AD=~AL06 028

UNCLASSIFL

STANFORD UNIV CA SYSTEMS OPTIMIZATION LAB F/¢ 12/1
OPTIMIZATION OF UNCONSTRAINED FUNCTIONS WITH SPAISE HESSIAN HA‘I‘-'!TC(U)

AUG 81 M N THAPA . 0018=75=C=0267
~81=12

ADA106028

DML FILE COPY

Department of Operations Research

Stanford University
Stanford, CA 94305

Systems
Optimization
Laboratory

B

T

0

This is dooy

fOr pub h b
dlstnbut i IeleQSe and “ APProveq

N

T

amLEC
\ 0CT2 21

unlimjg 1¢ its

\

SYSTEMNS OPTIMIZATION (ABORATORY
DEPARTMENT OF OPERATIONS RESEARCH
STANFORD UNIVERSITY
STANFORD, CALIFORNIA 94305

([)~f ‘ \’1 r'; - “’* ;- .
\,“; F— -

OPTIMIZATION OF UNCONSTRAINED FUNCTIONS WITH
§PﬁRSE HESSIAN !_WlRi(IS -- QUASI-NEWTON METHODS -

(! ey
- ~. . Mukund N./Thapa

e s

"\J : J’ECINICAL REPORT SOL 61-12

s ‘) Ve
. Augasis=$98 1
o - . "
L P / - .,
R SO e -2

Department of Energy Contract AM03-76SF00326, PA# -AT03-76ER72018;%y
Office of Naval Research Contract N00014-75-C-0267; National Science
Foundation Grants MCS-7681259/ MCS-7926009 and ECS-8012974.

Research and reproduction of this report were partlal% supported by the
E

Reproduction in whole or in part is permitted for any purposes of the
United States Government. This document has been approved for public
release and sale; its distribution is unlimited.

\ ABSTRACT

\

Y

Newton-type methods and quasi-Newton methods have proven to be very
successful in solving dense unconstrained optimisation problems. Recently there
has been considerable interest in extending these methods to solving large prob-
lems when the Hessian matrix has a known a8 priori sparsity pattern. This paper
treats sparse quasi-Newton methods in a uniform fashion and shows the effect of
loss of positive-definiteness in generating updates. These sparse quasi-Newton
methods coupled with a modified Cholesky factorisation to take into account
the loss of positive-definiteness when solving the linear systems associated with
these methods were tested on a large set of problems. The overall conclusions
are that these methods perform poorly in general — the Hessian matrix becomes
indefinite even close to the solution and superlinear convergence is not observed
in practice.

\

-~ for
AT |;

TAB 0
aaeunced 1

sivjication ——— —d

e e

pistribution/
‘ Availability Codes

|
i

~ Javail anma/or
\D st Special

|

§1. Introduction 1

OPTIMIZATION OF UNCONSTRAINED FUNCTIONS WITH
SPARSE HESSIAN MATRICES — QUASI-NEWTON METHODS

1. Introduction

The problem of concern in this paper is the unconstrained minimisation of

a twice-continuously differentiable function

mlzrggl'}le f(z). (1.1)
We shall consider the class of quasi-Newton methods applied to problem (1.1)
when the Hessian matrix of the function f(z) has a known a priori sparsity
pattern. The first quasi-Newton method was suggested by Davidon (1959) and
extended by Fletcher and Powell (1963). Since then there has been an explosion
of interest in these methods. (For a comprehensive survey of quasi-Newton
methods see Dennis and Moré, 1977).

The idea behind the most popular quasi-Newton methods for (1.1) is to
maintain a positive-definite symmetric matrix that approximates the Hessian
matrix of f(z). If we let z, denote the kth iterate, a quasi-Newton algorithm
obtains a descent direction p, by solving the system of equations

kak = —0k, (1’2)

where B, is an approximation to the Hessian matrix at iteration & and g; is
the gradient of f at z;. If By is positive-definite, pp is guaranteed to be a
descent direction. Once having obtained p,, the new point zx 4, is given by z; +
axpx, where ap > O is chosen so that f(zx41) is “sufficiently” less than f(xx)
(for a precise definition of this term, see, for example, Ortega and Rheinboldt,
1970). I the new point z,, does not satisfy the convergence criteria, a new
approximation to the Hessian matrix By is defined by

Bryy = paBy + Uy, (1.3)

where @, is a scalar, and U is a matrix chosen so that By4; is symmetric,
positive-definite and satisfles the quasi-Newton condition

By i 18 = W, (1.4)
with
8 =2%x41— 2 80d B=My1— O
Usually, U, is a matrix of low rank. The most popular update is the BFGS

(Broyden-Fletcher-Goldfarb-Shanno) update (see, e.g. Dennis and Moré, 1977),
in which

|
!
J
|

P

er=1 . .
VaVi BasysyBx
U = - = —— 1.5

To guarantee that the updated matrices are positive definite, we require that
s{y,‘ > 0 (which can be ensured by a suitable choice of ay,).

Quasi-Newton methods have been very successful in solving unconstrained
and constrained optimization problems of moderate sise. The difficulty in ap-
plying these methods as described above to large problems is that a symmetric
n X n matrix (or a factorization of a matrix) must be stored. However, many
large problems have a sparse Hessian matrix whose sparsity pattern is known (or
can be determined) a priori. In these cases it would be possible to maintain a
suitably sparse approximation to the Hessian matrix. Note that, in general, the
quasi-Newton methods described above generate dense approximations to the
Hessian, regardless of the sparsity structure of the true Hessian. Much recent
research has been directed towards generating Hessian approximations that have
the same sparsity structure as the true Hessian (see Dennis and Schnabel, 1978;
Marwil, 1978; Shanno, 1980; Toint, 1977, 1978, 1979). This paper treats various
aspects of sparse versions of quasi-Newton methods in a uniform manner; and,
reports results of extensive numerical testing of sparse quasi-Newton methods
combined with a modified Cholesky factorization to provide a positive-definite
matrix for computing the search direction.

Section 2 describes the notation to be used in the rest of the paper. Sparse
quasi-Newton updates are described in Section 3. Section 4 describes positive-
definiteness as related to these quasi-Newton methods. Storage and efficiency
are considered in Section 5; and convergence of these methods are described in
Section 6. Finally, Section 7 discusses computational aspects of these methods
and Section 8 summarises the important results.

2. Definitions and Notation

In the remainder of this paper, the subscript & will be dropped and the
subscript k + 1 will be replaced by the superscript “+*.
Let G(z) denote the Hessian matrix of f at z, and let

N={(54) : [G(z);; =0 forallz€R"}, (2.1)
that is, the set N represents the sparsity pattern of the true Hessian matrix of

the function being minimised. Note that the sparsity pattern is assumed to be
known and fixed, and that any additional seros created during execution of the

§s. Sparse Quasi-Newton Updates 3

algorithm are treated as nonseros. Let

N={¢J):45=12,...,n}\N
= {(§,5) : [G(2)l;; 7# 0 for at least one z € R"}. (2.2)

For any symmetric matrix A, define matrices Ax and Ay as follows

(Mg, forGiEN,

Mwly; = {o. tor (5, 1) € N, (2.3)
[0, ferGiEN,

4wl = {Aa , for(s,5)€N. (24)

In words, Ay is the matrix A with seros in the positions corresponding to
the nonseros of G(z); and Ayg is the matrix A with seros in the positions
corresponding to the seros of G(z). Then A can be written as

A= AN+ Ay (2.5)

Define D; to be a diagonal matrix whose diagonal elements are 0 or 1 depending
on the sparsity pattern of the sth row of G(z), that is,

. _Ju i@NEN,
Dl = {o, if (4, 5) € N.

(2.6)
Finally, define s* = D;s for any vector s.
8. Sparse Quasi-Newton Updates

In the dense case, it is possible to obtain an updated Hessian approximation,
B+, that is symmetric, positive-definite, and satisfies the quasi-Newton condition

B*ts =y, (3.1)

where 8 = 2+ — £ and y = g+ — g. When generating updates that satisfy spar-
sity requirements, it is not always possible to obtain an Hessian approximation
B+ that is positive-definite and also satisfies the quasi-Newton condition (see,
for example, Shanno, 1980).

Let B be the sparse symmetric n X n matrix representing the approximation
to the Hessian matrix at the start of iteration k of a quasi-Newton algorithm. If

s ot

—py

T

4

sparsity were the only issue, sparse updates could be developed by setting

where 7B + U satisfles the quasi-Newton condition (3.1) and Uy is defined by
(2.4). Another possibility would be to obtain the factors of B+ by updating the
factors of B (see, for example, Gill, Golub, Murray and Saunders, 1974) while
ignoring fill-in. However, neither of these approaches would result in updates
that satisfy the quasi-Newton condition (3.1).

