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Ny SUMMARY

ﬁ; A review has been undertaken of the available datea on the subject of the drag
g% of excrescences on aircraft surfaces. Information from this review has been
; summarized and resented in a way that is readily usable for prediction and
design purposes. The basic characteristics of boundary layers are discussed

¥
b1
% and, where possible, the drag of excrescences is related to those charac-
v teristics,

gy
* -

In particular, because the size of many types of surface imperfection is
small in comparison with boundary layer thicknesses, the drag of such im-
perfections can be correlated in terms of the properties cf inner regions of
the boundary layer. Several previously published analyses of this type are
highlighted and, where possible, extensions to other data sources or other
types of excrescence are presented. The practical problems of applying these
data in the varying velocity gradients existing on aircraft surfaces are
treated and one section is devoted to the drag of auxiliary air inlet and

exit openings., Gaps in existing data which offer opportunities for research
effort are pointed out.
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NOMERCLATURE

pipe radius

Constants in "law of the wall" velocity distribution equation
cross section area of air inlet or exit

aspect ratio of air inlet or exit
chord

wing drag coefficient, D/qo Sw
excrescence drag coefficient, D/qe fe
excrescence drag coefficient, D/g fe

excrescence drag coefficient, D/qe Sp

drag coefficient of excrescence having height equal to boundary layer
thickness, D/qo fe

Grag coefficient of cylinder of infinite length
componenct drag coefficient, n/q, £

e

local skin friction coefficient, 21 H/ py V°2

2

local skin friction coefficient, 2 L /I)w u o

skin friction coefficient of complete body
thrust coefficient, thrust/qu

drag

drag increase due to excrescence

diameter of excrescence

projected frontal area of excrescence
roughness Reynolds number, Uy h/v

boundary layer shape factor, 6*/0
boundary layer shape factox, ( §- §*)/¢
loss of total pressure

height of discrete roughness; mean enthalpy per unit mass

height of distributed roughness
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«quivalent gand grain roughness
maximum roughness height which will not cause transition

minimum roughness height which will resgult in transition
behind roughness

von Karman constant, 0,.4-0.41

length proportional to mixing length

Mach number

drag magnification factor

momentum magnification factor

inlet .nass flow per unit area, ﬂiVi

free stream mass flow per unit area, P Ve
dynamic pressure

free stream dynamic pressure

local dynamic pressire at edge of boundary layer
mean dynamic pressure from surface to height of excrescence

radius of curvature, or recovery factor

T SR ST ) P TV ST ATy

immediately

Reynolds nuwber (subscript indicates characteristic length) C-chord,

# -momentum thickness, x-~length from stagnation point

temperature (with following subscripts) W-wall e-edge of boundary layer

planform area of excrescence

wing planform area

velocity component in stieamwise direction
local veloc.ty at edge of boundary layer
local velocity at heignht of roughness element
friction velocity, (t w//!w)l/2
u/u,

fluctuating component of longitudinal velocity

mean longitudinal velocity
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! Vo vndisturbed frecstream velocity
: vy inle. velocity
! :
i s V. outlet velocity
! ;
We weight flow from exit
’ X surface lenath rom stagnation point
y hei1ght above surface
Ny y+ Yy Uy /v
v, thickness of viscous sublayer
: a inclination of cylinder from flow Girection
i
3 . e
t Y intermittency factor or ratio of specific heats
: d boundary layer thickness, alsc ramp angle, flap angle
‘ * . . d
) displacement thickness = fo (l-U/Ue) Ay
4 momentum thickness, also submerged insec inclination angle, exhaust flow
angle relative to free stream
N Ju viacosity
v kinematic viscosity,u/:
E g p mass density
.
4 § 1, laminar shear stress, pndu/dy
* N
§ : S
; ;, Ty turbulent eddy shear stress, -pu'v’
{
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§ g T, wall shear stress
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1. INTRODUCTION

In the highly competitive field of aircraft development and procurement, acrod-
ynamic performance is frequently the outstanding factor in final decisions, It is very
important therefore for aerodynamic designers, and for technical evaluators, to be able
to predict aircraft drag with the best possible precision, Relatively small advantages
in speed or in fuel consumption can contribute significantly to operational efficiency
of transport aircraft, and for combat aircraft, small margins in performance may be
ultimately decisive. In addition to these basic considerations, conservation of fuel is
becoming a more and more important independent criterion in the design of all types of
aircraft.

Surface imperfections have long been recognized as a drag source and numerous
studies have b2en devoted to quantifying this drag problem, These studies have been
approached in various ways in the course of aerodynamic development with the result that
information on this subject exists in many widely diverse forms. Reference 1.1, first
published in 1951, contains a chapter on drag due to surface irregularities which is an
excellent collection of data available (in later editions) up to about 1955. Since that
time, a greater und:rstanding of boundary layer phenomena and of roughness drag mecha-
nisms has been developed, and through that understanding substantive generalizations
have been made possible in a number of cases. Later exparimental work has also been
dedicated to Mach number and Reynolds number regimes which are pertinent to modern air-
craft. Recent useful, if brief, reviews are provided in References 1,5 and 1.6.

When proper attention is paid to design and manufacturing tolerances, the roughness
drag of transport aircraft can be reduced to rather small (but still siyusificant)
values. Drag attributable to this source on the Lockheed C-5 airplane is estimated to
be approximately 3-1/2% of cruise drag (Reference 1.2). At the time the C-5 was de-
signed, it was felt that the smoothness standards accepted represented a rational
compromise of fabrication costs versus performance benefits., As fuel costs continue to
rigse, a reassessment of this question might justify more stringent specifications, On
smaller aircraft the same machining and assembly tolerances of course result in greater
relative roughness, and for fighter aircraft, larger ratios cf wetted area to wing area
cause a further escalation.

Reference 1,3 presents a detailed review of three fighter aircraft ghowing that
roughness drag varied from about J10% to 20% of total drag at subsonic speeds. When
considered in comparison with other configuration changes which could cause the same
drag increment, this roughness drag assumes rvather large significance. It is also
apparent that, if all other factors were constant, a fighter aivcraft with roughness at
the low end of this range would enjoy a substantial advantage over an adversary at the
high end.

In a paper presented in 1967 (Reference 1,4), Haines reviewed the drag of a number
of transport aircrafc, A breakdown of drag sources on those aircraft indicates contri-
butions from surface imperfections and excrescences varying from 15% to 24-1/2% of
profile drag which probably represents 8% to 12% of cruise drag. A detailed analysis of
the drag effects of excrescences cn the VFW 614 aircraft (a small short range aircraft)
in Reference 1,7 leads to a similar penalty of 22% of the profile drag. References 1.2,
1.3, and 1.4 each present details on the specific roughness items which contribute to
this extraneous drag. The outstanding indication from these details, however, is the
fact that the problem is all-pervasive. Roughness drag can be minimized only by
aggressive attention to details of the surface condition of all parts of the aircraft,
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The objective of this work is, therefore, to provide up to date informaticon on the
drag of surface imperfections. Modern boundary layer theory is veviewed to highlight
the phenomena underlying drag duce to surface roughnesses to provide an understanding ot
the mechanisms ot such drag increases. Tne authors have atterpted to collect the best

available methods for prediction of rvoughness drag increments in the light of that basic
understanding.

