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FOREWORD

This final technical report concludes the study of low-cost forming influence on reinforced
thermoplastic mechanical properties contract for the Army Materials & Mechanics Research
Center (AMMRC), Watertown, Massachusetts, by the Boeing Vertol Company under Contract
DAAG46-79-C-0092.

Mr. Peter Dehmer was the Army Contracting Officer’s Technical Representative. The program was
conducted at the Boeing Vertol Company under the technical direction of Mr. Thomas W. Griffith,
Program Manager. Principal contributors were Donald J. Hoffstedt, Project Engineer; Donald J.

Toto; Lawrence C. Ritter; and Erwin Durchlaub.



SUMMARY

The following is a general summary of results for each of the tasks comprising this study
program. .

1. Task | — Literature Review and Oral Presentation

Development of hot melt preimpregnation has shown encouraging results with Udel polysul-
fone P-1700 and CM-1 polyarylsulfone.

Emergence of hot roll continuous impregnation from film and continuous fiber materials make
highly solvent resistant polymers candidates for further development.

Hot melt development is recommended with candidates offered by suppliers in film form.

2. Task |1 — Establish Relationship Between Processing Parameters and Selected Material
Properties

Time/Temperature/Pressure Variables — Utilizing a polysulfone matrix and Kevlar 49 aramid
fabric, specimens were fabricated to determine the experimental relationship between precon-
solidated laminate flexure strength versus postformed laminate flexure strength when exposed
to the forming parameters in Table 1. This relationship is described by:

{a) Flexural strength
(b) Modulus

{c) Interlaminar shear strength

Flexural Strength — Only those specimens postformed at the 450° F thermoforming tempera-
ture had increased flexural strength readings (up 5%) over the nonpostformed control group.
The group having the highest flexural strength readings below those of the control (10%
under control) were postformed at 500°F. All other higher temperature postformed

groups (5650°F, 600°F, 650°F) had flexural strength readings a minimum of 28% under the
nonpostformed control group. (NOTE: All percentage differences are based on ‘‘group
average’’ values.)

Generally, the test data indicated a definite decrease in flexural strength as thermoforming
{postforming) temperatures increase. This trend was unaffected by variations in post forming
pressure (vacuum only or vacuum plus light die pressure).

Modulus — Specimens postformed at the 500°F postforming temperatures had the highest
percentage increase (+23%) over the contro! group modulus values. Two other groups had
higher modulus values than the control group: 450°F postforming (+6.5%), 550° F postform-
ing (+15.5%). The two remaining postformed specimen groups had modulus values lower than
those of the nonpostformed control group: Postformed at 600°F (—1.8%), postformed at
650°F (—21.4%). (NOTE: All percentage differences were based on ‘‘group average’ values.)
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Interlaminar Shear Strength — Those specimens postformed at 450°F and using vacuum only

as the postforming pressure comprised the only group to attain higher interlaminar shear
strength readings than that of the nonpostformed control group. All other specimen groups
had shear strength readings a minimum of 15% under that of the control group. Although 9
out of the 10 specimen groups had shear strength readings less than those of the control

group, a trend of decreasing interlaminar shear strength with increasing thermoforming tempera-
ture, regardless of postforming pressure, became evident in the data compilation.

3. Task 11l — Determination of Simulated Repair and Maintenance {R&M) Solvent Effects on
Protected and Unprotected Laminates

Composite honeycomb sandwich test specimens were fabricated from thermoformed 2 ply
Kevlar 49 style 285 fabric/polysulfone and 2 ply Kevlar 49 type 285 fabric/polyphenylsulfone
using 1/2-inch thick Nomex honeycomb as the core material as outlined in Table 2. These
specimens were used to determine the solvent resistance of painted and unpainted laminates
as described by the effects on their flexure properties (flexural strength and stiffness “Ei’’).

Four-point flex testing of Udel {Polysulfone) and Radel (Polyphenylsulfone) sandwich beams
indicates higher overall flexure strength readings with Radel beams than Udel beams by some
14-15% regardless of paint and solvent effects. Conversely, stiffness “El’" values are 25-30%
higher in the Udel beams than the Radel beams, again ignoring paint and solvent effects.

Realistic exposure {application of a solvent soaked rag for two hours or until dry) had no
degrading effects on specimen flexural properties.

4, Task IV — Panel Fabrication

Six (6) 17.75" x 18.0" panels of 5 ply Kevlar 49 style 285 fabric (preimpregnated with P1700
polysulfone using methylene chloride solvent dispersal) were fabricated for testing by AMMRC.
One of the six panels is to be used as a control specimen, therefore, it had no postforming
operation. Each of the remaining five panels were thermoformed (postformed) at different
temperatures (450°F, 500°F, 550°F, 600°F, 650°F), but with the same postforming pressure
{Vacuum Plus Light Die Pressure).
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INTRODUCTION

Lightweight composite structure research and development for U.S. Army helicopter applica-
tions has centered largely around fiber-reinforced epoxy structures. The raw materials are more
expensive than current metallic raw materials and cost parity can only be achieved through
reduction in manufacturing costs of the details and assemblies. One promising approach for
helicopter structures is the use of reinforced thermoplastics rather than reinforced epoxy, since
investigations to date indicate that reduction in fabrication cost may be achieved with little

loss in mechanical properties.

This program attempts to define and evaluate the most suitable materials for application of low
elongation fiber reinforced thermoplastic laminates to helicopter secondary structures, {(adapt-

ing low cost commercial techniques currently used for unreinforced, chopped-fiber-reinforced,

and high elongation continuous fiber reinforced thermoplastics such as polyesters, acrylics and

polycarbonates) by determining the correlation between the mechanical properties of selected

fiber-reinforced thermoplastics and processing parameters in variants of vacuum-forming.

This program studies only the mechanical properties aspects of continuous fiber reinforced
thermoplastics and not the suitability of the material for thermoforming shapes other than
two dimensional forms.



TASK |
LITERATURE REVIEW AND ORAL PRESENTATION

This literature review is organized in the order of: definition of the areas of consideration,
general review of base polymer characteristics, review of existing data on low elongation con-
tinuous fiber reinforced thermoplastic R&D, and recommendations for current and future
material utilization and development.

1. MATERIAL AND FABRICATION CONSIDERATIONS

The areas of interest to this technology include matrix thermoplastic candidate systems,
fibrous reinforcements of interest, the processability of component systems into a total ma-
terial system, and the resulting physical and mechanical properties.

Some of the major attributes sought include low cost of base materials, good chemical resist-
ance to solvents encountered in military helicopter environment and depot maintenance actions,
low flammability smoke and toxicity hazard, low energy consumption in laminate consolida-
tion, adaptability to low cost postforming methods, and ability to reprocess formed parts if
unsatisfactory. Mechanical properties would be required to compare well with epoxy matrix
reinforced with similar fibers.

Matrix Materials

Specific task assignment is the review of matrix resin systems to include those listed below.

Polysulfone
Polyphenylsulfone

PKXA

Nylon

Polybutylene Terephthalate

Fibrous Reinforcements

The continuous fiber reinforcements listed below are of specific interest in this technology:

Kevlar 49 Tape
Kevlar 49 Fabric
E-Glass Fabric
E-Glass Tape

AS Graphite Tape
HMS Graphite Tape
HTS Graphite Tape
T300 Graphite Tape
T300 Graphite Fabric

10



Fabrication Cycle

The fabrication stages outlined below are of specific interest in this fabrication technology:

Preimpregnation Method
Dispersion Coating

Solution Coating
N-Methyl Pyrrolidone
Dimethyl| Formamide
Methylene Chloride
Other

Hot Melt (Film)

Solvent Dispersal/Drying
Cycle Time

Temperature

Consolidation Methods
Temperature Range
Pressure Range

Dwell Time

Thermoforming
Vacuum Forming
Vacuum and Plug
Vacuum and Matched Dies

Material System Properties

The material properties desired after prepregging, consolidating and postforming the reinforced
laminates are listed below:

Physical Properties
Fiber Volume
Density
Coefficient of Linear Thermal Expansion

Heat Distortion Temperature @ 264 psi

Mechanical Properties
Tensile Strength
Tensile Modulus

Compressive Strength

1"



Compressive Modulus
Flexural Strength
Flexural Modulus
Interlaminar Shear
In-Plane Shear

Shear Modulus

2. GENERAL SCREENING, BASE POLYMERS

Basic polymers and their specific products have been reviewed in a general sense and the ad-
vantages and disadvantages of each are noted in Table 3.

3. SPECIFIC DATA SOURCE REVIEW

Previous investigators have selected one or more thermoplastic resin system and reinforced
them with one or more continuous fiber reinforcement system and performed processing
trials, measured mechanical properties and evaluated the effects of environmental exposure ¢n
the mechanical properties. Most of the work has been performed using high pressure post-
forming methods.

Matrix Material Evaluations

Materials were reviewed and compared by prior investigators in selecting best candidates for
process evaluation and engineering property measurement when reinforced with low elongation
continuous fibers. Resins evaluated and systems selected are shown in Table 4, with reasons
for rejection, when known.

Matrix/Fiber System Evaluations

The selected candidate matrices have been used in preimpregnation, processing, postforming
and mechanical properties evaluation. Material system evaluation results are presented in
Table 5.

