b for all x. From

2(14) it follows that the case of uniform external flow offers one examp]e of such a

Loundary layer. Clauser (Reference 2.9) introduced the parameter

(U f m_ (u. U) 2dy/If (uca u) dy 
2 (15)"0 OT 0 UT

which is a constant for self-preserving boundary layers and is related to H = / where

?* is the displacement thickness =J (1 - UýI)dy, by the relation
0 e

G = (H-1) ue 2 (16)

Clauser (Reference 2.10) also demonstratcd that boundary layers which were very close to

self-pr'eserving resulted when the pressure gradient parameter

o * dp 2 (17)

is constant.
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Figure 2.8. Velocity Defect Relation for Smooth Flat Plate at Zero Incidence as Derived by Coles



Coles (Reference 2.11) proposed on the basis of his analysis of a considerable body of

data for turbulent boundary layers in non-uniforma external pressure distributions that

I u~~~+ I + -__,_,,s)208

U +- lny++ B + K (b/6) 2K(18)

it
K

We see that the third term on the right describes the deviation with y of the velocity

profile from the law of the wall. The function w(y/5) is such that w(0) - 0 and w(l) - 2

and it is very similar to the normalised velocity distribution typical of a half wake.

Equation 2(18) is therofore generally referred to as the law of the wake. The basic

concept is that away from the wall the boundary layer tends to develop as if it were

part of a wake but it is modified by the presence of the wall. The function w(y/6 ) was

determined empirically by Coles but a close fit is
i

w(y/6 ) r2sn
2 

(Sin - C.T[ 2(19)

Putting y = 8 in 2(18) it follows that

(x [ [. l 8 -B] 2(20)

2 4 T K

where + = + u, /. , so that 11 (x) can be determined at any station x given u7 and

5. We can regard 11(x) as a scaling factor determined by the external pressure distri-

bution.

It can be shown that 1I (x) is a function of the Clauser parameter G so that it is

constant for self-preserving boundary layers. With zero pressure gradient n - 0.55

for values of R6 greater than about 5000.

Reverting to the law of the wall region we note that if we multiply both sides of

2(11) by uT /ue we get

b -=- In (UY B - In uue ur
L e

If we now write the local skin friction coefficient as

c fe = 2 , =2 (ur 1u. 2

or u,/u - (c,/2) 1/2

then it follows tV-tAt

%(" u =ýf [B + B InV c- 2 (21)

+ V1 27 2(2

-'
4..e:•
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Hence, a family of curves can be plotted of u/ue against ln(u y/v) each corresponding to

a specified value of c,,. Once plotted, such a chart can be compared with measurements

made in the law of the wall region of u/ue as a ftnction of u eY/v and the corresponding

value of the skin friction coefficient c can be deduced. This method of determining

cfe is referred to as the Clauser plot method since Clauser first suggested it

(Reference 2.9).

We can use equation 2(9) to determine, from ri'asuirements for which rt is known,

the distribution of the eddy viscosity ;At across the boundary layer. It is found to

rise to a maximum with y/8 up to y/8 :, 0.3 and then it falls slowly. Further

Li/u O6 *Q = f(y/6) 2 (22)

where the function f is found to be practically the same for all self-preserving flows.

Indeed outside the law of the wall region the function f is approximately proportional

to y , the intermittency function, so that

v =l ,/P=0.0168u a 6*Y 2 (23)

Likewise, equation 2(8) can be used to determine experimentally the distribution of

the length f across a boundary layer. Within the logarithmic law of the wall region we

find as expected f/'ý = K(y/6 ), but outside that region I/6 tends to a constant value

of about 0.08 to 0.09 for self-preserving boundary layers. A commonly used formula is

A/6 =0.085 tanh (6- 4) 2 (24)

2.1.3 The Boundary Layer Equations

In this section; it is convenient to include the terms arising from

compressibility, so that p and pk are variables.

With the boundary layer approximations referred to in Section 2.1.1 the mean

equations of continuity, motion and energy for a viscous fluid in two dimensions, with

the flow at infinity steady, become

n(PU) + (Po) =0 2 (25)

Du du du 2 (6

where T = p 3u , for laminar flow,
ýy

= P u- Pu'v', for turbulent flow.

6Y
O Rh = 1uh + u d* + u 2 (27)
Dt X a ½a d+ x 3>'



1 where q k T ,for laminar flow,Sbýy

_k iT PY ', for turbulent flow.Sbýy

Here, u,v are the mean velocity components in the streamwise direction parallel to the

surface (x) and normal to the surface (y), respectively, T is the mean temperature, h is

the mean enthalpy per unit mass (-- f CpdT), k is the coefficient of conductivity and

like it is a variable in compressible flow, dashes denote turbulence fluctuations and a

bar denotes a mean value i.e. an average taken over a period that is long compared with

that typical ot the turbulence fluctuations.

An alternative to 2(27) can be obtained by adding it to u x equation 2(26) whence

we get

hT hT h (T +UT) 2 (28)

where h= T h + (u 2 /2) and is sometimes called the total enthalpy per unit mass.

The boundary conditions are:-

y = 0, u = v = 0, T or 6T/ýy are specified,

y =(or 5), u =u (x), T= T(x).

The momentum intcgral equation can be obtained by integrating equation 2(26) with

respect to y from the surface to beyond the edge of the boundary layer. It can be

expressed for a perfect gas in the form (see Reference 2.1):--

dx "-A e H+-~d.._ du 2 ]1 r

- e pu 2 ' 2(29)
dx u dxe

6 Pu Pu,
where now 0 ' -u (1 -- L) dy, 8* (I -5(1- )dy, H .6*/8

fo P U a . P U
e e e n er

and M is the local free stream Mach number. Equation 2(29) is applicable to both
laminar and turbulent boundary layers.

A kinetic energy integral equation can be obtained by multiplying equation 2(26) by

u and then integrating with respect to y across the boundary layer. This takes the form

for a perfect gas:-

d a _3 +2 dy 2 %30)
dx u dx Pu

d u 2 ee a

fere P- (I -- ) d, (the kinetic energy thickness)
pu u

and 68 J Pu (h - 1) dy, (the entholpy thickness).
00- e he

In incompressible flow 6H =0.



r 2.1.4 Prediction Methods (Two-Dimensional Incompressible Flow)

The laminar boundary layer equations are complete in themselves and require no

additional relations for their solution, anid they can be solved to any tequired accuracy

given adequate computer capacity. However approximate methods have been developed that

are quick and simple to use and these are essentially based on the solution of the

momentum integral equation (equation 2(29)). They are well covered in many existing

text books (see, for example, References 2.1 and 2.2) and need not be considered further

here. At transition the momentum thickness 0 is assumed continuous.

In contrast the turbulent boundary layer equations are not complete in themselves

since the turbulence quantities are unknown and additional relations (so called closure
relations) are required linking these quantities with the mean flow to solve the

boundary layer equations. In the absence of a thorough understanding of the physics of

turbulence these closure relations must be empirically based and as such their validity

range cannot be confidently assessed.

We can classify the existing methods for providing the development of turbulent
boundary layers with specified external velocity distributions as either ineral or I

differential,

Integral methods have been developed since the earliest days of boundary layer

theory. They generally involve the solution of equation 2(29) coupled with two '4

additional and empirically based relations between 9 , H, and T Such a solution

leads to overall quantities such as 0 , * and cf, which for many engineering

requirements are all that is needed, but such methods do not provide details of the flow

e.g. velocity and shear stress distributions. The auxiliary relations used have ranged

from the simple atumpLiuns of H = constant plus the local use of zero pressure gradient

power law relations (e.g. equations 2(4)) to empirically determined equations for dH/dx

plus the Ludwieg-Tillmann relation (Reference 2.12)

Cfe 2rw =0.246RR' 0 . 2 6 8 |-0.678H 2 (31)
PPu
e

The resulting integration of the momentum integral equation yields the momentum

thickness 6 in the form of a simple quadrature with good accuracy irrespective of the

particular auxiliary relations used. However, the determination of 8* (or H) and cf

depends more sensitively on these relations and can justify the use of the more complex

ones. Amongst the most effective of such relations is the entrainment equation of Head

(Reference 2.13). This is based on the argument that the rate of entrainment of fluid

into the boundary layer is a function of the velocity profile in the outer part of the

boundary layer. This leads to a relation of the form

d
dx e 1 e = ue 2 (32)

where H1 = ( 8 -')/6 , and F(H1) is an empirically determined function. Further, by

making the assumption common to almost all integral methods that the velocity profiles

in a turbulent boundary layer can be regarded as uni-parametric, and if we take the

parameter as H, then



H= G(H), say,

where G(H) can also be determined empirically (approximately G(H) = 2H/(H-1)). The
Srequired auxiliary relation then follows. The assumption that the boundary layer is

uni-parametric is equivalent to assuming near-equilibrium and hedd & Patel subsequently

modified the method to include the effects of non-equilibrium (Reference 2.14).

The kinetic energy integral equation (equaticn 2(30)) can also be used to provide

an auxiliary relation and reference should be made to the mithod of Truckenbrodt in

which this equation plays a central part. (See References 2.1, 2.15 and 2.16).

The successful development of differential methods has taken place within the last

decade and a half and started with a now classical pape- by Bradshnw et al (Reference

2.17). They involve the direct numerical solution of the equations of motion (and of

energy for compressible flow). To solve the equation of motion we must relate in some

way the unknown Reynolds stress r - -pu'v' to the mean motion. This can be done by

making use of the eddy viscosity concept coupled with a relation such as equation 2(23),

or the mixing length concept coupled with a relation such as equation 2(24), (see for

example References 2.18 and 2.19). Alternatively, or additionally, use can be made of

one or more transport equations for turbulence quantities, e.g. Reynolds stress,

turbulence kinetic energy or turbalence dissipation rate (see for example, References

2.20 and 2.21). With such relations the closure cannot be completed without additional

assumptions based on the available experimental data. The complexity of the

calculations rapidly increases with the number of equations involved and the required

input of initial conditions correspondingly increases.

This complexity must be weighed against the considerable ar"'unt of detailed
inforiiiation, e.,. mean velocity profiles, shear stress profiles, turb ence intensities

that can be predicted by such methods. To illustrate the complexity the following is

the transport equation for the Reynolds stress -u'v' in two dimensional incompressible

flow, as derived from th- Navier-Stokes equations and then simplified by the usual

boundary layer approximations.

_Dt - tL - tv (-Uv)at ax b ay
V12 bu p' ( 3.u + ý ')+ • + -.. 2)

- pa by b ) (b P 2 2 (33)

N-v ~ 2~ V, + V, ay
-vx(u'v 2

v' + v' 2
U1 )

The left hand side is the rate of change of -u'v' for a fluid particle, the first term

on the right hand side is the rate of generation by mean shear, the second is the

pressure-strain term and represents the tendency of pressure fluctuations to make the

turbulence more isotropic, .the third term arises from diffusion normal to the wall, and

the fourth term represents viscous dissipation effects which are due to viscous action on

the smaller eddies. The terms involving the pressure fluctuations present greet

difficulty in approximating to them by suitable empirical approximations since they are

not directly measurable. Likewise, the corresponding transport equation for the

turbulence kinetic energy per unit mass kt = (u+ +w'+2w2) is

2 k
D kt=_7-; 3u v, 2 (34)

Dr t v 'ay t ?) 2

I

C - ..



where e is the dissipation rate term = 1/2 v ( +1 i i eo,

the pressure fluctuation term presents the greatest problem for acceptable modeling.

A third transport equation that is also sometimes invoked is that for e . This

need not be reproduced here but it likewise includes terms involving p' as well as

gradients of the turbulence components which call for a delicate combination of skill

and faith to model them by empirical relations of acceptable simplicity and reliability.

Bradshaw's method (Reference 2.17) still remains one of the most successful. He

converted the equation for kt (equation 2(34)) into one for -u'v' by mrking use of the

experimental observation that their ratio is nearly constant i.e.

'--" .2a1 , where a, =0.15. 2 (35)

Further, he introduced a length L = (u•v)3/2/E and a quantity

G t P2(36)

and he argued that L and GB could be regarded as functions of y/8 only, which he

determined from experimental data. He then solved numerically the combination of the

equations of -continuity, momentum and the modified turbulence energy equation with

boundary conditions determined close to the wall by assuming that the law of the wall

holds there.

Later workers such as Launder and his colleagues (References 2.20 and 2.21) have

simplified the transport equations for kt and c by making use of similar empiricisms to

those of Bradshaw and solved them in combination with the mean flow equations with the

use of some empirically determined constants.

No one method has established itself as clearly superior to the others. Accuracy

does not necessarily increase with complexity and for many engineering purposes the

simpler methods (whether integral or differential) are quite adequate as well as

relatively economic in computing time. Interesting survey papers are to be found in

Reference 2.22.

2.1.5 Extension to Compressible Flow and Three Dimensions

The extension to compressible flow of prediction methods developed for

incompressible flow is frequently achieved by suitable transformation of the main

equations (which must now include the energy equation) so that they become similar in

form to the corresponding equations in incompressible flow. The methods of solution

already developed for the latter can then be adapted to the former. A complicating

factor is the important part played by the thermal boundary conditions at the surface.

Such processes are, however, not without simplifying assumptions whose validity can only

be tested by comparison with experiment. Reference 2.23 is a classic of this approach.

Another approach of appealiing simplicity is the use of the so-called mean

temperature (or enthalpy) method. This is based on the hypothesis that the results of

incompressible flow apply if the values of density and viscosity are taken at a

MOM
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reference temperature, T., which is some mean temperature in the boundary layer, the

formula for which is determined empirically. Sommer and Short (Reference 2.24), for

example derived for a turbulent boundary layer the relation,

T=M--0.55T +0.45T +0.2(T T 2 (37)

where Te is the free stream temperature, Tw is the wall temperature, and Tr is the
recovery temperature (i.e. the wall temperature for zero heat transfer) given by

e2 1/3T ' T (I + 0.2 Ma 1  . Here a is the Prandtl number = pc k, /k being the
*r e e e p e e

thermal conductivity of the free stream fluid and cO is the specific heat at constant
+

pressure.

As examples of the use of this concept we note that the power law relations between

c and Rx and between C and R on a flat plate at zero incidence (equation 2(4)) become

Cf -0.0592 R× -1/5 (T/Ti)0.62' CF = 0.074 R -1/5 (To5 /Tm) 0.62

for n = 7, 2 (38)

and cf =0.0375 R -1/6 fferT) 0.685, CF 0.045 R C-1/6 (T e/ ) 0
C sf

fern = 9.

Here it is assumed that the ambient temperature Te is that appropriate to normal

aircraft flight.

The corresponding heat transfer rates are given approximately by

St - 0.6 c,

where S (the Stanton number) -w- T)] 2 (39)

The mean temperature concept has been shown to give reasonably accurate results up

to moderate supersonic Mach number with zero or small pressure gradients. It can more

generally be adapted in the simpler integral methods for non-uniform pressure

distributions by providing local relations of adequate accuracy (see, for example,

Reference 2.26). There are still relatively few experimental data for checking

prediction methods, but provided the flow is not close to separation and the Mach number

Ke is not greater than about 2.0 it seems that for many engineering needs methods using

mean temperature approximations are fairly reliable.

Head's entrainment method has been extended to compressible flow by Green

(Reference 2.27). Green's method is generally accepted as one of the m-re reliable

integral methods for cases involvinq large pressura gradients whilst still remaining

relatively simple and economic in computing time.

Spalding and Chi (Reference 2.53) have established a relation between skin friction

and Reynolds number for a smooth flat plate in zero pressu -adient for a wide range

+ The corresponding mean temperature for a laminar boundary layer is (Reference 2.25)

T = 0.45 T + 0.55 T + 0.18 (T - T
m e 0 ,Qw 2 r/ e

with T. - [1 + 0,2 (I a/j
r
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of Mach number with heat transfer by taking a mean of the results predicted by a number

of existing methods. Their relation is convenient to use and has been made the basis of

a comprehensive ESDU Data Sheet (Reference 2.54).

Differential methods have also been extended to compressible flow usually by the use of

suitable transformations to preserve the equations in forms for which the computing

programs already developed can be readily adapted. They cannot be easily summarised

here and the reader is referred to the extension by Bradshaw (Reference 2.28) of his

method, to a method based on the mixing length hypothesis developed by Michel et al

(Reference 2.18) and further developed by Quemard and Archibaud (Reference 2.29) and an

extension of the Jones-Launder method utilising the kt and e transport equations by

Prieur (Reference 2.30). Reference must also be made to methods directed at solving the

Navier-Stokes equations in which modeling is confined to small scale turbulence whilst

large scale eddies are calculated. Such methods developed for compressible flow are

discussed by Rubesin (Reference 2.22, Paper 11). A valuable review is provided by

Fernholz and Finlay (Reference 2.31).

For the development of prediction methods to three dimensional flows a basic

difficulty arises inso far as the shear stress direction as well as magnitude are not

simply related to the direction and magnitude of the velocity gradient. This casts

further doubt on the validity of simple mixing length or eddy viscosity methods.

As long as the cross flow velccity component (i.e. the component normal to the

local free stream direction) is small it is possible to treat the velocity components in

the streamwise direction as independent of the cross flow. Two dimensional methods can

then be applied to the streamwise flow and the momentum equation for the cross flow can

subsequently be solved without difficulty (References 2.32 and 2.33). For more general

cases a number of workers have used the mixing length or eddy viscosity concept. Some

have treated the eddy viscosity as a scalar quantity, so assuming coincidence in

direction of the resultant shear stress and velocity gradient (References 2.34 and

2.35). such methods are relatively simple and it is fair to note that in the viscous

sub-layer as well as towards the outer edge of the boundary layer the directions of the

shear stress and velocity gradient do coincide so that in many cases the difference

between the two directions may be small enough for the assumptions made not to lead to

serious error. Other workers have attempted to distinguish between the eddy viscosity

in different directions and a seminal piece of analysis for such work was provided by

Rotta (Reference 2.36).

A widely used integral method with assumed forms for the cross flow velocity

profiles is thgt of P. D. Smith (Reference 2.37) who has developed an extension of

Green's method in generalised curvilinear coordinates to three dimensional flows.

Bradshaw (Reference 2.39) has extended his two dimensional flow method to three

dimensions in which he used simplified forms of the shear stress transport equations in

two suitable orthogonal directions parallel to the surface. The method therefore does

not involve any identification of the resultant shear stress direction and the velocity

gradient direction. As for prediction methods in two dimensional flow no method has yet

established itself as the best, and for most engineering needs simplicity and economy in

computing costs must rightly play a major part in the decision as to which to use. A

valuable comparison with experimental data of the predictions of a wide range of methods

will be found in Reference 2.39.
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2.2 Roughness Effects on Transition

2.2.1 Introduction

The complexity of the process of transition in a boundary layer from the laminar to

the turbulent condition is only partially understood and no genera] theory is as yet

available to provide a comprehensive predictive method. This was clear from the AGARD

Symposium on Laminar - Turbulent Transition held in Lyngby, Denmark, in 1977, (Reference

2.40). For the needs of the engineer and designer we must have recourse to predictions

based on empirical formulae that are inevitably of limited validity.

These comments apply particularly to the effects of roughness on transition. We

know that surface imperfections can induce an earlier transition than on a smooth

surface because they generate disturbances in the boundary layer in the form of eddics

and vortices which modify the shape of the boundary layer velocity profile in their

neighborhood and wake so that the boundary layer is rendered more unstable. In addition

* the drag of the roughness is manifest in an increase of the boundary layer momentum

thickness and the associated boundary layer Reynolds number and this will also tend to

enhance the instability of the boundary layer and hasten the transition process.

If we consider an isolated excrescence located in the laminar boundary layer o;i a

particular body in motion we find that there is a critical roughness height below which

no significant effect on transition is apparent. This height depends primarily on the

roughness shape, location, the pressure distribution over the body, the body Reynolds

number, the external turbulence and on the transition position on the smooth surface.

As the height is increased, the transition moves upstream until a second critical height

is reached at which transition occurs just downstream of the roughness and no further

transition movement occurs with further increase of roughness height. At that stage, if

the spanwise extent of the excrescence is of the same order as its height then the

turbulent region downstream takes the form of a wedge in plan of angle about 110 and

apex very close to the excrescence, On the other hand, if the spanwise extent of the

excrescence is large compared with its height then transition is induced over its entire

span.

These two critical roughness heights are of particular practical interest. An

early transition caused by surface roughness or imperfections can result in a

sionificant increase in drag and hencc in fucl consumption, as cxplained in Section

2.1.1. It may also result in changes, usually deleterious, in any downstream

interaction of a shock wave and the boundary layer. It is therefore important to know

the maximum height of roughness which can be accepted as having no effect on the

transition position. We will call this critical height kcrit.l. On the other hand, on

wind tunnel models it is often desirable to use a transition trip in the form of

roughness band fixed on the surface to induce transition immediately downstream of it.
I. The object is to fix the location of transition on the model so that (i) the drag

measurements will not be subject to variations in transition location and (2) the

measured drag values can be corrected to the full scale transition location. For this

purpose we need to estimate with some confidence the minimum size of trip required to

result in the desired transition position without incurring undue extra dray due to it.

The second critical roughness height, which we will denote as kcrit.2, is clearly useful

in this context. In any case we need to take note of likely differences between the

effects of isolated excrescences such as rivet heads, distributed roughness such as

paint and of excrescences of considerable spanwise extent (e.g. gaps between wing

planks, lap joints) which are sometimes described as two dimensional.

L.L
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2 2.2.2 The First Critical Roughness Height kcrit" I

An early approach to predicting this critical roughness height was that of Schiller

(Reference 2.41), who rioted that for a given bluff body in steady motion at low Reynolds

number there is a critical value of the Reynolds number above which the laminar wake

behind the body becomes unsteady and vortices generated at the body move downstream in

the form of a vortex street. For a circular cylinder, for example, Rcrit - V0 d/i:-r5O.

Schiller argued that for a roughness immersed in a laminar boundary layer there should

: similarly be a critical Reynolds number, Rk., based on the roughness height k and the

velocity uk in the undisturbed boundary layer at the height k, above which we can expect

the roughness to shed eddies into the boundary layer which would help to destabilise it

and so cause transition to move upstream. We can then identify the roughness height k

with kcrit.l. This suggests that

Scrit. I (uk k/v)cdt. I = const. = C, say. 2 (40)

If k/8<<l , where 8 is the boundary layer thickness, then for the basic case of an

excrescence on a flat plate with zero pressure gradient in incompressible flow, we can

write

% k~ 2
uk ()=-Lkw aku

w �i v

k 2 P•{t 2(1

where T = shear stress at the plate surface, u, = rw/p (friction velocity),
ww

Rxk = Uexk/V, Xk distance of excrescences from the plate leading edge.

Hence Rk = (KuT)2 0 -332 (k )2 Rx3/2 2 (A2)-k b - xk

Rk 1/2 1/4
Also u k/v _ (-,- 2 ) R 2 (43)

Thus, given the values of R and x we can determine the corresponding value of
kc crit.l kc

kcrit.l"

If k/8 is not small compared with unity then the above estimate for uk cannot be

applied. However, any standard mode of solution of the laminar boundary layer equations

can be used to yield uk' and for the basic case considered of a flat plate with zero

pressure gradient in incompressible flow, we can use either the approximate Pohlhausen

quartic form,

u (Y - +Y -
u T T



23

or the approximate trigonometric form

u 6 ( • •-

U

together with the relation 6/x z 5/ VRx, where Rx u x/•. With the trigonometric formx e
we obtain instead of 2(43)

u k TV uek 1/2]

" "-Sin' - R'xk 2 2(44): k sv [i" V xk

7V

Again, given the values of Rk crit.1 and x this relation can be used to determine

the corresponding value of k cit.1. However, as this is a more complicated relation

than 2(43) it is convenient to present it graphically in the form of lOg1 0(uek/v ) as a

function of (R)1/ 2 for various values of Rxk •s in Figure 2.9.

'

1cg 1 k(iŽ'.) 7 Rxk u k

2 R =Ukk/v

10 100

1050

k
Figure 2.9. Chart for Deterni,.;,,g kcrit.. G~vn% R and R for Basic Case of Zero

Pressure Gradient, Incompressible Flow (Equation 2(44))

YExperiments by Smith & Clutter (Reference 2.42) on a variety of excrescence shapes

in both zero and non-zero pressure gradients (mostly favourable) and a range of

intensities of tunnel turbulence yielded the following values of Rk crit.l

Range of R

Roughness k crit. 1

Spanwise wires 40 260

Protruding discs of

circular section 100 - 550
(dia. = 1.6 mci)

Spanwise strips of

sandpaper 180 - 330

(width = 6.4 mm)

a .. .. I II I I
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They found the effects of pressure gradient and of tunnel turbulence on R. crit.l

to be small. At first sight this is surprising but one notes that whilst a favourable

pressure gradient would tend to reduce the boundary layer thickness and make its

velocity profile fuller, and to that extent would enhance the disturbances produced by a

given roughness, it also tends to increase the stability of the boundary layer. Similar

balancing factors apply to the effects of fret stream turbulence.

Braslow (Reference 2.43) has analysed a wide range of data to present
R i1/2 as a function of d/k, where d is the spanwise dimension of a typical(RK crit.l'

roughness, on the argument that this is a parameter of the roughness shape which must

play an important part in determining RKcrit.l, His results are represented in Figure 2.10
not in detail but as a band showing the variation about the mean curve. It will be seen

)1/2 • 3+
that for d/k = 2.0 (hemi-spherical toughness) the value of (Rk crit. 1/ 2 - 6,

but for d/k - 30 the value of (Rk cr it.1) 1/2 12 + 4. Judging by Smith & Clutter's

results the value for two dimensional excrescences (d/k o ) would be about 11 4.

