
7A-A1I06 025 STANFORD UI IV CA SYSTEMS OPTIMIZATION LAB F/6 12/1
OPTIMIZATION OF UNCONSTRAINED FUNCTIONS WITH SPARSE HESSIAN MAT--ETC(U)
AUG 51 M N THAPA N00OOI#75-C-0267I~ 11 FLEEEEEEE

I14G L l.

PA

Syse9

O ptimization

Laboratory

00

DTiC;
C.)WAAELECT~
-I\OCT 22 11

A

I do p~~~~rt ha3 b3een Pre

Department of Operations Research
Stanford University
Stanford, CA 94305 3

SYSTEMS OPTINIZATION LBORATORY
DEPARTMENT OF OPERATIONS RESEARCH

STANFORD WIVERSITY
STANFORD, CALIFORNIA 94305

9PTINIZATION OF OMKONSTRAINED LDICTIONS WITH
sPARsE HESSIAN mTRc1s -- IAsI-wrm NET=S -

by

" N. /Thapa

"-rEC..ICAL FEPT SL 81-12

Aug9o8l

K.. 4-'

Research and reproduction of this report were partially supported by the
Department of Energy Contract, AM3-76SFOO326, PA# PE-ATO3-76ER72018;A4i
Office of Naval Research Corract NOOO14-75-C-0267; National Science
Foundation Grants MCS-7681259i MCS-7926009 and ECS-801297.

Reproduction in whole or in part is permitted for any purposes of the
United States Government. This document has been approved for public
release and sale; its distribution is unlimited.

ABSTRACT

Newton-type methods and quasi-Newton methods have proven to be very
successful in solving dense unconstrained optimization problems. Recently there
has been considerable interest in extending these methods to solving large prob-
lems when the Hessian matrix has a known a priori sparsity pattern. This paper
treats sparse quasi-Newton methods in a uniform fashion and shows the effect of
loss of positive-definiteness in generating updates. These sparse quasi-Newton
methods coupled with a modified Cholesky factorisation to take into account
the loss of positive-definiteness when solving the linear systems associated with
these methods were tested on a large set of problems. The overall conclusions
are that these methods perform poorly in general - the Hessian matrix becomes
indefinite even close to the solution and superlinear convergence is not observed
in practice.

Pi

f~ or

* T.1R B
,-my~ced El
• ",?icat ! on--

Avallability Codes

T) Atv Special

51. Imtzwductom

OPTIMIZATION OF UNCONSTRAINED FUNCTIONS WITH
SPARSE HESSIAN MATRICES - QUASI-NEWTON METHODS

1. Introduc.tIon
The problem of concern in this paper is the unconstrained minimisation of

a twice-continuously differentiable function

minimize f(Z). (1.1)

We shall consider the class of quasi-Newton methods applied to problem (1.1)
when the Hessian matrix of the function f(z) has a known a priori sparsity
pattern. The first quasi-Newton method was suggested by Davidon (1959) and
extended by Fletcher and Powell (1963). Since then there has been an explosion
of interest in these methods. (For a comprehensive survey of quasi-Newton
methods see Dennis and Mord, 1977).

The idea behind the most popular quasi-Newton methods for (1.1) is to
maintain a positive-definite symmetric matrix that approximates the Hessian
matrix of f(z). If we let zA denote the kth iterate, a quasi-Newton algorithm
obtains a descent direction ph by solving the system of equations

BAp,. = -9h, (1.2)

where BA is an approximation to the Hessian matrix at iteration k and gh is
the gradient of f at zh. If Bh is positive-definite, ph is guaranteed to be a
descent direction. Once having obtained ph, the new point zh+i is given by zh+
arpA, where ak > 0 is chosen so that 1(21+1) is 'sufficiently' less than f(z)
(for a precise definition of this term, see, for example, Ortega and Rheinboldt,
1970). If the new point z21+1 does not satisfy the convergence criteria, a new
approximation to the Hessian matrix Bh+i is defined by

= VhBA + U,, (1.3)

where VA; is a scalar, and U is a matrix chosen so that Bk+i is symmetric,
positive-definite and satisfies the quasi-Newton condition

S k = £, (1.4)

with
Sh=Z+i-h and h-=--gh+l-gh.

Usually, U is a matrix of low rank. The most popular update is the BFGS
(Broyden-Fletcher-Goldfarb-Shanno) update (see, e.g. Dennis and Mor6, 1977),
in which

= o~rB,,"(.)
-' VI.V ph B~A;4&(1.5

To guarantee that the updated matrices are positive definite, we require that
8,%Vk > 0 (which can be ensured by a suitable choice of nA).

Quasi-Newton methods have been very successful in solving unconstrained
and constrained optimization problems of moderate size. The difficulty in ap-
plying these methods as described above to large problems is that a symmetric
n X n matrix (or a factorisation of a matrix) must be stored. However, many
large problems have a sparse Hessian matrix whose sparsity pattern is known (or
can be determined) a priori. In these cases it would be possible to maintain a
suitably sparse approximation to the Hessian matrix. Note that, in general, the
quasi-Newton methods described above generate dense approximations to the
Hessian, regardless of the sparsity structure of the true Hessian. Much recent
research has been directed towards generating Hessian approximations that have
the same sparsity structure as the true Hessian (see Dennis and Schnabel, 1978;
Marwil, 1978; Shanno, 1980; Toint, 1977, 1978, 1979). This paper treats various
aspects of sparse versions of quasi-Newton methods in a uniform manner; and,
reports results of extensive numerical testing of sparse quasi-Newton methods
combined with a modified Cholesky factorization to provide a positive-definite
matrix for computing the search direction.

Section 2 describes the notation to be used in the rest of the paper. Sparse
quasi-Newton updates are described in Section 3. Section 4 describes positive-
definiteness as related to these quasi-Newton methods. Storage and efficiency
are considered in Section 5; and convergence of these methods are described in
Section 6. Finally, Section 7 discusses computational aspects of these methods
and Section 8 summarizes the important results.

2. Definitions and Notation

In the remainder of this paper, the subscript k will be dropped and the
subscript k + 1 will be replaced by the superscript +'.

Let G(s) denote the Hessian matrix of f at z, and let

N = {(i,j) : [G(z)],J = 0 for all z E t"), (2.1)

that is, the set N represents the sparsity pattern of the true Hessian matrix of
the function being minimized. Note that the sparsity pattern is assumed to be
known and fixed, and that any additional zeros created during execution of the

I.>

p. am Qua.-Newton Updates $

algorithm are treated as nonseros. Let

•-{(i,j) : i,,j = 1,2,...,st} \ N
- {(i, 1 : [G(z)jj # 0 for at least one z E 3S}. (2.2)

For any symmetric matrix A, define matrices AN and A, as follows

[AN]j = Aq, for (i, 3 E N, (2.3)to, for (i, 1 E -',1
-o1, for (i, j) E N,

= 0, for (i,jEN, (2.4)
lAj1, for (i, 3) E -M.

In words, AN is the matrix A with zeros in the positions corresponding to
the nonseros of G(z); and AN is the matrix A with zeros in the positions
corresponding to the zeros of G(z). Then A can be written as

A = AN + Ag. (2.5)

Define Di to be a diagonal matrix whose diagonal elements are 0 or 1 depending
on the sparsity pattern of the ith row of G(z), that is,

[D1J = if (i, E , (2.6)
0, if (i,j) E N.

Finally, define a - Dja for any vector s.

S. Sparse Quami-Newton Updates

In the dense case, it is possible to obtain an updated Hessian approximation,
B + , that is symmetric, positive-definite, and satisfies the quasi-Newton condition

B + s = y, (3.1)

where a = + - z and V = g+ - 1. When generating updates that satisfy spar-
sity requirements, it is not always possible to obtain an Hessian approximation
B+ that is positive-definite and also satisfies the quasi-Newton condition (see,
for example, Shanno, 1980).

Let B be the sparse symmetric n X n matrix representing the approximation
to the Hessian matrix at the start of iteration k of a quasi-Newton algorithm. If

4 1'

13.

sparsity were the only issue, sparse updates could be developed by setting

B+ = 9B + Uy, (3.2)

where rIB + U satisfies the quasi-Newton condition (3.1) and U , is defined by
(2.4). Another possibility would be to obtain the factors of B + by updating the
factors of B (see, for example, Gill, Golub, Murray and Saunders, 1974) while
ignoring fill-in. However, neither of these approaches would result in updates
that satisfy the quasi-Newton condition (3.1).