A sparse version of any quasi-Newton update can easily be obtained by
applying Schubert’s (1970) technique. For example, a sparse version of the BFGS
update (1.5) can be obtained as

Bires =) &®;, (3.3)
fa=]l
e Y& _ BalaTBY
= (i~) @4

However, B} g is not symmetric. To obtain a symmetric version (see, for
example, Shanno, 1980), we redefine the updated matrix as

Birgs = z": Aile, 0] + w.e]], (3.5)

f==1

where w; is defined by (3.4) and the \;’s are chosen so that B}, ,¢ satisfles the
quasi-Newton condition (3.1).

One of the disadvantages of this approach is that the matrix in the system of
equations obtained from (3.5) to define \; need not be positive-definite. Another
problem is that the line search used guarantees that yTs > 0 but does not
necessarily guarantee that (y*)Ts > 0 and (sTB)'s > O for all . In fact, this
sparse version of the BFGS update has proved to be computationally unstable
due to (y*)Ts and/or (sTB)’s > 0 being sero or close to sero (see, for example,
Shanno, 1980).

An alternative technique for obtaining sparse quasi-Newton updates is to
use norm minimisation, since some dense quasi-Newton updates can be defined
as least-change updates in appropriate norms (see, for example, Dennis and
Schnabel, 1978). Toint (1977) showed how to obtain a sparse analog of the
Powell-Symmetric-Broyden update (see, for example, Dennis, and Moré, 1977)
by finding a matrix E such that B+ = B 4 E is closest to B in the Frobenius
norm; has the sparsity pattern specified by the set N (Equation 2.1); and satisfles

§s. Sparse Quasi-Newton Updates 5

the quasi-Newton condition (3.1). Formally, the problem can be stated as

i n ”n N
NM1 minimise [E|3 =Y)" E (3.6) :
=1 jam1 t
subject to Es=y — Bs (3.7 ;
E;;j=0 (i,5)EN (3.8)
E=ET. (3.9)

Theorem 3.1 (Toint, 1977). The unique solution to problem NM1 is given by

o, if(s,5) € N;
By = {)‘.”j +)8, if(5,5) €N, (8.10)
where A = (A1,)2, ..., \a)7 is the solution of the linear system
@\=y—Bas(=Es) (3.11)

with Q defined by
Qis = (¢9)i(¢7)i + 613 65, for all (5,) (3.12)
and §;; is the Kronecker delta. j

Proof. The proof involves finding the stationary point of the Lagrangian of
problem NM1. For details, see Toint (1977) or Dennis and Schnabel (1978). g

Obtaining the desired update by Toint’s method requires the solution of a

‘, linear system of equations (3.11). The matrix @ in this system has the same

| sparsity pattern as the matrix B and is positive-definite if and only if ||s*|] > 0
for all ¢.

' Note that (3.10) and (3.12) can be rewritten in matrix notation as follows:

O

E= 3" Mlee) + oe]], (3.13)
f==1

Q= _[(s%e; + lls*[I3e;]e]. (3.14)
=1

In some situations it may be appropriate to use a weighted Frobenius norm
as the minimizing function in problem NM1 (see, for example, Dennis and
Schnabel, 1978). The difficulty with using an arbitrary symmetric positive-
definite weighting matrix W is that it is not easy to obtain a closed form solution
to this problem. However, when W is a diagonal matrix with positive diagonal
_ elements, a closed form solution for this problem exists (see, Dennis and Schnabel,
) 1978; Powell, 1979; Toint, 1977).

Theorem 3.1 indicated how a s parse analog of the Powell-Symmetric-Broyden
update could be obtained. Shanno (1980) derived a sparse analog to the BFGS
update and indicated that his method could be extended to other symmetric
updates. However, his method is rather complicated and not at all easy to apply
to other updates. The following theorem shows how sparse analogs to symmetric
updates can be derived as a simple extension of Toint’s (1977) results.

Theorem 3.2. Let B = nB+ U where U is symmetric, but, in general, will not
have its sparsity pattern specified by N (see Equation 2.1); n is some scale factor;
and BT s = y. Then, the symmetric matrix B* that is closest to 3} in the
Frobenius norm, and that satisfles the quasi-Newton condition (3.1) is obtained
as

B* = BRE+E, (3.15)
where E is the solution to problem NM2
n "
NM2 minimize ||E}3 =) D E} (3.16)
fmx] joum1
subject to Es= :,a (3.17)
Ey= G,NEN (3.18)
E=ET, (3.19)

Proof. By definition

v =UN (3.20)
and .

v = 1By + Uy (3.21)
From (3.15),

Bts = (B;f' + E)s
=(B" — By, +E)s (by definition of B%)
=y— (B; -— E)‘.

Hence, it follows that B+ satisfles the quasi-Newton condition (3.1) if and only if
(By —E)s = 0 or Es = B7,s. This gives us condition (3.17). Conditions (3.18)
and (3.19) follow from considerations of sparsity and symmetry on the matrix
E. 3

§s. Sparse Quasi-Newton Updates L §

Corollary 3.3. The solution to problem NM2 is

0 if (3,7) € N;
Eij=4{' . 3.22
“ {xi'j + xj’l': if (': j) € Nl ()
where A\ == (A1, \a,...,A\n)7 is the solution of the linear system
@\ = By s (= Es) (3.23)

with Q defined by (3.12).

Proof. The proof follows from Theorems 3.1 and 3.2 after noting that problems
NM1 and NM2 differ only in equations (3.7) and (3.17). 8§

Analogous to Toint’s result with the weighted Frobenius norm, we can extend
Theorem 3.2 to the weighted Frobenius norm (see Thapa, 1980).

From the above corollary we see that the sparse analogs of quasi-Newton
updates require the solution of a system of equations (see Equation 3.23) whose
right-hand side is ﬁ;a. Shanno (1980) indicates that the computation of 3;4;
does not require the storage of the elements of Uy (see Definition 2.1), but does
require the computation of the elements of Uy. However, the following lemma
shows that the elements of Uy need not be computed either.

Lemma 3.4. .
B;a =y —nBs — Ugas. (3.24)
Proof.
Ble=Uys (from (3.20))
N

= (U — Ug)es (by definition of Un)

= (B — nB)s — U (since B = nB + U)

=y —nBs — Ugs. [|

Toint’s update and the sparse analogs of the dense quasi-Newton updates
modify all the elements of the Hessian matrix to obtain a sparse version that
satisfies the quasi-Newton condition. It may be of some importance to consider
obtaining sparse updates that modify the diagonal in a predetermined way.
Then, for example, we could obtain a sparse approximation to the BFGS update
that has the same diagonal as the diagonal that would be obtained if the dense
BFGS update were used at the current iteration of the optimisation algorithm.
Further details o, this approach are given in Thapa, 1980.

8 §s.

4. On Positive-definiteness

An implementation of a quasi-Newton algorithm using a sparse analog of a
dense update requires the solution of two systems of equations. First, a system
of the form @\ = r is solved to obtain the sparse Hessian approximation. Next,
a system of the form Bp = —g is solved to obtain a descent direction p.

4.1 The Hessian Approximation.

If the Hessian approximation B is not positive-definite, the solution of the
system of equations Bp — —g¢ may not result in a descent direction. Previous
work on quasi-Newton methods has treated an indefinite B with a trust-region
strategy (see, for example, Dembo et al, 1980; Sorensen, 1980; Steihaug, 1980).
The idea behind these methods is to choose a parameter 4 such that B = B+-4J
is positive-definite and to define the search direction as the solution of

(B+1l)p = —y,

so that p is a descent direction.

This paper studies a different method for obtaining a descent direction. We
use a method based on the Cholesky factorization (or LDLT factorisation, where
L is unit lower triangular and D is a positive diagonal matrix) for symmetric
positive-definite matrices. The j-th column of the matrix L is defined from
columns 1 through 5 — 1 by the equations

J—1

d; = Bj;— 3 dulf,,

=]

1 Lt
by = 5-(Bis — 3 daljalss).

=1

We use a numerically stable method to construct a matrix B from a modified
Cholesky factorisation of B. (For a detailed description of the modified Cholesky
factorisation seee Gill, Murray, and Wright (1981)). A descent direction p is then
obtained as the solution of Bp = —g¢. With this approach, the Cholesky factors
L and D are computed subject to two requirements: all elements of D are strictly
positive, and the elements of the factors satisfy a uniform bound, i.e. for k =
1,...,n and some positive value § it holds that

dy>6 and |lndd|<B, i>k (4.1)

The matrices L and D sre computed by implicitly increasing the diagonal ele-
ments of the original matrix during the factorisation in order to satisfy (4.1).

§4.1 The Hessiap Approximation 9

When this process is completed, the matrices L and D are the Cholesky factors
of a positive-definite matrix B that satisfles

B=LDLT =B+ P,

where P is a nca-negative diagonal matrix whose j-th element is P;;.

