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1. Introduction

The author [9)] previously developed and evaluated some heuristic

v rrocedures for seeking a good approximate solution of any pure integer
Jlta - uALde N,

linear programming problem,

n
. . Y
maximize x_ = 7 cy¥%y A
J=1 b
D:A
subiect to ’
n '
s i=1,2 “ e m)
HEIE (=22, e,
A is a nonnegative integer (3 =2,2, ... , n), 4

having no implicit or explicit equality constraints. It was found that
the procedures are exiremely eificient, being computationally feasible ]

for vroblems having hundreds of variables and constraints. Furthermore,

they proved to be very effective in identifying good solutions, often o

cttzining optimal ones. Thus, the procedures provide a way of dealing

with the frequently encountered integer vrogramming problems that are

beyoné the computational capability of existing algorithms. For smaller

problems, they also provide an advanced start for accelerating certain
primal algorithms, including the azuthor's Bound-and-Scan zlgorithm {3}

end Fe2zland znd Hillier's Accelerated Bound-znd-Scan algorithm P#}~f

of one of these procedures inside the iterative step of a branch-and-bound
algorithm can greatly improve the latter's efficiency in locating solutions

whose objective function value is within a specified percentage of that for

the optimal solution. R AR R
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All of the procedures use the same zeneral three-phase approach,
which can be described conceptually as follows. Phaze 1 identifies a
general region within which to explore for good fea:sible solutions by
finding (1) the optimal noninteger solution by the simplex method, and
(2) a second point well into (or beyond) the feasible region. Phase 2
then conducts this exploration by slowly moving along the line segment
from this first point to the second while searching nearby for a feasible
(integer) solution. Phase 3 attempts to move from the feasible solution
obtained to a succession of better ones. The final zolution obtained
is the desired approximate scolution. If it is crucial tc increase the
probability of obtaining an optimzl solution, one can continue by identi-~
fying many good feasible solutions in Phase 2 and then applying Phase 3 to
each of them, thereby yielding multiple final solutions from which to choose.
The previous paper [9] presents alternative methods for conducting each
of these phases, thereby yielding 36 distinct overall procedures. ({(These
procedures are labeled =x-y-z to indicate that Methods x, y and 2z are to
be used in Phaseé 1, 2 and 3, respectively.) A program of computational exper-
imentation identified four types of procedures (1-2-1, 2-2-1, 1-3-1, and 2-3-1)
that appear to be substantially better than the others, but this experimentation
was unsuccessful in detecting significant differences among the four. Further-
more, only tentative conclusions can be drawn in comparing the four alternative
criteria (A, B, C, and D) for conducting a certain test in Phase 2. Thus, 16
distinct procedures (1-2i-1, 2-2i-1, 1-3i-1, and 2-3i-1 for i = A,B,C,D)
still await definitive comparison. Another question of this study which was
only partially answered concerns the best way in which to generate multiple
solutions.
The present paper has two main purposes. One is to briefly present

some promising new methods for conducting each of the three phases.




This is done in the next three sections. The second objective is to
address some unanswered questions mentioned above (and outlined in more
detail in the last section of [9)) in the broader context of these new
vrocedures. Thus, a comprehensive testing Drogram has been conducted
to further evaluate and compare the best of the old procedures with the
new ones presented here. Procedures for generating multiple solutions also
are discussed and tested. The test results and conclusions are presented
in the final three sections and the appendix.

Various other investigations also have proposed heuristic algorithms
for integer programming in recent years. These include Reiter and Rice [14],
Echols and Cooper [2], Senju and Toyoda [16], Roth [15], Kochenberger, McCarl
and Wyman [13],Toyoda [17], Balas and Martin [1], and Glover [5]. Also of
particular interest here is the heuristic algorithm of Ibaraki, Ohashi, and
Mine [10], which extends (with some modification) the author's original
heuristic procedures [9] to mixed integer programming. (See Section 9 for a
comparison of this algorithm with the procedures proposed here.) In addition,
Faaland and Hillier (3] have extended the analysis and development of Phase 1

methods considerably beyond the present paper.

For the sake of breviiy, the presentation here will not repeat most
of the relevant material from [9], so the reader is advised to first read
this earlier paper and to keep it availzble for reference purposes as he

proceeds through the following.

2. A Multiple Solution Approach to Phase 1

It would sometimes be worthwhile to take the time to generate multiple
£inal solutions in order to try to imprcve upon the initial one obtained after
completing all three phases once. As mentioned above, one method of doing this,
based on repeated applications of Phase 2, is presented in [9]. Another approach

described below is based instead on repeated applications of Phase 1.
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This approach involves generating a sequence of distinct pairs of

e (2)

voints, and x Recall that the originel i(l) is Jjust an

i
i optimal solution to the problem without the integer restriction, as
!
{

obtained by the simplex method. Each new i(l) is then obtained directly

from this one by choosing an adjacent extreme point in the polyhedral set
* of feasible solutions for this linear programming problem. This adjacent
extreme point is obtained simply by performing a single pivot from the

optimal basis. The method used here for choosing the sequence of adjacent

extreme points is based on the size of the simplex multipliers (i.e., reduced costs). '

Thus, the first pivot is performed on the nonbasic variable having the

smallest (negative) simplex multiplier, the second on the one having the

second smz2llest multiplier, etc. This process was stopped after obkieining

a preassigned number of new values of 5(1), which was taken to be five

for the computational experimentation. (Note that another alternative would (

be to examine all of the adjacent extreme points and then choose the five

best ones according to their objective function value.)

(1)
2

For each X the chosen Phase 1 method would be used to obtain

the corresponding value of §(2) in the usual way. Ccnnecting these

two points prevides a2 line segment which is completely distinct from

the original one, but which still passes through a2 promising region for
seerching for a good feasible solution. Therefore, Phase 2 and then

Phase 3 would be applied just as before with respect to the new §(l)

and 5(2) in order to obtain the new final solution. Doing this in

turn with each new pair of such points provides the desired multiple solu-
tions, from which the best one would be chosen as the solution to use.

A very desirable characteristic of any method of generating multiple

folutions would be that each new solution generated hzve a relatively
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high probability of being distinct from the preceding ones while still
tending to have an objective function value that is at least close to and
sometimes is better than that for the initial final solution. The fact that

the original method frequently merely regenerated a previous final solution

was a major motivation for developing the new approach described above.
It was anticipated that having the Phase 2 search proceed from a distinct
new line segment rather than merely moving further down the same segment
might increase the chances of obtaining a distinet final solution that
was still a good one..

This new approach will be designated by inserting an R (for "Repeat")
pefore the number of the method being used for each application of Phase 1.
Similerly, the original approach will be designated by inserting an R
before the number of the method being used for each application of Phase 2.
ror example, the labeling for using procedure 1-2A-1 to generate multiple
solutions by the new and original approaches would be R1~2A-1 and 1-R2A-1,

respectively.

z. New Criteria in Phase 2

Reczll that Methods 2 and 3 of Phase 2 involve iteratively moving
from one infeasible integer solution to another which is "less infeacsible”
in a certain sense (or, if such an improvement is not possible, beginning
another cycle of such iterations with a new starting solution). Each
such move involves changing one variable by +l. Four different criteria
for choosing the variable to be changed were presented. Criteria A and
B focus exclusively on the constraints, and thereby would seem to run
zome risk of leading to a feasible solution with a relatively poor value
of the objective function. On the other hand, criteria C and D give

ornsidereble weight to the objective function, but in a way that sometimes

5
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gives preference to moves that point above rather than toward the feasible

region, which would seem to increase the risk of overlooking feasitvle

solutions subsequently. This analysis would suggest that a compromise
between these two types of criteria might be appropriate. One such com-
promise is described below.

Using the notation and terminology of [9], the new criterion defines - A

the "improvement" from changing the value of a variabl xy as

= + ¢! Ax,
P =4 CJ 3

where c5 is the normalized value of cj and ij is the change in

Xy Thus, this js just the definition used for criteria A and B (p = -4q)

except for adding a term reflecting the effect of the change on the objective

function. 1In the case of criterion A, where the first definition of ¢

is used, this added term has a very natural interpretation. In particular,

suppose that a lower bound bo on an acceptable value of the cbjective -i

function is introduced explicitly as a constraint, ex zhbo, and that

bo exceeds the value xb attained by the current solution both before

and after the change in xj. Then the resulting criterion A definition

of p coincides exactly with the new definition given above. Thus,

in effect, the new criterion encourages large moves toward the feasible

region (as with criteria A and B) but with a modified interpretation

of feasibility that particularly encourages movement toward the most

attractive portion of the feasitle region (as with criteria C and D).
The mechanics of applying the new critericn are to proceed thrcugh

Phase 2 exactly as if criterion A or B were being used (Jepsnding on

6 i
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which definition of q is adopted) exccpi when there are no q§ <0
and part (c) of Step 8 is entered, ir which ~ace merely substitute the

N .

2w definition of p for each pj to te calculated. Since the results of
computational testing distinctly favor criterion A over criterion B (see

Sections 5 and 6), only the first definition of q (the one used by criterion

A) was used with the new criterion, and this version will be called criterion

It should be noted that there also are variations of this criterion
that conceivably could be slightly better. For example, 2z factor other
than one -ould be used for the new term in order to give a different
relative weighting vetween the constraints and objective function, or
the new term could be deleted when it is positive (effectively setting

T egual to X before changing a varizble), ete.
o )

Another viewpoint is that it is reeslly combinations of moves that
are particularly important in moving expeditiously to a good feasible
solution. Therefore, any move that yields an improvement should be taken
immediately rather than wasting time by identifying end comparing all
possible improving moves for this iteration. Other such moves that zre
truly worthwhile should still be availatle for subseguent iterations.
Furthermore, when the m mber of variables is large, this approach may
greatly reduce the time recuired to execute Prase 2 without significantly
racrificing effectiveness.

When the first definition of q is used, this streamlined approach

1 be designated as criterion 8. It i: zpplied oy executing Phase 2

]

S i
essentially as with criterion 4 {(or C) except that Steps 7 and 8 are

bypaszed. Instead, azz soon as a q§ such thet q? < g 1is found in

[}

b

Step 5, the iteration is terminated immediately by setting Xk -ecuzl io




this Jj and going to Step 9. On the next iteration, Step 6 would resume

from where it had left off, calculating (as necessary) ¥, Yok

qi,...,qi in this order. If there are no q§ such that qg <q ona

given iteration, then one goes to Step 10.