A sparse version of any quasi-Newton update can easily be obtained by
applying Schubert's (1970) technique. For example, a sparse version of the BFGS
update (1.5) can be obtained as

B4FGS = Ti (3.3)

where
T =T(Y(')_ Be(oa')'
5 , a T(Vd) (,TB)ia (3.4)

However, BBFGs is not symmetric. To obtain a symmetric version (see, for
example, Shanno, 1980), we redefine the updated matrix as

+ = X,[e,wjT + Wiefr], (3.5)

where w, is defined by (3.4) and the X,'s are chosen so that BBFGs satisfies the
quasi-Newton condition (3.1).

One of the disadvantages of this approach is that the matrix in the system of
equations obtained from (3.5) to define Xi need not be positive-definite. Another
problem is that the line search used guarantees that VT. > 0 but does not
necessarily guarantee that (i)Ta > 0 and (aT B)ia > 0 for all i. In fact, this
sparse version of the BFGS update has proved to be computationally unstable
due to (yi)Ta and/or (eTB)i8 > 0 being zero or close to zero (see, for example,
Shanno, 1980).

An alternative technique for obtaining sparse quasi-Newton updates is to
use norm minimization, since some dense quasi-Newton updates can be defined
as least-change updates in appropriate norms (see, for example, Dennis and
Schnabel, 1978). Toint (1977) showed how to obtain a sparse analog of the
Powell-Symmetric-Broyden update (see, for example, Dennis, and Mor6, 1977)
by finding a matrix E such that B+ = B + E is closest to B in the Frobenius
norm; has the sparsity pattern specified by the set N (Equation 2.1); and satisfies

" " " -- ' J -"' -? [...Ili~ Ill l ll ,[I .. . - ".. .. .I IIIIII II I I m l il.

3.Sparn Quad-Nwton Updates 5

the quasi-Newton condition (3.1). Formally, the problem can be stated as

NM1 mnimis IzrE12 2 '~NM 11ZAZ1U fL~p ~ 0 (3.6)

subject to Es = -B8 (3.7)
Eq = 0 (01)E N (3.8)
E= ET. (3.g)

Theorem 5.1 (Tolntl 1977). The unique solution to problem NMI is given by

E = 0, +X if (i, 1E N; (3.10)
I)Ii~ + X it i (i, J) E T';

where X = (X 1 2, ... , WIT is the solution of the linear system

QX vB8(=E8) (3.11)

with Q defined by

Q.. (8%)(8j), + 1II22 ~, for all (i, J1 (3.12)

and iq is the Kronecker delta.

Proof. The proof involves finding the stationary point of the Lagrangian of
problem NM1. For details, see Toint (1977) or Dennis and Schnabel (1978). I

Obtaining the desired update by Toint's method requires the solution of a
linear system of equations (3.11). The matrix Q in this system has the same
sparsity pattern as the matrix B and is positive-definite if and only if 118iIl > 0
for all i.

Note that (3.10) and (3.12) can be rewritten in matrix notation as follows:

E = > je() + 8icFJ, (3.13)

Q [(8')8i + 118'12I2eiJ!. (3.14)

In some situations it may be appropriate to use a weighted Frobenius norm
as the minimizing function in problem NM1 (see, for example, Dennis and
Schnabel, 1978). The difficulty with using an arbitrary symmetric positive-
definite weighting matrix W is that it is not easy to obtain a closed form solution
to this problem. However, when W is a diagonal matrix with positive diagonal
elements, a closed form solution for this problem exists (see, Dennis and Schnabel,
1978; Powell, 1979; Toint, 1977).

6 Ia.

Theorem 3.1 indicated how a spars, analog of the Powell-Symmetric-Broyden
update could be obtained. Shanno (1980) derived a sparse analog to the BFGS
update and indicated that his method could be extended to other symmetric
updates. However, his method is rather complicated and not at all easy to apply
to other updates. The following theorem shows how sparse analogs to symmetric
updates can be derived as a simple extension of Toint's (1977) results.

Theorem 3.2. Let b+ = qB + U where U is symmetric, but, in general, will not
have its sparsity pattern specified by N (see Equation 2.1); q is some scale factor;
and B a = V. Then, the symmetric matrix B+ that is closest to Bj in the
Frobenium norm, and that satisfies the quasi-Newton condition (3.1) is obtained

AB+ = b;+ E,
(3.15)

where E is the solution to problem NM2

NM2 minimize IIE112 = E2 (3.16)

subject to Es = hN+. (3.17)

Zq = 0 (i,l E N (3.18)
E = E r. (3.19)

Proof. By definition

N =UN (3.20)
and

= qB + U,. (3.21)

From (3.15),

B+8 = M; + E)s
= (b+ - b+ + E)8 (by definition of
= -b(-E),.

Hence, it follows that B+ satisfies the quasi-Newton condition (3.1) if and only if

(b+- E)a 0 or Es = b+ s. This gives us condition (3.17). Conditions (3.18)
and (3.19) follow from considerations of sparsity and symmetry on the matrix
E. I

13. Sparn Quaa-Newtoa Updates 7

Corol 3.3 The solution to problem NM2 is

,= 00 if (i, 1) E N; (3.22)

where X (X 1, X2 , ... ,Xm)T is the solution of the linear system

QX = B+rs (= Es) (3.23)

with Q defined by (3.12).

Proof. The proof follows from Theorems 3.1 and 3.2 after noting that problems
NM1 and NM2 differ only in equations (3.7) and (3.17). 1

Analogous to Toint's result with the weighted Frobenius norm, we can extend
Theorem 3.2 to the weighted Frobenius norm (see Thapa, 1980).

From the above corollary we see that the sparse analogs of quasi-Newton
updates require the solution of a system of equations (see Equation 3.23) whose
right-hand side is B a. Shanno (1980) indicates that the computation of B+
does not require the storage of the elements of UN (see Definition 2.1), but does
require the computation of the elements of UN. However, the following lemma
shows that the elements of UN need not be computed either.

Lemma 3.4.
bo a Y - i7Bo - UN.. (3.24)

Proof.

h.o = US (from (3.20))
= (U - UY)o (by definition of UN)

=(b+ - iB)a - UV (since i B + U)
V - qB8 - UY4.

Toint's update and the sparse analogs of the dense quasi-Newton updates
modify all the elements of the Hessian matrix to obtain a sparse version that
satisfies the quasi-Newton condition. It may be of some importance to consider
obtaining sparse updates that modify the diagonal in a predetermined way.
Then, for example, we could obtain a sparse approximation to the BFGS update
that has the same diagonal as the diagonal that would be obtained if the dense
BFGS update were used at the current iteration of the optimization algorithm.
Further details o, this approach are given in Thapa, 1980.

*war=

4. On Pooutve-defnftenes

An implementation of a quasi-Newton algorithm using a sparse analog of a
dense update requires the solution of two systems of equations. First, a system
of the form QX = r is solved to obtain the sparse Hessian approximation. Next,
a system of the form Bp = -g is solved to obtain a descent direction p.

4.1 The Hessian Approximation.
If the Hessian approximation B is not positive-definite, the solution of the

system of equations Bp = -f may not result in a descent. direction. Previous
work on quasi-Newton methods has treated an indefinite B with a trust-region
strategy (see, for example, Dembo et al, 1980; Sorensen, 1980; Steihaug, 1980).
The idea behind these methods is to choose a parameter 'I such that 9 = B +'YI
is positive-definite and to define the search direction as the solution of

(B + y)p =

so that p is a descent direction.
This paper studies a different method for obtaining a descent direction. We

use a method based on the Cholesky factorisation (or LDLT factorization, where
L is unit lower triangular and D is a positive diagonal matrix) for symmetric
positive-definite matrices. The j-th column of the matrix L is defined from
columns 1 through j - 1 by the equations

*7-1

d= Bj - dg.8

We use a numerically stable method to construct a matrix R from a modified
Cholesky factorisation of B. (For a detailed description of the modified Cholesky
factorization seee Gill, Murray, and Wright (1981)). A descent direction p is then
obtained as the solution of Bp = -g. With this approach, the Cholesky factors
L and D are computed subject to two requirements: all elements of D are strictly
positive, and the elements of the factors satisfy a uniform bound, i.e. for k =

1,..., n and some positive value P it holds that

dt >6 and Ilk I<#, i>k. (4.1)

The matrices L and D are computed by implicitly increasing the diagonal ele-
ments of the original matrix during the factorisation in order to satisfy (4.1).

14.1 The HRela Approxlmatlon 9

When this process is completed, the matrices L and D are the Cholesky factors
of a positive-definite matrix 9 that satisfies

U LDLT = B + P,

where P is a non-negative diagonal matrix whose j-th element is Pji.
The modified Cholesky factorization is a numerically stable method that

produces a positive-definite matrix differing from the original matrix only in its
diagonal elements. The diagonal modification is optimal in the sense that an a
priori bound upon the norm of P is minimized, subject to the requirement that
sufficiently positive-definite matrices are left unaltered. In practice, the actual
value of P is almost always substantially less than the a priori bound.