12
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TABLE 3. GENERAL SCREENING OF BASE POLYMERS

BASE POLYMER

MATERIAL TYPE
OR DESIGNATION

PRO

CON

"Styrenics"

Fluorocarbon
Polymers

Polyvinylchloride

Sulfones

ABS

Styrene—-Acrylo-
Nitrile

Ethylene-Tetra-
Fluoroethylene
Copolymer
Tefzel 200

Rigid PVC

Polysulfone
Udel

Polyphenyl-
Sulfone
Radel

Polyethersul-
fone
Viltrex

Polyarylsulfone
HC3601

Good Process-
ability
Low Cost

Good Process-
ability
Low Cost

Exceptional
Chemical
Resistance

Nonflammable
Relatively
Low Cost

Good Engineer-
ing Properties
Low Creep

High Impact

Good Engineer-
ing Properties
Low Creep

Good Engineer-
ing Properties
Low Creep

Low Softening
Point

Low Strength
Attacked by
Organic Sol-
vents

Low Softening
Point

Low Strength
Attacked by
Solvents

Hard & Rigid
Trim Problems

High Cost (?)
Creep

Low Softening
Temperature
Solvent Attack
by Ketones,
Some Chlorin-
ated & Aromat-
ic Compounds,
Esters

Attacked by
Ketones, Chlor-
inated and
Aromatic
HydroCarbons

(Improved)

Attacked by

Ketones, Some
Halogenated &
Aromatic Hydro+t
Carbons

FORM 46264 (2/66)
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TABLE3.GENERALSCREENHMEOFBASEPOLYMERS—(bnﬁmmd

MATERIAL TYPE

BASE POLYMER OR DESIGNATION PRO CON
Polyphenylene Sulfide PPS Good Wetting High
Ryton Good Chemical Consolidation
Resistance Temp (>700°F)
Nonflammable Difficult to
Process
PolyPhenylene Oxide PPO Toughened Attacked by
Noryl Polystyrene Chlorinated
Added Hydrocarbon
Good Mechanical} Solvents and
Properties Ketones
Polyamide Nylon 6/6 Good Chemical Reduced High
Nylon 6 Resistance Temperature
Nylon 6/10 Properties
Nylon 6/12 High Water
Nylon 11 Absorption
Nylon 12 Rate and Plast-
icization

Acetal Polymers &

Co-Polymers

Polyolefins

Thermoplastic
Polyesters

Acetal Co-Poly-
mer

Celcon M90
Kematal

Acetal Homo-
polymer
Delrin

Polyethylene
Hostalen

Alathon
Polypropylene

Ethylene Co-
Polymer with
Ionic Inter-
Chain Links
Suriyn
Polybutylene
Terephthalate
Tenite 6 PRO
Celanex 2001

Valox 310

Deroton Tap
10

Dular

Hytrel

Good Chemical
Resistance

Good Mechanical
Properties

Good Mechanicall
Properties

Good
Processability

Good Chemical
Resistance

Good Water
Resistance
Good Mechanical
Properties

Fiber-Matrix
Achesion
Problems

Fiber-Matrix
Adhesion
Problems

Low Strength
(vs Epoxy)
Attacked by
Hydro-Carbons.
Limited Useful
Temperature
Range.

Poor Properties

Locw Deflection
Temperature
Under Load
Attacked by
partly haloge-

nated Hydrocarbon

Sclvents
Flammability
Problem on Som?

FORM 46284 (2/656)
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TABLE 3. GENERAL SCREENING OF BASE POLYMERS — Continued

BASE POLYMER

MATERIAL TYPE
OR DESIGNATION

PRO

CON

Polycarbonate Lexan Good Mechanical| Attacked by
Properties Chlorinated
Hydrocarbon
and Ketone
Solvents
Polyimides NR150A Zxcellent High| Cost
150B Temperature Consolidation
150C Properties Process is
Sablon 1010 Film Castable High Tempera-
Sablon 055 from DMF ture
66-1-2
Alloys PVC/Acrylic Melt Extrudes Relatively Low
DKE 450 or Solvent Useful Temper-
KYDEX Coats ature (200°F)
Self Extin- Soluble in THF
guishes and Cyclohexa-
none
Phenoxy PKHS Low Cost Attacked by

Good Process-
ing

Ketones, Chlor-
inated Hydro-
Carbon Solvents

FORM 46284 (2/66)
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TASK I
ESTABLISH RELATIONSHIP BETWEEN PROCESSING
PARAMETERS AND SELECTED MATERIAL PROPERTIES

Work performed by Boeing Aerospace! has identified a strength reduction associated with heat-
ing preconsolidated laminates to forming temperatures and forming with vacuum/air assist.
Table 1 establishes a test matrix to determine whether a correlation exists between postforming
temperature and pressure on consolidated blanks during heat-up and postforming pressure

with respect to flexural strength of the resulting laminate. Figure 1 is a photograph showing
the attachment of a thermocouple to a 5-ply laminate. Figure 2 is a photograph showing a
consolidated blank during the thermoforming process.

Flexural testing was performed in accordance with ASTM D790-71 (reapproved 1978),
“Standard Test Methods for Flexural Properties of Plastics and Electrical Insulating Materials”,
except that four specimens were tested from each laminate for this screening program.

For the required short-beam shear testing, specimens were built up by {(250°F cure) film
adhesive bonding of three thicknesses (see Appendix ""A’’) and tested in horizontal shear by
the standard test method ASTM D2344-76, " Apparent Interlaminar Shear Strength of Parallel
Fiber Composites by Short-Beam Method"’, except that the laminates were prepared for test
using the processed postformed material, not ring-type specimens. This approach has been
used by previous investigators since NOL rings are not representative of the process.

Four Point Flexural Tests

Flexural testing was accomplished under the standard test procedure stated above in accord-
ance with Method |1 — a four point loading system utilizing two load points equally spaced
from their adjacent support points, with a distance between load points of one third of the
support span (Figure 3). All specimens had commonality in these values:

Fiber orientation 09, 90°
Specimen length 2.0 In. (Nom)
Specimen width 0.50 In. £ 0.02
Support Span 1.00 In.

Load Span 0.33 In.

Rate of cross lead motion 0.05 In./Min

Hexcel Prepreg 5 ply laminate
consolidation conditions 600°F, 100 Psig — for 30 minutes

Results of four point flex testing on 5 ply Kevlar 49 type 285 fabric/polysulfone (P1700) are
summarized in Table 6. Individual specimen dimensions and test results are given in Table 7.

When a beam is loaded in flexure at two central points (1/3-span) and supported at two outer
points, the maximum stress in the outer fibers occurs between the two central loading points
that define the load span. This stress may be calculated for any point on the load-deflection
curve for relatively small deflections by the following equation:
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Figure 3. Four-Point Loading System for Flexural Testing of 5-Ply Laminate
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S = PL/bd?

where:
S = stress in the outer fiber throughout load span (psi)
P = load at a given point on the load-deflection curve (LbF)
L = supportspan (In.)
b = width of beam (In.)
d = depth of beam (In.)

The tangent modulus of elasticity is the ratio, within the elastic limit of stress to corresponding
strain and will be expressed in pounds per square inch. It is calculated by drawing a tangent

to the steepest initial straight-line portion of the load-deflection curve and using the following
equation:

E,, = 0.21L3m/bd3

where:
E, = modulus of elasticity in bending (psi)
L = supportspan (In.)
b = width of beam (In.)
d = depth of beam (In.)
m = slope of the tangent to the initial straight-line portion of the load-deflection

curve, |b/in. of deflection.

Shown in Figure 4 are photographs of thermoforming molds used in the postforming of con-
solidated Kevlar 49/Polysulfone blanks.

Figure 5 is a photograph showing the finished blank number 10 after the postforming process,
with water-jet cutting lines marked on it. All testing in Task I for specimens processed under
these postforming conditions (650°F and vacuum plus light die pressure) were cut from the
blank shown in Figure 5.
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TABLE 7. FOUR POINT FLEX TEST — THERMOPLASTIC
SPECIMEN BREAKDOWN

Specimen Group — Control
No Postforming Operation
Tested per ASTM D790,

Specimen Length = 2.0 in.
Support Span = 1.0 in.
Load Span =0.33 in.

Rate of Cross Head Motion = 0.05 in./min
5 Ply Laminated Kevlar 49
Style 285 Fabric/P1700 Polysulfone

Max
Deflection Max
Specimen t w Before Load Load Strength Modulus
No. (in.) (in.) Dropoff (in.) | (lbs) (psi) (psi x 109)
C—1 0.039 0.5110 0.15 32 41,172 3.05
Cc-2 0.039 0.5158 VOID
c-3 0.040 0.5158 0.125 36 43,622 3.56
Cc—4 0.039 0.5210 0.15 36 46,691 3.62
C-5 0.041 0.5200 0.125 37 42,328 3.91
Avg 43,453 3.54
o¥ 2,379 0.36

*

¢ = Standard Deviation (with N-1 weighting)
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TABLE 7.

FOUR POINT FLEX TEST — THERMOPLASTIC

SPECIMEN BREAKDOWN (Continued)

Specimen Group — No. 1
450°F, Vacuum Only
Tested per ASTM D790,

Specimen Length = 2.0 in.
Support Span = 1.0 in.
Load Span = 0.33 in.

Rate of Cross Head Motion = 0.05 in./min
5 Ply Laminated Keviar 49
Style 285 Fabric/P1700 Polysuifone

*

g = Standard Deviation (with N-1 weighting)

36

Max
Deflection Max
Specimen t w Before Load Load Strength Modulus
No. (in.) (in.) Dropoff {in.) (Ibs) (psi) (psi x 109)
1-1 0.044 0.5178 0.1375 47 46,885 4.19
1-2 0.044 0.5202 0.125 47 46,668 4.17
1-3 0.043 0.5180 0.1375 46 48,028 N/A
1-4 0.043 0.5190 VOID
1-5 0.043 0.5180 0.1375 46 48,028 4.08
Ava 47,402 415
ag* 728 0.06




TABLE 7.

FOUR POINT FLEX TEST — THERMOPLASTIC

SPECIMEN BREAKDOWN (Continued)

Specimen Group — No. 2
500°F, Vacuum Only
Tested per ASTM D790,

Specimen Length = 2.0 in.
Support Span = 1.0 in.
Load Span = 0.33 in.

Rate of Cross Mead Motion = 0.05 in./min
5 Ply Laminated Kevlar 49
Style 285 Fabric/P1700 Polysulfone

Max
Deflection Max
Specimen t w Before Load Load Strength Modulus
No. (in.) (in.) Dropoff (in.) | (lbs) (psi) (psi x 10°)
2—1 0.043 0.5210 0.125 40 41,623 4.46
2-2 0.043 0.5242 0.150 38 38,206 4.84
2-3 0.043 0.5234 0.125 38.5 39,782 4.84
2-4 0.043 0.5218 0.175 - 30.5 31,613 4.45
Avg 38,031 4,65
o* 4,391 0.22

*

o = Standard Deviation (with N-1 weighting)
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TABLE 7.