L, New Methods for Phase 3

A drawback of the current methods for Phase 3 is that, at each iter-
ation, one attempts to identify a better (feasible) solution only by
considering certain ways of changing either one or two variables in the
current solution. It sometimes is necessary to change meny verisbles in
order to reach a better solution. However, it clearly wculd te . :ompu-
tationally infeaéible for problems of significant size {o systematically
consider all ways of changing several variables simultanesously. Therefore,
what is needed are methods that will efficiently consider only promising
ways of changing many variables.

As suggested by Tbaraki et al [10], one approach of this kind would
be to use a search similar to that employed in Phase 2. Recall that
the Phase 2 search allows making many proamising varizble changes in suc-
cession in an attempt to eventually reach the solution of interest, namely,
a .good feasible solution. Essentially the same method also could be used
in Phase 3 in an attempt to eventually rezch the solution of interest
there, namely, a better feasible solution than the best one found thus
far. Thus, one would deliberately move from the current best feasible
solution out of the feasible region, and then try to move through a suc-
cession of infeasible (integer) solutions that seem to be vrogressing

toward a better feasible solution (if one exists).

8




“hree new methods for Phase 3 (Methods 3, b, and £) that are baczed

v+ o oehiz spproach oare presented telows.  Given the current best
L) o . L) L
T IbTe colution x(“’ and its cbjective function vzlue xé = cx( ),

CLotmree methods initiate the search rroceedure mentioned zbove by intro-

. L * .
Jicing a rew constraint, ox > bo’ where bo = xé ) + l.~/ Thisz has

- L . . a s . . .
the erfeoct of maxing x infeazsible and reducing the feasible region
£o that it includes only better feasible solutions (if any). Thus, the

gcal becomes to reach some integer solution in this reduced feasible

vethods 3 and b go through n cycles to search for a better solution.
Bach cycle begins by changing one variable (call it xv) in the solution

X vy either plus one (if c, > 0) or minus one (if ¢, < 0). Thus,
n

the n cycles correspond to setting k=1, 2, ... , n in turn. This

zch ¢vele has the effect of giving a new solution which

-+
—
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7
ot
0
cl
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usually is substantially further away from the reduced fezsible regicn.

Tne remzining part of the cycle then consists of essentially applying

St2ps L through © of Prnase 2 with this new sclution as the starting peint.

(Criterion A always was used for doing this in the computational testing since
criteria E and S had not yet been developed at this stage of the testing program.)
Tre only changes that need to be made in Steps k-0 zre the following.

First, the new objective function constraint is treated just like the

other “unctional consirzints (a2fter mekirg the obvious ceonversions in format

and not i effectively runs from 0 to m. Second, additicnal

3
ct
-
a
3
~—
-
n
O

changes in x, are not allowed so £ throughout. Third, heving
= X

) Q = ¢ 1in Step S terminates the cycle, in which nase reset Xk =k + 1
: Y ‘
iz azswmes that all of the cj are integers; otherwisze, set bO =

t
~ ¢ wvhere ¢ 1s an extremely small positive constant.
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and start the next cycle (if % < n).

The entire Method 3 consists of Parts I and IT of M=sthod 1 (which
obtain all possible improvements by changing only one variable at & time)
plus the above procedure as a replacement for Parts
IIT to VII {which investigate certain ways of changing two variables
simultaneously). Thus, after completing Part II, set i(L) = x and
go into the above search procedure. If a better feasible solution is=
found (i.e., q <0 1in step 5 for some iteration of some cycle), then
immediately restart Phase 3 at the beginning of Part II with this new
sclution. However, if the search procedure gces through 211 n cycles
without finding a-better feasible solution (perhaps on a later time through),

(L)

then Phase 3 terminates with the current X as the decired arproximate
solution.

Method 4 differs from Method 3 only in thet all of the original
Phase 3 (Method 1) is completed before entering the above search procedure.
(This holds on botn the first time and subseaquent times through the overall
process.) Thus, M2thod L is guaranteed to do at least as well as Method 1

in obtaining a good final solution, but it may require substantially more

time than Method 3 withcut a significant increase in effectiveness.

M

A serious drawback of the search procedure used by both Methods 2
and 4 is that it requires more than some multiple of mn2 elementary
operations, so that the time required grows rapidly with the size of the
problem (more so than the rest of the procedure). Therefore, NMethod 5
modifies Method & by streamlining the search procedure. In particular,
rather than n cycles, there is only one. Furthermore, no change is

(L)

mz2de in X refore starting the modified Steps 4 to 9 of Phase 2.

10
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‘n order to avoid thereby terminating immediately btecsuse no "improvement"
:s pessible, Steps 7 and 8 are replaced ty the following. Calculate

Dys Pas o een P, in the usual way. (Again, criterion A was used for these !

[£9)

b calculations in the testing program.) Set k equal to a value such that

P = maX Do, regardless of whether this maximum is positive or not, and
s i

then go to Step 9. Thus, at each iteration, the variable is changed which

%15 the best effect on the "infeasibility” gq, even though it may actually

increase q. As a result, some drifting away from the reduced feasible

R

set may occur before the search can (horefully) home in on an improved
f2asible solution. To avoid drifting indefinitely, an upper limit is
impcred on the number of iterations, which was taken to be 100 for purposes
o 2omputationzl testing. Another danger of eliminzting the requirement *
“hzt q must be strictly reduced at each iteration is that it is then
pcisible to begin cycling, whereby the szme sequence of solutions is
repeated ad infinitum. One inexpensive way to lesson the risk of this i
occurring is to impose the restriction that a variable change cannot be
reversed within a certain number of iterations (taken to be five for
computational testing).

Because of its ability to drift, it is conceivable thzt Method S
zctually would be more effective than Methods 3 and L in reaching z better

fzasivle solution that reguires changes in many variables.

>. Description of Test Problems

As described previously by the author [9), some 38 test problems
«~ere used to evaluate his original heuristic procedures. Most of these
vere Type I and Type II problems as described in Tzble I, where the
respective pzrametlers are integers randemly generated (using the mixed

congruential method) from a (discretized) uniform distribution over the

indicated interval. The iype I problems are intendel to be difficult




problems that should be particularly challenging for the heuristic procedures
since there is no exploitable special structure, the coefficient matrix is
completely dense, feasible solutions are relatively difficult to identify,
and the variables have a wide range of values to be considered. Thus, these
problems should be exceptionally effective in revealing any significant
differences in the effectiveness of alternative procedures. The Type II
problems are intended to be representative of the multidimensional knapsack
problems (all coefficients nonnegative) frequently found in practice. See
[8] for a listing of these original test problems of both types (except those

larger than 30 x 30).
TABLE I

DESCRIPTION OF THE RANDOMLY GINERATED TEST PROELENS

Problem Type N
Parameter I Ta Ic 11
Cj ['20:79] Type I Type I [0199]
aij [-~40,59] except except [0,99]
2 3
b, (500,999] P(aij =0) =¢ P(cj =0) =¢f [1000,1999]}

Eighteen of these original Type I and Type II problems were used

again to test the.new methods presented in the preceding sections. These

consisted of the 16 problems with m = 15, n = 15 for which the standard-of-
comparison procedure (1-2A-1) definitely did not obtain an optimal solution
(namely, problems I-2 through I-8 and 11-1,3,4,7,9,11,13,14,15) plus two
larger problems for which the optimal solution is unknown (11-16, which is

30 x 30, and the 30 X 60 "Large" Type I problem, labeled I-9 here).

In addition, 40 new test problems with m = 10, n = 20 were generated
at the outset. These include 20 ordinary Type I problems (labeled I-10l
through I-120), plus 10 Type Ia problems (Iz-1 to Ia-10) and 10 Type Ic

problems (Ic~l to Ic-10) as described in Teble I. Specifically, for Ia

12




problems, each aij was assigned a2 value of zero with probability é;

if this event did not occur, then it was zssigned a randomly generated
integer (possibly zero) from the interval [-40,59] ir the usual way.

For Ic problems, the cj parameters were generated in an analogous vay.
Since "low density" problexs (particularly with respect to the aij) are
commonly observed in practice, these Ja and Ic probleris were intended

to check on the effect ¢ this factor. No additional Type II problems were
generated since these had proven to be far less challenging (i.e., the
solutions obtained tended to be far closer to being optimal) than the Type I

problems for the original procedures. (None of the original Type III problems

were used for the same reason.)

Finally, to avoid complete reliance on randomly generated problems,

use was made of the nirne IEM problems presented by Haldi [6) and rerroduced
by Trauth and Woolsey [18). (None of Haldi's other test problems were used since,

as reported in [9], two of the most difficult ones had presented little challenge

to the heuristic procedures in previous testing.)

It should be noted that all 67 of these test problems are relatively small
ones compared to the sizes that would be computationally feasible for the
heuristic procedures. The two reasons for doing this were to preserve a fairly
limited computer budget and to permit identifying an optimal solution with an
exact algorithm for most cases. The emphasis in this testing program was on
evaluating the effectiveness of the procedures, as measured by the normalized
deviation from optimality (defined below). Some information also was obtained

on their efficiency, but no attempt was made to test their limits of computational

feasibility,

All testing was done on an IBM-360/67 computer, using FORTRAN codes.

Documentation of the code for the original procedures is available in a separate

report [11].

13
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6. Evaluation of Some Original Procedures and the Phase 2 Criteria

6.1. Test Results

The experimentation program began by dealing with the 0ld unresolved
question of which basic type of procedure (from among 1-2-1, 2-2-1, 1-3-1,

and 2-3-1), in conjunction with which Phsse 2 criterion (A, B, C, D, plus

the new E and S), is best. Thus, 24 distinct procedures were to be con-
sidered. Since these procedures (except with the new Phase 2 criteria)
already had been applied (see Table II in [9]) to the 18 old test problems

(except for I-9), all 24 now were individually run on just the 49 new test 4

problems plus I-9.