The modified Cholesky factorization is a numerically stable method that
produces a positive-definite matrix differing from the original matrix only in its
diagonal elements. The diagonal modification is optimal in the sense that an a
priori bound upon the norm of P is minimized, subject to the requirement that
sufficiently positive-definite matrices are left unaltered. In practice, the actual
value of P is almost always substantially less than the & priori bound.

Once having obtained a direction of descent by the modified Cholesky fac-
torization we determine the steplength along p such that the function value at
the new point z+ ap is “sufficiently” lower than the function value at the current
point z. In order to obtain such a decrease, the most important condition on the
parameter a is

lg(z + ap)Tpl < —ngTpT, foro<n<1,
where 1 is called the linesearch accuracy parameter.

Above we discussed techniques to obtain a descent direction p when the

Hessian approximation is not positive-definite. The question then is whether it

is possible to alter the approximation B to obtain B* such that B* is symmetric, ;

! satisfies the quasi-Newton condition (3.1) and is positive-definite. Toint (1979) i

has shown that it is indeed possible to do so under certain restrictions on

the sparsity pattern of B. His result is of theoretical importance, but is not
practically implementable.

Note that when using the Levenberg-Marquardt procedure or the sparse
modified Cholesky factorization we solve the modified system Bp = —g (where
B = B+ M\ in the former case and B = B 4 P, where P is a diagonal matrix,
; in the latter case). An obvious approach to obtaining a positive-definite Hessian
approximation would be to replace B by B. In this case B would have the re-
quired sparsity pattern, be symmetric and positive-definite, but would not satisfy
the quasi-Newton condition (3.1). However, it would be hoped that the next ap-
proximation B obtained from B would be “better” than the approximation B+
obtained from B. Unfortunately, it turns out that B* can be more indefinite
than B+. To show this we first need some new definitions and notation. It should
be noted that the technique described below can be applied to any method if we
regard B as the starting positive-definite approximation.

| P - Diagonal modification to make B 4 P sufficiently

10 §4.1
positive-definite. (4.2)
B =B+P. (4.3)
B* =B+Ug+E. (4.4)
B* =B+Ugx+E. (4.5)
A ~ multipliers for obtaining E. (4.6)
Y - multipliers for obtaining E. (4.7)
U - Update obtained using B. (4.8)
U - Update obtained using B. (4.9)
h(P) =U—-U. (4.10)
MP) = hy(P)+ nP. (4.11)
From (4.11) and (4.10),
[A(P)ly = [h1(P)l (4.12)
and
[M(P)lyr = [B1(P)lyy + nP. (4.13)
Next, note that
nB + U = nB + U + h(P). (4.14)
Now, from Corollary 3.3, B+ can be obtained from B as follows :
0, if (5,7) € N;
+=.]
i {B:;‘ + X + X8, i (5,)) EN; (419)
where A = (Ay,A\a,...,)7 solves
Qr=Bjs (4.16)
with @ defined by equation (3.12) and
BY=nyB+4U. (4.17)
Again , from Corollary 3.3, it follows that B+ can be obtained from B as
0, if (5,5) € N;
=R o (4.18)
By +Nia;+2s8;, H(5,5)EN,;
where X = (\;,%3,...,Xn)T 20lves
QX = Hye (4.19)
with Q defined by equation (3.12) and
B =gB+T. (4.20)
ghe next theorem shows the relationship between X and \ and between B and

B A.a-ia

§41 The Hessian Approximation 11

Theorem 4.1. Assume ||s*|]| > O for all 5. Let s solve

@z = [AM(P)]lxe. (4.21)
Then
(a) X=X\ ——oz . (4.22)
IV if(s,J) EN;
(b) By = {B++ Py — (0 + 230, iGN, 4B

where Q is defined by (3.12); N and N are defined by (2.1) and (2.2) ; and the
rest of the quantities are defined by equations (4.2) — (4.14).

Proof.
ﬁ;c =y—nBs—Uxe
=y —n(B+ P)s — (Uxp — [81(P)|) o
=y —nBs —Ugs — (9P + [h1(P)lg) 2
=y —nBs — Ups — [A(P)|r ¢
= Be— [MP)lge, (4.24)
where the first and fifth equalities follow from Lemma 3.7, the second equality

follows from (4.3) and (4.10), and the fourth equality follows from (4.11).
From (4.19) we obtain,

QX = ﬁ; 8
= E;a — (APl s from (4.24)
= QX — [h(P)]gs from (4.16).

Since ||s°]| > O for all ¢, it follows from Lemma 3.2 (b) that @—* exists. Hence

X=\—Q ' [h(P)lys
=\—z2,
which is (4.22).
Next, we prove (4.23). From (4.18) it follows that for (5,5) € N, Bf; = 0;
and for (i,/)€N

B;j = ‘;-;' + X.'Jj + X,—a;
=By + [h(P)lis + (\i — £)8: + (\; — 25)8; from (4.14) and (4.22)
= Bj; + [A(P))s; — (2:85 + 258). from (4.15)

12 §e.1

The above theorem shows the effect of a diagonal modification on sparse
updates. From equation (4.23) in the statement of the theorem, it is clear that
if the z; and s, are of the appropriate sign and magnitude then it is possible for
B to be more indefinite than B+.

The following example illustrates that B can be more indefinite than B.
We shall only summarise the results. The full calculations are given in Thapa
(1980). We use Toint’s update and a sparse modified Cholesky factorization to
compute BT,

Example 4.1. Note that for Toint’s update, A(P) = P, ¢ = 1, U = 0. Hence,

z=Q 1Ps
and)
0, for (i,5)€N
B;."J.: B;.';+P;.-—2z.-c.-, fore=1,...,n
B?; — (285 + z584), for (1, J) € N,i#].
Let
° %5 5 3 0 0
5 12 0 0 9
B=] 3 0 02 0 0},
0 0 0 5 4
0o 9 0 4 1

g=1(1,1,20,1, —2)T, y=(2, 4, 3, —1, —2)7, and the step-length a = 1.
All the numbers shown have been rounded to four digits. The modified
Cholesky factors of B are

1
2 1

Lg=|.12 —.05455 1)
0 0 01

0 8182 2547 8 1
Dgp = diag(25, 11, .1927, 5, 10.81),
with
Pp = diag(0, 0, .3855, 0, 21.63). (4.25)

Therefore,

25.03 6.219 2.868 0 0

6.219 10.39 0 0 2722
B+ =| 2.868 0 .3693 0 ol
0 0 0 3.140 2.438

0 2.722 0 2438 17.356

§4.2 Soving @\ = r 13

25.01 5.122 2.985 0 0
5.122 11.83 0 0 9.260

=] 2.985 0 .3826 0 0]
0 0 0 5.061 4.052
0 9.260 0 4.052 22.42

Hence, we get

X
|| Ppll3 = 468.0,
||Pg+13 = .00113,
and
|| Pg+|13 = 780.5.
Therefore,

1Pg+11Z > [|Pe+113-

Also ||Pg+|[2 < ||Psl[2 and [|Py+|12 > |IPall2.

The example described above was generated by using a modified Cholesky
factorization. However, it would be easy to generate a similar example for trust-
region methods.

4.2 Solving @\ = r.

The matrix @ in Equation (3.12) is positive-definite if and only if [[s*|| > 0
for § = 1,...,n (see Toint, 1977). If any of the s° has a zero norm, then the
matrix Q is singular (and positive semi-definite). In this case the system @\ = r
may have no solution. Toint (1977) suggested setting A\; and r; to sero for all
7 such that ||s7|| = 0, and solving the reduced system obtained by deleting the
sero rows and columns of Q. Another technique for solving the system when
@ is singular is to use the sparse version of the modified Cholesky factorization
! (see Thapa, 1980). Both these techniques generate)\;’s that produce Hessian
, approximations that do not necessarily satisfy the quasi-Newton condition (3.1).
i Numerical experience has shown that not only is it possible for @ to be
singular, but that @ may remain singular for many iterations. The following
L example illustrates this fact.

Example 4.2. Consider a generalization of the well known two-dimensional
Rosenbrock function (Rosenbrock, 1960)

| fz)=1+4 zn:(IOO(z'- — 2?_1)2 +(1— zl')z)-

The Hessian matrix for this function is tridiagonal.
It By = I, and 2o = (—1.2,1, —1.2,1, 1,1, ...,)T, then fo = 533.4
and go = (—215.8, 792, —655.6, —88, 0, 0, ..., 0)T. The solution of Bopp =

14 §4.2

—go i8 po = —go. With a linesearch accuracy 5 = .9, a is taken as .000958.
Clearly, the last n — 6 rows and columns of @ are all sero. The updated Hessian
B; then has all zero off diagonal elements in the last n — 5 columns. On the
next iteration the last n — 7 rows and columns of Q are all sero. A total of
n — 6 iterations are required before Q becomes positive-definite. (However, for
this particular example, the system of equations @)\ = r is consistent and the
Hessian approximations generated do indeed satisfy the quasi-Newton condition

(3.1))

8. Storage and Efficlency

The dense quasi-Newton updates are all either rank-one or rank-two sym-
metric updates and most of them yield a positive-definite Hessian approxima-
tion when yTs > 0 (an exception being the Powell-Symmetric-Broyden update).
Provided that these low rank updates yield positive-definite Hessian approxima-
tions, it is possible to update the Cholesky factors of the Hessian in O(n?) opera-
tions (for example, see Gill, Golub, Murray, and Saunders, 1974). Hence, solv-
ing Bp = —yg at each iteration to obtain a descent direction p requires O(n3)
arithmetic operations.

