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1. Introduction

The author [9] previously developed and evaluated some heuristic

vrocedures for seeking a good approximate solution of any pure integer

-, , - j., -

linear programming problemA

n
maximize x = c.x. ,

0 j=!

subject to

n
a. .x. < b. (i = 1,2, ... , m)

j=-

x. is a nonnegative integer (j = 1,2, n)

J

having no implicit or explicit equality constraints.- It was found that

the procedures are extremely efficient, being computationally feasible

for problems having hundreds of variables and constraints. Furthermore,

they proved to be very effective in identifying good solutions, often

obtaining optimal ones. Thus, the procedures provide a way of dealing

with the frequently encountered integer programming problems that are

beyond the computational capability of existing algoritbms. For smaller

problems, they also provide an advanced start for accelerating certain

priral algorithms, including the author's Bound-and-Scan algorithm 44-42-

and Faaland and Hillier's Accelerated Bo';nd-and-Scan algorithm.F4- i -

In addition, Jeroslow and Smith + have found that imbc..ding the first part

of one of these procedures inside the iterative step of a branch-and-bound

algorithm can greatly improve the latter's efficiency in locating solutions

whose objective function value is within a specified percentage of that for

the optimal solution.
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All of the procedures use the same general three-phane approach,

which can be described conceptually as follows. Phaze 1 identifies a

general region within which to explore for good fea:sible solutions by

finding (1) the optimal noninteger solution by the simplex method, and

(2) a second point well into (or beyond) the feasible region. Phase 2

then conducts this exploration by slowly moving along the line segment

from this first point to the second while searching nearby for a feasible

(integer) solution. Phase 5 attempts to move from the feasible solution

obtained to a succession of better ones. The final solution obtained

is the desired approximate solution. If it is crucial to increase the

probability of obtaining an optimal solution, one can continue by identi-

fying many good feasible solutions in Phase 2 and then applying Phase 3 to

each of them, thereby yielding multiple final solutions from which to choose.

The previous paper (93 presents alternative methods for conducting each

of these phases, thereby yielding 36 distinct overall procedures. (These

procedures are labeled x-y-z to indicate that Methods x, y and z are to

be used in Phases 1, 2 and 3, respectively.) A program of computational exper-

imentation identified four types of procedures (1-2-1, 2-2-1, 1-3-1, and 2-3-1)

that appear to be substantially better than the others, but this experimentation

was unsuccessful in detecting significant differences among the four. Further-

more, only tentative conclusions can be drawn in comparing the four alternative

criteria (A, B, C, and D) for conducting a certain test in Phase 2. Thus, 16

distinct procedures (1-2i-1, 2-2i-1, 1-3i-1, and 2-3i-1 for i = A,B,C,D)

still await definitive comparison. Another question of this study which was

only partially answered concerns the best way in which to generate multiple

solutions.

The present paper has two main purposes. One is to briefly present

some promising new methods for conducting each of the three phases.
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This is done in the next three sections. The second objective is to

address some unanswered questions mentioned above (and outlined in more

detail in the last section of [9 ]) in the broader context of these new

procedures. Thus, a comprehensive testing program has been conducted

to further evaluate and compare the best of the old procedures with the

new ones presented here. Procedures for generating multiple solutions also

are discussed and tested. The test results and conclusions are presented

in the final three sections and the appendix.

Various other investigations also have proposed heuristic algorithms

for integer programming in recent years. These include Reiter and Rice [14],

Echols and Cooper (2], Senju and Toyoda [16], Roth [15], Kochenberger, McCarl

and Wyman [13],Toyoda [17], Balas and Martin [1], and Glover [5]. Also of

particular interest here is the heuristic algorithm of Ibaraki, Ohashi, and

Mine [10], which extends (with some modification) the author's original

heuristic procedures [9] to mixed integer programming. (See Section 9 for a

comparison of this algorithm with the procedures proposed here.) In addition,

Faaland and Hillier [3] have extended the analysis and development of Phase 1

methods considerably beyond the present paper.

For the sake of brevity, the presentation here will not repeat most

of the relevant material from [9], so the reader is advised to first read

this earlier paper and to keep it available for reference purposes as he

proceeds through the following.

2. A Multiple Solution Approach to Phase 1

It would sometimes be worthwhile to take the time to generate multiple

final solutions in order to try to impnrcve upon the initial one obtained after

completing all three phases once. As mentioned above, one method of doing this,

based on repeated applications of Phase 2, is presented in [9]. Another approach

described below is based instead on repeated applications of Phase 1.

3E
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This approach involves generating a sequence of distinct pairs of

(1) (2) M~
points, x and x Recall that the original x is just an

optimal solution to the problem without the integer restriction, as

obtaine. by the simplex method. Each new x is then obtained directly

from this one by choosing an adjacent extreme point in the polyhedral set

of feasible solutions for this linear programming problem. This adjacent

extreme point is obtained simply by performing a single pivot from the

optimal basis. The method used here for choosing the sequence of adjacent

extreme points is based on the size of the simplex multipliers (i.e., reduced costs).

Thus, the first pivot is performed on the nonbasic variable having the

smallest (negative) simplex multiplier, the second on the one having the

second smallest multiplier, etc. This process was stopped after obtaining

a preassigned number of new values of x (, which was taken to be five

for the computational experimentation. (Note that another alternative would

be to examine all of the adjacent extreme points and then choose the five

best ones according to their objective function value.)

(1)
For each x ( the chosen Phase 1 method would be used to obtain

(2)
the corresponding Value of x in the usual way. Connecting these

two points prcvides a line segment which is completely distinct from

the original one, but which still passes through a promising region for

searching for a good feasible solution. Therefore, Phase 2 and then

Phase 3 would be applied just as before with respect to the new x(1)

and x (2) in order to obtain the new final solution. Doing this in

turn with each new pair of such points provides the desired multiple solu-

tions, from which the best one would be chosen as the solution to use.

A very desirable characteristic of any method of generating multiple

volutions would be that each new solution generated have a relatively

'__ .,,, . ... . . .- i -,.. I " *-..



high probability of being distinct from the preceding ones while still

tending to have an objective function value that is at least close to and

sometimes is better than that for the initial final solution. The fact that

the original method frequently merely regenerated a previous final solution

was a major motivation for developing the new approach described above.

It was anticipated that having the Phase 2 search proceed from a distinct

new line segment rather than merely moving further down the same segment

might increase the chances of obtaining a distinct final solution that

was still a good one.

This new approach will be designated by inserting an R (for "Repeat")

before the number of the method being used for each application of Phase 1.

Similarly, the original approach wil be designated by inserting an R

before the number of the method being used for each application of Phase 2.

For example, the labeling for using procedure l-2A-! to generate multiple i.
solutions by the new and original approaches would be Rl-2A-l and l-R2A-I,

respectively.

3- New Criteria in Phase 2

Recall that Methods 2 and 3 of Phase 2 involve iteratively moving

from one infeasible integer solution to another which is "less infeasible'

in a certain sense (or, if such an improvement is not possible, beginning

another cycle of such iterations with a new starting solution). Each

such move involves changing one variable by +1. Four different criteria

for choosing the variable to be changed were presented. Criteria A and

B focus exclusively on the constraints, and thereby would seem to run

o-e risk of leading to a feasible solution with a relatively poor value

of the objective function. On the other hand, criteria C and D give

-onsiderable weight to the objective function, but in a way that sometimes

5
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gives preference to moves that point above rather than toward the feasible

region, which would seem to increase the risk of overlooking feasible

solutions subsequently. This analysis would suggest that a compromise

between these two types of criteria might be appropriate. One such com-

promise is described below.

Using the notation and terminology of [9], the new criterion defines

the "improvement" from changing the value of a variable x. as

p = -6q + c! Ax.
3 3

where c! is the normalized value of c. and x. -is the change in
J J 3

x.. Thus., this is just the definition used for criteria A and B (p =
j

except for adding a term reflecting the effect of the change on the objective

function. In the case of criterion A, where the first definition of q

is used, this added term has a very natural interpretation. In particular,

suppose that a lower bound b on an acceptable value of the objective0

function is introduced explicitly as a constraint, cx > b and that

b exceeds the value x attained by the current solution both before0 0

and after the change in x . Then the resulting criterion A definition

of p coincides exactly with the new definition given above. Thus,

in effect, the new criterion encourages large moves toward the feasible

region (as with criteria A and B) but with a modified interpretation

of feasibility that particularly encourages movement toward the most

attractive portion of the feasible region (as with criteria C and D).

The mechanics of applying the new criterion are to proceed through

Phase 2 exactly as if criterion A or B were being used (Iepending on

6



which definition of q is adopted) excc:t when there are no qt < 0

and part (c) of Step 8 is entered, in '.,hich case merely substitute the

nw definition of p for each p. to Te *alculated. Since the results of

computational testing distinctly favor criterion A over criterion B (see

Sections 5 and 6), only the first definition of q (the one used by criterion

A) was used with the new criterion, and this version will be called criterion E.

It should be noted that there also are variations of this criterion

that conceivably could be slightly better. For example, a factor other

than one :-ould be used for the new term in order to give a different

relative weighting between the constraints and objective function, or

the new term could be deleted when it is positive (effectively setting

b equal to x before changing a variable), etc.

Another viewpoint is that it is really combinations of moves that

are particularly important in moving expeditiously to a good feasible

solution. Therefore, any move that yields an improvement should be taken

immediately rather than wasting time by identifying and comparing all

possible improving moves for this iteration. Other such moves that are

truly worthwhile should still be available for subsequent iterations.

Furthermore, when the nimber of variables is large, this approach may

greatly reduce the time required to exec- ite Pha-se 2 without significantly

sacrificing effectiveness.

When the first definition of a is used, this streamlined approach

i:ll be designated as criterion S. It is applied by executing Phase 2

essentially as with criterion A (or C) except that Steps 7 and 8 are

bypassed. Instead, as soon as a at such that qt < q is found in
- Cl

Step 6S, the iteration is terminated ioL-neiiately by setting k equal to



this j and going to Step 9. On the next iteration, Step 6 would resume

from where it had left off, calculating (as necessary) *+., q* .. q '

,,q in this order. If there are no at such that qt < q on a

given iteration, then one goes to Step 10.