Once having obtained a direction of descent by the modified Cholesky fac-
torization we determine the steplength along p such that the function value at
the new point z + ap is "sufficiently" lower than the function value at the current
point z. In order to obtain such a decrease, the most important condition on the
parameter a is

Ig(z + ap)TpI :_ , gTPT, for 0 < i/ _ 1,

where 17 is called the linesearch accuracy parameter.

Above we discussed techniques to obtain a descent direction p when the
Hessian approximation is not positive-definite. The question then is whether it
is possible to alter the approximation B to obtain B + such that B+ is symmetric,
satisfies the quasi-Newton condition (3.1) and is positive-definite. Toint (1979)
has shown that it is indeed possible to do so under certain restrictions on
the sparsity pattern of B. His result is of theoretical importance, but is not
practically implementable.

Note that when using the Levenberg-Marquardt procedure or the sparse
modified Cholesky factorization we solve the modified system Rp = -g (where

-= B + XI in the former case and R = B + P, where P is a diagonal matrix,
in the latter case). An obvious approach to obtaining a positive-definite Hessian
approximation would be to replace B by ff. In this case R would have the re-
quired sparsity pattern, be symmetric and positive-definite, but would not satisfy
the quasi-Newton condition (3.1). However, it would be hoped that the next ap-
proximation R+ obtained from 9 would be 'better" than the approximation B +

obtained from B. Unfortunately, it turns out that ff+ can be more indefinite
than B+. To show this we first need some new definitions and notation. It should
be noted that the technique described below can be applied to any method if we
regard 7 as the starting positive-definite approximation.

P - Diagonal modification to make B + P sufficiently

10 ILI

positive-definite. (4.2)
S=B+P. (4.3)

B + B + UN + E. (4.4)

17 =ff + + F. (4.5)
x - multipliers for obtaining R. (4.6)

- multipliers for obtaining F. (4.7)
U - Update obtained using B. (4.8)

, - Update obtained using . (4.9)
hi(P) = 7- U. (4.10)
h(P) = hi(P) + tiP. (4.11)

From (4.11) and (4.10),

[h(P)IN = [hl(P)]N (4.12)
and

[h(P)-V = [hi(P)AY, + qP. (4.13)

Next, note that
i/ff + 17 = /B + U + h(P). (4.14)

Now, from Corollary 3.3, B+ can be obtained from B as follows:

Bt- + +f if(ij)EN; (4.15)

fBij + Ximj -- Xj# , if (, 3 E F;

where X = (XI, X2, so) mlves

Qx =(4.16)

with Q defined by equation (3.12) and

1+ = iB + U. (4.17)

Again , from Corollary 3.3, it follows that r" can be obtained from as

I o, i (i,j) N;(4.18)

ffV+ X.aj + Xje,, if (i,) E N;
where X = (XI, K2,...,)T solveU

QX --"]N (4.19)

with Q defined by equation (3.12) and

k' =q9 + 7. (4.20)

The next theorem shows the relationship between X and X and between]f+ and

k~i. .

14.1 The Hudan App,.xImai 11

Theorem 4.1. Assume II1.I > 0 for all i. Let z solve

Qz = [h(P)]J-. (4.21)

Then

(a) X = - z (4.22)

(b) = f[(Pj, if (z,. +1 E zf~ N; (4.23)J,, if (i, 11 EN;
(b) ,j =re+~to+ [h(p)], - (z,,Ij + zjs,, i i. R

where Q is defined by (3.12); NM and N are defined by (2.1) and (2.2); and the
rest of the quantities are defined by equations (4.2) - (4.14).

Proof.

V' -

= - ,(B + P)a - (UI- [h,(P)]])s
= v- qB8 - u - (ip + [hi(P)]w) 8
= y - YIBa - Uf8 - [h(P)]ws

= h~. -[h(P)]N 8, (4.24)

where the first and fifth equalities follow from Lemma 3.7, the second equality
follows from (4.3) and (4.10), and the fourth equality follows from (4.11).
From (4.19) we obtain,

-- h - [h(P)1]a from (4.24)

- QX - [h(P)] e from (4.16).

Since Il1'11 > 0 for all i, it follows from Lemma 3.2 (b) that Q-I exists. Hence

X= - Q- 1[h(P)J]fa

which is (4.22).
Next, we prove (4.23). From (4.18) it follows that for (i, 3 E N, B = 0;

and for (i,) EN

-+ Ih(P)]j + (X+ i - z)e, + (X, - zj)ei from (4.14) and (4.22)

B, + [h(P)],, - (zaj + zjai). from (4.15)

I

12 141

The above theorem shows the effect of a diagonal modification on sparse
updates. From equation (4.23) in the statement of the theorem, it is clear that
if the z, and a, are of the appropriate sign and magnitude then it is possible for

to be more indefinite than B+ .

The following example illustrates that ff+ can be more indefinite than B.
We shall only summarise the results. The full calculations are given in Thapa
(1980). We use Toint's update and a sparse modified Cholesky factorization to
compute DR+.
Example 4.1. Note that for Toint's update, h(P) = P, V = 1, U 0. Hence,

X = Q-1PS

and
(0, for (i, J1 E N

B = - BI + Pi, - 2zxe,, for i = 1,..., n
(B+ - (zej + zjej), for (i,J) E V, i .

Let
25 5 3 00

12 0 0 9
B= 3 00.2 0 00 0 5

0 9 041

g - (1, 1, 20, 1, - 2)T, v (2, 4, 3, -1, - 2)r, and the step-length a - 1.
All the numbers shown have been rounded to four digits. The modified

Cholesky factors of B are

LB = . -. 05455 1 i
0 0 1

.0 .8182 2.547 .8 1

DB =diag(25, 11, .1927, 5, 10.81),

with
P9 = diag(0, 0, .3855, 0, 21.63). (4.25)

Therefore,
(25.03 6.219 2.868 0 o)
|6.219 10.39 0 0 2.722

o2.88 0 .369 0 0,
270 0 3.140 2.438

0 2.722 0 2.438 7.356

14.2 SvhQX r is

(25.01 5.122 2.965 0 0
5.122 11.83 0 0 9.260
2 0 3828 0 0

0 .0 0 5.061 4.052
0 9.260 0 4.052 22.42/

Hence, we get

11PRI12 = 468.0,

lIP8+I1 = .00113,
and

IPrII2 = 760.5.
Therefore, Ilipef+ll > lIPB+ 112

Also Ilea+ll < I2Pnll and IIPV+-,Il > IIP2Il.
The example described above was generated by using a modified Cholesky

factorization. However, it would be easy to generate a similar example for trust-
region methods.

4.2 Solving QX = r.
The matrix Q in Equation (3.12) is positive-definite if and only if Il,'ll > 0

for i = 1,..., n (see Toint, 1977). If any of the a has a zero norm, then the
matrix Q is singular (and positive semi-definite). In this case the system QX = r
may have no solution. Toint (1977) suggested setting X, and rj to zero for all
j such that Iai I- = 0, and solving the reduced system obtained by deleting the
zero rows and columns of Q. Another technique for solving the system when
Q is singular is to use the sparse version of the modified Cholesky factorization
(see Thapa, 1980). Both these techniques generate Xi's that produce Hessian
approximations that do not necessarily satisfy the quasi-Newton condition (3.1).

Numerical experience has shown that not only is it possible for Q to be
singular, but that Q may remain singular for many iterations. The following
example illustrates this fact.

Example 4.2. Consider a generalization of the well known two-dimensional
Rosenbrock function (Rosenbrock, 1960)

f(z) =1 (100(Z,- Z)2 + (1- z,)).
i=2

The Hessian matrix for this function is tridiagonal.
If Bo = I, and zo = (-1.2, 1, -1.2, 1, 1, 1, ... , 1)T, then fo 533.4

and go - (-215.6, 792, -655.6, -88, 0, 0, ... , 0)T. The solution of Bopo =

14 14.2

-go is po -go. With a linesearch accuracy q - .9, a is taken as .000958.
Clearly, the last n -6 rows and columns of Q are all zero. The updated Hessian
B1 then has all zero off diagonal elements in the last n - 5 columns. On the
next iteration the last n - 7 rows and columns of Q are all zero. A total of
n - 6 iterations are required before Q becomes positive-definite. (However, for
this particular example, the system of equations QX = r is consistent and the
Hessian approximations generated do indeed satisfy the quasi-Newton condition(3.1).)

6. Storage and Efficlency

The dense quasi-Newton updates are all either rank-one or rank-two sym-
metric updates and most of them yield a positive-definite Hessian approxima-
tion when VT8 > 0 (an exception being the Powell-Symmetric-Broyden update).
Provided that these low rank updates yield positive-definite Hessian approxima-
tions, it is possible to update the Cholesky factors of the Hessian in O(n 2) opera-
tions (for example, see Gill, Golub, Murray, and Saunders, 1974). Hence, solv-
ing Bp = -g at each iteration to obtain a descent direction p requires 0(n2)
arithmetic operations.