On 21 of these 50 problems, the same final solution was obtained by
211 24 procedures. The results for the other 29 problems zre shown in
Table II; For each problem, this table comperes the final solution obtained
by each procedure (identified partially by the footnotes to the table) with the
best solution obtained by any of the 24 procedures, expressed in terms of the P
normalized differences in their objective function values. Specifically, if
xg denotes the objective function value of this best value, then the normalized

deviation of a given solution with objective function value X from this

best solution is

|-

n
2
normalized deviation = (x? - xo)/ % cj)

so that this normalized deviation is just the Euclidean distance between

the hyperplanes,

(When the optimal solution is known, substituting its objective function

value for x: in the above expression yields the normalized deviation from

optimality, which is the quantity used in several of the subsequent tables.)

14




For many of the problems, the four basic types of procedures obtained
the same final solution for a given Phase 2 criterion, in which case the
resulting normalized deviation is listed singly in the table. When these
procedures obtained different solutions, the resulting normalized deviations
are listed separately with footnotes identifying the procedures involQed.
The average normalized deviation for each procedure is given at the bottom
of the table, where this average first excludes just IBM-7 (since criteria
A, B, and D failed to find any feasible solution for this problem) and
next excludes both IBM-7 and IBM-8 (since the IBM-8 results were dominating
the first averege).

Since the results shown in Teble II were inconclusive in identifying
the best procedufe, 2 supplementary experimental program involving 240
adcitional test problems was undertaken subsequently, as described in the
zppendix.

In addition to the information in Table II, various other verformance
data also were gathered for the 50 test rroblems. Since these data tend
to vary with problem size, they zre summarized on an average basis in
Tzble III for just the 4O problems where m = 10, n = 20. The last three
columns give a grand average over all six Phase 2 criteria for the indicated
basic type of procedure, expressed as an increment over the corresponding

grand average for the 1-2-1 procedure. Letting

x = (1D @

the first set of rows refers to the value of a &t vhich a feasible solu-

tion is found during the subsequent Phase 2 search. The next set of rows

(1),

refers to the number of points (excluding X on this line segment

15
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(1)

between x and 5(2) that are used to launch a Phase 2 search until
this feasible solution is found. The number of "trial solutions" refers
to solutions that are generated during these Phase 2 searches (Step 9)
as possible feasible solutions, excluding rounded solutions from the

line segment. Normalized deviation is defined just as above, with xf

now replaced by the objective function value for i(l). The two modes
of search used in Method 1 of Phase 3 involve charging just one variable
at a time (Part II) and then changing pairs of variables simultaneously.
Thus, "Normalized improvement, first time in Part II of Phase 3" shows
the decrease in normalized devistion from ﬁ(l) that would result if
only the first que of search were used to improve upon the original

feasible solution, whereas the next set of rows shows the additional

improvement from using the full Phase 3. "Total time for procedure"

consists of the total CPU time (in seconds) for the entire heuristic procedure
except the time required by the simplex method to obtain 5‘1) (which may be
several times as large as for the heuristic procedure). No special provisions
were made for controlling timing variability on the computer, so the times
obtained for individual problems may have a substantial variance due solely to
this factor, although the corresponding variance for the average times over 40

problems recorded in Table III would be very much smaller.

6.2. Comparison of Basic Types of Procedures

Tables II, III, IX, and X (see the appendix) provide the primary
tasis for comparing the four basic types of procedures, 1l-2-1, 1-3-1,
2-2-1, and 2-23-1. These rather extensive results fail to reveal any

significant differences in the effectiveness of 1-2-1, 1-3-1, and 2-3-1
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as measured by the normalized deviation from the best solution. However,

they do show 2-2-1 rather consistently lagging behind the other three on the
average (see, in particular, the averages given at the bottom of Tables II, IX
and X). Furthermore, the time comparison in Table III indicates that 2-2-1 has
far too slight an advantage in efficiency to be able to compensate in this way

for these substantial differences in effectiveness.

Some of the details in Table IITI mzy provide an extlzrnztion for the

relztively weak performance of 2-2-1. hote that the average "Lurber of

until a feasible solution is found" for 2-2-1 s orly azbout

0,

oints trie

'd

1 . A
5 or less that for the other procedures. On the cther hand, cpecific

comparison with 2-2-1 on this statistic zna on the average "Vazlue of O
at which a feasible solution is found” suggestis that £-2-1 has mcved

somewhat further than the other procedures along the lire segrent fron
(1) (2) o e . ] o
X to x before finding & feasible sclution. (The «a values cannot
o - . . (2)
be directly comrzred between 1-x-x and 2-x-> procedures since fhe >
N . s o s . (1)
from Method 2 of Phese 1 tends tc be considerebly furcther avay from X
than for Method 1.} Thus, 2-2-1 evidently skips over many rounded solu-
tions near this line segment that would be considered by the other pro-
cedures. The result was that the feasible solution obiained in Phase 2
was considerably inferior to those for the other procedures on the average

(see the data in the fourth set of rows), and Phase 3 was not fully =able

to recoup this deficit.

This suggests that the quality of the Tinal solution is affected

significantly by the proximity to x(l)

when initiating the Phase 2

search that leads eventually to this solution a2t the culmination of Phzse Z.

Therefore, when moving from x(l) toward x<2)

— —

in Phase 2, it is imperiant
to try not to skip over points that may successfully lead to a fzasible

solution. In other wocrds, it appears that a x~3-x procedure should tend

24
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to be at least slightly more effective on the average than the corresponding
Xx-2-x procedure. (It also tends to require a little more time on the
average.)

Although this difference in effectiveness did not become apparent
in the comparison between 1-2-1 and 1-3-1, a plausible explzaraticn can
zgain be found in Table III. Specifically, the second set of rows suggest
that the jumps along the line segment being made in Phase 2 of 1-2-1 were
small enough (except on the Ia problems) to avoid skipping over very many
points that were being tried by 1-3-1. However, there is no reazson to
expect comparable jump sizes in general, particularly since the number of

distinct rounded solutions generated by the line segment between 5‘1) and

(2)

x tends to increase with the number of variables in the problem.

Because x->-X procedures do have considerable veriability in the
number of points tried and, thus, in the totzl time for Phase 2, it might
prove worthwhile on very large problems 0 use a corpromise between an
x-3-X and an x-2-x procedure. In other words, one could begin by selecting
points on the line segment between E(l) and 5(2) acceording to the
x-3-x procedure, but after a certain number of futile tries, one could
then switch over to using x-2-x. (More complicated ways of merging the
two approaches also could be devised.)

Comparing l-x-x and 2-x-x procedures is inherently very difficult
since differences can arise on a given problem only when «& > 0O, which
freguently does not occur, and the differences are not likely to be major
ones (on the average) unless a is quite large, which seldom happens.
The numerous test problems run here certezinly provide little basis for
choosing between 1-2-1 and 2-3-1. However, there ere some clues in Table

III that may be significant. In particular, the second, third, and fourth

25
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sets of rows indicate that, for every type of problem, 1l-2-1 needed to try
less points and less trial solutions in order to obtain a better feasible
sclution (on the average) than 2-2-1., This suggests that Method 1 of
Phase 1 may give a more centralized route into the interior of the feasible
region that more readily leads to a good feasible solution than does Method
2. Additional analysis by Faaland and Hillier [2] zlso suggests that this
is the case. Therefore, in the absence of contravening evidence, it is
reccmmended that 1-2-x be adopted as the preferred choice from among the

four basic types of procedures tested.

It also should be noted that Faaland and Hillier {3]) have analyzed the
present Phase 1 methods from a statistical viewpoint. This analysis led them
to propose some promising new modifications and extensions of these methods,
including the use of a piecewise linear path between 5‘1) and 5(2). The

results of some limited comparative testing also are presented.

6.3. Comparison of Phase 2 Criteria

The same foﬁr tables (II, III, IX, and X), plus the additional data
and statistical analysis summarized in Table XI of the appendix, provide
the primary basis for camparing the six Phase 2 criteria being considered
here.

Criteria A and B are the only two that do not consider the objective
function, since they are based entirely on (different) measures of infeasi-
bility. Comparing these two criteria first, the tables show Criterion B
often lagging substantially behind Criterion A (particularly with the
preferred 1-3-1 procedure). Since these criterias ¢iffer only in their
measure of infeasibility, it appears that A's measure probably is a wmore

effective one than B's.
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Criteria C and D use the same measure of improvement P, whizh does
take the objective function into account in a certein way. Otherwise,
Criterion C is identical to A, and Criterion D is identical to B. There~
fore, to be consistent with the above conclusion on A and B, Criterion C
probably should be preferred to D. (The data do not reveal this difference
clearly, since Criterion D performs very strongly in Tables II and III, whereas
Criterion C does a little better in Tables IX and X.)

The apprendix descrives how 200 additional test problems were used
to try to distinguish between the four remaining criteria - A, C, E, and
S. However, even this amount of testing was unable to detect differences
at a reasonable level of statistical -ignificance., The m2in conclusion
seemns to be that, even though large differences can occur on individual
problems, the choice c¢f the criterion does not have a strong effect on the

average performance of the heuristic procedure in the long run. A1l of

the available evidence does suggest that the new Criterion S may be some-
what inferior td the others, but that the new Criterion E may be at least
as good as any of the others.

Table III indicates that Criterion S does achieve its objective of
substantially reducing the time for finding a feasible solution. However,
since Phase 3 tends to reguire somewhat more time than Phase 2, the pro-
portional reduction in the total time for the heuristic procedure is
relatively modest. This should tend to be the case for much larger problems
as well, except when the "Number of points tried until a feasible solution
i3 found” becomes lzrge, which sometimes would occur with a xX-3~X type
of procedure.

Table III also reveals two other interesting contrasts between

Criterion § and the others. First, with its short and undiscriminating

moves toward feasibility, Criterion S tends to more quickly find a feasible




solution in the sense of doing so with a smaller value of Q, and so with
1) (2)

fewer points tried along the line segment from 5( to x . At the

same time, the resulting feasible solution tended to be inferior to those

obtained by the other criteria. Therefore, if the prime objiective is to

obtain the best possible feasiblé solution, then it seems better to be

more patient and discriminating, as with the other criteria, (The last two

sets of rows in Table III indicate that the other criteria average requiring
almost twice as much time in Phase 2 as Criterion S, but that the proportional
difference in the resulting total time for the overall procedure is considerably
less.) Second, the other criteria have a considerably smaller ratio of "number of
trial solutions" to "number of points tried" than Criterion S, so they tend to

get tlocked from making further moves toward Teasibility fairly quickly

and readily. Therefore, on problems vhere it is relatively difficult to

find any feasible solution, it appears that Criterion S mzy be more effective

in actually reaching such a solution.