4. New Methods for Phase 3

A drawback of the current methods for Phase 3 is that, at each iter-

ation, one attempts to identify a better (feasible) solution only by

considering certain ways of changing either one or two variables in the

current solution. It sometimes is necessary to change many variables in

order to reach a better solution. However, it clearly would be.:ompu-

tationally infeasible for problems of significant size to systematically

consider all ways of changing several variables simultaneously. Therefore,

what is needed are methods that will efficiently consider only promising

ways of changing many variables.

As suggested by Ibaraki et al [10], one approach of this kind would

be to use a search similar to that employed in Phase 2. Recall that

the Phase 2 search allows making many promising variable changes in suc-

cession in an attempt to eventually reach the solution of interest, namely,

a good feasible solution. Essentially the same method also could be used

in Phase 3 in an attempt to eventually reach the solution of interest

there, namely, a better feasible solution than the best one found thus

far. Thus, one would deliberately move from the current best feasible

solution out of the feasible region, and then try to move through a suc-

cession of infeasible (integer) solutions that seem to be progressing

toward a better feasible solution (if one exists).

8



i',' .;.'methois for Phase 5 (:.ethod: , h, and . tI'.t are based

-r. -- 'ch are presented oe. 3iven the -urrent best

" • t,.fl x(L ) and its objecti-.e f'unution value x cx
0 -

-.' initiate the search :-rccc Jure ment ion-.. ea-bove by intro-

22ig a nw :-4cn:traint, cx > bo , where b 0 = x .- This has

th effect of maki:g x(L) infeasible and reducing the feasible region

soa that it includes only better feasible solutions (if any). Thus, the

gcai becomes to reach some integer solution in this reduced feasible

r 2- ion.

I7ethods 5 and 4 go through n cycles to search for a better solution.

Each cycle begins by changing one variable (call it x ) in the solution

x (  y either plus one (if ck > O) or minus one (if c k < 0). Thus,

the n cycles correspond to setting k = 1, 2, . , n in turn. This

first step in each cycle has the effect of giving a new solution which

usuall, is substantially further away from the reduced feasible region.

The remaining part of the cycle then consists of essentially applying

Stzs -through 9 ofhase 2 with Iis new solution as the starting point.

(Criterion A always was used for doing this in the computational testing since

criteria E and S had not yet been developed at this stage of the testing program.)

The only changes that need to be made in Steps 4-0 are the folloing.

First, the new objective function constraint is treated just like the

other functional constraints (after making the obvious conversions n format

and notation), so i effectively runs from 0 to m. Second, additional

changes in xk are not allowed so j / k throughout. Third, having

n= in Ste -3 terminates the cycle, in which -ase reset k = k + 1

his asu mes that all of the c. are integers; otherwise, set b

.(L) E where E is an extremely small positive constant.
0



and start the next cycle (if k < n).

The entire Method 3 consists of Parts I and II of Method 1 (which

obtain all possible improvements by changing only one variable at a time)

plus the above procedure as a replacement for Parts

III to VII (which investigate certain ways of changing two variables

simulaneouly).(L)
simultaneously) Thus, after completing Part II, set x x and

go into the above search procedure. If a better feasible solution is

found (i.e., q < 0 in Step 5 for some iteration of some cycle), then

immediately restart Phase 3 at the beginning of Part II with this new

solution. However, if the search procedure goes through all n cycles

without finding a-better feasible solution (perhaps on a later t-me through),

then Phase 3 terminates with the current x(L ) as the desired approximate

solution.

Method 4 differs from Method 3 only in that all of the original

Phase 3 (Method 1) is completed before entering the above search procedure.

(This holds on both the first time and subsequent tines through the overall

process.) Thus, Method L is guaranteed to do at least as well as Method 1

in obtaining a good final solution, but it may require substantially more

time than Method I without a significant increase in effectiveness.

A serious drawback of the search procedure used by both Methods 3
2

and 4 is that it requires more than some multiple of mn2 elementary

operations, so that the time required grows rapidly with the size of the

problem (more so than the rest of the procedure). Therefore, M,4ethod 5

modifies Method 4 by streamlining the search procedure. In particular,

rather than n cycles, there is only one. Furthermore, no change is

made in x(L ) before starting the modified Steps 4 to 9 of Phase 2.

10



"n order to avoid thereby terminating irmediately because no "improvement"

pcssible, Steps 7 and 8 are replaced by the foilowing. Calculate

Pip P' " p in the usual way. (Again, criterion A was used for these

calculations in the testing program.) Set k equal to a value such that

p = max pi., regardless of whether this maximum is positive or not, and

then go to Step 9. Thus, at each iteration, the variable is changed which

has the best effect on the "infeasibility" q, even though it may actually

increase q. As a result, some drifting away from the reduced feasible

se- may occur before the search can (hopefully) home in on an improved

feasible solution. To avoid drifting indefinitely, an upper limit is

:mpcsed on the number of iterations, which was taken to be 100 for ourposes

of zomoutational testing. Another danger of eliminating the requirement

that a must be strictly reduced at each iteration is that it is then

possible to begin cycling, whereby the same sequence of solutions is

repeated ad infinitum. One inexpensive way to lesson the risk of this

occurring is to impose the restriction that a variable change cannot be

reversed within a certain number of iterations (taken to be five for

computational testing).

Because of its ability to drift, it is conceivable that Method 5

actually would be more effective than Methods 3 and 4 in reaching a better

feasible solution that requires changes in many variables.

Description of Test Problems

As described previously by the author [9], some 38 test problems

-ere used to evaluate his original heuristic procedures. Most of these

were Type I and Type II problems as described in Table I, where the

resnective parameters are integers randomly generated (using the mixed

congruential method) from a (discretized) uniform distribution over the

indicated interval. The Type I problems are intended to be difficult

11
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problems that should be particularly challenging for the heuristic procedures

since there is no exploitable special structure, the coefficient matrix is

completely dense, feasible solutions are relatively difficult to identify,

and the variables have a wide range of values to be considered. Thus, these

problems should be exceptionally effective in revealing any significant

differences in the effectiveness of alternative procedures. The Type II

problems are intended to be representative of the multidimensional knapsack

problems (all coefficients nonnegative) frequently found in practice. See

[8] for a listing of these original test problems of both types (except those

larger than 30 x 30).

TABLE I

DESCRIPTION OF THE RANDOMLY GEEPATED TEST PROBLEMS

Problem Type

Parameter I la Ic II

c. [-20,79] Type I Type I [0,99]

a.. [-40,59] except except [O, 99]

b. [500,999] P(aij = ) P(c = O) 3 [1000,1999]

Eighteen of these original Type I and Type H1 problems were used

again to test the. new methods presented in the preceding sections. These

consisted of the 16 problems with m = 15, n = 15 for which the standard-of-

comparison procedure (1-2A-1) definitely did not obtain an optimal solution

(namely, problems 1-2 through I-8 and 11-1,3,4,7,9,11,13,14,15) plus two

larger problems for which the optimal solution is unknown (11-16, which is

30 x 30, and the 30 X 60 "Large" Type I problem, labeled 1-9 here).

In addition, 4O new test problems with m = 10, n = 20 were generated

at the outset. These include 20 ordinary Type I problems (labeled I-101

through 1-120), plus 10 Type Ia problems (Ia-i to ia-lO) and 10 Type Ic

problems (Ic-i to Ic-10) as described in Table I. Specifically, for Ia

12



5.
problems, each aij was assigned a value of zero with probability E,

if this event did not occur, then it was assigned a randomly generated

integer (possibly zero) from the interval [-40,59] in the usual way.

For Ic problems, the c. parameters were generated in an analogous vay.

Since "low density" proble.3 (particularLy with respect to the a..) are

co!:,monly observed in practice, these la and Ic problems were intended

to check on the effect of this factor. No additional Type II problems were

generated since these had proven to be far less challenging (i.e., the

solutions obtained tended to be far closer to being optimal) than the Type I

problems for the original procedures. (None of the original Type III problems

were used for the same reason.)

Finally, to avoid complete reliance on randomly generated problems,

use was made of the nine IBM problems presented by Haldi [6] and reproduced

by Trauth and Woolsey [18]. (None of Haldi's other test problems were used since,

as reported in [9], two of the most difficult ones had presented little challenge

to the heuristic procedures in previous testing.)

It should be noted that all 67 of these test problems are relatively small

ones compared to the sizes that would be computationally feasible for the

heuristic procedures. The two reasons for doing this were to preserve a fairly

limited computer budget and to permit identifying an optimal solution with an

exact algorithm for most cases. The emphasis in this testing program was on

evaluating the effectiveness of the procedures, as measured by the normalized

deviation from optimality (defined below). Some information also was obtained

on their efficiency, but no attempt was made to test their limits of computational

feasibility.

All testing was done on an IBM-360/67 computer, using FORTRAN codes.

Documentation of the code for the original procedures is available in a separate

report [1i].

13
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6. Evaluation of Some Original Procedures and the Phase 2 Criteria

6.1. Test Results

The experimentation program began by dealing with the old unresolved

question of which basic type of procedure (from among 1-2-1, 2-2-1, 1-3-1,

and 2-3-1), in conjunction with which Phase 2 criterion (A, B, C, D, plus

the new E and S), is best. Thus, 24 distinct procedures were to be con-

sidered. Since these procedures (except with the new Phase 2 criteria)

already had been applied (see Table II in [9]) to the 18 old test problems

(except for 1-9), all 24 now were individually run on just the 49 new test

problems plus 1-9.

On 21 of these 50 problems, the same final solution was obtained by

all 2h procedures. The results for the other 29 problems are shown in

Table II. For each problem, this table compares the final solution obtained

by each procedure (identified partially by the footnotes to the table) with the

best solution obtained by any of the 24 procedures, expressed in terms of the

normalized differences in their objective function values. Specifically, if

B
x denotes the objective function value of this best value, then the normalized

0

deviation of a given solution with objective function value x from this

best solution is

1

normalized deviation = (xB - x)/( cfj

so that this normalized deviation is just the Euclidean distance between

the hyperplanes,

n n

Cjj= XB and cxj =x
5 cxi x d cxi
j=1 ~ j=l

(When the optimal solution is known, substituting its objective function

B
value for x0  in the above expression yields the normalized deviation from

optimality, which is the quantity used in several of the subsequent tables.)

14



For many of the problems, the four basic types of procedures obtained

the same final solution for a given Phase 2 criterion, in which case the

resulting normalized deviation is listed singly in the table. When these

procedures obtained different solutions, the resulting normalized deviations

are listed separately with footnotes identifying the procedures involved.