In the sparse case, however, the updates are all of rank n and there does
not exist any known method of efficiently updating the factors of the Hessian
approximation. This necessitates solving a new linear system of equations to
obtain a descent direction p in each iteration of the algorithm. Furthermore,
updating the Hessian approximation at each iteration requires the solution of
an additional linear system of equations of the form @\ = r (see Section 3)
where @ has the same sparsity pattern as the Hessian matrix. In general, the
Cholesky factorisation requires O(n®) arithmetic operations, and, hence, it would
be undesirable to solve even one system of linear equations at each iteration.
However, it is expected that the presence of sparsity would reduce the arithmetic
operations needed to compute the Cholesky factors from scratch to O(n?) or less.

In the dense case the factors are updated at each iteration and hence we
need space only to store the factors. In the sparse case, however, a copy of
the Hessian approximation as well as its Cholesky factors must be stored. Extra
space is not required for @, since Q can be stored at the end of the vector storing
the lower-triangular factors of the Hessian approximation, and the factors of @
can be overwritten on Q.

8. Convergence

It is important to be able to show that an algorithm using the sparse
quasi-Newton updates. of Section 3 generates a sequence of points {z,}52, , that
converge to a point z° such that g(z') = 0. For a proof of one such result see

§e. Convergence 18

Thapa, 1980. Being able to prove that an algorithm converges is not sufficient
to make it useful from the point of view of practical applications. It is usually
desirable to have a fast rate of convergence. Toint (1979a) showed that under
certain conditions his algorithm, which employs a trust-region procedure to
solve for the descent direction, converges superlinearly. This is an interesting
theoretical result; however, it did not bold in many tests performed by the author.

Table 6.1 shows the last few iterations of Toint’s sparse quasi-Newton method
using a modified Cholesky factorization to solve for the descent direction. If
Toint’s (1979a) theory of superlinear convergence is to hold we should observe
superlinear convergence at this stage regardless of whether we use a trust region
strategy or a modified Cholesky factorisation to solve for the descent direction.
However, superlinear convergence usually is not observed in practice, as Table
6.1 indicates. The table is typical of numerous tests in which superlinear con-
vergence was not observed, even when the algorithm was started close to the
solution with the exact Hessian matrix!

A number of possible reasons exist to explain the failure of superlinear
convergence in practice. One of the reasons is that the sequence of updates
generated by Toint’s method consistently failed to remain positive-definite even
close to the solution (as shown by the nonzero entries in column Pp of Table 6.1
which indicates that the Hessian matrix was modified). Another reason is that
the region around the solution in which z, converges superlinearly is so small
that the limitations of finite precision make it impossible to improve the initial
estimates,

TABLE 6.1
Toint’s Update on Test Function Genrose

Dimension 4, linesearch accuracy 0.9

-1

k ay Ix— Nz —= |l Pp ligalla
, 46 011 7.3x10-1T 44x10-7 .14 39X10~3
4T 947 1.8 10~ 14 23x 107 00 30x10®
48 100 86x1018 1.9 x 107 57 13x10°7
49 .223 6.6 } 1018 1.1 x 10~° 0.0 1.3x 10™¢
50 911 8.7 X 10—19 1.3 x10~° 0.0 28 x 108
51 175 0.0 97x10-1° 70 37x10°
KEY

k — Iteration number.

ay - Step length at iteration k.

zy -~ Approximation to the solution at iteration k.

z — The solution.

I’ - Function value at z°.

Pp - Maximum addition to the diagonal during factorisation. A nonszero

value indicates an indefinite matrix.
o -~ Gradient at the point z;.

7. Numerical Results and Discussion

In this section we discuss the numerical performance of the various quasi-
Newton type algorithms. The algorithms were tested on a wide range of prob-
lems. Thus, it is hoped that the numerical results will be valuable in analys-
ing the strong and weak points of the various methods, and determining the
circumstances under which the methods are most successful.

Section 7.1 discusses criteria for comparing the numerical performance of
some of the algorithms tested. A key to the algorithms tested is given in
Section 7.2 and the test problems used for the comparison of these algorithms are
described in Appendix C. The last section discusses the numerical results. Only
a small sample of the algorithms tested are discussed here. For more detailed
numerical results, see Thapa (1980).

7.1 Basis for Comparison

For the purpose of comparing algorithms it is necessary to have a uniform
standard of comparison (Gill and Murray, 1979a), which will be called an assess-
ment criterion. A termination criterion is not a desirable basis for comparison

§7.2 Key to Algorithms 17

for at least two reasons. Firstly, there is no universal agreement on the best
termination criterion for any given situation. Secondly, a wide variation in ac-
curacy of the solution may be obtained for two different algorithms using the
same termination criterion.

The assessment criterion used here is that suggested by Gill and Murray
(1979a). The first point z, is taken for which

n—1 <o +11°). (7.1.1)

In all the tests carried out, ¥ was chosen to be 10—5.

7.2 Key to the Algorithms Tested

This section lists the algorithms tested. All the algorithms described are
implemented with the sparse modified Cholesky factorization (see Thapa, 1980),
the line search of Gill et al. (1979b), and the assessment criterion of Section 7.1.

Three types of sparse quasi-Newton are described here.

TOINT - The update described by Toint (Section 2) to maintain a sparse
approximation to the Hessian matrix that satisfies the quasi-
Newton condition.

BFGS - The update suggested by Shanno (Section 2) to modify the BFGS
update to obtain a sparse approximation that satisfies the quasi-
Newton condition.

DFP - The Davidon-Fletcher-Powell update (see, for example, Dennis
and Moré, 1977) modified (as described in Theorem 3.2) to yield
a sparse approximation that satisfies the quasi-Newton condition.

The following algorithms were compared with the above algorithms:

QNM — A quasi-Newton method using the full n X n BFGS update to
approximate the Hessian matrix.

UBFGS - This method updates the sparse Cholesky factors by using al-
gorithm C1 described in the paper by Gill, Golub, Murray and
Saunders (1974) and ignoring all fill-in (in the factors) when the
dense BFGS update is used to approximate the Hessian matrix.

DFD - Direct method for finite differencing (See Powell and Toint, 1979)
with the sparse modified Cholesky factorization.

B ¥

L_ e . _ i

18 §7.2

7.8 Test Problems

The generation of an adequate set of test problems to compare a set of
algorithms is not an easy task. It is important that a large carefully-selected
set of problems should be used to test the algorithms. The set of problems
should be sufficiently diverse so that one or more of the algorithms do not exploit
peculiarities common to the set by adjusting certain free parameters in the
algorithms. Furthermore, the set of problems should be chosen to appropriately
test the algorithms under consideration. For example, it is pointless to test
sparsity exploiting algorithms exclusively on problems of small dimension. On
the other hand, testing large problems can become prohibitively expensive in
terms of CPU time. A list of the {est problems and the starting points used by
the algorithms on these problems can be found in Appendix C.

7.4 Discussion of Numerical Results

All the algorithms are coded in double precision Fortran IV. The runs were
made on a DEC-20 System, for which the machine precision, ¢, is approximately
1018, and the largest number representable is approximately 10%8.

A total of 27 problems were solved. Each problem was solved using the
values 0.9, 0.1 and 0.001 for 5, the accuracy of the line search (see Section 4.1).
Many different algorithms (see Thapa, 1980), including those described in Section
7.2, were tested. Each algorithm requires two parameters in addition to the line
search accuracy: Synee, 8 bound upon the change [|z;41 — zi|| at each iteration,
and f,,¢, an estimate of the value of the objective function at the solution. In all
the cases the value of Syqs(see Section 7.4.3) was set to 105 (essentially implying
an upper bound of infinity), and the value of f¢,¢ Was set to the value of f(z) at
the solution. The algorithms also require an estimate of the space required by
the nonszeros of the Cholesky factors of the Hessian matrix.

The resuits of all the tests are displayed in Appendices A and B. Appendix
A contains tables of storage requirements of the Hessian matrix and its Cholesky
factors; and execution times of the various routines. Appendix B contains the
results of testing the algorithms described in Section 7.2.