In the sparse case, however, the updates are all of rank n and there does
not exist any known method of efficiently updating the factors of the Hessian
approximation. This necessitates solving a new linear system of equations to
obtain a descent direction p in each iteration of the algorithm. Furthermore,
updating the Hessian approximation at each iteration requires the solution of
an additional linear system of equations of the form QX = r (see Section 3)
where Q has the same sparsity pattern as the Hessian matrix. In general, the
Cholesky factorisation requires 0(n3) arithmetic operations, and, hence, it would
be undesirable to solve even one system of linear equations at each iteration.
However, it is expected that the presence of sparsity would reduce the arithmetic
operations needed to compute the Cholesky factors from scratch to 0(n2) or less.

In the dense case the factors are updated at each iteration and hence we
need space only to store the factors. In the sparse case, however, a copy of
the Hessian approximation as well as its Cholesky factors must be stored. Extra
space is not required for Q, since Q can be stored at the end of the vector storing
the lower-triangular factors of the Hessian approximation, and the factors of Q
can be overwritten on Q.

6. Convergeneo

It is important to be able to show that an algorithm using the sparse
quasi-Newton updates of Section 3 generates a sequence of points {zk)}°,o that
converge to a point t* such that g(z*) 0 0. For a proof of one such result see

J.J

16. Convergc 15

Thapa, 1980. Being able to prove that an algorithm converges is not suflicient
to make it useful from the point of view of practical applications. It is usually
desirable to have a fast rate of convergence. Toint (1979a) showed that under
certain conditions his algorithm, which employs a trust-region procedure to
solve for the descent direction, converges superlinearly. This is an interesting
theoretical result; however, it did not hold in many tests performed by the author.

Table 6.1 shows the last few iterations of Toint's sparse quasi-Newton method
using a modified Cholesky factorisation to solve for the descent direction. If
Toint's (1979a) theory of superlinear convergence is to hold we should observe
superlinear convergence at this stage regardless of whether we use a trust region
strategy or a modified Cholesky factorization to solve for the descent direction.
However, superlinear convergence usually is not observed in practice, as Table
6.1 indicates. The table is typical of numerous tests in which superlinear con-
vergence was not observed, even when the algorithm was started close to the
solution with the exact Hessian matrix!

A number of possible reasons exist to explain the failure of superlinear
convergence in practice. One of the reasons is that the sequence of updates
generated by Toint's method consistently failed to remain positive-definite even
close to the solution (as shown by the nonzero entries in column PD of Table 6.1
which indicates that the Hessian matrix was modified). Another reason is that
the region around the solution in which xk converges superlinearly is so small
that the limitations of finite precision make it impossible to improve the initial
estimates.

16 s

TABLE 6.1
Toint's Update on Test Function Genrose

Dimension 4, linesearch accuracy 0.9

k ak Ab - ."Z - 7ull2 PD IlIA112
46 .011 7.3 X 10-1L 4.4 X 10- T .14 3.9 X 10- r
47 .947 1.8 X 10-14 2.3 X 10- T 0.0 3.0 X 10-0
48 1.00 8.6 X 10-15 1.9 X 10- T 5.7 1.3 X 10- 7

49 .223 6.6 X 10-16 1.1 X 10- 9 0.0 1.3 X 10-6
50 .911 8.7 X 10-9 1.3 X 10-0 0.0 2.8 X 10-8
51 .775 0.0 9.7 X 10-10 7.0 3.7 X 10- 9

KEY
k - Iteration number.
C1' - Step length at iteration k.
ZA; - Approximation to the solution at iteration k.

- The solution.
- Function value at z

PD - Maximum addition to the diagonal during factorlation. A nonzero
value indicates an indefinite matrix.

l - Gradient at the point zt.

T. Numerical Results and Discussion

In this section we discuss the numerical performance of the various quasi-
Newton type algorithms. The algorithms were tested on a wide range of prob-
lems. Thus, it is hoped that the numerical results will be valuable in analyz-
ing the strong and weak points of the various methods, and determining the
circumstances under which the methods are most successful.

Section 7.1 discusses criteria for comparing the numerical performance of
some of the algorithms tested. A key to the algorithms tested is given in
Section 7.2 and the test problems used for the comparison of these algorithms are
described in Appendix C. The last section discusses the numerical results. Only
a small sample of the algorithms tested are discussed here. For more detailed
numerical results, see Thapa (1980).

7.1 Basl fA' Comparison

For the purpose of comparing algorithms it is necessary to have a uniform
standard of comparison (Gill and Murray, 1979a), which will be called an assess-
ment criterion. A termination criterion is not a desirable basis for comparison

IT.2 Key to Akothms 1?

for at least two reasons. Firstly, there is no universal agreement on the best
termination criterion for any given situation. Secondly, a wide variation in ac-
curacy of the solution may be obtained for two different algorithms using the
same termination criterion.

The assessment criterion used here is that suggested by Gill and Murray
(1979a). The first point zA is taken for which

fk - f* < ,0(1 + IfI). (7.1.1)

In all the tests carried out, 0 was chosen to be 10- 5.

7.2 Key to the Algorithms Tested

This section lists the algorithms tested. All the algorithms described are
implemented with the sparse modified Cholesky factorization (see Thapa, 1980),
the line search of Gill et al. (1979b), and the assessment criterion of Section 7.1.

Three types of sparse quasi-Newton are described here.

TOINT - The update described by Toint (Section 2) to maintain a sparse
approximation to the Hessian matrix that satisfies the quasi-
Newton condition.

BFGS - The update suggested by Shanno (Section 2) to modify the BFGS
update to obtain a sparse approximation that satisfies the quasi-
Newton condition.

DFP - The Davidon-Fletcher-Powell update (see, for example, Dennis
and Mord, 1977) modified (as described in Theorem 3.2) to yield
a sparse approximation that satisfies the quasi-Newton condition.

The following algorithms were compared with the above algorithms:

QNM -A quasi-Newton method using the full n X n BFGS update to
approximate the Hessian matrix.

UBFGS -This method updates the sparse Cholesky factors by using al-
gorithm C1 described in the paper by Gill, Golub, Murray and
Saunders (1974) and ignoring all fill-in (in the factors) when the
dense BFGS update is used to approximate the Hessian matrix.

DFD - Direct method for finite differencing (See Powell and Toint, 1979)
with the sparse modified Cholesky factorisation.

, . ms~eI~ml. - " " -....

IS |T.2

T. Test Problems

The generation of an adequate set of test problems to compare a set of
algorithms is not an easy task. It is important that a large carefully-selected
set of problems should be used to test the algorithms. The set of problems
should be sufficiently diverse so that one or more of the algorithms do not exploit
peculiarities common to the set by adjusting certain free parameters in the
algorithms. Furthermore, the set of problems should be chosen to appropriately
test the algorithms under consideration. For example, it is pointless to test
sparsity exploiting algorithms exclusively on problems of small dimension. On
the other hand, testing large problems can become prohibitively expensive in
terms of CPU time. A list of the test problems and the starting points used by
the algorithms on these problems can be found in Appendix C.

7.4 Discussion of Numerical Results

All the algorithms are coded in double precision Fortran IV. The runs were
made on a DEC-20 System, for which the machine precision, e, is approximately
10-is, and the largest number representable is approximately 101".

A total of 27 problems were solved. Each problem was solved using the
values 0.9, 0.1 and 0.001 for q, the accuracy of the line search (see Section 4.1).
Many different algorithms (see Thapa, 1980), including those described in Section
7.2, were tested. Each algorithm requires two parameters in addition to the line
search accuracy: S,,, a bound upon the change 11z%+I - z, 11 at each iteration,
and fet, an estimate of the value of the objective function at the solution. In all
the cases the value of Smus(see Section 7.4.3) was set to 10 (essentially implying
an upper bound of infinity), and the value of f..t was set to the value of 1(z) at
the solution. The algorithms also require an estimate of the space required by
the nonseros of the Cholesky factors of the Hessian matrix.

The results of all the tests are displayed in Appendices A and B. Appendix
A contains tables of storage requirements of the Hessian matrix and its Cholesky
factors; and execution times of the various routines. Appendix B contains the
results of testing the algorithms described in Section 7.2.