The average normalized deviation for each procedure is given at the bottom

of the table, where this average first excludes just IBM-7 (since criteria

A, B, and D failed to find any feasible solution for this problem) and

next excludes both IBM-7 and IBM-8 (since the IBM-8 results were dominating

the first average).

Since the results shown in Table II were inconclusive in identifying

the best procedure, a supplementary experimental program involving 240

additional test problems was undertaken subsequently, as described in the

appendix.

In addition to the information in Table II, various other performance

data also were gathered for the 50 test problems. Since these data tend

to vary with problem size, they are summarized on an average basis in

Table III for just the 40 problems where m = 10, n = 20. The last three

columns give a grand average over all six Phase 2 criteria for the indicated

basic type of procedure, expressed as an increment over the corresponding

grand average for the 1-2-1 procedure. Letting

x = (l-a)x (1) + a (2)

the first set of rows refers to the value of a at which a feasible solu-

tion is found during the subsequent Phase 2 search. The next set of rows

refers to the number of points (excluding x(l)) on this line segment

15
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between x(I) and x(2) that are used to launch a Phase 2 search until

this feasible solution is found. The number of "trial solutions" refers

to solutions that are generated during these Phase 2 searches (Step 9)

as possible feasible solutions, excluding rounded solutions from the

B
line segment. Normalized deviation is defined just as above, with x

0

now replaced by the objective function value for x The two modes

of search used in Method 1 of Phase 5 involve charging just one variable

at a time (Part II) and then changing pairs of variables simultaneously.

Thus, "Normalized improvement, first time in Part II of Phase 3" shows

the decrease in normalized deviation from x(! ) that would result if

only the first mode of search were used to improve upon the original

feasible solution, whereas the next set of rows shows the additional

improvement from using the full Phase 3. "Total time for procedure"

consists of the total CPU time (in seconds) for the entire heuristic procedure

except the time required by the simplex method to obtain x (I) (which may be

several times as large a. for the heuristic procedure). No special provisions

were made for controlling timing variability on the computer, so the times

obtained for individual problems may have a substantial variance due solely to

this factor, although the corresponding variance for the average times over 40

problems recorded in Table III would be very much smaller.

6.2. Comparison of Basic Types of Procedures

Tables II, III, IX, and X (see the appendix) provide the primary

basis for comparing the four basic types of procedures, 1-2-1, 1-3-1,

2-2-1, and 2-3-1. These rather extensive results fail to reveal any

significant differences in the effectiveness of 1-2-1, 1-3-1, and 2-5-1

23



as measured by the normalized deviation from the best solution. However,

they do show 2-2-1 rather consistently lagging behind the other three on the

average (see, in particular, the averages given at the bottom of Tables II, IX

and X). Furthermore, the time comparison in Table III indicates that 2-2-1 has

far too slight an advantage in efficiency to be able to compensate in this way

for these substantial differences in effectiveness.

Some of the details in Table III may provide an exr. tior for the

relatively weak performance of 2-2-1. ,ote that the average "X .ber of

points tried until a feasible solution is found" for 2-2-1 s cDr-x about
iA

or less that for the other procedures. On the other hand, specific

comprison with 2-3-1 on this statistic and on the average "Value of a

at which a feasible solution is found" suggests that 2-2-1 has m:ved

somewhat further than the other procedures along the line segm~ent from

x(I) to x (2) before finding a feasible solution. (The CX values cannoz

(2)
be directly comnared between 1-x-x and 2-x-x procedures since the x

from M'.ethod 2 of Phase 1 tends to be considerably further a-,:ay from x

than for Method 1.) Thus, 2-2-1 evidently skips over many rounded solu-

tions near this line segment that would be considered by the other pro-

cedures. The result was that the feasible solution obtained in Phase 2

was considerably inferior to those for the other procedures on the average

(see the data in the fourth set of rows), and Phase 3 was not fully able

to recoup this deficit.

This suggests that the quality of the final solution is affected

significantly by the proximity to x(1) when initiating the Phase 2

search that leads eventually to this solution at the cuLmination of Phase .

Therefore, when moving from x (1) toward x(2) in Phase it is ir pcrtant

to try not to skip over points that may successfully lead to a f-asible

solution. In other words, it appears that a x-3-x procedure should tend
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to be at least slightly more effective on the average than the corresponding

x-2-x procedure. (It also tends to require a little more time on the

average.)

Although this difference in effectiveness did not become apparent

in the comparison betwveen 1-2-1 and 1-3-1, a plausible explanation can

again be found in Table III. Specifically, the second set of rows suggest

that the jumps along the line segment being made in Phase 2 of 1-2-1 were

small enough (except on the Ia problems) to avoid skipping over very many

points that were being tried by 1-3-1. However, there is no reason to

expect comparable jump sizes in general, particularly since the number of

distinct rounded solutions generated by the line segment between x(1) and

x (2) tends to increase with the number of variables in the problem.

Because x-5-x procedures do have considerable variability in the

nuTmber of points tried and, thus, in the total time for Phase 2, it might

prove worthwhile on very large problems to use a compramise between an

x-5-x and an x-2-x procedure. In other words, one could begin by selecting

points on the line segment between x( 1 ) and x (2 ) according to the

x-3-x procedure, but after a certain number of futile tries, one could

then switch over to using x-2-x. (More complicated ways of merging the

two approaches also could be devised.)

Comparing 1-x-x and 2-x-x procedures is inherently very difficult

since differences can arise on a given problem only when a > 0, which

frequently does not occur, and the differences are not likely to be major

ones (on the average) unless a is quite large, which seldom happens.

The numerous test problems run here certainly provide little basis for

choosing between 1-1-1 and 2-3-1. However, there are some clues in Table

III that may be significant. In particular, the second, third, and fourth
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sets of rows indicate that, for every type of problem, 1-5-1 needed to try

less points and less trial solutions in order to obtain a better feasible

solution (on the average) than 2-5-1. This suggests that Method 1 of

Phase 1 may give a more centralized route into the interior of the feasible

region that more readily leads to a good feasible solution than does Method

2. Additional analysis by Faaland and Hillier [2] also suggests that this

is the case. Therefore, in the absence of contravening evidence, it is

recommended that l-5-x be adopted as the preferred choice from among the

four basic types of procedures tested.

It also should be noted that Faaland and Hillier [3] have analyzed the

present Phase 1 methods from a statistical viewpoint. This analysis led them

to propose some promising new modifications and extensions of these methods,

(1) (2)including the use of a piecewise linear path between x and x (
. The

results of some limited comparative testing also are presented.

6.3. Comparison of Phase 2 Criteria

The same four tables (II, III, IX, and X), plus the additional data

and statistical analysis summarized in Table XI of the appendix, provide

the primary basis for comparing the six Phase 2 criteria being considered

here.

Criteria A and B are the only two that do not consider the objective

function, since they are based entirely on (different) measures of infeasi-

bility. Comparing these two criteria first, the tables show Criterion B

often lagging substantially behind Criterion A (particularly with the

preferred 1-5-1 procedure). Since these criteria differ only in their

measure of infeasibility, it appears that A's measure probably is a more

effective one than B's.
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Criteria C and D use the same measure of improvement p, which does

take the objective function into account in a certain way. Otherwise,

Criterion C is identical to A, and Criterion D is identical to B. There-

fore, to be consistent with the above conclusion on A and B, Criterion C

probably should be preferred to D. (The data do not reveal this difference

clearly, since Criterion D performs very strongly in Tables II and III, whereas

Criterion C does a little better in Tables IX and X.)

The appendix describes how 200 additional test problems were used

to try to distinguish between the four remaining criteria - A, C, E, and

S. However, even this amount of testing was unable to detect differences

at a reasonable level of statistical .ignificance. The main conclusion

seems to be that, even though large differences can occur on individual

problems, the choice of the criterion does not have a strong effect on the

average performance of the heuristic procedure in the long run. All of

the available evidence does suggest that the new Criterion S may be some-

what inferior to the others, but that the new Criterion E may be at least

as good as any of the others.

Table III indicates that Criterion S does achieve its objective of

substantially reducing the time for finding a feasible solution. However,

since Phase 3 tends to require somewhat more time than Phase 2, the pro-

portional reduction in the total time for the heuristic procedure is

relatively modest. This should tend to be the case for much larger problems

as well, except when the "Number of points tried until a feasible solution

is found" becomes large, which sometimes would occur with a x-'-x type

of procedure.

Table III also reveals two other interesting contrasts between

Criterion S and the others. First, with its short and undiscriminating

moves toward feasibility, Criterion S tends to more quickly find a feasible

27



solution in the sense of doing so with a smaller value of c, and so with

(1) (2)fewer points tried along the line segment from x to x )
. At the

same time, the resulting feasible solution tended to be inferior to those

obtained by the other criteria. Therefore, if the prime objective is to

obtain the best possible feasible solution, then it seems better to be

more patient and discriminating, as with the other criteria. (The last two

sets of rows in Table III indicate that the other criteria average requiring

almost twice as much time in Phase 2 as Criterion S, but that the proportional

difference in the resulting total time for the overall procedure is considerably

less.) Second, the other criteria have a considerably smaller ratio of "number of

trial solutions" to "number of points tried" than Criterion S, so they tend to

get blocked from making further moves toward feasibility fairly quickly

and readily. Therefore, on problems where it is relatively difficult to

find any feasible solution, it appears that Criterion S may be more effective

in actually reaching such a solution.