FOUR POINT FLEX TEST — THERMOPLASTIC
SPECIMEN BREAKDOWN (Continued)

Specimen Group — No. 3
550°F, Vacuum Only

Tested per ASTM D790,

Specimen Length = 2.0 in.
Support Span = 1.0 in.
Load Span = 0.33 in.

Rate of Cross Head Motion = 0.05 in./min
5 Ply Laminated Kevlar 49
Style 285 Fabric/P1700 Polysulfone

*o = Standard Deviation {(with N-1 weighting)

38

Max
Deflection Max
Specimen t w Before Load Load Strength Modulus
No. (in.) (in.) Dropoff (in.) | (Ibs) (psi) (psi x 108)
3-1 0.044 0.5078 0.100 26 26,447 3.73
3-2 0.043 0.5092 0.125 32 33,988 4.40
3-3 0.043 0.5132 0.125 36 37,938 4.94
3—-4 0.043 0.5142 0.1125 31 32,606 4.93
Avg 32,645 4.51
a* 4,768 0.59




TABLE 7.

FOUR POINT FLEX TEST — THERMOPLASTIC
SPECIMEN BREAKDOWN (Continued)

Specimen Group — No. 4
600°F, Vacuum Only
Tested per ASTM D790,

Specimen Length = 2.0 in.
Support Span = 1.0 in.
Load Span = 0.33 in.

Rate of Cross Head Motion = 0.05 in./min
5 Ply Laminated Kevlar 49
Style 28& Fabric/P1700 Polysulfone

*g "= Standard Deviation (with N-1 weighting)
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Max
Deflection Max
Specimen t w Before Load Load Strength Modulus
No. {in.) (in.) Dropoff (in.) (Ibs) (psi) (psi x 106)
4-1 0.047 0.5180 0.100 22 19,226 3.44
4-2 0.046 0.5180 0.1125 38 34,669 3.33
4-3 0.047 0.5160 0.100 39 34,215 3.14
4-4 0.047 0.56202 0.125 38.5 33,504 3.30
Avg 30,404 3.3
o* 7,467 0.12




TABLE 7. FOUR POINT FLEX TEST — THERMOPLASTIC
SPECIMEN BREAKDOWN (Continued)

Specimen Group — No. 5
650°F, Vacuum Only
Tested per ASTM D790,

Specimen Length = 2.0 in.
Support Span = 1.0 in.
Load Span=0.33 in.

Rate of Cross Head Motion = 0.05 in./min
5 Ply Laminated Kevlar 49
‘Style 285 Fabric/P1700 Polysulfone

Max
Deflection Max
Specimen t w Before Load Load Strength Modulus
No. (in.) (in.) Dropoff (in.) (Ibs} (psi) (psi x 105)
51 0.054 0.5098 0.100 49 32,962 2.02
5-2 0.052 0.5070 0.0875 31 22,612 2.22
5-3 0.052 0.5138 0.100 38 27,352 2.79
5—4 0.053 0.5144 0.100 356 24,222 2.11
Avg 26,787 2.29
o* 4,563 0.35

*

o = Standard Deviation (with N-1 weighting)
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Specimen Group — No.g

TABLE 7. FOUR POINT FLEX TEST — THERMOPLASTIC
SPECIMEN BREAKDOWN (Continued)

Specimen Length = 2.0 in.
450°F, Vacuum Plus Light Die Pressure Support Span = 1.0 in.
Tested per ASTM D790,

Load Span = 0.33 in.
Rate of Cross Head Motion = 0.05 in./min
5 Ply Laminated Kevlar 49
‘Style 285 Fabric/P1700 Polysulfone

Max
Deflection Max
Specimen t w Before Load L.oad Strength Modulus
No. (in.) (in.) Dropoff {in.) (lbs) (psi) (psi x 1016)
6—1 0.051 0.5114 0.125 57 42,852 3.47
6-2 0.052 0.5120 0.100 58.5 42,255 3.41
6-3 0.054 0.5132 0.100 66 44,103 3.38
6—4 0.053 0.5132 0.100 65 - 45,090 3.30
Avg 43,675 3.39
o* 1,270 0.07

*

o = Standard Deviation (with N-1 weighting)
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TABLE 7. FOUR POINT FLEX TEST — THERMOPLASTIC

SPECIMEN BREAKDOWN (Continued)

Specimen Group — No. 7 Specimen Length = 2.0 in.
500°F, Vacuum Plus Light Die Pressure Support Span = 1.0 in.
Tested per ASTM D790, Load Span = 0.33 in.

Rate of Cross Head Motion = 0.05 in./min

5 Ply Laminated Kevlar 49

Style 285 Fabric/P1700 Polysulfone

Max
Deflection Max
Specimen t w Before Load Load Strength Modulus
No. (in.) (in.) Dropoff (in.) | (Ibs) (psi) (psi x 108)
7-1 0.043 0.5074 0.1375 39.56 42,103 4,16
7-2 0.043 0.5140 0.125 36.5 38,405 4.11
7-3 0.043 0.5156 0.1375 39 40,909 3.93
7-4 0.043 0.5170 0.100 36.5 38,183 N/A
Avg 39,900 4.07
o* 1,919 0.12

*

o = Standard Ceviation (with N-1 weighting)
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TABLE 7. FOUR POINT FLEX TEST — THERMOPLASTIC
SPECIMEN BREAKDOWN (Continued)

Specimen Group — No.8

550°0F, Vacuum Plus Light Die Pressure

Tested per ASTM D790,

Specimen Length = 2.0 in.

Support Span = 1.0 in.
Load Span = 0.33 in.

Rate of Cross Head Motion = 0.05 in./min
B Ply Laminated Kevlar 49
‘Style 285 Fabric/P1700 Polysulfone

*

o = Standard Deviation (with N-1 weighting)
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Max
Deflection Max
Specimen 1 w Before Load Load Strength Modulus
No. (in.) (in.) Dropoff (in.) (Ibs) (psi) (psi x 10)
8—-1 0.040 0.5100 0.1375 39.5 48,407 3.69
8-2 0.042 0.5100 VOID
8—-3 0.043 0.5156 0.100 28 28,370 4.10
8—4 0.045 0.5170 0.075 22 21,014 N/A
8—5 0.045 0.5164 0.100 22.1 21,134 3.21
Avg 29,981 3.67
a* 12,891 0.63




TABLE 7.

Specimen Group — No. 9

600°F, Vacuum Plus Light Die Pressure

Tested per ASTM D790,

FOUR POINT FLEX TEST — THERMOPLASTIC
SPECIMEN BREAKDOWN {Continued)

Specimen Length = 2.0 in.

Support Span = 1.0 in.

Load Span = 0.33 in.
Rate of Cross Head Motion = 0.05 in./min
5 Ply Laminated Kevlar 49
Style 285 Fabric/P1700 Polysulfone

*o = Standard Deviation {with N-1 weighting)
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Max
Deflection Max
Specimen 1 w Before Load Load Strength Modulus
No. {in.) (in.) Dropoff {in.) {lbs) {psi) {psi x 109)
9-1 0.044 0.5100 0.100 32 32,410 3.79
9-2 0.044 0.5082 0.100 28 28,459 3.88
9-3 0.045 0.5086 0.125 30 29,129 3.62
9-4 0.047 0.5090 0.100 28 24,903 3.18
9-5 0.046 0.5086 0.070 29 26,947 3.39
9-6 0.045 0.5080 0.100 31 30,135 3.99
Avg 28,664 3.64
o* 2,590 0.31




TABLE 7.

Specimen Group — No. 10

650°F, Vacuum Plug Light Die Pressure

Tested per ASTM D790,

FOUR POINT FLEX TEST — THERMOPLASTIC
SPECIMEN BREAKDOWN (Continued)

Specimen Length = 2.0 in.

Support Span = 1.0 in.

Load Span = 0.33 in.
Rate of Cross Head Motion = 0.05 in./min
5 Ply Laminated Kevlar 49
‘Style 285 Fabric/P1700 Polysulfone

Max
Deflection Max
Specimen t w Before Load Load Strength Modulus
No. (in.) (in.) Dropoff (in.) | (lbs) (psi) (psi x 108)
10-1 0.040 0.5112 0.175 32 39,124 3.59
10-2 0.043 0.5114 0.0875 26 27,496 3.14
10-3 0.043 0.5118 0.100 24 25,361 3.14
104 0.043 0.5100 0.100 24 25,451 3.23
Avg 29,358 3.3
o* 6,585 0.21

*¢ = Standard Deviation (with N-1 weighting)
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Horizontal Shear Tests

The horizontal shear test specimen is center-loaded as shown in Figure 8. The specimen ends
rest on two supports which allow lateral motion, the load being applied by means of a loading
nose directly centered on the midpoint of the test specimen. Although the apparent shear
strength obtained by this method cannot be used as a design criteria, it can be utilized for
comparative testing of composite materials. This apparent shear strength may be calculated
by the following equation:

Sy = 0.75 Pg/bd

where:
Sy = shear strength (psi)
Pg = breaking load (IbF)
b = width of specimen (in.)
d = thickness of specimen (in.)