7. Evaluation of Phase 3 Methods

7.1. Test Results

The next sfep in the experimental program was to test the new methods
for Fhase > described in Section 4. Using a fixed Phase 1 and 2 (Methods
1 and 24, respectively), these three methods Plus the 0ld Method 1 were
applied to the 18 old problems of Types I end II identified above, the
nine IBM problems, and (for economy reasons) just the first four new problems
of each of Types I, Ia, and Ic. The resulting normalized deviation of the final

solution from the optimal solution is shown in Table IV, along with the total
time used in Phase 3. When the optimel solution was not known, 2 lower
bound on the normalized deviation from opiimality is shown instead, pre-

ceded by 2 > sign. (Since the three phases are not independent, note that
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TABLE IV

COMPARISON OF PHASE 3> METHODS

S eve iy PR

Normalized Deviation Total Time
from Optimality ! for Phase 3
Problem i
m ; n| Type & No. 1-2A-1 | 1-2a-3| 1-2a-4 | 1-2A-5)11-2A-1 | 1-2a-3 | 1-24-4 | 1-24-5
15 {15 I1-2 0.184 | 0.184+] o0.28 { o0.036{} 0.07 | 0.53 | o.72 | 2.20
15 !15 I-2 0.169 0.169 0.169 0.076 |! 0.1k 0.58 0.67 2.27 X
15 115 I-k 0.285 0.192 0-192 ; 0.285 | 0.13 0.69 1.57 1.63 '
15 {15 I-5 0.229 0.229 0.229 0.175 1} 0.11 0.64 0.66 1.60
15 {15 I-6 0.279 0.266 0.018 0.109 i{ 0.15 0.11 1.00 1.50
15 115 I-7 0.0ub | 0.0k [ 0.04k i 0.04k || 0.3 0.11 | 0.8s | 1.91
15 15 1-8 0.170 { 0.170} 0.170 0 0.16 | 0.60 | 0.78 | 3.82
15 {15 II-1 0.170 0.056 0.056 0 0.17 0.23 1.39 2.24
15 {15 II-3 0.032 0 0.032 0.032 {} 0.32 0.13 0.85 1.69
15 115 II-k 0.013 0.013 0.013 0.013 1} 0.25 0.81 0.65 1.24
15 i15 1I-7 0.018 0.018 0.018 0.018 {; 0.23 0.66 0.93 1.3%6 :
15} 1% II-9 0.036 0.036 0.03%6 0.036 i} 0.31 0.33 0.71 1.45
30 115 II-11 0.012 0.012 0.012 0 0.25 2.15 1.12 3.47
15 150 1I-13 0.131 0.124 0.131 0.069 il 1.34 0.33 3.46 6.06
15 f}o II-1k 0.110 0.104} 0.110 0 0.99 2.19 3.19 4.51
30 30 11-15 > 0.006 {> 0.06k | > 0.006 {> 0.006 {| 2.12 0.kl 5.59 | 1o.ko
30 | 30 11-16 > 0.017 {> 0.035 {> 0.017 i> 0.017 i 1.94 0.62 5.80 9.62
10 20' I-101 0.587 0.282 0.174 0.174% {1 0.31 1.31 0.92 1.52
1020 1-102 > 0.052 §> 0.052 {> 0.052 ;> 0.015 i 0.15 0.66 0.87 1.92
: 10120 I-103 > 0.280 {> 0.280 }> 0.280 ;> 0 0.19 0.15 0.90 1.51
: 10 20 I-104 {i> 0.208 {> 0.208 {> 0.208 :> 0.063{f 0.23 | o.74 | 0.98 } 2.55
] 10} 20} 1a-1 0.456 | 0.200{ o0.101 0 0.07 | 0.15 | 0.635 | 1.17
101 20 Ia-2 1.162 0.053 0.053 0.088 i{ 0.26 : 0.18 0.7k 5.37
101 20 Ta-3 i 1.280 0 0 0 0.05 § 0.30 0.33 1.17
101 20 Ta-k 0.622 0.272 0.272 0.272{| 0.10 i 0.37 0.41 1.29
! 10} 20 Ic-1 0. 356 0.078 0.078 0.116 il 0.19 ! 1.00 1.16 0.77
j 10| 201  Ic-2 0.913 0 0 0 1 0.19 : 0.07 | 0.7% 1 1.23
? 10l 20f  Te-3 1.077 { 0.185 | 0.185} 0.238 | 0.14 i 0.20 | 0.80 | 0.18
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TABLE IV
(Continued)
Normalized Deviation l Total Time
from Optimality for Phase 3
Problem

m{ n}Type & No.f| 1-2A-1} 1-2A-3{| 1-2A-4 | 1-2A-5{{1-24-11!1-24-3 ] 1-2a-% | 1-24-5
10 |20 { Tc-k > 0.155 (> 0.036|> 0.036 | > 0 0.1+ } 0.51 | 1.25 | O.74
71 71 ImM-1 0.378 0 0 0 0.04 0.09 0.11 0.k
71 71 IBM-2 0 o 0 0 0.02 0.03 0.05 0.3k
31 41 1mRM-3 0 0 0 0 0.03 0 0.05 0.02
15 |15{ 1BM-k4 0.258 0.258 0.258 0.258:{ 0.14 0.9 0.81 1.66
15 15| IBM-5 0.258 0.258 0.258 0.2581{} 0.08 0.47 0.88 1.55
31|31 IEM-6 0.360| 0.180| 0.180{ 0.180{}0.38 | 0.60 | 0.81 | s.61
12 |50| TEM-T o |-o0.075 0 0 0.56 | 1.85 } 2.27 | 3.36
12 { 37| 1R4-8 13 13 0 0 0.05 { 1.11 | 0.79 | 0.13
50{15| 1IBM-9 0 0 0 0 0.15 0.8k 0.01 k.03
30 | 60 1-9 > 0.465 {> 0.465 |> 0.465 | > 0.459 || 2.01 | 1.86 {20.91 | 23.33
Average > 0.610 |> 0.449 [> 0.20% | > 0.078 }{ 0.37 | 0.62 | 1.69 | 3.00
Average without 11> 0.283 |> 0.119 [> 0.207 [> 0.080 || 0.38 | 0.61 | 1.72 | 3.08

*Criterion C was used on this problem since Criterion A did not give a feasible
solution in Phase 2,
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the relative performance of the Phase 3 methods could change somewhat if a
different combination of methods for Phases 1 and 2 were used; budget limitations

prevented checking this further.)

7.2. Comparison of Phase 3 Methods

The last comment of Sec. 6.3 actually has a bearing on comparing Phase 3
methods also. Method 5 follows a philosophy similar to Criterion S for Phase 2

in that it is relatively undiscriminating in the individual moves it allows in order

to expedite making combinations of moves that may indeed lead to good

feasible solutions. By contrast, Methods 1, 3, and 4 are analogous to

the other criteria in that they set high recuirements for each individual
move, and so tend to get blocked from making further moves toward improved
feasible solutions fairly quickly and readily. The results of Teble IV
suggest that the less discriminating epproach of Method 5 tends to be

more effective in.actually reaching improved feasible solutions. However,

the much longer (albeit fewer) searches involved consume considerable

time, and Table IV indicates that the increzse in totzl time over the other
methods tends to be substantial. 1In particular, Method 5 has an Average Total
Time for Phase 3 in Table IV that is approximately 2, 5 and 8 times as large as

that for Methods 4, 3 and 1, respectively.

Method 3 emerges as a "best buy”" aprroach in terms of the trade-off
between execution time and the quality of the solution attained.
The growth rates of total time with problem size in Table IV appear
to te roughly comparable for the different methods. However, there may
be small differences in the growth rates, so it is uncertain whether the time
comparisons between methods observed here would still hold for very large problems.

Finally, note that the fifth and sixth set of rows in Table III show

that gcing on to the second mode of search in Method 1 tends to be very

e D
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worthwhile, more than doubling the improvement from just the first mode
of search alone (except for Ic problems) on the average. HKowever, the
fact that Method 3 performed nearly as well as Method 4 in Tabtle IV demon-

strates that little is lost by foregoing the second mode of search if

the new mode introduced by these methods also is being used. In fact,
the second mode of search achieved a larzer improvement than the new
mode used in Method 3 (or 4) on only 3 of the 39 problems, and was out-
performed 17 times. Furthermore, Method 4 (which uses both the second
mode and the new mode) achieved a further improvement over the second
mode on 15 of the 35 problems where optimality had not yet been reached.
Nevertheless, comparing Methods 4 and 5 in Teble IV shows that this new
mode itself was outpefformed by the new mode used in Method 5 on 14 of
the 19 problems where differences occurred. The Method 5 mode of search
actually achieved e further improvement over the second mode 25 out of
the 35 possible times.

The unescapzble conclusion is thet changing only one or two variables
is frequently inadequate for reaching a better feasible solution. It
may be necessary to change many variables. Since it wouldn't be compu-
tationaily feasible to investigate such simultaneous changes directly,
one needs a mode of search that accomplishes this indirectly by making
a long sequence of small changes. Some of these small changes may need
to worsen the situation, when considered individually, in order to permit
combinations of changes which prbvide a totel overall improvement, a la

Method 5.
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8. Evaluation of Multiple Solution Procedures

8.1. Test Results

The investigation next considered the question of the best way to
generate multiple solutions in order to try to improve uvpon the first
final solution. The first such method tested was the one proposed in (9]
of repeating the Phase 2 search over the entire line segment between

MeY (2)

and X in order to generate a series of feasible solutions

as starting points for Phase 3. The results of doing this with Method 3

of Phase 2 (which provides the most exhszustive possible search over this

line segment) are shown in Table V for Procedures 1-R3-1 and 2-R3-1 under
all six Phase 2 criteria.