7. Evaluation of Phase 3 Methods

7.1. Test Results

The next step in the experimental program was to test the new methods

for Phase 3 described in Section 4. Using a fixed Phase 1 and 2 (Methods

1 and 2A, respectively), these three methods plus the old Method 1 were

applied to the 18 old problems of Types i and 11 identified above, the

nine IBM problems, and (for economy reasons) just the first four new problems

of each of Types I, Ia, and Ic. The resulting normalized deviation of the final

solution from the optimal solution is shown in Table IV, along with the total

time used in Phase 3. When the optimal solution was not known, a lower

bound on the normalized deviation from opti:rality is shon'. instead, pre-

ceded by a > sign. (Since the three phases are not independent, note that
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TABLE I-V

COMPARISON OF PHASE 3 METHODS

f I Normalized Deviation Total Time
from Optimality . for Phase 3

I Problem "" l
m n Type & No. 1-2A-1 1-2A-3 1-2A-4 !-2A-5 !1-2A-1 1-2A-3 -2A-4TI-?A- 5

-15 !15 1-2 o.184 o.184 0.184 0.056 0.07 0.53 0.72 2.20

15 ;!5 - 0.169 o.169 o.169 0.076 o.14 0.58 0.67 2.27

15 }15 0.285 0.192 0.192 0.285 0.13 o.69 1.57 1.63

15 I15 1-5 0.229 0.229 0.229 0.175 0.11 o.64 o.66 1.60
15 15 1-6 o.279 0.2661 o.018 0.109 0.15 0.11 1.00 1.50

15 1 I-7 o.044 o.044 O.0440 o.oL4 0.522 0.11 o.84 1.91

S15 1 -8 0.170 0.170I 0.170 0 0.16 o.6o 0.78 3.82

15 !15 11-1 0.170 0.056 0.056 0 0.17 Q.23 1.39 2.24

15 15 11-3 0.032 0 0.032 0.032 0.32 0.13 0.85 1.69

15 15 11-4 U 0.013 0.013 0.013 0.013 0.15 0.81 0.65 1.24

15 15 1-7 0.018 0.018 .018 0.018 0 .2. 0 o.66 0.93 1.36

15 15 II-9 0.036 0.036 o.036 0.036 0.31 0.33 0.71 1.45

30 151 11-11 1 0.012 0.012 0.012 0 0.25 2.15 1.12 3.47

15 .30 11-13 1 0.131 0.124 0.131 0.o 69  1.54 j 0.33 3.46 6.06
15 30f !I-14 0.110 0.104" 0.110 0 0.99 2.19 3.19 4.51
30 30 11-15 >0o6 > 0.064 >006 _ 0.06 2.12 0.41 505 lO.O

0.00 2.12 o.41 5 >.50, 1OL

30 301 iI-16 > 0.017 J> 0.035 > 0.017 I> 0.017 1.94 0.62 5.80 9.62

10 201 1-101 j0.587 t 0.282 0.174 0.174 0.31 1.31 0.92 1.52
02 _ .52_0.052 _j 0.0521 110.1

10120. 1-10 0.05 >>I 0.015 0.5 0.66 0.87 19

0 20 I 1-1o3 > 0.280 >0.280 > 0.280j> 0 0.19 0.15 0.90 151

1j 201 1-104 1> 0.208 > 0.208 > 0.208 !> 0.063 0.23 1 0.74 0.98 2.55

1 201 Ia-1 o.456 0.101 0.101 0 0.07 0.15 0.63 1.17

101 20 Ia-2 1.162 0.053 0.053 0.088 0.26 0.18 0.74 5.37
10 20 Ia-3 1280 0 0 0 0.03 0.30 0.33" I03 03 11
!0 20! la- 1 0.622 0.272 0.272 0.2721 0.10 0.37 0.41 1.29

10 201 Ic-i 0.356 0.078 0.078 0.116 0.19 1.00 1.16 0.77I I .0 . 1

10 20 Ic-2 0.913 0 0 0 0.19 0.07 0.74 1.23
10 20! Ic-3 0.185 0.85 0.238 0.14 0.20 0.8o 0.18

1.077 0.8 .18.25.8 o
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TABLE IV

(Continued)

Normalized Deviation H Total Time
from Optimality ! for Phase 3

Problem
m n Type & No. I-2A-I 1-2A-3 1-2A-4 1-2A-5 1-2A-1 1-2A-3 1-2A-4 1-2A-5

10 20 Ic- 4  > 0.155 > 0.036 > 0.036 > 0 0.14 0.51 1.25 0.74

7 7 IBM-i 0.378 0 0 0 o.o4 0.09 0.11 0.44
7 7 IBM-2 0 0 0 0 0.02 0.03 0.05 0.34
3 4 IW-3 0 0 0 0.03 0 0.05 0.02

15 15 IBM-4 0.258 0.258 0.258 0.2581 0.14 0.39 0.81 1.66

15 15 IBM-5 0.258 0.258 0.258 0.2581 0.08 0.4 7  0.88 1.55

31 31 IBM-6 0.360 o.18o 0.180 o.18o 0.38 o.6o 0.81 5.61
12 50 IBM-7 0" 0.075 0 0 0.56 1.85 2.27 3.36
12 37 IBM-8 13 13 0 0 0.05 1.11 0.79 0.13
50 15 IBM-9 0 0 0 0 0.15 0.84 0.91 4.o3

5o 6o 1-9 > 0.465 > o.465 > o.465 > 0.459 2.ol 1.86 20.91 23.53

Average > 0.610 > 0.449 > 0.104 > 0.078 0.37 0.62 1.69 3.00

Average without > 0.283 > 0.119 > 0.107 > 0.080 0.38 0.61 1.71 3.08

Criterion C was used on this problem since Criterion A did not give a feasible
solution in Phase 2.
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the relative performance of the Phase 3 methods could change somewhat if a

different combination of methods for Phases 1 and 2 were used; budget limitations

prevented checking this further.)

7.2. Comparison of Phase 3 Methods

The last comment of Sec. 6.3 actually has a bearing on comparing Phase 3

methods also. Method 5 follows a philosophy similar to Criterion S for Phase 2

in that it is relatively undiscriminating in the individual moves it allows in order

to expedite making combinations of moves that may indeed lead to good

feasible solutions. By contrast, Methods 1, 3, and 4 are analogous to

the other criteria in that they set high requirements for each individual

move, and so tend to get blocked from making further moves toward improved

feasible solutions fairly quickly and readily. The results of Table IV
suggest that the less discriminating approach of Method 5 tends to be

more effective in. actually reaching improved feasible solutions. However,

the much longer (albeit fewer) searches involved consume considerable

time, and Table IV indicates that the increase in total time over the other

.methods tends to be substantial. In particular, Method 5 has an Average Total

Time for Phase 3 in Table IV that is approximately 2, 5 and 8 times as large as

that for Methods 4, 3 and 1, respectively.

Method 3 emerges as a "best buy" approach in terms of the trade-off

between execution time and the quality of the solution attained.

The growth rates of total time with problem size in Table IV appear

to be roughly comparable for the different methods. However, there may

be small differences in the growth rates, so it is uncertain whether the time

comparisons between methods observed here would still hold for very large problems.

Finally, note that the fifth and sixth set of rorws in Table III show

that going on to the second mode of search in Method 1 tends to be very
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worthwhile, more than doubling the improvement from just the first mode

of search alone (except for Ic problems) on the average. However, the

fact that Method 3 performed nearly as well as Method 4 in Table IV demon-

strates that little is lost by foregoing the second mode of search if

the new mode introduced by these methods also is being used. In fact,

the second mode of search achieved a larger improvement than the new

mode used in Method 5 (or 4) on only 15 of the 59 problems, and was out-

performed 17 times. Furthermore, Method 4 (which uses both the second

mode and the new mode) achieved a further improvement over the second

mode on 15 of the 35 problems where optimality had not yet been reached.

Nevertheless, comparing Methods 4 and 5 in Table IV shows that this new

mode itself was outperformed by the new mode used in Method 5 on 14 of

the 19 problems where differences occurred. The Method 5 mode of search

actually achieved a further improvement over the second mode 25 out of

the 35 possible times.

The unescapable conclusion is that changing only one or two variables

is frequently inadequate for reaching a better feasible solution. it

may be necessary to change many variables. Since it wouldn't be compu-

tationally feasible to investigate such simultaneous changes directly,

one needs a mode of search that accomplishes this indirectly by making

a long sequence of small changes. Some of these small changes may need

to worsen the situation, when considered individually, in order to permit

combinations of changes which provide a total overall improvement, a la

Method 5.
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8. Evaluation of Multiple Solution Procedures

8.1. Test Results / A

The investigation next considered the question of the best way to

generate multiple solutions in order to try to improve upon the -first

final solution. The first such method tested was the one proposed in (9]

of repeating the Phase 2 search over the entire line segment between

x and x(2) in order to generate a series of feasible solutions

as starting points for Phase 3. The results of doing this with Method 3

of Phase 2 (which provides the most exhaustive possible search over this

line segment) are shown in Table V for Procedures 1-R3-1 and 2-R3-1 under

all six Phase 2 criteria.

Procedure x-R.x-i is guaranteed to do at least as well as the corres-

ponding x-2x-i (oi x-3x-l) procedure (since it obtains the same solution

as well as others), and it sometimes will provide a significant improvement.

In fact, for the problems in Table V where the x-2x-i procedure did not

obtain an optimal solution, x-R3x-i gave an improvement on essentially

half of them, and the average fractional improvement (when it did occur)
1

on the original normalized deviation from optimality was approximately .

Table VI provides a more detailed analysis of this approach for the

1-R3A-I procedure. The number of distinct solutions in Phase 1 refers

to the number of rounded solutions that were obtained from the line segment

between x(!) and x(2). Each of these new rounded solutions initiates

a Phase 2 search for a feasible solution, and the "Ph.2" column gives the

number of times this search actually obtained a new feasible solution.

Since each such solution leads to a final solution from Phase 3, the

"Ph.3" column shows how many distinct final solutions were thereby obtained.

The "First Solution" column gives the range of a that would successfully

lead to the first final solution obtained. The "Best Solution" column
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TABLE VI

SUMMARY OF PERFORMANCE FOR PROCEDURE 1-R3A-I

S No. of
Distinct First

Solutions Solution Best Solution Decr. in
Problem Norm. Dev.

m n Type & No. Ph.l Ph.2 Ph.5 a a Ph.2 Soln  from Opt.