•kcrt. ! /

0.1 0.2 0.4 0.81.0 2.0 4.0 6.0 10 20 3040

404

Figure 2.10. k 1/2 as Function of Roughness Shape Parameter dA (Braslow)
(k crit. 1

Braslow also demonstratEd that there is a significant interference effect with a

pair of cylindrical excrescence elements if their spanwise spacing is less thar. about 3

d apart (see Figure 2.11). Their disturbing effects then evidently augment each other

and Rk crit.l is reduced by the interference. On the other hand, if they are spaced

streamwise then the interference effect is such as to increase Rk crit.1 if the spacing

is less than about 4 d but for higher spacings up to 20 d the effect is to reduce

Rk crit.l (see Figure 2.12). It seems that at a close enough spacing a steady vortex

system forms between the excrescences and the disturbances shed by the rear excrescence

are somewhat less intense than from an isolated excrescence. At higher spacings the

excrescence experiences the unsteady wake from the front one and the final downstream

disturbance level is somewhat enhanced as a result.
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Figure 2. 11 . Ef fect of Sponwise Spacing of Pair of Cylindrical Elements on Rccr?1
(Braslow)

1.4-

1.3-

1.2
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Figure 2.12. Effect of Streamwise Spacing of Priir of Cylindrical Elementis on Rk crit. I
(Bras low)

t IBrasliow's analysis showed little effect of Mach number on rk crit.1 UP to .-A main

X stream Mach number of 3.0 but with some indication of a reduction fok higher Mach

numbers (Iflk crit. 1 15 for M. 3.7 and d/R = 1.0). It should tx! noted that if

Rkcrit.1 isindependent of Mach number then kc.it. must increase witch Mach numbcrr
since the velocity at a given height in the boundary layer decrease:s with increase o04

Mach number.

To sumn up, for general predictive purposes the available data are such t1hat onle is

not likely to be able to do better than to make use of Figure 2.10 for determining the

value of Rk crit.1 * Where it is important to avoid early transition it is b~est to

choose a value near the lower limit of the band. From tho value of RK rt and the

given value Of Xkthe corresponding value of kcnt .1 can be determined tram a soluji -on

of the laminar boundary layer equations or more approximately from equation 2ý(43) or

2(44) (or from Figure 2.9) depending on the atagnitude of knrit.1/6

I L - I d &



2.2.3 The Second Critical Roughness Height kcrit.2

The available data show that kcrit.2 is of the order of twice kcrit.i. Early work

of Fage & Preston (Reference 2.44) indicated that Rk crit.2 :ý 400 for a wire trip, but

Klebanoff et al (Reference 2.45) obtained values ranging from 140 to 1000 depending on

the local pressure gLadient and the level of tunnel turbulence. Gibbings & Hall

(Reference 2.46) inferred the following relation mainly from the data of Tani (Reference

2.47).

Uacrit. 2 =163.7 R 0.15 2 (45)
Vsc

Smith & Clutter (Reference 2.42) found the value of Rk crit.2 to be about 300 for a wire

trip, whilst for their protruding cylindrical excrescences and their sandpaper trip the

corresponding values were about 600 and 400, respectively. From equation 2(43) for

k/( <<I we can expect that for constant Rk crit.2 and zero pressure gradient

ue kcrit. 2 =const. R 0.25 2 (46)

V

which differs somewhat from the Gibbings-Ilall relation, equation 2(45). Van Driest &

Blumer (Reference 2.48) inferred from tests at supersonic speeds of spherical roughness

arranged in a band ruound a cone, as well as trom tests ot similar excrescences on a flat

plate at zero incidence at low speeds, that

ecrit.2 =42.6RxkO 2 5 [] + (Y-1) Me2]

V' 2 2 (47)

where M is the Mach number at the outer edge of the boundary layer and Y is the ratio
of the specific heats (1.4 for air). It should be noted that some distance was

increasingly evident between the trip and the transition position with increase of Mach

number (see Figure 2.13).

2.0

A -6

10

1.0 I

0 1 2 3 4 5 6

IA•
e

Figure 2.13. Interval (Ax ) Between Transition Ti (Band of Spherical Elements) and

Transiton as Function of Mach Number (Van Driest & Blumer)



It seems that in the absence of more data and convincing analysis of the effects of

pressure gradient and external turbulence we can predict kcrit. 2 in incompressible flow

on the basis of an assumed value of R crit.2 in the range 300 to 400 for wire trips and

about 600 for roughness bands. For speeds at which compressibility effects are
42

significant, equation 2(47) indicates that the factor [ 1 +(Y -1)/2 Me2) shoul-i be
Y andn eq ation

,$, applied to the low speed value of Rk crit.2" From the value of R1 k crit.2 und a given

value of x the corresponding value of kent.2 (just as for kenit1 1 can be determined

from equation 2(43) or equation 2(44) (or Figure 2.9) depending on the order of

magnitude of k crit.2/ Alternatively, the Gibbings-Hall relation, equation 2(45),

could be used for wire trips, whilst equation 2(47) could be used for spherical

roughness bands.

It should be noted that all forms of trip will cause an increase in the momentum

defect in the boundary layer because of their drag. For example for a wire trip, if Dh

is the drag coefficient in terms of its height h times its span and the velocity uh,

i.e.

C u h, per unit span,
0h 2 e

then the momentum thickness will be increased by the wire by an amount

Pu C2 uh )h 2 (48)18 = -- 2 e ý

Preston (Reference 2.49) has shown that turbulent flow cannot be sustained for values of

P1 < 320. It follows that to stimulate transition the total 0 after the trip wust be

such that R0  there must exceed this value. A trip that is made up of spanwise pieces

may prove more effective in provoking transition than a continous trip because of the

drag associated with the eddies generated by the flow round the ends of the pieces.

2.2.4 The Effects of Sweep

So far we have ignored the effects of sweep and this is probably justified as long

as the secondary flows in the boundary layer are small, i.e. the flow direction in the

boundary layer is not markedly variable across it. However, in the region of the

leading edge of a swept wing, where there are strong pressure gradients normal to the

leading edge as well as a flow component in the spanwise direction, the secondary flows
are important and the effects of roughness and transition present special features.

t In two dimensional unswept flow the boundary layer at the fr~nt stagnation point of

a round nosed wing is of finite thickness which for small s, the distance from the

stagnation point, is independent of s. The scale of the velocity in the boundary layer

is determined by ue where u is the velocity just outside the boundary layer. For small
9 S, we find that

u s, where P Vo/r'

r denotes the radius of curvature of the wing leading edge and V is the undisturbed
sp,% stream velocity (the constant of proportionality depends en the section).

It
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Now consider an infiiite swept wing. For the laminar boundary layer near the

leading edge the so-called principle of independence applies, i.e. the flow in planes

normal to tile leading edge is independent of that parallel to it (Reference 2.50). The

boundary layer flow there is therefore a combination of that derived for two dimensional

flow normal to the leading edge in a main stream flow of velocity U Vs Cos A and an o •

flow parallel to it with main stream component Ut . V Sin A , where V is the

resultant main stream velocity and A is the angle of sweep.

SA

We here use suffixes n and t to denote components normal and parallel to the
leading edge. We h]ave seen that the former will change rapidly with 5 being determined4
in scale by Ue = /3 s with P• now proportional to V° Cos A/c . The boundary layer .

velocity components parallel to the leading edge are constant in scale and change

r-elatively little in form with s. The resulting boundary layer velocity distributions
therefore have component profiles in some directions which have points of inflection and
can therefore be expected to have a tendency tu be unstable to small disturbances along
such directions above a relatively low Reynolds number. This kind of instability can be
controlled by a relatively modest degree of boundary layer suction (Reference 2.51).
However, in addition a more potent source of transition can arise since the boundary
layer is of finite thickness along the leading edge and can be tripped to become
turbulent by excrescences there for which the Reynolds nlumber is above some critical
value determined by Ut and t'the momentum thickness in the spanwise direction.

Caster (Reference 2.52) has analysed some wind tunnel and flight data to determine the
critical value of R @ = Ut Ot/v above which turbulence once introduced will propogate

along the leading edge however long it is and so contaminate the boundary layer over the
surface downstream, lie found the critical value to be about 100. The turbulence canI
arise from the wing-body junction or be induced by roughness in the region of the

leading edge. Using trip wires of diameter d fixed round the leading edge he found that

the critical size of wire to provoke turbulence close to the wire wag given by

(-~n) c,-it. = 47R R1/ 2 (49)

itis interesting to note that this is quite close to the relation one would dedulce

from equation 2(43) for the critical wire size if one uses the value given by Fage &

Preston for RkcP . for a wire trip on a flat pla'-e with zero pressure gradient,

namely 400, which leads to

(ua) 'd.:43R R1/2,

weeP 1 = u i) . This agreement presumably reflects the tart that the velocity
profile in the direction of the loading edge of a swept wing is nor greatly different
from that of a laminar boundary layer in two dimensional flow and with zero pressure

gradient.

Theory yields e =0.40ov'7 2 (50)

and 6n

Since /3- 2V° Gos A/r, it foilcws that a decrease of wing sweep or of leading edge
re

radoius coheponeto increaslel the crticalearoughns height. ontn n cl ndcag

relatively~~~ litt-le- infr ihs-h eutn onaylyrvlct itiuin
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3. DISTRIBUTED ROUGHNESS IN TURBULENT BOUNDARY LAYERS

(ZERO OR SMALL PRESSURE GRADIENTS)

3.1 Basic Effects. Sand Roughness and Critical Roughness Heights

In what follows a typical height of a roughness element will be denoted as k and it

will be assumed that in general k is small compared with the boundary layer thickness.

Larger excrescences will be included under the heading 'discrete' and discussed in

Section 4.

Our basic understanding of the effects of distributed roughness in turbulent

boundary layers owes much to the classical experiments of Nikuradse (Reference 3.1)

using sand roughness on the inner surfaces of circular sectioned pipes. The sand grains

were kept closely uniform for any one test and were fixed in a closely packed

arrangement. The tests covered a range of grain sizes and of pipe radii. An

illustrative plot of some of his results for skin friction is given in Figure 3.1. In
2that figure cfm = r w/PUm2 ,where urm is the mean velocity over the pipe cross section,

a is the pipe radius and ks is the sand grain height.

1.4 aA5 = 1.5

1 .. 5

1.2s

0.60.
360

0.2-

2.5 3.0 5.7

Log 1 0 (2u a/H)

Figure 3-!, Friction Coefficients of Sand-Roughened Pipes as Functions of Pipe Reynolds Number (Nikuradse)

It will be seen that for each roughneas size there is a critical pipe Reynolds

number (urn 2a/v) below which there is no effect of the roughness on cfm. The surface

is then referred to as hydraulically smooth. With increase of Reynolds number above the

critical value the skin friction coefficient increases above that of the smooth pipe
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showing that the roughnesses are then shedding eddies into the flow which contribute to

the momentum loss. This drag increment is a combination of the sum of the pressure (or

form) drags ol the excrescences and the accompanying changes of the local surface

friction, but the former rapidly becomes dominant as the Reynolds number is increased.

Finally, we note that above a second critical Reynolds number c fm is constant and

independent of any further increase of Reynolds number. We infer that at that stage the

drag is almost wholly due to the pressure drag increments of the roughnesses and hence

becomes insensitive to Reynolds number. We call the flow regime in the pipe at thatI
stage fully developed rouqhness flow. The intermediate flow regime between the two

critical Reynolds numbers is sometimes referred to as the 'transition regime', but to

avoid confusion with the more common use of 'transition' to describe the change from
laminar to turbulent flow in the boundary layer, we will refer to this regime as the

Sintermediate rough regime.
A

It is generally accepted that tne hydraulically smooth regime is one where the

rouohnesses do not protrude through the viscous sub-layer. The argument is that this

layer is one of high damping of eddies and so eddies generated by the roughness within

it do not convect downstream and add to the monlentum loss, instead they remain between

the roughnesses effectively smoothing the surface. This reasoning implLes that
roughnesses for which the flow is hydraulically smooth must satisfy:

0 scu . k/v'• 5, 3 (1)

if we take 5 as a safe lower limit for determining y, + = u, y1 /v , where y1  is the

thickness of the viscous sub-layer. This relation is consistent with Nikuradse's
measurements.

The beginning of the fully developed roughness regime is likewise characterised by

a value of u k/- which in Nikuradse's experiments on sand roughness in incompressible

flow is shown to be about 70, i.e.

uq k/v* 70 3 (2)

for this regime. Here we use suffix s to denote the sand roughness as tested by
Nikuradse since for other types of roughness we can expect the limiting value of ur k/p

*for fully developed roughness to differ.

These pipe flow results can be readily adapted to determine the effects of sand

roughness on the flow over a flat plate at zero incidence. We replace the pipe radius a

by the boundary layer thickness 0 which is then a growing function of x the distance
from the leading edge. Hence, with a given roughness uniformly distributed over the

plate we can expect an initial region of fully developed roughness flow followed by a

region of intermediate rough flow, and if the plate chord is of sufficient length there

will finally be a region of hydraulically smooth flow. Plots of the limiting roughness

* heights for fully developed rough and hydraulically smooth flows, deduced from equations
3(1) and 3(2) above are presented in Figure 3.2 in the form of logl 0 (x/k) as a function

of log(Rx). It is of interest to note that the minimum roughness height to provoke
Stransition in the laminar boundary layer for a given R is several times larger than the

limiting value for hydraulically smooth flow with the boundary layer turbulent. This

can be readily inferred from Figure 2.9, 2.10 and 3.2 by considering typical values of

Rk crit.l and Rxk.*

For example, if (Rk crit.l) 20 and Rxk = 106 we find from Figure 2.9 that

kcrit.i/xk 10- , whilst from Figure 3.2 we find that for hydraulically smooth flow

with X = R xk 10 we must have k/xk < 10-"

S1 1 1 •k
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HYDRAULICALLYSSMOOTH //,

Log-09 (.A) (SAND ROUGHNESS)2

0-
4 5 6 7 8 9

Log 10 R.

Figure 3-2. Limiting Roughness Sizes (k) for Hydraulically Smooth Flow and for Fully Rough Flow
With Sand Roughness. Turbulent Boundary Layer

Prandtl and Schlichting (Reference 3.2) have adapted Nikuradse's results to

determine the local and overall skin friction coefficients on sand roughened plates at

zero incidence for a wide range of the ratio roughness height/plate chord (k s/c) and of

the plate Reynolds number. Their results are presented in Figure 3.3 and 3.4, with
Figure 3.3 showing the local skin friction coefficient cf as a function of R" = V X/P

for different values of x/ks, whilst Figure 3.4 shows the overall skin friction

coefficient CF as a function of Rc = VoC/v for different values of c/ks. The latter

can be conveniently presented in a somewhat different way (Figure 3.5) as a D/D as a

function of Kc for different c/k , where D is the drag of the smooth plate and AD is

the drag increase due to the roughness.
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* Figure 3-3. Local Skin Friction Coefficient of Sand-Roughened Plate (PrandtI-Schlichting

Deductions from Nikuradse's Pipe Flow Experiments)
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Mach number and wall temperature and if we accept the Sommer and Short mean enthalpy

formula we find that:

"" u (T /Tm) , approx.

T T 2where ' = 0.55 +0.45 -t 0.036 M

whT T a

e6 C

and Te is the local free stream temperature.

It follows that if a critical roughness height ks is such that UTwk/ v = const.

independent of Mach number, then

k T 1.39 0325

77 -T- (0.55 +0.45 1 +'0.036 M C 3(3)

where ksi is the value for incompressible flow. Here we have taken the coefficient of

viscosity ju a T 0.89

For zero heat transfer Tw/Te = 1 [(y -1)/2) me 2r, where r is the recovery factor

0.89 for air, and 7 = c /C (the ratio of specific heats) = 1.40 for air. Then we
p v

get

s = (I +0.178 M 2) 1.39 (1 +0.214 M 2 0.325

S1

Thus, for Me - 1, k s/ksi = 1.34; and for Me = 2, ks/kSi = 2.58. These results reflect

the known increase of the viscous sub-layer thickness with Mach number.

Pursuing this argument further Berg (Reference 3.3) has collected data for
roughnesses on a flat plate indicating that over a wide r.ange of Mach numbers up to 6

and a variety of roughness forms the drag increment due to the roughnesses as a ratio of

the smooth surface drag was a unique function oE u w k / V w' where k is the equiva-
,w a w

lent sand roughness height in incompressible flow (see Section 3.3). This implies that

Figure 3.t can be taken as applying to cuuiwrt:seible flow provided one replacco ks by

1/2 1.39 3(5)

( Q) e k aw

For zero heat transfer Xs = ks / [1+ (7-1)12 me 2 r] 139 3(6)

which for M e 1 gives k sw 0.k s; and for Me 2 we get 0.47 Ks.

This indicates that the proportional effect of a given roughness on drag for zero heat

transfer decreases with Mach number as might be expected from the fact that the drag

increment would be largely determined by the air density at the wall Pw" However, the

results analysed by Derg appear to be all for roughuesses small enough to be immersed in

the subsonic part of the boundary layer and so would nct contribute to the drag by

generating shock waves. It cannot therefore be assumed that results based on Figure 3.5
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and equations 3(5) or 3(6) will apply to roughnesses large enough to penetrate into the

supersonic part of the boundary layer.

3.2 Velocity Distributions in the Boundary Layer

leThe eddies generated by distributed roughnesses of height small compared to the
boundary layer thickness rapidly get absorbed in the local turbulence of the boundary

layer without significantly changing its structure. The main effect is therefore to
Sincreaseý the value of the shear stress in the region of the boundary layer close to the

surface but there is no loss of validity of the general dimensional reasoning underlying
Sthe law of the wall and the defect velocity law derived for smooth walls (see Section
4 2,12).

Thus, we can again infer that in the law of the wall region for incompressible flow

j" u = Au,. 'fly + B 3(7)

where A = 1/K, K being the von Karman constant (0.4-0.41), as for a smooth wall, but B
is a constant that will in general depend on the roughness size and geometry.

To examine the nature of B more closely we can argue that there must be some lower

limit of y, say y0, below which 3(7) cannot be expected to apply, and y0 will be a
function of k, the roughness height, ur and v as well as of the roughness shape. For
similar shaped roughne:'ses we therefore write:

Y0 4 f (UT k/4, say,
i0

where f is some function of the rou~hness geometry.

Hence u-u (y0 ) = Aln(y/y 0 ) = A ln(y/fk)., 0

V But since u(y 0 ) will depend on u,, k and v we may expect u(y 0 )/u 1 to be a function of
i (uT k/v ) and so we can write

u/u.T =A ln(yA) + h(urk/), 3(8)

where h(u 1 k/v ) is some function of u1 k/v as well as of the form and distribution of
the roughnesses concerned.

Nikuradse's results for sand roughened pipes provided good support for this
relation and the resulting function h for closely packed sand grains is illustrated in
Figure 3.6. We find that for u, k/ < 5 his function h is approximately given by

h (u¶ %/v) 5.5 + 2.5 In(ur k/v)

so that with Nikuradse's value of A = 2.5

u/u
7
T =2.5 In(u TY/\v) +5.5 3 (9)
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in agreement with the low of the wall fo, a smooth surface r-f. g•uation 2(11)], This

Lher.or: defines: the ranfe of u, kiv for which the flow is hyat.ulically smooth.

On the othez hand for u, .s/V >',0, approx., we se% that Nikuradse'c fumnction h ).s

a constant =8.5, so that then

,/... . �2.5 In 8.'.) - 8.5. 3 (10)

This therefore corroýskonrd- to the rangs ot usa for which the veociLty profile

and surface friction are independet of Jyolds nuzbr - -. the regime that we have

labelled fully developed rougbness flow. Fur thmu iot•ermediae• rough regime 5<(u.ks/• )<70

both the viscous and the coughnes3 form dcaq coit-.bu.:i,%ion to the total roughness klrag

can be important.

Equation 3(8) cart be reci-cded -.,s. the gqnet alised fo.-nt of the ]ogarithmic law of the

wall for walls with distributed ,oughrss. There ace otheii ways of expressing it which

have their uses. Perry and Joubert (Re•Žrence 3.4) argued that since the direct effects

of the roughnes-2 were apparent only in the thin i,•er reqion of the boundary layer where

the direct effects of viscosity are also ct~nfinedr tne roughness could be regarded as

equivalegut in its effect on the v ~looit' dir.tribution to a change of kinematic viscosity

from v to v say. Hence the lojarithwic law of the wall should take the form:

u/u, - A !n(y . / ) B II
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where B is now the same constant as for a smooth wall (5.5 if A is taken as 2.5). But

on dimensional grounds one can expect V / v to be a function of ku, /v and it
eq

follows that 3(11) can also be written

u/u 1 = AIn(y/) +h(u.,k/y)

in agreement with 3(8). Further, from equation 3(11), we see that we can write

u/ur. =A In(y u7/A) +B - A In (v q/v)

= A In, vur /V) + B - Au/u, 3 (12)

where Au/u 1 is a function of u. k/v

Hence, for the logarithmic law of the wall region, the plot of u/uT1 as a function

of ln(yu, /v ) for any given roughness is linear with slope A, independent of the rough-

V ness, and displaced parallel to the basic plot for a smooth surface; the displacement

Au/u 1  is a function of u1 k/v 2or roughnesses of similar shape. A wide range of

experimental results of different workers amply confirms this conclusion (see References

* 2.9, 2.10, 3.4, 3.5, 3.6, 3.7 and 3.8).

* However, a difficulty arises in the analysis of experimental data since the above

relations cannot hP expPcted to apply for values of y less than the tops of the

roughnesses nor indeed can velocity measurements there readily fit any generalised

formulae. Even on a smooth wall a displaced origin for y must be assumed to achieve a

realistic blending with the viscous sub-layer (see equation 2(12)). A displaced origin

is therefore also required for the analysis of data on a rough wall particularly for the

flow region close to the roughness tips. This origin is taken to be a distance below

the maximum roughness height:-

K

Thus, instead of 3(12) we writeI u/ur = AInI(YT )r/Y + +)u + B- Au/u7 . 3(13)

where YT is the value of y measured from the highest roughness tip. Following Clauser

we can multiply this equation by uI/ue to get

u/us =A(Cfe/2) 1/2i (YT + qu 0 /vI + (cfo/2)1/2 [A In(cfo/2)1/2 + B - Au/u,7 ] 3 (14)
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where Cfe - 2 w1/ vue 2

Ifence, given A and 13 from smooth surface data the correct choice of c should lead

to a linear relation between u/uL and ln r(YT + t )Ue /v I with slope given by1(f/)/2' ef )I2I2B /T he n(T
A(cf/ ) , so that Cf can be determined from this slope. Further, the ordinate

intercept should be (Cfe/ 2 ) 1/21A ln(c fe)1/2 u/u.] when l)UeiYT+ )ue/v I = 0, and

hence A u/uT can be determined from it. However, it is not always easy to establish

the value of , to the accuracy required. The methods that have been adopted cannot be

gone into in detail here, the interested reader is referred to References 3.4 and 3.8

foL such details; but it may be noted that the use of other methods for estimating cfe

(eg. the momentum integral equation or hot wire measurements to determine the eddy

stress near the wall) can provide independent checks on the above 'Clauser plot'

approach. It appears that c/k - 0.5 for zero pressure gradient and </k : 0.2 for

moderate adverse pressure gradients. The experimental data of a number of different

workers all provide strong support for the above analysis.

From equation 3(8) we have seen that for fully developed roughness flow

u/u, A In(yA) + C,

where C is a constant dependent only on the roughness form. If we compare this with

equation 3(12) we see that we can write

Au/u,r :A In~cu,./v) + D, 3 (i5)

where D is a constant dependent only on the roughness form.

Figure 3.7 taken from Reference 3.8 shows Au/ut plotted against logl 0 (kuj/• ) for

a variety of regular shaped roughnesses and Figure 3.8 also from Reference 3.8 shows

similarly some results for surfaces covered with commercial abrasive papers in zero and

a moderate adverse pressure gradient. Perry and Joubert (Reference 3.4) tested

roughness elements identical to those of Moore illustrated in Fijure 3.7 but in the

presence of adverse pressure gradients and their results fit with relatively small

scatter the mean line shown in Figure 3.7 passingj through Moore's results. These

results show that the above law of the wall relations for rough surfaces, like the law

of the wall for a smooth surface, are insensitive to pressure gradients and for the same

basic reason, namely, that the flow in the region concerned is determined solely by uT,

y and v

The above discussion refers to what is described in the literature as k type

roughnesses, i.e. roughnesses which generate eddies which are convected into the

boundary layer above the roughnesses as a continuous process and they merge with the

turbulence there to augment the overall momentum loss. However, exceptionally, if the

excrescences are of a simple and uniform geometry so spaced that regular vortices form

in the gaps between the excrescences and remain trapped there then the excrescences and

vortices may form what is in effect a smooth contour for the boundary layc flow above

to follow with no additional eddies being generated to disturb it. The main effect on

the boundary layer is that it has a mixed boundary condition at the level of the

excrescences of partly free and partly solid surface and the streamlines are relatively

smooth and undisturbed.. Such roughnesses are referred to as d type. The distinction

between the two types is illustrated in Figure 3.9. It is evident that for the d type
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the excrescences must be very uniform in height, since small variations can readily

introduce some of the characteristics of k type roughnesses into the flow. Their drag

and flow effects are of course much smaller than for k type roughnesses and do not

reveal any direct depend-nce on the excrescence height, the important length dimension

seems to be that of the overall flow, e.g. pipe diameter for flow in a pipe or buundarý

layer thickness for flow over a plate.