1t is ecxpected that this collection ot information will be of assistance to air-
craft designers who must assess the drag resulting from surface imperfections and make
decisions on cost effective design and manufacturing standards. Finally, it is hoped
that the review presented here will highlight those ateas where data are meager or lavk-
ing and will therefore provide the incentive for further research and davelopment.
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2. BASIC CHARACTERISTICS OF BOUNDARY LAY{ZRS

£
2.1 Lanminar & Turbulent Boundary Layers on Smooth Surfaces

2,1.1 Introductory Remarks

In this section we shall briefly review the main features of boundary layers on
smooth surfaces and the associated theories since they are an essential preliminary to
the consideration of the effects of roughness. We shali only present the subject in
summary form since it is a vast one and is well covered in existing text books (see for
example References 2.1, 2,2, 2.3, 2.4). We shall largely confine the discussion to
two-dimensional incompressible flow but shall brielly indicate the extension of the
topics discussed to three-dimensional and compressible flow where convenient,

In most engineering situations involving a body immersed in a fluid moving xelative
to it the Reynolds number based on the relative velocity and a typical body length is
very large compared with unity. In such cases we can identify a thin layer of fluid
adjacent to the body surface in which the velocity relative to the body changes rapidly
with distance normal to the surface from zero at the surface (the "no-slip condition")
to the local freestroam velocity at the outer edge of the layer. The layer is therefore
a region of large rate of shear and in consequence viscous stresses can be important
within it, but outside the layer these stresses are generally negligible and the flow
behaves as if it were inviscid, This layer is known as the boundary layer,

Over some forward part of the body we find that the flow in the boundary layer is
laminar, i.e, the fluid particles follow smooth paths. Then at some stage, depending on
the Fpressure distcibution, the level of free stream disturbances and the surface
condition, the flow in the boundary layer mcre or less rapidly changes to turbulent and
the process of this change is called transition, 1In turbulent flow the fluid particles
experience random variations in velocity magnitude and directiorn additional to their
mean motion and typically the fluctuations in velocity magnitude van be of the order of
108 of the mean velocity. These fluctuations introduce momentum transport terms in the
equations of motion additional to and jencrally much larger than those associated
directly with viscosity and these transport terms can be regarded as equivalent to
additional stresses usually referred to as Reynolds stresses or eddy stresses. Similar

eddy transport terms arise in the energy equation.

If x denotes the distance from the forward stagnation point along a body surface in
the streamwise direction and 8 denotes the boundary layer thickness then for a laminax
boundary layer d/x (1Rx_1/2, where Rx = Vo XA Vo being the undisturbed main stream
velocity and v the kinematic viscosity. If v denotes the shear stress at the surface
(or skin friction) then we define the skin friction coefficient as Cy = th/pvoz, where

“1/2 ¢or a laminar boundary

n

p is the fluid density, and we find that likewise Ce @ Rx
layer. With the boundary layer turbulent we find that to a good approximation d/x aRx-
ani cg @ Rx-n, where n is about 1/5. Thus, for a flat plate at zero incidence in a uni-
form stream and hence with zero pressure gradient:-

= 0.664 R." /%, with the houndary layer laminar, and

o/x =~ SRc"M2 44 cg
-1/5, with the boundary layer turbulent. These figures

d/x =0.37 8,7 and ¢, =0.06 R,
illustrate how thin the boundary layer is in most practical applications whrere the

characteristic Reynolds number is rarely less than 104 and can reach values of the order
9
of 107.



The thinness of the boundary layer and the associated high rate of shear are used
to justify approximations to the ¢guations of motion of a viscous fluid (the
Navier-Stokes equations) as well as the equation of energy which lead to the so-called
boundary layer equations. In particular velocity and temperature gradients with respect

to x are treated as small compared with the gradients with respect to y, the distance
normal te the surface, and this is vreflected in the relative magnitudes of the
corresponding stresses and heat conduction terms. A consequence is that the pressure
change across the boundary layer can generally be neglected, It is also inferred that
the thin bcundary layer displaces the external “inviscid" flow outwards by a small
amocunt {the so-called "displacement thicknesc®) and hence slightly displaces the

effective boundary of the external flow from the body surface. However, for many
purposes this weak interaction between boundary layer flow and external flow can be
ignored.

The above discussion relates strictly to unseparated boundary layers. But in the
presence of a strong enough streamwise rise in pressure the innermost regions of the
boundary layer can be so retarded as to reverse in flow direction beyond some point and
then the boundary layer develops into a separated shear layer moving away from the
surface over an inner region of upstream moving flow, The boundary layer is then said
to be separated, and if the external flow is not time-dependent the point at the
surface where the gradient of the streamwise velocity component (u) with respect to y is
zero is referred to as the separation point. With a separating boundary layer the

interaction between it and the external flow can be strong, since the separated boundary
layer can move a considerable distance from the body and s=o profoundly modify the
effective shape of the boundary which determines the external flow. Thus, flow
separation from a wing at high enough incidence is the cause of the stali and is
associated with a marked reduction of 1lift; an increaze of drag and development oOf
pressure fluctuations and buffeting. The reversed flow plus the ir. zr region of the
separated shear layer comprise a relatively large scale eddy which tends to be unstable
and is convected downstream whilst it breaks up into smaller eddies, meanwhile a new
eddy forms from the wing surface to take its place and so on. HKence the as3ociated
pressure fluctuations and buffeting.

The streamwise extent of the region over which the transition from 1laminar to
turbulent flow takes place depends strongly on the Reynolds number, At Reynolds numbers
less than about 106 in terms of body length the transition region can be of significant

6

extent, but for Reynolds numbers greater than about 2 x 10 it is sufficiently small to

be regarded as a point (or line in three dimensions) referred to as the transition point

{or line). Laminar and turbulent boundary layers have very different characteristics.
The turbulent bcundary layer is fuller in velocity profile, grows at a faster rate, has
a greater frictional stress at the surface and is much less easily caused to separate
than the laminar boundary layer. The transition process is a manifestation of the
tendency to instability of the laminar boundary layer and this tendency is enhanced not
only by increase of Reynolds number but by positive (adverse) pressure gradieats and
surface imperfections,

The main etfects of such imperfections and excrescences in general on drag are
threefold, Firstly, they can cause transition to occur upstream of its position on a
smocth surface, and to that extent they increase the drag because of the greater
streamwise extent of turbuler: boundary layer flow. Secondly, local flow separations
may occur from the exXcresenc2s which involve increased momentum losses and therefore
increased drag. If the excrescences are well imuersed 1in the boundary layers the eddies
associated with these separa*tions are small, being of scale comparable to the
excrescence size and they are then readily abksorbed into the general structure of the

boundary layer turbulence. If the excrescences are large in relation tc the boundary
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layer then they will result in correspondingly large eddying wahes which can strongly
; interact with the external flow. Thirdly, under conditions of strong, positive pressure
gradients surface imperfections and excrescences even when well immersed in the boundary
1 N layer, may by virtue of their effect on the boundary layer trigger an earlier flow
separation from the surface than would occur if the surface were smooth.

2.1.2 Boundary Layer Velocity Profiles and Basic Skin Priction Laws

For the attached laminar boundary layer on a surface with prescribed pressure
distribution the velocity distribution at any streamwise station can be determined as
accurately as one wishes from the boundary layer equations and prescribed boundary
conditions (see Section 2.1,3) since they reguire no further assumptions for their
solution, The velocity profile on a flat plate in a uniform pressure distribution in
incompressible flow is illustrated in Figure 2.1 where u/ue is plotted as a function of

{ = y/2 m u, is the free stream velocity at the outer edge of the boundary
layer, It can be approximately fitted by various formulae of which the simplest
offering a tolerably good fit in terms of y/§ is

. 1

%a=sm i——g—), R 2(n
where § 1is the boundary layer thickness. The thickness § cannot be Jdefined exactly
f since strictly the boundary layer extends to infinity in the y direction, but in
practice at all but 3small distances depending on the Reynolds number the difference in
velocity (ue - u) is small enough to be neglected. Thus we may choose to define & as
the value of y for which u = 0,995 u,, say; this provides a unigue definition and & |is
] then small enough in relation to x for the boundary layer assumptions to be seen to be
3 valid for Reynolds numbers of normal engincering interest.

¢

i 0

g 0 1.0 2.0 3.0
i u iy 1/2

k ¢t (=)o

% 2 vx?!  ; x

&

Figure 2,1, Velocity Distribution in Luminar Beundary Layer on Flat Plafe at Zero
Incidence (Blasius Profile)

In the presence of a negative (favourable) pressure gradient the velocity profile
- is fuller than that for zero pressure gradient, whilst with a positive (adverse)
pressure gradient the profile is less full and develops a puint of inflection. We have
already noted that in a sufficiently strong adverse pressure gradient, there can dev: lop
a reversal with separation of the boundary layer (see Figure 2.2).



