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Analytical and numerical studies are made of aerodynamic forces for wing
and control-surface motion with general time-dependence in linearized subsonic
flow. Alternative formulations are discussed, with particular attention to one
in the time domain where quasi-steady displacement and rate terms are combined
with a residual history term. An accurate calculation procedure is devised, and
results are illustrated for a high-aspect-ratio wing at Mach number 0.8 with
trailing-edge, leading-edge and all-moving-tip controls. Emphasis is placed on
asymptotic behaviour at small and large times.

Individual control characteristics are compared over a wide range of con-
trol rate. The usefulness of the quasi-steady approximation is established for
hinge moments and is analysed for lift, where the rate and history terms become
important together. The rapid lift response to the leading-edge control and the
sluggish lift response to the trailing-edge control are explained. These forces
in the time domain are confirmed by Fourier transform calculations in the fre-
quency domain, which show the extent to which the range of frequency can be
truncated.

The control-surface motion to produce a known time-dependent force is
determined. It is remarkable how rapidly the controls can neutralize the growth
of lift as the wing enters a step gust.
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INTRODUCTION

The concept of active control technology has become associated with many aspects of

unsteadiness in flight, which together cover a wide range of frequency. The use of an

autopilot to control height and speed defines the low-frequency end of the spectrum.

Next comes the control of short-period pitching oscillations and the application to the

relaxed static stability of aircraft, for which it is sufficient to adopt low-frequency

aerodynamics. Moderate frequencies arise in the damping of structural modes and are

prominent in aircraft response to gusts, where active controls can enhance ride control or

alleviate structural loads. Higher frequencies may arise in the efficiency and safety

aspects of manoeuvre control, and still higher frequencies are invoked in problems of

flutter suppression. At the top of the range comes the fatigue problem of buffet loads.

These applications make demands in the field of unsteady aerodynamic theory.

Active controls are potentially of many types. The present investigation concerns

wing aerodynamics in attached subsonic flow, and the treatment covers the conventional

aileron or trailing-edge control and also leading-edge and all-moving-tip controls.

Other possible types involve greater theoretical difficulty. Discontinuities in planform

arise with extended flaps: controls such as spoilers incur problems of flow separation:

canards or elevators involve interfering surfaces. Whatever control devices are con-

siderod, the technology calls for their rapid deployment. It is necessary to be able to

calculate the time-dependent aerodynamic forces for arbitrary control motion and, more-

over, to solve the inverse problem of how to deploy a control to produce a given unsteady

force.

When linearized subsonic lifting-surface theory is adequate, it is convenient to

apply the well-established principles of superposing oscillatory motions to give step

changes, as has been described in the review of indicial aerodynamics by Lomax !. The

practical application to the response of a flexible aircraft to gusts is illustrated by
2

Mitchell using a Fourier transform technique. Subsequent to Refs I and 2 the accuracy

and scope of numerical methods for aerodynamic lead calculation have improved. Indeed

K~rner's3 recent survey of theoretical aerodynamic methods for active control devices

contains over a hundred references later than 1965 and discusses not only subsonic flow

but transonic, supersonic and separated flows as well. The role of unsteady aerodynamics
4in problems of aircraft dynamics is discussed by Hancock . When the mathematical

modelling of the aerodynamics can satisfactorily be expressed in terms of the instanta-

neous motion, the solution of the equations of aircraft dynamics is numerically straight-

forward. The synthesis of active control systems is the current problem calling for

most accuracy and generality in time-dependent aerodynamics.

The present investigation gives detailed consideration to wing and control motion

with general time dependence in linearized subsonic flow. We shall look at alternativeIformulations of the aerodynamic forces and the practical merits of the various functions
introduced to account for the history of the motion. We shall seek to develop numerical

0 procedures and to test them for the gross wing planform and aileron in Fig I typical of a

0 modern medium-sized high-subsonic airliner, and also with leading-edge and all-moving-tip

controls. The characteristics of the various controls will be compared over a range of
S
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control rate for the Mach number 0.8, and the usefulness of the low-frequency approxima-

tion will be analysed. For a particular form of transient ;ontrol motion, we shall also

express the aerodynamic forces as integrals with respect to fisquency, so that with the

aid of a Fourier transform technique the consistency of the r.umerical results and the

permissible truncation of the infinite range of frequency can ve esamined. As an illustra-

tive solution of the inverse problem, we shall demonstrate how rI;dty the three types of

control can be deployed to neutralize the growth of lift due to entzy into a step gust.

2 BASIC TIME-DEPENDENT WING FORCES

For many years the primary requirement for high-frequency unsteady aerodynamics has

arisen from the need for flutter calculations, which continue to rely heavily on small-

perturbation theories for wings in simple harmonic motion. Frequency parameter is there-

fore a basic independent variable. In the linearized treatment of active controls one

approach is to use the frequency spectrum to build a step change, and hence to derive a

time integral to represent any specified motion. The corresponding aerodynamic forces are

then obtainable by linear superposition. This is analogous to the representation of an

arbitrary gust profile and its aerodynamics in terms of those for sinusoidal gusts via

an intermediate step gust.

A somewhat different approach is to define an arbitrary smooth motion of a wing or

control surface with finite acceleration starting at time t - 0. This expresses the

reality that any such motion can be created by the application of a finite force, which [
may be of finite duration tI . Double integral expressions for resulting aerodynamic

forces are obtained in Appendix A, and the relative merits of working in the time domain

or the frequency domain are discussed in section 2.3. This leads to the concept of

hereditary functions, for which various alternatives are considered in section 2.4.

2.1 Oscillatory forces

The present calculations are made with the subsonic lifting-surface method of
5Davies . The oscillatory load distribution is taken to be continuous and finite over

the planform apart from the inverse-square-root singularity at the leading edge and to be

independent of the wing thickness and the mean flow. For an oscillatory upward wing dis-

placement given by

z= 6j[z.(xy)eiwt] (2-I)

the surface boundary condition imposes a complex upvash angle

w. 3z. iwz.
U= I - (2-2)
U ax U

and the theory yields the integral equation

v.((Xy) , x x -y
U YJO) ) " expf dx 0 dYO (2-3) c

€h..



5 1

Here the integral is taken over the planform where the typical length is chosen to be the

geometric mean chord E , the unknown oscillatory loading over the planform is defined by

Lift per unit area j(xy)e (2-4)

and corresponding to the circular frequency w the frequency parameter is

WE (2-5)

The main stream has density P , velocity U parallel to the x-axis and Mach number M .

The kernel* function K in equation (2-3) is given by-equation (17) of Ref 5 as a

function of , H and the two space variables. For a set of displacement modes, desig-

nated by .Iuatiun (2-1) with subscript i , there is a complex matrix of generalized

aerodynamic forces given by the integrals

Qij Jfzi(xo'yo)tj(xOyO)dxOdyo (2-6)

over the planform from tip to tip.

The displacement or force modes to be used in the present calculations are defined

in Table i. Modes I to 5 correspond to heaving motion and the four rotational motions of

the wing and control surfaces indicated in Fig 1, and. equation (2-2) is seen to apply to

w./U in Table I. The theory of Ref 5 cbtains rigorous approximations to Qii with the

replacement of z. and w. by equivalent smooth complex functions, which avoid discon-i U
titiuities in the equivalent 1. at the hinge line in modes 3 and 4. A modal data

program to evaluate these equivalent functions at the required locations on the planform

is described in section 5 of Ref 6. Very simple changes to that program take possible its

extension from an arbitrary trailing-edge control to one selected from the three types in

Fig I. There is one slight complication, however, in the case of the all-moving-tip

control; the hinge axis must not intersect the leading or trailing edge, and to acquire

results for the forward axis, chosen to give aerodynamic balance, it becomes necessary

to take two axes further aft and to extrapolate linearly in xh 5 . The remaining mode 6

in Table I is different from the other five in that w. represents a sinusoidal gust and

the corresponding quantity z. that would be obtained from the differential equation

(2-2) is complex and useless as a force mode. The modal data program is therefore '

replaced by a direct evaluation of the already smooth function wj at the required loca-

tions, and the force mode is replaced by the unrelated function lyj/s which yields a

generalized force proportional to the root bending moment.

The Fortran program for the numerical solution of equation (2-3) and the evaluation

of the generalized force coefficients Qij in equation (2-6) is described in section 3 of

* At a recent colloquium in Ctingen to celebrate the eightieth birthday of
Professor H.C. KUssner, it was proposed internationally that this function should
henceforth be known as the Kussner kernel in recognition of his fundamental work on theGo subject published in 1940.



Ref 6. One minor change is made to both this and the modal data program, so that the sub-

routine CHORD can handle any polygonal planform with provision for arbitrary extents and

alternative shapes of rounding at the corners; numerical input data are read on the first

occasion that the subroutine is entered. The actual planform is defined in Fig 1, but
after smoothing around the central and trailing-edge crank sections with the aid of the
function

g() - 6 (1 - ) 4(5 + 4X + !2 ) , 0 X 1, (2-7)

the modified shape is as follows. For the leading edge

-- 1.6934 7+ 0.1660 g(A) , 0 • Z • 0 .0
98

0

s s

(2-8)

-1.6934 Y- 0 .0980 •- < IS' S

with X (y/s)I0.0980. For the trailing edge

xt

- = 1.6896, 0 < • 0.2496
s

xt
- 1.6896 + 0.0362 g(X) , 0.2496 •Z•0.3476

C

(2-9)

x - 1.4331 + 0.7380Z + 0.0362 g(X)' 0.3476 •Z•0.4456
s s

x
- 1.4331 + 0.7380 X , 0.4456 < • I

ss

with X j(y/s) - 0.34761/0.0980 .

In addition to the planform data, including the typical length E and the semi-

span s - 3.9960E , it is necessary to specify certain parameters to define the calcula-

tioin. These control the output and ensure that the number of modes is consistent with

the modal data and are treated as symmetric in y in the present calculations or as

antisymmetric, if required. There are parameters to fix the numbers of spanwise loading

points and upwash points, both of which are set to m - 23 in this instance; similarly

the numbers of chordwise, loading and upwash points are set to N - 8. To enhance the

accuracy of spanwise integration of equation (2-3), integers qi (i - I to N) and their

lowest common multiple are increased from unity, and their values in the present calcula-

tions are

q. = (16, 8, 6, 4, 4, 6, 8, 16) with an LCM of 48. (2-10)

The Mach number is set to 0.8 and the frequency parameter takes in turn the 24 values

C

0 0, 0.05, 0.15, 0.4, 0.6, 0.75, 1.0 and 1.2 (0.3) 6.0 . (2-11)

- - 7.. . . .-
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Selected force coefficients have been tabulated against • Tables 2 to 4 give

the coefficients -Q1., -Q2j and -Q,. for the trailing-edge, leading-edge and all-

moving-tip controls respectively. Each of these complex coefficients is split into its

in-phase and in-quadracure compo .nts written as

Q. (C) Q!j(0) + i;Q.'() (2-12)

The signs in Tables I to 4 may call for clarification. The rotational modes 2 to 5 are

nose-down, as are the pitching and hinge moment coefficients with i= 2 and i-j in

equation (2-6). The positive values of -Qj represent negative in-phase lift corres-

ponding to each nose-down control. The corresponding in-quadrature coefficients -QIj

involve rapid changes when ; is small, and for each control it changes sign in the

frequency range of equation (2-th ). The positive values of -Q j represent in-phase nose-
up pitching moments about the axis x - xa  in Fig I corresponding to nose-down control

angles. The hinge moment coefficients include equal contributions from the pair of control

surfaces. They appear as small quantities because the non-dimensionalizing volume in
_3

equation (2-6) is c instead of the more typical product of the area and mean chord of
3

the control surfaces, which is 0.046 in modes 3 and 4. Both parts of -Q.. change

fairly slowly with ; . Positive -Q3  indicates a restoring moment on the trailing-edge

control, unlike -Q44 for the leading-edge control. The all-moving-tip is almost

neutral with static balance and small values of "I' of varying sign. Positive values

of -Q!.. show that free motion in any one of the three control-surface modes will decay.

An Argand diagram of the complex quantity Q13 (5)/QI 3(O) is drawn in g 2(a)

over the frequency range 0 < U < 6 , and it shows an undulatory behaviour the range

I < 3 and an asymptote at Q 3C()/Q 3(
0) - 0.325 , both of which will be discussed

later. It is sufficient here to contrast this behaviour with that of the smooth Argand

diagram of Q 6 (U)/Q; 6(O) corresponding to sinusoidal gusts of varying wavelength, which

spirals to the origin as wavelength decreases or - .

2.2 Indicial aerodynamics

The term 'indicial aerodynamics' has been in the technical vocabulary for decades,

but its origin is obscure to many who use it. It seems unlikely that the term is derived

from 'index' in the mathematical sense, although the exponent in equation (2-I) provides

a stepping stone from simple harmonic motion to one of growing or decaying amplitude with

complex frequency w . It is probably derived from 'indicium' (- mark, sign) and refers

to the signature of a discrete event in time such as a step change. The fact remains

that the term is applied to the classical work of Wagner (1925) and Kissner (1936) who

solved analytically the growth of lift in two-dimensional incompressible flow arising

respectively from a sudden change of angle of attack and from entry into a uniform

vertical gust.

The developments in this field up to the late 1950s have been reviewed by Lomax !

0 An additional paper of this period by Drischler 7 also gives useful analytical and

2 numerical data. Without restriction to two-dimensional or incompressible flow there are

basic linear relationships between indicial and oscillatory aerodynamics. These provide



alternative expressions for the lift due to a step motion of a wing or control surface,

and, following equations (41) of Ref 1, we can take for a > 0

22 (°)  Q1 H Cos d (2-13)

0
or

Ut

L~a) - 2.(15) s ina

VV
Here the oscillatory coefficients Q. (71) with i = 1 and jarbitrary are split into
their real and imaginary parts from equation (2-12), and

7 W Ut (2-15)c

is the travel in mean chords following the step motion. The mathematical derivation of

aerodynamic forces for general time-dependent motion and full details of their evaluation

are covered in sections 2.3 to 3.3. In the limit as a - equations (2-13) and (2-14)

give
L()=pU 2 E2Q,(0) .(2-16)

Hence the ratio L(o)/L(-) for the trailing-edge control (j - 3) can be evaluated from

the lift data in Table 2 or Fig 2a, and the results are plotted as the broken curve in

Fig 2b. The full curve for entry into a step gust is obtained similarly from equations

(2-13) to (2-16) from the lift data for sinusoidal gusts Qi - 6) in Fig 2a.