The horizontal shear test specimens were fabricated utilizing 3M AF163 film adhesive (250°F
cure) to ‘stack-up’’ three five-ply laminates of Kevlar 49, Style 285 fabric/P1700 polysulfone
with the fiber orientation being in the 0°, 90° direction (see Appendix A). This three-laminate
“stack-up’’ procedure was accomplished subsequent to the five-ply laminate thermoforming
{postforming) operation. Other areas common to all specimens were:

Specimen width 0.250 £ 0.010

Specimen length 7 x thickness, as prescribed by (3)
Support span 5 x thickness, as prescribed by (3)
Rate of crosshead motion 0.05 In./Min

Hexcel prepreg 5-ply laminate )
consolidation conditions 600°F, 100 PSIG — for 30 minutes

Results of three point interlaminar shear tests are summarized in Table 8. Individual spzcimen
dimensions, and test results are given in Table 9. NOTE: Not all specimens exhibited zhe
classical midthickness horizontal shear failure mode; however, a comparison of the maximum
load levels achieved by those that did fail in the classical manner with the maximum load levels
achieved by those specimens that did not exhibit the classical failure mode, demonstrates values
commensurate with each other. Therefore, it is assumed that all failures are valid interlaminar
shear failures. Prior experience with Kevlar fabrics with epoxy and thermoplastic resins also
has demonstrated similar nonclassical failure modes.
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Figure 8. Three Point Loading System for Interlaminar Shear Testing
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TABLE 8. THREE POINT INTERLAMINAR SHEAR TEST (4) — SUMMARY

Interlaminar Shear Streng:h

Specimens Postferming  Postforming Pressure (psi)

Group 1.D. Qty Temp (°F) VAC (1) VLDP (2) Group Avg o (3)
Control 5 No Postforming 2217 77.65
1 5 450 X 2469 35.85

2 5 500 X 1719 32.92

3 5 550 X 1655 19.95

4 5 600 X 1357 59.15

5 5 650 X 1917 215.37
5A 5 650 X 1799 62.00

6 5 450 X 1725 68.63
6A 6 450 X 1835 110.66

7 5 500 X 1851 52.14

8 5 550 X 1547 48.90

9 5 600 X 1441 46.57
10 5 650 X 1438 27.50

(1)  VAC = Vacuum Pressure Only.
(2) VLDP = Vacuum Plus Light Die Pressure.
(3} o = Standard Deviation (with N-1 weighting).

(4)  All testing was done at room temperature.

NOTE — Strength values exhibited herein are to be used for comparative purposes only and
not as design criteria.
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TABLE 9. THREE POINT INTERLAMINAR SHEAR TEST
SPECIMEN BREAKDOWN

Specimen Group — CONTROL Tested Per ASTM D2344-76:

(No Thermoforming) Recommended Supp-ort Span = 5t
Recommended Specimen Length = 7t
Recommended Rate of Cross Head
Motion = 0.05 in./min

Specimen t w Load
No. (in.) (in.) (Ibf) Shear Strength (psi) (1)
c—1 0.133 0.255 95 2101
c—2 - 0.132 0.256 101 ‘ 2242
c-3 0.132 0.254 99 2215
c—4 0.132 0.257 100 2211
c—5 0.132 0.255 104 2317
Avg 2217
o 77.65

*o = Standard Deviation (with N-1 weighting)

(1) NOTE: Use for comparative purposes only, not design criteria.
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TABLE 9. THREE POINT INTERLAMINAR SHEAR TEST
SPECIMEN BREAKDOWN (Continued)

Specimen Group — NO. 1 Tested Per ASTM D2344-76:
450°F, Vacuum Pressure Only Recommended Support Span = 5t
Recommended Specimen Length = 7t
Recommended Rate of Cross Head
Motion = 0.05 in./min

Specimen t w Load
No. : (in.) {in.) (Ibf) Shear Strength (psi) (1)
1-1 0.130 0.254 107 2430
1-2 : 0.130 0.254 108 2453
1-3 0.131 0.264 112 2524
1-4 0.131 0.249 108 2483
1-5 0.131 0.254 109 2457
Avg 2469
o 35.85

*g = Standard Deviation {(with N-1 weighting)

(1) NOTE: Use for comparative purposes only, not design criteria.
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Specimen Group —

NO. 2

500°F, Vacuum Pressure Only

TABLE 9. THREE POINT INTERLAMINAR SHEAR TEST
SPECIMEN BREAKDOWN (Continued)

Tested Per ASTM D2344-76:
Recommended Support Span = 5t
Recommended Specimen Length = 7t
Recommended Rate of Cross Head
Motion = 0.05 in./min

Specimen t w Load
No. {in.) (in.) (1bf) Shear Strength (psi) (1)
2-1 0.133 0.265 79 1747
2-2 0.134 0.255 78 1712
2-3 0.134 0.256 78 1705
24 0.134 0.254 76 1675
2-5 0.134 0.255 80 1756
Avg 1719
ag* 3292

*g = Standard Deviation (with N-1 weighting)

(1) NOTE: Use for comparative purposes only, not design criteria.
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Specimen Group —

NO. 3

550°F, Vacuum Pressure Only

TABLE 9. THREE POINT INTERLAMINAR SHEAR TEST
SPECIMEN BREAKDOWN (Continued)

Tested Per ASTM D2344-76:
Recommended Support Span = 5t
Recommended Specimen Length = 7t
Recommended Rate of Cross Head
Motion = 0.05 in./min

Specimen t w Load
No. (in.) (in.) (Ibf) Shear Strength (psi) (1)
3—1 0.133 0.254 75 1665
3-2 0.134 0.254 74 1631
3-3 0.134 0.249 74 1663
3-4 0.134 0.253 74 1637
3-56 0.136 0.253 77 1678
Avg 1655
o* 19.96

*o = Standard Deviation (with N-1 weighting)

(1) NOTE: Use for comparative purposes only, not design criteria.
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TABLE 9. THREE POINT INTERLAMINAR SHEAR TEST

SPECIMEN BREAKDOWN (Continued)

Specimen Group — NO. 4

600°F, Vacuum Pressure Only

Tested Per ASTM D2344-76:
Recommended Support Span = bt
Recommended Specimen Length = 7t
Recommended Rate of Cross Head
Motion = 0.05 in./min

Specimen t w Load
No. (in.) (in.) (1bf) Shear Strength (psi) (1)
4-1 0.141 0.255 61 1272
4-2 0.141 0.256 65 1351
4-3 0.141 0.256 67 1392
4-4 0.140 0.255 68 1429
4-5 0.140 0.256 64 1339
Avg 1357
o 59.15

*o = Standard Deviation {(with N-1 weighting)

(1) NOTE: Use for comparative purposes only, not design criteria.
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TABLE 9. THREE POINT INTERLAMINAR SHEAR TEST
SPECIMEN BREAKDOWN (Continued)

Specimen Group — NO.5 Tested Per ASTM D2344-76:
Recommended Support Span = bt
Recommended Specimen Length = 7t
Recommended Rate of Cross Head
Motion = 0.05 in./min

650°F, Vacuum Pressure Only

Specimen t w Load
No. (in.) (in.) (1bf) Shear Strength (psi) (1)
5—1 0.164 0.257 104 1851
o 0.164 |  0.257 08 1744
5—3 0.165 0.254 118 2112
5—4 0.163 0.256 121 2175
5—5 0.163 0.257 95 1701
Avg 1917
a* 215.37

*g = Standard Deviation (with N-1 weighting)

(1) NOTE: Use for comparative purposes only, not design criteria.
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TABLE 9. THREE POINT INTERLAMINAR SHEAR TEST
SPECIMEN BREAKDOWN (Continued)

Specimen Group — NO. 5A Tested Per ASTM D2344-76:
Recommended Support Span = 5t
Recommended Specimen Length = 7t
Recommended Rate of Cross Head

Motion = 0.05 in./min

650°F, Vacuum Pressure Only

Specimen t w L.oad
No. (in.) (in.) (Ibf) Shear Strength (psi)
5A—1 0.156 0.260 93 1720
5A-2 0.156 0.259 98 1819
5A-3 0.156 0.259 95 1763
5A—-4 0.155 0.255 VOl D
BA-5 0.156 0.258 97 1808
5A—-6 0.157 0.256 101 1885
o¥ 62.0

*g = Standard Deviation (with N-1 weighting)

(1) NOTE: Use for comparative purposes only, not design criteria.
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TABLE 9. THREE POINT INTERLAMINAR SHEAR TEST
SPECIMEN BREAKDOWN (Continued)

Tested Per ASTM D2344-76:
Recommended Support Span = 5t
Recommended Specimen Length = 7t
Recommended Rate of Cross Head
Motion = 0.05 in./min

Specimen Group — NO. 6
450°F, Vacuum Plus Light Die Pressure

Specimen t w Load
No. (in.) (in.) (1bf) Shear Strength (psi) (1)
6—1 0.154 0.259 87 1636
6—2 0.155 0.253 88 1683
6—3 0.155 0.257 95 1789
6—4 0.156 0.257 92 1721
6—-5 0.156 0.257 96 1796
Avg 1725
o 68.63

*g = Standard Deviation (with N-1 weighting)

(1) NOTE: Use for comparative purposes only, not design criteria.
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TABLE 9. THREE POINT INTERLAMINAR SHEAR TEST
SPECIMEN BREAKDOWN (Continued)

Tested Per ASTM D2344-76:
Recommended Support Span = 5t

Specimen Group — NO. 6A

450°F, Vacuum Plus Light Die Pressure

Recommended Specimen Length = 7t
Recommended Rate of Cross Head
Motion = 0.05 in./min

Specimen t w Load
No. (in.) (in.) (Ibf) Shear Strength (psi) (1)
6A—1 0.157 0.255 96 1798
6A—2 0.157 0.257 98 1822
6A—3 0.156 0.259 93 1726
6A—4 0.153 0.258 101 1919
6A—5 0.157 0.259 94 1734
6A—6 0.155 0.260 108 2010
Avg 1835
o* 110.66

*g = Standard Deviation {with N-1 weighting)

(1) NOTE: Use for comparative purposes only, not design criteria.
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TABLE 9. THREE POINT INTERLAMINAR SHEAR TEST
SPECIMEN BREAKDOWN (Continued)

Specimen Group — NO. 7 Tested Per ASTM D2344-76:
. . Recommended Support Span = 5t
o
500°F, Vacuum Plus Light Die Pressure Recommended Specimen Length = 7t
Recommended Rate of Cross Head
Motion = 0.05 in./min