R e e s R

1.6

PRESSURE GRADIENT

NEGATIVE (FAVORABLE}
ZEROQ

POSITIVE, SEPARATION
IMMINENT

STRONGLY POSITIVE,
BL IS SEPARATED

0 0.2 0.4 0.6 0.8 1.0
y/'8

C No>

Figure 2,2, Typical Velocity Distributions for Lominar Boundary Layer in Negative
Zero and Positive Pressure Gradients

A typical turbulent boundary layer profile is much fuller than a laminar boundary
layer profile and conseguently has a higher shear stress at the surface. This is
because the vigorous mixing associated with the turbulence helps to even out the
velocity distrlbution across the boundary layer. Figure 2.3 shows a typical profile for
a turbulent boundary layer on a flat plate in zero pressure gradient in incompressible
flow compared with that for a laminar boundary layer. Adverse and favourable pressure
gradients change the profile in the same sense as for a laminar boundary layer but to a
much smaller degree, and it generally requires a much greater pressure rise to cause a
turbulent boundary layer to separate.

TURBULENT
0.8
u_ 0.8 LAMINAR
ue
0.4}
0.2}
07".2 0.4 0.6 0.8 1.0
v/

Figure 2,.3. Typical Velocity Distributions for Laminar and Turbulent Boundary
Layers on a Flat Plate at Zero Incidence

An empirically determined overall approximation to a turbulent boundary layer
velocity profile in incompressible flow in zero or small pressure gradients is the
so~called power law:-

- G2 Yn

Ve

2(2)
v

where up = \/tw/p*’ (the friction velocity) and C; is a constant. The number n is
usually taken as 7 for a range of Reynolds numbers in terms of x from about 5 x 105 to
107, with C, = 8.74. For higher Reynolds numbers in the range 10% to 10% a4 closer fit

to experimental data is given by n = 9 with ¢ = 10.6., From 2(2) it follows that
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From equation 2(2) and the use of the mcaeuum sintegrai: equation (see Seciion
2.1.3) cne can readily deduce a number of useful ewpirical relations between & , Cye
CF' Rx' Rc ard R@ for the basic case of a flat plate at zero incidence in incompressible
flow., Here CF is the overall skin friction coefficient for one face of a plate of chord

c (i.e, Cp = l/c_fo6 Cg. dx),
R, = u,c/, Ry = “ea/v' and # is the momentum thickness:-

v u
e‘fo *u:("u—e)d)'

These relations are

8/x=0.37R"1/5 , ¢ =0.0592R"1/5 , C_=0.,074r"1/5
X f x F <

forn=7
¢, =0.02 Re']/4,

’ : 2 (4)
and  &/x=0.27 Rx"/6 , ¢ =0.0375 Rx"/" , €, =0.0450 RC'V“

farn=9
e =0.0176 8™/,

Somewhat closer and more general approximations to experimental data for the skin
friction coefficients are provided by the Prandtl-Schlichting semi-empirical relations:-—

= - -2.3
% (ZIOQIORX 0.65)

- -2.58, 2
Cp =0.455 (lagwkc) 6)

These relations are compared with the corresponding ones for a laminat boundary

layer in Figure 2.4 & 2.5.
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Figure 2.5. C. - Rc Relations for Laminar and Turbulent Boundary Layers on o Smooth

Flat Plate at Zero Incidence

A detailed examination ot the structi.re of the turbulent boundary layer on a smoocth
surface reveals that it can be conveniently regarded as made up of three regions,
Adjacent the surface there is the viscous sub-layer in which the turbulent fluctuations

are relatively small and the dominant shear stress is the purely viscous one, 1, =H3u/dy,
which is generally regarded as constant across the sub-layer. This layer is very thin,
its thickness y, is given by y, u;/v = 0(10) and is of the order of one hundredth of the
boundary layer thickness. &bove the sub-layer there is an inner region of the boundary
layer about 0.4 in thickness in which the turbulence intensity is large, the flow is
continuously turbulent and the dominant shear stress is the Reynolds stress,

e =
-pu'v', Here, dashes denote the turbulence velocity components, and a bar denotes a
time mean. A wide spectrum of eddy sizes and frequencies are present in this region,
From about 0.4 8 upwards there is an outer region characterised by large low freguency
eddies. The outer edge of the boundary layer therefore presents a convoluted appearance
at any instant and the smooth curve with which it is normally represented is really a
time mean. The turbulence at any point in this outer region is not continucus but
intermittent reflecting the passage of large eddies with intervals of laminar flow
between them. We speak of an intermittency factor ¥ , which is the fraction of time
that hot wire measurementgs at a point show the flow there to be turbulent, and
decreases from 1.0 at about y = 0.48 to zero at about y = 1.28 (see Figure 2,6 from
Ref rence 2.5). The Reynolds stress continues to be far greater than the viscous stress
in the outer region just as it is in the inner region, It should be emphasised that the
three regions merge into each other, the boundaries between them cannot be identified

with any precision and can change with changes in external pressure distributicn or
surface condition.
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Figure 2,6, Intermittency Factor Distribution in Turbulent Boundary Layer on Smooth
Flat Plate at Zero Incidence (Kiebaroff)

There is an alternative if complementary way of locking at the structure of the
turbulent boundary layer. Within the lowest one-tenth or so of the boundary layer the
so-called law of the wall holds. There it is argued that the velocity distribution is
determined solely by the distance y from the wall, the velocity u, (since the shear
stress is practically constant over this region) and the kinematic viscosity v , The
presence of the wall therefore dominates the flow in this region. Dimensional reasoning
then leads to the relation

MooV,
U, ‘;“

. + + + +
ot v =f(y), where v =2, y =2V
ur >

2 (6)

and f denotes some function to be determined, This is the law of the wall in its most
general form. In the viscous sub-layer where t = uau/3y = Tt the law of the wall
takes the particular simple form

+ + 20

u =y

To determine the form of the function £ in the rest of the law of the wall region
we can appcal to & number of different turbulence models and associated processes of
reasoning of which the simplest if crudest is based on the concept of the turbulence
mixing length, analogous to the mean free path of molecular motion. Thus, it is
postulated that there is an average Jength normal to the wall over which a fluid
particle moves retaining its initial mean momentum and then it mixes with its
surrounding flow. The mixing length is assumed small compared with the boundary layer
thickness, This simple picture does not reflect in any realistic sense the complexities
of turbulent shear flow but it yields semi-empirical relations of proven practical
value. Tt readily leads t5 the result

Ay 2(8

where ¢ is a length proportional to thz mixing length. This can be written

Ty TH, B 209
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where re ™ ﬂfz Iau/ayl can be regarded as an effective eddy viscosity coefficient.
It is however a variable of the mean flow unlike the ordinary viscosity coefficient p .

Two further assumptions are made. Firstly, that in the region of the law of the
wall (other than in the viscous sub-layer)

f=Ky ) 2 (10)

where K is a constant, the Von Karman constant, tound experimentally to be 0.4 - 0.41;

secondly that in this region T, = T, It can then be readily deduced that

u =,"fl In y +const
K

1f, proceeding fturther, we take account of the presence of the viscous sub-layer, we

arrive at

In y++B 2 (1

where B is a constant. This is the so-called logarithmic form of the law of the wall.