The existence of the d type roughness has been revealed almost accidentally in a

few investigations of regular excrescence patterns and of the effects of grooves

regularly scribed in an otherwise smooth surface. Perry, Schofield and Joubert

(Reference 3.9) have madc careful investigation of a d type flow formed by transverse

rectangular section bars about one height apart in both zero and two different adverse

prrssure gradients. In addition, Wood and Antonia (Reference 3.10) have examined the

turbulence components in the boundary layer above the excrescences and have noted little

difference from the corresponding results for a smooth surface. A fuller discussion of

the drag effects of discrete excrescences isolated or in arrays will be given in Section 4.

We come now to the description o' the boundary layer velocity distribution outside

the region where the law of the wall applies, i.e. the region of the velocity defect

law. Applying the arguments already applied to a smooth wall (see Section 2.1.2) we

again infer that there

u~ -u
ue -r u =f (y/6), for a plate with zero pressure gradient, 3u •. 3 (1 6 )

=c- (y/e), for flow in a pipc,

where f and g are functions to be determined by experiment. For flows with appreciable

pressure gradients additional parameters involving these gradients are required on the

right hand side.

"From the argument that roughness effects are essentially confined tc the law of the

wall region we may infer that the forms of the functions f and g are the same for rough

as for smooth walls. This is well borne out by experimental results. Thus, if we make

use of ClCai law of the wake hypothesis (see Section 2.1.2, equation 2(18)) we can write

for the velocity distribution in the boundary layer

u/u, =A Ink(yT + E)u 7 /vl + B - Au/uT. +PA w(y/1,) 3 (17)

whore w (y/ti ) is Coies' wake function, given with good approximation in equation 2(19)

and II is the form parameter determined by the pressure distribution. From 3(1"7) it

tollows that for the flow over a' plate

ue/u.=A In (6uit) +B- Au/uT +211A 3 (18)

and hence

IU -U

where we have written y=yT+c. 3 (19)

For the flow in a pipe

Ue-u = -A In(y/a) + HlA[2-w(y/a)1.

UT
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I These are the same expressions as for a smooth wall, the only effect of the roughness

being on the scaling velocity u.

From equations 3(15) and 3(18) it follows that for fully developed roughness flow

u/u7, =A In(6 /k) +B-D +-2f1A

or (2/cf)l1/2 =A In(6 A) +-B-D +2 1A. 3(20)

_3.3 jqgivalent Sand Roughness Concept

The wide scope of Nikuradse's results for the closely packed sand roughness that he

tested on the inner surfaces of pipes of circular section and the ready applicability of

the Prandtl-Schlichting relations based on these results for similarly roughened plates,

wings and bodies leads to the hope that they can be used for other forms of roughness.

Thus, we seek to determine whether for any given form of roughness there is an

equivalent sand roughness so that its effect on surface drag etc., can be quickly

lerived from Nikut-adse's results or the Prandtl-Schlichting curves (Fi.ures 3.3, 3.4 and

3.5).

From equation 3(8) we can write for fully developed roughness flow

u/u, =A In[.IA) + hf

where h fr is a constant dpendent only on the type and distribution of the roughness.

For Nikuradse's sand roughness hfr = 8.5, equation 3(10). If the velocity profile and

the corresponding value of uT for a given t'pe of roughness are to be the same as for

an equivalent sand roughness then it follows that

A Inc(k/k) = 8 .5 - hfr 3 (21)

where k and k s are the representative heights of the roughness and its sand equivalenL.

Thus, if we determine hfr from the measured velocity profile for tie roughness k under

test we can use equation 3f2l) to determine the equivalent sand roughness k s.

Schlichting (Reference 3.11) performed a series of tests on various forms of

distributed but regular excrescences in the form of spheres, spherical segments, cones,

ri9hL-siLy.led corner pieces or various sizes and spacings on one wall of a pipe of

rectangular section. He was able to establish in all cases an equivalent sand roaghness

as described above. Youri (Reference 3.12) measured by means of the pitot traverse

method the profile drag of a wing of NACA 0012 section at zero incidence with various

paint finishes of different roughness over a range of subsonic speeds and he likewise

concluded that for each surface an equivalent sand rouginess could be determined. A
similar result followed from tests of thread roughncsses in pipes by Streeter (Reference

3.13) and by Moebius (Reference 3.14), commercially rough pipes by Moody (Reference
3.15) and of transverse rods on a plate by Betterman ,Reference 3.7). It shou'd be

emphasised, however, that equation 3(21) applies only to the fully developed roughness

regime ar he equivalence does not necessarily hold in the intecmediate rough regime.

Various attempts have been made to relate the r:atio a - k/k to the spacing and

shape of the roughnesses in orcer to derive a method for predictiihg a. The most effec-

tive appears to be that of Grabow and White (Re.ference 3.16) who have predicted a as an

empirical function of a parameter A given by

A=( tr/1) (A/"A p)4/3, 3 (22)

it
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where r is the mean distance between roughness elements, k is the mean roughness

height, A is the maximum cross-section area of a roughness normal to the flow, As is

the surface area of a roughness forward of the section of maximum cross-section area.

We can interpret ir as N- 2  , where N is the number of roughness elaments per unit

surface area. A presentation of Grabow and White's correlation updated by Blanchard

(Reference 3.8) to include his own result,: is shown in Figure 3.10. It will be seen

that on the whole the mean lines shown provide a reasonable fit to the data analysed

which include a wide range of different forms of roughness, although the scatter is

somewhat masked by the logarithmic scaling. A striking result is that there is a

minimum value of a (-0.15) which occurs for A -- 5; this reflects the fact that for a

given form of roughness there is a density of surface packing that yields a maximum drag

increment. If the roughnesses are more closely packed than this then they become

increasingly immersed in the wakes of upstream roughnesses and the total drag increment

is reduced. If they are less tightly packed then their numbers are reduced per unit

area and again the total drag increment is reduced. Nikuradse's sand grains were packed

as close as possible and their drag increment was well below the maximum.
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Figure 3-10. The Eý . lent San-' Roughness, According to Grobow S. White. (Data used Cover
Wide ... nge of Different Types of Roughness)

With the aid of this. correlation and Nikuradse's basic sand roughn•ess results (as

in Figurvs 3.3, 3.4 and 3.5) it is therefore possible to Make an estimate of the drag

effects of a specified form of distrib-ted roughness in turbuient boundary layers in

pipes and on flat plates with zero pressare gradient. Those can witn little further

loss of accuracy be extended to wings and bodies, particularly if a plot such as that of

Fi3ure 3.5 is used. This last point will become clearer when we discuss in Section 5 in

more detail the effects of a non-uniform pressure distribution.
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3.4 Discontinuous Changes of Roughness

A number of investigations have been made of the changes in velocity distribution,

turbulence characteristics and surface shear stress following a change of surface

condition from smooth to distributed roughness and vice versa with and without a

streamwise pressure gradient. The results show that the change is associated with the

development of an internal boundary layer starting at the point where the change is

introduced and growing within the existing one. At a sufficient distance downstream the

flow becomes that associated with the downstream surface condition. Schofield

(Reference 3.17) has made an analysis of the available data and relevant theoretical

work and his main conclusions may be summarised as follows.

Within the boundary layer close to the wall a length scale z can be determined by

writing

u/ur =A In(y/z). 3 (23)

For the boundary layer on a smooth wall equations 2(11) and 3(23) lead to

z (2cf )1/2 (Q/) exp (-B/A) 3 (24)

and for a rough wall equations 3(12), 3(15) and 3(23) lead to

if we write hi for the new internal boundary layer thickness then Schofield found

that the available data were reasonably fitted by the empirical relation

6B /z 2  O. 18(X/z2)0.92 3 (26)

where z 2 is the value of z downstream of the change and Xs is the streamwise distance

from the point at which the change occurs. This proved to be a somewhat better fit to

the data and easier to use than a formula previously derived by Townsend (aeference
3.18) for zero pressure gradient.

Almost immediately after the change the internal boundary layer shows a logarithmic

region of velocity distribution but close to the point of change the slope and intercept

6: of a Clauser type plot can only be made consistent with other methods of inferring the

skin friction if the quantity A, normally constant being the inverse of the "/on Karman

constant, is assumed to vary there. This is not unexpected since immediately after the

change begins the turbulence characteristics and structure still reflect in large

measure the upstream conditions Consequently, the ratio of the eddy stress to the mean

velo.:ity gradient, and hence the mixing length 2 , will differ from that to be expected

in a developed equilibrium turbulent boundary layer. Since A = y/J near the wall, the

quantity A (anrd hence the von Karman constant = I/A) can also be expected to differ near

the roughness change from its value further downstream. However, such differences be-

come insignificanc within a few boundary layer thicknesses downstream of the change, al-

P tlt)ugh the surface shear stress may take several boundary layer thicknesses (about 15)

to achieve the donrl:tream equilibrium value. The surface shear stress sometimes shown a

non-monotonic behavkour close to the point of roughness change.

p.
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4. DISCRETE ROUGHNESS

In spite of much contrary effort by aerodynamicists, the external surfaces of air-

craft are marred by numerous discontinuities and excrescences. Many of these, such as

pitot tubes and certain types of antennae are essential to the aircraft mission and must

protrude from the surface in order to function. Others are a result of compromises for

economy of manufacture, and are in a sense deliberately chosen rather than their

smoother, but more expensive alternatives. The process of arriving at these compromises

is very inexact because of the dearth of information on the many types of surface

imperfections which may be encountered.

Wind tunnel experiments in the years preceding World War T1 provided systematic

data on the drag of the types of roughnesses which were at that time most offensive.

This work was inspired to a great extent by a 1929 paper (Reference 4.1) by B. M. Jones

titled "The Streamline Aeroplane" which focused attention on the drag components of

airplanes which could be eliminated as opposed to those which are unavoidable. "Fluid

Dynamic Drag" by Hoerner (Reference 4.2), the first edition of which appeared in 1951,

presents a comprehensive review of drag due to surface roughness as well as from other

sources.

More recently a number of experiments have been completed, largely by the RAE,

updating the basic data on discrete roughness to the flight conditions (Reynolds number

and Mach number) which are pertinent to modern aircraft, and utilizing recent

developments in boundary layer theory to provide a sound basis for correlation and

application. Sections 2 and 3 have reviewed the boundary layer theory and its

implications regarding drag due to roughness. This section will review a number of the

available data sources to show, where possible, the correlation of the older data with

that more recently becoming available, and to show the areas in which information on

this subject is still sparse, or weakly substantiated.

4.1 General Considerations

The net drag increase due to surface roughness results from a fairly complex

combination of interacting phenomena which might be listed as;

o Pressure forces on the protuberance itself.

o Changes in the local surface shear forces forward and aft of the protuberance.

o A modification in the development of the boundary layer downstream of the

protuberance.

o Potential separation due to the added disturbance.

Since all of these phenomena can be influenced by pressure gradients in the flow

about the basic body, it is apparent that the real drag increase can be highly

configuration dependent. Practical utilization of general data on this subject demands

therefore that experiments be performed with the roughness elements in the total flow

field in which they are being considered, or that the unique conditions of the flow

field can be adequately accounted for. Fortunately, a number of these effects are small
enough to be ignored and others can be handled analytically. Most tests to obtain basic

data on roughness drag are therefore conducted on flat plates in a wind tunnel and are

inwn!an ~ ~ ~ ,~



applicable to a wide variety of airplane applications. Methods for extending these

results to arbitrary pressure distributions will be discussed in Section 5.

In some instances, References 4.3 to 4.5 for instance, the drag of roughness

elements is determined by measurements of the drag of flat plates of limited extent with

and without the element attached. The difference between these measurements represents

therefore the forces acting on the element plus the difference in skin friction on the

plate ahead of and behind the element. In other cases such as Reference 4.6, pressure
distributions on the element are integrated to obtain the drag. These two types of data
are generally used interchangeably. The change in skin friction on the measuring plate

is probably small in comparison with the direct force on the element, but such data

could be applied with greater .. onfidence if more were understood regarding this

phenomenon and if more were Ktnown about changes in skin friction downstream of the

plate.

In some few instances, the effect of local pressure gradients has been determined

for roughness elements. In Reference 4.6 for instance, it was determined that the

pressures on the upstream face of a disturbance consisting of a spanwise plate erected

on a wind tunnel wall were unaffected by changes in local pressure gradient. The net

drag was changed by as much as 25% however as a result of changes in base pressure when

tested in adverse pressure gradients. Only isolated instances of data showing pressure

gradient effects exist in the literature.

The adverse pressure gradients which must exist on the after portion of closedi

bodies can also produce significant effects on the total drag contribution of roughness

elements. Nash and Bradshaw (Reference 4.7) present an analysis showing that the drag

contribution of such roughness can be magnified by up to 3 or 4 times for downstream

pressure gradients which might exist on reasonable airfoil shapes. In Section 5 their

analysis is discussed in more detail and some results are presented showing that

exceptionally large magnification factors can arise for roughness on sensitive parts of

a high lift multi-component airfoil.

There exist in the literature several collections of data on roughness effects, and

in some cases data have been generalized to provide prediction techniques. The data

sheets provided by the Engineering Sciences Data Unit in the United Kingdom and the

Datcom in the United States include examples of the latter. Since these data sources

are widely known and generally available, tLey are not referenced in detail here. The

data presented herein in some cases provide an independent evaluation of some of the

same information presented in those sources.

4.2 Individual Excrescences or Protuberances

This section will consider those individual, local surface disturbances such as

fastener heads, protruding functional devices, and holes as opposed to items such as

skin joints which span large percentages of the wing span or chord and which will be

taken up in a subsequent section. By far the largest number of surface imperfections on
Saircraft skins are caused by the fasteners which provide structural attachmenis. When

installed properly, the drag of each such fastener is miniscule, but their large number

causes them to become an important consideration.

U

4.2.1 Fastenar Drag

Several different types of data on drag caused by structural fasteners are

available in the literature.
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a One type is based on some of the early work done by Schlichting and associates
during water channel and wind tunnel tests to establish the "equivalent sand

roughness" concept referred to in Section 3.3. Following the Nikuradse

pipeflow experiments, Schlichting (1937) tested a number of rough plates with

distributed roughness where the geometry of the roughness elements was
controlled. He varied the cross--sectional shape and density of various

roughness elements and established the equivalent height of sand roughness for

which the drag would be equal for each configuration. Some of the shapes

tested by Schlichting are crude representations of fasteners: i.e., spherical

segments, cones, and indentations representing flush rivets.

o Wind tunnel and flight test data on airfoils and wings having various fastener

patterns represent a second type of data available on fastener drag. These

experiments were done during the 1930's and 40's. The results tend to be

configuration-dependent. However, they are practical examples of fastener

drag.

o A third type of data for fastener drag is based on the work of Wieghardt

(1942) and Tillmann (1944). In these experiments, systematic variations of

geometric parameters were carried out. Drag is based on the "single-element';
or the discrete roughness approach. These data have more recently been

supplanted by the results of tests by Gaudet and Winter, Reference 4.5, for

instance.

Three basic methods for calculating the drag of fasteners were determined from the
literature and a rourth approach was develupe6d fLOt a Qocelation similar to thooc made

recently by the RAE for the drag of two-dimensional steps. The latter method is

suggested since it follows from the same logic that led the RAE researchers to their

approach; the drag of excrescences which are deeply immersed in the boundary layer

should be related to the inner boundary layer parameters.

Method A

This method was detailed by Young in 1939 (Reference 4.8) and is an empirical
formula approach. The empirical formula is attributed to the previous work of
Schlichting in which drag is correlated usina velocity at top of the rivet, and a

further observation by Young that the drag coefficient for rivets is directly

proportional to the height-to-diameter ratio (h/d). This method is a quick (rough

order of magnitude) approach.

Method B

This method follows from the distributed roughness data of Schlichting and would be

appropriate where the coverage is sufficiently dense to be considered fully rough.
However, a modification to this approach is described for cases where there is

doubt as to its applicability.

Method C

The third method is based on the experimental work of Wieghardtu This is
essentially the method described in Hloerner where an "independent" drag coefficient



is found based on the frontal area and the effective dynamic pressure acting over

the rivet.

Method D

This method uses the Wieghardt data of Method C, but the drag coefficient

correlation is based on the local skin friction and a Reynolds number based on the

roughness height and local friction velocity.

Five of the examples of "practical" fastener experiments were chosen to evaluate

the prediction methods. The results are shown in Figure 4.1. Essential details of

these five data sources are given below:

DRAG INCREASE
AC = DUE TO FASTENERS 0 WILLIAMS - I" PLATE (REF 4.9)

D 0 WILLIAMS - NACA 0012 (REF 4.10)
qo Sw A YOUNG - NACA 2417 (REF 4.8)

V HOOD - NACA 23012 (REF 4.11)
<>0 FENTER - PLATE, M =2.23 (REF 4.12)
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Figure 4. 1 Fastener Drug Correlation
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Williams 1" Plate, Reference 4.9

Flat plate with rounded nose and tapered trailing edge. Tested with 150 rivets on
each surface spaced at 1.5". Reynolds numbers from 1 x 106 to 24 x 106 on 2 foot

chord.

Williams NACA 0012, Reference 4.10

5376 simulated rivets on 8-1/4 inch chord two-dimensional airfoil, Reynolds number

to 9 x 10 6

Young NACA 2417, Reference 4.8

Glove added to aircraft wing. Tested with various roughness elements. 36, 43, or
49 rows of rivets spaced 1" chordwise and 6" spanwise, Reynolds numbers to 18 x

106.

Hood NACA 23012, Reference 4.11

2500 Brazier head rivets on 5 foot chord two-dimensional airfoil. Reynolds numbers

to 18 x 106.

Fenter Plate, M = 2.23, Reference 4.12

Flat plate in wall of wind tunnel with 117 simulated rivet heads. Reynolds numbers

to 20 x 10.

Estimates of the drag caused by these fastener arrays were made using each of the

four methods outlined above. The following paragraphs discuss the basis for each of the

estimation methods.

4.2.1.1 Method A. Young (1939), Reference 4.8

He refers to Schlichting's work which suggests that the drag of a rivet is given by

2
D C (i/2P u ) t 4(1)
R f h

R

where D -drag of the rivet

Cf = coefficient, function of rivet shape

R

uh = velocity in boundary layer at height h of the rivet

f = frontal area of rivet

Young shows several points which substantiate that Cf = 1.5 (h/d).

R

He goes on to derive equations for the drag increment due to rivets for a wing:
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2/" 4(2)
,CD 4.05s N (-L) ( + 1.5 (t/c))

and fuselage:

A CDR =4.05 --- )N 1--[)43

R

These equations are developed using approximations for boundary layer thickness and
for the supervelocity on the airfoil surface due to thickness ratio, t/c.

Young's method is an application of the "independent" drag coefficient concept
where an overall coefficient, in this case Cf , was chosen. His function

Cf = 1.5 (h/d) 4(4)
R

was derived from some of the early low Reynolds number data and consequently the
correlation shown in Figure 4.1 is quite good. Since the method is independent of
Reynolds number, the method doe, not always correlate well for data where the Reynolds
number was varied during the experiment. This method might be considered useful for
quick estimates and is applicable only to brazier-head fasteners.

4.2.1.2 Method B. Schlichting (1936), Reference 4.13

The primary data base for establishing the effects of density for roughness
elements was developed by Schlichting in an effort to relate practical examples of
manufacturing roughness on ships to the sand paper roughness experiments of Nikuradse.
He systematically varied the spacing of a number of roughness elements, some of which
are similar to fasteners, and determined the equivalent height of sand grain particle
which matched each roughness configuration. These results can be used, in conjunction

with the sand grain roughness data of Nikuradse, to find the drag coefficient for
fastener problems where the coverage is dense enough to be considered distributed
roughness. Figure 4.2 shows the Schlichting data for each configuration tested. These

roQrults have been collapsed into a Lolae yiLeýL•a UULVe relating density and the roughness
ratio, k /k, in Figure 3.10.
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Figure 4.2 Proximity Effect on Equivalent Sand Roughness
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Procedure for Implementing Method B:

Since, in general, the entire area may be covered by roughness, some assumptions

regarding the flow conditions and apportionment ot areas for each segment must be made.

The following example illustrates the recommended procedures:

23

Zone 1 = Lainar Flow

Zone 2 = Smooth Turbulent Flow S TOTAL
PLATE

Zone 3 = Rough Turbulent Flow AREA

RHF = Freestream Reynolds Number/Foot

The incremental drag due to roughness is calculated by first calculating the total

drag for the mixed flow case and then subtracting the drag for an assumed "smooth-flow"

case. For the mixed flow case, the total drag is found by determining the total

mcmentum loss at the trailing edge. This requires knowledge of the effective origin of

the flow for each segment, illustrated by the dashed extrapolations of Segments (2) and

(3) in the sketch.

An approximation to this case can be made by calcu ating the drag of each segment

separately (as an isolated case) with the origin assumed to occur instantaneously at the

beginning of the segment. Thus,

For Zone 1, 4("5)

R1 ý" tj1 x (RNF)

CD =(CF X
D~ I (CFlaminar R

where (CF laminar) is the laminar skin friction coefficient

at Reynolds Nunber = R

For Zone 2, 4(6)

R2 :( 2 )x (RNF)

DO2 Fsmooth R "- 

i

where (CFsmooth ) is the smooth turbulent flow skin friction coofficient

at Reynolds number = 2



For Zone 3, 4(7)

R3 =(t 3)x (RNF)

= (CF x
* CD (F)

3 rough R3

where

(CF ) is the rough turbulent flow skin friction coefficient
rough

at Reynolds Number = R and at the equivalent sand roughness.

The total drag is 4(8)

C C +~ C .+
0 rmixed flow D1  D2  U3

For the "all-smooth" case, Zone 2 extends to the trailing edge and the drag is
similarly calculated for two segments.

Finally, the incremental drag due to roughness is 4(9)

OCD) rough CDmixed flow - C0 smooth

Since this method is based on the assumption that the fasteners are uniformly

distributed over the area covered, the use of Figure 3.10 may not provide an accurate

prediction where rows of rivets are spaced further apart spanwise than in the flow

direction as illustrated below:

Vo

10

.I<1-- z -o -.. -.o ;.

00

---. $ 5.-Q" ---- "---3d

Figure 4.3 Pro-Rated Area Concept

In this case, a better correlation may be possible by using a pro-rated area based

on a strip of width equal to three times the diameter of the fastener. It is assumed

that no drag increase occurs in the area between strips. This was done for several of

the correlations in Figure 4-1 and as can be seen, an improved correlation was possible.
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4.2.1.3 Method C. W.eghardt (1942), later Hoerner

This method refers to the general approach of using certain experimental results,
as published, for finding the C Um for a specific type of fastener. Here, C., = D/cf

where q is the mean dynamic pressure in the boundary layer up to the height of the

fastener and t is fastener: frontal area. Since the Wieghardt tests (which were
supplemented by Tillmann) (References 4.3 and 4.4), contain the largest available

systematic data base, his name was chosen to identify this method. These results also
represent the basis for that portion of Hoerner's work covering fastener drag.

Several different investigations were made and these will be discussed separately.

(i) Round-head and flat-round fasteners

Wieghardt tested three different height-to-diameter ratios (h/d) and varied the

height and Reynolds number to obtain the data shown on Figure 4.4 (Wieghardt Figure 45
data). These data show a decreasing CDm with increasing Rh and this trend is counter to
the trend observed with other roughness elements. Hoerner explains that this is similar
to the "critical Reynolds number" behavior of spheres. The height relative to boundary

hx /d Source

o 2.7 10o6 0.2 Wieghordt Fig. 45 'l7T ,,,,,,
o 0.3 (Ref. 4.3)
A 0.5 I9 7.1 •106 0.2

• 0.3

A 0.5
"o 7.2. 106 0.01-0.07U Fig. 39 rr .
X 5- 106 0.25 Tillmann (Ref. 4.4) .
"4. 5' 106 0.42 ( nm,, n CHex Head)

17, fl, a.I

Ii__ • iHi!'_ i I4 'jiii •.- , i!

gitii AN it

,Q 4

0.2, i I
0 i ,] i t'li~ l ":::t'7L' . I,• - !M ":! i i' hi , :" ; :: H i::ll I _Lii:: l:i
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Log (4)

Figure 4.4 Drag of Round and Flat Heed Fasteners vs Reynolds Number
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layeor thickness, h/8i for the bulk of these configurations was large (--1.5) so that

the behavior would be expected to approach that of free-strseam isolateo, bodies -thus a
decreasing drag vs. Reynol~ds nimber could be experianced at some Reynoids number. it is

cilso ob-,ecved that results for the lowest h/8 tcnd to agree with the data taken by

Wieghardt for smiall cylindr.4.cal head shapes (W~eghardt's Figure 39 data). Thus, for

practical applications, wheoe the h,-8 would be quite small, the C Dm might be expected to

be larger than indicated by the parametric results, perhaps bounded by the dashed line

ir. Figure 4.4. tlow,,ver, for the correlatior.E shown in Figure 1 for Method C, the

parametric results were used.