7.4.1 Storage Required hr the Hessian Matrix and Its iNetors.
Table Al in Appendix A is a comparison of the space required in double

word lengths by the Hessian matrix and Its Cholesky factors for the dense
quasi-Newton method, one finite-difference scheme and the sparse quasi-Newton
methods. For details on the computation of these numbers, see Thapa (1980).
It is interesting to see that for a function like the 7Diagonal, the space required
by the sparsity-exploiting methods is not much less than the space required by
a dense quasi-Newton method. This is because there is considerable fill-in in the

17.4.2 Tite Reqwfremea iS

Cholesky factors of the Hessian matrix. For situations such as these, where the
factors fill in considerably, it is necessary to obtain a symmetric permutation of
the matrix that wculd reduce the fill-in. However, even this may not necessarily
resolve the difficulty (as is the case for the 7Diagonal function). For large
problems with considerable fill-in, the modified-Newton algorithm utilizing a
finite-difference scheme to obtain the Hessian matrix can be used by rejecting all
fill-in in the factors, or by rejecting some fill-in by utilizing some sort of a partial
factorization scheme (see Thapa, 1980). It is interesting to compare the space
requirements for the calculus of variation problems ranging in dimension from
10 to 1000. These problems have a block-tridiagonal structure. For n = 10, the
sparse quasi-Newton methods require more space than the dense quasi-Newton
methods. As n grows large, the space required by the dense quasi-Newton method
grows rapidly and it becomes impractical to implement the method from the
point of view of the storage. The space required by the sparse quasi-Newton
methods grows much faster than for the finite-difference method. For example,
when n = 1000 the space required to store the approximation to the Hessian
matrix and its LDLT factors, is greater for sparse quasi-Newton methods, than
for a modified-Newton method using the direct method (Algorithm DFD) for
finite-differencing, by 2745 double word lengths. Thus, the maximum size of
the problem that can be solved by the sparse quasi-Newton method is smaller
than the maximum size of the problem that can be solved by a modified-Newton
algorithm utilizing a finite-difference approximation scheme.

7.4.2 Time Required for Different Tasks.
Table A2 in Appendix A compares the CPU time in seconds for the various

tasks performed in each of the algorithms. All the numbers in the table were
obtained by one computer run when the system was free of any other jobs. Each
task (excepting GENPAT) was executed 50 times and the average time is reported
in Table A2. Even so, these numbers are not very accurate and are merely
meant to compare the time spent in executing the various tasks for different
functions. Note that the time required to obtain a finite-difference approximation
to the Hessian matrix includes the time spent in evaluating the gradient vectors
for the different groups. The tasks of generating the pattern of the Hessian
matrix (GENPAT), of forming groups for finite-differencing (GROUP), and of
analyzing the Hessian matrix to determine the fill-in in the Cholesky factors
(ANALYZ) need be done only once for a given function. Once these tasks have
been completed, the appropriate information can be read in. It is especially
advantageous to read in the pattern of the Hessian matrix, as the results on
Calvar2 for n = 500 show (Table A2). It is interesting to note that the time
spent in obtaining the Cholesky factors (FACTOR) and in solving a system of
equations (SOLVE) is usually small (except for the function 7Diagonal where

20 17.4.2

there is considerable fill-in and the time for FACTOR is large). For the chained
Rosenbrock function (ChaRose) the time to evaluate the function and gradient at
any point is smaller than the time spent in FACTOR and SOLVE. For functions
of this type the standard measure of function evaluations only is not suitable;
and, thus it would be more useful to compare the various algorithms on the basis
of numbers of iterations in addition to the number of function evaluations. In
fact, for the functions ChaRose and QOR the time required to obtain a sparse
quasi-Newton update is more than the time required to obtain a finite-difference
approximation to the Hessian matrix. A comparison of the times to FACTOR
and SOLVE for the function Calvar2 for n=100 to 500 shows the interesting
fact that the CPU time increases linearly with n.

7.4.3 Influence of Stepmx.
The numerical results obtained in our implementation of Toint's update

differ from the results shown in Toint's (1978) paper. One of the reasons for this
is that Toint (1978) uses a "trust-region method' whereas we use a 'step-length
method'.

In both these methods the tIzh+1 - z tI can be bounded by a scalar. In a
step-length algorithm a uniform bound, Sm.A,, is used for all iterations; whereas,
in a trust-region method, a scalar A,, (the size of the trust-region) is adjusted at
each iteration. By choosing different initial estimates of A0 it is possible to obtain
better results, as is the case in the results shown by Toint (1978), where Ao is
varied considerably (in one case a different value for A0 is used when comparing
different algorithms on the same function). It is possible to duplicate, within
a few function evaluations, Toint's result by choosing an appriopriate value for
S... in the linesearch. However, for uniformity of testing, S,.. was set to 105
(essentially implying an upper bound of infinity) on all the functions tested. A
large upper bound was chosen to avoid biasing any of the results - a smaller
bound could possibly influence the performance of some of the algorithms on
certain functions.

7.4.4 Comparison of the Algorithms.
The function evaluations and iterations quoted in Table B (Appendix B) are

all computed using the assessment criterion of Section 7.1 with a tolerance of
10-1. All the algorithms were run to a maximum of 2000 function evaluations.
The algorithms were all still reducing the function (albeit slowly) when they
were stopped at 2000 function evaluations. In some cases some of the algorithms
failed. By this it is meant that the line-search routine could not find a lower point.
This was usually due to the fact that the search direction p was arbitrarily close
to zero or almost orthogonal to g. The exception was the algorithm UBFGS,
where the failure was due to p not being a descent direction, since the updated

I.!

IT.4.4 Comparkon of Akorkhms 21

factors had lost their positive-definiteness. In all the cases examined, the matrix
Q (see Equation 3.12) had been singular for many iterations before failure of the
algorithm, which meant that the sparse quasi-Newton updates did not satisfy
the quasi-Newton condition.

Table B compares the function evaluations and iterations required by three
sparse quasi-Newton updates (TOINT, BFGS, DFP). The performance of these
algorithms is poor in general - especially on the large problems. On a few
functions, these methods do slightly better than the finite-difference algorithm.
However, their performance is much worse in terms of number of iterations
in most of the cases (with the exception of the Trigonometric function). An
interesting result holds for the quadratic function (which is a diagonal function).
At each iteration the new Hessian approximation is in fact obtained as a finite
difference approximation with the finite difference interval being max{18il, 6) for
the ith diagonal element, where 6 is given by

6 = max{ llBIl,e,

where e is the machine precision. That is,

max{iaI, 6}

Besides these three algorithms, a sparse version of the self-scaled BFGS
update was also tested (results not shown here). The best of these four methods
is Toint's update, which is a little surprising considering that the dense BFGS
update has been found to be superior to the other dense quasi-Newton methods
in practice. However, Toint's update is by no means competitive when compared
with a modified-Newton algorithm using a finite-difference scheme to generate
approximations to the Hessian matrix. In fact, in spite of a proof of superlinear
convergence (Toint, 1979a), superlinear convergence was not observed in the test
problems within the current implementation of Toint's update (for a discussion,
see Section 6).

On moderate size problems (n = 50 to n = 100), the dense quasi-Newton
method performs significantly better than the sparse quasi-Newton methods.
Thus, there does not seem to be much truth in the speculation that supplying
more information (in the form of sparsity) to quasi-Newton methods should cause
them to converge faster. An interesting variation is the method UBFGS which
uses the C1 algorithm (Gill, Golub, Murray and Saunders, 1974) to update the
factors of the BFGS update ignoring all fill-in in the factors. When it does
converge its performance is superior to that of the sparse quasi-Newton methods.
As noted previously, its failure is due to the loss of positive definiteness of
the product of the Cholesky factors. It is remarkable that this method does
better than the sparse quasi-Newton methods since the updates obtained by the

"1*

22 T.4.4

UBFGS method do not satisfy the quasi-Newton condition (3.1). However, these
good results with UBFGS should be viewed with some caution since the method
performed well mostly on functions with diagonally dominant Hessian matrices.

The table clearly shows the superiority of the modified-Newton method over
the others. In most of the cases the finite-difference method does better than
the others in terms of function evaluations. It does better than all the others in
terms of iterations, as Table B shows.

8. Conclusions

All the algorithms were tested using a modified Cholesky factorization. The
overall conclusions reached are that sparse quasi-Newton methods perform poorly
in general. Superlinear convergence was not observed and the quasi-Newton
updates consistently lost the property of positive-definiteness. Furthermore,
they require more storage than modified-Newton methods that utilize a finite-
difference scheme that exploits sparsity in the Hessian matrix; and they may
require a significant amount of time to perform the linear algebra needed to
obtain a sparse quasi-Newton update. Modified-Newton methods utilizing a
finite-difference scheme that exploit sparsity and symmetry in the Hessian matrix
perform extremely well. These Newton-type methods perform very well even
when all fill-in is ignored in the modified Cholesky factors (see Thapa, 1980).