15 15 1-2 11 7 7 0 -0.269 0.782-0.801 #4 o.184

15 15 I-3 4 3 3 0 -0.572 0 -0.572 #o.646-1 #30

15 15 I-4 15 10 6 o -0.081 O.082-0.389 #2-3
O.668-0.828 #6-7 0.006

15 15 1-5 14 12 3 0.129-0.870 0.129-0.870 #1-8 0

15 15 I-6 6 5 2 0 -0.751 0.752-1 #4-5 0.279

15 15 1-7 9 7 5 0 -0.153 0 -0.153 #1 0

15 15 I-8 11 9 6 0 -0.050 0.942-1 #9 0.126

15 15 11-i 2 2 1 0 -1 0 -1 #1-2 0

15 15 11-3 3 2 2 0 -0.391 0.392-1 #2 0.032

1515 II-4 3 2 1 0 -1 0 -1 #1-2 0

15 15 11-7 3 2 2 0 -o.66o 0 -o.66o #1 0

15 15 11-9 j1 1 1 0 -1 0 -1 #1 0

3015 11-li 14 3 1 0 -1 0 -1 #1-3 0

15 30 11-13 2 2 2 0 -0.208 0.209-1 #2 0.059

15 30 11-14 4 4 4 o -0.302 o.585-o.594 #3 0.110

3030 11-15 5 4 4 0 -0.135 0 -0.135 #1 0

30 30 II-16 9 9 8 0 -0.O81 0 -0.081 #1 0

0.350-0.402 #6

10 20 1-101 17 5 5 0 -0.287 0.288-0.327 #2 0.022

10 20 1-102 8 6 4 0.236-0.586 0.236-0.586 #1-2 0

10 20 1-103 16 13 9 0.131-0.256 0.257-0.310 #2 0.280

O. 799-0.801 #510 20 i-lo4 9 8 6 0.352-0.405 00.8 1 #5 0.2o8
S0.865- #8
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TABLE VI

(Continued)

No. of
Distinct First
Solutions Solution Best Solution Decr. in

Problem Norm. Dev.
m n Type & No. Ph.l Ph.2 Ph.3 a a Ph.2 Sol- from Opt.

10 20 Ia-1 6 5 3 0 -0.132 0.563-1 #4-5 0.088

10 20 Ia-2 12 9 3 0 -0.158 0.159-0.499 #2-3 0.283

10 20 Ia-3 77 42 34 0.190-0.217 0.190-0.217 #1 0

10 20 Ia- 4 ** 50 37 24 0 -0.023 0.024-0.055 #2 0.272

10 20 Ic-I 6 5 1 0 -1 0 -1 #1-5 0

10 20 Ic- 2  9 6 2 0 -0.952 0 -0.952 #1-5 0

10 20 Ic-3 8 4 2 0 -0.574 0.575-1 #2-4 0.054

10 20 Ic- 4  4 1 1 0.576-1 0.576-1 #il 0

7 7 IBM-I 1 1 1 0 -1 0 -1 #1 0

7 7 IBM-2 2 2 1 0 -1 0 -1 #1-2 0

3 4 IBM-3 1 1 1 0 -1 0 -1 #1 0

15 15 IBM-4 1 1 1 0 -1 0 -1 #1 0

15 15 IBM-5 2 2 2 0 -0.750 0 -0.750 #i 0

31 31 IBM-6 7 7 4 0 -0.062 0.063-0.679 #2-5 0.180

12 50 IBM-7 6 0 0 - -

12 37 IBM-8 22 13 3 0.061-o.o68 0.069-0.200 #2 1.000

50 15 IBM-9 10 7 6 0 -0.418 0 -o.418 #1-2 0

30 6o 1-9 28 24 19 0.057-0.058 o.184-o.185 #3 0.465

0.221-0.284 #5

Average 10.2 7.3 4.9 0.046-0.512 0.209-0.698 #2.1-2.9 0.097

When more than one interval for a yielded the best solution, the widest interval
was used for purposes of calculating the average.

Linear extrapolation was used to estimate "No. of distinct solutions" si: re the
run was terminated before at = 1.
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shows the range of a that would lead to the best final solution obtained,

and then identifies which of the distinct feasible solutions obtained

in Phase 2 (in chronological order of increasing a) led to this best

sclution. The final column shows the resulting decrease in the normalized

deviation from optimality compared to the 1-2A-1 procedure.

After making two observations, Table VI also indicates how the computa-

tional effort of I-R3A-l on these problems compares with that for 1-3A-1

(or 1-2A-1). First, the time required for Phase 1 (other than obtaining x ( I )

by the simplex method) is negligible compared to Phases 2 and 3. Second, the

time required to go through Phases 2 and 3 again to generate a new (not

necessarily distinct) final solution tends to be about the same as for obtaining

the initial final solution with l-3A-1 (or 1-2A-1). Therefore, the "No. of

Distinct Solutions in Ph. 2" column indicates approximately the multiple of

the time for 1-3A-1 (excluding the simplex method) that was required for I-R3A-I.

Table VII summarizes the average performance of the x-R3x-i procedures

on these same 39 problems for all 12 combinations of Phase 1 methods and

Phase 2 criteria. In addition to showing the same type of data as in

Table VI (where "Decr. in Norm. Dev. from Opt." now is in comparison

,ith the corresponding x-2x-l procedure), the last two sets of rows con-

trasts the results being obtained at those times when the procedure currently

is initiating the Phase 2 search from the two extreme points (a = o, 1)

and from the equivalent of the midpoint (a = 1) of the line segment

between x(l) and x(2). The average times given for these three cases

include just the time required for Phase 2 to find a feasible solution

and for Phase 3 to then obtain a final solution.
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The next method tested for generating multiple solutions was

the Rx-x-x procedure presented in Section 2. Table VIII shows the results

of applying the Rl-2A-l version of this new type of procedure to the same

7f9 problems. Thus, Solution 0 refers to the ordinary final solution

obtained by the 1-2A-1 procedure, whereas Solution i (i = 1, ... , 5)

refers to the solution generated by applying this same procedure with
te th- X(1) X(2)

the i new x and x obtained as described in Section 2.

The next-to-last cclumn shows the resulting improvement over Solution 0

by taking the best of the six solutions. Comparing this column with the

last column of Table VI thereby provides one comparison of the Rx-x-x

and x-Rx-x types of procedures. However, it must be noted that the specific

proedure reported in Table VI is I-R,7A-l, where the number of final solu-

tions generated is highly variable and possibly very large. Therefore,

a better comparison might be to the 1 -Ri4-l procedure with a = 0, 0.2,

o.4, o.6, 0.8, 1.0, where six final solutions (at most) also would be

generated. The last column of Table VIII shows the improvement over the

ordinary 1-2A-1 procedure given by this l-R2A-l procedure.

The reason for constructing the final column of Table VIII in this way

is that it essentially equates the computational effort for l-R2A-l to that

required by Rl-2A-l to obtain the results in the next-to-last column. After

excluding the time required to solve for x(1) by the simplex method, the

time required to obtain each new final solution tends to be about the same

whether it is done by 1-2A-1, RI-2A-l, or I-R2A-l. Therefore, the time

required for each of the last two columns is approximately six times that

for 1-2A-1.
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TABLE VIII

NORMAkLIZED DEVIATION FROM OPTI4,4LITY

FOR THE SOLUTIONS GENERATED BY PROCEDURE R!-2A-I

Thprovement

Solution Over 1-2A-1Problem

mi n "Type & No. 0 2 3 4 5 RI-2A-I1 1-R2A-1

15 15 1-2 o.184 1.0361 2.136 1.966 0.823 0.106 0.078 o.184

15 15 I-3 o.169 o.1341 0.216 O.274 0.280 0.216 0.035 0

15 15 I-4 0.285 o.279; 0.682 0.L4o 0.484 1.16o oo6 oo6

15 15 1-5 0.229 1.O4 4 J 0.845 0.960 0.229 0.175 0.054 0

15 15 I-6 0.279 0.3211 0.303 0.394 o.466 0.527 0 0.279

15 15 1-7 O.0LO4 O.2551 i.6o3 0.532 0.372 0.292 0 0

115 1-8 0.170 0.2391 O.069 0.516 O.044 0.258 0.126 i o.126

15 15 I-i 0.170 O.3o9! O.086 O.165 0.219 0.219 O.084 0

15 15 i1-3 0.032 O.084 0.261 o.197 0.177 0.205 0 0.032

115 5 0.-4 0.013 0.134 0.013 0.081 0 0 291 0.013 0

15 15 1I-7 O.18 o.o46 0.230 0.051 O.18 0.175 0 0

15 5 1-9 O.036 0.123 0.059 0 0.319 0 0.036 0

30 15 Il-i 0.012 O.172, 0 0.316 0 0.025 0. 012 0

15 30 11-13 0.131 0.093 0.117 0.131 0 0.131 1' 0.131 0.059

15 50 II-14 0.110 O.11O 0.129 0.110 0.110 0.270 0 o.o34

30 30 11-15 >o.oo6 >0.006 >o.oo6 >o.oo6l >0.006 >0.00611 0 0

30 30 II-16 >0.017 >0.029: >0.032 >0.029 >0.104 >0.017 0 0

10120 I-10l 0.587 0.152: 0.261 1.102 0.858 c.8o3 0.435 0

101 20 1-102 >0.0521 >0 >0.892 >1.8o4 >0.984 >0.722 0.052 010 20 I-i05 >0.280 >9.849 >16.870 >8.829 >12.345
10 20 10 028 >984 >1.7 >889>233 0 j0

10 20 1-104 >0.208 >1.l11 >4.021 >2.924 >4.173 >1.026 0 0.208

10 20 Ia-! o.456 0.658 0 0.253 0 0.101 0.456 o.o88
10 20 Ia-2 1.162 o.6o 1.43 o.884 O.601 O.601 0.561 0.283

10 20 Ia-3 1.280 4.305' 11.807 7.010 1.968 16.542 0 0

10 20 ia-4 0.622 0.631' o.4o8 0.359 0 .59L 0.173 0.449 0

10 20 Ic-1 O.356 o.18i 0. 350 O.21i 0.201 0.214 0.175 0

10 20 Ic-2 0.913 0.288 0.1,45 0 I 0 0.722 0.913 0
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TABLE VIII

(continued)

Improvement

Solution Over 1-2A-1Problem -I
Sn Type & No. o 1 2 3 4 5 RI-2A-I I-R2A-I

10 20 Ic-3 1.077 0.083 0.408 0.238 0.520 o.418 o.994 0.054

10 20 Ic-4 >0.155 >0.181 >0.129 >0.155 >0.150 >1.185 0.026 0

7 7 IBM-i 0.378 0 0 0 0 0 II 0.378 0
7 7 IBm-2 0 0 0 0 0 0 '0 0
3 4 IBM-3 o 0 0 0 0 0 ,0 0

15 15 IBM-4 U 0.258 0.258 0.258 0.258 0.258 0.258i! 0 0

1 5 IB-50.258 0.258 0.258 0.258 o.258 0 0
31. 151 IBM-6 J. 0.36o o.18o 0.180 o.i8o 0.180 o.18o o.18o .18o

1250 I3o1-7 [o
12 57 I BM-8 [; 13 15 13 1 13 15 1.000 0

50 15 I-M-9 1.033 0.775 0.516 0.775 0 0 01 1 i306o I1-9. 11I>o.465 . >0.272 >:o. 578_ >0.468_ >0.597 [ >o.819__ , .9 7

Average without >062557 11 >1.082 01 .
IBM-7 >. >1.038 >1.54 >1..14 0 0 168 0.042

Average without ' -"65 i  "l
iBrage witot I-!6O5 >o.8oo >1.1321 >0.>L1 >0.778>"165 V 0.173 O.o44
IBM-7 & 1-103 i, >00, >0_778; ____ 0___173_

.verage without I
14 >0.0O>.803, >0.633 >0.438 >0.780 0.150 o.o45

T-103 & r VV-8 ,

Average without I
IBM-7, IBM-8, '>0.264 >0.270 >0.384 >0.378 >0.283 >0.310 0.159 0.048

1-103, i-o4, Ia-3[. .