(2) Cylindrical-head bodies

Wieghardt tested a large range of sizes of cylinders normnal to the flow. Those of.

large diametur to heighit ratio (dh > 10) and small. h/bi are considered representations

of rivet heads. These are shown in Figure 4.4 as Wieghardt's Figure 39 data. A linear

variation of C Dm vs. R h is indicated for these data. It is interesting to note tha~t

these data, when plotted in the RAE format (CD0/C t vs u Th/v ),agree- very well with the

drag of forward facing steps, (see Sectiorn 4.2.3.1).

(2) Countersunk cylindrical-head

Weirlhardt's results for a simulated countersunk rivet are shown in Figure 4.5.

Since the h/8 values indicated by these data are very small, h/h .003 - .015, the

overall accuracy is suspect and these results are only shown a-3 an indication of the

trends and relative magnitude. Here C =A D, ' d2

0.0108 - ......ighrt Re 3

0.0048 ~-

000 A .
vx= .. 106

0002 0 =67-- mm-

0.0 4 002 004 00

h/d

Figure 4.5 Drug of Countersink( Rivets
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(4) Special shapes (Three-Dimensional)

Hoerner (Figures 13 and 14) shows single "independent" drag coefficients for a

number of 3-D protuberances. He attributes these to Wieghardt and Tillmann. Some of

these shapes (cylindrical, round-head, flat-head, flush rivet and bolts) are the same as

reported above and he has selected some kind of average or nominal C Dm' One shape, the

hex-head nut was tested by Tillmann separately and again Hoerner selected a typical CDm"

Some of the other shapes could not be found (screw, bracket, pins, etc.). In general,

the drag coefficients for these different shapes can be approximated by the line

previously discussed for cylindrical head shapes (Figure 4.4). The data for Method C

shown in Figure 4.1 were estimated u3ing Figure 4.4 anO the multiplication factor of

Nash and Bradshaw, reference 4.7, (see also Sectien 5.1). The correlation is generally

quite good although the Williams flat plate data and Fenter supersonic data are much

lower than the estimate. No multiplicaton factor was applied to either of these

estimates.

4.2.1.4 Method D. Modified Wieghardt Correlation

In order to examine the behavior of Wieghardt's rivet drag results with respect to

the newer correlation methods of the RAE research, the round-head fastener data of

Wieghardt (his Figure 45) were expressed in the form

CDe /Cfe = f (h') 4(10)

where h4 = u, h/v = roughness Reynolds number, and Wiegbardt's drag coefficients were

converted to C De = D/qe fe"

The concept of relating the drag of disturbances immorsed in a turbulent boundary

layer to the law of the wall similarity parameters was discussed in 1967 by Good and

Joubert, Reference 4.6. Their measurements of pressures on two-dimensional plates

perpendicular to a wall showed that the plate drag was correlated very well by relating

CDI to u h/v for plate heights up to 0.58. The forward-face pressure forces, in

fact, correlated well for heights greater than6 . A velocity defect concept was evolved

shich properly correlatec the plate drag for all heights tested. These concepts have

been found to be very powerful in correlating drag measurements for a variety of

excrescences which are smaller than the boundary layer thickness, as is generally the

case for surface imperfections.

The results are shown in Figure 4.6. The tendency for the drag coefficie2nt to

decrease with increasing 1teynolds number still predominates and a linear variation of

C De/Cf vs log (h 4 ) is indicated. The effect of shape, through the height-to-diameter

ratio, is obvious at the higher roughness Reynolds number. For the lower values of h+,

there is a tendency for the data to follow the characteristic shape of the RAE data for

steps and ridges. In fact, the round ridge curve appears to act as a cut-off for the

low Reynolds number data for h/d = 0.5.

The existence of a cdt-off is reasonable when consideration is given to the RAE

results. The step and ridge drag coefficients are based on frontal area, normal to the

airflow, as are the Wieghardt rivet drag coefficients. Both are also based on

freestream dynamic pressure. Thus, it is unlikely that the rivet drag coefficient could

significantly exceed that of a 2-D step or ridge of the same height. Consequently, the

RAE round-ridge curve is assumed to be the correct variation for values of h below the
point of intersection with the constant (h/d) lines of Figure 4.6.
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Figure 4.6 Comparison of Weighardt Data for Round-head Fasteners with
Winter/ Qaudet Data for two Dimensional Round Ridges.

Some additional data for rivets having a h/d equal to 0.2 are shown in Figure 4.6a.

As shown, increase of h+ to values above about 2000 causes a reversal in the variation

of CDe/Cfe and a subsequent rather steep rise. The phenomena underlying these complex

variations are not understood.

For the comparison shown in Figure 4.1, data from the correlation of Figure 4.6

were used and increased by a multiplication factor based on the concept of Reference

4.7. In summarizing the comparisons of Figure 4.1, none of the methods stands out

clearly from the data presented. From a consideration of the fundamental correlation

shown in Figure 4.6 and its compatibility with excellent correlations for other types of

protuberances, shown later, Method D is preferred. The failure of the supersonic data

to correlate is perhaps not an outstanding drawback and the flat plate data of Williams

might be improved sligntly if a magnification fdutuL ualculaLed from Reference 4.7 wcrc

applied.

4.2.2 Two-Dimensional Cylinders

Since the drag of many aircraft excrescences can be approximated by data on

cylindrical models, these models have been studied extensively. While the items for

which these results are most useful are generally of high aspect ratio, cylinder data

for the complete range from sub-boundary layer lengths to infinite aspect ratio are

included in this section for continuity. The small-height data are included also in the

section on fastener drag.

4.2.2.1 Circular Cylinder Drag

The circular cylinder has been generally used as the basic model for cylinder drag

research, starting with the two dimensional, or infinite length cylinder. For incom-

pressible flow, the drag of a two dimensional cylinder is predominately a function of

Reynolds number, normally expressed in terms of the cylinder diameter, Rd.tRd
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Figure 4.6a Drag of Rivets - Subsonic Speeds

The relationship between cylinder drag based on frontal area, CD and Reynolds

number, Rd' has been extensively verified such that the results are considered

classical. Hoerner's compilation for this case, Reference 4.2, is repe-ted in Figure

4.7 for Rd ranging from 0.01 to 10S. The critical Reynolds number, where laminar sep-
d 5

aration transitioni, to turbulent flow, is seen to occur at Rd- 4 x 10 . An expanded
4 6

version over the range from Rd = 10 to 10 , from Reference 4.14 is shown in the upper

part of Figure 4.7.

4.2.2.2 Roughness Effects

The existence of uniform roughness on the cylinder or turbulence in the freestream

tends to cause the transition to turbulent flow to occur at a lower Reynolds number and

the cylinder to have a higher supercritical drag coefficient. Typical results from

Reference 4.2 are shown in Figure 4.8, where the degree of roughness is expressed as the
ratio of sand-grain size, k, to cylinder diameter.

4.2.2.3 Cross-Sectional Shape Variations

The effect of cross-sectional shape on 2-D cylinder drag was investigated for a

number of conventional shapes by Delany, Reference 4-14. The results for the
"sub-critical" Reynolds number ranges are summarized in Figure 4.9. Rounding the

corners was determined to have a profound effect on the sub-critical drag coefficient as

well as the supercritical Reynolds number effects. Since, for most practical aircraft

applications, the Reynolds number for cylindrical components would be subcritical, the

effects of rounding on the supercritical drag variation is not included here.

r_- -

A-N



63

*l~ iivrrtiv~i UCE: DELANY (REF 4.14)

0.6 ~71TtL~1I1~hitY IF ~ DIA, IN I I

0.6 {T 11 f itl fl ;Lj
r~ ~ II

10 F.F4

I T

1 00 4 ore ornr g31

06 ~~ ~ r.r p qR d FIII18ji000 'SI'uice: Hoeiejb,
tI 70 000 7F17

'F 10. 0TidrDomir~I 11t1f'

00 40 v 1

Figure 4.7 feto ufc ognsa h Drag of a Circular Cylinder Nra oteFo



SOURCE: NACA TN 3038, 1953
DELANY, N. K. & SORENSEN, N. E.
LOW-SPEED DRAG OF CYLINDERS OF VARIOUS SHAPES

MODEL: CIRCULAR, ELLIPTICAL, RECTANGULAR, DIAMOND AND
TRIANGULAR SHAPED CYLINDERS SPANNING A WIND TUNNEL
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Figure 4.9. Effect of Cross-Sectional Shape on 2-D Cylinder Drag

4.2.2.4 Cylinder Inclined to Flow (Wires)

For a cylinder inclined to the flow direction, such as a tow cable or antenna wire,

Reference 4.2 has shown that the drag may be related to the basic cylinder by the

cross-flow principle. Under cross-flow conditions, the net force normal to the cylinder

is only related to the velocity component normal to the basic cylinder axis. At some

flow angle, a, the effective velocity component is V xs.'n a and the dynamic pressure is

q x sin2 a. Thus, the normal force coefficient, based on area along the cylinder axis and

freestream q, is

CNC ~sr2 4(11)C N = C bT x sin 4(11

and the drag coefficient in the treestream direction is

C d3 4(12)
inclined n
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For a circular cylinder, at sub-critical Reynolds numbers, the drag coefficient

would be

(CD) = .0 Sin3  4(13)

inclined

where the 1.0 value for C is shown on Figure 4.7. Reference 4.2 points out that t

cross--flow principle cannot be applied for supercritical Reynolds number conditions. A

constant CD• value of 0.2 is recommended for sweep angles up to 50 degrees.

It must be kept in mind that the above argument is based on a drag coefficient

defined using a constant area as viewed along the cylinder axis. Some later data

(Sections 4.3.1.2.3 and 4.3.2.3) consider a drag coefficient defined using prejected

frontal area, in which case the drag coefficient varies as sin2 a.

4.2.3 Finite Length Cylinders

One of the first comprehensive studies of finite length or protruding cylinders was

accomplished during the systematic investigation of surface irregularities by Wieghardt,

Refere-ice 4.3. Through use of a moveable floating-element balance technique, and by

varying geometric parameters, he produced a very useful data base for the drag of

numerous aircrafic surface irregularities. In particular, he determined the effects of

height, diameter and Reynolds number on circular cylinders which are small reldtive to

the local boundary layer. These results were obtained at incompressible flow conditions

and sub-critical Reynolds numbhrs.

More recently, GC.IJ: and Winte, Eat RAýJ, Reference 4.5, and Pallister at ARA,

Reference 4.15 have investigated Mach nauruer ar well as Reynolds number and geometry
effects on protruding cylinders.

This work bridges the gap betwee:n the infinite cylinder (free of tine boundary

layer) and the finite cylinder, deepl; immersed in the boundary layer, as studied by

Wiegha-dt.

For drag estimation purposes, three categucies of finite cylinders ace

distinguished:

0 The first category pertains to cylindtrs which ,cc deeply submerged in the

boundary layer. For small diameter protrusions (similar to fasteners), the

drag estimation is based on a correlation of Wiegharct's data.

o The second category also pertains to cylinders whica are suomerged in the
boundary layer but which extend up to the edge of the bo 1 '(adcry layer. Dracg is

estimated with the drag defect method outlined in Refei-ence 4.5.

o The third category contains those cylinders which prý)ý.rude into the

freestream. The correlations ot Reference 4.5 and 4.15 are alsu used for drag

estimation for these cases.

4.2.3.1 Cylinders Deeply submerged in the Boundary Layer

The Wieghardt results for cylindrical bodies are summarized in Figure 4.0. Two
typesý of geometric series wert. tested: one where the height-to-diameter ratio, h/d, was

less than 0.07: and the other whence h/d varied from 0.05 to 4.0. The CDm values aLe

based on the cylinder frontal area ai.d the average dynamic pressure acting oih ea;h

cylinder. These data were converted to the form C e/C vs h+ and are compared to thŽ

De - k vat&M.m
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Figure 4. 11 Comparison of Incompressible Cylinder
Drag with RAE Results for Various Excrescences

FLOW the basic rest oata tor each Mach number, plots were made of CDe vs 6/h and

extrapolated to determine the drag coefficient of an equivalent infinitely long
cylinder, C.o0 . The results are shown in Figure 4.12. The constant slopes obtained for

C vs R enables a correction for Reynolds number to be made and the data plotted
DW d

against Mach nimber, Figure 4.13. Data from Pallister and others are included on Figure

i 4.]3. Prior to Pallister's results, trie Mach number effect through the transonic range

was not well established. His results confirm the general shape determined earlier by

SWelsh and the levels at M = 0.8 and M > 1.4 obtained by Winter and Gaudet.

The next step taken in Reference 4.5 to establish the drag function was to examine

the ratio of the drag of a cylindeiu of height, h = 6 , where 6 is the boundary layer

Sthickness, to the drag of an infinitely long cylinder. Figure 4.14 compares results

from References 4.5 and 4.15. Without the later results, the RAE observed that within a

small range, C[)8 was proportional to CDat a given Mach number. A drag defect function

was then defined in the form

C D6 C CDh
- =F( h 4(14)

Cf 6

where CD6 = drag coefficient of a cylinder with a height equal to the boundary

layer, 8 .

CDh = drag coefficient of a cylinder with arbitrary height.

4audet and Winter's results are shown in Figure 4.15. Winter and Gaudet could not

find a function independent of Mach number and consequently concluded that drag could be

estimrsted by use of Figures 4.13, 4.14, and 4.15. Pallister's data provide previously

unavailable intornation for transonic mach numbers.
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Source: Gaudet/Winter (Ref. 4.5)
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Figure 4.13 Comparison of Circular Cylinder Drag Measurements
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4.2.3.3 Cylinders Completely Immersed in Boundary Layer

Following the suggestion of Gaudet and Winter, the drag of cylinders completely

immersed in the boundary layer can be found from

CD=CD -Fx Cf 4(15)

where

[.1CCDD Figure 4.14 Figure 4.13

and F=(,/)
F= F (M, h/6 ) Figure 4.15

4.2.3.4 Cylinders Extending Outside the Boundary Layer

For cylinders with a height greater than the local boundary layer thickness, the

drag is found by pro-rating the submerged and exposed areas with the proper drag:

The drag of the submerged ptrtion is

-T(CD

and for the exposed portion the drag is

(1- -j.--)CD

The total drag for cylinders extending into the freestream is thus

h7 r CD +(- ( 4(16)

where CD6 and CDa are determined from Figures 4.13, 4.14, and 4.15.

4.2.4 Stub Wings/Antenna

Although the drag of protrusions such as stub wing-like antennae tend to be highly

configuration oriented, recent work by Gaudet/Winter, Reference 4.5, and

Marshall/Williams, Reference 4.25, has led to a few generalizations which are useful for

some applications. In Reference 4.5, an attempt was made to analyze test results on a

series of stub wings of varying span along the lines of their cylinder drag defect

function approach (see Section 4.2.2.1). This was only partially successful.

Additional data were made available through Reference 4.25 which can be supplementary to

the RAE results.

For bodies protruding into the freestream, the Reference 4.5 approach assumed that

the drag can be determined by:

C---C 06 4(1- .- )CD 4(17)

where
C D = the drag of the body with a height equal to the boundary layer thickness

C = the drag of the body with infinite length
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For most airfoil or streamlined shapes used for stub-wing antennas, the value of

CD would be known by converting the zero-lift section drag coefficient for the actual

airfoil used, to a coefficient based on frontal area.

The value of CD8 would not normally be known or obtainable from sources convenient

in design work. Data in References 4.5 and 4.25 would indicate that typical values of

Cnh /CD. are approximately 0.85 at subsonic speeds and 0.7 at supersonic speeds.

Z For excrescences, such as stub wings, totally submerged in the boundary layer,

generalized results are not available. Reference 4.5 utilized the drag defect function

such that

CD = CD - F x Cf 4(18)

and found that the defect function, F, varied with Mach number and h/b in a manner

somewhat similar to that shown for a cylinder, Figure 4.15 of Section 4.2.3.2, but with

the values scaled by a factor of 0.75. Again, this was applied to the supersonic

results only. Reference 4.25 offered that a better method would be to account for the

reduced dynamic pressure through the boundary layer by integrating:

h/6

C 0 C =Cx C J (DX)2 d(y/5) 4(19)

0

This method relies on knowledge of the existing boundary layer profile and actually i-s a

version of the Hoerner effective dynamic pressure method. Thus, no improved general

method beyond the two described above is available.

4.2.5 Drag of Holes and Surface Cut-outs

The data base for the drag of holes is taken from two series of experiments - one

carried out in Germany during the period 1936-1942, References 4.3, 4.4, and 4.16, and

the other being the recent British work, References 4.17, 4.5, and 4.15. Although these

experiments cover a wide range of geometric and flow parameters, it has not been

possible to generalize the results into accurate drag prediction methods. In fact,

Reference 4.5 concludes that because of the complexity of the three-dimensional flow

pattern within a hole, it is not likely that a simple analysis will produce methods for

* describing all the possible combinations. In the special case of circular holes,

Reference 4.17 shows a reasonably good correlation based on the kind of analaysis

successfully used by the British for many types of excrescences.

Careful scrutiny of all the various experimental results shows that the drag of

11. holes is only a weak function of scaling parameters (Reynolds number, skin friction,

boundary layer characteristics). Geometric factors, such as depth and hole aspect ratio

(width-to-length ratio) tend to predominate. Consequently, the use of the actual test

results as reported becomes a valid candidate as a method of estimating hole drag. For

. several types of holes correlations have been derived which cani be used for estimation

purposes.

Two basic categories of holes are identified by planform shape: those with a curved

planform (round or elliptical holes), and those with rectangular planforms. The latter

does not include slots or cut-outs which are small relative to the boundary layer

thickness. These are covered in Section 4.3.3.

I: I II II
p
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4.2.5.1 Circular Holes

Th2 early experiments of circular holes covered a large range of d/h ratio (set.

References 4.3, 4.4, and 4.L6 for incompressible flow and were conducted at low Reynolds

numbers (RX less than 7.5 x 10i . At these conditions, the drag was found to be

essentially independent of Reynolds number and a function of the diameter-to-height

ratio. A cyclical variation of the drag coefficient vs. h/d was observed which dampened

as h/d increased, see Figure 4.16. This cyclic variation is probably associated with

changing flow patterns in the region of the hole. Thus, with some geometries the

vortices that form within the hole remain there dnd the flow is relatively steady and

stable. The external flow then passes over an effectively smooth free surface defining

the upper surface of the hole and the drag is low. For other geometries vortices are

continuously generated by the hole and convect downstream as a wake; the drag

contribution is then high.
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The value ef 13 was found to be a function of Mach number, but the parameter A was

dependent upoDn buth h/d and M, and is the cvclical effect noticed in Figure 4.16. In

order to see the degri-P. ot correlet ion butween the early lrev speed data and the latest

results, the (correlation ehe-,wn in PFi(ure 4.17 wa;i made, Assuming the low speec value

for B, given in Reference 4.1.7, values were calculated for A,

A ý(C&I /C )Ox(u d/ )*-P 4 (2 ')

where values for C f and III d/v were calculated for the known test conditions for eachi

data source.

Considering the largeý ditference of test paramecters between the early experiments

and the more recent tests, the general agreement. shown in Figure 4.17 is very good. In

view of this correlation, a si~ngle method for calculatxng the drag of circular holes is

acknowledged. That me~hod is as Ceveloped by the R.\E (Reference 4.17) and confirmed by

ARA (Reterenceu 4.15). Since the ARA experimento- contain a moro detailed evaluatio'n of

M.ich number effects and extend to higner values of h/d, the recommended approach i s

based on the Reference 4.1.5 results.

The basic e,,! -Lic~i is, from Reference. 4.17,

CD/C f =A-4(22)

where A =f (h/d, M) as shown in Figure 4.17 (Figure 26 of Reference 4.15) and B = f (M)

shown in Figure 4.18 (Pigure 6 of Reference 4.15). P'or Mach ne~mbert, hiqher thon 14-- 1.4,

the data of Reterence 4.17 can be used, but on,.:y ior h/d < 0.33. These latter result,.,

ace included on eigure 4.19.

1.0 Ift~1 40%Aq 4 a Wieghardt 'Ref. 4.3)0.6 8r j' A Friesing fRef. 4.16)

0.6 - -*. 0 S ~TiIlrmandKOf 4.4)
0.6 -r7" ! Gaudet/Winter (Ref. 4.5)

0,4 I4

0.2 4A~~ --4 {47-7¾
0.2 T

-v r7

0 0.2 0.4 0.6 OAe 1.0 1.2 1.4
h/d

Figurs 4. 17 Comiparison of C~orrelat~on Parumeter (A) for Circular Hole Drog
Oidainad 'rrom Various Dato Sources

Sojrce: jjalife Re 4 j1

Fig ure 4. 183 Effect of Mot', Number on,
Coý-relatiori Parameter (B)0
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Maclh No.
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Figure 4.19 Effect of Mach Number on Circular Hfle Drag Correlation Parameter (A)

4.2.5.2 Holes with Elliptical Flanform

"The only uoerce found for determining the effects of ellipticdl planform on the

drag of holes .s the early work of Friesing, Reference 4.16. In the case of elliptical

holes, Friesing only valuated configurations with the major axis of the ellipse nor-mal

to the direction of air flow. His results are shown in Figure 4.20.

Although these results are somewhat scattered, thece are several noticeable charac-

teristics which can he used to m.ke some useful generalizations. First, the cyclical

nature of the curve C vs h/d for circular holes, observed in F)gure 4.16, is also

evident toe the elliptical planform holes. This implies that tho drag for the ellipti-

cal case may be obtained by correcting circular hole drag in some way. Since it is also

apparent that the extreme peak in CD, for circular hIolc-, over the range hl/ = 0.4 to

0.6, does not occuL for the elliptical holes, a modified shape is necessary Fur this

portion of the data.

Another useful characteristic observed is the somewhat consistent trend of

decruasing CDUP due to incre-ssirm the ratio of hole width to hole length, w/l. This

occurs for h/I valuOes [t.oss than 0.8. Above h/i = 0.8 the results are doenerally

scattered about a mean line. Thus, for h/l < 0.8, the ratio of the drag coefficients

for elliptical noles to thati to: a circular hole can be used to determine the re-Slationship between the trio.
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(b) hA >0.8 4(24)

CDp El iptical Circular

Care must be exercised however to recognize that the dashed curve CDp is only a

fictitious datum rather than showing real values for circular holes. Some singular flow
condition within the hole apparently occurs for circular holes having a depth near 0.5 x

diameter which results in the very high drag values uhown in Figures 4.16, 4.17, and

4.20.

4.2.5.3 Holes With Rectangular Planform

The data base for holes with rectangular planform is scanty, consisting of early

data such as Friesing, Reference 4.16, and a few recent measurements contained in

Reference 4.5. As noted in Reference 4.5 very few generalizations can be made with
these results becauae of insufficient combinations of planform aspect ratio and depth-
to-length ratio. In any event, the data have been plotted in the form of the drag

ratio, CDf/Cf, vs. the depth ratio h/l in Figure 4.21. A mean curve has been provided

for general use.

(Mm) (mWm)

W 0 80 500 Friesing (Ref. 4.16)
:T U I, 80 320

'il - a 150 150

8 • f" 7 ....... Lrz7 50.8 Gaudet/Winter (Ref. 4.5)Si!!i: "•" T 01.6 101.6
50 .08 1

f 7

.fe .•-... 1016

~~. .I : ....ii t : ...

0 0.4 0.8 1.2 1.6 2.0 2.4

Figu-04.21 Rectangular Hole - Dra o3 a Function of Depth Ratio, h/A

Mach number etfect:t for a square and a rectangular hole configuration, obtained
from Reference 4.5 are shown ;-n Figure 4.22. These results are obviously inadequate and

onl-0 indicate general trends. Until such time 'As a better data base is available, the

use of these data as sncwn is recommenrded for estimating the drag of rectangular holes.

4.3 Spanwisc-/Longitud inal Discontinuitien

Skin joints in the externial surfaces of ilrcrdft, and similar sur-face
imperfections, form a seond type of roughness which is a significant drag producer.
Spanvise !kin splices for instance cover the entire wing from tip to tip rnd no portion

of the, wing is £tee of their effect.
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Figure 4.22 Mach Number Effect an Hole Drag

* 4.3.1 Spanwise Steps and Ridges

Excrescences which extend across the flow with the long axis normal to th" flow

direction are generally categorized as steps or ridges. Steps have only one side

exposed to the flow, which can be facing forward or aft, whereas ridges have some

combination of both forward and aft-facing steps.

The usual starting point in a study of these kinds of excrescences is the two-

dimensional step with a 900 forward-facing surface. Investigations using this basic

configuration have been more numerous than for most surface irregularities. Ev, n so,

somts uncertainties still exist with respect to defining the drag of such steps. The

most comprehensive and useful studi-s wet ! made during the RAE and ARA research

(References 4.5 and 4.15). Results from thesm studies provide the basis for the methods

described in the following sections.

4.3.i.1 Forward-Facing Step

4.3.1.1.1 Two-Dimensional Step Normal to the Flow

Figure 4.23 summarizes some of the forward-facing step drag results using the

approach originally presented in Refcrence 4.5. The experiments by the RAE were

conducted on steps deeply immersed in the boundary layer (h < 0.03 b ). It was ;,easoned

- that since the step height was so small compared to the boundary layer, that the flow

would depend on the same parameters as the inner region of the boundary layer. A

roughness Reynolds number was defined as

ht =u ¶,h/ 4(25)

where

h = height of step

u= friction velocity based on the wall conditions (T/p)I/2

v Kinema'fic viscosity at the wall

_ .