Procedure x-R3x~1 is guaranteed to do at least as well as the corres-

ponding x-2x-1 (o* x-3x-1) procedure (since it obtains the same solution

as well as others), and it sometimes will provide & significant improvement.

In fact, for the problems in Table V where the x-2x-1 procedure 4did not
obtain an optimal solution, x-R3x-l gave an improvement on essentially

half of them, and the average fractional improvement (when it did occur)
on the original normalized deviation from optimality was epproximately %.

Table VI provides a more detailed analysis of this approach for the

1-RZA-~1 procedure. The number of distinct solutions in Phase 1 refers

to the number of rounded solutions that were obtained from the line segment

(1) (2),

between x and x Each of these new rounded solutions initiates
a2 Phase 2 search for a feasible solution, and the "Ph.2" column gives the
number of times this search actually obttained a new feasible solution,

Since each such solution leads to a final solution from Phase 3, the

"Ph.3" column shows how many distinct final solutions were thereby obtained.

The "First Solution" column gives the range of @ that would successfully

lead +o the first final solution obtained. The “B2si Solution" column
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TABLE VI

SUMMARY OF PERFORMANCE FOR PROCEDURE 1-R3A-1

No. of
Distinct First
Solutions Solution Best Solution Decr. in
Problem Norm. Dev.
m | n |Type & No.]| Ph.1 |Ph.2 |Ph.3 a a Ph.2 So1® | ‘from Opt.
15 |15 I-2 11 7 710 -0.269| 0.782-0.801 # 0.184
15 15 | 1-3 | 3 | 3 o -o.572) O 002 ﬁ; 0
15 {15 | 1-4 15 |10 | 6]0 0.8 3:8%a-0-29 ﬁz:g 0.006
15 (15 I-5 14 12 3 { 0.129-0.870{ 0.129-0.870 #1-8 0
15 |15 1-6 6 5 2 {0 -0.751} 0.752-1 -5 0.279
15 |15 I-7 9 7 510 -0.153 0  -0.153 #1 o
15 (15 1-8 1 9 6 |0 -0.050| 0.942-1 # 0.126
15 115 | II-1 2 2 10 -1 o -1 #1-2 0
15 {15 | II-3 3 2 2 |0 -0.391} 0.392-1 #2 0.032
15 {15 | 1I-% 3 2 1o -1 0 -1 #1-2 0
15 (15 | TII-7 3 2 2 (o -0.660{ 0  -0.660 #1 0
15 |15 | II-9 1 1 1l0 -1 o -1 #1 0
30 |15 | II-11 4 3 1o -1 o -1 #1-3 0
30 { II-13 2 2 210 -0.208{ 0.209-1 #2 0.059
30 | TI-1b4 4 4 L o  -0.302| 0.585-0.594 #3 0.110
30 | II-15 5 4 b 1o -0.135{ 0  -0.135 #1 0
30 | 11-16 o | 9| 8lo -0.08f 5o 0RO ﬁé 0
20 1-101 |! 7 5 5|0 -0.287| 0.288-0.327 #2 0.022
20 1~102 % 8 é 4 [ 0.236-0.586| 0.236~0.586 #1-2 0
20 1-103 E 16 | 13 9 | 0.131-0.256| 0.257~0.310 2 0.280
20 I-104 ; 9 | 8 6 | 0.352-0.405 8:222:2'801 ' ﬁg 0.208




TABLE VI
(Continued)
No. of
Distinct First
Solutions Solution Best Solution Decr. in
Problem Norm. Dev.
m | n {Type & No.|| Ph.1 |Ph.2 |Ph.3 a a Ph.2 So12| from Opt.
10 {20 Ta-1 6 5 3 |0 -0.132] 0.563-1 #i-5 0.088
10 {20 Ta-2 12 9 3 0 -0.158{ 0.159-0.499 #2-3 0.283
*%
10 {20 Ia-3 77 L2 34 1 0.190-0.217| 0.190-0.217 #1 0
10 |20 | T1a-u** so | 37 | 24 {0  -0.023| 0.024-0.055 #2 0.272
10 |20 Ic-1 6 5 110 -1 0 -1 #1-5 0
10 |20 Ic-2 9 6 2 10 -0.952} 0 -0.952 #1-5 0
10 120 Ic-3 8 L 210 -0.574} 0.575-1 #o.L 0.054
10 {20 Tc-4 L 1 1 |0.576-1 0.576-1 #1 0
777 | IRM-1 1 1 10 -1 0o -1 #1 0
T |7 ) IBM-2 2 2 110 -1 0 -1 #-2 0
3 [ 4 | IRM-3 1 1 1{0 -1 o} -1 #1 0
15 115 |} IBM-4 1 1 110 -1 0 -1 #1 0
15 {15 | IBM-5 2 2 210 -0.7501 © -0.750 #A 0
31 {31 | IBM-6 7 7 Y o  -0.062] 0.063-0.679 #-5 0.180
12 {50 | IBM-7 6 0 0 - - - -
12 [37 | IBRM-8 22 13 3 | 0.061-0.068{ 0.069-0.200 #o 1.000
50 {15 | IBRM-9 10 7 6 |0 -0.418] o -0.418 #1-2 0
0.184-0.185 #3
30 (60 I-9 28 24 19 | 0.057-0.058 0.221-0. 280 4 0.465
Average 10.2 | 7.3| 4.9] 0.0%6-0.512| 0.209-0.698"| #2.1-2.9"| 0.097

*
When more than one interval for @ yielded the best solution, the widest interval

was used for purposes of calculating the average.

*
Linear extrapolation was used to estimate "No. of distinct solutions"” si: ~e the
run was terminated before a = 1.
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shows the range of @ that would leed to the best final solution obteined,
and then ideritifies which of the distinct feasible solutions obtained

in Phase 2 (in chronological order of increasing @) led to this best
sclution. The final column shows the resulting decrease in the normalized

deviation from optimality compared to the 1-2A-1 procedure.

After making two observations, Table VI also indicates how the computa-
tional effort of 1-R3A-1 on these problems compares with that for 1-3A-1
(or 1-2A-1). First, the time required for Phase 1 (other than obtaining x(l)
by the simplex method) is negligible compared to Phases 2 and 3. Second, the
time required to go through Phases 2 and 3 again to generate a new (not
necessarily distinct) final solution tends to be about the same as for obtaining

the initial final solution with 1-3A-1 (or 1-2A-1). Therefore, the "No. of

Distinct Solutions in Ph. 2" column indicates approximately the multiple of

the time for 1-3A-1 (excluding the simplex method) that was required for 1-R3A-1.

Table VII sﬁmmarizes the average performance of the x-R3x~l procedures
cn these same 39 problems for all 12 combinations of Phase 1 methods and
Phase 2 criteria. In‘addition to showing the same type of data as in
Tzble VI (where "Decr. in Norm. Dev. frox Opt." now is in comparison
with the corresponding x-2x-1 procedure), the last two sets of rows con-
trasts the results being ottained at those times when the procedure currently
ie ipitiating the Phase 2 search from the two extreme points (a = 0, 1)
and from the eguivalent of the midpoint (a = %) of the line segment
Letween 5(1) and 5(2). The average times given for these three cases

include just the time required for Phase 2 to find & feasible solution

and for Phase 3 to then obtain a final solution.
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The next method tested for generating multiple solutions was

the Rx-x-x procedure presented in Section 2. Table VIII shows the results

of applying the R1-2A-1 version of this new type of procedure to the same
9 problems. Thus, Solution O refers to the ordinary final solution
octained by the 1-2A-1 procedure, whereas Solution i (i =1, ... , 5)
refers to the sclution generated by applying this same procedure with
i(l) (2)

and X

the i—JEE new obtained as described in Section 2.

The next-to-last cclumn shows the resuliing improvement over Solution O

by taking the btest of the six solutions. Comparing this column with the
last column of Table VI thereby provides one comparison of the Rx-x-X

and x-Rx-x typres of procedures. However, it must be noted that the specific
vrocedure reported in Table VI is 1-R2ZA-1, where the number of final solu-~
ticns generated is highly variable and vossibly very large. Therefore,

a better comparison might be to the 1-R2A-1 procedure with «a = 0, 0.2,

0.4, 0.6, 0.8, 1.0, where six final solutions (at most) also would be

generated. The last column of Table VIII shows the improvement over the

ordirnary 1-2A-1 procedure given by this 1-R2A-1 procedure.

The reason for constructing the final column of Table VIII in this way
is that it essentially equates the computational effort for 1-R2A-1 to that
required by R1-2A-1 to obtain the results in the next-to-last column. After

(1)

excluding the time required to solve for x by the simplex method, the
time required to obtain each new final solution tends to be about the same
whether it is done by 1-2A-1, R1-2A-1, or 1-R2A-1. Therefore, the time

required for each of the last two columns is approximately six times that

for 1-2A-1,

41
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TABLE VIII

NORMALIZED DEVIATION FRO4 OPTIMALITY
FOR THE SOLUTIONS GENERATED BY PROCEDURE R1-2A-1

i i Improvement
H Solution Over 1-2A-1
: Problem : 0

m! n : Type & No. 0 1 2 3 L 5 !Rl-EA-l; 1-R2A-1
15§ 15 1-2 C.184| 1.036| 2.126| 1.966| 0.823: 0.105 ; 0.078 0.18%4
151 15 I-3 0.169 o.13hi 0.216 | 0.27:{ 0.280:! 0.216 { 0.035 0

15 15 I-b 0.285 o.279§ 0.682! 0.kko o.uShi 1.160 ; ©.0056 0.006
5% 15 I-5 0.229| 1.044) 0.845| 0.950{ 0.229: 0.175 | 0.054 0