T.4.1 Storage Required for the Hessian Matrix and its factors.

Table Al in Appendix A is a comparison of the space required in double
word lengths by the Hessian matrix and its Cholesky factors for the dense
quasi-Newton method, one finite-difference scheme and the sparse quasi-Newton
methods. For details on the computation of these numbers, see Thapa (1980).
It is interesting to see that for a function like the 7Diagonal, the space required
by the sparsity-exploiting methods is not much less than the space required by
a dense quasi-Newton method. This is because there is considerable fill-in in the

§7.4.32 Time Requirements 19

Cholesky factors of the Hessian matrix. For situations such as these, where the
factors fill in considerably, it is necessary to obtain a symmetric permutation of
the matrix that wculd reduce the fill-in. However, even this may not necessarily
resolve the difficulty (as is the case for the 7Diagonal function). For large
problems with considerable fill-in, the modified-Newton algorithm utilising a
finite-difference scheme to obtain the Hessian matrix can be used by rejecting all
i fill-in in the factors, or by rejecting some fill-in by utilising some sort of a partial
factorization scheme (see Thapa, 1980). It is interesting to compare the space
requirements for the calculus of variation problems ranging in dimension from
10 to 1000. These problems have a block-tridiagonal structure. For n = 10, the
| sparse quasi-Newton methods require more space than the dense quasi-Newton
methods. As n grows large, the space required by the dense quasi-Newton method
grows rapidly and it becomes impractical to implement the method from the
point of view of the storage. The space required by the sparse quasi-Newton
methods grows much faster than for the finite-difference method. For example,
when n = 1000 the space required to store the approximation to the Hessian
matrix and its LDLT factors, is greater for sparse quasi-Newton methods, than
for a modified-Newton method using the direct method (Algorithm DFD) for
finite-differencing, by 2745 double word lengths. Thus, the maximum size of
the problem that can be solved by the sparse quasi-Newton method is smaller
than the maximum size of the problem that can be solved by a modified-Newton
algorithm utilising a finite-difference approximation scheme.

i 7.4.2 Time Required for Different Tasks.

| Table A2 in Appendix A compares the CPU time in seconds for the various
tasks performed in each of the algorithms. All the numbers in the table were
obtained by one computer run when the system was free of any other jobs. Each
task (excepting GENPAT) was exccuted 50 times and the average time is reported
in Table A2. Even so, these numbers are not very accurate and are merely
meant to compare the time spent in executing the various tasks for different
functions. Note that the time required to obtain a finite-difference approximation
to the Hessian matrix includes the time spent in evaluating the gradient vectors
for the different groups. The tasks of generating the pattern of the Hessian
matrix (GENPAT), of forming groups for finite-differencing (GROUP), and of
analyzing the Hessian matrix to determine the fill-in in the Cholesky factors
(ANALYZ) need be done only once for a given function. Once these tasks have ;
been completed, the appropriate information can be read in. It is especially i
advantageous to read in the pattern of the Hessiar matrix, as the results on i
Calvar2 for n = 500 show (Table A2). It is interesting to note that the time
, spent in obtaining the Cholesky factors (FACTOR) and in solving a system of
| equations (SOLVE) is usually small (except for the function 7Diagonal where

. 4

20 §7.4.2

there is considerable fill-in and the time for FACTOR is large). For the chained
Rosenbrock function (ChaRose) the time to evaluate the function and gradient at
any point is smaller than the time spent in FACTOR and SOLVE. For functions
of this type the standard measure of function evaluations only is not suitable;
and, thus it would be more useful to compare the various algorithms on the basis
of numbers of iterations in addition to the number of function evaluations. In
fact, for the functions ChaRose and QOR the time required to obtain a sparse
quasi-Newton update is more than the time required to obtain a finite-difference
approximation to the Hessian matrix. A comparison of the times to FACTOR
and SOLVE for the function Calvar2 for n—=100 to 500 shows the interesting
fact that the CPU time increases linearly with n.

7.4.3 Influence of Stepmx.

The numerical results obtained in our implementation of Toint’s update
differ from the results shown in Toint’s (1978) paper. One of the reasons for this
is that Toint (1978) uses a “trust-region method” whereas we use a “step-length
method”.

In both these methods the [[Zx41 — Zix]| can be bounded by a scalar. In a
step-length algorithm a uniform bound, Syu.z, is used for all iterations; whereas,
in a trust-region method, a scalar A, (the size of the trust-region) is adjusted at
each iteration. By choosing different initial estimates of Ay it is possible to obtain
better results, as is the case in the results shown by Toint (1978), where A is
varied considerably (in one case a different value for Ay is used when comparing
different algorithms on the same function). It is possible to duplicate, within
a few function evaluations, Toint’s result by choosing an appriopriate value for
Smas in the linesearch. However, for uniformity of testing, Sma. Was set to 105
(essentially implying an upper bound of infinity) on all the functions tested. A
large upper bound was chosen to avoid biasing any of the results — a smaller
bound could possibly influence the performance of some of the algorithms on
certain functions.

7.4.4 Comparison of the Algorithms.

The function evaluations and iterations quoted in Table B {Appendix B) are
all computed using the assessment criterion of Section 7.1 with a tolerance of
10—5. All the algorithms were run to a maximum of 2000 function evaluations.
The algorithms were all still reducing the function (albeit slowly) when they
were stopped at 2000 function evaluations. In some cases some of the algorithms
failed. By this it is meant that the line-search routine could not find a lower point.
This was usually due to the fact that the search direction p was arbitrarily close
to szero or almost orthogonal to g. The exception was the algorithm UBFGS,
where the failure was due to p not being a descent direction, since the updated

§7.4.4 Comparison of Algorithms 21

factors had lost their positive-definiteness. In all the cases examined, the matrix
@ (see Equation 3.12) had been singular for many iterations before failure of the
algorithm, which meant that the sparse quasi-Newton updates did not satisfy
the quasi-Newton condition.

Table B compares the function evaluations and iterations required by three
sparse quasi-Newton updates (TOINT, BFGS, DFP). The performance of these
algorithms is poor in general — especially on the large problems. On a few
functions, these methods do slightly better than the finite-difference algorithm.
However, their performance is much worse in terms of number of iterations
in most of the cases (with the exception of the Trigonometric function). An
interesting result holds for the quadratic function (which is a diagonal function).
At each iteration the new Hessian approximation is in fact obtained as a finite
difference approximation with the finite difference interval being max{|s;|, 6} for
the ith diagonal element, where § is given by

6 = max{¢||B||, ¢},
where ¢ is the machine precision. That is,

A | S
* max{|s], 6}

Besides these three algorithms, a sparse version of the self-scaled BFGS
update was also tested (results not shown here). The best of these four methods
is Toint’s update, which is a little surprising considering that the dense BFGS
update has been found to be superior to the other dense quasi-Newton methods
in practice. However, Toint’s update is by no means competitive when compared
with a modified-Newton algorithm using a finite-difference scheme to generate
approximations to the Hessian matrix. In fact, in spite of a proof of superlinear
convergence (Toint, 1979a), superlinear convergence was not observed in the test
problems within the current implementation of Toint’s update (for a discussion,
see Section 6).

On moderate size problems {(n = 50 to n = 100), the dense quasi-Newton
method performs significantly better than the sparse quasi-Newton methods.
Thus, there does not seem to be much truth in the speculation that supplying
more information (in the form of sparsity) to quasi-Newton methods should cause
them to converge faster. An interesting variation is the method UBFGS which
uses the C1 algorithm (Gill, Golub, Murray and Saunders, 1974) to update the
factors of the BFGS update ignoring all fill-in in the factors. When it does
converge its performance is superior to that of the sparse quasi-Newton methods.
As noted previously, its failure is due to the loss of positive definiteness of
the product of the Cholesky factors. It is remarkable that this method does
better than the sparse quasi-Newton methods since the updates obtained by the

22 §7.44

UBFGS method do not satisfy the quasi-Newton condition (3.1). However, these
good results with UBFGS should be viewed with some caution since the method
performed well mostly on functions with diagonally dominant Hessian matrices.

The table clearly shows the superiority of the modified-Newton method over
the others. In most of the cases the finite-difference method does better than
the others in terms of function evaluations. It does better than all the others in
terms of iterations, as Table B shows.

8. Conclusions

All the algorithms were tested using a modified Cholesky factorization. The
overall conclusions reached are that sparse quasi-Newton methods perform poorly
in general. Superlinear convergence was not observed and the quasi-Newton
updates consistently lost the property of positive-definiteness. Furthermore,
they require more storage than modified-Newton methods that utilize a finite-
difference scheme that exploits sparsity in the Hessian matrix; and they may
require a significant amount of time to perform the linear algebra needed to
obtain a sparse quasi-Newton update. Modifled-Newton methods utilising a
finite-difference scheme that exploit sparsity and symmetry in the Hessian matrix
perform extremely well. These Newton-type methods perform very well even
when all fill-in is ignored in the modified Cholesky factors (see Thapa, 1980).