Specimen t w Load
No. (in.) {in.) (Ibf) Shear Strength (psi) (1)
7—1 0.132 0.257 84 1857
7-2 _ 0.134 0.257 85 1851
7-3 0.134 0.259 88 1902
7-4 0.134 0.260 82 1765
7-5 0.135 0.260 88 1880
Avg 1851
or 52.14

*g = Standard Deviation (with N-1 weighting)

(1) NOTE: Use for comparative purposes only, not design criteria.
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TABLE 9. THREE POINT INTERLAMINAR SHEAR TEST
SPECIMEN BREAKDOWN (Continued)

Specimen Group — NO. 8 Tested Per ASTM D2344-76:
Recommended Support Span = 5t
Recommended Specimen Length = 7t
Recommended Rate of Cross Head
Motion = 0.05 in./min

550°F, Vacuum Plus Light Die Pressure

Specimen t w Load
No. {in.) (in.) {Ibf) Shear Strength (psi) (1)
8—1 0.132 0.255 66 1471
8-2 0.132 0.260 71 1552
8-3 0.132 0.259 70 1536
8—4 0.132 0.259 73 1601
8-5 0.134 0.256 72 1574
o* 48.90

*g = Standard Deviation {with N-1 weighting)

{1) NOTE: Use for comparative purposes only, not design criteria.
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Specimen Group —

NO. 9
600°F, Vacuum Plus Light Die Pressure

TABLE 9. THREE POINT INTERLAMINAR SHEAR TEST
SPECIMEN BREAKDOWN (Continued)

Tested Per ASTM D2344-76:
Recommended Support Span = 5t
Recommended Specimen Length = 7t
Recommended Rate of Cross Head
Moticn = 0.05 in./min

Specimen t w Load
No. (in.) (in.) (Ibf) Shear Strength (psi) (1)
9-1 0.136 0.256 65 1400
9-2 0.136 0.254 70 1520
9-3 0.137 0.255 66 1417
94 0.137 0.255 67 1438
9-5 0.138 0.255 67 1428
Avg 1441
o* 46.57

*g = Standard Deviation {with N-1 weighting)

(1) NOTE: Use for comparative purposes only, not design criteria.
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TABLE 9. THREE POINT INTERLAMINAR SHEAR TEST
SPECIMEN BREAKDOWN (Continued)

Specimen Group — NO. 10 Tested Per ASTM D2344-76:
650°F, Vacuum Plus Light Die Pressure Recommended Suppprt Span = 5t
Recommended Specimen Length = 7t
Recommended Rate of Cross Head
Motion = 0.05 in./min

Specimen t w Load
No. (in.) (in.) (Ibf) Shear Strength (psi) (1)
10-1 0.134 0.253 62 1438
10-2 0.134 0.254 65 1432
10-3 0.134 0.256 64 1399
10—4 0.134 0.256 66 1443
10-5 0.135 0.256 68 1476
Avg 1438
o* 27.50

*¢ = Standard Deviation (with N-1 weighting)

(1) NOTE: Use for comparative purposes only, not design criteria.

62



TASK Il
DETERMINATION OF SIMULATED R&M SOLVENT ATTACK EFFECTS
ON PROTECTED AND UNPROTECTED LAMINATES

One of the unanswered questions with regard to polysulfone practicality in U.S. Army field
operations is its susceptibility to attack by certain solvents. Methyl-ethyl-ketone and acetone

are available to maintenance personnel and might be improperly used during repair operations,

such as paint stripping or adhesive bonding preparation. Data are available on property reduc-

tion of reinforced polysulfone after twenty-four-hour immersion in solvent, but this is obviously

an extreme and unrealistic criterion. Therefore, it was proposed that the degree of damage be
assessed in the possible circumstance wherein a solvent soaked rag is rested upon a reinforced
polysulfone laminate and remains for two-hours or until dry.

The effect of both MEK and acetone was examined on thin-skin two-ply laminates in both the
painted and unpainted conditions. The Kevlar 49 style 285 fabric/polysulfone or polyphenyl-
sulfone laminates prepared for this investigatory task were consolidated at 600°F and 100 psi
for 30 minutes. To permit testing thin laminates, honeycomb sandwich panels were prepared
by bonding the two-ply laminate skins to HRP-10 4.0 PCF honeycomb core with AF126
Grade 10 film adhesive and hot press curing at 30-50 psi at 250°F for 90 minutes.

For reasons of material availability and high material cost, we elected to use the two-ply {285

style Kevlar 49 fabric/polysulfone or polyphenylsulfone) laminate on only the compression

face of the sandwich panel. Five available substitutes for use on the tension face of the sand-
wich panel were analyzed. One, two and three-ply laminates of readily available, in-house, ma-
terial were checked in order to provide a minimum tensile strength of two times the Kevlar
compression face strength and thus ensure a failure in the Kevlar 49/thermoplastic material.

The chosen substitute was a precured three-ply fiberglass {1002 scotchply/epoxy) laminate,

oriented at 0°/90°/0°.

Flexural testing was performed in accordance (per contractual requirement) with MIL-A-
25463 — Military Specification — Adhesive, Metallic Structural Sandwich Construction;
Section 4.6.7 — Normal Temperature Sandwich Flexure Test. Three exceptions to this test
method were taken; three to five specimens per group were tested instead of six as recommend-
ed by MIL-A-25463, test set up and specimen size also differed from those prescribed in the
military specification. Number of specimens and maximum size was dictated by the amount
of the available material. Test set up and specimen size may be noted in Figure 10.

Utilizing the loading diagram and description of sectional areas shown in Figure 11, the max-
imum beam flexural strength was determined from the face sheet bending stress equation for
the Kevlar 49/thermoplastic laminate as follows:

where:
M = maximum bending moment = Lza-
h = distance between the upper and lower laminate centroidal axes =

0.475 + {0.018) + {0.03) = 0.499
2 2
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w specimen width

t

thickness of K49/polyphenylsulfone or polysulfone laminate = 0.018

Introducing these values into the bending stress equation a simplified equation now develops
for the sandwich beam bending stress:

___Pa_ P (4.5)
fo, =2hwt; = 270.499) W (0.018
P
f,, = 250.5—
2 w

Relative stiffness of the (nonhomogeneous material) sandwich beams may be obtained by the
formula:

_ P/2a
24y

El (312 — 4a2)

El = (P/y) (%) (3L2 — 422)

where:
P/y = slope of the tangent to the initial straight line portion of the load-deflection
curve (Ibs per inch of deflection)
a = 4.5In. (See Figﬁre 11)
L = 13.0 In. (See Figure 11)

Substituting these values into the above equation, a reduced equation is now obtained for the
relative stiffness of the honeycomb sandwich beams:

4.5 2y _ 2
El (P/y) (7@) [3(134) — 4 {4.5%) ]

El

39.9375 (P/y)

Results of four point flex testing on honeycomb sandwich beams painted and unpainted, with
and without exposure to solvent soaked rags, are summarized in Table 10. Individual specimen
dimensions and test results are given in Table 11.

Specimens were painted in accordance with MIL-F-18264D — ""Finishes: QOrganic, Weapons
System, Application and Control of” — 23 April 1971.

Two primer coats were applied in accordance with MIL-F-23377 — “’Primer Coating, Epoxy —
Polyamide, Chemical and Solvent Resistant, for Weapons Systems’’ — 7 August 1962.

Two top coats were applied per MIL-L-46159 — ““Lacquer, Acrylic, Low Reflective, Olive
Drab” — 15 January 1973.
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TASK IV
PANEL FABRICATION

Six {6) panels of 5-ply Kevlar 49/polysulfone were fabricated for AMMRC testing All panels
were 17.75" x 18.0"" x 0.040"" in size. Five ply laminates of Kevlar 49 style 285 fabric, pre-
impregnated with P1700 polysulfone using methylene chloride solvent dispersal, were con-
solidated at 600°F and 100 psig for 30 minutes. Postforming parameters for each specimen
are contained in Table 12. Figure 4 shows the metal tools utilized in thermoform ng the con-
solidated blanks for Task |1, Task Ill, and Task IV.

TABLE 12. POST FORMING PARAMETERS FOR AMMRC PANELS

Max Part Temp

Specimen During Postforming Postforming Bottom: Die Trave
No. Operation Pressure Into Part
1 450 Vacuum Plus Light 3/4 In.

Die Pressure

2 500 Vacuum Plus Light 3/4 In,
Die Pressure

3 550 Vacuum Plus Light 3/4 In.
Die Pressure

4 600 Vacuum Plus Light 3/4 In.
Die Pressure

5 650 Vacuum Plus Light 3/4 In.
Die Pressure

Control — No Postforming Process —

6 Panels Total
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TASK | — RECOMMENDATIONS FOR CURRENT AND FUTURE APPLICATIONS

Polybutylene Terapthalate Products Characteristics
Tenite 6 PRO Principally a molding compound available
Deroton Tap 10 in unreinforced grades

Hostadur BVP 860
Celanex 2001
Valox 310

o Low deflection temperature under-
load

e Tensile strength < Nylon 6.6
(8000 psi)

e Notch sensitive under impact — low
temperature

o Affected by chlorinated hydro-carbon

solvents (Methylene Chloride)

Low water absorption

Melts at 435°F

Processes at 482°F

Creeps at elevated temperature (120°F)

Conclusions

While this polymer processes in desirable temperature range and exhibits generally good chemi-
cal resistance, it is attacked by chlorinated hydrocarbon solvents, such as methylene chloride,
and has poor elevated temperature creep properties, within service temperature range of —65°
to +165°F.

Recommendation

Does not appear to warrant development for continuous fiber reinforced composites for
aircraft.

Nylon 6.6

Basic drawback is water absorption and creep, making long term environmental degradation
likely.

Not recommended as the matrix in fiber reinforced composites for aircraft.

Polysulfone (Udel) P-1700

Recommended for continued use in manufacturing technology development because of large
data base. Should be replaced with systems impervious to aromatic and chlorinated hydro-
carbons, when available.
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Polyphenysulfone 5010 {Radel)

Processes similar to polysulfone — Superior in resistance to methylene chloride. Attacked by
MIL-H-83306 Phosphate Ester type hydraulic fluid.