Some contrasts and comparisons between the pairs of curves for the oscillatory and

step motions in Fig 2 for H - 0.8 will set the scene. As will be explained in the

following sections, there is an impulsive lift at a - 0 proportional to Q"() ; this

is finite and non-zero for the control surface, but is zero for the gust case where the

Argand diagram indicates a curve spiralling to the origin at - * The limiting value

L(O) as a tends to zero through positive values is proportional to Qj() which,

also, is finite and non-zero for the control and zero for the gust. The larger variations

in curvature of L(a) for the trailing-edge control in Fig 2b are thought to follow

from the distinctive undulations of iQ1 3 (U) in Fig 2a, about which more will be said

later. Similarly it is worth noting at this stage that as a - w the two curves in

Fig 2b have the same arymptotic behaviour

L(o) 1.009 (2-17)
w h a2

which, as will be seen, relates to a coumon feature of the Argand diagrams near 0
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2.3 Non-sinusoidal motion

In indicial aerodynamics the step change is one of the usual basic elements. It

is unrealistic, but serves as a practical mathematical device for the linear construction

of arbitrary time-dependent wing motion or a gust of arbitrary profile. In the present

treatment of non-sinusoidal motion the wing and control surfaces are regarded as being

activated by finite forces and involve finite acceleration. In the context of active

controls it is therefore postulated that the upward wing displacement in the mode zj(x,y)

has a smooth time dependence so that

z = qj(.0z.(x,y) (2-18)

where T - t/E and q.(T) and its first derivative are continuous and its second deriva-

tive is bounded.

In Appendix A, alternative expressions are derived for the generalized force in

mode i due to the wing motion in equation (2-18) with qj(T) - 0 for T < 0 . With

the addition of subscripts to equations (A-12) and (A-13), we have

dq Tm

Q.(T) I Q!(m) d-+ Q!.(O)qj(T) + .. d {Q'( - Q'I(-)I cos (T-- 0 )r]d'UdT0SdT i ft dT0  QI 1.10
00

and (2-19)

TT
Q T '' 1 2sin[I-(T-T )]ddT0  (2-20)| o0 0

where Q!.(;) and Q ' 0) are defined in equations (2-6) And (2-12). These quantities

can be calculated, as in Tables 2 to 4, for particular values of , but they each

require approximate smooth representation over the complete ftequency spectrum. On the

other hand qj(t 0 ) may be specified by a simple formula, whereby the integrations with

respect to T0  in equations (2-19) and (2-20) can be carried out analytically, so as to

leave a single integral for Qi(T) with respect to U in the frequency domain. The two

double integrals for Qi(T) are equivalent to those derived from reciprocal Fourier. 1

transform relationships between the indicial aerodynamic force and the corresponding

complex coefficient Q,,(;) fcr oscillatory motion (see equations (5) and (6) of Ref 7).

The classical approach is to integrate first with respect to ; to give in the

time domain

Qi(T) - Q' M dq.( + Q (0) Fi(T-To)dT0  (2-21)
Qi - 1 dT iJ 0  F1  0

0 owhere we have alternative expressions
CO
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2 " - "] -

F1 a ) .- I + , cos vo d; (2-22)Qi (0)
0 131

and

F sin o d5 (2-23)

Q! (0)

from equations (2-19) and (2-20) respectively. These are readily identified with

equations (2-13) and (2-14). The advantage of this formulation is that Fl(O) , which has

often been called a Wagner function, can be calculated without reference to the wing

motion q.(T) . ThuE equation (2-21) can be used whether qj(T) is regarded as known or

unknown.

2.4 Hereditary functions

We now introduce and appraise some hereditary functions, which embody the history

of the wing motion in a general expression for the resulting instantaneous aerodynamic

force. The function Fl(O) in equation (2-22) or (2-23) is one of them, and others arise

when equation (2-21) is integrated by parts. Thus,

T

- dq.) rT ,0f dF (T-0  .
- d- - Q1j (To)F (T -T 0 ) Q (0) qj(T0 0  dT0

T

Q'.(m) d-.( + Q! (O)F (0)qj(T) + Q (0) qj(T )F0(T-T0)d' (2-24)
1i dT 1i I Lij 0 0 0O

where
dF! (o)

F0 (°) = do

GoQ-'- (0 ) - Q' ' (  - -

2 f i i ij 2 Qj (0 cos o d5 (2-25)

S Qi . (0) IT

' Li

-I.

and

F (0) 1 lim [a j f ;-sin 2o
0r.( si !.0 (-6

L~ sinod 1o - d

imQ.M i -U d; + -. .. - ...... 6
-T . (O -Q!(0
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By equations (2-24) and (2-26)

T

Qi(r) =Qi.'(a2) - + .()qj(r) + Q!j(O) qj (r)F 0 (T - o)dT0  (2-27)

0

where F0 (o) is given by either of the integrals in equations (2-25).

Another hereditary function is found when equation (2-21) 
is rewritten in the form

( )  = Q!.() d- Q oL .(0  -F + Q1() F2 ( -T)dT

L d 0 
d 0o

...... (2-28)

where 2(a) = F (- )dT 0 +  
11 (2O)9"

0

The constant in equation (2-29) is chosen to cancel the 
first term on the right hand side

of equation (2-28). Remembering that dqj(T 0)/dr 0 = 0 at T 0 W 0 we obtain

d q(T 0 )Q() Q! Q(0) 2 F 2 (T-T 0)d' 0 (2-34)

0 0

where, from equations (2-22) and (2-29)

F2o".- + ( - - )". (
0 3 13sn o + ~ 0

0

a + QL'(0 sin vo d;5• (2-31)

0

Thus we have three hereditary functions F (a) with n 0, 1, 2, such that

2
dF1(o) d F2 (o)

F0 (O) - do 2 (2-32)

do

The first of these from equations (2-25) is used in equation (2-27) as a factor of qj(TO )

in the integrand. As qj(T 0) is proportional to the displacement or position of 
the

wing surface, we call F0 (o) the 'hereditary position factor'. Similarly, from equation

(2-22) or (2-23), the 'hereditary velocity factor' F1 (o) multiplies dqj(T0 )/dT0  in

equation (2-21), and the 'hereditary acceleration 
fector' F2 (o) in equation (2-31)

CO2
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multiplies d qj(T 0)/dr0  in equation (2-30). Although the three formulations are

atialytically equivalent, each Fn (a) has its merits and defects in numerical, graphical

and practical terms.

The outstanding merit of the position factor Foa) is that it applies even when
q.(T) is discontinuous. Equation (2-27) shows clearly the characteristics described in

the last paragraph of section 2.2, the impulsive force proportional to Q (m) due to

the step change and the subsequent value proportional to Q!.(-) before the hereditary

function begins to contribute. Because F (a) tends to zero for large c , the integral

in equation (2-27) is particularly suitable for residual effects. However, it has the

defect that Fo(O) is very difficult to compute for small o . Moreover, in the present

application to active controls with smoothly varying qj() it may seem unnatural that

the limiting values Q!.(') and Q.' () for infinite frequency should play such major

roles. However, the extraneous terms in equation (2-27) can be transferred into the

integrand by adding a linear combination of the delta function and its first derivative

to F0 (o) and so creating a unified hereditary function (see equation (2-9) of Ref 8).

The velocity function FI(o) in equation (2-22) or (2-23) seems to contain a

satisfactory balance between what is required at small and large times. Apart from some

uncertainty in the calculation of its limiting value in equation (2-26), it can be fairly

well represented graphically. But it still requires the addition of a delta function at

a - 0 to account for the first term on the right hand side of equation (2-21). It will

be seen to have some of the characteristics of the original Wagner function, with the i
slight disadvantage that it remains finite as a .

One obvious merit of the acceleration factor F2(a) is that it defines Qi(T) in

equaticn (2-30) without extraneous terms. Moreover, of these hereditary functions it is

the easiest to compute for small a . Unfortunately, it diverges for large a because

of the first term on the right hand side of equation (2-31). This difficulty can be over-

come by further manipulation.

If equation (2-31) is rewritten as

(0 O "Q'':
(a) a + (0  2 ij (13 sin d. (2-33)2( = + I+ Qi (O)0

then equation (2-30) becomes

d d 2 q2(q0) d2 qC'

SQ!(0) (T-TdT + Q'.(0)j ~ dci + Q!.(0) 2 H(T - )d 0fiT  di*0 )  2 0 0)d 2+.j
(0 )  

d 2 0 13 f T2

d0 0 0 d 0  0 d 0

Qij(0)qj(Tr) + Qij(OC) dq(t +rj0 d2

+ Q!O) 2 H(T -T 0 )dT0  (2-34)
0 0T
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2 -1 jo sin v2a5where* H (a) f QX() d (2-35)

11(o) 7T I Q! (0)
0

This result presupposes that q(T) and dq(r)/dT vanish at T - 0 and that d 2q(T)/dT 2

exists throughout 0 < T < T apart from the admissibility of discrete discontinuities in

the range. This last assumptioti is compatible with a pilot applying a stick force that is

continuous apart from isolated sudden changes. The first two terms of equation (2-34) are

equivalent to the force on a wing to first order in frequency parameter and are particu-

larly appropriate while a control surface is being deployed quite slowly. The residual

integral involves the hereditary function H(o) in equation (2-35), which we shall call

the 'history function'. This is a slight misnomer in that, although Q!.(O)qj(T)

represents the steady force due to the instantaneous displacement of the control,

Q'.'(O)dq(T)/dr includes not only the quasi-steady force due to the instantaneous

velocity of the control but the additional effect of an implied low-frequency oscillation.

Nevertheless, the third term of equation (2-34) will be seen to make a negligible contri-

bution when the control rate is fairly small and slowly varying. In other situations

H(o) will be required to higher accuracy than the position factor F0 (o).

3 CALCULATION OF HEREDITARY FUNCTIONS

The mathematical principles underlying the whole of section 2 are well-established,

but there is a tendency to take their numerical implementation for granted. Our objective

is therefore to tackle the calculations as thoroughly as circumstances permit and to dis-

cover the difficulties that are likely to matter in practical applications of active con-

trol technology. It is necessary to discover when approximations may be expected to

succeed and when they are likely to fail. At the other extreme it is desirable to

establish the relevance of the refinements that can be made.

Practical numerical approximations to indicial aerodynamics have been developed for

two-dimensional subsonic compressible flows1'7 , but not enough is known about high-

frequency effects in linearized three-dimensional flows. It is not merely that the range

of frequency in experimental work is too restricted, but the purely theoretical work is

seldom taken above flutter frequencies with consequent lack of physical insight into what

to expect. An object lesson was taught during the present investigation concerning the

unexpected undulations shown in the Argand diagram of lift for the oscillating trailing-

edge control in Fig 2a. The phenomenon is discussed and explained in Ref 9 in terms of

even larger undulations in chordwise and spanwise loadings remote from the control and

associated with the acoustic propagation and convection of disturbances created as the

control oscillates. For the present calculations the undulatory behaviour reinforces the

need for closely spaced values of ; to define the quantities Q!.( ) and Q.'

It is considered that the 24 values of 5 in equation (2-11) will provide an adequate

cubic spline representation.

0

* H(o) should not be confused with the Heaviside step function.
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In regions of both very low and very high frequency a cubic spline fit contradicts

the forms of the asymptotic expansions, and the special treatment of these regions is

covered in sections 3.1 and 3.2 respectively. The procedures for calculating the

hereditary functions and the numerical results are then discussed in sections 3.3 and 3.4

respectively. Ideas for empirical correction factors are put forward in section 3.5.

3.1 Logarithmic terms at low frequency

8
Woodcock has made an independent study of the modelling of linearized three-

dimensional subsonic time-dependent aerodynamics. While he is concerned more especially

with approximations to Q.. i() suitable for analysis by Fourier transform methods, he

also considers the complex quantity as a double power series in i7 and log(i7) . His

analysis confirms the leading terms of the series to be used in the present investigation

3Q!j B B; 2log Z+ + (3-1)

and

Q (0) - Bs + B" * B"2 log Z +B" (3-2)
1i0 1 2 3

where log denotes the natural logarithm. Of course B' and B" are identified with
0 0 10

the known quantities Q!.(0) and Q ' (0) . Milne and the present author have shown

that both Bi and are obtainable from steady aerodynamic forces. Equations (10),

(11) and (16) of Ref 10 give

B 1 -B; I Q'l:(O)Q' 2(o) (3-3)

the aspect ratio factor has disappeared because the reference area in equation (2-6) is
2
2 in place of planform area as used in Ref 10, and the change of sign occurs because

the upwaah mode w2/U in Table I is of opposite sign to equation (15) of Ref 10. The

values of -BI are included in Tables 2 to 4.

The extension of low-frequency theory in Ref 10 supplies the leading transient term

of the asymptotic expansion for large time of aerodynamic forces due to a step motion in

mode j . From equation (26) of Ref 10 the generalized force in mode i becomes

Qi~a "- ij(0' Q(0)Q'!2(0)

Q.(o) Q!.(0) + Q 2 ( + O ( - 3  (3-4)

in the present notation. With reference to Fig 2b, we obtain for lift with i I in

equation (3-4)

L(o) - Q1 (a) Q,2(0)L"a I + 12 + 0 ( -3/ (3-5)

Q~j., 8-r(- 2

The leading transient term is independent of the upwash mode j , and equation (2-17)

follows after the substitution Q 2 (0) - -25.368 from Table 2 of Ref 9. Furthermore,

from equations (3-1) to (3-3) and with reference to Fig 2a, the second terms in both

Q t(U)/Q'.(0) and UQ'' (U)/Q;j(0) are seen to be independent of j .

C
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The importance of the second terms in equations (3-I) and (3-2) grows with increas-

ing aspect ratio, so that rapid variations in Q'3 Q:), Q"I4( ) and Q'5 (;) are found in

Tables 2 to 4 for the present wing of aspect ratio 8.0. Without B' and B' the leading

transient term in equation (3-5) would disappear. It is desirable to incorporate equations

(3-I) and (3-2) in the calculation of hereditary functions. This is achieved by choosing

a fairly small value =v , by applying a cubic spline fit in a finite region V <

u ' say, and by determining B;, B;, B" and B" to give continuity in Q!j(U) and

Q'.' ) and their first derivatives at -v ', . Thus in 0 < 7 < 7. we take equations

(3-I) and (3-2) with

3Q!.0') 3B6 dQ

B_) - L B3(Bog v.- I) (3-6)- -- -. L d. I ,-

B; x + VzB (3-7)

v d,

:' '- ' ; ') B-

I.
2Q*.( ); +Q? 0B .) B'

-2 1.( J + 2B" [ .)B
B" 0 11 3-8)2 v

B"- ±~-.-vv L d; v .U
and

Bnd Q .. 0 log Z d'. '.(U ~ 1B3  z (2 log ; + ) ---- d - =-- (log v + I) . (3-9)

It is probably more important to curtail the low-frequency end of the cubic spline

for Q! () than for QV.() as the logarithm only enters in the third term of equation
1.1 iiJ

(3-2). Although there is no reason to suppose that B" is any smaller than B , B" is

likely to have less influence on F0() in equations (2-25) because of the factor U in

the first integrand.

3.2 Piston theory at high frequency

There is some upper limit Uu , say, where reliable calculations by subsonic lifting-

surface theories become impracticable. For the present results at high U it was found

to be necessary to increase the number of chordwise terms from N - 6 to 8 and sufficient

to economize in computation time by decreasing the number of spanwise terms from m - 31

to 23. The choice 5u M 6 is purely a matter of judgement.