.3.l
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o Goudet/Winter (Ref. 4.5) C .7 ,---
o I 0.8

20 j 1.4
V j 1.7
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* Wieghordt (Ref. 4.3 0.2
150 -A Czarnecki (Ref. 4.18) 1.61

+ Pallister (Ref.4.15) 0.8
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* Hood (Ref. 4.11 0.2

_ "Corrected -• 8 A O9- '_-
100 A --

A8 A A

A --
A~ 8

50 'L A - .0-0

041.., I I,

10 20 40 60 80 100 200 400 600&0 1000 2000

h= +=. Vh/v

Figure4.23 Drag of 2-D Forward-Focihj Steps Normal to the Flow

Likewise, a draag parameter was defined as the ratio the drag pet frontal area to

the local skin friction coefficient, CDe/Cfe. Plotted in the form CDe/cfe 4 f(h+), some

unique relationships were determined as shown in Figure 4.23. Despite a large amount of

scatter, a linear variaticn can be defined which has some Mach number dependence up to

about M = 1.4. Data from other sources tend to support the linear variation, although

absolute levels and slopes are different. These differences could he related to test

technique but also there is the possibility that the degree of submersion of the step

within the boundary layer is a factor. The Wieghardt results, for example, covered a

range of heights from 3.6% to almost 50% of the boundary layer thicks[.ss. These steps

would tend to have less dependence on the inner boundary layer parameters. As can be

seen, the Wieghardt data have the same slope as the incompressible RAE data, but an

overall lower drag ratio.

In the case of the supersonic results (M > 1.4), Reference 4.5 note.s that all the

data seem to be along a single line as shown on Figure 4.23. Because of the larc.*

difference between the subsonic and supersonic data, Referee 2 4.5 suggested the need to

investigate the transonic speed range (M = .8 to 1.4). This was accomplished in a

limited fashion by Pallister, Reference 4.15. Pallister repeated the procedures of

Reference 4.5 for M = 0.6 to 1.4, but for a narrow range of roughness Reynolds nunoer,

h+. His results Lor M = 0.8 and 1.4 are shown to agree with the RAE date on Figure

4.23. The variation with Mach number through the tLansonic range is shown in Figure

4.24.

Other forward--facing step drag results for multiple step configurations are al.c'

included on Figure 4.23. Hood, Reference 4.11, tested lapped joints on a NACAZ30L2

airfoil. An equivalent value for CDciCfe was oetermined and is considerably higher than

the corresponding incompressible RAE data. This is not surprising for several reasons.

First, some additional drag may be present on the airfoil due to transition movement

between the smooth and rough airfoil configurations. More significantly, the influence
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Figure4.24Voriation of 2D Forward-Facing Stop Drcg in the Trun4;onic
Speed Range

of excrescences 0oi the boundary layer in the presence of an adverse przssure gradicnt is

known to be greater than for a zero-pressure gradiarnt flow, Reference 4 .7, These data

have beer. "corrected" to an equivalent flat plate condition by extracýting the Nash arid

Bradshaw mnultiplying factor. As shown in Figure 1.23, thiz accounts for the majority of

thu difference. between this arid other low speed dat~a.

The multiple-step stupprsonic data of Czarnccici, ct all Reference,ý 4.18, is also

repirescrnted on Figure 4.23 as on equivalent single 2-1) step. In this case, the effects

of presbure gradienit and transition are not present and the drag ratio is in fact lower

than the RAE supersonic data. Reference 4.5 attributes this to the mutual interference

Because of the observed differences there may still be some question as to the

universality of the RAE resultr. However, presentr judgment dictates th'! use of the RAE

arid ARA correlations for step drag. Therefore, the recommended procedure tjr estimatiag

the drag of 2-D steps is as described below.

For M ( 0.8 and M > 1.4, the Reynolds number variations of figure 4.23 are used.

For transonic Mach aumbers5 between M = 0.8 and 1.4, an interpolation is suggested based

on the data of F'igure 4.24 and is shown in Figure 4.25.

Thuz;, for, M < 0.8, > 1.4,

C D. (Cf, M, h + (Figure 4.23) 4(26)
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and for M > 0.8 and < 1.4,

(CDo/C = (CD /Cfe) +PCI [(C/eicf) - (C o/%e) .] 4(27)
MCe :(~ M -0.8 [0L M = 1.4 D ;j M0 .8

where PC = F (M), Figure 4.25, and the CDe/Cfe values are taken from Figure 4.23 at the

appiop tate roughness Reynolds number.

(C&:•COfe - (CQ/eCf)e

PCI = (C._/.C M = .8

M 1.4

: : .: ..i :; ! : : : i - : ::. : .: ........ 7 j _ . . . - -

. : i !:: ..... .... ..7 7 .. '7! - . ., -: . .• .
I:e I j.i::i i :L4 ::I

0.6 0.8 1.0 1.2 1.4 1.6

Mach Number

Figure 4.25. Effect o•f Mach Number ;n the Transonic Range
On the Orag of Forward-Facing Steps

4,3.1.1.2 Effect of Chamfering or Rounding

The effects of rounding and chamfering the face of a forward-facinIg step were de-
termined for h+ = 200 and 1000 at four Mach number.s during the RAE experiments. The Odatc

were re-plotted for use herein in the torm shown on Figure 4.26. The effect of rout~hness

"77 4.5

Reynolds number, h , is small and an average curve wa3 drawn through the h• - 200 a

1000 valuies for each Mach number.

.. . 7
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Figure 4.26 Jffe of ko'tding and ChormFedrin on~
Forward-Facing Step D.(ug

The method tor cýAimat~inci the drag of a rounded ov: ctiamtered 2-D step is as

For a ccunded step,

c De /Cfe=(c De /C f) x i- E r,4] 4(28)

where (CO, /C e) drag ratio for a normal 2-D stop trom Se~tion 4.3.1.1.1

r 0

Er a ch::e r/h, M) from rigure 4.26(a) ~ -E (9
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where (C0 /Cf) = drag ratio for a normal 2-D step from Section 4.3.1.1.1

0 90

E = f (0, M) from Figure 4.26(b)

4.3.1.1.3 Effect of Flow Angle

The effect of cross-flow on the drag of 2-D excrescences is discussed in Section

4.3.2.3. It is assumed that the results of Figure 4.45 are applicable for forward

steps. Thus, the drag coefficient in cross-flow is given by:

(C 0D) (C) x sin2 4(30)
.= 90

where

a = cross-flow angle (see Figure 4.45)

(CDe) = drag coefficient of a plain 2-D step from above,
a =90

4.3.1.2 Rearward-Facing Step

4.3.1.2.1 Two-Dimensional Step Normal to the Flow

Some recent results for rearward-facing steps are shown in Figure 4.27 for M = 0.8

and 1.4. The data of Reference 4.5 are shown for these two Mach numbers for comparison
with Reference 4.15. The amount of scatter and/or uncertainty is significantly greater

than for forward-facing steps. Both References 4.5 and 4.15 note this fact and

Reference 4.15 suggests several reasons. First, the approaching boundary layer in the
Reference 4.15 experiments was the product of "rough-turbulent" flow rather than the

smooth-turbulent flow of Reference 4.5. This would tend to amplify differences down in
the region of the laminar sub-layer (1% of boundary layer height). Second, the buoyancy

correction for the balance set-up used in Reference 4.15 was a larger percentage of the

total incremental force beino measLured than in Reference 4.5. Accordinoiw. Pallister

tends to discredit the data in Reference 4.15 for the lowest step height (1.27 mm).

(Ih) M 1. 47] 111ill Tfl'•• h1¶V: • •,'
-C Poul0stNe r (R. L. 4.5 ) i . t r IF 4 . '5T j

100 2010010 20 4060 10 e 2 0 0 O 0 060 10I 
".• 

.'
FI It 0. an 1.4

±- - ,, -,,r _,,,,, T", i T,
I0 20 40 60 ID0 200 400 6W 1000 10 20 40 6 too 2W 400 600 1 O~O

Figure 4.27 Drag of Rearward Fac'ing Steps at' 1\ - 0.8 and 1.4



I The lines faired through the results in Figure 4.27 are taken from Reference 4.5.

These lines, plus those for the other Mach numbers tested and reported in Reference 4,5

are repeated in Figure 4.28. Data from several other sources are included for
comparison.

c pao AV Wieghardt. (Ref. 4.3)

"0 Hood, (Ref. 4. 11)
a4 Williams, (Ref. 4. 10)

1. 150 ii:~£ f

150
* I

W h+ r h+'-;!1

i"

*100

Figure 4.28 Drag of Plain Reo:ward Steps

h -

The linearity ot the forward-facing step data, C /ice vs h, is aiso apparent in

Doot

the rearward step results. However, the variations with Mach number are sore pronounced.

Whereas, the drag of the forward step increases with Mach number up to about N 1.4 and

then remains essentially constant, the drag of rearward steps starts to decrease at

N = 1.4.

k ~The transonic range was investigated in Reference 4.15, and these results are com-

CL

=" pared with the Reference 4.5 data in Figure 4.29. This is done at a constant h+ = 1000

i• • since the Reference 4.15 tests were at a nearly constant Reynolds number. Three heights

of step were tested and a different Mach number variation was obtained for each. Noting

St ~results, and recalling that the agreement for the forward step was also based on this l

S step height (where no other heights were tested), it is reasoned that the h =3.81mm
t• results are most nearly correct. This conclusion .is also supported ey the fact that

i Reference 4.15 tends to discount the results for the smaller steps. 'Iherefore, the

recmmededmetodfor estimating the drag of rearward steps includes use of the

a E,

SRe2ynord number effect of Reference 4.5 and the Mach number effect as shown in Figure

Reyn o• the .'.8l mm step.

IFigures 4.28 and 4.30 summarize the data required for estimating the drag of
Srearward-facing steps normal to the flow. For N < 0.8 and >' 1.4,

•I1Co. F (Cf, M, h+) 4(31)

it..

Sas found in Figure 4.28. For Mach numbers between 0.8 and 1.4, an interpolation can be
made using Figure 4.30,

(CD /Cf ) = (C0  Cf + [C 0 /C -C Cf432
M ==0.8 1M.4.M 0.IJ
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h, (mm) Source

0 1.27 .01 PallIister
O1 2.54 .02 Pallister, (Ref. 4.15)
a 3.81 .03 Pallister

160* Vary .01-.03 Gaudet/Winter, (Ref. 4.5)

.20 ..... ...

D e
J;3

40 jii.

Machl Number

Fig~ure 4.29 Effect of Mach Number on the Drag of Rearward Steps

PC2= (C De/CQ -e) (C De/C fe )M =.2
2 (C De/C fe)M 1.4- (CDe/C f)M .8

1.2

PC 2

0.4- -

0t
0.8 1.0 1.2 1.4

Mach Numbei

Figure 4.30 Mach Number Factor for aft Facing Steps over the
Transonic Range
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4.3.1.2.2 Effects of Chamfering or Rounding

The effects of chamfering on the drag of a rearward-facing step were investigated

Over the Mach number range from 0.2 to 2.0 in the experiments of References 4.5, and

4.15. The results, re-plotted in Figure 4.31, show that for chamfer angles down to 450

almost no change occurs in the drag. At some Mach numbers, there is a slight increase

in drag until the angle is less than 120. Below 120, there is a sharp drop for all Mach

numbers. Wieghardt also found a similar effect, with an even greater increase for

angles greater than about 200.

The effect of rounding the edge of a rearward step has only been summarily checked

for two values of radius and for Mach numbers between 0.6 and 1.4, Reference 4.15. The

results, re-plotted in Figure 4.32, show a slight increase in drag due to rounding.

Reference 4.15 offers no explanation for this increase, however, it is apparently

similar to the increases noted for the smaller chamfer angles.

For drag estimation purposes, data of Figures 4.31 and 4.32 have been generalized

in a manner similar to the forward step results. For chamfers, the results are shown in

Figure 4.33. The ratio, Go , represents the degree of change in drag from the- un-

chamfered base.

Mach
No. Source

m 2.0 Gaudet/Winter (Ref. 4.5)V 1ý7

* 0.8
A 0.2
+ 1.4 Pallister (Ref. 4.15)
x 1.2
* 1.0
0 0.8

12_ _.,,,,:= :•• . .7 ! -:-7-'7 i 7 i.7 .-.:• ]

160 - .-- .1 . .

120 :

CD./C 
.ra

80

40 ,'7: 7 - ------.. ..- "

-7-1

0
0 20 40 60 80 100

Chamfer Angle, 0

Figure 4.31 Comparison of Results on the Effect of Chamfer on Rearward Step Drag
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Thus, for a given chamfer angle, o , the drag may be estimated by:

(Ce/Cf) = (CDe /Ce) (I -G 4(33)
De/f efeA

09
where

(CDe/Cfe) = drag ratio for a normal 2-D step from Section 4.3.1.2.1

0= 90

G' = F (0 , M) from Figure 4.33.

Because the effect of rounding was so small, a single relationship was chosen,

independent of Mach number, representing an average of the Figure 4.32 results. Thus,

(CND/Cfe) rA= [I + 1 .4 (,A )] (Ce/Cf1), = 0 4( 34)

where

(CD /Cf ) drag ratio for a normal 2-D step from Section 4.3.1.2.1
e e r = 0

4.3.1.2.3 Effect of Flow Angle

The effect of cross-flow on the drag of 2-D excrescences is discussed in Section

4.3.2.3. It is assumed that the results of Figure 4.45 are applicable for rearward

steps. Thus, the drag coefficient in cross-flow is given by:

(CDe)J1 (CDe) a =90 x sinf2 a 4(35)

where

S= cross-flow angle (see Fi9ure 4.45)

(CDe) = drag coefficient of a plain 2-D step from above.

a = 90°

4.3.2 Combined Forward and Aft Facing Steps - Ridges and Plates

Excrescences whLch displace the flow upwards, as by a forward facing step, and

subsequently return the flow to the original plane, and which do so in a short distance,

are termed ridges. A plate normal to the flow is an example of a ridge with zero

thickness. The basic experimental model for ridges has been the simple two-dimensional

square ridge where the height is equal to the thickness. The drag of this elementary

shape hes been extensively explored by Gaudet/Winter Reference 4.5 and Pallister

Reference 4.15 and their results provide the basis for the methods described herein.

Early studies at low speeds and Reynolds numbers provide some additional insight into

tne effect of geometric shape on the drag of ridges.

S "•' j!•J I I I I I I I II i :



4.3.2.1 Two-Dimensional Ridge Normal to the Flow With Vertical Faces

For plain 2-D ridges deeply immersed in the boundary layer, Referenuc 4.5 reported

linear variations of the parameter CDe /Cf vs h+ similar to those for 2-D steps.

Figure 4.34 summarizes their results for the Mach numbers tested. The addition by

superposition of the forward and rearward step drag produces a total which is about 50%

below the drag of square ridges at the lower Mach numbers. This implies a substantial

interference drag for the combined configuration. This difference subsides at the

higher Mach numbers and is not present in the M = 2.8 data.

[Ii ji: K
t , i,

300 (RF.4.5) 11d I ý: ,, k, .
CDe • q

Cfe

200 MACHi !4i

10. tll I a I tll 1: 11'

10 20 40 60 80 100 200 400 600 800 000 2000

Figure 4.34 - Drag of Plain Ridges

The incompressihle results for square ridges are compared in Figure 4.35 with some

of the early experiments of Wiegha':dt, Raference 4.3 and Tillmann, Reference 4.4. The

relatively good agreement with the Tillmann data is considered fortuitous, since these

experiments were on thre2-dimensional, models (plates and bars). The ledges tested by

Wieghacdt are similar to the 2-D ridges of Reference 4.5. In general, these resul.s.4-

show the validity of the cDe/Cfe vs n approach for these kinds of excrescences.

The transonic experiments of Reference 4.13 further corroborated the Reference 4.5

data and provided a more detailed coverage of the transonic speed range. Figure 4.30

compares the M = .8 and 1.4 data for square ridges from the two sources and Figure 4.31

shows how the compressibility effect compares at a constant roughness Reynolds number

(h+ = 1200). As the flow becomes supersonic the drag increases substantially to a level

50% higner than the subsonic drag. Above M = 1.0 the drag decreases back to the

low-speed level. This sharp variation over the transonic range makes clea: the need to

obtain careful experimental measurements over this speed range and to properly account

for Mach number effects during drag estimation.

To assist with the latter, the transonic data of Reference 4.15 for square and rec-

tangular ridges was used to derive a Mach number factor to approximate the variation

between M = 0.8 and 1.4. Since the drag variation with roughness Reynolds number at

M = 0.8 and 1.4 is known (Figure 4.34) it is convenient to relate the transonic effect

to these data. Thus, the drag increase abova M = 0.8 was ratioed to the known

difference between M = 0.8 and 1.4. This was done for the square and rectangular ridge

data of Reference 4.15 and an average curve obtained. The result is shown in Figure

4.38.
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The drag of rectangular plain ridges with a thickness twice the height was also

investigated in some detail in References 4.5 and 4.15. Figure 4.34 contains the
Reference 4.5 summary of the Reynolds number variation for comparison with the squLare

7 ridge data. For low values of h÷, where h/8 was about 0.01 to 0.02, the drag of the
pc

rectangular ridge is higher than for sqruare ridges. ReCerence 4.15 expi.riments were at.

h+ values near the cross-over point and do not clarify this effect. At higher values of

h÷, where h/b was near 0.03 ir. the Reference 4.5 tests, the dray of tee tectangLilar

ridge becomes less than for an equivalunt square ridge, see Figure 4.34. Wieghardt's

experiments also show a decreasing drag with increasing thickness of the ridge for a

constant roughness Reynolds number. In this case, thc heights of tne ridges were all

greater than 3 percent of the boundary layer thickness. This effect is shown on Figure

4.39. These latter results can be used to approximate the effect. of increasing the

ratio of thickness to height for rectangular ridges.

The drag of plain ridges is calculated as follows:

Square Ridges:

CDo /Cfe = A log (h+) + b 4(37)

where

M A B

.2 150 -190

.8 350 -160

1.4 160 -125

2.2 110 -42

2.8 100 -44

for 0.8 < M < 1.4:

(CD/Cf )=(C /C~) . + PC [(CD/Cr (C /C38
cDe/cfe l" e fc3 De f .4 De fce%)M= 4(38)

M .8 M (CD/4_ .8]

where PC3 = f(M), Figure 4.38, and the drag ratios at M 0.8 and 1.4 are calculated as

above.

Similarly, for rectangular ridges

(a) t = 2h

M A B

.2 105 -55

.8 115 --E0

1.4 100 8

1.7 100 20

The variation between M = 08 and 1.4 is the same as for square ridges.$I



NEW:

(b) t = variable

The ditxi of Figure 4.39 haveý been converte6 into a more general form in Figut e
4,40. Thu,,, for aniy vailve of t/h,

(C De/Cfe) T (C De /C fe) tA4(39)

wiheru (C[De /C:fe) is the drag ratio for a square, ridge of the same height, and

T f (t/h), Fiyure 4.40.
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4.3.2.2 Ridges With Different Cross-Section

(a) Rounded Edges

RleLercnces 4.5 and 4,15 determined the1 efects of rounding the ed~jes of a

rectangular ridge. The results are compared in Figure 4.41. By re-plotting the data of

FigureW 4.41 into the form shown in Figure 4.42 several [actors can be se(en. First, the'

low speed data (M < 0.8) all tend to be concentrated about a common mean curve, as do

the results [or M > 1.4. The shapes of the curves are similar for each Mach number

indicating that the Mach number effec: between 0.8 and 1.4 is uniform. This implies

that a single curve can be used to represent the basic effect of rounding with a

separate Mach number effect. The curves of Figure 4.43 resulted.

A second observation to be made from the Figure 4.42 data is that the greatest

change seems to occur with the initial amount of rounding and essentially no change is

manifested by further rounding. When the radius approaches the value of the height of

the ridge, a slight increase in drag is seer. Singular values, corresponding to r/h• 1,

were obtained from several other sources and are included on Figur," 4.42. These seem to

substantiate the overall results.

r

Flow,

M Source

0 0.8 Pallister (Ref. 4.15)
A 0.9

v 0.95
o 1.0
* 1.4
* 0.2 Gaueti- Winter (Ref. 4.5)
* 0.8
o 1.4
+ 1.7
X 2.0

400

cf, iL :! :, iI i

300 ..

,: ; l , i • , . ,t I .. . .

0 0.2 0.4 0.6 0.8 1.0 j -

Figure 4.41 Cornpodson Of Experimental Results for Rounded Rectongulor Ridges
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ThiL' eoic,', t Lrounditng thii odp-'s t! a ridge, or the drag qof u a uound H eiotIle

rXidije , is ostifflataol by correcting thQ t h -ctai,3].j1 , r idge of the G,11nlC height by:
(CoD /C ) c /c ) / (z M)Z t) x (Z/ 4(40)

Rounded Ridge r/ = 0 o

where (CDe /'Cfe r drap of ploin ridge as determined in Section 4.3.2.1,

(ZM)m/ n Mach number effect on rounding from Figure 4.43(b),

(Z/h ) =effect of rounding at low speed from Figure 4.43(o).
0

(bh Other Profile SFape:;

Data for ridges with profile shapes other than square, rectangular or rounded are

very scarce. In the original work of Wieghardt, Reference 4.3, ledges with different

profile shapus were tested ovwr a range of thickness-to-height ratio. The results are

repeated here, Figure 4.44, so that some guidance may be given relative to the degree of

difference in drag for the various shapes.

Since the Mach number effects are similar for the square, rectangular and rounded

shapes, it may be reasoned that the same is true tor the other shapes as well. Based on

this reasoning, the drag for any other-shaped profile may be found by first evaluating

the drag for one of the basic shapes at the appropriate Mach number and roughness

Reynolds number and then correcting for shape using the data of Figure 4.44.

-hi
Source: Wieghardt (Ref. 4.3) 4 71 I 54

fw1.6

j.m . :: ::- : ji h ... ..... .. .... ..

0,8 1;,1

0 2 4 6 8 1.0

t/lI 4

Figure 4.44 Drug of Spanwise Ledges of Different Profiles I
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4.3.2,3 Effect of Flow Angle

in cross-i low tho drag of an excitscence, such as a i idge or ledje, based on the

projected frontal area should be reduced by the ttfeet of the leduced velocity vector

vormcIl to the ridge face. Since the drag coefficieIt is ictreal ized on velocity-

squared, the drag coefficient would then be reduced by approximatuly the sq5rra

velocity reduction. The validity cf th a pr inciJrle can be demonstrated in

2-D or plain ridges.

Two sources present data showing the effect of cross-flow on the drag of rectan-

gular ridges. These sources, Wieghardt, Referenee 4.3 arid Kovalenko, Reference 4.19

have been used to correlate the effect of flaw angle. Tire results are summarized in

Figare 4.45. The reduction in drag coefficient, represented by the ratio CDe/CDe

has been plotted vs flow angle, a , and comIprL'd with the value of sin t . The agreement

is excellent and, considerig the diverse conditions of the two sources, it is concluded

that the sin2a function can be used to approximate the effect Ot cross-flow on ridge

drag coefficients.

Although it has not been substantiated, the cLoss-flow described above is believed

applicable to other 2-D type excrescences, such as forward and rearward facing steps.

This assumption has been made and in Section 4.3.1.1 and 4.3.1,2 the cross-flow effect

on 2-D step drag is based on this assumption.

In summary. the drag coefficient of a ridge in cross-flow is calculated from

- .2

(CDe)" = (CDe) x sifn 2 . 4(41)

where

a = cross-flow angle (see Figuce 4.45)

(C Do) drag coefficient -f the plain ridge as determined in 4.3.2.1 or 4.3.2.2.

a 90

0.0 Wie9ghrdt (Ref. 4.3)
+,x Kovalenko (Ref, 4.19)

0.8. .........

1 ~ ~ ~ ~ ~ ~ ~ ~ ~ - ---------r- --- r---nn-n--

........ .. .. . : i l i -_

*8 17:1112::i

0.w) in":. .

(CD 9i

(C:::, a: : ill :: 111: _. :8:: a0 . . . . . . . ... .... .... F ...........

0.4 K - i•iI'JiV -- r.1 ijlinb,-T: 1r. I:.

;I ii J ! H ! k li i1 ;1 I l. i : ... .. 4 1i,
0 20 40 60 80 100

a Degree

Figure 4.45 Effect ot Flow Angularity on the Drag of Ridges



SS 97

4.3.2.4 Mr.!iple Ridges in Series

Lac, Y,, Reference 4.27 has made low speed measurements on arrangements of a number

of spanwise ridges of square section on a plate in zero pressure gradient and some of

hib salient results are summarized in Figure 4.46. There is plotted the ratio ot the

drag of a system of ridges to that of a single ridge in the leading ridge position as a

function ot ridge spacing to height ratio (s/h) or of the ratio of the area covered by

"-the ridges to the total plate area (AR/A) (called ridge density).

The individual curves correspond to values of the ratio of the plate length to

ridge height (L/h).