A crude implementation of preconditioned conjugate-gradient methods (see
Thapa, 1980) that utilize sparse quasi-Newton updates was seen to perform well
in comparison to sparse quasi-Newton methods. It is expected that a refined
implementation of such methods may prove to be very successful. However,
much work remains to be done on such methods.

Surprisingly, UBFGS, a crude implementation of a method that updated the
Cholesky factors using algorithm C1 of Gill, et al. {1974) but ignoring all fill-in in
the factors, performed well on the set of problems on which the updated factors
remained positive definite. However, it should be noted that UBFGS performed
well mostly on functions that were diagonally dominant. It would be interesting
to develop this method further.

9. Acknowledgements

I would like to thank Dr. Margaret H. Wright and Dr. Philip E. Gill for
their invaluable guidance and tremendous amount of help in making this paper
possible.

AR L. I

APPENDIX A

TABLE Al

8pace Required in Double Word Lengths by
the Hessian Matrix and its Cholesky factors
in a Dense Quasi-Newton Method compared to
a Modified-Newton Method ucing Finite-Differences

and to Sparse Quasi-Newton Methods

PROBLEM n QNM DFD SPQN
Quadratic n=125 325 57.75 85
GenRose n =25 325 92.25 122.5
QOR n =50 1275 827.5 755
CI1GOR n = 50 1275 844.5 820
TDiagonal n =60 1830 1368 1530
C1diaT n =60 1830 1301.25 1581.25
Calvarl n=10 55 52.5 5
Calvarl n =20 210 112.5 162.5
Calvari n =230 485 172.5 250
Calvarl n = 50 1275 202.5 428
Calvarl n = 100 5050 592.5 862.5
Calvarl n = 200 20100 11925 17375
Calvarl n = 300 45150 1702.5 2612.5
Calvarl n = 400 80200 2392.5 3487.5
Calvari n = 500 125250 2992.5 4362.5
Calvarl n = 1000 500500 5992.5 87387.5

KEY
QNM - Dense quasi-Newton method.
DPD - Direct method for finite-differencing.
NDYD -~ New Direct method for finite-differencing.
SPQN - Sparse quasi-Newton update.

TABLE A2

CPU seconds Required for Various Tasks Performed by
the Unconstrained Optimisation Algorithms

PROBLEM ChaRose QOR GOR TDiagonal Calvarl
n=25 n =50 n =50 n = 60 n =100
GERNPAT .08239 46882 1.7708 3.4964 13.714
GQROUP .00584 02631 .02628 .08320 04531
ANALYZ .00918 00643 .00652 .27808 .17235
FACTOR .00502 .10487 .10440 45444 04284
SOLVR .00234 01619 01614 08704 .01851
PUN .00283 00792 .03446 05781 13118
DFD .01388 07878 .31867 53722 04332
TOINT .01220 .18674 .13699 51904 08978
BrGs .01680 .15083 .15056 .53581 .16208
pre .01697 15114 .15108 53739 .11008
PROBLEM Calvar2 Calvar2 Calvar2 Calvar2 Calvar2
n = 100 n == 200 n = 300 = 400 n = 500
GRNPAT 8.8004 34.752 T7.037 139.07 217.55
GROUP 04537 .00226 .13989 .18005 .23885
ANALYS 17182 67572 1.5377 2.7874 4.41204
FACTOR 04248 .08589 .12052 17898 .21801
SOLVE .01362 .02705 04004 05537 .06896
SFUN .08445 .18839 .a5288 .33888 42442
DFD 61740 1.2315 1.8444 2.4788 3.1124
TOINT .08920 .18043 27287 36742 46021
BFGS .14189 31578 .48811 66463 .83609
prr .11936 .24161 .36554 49153 .81596
KEY
GENPAT - Generate the pattern of the Hessian matrix.
anoup — Form the groups for the Direct Method for finite-differsncing.
anaLYz - Determine the pattern of the LDLT yacTons.
rsacTor - Obtain the LDLT factors.
soLve ~ Solve an n X n system of equations.
SFUN —~ Compute the function value and the gradient vector.
DFD - Direct Method for finite-differencing.
TOINT - Toint's sparse quasi-Newton update.
Bras -~ Sparse version of the svas update.
orFP ~ Sparse version of the prr update.

o
R

|
|

APPENDIX B

TABLE B
Number of Fuaction Evaluations and
Iterations Required
PROBLEM n TOINT BrFaGS prr UBFGS DFD QMM
Calvarl n=.9 60,40 78,58 369,278 40,38 385 47,42
Start 1 n=.1 08,46 57,27 189,88 61,30 314 54,24
n =10 = .001 102,39 65,24 240,97 63,34 283 68,24
Calvarl =.9 371,180 * 1222,878 59,46 375 83,78
Start 1 =.1 401,160 * 362,170 96,48 82,4 900,40
n=20 n = .001 712,248 * 220,87 152,57 38,4 113,41
Calvarl =9 895,374 * 446,253 113,85 456 118,100
Start 1 =.1 805,342 * 315,136 180,77 415 125,56
n=30 = .001 948,208 * 1181,435 219,85 30,4 162,55
Calvar2 =.9 435,229 * 892,412 55,32 15,2 36,22
Start 1 =.1 580,282 . 420,209 59,28 15,2 37,10
n=30 = .001 672,264 * 897,297 65,28 17,2 30,19
Calvar3 =.9 52,36 45,35 85,48 30,27 22,3 35,31
Start 1 =.1 83,31 b 114,56 36,10 22,3 37,16
n=10 n = .001 73,31 46,20 9442 46,20 26,3 42,18
Calvar3 =.9 152,95 ¥ 200,139 54,45 29,4 57,48
Start 1 =.1 128,62 107,54 240,118 70,35 24,3 67,30
n=20 = .001 151,61 * 147,64 83,36 27,8 77,30
GenRose =.9 48,25 49,20 88,55 134,683 61,13 107,48
Start 3 n=.1 71,26 139,84 76,34 163,64 65,11 130,40
n=—25 n = .001 104,28 91,27 104,37 178,51 176,11 157,44
ChaRose n=. 61,28 44,21 40,23 68,36 62,13 07,48
Start 5 n=.1 66,26 45,19 45,17 63,28 458 116,44
n=10 n = .001 92,23 76,20 79,21 01,20 87,12 165,47
KEY

roint - Toint’ sparse quasi-Newton update.

»ras ~ Shanno’s sparse sras update.

brrP — Sparse version of the prr update.

usras - Updating the Cholesky factors of the sy as update ignoring fill-in.

DPD - Direct method for finite-differencing.

QNM - Dense quasi-Newton method.

xX,Yy —~ Number of function evaluations, Number of iterations.

* - Exceeded 2000 function evaluations.

¥ ~ Falled to converge.

NR - Not Run.

Numbaer of Function Evaluations and

TABLE B (continued)

Iterations Required
PROBMLEM /] TOINT Bras Drr UBras DFD QNM
Quadratic n=.9 3,2 3,2 3,2 23,21 3,1 31,30
Start 1 n= 42 4,2 42 4524 8,1 41,20
n=25 = .001 4,2 4,2 4,2 49,24 3,1 41,20
QOR =9 19,12 a7.17 17,11 F 10,1 39,23
Start 1 =.1 23,12 23,12 24,13 F 10,1 21,13
n =750 = .001 25,12 a5,12 a71,13 F 10, 21,13
GOR =.9 74,43 * 56,33 F 374 60,30
Start 1 =.1 88,36 * 84,37 F 304 59,20
n=>50 =.001 126,38 185,67 118,37 F 444 72,20
PSP n=.9 6,4 6,4 6,4 43 10,1 5.4
Start 1 =.1 9,4 9,4 9,4 7.8 10,1 7.3
n =250 = ,001 9.4 9,4 9,4 7.3 10,1 73
C1GOR =.9 422,303 * 541,360 F 638 155,158
Start 1 =.1 587,266 * 645,308 F 585 169,68
n =250 == .001 833,241 * 739,278 F 6845 217,89
TDiagonal n=.9 46,39 44 .34 60,42 F 874 22,20
Start 6 =.1 44,20 Ti1.,32 59,26 F 874 24,9
n =80 = .001 72,27 79,31 17,20 187,58 44,4 26,8
C1Dia7 =.9 4 * 1871,604 F 73,7 92,56
Start 1 n=1.1 * * * 7 585 142,50
n =60 n = .001 * * * F 645 278,49
Trig =9 22,15 23,16 23,16 F 61,6 NR
Start 7 =.]l 290,15 20,15 32,16 F 6286 NR
n = 100 =.001 36,15 36,15 37,16 F 686 NR
KEY

voinr - Toint’' sparse quasi-Newton update.

svas - Shanno’s sparse aras update.