For ! > U recourse is made to piston theory. Ashley and Zartarian discuss

piston theory primarily for its use in supersonic flow. As Hach number decreases, the

theory becomes restricted to increasingly high values of the frequency parameter, but it

has some application as U tends to infinity even in subsonic compressible flow. First-

order piston theory relates the upwash angle and wing loading in equations (2-2) and

(2-4) by the equation

S2 . 2. = -- z.
M1U -Mt x + , (3-1O)

Go,
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so that by equations (2-6) and (2-12)

.- zJ x0 d 0  (3-11) x

and

"H M - LQ'y_.C (3-12)
c. C

where the integrals are taken over the planform. But the argument is fallacious. It is

likely that both the real and iaginary parts of E. have asymptotic expansions in

inverse powers of i0 , so that we my write

a, a+ b, +
(a• +-+ +.. i + + ++ ...) + 10 T (i) 2  "0 iU (o )2 (0 )3 i

a0 + bl) 2 + + 0 aI+2 + "(3-13)

Thus equation (3-I) only provides the a0  part of -Q! (w) and excludes the unknown

higher-order contribution denoted by bI . On the other hand the single contribution

from b0  suffices for -Q7j(-) , and equation (3-12) is correct.

On substituting the values of zI/E and z.,/E from Table I and the planform data

from equations (2-8) and (2-9), we calculate Q1j(-) analytically for M 0.8. The

smoothing terms with g(X) have the negligible effect of decreasing -Q(() from 19.980

to 19.967 and have been ignored in obtaining

- Q1 () 19.980 (19.450)

- Q121 - = 12.940 (11.932)

- Q1() = 12.940 (13.040)

- 0,22() 12.478 (11.651)

from equation (3-12). The values in brackets are those calculated for the highest

frequency parameter 5 - 6 by the lifting-surface theory of Ref 5 as detailed in

section 2.1. The edge conditions of finite non-zero loading implied by equati.,n (3-10)

are incompatible with lifting-surface theory and inappropriate for finite frecqercy, an d

several considerations follow from this. It becomes clearer why larger numbers of chord-

wise and spanwise terms are needed as U increases, and why approximation in the upper

frequency range is unavoidable. The choice of N - 8 and m - 23 must inhibit the accuracy

of the results for -- 6 to some extentt, but there is no reason to expect rapid con-

vergence to the piston theory limit. Neverti.!less, the numerical comparisons beside

equations (3-14) are close enough to encourage the use of a matching process at

- -6.
u
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All these difficulties are intensified in both the chordwise and spanwise directions

with the part-span leading-edge and trailing-edge control surfaces. Violations of edge

conditions and continuity of loading become especially important, and the absence of a

logarithmic behaviour in the loading at the hinge from p-ston theory brings ft..'er

incompatibility. For the control-surface modes j = 3, 4 and 5 we have

2ff (x )dx dYo
- QI j(w) = - Q'.I() -. ff(Xo - xh j) 0

- Q1j(.) Qj2 "n" 2, f (x 0 - Xa)(X 0 - xh)dx0 dy0  (3-15)

.~ ~ ( = / - h2dx dY0
- Qj() 0 (x0 d

where the integrals are taken over the combined planform area of the port and starboard

control surfaces. For H - 0.8 and the geometry defined in Fig 1 we calculate enalytically

the values of Q'X(w) included in Tables 2 to 4. The following comparisons of lift

-J*13(;) -Q14(5) Q'5(v)

6 0.0177 0.0309 0.2442

0.0514 -0.0511 0.2331

show large differences for the trailing-edge control (j - 3) and more especially the

leading-edge control (j - 4). The case of the all-moving tip Q - 5) without any dis-

continuity at the hinge gives a percentage change from - 6 to - comparable with those

found for the wing modes in equations (3-14).

On the basis of equation (3-13) with real coefficients a and b ,we postulate H
n n

the asymptotic expansions with leading terms

A' As

Q!.As + I 2 2 (3-16)

0 V V h
and

Al A 2

Q11(0)- All- 2 +- 4  , (3-17)
0 -7

where A' is unknown and A" equals Q'.(' ) from equation (3-12). Although A cannot
0 i

be calculated directly, we can invoke the identity in equation (A-l0) of Appendix A as

a 0 . Since the second term becomes

0i -_l j i - sin ; o d - ] fsin odU - I H00 0

_ _ _ _ _ __.._

0 f f ;U



the identity yields

A1 ! j((0)+ [Q,..(0) - Q1 ())j 0 (3-18)r f

Urless this formula is used, equation (3-16) is ineffective. The values of Q!.C() in
13

Tables 2 to 4 are only approximate and are the best that we can obtain from equation

(3-18)1 but the results confirm the fallacy of equation (3-11). Then both equations

(3-16) and (3-17) serve to match a cubic spline fit at the upper end of the region

4 4 ;Uu Continuity in Q! () and Q'.() and their first derivatives at .u3 u

is satisfied with

A; " 2 IQ!.( U ) - A (3-19)
I u 1i U 0 2 L d; 3-9

4v
u

4 s rdQ!. (;U)

A IQ!() A - u r I (3-20)

4 3 rdQ'.(;)1
Aeu - 2 uIQner t i All + ait nA Jmle (3-21)

and i•<->

to calculate the hereditary functions from expressions i~nvolving Q' .(v) rather than

Qij() .This favours the first integral of equations (2-25) and equations (2-22) and

(2-31) for Fn(a) with n = 0, 1 and 2 respectively. In particular for F0(o) it should

be noted that despite the factor the first integrand of equations (2-25) tends to zero
as I tnds to infinity.

3.3 Numrical procedures

Our next consideration is the evaluation of the hereditary functons from equations

(2-22), (2-25), (2-31) and (2-35) in th forms

(2- (a ) wt 2h Qn (-) I

--s ;U( ted sto infiity

0

(2 2 ) ( !5, (-3 )  an ( 25 i the -forms- !

" M d(3-23
2_ _

Qt M V
mmmmFm ml I1(o)i I + QP~lI "I ii, cos ia(3 23
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F') ) - Q' )  d (3-23)
F2(o) - Q!(0) W f Q

H~o) a -a ~'.o)j 0

F 2 (. (o)H (a) -F2)-o- -

with the range of integration subdivided into 0 < U < V, < < U and u< U <

Different integration procedures are uscd in the three regions, Simpson's Rule in

0 < U < U , Filon's Rule in - < V < Vu and analytical treatment in U < <5£ u u

The necessary equations are set out in Appendix B.

The greatest computational effort lies in the evaluation of a sufficient number of

values Q0.() by the lifting-surface method of Refs 5 and 6. As found in Ref 9 and

given in Table 2 for the oscillatory trailing-edge control Qi - 3) at H - 0.8, it is

necessary to take intervals in U ar small as 0.3 to define the undulating curves against

frequency parameter to reasonable accuracy, especially in the range I < U < 3 . The

quantity must not be less than the lowest non-zero value of U for which Q'.()
1

is calculated, and likewise Uu must nt exceed the highest value. The region vU t N

Uu is treated by means of a standard program for the cubic spline through all the data

points, excluding U - 0 , and this provides interpolated values of Q'!() at each

integration point and at U - U and U - Uu  the values of its first derivative as well.

To carry out the integration procedure for 0 < U < £ , it is necessary to use the

low-frequency solutions for B" - Q!(0) , the non-dimensional lift Q' (0) and the

coefficient Q.2(0) for pitching motion so as to evaluate B" from equation (3-3). Then,12j 1ad 'tfo
using " () and its first derivative at - , we calculate B" and B" from

9.2 3
equations (3-8) and (3-9) to complete the definition of Q~.( ) in equation (3-2).

Typically we take - 0.08 and subdivide the range into 16 equal parts, and the inte-
gration in equation (B-4) is a matter of routine.

For the region U < < ;U , typically 148 equal intervals between 0.08 and 6.00,
X. u

the cubic spline and equations (B-5) to (B-8) are used to evaluate the integrals. The

velocity and acceleration factors Fl(a) and F2(a) are served by equations (B-6) and

(B-7) respectively, but the contribution to the position factor F0(a) requires an

equation like (B-7) with the frequency parameters Uu, VUk, (!U9 + 2kh) and (;U + (2k-)h)

transferred from the denominator to the numerator. This procedure with Filon's Rule

involves no restriction on the magnitude of a

The final contributions from < ! < - involve " and its first derivative

at =-u and piston theory for A" Q" () from equation (3-12). The quantities A"u 0 IiI
and A" are then calculated from equations (3-21) and (3-22) to complete the definition

of Q'?() in equation (3-17). Then for F0(a) to F2 (o) the respective equations

(B-Il) to (B-13) can be evaluated with the aid of the integral S3(UuO) defined in

equation (B-10). Appendix B also includes highly accurate expressions for S3 in

equation (B-14) or (B-15) according to whether U u is less than or greater than 7.
u

I
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The matching of Q() at U V and vu is illustrated in Fig 3. A program'.I 2-
in ICL 1900 Extended Fortran is available with Q'j(V) and related quantities as input and

the four hereditary function in equations (3-23) as output.

3.4 Discusaion of results

The calculations are confintd to one planform (Fig i), one Mach number M - 0.8, and

the lift, pitching momnt and hinge moments associated with pitching motion (j 2) and

the deployment of the three types of control surface (j - 3, 4, 5). These results are

largely illustrative, but they will enable us to discuss the characteristic behaviour of

the various hereditary functions and some general numerical aspects of their evaluation.

Figs 4a&4b show the position factor F (o) , velocity factor Fi(o) and acceleration
01

factor F2(a) for the trailing-edge and leading-edge controls respectively. Larger magni-

tudes ot Fo(0) and F (o) occur for the leading-edge control in Fig 4b because Q'14 (0)

is so much smaller than Q'3(0) . These hereditary functions are considered in relation

to their asymptotic expansions for small and large a . By equations (2-25) and (3-17)

Q. ("(U) - A" - (A',, A

0 Q!. (0) sin Q!.j (0) i5
00

where the first integral vanishes as a - 0 and in the limit ii
All

P0(0) 1 -# . (3-24)

Equation (2-26) already gives

F (0 ) Q 0 , (3-25)

and it follows from equation (2-31) that

Q". )
F2(0) - d * (3-26)

Equations (2-32) and (3-24) to (3-26) combine to give the asymptotic expansion for

small

Q!.(OF2(a) - Q.1 + Q! (-,)a - JA"'I . (3-27)

Thus the curves of acceleration factor can be drawn with confidence near a a 0 . The

limiting values F1 (0) are subject to a degree of inaccuracy in the evaluation of

Q!.( ) from equation (3-18), but the velocity factor is fairly well represented near

a 0 in Figs 4a & 4b. Although a value of A'I is implied in the matching process in the

lower diagram of Fig 3, for example, it would be rash to quantify it. Therefore the

curves of F (a) are speculative near a - 0 , and so to a lesser extent are the undula-

tions in the region a < 3. Beyond this the influence of the region Uu < <

weakens and we can turn to the behaviour of the hereditary functions for large a

- -- ."- Jv
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In conjunction with the series in equation (3-2) for small frequency, equation (2-31)

may be rewritten as

F/) " -iu+- '()I " -- si

+ 0 1 sin V- 2 . 0 B sin V-0
a B1(O) + ' u +d5

0 ij 0 1

a 0+ B; + 2jIO + 0(0-2 (3-28)

With B" Q.'(O) and B" from equation (3-3), we have the asymptotic expansion for

large o a
F2 (o) Qo+-8QQ(O)o.+0()-2) (3-29)

0+ T~ dT~ W o( )* (0)

and by equations (2-32)

Q1o(O)Q!(O()F()m I+ ' 12 + 0(o0- 3)  (3-30)

81Q!. (O)o

and

F Q; (0)Q2( + 0(0- 4  (3-31)
0 4%Q1 (0)o 3

Thus F (a) tends to zero the most rapidly. Equation (3-30) is consistent with the
0

rigorous analysis of Ref 10 leading to equation (3-4). Figs 4a &4b show how the charac-

teristics of the leading-edge and trailing-edge controls, that are so different for

small a , become remarkably similar for large o . This is particularly the case for

lift when Q!.(0) - Q! (0) and equations (3-30) and (3-31) become independent of the
ij 1.

mode j , as we anticipated in equation (2-17).

The remarks in the paragraphs following equation (2-32) are broughit into perspective

by Figs 4a &4b. While for the trailing-edge control Fl(O) in Fig 4a is reminiscent of

the original Wagner function, the corresponding function in Fig 4b for the leading-edge

control is less so. The lift characteristics of FI(o) for the various types of motion

are compared in Fig 5. It will be seen that for the pitching motion Fl(a) rises

rapidly from 0.44 to 0.84 in the first half mean chord of travel and thereafter increases

relatively slowly. Like the leading-edge control, the all-moving-tip control gives a

minimum in FI(a) in the range a < I . All four velocity factors for lift have the

common asymptote for large a

The remaining hereditary function from equations (3-23) is the history function

derived at the end of section 2.4. It is readily evaluated from F,(o) , and it follows

that from equation (3-27) for small a

Q! (O)H(o) [Q'.() -Q'.(0] + [Q(3(-3) )Q(0)]o -,332

l~~a iJ iJ 2.a .jx
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and that from equation (3-29) for large a

(o) Q °)Q 2(0 ) -2 (1
- +° ) " (3-33)

Typical curves of H(a) are shown in Figs 6 and 7. The history functions for lift and

their common asymptote in Fig 6 have similar falling trends in the range a > 0.5 . )

The leading-edge control produces the most distinctive behaviour, and it may be noted that

in the important range a < 7 the curve for the all-moving tip lies between those for the

leading-edge and trailing-edge controls. Fig 7 gives H(a) for the lift, pitching

moment and hinge moment due to the trailing-edge control. It is worth pointing out from

Ref 10 that the wing loading associated with the leading term in equation (3-33)

corresponds to Q! (0) and is that for an incremental change in angle of attack. This
i.2

loading, which is large near thi leading-edge and small near the trailing-edge, plays an
interesting role in the behaviour of the history functions for moderately large a , so

that the residual quantities at a - 6 in Fig 7 show relatively large lift, intermediate

pitching moment and very small hinge moment.