A different approach due to Squire (Reference 2.6) provides a realistic merging
with the viscous suh-layer. He started with the eddv viscosity assumption of equnation

2(9) and on dimensional grounds inferred that
W, =const Pu, (y-yo),

where Yo is related to the viscous sub-layer thickness, since it defines the lower
boundary of the law of the wall region in which the eddy stress is dominant. Further,
on dimensional grounds it is argued that

¥ = const V/u,

The total shear stress

= = =7
TRT T, 01'+u)2|u/3>' w

from which the law of the wall follows in the form

——\J__+_|€] +8, foryy, 2(i2)
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Values of K and B are variously quoted in the experimental literature, favoured values
of K are 0.4 and 0.41 whilst corresponding values of B of 5.5 and 5 are often quoted.
These differing values in part reflect experimental ervors but there may be some small
dependence of K and B on Reynolds number, With K = 0,4 and B = 5.5, equation 2(12)
gives continuity for uoat Y, With the viscous sub-layer (equation 2(7)) if u,yo/va 7.8,
whilst with K = 0,41 and B = 5,0, continuity follows if utyo/v = 7.17. Equation 2(12)
and equation 2(1l1) are in good agreement for y+ greater than abcout 30, whilst for values
of y+ between about 7 and 30 equation 2(12) is in good agreement with measurements of
Reichardt in the buffer region between the viscous sub-layer where 1, is the dominant
part of v and the fully turbulent part of the law of the wall region where T is
dominant.

An alternative approach to encompass the viscous sub-layer is that adopted by Van
Driest (Reference 2.7) who suggested that the relation f = Ky should be changed to

£ =Ky [l - oxp. (-y+/A°)], 2 (13)

the additional factor F = {1 - exp. (-y+/Ao)], is presumed to account for the damping
effect on the turbulence as the wall is approached. Van Driest found the constant Ao
empirically to be 26, although the value 25 1is sometimes gquoted, The vtesulting
expression for u’ is somewhat more canplex than 2(1ll) but tends to it for y+ greater
than about 100 and to the viscous sub-layer relation (equation 2(7)) for small y+.

It will be clear from 2(ll) that a plot of ut againstg lny+ (or logloy+) will take
the form of a straight line with slope 1/K (or 1/K1lnl0) for the law of the wall region.
with a unifeorm external flow (zerc pressures goeadient) this siraight line extends for
values of y+ from about 30 to about 500 depending on the Reynolds number (see Figure
2.7).

Consistent with the argument that the law of the wall region is independent of the
external flow conditions it is found that for an attached turbulent boundary layer there
is always a region in which the law of the wall holds whatever the cxternal pressure
distribution. However, the relative extent of that region diminishes as the external
pressure distribution becumes increasingly adverse and for a boundary layer approaching
separation it becomes difficult to identify a law of the wall region with any confidence

(see Figure 2.7).
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Figure 2,7, Typical Plots of u4 - log '0y+ for Different Pressure Gradients on o
Smouth Surface
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Outside the law of the wall region we have the renainder of the boundary layer
{some 90% of it in thickness). 1t is argued that in this region viscosity plays no
direct part and that the velocity defect relative to the external velocity, g T U, is
solely a function of u;, y, 8 and some parameter characterising the streamwise pressure
distribution. With a uniform external flow it is therefore inferred that

Yo "M L {y/0) 2 (14)

Ve

where £ is a fanction to be determined experimentally. Egquation 2{14) is well supported
by experimental data and the function f deduced by Coles (Reference 2.8) is illustrated
in Figure 2.8. Equation 2(14) is referred to as the velocity defect relation.

A self-preserving, or equilibrium,; turbulent boundary layer is defined as one where
the velocity defect ratio, (ue-u)/ut , 1s the same function of y/§ for all x. From
2(14) it follecws that the case of uniform external flow offers one example of such a
boundary layer, Clauser {Reference 2.9) introduced the parameter

d o« -y
o __fm (u_e_:g) d,/fo (‘i,_u_T_) dy 2 (15)

o\ vy

Y
which is & constant for self-preserving boundary layers and is related to H = /6, where

. 8 s
3" is the displacement thickness =j (1 - Gh)dy, by the relation
0 e

G- g_-{_‘?‘ngg 2 (16)
Ur

Clauser (Reference 2,10) also demonstrated that boundary layers which were very closc to
self-~preserving resulted when the pressure gradient parameter

B =2 %% 2 (17)
P w
is constant.
12 I
10 ‘\
u -y 9 KS
e
Vr
4 .
2 \\
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/6

Figure 2.8, Velocity Defect Relation for Smooth Flat Plate at Zero Incidence as Derived by Coles
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Coles (Reference 2,11) proposed on the basis of his analysis of a considerable body of
data for turbulent boundary layers in non-uniform external pressure distributions that

Tyt 4B +“-'(_(’9 wiy/8) 2 (18)

We see that the third term on the right describes the deviation with y of the velocity
profile from the law of the wall. The function w(y/§) is such that w(0) =~ 0 and w(l) = 2
and it is very similar to the normalised velocity distribution typical of a half wake.
Eguation 2(18) is thernfore generally referred to as the law of the wake, The basic
concept is that away from the wall the boundary layer tends to develoo as if it were
part of a wake but it is modified by the presence of the wall. The function w(y/§ ) was
determined empirically by Coles but a close fit is

wp/t) =2 Sin? ( %) =1 - Cos (F) 209

Putting y = § in 2(18) it follows that

,
b

ﬂ(x)=%|:_u.° SYLLI ] 2 (20)
v, K

whece 5% = 5 ur /v . so that ]I (x) can be determined at any statjion x given u, and

$. We can regard JII(x) as a scaling factor determined by the external pressure distri-

bution,

It can be shown that JI(x) is a function of the Clauser parameter G so that it is
constant for self-preservirg boundary layers. With zero pressure gradient I] == 0,55
for values of Ry greater than about 5000.

Reverting to the law of the wall region we note that if we multiply both sides of
2(11) by u, /ue we get

If we now write the local skin friction coefficient as
2 2
=2T =
Crq = 2 W/nue 2 e /ue)

or v, = e/ V2

then it follows thut
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Hence, a family of curves can be plotted of u/ue against ln(uey/v) each corresponding to
a gpecified value of Cfa* Once plotted, such a chart can be compared with measurements
made in the law of the wall region of u/ue as a function of uey/v and the corresponding
value of the skin friction coefficient Cge Can be deduced. This method of determining
Cfe is referred to as the Clauser plot methed since Clauser first suggested it
(Reference 2,9),

We can use eguation 2(9) to determine, from reasurements for which T, 1s known,

t
the distribution of the eddy viscosity K, 8across the boundary layer. It is found to

rise to a maximum with y/& up to y/5 = 0.3 and then 1% falls slowly. Further
%) uef) *0 = f(y/8) 2 {22)

where the function f is found to be practically the same for all self-preserving flows.
Indeed outside the law of the wall region the function f is approximately proportional
to ¥ , the intermittency function, so that

Vt=l—1T/p=0.0168uef"Y 2 ()

Likewise, equation 2(8) can be used to determine experimentally the distribution of
the length f across a boundary layer. Within the logarithmic law of the wall region we
find as expected f/% = R{y/56 ). but outsids that region J/§ tends to a constant value

of about 0,08 to 0,09 for self-preserving boundary layers, A commonly used formula is

£/6 =0.085 tanh (55 £) 2 (24)

2.1.3 The Boundary Layer Equations

In this =section, it 1is convenient to include the terme arising from

compressibility, so that p and u are variables.

With the boundary layer approximations referred to in Section 2,1,1 the mean
equations of continuity, motion and energy for a viscous fluid in two dimensions, with
the flow at infinity steady, become

2 3 - 2 (25
By (P9 *5, ) =0 (

Ou o, du , doy_ dp, 237 2 (26
o PR Ve Ta T &y @)

where T =1 dy , for laminar flow,
By
=H3u - Pu 'v', for turbulent flow.
dy

Dh 3k 2 (27)

Oh 4, 2ky_%9, dp, .2
® Br p(uax +"ay)"ay1”dx”'ay
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where  q=k3T, for laminar flow,
3y
=k 3T - py 'h', for turbulent flow,
3y

Here, u,v are the mean velocity components in the streamwise direction parallel to the
surface (x) and normal to the surface (y), respectively, T is the mean temperature, h is
the mean enthalpy per unit mass (= [ CpdT), k is the coefficient of conductivity and
like ux is a variable in compressible flow, dashes denote turbulence fluctuations and a
bar denotes a mean value i.e. an average taken over a periocd that is long compared with
that typical ot the turbulence fluctuations.