15 ilS : I-6 0.279] 0.3%21; 0.303| 0.3ck o.u66l 0.527 f 0 0.279
150151 1.7 0.0kk| 0.255} 1.603| 0.532| 0.372| 0.292 i 0 0
15,15, I8 0.170| 0.239| o0.069| 0.516] o.o0k4| 0.258 0.126 | 0.126
15§15 II-1 0.170{ 0.309; 0.086| 0.163| 0.219| 0.219 | 0.08 | O
150151 711-3 0.032| 0.08:| 0.261] 0.197] 0.177| 0.205 | o 0.0%2
155 15 II-b 0.013! 0.134} 0.013} 0.081] O 0.291 || 0.013 0
15,15 | T11-7 0.018] 0.046| o0.230| 0.051] o0.028] 0.1751 o 0
151151 11-9 0.036| 0.123° 0.059| O 0.319| © 0.03% | 0
3015 11-12 0.012| 0.172: 0 0.516] 0 0.025 !l 0.012 | o
15:30 | 11-13 0.131! 0.095  0.117| 0.131 o0 0.131 ¢ 0.131 | 0.059
15,30 | II-1b 0.110] 0.110! 0.129| 0.110| 0.110! 0.270 © E 0.03%
30130 | TII-15 >0.006 | >0.006 >0.006 | >0.006 >0.006 | >0.006 || 0 i 0
30130 | 11-36 >0.017 30.029§ >0.032 | >0.029| >0.104 | >0.017 ! 0 ‘0

10% 20| 1-l01 || 0.587! 0.152; 0.261| 1.102| 0.858; c.803 ! 0.k35 ' o

10| 20 1-102 |} >0.0521 >0 >0.892 | >1.804| >0.98k | >0.722 | 0.052 0
10{20| 1-103 || >0.280| >9.849>16.870 | >8.829[>12.343 % | o | o
10{20¢ I-104 || >0.208] >1.111{ >h.021 | >2.924| >4.173 | >1.026 ! 0 | 0.208
10l200 12-2 0.456! 0.658] 0 0.253| 0 0.201 || 0.456 i 0.088
10120 | Ia-2 1.162] 0.601! 1.343| 0.884| o0.601| 0.601| 0.561 | 0.283
10 20! 1a-3 1.280 b4.305' 11.807| 7.010| 1.968!16.5k2 { 0 [ o

10 20| Ta-4 0.622] 0.631° o.h08‘ 0.559l 0.50L | o.175;i 0.4ko i
10,20, Te-l | o.356i 0.181, 0.350| 0.21k, 0.201 0.21k i 0.175 . 0

10 20 | Ic-2 ' 0.915 0.288 o.hhSE 0 0 | 722i 0.913 0
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TABLE VIII
(Continued)
! Improvement
Solution Over 1-2A-1
Problem ,
m | n |Type & No. 0 1 2 3 L 5 R1-24-1| 1-R2a-1
10 {20 | Ic-3 - 1.077| 0.083) o0.408| 0.238} 0.520 | 0.418 0.99% | o0.054
10 {20 | TIc-b ,>o 155 1 >0.181| >0.129| >0.155| >0.150 { >1.185 || 0.026 | ©
71 7] IRM-1 ; 0.378} © 0 0 0 0 0.378 | ©
71 7| IRM-2 L0 0 0 0 0 0 v 0
} !
30 4| IBM-3 0 0 0 ) 0 0 Y 0
15 {15 | IBM-k ; 0.258| 0.258| 0.258] 0.258| 0.258| 0.258 O 0
15035 | 1BM-5 | 0.258| 0.258| 0.258| 0.258| 0.258| 0.258 o 0
31 '531 IBM-6 © I 0.360] 0.180] 0.180{ 0.180] 0.180| 0.1801 0.180 0.180
12 } 50 IBM-7 : * * * * * * i * *
" ! i
12 37 | IBM-8 [ 13 15 13 12 13 15 1.000 0
50 15 | IBM-9 0 1.033| 0.775| 0.516§ 0.775| © . 0 0
30 . 60 I-9 '>0.L65 | >0.272| >0.578) >0.k68| >0.597 | >0.819 0.193 | 0.078
. : |
A"er"*igy"’;mm‘ 0.625| >1.038] >1.547| >1. 48| >1.082] - | 0.168 | o0.0k2
= - - - - - !
o ' | )
Average without . i ) " . b ,
TBM-T & 1-103 ?'@'6 Si >0. 800i >1.1321 >0.9k0 20.778%2.L.l65 f 0.173 | 0.0k4
Avarage without L § s ﬁ
IBM-T, [ >0.291! >0.406( >0.803 >0.633| >0.438 | >0.780(; 0.150 | 0.045
7-103 & IB¥-8 g 1 !;
Average without 1 I | i
IRM-7, IBM-8, >C. 26& >0.270 >0.384 | >0.378} >0.283  >0.310| 0.159 | O0.O048
I-103, I~-10k4, Ia-5 ‘l l ' ' '

*Ko feasible solution obtained in Phase 2.
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8.2, Comparison of Multiple Solution Procedures

Three basic approaches now are available for generating multiple solutions
at one phase in order to try to improve upon the final solution obtained at the
end of Phase 3. One is the x-Rx-x approach, which is investigated in detail
in Tables V, VI, and VII for the x-R3x-1 case. A second is the Rx-x-x
approach, which is studied in Table VIII for the case of R1-2A-1. The third
is to apply different individual procedures to the same problem, e.g., by

varying the criterion used in Phase 2.

One could increase the number of solutions obtained even further by
combining all three approaches. For example, consider e&ll of the pro-
cedures represented in Tables IV-VIII as applied to the same 39 problenms.

On 9 of tpese problems, the same solution was obtained by essentially
every procedure. However, there was considerable variation in the solutions
obtzined, and in the relative performances on the individual procedures,
on the other 30 problems. Specifically, the best solution wzs cbtained
by the 1-2A-5 procedure 13 times, by the R1-2A-1 trocedure 12 times,
by some x-R3x-1 frocedure 12 times, by the 1-2A-4 procedure 7 times, and
by the 1-2A-3 procedure 7 times. The average normzlized deviation from
optimality of the best solution obtained on each of the 29 problems was
only > 0.045, a very substantial improvement over that obtazined by any
one of the procedures. Furthermore, this best soclution actuslly wzs
optimal on 19 of the Bévproblems vhere the optimal solution was known.
(Keep in mind that many of these problems had been selected as "difficult"
ones for which previously tested heuristic procedures had not obtained
an optimal solution.)
These facts illustrate a key inherernt property of heuristic procedures,

namely, the great variability in their relative performances from one
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problem to the next. Even though one procedure may be distinctly better
than another on the average, the inferior procedure may still obtain a
better solution on a considerable provoriion of the probléms. Given

the highly combinatorial nature of integer programming problems, there

is a good deal of luck involved in uncovering a good (or optimal) féasible
solution, and sometimes a less promising path will lead to the prize.
Therefore, if the only concern were to maximize the quality of the best
solution obtained, then one should indeed follow the o0ld maxim to "try,
try again.”

However, the time and expense involved also must be considered, of
course. One can quickly reach a point of diminishing return where the
expected marginal impfovement from additional runs becomes too small to
Justify the computer fime. This is particularly true if the new solutions
being obtained frequently are merely repeats of ones previously obtained.
Therefore, an important criterion for designing a multiple~solution pro-
cedure is its tendency to generate new distinct solutions.

Under this criterion, the approach of repeating the same individual
procedure with different Phase 2 criterias, as in Teble II, is not a par-
ticularly good one. (Also see Teble V.) Even varying the Phese 1 and 2
methods (from among the choices represented in Table II) does not help
much. (Note that all 24 procedures only obtained about 2 % distinct
solutions per problem in Table II.) Varying the Phase 3 method, as in
Table IV, does somewhat better. ‘Although Methods 3 and 4 usually give
the same solution, this solution frequenily is different from the Method
¢ solution, so running either x-x-3 or x-x-4 along with x~x-5 would be
reasonable. Nevertheless, 1-2A-3 and 1-2A-L4 each were able to improve
upon 1-2A-5 only five times (six times combined) in Table IV, and the

improvements obtained were quite modest.
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The x-Rx-x approach fares somewhat better under this criterion.

In fact, Teble VI shows that 1-R34-1 obitained an average of k.9 distinct

solutions (out of 10.2 attempts) per problem. Of the 36 problems where
the first solution (the 1-3A-1 solution) was not optimal, a subsequent
solution provided an improvement on 17 of them. Similarly, Table VIII
indicates that 1-R2A~1 provided an improvement over 1-2A-1 on 13 of these
problems.

However, Table VIII demonstrates that the Rx-x-x approach is the easy
champion for generating distinct solutions. 1In fact, with the exception
of the IBM problems, practically every solution is distinct. Furihermore,
R1-2A-1 improved over 1-2A-1 on 23 of the problems, with an average improve-
ment far larger than either 1-R2A-1 or 1-R3A-1. Even vwhen compared with
the champion among the tested individual procedures, 1-2A-5, R1l<2a-1
obtained a better solution on 9 of the problems, and R1-24-5 probably would
have done much better.

The apparent explanation for the great success of Rx-x-X in generating
distinct solutioﬁs is the diversity of its areas of search. Whereas
x-Rx-x continues searching along the same line segment into the feasible
region, RX-X-X uses a cﬁmpletely different line segment in a different
part of the feasible region to search for each new solution.

Since Rx=-x-x requires only about the same computer time per solution
(and so less per distinct solution) as the corresponding x-Rx-x procedure,
it must be rated as the better of these multiple-solution approaches.

The test results on individual procedures can guide the choice of the
specific Rx-x-x procedure, e.g., Rl-3E-5 should be a very powerful one.

However, the choice between x-Rx-x and Rx-x-Xx need not be an either-or
one. For a fixed total number of solutions to be generated, some can be

obtained in one way and the rest in the other. Since the computer time
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involved for obiaining each solution is zbout the same for comparable
X-Rx-x and Rx-x-x procedures, this combined approach would be advantageous
if the expected marginal improvement from another solution sometimes would
be larger if it is generated by x-Rx-x rether than Rx-x-x. There is

some evidence suggesting that this is indeed the case.

To begin examining this evidence, consider the "Ph.2" and "Ph.2 So1™™"
columns of Table VI. Although there is considerable variation in which
Phase 2 solution led to the best final solution, a careful examination
suggests a definite bias toward the earlier (smaller @) Phase 2 solutions
(particularly when the total number of such solutions is relatively large).
Compare the averages. Then note that #1 led to the best solution 21 out
of 38 times, and #2 did so 19 out of 33 possible times, whereas # did
so only 8 out of 2k possible times. Of 21 problems with five or more
distinct Phase 2 solutions, only two required going beyond # to obtain
the best'solutioh. Ten problems reguired going to # to obtain the best
solution (contributing 0.058 of the 0.097 average decrease in the normalized
deviation from optimality), and five more required going to either #3 or
#. Thus, going to #2 is very worthwhile, but the expected marginal
improvement decreases rapidly théreafter.