A crude implementation of preconditioned conjugate-gradient methods (see
Thapa, 1980) that utilize sparse quasi-Newton updates was seen to perform well
in comparison to sparse quasi-Newton methods. It is expected that a refined
implementation of such methods may prove to be very successful. However,
much work remains to be done on such methods.

Surprisingly, UBFGS, a crude implementation of a method that updated the
Cholesky factors using algorithm C1 of Gill, et al. (1974) but ignoring all fill-in in
the factors, performed well on the set of problems on which the updated factors
remained positive definite. However, it should be noted that UBFGS performed
well mostly on functions that were diagonally dominant. It would be interesting
to develop this method further.

9. Acknowledgements

I would like to thank Dr. Margaret H. Wright and Dr. Philip E. Gill for
their invaluable guidance and tremendous amount of help in making this paper
possible.

1,

APPRNDIX A

TABLE Al
Space Required in DoubJe Word Leqhs by
the Hessian Matrix and Its Ckolesky factors

in a Dense Quasi-Newton Method compared to
a Modifted-Newton Method using Finite-Differences

and to Sparse Quasi-Newton Methods

PROULUM ft QNM DID sPQN

Quadratic n =25 325 5_._5 65

GenRose n = 25 325 92.25 122.5

QOR n = 50 1275 627.5 T55

CIGOR n = 50 12T5 644.5 820

TDlagonal n = 60 1830 1368 1530
CIdiaT n = 60 1830 1391.25 1581.25
Calvarl n = 10 55 52.5 75

Calvarl n = 20 210 112.5 162.5

Calvarl n = 30 465 172.5 250

Calvarl n = 50 1275 292.5 425

Calvrl n = 100 5050 592.5 862.5

Calvarl n = 200 20100 1192.5 1737.5
Calvarl n = 300 45150 1792.5 2612.5

Calvarl n = 400 80200 2392.5 3487.5

Calvarl f = 500 125250 2992.5 4362.5

Calvarl n = 1000 500500 5992.5 8T37.5

KEY
QNM - Dense quasi-Newton method.
owD - Direct method for finite-differencing.
monrn - New Direct method for finite-differencing.
ePQN - Sparse quasi-Newton update.

- - - -- -..... -- .

TABLE A2
CPU seconds Required for Various Tasks Performed by

the Unconstrained Optimisation Algorithms

PROBLEM ChRoe QOR GOR TDiagonal Calvarl

n = 25 n =50 n=0 n = 60 n = 100
GINPAT .08239 .46832 1.7793 3.4964 13.714

GROUP .00584 .02631 .02628 .03320 .04531

ANAL? u .00916 .09643 .09652 .27808 .17235
FACTOlR .00502 .10487 .10440 .45444 .04284

OLYZ .00234 .01619 .01614 .03704 .01351

SPUN .00283 .00792 .03446 .05731 .13113
DID .01388 .0T878 .31867 .52722 .94332
TOINT .01220 .13674 .13699 .51904 .08978
RIMS .01680 .15063 .15056 .53581 .16203
niP .0169T .15114 .15106 .53739 .11993

PROBLEM Calvar2 Caivar2 Calvar2 Calvar2 CaIvr2
n =100 n = 200 n - 300 n = 400 n = 500

GUNPAT 8.8004 34.752 77.92T 139.0T 217.55
GROUP .04537 .09226 .13989 .18905 .23885
ANALT .17182 .67572 1.537 2.7874 4.41204

FACTOR .04246 .08589 .12952 .17396 .21801
SOLVX .01362 .02T05 .04094 .0553T .06896

SPUN .08445 .16839 .25288 .33888 .42442

DID .61740 1.2315 1.8444 2.4788 3.1124
TOINT .08920 .18043 .27287 .36742 .46021
310e .14189 .31575 .48811 .66463 .83609

DIP .11936 .24161 .36554 .49153 .61596

KEY
GNPAT - Generate the pattern of the Hessian matrix.
GROUP - Form the groups for the Direct Method for flnite.diferencing.
ANALTE - Determine the pattern of the LDLT FACTORIS.

FACTOR - Obtain the LDLT factors.
SOLVN - Solve an n X n system of equations.

lUN - Compute the function value and the gradient vector.
DiD - Direct Method for finite-differencing.
TOINT - Toint's sparse quasi-Newton update.
310o - Sparse version of the san update.
DiP - Sparse version of the ni, update.

JI.

Ii

APPINDIX B

TABLE B
Number of Function Evalutiont and

Iterations Required

PRODL ,7 TOINT 1r0 DV unIG DID QKM

Calvai 1= .9 60,40 73,53 369,273 40,33 36,5 47,42
Start 1 17 =.1 98,46 5T,27 189,88 61,30 31,4 54,24

= = 10 f7= .001 102,39 65,24 240,97 63,24 28,3 68,24
Calvarl 1 =.9 371,180 * 1222,873 50,46 37,5 83,T3
Start 1 1?= .1 401,160 * 362,170 96,48 32,4 90,40
n = 20 17 = .001 712,243 ' 229,87 152,57 38,4 113,41
Calvarl 17 = .9 895,374 * 446,233 113,85 45,6 118,100
Start 1 17 = .1 895,342 3 315,136 160,77 41,5 125,56
n = 30 1 =.001 948,296 1181,435 219,85 39,4 162,55
Calvar2 17 = .9 435,229 692,412 55,32 15,2 36,22
Start 1 1 = .1 580,282 420,209 59,28 15,2 37,19
n = 30 V) = .001 672,264 * 697,297 65,28 17,2 39,19
Calhar3 97 = .9 52,36 45,35 65,48 30,2T 22,3 35,31
Start 1 17 = .1 63,31 C 114,56 36,19 22,3 37,16
n = 10 !7 = .001 73,31 46,20 94,42 46,20 26,3 42,16
Calvar3 7 = .9 152,95 200,139 54,45 29,4 57,48
Start 1 =j = .1 128,62 107,54 240,118 70,35 24,3 67,30
n = 20 f7 = .001 151,61 C 147,64 83,36 27,3 TT,30

GenRose 17 = .9 48,25 49,29 88,55 134,63 61,13 107,43
Start 3 7 = .1 71,26 139,64 76,34 163,64 65,11 130,40
n= 25 17 = .001 104,28 91,27 104,37 178,51 76,11 157,44
ChaRose 1) = .9 61,28 44,21 40,23 68,36 62,13 97,48
start 5 1= = .1 66,26 45,19 45,17 63,28 45,8 116,44
n = 10 1 = .001 92,23 76,20 79,21 91,29 87,12 165,47

KEY
ToIxT - Toint' sparse quad-Newton update.
Vags - Shanno's sparse acs update.

DI? - Sparse version of the DiPp update.
U112,0 - Updating the Cholesky factors of the Ut..l update Ignoring 11-in.
DnD - Direct method for Snite-differencing.
Qm - Dense quasi-Newton method.
zz,77 - Number of function evaluations, Number of iterations.
* - Exceeded 2000 function evaluations.
F - Failed to converge.
NR - Not Run.

TABLE B (continued)
Number of Function Evahuations and

Iterations Required

PnODLNM t) TOINT Bras DiP VxPOU bID QMM

Quadratic q= .9 3,2 3,2 3,2 22.21 3,1 31,30
start 1 17 =.1 4,2 4,2 4,2 45,24 3,1 41,20
n = 25 f7 = .001 4,2 4,2 4,2 49,24 3,1 41,20
QOR f7 =.9 19,12 27,1T 17,11 F 10,1 39,23
Start 1 17 = .I 23,12 23,12 24,13 F 10,1 2T,13
n = 50 f7 = .001 25,12 25,12 27,13 F 10,1 2T,13
GOR f) = .9 T4,43 10 56,33 F 37,4 60,30
Start 1 7= .I 88,36 * 84,3T F 39,4 59,29
n = 50 17 = .001 126,38 185,67 1 18,37 F 44,4 72,29

PaP 17 = .9 6,4 6,4 6,4 4,3 10,1 5,4
Start 1)= .I 9,4 9,4 9,4 T,3 10,1 7,3
na 50 17 = .001 9,4 9,4 9,4 T,3 10,1 T,3
ClOOR t7 = .9 422,303 11 541,369 F 63,6 155,153
start 1 f7 = .I 587,266 S 64,303 F 58,5 169,68
a = 50 f7 = .001 633,241 * 39,278 F 64,5 217,69
TDiagonal f, = .9 46,39 44,34 60,42 F 37,4 22,20
Start 6 q7 =.I 44,20 71,32 59,26 F 3T,4 24,9
a =60 f7 = .001 72,27 79,31 77,29 187,53 "4,4 26,8
CM&D a7 = .9 1871,604 F 72,7 92,56
Start1 17 = 1 $ 1 58,5 142,50
n =60 t7= .001 * 5 F 64,5 278,49

Trig .7 = .9 22,15 23,16 23,16 F 61,6 NR
Start T71 = .1 29,15 29,15 32,16 F 62,6 NR

a=100 f7 = .001 36,15 36,15 37,16 F 68,6 NR

KEY
,OIwr - Toint" sparse quai-Newton update.
XPWas - Shanno's sparse aroa update.
VVF - Sparse Version Of the Dit update.
991,66 - Updating the Cholesky factors of the aroma update %pnoring i-n.
.13 - Direct method for InIte-differencing.
0MK - Dense quasiNewton method.