An alternative to 2(27) can be obtained by adding it to u x equation 2(26) whence
we get

DhT ah dh

Por TPl TV E )T

’

where h’I‘ = h + (uz/2) and is sometimes called the total enthalpy per unit mass.
The boundary conditions are:-

y =0, u=v =0, Tor d3T/3y are specified,

y==r8), u=u 6, T=T (.

The momentum intcgral egquation can be obtained by integrating equation 2(26) with
respect to y from the surface to beyond the edge of the boundary layer. It can be
expressed for a perfect gas in the form (see Reference 2.1):-

d8 . 8 du 2 Tw
- t- - H+2-M = , 29
dx v, dxe [ e ] peue2 2(29)
b p u 6 M
where now " Pv _u * = LYl = 5*/8
[ _fo i Q u)dy,ﬁ j'o Q pu)dy,H &*/
e e e ee

and M, is the local free stream Mach number. Equation 2(29) 1s applicable to both
laminar and turbulent boundary layers.

A kinetic energy integral equation can be obtained by multiplying egquation 2(26) by

u ané then integrating with respect to y across the bhoundary layer. Tihis takes the form
for a perfect gas:-

& 2 ;
EPE+_E_:?Q [3+2~6-'i--Me ] =_3.2 Ibfii dy 2 $30)
dx v dx E pu dy
e 5 ee "o
Here 6E = f: Pu_ (1 -9——2 ) dy, (the kinetic energy thickness)
A Yo
b h .
ang 6H = P (= =1)dy, (the enthalpy thickness).
° Py, h

In incompressible flow by =0,

T3 @+un) 2 (28)
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2.1.4 Prediction Methods (Two-Dimensional Incompressible Flow)

The laminar boundary layer eguations are complete in themselves and require no
additional relations for their solution, and they can be solved to any required accuracy
given adequate computer capacity. However approximate methods have been developed that
are quick and simple to use and these are essentially based on the solution of the
momentum integral equation (equation 2(29)). They are well covered in many existing
text books (see, for example, References 2,1 and 2.2) and need not be considered further
here, At transition the momentum thickness ¢ is assumed continuous,

In contrast the turbulent boundary layer equations are not complete in themsclves
since the turbulence quantities arz unknown and additional relations {so called closure
relations) are required 1linking these gquantities with the mean flow to solve the
boundary layer equations. In the absence of a thorough understanding of the physics of
turbulence these closure relations must be empirically based and as such their validity
range cannot be confidently assessed.

We can classify the existing methods for providing the development of turbulent

boundary layers with specified external velocity distributions as either integral or
differential,

Integral methods have been developed since the earliest days of boundary layer

theory. They generally involve the solution of equation 2(29) coupled with two
additional and empirically based relations between ¢ , H, and T, Such a solution

w
leads to overall dquantities such as 4 , &* and Py which for many engineering

requirements are all that is needed, but such methods do not provide details of the flow
e.g. velocity and shear stress distributions, The auxiliary reclations used have ranged
from the simple aspumpiiuny of H = constant plus the local use of zero pressure gradient
power law relations (e.g. equations 2(4)) to empirically determined equations for dH/dx
plus the Ludwieg-Tillmann relation (Reference 2,12}

C,, = 2% =0.246 ry"0-268 1 0-678H

pu 2 2@31)
L

The resulting integration of the mementum integral equation yields the momentum
thickness 6 in the form of a simple quadrature with good accuracy irrespective of the
particular auxiliary relations used. However, the determination of §* (or H) and e
depends more sensitively on these relations and can justify the use of the more complex
ones. Amongst the most effective of such relations is the entrainment equation of Head
(Reference 2.13). This is based on the argument that the rate of entrainment of fluid
into the boundary layev is a function of the velocity profile in the outer part of the
boundary layer. This leads to a relation of the form

d
dax g BHY) =u FHY 2 (32)

where Hl = (&5 —85*%)/60 , and F(ul) is an empirically determined function. Further, by
making the assumption common to almost all integral methods that the velocity profiles

in a turbulent boundary layer can be regarded as uni-parametric, and if we take the
parameter as H, then
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Hl = G(H), say,

where G(H) can also be determined empirically (approximately G(H) = 2H/(H-1)). The
required auxiliary relation then follows, The assumption that the boundary layer is
uni-parametric is equivalent to assuming near-equilibrium and Head & Patel subsequently
modified the method to include the effects of non-equilibrium {Reference 2.14),.

The kinetic eneryy integral egquation (equaticn 2(30)) can also be used to provide
an auxiliary relation and reference should be made to the method of Truckenbrodt in
which this equation plays a ceatral part. (See References 2.1, 2,15 and 2,16).

The successful development of differential methods has taken place within the last
decade and a half and started with a now classical papec by Bradshaw et al (Reference
2,17). They involve the direct numecical solution of the equations of motion (and of
energy for compressible flow). To solve the eguation of motion we nust relate in some
way the unknown Reynolds stress r = —5:737 to the mean motion, This can be done by
making use of the eddy viscosity concept ccoupled with a relation such as equation 2(23),
or the mixing length concept coupled with a relation such as equation 2(24), (see for
example References 2,18 and 2.19). Alternatively, or additionallv, use can be made of
one or more transport equations for turbulence quantities, e,g. Reynolds stress,
turbulence kinetic energy or turbulence dissipation rate (see for example, References
2,20 and 2,21). With such relations the closure cannot be completed without additional
assumptions based on the avajlable experimental data, The complexity of the
calculations rapidly increases with the number of equations invelved and the required
input of initial conditions correspondingly increases.

This complexity must be weighed against the considerable amncunt of detailed
information, €.4. mean velocity profiles, shear stress profiles, turb .ence jinteasities
that can be predicted by such methods, To illustrate the complexity the following is
the transport equation for the Reynolds stress -u'v' in two dimensional incompressible

flow, as derived from th= Navier-Stokes equations and then simplified by the usual
boundary laycr approximations,

D, ,—7, =,9 d 3 —
oy (V) Fly rugtvy) Buv)

=v'23‘1-_£p'.( LI LA BT 2 (33)

~
[o A NoY]
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o
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o
<

- V' +v'v2u|)

The left hand side is the rate of change of Zu'v' for a fluid particle, the first term
on the right hand side is the rate of generation by mean shear, the second is the
pressure-strain term and represents the tendency of pressure fluctuations to make the
turbulence more isotropic, .the third term arises from diffusion normal to the wall, and
the fourth term represents viscous dissipation effects which are due to viscous action on
the smaller eddies. The terms involving the pressure fluctuations present great
difficulty in approximating to them by suitable empirical approximations since they are
not direct’y measurable, Likewise, the corresponding transport equation for the
turbulence kinetic energy per unit mass kt=% (U'2+v'2+w'2) is

- 2,
Dk _ == 2u_3[ . P 8% _ )
pr FTTYY ’ﬂ'w["“r*’o‘ﬂ ¢ 2 i 2 (34
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where ¢ is the dissipation rate term = 1/2V (5—§1 +7r;1) . 1in tensor notation. Again
j i
the pressure fluctuation term presents the greatest problem for acceptable modeling.

A third transport equation that is also sometimes invoked 1is that for € . This
need not be reproduced here but it likewise includes terms involving p' as well as
gradients of the turbulence components which call fer a delicate combination of skill
and faith to model them by empirical relations of acceptable simplicity and reliability.

Bradshaw's method (Reference 2.17) still remains one of the most successful. He
converted the egquation for kt (equation 2(34)) into one for —u'v' by meking use of the
experimental observation that their ratio is nearly constant i.e.