Next we consider in Tables 5 and 6 the sensitivity of the position factor F O(CF)

and the history function H(a) to the manner of calculation. The fullest calculations

of lift due to the trailing-edge control appear in columns (d). As described in Ref 9,

it became necessary to amplify the set of 14 frequency parameters

= 0, 0.05, 0.15, 0.4, 0.75, 1.2 (0.6) 6.0 (3-34)

used in the preliminary calculations by including 10 extra values to give the set of 24

values in equation (2-11). Results obtained in columns (c) from the 14 values of Q'3(U)

corresponding to equation (3-34) and the quantity Q"3
(-) from piston theory are

reasonably close to those in columns (d) for the most part. Large discrepancies in F0 (O)

arise in Table 5 for small a , but in Table 6 H(a) shows nothiug worse than differences

of 0.004 in cpposite senses at a - 2.6 and 5.0 ; these amount to about 1%, where dis-

crepancies of similar magnitude in F0(a) represent more than 15%. Further degradation

of the calculations is found when the values of Q13(U) from lifting-surface theory are

ignored where exceeds 1.2. Columns (a) are obtained when the integrals in equations

(3-23) are truncated at U - 1.2 , and the comparisons with columns (d) are poor, but

within 0.01 for a > 6.0 ; even for H(a) in Table 6 there are discrepancies of 0.035 at

a - 0.6 and 0.8, while for F0 (a) column (a) of Table 5 is quite hopeless. Substantial

improvement on columns (a) is found in columns (b) when the value Q13() from piston

theory is used and the calculation is made with % = 1.2 , but the need for lifting-u

surface values with U > 1.2 is still apparent. The final columns (e) are obtained when

the low-frequency logaritmic behaviour in equation (3-2) is suppressed by falsely setting

the quantities BI and B7 of equation (3-3) to zero. The position factor is virtually

unaffected in that the worst discrepancy between columns (d) and (e) of Table 5 is 0.0002.
0

However, in Table 6 the inaccuracy in H(u) reaches the third decimal place for( a 4 10.0; but, when it is borne in mind that the setting of to zero would not
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suppress the second term on the right hand side of equation (3-2), the conclusion is

reached that the refinement in that equation is of little practical significance.

A similar conclusion may not apply to equation (3-1), if calculations of FI(O) are

made from equation (2-23). This alternative to equation (2-22) is less satisfactory on

numerical grounds as being more sensitive both to the logarithmic behaviour at small U

and to the uncertainty at high U implicit in equation (3-18). Nevertheless, a few com-

parisons Irom the alternative formulation in terms of Q1(;) have been obtained as

accurately as possible. In particular calculations of lift due to the trailing-edge

control, the worst discrepancies from equation (2-23) for FI(a) are roughly 0.02 neer

a - 0.1 and 0.01 near a - 1.0 , which are of little consequence in Fig 4a; very similar

discrepancies are found in pitching moment and hinge moment.

Of the four hereditary functions, F0(o) and H(o) in equations (3-31) and (3-33)

tend asymptotically to zero for large a . The slower convergence of the history function,

proportional to a- I instead of o-3 for F0 (a) , reflects the more enduring transient

effects of an acceleration. Thus the history term, given by the integral in equation

(2-34), makes a substantial contribution from the more distant past when the variable T0

is fairly small. It is a mistake to suppose that equation (2-34) can be integrated by

parts to give a series involving the higher derivatives of qj(T) and a residual integral

of decreasing significance. The behaviour of H(a) proportional to a does not permit

further integration without introducing a divergent hereditary function with a term in

log a . This matter is discussed further in section 4.2.

3.5 Empirical correction factors

The preceding calculations of hereditary functions are linearized not only in the

sense that the basic equations of Appendix A involve the principle of superposition, but

since the oscillatory aerodynamics take no account of wing thickness or viscosity. If we

suppose that the key equations (:-12) and (A-13) can be applied to compressible viscous

flow past a thick wing, empirical correction becomes feasible. The history function

H(a) is the most suitable hereditary function for this purpose, because of its smooth

behaviour and the extent to which this is governed by the asymptotic forms for small and

large a in equations (3-32) and (3-33). Thus

O) Q'.), - Q" (0)
H(0) 1j= Qi! (0)

Q Q(aH) - Q! (0)=d ) - j 3 (3-35)L da-]o. Q! (0)
0=0 ii

~Q;JCO)Q1!2(O)

[H(W)]a large " - - 80Q!j(O)o

The last of these relationships implies a bold assumption that equation (3-3) for the

first logarithmic term at small frequency remains valid in viscous flow.
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it is reasonable to suppose that experimental or estimated values of the steady-flow

quantities (0!.) Qj(O) and Q!2 (0) are obtainable. The low-frequency in-quadrature

component Q.'(0) may be more difficult to estimate; one empirical approach is that used

in section 7 of Ref 12 for control hinge moments, but which can be applied generally. In

the perpetual absence of experimental data on Q! () and Q(.'.) , it is probably best

to regard these as being independent of wing thickness and viscosity. Let us suppose then

that equations (3-35) are used to obtain both theoretical and empirical values of H(O),

[dII(o)/do at a - 0 , and oH(o) for a large. Then we seek an empirical correction

factor K(o) to apply to H(o)

Clearly the ratios of the empirical and theoretical quantities in the first and

third of equations (3-35) determine K(O) and K(-) , although they must both be regarded

as somewhat tentative. Where H(o) is a monotonic function falling smoothly from H(0)

to zero, a simple practical scheme is to take

K (G) - K') + IK(0) - K(-)] H(3-36)

In some instances, such as the leading-edge control in Fig 6 and the hinge moment in

Fig 7, H(o) rises to r maximum H(o m) at a = am , say. Thus, perhaps, equation I
(3-36) can be replaced by

() (0) , 0 < a < am
.(3-37)

K(O) - K(-) + [K(o) - K(-)] H(a) }.a330)

The second of equations (3-35) is available to check or refine equation (3-36) or (3-37),

if desired. The application of the empirical history function K(a)H(o) would be to

calculatione n iciated with equation (2-34), where the experimental or estimated

quantities 3) and Q'.'(0) are needed in their own right.

There is a simpler alternative, which involves an empirical value of [Q!i(0)]e
only. With reference to equations (2-25) for the position factor F0 (a) , we consider

the assumption that a constant correction factor

[Q!(o) -
- -. j e 1 (3-38)K -Q!j (0) - Q!j H

may be applied to both Q' (U) -Q'.. () and Q! () -Q! j() Then the factor
1i 1.1 13 3

-Q!.(OW Q!. I[Q!(0)1 - '0)l
K= 1 + , 2j e (3-39)
IQ! (0) lQij (0)J e Q '(0) - QI' (-) 3

2.i e I 1]1j i

may be applied to all values of F0(o) . With the empirical correction in this form,

equation (2-27) has the advantage that its first two terms are unchanged. The same con-

stant factor K would apply similarly to the history function H(a) in equation (2-35).

To use equation (2-34), it would be necessary to take a consistent empirical value
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IQ '..(O)J Qt'.(') + jQ(O) - " )
1i e Q3 1 .1 H13i

Q' (o) - "." [Q! (o] e  - (0)1qj ) i c i e 13
Q '.'.o+ - (3-40)

The merit of this simpler alternative would depend a good deal on how well equation

(3-40) fits the low-frequency experimental data.

With either of these empirical rules it would become possible to modify the cal-

culations in the following sections. This would permit some allowance for effects that

are ignored in lifting-surface theory.

4 TRANSIENT DEPLOYMENT OF CONTROLS

A computer program has been written to use separately the position factor Fo(o)

the velocity factor F (o) and the history function H(o) as obtained numerically by

the procedure described in section 3.3, in order to calculate the force coefficient Q (T)

from the respective equations (2-27), (2-21) and (2-34). The deployment of a control

surface q.(T) is given algebraically in 0 4 T 4 T, and is identically zero outside
this range, but q.(T) and its first two derivatives are chosen to be continuous for all
T . The present calculations for control surfaces correspond to the transient deflection

angle

qj() = 64 - 04 T4-T6 0 (4-1)

= 0 , T<O and >T I

where 60 is the maximum control angle and T= Ut|/E is the duration of the excursion
in mean chords of travel. To the accuracy of plotting the calculated quantities Qi(T)

from the three equations are indistinguishable.

Some typical results fbr the trailing-edge control and the relative contributions

of the individual terms in equations (2-27) and (2-34) are discussed in section 4.1. The

influence of the rate of deployment or the duration TI is analysed in section 4.2.

Section 4.3 contrasts the characteristics of the leading-edge and trailing-edge controls.

All these calculations are in the time domain, but section 4.4 considers the merits of

working in the frequency domain and the additional conclusions that can be drawn from

this.

4.1 Forces due to trailing-edge control

The concept of active controls envisages the facility to deploy them rapidly.

The really significant range of r is probably 5 4 T 40 . For example, in equa, Lon

(4-I) -l= 10 would give a maximum control rate

(..)6U 60U
as = OU-- 0.343 --- , (4-2)

max T

which is about 100 deg/s with 60 = 5 deg, U 240 m/s and E= 4 m . With T l = 10

the results for the lift, pitching moment and hinge moment due to the trailing-edge
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control at : - 0.8 are illustrated in Fig 8. The calculations are made with unit 6,

and the coefficient of lift QI(T) only just reaches 80% of its peak quasi-steady value

Q3(0) . Moreover, this occurs at time t/tI  /TI  0.535 and lags behind the control
angle which peaks at T/TI 

f 0.5 . There is a correspondingly slow decay of the residual

lift after the motion has ceased. In contrast to the lift, the hinge moment overshoots its

peak quasi-steady value by 4% at T/T, z 0.45 and thus leads the control angle. There is

a corresponding overshoot where Q3()/Q 3 (0) becomes negative before the motion is

completed, and the residual effe=t after I/T is negligible. As might be expected,

the behaviour of the transient pitching moment has intermediate characteristics.

Fig 9 shows the individual contributions of the terms in equations (2-27) and (2-34)

to the lift when S, i 5 and 20 respectively. The lift now reaches rejpectively 72% and

89% of its peak quasi-steady value, here denoted by L0 , at time T/T I = 0.545 and again

lags behind the motion. When the history function is used in equation (2-34), the first

term denotes the quasi-steady contribution proportional to 6 . The second term is

proportional to d6/dt and turns out to be of opposite sign; this gives a qualitative

explanation of the lag in the peak lift. However, there remains an important contribution

from the history term, indicated by the vertical arrows in the upper diagram of Fig 9,

which changes sign twice. For the more rapid motion the lower diagram similarly disects

equation (2-27) with the infinite-frequency coefficients and the position factor. It

can be seen that the major contributions are from the first term proportional to d6/dr

when 0 < T/T < 0.05 and from the second term proportional to 6 when 0.05 < /I <

0.40. But, thereafter, the position integral provides the major contribution which remains

positive. Apart from the dominant role of the very high frequency parameters and the

irrelevance of the low-frequency coefficients Q 3 (0) and Q73(0) in the very early

stages, the analysis in terms of the history function has rather more to commend it.

We would hope to find circumstances where the first two terms of equation (2-34)

suffice, so that the history term can be ignored. Suppose, for example, that such

quantities as those in Figs 8 and 9 are required to an accuracy of about ±0.05, and con-

sider the following cases at the extremes of the significant range of T

(a) Lift, T = 5,

(b) Lift, T1 = 40,

(c) Hinge moment, T| 5.

The quantities from the control-angle, control-rate and history terms of equation (2-34)

are given in Table 7. In case (a) the control-angle term neglects contributions as high

as 0.3; moreover, the history term is mostly of larger magnitude than the total lift and

its main effect is to cancel large superfluous contributions from the control-rate term.

For such a rapid motion at T1 = 5 the analysis of equation (2-34) for lift ceases to

be helpful. For the more gradual deployment with T I 40 in case (b), Table 7 is more

encouraging. The control-angle term neglects contributions between ±0.1 in lift, while

the inclusion of the control-rate term reduces the gaps to within ±0.05 or thereabouts.

J Under such conditions the individual terms of equation (2-34) become useful and only a 0

rough approximation to the history term is needed. The rapidly-produced hinge moment in

.. .. .. . , . ....
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case (c) is an instance where the control-angle term neglects positive and negative contri-

butions of magnitudes greater than 0.3, while those of the history term hardly exceed

0.05. This special result is closely linked to the small dependence of Q3 and Q3 on

5 in Table 2, whereby in Fig 7 the history function itself becomes small.

4.2 Duration of deployment

-Before discussing in more detail the effect of T on the present calculations, we

consider in general terms the influence of control rate. If a control angle is changed

slowly from 0 to 6, , it is reasonable to express a consequent time-dependent force in

the form

d6(-) + Q (4-3);(R Q(O)6() + H

with some rate factor Q The boundary condition representing an instantaneous control

rate, equivalent to the second term on the riaht hand side of equation (2-2), can be

treated separately from the first term as if it were a steady state. This would determine

a value for QR different from the low-frequency quantity QV.(0) in equation (2-34).

If this steady control-rate concept were used for QR 1 the residual term QH would

represent the history of the motion as the influence of time dependence in the surface

distribution of upwash angle. Because the very existence of a control rate implies a time-

dependent upwash, such an approach is illogical and will be shown to be ineffective. If

the deployment from 0 to 61 is carried out very rapidly, we have already established

from equation (2-21) that the velocity factor FI(O) defines the instantaneous force.

Thus for T > 0

Qi(T) - Q! (0)61 F (T) . (4-4)

If the deployment takes time t - ,/U then a good approximation to the force for

T 0 T is

Qi (T) T] . F I(-r-T 0)dT 0o -

0

[F2 (T) - F2 (T-)] (4-5)

A more crude, but still useful, approximation is

Q Q(T) - Q! (0) 6 F (T- ITl (4-6)

which tends to the limit in equation (4-4) as decreases to zero.

Fig 10 shows the time-dependent lift as the trailing-edge control angle 6 follows

equation (4-1) for different values of T, " The quasi-steady limit T - identifies

o L/L0 with 6/60 " The ti-e scale is normalized with respect to the excursion time.
0 00

C)The main characteristic of Fig 10 is the progressive fall in maximum L/L0  from unity

to 0.72 as TI decreases to 5. Subsidiary features when 'T 40 are the lag in the-

-,L - - : 7 _- = . . .. * .. . . .
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occurrence of maximum L/L0  from -r/ 1  0.50 to about 0.545 and the greater residual

lift after the control angle has returned to zero. As supplementary information the

following table gives the normalized times T when the residual lift has fallen to

L/L0 = 0.01

s0 40 20 10 5

t 2 /TI 1.00 1.12 J 1.36 1.83 2.68

The asymptotic limit for small Ti corresponds to F0 (r 2 ) 0.01 , which in this case is

found to be r2 = 8.5.