The number (N) of ridges is given by

N=L/s /L 4(42)

It will be seen that tor any jiven, plate length and ridge height, there is a

critical spacing (and hence N) leading to a maximum drag increase. This spacing is

about 10h. For a more sparse spacing thc interference effect of the wake of a ridge on

downstream ridges is small and the drag decreases as s increases because N decreases;

whilst for a closer spacing the interference effects increase so that the drag decreases

" "150 SURFACE LENGTH L

4.U- RiDGE hEiCHIi h

-N "100
3.00-

"1-- 9075
LU-

Ui -J

-
2.0 50

U- 40

0 0 30
-- < - 25

W Cyo ,) JL' 20

0.10 0.20 6.30
RIDGE DENSITY, AR!A

____________________________________________ II

00 10.0 5.0 3.3

--- RIDGE SPACING sAh

Figure 4.46 Variation of Dreg with Selected Surfice Length and Ridge DLnsity in Zero Pressure Gradient

kkk



in spite of the1 increasr in N. The, ,'-xpv imnts show that 2 ridges less rhlarn 81o3t fih

apart have a drag less than that of a single t idg,. However, there is some e,'idenc,

that h4  
plays a small but not insignificant patt in these inteeience effects and this

has not been explored adequately. These same data are shown in Figure 4.47 plotted as
the total drag divided by the drag of a single ridge multiplied by the number of ridges
being tested. It is seen that forward ridges provide a significant shielding of the

ridges behind toL all of the cases shown her-. (The ridge spacing must exceed 75 ridge

heights before the system drag is equal to th-- sum Of individual ridge drags.' Ac shown

by FLgure 4.47 this shielding eftect is substantial and increasus as the number of
ridges inc• eases.

.9

2

•.8

.4

.3

.2

.020

RIDGE DENSITY, A 'A =h/s

Figure 4.47 Effect of Ritaj Density on the Drag of a System of Spanwiie Ridges

4.3.3 Gaps and Grooves

The category of gaps and grooves incolues those excrescences SUCn as gaps between

joints, gaps caused by control surfaces, and spanwise grooves, slots, or contours, all

of which are no~rmally small compared to the confineration geometry (airfoil, wing, etc.)

and the local boundary layer. The data discussed here do not consider open cases where

fluid sight flow thrtough the yap. For a discussion of the dray of control gaps with
tlow through them see Section 5.4. In general, the magnitude of the drag of spanwose

gaps is also small and consequently difficult to measure experimentally. In fact, in

ore of the most recent and carefol experiments on excrescence drag, Reference 4.5, it is

stated that the measurements of the drag of grdooves are considered poor because of the

problem of obtaining small increments from much larger overall measurements. Tus, tc.e

available experimental data base for spanwise gaps contains a lot oe scatter and is

difficult to correlate. Reference (4.5) determined that the drag ratio, CDp/Cfe,
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evidences a weak dependence on roughness Reynolds number. An earlier publication,

Reference 4.20 showed a family of curves where the depth ratio, h/l, was also a

1 significant parameter. As in the case of circular holes, the drag coefficient C DP is

based on the planform area of gaps or grooves.

An independent evaluation has been made for the present work and the stronger

dependence has been found to be with respet to the depth ratio. Both of these methods

will be described.

4.3.3.1 Gaps Normal or Parallel to the Flow

Data are presented in this section for spanwise gap configurations which have the

long axis normal or parallel to the flow direction. The effect of flow inclination on

the drag of spanwise gaps is given in the next section.

Reference 4.5 gives a small linear dependence of CDP/Cfe on h for slots or grooves

normal to the flow:

CDP/Cfe = 2 lop (h + )-2 4(43)

In Figure 4.48, the available slot data has been plotted as a function of the depth

ratio, h/l. A distinction has been made between slots with the long dimension normal to

the flow direction and those where the long dimension is parallel to the flow. Since

there is an order-of-magnitude difference in the values of h/I for the two categories,

the depth ratio was based on the shortest side for each case. This type of presentationi

produced the most consistent trends with the least amount of scatter.

(b) Smell w/t

t. i

- n - j--- /I, i~

~i: ow 0. 1,70 1. V.4.4)
.0 " 0.031-0,18 5, VIleglodt (Ref.4.3)

- i :

!H : IWI i

0 0.4 0.8 1.2 1.6 2.0
h/.
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8gil 0 "0 w/( 17.65, Tlllmu,,, (Ref. 4.4)

' w/"w 
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since the ge2ometry ctfects seeai to be more predominant, the mean euIr-Ves of Figure

4.48 are recommended for the drag of spanwi.ge gaps. It must be pointod Oct that the

range of lih for these data is limited to approximately 1 x 10 3to 3 x 10 4and that at.

highor values of h, the Reynolds number effect of Reference (4.5) may predominate for

spanwise grooves. in the case of longitudinal or cherdwiso grooves, Refereýnce 4.5 found

that the drag change was roughly equal to the drag of the increased skin friction on

both sides of the groove. This would be a reasonable alternative to the use of Figure

4.48 for longitudinal grooves.

4.3.3.2 Gaps Inclined to the Flow

The only data on the effect of flow inclination on gap drag is found in Reference

4.3. The results are summarized in Figure 4.49. As can be seen, the variation with

flow angle, a , for the configuritions tested is not the same.. No convenient correla-

tion can be derived and consequently, the data of Figure 4.4g can only be used as a

general guide for the effect of flow inclination.

Source: Wieghordt (Ref. 4.3)

DP

Cfe-6.

-t--t -- - ----

C= Variable.j eim
1r6

CDP P 483

-I--.1 7-:

7-i-i
1t ~(a)L t32 hmmmi

C 10 16d

fe -k3

I .a44 L. .U1IJi1

0 20 40 60 80 100

A- DegreesI
Figu.e 4,49 Effort of Flow Inclination an thne Dreg of Gaps
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4.3.4 Surface Waviness

Surface waviness may be described as a repeated deviation in surface contour which

has the effect of imposing a sinusoidal-type displacement of the local flow in the

streamwise direction. On aircraft, it is generally present where multi-panel

manufacturing techniques are employed such that the seamed areas along the panel edges

more rigidly follow the intended contour than the panel centers. Bulges or indentations

occur which more-or-less have a repetitive wave-like appearance on the surface. This

situation may be wozsened under flight load conditions where local stresses may increase

the amplitude of such deviations. Pressurized fuselages, in particular, may undergo

significant amounts of bulging at the high cruise altitudes typical of today's transport

aircraft.

A review of the literature on the subject of drag due to waviness as applied to

aircraft surfaces reveals an outstanding example of the problem caused by a lack of

adequate methods to assess roughness drag. Hoerner's approach to this particular source

of drag was to correlate C Dm' based on projected frontal area, against a relative

waviness parameter, h/l, where h is the .ave amplitude and I is the wave length. His

results are shown in Figure 4.50. This correlation was based on two sources: the

airfoil test of Hood, Rgference 4.23, where two heights of sinusoidal-type waves were

tested, and the Wieghardt data 4.3 for a rounded spanwise ledge. Some more recent

results from Reference 4.21 have also been included on Figure 4.50 for comparison. The

drag coefficient C is equal to A D/q5 fe where q is the mean dynamic pressure over

the height of a wave and f is the projected frontal area of all waves present.
a

The basic problem with the correlation of Figure 4.50 is the applicability of data

with large values of h/l to surface waviness on aircraft where a reasonable h/l value is
at lceast an ordor of magnitude smaller. Hood recognized in Rcfurcnce 4.23, that the
relative waviness of his experiments was much larger than would be representative of

aircraft of his time (1939). Although there is no doubt that Figure 4.50 correctly

models the drag for surface waviness at large h/l, the validity of the vanishingly small

CDm for small h/l values is questionable.

! Hoerner •- 1 'L

0.3h dii .I

MI T Czarnecki (.053" ProtrudingcD 0 • 1 tWaves)

O. 1~ r Ledge) ~ H 'i ""_,

0.1 (one
a, Czarnecki (.053" Creases)
v (.017 ' Creases)

0 0.04 0.08 0.12 0.16 0.20

Relative Wave Height, h/t

Figure 4.50 Low Speed Drag of Surface Waves vs Relative Wave Height
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Some insight into this problem was made as a result of Reference 4.22. A Boeing

720 was instrumented to measure fuselage boundary layer with the objective of

determining the effect of cabin pressurization on the fuselage drag. Several

observations can be made from this work.

o First, the degree of waviness, h/l, caused by overpressure deformation of the

tuselage surface was measured to be 0.00175. This corresponds to a bulge

height of 0.035 inches and a spacing between fuselage frames of 20 inches.

o The measured drag increase was determined to be CD = 0.0001, which is approx-

imately 5% of the fuselage drag.

o The measured drag includes the effects of any leakage or air exhaustion which

would occur under pressurization. No quantitative breakdown was made of the
relative magnitude of drag due to leakage as opposed to skin bulging.

Speculation was made that the latter would be less of a factor.

The degree of waviness determined in this example, h/l = 0.00175, is an order of

magnitude smaller than the smallest value shown on Figure 4.50. Use of Figure 4.50 for

a Coi value corresponding to this level of waviness would be meaningless. Although the

actual size of the adaitional drag due to the surface bulges in Reference 4.22 is not

known, a rational assumption of one-third of the total would imply a CDm value of about

0.015. This value is not compatible with the curve of Figure 4.50, although it is in

general agreement with the results for the smallest h/l tested.

In order to investigate the possibility of a more useful correlation, the available

test data havc been converted into the form CD!/Cc, vs h+, Figure 4.51. Additional data

from Reference 4.21 on creases has also been included, Figure 4.52, since this

particular roughness configuration is very similar to the wave configuration.

At the higher Mach numbers, where there is significant wave drag, the familiar

linear variations observed for other excrescence forms are also present in these data.

A fairly orderly progression with Mach number is observed. However, the subsonic

(M < 0.7) data do not exhibit the characteristic drag increase with increasing roughness

Reynolds number. In fact, the data are more or less scattered about a residual level of

Cor/Cfe of approximately 5.0. A constant value of Com/Cfe of 5.0 would correspond to a

L 10 to 20 percent increase in skin friction drag for the conditions covered by the data.

In Reference 4.24 where correlations of the wave drag from the Reference 4.21

experiments were made with theory, it was also concluded that an added drag coefficient

was present in the order of 10-15% of surface friction. This level of skin friction was

attributed to the formation of Gortler vortices which are generated in the concave

regions of the waves. At some wave height the vortex strength becomes sufficient to

affect the friction drag and the amount of additional drag increases roughly with the

increase in h/l. Apparently, from the experience of Reference 4.22, a relative wave

height of h/l = .00175 was sufficient to cause increased skin friction. However, this

has not been sufficiently substantiated and the problem of an inadequate data base Is

further underscored. In the subsonic range and for low h/l, use of a constant value of

CDn/Cfe = 5.0 seems to represent a conservative approach until this problem is resolved.

At higher speeds the linear variations with roughness Reynolds number, Figure 4.51,

4.52, can be used to accou'it for Mach number and Reynolds number effects due to surface
+waviness. Unfortunately, there are large differences in the slopes of Comi/C> vs h tor

the configurations tested and generalization of the results is not possible. The

recommended approach is to use the guidance of either Figure 4.51 or 4.52 based on the

degree of similarity of the actual surface waviness to those represented by the data.
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5. FLOW OVER ROUGH SURFACES WITH NON-UNIFORM PRESSURE DISTRIBUTION

5.1 Drag and Momentum Loss Magnification Factors of Isolated Excrescences

An early approach (Reference 5.1) to the problem of the drag increment due to an

isolated excrescetice in a non-uniform pressure distribution was to assume that the

increment expressed as a coefficient in terms of local free stream conditions was the

same as in a uniform flow, so the drag was simply proportional to the local free stream

dynamic pressure. However, in 1967 Nash and Bradshaw (Reference 5.2) demonstrated that

the subsequent history of a boundary layer after encountering an excrescence was

important in determining the associated drag increment, and this could be very different

and was often larger than that calculated on the assumption of simple proportionality to

the local free stream dynamic pressure at the excrescence position. Their argument was

developed for incompressible flow and was briefly as follows for the flow over an
aerofoil section.

The Momentum Integral Equation for a turbulent boundary layer can with certain

acceptable assumptions be shown to lead to (see Reference 2,2, p 3 3 6 )

x

665V4.2 6/5 U4.2 =I000 /5/ 4 dx
6/5 o eo . 1 /f e "

x
0

Here, suffix o refers to quantities at the position of the excrescence, ue is the

local free stream velocity at the edge of the boundary layer, and the Reynolds number is

assumed to be high enough for the 1/9th. power law for the velocity distribution to be

applicable (Gce Section 2_.12). Hence at the trailing edge (suffix T)

xc96/5 4.2 65U 4.2 + 0.0106 v,/5, dx. 5(1
T UeT =o f , Ue

X0

Now suppose that the excrescence produces an effective change in the local value

of 0 from 0 to 00 +A 0, 00 being the value at the excrescence position in the

absence of the excrescence. It is assumed that A 00 K<< 0 and that the excrescence I
produces nc change in the free stream flow and that any local modification in the form

of the boundary layer velocity profile due to it can be neglected. Then from equation

5(l) the corresponding change in 0 T is given by

i/5 4.2 1/5 4.21.2 "•T ( T UeT 2AG 0 0 ueo

1/514.2

Hence A T/Ao=(eT/e //sT) (U eo/U 4. 5(2)

We refer to AOT/A6o as the momentum magnification factor (although strictly it is the

momentum thickness increment magnification factor) and we shall write it as mim.

If we now use the method due to Squire and Young (Reference 5.3) for solving the

momentum integral equation for the wake to relate 0T to the value of 0 far downstream

and hence to the drag coefficient C., then the change in CD due to the excrescence is

S... . . . . .. • . . . .. . "- • . ... ... .. . . . . .. . . .. . . .. ... .. . ... .. .. .. . ... .. . ... • . . . . .. . . .. ... . ... . . .. ... . . . . ... ... . .. z •: •:• ... .. .. . o•:., • 1
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found to be given by

a
C D 2 (uOT /v O 3.2 C

Here c¢ is based on the aerofoil chord c and the undisturbed stream velocity V0. Hence,

making use of 5(2) we have

•C 2 (u /Vo)" (V /Uol (/AI)/ (A 0oiC) 5(3)
tD Ueo~ (V0 Tu) (8./AT) 0/

For the same excrescence on a short element of a flat plate and zero pressure

gradient with undisturbed free stream velocity ueo we have

(A CD)f=2A ) ./c,

where we have referred (ACD) fp to the length c.

Hence A D/(ACD0 ) fp =md 5(4)

where mn = (uol/V) (VO/VeT) (R 0 /QT) 1/5; 5(5)

and md is called the drag magnification factor.

We see that md can be readily underestimated by the earlier assumption that

Md = a ueo!Vo '2 if Ueo > Vo. Figure 5.1 shows m. plotted as a function of ueo/V0 for

various values of 0o/OT; it will be seen that md is not very sensitive to variations in

9w/T . Nash and Bradshaw did some experiments which broadly supported their analysis

and demonstrated the inadequacy of the earlier assumption for non-uniform pressure

distributions.

It is clear that one can adopt any other method of prediction of boundary layer

development to determine the magnification factor and in particular the effects of

compressibility can be included. Cook (Ref. 5.4) use'd the Green form of the lag

entrainment method (Ref. 2.27) combined with the compressible form of the Squire-Young

wake relation and compared the resulting predictions with mezisurements that he made on

square-sectioned ridge excrescences on two aerofoils over a range of subsonic Mach

numbers up to 0.77, Reynolds numbers up to 15 x 10i and values o0± C1 up to 0.6. His

basic zero pressure gradient data were derived from the Gaudet, Jonnson, Winter results

(Ref. 5.5, 5.6, 5.7). Some comparisons are shown in Figirec .,2 and a.3 for the

predicted and measured drag increments. On the whole the prediction method

underestimated the increment by about 10% for conditions where the local flow was sub--

critical, but it is evident that at higher Mach numbers when shock -waves develop near

the excrescences the predictions become less tciLable beciuse of vhe effects of the

excrescence on the shock wave, on the shock wave-boutndaty layer interaction aild the

development of a shock wave from the exccescence itself. It will be seen that in all
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cases the old assumption of a magnification factor simply proportionbl to the local

dynamic pressure is seriously in error. It must also ie noted that. in order to achieve

increments aLage enough to be measured with adequate accuracy Cook's excrescences

sometimes extended to aoout h /3 in height and were then partially outside the

logarithmic law of the wall region to which the basic Gaudet, Johnson, Winter data

apply. This may well explain the 10% or so underestimate of md noted above when no

shock wave was present.
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F;gure 5.1 Drag Magnification Factor According to Nash-Brodshaw Theory
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EXPERIMENT
........... GAUDET AND JOHNSON DATA SCALED BY RATIO OF

LOCAL TO FREESTREAM DYNAMIC PRESSURES
-- - GAUDET AND JOHNSON DATA SCALED BY MAGNIFICATION

FACTOR ESTIMATED USING GREEN BOUNDARY LAYER
METHOD AND COMPRESSIBLE FORM OF SQUIRE & YOUNG LAW

0.002- ---
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L
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SFiguie 5.2 Drag Due to Square Ridge Excrescence at x/c -m 0.43 on Lower

Surface of Section 2814: R 7.5 x 10
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EXPERIMENT

. ..GAUDET AND JOHNSON DATA 'CALED BY RATIO
OF LOCAL TO FREESTREAM DYNAMIC PRESSURES

GAUDET AND JOHNSON DATA SCALED BY MAGNIFICATION
FACTOR ESTIMATED USING GREEN BOUNDARY LAYER METHOD
AND COMPRESSIBLE FORM OF SQUIRE & YOUNG LAW

0.002 -
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0.004
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-0.2 0 (2 0.4 CL 0.6

b) M = 0.661

0.004.

C D

0
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"..................... .

-0.2 0 0.2 0.4 C 0.6

c) M = 0.769

Figure 5.3 Drag Due to Square Ridge Excrescence at x/c = 0.43 on

Lower Surface of Section 2814: R - 15 x 106

Ambitious theoretical studies have been made by Keates (Reference 5.8, 5.9) on the
effects of excrescences on the characteristics of a two dimensional high lift
configuration. The configuration he examined consisted of a wing (RAE 2815 section)
with a 17% chord leading edge slat and a 40% chord Fowler type trailing edge flap. Two
arrangements were considered, takeoff with slat angle = 280, flap angle - 100, and
landing with slat angle = 280 and flap angle = 300. Keates adapted Irwin's integral
method (Reference 5.10) to calculate the momentum magnification factor mm over the rear
of the wing for various positions of a two dimensional excrescence on the wing and he
also calculated m over the rear of the flap for various excrescence positions over the
front of the flap. Irwin's method is designed to predict the development of the
boundary layer on one component of a multi-component lifting system in the presence of
the wake from an upstream component. Suitable analytic forms for the velocity profiles
of the boundary layers and wakes are chosen so as to represent their initial separate
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development and eventual merging, with an appropriate number of unknown parameters to be
determined by applying the momentum integral equation to the appropriate regions of the

boundary layer and wake plus assumptions regarding the entr3inment rate into the outer

part of the wake and the shear stress values at a number of positions across the

boundary layer and wake.

Keates made the usual assumption that the loca. effect of an e)Yrescence was

completely defined by an increment in momentum thickness related to its drag coefficient

on a flat plate as determined in the Gaudet et al. experiments. Initial smooth surface

values to start the calculations were derived from RAE experimental data for the

configuration considered (References 5.10, 5.11). The calculations of the magnification

factor on the wing due to an upstream excrescence on the wing were not carried over on

to the flap, although further changes in the factor must be expected as the wing plus

slat wake pass over the flap. T:he results of the calculations were compared with the

predictions of the Nash-Bradshaw formula, equation 5(2), and in some instances with

results obtained using the Green-Head entrainment method (Reference 2.27) for

determining the viscous flow development treated as a single boundary layer (i.e. the

wake modification of the velocity profile was not allowed for, but its additional

momentum defect was included).

In general Keates found that the effect of different excrescence heights on m wasm
small, and such changes that there were reflected the effects on the merging position of

the boundary layer and the wake of the preceding element. Figure 5.4 illustrates the

effects of incidence on mm at the rear of the wing portion in the take-off arrangement

due to excrescences at three different positions. For all the excrescences the ratio

A9O/go was kept constant and equal to 0.1. It should be noted that this implies an in-

crease of A O with rearward movement of the excrescence since 9 increases with distance
0 0

downstream. Also chorn arc the correspoiidiij, values of mm given by the Nash-Bradshaw

formula (mmNB) and it will be seen that the two sets of predictions are in reasonable

agreement for incidences up to about 140 but for incidences greater than 140 the Nash-

Bradshaw predictions are appreciably lower than those of the Irwin type calculation.

The large values of mm with the excrescences well forward in regions of high local

suction are particularly noteworthy. Similar results for the landing configuration are

shown in Figure 5.5 and some results obtained for excrescences on the flap for the take-

off configuration and a - 150 are shown in Figure 5.6.

5.2 Magnification Factors for Multiple Excrescences and Distributed Roughnesses

Following Lacey's work on square sectioned ridges in zero pressure gradient flow

(see Section 4.3.2.4) similar work was done by Rabbo at Leicester University (Reference

5.13) in two adverse gradients. Both cases were planned to achieve equilibrium

turbulent boundary layers with a free stream velocity distribution of the form u =
ae

Uo(X/X )-, where x is the distance downstream from an appropriate datum, x0 is the value

of x for the first ridge and u0 is the value of ue at the first ridge. Some resulting

* deductions are presented in Figure 5.7 and 5.8 in the same form as the results for zero

pressure gradient in Figure 4.46. In one case the index a = 0.13 and it corresponded to

a value of the Coles' pressure gradient parameter 11 = 1.2, in the other case a = 0.2,

corresponding to 11 = 2.0. In each case the drag per unit span of the ridge syst.2mA D is

as measured immediately downstream of the last ridge.

It will be seen from Figure 5.7 and 5.8 that with increase of the adverse pressure

gradient the maximum drag increment for a given array tended to decrease presumably

because of the accompanying reduction in pressure drag of the excrescences. Also the

spacing s/h for maximum drag increment for a given L/h decreased somewhat from about 12

for zero pressure gradient to about 10 for II = 2. This was associated with a small

C -- _--
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.m USING IRWIN'S METHOD.

F -- -- m AS PREDICTED BY NASH &
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Figure 5.6 Variation of Magnification Factor Along Flap Surface Due to Excrescence at

0.17C Aft of Flap LE for Take-Off Configuration (Keates)
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reduction with adverse pressure gradient in the length of the downstream separation

bubble for a single ridge from about 8.7h with zero pressure gradient to about 7h for

11= 2. It should be noted, however, that these results were for pressure gradients much

smaller than that required to bring the boundary layer close to separatioi. iThey will

not apply when the possibility arises that the excrescel.ces may trigger separation and

hence produce large changes in drag much greater than those illustrated in Figure 5.7

and 5.8. Such changes would then be accompanied by large ligt changes if the

excrescences were on a wing. It should also be noted that for bluff excrescences ex-

tending outside the boundary layer somewhat longer separation bubbles may be expected of
about 12h in length (see for example Reference 5.14).

For uniformly distributed roughness in non-zero pressure gradients it seems

reasonable to assume that Figure 3.5 may be expected to be applicable for determining
the drag increment A D, if D is the drag of- the smooth surface, provided that the

equivalent sand roughness height is small compared with the boundary layer thickness A
and the boundary layer is not close to separation. This assumption is based on the

argument that the magnification factor is already accounted for in D since the drag
contribution of each element of the smooth surface will be subject to the associated

magnification factor in making its contribution to D and any local roughness

contribution will be subject to the same factor. Analysis of the results obtained by

Jones and Williams (Reference 5.15) using carborundum roughness on two aerofoils, by

Ljungstrom (Reference 5.16) using aluminum oxide grinding paper on an aerofoil with a
flap and slat and by Young (Reference 5.19) using camouflage paint shows the results to

be reasonably consistent with this hypothesis.

It may be recalled that Nikuradse's sand roughness grains were fairly uniform in
size and were closely packed, and their drag effect was appreciably less than if they

had been distributed some ten grain sizes apart. it may be inferred that any similarly

closely packed and nearly uniform roughnesses will have an equivalent sand roughness

height much the same as the average roughness height. On th'- other hand, the camouflage

paints tested by Young had roughness heights showing considerable variation and for each

the equivalent sand roughness height was some 60% larger than the average; it couI6 be

equated with the largest roughness height that occurred wich fair frequency but at

sufficient distance apart for the roughnesses not to ceriously interfere with each

other.

Further discussion of predictive methods for determining the development of the

boundary layer and its characteristics in the presence of distributed roughness is given

in Section 5.5.