-%:f-l =201, where o, =0.15, 2 (35)

Further, he introduced a length L= (-u'v')3/2/e and a quantity
v &, +p'/P)
%" T 269
mox .
and he argued that I and Gg could be regarded as functions of y/§ only, which he
determined from experimental data. He then solved numerically the combination of the
equations of .continuity, momentum and the modified turbulence energy equation with

boundary conditions determined clese to the wall by assuming that the law of the wall
holds there,

Later workers such as Launder and his colleagues (References 2.20 and 2.21) have
simplified the transport equations for kt and € by making use of similar empiricisms to
those of Bradshaw and solved them in combination with the mean flow equations with the
use of some empirically determined constants.

No one method has established itself as clearly superior to the others, Accuracy
does not necessarily increase with complexity and for many engineering purposes the
simpler methods (whether integral or differential) are quite adequate as well as
relatively economic in computing time. Interesting survey papers are to be found in
Reference 2,22.

2.1,5 Extension to Compressible Flow and Three Dimensions

The extension to compressible flow of prediction methods developed for
incompressible flow is frequently achieved by suitable transformation of the main
equations (which must now include the energy equation} so that they become similar in
torm to the corresponding equations in incompressible flow, The methods of solution
already developed for the latter can then be adapted to the former. A complicating
factor is the important part played by the thermal boundary conditions at the surface.
Such processes are, however, not without simplifying assumptions whose validity can only
be tested by comparison with experiment. Reference 2,23 1s a classic of this approach.

Another approach of appealiing simplicity is the use of the so-called mean
temperature (or enthalpy) method. This is based ‘on the hypothesis that the results of
incompressible flow apply 1f the values of density and viscosity are taken at a
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where §

to moderate supersonic Mach number with zero or small pressure gradients.
generally be adapted

distributions by providing local
Reference 2.26). There are

{Reference 2.27).
integral methods for cases

relatively simple and economic in computing time.

and Reynolds number for a smooth flat plate in zero pressu
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reference temperature, Tm, which is some mean temperature in the boundary layer, the

formula for which is determined eunpirically. sommer and Short (Reference 2.24), for
example derived for a turbulent boundary layer the relation,

T, =0.55T +0.45T +0.2(T -1 2 (37)

where Te is the free stream temperature, T _  is the wall temperature, and Tr is the

recovery temperature (i.e. the wall temperature for zero heat transfer) given by

Tr = Te (1 + 0.2 Mezo 1/3). Here a 1is the Prandtl number = u ecp/ke, ke being the
thermal gfnductivity of the free stream fluid and cP is the specific heat at constant
pressure.

As examples of the use of this concept we note that the power law relations between
c. and Rx and between CF and Rc on a flat plate at zero incidence (equation 2(4)) become

- ~1/5 0.62 .~ _ -1/5 0.62
¢ =0.0592R "7 (1 /1 7%, co=0.074R TV @1 /T )

forn=7, 2 (38)
_ -1/6 0.685 _ -1/6 0.685
and e = 0.0375 Rx (ra/Tm) R CF =0.045 Rc (Te/Tm)

fern=9,

Here it 1is assumed that the ambient temperature T is that

appropriate to normal
aircraft flight.

The corresponding heat transfer rates are given approximately by

s, = 0.6 ¢

t £

¢ (the Stanton number) = -qw/[OU ca —1}8

e pl w 2 (39)

The mean temperature concept has been shown to give reasonably accurate results up

It can more
integral methods for non-uniform pressure
relations of adequate accuracy (see,
still

in the simpler

for example,

relatively few experimental data for checking

prediction methods, but provided the flow is not close tu separation and the Mach number
he

is not greater than about 2.0 it seems that for many engineering needs methods using

mean temperature approximations are fairly reliable.

Head's entrainment method has been extended to compressible flow by Green
Green's method is generally accepted as one of the more reliable

involving large pressure gradients whilst still remaining

Spalding and Chi (Reference 2,53) have established a relation between skin friction

-adient for a wide range

¥ The corresponding mean temperature for a laminar boundary layer is (Reference 2,25)

T, = 0.45 T, + 0.55 T +20.132(Tr - T,)
1 = K o
with T, =T, (1 +0,2 M, 1
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of Mach number with heat transfer by taking a mean of the results predicted by a number
of existing methods, Their relation is convenient tc use and has been made the basis of
a comprehensive ESDU Data Sheet (Reference Z,54).

Differential methods have also been extended to compressible flow usually by the use of
suitable transformations to preserve the equations in forms for which the computing
programs already developed can be readily adapted, They cannot be easily summarised
here and the reader is referred to the extension by Bradshaw (Reference 2.28) of his
method, to a method based on the mixing length hypothesis developed by Michel et al
(Reference 2.18) and further developed by Quemard and Archibaud (Reference 2.29) and an
extension of the Jones-Launder method utilising the kt and € transport equations by
Prieur (Reference 2.30). Reference must also be made to methods directed at solving the
Navier~Stokes eguations in which modeling is confined to small scale turbulence whilst
large scale eddies are calculated, Such methods developed for compressible flow are
discussed by Rubesin (Reference 2.22, Paper 11). A valuable review is provided by
Fernholz and Finlay (Reference 2,31},

For the development of prediction methods to three dimensional flows a basic
difficulty arises inso far as the shear stress direction as well as magnitude are not
simply related to the direction and magnitude of the velocity gradient. This casts
further doubt on the validity of simple mixing length or eddy viscosity methods.

As long as the cross flow velccity component (i.e. the component normal to the
local free stream direction) is small it is possible t¢ treat the velocity components in
the streamwise direction ag independent of the cross flow. Two dimensiconal methods can
then be applied to the streamwise flow and the momentum equation for the cross flow can
subsequently be solved without difficulty (References 2.32 and 2.33). For more general
cases a number of workers have used the mixing length or eddy viscosity concept. Some
have treated the eddy viscosity as a scalar quantity, so assuming coincidence in
diraction of the resultant shear stress and velocity gradient (References 2.34 and
2.3%). such methods are relatively simple and it is fair to note that in the viscous
sub-layer as well as towards the auter edge of the boundary layer the directions of the
shear stress and velocity gradient do coincide so that in many cases the differen;e
between the two directions may be small enough for the assumptions made not to lead to
serious error. Other workers have attempted to distinguish between the eddy viscosity
in different directions and a seminal piece of analysis for such work was provided by
Rotta (Reference 2.36).

A widely used integral method with assumed forms for the cross flow velocity
profiles is that of P. D. Smith (Reference 2.37) who has developed an extension of
Green's method jin generalised curvilinear coordinates to three dimensional flows,
Bradshaw (Reference 2.39) has extended his two dimensional flow method to three
dimensions in which he used simplified forms of the shear stress transport equations in
two suitable orthogonal directions parallel to the surface. The method therefore does
not involve any identification of the tresultant shear stress direction and the velocity
gradient direction. As for prediction methods in two dimensional flow no method has yet
established itself as the best, and for most engineering needs simplicity and economy in
computing costs must rightly play a major part in the decision as to which to use., A
valuable comparison with experimental data of the predictions of a wide range of methods
will be found in Reference 2,39,
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2,2 Roughness Effects on Transition

2.2.1 Introduction

The complexity of the process of transition in a boundary layer from the laminar to
the turbulent condition is only partially understood and no general theory is as yet
available to provide a comprehensive predictive method. This was clear from the AGARD
Symposium on Laminar - Turbulent Transition held in Lyngby, Denmark, in 1977, (Reference
2.40). For the needs of the engineer and designer we must Lave recourse to predictions

based or empirical formulae that are inevitably of limited validity.

These comments apply particularly to the effects of roughness on transition., We
know that surface imperfections can induce an earlier transition than on a smooth
surface because they generate disturbances in the boundary layer in the form of eddies
ard vortices which modify the shape of the boundary layer velocity profile in their
neighborhood and wake so that the bocundary layer is rendered more unstable. In addition
the drag of the roughness is manifest in an increase of the boundary layer momentum
thickness and the associated boundary layer Reynolds number and this will also tend to
enhance the instability of the boundary layer and hasten the transition process.