1, - Number of function evalations, Number of iterations.
* - Exceeded 2000 function evaluation.
F- Failed to converge.

NR - Not Run.

TABLE B (continued)
Number of Function Evaluations end

Iterations Required

PROnLIM 11 TOINT sps DIrP UDIrGe DD eU

CalvarI 1 = .9 * 1915,858 220,157 38,5 191,162
start 1 =- .1 1502,606 205,89 59,5 299,149
n = 50 17= .001 * 395,153 48,5 258,88
Calvar2 = = .9 739,591 * 1682,872 107,59 15,2 53,28

Start 1 7 -= .1 1052,460 196T,963 111,54 15,2 54,8
= = 50 = -. 001 1119,440 119,52 17,2 5T,8

CalvarS F -= .9 411,242 .* 1158,62T 128,93 36,5 114,90

Start 1 t1-- .1 556,254 * 871,406 169,84 31,4 131,59
n = 50 , -= .001 898,350 * 1365,568 203,85 38,4 154,59

Calvarl 7 -- .9 C C * 4T8,522 45,6 372,298
Start 1 97 = .1 C C C 662,523 49,6 584,166
n = 100 7 = .001 C C 812,316 50,5 4T6,164

Calvar2 7 -- .9 C C C 199,100 15,2 103,53
Start 1 '- .1 = . I 202,100 15,2 106,53
n = 100 7 = .001 C C C 218,97 1T,2 10T,53
Calvar3 17-= .9 1383,757 C C 243,178 56,5 187,138
start 1 = .1 1754,721 3 506,158 31,4 206,97
n = 100 7 = .001 3 C C 561,154 36,4 258,97

Ca1var2 f7 = .9 F NH 390,216 8,1 NR
Start 2 7-1 =. NR * 468,235 8,1 NR

n = 200 f =.001 NR C 464,212 9,1 NR
Calvar 7 -= .9 NR 893,533 113,14 NR
Start 4 17 = .1 C NR C 1092,524 135,15 NR

= 200 f7 =.001 C NI C 1164,512 140,14 NH

TOIlT - Toint' sparse quasi-Newton update.
NawG - Shanno's sparse DrGs update.
Di? - Sparse version of the DP update.

avnrs - Updating the Cholesky factors of the n1s update Ignoring ll-in.
DnD - Direct method for Anite-differencing.
QNM - Dense quasi-Newton method.
xzyy - Number of function evaluations, Number of iterations.
C - Exceeded 2000 function evaluations.
F - Failed to converge.
NH - Not Run.

APPBNDIX C

C.1 Test Preoblems

For the purpose of comparing the algorithms described in Section 7.2, test
problems ranging in size from dimension 10 to dimension 500 were used. The
problems tested are described below. The following notation will be used in the
rest of the paper.
]7 - Number of nonseros below the diagonal of the Hessian matrix.
YL - Number of nonzeros below the unit diagonal of the lower-triangular

Cholesky factor.
NGD - Number of groups used to obtain the finite difference approximation

to the Hessian by the Powell-Toint direct method (Algorithm D in
Thapa, 1980).

Test Function 1. GenRose (Gill and Murray, 1979b)
This is a generalization of the well known two-dimensional Rosenbrock

function (Rosenbrock, 1960)

) W 1+ >)(100(Z, _ 1)2 + (1 - Z,)2).
i=2

The Hessian matrix is tridiagonal and
]7 -- n - 1,]7z =- n- 1,

NGD -- 3.

Test Function 2. ChaRose (Toint, 1978)

25
(z) = 1 + E (4a,(z._. - Z4)2 + (1 - Z,)2),

i=2

This is a modification and generalization of the well known two-dimensional
Rosenbrock function (Rosenbrock, 1960) where the constants a, are given by
Toint (1978). The Hessian matrix is tridiagonal and

7 -= 24,], -- 24,

NGD = 3.

Test Function 3. QOR (Toint, 1978)

(z) = aiz? + Pl di+ >2)

where the constants aj, P8, di and the sets A(s%, B(i) are described by Toint
(1978). The function is convex with a sparse Hessian matrix and

NG = 115, N -- 389,
NOD = 8.

20

Test Function 4. GOR (Toint, 1978)

f~z W c() + b~)

where

cfx)--aizi log,(1 +t zi), zi 0,
Izj = -azi log.(' + z;), Z, < 0,

SEA(3 E8(i

and fp,y, log.(l+ 1 ,), v _ 0,
b,(v,) = 2 0,

The constants ai, 6l, di and the sets A(i), B(i) are the same as for QOR. The

function is convex but has discontinuous second derivations. The Hessian matrix

has the same sparsity pattern as the Hessian matrix for QOR. The quantities

VG, NL, and NGD are the same as for QOR.

Test Function 5. PSP (Toint, 1978)

A(z) - A(z - 5)2 + fi,,,(vi),

where

jEA(SI jEB(SI

I/yi,,, > 0.1,

Tc1,() -- 100(0.1 - V/) + 10, vi < 0.1,

The constants aj, 8j, di and the sets A(i), B(i) are the same as for QOR. The

Hessian matrix has the same sparsity pattern as the Hessian matrix for QOR.

The quantities XcG, N &, and NGD are the same as for QOR.

Test Function 6. Quadratic (Gill and Murray)

1~z . - (z-1) ,

where p is a constant. The function is convex with a diagonal Hessian matrix
that is ill-conditioned and

NGo = 0, 01 =O

I Now" -I

. I

30

The next three functions are similar to those that arise in the numerical solution

of optimal control problems. The general continuous problem is of the form

min J'((t) = f j(t, x(t), e'(t)) dt,
X(t)

subject to the boundary conditions z(O) = a, z(1) = b. These problems are
known as calculus of variations problems. A numerical procedure to solve these
problems is to discretize them. The first three functions described below are
discretized by expressing z(t) as a linear sum of functions that span the space of
piecewise cubic polynomials. This gives rise to a function with a block triangular
Hessian matrix.

Test Function 7. Calvar (Gill and Murray, 1973)

J(z(t)) = fo {(t)2 + Z'(t) tan-1 Zt(t) - log(l + Zu(t)2)*} u t,

with the boundary conditions z(O) = 1, z(1) = 2. The Hessian matrix is block
tridiagonal and

X = -5+ 2.5n, W G
NGD = 6

Teat Function 8. Calvar2 (Gill and Murray, 19273)

J(:(t)) = 101 (100(Z(t) _ ZO(t)2) 2 + (1 -ZI(t))2} it,

with the boundary conditions z(O) = z(1) = 0. The Hessian matrix is block
tridiagonal and

X = -5+ 2.5n, NL= G,
NOD = S.

Teat Function 9. Calvar3 (Gill and Murray, 1973)

J(z(t)) = Jo {-2()(ZI(t)2 - 1)} dt;

with the boundary conditions z(0) = 1, x(1) =0. The Hessian matrix i block
tridiagonal and

'NG -5+ 25nW,=NOVG
NGD =6S.

$1

Test Function 10. 7-Diagonal (Toint, 1978)
This is a modified version of the function described in Toint's paper.

Let
60 30

(z) = Elyili +E 1z, + z,+3oI;
i,=1 11

then
60

(z) = (z) + E"(z, 5)2,
i-=1wherewher I =-(3 - !-)l--z, -Z2- 1,

Veo = Zse - (3-!-)zeo - 1.

The Hessian matrix has the pattern shown in Toint(1978) and

XG = 147, NZ,= 957,
NGD = 8.

Test Function 11. Trigonometric (Toint, 1978)
This is a modification of the function suggested by Toint. The modification

guarantees that the same minimum is found by all the algorithms if the same
starting point is used.

Choose a set of pairs of indices J = {(, J1 i < , m d 1 lj<i}

Let
f(Z) = E Qjj sin[,izj + pjz, + cjj];

then

f(Z) =(s) + E(Z, - 5)2,

where
aQj = 5[1 + mod(i, 5) + mod", 5)],

+ -- 1 -1ii
.10

Cj 0 + 3 I0

The Hessian matrix has its pattern defined by the set J and

17c; = 268, - 1212,
NOD = 9.