The contributions to Fig 10 from the history term in equation (2-34) are plotted as

L/L0  in Fig I1. The widely varying curves against t/tI = /T illustrate different

aspects of the application of the history function. Provided that AL/L0  is everywhere

small compared with unity, the isolated history term usefully provides a correction to

the quasi-steady forces, and this is the case for x 20 . It is interesting to observe

how the curves change shape from T . 5 to I = 80

When TI is small, H(T-T 0 ) is slowly varying compared with d2qj(T0 )/dT0 2

thus, when T 4 rI , the history term for lift may be written as

r d2 d(T0))

L H(r- 0 )2 dTo H(r- 0 ) d) (4-7)
L0 00 dT

where TO is so me average value. Similarity between AL/L0  for rI  5 and dqj(T)/dr
is apparent, and with further decrease in T1 the curve becomes increasingly anti-

symetric about T/ ! I 0.5 and its maximm and mini-- approach T/r1 = 0.276 and 0.724

respectively, those of

r_dT = 92 y) (! -L( I -. (4-8)60 dTTT

from equation (4-1). Moreover, from equation (4-7) these stationary values will

ultimately behave like

H(C dq.(T) n Q'2.(-) - QW.( r.3 .L. Q-V (4-9o35.2(0) L dr -max (0) (49)

for i - I and j - 3 , which gives values ±1.04 when 7 = 5 to compare with +0.83

and -1.03 in Fig 11.
2 2

The limiting shape for large r has academic interest. It is then d qj(T)/dT 0
1 0that is slowly varying compared with H(T-r 0 ) , so that

O

- - - - _ - -I
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LO d2

where 70  is some average value and, as. rI increases, T0/TI approaches T/!T . As

AL/L0 decreases with increasing T, its shape in Fig 11 tends to become symmetrical

like d qj(r)/dT and its zeros approach the positions T/TI = 0.276 and 0.724 . The

convergence is slow and is-complicated by the fact that the integral in equation (4-10)

is logarithmically divergent as T - . Nevertheless, for motions of finite duration,

equation (2-34) can be expressed in the form

Q (T) Q! (0)qj() + Q'. (0) d + Q!d(2)J()
SI 3 I djT 2

+ Q!d J(r-ro)dT0  , (4-11)
q( 0 )

a

where J(o) - J(O) + fH(o0)da0  . (4-12)

The practical significance of equation (4-11) is slight, because its only relevance is to

situations where the history term is already becoming negligible. Nevertheless, equations

(4-10) to (4-12) yield the academic result

dq.(T) d 2q.(T)
Qi(T) - Q!j(O)qj(T) + Q~j(0) J + Q!j(0 ) - (0] d  (4-13)

for large T! .

Fig 12 shows how the curves of instantaneous centre of pressure due to the trailing-

edge control vary with 1" There are three limiting values

for small T , = 2 3 (o)cl

for large T , Z . Q22(0) (4-14)

quasi-steady, 
- Q3 (0)

the first of which follows from the first term on the right hand side of equation (2-24).

The second limit follows from the history term of equation (2-34) in conjunction with the

asymptotic expansion in equation (3-33) and is identified with the wing aerodynamic

CO centre. Neither of these limits is of much practical significance, because in both cases

A 1~
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the associated lift force is very small. Nor is the quasi-steady value of much

consequence, for it belies the fact that in the most important range 5 ( TI 1 40 and even

for T, a 80 the quantity At/EL is rapidly varying. It is also of interest in Fig 12

that the limit for large T is approached from below; thus for T 5 and 10 the

residual lift is acting well forward of the aerodynamic centre.

Tables 8 and 9 have been prepared to develop the theme of Table 7, discussed at the

end of section 4.1, and to consider the influence of TI on the usefulness of equation

(2-34) with the history term omitted

Qi(r) - Q!.(O)q.(r)+ Q1"(0) (4-15)
1 J (0 dT "

Table 8 gives the maximum and root mean square (rms) errors from equation (4-15) wiLh and

without its second term for the 20 values T/ - 0.05 (0.05) 1.00 . As far as lift is

concerned, the addition of the second term often increases both errors, but clearly it

will bring improvement if TI is large enough. Table 9 lists the rms errors and the

values of T I when equation (4-15) changes from being more inaccurate to being more

accurate as a result of including the second term; it also gives the lower bounds of T1

for which equation (4-15) with either one or two terms gives rms errors below 5% of the

peak steady value. For the case of lift due to pitching motion there is no range of T

for which equation (4-15) achieves an rms error below 5% and its first term alone fails to

do so. For lift with trailing-edge control motion tere is such a range 36 < T I < 65

by contrast the corresponding range for hinge rnu,.,ent is 4 < T < 24 .

A subsidiary study is made to optimize te rms error from equation (4-3) with

QH - 0 and variable QR " The following results are obtained for the three examples in

Table 7:

(a) Lift, T1 * 5, QR = 0.293 - QI3 (1.0) }
(b) Lift, T1 = 40, QR - 1.913 - 3 (0.15) " (4-16)

(c) Hinge moment, T I- 5, QR = -0.00969 - Q'3 (1.4)

Far from relating to the rejected steady control-rate concept, which would require values

QR a -0.187 for (a) and (b) and -0.00420 for (c), equations (4-16) state that the minimum

rms errors occur with Q- -Qi.. (v) for frequency parameters U which are found to be
R 1i

fairly close to 2/T l corresponding r9 an oscillation of period t, . T 1Z/U . Neverthe-

less, the general approximation

Qi(r5  - Q!.(!__+6(T ) +,,(2,_t) d6(r) (4-17)
I T 1 2/. dt

would be a poor substitute for the full calculation, unless the frequency parameter

2n/-r1 is predominant.

4.3 Type of controlI CAlthough the load distribution due to each of the control surfaces is greatly C

influenced by the wing tip, it is instructive to recall the steady two-dimensional load

-" --
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distributions associated with each type of control. In linearized incompressible flow the

lift per unit area, pU 2AC , for a control angle 6 is given for the trailing-edge
p

control by

AC { sin -
. h cot log sin ( + hj] (4-18)

for the leading-edge control by

AC.~ 4 co sin I- 11
. cot + lo jn + *h) (4-19)

and for the all-moving-tip control, as for a flat plate, by

S4 cot • (4-20)
6

In equations (4-18) to (4-20) with x and xh measured from the leading-edge the angles

* and *h are defined as usual by

= (1 -cos 0
c

(4-21)
xh
-c " -(I -cos *h)

If required, the simple compressibility factor (I-M1 2 enters on the right hand sides

of equations (4-18) to (4-20). The load distributions at H = 0 for the trailing-edge

control with xh - 0.75c , the leading-edge control with xh - 0.25c and the all-moving

tip are drawn in Fig 13. Positive 6 is defined as nose-up, so that the discontinuities

in surface slope at the hinge are in opposite senses for the leading-edge and trailing-

edge controls. It follows from equations (4-18) and (4-19) that for a given control

chord, not only are the logarithmic singularities at the hinge equal and opposite, but

the inverse-square-root singularities at the leading-edge are identical in the two cases.

Fig 13 also shows that the loading aft of the hinge of the leading-edge control remains

negative. The cancellation effect is such that the two-dimensional lift due to the

leading-edge control is only 9.5% of that produced by the trailing-edge control; the

ratio 9.3% in three dimensions for the particular planform at M - 0.8 is remarkably close.

The familiar flat-plate distribution for the all-moving-tip control in Fig 13 is less

relevant, because the centre of pressure near the tip moves well forward of quarter chord

to the extent that the hinge line in Fig I is taken to balance the control.

The calculations of lift due to the transient deflection anrle in equation (4-1) are

recorded in Table 10 when TI W 5 and 40 for pitching motion 0/0 and for deployment

of the three control surfaces at M - 0.8. For the slower motion with T 40 , the

trailing-edge control stands out as the slowest in producing and relinquishing lift.

o Pitching and leading-edge control rotation give remarkably similar time histories of

;L/L 0 , while that of the all-moving tip is intermediate to the other two controls.

•qI
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This pattern is largely repeated for the rapid motion 'l 5 . The leading-edge control

shows rapidity of aerodynamic response in-that the lift overshoots the quasi-steady range

0 4 L/L0 4 I . This behaviour is nearly matched by the case of pitching motion where

L/L0 M -0.012 at T - 4.5 . As we have already seen, the trailing-edge control produces

a sluggish behaviour in lift, which only reaches 72% of the quasi-steady maximum and
retains 13% of this at the conclusion of the control motion. Figs 10, 14 and 15 show the
influence of excursion time on lift for the trailing-edge, leading-edge and all-moving-

tip controls respectively.

The results for T 5 can be analysed further in relation to equation (4-17),

which gives for unit 60

L_ , = i(r)  Q '(2w/Tl Q'(2r/Tl () 7

L0  ~ TY (T) +-~-~ dr[ ) (4-22)

For convenience we shall take the approximate value 2w/r a 1.2 and use the data in

Tables 2 to 4. It can be seen from the following table that equation (4-22) provides a

qualitative description of the differing characteristics of the three controls. =45J

W5 j3 j 4 j5 I
'I = 5  TE control LE control All-moving-tip

Peak L/L0  0.72 1.05 0.81

at 'lt1 - 0.54 0.40 0.45

Q.j(i.2)/Q.j(0) 0.611 0.940 0.728

Q' (1.2)/Q (1.2) -0.225 0.688 0.274

From Peak L/L0  0.87 2.75 1.14

equation (4-22) at 't1r = 0.64 0.30 0.34

The peak values of L/L0  from Figs 10, 14 and 15 are ordered according to the values of

the factor Q j(1.2)IQ.j(O) . The location of the peak along the time scale is ordered

by the ratio Q" (I.2)/Q.j(1.2) which governs the influence of the rate term. When this

ratio is negative for j - 3 the peak is seen to be delayed, and when the ratio is

larger and positive for j - 4 the peak is advanced from 0.50 to a larger extent. But

the quantitative predictions of equations (4-22) are shown to caricature the behaviour

and are included to emphasize the particular danger of using oscillatory aerodynamics

for a discrete frequency in response studies of active control systems.

Fig 16 contrasts the normalized time-dependent lift from leading-edge and trailing-

edge controls when deployed very briefly with T 2 . This could correspond to a rapid

on-off situation over a small range of control angle. The trailing-edge control only

reaches 58% of the quasi-steady peak lift, while the leading-edge control gives a peak- c

to-peak variation that is nearly three times the quasi-steady one. Clearly the growth of

:7
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lift retote from the control surface is subject to the major time delay. Fig i,dicaL.&

that with a positive control rate this delay gives lift reduction for the trailingedg

contral and lift enhancement for the leading-edge control, and the effect is revrraed .,

the controls return to their initial positions. Similar reasoning leads us to expdat twhe

f.%rly c?.-.v. correlation between time-dependent hinge moments and their quasi-su*-o!y

%.4es implied irt Tables 8 and 9. For the leading-edge control this correlation is par-

ticularly nlo~e, because L.., ratio Q" (/Q' 0) from Table 3 is as small as -0.06 forS44 44

0 rad victually rema1,e b"ween half and twice this value over the whole frequi-ncy

rang., There seems to be little point in isolating the history terms for the lift due

to the leadbig-edge and all-moving-tip controls because, as Tables 8 and 9 show, the two-

ter% approximavion from eqvtttion (2-34) has virtually no advantage over the one-term

approximation if 5% rms ancur y ig , Full calculations are needed if TI < 30

and a zi,,dlar corc3u3lon can be reached for pitching moment as well as lift.

4.4 Use of Fourier transform

We now return to equations (2-19) and (2-20), derived in Appendix A. Instead of

integrating with respect to frequency parameter and using hereditary functions, we con-
sider the evaluarior of Qi(T) in the frequency domain, when qj(T) is defined by
equation (4-1). It is more convenient, however, to work in complex numbers and to take

i dq.( Q.0) ?i( )e -1
Qi(-r) = qj(-)Q..())- Qi(edo (4-23) *1

from equations (A-5) to (A-7) of Appendix A. From equation (4-1) the analytical integra-

tion with respect to T0  yields

I(Gr 1 ) =;dqj(%) -i~r0 d

dr (TdT 0  30
0

643+5 + (+2
[-OT -O l(-iT1) (-OT

...... (4-24)

If ;T < 1.25, I( I) is better evaluated from the expansion

I(T2 _ .. (r) 4 4 6 8~ 1 10]IOT (U Oo)+--]- T U
31 (T) 315 (74)5 315315 (T 1 ) 41277600 V 1

+ i [ 1 6 ( + i - 4- (3 l 5 1 l 7 +  - (1l
+ (EU + - O 32175 OT ) + 3439800 ("T)91

~o
.... (4-25)

C0
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Since qj() 0 , equation (4-23) reduces to

i I iO O
Q. (T) 41 J; I e d 27 e d; , (4-26)

where Q. (-) is the complex conjugate of Q. (5) . Equation (4-26) states that Q (r)

is the inverse Fourier transform of the expression in curly brackets.

13
A fast Fourier transform technique, based on the work of Cooley and Tukey , has

been used to evaluate equation (4-26) with the aid of a cubic splinQ to represent the

complex generalized force coefficient Q (3) and equations (4-24; and (4-25) for

I(rU) . In these calculations it is necessary to truncate the range of ; and straight-

forward to vary the upper limit u " The lower the value of T, , the higher Uu must

be. With T 10 and -u = 5.89 the full calculations of lift due to the trailing-edge

control from Fig 8 are reproduced to an accuracy of ±0.001. With TI =5 near its

practical lower limit, results are given in Table II for four values of 5u  in the range

1.23 v ;U 4 4.91 . For Uu -4.91 the accuracy of the Fourier transform calculations is
UU

±0.0012 and the rms error in the range 0.5 < T 4 5.0 is 0.1%. Table 11 shows how this

rm error increases to 9.6% as ;U is reduced to 1.23. To keep the errors within ±0.01
u

of the maximum quasi-steady lift, it is advisable to keep 5u to 2.4 or above. For most

practical purposes, therefore, the range of frequency parameter 0 4 ; < 2.4 should

suffice. The upper limit is roughly proportional to lI/T , so that for many applica-

tions it would only be necessary to consider U up to flutter frequencies; on the other

hand, the extreme examples in Fig 16 with T =2 require the whole range of the lifting-

surface calculations in Tables 2 and 3.

Unless the calculations involve step changes in control displacement or rate, the

oscillatory data for infinite frequency are clearly irrelevant in practical cases*. It

follows from equations (3-35) that the behaviour of the history function H(o) as a

is likewise irrelevant. Similar remarks apply to the position and velocity functions

F0(a) and FY(a) with greater force, and with particular reference to equation (3-24)

no serious concern need be felt about the inability to produce reliable curves of F0(o)

in Figs 4a&4b. Some idea of the importance of Fl(O) for small a can be gleaned from

equation (4-6) by setting a suitable lower limit to the time required to deflect a control

surface.

Latitude in the accuracy to which high-frequency aerodynamic data are required
8encourages alternative approaches. Thus the aerodynamic modelling discussed by Woodcock8 ,

which exploits Fourier transforms, can be seen in a practical light. The analysis that

follows from representation of the coefficients Q..() as the ratio of polynomials in
143as proposed by Veps for example, becomes credible. Although such an approximation

could hardly be expected to reproduce the undulations of the Argand diagram of Q130)

in Fig 2, it would surely be capable of representing the region 0 < 5 < I to good

This might not be the case for motion which ultimately diverges, eg q() - 2,
(T; 0
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accuracy and of continuing without undulations through I < 5 < 3 to give usable results

for active control studies. Some evidence to this effect is provided in columns (c) and

(d) of Table 6, since the former largely excludes the undulations. The present calcula-

tions stand as a yard-stick for various approximations discussed in Ref 8.

5 INVERSE CALCULATIONS

In general, as discussed in Refs 4, 8 and 14, the time-dependent aerodynamic forces

occur as terms in the equations of an aeroelastic system; for simplicity, the prese..t

application is confined to the aerodynamics without any modelling of the aircraft response.

In practice, an active control is subject to a sensor, such as an accelerometer, attached

to the aircraft structure; within a purely aerodynamic framework no attempt is made to

simulate a sensor or any associated control laws. Instead, perfect knowledge of the aero-

dynamic input is assumed, and in section 5.2 this amounts to the growth of lift due to a

step gust.