If we consider an isolated excrescence located in the laminar boundary layer oa &
particular body in motion we find that there is a critical roughness height below which
no significant effect on traasition is apparent. This height depends primarily on the
roughness shape, location, the pressure distribution over the body, the body Reynolds
number, the external turbulence and on the transition position on the smooth surface.
As the height is increased, the transition moves upstream until a second critical height
1s reached at which transition occurs just downstream of the roughness and no furcher
transition movement occurs with further increase of roughness height, At that stage, if
the spanwise extent of the excrescence is of the same order as its height then the
turbulent region downstream takes the form of a wedge in plan of angle about 11° and
apex very cleose to the excrescence, On the other hand, if the spanwise extent of the
excrescence is large compared with its height then transition is induced over its entire

span.

These two critical roughness heights are of particular practical interest. An
early transition caused by surface roughness or imperfections can result in a
significant increcase in drag and henee in fucl consumption, as explained in Scction
2.1.1. It may also result in changes, usually deleterious, in any downstream
interaction of a shock wave and the boundary layer. It is therefore important *to know
the maximum height of roughness which can be accepted as having no effect on the

transition position. We will call this critical height k Oon the other hand, on

wind tunnel models it is often desirable to use a trgg;géion trip in the form of
roughness band fixed on the surface to induce transition immediately downstream of it,
The object is to fix the location of transition on the model so that (1) the drag
measurements will not be subject te variations in transition location and (2) the
measured drag values can be corrected to the full scale transition location. For this
purpose we need to estimate with some confidence the minimum size of trip required to
result in the desired transition pousition without incurring undue extra drag due to it.

The second critical roughness height, which we will denote as k is clearly useful

crit.2’
in this context. In any case we nced to take note of likely differences between the
effects of isclated excrescences such as rvivet heads, distributed roughness such as
paint and of excrescences of considerable spanwise extent (e.g. gaps between wing

planks, lap joints) which are sometimes described as two dimensional,
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2,2,2 rrhe First Critical Roughness Height kcrit. 1

An early approach to predicting this critical roughness height was that of Schiller
(Reference 2.41), who noted that for a given bluff body in steady motion at low Reynolds
number there is a critical value of the Reynolds number above which the laminar wake
behind the body becomes unsteady and vortices generated at the body move downstream in
the form of a vortex street, For a circular cylinder, for example, Ro it ™ vy d/v =150,
Schiller argued that for a roughness immersed in a laminar boundary layer there should
similarly be a critical Reynolds number, Rk‘ based on the roughness height k and the
velocity uy in the undisturbed boundary layer at the height k, above which we can expect
the roughness to shed eddies into the boundary layer which would help to destabilise it
and so cause transition to move upstream. We can then identify the roughness height k

with kcrit.l' This suggests that

Re crita) = G k) gy g = conste = €, say. 2 (40)

If k/86<<1 , where § is the boundary layer thickness, then for the basic case of an

excrescence on a flat plate with zero pressure gradient in incompressible flow, we can
write

p4
Uk_k(?) -Elw -ku"'
y w M hY
_k 2_ 0,664k 2
v %1l T Z\IV/ka Yo r 2 (&)
where T, = shear stress at the plate surface, u, = ‘/¢w/p (friction velocity),

<k = uexk/v, Xy = distance of excrescences from the plate leading edge.

kury2 k 2, % 42)

Hencs R = (07)? = 0,332 (xk) R, V2 2 (42)
' R, /2 /4

Also Uek/v Z(O_.:‘iﬁ) ka 2 (43)

Thus, given the values of Rk crit.l and X, we can determine the corresponding value of

kcrit.l'

If k/& is not small compared with unity then the above estimate for uy cannot be
applied, However, any standard mode of solution of the laminar boundary layer equations

can be used to yield u
pressure gradient

quartic form,

Kk’ and for the basic case considered of a flat plate with zero

in incompressible flow, we can usc either the approximate Pohlhausen

L2 @t
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or the approximate trigonometric form

v o_ o
;;—Sin(}—%)

together with the relation §/x = 5/ JE;: where R, = uex/h. With the trigonometric form
we obtain instead of 2(43)

i
§

v k o vk
-8 & |- e -1/2
Ry =~ Sin [IC v Rk ] 2 ¢4

S o

Again, given the values of Rk crit.1 and X this relation can be used to determine

R g

the corresponding value of kc*it 1° However, as this is a more complicated relation
than 2(43) it is convenient to present it graphically in the form of 1oglo(uek/v ) as a

a function of (Rk)1/2 for various values of R , as in Figure 2.9,
it
5
‘ 7
ka =10
4 e
]
/// ]06
1
fr””,”——”’giﬂd’#
. // 10
s /<:///",,/
¢ 4
L v k /7‘0 R =y x /V
910(—£—) / xk Ve ¥k
) R = vk
1
0 20 40 60 80 100 120
R}/2
k
- Figure 2,9, Chart for Determining kcrh' Given Rk erit. and ka for Basic Case of Zero

Pressure Gradient, Incompressible Flow (Equation 2(44))

Experiments by Smith & Clutter (Reference 2.42) on a variety of excrescence shapes
i in both zero and non-zero pressure gradients (mostly favourable) and a range of
{ intensities of tunnel iturbulence yielded the following values of Rk crit.1’
t
N Range of R
i Roughness k crit., 1
B Spanvise wires 40 - 260
Protruding discs of
circular section 180 - 550

(dia. = 1.6 mm)

Spanwise strips of

sandpaper 180 - 330
(width = 6.4 mm)
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They found the effects of pressure gradient and of tunnel turbulence on Rk cric.l
to be small. At first sight this is surprising but one notes that whilst a favourable
pressure gradient would tend to reduce the boundary layer thickness and make its
velocity profile fuller, and to that extznt would enhance the disturbances produced by a
given roughness, it also tends to increase the stability oif the boundary layer. Similar
balancing factors apply to the effects of frec stream turbulence.

Braslow (Reference 2.43) has analysed a wide range of data to present
K crit.l}l/z as a function of d/k, where 4 is the spanwise dimension of a typical
roughness, on the argument that this is a paramcter of the roughness shape which must
play an important part in determining ﬂxcrit.l' His results are represented in Figure 2.10
not in detail but as a band showing the variation about the mean curve, It will be seen
that for d/k = 2.0 (hemi-spherical roughness) the value of (R 172 A

K it.1) >~ 23 - 6,
] 1/2 + Tk oecrit.l’
but for d/k = 30 the value of (Ry crit 1! =~ 12 - 4. Judging by Smith & Clutter's

results the value for two dimensional excrescences (d/k = o0 ) would be about 11 pt 4.

100
60
40
30
20 o',
(Rk crit, l) I/ 2 g ‘:l::' ll‘x‘ R A AR X
i0

0.1 0.2 0.4 0.81,0 2.0 406.0 10 20 3040
4/

Figure 2.10. (Rk crit ])I'/? as Function of Roughness Shape Parameter d/k (Braslow)

Braslow also Qemonstrated that there is a significant interference effect with a
pair of cylindrical excrescence elements if their spanwise spacing is less than about 3
d apart (see Figure 2.11). Their disturbing effects then evidently augment each other
and Ry erit.l is reduced by the interference. On the other hand, if they are spaced
streamwise then the interfercnce effect is such as to increase Ry _ ...y if the spacing

is less than about 4 d but for higher spacings up to 20 d the effect is to reduce

Rk crit.1 (see Figure 2.12). It seems that at a close enough spacing a steady voriex
system forms between the excrescences and the disturbances shed by the rear excrescence
are somewhat less intense than from an isolated excrescence, At higher spacings the
cxcrescence experiences the unsteady wake from the front one and the final downstream
disturbance level is somewhat enhanced as a resvlt.
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Figure 2,11, Effect of Spanwise Spacing of Pair of Cylindrica! Elements on Rk
(Braslow)

crit. 1

R crir. 1Y PAR O, &3
1 S LA T -
R Crif . }) SI?‘}GLE
1.0F
9
" A 1 A 1 A 1 ] X 3

Figure 2.12, Effect of Streamwise Spacing of Pair of Cylindrical Elemeats on Rk

crit, 1
(Braslow)