DyYP - Sparse version of the prr update.

usras -~ Updating the Cholesky factors of the sras update ignoring fill-in.

DFD - Direct method for finite-differencing.

QM - Deanse quasi-Newton method.

XYY — Number of function svaluations, Number of iterations.

b -~ Excesded 2000 function evaluations.

F — Failed to converge.

NR - Not Run.

TABLE B (continued)
Number of Function Evaleations and

Iterations Required
PROBLEM n TOINT BFGS DFP usras DYD QNM
Calvarl n=.9 * * 1013,858 220,157 385 101,162
Start 1 n=.1 * * 1502,608 203,89 30,5 290,149
n=2>50 n = .001 * * * 805,153 485 258,88
Calvar2 n=.9 780,301 * 1682,872 107,50 15,2 53,28
Start 1 n=.1 1052,480 * 1067,963 111,54 15,2 54,28
n=>50 n = .001 1119,440 * * 119,52 i1,2 57,328
Calvar3 n=.9 411,342 % 11388,627 128,98 38,5 114,90
Start 1 n=.1 556,354 * 871,408 169,84 31,4 181,50
n =50 n = .001 898,350 * 1365,568 203,85 36,4 154,59
Calvarl =.0 * * * 478,322 45,6 372,208
Start 1 n=.1 * * * g62,323 40,6 384,168
n = 100 n = .001 * * * 813,316 50,5 476,164
Calvar2 n=.9 b * * 109,100 15,2 103,53
Start 1 n=.1 * * b 202,100 15,2 108,53
n =100 n = .001 * . * 218,97 17,2 107,58
Calvar3 n=.9 1383,757 * 243,178 36,5 187,138
Start 1 n=.1 1T754,721 * * 308,158 31,4 208,07
n = 100 n = .001 * * * 381,154 38,4 258,97
Calvar2 n=. F NR * 300,216 8,1 NR
Start 2 n=.1 # NR * 468,235 8,1 NR
n = 200 n = .001 * NR ¥ 464,212 9,1 NR
Calvar3 n=.9 * NR * 893,583 113,14 NR
Start 4 n=.1 * NR * 1002,52¢ 135,15 NR
n = 200 n = .001 * NR ¥ 1164,512 140,14 NR
KEY

roint -~ Toint’ sparse quasi-Newton update.

BraGs — Bhanno’s sparse sras update.

Dyr — Bparse version of the prr update.

usras - Updating the Cholesky factors of the sras update ignoring fill-in.

DYD - Direct method for finite-differencing.

QNM - Dense quasi-Newton method.

xX,5Y - Number of function svaluations, Number of iterations.

* — Exceeded 2000 function evaluations.

F —~ Failed to converge.

NR -

Not Run.

APPENDIX C
C.1 Test Problems

For the purpose of comparing the algorithms described in Section 7.2, test
problems ranging in size from dimension 10 to dimension 500 were used. The
problems tested are described below. The following notation will be used in the
rest of the paper.

Ng — Number of nonzeros below the diagonal of the Hessian matrix.
N, — Number of nonseros below the unit diagonal of the lower-triangular
Cholesky factor.

Ngp - Number of groups used to obtain the finite difference approximation
to the Hessian by the Powell-Toint direct method (Algorithm D in
Thapa, 1980).
Test Function 1. GenRose (Gill and Murray, 1979b)
This is a generalization of the well known two-dimensional Rosenbrock
function (Rosenbrock, 1960)

f(z) =1+ (100(z; — z2_,)* + (1 — 2.)).
=2

The Hessiazn matrix is tridiagonal and
Ng=n—1, N.=n—1,

Test Function 2. ChaRose (Toint, 1978)

25
1) =1+ (4aulzims — 1) + (1 — 2)?),
=2
This is a modification and generalization of the well known two-dimensional
Rosenbrock function (Rosenbrock, 1960) where the constants a; are given by
Toint (1978). The Hessian matrix is tridiagonal and

NG = 24, NL = 24,
NGD = 3.
Test Function 3. QOR (Toint, 1978)

50 33 2
f(z) = ZmHZp‘(df— PETE DD z,-))

i1 fm=1 JEA(Y) JEB(f)
where the constants a;, f;, d; and the sets A(s), B(¢) are described by Toint
(1978). The function is convex with a sparse Hessian matrix and

Ng =115, N, = 389,
Ngp = 8.

Test Function 4. GOR (Toint, 1978)

50 33
f(z) = Z C.‘(Zi) + Z b‘(v‘)!
foc] i=1
Where log,(1 + z5) 20
(o Jaizilog (1 + z3), £ =
ei(z:) = {—a.-z,- log,(1+2), 2:<0,
wmdi— X nt ¥
FEA(Y) JEB(Y)
and

bilys) = {ﬂ.-v? log(t +v), 920,

ﬂc‘!l.a: yi < 0.
The constants a;, §:, d; and the sets A(f), B(¢) are the same as for QOR. The
function is convex but has discontinuous second derivations. The Hessian matrix

has the same sparsity pattern as the Hessian matrix for QOR. The quantities
Ng, N, and Ngp are the same as for QOR.

Test Function 5. PSP (Toint, 1978)

50 83
1(2) =) aiz:—5P + Y Bihils),

t=1 s=1

where

yi = di — E z; + Z 3,

JEA() JEB()

N [y yi 2 0.1,
hi(ys) = {100(0.1 — yi) + 10, yi < 0.1,

The constants a;, §;, d; and the sets A(f), B(s) are the same as for QOR. The
Hessian matrix has the same sparsity pattern as the Hessian matrix for QOR.
The quantities Ng, N1, and Ngp are the same as for QOR.

Test Function 6. Quadratic (Gill and Murray)

1m=1y: (%’)(z.- — 13,

=1

gt

where g is a constant. The function is convex with a diagonal Hessian matrix
that is ill-conditioned and

NG = 0, NL = 0’
Ngp = 1.

T ——

The next three functions are similar to those that arise in the numerical solution
of optimal control problems. The general continuous problem is of the form 1

1
minJ(elt) = | 1t 50,20 a,

subject to the boundary conditions £(0) = a, (1) = b. These problems are
known as calculus of variations problems. A numerical procedure to solve these
problems is to discretize them. The first three functions described below are
discretized by expressing z(t) as a linear sum of functions that span the space of
piecewise cubic polynomials. This gives rise to a function with a block triangular
Hessian matrix.

Test Function 7. Calvar (Gill and Murray, 1973)

1
J(z(t)) = /o {:t:(t)2 + 2'(t)tan™? 2'(t) — log(1 + 2’ (t)’)*} dt,

with the boundary conditions z(0) = 1, (1) = 2. The Hessian matrix is block
tridiagonal and

Ng = —5+42.5n, N, =Ng,
Ngp = 6.

Test Function 8. Calvar2 (Gill and Murray, 1973)

I(=(t)) = /01 {mo(z(t) — 207 +(1— z'(t))’} at,

with the boundary conditions £(0) = z(1) = 0. The Hessian matrix is block
tridiagonal and

Ng = —5+42.5n, N, =Ng,
Ngp =8.

Test Function 9. Calvar3 (Gill and Murray, 1973)

o) = [oot p —) e

with the boundary conditions z(0) = 1, £(1) = 0. The Hessian matrix is block
tridiagonal and

NG =54 2.5n, NL = Na,
Ngp = 6.

Test Function 10. 7-Diagonal (Toint, 1978)
This is a modified version of the function described in Toint’s paper.

Let 0 20
Hz2)= Y- lpd¥ + =i + ziqaol¥;

then =t =t
) 60
1@) = flz) + 3 (2 —5)%,
where =t

z
= —(3 — —21-)31 + 222 -1,
Zg .
Yi = 2Zi— —-(3-— ?)z¢+2zi+1 —1 ¢=2,...,n,
= 259 — (3 — 280\ zqo —
Yeo = Zso (3 2)z.o 1.
The Hessian matrix has the pattern shown in Toint(1978) and

Ng = 147, N = 957,
Ngp = 8.

Test Function 11. Trigonometric (Toint, 1978)

This is a modification of the function suggested by Toint. The modification
guarantees that the same minimum is found by all the algorithms if the same
starting point is used.

Choose a set of pairs of indices J = {(¢,5) | 1 <i<n,and1 < j <4}

Let)
fg)=) agsinlfiz; + Bizi+ cijl;

(5.9)es
then “
1(z) = f(2) + Y (2 — 502,
=1
where '
a;; = 5[1 4 mod(¢, 5) + mod(j, 5)],
.1
pl' =1 + 'E:
G+
Cij = 10 .
The Hessian matrix has its pattern defined by the set J and
Ng = 268, N, =1212,

Ngp = 9.