An analysis of Teble VIIT suggests that Rx-x-x gives a slower decrease
in the expected marginal improvement of its successive solutions than
x-Rx~-x. Solution 4 obtained the best solution as many times (16) as
Solution 1. Ten problems reguired going to Solution 1 to obtain the best
solution, but 13 more required going further (4 to Solution 2, and 3 each
to Solutions 3, 4, and 5). The average marginal improvement was 0.097
for Solution 1, 0.023 for Solution 2, ani a total of 0.048 for the next

three solutions.
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However, after going to at least Solution 1, the first extra solution
from 1-R3A-1 (#2) gave a larger average marginal improvement than the
next R1-3A-1 solution. After going to at least Solution 3, the next
1-R*A-1 solution (#3) helped more than the next R1-32A-1 solution.

Another factor arguing for a combined approach is that Rx-x-x is
not well-suited for all problems. Specifically, if the extreme points

(1)

adjacent to x are located far away from the good feasible solutions
(because their objective function values are far inferior to that for x(l)),
then Rx-x-x will have little chance of helping. This apparently occurred
on problems I-103, I-104, and Ia-3 in Table VIII, since cach of the adjacent

extreme points on these problems led to final solutions with extremely large

normalized deviations from optimality.

Therefore, the recommended multiple-solution approach is to combine
Rx-x-x and x-Rx-x.(denoted hereafter as Fx-Rx-x). For a specified total
nunmber of solutibns to be generated, the first solution would be obtained
in the usual way, then the desired number of x-Rx-x solutions, and then
Rx-x-x would be eapplied for the rest. (This idea could be pushed even
further by using the x-Rx-x approach to generate more than one solution
along each of the new line segments generated by the Rx-x-x approach,
but this would not seem worthwhile under ordinary circumstances.) To
be specific on the allocation of effort, it is suggested that 1/3 of
the solutions (rounded down) be generated by x-Rx-x.

Among the alternative Rx~-Rx-x procedures, R1-R3E-5 should be a very
effective one. With x-x-5 rather than x-x-1, the expected marginal improve-
ment of successive solutions should decresse even more rapidly, so the
number generated should be kept rather smell, Four should bte very adequate
for most purposes, and it rarely should be worthwhile to exceed ten or

fifteen.

48

A




D NMYO Y -

9. Comparison with the Ibaraki-Ohashi-Mine Algorithm

The algorithm presented by Ibaraki et al [10] is (with some modifi-
cations) a 2-R3~x procedure, where their Phase 3 method 1s perhaps most
similar to Method 5 of the ones tested here. For part of their testing
program, they obtained a listing of all of the author's test problems used
in {9] (except the five "Large Test Problems'"), as given in Appendix 1 of [8].
They report the results of running their algorithm on five of these problems,
namely, I-5, I-6, II-1, II-3, and II-11, achieving a normalized deviation from
optimality of 0.229, 6.018, 0.047, 0, and 0.012, respectively, for an average

of 0.061.

Comparing these numbers with those given in Tables IV, V, and VII
for these problems suggests that this algcrithm is quite competitive with
1-24-5, x-R3x-1, or Rl-2A-1. However, since it is most similar to
2-R3x-5, the most interesting comparisons would be with this procedure
and its recommended veriations, 1-R3X-5 and R1-R3x-5. Although these
particular data are not available, consider the approximation where 1-2A-5
is used for the first solution and 1-R2x-1 (rather than the mcre powerful
1-R3x-5) for the rest. This.approach obizins a better solution than the
Ibaraki algorithm on four of the five problems and matches the optimel
solution on the fifth, (When 1-2A-5 is combined with 2-R2A-1 or R1-R2A-1
(with few solutions) instead, then the one change is that the Ibareki
algorithm does better on I-6.)

It must be emphasized, however, that more data would be reguired to

draw a2 conclusive comparison.




10. Some Hypothesized Principles for Heuristic Algorithms

Some of the insights gained in this investigation mzy have wider
applicability for the development of heuristic algorithms in various areas
of discrete programming, etc. They can at least provide promising starting
pcints for guiding the development of such algorithms and the resulting
experience would determine the extent to which they are generally valid.

Therefore, they are presented here in the form of hypothesized principles

for heuristic algorithms. At the same time, it must be emphasized that these

are only tentative hypotheses, based on a limited set of test problems which
may not be representative of many other discrete programming problems.
Heuristic can be defined as "guiding in discovery" or, in the present
context, "guiding in the discovery of good solutions.” Ko guarantess
can be given on how successful the search actually will be, and .results
may vary considefably from one attempt to the next. There is a definite
element of luck involved, where the heuristic procedure is designed to
weight the odds in one's favor as much 2s possible. Therefore, it seems
appropriate to uée the parlance of gambling in stating these hypothesized

orinciples. (Translations follow in parentheses.)

Hypothesized Principle 1: Keep your stakes high. (Focus the search where
any feasible solutions found should be particularly good ones, even though
they are difficult to uncover, rather than cuickly locating a mediocre

feasible solution and trying to improve upon it.)

The heuristic procedures studied herein start the search from the
"ideal," the linear programming solution i(l), so any ‘easible solutions
nearby will be particularly good ones (as well as particularly difficult
to uncover). The focus of the search moves no further away from this

ideal than is necessary to find the initizl feasible solution for Phzse 2.
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Ez2rly computational experience showed that this approach was far superior

(2)

to the alternative of merely rounding x to quickly obtain a (mediocre)
initial feasible solution, and also was markedly superior to such inter-
mediate alternatives as Method 1 of Phase 2. As discussed in Section 6,
even the slight compromises involved in Method 2 or Criterion S of Phase 2
seems to have a detrimental effect. Thus, there is a rather strong positive

correlation between the quality of the initial feasible solution and of

the final solution obtained.

Hypothesized Principle 2: Stick with a winning streak, but don't push

your luck. (When & good feasible solution is found, there often is an
even better one nearby, so continue searching in this region until no

further improvement have been obtained within a reasonzble period of time.)

The first two modes of search used in most of the Phase 3 methods
seek (and often find) small changes in the current feasible solution that
vield improvements. However, care is taken not to use a mode of search
whose growth rate with problem size is so large that it can continue
fruitlessly for an extended time. On a broader basis, the x-Rx-x multiple=-
solution approach also initiates.new searches near where the last successful
one began. As discussed in Section 6, this approach is a good one if it

is used in moderation.

Hyvothesized Principle 3: Occasionally shuffle the deck. (When the search

has gotten too locked into one well explored neighborhood, then allow
it to drift awhile until it homes in on bvetter solutions in an entirely

different part of the feasible region.)
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Method 5 of Phase 3 examplifies the successful application of this

principle. ‘

Hypothesized Principle hk: Play the field. (The search should move into

several different "high stake" regions in order to obtain a variety of

solutions, thereby increasing the chances of "hitting the jackpot" of

finding an optimal solution.)

A
The Rx-x-x multiple-solution approach enjcyed outstanding success ‘

in following this principle. :
11. Summary of Recommendations and Conclusicns ' r

Although an-éxtensive progrem of computational experimentaéion failed
to reveal significant differences between certzin of the leading methods
and criteria, the following heuristic procedures can be recommended from
the current evidence as at least cémparable to any of the others on the

problems tested.

1. For a basic single-solution procedure that is both very effective
and reasonably efficient, use 1-3E-5.

2. For a very powerful multiple-solution procedure, use R1-R3E-5
as described at the end of Section 8.2. The total number of solu-
tions generated should be adjusted to fit the desired time-guality
tradeoff, but four should be very adequate for most purposes.

3. For a "quick and dirty" procedure that is still reasonably effec-
tive, use 1-25-3. (The procedure can even be terminated early
as needed and still probably provide a rezsonably good feasible
solution since it quickly finds an initial feasible solution and
then devotes the bulk of the time to seeking progressive improve-

ments.)




No further comparative testing is planned. However, a modest amount
of additional developmental testing to refine these procedures appears

to be worthwhile. The primary focus will be on Method 5 of Phase 3 to

see if it can be streamlined greatly without significantly diminishing

v mamin msm 48T

its effectiveness, but several similar questions about other parts of

the procedures also will be pursued. Further information on the growth .,é

rate of execution time with problem size also will be sought. A
In a parallel investigation, Faaland and Hillier [3)] have analyzed

the current Phase 1 methods in detail and developed some new options.

Although the procedures tested here have been presented in terms
of pure integer programming, they can be extended quite readily to the
more general case of mixed integer programming. Ibaraki et al [10] have
done this in one way. This also has been done in another way by the
author, and some preliminary testing conducted. These results will be
presented subsequently in conjunction with the further testing and
refining mentioned above.

In many problems, the integer variables actually are restricted to
be binary (0-1). These procedures could, of course, be applied directly
to such problems by merely intro&ucing uoper bounds of one on the variablés
as 2dditional functional constraints. However, this would be a crude
and needlessly inefficient way of handlirng O-~1 problems. What is needed
is a thorough adaptation and streamlining of the procedures and codes

to expioit thie special structure of these problems. This is being pursued.
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APPENDIX

Further Comparative Testing

In order to more adequately compare the four basic tybes of procedures
and the six Phase 2 criteria considered in Table II, a supplemental experimental
program was undertaken.

The first step was to randomly generate 20 more Type I problems (labeled
I-121 to I-140) and 20 more:Type Ia problems (labeled I-21 to I-40), each with
m=10 and n = 20. (These two types were chosen since, based on the resulting
normalized deviations from optimality, they appear to be particularly difficult
for the heuristic procedures.) All of the procedures and criteria were applied

to these problems, with the results shown in Tables IX and X, respectively.

Given the analysis of computational results presented in the early
vart of Section 6, thé next step was to randomly generate 200 additional
problems of Type I (again with m = 10, n = 20) to try to distinguish
between Criteria A, C, E, and S on'a sound statistical basis. Ag the
recommended choice at this point of the four basic types of procedures, procedure
1-3-1 was used with each of these criteria. On 29 of the problems, the
simplex method foupd thet there was either no feasible solutions or no

(1)

bounﬁed optimal solution x for the continuous (linear programming)
version of the problem. Each of the four criteria produced a feasible
integer solution on all of the remaining 171 problems. The six pairs
of.criteria were then compared on the quality of their final solutions
on these 171 problems.