Braslow's analysis showed little effect of Mach number on Ry opjt,l W to 2 main
stream Mach number of 3.0 but with some indication of a reduction for higher Mach
numbers (‘/R_l:—c—::t._l =~ 15 for Me = 3.7 and d/k = 1.0}, It should ve noted that if
Rk crit.1 is independent of Mach number then kcrit.l.
since the velocity at a given height in the houndary layer decreasss with incrveasc of
Mach number.

must 1increase with Mach number

To sum up, for general predictive purposes the available data are such that one is
not likely to be able tc do better than to make use of Figure 2.10 for determining the
value of Ry arit.1° Where it is important to avoid early transition it is best (o
choose a value near tha lower limit of the band. From the value of K and the

k crit,l

given value of X the corresponding value of k can be determined from a soluiion

crit.l
of the laminar boundary layer equations or more approximately from edquation 2{43) or

2(44) (or from Figure 2,9) depending on the magnitude of kcrit 1/5 .
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2.2.3 The Second Critical Roughness Height kcrit.Z
The available data show that kcrit.z is of the order of twice kcrit.l' Early work
of Fage & Preston (Refercnce 2.44) indicated that R > 400 for a wire trip, but

k crit,2
Klebanoff et al (Reference 2,45) obtained values ranging from 140 to 1000 depending on

the local pressure gradient ané the Jlevel of tunnel turbulence, Gibbings & flall
(Reference 2,46) inferred the following relation mainly from the data of Tani (Reference
2.47).

vk |
8 crit, 2 =163.7 R 0.15 2 (45)
v xk

Smith & Clutter (kReference 2.42) found the value of Rk crit.2 to be about 300 for a wire
trip, whilst for their protruding cylindrical excrescences and their sandpaper trip the
corresponding values were about 600 and 400, respectively. From eguation 2(43) for

k/8 <<1 we can expect that for constant R,

. er o . ient
% crit.2 and zeoro pressure grad

Yo I'(cril._'_ = const, kao'zs 2 (4)
v

which differs somcwhat from the Gibbings-Hall relation, eguation 2(45). Van Driest &
Blumer (Refercence 2.48) inferred from tests at supersonic speeds of spherical roughness

arranged in a band round a cone, as well as trom tests of similar excrescences on a flat
plate at zero incidence at low speeds, that

Vecrir,2 =42.68 0P [, L0y 2:|
xk —— Me

v 2 2 47)

where M, is the Mach number at the outer edge of the boundary layer and 7 is the ratio
of the specific heats (1.4 for air). It should be noted that some distance was
increasingly evident between the trip and the transition position with increase of Mach

number (see¢ Figure 2.13),

2.0r

+
v

Figure 2.13. interval (Ax') Between Transition Tt {Band of Spherical Elements) and

Transition as Function of Mach Number (Van Driest & Blumer)
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, ' It scems that in the absence of more data and convincing analysis of the effects of
pressure gradient and external turbulence we can predict kcrit 2 in incompressible flow
g on the basis of an assumed value of R erit.? in the range 300 to 400 for wire trips and
i about 600 for roughness bands. For speeds at which compressibility effects are
)
i significant, equation 2(47) indicates that the factor [ 1 +(Y -1)/2 Me2] should be
¥
§ applied to the low speed value of R, rje.2+ From the value of Ry crit.? and a given

value of x, the corresponding value of k 2 {just as for k ¢an be determined

k crit. crit.l)
from equation 2(43) or eguation 2(44) (or Figure 2.9) depending on the order of
: magnitude of k... ,/5 . Alternatively, the Gibbings-Hall relation, equation 2(4%),
could be used for wire trips, whilst equation 2(47) could be used for spherical

B roughness bands.

It should be noted that all forms of trip will cause an increase in the momentum

defect in the boundary layer because of their drag. For example for a wire trip, if CDh
is the drag coefficient in terms of its height h times its span and the velocity Uy,
i.e.

; D= CD £ th h, per unit span,
. h 2

then the momentum thickness will be increased by the wire by an amount

D
Ab= —

u
_ 2 (48)
=C —)} h
F"ue2 Dh QJe

Preston (Reference 2.49) has shown that turbulent flow cannot be sustzined for values of l!
Ry < 320. It follows that to stimulate transition the total § after the trip rust be II
such that Ry there must exceed this value. A trip that is made up of spanwise pieces

may prove more cffective in provoking transition than a continous trip because of the i

drag associated with the eddies generated by the flow round the ends of the pieces,

2.2.4 The Effects of Sweep

So far we have ignored the effects of sweep and this is probably justified as long
as the secondary flows in the boundary layer are small, i.e. the flow direction in the
boundary Jayer is not markedly variable across it, However, in the region of the
leading edge of a swept wing, where there are strong pressure gradients normal to the
leading edge as well as a flow component in the spanwise direction, the secondary flows
are important and the effects of roughness and trancition present special features.

In two dimensional unswept flow the boundary layer at the front stagnation point of
a round nosed wing is of finite thickness whicn for small s, the distance from the
stagnation point, is independent of s. The scale of the velocity in the boundary layer
is determined by u, where u, is the velocity just outside the boundary layer. For small
s, we find that

VTR WL AR %

AR

Ug = B s, where B » Vo/p!

r denotes the radius of curvature of the wing leading edge and v, is the undisturbed
stream velocity (the constant of proportionality depends on the section).




Now consider an infinite swept wing. For the laminar boundary layer near the
leading edge the so-called principle of independence applies, i.e. the flow in planes
normal to the leading edge is independent of that parallel to it (Reference 2.50}. The
boundary layer flow there is therefore a combination of that derived for two dimensional
flow normal to the leading edge in a main stream flow of wvelocity Un = Vo Cos A and a
flow parallel 1o it with main stream component u, = Vo Sin A, where V0 is the

resultant main stream velocity and A is the angle of sweep.

We here use suffixes n and t to denote components normal and parallel to the
leading edge. We have seen that the former will change rapidly with s being determined
in scale by Uen = B s with B now proportional to Vo Cos A/r . The boundary layer
velocity components parallel to the leading edge are constant in scale and change
relatively little in form with s, The resulting boundary layer velocity distributions
therefore have component profiles in some directions which have points of inflection and
can therefore be cxpected to have a tendency to be unstable to small disturbances along
such directions above a relatively low Reynolds number. This kind ot instability can be
controlled by a relatively modest degree of boundary layer suction (Reference 2,51).
However, in addition a more potsnt source of transition can arise since the boundary
layer 1is of finite thickness along the 1lecading edge and can be tripped to become
turbulent by excrescences there for which the Reynolds number is above some critical
value determined by Ut and 0 the momentum thickness in the spanwise direction,
Gaster (Reference 2.52) has analysed some wind tunnel and flight data to determine the
critical value of R at = Ut ot/v above which turbulence once introduced will prapogate
alony the leading edge however long it is and so contaminate the boundary layer over the
surface downstream. He found the critical value to be about 1060, The turbulence can
arise from the wing-body junction or be induced by roughness in the region of the
leading edge. Using trip wires of diameter 4@ fixed round the leading edge he found that

the critical size of wire to provoke turbulence close to the wire was given by

du L 1/2
(:n) crit, =47 Ry 2 (49)

it is interecsting to note that this is gquite close to the relation one would deduce
from equation 2(43) for the critical wire size if one uses the value given by Fage &

Preston for R 2 for a wire trip on a flat plete with zero pressure gradient,

k crit
namely 400, which leads to
v k _ 1/2
(i)cri?. =43 RB ’
v
where R(l = u, #/v . This agreement presumably reflects the fact that the velocity

profile in the direction of the leading edge of a swept wing is not greatly different
from that of a laminar boundary layer in two dimensional flow and with zero pressure

gradient.

Theory yields 9'=0.4OVQ7§ 2 (50)
and q,=°-27dx75

Since B = ZVO Cos A/r, it follcws that a decreasc of wing sweep or of leading edge

radius r help to increase the critical roughness height.
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