5.3 Effect of Excrescences on C of Aerofoils
LrLax

In regions of strong adverse pressure gradient the increase due to upstream or

local roughness of the boundary layer momentum thickness as well as the associated

changes of the boundary layer velocity pr:ofile may trigger or hasten flow separation.
Hence an aerofoil with excrescences on its upper surface will in general demonstrate

some reduction of CLmax depending on the size of the excrescences, their location and

the Reynolds number. Not surprisingly, it is excrescence locations close to the leading

edge on the upper surface for which the reduction of C max can be very marked since the
adverse gradients are high there at incidences near the stall and the magnification

factors are very large. The situation is complicatud by the fact that depending on the

wing geometry as well as the factors referred Lo above the flow separation may either

occur close to the excrescence and spread rapidly downstream or it may start from the

rear of the wing and spread forwards. The farmer is the more likely the laruer the

excrescence and the smaller the nose radius of curvature of the wing.
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For the effects on CLmax of uniformly distributed roughness over the upper surface
of a wing or high lift configuration there are only a few sources of data to which we
can refer, namely, Jones and Williams (Reference 5.15), Gregory and O'Reilly (Reference

5.17), Weeks (5.18) and Ljungstrom (5.16). These last three references were directed at
the effects of hoar frost and surfaces that would not be exposed under normal conditions

(e.g. parts of the wing leading edges under slats when closed) were not covered with
roughnesses when tested. In each case an attempt has been made in analyzing the data to

relate the ratio A /C (clean) for a given roughness to the corresponding ratio

A D/D for the roughness on both surfaces of a flat plate at zero incidence and the
Reynolds number of the wing under test in terms of its mean chord length. Given the

* equivalent sand roughness height the latter can be determined from Figure 3.5; in the
absence of adequate details of the roughnesses tested the equivalent sand roughness

height was taken as 1.6 times the average roughness height (in view of the results of
Reference 5.19). This was done in the cases of the data of Weeks and of Ljungstrom, in
the other two cases there were sufficient data to enable direct estimates of AD/D to be
made without the intermediate step of determining an equivalent sand roughness height.

vk The results are presented in Figure 5.9 where three mean curves are indicated for the
cases of the wing alone (W), wing with flap (WP), and wing with flap and slat extended
(WFSI. The likely accuracy of these curves can bc. inferred from the scatter, but it is
as well to note that the data are all for wind tunnel Reynolds numbers (i.e. of the

order of 2.5-6 x 106), although it is to be hoped that the use of the ratio A D/D as
abscissa will implicitly account in large measure for Reynolds number effects.

It can be seen that the greatest sensitivity to small to moderate roughnesses is

shown by the wing with flap extended, presumably due to the very high suctions near the
4leading edge engendered by flap movement and the associated large magnification factors.
. In contrast, a leading edge slat helps to reduce the suction intenisity over the wing and

hence the sensitivity to roughness.

0.4

0.3 j$¶ 5 r t. X1

Z X2.1( X WING ALONE (M)

•2' X 44

S- O WING PLUS FLAP {WF)
/0.2 X2 X - AWING PLUSFLP

/ - PLUS SLAT (WFS)

U X43/j I LJUNGSTROM

0.1 2 JONES & WILLIAMS

.: 3 WEEKS

/ 4 GREGORY & O'REILLY

0 0.4 0.1 1.2 1.6 2.0 2.4

A D/D

Figure 5.9 -CLMAX. /CLMAX (CLEAN) as Function of AD/D Due to Uniformly Distributed

Roughness over Upper Surface of Various Wing Arrangements
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Keates (Reference 5.9) has estimated the effect of an upper surface isolated ex-
crescence on CLmax for the high lift configuration that he considered (see Section 5.1)
in the take-off arrangement. He assumed that in all cases C LmaX was attained when the

value of the boundary layer form parameter H was the same at the rear of the wing por-
tion as for C rmax as measured without the excrescence on the wing (1.83). The validity

of such an assumption is by no meaT,;j established but the results are of some interest.

Figure 5.10a shows the calculated values of A CL /CL as a function of A 0/0o and

different roughness locations XwD (it will be recalled that A00 increases as XWD in-
creases for a given value of Ao0o). Also shown in Figure 5.10b are the calculated

Values of AC[°'ma:/CEmax (clean) against excrescence position for a rearward facing step

of height Irim (h/c - 0.0011); here the rapid increase in sensitivity of CL to forward

Lmovement of the exceseence location is clearly evident.

5.4 The Effects of Control Gaps

Control gaps can increase drag for a variety of reasons. The inevitable disruption
of the contour of the main lifting surface may induce some changes in the boundary layer
development and possible local flow separation. Flow through the gap due to the

pressure difference across it will be accompanied by losses which may be augmented by

this flow interfering adversely with the boundary layer into which the flow emerges and

may induce separation there. The disrupted geometry effects may be expected to be

relatively insensitive to changes of incidence and lift coefficient but the effects due

to the flow through the gap, being associated with the pressure difference between upper

and lower surfaces there, will be closely dependent on the lift coefficient.

Hoerner (Reference 5.1) has analyzed some data for two dimensional controls and has

presented the wing drag coefficient increments as a function of gap/chord ratio. With

some scatter his results fall reasonably closu to d xean curve given by:

3/5ACD 0.00? We) , for the control at zero setting.

Hexe ACD is based on the wing area and e is the sum of the upper and lower surface

gap width where both exist. The definition of gap width is somewhat arbitrary, the

sketches of Figure 5.11 illustrate the conventions adopted by Hoerner.

X WD = 0/c, WHERE X IS DISTANCE

"0.3 OF EXCRESCENCE UOWNSTREAM 0.3-
FROM WING LEADING EDGE

U _0.42

X WD

0 0.1 0.2 0.3 0.4 0 0.2 0.4

a) 09/A b) Xwo

Figure 5.10 AC LMAX./CLMAX. (CLEAN) as Function of A 00/0 e for Various Excrescence

Locations on Wing Portion of Higjh Lift Corfiguration; b) As Function of X. for
a Rearward Facing Step of Height Inn (0,001hc) (Keates) WD

Ail
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A) HOERNER'S DEFINITION OF GAP WIDTH

CONFIGURATION:
A: W 0.0067c

W B: W 0.0033c

C: W = 0.0067c
D: W = 0.0033c

"E: W 0.0067c

'W

B) CONFIGURATIONS TESTED BY COOK (e 2W)

Figure 5. 11 Spanwise Control Gaps

t e However, we have to note that this formula does not reflect any variation with wing

and hence cannot properly account for variations in the flow through the gap. Also

the data used were predominantly for slotted flaps where the gap entry contours can be
carefully designed to minimize drag effects for zero control angle and the flow through

can be blocked by an upper surface shroud. We can therefore expect this formula to be

somewhat optimistit: when compared with results for ordinary controls where the geometry

is more limited by the need to operate the control effectively in both directions from

the zero setting.

Cook (Reference 5.4) has tested a number of two dimensional control configurations

illustrated in Figure 5.11 for a range of Reynolds numbers up to 15 x 106 and a Mach

number of 0.665. The wing section was the 2815 section (t/c = 0.14). His results

showed little effect of Reynolds number on the drag increment and they also illustrated

the fact that the control gaps produced significant changes in the pressure distribution

over the whole of the wing surface resulting in a small reduction in lift at a given

incidence. The drag increments due to the gaps also showed a variation proportional to
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(gap width) . Cook then argued that the mass flow through the gap can be expected to

be approximately a function of e /1 where 1 is the length of the gap passage from

entry to exit. This is based on the theoretical result for the flow through a channel

of length I with an applied pressure difference. Hence, Cook argued that2
A C (1gOC /w 1 should be a function of ( -pLS) where CpLS is the pressure

coefficient on the lower surface at the position of the gap and cPUS is that on the

upper surface. Also w is a single gap width and corresponds to e/2. His resulting plot

is shown in figure 5.12 for the three types of configuration that e tested and it will j
be seen that a reasonable collapse of the data resulted for each type, with types A, B,

C and D collapsing close to a common curve. Not surprisingly, E with its sharp edges at
entry and exit results in a curve departing from the others at the higher values of the

pressure difference. The value indicated for the A, B, C and D configurations with zero

pressure difference was deduced from measurements made with the gap blocked internally
so that there was no flow through it and the dashed part of the curve is an inferred

extrapolation.

0.02

E/

ACD oi/ .'S'

-t H SA-1 /2I
RESULTS C, D

POSSIBLE TREND FOR A, B, C, D AC ., I _ _

U.I 0.2 0.3 0.4

CPLS CPUS

Figure 5.12 Cook's Analysis of Spenwise Control Gap Drag

Some wind tunnel data have been obtained on a model of the outer panel of the HS125
wing tested with a varipty of ailerons, both internally balanced and with round noses,

and with a range of gap widths. These data have been similarly analyzed in terms of the
presentation of Figure 5.12. Such an analysis is inevitably approximate as quantities

such as ig are difficult to define, let alone measure, for internally balanced controls;

fortunately the presentation is relatively insensitive to 1 . It is also difficult to
determine gap width with adequate precision if it varies considerably throughout the gap

passage as with the round nosed ailerons tested. For what they 3re worth the results

are indicated in Figure 5.12 by the vertical lines showing the range of values obtained

corresponding to CL - 0.1 and 0.4. The upper end of each vertical line corresponds to

the round nosed ailerons, whilst the lower end corresponds to the internally balanced

ailerons. It seems that for preliminary prediction purposes Figure 5.12 could b- used
to provide a rough guide to the values of ACD (based on control span x local wing chord)

to be expected for the spanwise gaps associated with trailing edge controls at zero

setting.

Hoerner also presents some results for longitudinal slots in the form of drag
coefficient increments based on slot plan area (width x length). For a slot alongside a
moving trailing edge control he quotes an increment so based of 0.5, as compared with a

slot alongside a leading edge control for which the increment is 1.5. Cook tested some

trailing edge control longitudinal gaps and on the same basis his drag coefficient

increment was about 0.3 and was practically independent of CL up to CL = 0.6.
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Finally, we must note the observation of Hoernrir that when the .conLour of a
trailing edge control was slightly proud of the wing surface ahead some reduction of the

spanwise gap drag occurred. this reduction was about 40% for each surface for a value

of Ah/t s 0.15, where Ah = maximum height of the control contour above the local wing

contour and t = thickness of the control. A negative value of A h results in an even

more dramatic increase of the drag increment. These results need further investigation
before they can be generally accepted.

5.5 Prediction Methods for Distributod Roughness

We have already briefly described in Section 5.1 methods that have been adopted for

I dealing with the drag effects of isolated 'Žxcrescences. For such cases we have seen

that the excrescences can be regarded as equivalent to a local jump in the momentum
L thickness with possibly a change in the form parametau H and the calculation can then

proceed as for a smooth surface. For distributed roughress, however, there are

important changes in the boundary conditions at the surface and associated changes in
the mean velocity distribution and turbulence characteristics near the surface due to

the roughness that must be taken into account. How this is done depends on the

particular smooth surface method that is being adapted to deal with the rough surface

problem. For integral methods it is clear that the changes in Lhe law of the wall

region due to changes in the skin friction must carry most weight, whilst for
differential methods the changes in local turbulence characteristics must also play a

part depending on the form of method chosen.

An early integral method for incompressible flow was that of Van Driest (Reference

2.7). He argued that roughness would modify his suggested viscous damping factor
- [1 - exp ( 0y /o)ij ou tha.L th futuor wuold become unity for rougnnesses iarqge

enough to destroy the viscous sub-layer and he inferred from Nikuradse's experiments as
well as Laufer's measurements (Reference 5.20) th-tt thin condition corresponded to fully+
developed roughness flow (ks + 60). Accepting the value 26 for the constant AO he

therefore postulated that for a rough surface

F 1 exp (-y +/26) + exp (-40y+/26k 4 ) for 0 4 5: 60 5(6)

where ks is the equivalent sand roughness height. He deduced from this and the momentum
* integral equation a law of the wall relation between u,1y and + + Fork >60hn

argued on dimensional grounds and the available experimental data, as in Seftiorn 3.2,
f that

+ I
au const. + In_(yAc,).

We remind the reader that u+ = u/u , y = yu /, K+ ku /, etc.

He deduced for pipe flow with the walls smooth that

1/2/2
=-0.39 + 4.08 l~og 0(Rm cf, )
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whereas prandtl's formula (Reference 5.21) based on Nikuradse's experiments is

1/(C fm) =-0.4+4lo0(R cfm!/2).

With the walls rough enough for fully developed rough flow he similarly deduced that

1/(zf1/2 3.64 + 4.08 logw0 (a+/45). 5(7)

We can compare this to the best fit to the available data

1/(cM )1/2 3.48 + 4 log,0 (a+/kA+ ). 5(8)

Here Cfm is the skin friction coefficient based on the mean velocity and Rm is the

Reynolds number based on the mean velocity and the pipe diameter (2a).

Similarly he was able to determine, using 5(6), the local skin friction coefficient

as a function of Rm and ks for the intermediate regime (i.e. ks+ < 60), but the results

do not lend themselves to any simple analytic formulation. it will be noted that he did

not consider any form of roughness other than Nikuradse's sand roughness.

Subsequently Dvorak (Reference 5.22) directed his attention to the problem of a

surface with any general form of distributed roughness large enough for fu/lly developed

roughness flow in a non-uniform pressure distribution. We have from equation 3(18)

)1/2 **
(2/Cfe/ A In (6 u +)B+2ATI -A u/u +A In(6 u / u ).

rut from equation 3(19) we can deduce that

5 U ue = 1/A (1 + 11) = function of the Clouser parameter G, only,

and go we can write

(2/c1i/2 =A In (s* u/e)+C- 5(9)

* +

whure C = B + 2A + A.ln (uI /8•Ue) and is also a function of G only, and Au =A u/uT.

For zero ptessure gradient G - 6.7 and C = 4.8.

Also we have equation 3(15) for fully deve2loped roughness flow

Au+=A Ink +D
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sand roughness).

Dvorak chose to deal with the effect of pressure gradient by treating C as the sum of

its zero pressure gradient value Co, say, plus a term A u 2  = Au 2 /u1 representing the

effect of the pressure gradient (and hence a function of G) on the right hand side of

equation 5(9). Thus, he wrote
N

(2/f)12 =A In (6 U / C+ Au+ Au 5(10)

and he deduced from experimental data that

A u = 1 .253 (G - 6.7) for 0 > 6.7 (adverse pressure gradient) 5(1 1)

0.404 (G - 6.7) for G < 6.7 (favorable pressure gradient).

He adopted Head's entrainment relation (Reference 2.13), which he assumed was

unchanged by surface roughness since the latter has no effect on the outer region of the

boundary layer which controls the entrainment rate. This relation combined with

equations 5(10) and 3(19) enahled h-m to solve the momentum integral equation for any

given sand toughness in any prescribed pressure distribution, To determine the
equivalent sand roughness for a given roughness of a different kind he Used a

correlation based on Betterman's data (Reference 3.7) for Au + as a function of e (=
total surface area/roughness area) a correlation that was later improved upon by Grabow

and White (Reference 3.16) as reproduced in Figure 3.10. Dvorak compared the

predictions of his method with available experimental data and on the whole found

satisfactory agreement.

More recently Blanchard (Reference 3.8) has developed a number of different

methods, both integral and differential, and compared their predictions with

experimental data and assessed their relative merits.

His integral method is an extension of a method developed by Houdeville and

Cousteix (Reference 5.23) for smooth surfaces and is similar to that of Dvorak insofar

as it involves equation 5(9), the momentum integral equation and the [lead entrainment

equation. However, he has used a system of similar solutions providing a uni-parametric

set of velocity profiles with the Clauser parameter G as the characteristic parameter,

and hence he has determined C, 6 *, and 0 as functi *s of G. He has also made use of the

Grabow-White correlation (Figure 3.10) to determine the equivalent sand roughness for

any given roughness. However, since the concept of an equivalent sand roughness applies

strictly to the fully developed roughness regime but not to the intermediate regime,

Blanchard developed an empirical set of relations for the latter as follows:-

For sand roughness Au 4 = 0,(k+ < 5.32,)

= 22 (k) 0 "1 - 26,(5.32 < k+< 69,)

- 0.1 in - 2.73, (69 < k.)

A6
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For the given roughness for which the equivalent sand roughness height - k/(,

calculate Au for k - k+1

then Au+ = Au s - (a/0.41).lnu4

where a - 1 - exp I -(Au +/3.5 ) 2

This brief description of Blanchard's integral method applies strictly to

incompressible flow. For compressible flow he made use of a series of transformations

which formally reduce the basic three equations to forms similar to their incompressible

form. In addition the energy equation is introduced and so the heat transfer at the

surface is determined along with the other boundary layer quantities given the

appropriate initial conditions.

The differential methods considered by Blancbard can be briefly summarized as

follows:-

a) The use of the mixing length concept for closure of the momentum and energy

equations. Here a method previously developed for smooth surfaces by Quemard and

Archambaud (Reference 2.29) was adapted to deal with rough surfaces by assuming a non-

zero mixing length at the surface empirically related to the roughness.

b) The use of the transport equations for the kinetic energy of the turbulence

(kt) and the turbulence dissipation (c) with associated closure assumptions (see Section

2.1.4) in addition to the mean momentum and energy equations. This is essentially the

method developed by Jones and Launder (Reference 2.20) for smooth surfaces but with

assumed non-zero values of kt and c at the surface related empirically to the roughness.

A modification of this method (the so-called 'mixed method') employs the concept of the

mixing length in a thin layer adjacent to the surface. The outer boundary of this layer

is assumed to be where the Van Driest damping factor F = 0.99 and the starting values

for kt and f for the rest of the boundary layer are determined there.

c) There is an assumption involved in a) and b) above of a fictional surface with

non-zero turbulence characteristics. Blanchard examined an alternative approach and

introduced into the momentum equation a drag term calculated directly from a suitably

simplified form of the geometry of the roughnesses coupled with empirical data. This

concelt was used by Finson (RefeLe1Iue 5.24) who also added associated terms in the kt

a.2d c transport equations but found their effect negligible compared with the direct

drag contribution.

All the above methods were extended by Blanchard to deal with transpiration at the

surface by the use of the velocity transformation first introduced by Stevenson

(Reference 5.25) which leaves the basic relations unchanged in form.

For the mixing length method a) the mixing length I near the surface was taken to

be of the form

= (y/A)+t, exp(-y/ACt•0 )

so that at the surface (y = 0) f = £. The constant C was chosen to yield agreement

with Nikuradse's experiments and was determined thus as 1.5. Van Driest's damping

function was retained in the form F=1 -exp(- +/0.6 ),

with r TI~ + 7p¶aUu/Tbhy + P F2 4t3( ~u/y) 2 , and t4-=tUtu /v,



so that at the surface

F0 --- xp(-, /10.66).

Blanchard found that the corresponding ratio at the surface of the turbulent to viscous

stress t/ T 0 can be related to the equivalent sand roughness height for fully

developed roughness flow by

(T t/T) = 0.024 ks + + 0.25

t5

and it is related to 0o by

F t, += (r /T )1/" r 1+rt/r)e ( /r +05 .o o t TO [ t1' 0

For the intermediate regime ( k + < 90) he suggested an empirical relations

F t (k/,o 4 ,with D (a)given byFo , = D(cz) [

Ilog10D = 1.89 C -1 /32.43.

Corresponding to equation 2(23) for the variation of the mixing length over the boundary

layer thickness he adopted the relation 
v exp y-t,/6 = 0.005 tanh (0'5 6• + x

0.085 6 H50~ A 7j

For the transport equations method b) a scale length (L) and scale velocity (U) are-Ct3/2/ 1t/2/C,whrC (2,3/
introduced such that L = Ckt3 /r, U = kwhere C (2)3/2 and a1 = 0.15 (as for

a smooth surface). Then the boundary values kto and c at the fictional surface are
derived from

+ /2 _ (CU+)2 + /u4 = 4U+ 3/+

w e + + u-
where tO and Lo are empirically related to ks kee? /v by

U/+ u i PU -1exp (-LK/3.3)] on L 0+L 1/2
0 .35 (ký)1

S....• . . . .. .. . .. . .. .. . .L L u
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Blanchard first compared the predictions of the differential methods a) and b) above

with the results of his own experimenlts in incompressible flow involving abrasive paper

(k - 0.6mm) in zero pressure gcadient. Some of his comparisons are shown in Figure 5.13

and 5.14 and it will be seen that there is little difference between the predictions of

the methods but the mixing length method shows closest agreement with the experimental

results and is the simplest of the ditferential methods. The same conclusion emerged

from comparisons with the results of tests on a porous surface with transpiration. The

predictions of method c) proved somewhat less satisfactory than those of the other

methods particularly with regard to the skin friction at the surface.

The integral method can be used for predicting integral quantities only but its

predictions proved to be as reliable as those of the mixing length method, as is evident

in Figure 5.15. Further comparisons including the case of a moderate adverse pressure

gradient confirmed the general reliability of the mixing length method (see Figure

5.16). The predictions of the compressible flow form of the method were compared with

the results of F.L. Young's experiments at a Mach number of about 5 and various

conditions of heat transfer for smooth and rough surfaces in zero pressure gradient,

Reference 5.26. Here the roughnesses took the form of regular transverse ridges of

triangular section and a range of roughness height were tested. Some of the comparisons

are shown in Figure 5.17 and 5.18 for the displacement and momentum thicknezses, the
'incompressible' form factor Hi. the skin friction coefficient and Reynolds analogy

factor as functions of the ratio of wall temperature to ambient temperature. Although

the agreement between predictions and experiment is far from perfect it is fairly

satisfactory bearing in mind the experimental difficulties as well as the usual level of

agreement found for smooth surfaces for such Mach numbers between existing theories and

experiment. However, the integral method gave predictions that were not significantly

worse (see Figure 5.19).

It seems reasonable to conclude froii these comparisons that of the differential
methods considered the relative simplicity and general reliability of the mixing length

method makes it the most readily commendable for predicting the effects of distributed

roughness on boundary layer characteristics. The even greater simplicity and comparable

reliability of the integral method makes it the preferred one for the many engineering

applications where only integral quantities are needed.
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Rough Surface in Zero Pressure Gradient (Blanchard)
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Figure 5.14 Comparisons of Predictions and Experimental Results.for a

Rough Surface in Zero Pressure Gradient (Blanchard)
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6. DRAG OF AUXILIARY INLETS AND OUTLETS

6.1 Introduction

Aignificant source of drag for contemporary aircraft is tne influx and efflux of

air, intentional and unintentional, through orifices other than those used for the
propulsion system. Auxiliary air systems are used for cooling people, equipment, and

oil; and co provide air for combustion to auxiliary power units. Most of this
auxiliary air flow is controlled, but a small percentage flows through leaks. For that

portion which is controlled the designer has many options in configuring both external

and internal geomet-y to itLPimize drag.

A flight line survey of 12 contemporary aircraft revealed that auxiliary inlet and
outlet designs provide more opportunity for exercise of individual "design license" than

perhaps any other part of the aircraft. A total of 22 inlets and 42 outlets were found
on these aircraft - and no two configurations were exactly alike. Nevertheless, there
are some general classifications into which these auxiliary inlet and outlets may be

placed, ana drag data are available to at least guide the designer if his geometry

approximates some standard in these various classifications. Figures 6.1 and 6.2

illustrate the many aux.Lliary inlet and outlet designs observed and show the general

classifications into which they will be grouped for discussion.

_______ ____________________ __ ____ ..__ ._____ ,_

T-.---•. . -- -- .-- - -- I- _

SPiS ICW NOI C j-..' I ssu ic ____.___

1 _
S5 -- -

FROMC VIEfW

Iiu"

T!

A-,

ird1,4

Fgr 6.1 Avi.~iiary Inlets Observed in 12-Airplane Sample
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[ Figure6.2 Aux~iliary Outlets Observed in 12-Airplane Sample

In gner!, axiloryair system flow requirements vary considerably over the aircraft's

r exaus sysem or oolig te cain f alight aircraft. At low altitudes, low speeds,

and n wrm wathr, he sste isoperated at maximum capacity; but a change in

Salttude sped, r wethercancompletely eliminate the need for such a system andmost auxiliary operate, in one

Sway or another, with variable geometry. This variable geometry may be part of the inlet
For outlet hardware, or it may result from a change in internal resistance. In any case,

this variable feature of auxiliary air systems further complicates the generalization of

"drag data for such systems.

atIn this section, we shall deal primarily with external drag associated with

auxiliary inlets,

auxiliary outlets, and

uncontrolled leakage.

Internal flow momentum losses have been treated in a number of works and are not

considered within the scope of this text. However, in designing auxiliary inlets and

outlets for minimum drag, several points should be recognized. First, the total drag of

an auxiliary air system is made up of two basic parts - external drag and internal drag.

Every bit of momentum extracted from the air flowing past a vehicle results in drag

whether that momentum is extracted by the air's flowing around a protuberance or from

the air's doing work inside a cooling system. Taking aboard more air than is needed in

cruise flight will probably increase vehicle drag even if the inlet drag, for instance,

is negligible. The designer therefore needs to give careful consideration to the total

auxiliary air system to minimize aircraft drag.
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6.2 Auxiliary Inlets

Figure 6.1 shows the many types of auxiliary inlets observed on just a dozen

contemporary aircraft. For the purpose of classification these inlets are divided into

the following categories.

Submerged inlet - A submerged inlet is defined as one with special contours on the
ramps, side walls, or lips but with none of these special contours protruding into the

mainstream. An exception is the submerged inlet with boundary layer diverters which do

extend above the aircraft surface.

Flush inlet - a flush inlet is generally a hole in the aircraft surface with little

attempt made to guide flow into the hole other than corner rounding. These inlets on

wing leading edges and other high pressure regions ;an be quite effective.

Protruding inlet - As the name implies, a protruding inlet extends from the

aircraft surface into the mainstream and thus enjoys the advantage and/or disadvantage

of exposure to full impact pressure.

Performance characteristics of these inlets are discussed in the following section,

The net drag of an inlet depends on a combination of external and internal drag, so that

inlet pressure recovery is an important aspect of drag. This is often taken into

account through the use of C Dcorr a drag coefficient which is obtained from:

Measured Drag minus available thrust of inducted air

divided by inlet area and local dynamic pressure

There are many reports providing data on auxiliary inlets. Unfortunately the
investigations reported covered a wide range of configuration and test condition

variables so that it is difficult to arrive at general conclusions concerning the "best"

inlet type. Reference 6.1 is one of the better sources of comparison data since both

drag and pressure recovery were measured for all three general classes (protruding,

flush, and submerged) of inlets. All of the lip contours had sharp edges however, so

they do not necessarily represent optimized configurations for subsonic flow.