Let Vi(x) denote the normalized devistion from optimality of the

final solution under Criterion x (x =4, C, E, S) on vproblem i

(1 =1, 2, ... , 171). For a given pair of criteria, x and y, let

Di(x-y) = Vi(x) - Vi(y), for i =1,2, ..., 171 .
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NORMALIZED DEVIATION FROM BEST SOLUTION

TABLE IX

FOR NEW TYPE I PROBLEMS

Criterion Used in Phase 2

|

Problem A B | c D E s l
| l ; oL/ }
1-1221 0 o } 0 0 0 0. wso2
| | 0,107/
J1-122 o232 | 0.232 0.232 0.232 0.232 0
.7 Y oke¥/ oLt/ A o.25102/
1-123 .2513/ 0.488%/ 0.488%/ 0.8 0.2'51-3-/ ;o.b,882/ .
10,1782/ 0.178%/ 0.178%  lo.178%/ o.7ed 1 o /
1-12h  i| o | o 0 0 0 | o |
| ot22/ 1,2/ o2t/ | 1.2/ 1,2,4/ | 1501/ :
1-125 | 01143/ 0. 1642/ o o.umd/ o.wsd [0/ ¥ |
' 0.313%/ 0.7262/ 0.315%/ 0.315/ j
1-126 1 o 0 L 0.360 0 0 0 |
|
| &
-2 2,34/ |
1 0.032 0.032 0.032 0.032 0.032 0.032%222%
1-128 {0 0 0 0 0 .233
8
1 ok he2s/ oLe2:/ oLe2s/
1-129
joua | o2 | owm® | o 04812/ |o.u81 |
" 3.209%23/ 5.20 L3/ | o euote?/ !o.éhzl’z/ 3.20022% |3.200:3/
1-130 J; i .
|
o
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. TABLE IX
g (Continued)
{ Criterion Used in Phase 2 _
¥ 1
Problem gl A B ; c D E ! s
_ toaseY . 0. 180 | 3
S 5 RV, f 8/ |
. 0.023~4=-"1 0.189 .0 0. 0232224 0 0 A
—i j l
TR P S 1P VA L2/ L2/
I-132 i i
; 0.0572/ ; 0.0372/ 0.037222 4/ 0. 03722+ 4/ | o. 03722% LU 0
L 0.399823:4/ |
I-133% { 2/ i ‘
2 o= - 0.399 "0 0 Lo 0.399
|k | o 0 | 0 0 0 o '
| | oL2/ |
! z | I
g RS ; ! R
: 10.379 0.379 1 0.379 0.379 0.379 05792~
! | ; I oLe3,4/
7-136 | | ! 2/
| 0 0 0 0 o ket
| ' 0.0t | o.ogk/
L1137 { 0.099 0.099 0.283 0.499%/ ' o.h99——/ 0
| :
| 0.2832-’—)1/ :
i - [N ; !
I-138 i 3/ 3/ <)
i| 0.5%0 0.758~ 0.115 | 0.758 0.115 0 -
1-139 §i O 0 0 | o 0 0.361
: I-1ko 0 0.116 0 ‘ 0.021 0.021 .0
5
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TABLE IX
(Continued)

. ~'.m(.:rit'.erflon Usei in Phase 2 f
| problem | A B c b | g s ‘
[ { 1

0.254 : 0.244 0.102 0.091 0.204 .255

| 0.7 L 0.267 0.111 0.131 0.148 131

0.291 0.341 0.288 0.280 0.235 .286

| 0.101 0.227 0.154 0.238 0.171 .115

[ 0.098 0.088 0.074 0.062 0.046 .099

1-3-11 0.078 0.097 0.083 0.105 0.077 138
| 0.138 0.190 0.134 0.126 0.078 .132
0.107 ’, 0.126 0.076 0.081 0.068 121

obtained for l-2-1.
obtained for 1-3-1.
obtained for 2-2-1.
obtained for 2-3-.1.
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TABLE X

NORMALIZED DEVIATION FROM BEST SOLUTION
FOR NEW TYPE Ta PROBLEMS

Criterion Used in Phase 2

Problem A B C D E S
Ta-21 0 0 0 0 0 0
Ta-22 0 0 0 0 0 0
0.139-/ 0. 159—/ 0.136%:%/ | o.136Y/ 0 139-—2/ 0.139—2/
o’i/ 0.500%/ ot/
Ta-24 ) 0 0 o) ) 0
22,4/ oLa2,4/ R A N PR o2/ 1 (1,2,4/
Ia~25
1.866%/ 18662/ 1.8663 | 18662 18602  |1.866%
1,2,4/ 1,24/ | 000622 | 0.0262% | 0.0062Y |o. 00622/
Ta-26 0.1762/ 0.176>/ & &/ o2/ o2
o.1162 | 0.176%/ 0.1762  |o.176%/
1,2,4/ 1,2,4/ 1,2,4/ b,/ o}ﬁ_»‘t/ 1,2,4/
Ia-27
0.6352/ 0.6352/ 0.6352 | 0.635%/ 0.6352  lo.635%/




TABLE X
(Continued)

Criterion Used in Phase 2

Problem A B C D E S
o2/ &;@/ o2 | uE/
Ia-33 34/ i/ 34/
0 0,719~ 0. 719— 0. 719——— 0. 7195 0
1.5hok22:4/ | oy gle@l/ | o 8La3/ |y s gLe®/ | 1 sugle?/ |1 ugla2s4/
Ia-34 0.801-3-/ 0. 8015/ 1.51;9—/ 0.80 3/ 0. 8013 l‘/ 0.8012/
o Ry,
o5t/ | L3/ 13,4/ L7 PRI
Ia=-35
02/ 0. 51l+2 4/ 0.514—~ 2/ 0 0. 512+2/ o?-/
Ta-~36 | 0 0 0 0 0 0
oLa2:4/ oLe2,/ o2t | L2/ ore2:4/
Ia-37
0.5642/ 05642/ o562 o.seu3/ 0.5643/ o
o2/ 22/ oLs3.4/ 1.083Y
Ia-38 o. 6673/ 0.6672! 0 0.112/ 0 o/ 0.6672
0.u85%/ 0.172%/ 0.1/
{
0.07222) | o.0702e2¥ | o 07p2e2M o 572208/ | 070222/ 0.072k22/
o.oue? o o1a2:? | 0. 01222/
Ta-40
0.011 0.011 021-"1/ o—’y 05’—"/ 0.011
1-2-1 .11k .113 .052 L1k .090 .170
1-3-1 .107 .131 .11k 11k .11k L11k
Ave. » e ]
2-2-1 .236 .296 .287 . 287 287 .208
2-3-1 .128 176 NSk . 065 077 .11k
1. Value obtained for 1l-2-1. 3. Value obtained for 2-2-l.
2. Value obtained for 1l-3-~1. 4. value obtained for 2-3-1.
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Since the problems are randomly generated (by the mixed congruential method) from

fixed (discretized uniform) probability distributions, all of these Di for the y
given x and y are drawn from the same underlying probability distribution

(before conditioning on the parameter values taken on for the particular problem).

In order to distinguish between the two criteria involved, the objective is to

determine whether the mean of this underlying distribution can be concluded to

be different from zero and, if so, whether it is positive (y better t.an x)

or negative (x better than y).

Since any two criteria (x and y) frequently yield the same final -
solution, this underlying distribution hzs considerable mass at zero,
which mzkes it considerably more difficult to detect a nonzero mean.
However, this mean indsed will be nonzerc if the rest of the distribution
(the conditional distritution given nonzero values) has a nonzero mean,

so it is better to focus on this conditional distribution to address the

questions a2t issue. Let “x v denote the mean of this conditional dis-

tribution. The nonzero Di(x—y) values represent random observations
from the conditional distribution that czn be used to obtain a point

estimate of My v and a confidence interval about u For this purpose,

X~y
it is assumed that the conditional distribution is (approximately) normal.
(If no assumption is made about the functional form of this distribution,
the resulting confidence interval would be much wider, which would further

reinforce the conclusions stated after the next paragraph.

Using this approach for each of the six pairs of criteriz led to the
results shown in Table XI. The first column of data shows the sample
size Ny (the number of nonzero Di(x-y) values out of the 171 problems).

The next two columns give the meximum lirelihood estimate of u (the

X-y
and the sample standard deviation

sample average), denoted by ﬁx-y’
. The last colunn presents the 99% confidence interval about “x-y

(so that the fiduciary probability that :11 six intervals cover their ;

s
x-y

recpective means is at least 0.9% by “he Sonferroni ineauzlity).
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TAELE XI

STATISTICAL COMPARISON OF PHASE 2 CRITERIA
FROM 200 ADDITIONAL TYPE I PROBLEMS

X=-y nx—y “x-y sx-y 994, Conf. Int.

A-C Ll +0.013 0.391 (-0.152, 0.178)
A-E 42  +0.025 0.41h  (-0.148, 0.198)
A-S 69 -0.081 0.736 (-0.316, 0.155)
C-E 27 +0,019 0.342  (-0.164, 0.202)
c-S 73 -0.08% 0.70% (-0.302, 0.135)
E-S s -0.089 0.705 (-0.307, 0.128)

Recalling that positive values of “x-y favor y. over x,
it can be seen that the results in Table XI are most favorable to Criterion
E (by a slight margin over C and A), and least favorable to Criterion S.
However, it must be emphasized that none of the confidence intervals
exclude zero, so'the null hypothesis that “x—y = 0 cannot be rejected
in any of the six cases at a 99% level of statistical significance.

In fact, even for ‘the most extreme case of E-S, this hypothesis cannot
be rejected at just the 90% level, even if the alternative hypothesis is

the one-sided one, < 0. Also note how very small the ﬁx- are

HE-s y
relative to the Syey” Therefore, the only solid conclusion that can
be drawn from these data is that, even though there will be occasional
large differences in both directions on individual problems, any differences

in the long run average performance of these criteria should be quite sma2l

on problems similar to Type I.
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