No feasible solution obtained in Phase 2.
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8.2. Comparison of Multiple Solution Procedures

Three basic approaches now are available for generating multiple solutions

at one phase in order to try to improve upon the final solution obtained at the

end of Phase 3. One is the x-Rx-x approach, which is investigated in detail

in Tables V, VI, and VII for the x-R3x-I case. A second is the Rx-x-x

approach, which is studied in Table VIII for the case of Rl-2A-I. The third

is to apply different individual procedures to the same problem, e.g., by

varying the criterion used in Phase 2.

One could increase the number of solutions obtained even further by

combining all three approaches. For example, consider all of the pro-

cedures represented in Tables IV-VIII as applied to the same 39 problems.

On 9 of these problems, the same solution was obtained by essentially

every procedure. However, there was considerable variation in the solutions

obtained, and in the relative performances on the individual procedures,

on the other 30 problems. Specifically, the best solution '.:as obtained

by the 1-2A-5 procedure 13 times, by the Rl-2A-1 procedure 12 times,

by some x-R3x-1 procedure 12 times, by the 1-2A-4 procedure 7 times, and

by the 1-2A-3 procedure 7 times. The average normalized deviation from

optimality of the best solution obtained on each of the 59 problems was

only > 0.045, a very substantial improvement over that obtained by any

one of the procedures. Furthermore, this best solution actually was

optimal on 19 of the 52 problems where the optimal solution was known.

(Keep in mind that many of these problems had been selected as "difficult"

ones for which previously tested heuristic procedures had not obtained

an optimal solution.)

These facts illustrate a key inherent property of heuristic procedures,

namely, the great variability in their relative performances from one
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problem to the next. Even though one procedure may be distinctly better

than another on the average, the inferior procedure may sti!l obtain a

better solution on a considerable proportion of the problems. Given

the highly combinatorial nature of integer programming problems, there

is a good deal of luck involved in uncovering a good (or optimal) feasible

solution, and sometimes a less promising path will lead to the prize.

Therefore, if the only concern were to maximize the quality of the best

solution obtained, then one should indeed follow the old maxim to "try,

try again."

However, the time and expense involved also must be considered, of

course. One can quickly reach a point of diminishing return where the

expected marginal improvement from additional runs becomes too small to

justify the computer time. This is particularly true if the new solutions

being obtained frequently are merely repeats of ones previously obtained.

Therefore, an important criterion for designing a multiple.-solution pro-

cedure is its tendency to generate new distinct solutions.

Under this criterion, the approach of repeating the same individual

procedure with different Phase 2 criteria, as in Table II, is not a par-

ticularly good one. (Also see Table V.) Even varying the Phase 1 and 2

methods (from among the choices represented in Table II) does not help
1

much. (Note that all 24 procedures only obtained about 2 1 distinct

solutions per problem in Table II.) Varying the Phase 3 method, as in

Table IV, does somewhat better. Although Methods 3 and 4 usually give

the same solution, this solution frequently is different from the Method

5 solution, so running either x-x-3 or x-x-4 along with x-x-5 would be

reasonable. Nevertheless, 1-2A-3 and 1-2A-4 each were able to improve

upon 1-2A-5 only five times (six times combined) in Table IV, and the

improvements obtained were quite modest.
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The x-Rx-x approach fares somewhat better under this criterion.

In fact, Table VI shows that 1-R3A-1 obtained an average of 4.9 distinct

solutions (out of 10.2 attempts) per problem. Of the 36 problems where

the first solution (the 1-3A-1 solution) was not optimal, a subsequent

solution provided an improvement on 17 of them. Similarly, Table VIII

indicates that 1-R2A-1 provided an improvement over 1-2A-1 on 13 of these

problems.

However, Table VIII demonstrates that the Rx-x-x approach is the easy

champion for generating distinct solutions. In fact, with the exception

of the IBM problems, practically every solution is distinct. Furthermore,

R1-2A-1 improved over 1-2A-1 on 23 of the problems, with an average improve-

ment far larger than either 1-R2A-1 or 1-R3A-1. Even when compared with

the champion among the tested individual procedures, 1-2A-5, Rl-2A.-l

obtained a better solution on 9 of the problems, and RI-2A-5 probably would

have done much better.

The apparent explanation for the great success of Rx-x-x in generating

distinct solutions is the diversity of its areas of search. Whereas

x-Rx-x continues searching along the same line segment into the feasible

region, Rx-x-x uses a completely different line segment in a different

part of the feasible region to search for each new solution.

Since Rx-x-x requires only about the same computer time per solution

(and so less per distinct solution) as the corresponding x-Rx-x procedure,

it must be rated as the better of these multiple-solution approaches.

The test results on individual procedures can guide the choice of the

specific Rx-x-x procedure, e.g., Rl-3E-5 should be a very powerful one.

However, the choice between x-Rx-x and Rx-x-x need not be an either-or

one. For a fixed total number of solutions to be generated, some can be

obtained in one way and the rest in the other. Since the computer time
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involved for obtaining each solution is about the same for comparable

x-Fx-x and Rx-x-x procedures, this combined approach would be advantageous

if the expected marginal improvement fron another solution sometimes would

be larger if it is generated by x-Rx-x rather than Rx-x-x. There is

some evidence suggesting that this is indeed the case.

To begin examining this evidence, consider the "Ph.2" and "Ph.2 Soln '

columns of Table VI. Although there is considerable variation in which

Phase 2 solution led to the best final solution, a careful examination

suggests a definite bias toward the earlier (smaller a) Phase 2 solutions

(particularly when the total number of such solutions is relatively large).

Compare the averages. Then note that #l led to the best s.olution 21 out

of 38 times, and #2 did so 19 out of 33 possible times, whereas 7N did

so only 8 out of 24 possible times. Of 21 problems with five or more

distinct Phase 2 solutions, only two required going beyond #4 to obtain

the best solution. Ten problems required going to #2 to obtain the best

solution (contributing 0.058. of the 0.097 average decrease in the normalized

deviation from optimality), and five more required going to either #3 or

4. Thus, going to #2 is very worthwhile, but the expected marginal

improvement decreases rapidly thereafter.

An analysis of Table VIII suggests that Rx-x-x gives a slower decrease

in the expected marginal improvement of its successive solutions than

x-Rx-x. Solution 4 obtained the best solution as many times (16) as

Solution 1. Ten problems required going to Solution 1 to obtain the best

solution, but 13 more required going further (4 to Solution 2, and 3 each

to Solutions 3, 4, and 5). The average marginal improvement was 0.097

for Solution 1, 0.023 for Solution 2, and a total of 0.0!48 for the next

three solutions.
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However, after going to at least Solution 1, the first extra solution

from l-R3A-I (#2) gave a larger average marginal improvement than the

next Rl-3A-I solution. After going to at least Solution 3, the next

I-R A-l solution (#3) helped more than the next Rl-3A-l solution.

Another factor arguing for a combined approach is that Rx-x-x is

not well-suited for all problems. Specifically, if the extreme points

adjacent to x(I) are located far away from the good feasible solutions

(because their objective function values are far inferior to that for x(I)

then Rx-x-x will have little chance of helping. This apparently occurred

on problems 1-103, 1-104, and Ia-3 in Table VIII, since each of the adjacent

extreme points on these problems led to final solutions with extremely large

normalized deviations from optimality.

Therefore, the recommended multiple-solution approach is to combine

Rx-x-x and x-Rx-x. (denoted hereafter as Px-Rx-x). For a specified total

number of solutions to be generated, the first solution would be obtained

in the usual way, then the desired number of x-Rx-x solutions, and then

Rx-x-x would be applied for the rest. (This idea could be pushed even

further by using the x-Rx-x approach to generate more than one solution

along each of the new line segments generated by the Rx-x-x approach,

but this would not seem worthwhile under ordinary circumstances.) To

be specific on the allocation of effort, it is suggested that 1/3 of

the solutions (rounded down) be generated by x-Rx-x.

Among the alternative Rx-Rx-x procedures, Rl-R3E-5 should be a very

effective one. With x-x-5 rather than x-x-l, the expected marginal improve-

ment of successive solutions should decrease even more rapidly, so the

number generated should be kept rather smal!. Four should be very adequate

for most purposes, and it rarely should be worthwhile to exceed ten or

fifteen.
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9. Comparison with the Ibaraki-Ohashi-Mine Algorithm

The algorithm presented by Tbaraki et al [10] is (with some modifi-

cations) a 2-R3-x procedure, where their Phase 3 method is perhaps most

similar to Method 5 of the ones tested here. For part of their testing

program, they obtained a listing of all of the author's test problems used

in (9] (except the five "Large Test Problems"), as given in Appendix 1 of [8).

They report the results of running their algorithm on five of these problems,

namely, 1-5, 1-6, 1I-I, 11-3, and II-Ii, achieving a normalized deviation from

optimality of 0.229, 0.018, 0.047, 0, and 0.012, respectively, for an average

of 0.061.