In section 5.1 we address the question of determining the motion of a control

surface to produce a given time-dependent aerodynamic force. Equation (2-21)

dq.(T) T o CT-Tr)

Q'i.C) J + Q! .(0) dqt 0  F(- )d Q5-1)1i dT IaJ f dT 0  13 0 0
0

is to be solved for qj(T) , given Qi(T) , the velocity factor F1 (o) from equation

(2-22), and the coefficients Q!.(0) and Q'.'.C( ) " The program, mentioned at the end of

section 3.3, provides numerical values of F (O) for selected a up to and including

some arbitrary large value a, beyond which equation (3-30) is used to give

'j ' -Ol) 1F(O)-io(-2

F (o) - 1+ Qi-(O)Q12 (O)(o + I 1 (5-2)
8nQ1j (O) 03

5.1 Alternative approaches

One scheme of calculation is to iterate by taking equation (5-1) in the form

/dq.(T 0Q~j(O)qj(T) + Qj-) 1) d .F 1 (T-'O) - QldT0  - Q(T) C5-3)

dr IJ dT 1f 0
0

(n+(1) n)
and by evaluating qj (T) from a previous approximation qj CT) from the

relationship

Q~Cr Q'.~) (n) C T) ( n)C/
q (n+1) (T) ( 0 - j do J (F( - - idT0  (5-4)

aQ!(O Q!_O dTI f t I

00 There is the disadvantage that each iteration involves the numerical differentiation of
4
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Instead, greater success is obtained from the linear differential equation

) )n+ )  dqn)(rO) l_

Q! (O)jn+ I (T) + Q..(Go) dQ(O)f dr0 F -)IFI IdT

0
....(5-5)

which gives4

exp[- Q!.(O)T/Q .') rQ!.(0)T'l

Sdq (n) () - d 0  (5-6)

where R (n) (T) Q!.(0) d 0 T -' d (5-7)

C( ) 0 and hence R() 0 Then by

The iterations can be started by taking q0) (0)

equations (5-6) and (5-5) respectively

exp[-Q.(O)T/Q:.(*)] r!.(0)T'-
q. (T) ep 21 i(' t d(qjj 0

and

d-(i (T) Q!j (0)q () (T) Q (-r)
- , j + (5-9)t

dT Q'! m)

Then equations (5-7) to (5-9) determine R (C) , equation (5-6) and R (r) determine
q(2) () and its derivative is obtained by differentiating equation (5-6) to give
q1

,n+,) (r) n+l) R(n)

d - Q ())q (r) Q(r) - ()
= - , + , (5-10)

dT Q1i ( )  Q1. (a)

with n=I . This procedure has been used successfully for the lift (i -I) and the modes

j - 3 and 5 corresponding to the trailing-edge and all-moving-tip controls, when the

exponent outside the integral in equation (5-6) is negative.

For the leading-edge control Q! (0) and Q'.(-) are of opposite sign and
Xl 1i

numerical errors, however small, magnify from iteration to iteration. This poses a

problem which cannot be overcome, for example, by subtracting 2Q'(-)dqj(T)/dT from

both sides of equation (5-3) and allowing for the extra, term on the right hand side in

the definition of R T
(n ) () . The difficulty is apparently the basic one that there

exists a divergent motion of the leading-edge control, which produces zero lift. There

are indications for very high frequency from piston theory, considered in section 3.2,

that the ultimate value of the generalized force coefficient, 0

*"+

w.~- -- -- '' . . -
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4(0) + iQ"() = - 0.977 + 0.0514iN (5-11)

from Table 3, vanishes for the rapidly divergent motion corresponding roughly to

- 19.0 . In this unusual situation any iterative method is doomed to failure and a

different approach must be adopted.

We therefore take q4 (T) as a series of exponential terms4H
K _k

q4 (T) a ke (5-12)

k-I

%jere the factors 8 k 0 are suitably chosen and the K coefficients ak are determined

so as to satisfy equation (5-3) to a sufficient approximation. A good procedure is to

evaluate the left hand side of equation (5-3) for, say, 2K values of T in the range

of interest and then to solve the set of linear simultaneous equations that satisfy the

initial condition on q4(0) and minimize the root mean square error in the quantities
QJ(O •

5.2 Neutralization of gust force

We first calculate the lift on the wing of Fig I as it enters a step gust at

H - 0.8 in the direction normal to the gust front. As discussed in section 2.2 and

reproduced from Fig 2b in Fig 17, the lift L(o)/L(-) or L/LI grows more slowly than

that due to a step change in the trailing-edge control angle, which also involves

impulsive lift at a = 0 . Clearly a less violent change in control angle is needed to

neutralize the growth of lift from the step gust. The iterative calculation, based on

equations (5-5) to (5-10), gives the curve of 6/61 with alternating long and short

dashes in Fig 17. The most striking feature of this curve is that it attains 98% of its

final value and remains within i2% of it after just four mean chords of travel, at which

stage the lift from the step gust is only approaching 80%.

The same method of calculation is used for the all-moving-tip control, but for the

leading-edge control satisfactory results are obtained by means of equation (5-12) with

K :. 4 . Fig 18 compares the neutralizing curves of 6/61 for the three types of control

surface, which show the inverse characteristics of their velocity factors F1 (a) from

Fig 5. The overshoot in lift from the leading-edge control, typified by F (o) > I for

a < 0.5 , leads to the less rapid demand for 6 in Fig 18, while the all-moving-tip

shows intermediate characteristics, just as it has done in Fig 5 and Table 10. The

relative magnitudes of 61 for the three controls in Fig 18 show the high ratio 10.8

for the leading-edge control, which is much less effective than the trailing-edge control

in producing lift. For each control 6 remains within ±1% of its final value 61 after

a gust penetration of only 5.4F, although the growth of lift due to the gust takes at

least three times as long to do so. This remarkable result is peculiar to lift because of

o the invariant asymptotic behaviour found in equations (2-17) and (3-5). Nevertheless,
0 the rapid control rates implied in Fig 18 are indicative of the targets that can be set

in active control technology. Such applications require the full treatment of flow

history.
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6 CONCLUDING REMARKS

6.1 Recapitulation

A double integral for the time-dependent aerodynamic force due to arbitrary wing

or control-surface motion in equation (2-19) forms the basis of calculations in either the

time or the frequency domain. In the time domain various expressions involving different

hereditary functions are derived, in particular, equation (2-34) containing two quasi-

steady terms and a 'history term' involving the history function H(o) . A program :n

ICL 1900 Extended Fortran has been written to calculate the hereditary functions as

accurately as possible. The hereditary functions for a high-aspect-ratio wi a at M = 0.8

with various control surfaces (Fig 1) are used to determine aerodynamic forces due to

transient deployment of these controls in the form of equation (4-1). For this particular

form of control deployment, analytical integration with respect to the time variable leads

to the expression in equation (4-26), which has been evaluated via its Fourier transform

in the frequency domain to give good agreement with the time-dependent lift calculated

from the hereditary functions in the time domain.

Special attention has been paid to the asymptotic behaviour of the various functions.

The evaluation of each hereditary function takes account of the asymptotic expansions

of the generalized forces Q. ( ) for small and large frequency in equations (3-1), (3-2),

(3-16) and (3-17). The hereditary functions Fn (a) and H(o) are discussed in relation

to their asymptotic expansions for small and large time in equations (3-24) to (3-33).

The contribution of the history term to lift due to the trailing-edge control is examined

in relation to the limiting expressions in equations (4-7) and (4-10) for very rapid and

very slow control rates. Having a well-defined asymptotic expansion for small a , the

history function H(o) is considered from the standpoint of empirical correction. The

factor K(o) in equation (3-36) or (3-37) is proposed, but there is a simpler alternative

in equation (3-39).

Transient deployment of the controls according to equation (4-1) with variable

duration T is considered, and calculations are made of the time-dependent lift,

pitching moment or hinge moment for pitching or control-surface motion. The relative

importance of the quasi-steady and history terms is analysed in Tables 7 to 9. Analysis

is also carried out on the direct use of oscillatory aerodynamic forces in approximating

to the time-dependent lift, as in equation (4-22). This has considerable qualitative

merit, but the quantitative predictions can seriously exaggerate the results.

The Fourier transform results for time-dependent lift in Table 11 confirm the

minimal consequences of neglecting the logarithmic term at small frequency in equation

(3-2) and show that, important though it is for the hereditary functions, the asymptotic

expansion for large frequency can be ignored altogether by truncating the frequency range

in equation (4-26). Roughly, in the frequency domain, an upper limit of I;Ui -Uu = 12/T

appears to be satisfactory (section 4.4).

Methods of inverting the equations to determine the motion that will give a required

aerodynamic force are discussed in section 5.1. The iterative scheme in equations (5-5)

to (5-10) appears to work unless the coefficients Q.j( ) imply a zero in the lower half 0
2.3
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of the complex frequency plane. When this seems to happen for the particular case of lift

due to the leading-edge control, a more crude approach of the collocation type has been

adopted. The illustrative calculations of control-surface motion to neutralize the

growth of lift on entering a step gust show different normalized control rates for the

three types of control, which should be considered in relation to their lift effectiveness

(Fig 18).

6.2 General conclusions

(I From the consideration of both small and large frequency, it is preferable to

calculate the hereditary functions from integrals involving the in-quadrature force

coefficients M than from alternative integrals with the in-phase coefficients

(2) WThen the time-dependent lift is expressed in terms of quasi-steady displacement and

rate terms and the additional history term, the history term is likely to be important

whenever the rate term is important.

(3) In calculations of time-dependent hinge moment the two quasi-'teady terms without

the history term seem to cover all practical needs.

(4) During transient deployment of a trailing-edge control the streamwise centre of

pressure of the incremental loading moves rapidly from an axis intersecting the control

to one slightly upstream of the wing aerodynamic centre before tending asymptotically to

the aerodynamic centre as the incremental lift disappears.

(5) The time-dependent lifr due to rapid control-surface motion shows sluggish behaviour

in the case of a trailing-edge control, but over-reacts to a leading-edge control. An

all-moving tip has intermediate characteristics and produces lift that sometimes leads and

sometimes lags the control displacement slightly.

(6) The steady two-dimensional chordwise loadings for leading-edge and trailing-edge

controls provide a qualitative explanation of their time-dependent lift characteristics

on the basis that the growth of loading more remote from the control surface is subject

to the major delay.

(7) For many applications of active controls it would be unnecessary to take into

account frequencies beyond the flutter range. For this approximation a much simpler

aerodynamic modelling would become practicable.

(8) The calculated control-surface motion required to neutralize the growth of lift

on entering a step gust stabilizes within about one third of the corresponding distance

for the growth of lift itself.

0t

o
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Appendix A .

FORMULATION OF TIME-DEPENDENT FORCES

Consider a flat-plate wing displaced upwards from the plane z = 0 according to

the equation

z(x,y,t) z.(x,y)q(T) (A-1)

where T - Ut/F is non-dimensional time. The motion starts at x 0 , so that

q(r) - 0 for T 4 0 and thereafter

i dq(t O)

q(T) dT dT0  " (A-2)

0

Remembering that

sin VT -(-3

dlv ± j according as T 0 (A-3)

0

we may write

q(T) d 0  d;5

f dT2 rf 0

O 0 0

0 c dq(T sin [ (r0 -T )]

q(co) 0 dT 0 ) ddT0  (A-4)

00 0

The integrand, regarded as a function of T , corresponds to the sinusoidal wing motion

z0 (x,y,t) = [ z.(x,y) dT-0-- e J (A-5)

which provides the generalized force coefficient in mode i

Q = ( O) IQ !j() + i 0Q .( ) e O( - TO
0

= d 0 - Q!j(5) sin[I(T-T 0 )] + Qij(U) cos[.(T-T0)] (A-6)
dT 0  V Iji

Then the generalized force coefficient corresponding to the wing motion given by equations

(A-I) and (A-4) is

Qj- 1JQo(T) dvd 0  . (A-7)

0 0
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It is important to note that, since the expression for q(T) in equation (A-4) is

identically zero for T < 0 and covers the whole range - < T , so does the quantity

Qi(T) defined by equations (A-6) and (A-7).

With a little rearrangement of terms and the removal of the subscripts i and ij

we may write

Q(T) Q , d(0) + l Q(1) [ T )IdV dTo

0 0

+ f d-o Q"() - Q"(-)l cos [ (T - TO)) ddTO

+1Q"() 0 cos[v(TT)]ddT0  (A-8)

Given that dq(T0 )/dT0 - 0 at T- 0 and T o , the factor of Q"(-) in the last

term of equation (A-8) simplifies on integration by parts with respect to To Hence

2d -- (- 0d$ n UT "0

i dT cosI;(T-r)1dUdT ff 2 0
00 

00 0

T 2 C1/dq(%) r d dq(t0 ) dq(r)

..1. dT d J 02 dT - -- if T > 0, (A-9)dT 2 0~ f dT 2 dT 't

0 0 T 0

and vanishes identically if T < 0 . Since Q(T) must vanish identically when T 4 0

equation (A-8) yields the identity

d(T0 Q(0) +1 sin[(T -1 + [COSQ) " ) =)Jld d 0

0 [ 0

whatever the motion q(r0) . Therefore for O 0

Q(0 -- 4Ua f + [Q"() - Q"(-)J cos Uo d;5 0 (A-1O)

0 0

This identity allows the upper limits of integration with respect to T to be changed

from c to T in the first two terms of equation (A-8), which simply expresses that

future motion cannot influence the present. Thus by equations (A-8) and (A-9)

? I o

- -
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Q() - Q dq() + dr 0 Q(0) + Q'( ) sin JI(r- t0 )Id;;dT0

T 00
I/dq('rO) Q1

+ -~j d Q"() - Q(m)} cosl(T-r)ldd 0 . (A-I)

0 0

The relationshipinequation (A-10) also allows the elimination of either Q'() or

Q"(;) from the double integrals for Q(T) when T > 0 , so that we obtain alternative

expressions

Q( -d~)2 ff dq(rO)() - Q(olcs '-r)ddr

Q(d) Q"(t) -T + Q'(0)q(T) + T 0 Q"(-)I COSO(T-T )JdvdT
O00

(A-12)

and

dq(T)(A-13)
Q(T) -Q"(-n) )sin[(T T ddT

00

Go

,I __ _ ,
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Appendix B

EVALUATION OF HEREDITARY FUNCTIONS

Three Intujgrals

The hereditary functions in equations (3-23) involve the following integrals

IO(a) = f(M sin Zo dU

0

ZI(o) = jf(v) cos ;o dV (B-1)

0

I2(oY)  Mf(v) sin vo d:

0

where f' Q (0) ".. (B-2)

Each integral is evaluated in three parts by subdividing the range of integration into

0 < < <1, , < < u and ;u < U < . Different integration procedures are used in

the three regions.