Should be considered for P-1700 replacement on military helicopters.

PKXA .41, .517 Silane End-Capped Polysulfone

Lower mechanical properties than P-1700. Cross-linking stability suspect at RT, degrading
formability and properties. Not reprocessable. Resistant to methylene chloride.

Solvent resistance achieved through cross-linking which occurs at room temperature aging en-
vironment. Material not believed to be reformable as result of cross-linking. Not recommendzd

for further development.

Polyether Sulfone 300P

Superior solvent resistance to methylene chloride over P-1700. Processes at 50°-100°F highe~
temperature than P-1700. Good properties through 350°F, fluid immersion in common air-
craft fluids in stressed condition caused delamination.
Not recommended for further development.

KM-1 (600P)

Limited tests encouraging — continue evaluation.

Polyarylsulfone CM-1

Limited tests encouraging — continue evaluation.

General

Development of hot melt preimpregnation has shown encouraging results with Udel P-1700
and CM-1 polyarylsulfone.

Emergence of hot roll continuous impregnation from film and continuous fibers may make
highly solvent resistant polymers candidates for further development.

Further hot melt development recommended with candidates offered by suppliers in film
form.

84



TASK Il & 1l — CONCLUSIONS AND RECOMMENDATIONS

The experimental portion of this program has been performed to examine the effects of post-
forming conditions on the mechanical properties of a polysulfone composite laminate and to
determine the effects of solvent exposure on the strength of thin thermoplastic laminates.

The flexural mechanical properties of a laminate comprising woven Kevlar 49 fabric/P1700
polysulfone decrease with increasing thermoforming temperature. Postforming at 450°F shows
no difference in flexural strength with respect to the non-postformed control laminate. The
strength decreases with increasing postforming temperature {to 650°F) to a minimum of about
62% of the control. Visual examination of the specimens show no discernable difference in any
of the specimens except that there is an increase in the specimen thickness with increasing post-
forming temperature. This swelling affects the calculated stresses but does not alter the general
trend of decreasing strength with increasing temperature. The flexural modulus also shows the
same trend but to a lesser degree.

The interlaminar, short beam shear specimens also showed a reduction in shear strength with
increasing postforming temperature.

There appears to be no difference in either the flexural or short beam shear test results with
respect to the postforming pressures; vacuum only or vacuum with light die pressure.

The reference {1) investigation originally identified the non-reversible swelling which occurs in
a thermoforming cycle, in which a pre-consolidated flat laminate is heated to post-forming
temperatures (450°—500°F) under ambient pressure. The effort in the current study was
directed at determining the effect of this swelling on the matrix dominated post formed
material properties.

Determination of the physical or chemical principles causing the swelling was not addressed
within the scope of the contract. It is speculated however, that the unrestrained expansion of
the polysulfone at temperatures above glass transition results in deconsolidation of the laminate;
i.e., the polymer, which is not bound homogenously by elastic cross-linking expands from the
mechanical molecular arrangement created in the 100 psi, 600°F consolidation cycle and the
thermal contraction during cool-down produces insufficient force to regain the original thickness.
This loss of densification must inevitably have an effect on shear strength and fiber stabilization
in compression/flexure. Further investigation might be directed toward non-destructive test of
the laminate, GPC or HPLC characterization, TGA or TMA analysis. Isothermal decomposition
is not indicated at 250°F for up to 1000 hours exposure with P1700 and Kevlar 49, Reference
14, hence it is not immediately suspect at 450° to 600° for 1 minute aging.

The matrix degradation appears also to be time related (see Reference 1), the longer at elevated
temperature, the greater the strength loss. Therefore, in the design and manufacturing of
structural elements using thermoplastics, it should be planned to postform at the lowest possible
temperature and shortest time consistent with forming requirements and to use design

mechanical properties consistent with the material strength and stiffness after such a temperature-
time exposure.

85



It has been determined from the Task |11 test results that when realistically exposed to acetore
or MEK the two thermoplastic resins tested (polyphenylsulfone-polysulfone) evidenced no
strength or stiffness loss. In fact, the test results indicate an improvement in strength for the
(P1700) polysulfone whn painted and/or exposed to acetone. Although there were only 3
replicates per condition, and all the data may be considered to be within normal test scatter, the
trend of strength improvement appears correct. Some loss in strength is indicated when
unpainted polyphenylsulfone is exposed to acetone. The painting appears to protect the
Polyphenylsulfone from the acetone for the kind of exposure used in this experiment. The
polyphenylsulfone exposed to MEK, painted or unpainted, shows no strength difference with
respect to the control specimens.

These results indicate that the two thermoplastic resins tested could be put into normal U.S.
Army field operations without undue concern for exposure to available solvents. Normal clean-
ing and wiping operations would not degrade strength or stiffness. Immersion is detrimental

and normal wiping is not. The question that arises is “‘what length of the time and severity of
exposure is detrimental and what visual signs of degradation exist?’’ If an unnatural exposure
went undetected during the event, "“what visual signs would exist that would indicate that cor-
rective action would be necessary?’’ Information from actual field service exposure is the sub-
ject of further U.S. Army investigation under separate contract.
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INTRODUCTION

During the final in-house review of this report it was decided to research the limited published
data available to date, and to wait for some current representative unpublished data from
Seattle (BAC) obtained through the effort of an ongoing program. The comparison of data ab-
tained under this contract with the published data’ was favorable (e.g., interlaminar shear
value of 3,050 psi with 61% fiber volume). However, the data later obtained from Seattle
(BAC) exhibited much higher interlaminar shear values. It was then decided, at no direct cost
to the Government, to verify the Seattle (BAC) findings using their specimen configuration cf
7-ply Kevlar 49 style 285/P1700 polysulfone. Results provided confirmation of Seattle’s
(BAC) latest unpublished data. It remained incumbent upon Boeing Vertol to verify the inter-
laminar shear data (obtained under this contract), at no direct cost to the Government, using
an in-house consolidated laminate (homogeneous 15-ply Kevlar 49 style 285/P1700 polysuifone).
These results were of similar magnitude to the unpublished Seattle (BAC) data, one order of
magnitude greater than data obtained under this contract and earlier published data. It then
remained to validate or invalidate the configuration of a bonded “‘stack-up’ specimen used
under this contract (3 laminates comprised of 5-plys of Kevlar 49 style 285/P1700 polysulfone
each, bonded together at 250°F and 50 psi for 60 minutes utilizing AF 163 Grade 10 film
adhesive). Laminates were consolidated in-house but otherwise constructed in an identical
manner. Test data showed lower values than a 15-ply homogeneous laminate, but, 64% highzr
values than the subcontracted consolidated material used under this contract.
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OBJECTIVES

In order to understand why portions of the test data, obtained under this contract, were direct-
ly comparable with existing datal but relatively poor when compared to new data, it remained
to logically and methodically retrace each step (including fabrication, testing, and final com-
parison) utilized to obtain the data in question and:

1)
2)
3)

4)

To validate BAC data (new, unpublished)
To evaluate the effect of secondary bonding upon interlaminar shear testing
To evaluate consolidation process

To study the effect of specimen geometry upon interlaminar shear testing
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SPECIMEN FABRICATION

In an effort to verify the BAC (Seattle} unpublished interlaminar shear data, specimens were
fabricated to the configuration used by BAC for their testing (see Figure A-1).

|""_'_I 0.250 IN. NOM
l:' (0.243 — 0.254 IN.)

l
L
0.060 IN.__T

0.062 IN. 1.0 IN. NOM = HOMOGENEQUS
(1.000 — 1.008 IN.) 7-PLY KEVLAR 49 STYLE 285
FABRIC/P1700 POLYSULFONE
(PRE-PREG)

Figure A—1. 7-Ply Homogeneous Specimen

The 7-ply laminate was hot-press consolidated at 600°F with 100 PSIG for 30 minutes. After
consolidation and cutting to size, ten of the twenty specimens were put into an oven for one
minute at 550°F under no added pressure to simulate typical conditions of the thermoforming
operation; the remaining ten specimens were to be control articles and therefore were not
exposed to the aforementioned post-heating cycle. Subsequent interlaminar shear testing re-
vealed values of the same order of magnitude as recorded in the BAC unpublished data.

Due to the above result, the interlaminar shear test specimens fabricated under this contract
had then to be verified. Specimens were cut to the same dimensions as described in Task |l cf
the report. The laminate fabricated for this auxiliary test was a 15-ply solid homogeneous
Kevlar 49 style 285 fabric/P1700 polysulfone pre-preg (see Figure A-2), consolidated in-house
(at 600°F with 100 PSIG for 30 minutes), as opposed to a 3 laminate "'stack-up” of 5-ply each
laminate, consolidated at a subcontractor. After the consolidation and cutting processes, ten
of the twenty specimens were again put into an oven at 550°F with no added pressure for one
minute to simulate typical conditions of the thermoforming operation. The remaining ten
specimens became the control set. Interlaminar shear test results demonstrated values com-
mensurate with the BAC unpublished data, but, one order of magnitude greater than the
values obtained under this contract.