32

Test Function 12. CiGOR
Thin is a combination of the Calvarl (Test Function 7) and GOR (Test

Function 4) with n = 50. That is,

(z) = GOR + Calvarl

The Hessian matrix has a pattern that is a combination of the patterns of GOR
and the 1st calculus of variations and

G = 163,]YL = 393,
NOD = 9.

Test Function 13. C1DIA7
This is a combination of Calvarl (Test function 7) and the 7-diagonal func-

tion (Test function 11) for n - 60. That is,

1(z) =Calvarl + f7-Diagonal"

The Hessian matrix has a pattern that is a combination of the patterns of the
1st calculus of variations and the 7 diagonal function; and

G = 175, L 970,
NGD = 9

C.2 Starting Points

The starting points used are as follows.

33

Start 1

ZO = (0)0.... IO O)T .

Start 2

2' =
2 o= -1-T, +

Start 3

i Zo --= (1,,1, -12, ,, ..

Start 4

Zo= (-1.2, I,-1.2,1, -1.2,1, ..)T.
Start 5

i ~~~~Zo = 1 -1,1, -,,-1 .
Start 6

~~~zo =(1, -1,-1,...)r.
Start 7 ZO=(1I,,.. .



84

References

Davidon, W. C. (1959). Variable metric methods for minimization, A. E. C. Res.
and Develop. Report ANL-5990, Argonne National Laboratory.

Dembo, R. S., Eisenstat, S. C., and Steihaug, T. (1980). Inexact Newton
Methods, Technical Report (Series 47), School of Organization and Man-
agement, Yale University.

Dennis, J. E. and Mord, J. J. (1977). Quasi-Newton methods, motivation and
theory, SIAM Review 19, pp. 46-89.

Dennis, J. E., Jr. and Schnabel, R. B. (1978). Least change secant update
for quasi-Newton methods, Technical Report (TR78-344), Department of
Computer Science, Cornell University, Ithaca, New York 14853.

Fletcher, R. and Powell, M. J. D. (1973). A rapidly convergent descent method
for minimization, Computer J. 6, pp. 163-168.

Gill, P. E., Golub, G. H., Murray, W. and Saunders, M. (1974). Modifying matrix
factorizations, Math. Comp. 28, pp. 504-535.

Gill, P. E. and Murray, W. (1973). "The numerical solution of a problem in the
calculus of variations', in Recent Mathematical Developments in Control
(D. J. Bell, ed.), pp. 97-122, Academic Press, London and New York.

Gill, P. E. and Murray, W. (1979a). 'Performance evaluation for nonlinear
optimization", in Performance Evaluation for Numerical Software (L. Fosdick,
ed.), North-Holland.

Gill, P. E. and Murray, W. (1979b). Conjugate-gradient methods for large-
scale nonlinear optimization, Report SOL 79-15, Department of Operations
Research, Stanford University.

Gill, P. E., Murray, W., Saunders M. A. and Wright M. H. (1979). Two step-
length algorithms for numerical optimization, Report SOL 79-25, Depart-
ment of Operations Research, Stanford University.

Gill, P. E., Murray, W., and Wright, M. H. (1981). Practical Opimisation,
Academic Press, London and New York.

Levenberg, K. (1944). A method for the solution of certain problems in least-
squares, Quart. Appl. Math. 2, pp. 164-168.

Marquardt, D. (1963). An algorithm for least-squares estimation of nonlinear



85

parameters, SIAM J. Appl. Math. 11, pp. 431-441.

Marwill, E. S. (1978). Exploiting sparsity in Newton-like methods, PhD Thesis,
Cornell University, Ithaca, New York 14853.

Powell, M. J. D. (1979). Quasi-Newton formulae for sparse second derivative
matrices, Internal Report DAMTP 1979/NAT, Dept. of Applied Math. and
Theoretical Physics, University of Cambridge, England.

Powell, M. J. D. and Toint, Ph. L. (1979). On the Estimation of sparse Hessian
matrices, Siam J. Numerical Analysis 16, pp. 1060-1073.

Rosenbrock, H. H. (1960). An automatic method for finding the greatest or least
value of a function, Comput. J. 3, pp. 175-184.

Schubert, L. K. (1970). Modification of a quasi-Newton method for nonlinear
equations, Math. Comp. 24, pp. 27-30.

Shanno, D. F. (1980). On variable metric methods for sparse Hessians, Math.
Comp.. 34, pp. 499-514.

Sorensen, D. C. (1980). Newton's Method with a Trust-Region Modification,
Technical Report (ANL-80-106), Argonne National Laboratory, 9700 South
Cass Avenue, Argonne, Illinois 60439.

Steihaug T. (1980). Quasi-Newton Methods for Large Scale Nonlinear Problems,
Technical Report (Series 49), School of Organization and Management, Yale
University.

Thapa, M. N. (1980). Optimization of Unconstrained Functions with Sparse
Hessian Matrices, PhD Thesis, Dept. of Operations Research, Stanford
University, Stanford, California 94305.

Toint, P. L. (1977). On sparse and symmetric matrix updating subject to a linear
equation, Math. Comp. 31, pp. 954-961.

Toint, P. L. (1978). Some numerical results using a sparse matrix updating
formula in unconstrained optimization, Math. Comp. 32, pp. 839-851.

Toint, P. L. (1979a). On the superlinear convergence of an algorithm for solving
a sparse minimization problem, Siam J. Numer Anal. 16, pp. 1036-1045.

Toint, P. L. (1979b). A note about sparsity exploiting quasi-Newton Updates,
Technical 79/5, Department of Mathematics, Facultds, Universitaires de
Namur, Rampart de Ia Vierge 8, B-5000 Namur, Belgium.



re

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PA69 _*___:&___•,

READ IVSIRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

I. REPORTRNUUBERs1- ILGQAVTACC 0•bO MO PECIPIENTS CATALOG NUMBER

SOL 81-12 A O2~UQ
11 TITLE (And oW) 5. TYPE OF REPORT & PERIOD COVERED

OPTIMIZATION OF UNCONSTRAINED FUNCTIONS WITH Technical Report
SPARSE HESSIAN MATRICES--QUASI-NEWTON METHODS 6. PERFORMING oqO. REPORT NUMMER

7. AUTHOR( ) . CONTRACT On GRANT NUNUEW*)

Mukund N. Thapa NO0014-75-C-0267

. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT. TASK

Department of Operations Research - SOL AREA 4 WORK UNIT NUMBERS

Stanford University NR-047-143
Stanford, CA 94305

11. CONTROLLING OFFICE NAME AND ADDRESS I2. REPORT DATE

Office of Naval Research - Dept. of the Navy August 1981
800 N. Quincy Street 13. NUMER OF PAGES

Arlington, VA 22217 35
14. MONITORING AGENCY NAME & AODRESS ( differtfl ron CcloUn Office) IS. SECURITY CLASS. (of tkie eport)

UNCLASSI FIED

1I5. DECL ASSI FI CATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

This document has been approved for public release and sale;
its distribution is unlimited.

17. DISTRIBUTION STATEMENT (olo bhet utentereE in BIock 0. If Eufeeut born teif)

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (Conlhue an reverse side If neceea an Id dtify by block reailr)

unconstrained Cholesky
quasi-Newton positive-definite
sparse superlinear
numerical

20. ABSTRACT (Cmonhe an revrm olde It neoeeary and Idoflb by Wee bock aluaiW)

SEE ATTACHED

O M 1473 EDITION OP I NOV Of It OBOLEE

SECURITY CLASSIFICATION OF THIS PAGE (Mni Date ,NtaeD

L -- i '". . . .. . . ... ... ... ... . ... . ..... . . . . . Ill .... lllll .. . ... .. . i, f i I ... . iil"i'::.'"v L



KCUmYTV CLASSICATION OF T418 PA49("a.m Date En'enmq

SOL 81-12: OPTIMIZATION OF UNCONSTRAINED FUNCTIONS WITH SPARSE
HESSIAN MATRICES -- QUASI-NEWTON METHODS; by M.N. Thapa

Newton-type methods and quasi-Newton methods have proven to be very
successful In solving dense unconstrained optimization problems.
Recently there has been considerable interest in extending these
methods to solving large problems when the Hessian matrix has a known
a priori sparsity pattern. This paper treats sparse quasi-Newton
methods in a uniform fashion and shows the effect of loss of
positive-definiteness in generating updates. These sparse
quasi-Newton methods coupled with a modified Cholesky factorization to
take into account the loss of positive-definiteness when solving the
linear systems associated with these methods were tested on a large
set of problems. The overall conclusions are that these methods
perform poorly in general -- the Hessian matrix becomes indefinite
even close to the solution and superlinear convergence is not observed
in practice.

SECURITY CL*SSIICATION OF &* PA0R(ft' -eta Enter**