0< - < A

As explained in section 2.1, Q?.( ) is given by equation (3-2) so that equation

(B-2) becomes

B. - Q1() + B"' + B5 log + BNV (B-3)

Q!.(0)

Typically we take - 0.08, subdivide the range into 16 equal parts and evaluate the

contributions to the integrals (B-1) by Simpson's Rule, for example

0.08 [1 (2k- I)o

f f() cos -Ua d;5 f(O) + f 2 o

0 k-I

7a

+ Zf,I cos -- + I" f(0.08) cos (0.08a) (B-4)

o6 7I
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<9 <  
U <  u

All the available values of Q0.( ) from lifting-surface theory, excluding V 0 ,

are used to fit a standard cubic spline. Typically the region 0.08 < U < 6.00 is sub-

divided into 2n - 148 equal parts and the integrands of (B-I) are evaluated without the

trigonometrical factor sin o or cos Uo . They are then represented by quadratics over

successive double intervals

U + (2k-2)h < U < ;U + 2kh (h u , k= ,2,...,n (B-5)

as for Simpson's Rule, but in the subsequent integration the trigonometrical factor is

treated analytically. The procedure is known as Filon's Rule and is used in preference

to Simpson's Rule to ensure the necessary accuracy when a is large and the trigono-

metrical factor is of small wavelength. The resulting contributions to II(o) and 12(0)

are as follows:

f(0) cos a d h [f(ou) sin Uua - f(; ) sin UIat

+ 8 f(; + 2kh) cos~aoJ + 2kh)]

k-I

+ f ( ) c o s o + f ( vu) c o s u

+ f (y + (2k- )h) cos[o( + (2k -Oh) (B-6)

k-I

and

d {f(%) f(U)
f(__)sin Ua d6 h a -Cos U a - Cos Vo a

I L u u i

f( + 2kh)
+ + 2kh sin[o( + 2kh)]

- f) f )
+ - sin a + - sin U a

2£ 2 u
on 

f' ( + (2k -lOh)v ]

+ E ;I +(2k - sin[Go (2k- Oh) (B-7)
0 k-I• I
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where with 0 oh

82 + sin 0 cos 0 -2 sin2ea m 3

B 2(0(I +cos 20) - 2 sin 8 cos e] (B-8)03

4[ine-ecos ]
e
3

Io(o) is treated in the same way as 12(a) with ;f(;) replacing f(;)/ throughout

equation (B-7).

< <1
u

As explained in section 3.2, Q.( ) is given by equation (3-17) so that equation

(B-2) becomes

f() - 2  (0) (B-9)

The integrals (B-1) are evaluated analytically in terms of the function

S-3 (x)sin dp (B-10)
X

Successive integration yields the results

Q! (0) f( Y sin a d = 2A' + Alo) S3( 0o) + -I sin ;U + ;U cos u (B-l)
I u u

Q!.(0)ff( ) cos Uo d = - ' - S3 au) - --sin 0+ --A 2 cos U (B-12)u u

VU ;U U

and

Q:.(o) f0) (0 a S 0(0 +.-r(3 sin a + cos U ). (B-13), (Al 2- S3( u) +  2 i u u "
~j 1 2 12vu u

The quantity S3(x) from equation (B-10) is obtained from expansions in series of

Chebyshev polynomials by the procedure described in Ref 15. The formulae, due to Davies

and hitherto unpublished, are CO
0,

U~I 0o'
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for 0 < x <7

I0,
f 3 (x) + . 10, (B-14)

4 xZ r 2(.U)
r-0

and for 7 4 x <

14 , 12,

S3 (x) x A T 2) - - B- 1 r2 r (B-15)

x r0 x

where 'the dash ' beside the sunmation sign indicat.s that the term r - 0 is halved.
The Chebyshev polynomials T2 r(Z) are defined in section 3 of Ref 15 and are evaluated

2rrby a recurrence relationship. The coefficients Arl 'r and D r are given in Table 12

and ensure high accuracy.

A
ia

iL
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Table I

DEFINITION OF FORCE AND UPWASH MODES

Force mode Upwash mode

ior j Force z./E Motion w /U

I Lift I Heaving 0

2 Pitching moment (x-x )/E Pitching I + i(x-X )IE
a a

3 Hinge moment (x -Xh3)/F Trailing-edge control I + iv(x - xh3) /F

4 Hinge moment (x-xh4)/E Leading-edge control I + i (x-xh4)/E

5 Hinge moment (x-xh 5 )/F All-moving tip I + i (x-xh5)/

6 Bending moment IyI/s Sinusoidal gust exp(i~x/z)

The axis positions xat xh3 (y), xh4(y) and Xh5 and the spanwise extent of the

control surfaces Yi < y < s are defined in Fig I. In modes 3, 4 and 5 the formulae

for zi/Z and w./U apply over the extent of the control surface, but both quantities

are nominally zero over the rest of the planform (y < Yi or x < xh3(y) in mode 3, or

x>Xh(y) in mode 4).
x '4

0

0
- ao
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Table 2

FORCE COEFFICIENTS FOR OSCILLATING TRAILING-EDGE CONTROL (M - 0.8)

Lift Pitching moment Hinge moment

3 3  2 Q -Q33Q,- ' 3'333 ,

0 1.7879 -2.6491 1.8843 -1.1691 0.01827 0.00946

0.05 1.7625 -2.4487 1.8748 -1.0902 0.01827 0.00952

0.15 1.6350 -1.9144 1.8281 -0.8954 0.01826 0.00964

0.40 1.3271 -0.8774 1.7035 -0.5526 0.01834 0.00987

0.60 1.2257 -0.4838 1.6210 -0.4072 0.01856 0.00995

0.75 1.2083 -0.3544 1.5701 -0.3232 0.01881 0.00993

1.00 1.1707 -0.2967 1.5220 -0.2324 0.01929 0.00981

1.20 1.0927 -0.2464 1.4880 -0.1987 0.01974 0.00979

1.50 1.0652 -0.1638 1.4376 -0.1555 0.02082 0.00966

1.80 1.0040 -0.1582 1.3868 -0.1340 0.02181 0.00936

2.10 0.9495 -0.1026 1.3341 -0.1043 0.02316 0.00913
2.40 0.9259 -0.3977 1.2891 -0.0889 0.02425 0.00868'
2.70 0.8691 -0.0672 1.2427 -0.0682 0.02533 0.00840

3.00 0.8485 -0.0557 1.1964 -0.0545 0.02616 0.00800

3.30 0.8142 -0.0382 1.1580 -0.0372 0.02673 0.00777

3.60 0.7931 -0.0262 1.1233 -0.0235 0.02721 0.00756

3.90 0.7784 -0.0143 1.0994 -0.0102 0.02767 0.00745

4.20 0.7683 -0.0049 1.0819 +0.0015 0.02830 0.00739

4.50 0.7673 +0.0023 1.0738 0.0104 0.02922 0.00732

4.80 0.7662 0.0082 1.0700 0.0182 0.03024 0.0C722

5.10 0.7711 0.0117 1.0706 0.0229 0.03135 0.00709

5.40 0.7694 0.0145 1.0690 0.0270 0.03240 0.00693

5.70 0.7725 0.0168 1.0699 0.0299 0.03331 0.00675 .

6.00 0.7735 0.0177 1.0712 0.0317 0.03406 0.00658

- 0.582 0.0514 0.874 0.0735 0.0354 0.00516

-B; - 1.8046 - 0.7462 - 0.00058 - !

0
- -

2'
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Table 3

FORCE COEFFICIENTS FOR OSCILUaTING LEADING-EDGE CONTROL (H 0.8)

Lift Pitching moment Hinge moment
V .- -.Q.II I1 14 4 Q24 Q 4 ,

0 0.1658 -0.0776 0.0220 0.0847 -0.05667 0.00312

0.05 0.1640 -0.0609 0.0214 0.0915 -0.05666 0.00294

0.15 0.1558 -0.0228 0.0190 0.1065 -0.05661 0.00252

0.40 0.1357 +0.0406 0.0174 0.1284 -0.0672 0.00181

0.60 0.1243 0.0714 0.0212 0.1318 -0.05720 0.00166

0.75 0.1209 0.0923 0.0236 0.1320 -0.05775 0.00184

1.00 0.1372 0.1130 0.0284 0.1379 -0.05861 0.00244

1.20 0.1559 0.1072 0.0408 0.1424 -0.05922 0.00270

1.50 0.1564 0.1071 0.0630 0.1424 -0.06076 0.00330

1.80 0.1986 0.1172 0.0948 0.1435 -0.06134 0.00418

2.10 0.2252 0.102? 0.1291 0.1381 -0.06209 0.00453

2.40 0.2505 0.1080 0.1683 0.1365 -0.06222 0.00521

2.70 0.2988 0.1009 0.2126 0.1309 -0.06196 0.00533

3.00 0.3333 0.0969 0.2604 0.1268 -0.06203 0.00555

3.30 0.3782 0.0921 0.3137 0.1206 -0.06185 0.00567

3.60 0.4244 0.0867 0.3688 0.1140 -0.06178 0.00578

3.90 0.4711 0.0807 0.4252 0.1070 -0.06172 0.00590

4.20 0.5206 0.0746 0.4847 0.0994 -0.06141 0.00604

4.50 0.5700 0.0678 0.5444 0.0914 -0.06095 0.00616
4.80 0.6197 0.0607 0.6046 0.0825 -0.06019 0.00624

5.10 0.6665 0.0533 0.6609 0.0734 -0.05941 0.00628

5.40 0.7112 0.0460 0.7162 0.0643 -0.05845 0.00631

5.70 0.7544 0.0386 0.7678 0.0549 -0.05734 0.00631

6.00 0.7928 0.0309 0.8146 0.0454 -0.05608 0.00626

0.977' -0.0514 0.982 -0.0477 -0.0531 0.00516

-B,' 0.1674 - 0.0692 - -0.00165 -

~o
0

? ,
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Table 4

FORCE COEFFICIENTS FOR OSCILLATING ALL-MOVING TIP (M - 0.8)

Lift Pitching moment Hinge moment

Q15 1q5 - 5 Q25 5q5 Q55

0 1.0368 -0.9826 0.9567 -0.0945 0.00029 0.06800

0.05 1.0239 -0.8739 0.9520 -0.0514 0.00027 0.06800

0.15 0.9616 -0.6036 0.9306 +0.0478 0.00016 0.06797

0.40 0.8128 -0.0995 0.8816 0.2092 -0.00078 0.06821

0.60 0.7622 +0.1018 0.8548 0.2675 -0.00208 0.06890

0.75 0.7604 0.1778 0.8382 0.3008 -0.00322 0.06946

1.00 0.7777 0.2039 0.8314 0.3429 -0.00570 0.07029

1.20 0.7546 0.2071 0.8369 0.3544 -0.00834 0.07152

1.50 0.7520 0.2552 0.8423 0.3672 -0.01123 0.07378

1.80 0.7849 0.2361 0.8604 0.3661 -0.01485 0.07550

2.10 0.7418 0.2589 0.8605 0.3720 -0.01587 0.07841

2.40 0.8075 0.2542 0.8880 0.3695 -0.01660 0.07940

2.70 0.7668 0.2572 0.8947 0.3722 -0.01471 0.08196
3.00 0.8182 0.2587 0.9233 0.3659 -0.01170 0.08193

3.30 0.8055 0.2573 0.9290 0.3674 -0.00788 0.08357

3.60 0.8363 0.2562 0.9579 0.3619 -0.00144 0.08285

3.90 0.8356 0.2549 0.9649 0.3605 +0.00241 0.08306

4.20 0.8521 0.2534 0.9820 0.3572 0.00768 0.08244

4.50 0.8600 0.2536 0.9984 0.3566 0.01262 0.08229

4.80 0.8764 0.2512 1.0165 0.3528 0.01713 0.08148

5.10 0.8854 0.2508 1.0324 0.3517 0.02113 0.08134

5.40 0.9036 0.2486 1.0539 0.3487 0.02697 0.08079

5.70 0.9140 0.2465 1.0720 0.3458 0.03208 0.08023

6.00 0.9258 0.2442 1.0859 0.3427 0.03680 0.07952

0.855 0.2331 0.986 0.3271 0.0111 0.07557

-BI 1.0465 - 0.4327 - 0.00026 -

r '
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Table 5

VARIOUS CALCULATIONS OF HEREDITARY POSITION FACTOR FOR LIFT
DUE TO TRAILING-EDGE CONTROL

Values of Fo(O)

(a) (b) (c) (d) (e)

0 -0.0003 0.2270 1.0474 1.3842 1.3842

0.05 +0.0048 0.2274 0.8772 1.0991 1.0991

0.10 0.0095 0.2234 0.7351 0.8676 0.8676

0.20 0.0189 0.2142 0.5265 0.5456 0.5456

0.30 0.0281 0.2056 0.3954 0.3638 0.3638

0.40 0.0370 0.1971 0.3184 0.2752 0.2752

0.60 0.0539 0.1800 0.2494 0.2288 0.2288

0.80 0.0689 0.1631 0.2129 0.2117 0.2117

1.00 0.0816 0.1467 0.1687 0.1664 0.1663

1.40 0.0986 0.1158 0.0785 0.0702 0.0702

1.80 0.1033 0.0887 0.0489 0.0563 0.0563

2.20 0.0964 0.0663 0.0462 0.0531 0.0530

2.60 0.0806 0.0488 0.0369 0.0435 0.0434

3.00 0.0597 0.0364 0.0327 0.0389 0.0388

4.00 0.0136 0.0231 0.0318 0.0309 0.0308

5.00 0.0072 0.020 0.0307 0.0254 0.0253

6.00 0.0284 0.0255 0.0242 0.0208 0.0206

8.00 0.0139 0.0133 0.0111 0.0180 0.0178

10.00 0.0017 0.0033 0.0059 0.0006 0.0005

12.00 0.0054 0.0039 0.0029 0.0032 0.0032

16.00 0.0013 0.0005 0.0009 0.0008 0.0010

t.20.00 0.0004 0.0002 0.0005 0.0005 0.0006

30.00 0.0001 0.0001 0.0001 0.0001 0.0001

(a) With Q" 3(!) set to zero when ! > 1.2

(b) With QI3 (1 ) = 0.0514 and Q'3( ) unspecified for

1.2 < U 4 6.0 .

(c) Given 14 values of Q'I3(;) in 0 < :U 6 and Q'3 (
- )

(d) Given 24 values of Q'3(0) in 0 < 6 and QI3 (0)

(e) As for (d), except that Bt f 0 to suppress logarithmic

behaviour for small .