The bonded “‘stack-up’’ interlaminar shear specimen remained as the final configuration to
undergo verification. Every procedure that was included in the initial fabrication process (for
interlaminar shear test specimens reported on in Task |l of the report) was repeated during
this re-test activity with only one exception — the laminates were consolidated in-house as op-
posed to subcontractor consolidated. Three 5-ply Kevlar 49 style 285 fabric/P1700 polysul-
fone laminates were hot press consolidated at 600°F with 100 PSIG for 30 minutes. After
laminate consolidation, these three laminates were bonded together utilizing AF163 Grade 10
film adhesive at 260°F with 50 PSIG for 60 minutes, resulting in a non-homogeneous 15-ply
laminate (see Figure A-3). For the effect of bonding on laminate |LS see Test Results Section.
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IN-HOUSE HOT-PRESS LAMINATE CONSOLIDATION
AT 600°F WITH 100 PSIG FOR 30 MINUTES

15 INDUSTRIAL PLIES OF . »
KEVLAR 49 STYLE 285 FABRIC/ %
P1700 POLYSULFONE PRE-PREG =——
10 IN. X 10 IN. X 0.012 IN.

RESULT —

ONE SOLID HOMOGENEOUS
15-PLY LAMINATE

10 IN. X 10 IN. X 0.124 IN.

Figure A-2. 15-Ply Homogeneous Specimen

15 INDIVIDUAL PLIES OF
KEVLAR 49 STYLE 285 FABRIC/ THREE 5-PLY CONSOLIDATED LAMINATES

P1700 POLYSULFONE PRE-PREG
10 IN. X 10 IN. X 0.012 IN.

RESULT —
NON-HOMOGENEQUS
IN-HOUSE LAMINATE CONSOLIDATION 15-PLY LAMINATE
AT 600°F WITH 100 PSIG FOR 30 MINUTES' 10 IN. X 10 IN. X 0.136 IN.
(HEATED PRESS)

"STACK-UP”” OPERATION

WITH AF-163 GRADE 10 FILM ADHESIVE

AT 250°F WITH 50 PSIG FOR 60 MINUTES

(HEATED PRESS)

Figure A-3. Bonded ‘““Stack-Up” Specimen
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TEST PROCEDURE

For these verification tests, the same methods for horizontal shear tests {described in Task ||
of the report) were utilized, with one exception: The procedure for interlaminar shear testirg
used by BAC (Seattle) recommended the use of a 1-inch long specimen on a four times the
thickness support span. Only during the verification of the BAC data was their method of
testing attempted.

TEST RESULTS

The BAC unpublished data was the first to undergo verification testing at Boeing Vertol. A
close examination of the test procedure utilized by BAC revealed a 1-inch long specimen sup-
ported on a span length equal to 4.0 times the specimen thickness. During the test set-up
operation at Boeing Vertol it was discovered that the test fixtures could not accept such a
small support span as was represented by the 4.0 times the specimen thickness dimension. |t
was decided to test the material at support spans equal to 4.5, 5.0, 5.5 and 6.0 times the
specimen thickness and through the use of linear regression methods, obtain the resultant value
representative of a test performed at a support span of 4.0 times the specimen thickness. The
results of this initial exercise demonstrazed values of the same order of magnitude obtained by
the BAC interlaminar shear tests (see Table A-1 and Figure A-4).

TABLE A-1. THREE POINT INTERLAMINAR SHEAR TEST
SPECIMEN BREAKDOWN

Specimen Group — 7 Ply Tested Per BAC (Seattle) Procedure
Homogeneous Laminate Recommended Support Span = (A)
Control — No Post-Form (Heat) Recommended Specimen Length = 1.0 in

Recommended Rate of Cross Head
Motion = 0.05 in./min

Specimen | t w Load ' Support
No. (in.) (in.) (Ibf) Shear Strength (psi) Span (A)
Avg
C-1 0.062 0.262 107.0 4940
4890 4.5t
C-2 0.062 0.260 104.0 4839
C-3 0.063 0.258 103.0 4753
4774 5.0t
C4 0.062 0.248 98.3 4795
C-5 0.062 0.257 100.0 4707
4695 5.5t
C-6 0.062 0.248 96.0 4683
c-7 0.062 0.2563 94.2 4504 4411 6.0t
c-8 0.061 0.250 87.8 4318 '
e Avg 4692
*o = Standard Deviation
(with N-1 weighting) o* 197
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TABLE A-1.

Specimen Group — 7 Ply
Homogeneous Laminate

Post-Heated 1 minute at 550°F

THREE POINT INTERLAMINAR SHEAR TEST
SPECIMEN BREAKDOWN (Continued)

Tested Per BAC (Seattle) Procedure
Recommended Support Span = (A)

Recommended Specimen Length = 1.0 in.

Recommended Rate of Cross Head

Motion = 0.05 in./min

Specimen | t w Load Support
No. (in.) (in.) (Ibf) Shear Strength (psi) Span (A)
Avg
P-1 0.060 0.248 95.0 4788
4730 4.5t
P-2 0.061 0.254 96.5 4671
P-3 0.061 0.246 87.4 4368
4580 5.0t
P-4 0.062 0.245 97.0 4789
P-5 0.062 0.252 95.5 4584 e E (B
P-6 0.062 0.248 95.5 4658 ’
P-7 0.061 0.243 80.0 4048
4270 6.0t
P-8 0.062 0.254 94.3 4491
*g = Standard Deviation Avg 4550
(with N-1 weighting)
o* 248

Having verified the unpublished data from BAC, logic demanded a recheck of the data ob-
tained under this contract. For this, it was decided to:

(a) Evaluate the effect of a bonded ‘‘stack-up’’ specimen on interlaminar shear strength.
This was accomplished by fabricating specimens having the same number of fabric

plys, but, consolidating them as a single, homogeneous, 15-ply laminate.

(b) Evaluate the consolidation process as performead by the subcontractor. This was
accomplished by fabricating specimens of the bonded “stack-up’’ configuration.
With the exception of the consolidation process, the specimens were identical in all
respects to those fabricated under this contract. Consolidation was accomplished
by Boeing Vertol (using in-house heated presses) instead of by a subcontractor.

The results of interlaminar shear testing on the homogeneous 15-ply laminate again demon-
strated values along the same order of magnitude as obtained under the representative BAC
testing, one order of magnitude greater than data obtained under this contract. See Table A-2

for individual specimen dimensions and test results.
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TABLE A—2. THREE POINT INTERLAMINAR SHEAR TEST
SPECIMEN BREAKDOWN

Specimen Group — 15-Ply Tested Per ASTM D2344-76:
Homogeneous Laminate Recommended Support Span -, 5t
Control — No Post-Heat Recommended Specimen Length = 7t

Recommended Rate of Cross Head
Motion = 0.05 in./min

Specimen 1 w Load
No. (in.) (in.) (Ibf) Shear Strength (psi)
A-1 0.123 0.249 193 4726
A-2 0.123 0.269 206 4670
A-3 0.123 0.256 182 4335
A-4 0.123 0.266 225 5158
A-5 0.123 0.273 225 5025
A-6 0.123 0.259 217 5109
A-7 0.123 0.245 197 4903
A-8 0.123 0.252 202 4888
A-9 0.123 0.271 237 5333
A-10 0.123 0.251 212 5150
Avg 4930
o 292

*g = Standard Deviation (with N-1 weighting)
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TABLE A-2.

Specimen Group —
Homogeneous Laminate

15-Ply

Post-Heated at 550°F for 1 Minute

THREE POINT INTERLAMINAR SHEAR TEST
SPECIMEN BREAKDOWN  (Continued)

Tested Per ASTM D2344-76:
Recommended Support Span = 5t
Recommended Specimen Length = 7t
Recommended Rate of Cross Head
Moticn = 0.05 in./min

Specimen t w Load
No. (in.) (in.) (Ibf) Shear Strength (psi)
SP-1 0.123 0.258 195 4609
SP-2 0.123 0.264 208 4804
SP-3 0.124 0.250 200 4839
SP-4 0.123 0.250 186 4537
SP-5 0.123 0.268 216 4914
SP-6 0.123 0.256- 198 4716
SP-7 0.124 0.261 212 4913
SP-8 0.124 0.242 180 4499
SP-9 0.123 0.268 215 4892
SP-10 0.123 0.250 171 4171
Avg 4689.4
o* 238.6

*g = Standard Deviation (with N-1 weighting)
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The results of interlaminar shear testing on the bonded ‘‘stack-up’’ specimens demonstrated
values lower than a 15-ply homogeneous laminate, but, 64% higher values than the subcon-
tracted consolidated material used under this contract. See Table A-3 for individual specimen
dimensions and test results.

TABLE A-3. THREE POINT INTERLAMINAR SHEAR TEST

SPECIMEN BREAKDOWN

Specimen Group — Bonded

““Stack-Up’* Specimens {15 Ply Total)

Control — No Post-Heat

Tested Per ASTM D2344-76:
Recommended Support Span = 5t
Recommended Specimen Length = 7t
Recommended Rate of Cross Head
Motion = 0.05 in./min

Specimen t w Load
No. (in.) (in.) {Ibf) Shear Strength {psi)
F-1 0.136 0.252 163 3567
F-2 0.136 0.270 178 3636
F-3 0.136 0.264 164 3426
F-4 0.136 0.264 167 3488
F-5 0.136 0.266 169 3504
F-6 0.136 0.256- 156 3361
F-7 0.136 0.259 163 3471
F-8 0.136 0.240 156 3585
F-9 0.135 0.263 172 3633
F-10 0.136 0.265 173 3600
Avg 3527
o* 92.1

*o = Standard Deviation (with N-1 weighting)

100




Specimen Group —
““Stack-Up’’ Specimens (15 Ply Totai)

Bonded

Post-Formed 1 Minute @ 550°F

(with no added pressure)

TABLE A—3. THREE POINT INTERLAMINAR SHEAR TEST
SPECIMEN BREAKDOWN  (Continued)

Tested Per ASTM D2344-76:
Recommended Support Span = bt
Recommended Specimen Length = 7t
Recommended Rate of Cross Head
Motion = 0.05 in./min

Specimen t w Load
No. (in.) (in.) (ibf) Shear Strength (psi)
PP-1 0.137 0.250 147 3219
PP-2 0.137 0.251 152 3315
PP-3 0.137 0.264 170 3525
PP-4 0.137 0.268 160 3268
PP-5 0.136 0.258 147 3142
PP-6 0.137 0.259 151 3192
PP-7 0.137 0.261 154 3230
PP-8 0.137 0.244 136 3051
PP-9 0.136 0.262 149 3136
PP-10 0.136 0.254 137 2974
Avg 3205
o 151.0

*o = Standard Deviation (with N-1 weighting)
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CONCLUSIONS

It may be concluded that the subcontracted consolidation process of Boeing Vertol specimen
material (utilized under this contract) had not achieved the optimum material strength charac-
teristics. However, interlaminar shear and flexural strength test data should always be used for
comparative purposes only, and not design criteria. Thus, the comparative nature of this
program has not been degraded.