Comparing these numbers with those given in Tables IV, V, and VII

for these problems suggests that this algorithm is quite competitive with

1-2A-5, x-R5x-1, or R1-2A-1. However, since it is most similar to

2-R3x-5, the most interesting comparisons would be with this procedure

and its recommended variations, 1-RzX-5 and RJ-R3x-5. Although these

particular data are not available, consider the approximation where 1-2A-5

is used for the first solution and 1-R~x-l (rather than the more powerful

1-R3x-5) for the rest. This.approach obtains a better solution than the

Ibaraki algorith-m on four of the five problems and matches the optimal

solution on the fifth. (W0hen 1-2A-5 is combined with 2-R3A-1 or Rl-R2A-1

(with few solutions) instead, then the one change is that the Ibaraki

algorithm does better on 1-6.)

It must be emphasized, however, that more data would be required to

draw a conclusive comparison.
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10. Some Hypothesized Principles for Heuristic Algorithms

Some of the insights gained in this investigation may have wider

applicability for the development of heuristic algorithms in various areas

of discrete programming, etc. They can at least provide promising starting

pcints for guiding the development of such algorithms and the resulting

experience would determine the extent to which they are generally valid.

Therefore, they are presented here in the form of hypothesized principles

for heuristic algorithms. At the same time, it must be emphasized that these

are only tentative hypotheses, based on a limited set of test problems which

may not be representative of many other discrete programming problems.

Heuristic can be defined as "guiding in discovery" or, in the present

context, "guiding in the discovery of good solutions." No guarantees

can be given on how successful the search actually will be, and .results

may vary considerably from one attempt to the next. There is a definite

element of luck involved, where the heuristic procedure is designed to

weight the odds in one's favor as much as possible. Therefore, it seems

appropriate to use the parlance of gambling in stating these hypothesized

principles. (Translations follow in parentheses.)

Hypothesized Principle 1: Keep your stakes high. (Focus the search where

any feasible solutions found should be particularly good ones, even though

they are difficult to uncover, rather than quickly locating a mediocre

feasible solution and trying to improve upon it.)

The heuristic procedures studied herein start the search from the

"ideal," the linear programming solution x(1), so any feasible solutions

nearby will be particularly good ones (as well as particularly difficult

to uncover). The focus of the search moves no further a:ay from this

ideal than is necessary to find the initial feasible solution for Phase
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Early computational experience showed that this approach was far superior

to the alternative of merely rounding x ( 2 ) to quickly obtain a (mediocre)

initial feasible solution, and also was markedly superior to such inter-

mediate alternatives as Method I of Phase 2. As discussed in Section 6,

even the slight compromises involved in Method 2 or Criterion S of Phase 2

seems to have a detrimental effect. Thus, there is a rather strong positive

correlation between the quality of the initial feasible solution and of

the final solution obtained.

Hypothesized Principle 2: Stick with a winning streak, but don't push

yoar luck. (When a good feasible solution is found, there often is an

even better one nearby, so continue searching in this region until no

further improvement have been obtained within a reasonable period of time.)

The first two modes of search used in most of the Phase 3 methods

seek (and often find) small changes in the current feasible solution that

yield improvements. However', care is taken not to use a mode of search

whose growth rate with problem size is so large that it can continue

fruitlessly for an extended time. On a broader basis, the x-Rx-x multiple-

solution approach also initiates new searches near where the last successful

one began. As discussed in Section 6, this approach is a good one if it

is used in moderation.

Hypothesized Principle 3: Occasionally shuffle the deck. (When the search

has gotten too locked into one well explored neighborhood, then allow

it to drift awhile until it homes in on better solutions in an entirely

different part of the feasible region.)
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r
Method 5 of Phase 3 examplifies the successful application of this

principle.

Hypothesized rinciple 4: Play the field. (The search should move into

several different "high stake" regions in order to obtain a variety of

solutions, thereby increasing the chances of "hitting the jackpot" of

finding an optimal solution.)

The Rx-x-x multiple-solution approach enjoyed outstanding success

in following this principle.

11. Summary of Recommendations and Conclusions

Although an extensive program of computational experimentation failed

to reveal significant differences between certain of the leading methods

and criteria, the following heuristic procedures can be recommended from

the current evidence as at least comparable to any of the others on the

problems tested.

1. For a basic single-solution procedure that is both very effective

and reasonably efficient, use 1-3E-5.

2. For a very powerful multiple-solution procedure, use Rl-R3E-5

as described at the end of Section 8.2. The total number of solu-

tions generated should be adjusted to fit the desired time-quality

tradeoff, but four should be very adequate for host purposes.

3. For a "quick and dirty" procedure that is still reasonably effec-

tive, use 1-2S-3. (The procedure can even be terminated early

as needed and still probably provide a reasonably good feasible

solution since it quickly finds an initial feasible solution and

then devotes the bulk of the tine to seeking progressive improve-

ments.)
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No further comparative testing is planned. However, a modest amount

of additional developmental testing to refine these procedures appears

to be worthwhile. The primary focus will be on Method 5 of Phase 3 to

see if it can be streamlined greatly without significantly diminishing

its effectiveness, but several similar questions about other parts of

the procedures also will be pursued. Further information on the growth

rate of execution time with problem size also will be sought.

In a parallel investigation, Faaland and Hillier [3] have analyzed

the current Phase 1 methods in detail and developed some new options.

Although the procedures tested here have been presented in terms

of pure integer programming, they can be extended quite readily to the

more general case of mixed integer programming. Ibaraki et al (10] have

done this in one way. This also has been done in another way by the

author, and some preliminary testing conducted. These results will be

presented subsequently in conjunction with the further testing and

refining mentioned above.

In many problems, the integer variables actually are restricted to

be binary (0-1). These procedures could, of course, be applied directly

to such problems by merely introducing upper bounds of one on the variables

as additional functional constraints. However, this would be a crude

and needlessly inefficient way of handling 0-1 problems. What is needed

is a thorough adaptation and streamlining of the procedures and codes

to exploit the special structure of these problems. This is being pursued.

53

... . -- . ...... '|i 1 ln Ill I I . ... .... . ... . " - -'



REFERENCES

1. Balas, E., and C. Martin, "Pivot and Complement - A Heuristic for 0-1

Programming," Management Science, Vol. 26 (1980), pp. 86-96.

2. Echols, R. E., and L. Cooper, "Solution of Integer Linear Programming

Problems by direct Search," Journal of the Association for Computing

Machinery, Vol. 15 (1968), pp. 45-84.

3. Faaland, Bruce H., and Frederick S. Hillier, "Interior Path Methods

for Heuristic Integer Programming Procedures," Operations Research,

Vol. 27 (1979), pp. 1069-1087.

4. Faaland, Bruce H., and Frederick S. Hillier, "The Acceleraced Bound-

and-Scan Algorithm for Integer Programming," Operations Research,

Vol. 23 (1975), pp. 406-425.

5. Glover, F., "Heuristics for Integer Programming Using Surrogate

Constraints," Decision Sciences, Vol. 8 (1977), pp. 156-166.

6. Haldi, John, "25 Integer Programming Test Problems," Working Paper

No. 25, Graduate School of Business,. Stanford University, Dec., 1964

(multilith).

7. Hillier, Frederick S., "A Bound-and-Scan Algorithm for Integer Linear

Programmidng," Operations Research, Vol. 17 (1969), pp. 638-679.

8. Hillier, Frederick S., "A Bound-and-Scan Algorithm for Pure Integer

Linear Programming with General Variables," Appendix I (Listing of Test

Problems), Technical Report No. 11 (ONR Contract Nonr-225(89)),

Department of Operations Research, Stanford University, 1969.

54



9. Hillier, Frederick S., "Efficient Heuristic Procedures for Integer

Linear Programming with An Interior," Operations Research, Vol. 17

(1969), pp. 600-637.

10. Ibaraki, Toshihide, Tateaki Ohashi, and Hisashi Mine, "A Heuristic

Algorithm for Mixed-Integer Progra-z-ing Problems," Mathematical

Programming Study 2, (1974), pp. 115-136.

11. Jacqmin, Nancy Eileen, "Documentation of a Computer Program for

Hillier's Heuristic Procedure in Integer Linear Programming," Technical

Report No. 88 (ONR Contract N00014-75-C-0418) and 79-8 (NSF Grant

MCS76-81259 A01), Department of Operations Research, Stanford University,

1979.

12. Jeroslow, R., and T. Smith, "Experimental Results on Hillier's Linear

Search," Mathematical Programmin&, Vol. 9 (1975), pp. 371-376.

13. Kochenberger, G. A., B. A. McCarl, and F. P. Wyman, "A Heuristic

for General integer Programming," Decision Sciences, Vol. 5 (1974),

pp. 36-44.

14. Reiter, S., and D. B. Rice, "Discrete Optimizing Solution Procedures

for Linear and Nonlinear Integer Programming Problems," Management

Science, Vol. 12 (1966), pp. 829-85:.

15. Roth, R. H., "An Approach to Solving Linear Discrete Optimization

Problems," Journal of the Association for Computing Machinery, Vol.

17 (1970), pp. 300-313.

16. Senju, S., and Y. Toyoda, "An Approach to Linear Programming with

0-1 Variables," M'anagement Science, Vol. 15 (1968), pp. B196-B207.

55



I "IM

17. Toyoda, Y., "A Simplified Algorithm for Obtaining Approximate Solutions

to Zero-One Programming Problems," Mnagement Science, Vol. 21 (1975),

pp. 1417-1427.

18. Trauth, C. A., Jr., and R. E. Woolsey, "Integer Linear Programming:

A Study in Computational Efficiency," Management Science, Vol. 15

(1969), pp. 481-493.

19. Zanakis, Stelios H., "Heuristic 0-1 Linear Programming: An Experimental

Comparison of Three Methods," Management Science, Vol. 24 (1977-78),

pp. 91-104.

56

M"4



APPENDIX

Further Comparative Testing

In order to more adequately compare the four basic types of procedures

and the six Phase 2 criteria considered in Table II, a supplemental experimental

program was undertaken.

The first step was to randomly generate 20 more Type I problems (labeled

1-121 to 1-140) and 20 more:Type Ia problems (labeled 1-21 to 1-40), each with

m 1 10 and n = 20. (These two types were chosen since, based on the resulting

normalized deviations from optimality, they appear to be particularly difficult

for the heuristic procedures.) All of the procedures and criteria were applied

to these problems, with the results shown in Tables IX and X, respectively.