Therefore, some of the conclusions which may be drawn in comparing inlet types might be

changed if different lip shapes were used.

Figure 6.3 shows data from Reference 6.1 comparing CDcorr for a parallel wall flush

inlet, a curved diverging wall submerged inlet, and an aspect ratio 4 scoop inlet.

For this comparison the best inlet in each of the three categories was chosen.

(This results in comparison of an aspect ratio of I for the flush inlets with aspect

ratios of 4 for the submerged and scoop inlets.) In the mid-range of mass flow ratios

there is not much difference in performance of the three inlets except at M = 0.55 where.

the scoop inlet had a higher drag than the other two. This resulted from the fact that

while the scoop had higher external drag than the flush inlets it did not attain higher

internal pressure recoveries.

It would be difficult from Figure 6.3 to say that any one of the inlet types shown

is universally better than the others. Choice of inlet type must be based on specific

application. More detail on the several inlet types is given in the following sections.
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Figure 6.3 Comparison of C for Three Inlet Types at Subsonic and Transonic Speeds (Reference 6.1)
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6.2.1 Protruding Inlets

Protruding or scoop inlets are widely used on contemporary aircraft. Figure 6.1

shows that more scoop inlets were found in the 12-aircraft sample than any other type.

b Scoop inlets are characterized by high pressure recovery and sometimes by high drag.
9 Drag can be minimized however by:

o contouring the forebody to conform to good nacelle design practice,

o using rounded inlet lips (for subsonic speeds), and

o fairing the downstream side of the scoop with a good afterbody shape

Figure 6.4 shows zero-flow drag, CD, based on inlet area and free-stream dynamic

pressure, for two scoop geometries over a range of Mach numbers. The two-dimensional

aspect ratio 4 scoop has less than 1/2 the drag of a circular scoop.

Contouring the forebody was shown in Reference 6.2 to reduce zero flow drag for a

semi-circular scoop by 50 percent at subsonic speeds. Details are shown in Figure 6.5.

With inlet lip contouring and afterbody fairing it is estimated that zero flow drag

could be further reduced to D0 values ranging from 0.1 to 0.2.



3.0

2,0 -

CD
D0

1.0-

I I I I .

.4  .6 .8 1.0 1.2 1.4
MACH NUMBER

Figure 6.4 Drag of Protruding Inlets3 Reference 6,1)

C =0.8 I.

2 1/8" R 1 3/4" R

CD = 0.4/

Figure 6.5 Effects on Drag of Contouring a Scoop Forebody (Reference 6.2)

In areas where the aircraft boundary layer is thick, inlet flow and presý;ure
recovery may be significantly impaired unless steps are taken to move the inlet out of

the boundary layer. Usually this is done for scoops by mounting the inlet on what

amounts to a short pylon. This mounting however results in a significant drag increase,

at the least proportional to the frontal area increase of the installation.

To this point all of the data and comments presented have concerned inlet drag for

the zero-flow condition. Increasing inlet flow ratio reduces external drag

significantly. This can be seen by the curves of Figure 6.6 where CDcorr is plotted as

a function of mass flow ratio. C Dcor is determined from the net drag less the momentum
of the internal flow captured by the inlet. The actual drag experienced will of course

depend on what happens to the internal flow - how efficiently it is diffused so that

dynamic pressure is converted to static pressure. Nevertheless CDcorr is a good overall

measure of inlet performance since it considers both external drag and pressure losses

to the inlet measuring station.
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6.2.2 Submerged Inlets

Submerged inlets can be subdivided, according to wall shape, t.nto the categories -

parallel walls, diverging walls, and curved diverging walls. In addition, various

boundary layer control devices - bypasses and diverters - are sometimes used. Dynamic

pressure recovery, which is a significant interna] drag consideration, is shown for

these three types of submerged inlets in Figure 6.7. The advantage of diverging the

walls can be easily seen in Figure 6.7 and the tadvantaqe of adding curvature to the

divergence is also obvious. The divergence tends to part the boundary layer and turn

more of the higher momentum freestream air into toe inlet than can be cone with parallel

walls.

Net inlet drag will be a combination of internal an( extecnal drag but sometimes it

is helpful to separate these elements. A measure of external drag is the zero flow drag

as shown i-i Figure 6.8. This figure shows external drag to be lower for parallel walls

than for diverging walls - a fact which tends to offset the pressure recovery advantage

* of the crved diverging wall inlet. Figure 6.8 also shows howe;,er that approach ramp

angle h, - greater impact on zero flow drag than wall contour. The 7 approach ramp

causes the freestream flow to turn into the inlet with the result that drag is in-

creased.

A comparison of curved diverging wall and parallel wall submerged inlets in the

form of CDcorr is shown in Piyure 6.9. At M = 0.55 and M - 1.3 the curved diverging

wall inlet is geiLer3lly better than the parallel wall inlct, but there may be an

* advantagc for the parallel wall inlet in the transonic (M - .9) range.
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Inlet inclination angle has a large effect on submerged inlet drag. This is shown
for parallel wall inlets of aspect ratio 4 in Figure 6.10. Most of the large effect

P shown can probably be attributed to the boundary layer's inability to negotiate turns
"LeaLeL than about l5°. Thus the inlet pressure recovery fails ott drastically as the
inclination angle, 0 , is increased. By the same token, boundary layeL separation at
zero inlet flow causes 0 Dcorr to be quite low at values of 0 greater than 450, since the

freestream flow feels little inclination to turn into the inlet cavity. An auxiliary

air system with large flow demand under static conditions and zero or small demand at
cruise might well use a submerged or flush inlet with large inclination angle. Inlet

ramp angle is an important parameter and from experimental data should not exceed 100 as

indicated by Reference 6.13.

.4henever the boundary layer thickness dimension is significant relative to inlet

hheight or depth, the effect of boundary layer on inlet dr-ag and performance should be
considered. For a protruding inlet the impact on external drag will generally be

F thr-ough a reduction in the effective dynamic pressure used to compute drag, and the im-
paat on internal drag will be through a reduction in total pressure recovery because the
boundary layer entering the inlet has less momentum than freestream air. For a sub-
meraed inltt a thick approaching boundary layer may separate from the inlet ramp at

t angles which a thinner boundary layer might easily tolerate - thus compoundiog the

boundary Jaye- effect.

Al
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For situations where bou11daLy lay e• ep aat~ oh is not a factcY, chart. of boundary

layer mass and momentum are available (Reference 6.3 for instance) to expedite pre-

diction of boundary layer effects.

Experimental data on boundary layer effects on submerged inlet performance are

limited. Some are shown however in F'igure 6.11 where the ef.ect of boundary layer

thickness on pressure recovery has been plotted for a submerjed inlet with curved

diverging walls. At high inlet velocity ratios, the already low pressure recovery is

severely impaired by a doubliiig of boundary layer thickness while at Vi/V° = U.4

doubling the boundary layer thickness reduces pressure recevery about 15 percent.

Boundary layer deflectors which extend above the surfe.ce along the edges of the

submerged inlet f'alls can reduce pressure losses due to boundary layer. This is shown

by the broken line curve in Figure 6.11 which shows, at V/V = 0.V, an increase i
pressure recovery of 10-15 percent through the use of deflectors. Although drag was not

measured in the investigation from which these data were obtained, it should be expected

that the increase in pressure recovery will be accompanied by• an increasc in exterznal

drag, so the net gin or loss in CDcorr is not known.

•,•'•.,• i " •b..it- a ,-.= .... n__,



w -145

1.0

rr

S.87DFL WITH B.L. DEFLECTORS

7 VI = .4

.6 V 4

0 0i/vo =.a

I.I

J•. -- L - • I I a I .. L .I I i I * * _.S.4 .8 1.2 1.6 2.0 2.4

! 8/x

1.

F19ure 6.11 Effect of Boundnry Layer Thickness or Submerged Inlel Pressure Recovery (Referenca 6.7)

6.2.3 Flush Inlets

Flush inlets, if used for in-flight air induction mast be located in regions of

high static pressure sirice these inlets employ no ramps or other special air turning

devices. They are sometimes used however to supply air to systems which operate only on

the ground. In this case the concarn from a drag standpoint is that the inlet hole be

closed in flight, or that flow be completely stopped and the inlet opening be of such

size and shape that drag is negligible.

Reference 6.4 shows that in the sub'onic and transonic range the no-flow drag

coefficient for sharp-edged 90 flush openings of aspect ratio 4 is about CD =: 0.03.

Figure 6-12 from Reference 6.5 shows the effect of aspect ratio, w/d, on flush opening

drag at M = 3.25. The drag coefficients vary from .015 to .03 in the range of moderate

aspect ratios. Here CD is the drag increase due to the inlet divided by tree stream

dynamic pressure and inlet area.

cD 1

0 1 2 3 4 6

ASPECT RATIO

Figure 6.12 Dr•ag of Flush Rectangular Openings at M = 3.25. Zero-Flow Conditions (Reference 6.5)
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For those applications where flush inlets are located in regions of high static

pressuLe - on the leading edge of wings, for instance - inlet design should follow the

guidelines established for nacelles and primary air induction systems. It is possible

to optimize s-uch inlets for essentially zero drag in cruise. The reader is referred to

such standard guidelines as Reference 6.6.

6.3 Auxiliary Outlets

Auxiliary air exhausted into the mainstream can produce drag or thrust. It can

also interact with the boundary layer or other parts of the aircraft so that its effects

are magnified. Normally, the outlet air is exhausted aft and the drag is

D=-T-m V coasn 6(1)e a

and for incompressible flow, the outlet drag coefficient based on exit area

V 2
C =-2 Cos - e6(2)

where 0 is tne angle of the exhaust flow relative to the freestream. If the exhaust
flow wvrc directed forward. there would be an equal amount of positive drag. If it were

exhausted normal to the freestream, there would be ideally no drag or thrust.

Boundary layer and other interactions can be favorable or unfavorable. In some

cases outlet flow may cause the boundary layer to separate, while in other cases the

boundary layer may be energized by the outlet flow for a significant drag reduction. The

designer should take all these factors into consideration when assessing outlet drag.

As wai the case for inlets, auxiliary outlets can also be divided into the general

categories of protruding, flush, and submerged outlets. When liquids (fuel, etc.) are

to be discharged into an airstream, there is generally the requirement that the liquid

should not wet the adjacent surfaces. This requirement demands special treatment so

that vents and drains will be considered herein as a separate category of protruding

outlets.

6.3.1 Protruding Outlets

Protruding outlets can be designed to generate low pressures and thus enhance

outlet flow. They also are generally designec -o direct the discharge downstream and

thus generate thrust. In designing a protruding outlet, the following variables are

important.

I. Area of the outlet (which together with the weight flow, w., specifies the flow

ratio we/( P e Vo Ae), where the subscript e denotes exit conditions.

2. Aspect ratio of the outlet, AF.

3. Flap angle, 6., or some other measure of the protrusion.
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Reference 6.8 reports an extensive experimental investigation for a range of

flapped outlet variables, While it is a good source of specific and detailed design

information, it can be used also for some general observwLion and conclusions. Figure

6.13 shows the configuration tested and defines some of the geometric variables.

|f

OULE AREA BASEDNC

, Figure 6.13 Flapped Outlet Test Geometry (Reference 6.8)

Figure 6.14 shows the drag of flapped outlets as a function of flap angle for zero
outflow. In this case the drag coefficient is essentially the base pressure

coefficient. It can be seen that drag is much lower for AF 2 than for AF = I outlets.

Conversely, however, the higher drag of the AF = I outlets is accompanied by better

discharge coefficients since the flap suction is higher.

ZERO OUTLET FLOW

1.2- _~~1I

MI
.8 AFb"

CD .4

F20- F=

-10 0 10 F 20 30 40

Figure 6.14 Drag of Flupped Outlets - Zero Outlet Flow (Reference 6.8)

The airflow required for zero drag is shown in Figure 6.15 as a function of flap

angle. Here again, the AF = 2 flaps show in a better light since mass flow con be

reduced to values about half those for A. = I before drag is experienced, in a

situation favoring fixcd flap angles, these data show that an aspect ratio greater than

1 is desirable.
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Figure 6.15 Mass Flow for Zero Drag - Flapped Outlets (Reference 6.8)

The data in Figure 6.16 show the apparent thrust (measured thrust minus zero-flow

thrust) coefficient for AF = 1 flaps. Also shown is the ideal thrust of the outlet air

A CT = 2 ( .) - 6(3)
e o Ae V 0

i

Two things are significant about the curves of Figure 6.16. First it can be seen

that 6F has a second order effect only. As a first approximation it can be assumed that

all of the outlet thrust is recovered - not just the horizontal (or cosine 6 F)
component. Such an assumption could result in a maximum error in thrust coefficient of

about 30 percent at M = 0.4 and much smaller errors at high speed. Secondly, the
calculated or ideal thrust matches well the measured values at significant levels of

AC . These observations lead to the conclusion that for flap angles up to 30°, the

thrust for a flapped outlet is equal to the zero flow thrust (or drag) plus the ideal
outlet flow thrust. Thus a reasonable approximation of thle thrust or drag of a flapped

outlet can be obtained by adding the thrust of the outlet flow to tile drag for the zero
flow condition which can be obtained from Figure 6.14.

6.3.2 Flush Outlets

Flush outlets with zero outflow usually have zero drag. Exceptions arise for some
peculiar shapes arid at transonic and supersonic Mach numbers. A long narrow flush

outlet with its major axis alined with the flow will have positive drag at subsonic
speeds. In Figure 6.17 data at Mach 3.25 (Reference 6.5) showed all flush outlets to

have positive drag at this Mach number. Drag coefficients ranged from about 0.015 at
moderate aspect ratios (0.5 to 2.0) up to several times that value at lower and higher

aspect ratios.

When flow is added to a flush outlet a thrust is obtained unless the flow is

directed upstream. Flush outlets can be divided into two classes - ducted outlets and
thin plate outlets - and the drag or thrust characteristics are different for each
class. Typical configurations for the two classes are shown in Figure 6.18. For ducted

outlets the orientation of the duct sets tho outlet inclination angle 0 while in thin
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plate outlets the initial direction of the outlet jet is perpendicular to the

mainstream. Nevertheless, there may be some thrust obtained from the thin plate outlets

if the aspect ratio is in the range from about 1 to 4.

For ducted outlets with 13 < 30' the thrust obtained is, to a first approximation,

i equivalent to the jet thrust. At higher inclination angles thrust will generally be

F greater than T cos 13 but less than T. This can be seen in Figures 6.19(a) and 6.19(b)
•. where thrust coefficients for round ducted outlets at two values of )3 are shown.

Thrust coefficient decreases with increasing Mach number as shown in FiguLes

6.20(a) and 6.20(b).
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Figure 6.16 Comparisons of Apparent Thrust Produced by Flopped Outlets with Ideal Values.
A AF xA= 0 (Reference 6.8)
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Figure 6,20 Variation of Thrust Coefficient with Mach Number (Reference 6.5)

6.3.3 Recessed Outlets

Recessed outlets are characterized by a downstream ramp which is recessod beiuw the

aircraft surface. At zero outlet flow recessed outlets will generate a negative base

pressure and consequently a positive drag. They are, like protruding outlets, useful

when needed to aspirate a cavity since the freestream air moving past a recessed outlet

will entrain and help to pump the outlet flow. Outlet pressure coefficients for several

recessed outlets at zero flow are shown in Figure 6.21. These coefficients are

essentially equal to the no-flow drag coefficients.

If a recessed outlet is designed with a good radius on the downstream ramp

approach, the outflow should exhaust at a small angle relative to the freestream and all

of the exhaust momentum should be recovered as thrust.

6.3.4 Drains

As indicated earlier liquid drains on aircraft fit into a special class of outlets.

In normal flight little outflow is expected, and in cases where there is outflow, drag

is generally not a critical consideration. An important criterion for drains is

generally that the fluid drained should not wet or stain the adjacent surface, and this

usually requires that the drain protrude into the freestream flow.
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Figure 6.21 Vent Pressures (Reference 6.4) for Recessed Outlets

Reference 6.9 reports an extensive investigation on the ability of various drain

configurations to discharge fluid into an airstream without surface staining. Circular

and elliptic drains extending normal to the surface always resulted in staining, hilt the

staining was usually eliminated by sweeping the drain 600. Airfoil-shaped drains - both

swept and unswept - were successful in preventing staining.

Drag coefficients for the drains investigated in Reference 6.9 are shown in Figure

6.22. Elliptical cross sections had less drag than circular; swept drains had less drag

than unswept; and airfoil shaped drains had the lowest drag. As would be expected, drag

with liquid discharge was always lower than with no discharge. External drag for the

airfoil-shaped drains was low enough so that flow discharge produced negative drag.

6.4 Leakage Drag

Leakage drag in modern day aircraft is significant primarily because passenger (and

often times cargo) compartments are pressurized to maintain tolerable pressure

altitudes. As a result, most contemporary high speed aircraft normally operate with

internal to external pressure differentials of about 8 psia and small manufacturing

defects can result in significant leakage.

Leakage drag also occurs, in a slightly different form, on less sophisticated

aircraft which normally operate without cabin pressurization. In this case some

pressurization may occur when flow leaks into the aircraft in a high pressure region and

leaks out of the aircraft in a low pressure region. If the leaks are flush with the

surface, all the drag results from internal flow momentum losses unless the leakage so

affects the boundary layer as to cause a significant change in flow pattern.

For conservatism it is generally assumed that leaks exhaust in a direction normal

to tne freestream so that all the momentum is lost, but in some cases the aircraft

structure can be tailored so that leaks exhaust aft and some momentum is recovered.! , .
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6.4.1 Leakage Drag - Non-Pressurized Aircraft

As mentioned earlier, external drag due to leaks can generally be neglected since

the leakage inlets and outlets are flush with the surface. In this kind of leakage

system air flows f*:om the inlet through a duct of some kind thence to the outlet. The

duct may be an open bay in the nacelle or fuselage structure for instance. Hoerner

(Reference 6.10) defines a drag coefficient for this kind of system in teras of an

effective duct cross sectional area A0  in which there is an average velocity w. The

drag coefficient based or) A0 is then

C D 2 -v- (where V is freestream velocity). 6(4)
o max

= D/q ALI

This is an incompressible flow approximation but is probably valid [or those

aircraft where this kind of leakage is significant.



Patterson (Reference 6.11) has a more detailed treatment of this kind of leakage

drag which takes into accouat whether the skin joints which leak are forward facing,

flush, or rearward facing.

6.4.2 Leakage Drag - Pressurized Aircraft

For those aircraft with pressurized compartments, maniufacturing tolerances are

usually tight and leakage areas are small. Nevertheless subsonic aircraft leakage drag

may approach about 1 percent of total drag. Gyorgyfalvy (Reference 6.12) reports

results from flight tests of a Boeing 720 aircraft in which fuselage boundary layer

measurements were used to detarmine drag with the passenger cabin pressuriz-.d and

unpressurized. He concluded that some additional drag resulted from fuselage bulging

and the effects on bkin friction, but that most of the 1-1/4 percent drag increase

resulted from leakage.

Figure 6.23 shows a plot of leakage area as a function of pressurized volume for a

repres:ntative group of modern subsonic aiccraft. These leakage areas were derived

indirectly from measurements of mass flow required to pressurie the aircraft. The data

rep;:esent three passenger and three cargo aircraft.
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Figure 6.23 Leakage Areas for Modern Pressurized Aircraft

Leakage drag can be estimated from the data of Figure 6.23 when pressure

differentials are obtained by specifying cruise altitude and cabin altitude. If it is

assumed that all of the momentum of the resulting leakage air is lost, the data of

Figure 6.23 will generally not yield drag levels as high as those reported by

Gyorgyfalvy. This implies that the impact of leakage on boundary layer flow over the

aircraft surface is greater than the leakage air momentum loss effecco

Another word of caution 4E in order. In determining drag for large complex
' aircraft, bookkeeping is important. If cabin pressurization air is taken from engine

bleed, the airplane's performance may already have been charged with lost momenLUm of

this air .-,ich comes through the main propulsion system. In this event the only drag

., attributable to leakage will be that due to the effects of leakage on the boundary layer

flow. If this effect should be favorable or if the leaks are such as to direct the air

aft, the leakage momentum could actually result in a drag decrease.



6-5 Supplementar information

The following list provides additional sources of information concerning the

performance of auxiliary and specific designed inlets. However the sources provide no

additional drag information.

Dennard, J. S., "A Transoric Investigation of the Nass-Flow and Pressure Recovery

Characteristics of Several Types of Auxiliary Air Inlets," NACA RM L5ý7BO7, 1957.

Frank, J. L., "Pressure Distribution and Rar--Reco'rery Characteristics of NACA Submerged }
Inlets at High Subsonic Speeds," NACA No. RM A50E02, 1950.

Axelson, J. A,, Taylor, R.A., "Preliminary Investigation of the Transonic

Characteristics of an NACA Submerged Inlet," NACA No. RM A50Cl3, 1950.

Anderson, W. Z., Frazer, A. C., "Investigation of an NACA Submerged Inlet at Mach

Numbers from 1.17 to 1.99" NACA RM No. AS2FI7, 1952.

Simon, P. C., "Internal Performance of a Series of Circular Auxiliary Air Inlets

Immersed In A Turbulent Boundary Layer, Mach Number Range 1.5 to 2.0 NACA RM E54L03,
1955.

Sacks, A. H., Spreiter, J. R., "Theoretical Investigation of Submerged Inlets at Slow
Speeds," NACA TN 2323, 1951.

Weinstein, M. I., "Performance of Supersonic Scoop Inlets," NACA RM E52A22, 1952.

Boswinkle, R. W., Mitchell, M. H., "ExpeLimental Investigation of Internal-Flow

Cnaracteristics of Forward Underslung Fuselage Scoops with Unswept and Sweptback

Entrances at Mach Numbers of 1.41 to 1.96," NACA RN L52A24, 1952.

Biackaby, 0. R., Watson; E. C., "An Experimental Investigation at Low Speeds of the

Effect of Lip Shape on the Drag and Pressure Recovery of a Nose Inlet in a Body of

Revolution," NACA TN3170, 1954.

Santman, D. M., "Transonic Performance of a Mach 2.65 Auxiliary Flow Axisymmetric
Inlet," NASA CR-2747, 1976.

Dewey, P. E., "A Preliminary Investigation of Aerodynamic Characteristics of Small

Inclined Air Outlets at Transonic Mach Numbers," NACA TN 3442, 1935.

Dewey, P. E., Nelson, W. J., "A Transonic Investigation of the Aerodynamic

Characteristics of Plate and Bell Type Outlets for Auxiliary Air," NACA RM L52H20, 1952.

Rogallo, F. M., "Wind Tunnel Investigation of Air Inlet and outlet Openings for

Aircraft," NACA MISC 133.
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7. CONCLUDING REMARKS AND SUGGESTIONS FOR FUTURE RESEARCH

We have endeavoured in the foregoing to present to the reader the current 'state of

the art' of the subject of excrescense and aircraft drag. We have demonstrated the

importance of the subject, and as far as possible presented the available information in

a way that is readily usable for prediction and design purposes. In particular, we haveo

tried to make it possible for designers to assess reali.stically the overall net gains

.5 that can result from striving for cleanness after allowance fco possible extra costs in
design effort and weight that may be involved.

We have found it convenient to distinguish between distributed ronghness, generally

of a scale small in relation to the boundary layer thickness so that the effects are

dominated by flow conditions close to the surface, and discrete excrescences where the

scale can be much larger and for which main stream flow conditions can be dominant. We

have shown how existing methods of predicting the development of turbulent boundary

layers on smooth surfaces can be adapted to deal with both distributed and discrete

excrescences and the importance of the so-called magnification factors associated with

typical pressure distributions over the surface.

It will be evident, however, that a nunrber of important gaps remain in our

knowledge where the available information is inadequate for our purpose. The situation
is reasonably satisfactory as far as those cases are concerned where two-dimensional

data can be adapted with some measure of confidence to provide the answers needed e.g.
for aircraft of relatively large aspect ratio and small sweep. With increase of sweep

and reduction of aspect ratio the application of such data becomes increasingly un-

certain. Our first need, therefore, is for systematic experimental data on the effects
of excrescences in three dimensional flows, particularly flows involving large sweep.

Our knowledge of the effects of controls and control gaps as sources of drag is

also deficient and more work is needed oni the lines of that of Cook described in section
5.4 but with sweep included as an important parameter.

Another major area of uncertainty due to inadequate basic data is the effects of

excrescences on high lift configurations. The importance of these effects goes beyond

the question of possible reductions of C Lmax Any reduction of lift at a given in-

cidence due to excr~scences will result in a higher incidence being adopted in order to

maintain the lift with a consequent drag increase additional to that due directly to the

excrescences. Here again sweep is an importan, parameter and we bhould include as

excrescences slat and flap brackets and tracks.

We have found relatively little to say about the effects of excrescences at
transonic speeds and nothing on their possible effects on shock wave-boundary layer

interactions. We know that these interactions can be crucial in determining the overall

performance of an aircraft flying at such speeds, and so we must emphasize the need for

weli planned experiments on possible moditying effects due to excrescences.

Finally we note a paucity of information on the effects of excrescences at

supersonic speeds, particularly where the excrescences are large enough to extend into

the supersonic region of the boundary layer when they may be expected to generate shock

waves additional to those associated with a smooth surface.

It is our hope that those responsible for planning experimental aerodynamic

" * research programs will take careful note of these gaps in our knowledge and will judge

"them important enough to warrant a considecable effort directed at filling them.
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