It is probable that the difference in coeficient of thermal expansion between polysulfone and
epoxy (14 x 10~6vs42x 106 in./in./CF) causes residual strains normal to and within the
plane of the laminate, contributing to reduced interlaminar shear strength. This is further af-
fected by the reinforcement of the polysulfone with Kevlar 49, decreasing its apparent thermal
expansion and increasing its apparent modulus significantly relative to the low modulus high
expansion epoxy, thus forcing the epoxy to make the strain accommodation. The lower
thermal coefficient of polysulfone with respect to epoxy may account for some of the im-
provement in impact damage reported with glass, graphite and Kevlar 49 laminates in this case
due to reduced residual strain in the resin after processing.
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St. Louis, Missouri 63120
ATTN: DRCPM-ASE-TM

Project Manager, Cobra, 4300 Goodfellow Boulevard, St. Louis, Missouri 63120
ATTN: DRCPM-CO-T

Project Manager, Advanced Scout Helicopter, 4300 Goodfellow Boulevard,
St. Louis, Missouri 63120
ATTN: DRCPM-ASH

Project Manager, Tactical Airborne Remotely Piloted Vehicle/Drone Systems,
4300 Goodfellow Boulevard, St. Louis, Missouri 63120
ATTN: DRCPM-RPV

Project Manager, Navigation/Control Systems, Fort Monmouth, New Jersey 07703
ATTN: DRCPM-NC-TM

Commander, U.S. Army Materiel Development and Readiness Command,
5001 Eisenhower Avenue, Alexandria, Virginia 22333
ATTN: DRCMT

DRCPM

Director, Applied Teclnology Laboratory, Research and Technology
Laboratories (AVRADCOM), Fort Eustis, Virginia 23604
ATTN: DAVDL-ATL-ATS

Director, Research and Technology Laboratories (AVRADCOM), Moffett Field,

California 94035
ATTN: DAVDL-AL-D
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Director, Langley Directorate, U.S. Army Air Mobility Research and
Development Laboratories (AVRADCOM), Hampton, Virginia 23365
1 ATTN: DAVDL-LA, Mail Stop 266
Commander, U.S. Army Avionics Research and Development Activity,
Fort Monmouth, New Jersey 07703
1 ATTN: DAVAA-O
Director, Lewis Directorate, U.S. Army Air Mobility Research and
Development Laboratories, 21000 Brookpark Road, Cleveland, Ohio 44135
1 ATTN: DAVDL-LE
Director, U.S. Army Industrial Base Engineering Activity,
Rock Island Arsenal, Rock Island, Illinois 61299
1 ATTN: DRXIB-MT
Commander, U.S. Army Troop Support and Aviation Materiel Readiness Command,
4300 Goodfellow Boulevard, St. Louis, Missouri 63120
1 ATTN: DRSTS-PLC
1 DRSTS-ME
1 DRSTS-DIL
Office of the Under Secretary of Defense for Research and Engineering,
The Pentagon, Washington, D.C. 20301
1 ATIN: Dr. L. L. Lehn, Room 3D 1079
12 Commander, Defense Technical Information Center, Cameron Station,
Alexandria, Virginia 22314
Defense Industrial Resources Office, DIRSO, Dwyer Building, Cameron Station,
Alexandria, Virginia 22314
1 ATTN: Mr. C. P. Downer
Headquarters, Department of the Army, Washington, D.C. 20310
1 ATTN: DAMA-CSS, Dr. J. Bryant
1 DAMA-PPP, Mr. R. Vawter
Director, Defense Advanced Research Projects Agency, 1400 Wilson Boulevard,
Arlington, Virginia 22209
1 ATTIN: Dr. A. Bement
Commander, U.S. Army Missile Command, Redstone Arsenal, Alabama 35809
1 ATTN: DRSMI-ET
1 DRSMI-RBLD, Redstone Scientific Information Center
1 DRSMI-NSS
Commander, U.,S. Army Tank-Automotive Resezrch and Development Command,
Warren, Michigan 48090
1 ATTN: DRDTA-R
1 DRDTA-RCKM, Dr. J. Chevalier
1 Technical Library
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Commander, U.S. Army Tank-Automotive Materiel Readiness Command,
Warren, Michigan 480950
1 ATTN: DRSTA-EB

Commander, U.S. Army Armament Research and Development Command,
Dover, New Jersey 07801

1 ATTN: DRDAR-PML

1 Technical Library

1 Mr., Harry E. Pebly, Jr., PLASTEC, Director

Commander, U.S. Army Armament Research and Development Command,
Watervliet, New York 12189

1 ATTN: DRDAR-LCB-S

1 SARWV-PPI

Commander, U.S. Army Armament Materiel Readiness Command,
Rock Island, Illinois 61299
1 ATTN: DRSAR-IRB
1 DRSAR-IMC
n I Technical Library

Commander, U.S. Army Foreign Science and Technology Center,
220 7th Street, N,E., Charlottesville, Virginia 22901
1 ATTN: DRXST-SD3

Commander, U.S. Army Electronics Research and Development Command,
Fort Monmouth, New Jersey 07703
1 ATTN: DELET-DS

Commander, U.S. Army Electronics Research and Development Command,
2800 Powder Mill Road, Adelphi, Maryland 20783
1 ATTN: DRDEL-BC

Commander, U.S. Army Depot Systems Command, Chambersburg,
Pennsylvania 17201
1 ATTN: DRSDS-PMI

Commander, U.S. Army Test and Evaluation Command, Aberdeen Proving Ground,
Maryland 21005
1 ATTN: DRSTE-ME

Commander, U.S. Army Communications-Electronics Command,
Fort Monmouth, New Jersey 07703

1 ATTN: DRSEL-LE-R

1 DRSEL-POD-P

Director, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground,
Maryland - 21005
1 ATTN: DRDAR-TSB-S (STINFO)

Chief of Naval Research, Arlington, Virginia 22217
1 ATTN: Code 472
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Headquarters, Naval Material Command, Washington, D.C. 20360
1 ATTN: Code MAT-042M

Headquarters, Naval Air Systems Command, Washington, D.C. 20361
1 ATTN: Code 5203

Headquarters, Naval Sea Systems Command, 1941 Jefferson Davis Highway,
Arlington, Virginia 22376
1 ATIN: Code 035

Headquarters, Naval Electronics Systems Command, Washington, D.C. 20360
1 ATIN: Code 504

Director, Naval Material Command, Industrial Resources Detachment,
Building 75-2, Naval Base, Philadelphia, Pennsylvania 19112
1 ATTN: Technical Director

Commander, U.S. Air Force Wright Aeronautical Laboratories, Wright-Patterson
Air Force Base, Ohio 45433
ATTN: AFWAL/MLTN

AFWAL/MLTM

AFWAL/MLTE

AFWAL/MLTC

e ey

National Aeronautics and Space Administration, Washington, D.C. 20546
1 ATTN: AFSS-AD, Office of Scientific and Technical Information

National Aeronautics and Space Administration, Marshall Space Flight
Center, Huntsville, Alabama 35812

1 ATTN: R. J. Schwinghammer, EHOl, Dir., M&P Lab

1 Mr. W. A. Wilson, EH41, Bldg. 4612

1 Metals and Ceramics Information Center, Battelle Columbus Laboratories,
505 King Avenue, Columbus, Ohio 43201

Hughes Helicopters-Summa, M/S T-419, Centinella Avenue and Teale Street,
Culver City, California 90230
1 ATTN: Mr. R. E. Moore, Bldg. 314

Sikorsky Aircraft Division, United Aircraft Corporation, Stratford,
Connecticut 06497
1 ATIN: Mr. Melvin M. Schwartz, Chief, Manufacturing Technology

Bell Helicopter Textron, Division of Textron, Inc., P.0O. Box 482,
Fort Worth, Texas 76101
1 ATTN: Mr. P. Baumgartner, Chief, Manufacturing Technology

Kaman Aerospace Corporation, Bloomfield, Connecticut 06002
1 ATIN: Mr. A. S. Falcone, Chief, Materials Engineering
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Boeing Vertol Company, Box 16858, Philadelphia, Pennsylvania 19142
ATTN: R, Pinckney, Manufacturing Technology
R. Drago, Advanced Drive Systems Technology

Detroit Diesel Allison Division, General Motors Corporation, P.0O. Box 894,
Indianapolis, Indiana 46206
ATTN: James E. Knott, General Manager

General Electric Company, 10449 St. Charles Rock Road, St. Amn,
Missouri 63074 P
ATTN: Mr., H, Franzen

AVCO-Lycoming Corporation, 550 South Main Street, Stratford,
Connecticut 06497
ATTN: Mr. V. Strautman, Manager, Process Technology Laboratory

United Technologies Corporation, Pratt § Whitney Aircraft Division,
Manufacturing Research and Development, East Hartford, Connecticut 06.08
ATTN: Mr. Ray Traynor

Grumman Aerospace Corporation, Plant 2, Bethpage, New York 11714
ATTN: Richard Cyphers, Manager, Manufacturing Technology
Albert Grenci, Manufacturing Engineer, Department 231

Lockheed Missiles and Space Company, Inc., Manufacturing Research,
1111 Lockheed Way, Sunnyvale, California 94088
ATTN: H. Dorfman, Research Specialist

Lockheed Missiles and Space Company, Inc., P.0. Box 504, Sunnyvale,
California 94086
ATTN: D. M. Schwartz, Dept. 55-10, Bldg. 572

Director, Army Materials and Mechanics Research Center,
Watertown, Massachusetts 02172
ATTN: DRXMR-PL

DRXMR-PR

DRXMR-PD

DRXMR-AP

DRXMR-~PMT

DRXMR-RD, Mr. P. G. Dehmer
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