Given the analysis of computational results presented in the early

part of Section 6, the next step was to randomly generate 200 additional

problems of Type I (again with m = 10, n = 20) to try to distinguish

between Criteria A, C, E, and S on a sound statistical basis. As the

recommended choice at this point of the four basic types of procedures, procedure

1-3-1 was used with each of these criteria. On 29 of the problems, the

simplex method found that there was either no feasible solutions or no

bounded optimal solution x(I) for the continuous (linear programming)

version of the problem. Each of the four criteria produced a feasible

integer solution on all of the remaining 171 problems. The six pairs

of criteria were then compared on the quality of their final solutions

on these 171 problems.

Let Vi(x) denote the normalized deviation from optimality of the

final solution under Criterion x (x = A, C, E, S) on problem i

(i 1, 2, ... , 171). For a given pair of criteria, x and y, let

Di(x-y) = i(x) -Vi(y), for i = 1,2,... ,171•
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TABLE IX

NORMALIZED DEVIATION FROM BEST SOLUTION

FOR NEW TYPE I PROBLE ,S

Criterion Used in Phase 2

Problem A B C D E

1-121 0 0 1 0 J 0o.4321

1/ i o.2/ 11,2/

1-2 o.,.,V o.488i o.4883/ 488V ,7 / 0.,,883/
0 170 .170 0 10 o 10178F 04/

0' 1
oI 0.._2/ 01,2)/ 1 0.1,2./.l 1,2,4/

O___ .159ri

1-125 o.144 0.144-/  0.142/ o.1441 0.1442/ c, .144Y

o313 / o.726 i/ 0.,4,/ 0. 313 I
1']-126 03 °1 "60 °i ,°] /

1 126 10 11 0 0O 00

1t/*

117 I0.032 I0.032 0..032 10.032 0.032 00322L34/

1-128 t0 0 0 0 0 .233

___ __ _ _ 3"-12 - 3/ / 3

1-129 .812/ o.739- o.4812 o o.481- o.481

1,1/ 3. 20L, 3/ 1,2/ 2 1'

3.209z---3.629 3. 201'- 3209

____ 1502Y 3.2093/ ___
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TABLE DC

(Continued)

Criterion Used in Phase 2
Problem I A B C D

0.189=' 0. 891-131 ,,!
0.I 0 2  &i 0.189 0 0. 025 0 0

I 0 1,2,4/ 1,2 ,4/ _o1,2 1,2/ 1,2/

017,4 / 1 7L,4/
0.037-I 0.0373 0. 0.03 0.0372-'

0. 399LI35)/1-133 Ov /  ".9
_0399 0 0 0 0.399

I-3 00 o o "

I I 01,2/17 35 ;

.10.379 0.379 !0.379 0.379 0.379 iO.370-3

56 I i, ,4/
i-!36 Ai! 'g< 0 0 0 0 0.428?

0.090.099
0.099!' 0. /

1-137 .099 0.099 0.283 o.494 /  0.499L-/ 0I , 0.283)-/

0. 2231 0.2223''
0.540 0.758 /  0.115 0.7583/  0.115 0

1-139 _ 0 0 0 I 0 0 0.361

I-14o 0o.16 0 o.021 o.021 0
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TABLE rX

(Continued)

Criterion Used in Phase 2

Problem A B C D E S

1-2-1 0.254 , 0.244 0.102 0.091 0.2o4 0.255

1-3-1 0.074 o.167 o.in. 0.131 0.148 0.131
Ave. 1

2-2-1 0.291 0.341 0.288 0.280 0.235 0.286

2-3-1I 0.101 0.227 0.154 0.238 0.171 0.115

1-2-1 .o98 o.o88 0.074 o.o62 o.o 46 0.099

1-3-11: 0.078 0.097 0.083 0.105 0.077 0.138
IAve.
-W/o 2-2- 0. 138 0.190 0.134 0.126 0.078 0.132
1-130"

2-3-111 0.107 0.126 0.076 o.o81 O.68 0.121

1. Value obtained for 1-2-1.
2. Value obtained for 1-3-1.
3. Value obtained for 2-2-1.
4. Value obtained for 2-3-1.
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TABLE X

NORMALIZED DEVIATION FROM BEST SOLUTION

FOR NEW TYPE Ia PROBLEMS

Criterion Used in Phase 2

Problem A B C D E S

Ia-21 0 0 0 0 0 0

Ia-22 0 0 0 0 0 0

1 9l0. / o ' 0.5 2/ o.3 1. 1,2/ 1,2/s
0.1311 .131-1 .1391/ 0.159 0.19-LZ

143 3/ 2,4 3_4/
Ia-25 ,,/ 233 0.5003' 0.500-/ OZ

04/ 0.5003/

Ia-24  0 0* 0 0 c 0

oL, i OL24 01,2,/i o0,2,4/ o_ .i4 0 1,2,4,/
I25 1.869Y" 1.869Y" 1.869 1.869 ! 1.869 '/ 1.869V'0- . . 0-.p#.i . 1,./ ____ . . 1.4/

1,2,4/ f)1,2,4 / 0.026,/ 0.02614/ 0.026 /

3-6/ 2/ 2/ 2/ 2/

0.176 / 0.1763/ o.1761/ 0.1763/

01 ,2,4/ o.92.94/ o'?,1/ 0o1,2,/ o_,,. / L2
0.635 0.6352 /  .635Y-/ 0.6352/ 0.6351/ o.63/

Ia-28 0 0 0 0 0 0

Ia-29 93

a- o650 o.679 o..5 0.9 .... o. 5- . 06

Ia-20 0 0 0 0 0 0

Ia-31 0 0 0 0 0 0

Ia-32 0 0 0 0 0 0
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TABLE X

(Continued)

Criterion Used in Phase 2

Problem A B C D E S

-1,2/ .1,2/ 1,2/ 1,2/
0-0--- 0- 0--

93,4/ 3,4 3,4 3,4/
00-719 0.-719A/- O719 "A 0-1 0

.154912, & 1. 5451L2 & 0.80,"-.1 15451)2/ 1*54512/ 1.549124
-- o.8o- /  1 o8o1 " 2/ ooo.8o,4/ Mai/

04/ 4/

0.5141,2,4/ 1,3/ 1,3,4/ 01,3,4/ 0.1,2,4/

a-/5 /o.514 2'/ 0.514- 0 0.5142 0/

Ia-3 6  0 0 0 0 0 0

Ia3 1,2,4/ 01,2,4/ 01,2,4/ 01,2,4/ 01,2,4/ i

0a-37 o.5641/ 0.5642/ 0.5642/ 0.564 0.5642/ 0

__ 12/ 3o! ±. o-

Ia-3 8  0..6672/- 0.667 0 o. 7 1-Y 0 '021,o.667 /

4/0.485_ 0.1.71v 1o. 171Y

0.0721,2/ 0.0721, 24/ 0.0721 2, 0.072L2,4/ 0.072L',2/ 0.o721,2/

034/0/ 3/5/3,h ,4/
0  L 3 ± / 0 -0 - 0 0 -L-

01,2/ '.1 2/ 2/_

Ia- 4 O ooo,4/ 03,4/ 5,4/

1-2-1 .114 .113 .052 .114 .090 .170

1-3-1 .107 .1531 .114 .114 .114 .114

Ave. ' - -

2-2-1 .236 .296 .287 .287 .287 .208
2-5-1 .128 .176 . 1o41 ._o65 _ • _______ l

1. Value obtained for 1-2-1. 5. Value obtained for 2-2-1.

2. Value obtained for 1-3-1. 4. Value obtained for 2-5-1.
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Since the problems are randomly generated (by the mixed congruential method) from

fixed (discretized uniform) probability distributions, all of these Di for the

given x and y are drawn from the same underlying probability distribution

(before conditioning on the parameter values taken on for the particular problem).

In order to distinguish between the two criteria involved, the objective is to

determine whether the mean of this underlying distribution can be concluded to

be different from zero and, if so, whether it is positive (y better ttan x)

or negative (x better than y).

Since any two criteria (x and y) frequently yield the same final

solution, this underlying distribution has considerable mass at zero,

which makes it considerably more difficult to detect a nonzero mean.

However, this mean indeed will be nonzer, if the rest of the distribution

(the conditional distribution given nonzero values) has a nonzero mean,

so it is better to focus on this conditional distribution to address the

questions at issue. Let gx-y denote the mean of this conditional dis-

tribution. The nonzero Di(x-y) values represent random observations

from the conditional distribution that can be used to obtain a point

estimate of Px-y and a confidence interval about 4x-y For this parpose,

it is assumed that the conditional distribution is (approximately) normal.

(If no assumption is made about the functional form of this distribution,

the resulting confidence interval would be much wider, which would further

reinforce the conclusions stated after the next paragraph.

Using this approach for each of the six pairs of criteria led to the

results shown in Table XI. The first columan of data shows the sample

size nx-y (the number of nonzero Di(x-y) values out of the 171 problems).

The next two columns give the maximum li:kelihood estimate of x-y (the

sample average), denoted by gx-y and the sample standard deviation

sy. The last column presents the 99% confidence interval about v
x-y 7 -

(so that the fiduciary probability that all six intervals cover their

rerpective means is at least o.94 by the Boriferroni inequality).
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TABLE XI

STATISTICAL COMPARISON OF PHASE 2 CRITERIA

FROM 200 ADDITIONAL TYPE I PROBLEMS

x-y n x-y s x-y 99% Conf. Int.

A-C 41 +0.013 0.391 (-0.152, 0.178)

A-E 42 0.025 o.414 (-0.148, 0.198)
A-S 69 -o.o81 0.736 (-0.316, 0.155)
C-E 27 +0.019 0.342 (-0.164, 0.202)

C-S 73 -o.o84 o.7o4 (-0.302, 0.135)
E-S 74 -0.089 0.706 (-0.307, 0.128)

Recalling that positive values of - favor y. over x,

it can be seen that the results in Table XI are most favorable to Criterion

E (by a slight margin over C and A), and least favorable to Criterion S.

However, it must be emphasized that none of the confidence intervals

exclude zero, so the null hypothesis that x- = 0 cannot be rejected

in any of the six cases at a 99% level of statistical significance.

In fact, even for the most extreme case of E-S, this hypothesis cannot

be rejected at just the 90% level, even if the alternative hypothesis is

the one-sided one, pE-S < 0. Also note how very small the *x-y are

relative to the s . Therefore, the only solid conclusion that can
x-y

be drawn from these data is that, even though there will be occasional

large differences in both directions on individual problems, any differences

in the long run average performance of these criteria should be quite small

on problems similar to Type I.
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