TP

e ———Ty -

Test Fuunction 12. C1IGOR

This is a combination of the Calvarl (Test Function 7) and GOR (Test
Function 4) with n = 50. That is,

f(z) = fgoR + /Calvar1:

The Hessian matrix has a pattern that is a combination of the patterns of GOR
and the 1st calculus of variations and

Ng = 163, N =393,
Ngp = 9.

Test Function 13. C1DIA7

This is a combination of Calvarl (Test function 7) and the 7-diagonal func-
tion (Test function 11) for n = 60. That is,

7(2) = fcalvar1 + /7-Disgonal-

The Hessian matrix has a pattern that is a combination of the patterns of the
1st calculus of variations and the 7 diagonal function; and

N¢ = 175, N = 970,
Nep = 9.

C.2 Starting Points

The starting points used are as follows.

Start 2

Start 3

Start 4

Start 5

Start 6

Start 7

2o = (0,0,...,0,0)T.

S (S B
n+1' n+1 n+1

zo = (—1.2,1,—1.2,1,1,1,...)T.

g0 = (—1.2,1,—1.2,1,—1.2,1,...)T.
0 =(1,—-1,1,—1,1,—1,...)T.

zo = (—1,—1,—1,...)T.

20 =1(1,1,1,...) .

34

References

Davidon, W. C. (1959). Variable metric methods for minimisation, A. E. C. Res.
and Develop. Report ANL-5990, Argonne National Laboratory.

Dembo, R. S., Eisenstat, S. C., and Steihaug, T. (1980). Inexact Newton
Methods, Technical Report (Series 47), School of Organization and Man-
agement, Yale University.

Dennis, J. E. and Moré, J. J. (1977). Quasi-Newton methods, motivation and
theory, SIAM Review 19, pp. 46-89.

Dennis, J. E., Jr. and Schnabel, R. B. (1978). Least change secant update
for quasi-Newton methods, Technical Report (TR78-344), Department of
Computer Science, Cornell University, Ithaca, New York 14853.

Fletcher, R. and Powell, M. J. D. (1973). A rapidly convergent descent method
for minimization, Computer J. 6, pp. 163-168.

Gill, P.E., Golub, G. H., Murray, W. and Saunders, M. (1974). Modifying matrix
factorisations, Math. Comp. 28, pp. 504-535.

Gill, P. E. and Murray, W. (1973). “The numerical solution of a problem in the
calculus of variations”, in Recent Mathematical Developments in Control
(D. J. Bell, ed.), pp. 97-122, Academic Press, London and New York.

Gill, P. E. and Murray, W. (1979a). “Performance evaluation for nonlinear
optimization®, in Performance Evaluation for Numerical Software (L.. Fosdick,
ed.), North-Holland.

Gill, P. E. and Murray, W. (1979b). Conjugate-gradient methods for large-
scale nonlinear optimization, Report SOL 79-15, Department of Operations
Research, Stanford University.

Gill, P. E., Murray, W., Saunders M. A. and Wright M. H. (1979). Two step-
length algorithms for numerical optimization, Report SOL 79-25, Depart-
ment of Operations Research, Stanford University.

Gill, P. E., Murray, W., and Wright, M. H. (1981). Practical Opimisation,
Academic Press, London and New York.

Levenberg, K. (1944). A method for the solution of certain problems in least-
squares, Quart. Appl. Math. 2, pp. 164-168.

Marquardt, D. (1963). An algorithm for least-squares estimation of nonlinear

e

parameters, SIAM J. Appl. Math. 11, pp. 431-441.

Marwill, E. S. (1978). Exploiting sparsity in Newton-like methods, PhD Thesis,
Cornell University, Ithaca, New York 14853.

Powell, M. J. D. (1979). Quasi-Newton formulae for sparse second derivative
matrices, Internal Report DAMTP 1979/NAT, Dept. of Applied Math. and
Theoretical Physics, University of Cambridge, England.

Powell, M. J. D. and Toint, Ph. L. (1979). On the Estimation of sparse Hessian
matrices, Siam J. Numerical Analysis 16, pp. 1060-1073.

Rosenbrock, H. H. (1960). An automatic method for finding the greatest or least
value of a function, Comput. J. 8, pp. 175-184.

Schubert, L. K. (1970). Modification of a quasi-Newton method for nonlinear
equations, Math. Comp. 24, pp. 27-30.

Shanno, D. F. (1980). On variable metric methods for sparse Hessians, Math.
Comp.. 34, pp. 499-514.

Sorensen, D. C. (1980). Newton’s Method with a Trust-Region Modification,
Technical Report (ANL-80-106), Argonne National Laboratory, 9700 South
Cass Avenue, Argonne, Illinois 60439.

Steihaug T. (1980). Quasi-Newton Methods for Large Scale Nonlinear Problems,
Technical Report (Series 49), School of Organization and Management, Yale
University.

Thapa, M. N. (1980). Optimisation of Unconstrained Functions with Sparse
Hessian Matrices, PhD Thesis, Dept. of Operations Research, Stanford
University, Stanford, California 94305.

Toint, P. L. (1977). On sparse and symmetric matrix updating subject to a linear
equation, Math. Comp. 31, pp. 954-961.

Toint, P. L. (1978). Some numerical results using a sparse matrix updating
formula in unconstrained optimization, Math. Comp. 32, pp. 839-851.

Toint, P. L. (1979a). On the superlinear convergence of an algorithm for solving
a sparse minimisation problem, Siam J. Numer Anal. 16, pp. 1036-1045.

Toint, P. L. (1979b). A note about sparsity exploiting quasi-Newton Updates,
Technical 79/5, Department of Mathematics, Facultés, Universitaires de
Namur, Rampart de la Vierge 8, B-5000 Namur, Belgium.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When M&m‘ .
REPORT DOCUMENTATION PAGE BEF oL o o
T, REPORT NUMBER 2. GOVY ACCESSION MO 5. RECIPIENT'S CATALOG NUMBER
SOL 81-12 7\16&0&@
4. TITLE (and Swubtitie) 5. TYPE OF REPORT & PERIOD COVERED

b e

OPTIMIZATION OF UNCONSTRAINED FUNCTIONS WITH Technical Report
SPARSE HESSIAN MATRICES--QUASI-NEWTON METHODS 6. PERFORMING ORG. REFORYT NUMBER i

7. AUTHOR(®) T CONTYRACT OR GRANT NUMBER(s)
Mukund N. Thapa N00014-75-C-0267
3. PERFORMING ORGANIZATION NAME AND ADDRESS o, RRCGRAN | i.; %zrftnl:‘c:‘o‘vtlgi TASK
Department of Operations Research - SOL
Stanford University NR-047-143
Stanford, CA 94305
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Office of Naval Research - Dept. of the Navy August 1981
800 N, Quincy Street 13. NUMBER OF PAGES
Arlington, VA 22217 35
TT. MONITORING AGENCY NAME & ADDRESS(I{ dilfsrent from Controlling Office) | 15. SECURITY CLASS. (of this repert)
UNCLASSIFIED
Sa. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

76. DISTRIBUTION STATEMENT (of this Report)

This document has been approved for public release and sale;
its distribution is unlimited.

7. DISTRISUTION STATEMENT (of the abstract entered in Block 20, if different from Repert)

T e ¥ T

[
10. SUPPLEMENTARY NOTES ,

19. KEY WORDS (Continue on reverse side if necessary and identify by block mmmber)

unconstrained Cholesky
quasi-Newton positive-definite
sparse superlinear
numerical
20. ABSTRACT (Continue on oo alde It y and identify by block number)
SEE ATTACHED

w . :2:.73 "‘73 Z0ITION OF 1 NOV 68 IS OBSOLETE

ettt —— e i ettt
SECURITY CLASSIFICATION OF THIS SAGE (When Data Bntered)

4

SECURITY CLASSIPICATION OF THIS PAGE(When Data Entered)

soL 81-12: OPTIMIZATION OF UNCONSTRAINED FUNCTIONS WITH SPARSE
HESSIAN MATRICES -- QUASI-NEWTON METHODS; by M.N., Thapa

Newton-type methods and quasi-Newton methods have proven to be very
successful In solving dense unconstrained optimization problems.
Recently there has been considerable interest in extending these
methods to solving large problems when the Hessian matrix has a known
a priori sparsity pattern. This paper treats sparse quasi-Newton}
methods in a uniform fashion and shows the effect of loss of
positive-definiteness in generating updates. These sparse
quasi-Newton methods coupled with a modified Cholesky factorization to
take into account the loss of positive-definiteness when solving the
linear systems assoclated with these methods were tested on a large
set of problems. The overall conclusions are that these methods
perform poorly in general -- the Hessian matrix becomes indefinite
even close to the solution and superlinear convergence is not observed
in practice.

SECURITY CLASBIFICATION OF Twit pAGR(WNe:. »fe Entered)