0

0
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Table 6

VARIOUS CALCULATIONS OF HISTORY FUNCTION FOR LIFT
DUE TO TRAILING-EDGE CONTROL

I:

Values of H(o)

(a) (b) (c) (d) (e)

0 1.4817 1.5104 1.5104 1.5104 1.5104

0.05 1.4631 1.4854 1.4788 1.4783 1.4783

0.10 1.4446 1.4610 1.4494 1.4489 1.4489

0.20 1.4076 1.4138 1.3959 1.3963 1.3963

0.30 1.3707 1.3687 1.3477 1.3492 1.3492

0.40 1.3342 1.3257 1.3035 1.3058 1.3059

0.60 1.2623 1.2456 1.2243 1.2271 1.2?22

0.80 1.1926 1.1726 1.1552 1.1576 1.1577

1.00 1.1256 1.1062 1.0946 1.0965 1.0967

1.40 1.0018 0.9903 0.9915 0.9919 0.9922

1.80 0.8936 0.8929 0.9020 0.8999 0.9002

2.20 0.8017 0.8099 0.8206 0.8169 0.8172

2.60 0.7252 0.7375 0.7465 0.7423 0.7427

3.00 0.6614 0.6730 0.6783 0.6747 0.6752

4.00 0.5367 0.5348 0.5310 0.5317 0.5322

5.00 0.4291 0.4209 0.4155 0.4195 0.4200

6.00 0.3311 0.3311 0.3303 0.3328 0.3330

8.00 0.2209 0.2224 0.2243 0.2209 0.2204

10.00 0.1694 0.1680 0.1654 0.1684 0.1666

12.00 0.1288 0.1308 0.1308 0.1306 0.1272

16.00 0.0909 0.0923 0.0914 0.0910 0.0850
20.00 0.0682 0.0695 0.0681 0.0681 0.0623

30.00 0.0415 0.0421 0.0415 0.0415 0.0277

(a) With Q'3(!) set to zero when > 1.2

(b) With Q3 0.0514 and Q13(\) unspecified for

1.2 < 6.0

(c) Given 14 values of Q"3(7) in 0 c 6 and Q"3(0)

(d) Given 24 values of Q' 3( ) in 0 c 4 S and Q )

(e) As for (d), except that B 0 to suppress logarithmic

behaviour for small .

o
0
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Table 7

CONTRIBUTIONS TO FORCES DUE TO TRANSIENT DEPLOYMENT OF TRAILING-EDGE CONTROL

(a) Lift, TI zr5

Quasi-steady terms History term Total force

Control angle Control rate AL/L0  L/L0

0.5 0.047 -0.369 0.350 0.028
1.0 0.262 -0.874 0.765 0.153
1.5 0.593 -1.004 0.773 0.362
2.0 0.885 -0.655 0.349 0.578
2.5 1.000 0.000 -0.292 0.708
3.0 0.885 0.655 -0.842 0.698
3.5 0.593 1.004 -1.038 0.558
4.0 0.262 0.874 -0.777 0.359
4.5 0.047 0.369 -0.218 0.197
5.0 0.000 0.000 +0.125 0.125

(b) Lift, T1 = 40

Qus-steady terms
Quasi History term Total force

Control angle Control rate 0LLo L/L0

4 0.047 -0.046 0.031 0.032
8 0.262 -0.109 0.049 0.202
12 0.593 -0.125 0.027 0.494
16 0.885 -0.082 -0.016 0.787
20 1.000 0.000 -0.053 0.947
24 0.885 0.082 -0.067 0.899
28 0.593 0.125 -0.050 0.668
32 0.262 0.109 -0.010 0.361
36 0.047 0.046 0.031 0.124
40 0.000 0.000 0.033 0.033

(c) Hinge moment, T I .5

Quasi-steady terms
History term Total force

Control angle Control rate

0.5 0.047 0.129 -0.028 0.147
1.0 0.262 0.305 -0.024 0.543
1.5 0.593 0.351 0.011 0.955
2.0 0.885 0.229 0.045 1.159
2.5 1.000 0.000 0.054 1.054
3.0 0.885 -0.229 0.036 0.691
3.5 0.593 -0.351 -0.001 0.241
4.0 0.262 -0.305 -0.038 -0.081
4.5 0.047 -0.129 -0.054 -0.136
5.0 0.000 0.000 -0.024 -0.024

0

0'
: 0

* . ,
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Table 8

USEFULNESS OF QUASI-STEADY APPROXIMATIONS TO TRANSIENT LIFT AND HINGE MOMENT

(Errors are given as percentages of the peak steady value)

One-term Two-term
approximation approximation

Motion Force Maximum Rms Maximum Rms

error error error error

Pitching Lift 5 35.9 20.8 67.1 41.1
10 18.3 10.1 32.4 19.2
20 8.4 4.8 13.8 8.0
40 3.7 2.3 4.9 2.9
80 1.8 1.2 1.5 0.9

Trailing-edge Lift 5 31.2 18.0 103.8 62.9
control 10 23.8 14.6 48.5 28.7

20 16.8 10.9 19.7 11.6
40 10.4 7.0 6.7 4.0

Trailing-edge Hinge 5 37.0 24.7 5.4 3.6
control moment 10 18.6 12.5 1.5 0.9

20 9.1 6.2 0.4 0.2
40 4.5 3.0 0.1 0.1

Leading-edge Lift 20 9.3 5.4 14.2 8.4
control 40 3.9 2.4 5.0 3.0

Leading-edge Hinge 20 0.7 0.4 0.4 0.2
control moment 40 0.4 0.3 0.1 0.1

All-moving tip Lift 20 11.1 7.1 16.9 10.0
40 6.5 4.3 5.8 3.5

Table 9

ANALYSIS OF ROOT MEAN SQUARE ERRORS WITH QUASI-STEADY APPROXIMATIONS

Equal with one Errors below 5%
Motion Force and two terms

Rms error T 1  With one term With two terms

Pitching Lift 1.6% 55 I > 19 T > 28

Trailing-edge
TrlnLift 10% 23 T > 65 T > 36controlII

Leading-edge Lift 2.0% 50 T > 21 T > 28
control

All-moving tip Lift 5.2% 31 T3 > 33 T1 > 32

Trailing-edge Hinge - - T > 24 T • 4
control momentII

Leading-edge Hinge _ - 4
control moment I I > 2

C
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Table 10

TRANSIENT LIFT DUE TO WING AND CONTROL-SURFACE MOTIONS

(a) T, 5

0 6 Values of L/L0

- or 7- P h Trailing-edge Leading-edge All-moving
Pitching control control tip

0.25 0.0069 0.0439 0.0050 0.0089 0.0232
0.5 0.0467 0.1567 0.0280 0.1069 0.0943
1.0 0.2621 0.4875 0.1529 0.5213 0.3420
1.5 0.5927 0.7996 0.3624 0.9145 0.6170
2.0 0.8847 0.9397 0.5782 1.0558 0.7891
2.5 1.0000 0.8463 0.7082 0.8865 0.7835
3.0 0.8847 0.5660 0.6981 0.4962 0.6085
3.5 0.5927 0.2334 0.5580 0.0734 0.3502
4.0 0.2621 0.0102 0.3590 -0.1735 0.1362
4.5 0.0467 -0.0118 0.1974 -0.1282 0.0628
5.0 0.0000 +0.0532 0.1251 +0.0893 0.0879
6.0 0.0000 0.0424 0.0821 0.1033 0.0726
8.0 0.0000 0.0351 0.0539 0.0648 0.0494
12.0 0.0000 0.0115 0.0116 0.0131 0.0042
18.0 0.0000 0.0021 0.0027 0.0015 0.0026
30.0 0.0000 0.0004 0.0004 0.0004 0.0004

(b) T 40

or 6 Values of L/L00 0 Trailing-edge Leading-edge All-moving

Pitching control control tip

0.8 0.0005 0.0012 0.0003 0.0010 0.0008
2.0 0.0069 0.0102 0.0043 0.0107 0.0076

4.0 0.0467 0.0538 0.0320 0.0554 0.0441
8.0 0.2621 0.2638 0.2019 0.2641 0.2347
12.0 0.5927 0.5756 0.4940 0.5744 0.5363

16.0 0.8847 0.8513 0.7870 0.8495 0.8197
20.0 1.0000 0.9638 0.9466 0.9621 0.9547
24.0 0.8847 0.8634 0.8994 0.8608 0.8791

28.0 0.5927 0.5925 0.6677 0.5931 0.6286
32.0 0.2621 0.2848 0.3614 0.2863 0.3221
36.0 0.0467 0.0800 0.31238 0.0816 0.31038

40.0 0.0000 0.0231 0.0325 0.0232 0.0278
46.0 0.0000 0.0062 0.0072 0.0062 0.0065
52.0 0.0000 0.0025 0.0028 0.0025 0.0026

64.0 0.0000 0.0007 0.0008 0.0007 0.0007
80.0 0.0000 0.0002 0.0003 0.0002 0.0002

0

I 0
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Table II

LIFT DUE TO RAPID DEPLOYMENT OF TRAILING-EDGE CONTROL (1 5)

Truncationt in frequency parameter at:
Full* ....

T calculation - 4.91 2.45 - 1.84 1.23
U U U U

0 0.0000 -0.0010 -0.0066 -0.0280 0.0326

0.1 0.0006 +0.0002 -0.0039 -0.0203 0.0517 [
0.5 0.0280 0.0288 +0.0325 +0.0410 0.1411

3.0 0.1529 0.1528 0.1559 0.1871 0.2720

1.5 0.3624 0.3631 0.3601 0.3829 0.4035

2.0 0.5782 0.5787 0.5777 0.5686 0.5113

2.5 0.7082 0.7088 0.7114 0.6792 0.5748

3.0 0.6981 0.6986 0.6983 0.6755 0.5821

3.5 0.5580 0.5586 0.5548 0.5640 0.5330

4.0 0.3590 0.3588 0.3612 0.3924 0.4391

4.5 0.1974 0.1983 0.2033 0.2248 0.3205

5.0 0.1251 0.1239 0.1193 0.1106 0.2008

5.5 0.0964 0.0971 0.0927 0.0643 0.1012

6.0 0.0821 0.0815 0.0859 0.0666 0.0354

7.0 0.0650 0.0650 0.0631 0.0872 0.0115

8.0 0.0538 0.0540 0.0538 0.0488 0.0632

10.0 0.0396 0.0386 0.0366 0.0497 0.0500

12.0 0.0116 0.0120 0.0104 0.0016 -0.0087

16.0 0.0045 0.0051 0.0065 0.0030 -0.0098

20.0 0.0012 0.0019 0.0010 0.0069 +0.0064

Rins error0.5 erro. 0.1% 0.4% 2.3% 9.6%0.5 4 5. 0

Total force as in Table 7(a).

Fourier transform calculations with finite range of integration 0 4 ! 4 U
u

0
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Table 12

COEFFICIENTS IN EQUATIONS (B-14) AND (B-15) OF APPENDIX B

r A B Dr r r

0 5.18081405 -1.81985802 7.1517184311

1 -0.36052882 0.08176881 2.2011779268

2 0.04113346 -0.00718178 -0.3109142653

3 -0.00635944 0.00092653 0.0555982922

4 0.00121010 -0.00015385 -0.0074123262

5 -0.00026811 0.00003058 0.0007046314

6 0.00006679 -0.00000697 -0.0000490713

7 -0.00001827 0.00000177 0.0000025918

8 0.00000540 -0.00000049 -0.0000001070

9 -0.00000170 0.00000015 0.0000000035

10 0.00000057 -0.00000004 -0.0000000001

1 -0.00000020 0.00000002 -

12 0.00000007 -0.00000001

13 -0.00000003 -

14 0.00000001

i 0,-

f 0



59

LIST OF SYMBOLS

a coefficients (p - 0,1,2) in equation (3-13)
p
A' coefficients (p = 0,1,2) in equation (3-16)
p
A" coefficients (p - 0,1,2) in equation (3-17)
p
A r,B r,Dr  coefficients (r = 0,1,2,....) in Table 12

b coefficients (p = 0,1,2,3) in equation (3-13)

B' coefficients (p = 0,1,2,3) in equation (3-1)P

B" coefficients (p - 0,1,2,3) in equation (3-2)
P

c local chord of wing

cmean chord of wing (see Fig 1)

cK,cR,cT crank chord, root chord, tip chord (see Fig 1)

e subscript denoting empirical value

f function in equation (B-2)

F0  hereditary position factor in equations (2-25)

F hereditary velocity factor in equation (2-22) or (2-23)

F2  hereditary acceleration factor in equation (2-31)

g planform rounding function in equation (2-7)

h subdivided interval in equation (B-5)

H history function in equation (2-35)

i /7; integer or subscript denoting force mode (see Table 1)

I integral in equation (4-24) or (4-25) i'

I integrals (p = 0,1,2) in equations (B-1)
P

j integer or subscript denoting upwash mode (see Table 1)

J hereditary function in equation (4-12)

k variable integer

K Kissner kernel function in equation (2-3)

K number of terms of series in equation (5-12)

z. complex wing loading in equation (2-4)a

L instantaneous lift force in equations (2-13) and (4-22)

L0  peak value of quasi-steady lift force

L I  final steady lift force

m number of spanwise terms

M Mach number of stream

instantaneous pitching moment

(n) superscript denoting nth iteration

N number of chordwise terms

q. integers (i - 1,2,...,N) (see Ref 5)

00_
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LIST OF SYMBOLS (continued)

q,qj time-dependent factor for mode j in equations (2-18), (4-I) and (A-1)

QO elementary generalized force coefficient in equation (A-6)

Qi time-dependent force coefficient in mode i

Q.. complex generalized force coefficient in equation (2-6)
13

Q!j real part of Qij

Q I imaginary part of Qij/;

quantities in equation (4-3)

R(n) iterative integral in equation (5-7)

6? real part of

s semi-span of wing

S3 integral in equation (B-10)

t time

tI  duration of wing or control-surface motion

T2r Chebyshev polynomials (r - 0,1,2,....)

U speed of stream

w. upwash angle in mode j (see equation (2-2) and Table I)3

x streamwise coordinate (see Fig I)

xa location of pitching axis (see Fig I)

xhj local x-coordinate of hinge line (Q - 3,4,5 in Fig I)

x x-coordinate of local leading edge

x£T location of tip leading edge (see Fig 1)

x t  x-coordinate of local trailing edge

y spanwise coordinate (see Fig 1)

Yi y-coordinate of inboard end of control surface (i 3,4,5)

YK y-coordinate of crank station (see Fig I)

z upward displacement from planform

z0  elementary sinusoidal wing motion in equation (A-5)

z.,z. force mode in Table 1, displacement in equation (2-I)

a,o,7 functions in equations (B-8)

akok coefficients and factors in equation (5-12)

6 instantaneous control deflection angle in streamwise plane (radians)
6
0  peak value of 6 (radians unless otherwise stated),0

6 final control deflection angle
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LIST OF SYMBOLS (concluded)

AC lift per unit area/IpU 2

p

AL contribution to L from integral in equation (2-34)

e instantaneous angle of pitch with heave constraint

0 0  peak value of 0

K,R empirical correction factors

Xplanform rounding variable in equations (2-8) and (2-9)

v frequency parameter, wc/U

V- 7u  lower and upper values subdividing the range 0 < U <

p density of stream

o distance of travel in mean chords, Ut/I

aI  value of a above which equation (5-2) is used for FI

a value of a , if any, where H(o) is a maximum

T non-dimensional time, Ut/c

T non-dimensional duration of motion, Ut,/

value of T when L/L0 has fallen to 0.01

Mh angular chordwise parameters in equations (4-21)

W circular frequency

k

0

2,
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