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SECTION 1
INTRODUCTION

This report covers the period 1 November 1979 through 31

"~ July 1981 and describes Georgia Tech's approach ¢o the con-

struction of a chaff model. That approach, which is described in
the next section, was ambitious because the intent was to trace
the detailed aerodynamic and electromagnetic behavior of the
chaff dipoles and, at the same time, to model the propagation of
received signals through a radar system. Some of the goals were
achieved and some were not. , ,

The objective was to devise a tool that could be used to
evaluaté the effectiveness of chaff in a variety of situatiomns.
Unfortunately, "efféﬁtiveness" has nearly as many meanings as
there are individuals working in chaff cbncepts: some people are
interested in chaff performance only for the first few seconds
after dispersal, some are concerned with tracking errors due to
chaff and others are interested only in the near field.fuzing
problem. Many of the agencies ‘nvolved have developed chaff
models to suit their own evaluation requirements, hence it is
perhaps not unexpected that the generation of yet another model
raises the question if duplication has occurred.

Duplication in some areas cannot be avoided, but in the
main, where previous work has been identified.vGeorgia Tech drew’
upon it. In the Georgia Tech model, for example, the scattering
patterns of dipoles of arbitrary length-are_computéd using ' the
numerical scheme devised by Kuo and Strait at Syracuse Univefsity‘
[1]. Most chaff packages. even roll chaff. contain from fcur to

. seven different dipole lengths and ve SOught to account for the

distribution in length. As far as can be determined, there are:
no chaft models"that  include this degree of detail. Another
sophistication in the model is the weighting of the chaff returns




according to ‘the angular location of the dipoles within the
antenna radiation pattern, another detail not often accounted for

in chaff models.
This report covers the first tvo phases of a four-phase

effort, The' proposed phases were:

Phase I: Initial Chaff Model Development
Phase II: Data Analysis
Phase III: Collection of Data (Measurements), .
. Upgrading and Validation of the Chaff
Model

Phase 1V: Development ‘and Integration ¢«f a Complete
‘ , Systems Model

’rhe data analysis implied in Phase II was' for the purpose of

establishing dipole density distributiors within a chaff cloud,
wvhich presupp.ses that such data already existed. Unfortunately,

the only data that were available were for a test run for which

cloud mpping was not 'the primary objective of the test. Other

‘data were desired to verify the power spectral signatures of

chaf?, but these were not available.

As a result of some of the studies conducted in Phase I,
Georgia Tech determined the characteristics of an instrumentation’
system that could acquire the desired information. The radar
should be a coherent, mltiple polari..ation. scanning systemn.
The coherer.cc \vould yield information aobout the spectrum of the’
received sigr.als. the polarization capability would help verify
dipole orientation distributions, and the scanning capability
could be used to assess volume distributions. It is not known if
such a4 system has been emplcyed for chaff evaluation. to the best
of our kncwledge, it has not.

Phases III and IV have not been funded and are not discussed
in this report, but Georgia Tech has proposed further integration
of the efforts of others into the chaff model for Phase III.-
Specifically, the dispersal model worked out by Traci, et al.,
(2] . was suggested as a means tor describing the space/time
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history of dipole volume density distributions, and the radar
model devised by Bogusch, et al., [3] was suggested as a means
for tracing the received signals thorugh a generic radar
receiver. ' ’

Georgia Tech's approach to the problem was to develop a
quasi-deterministic description. ' Since it is impossible to trace
the motion history and, consequently, the time-varying radar
return of a million or more dipoies, we dealt with a smaller
number. This was done deterministically using the aerodynamie
properties reported by Brunk, et al. [4]. It was assumed that
the signature characteristics of elemental volumes of the cloud
matched those of a finite collection, and we thus invoked
sampling theory. The returns wvere normalized with respect to the
number of dipoles in the finite collection, making it possible to
assign an amplitude to any volume within the cloud, providing the
number density of that volume is known.

'A subroutine was developed to account ‘for the spatial
dispersion of ‘a collection of falling dipoles and, when used in
conjunctién with the electromagnetic scattering properties of
dipoles mentioned above, it was possible to compute the composite
return from the dipoles. This is because the complex return of
each dipole and the relative phase due to its position in space

‘was included. The exercising of this nait of the program with

progressively more dipoles in the sample collection suggested
that it is not the. number nor the density of the dipoles that
influences the scintillation of the return, but the dipole motion
itself. ' .
The plan was then to estimate the dipole density function 1ni
the cloud and to weight the net return from an elemental - velume
according to the dipole number density and the ‘position of the
elemental volume within the antenna radiation pattern. At tirst
it was asumed that the dipole number density followed a
trivaritte Gaussian distribution (as might be reptesentative of a
single “puff” of chatf). but the 1ntegra1 could not be evaluated

- - REREEN
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analytically. The decision to resort to a numerical integration
scheme produced a subroutine that is impractical because of the
time required to count dipoles.

Consequently, the model is 1ncomp1e.t'e. An attempt was made
in ?hase II of the effort to fit bivariate Gaussian functions in

the transverse plane to eiperimental data, but the data proved

insufficient for this purpose. If future work is conducted vsing
this approach, i; will be necessary to have better méasurement
data or to use’ .procedures such as those reported by Traci, et
al., to generate the volumetric dipole number density distribu-
tions within a chaff cloud.

Furthermore, our work shows that numerical volume integrg-'
tion is very time consuming on a computer, as is the tracing of
the motion history 'of all but a small handful of individual
dipoles. ' Future efforts should be devoted to ‘approximations of
the volume integral and the development of empirical .descriﬁtions
of the dipole density variation in a chaff cloud. The latter
requires more qontrolléd experiments than have been conducted to

d&te s’




SECTION 2
MODEL OVERVIEW:

Development of a chaff model involves at least four separate
kinds of considerations, two of them purely mechanical in nature
and two of them electrical. The fofmer seeks to trace the
evolution of the chaff_cloud and its subsequent mogion, while the
latter traces the generation, scattering, and reception of radar
signals. The four pgrts of the model should address

1. Dispersal or distribution methods, ‘

2. Cloud dynamics and environmental conditions,

'3J Particie and aggregate scattering characteristics,
4. Victih'rada: characteristics.

The importance of'each part'of fhe model may be illustrated
by working backward'through the list, commencing with the charac-
teristics of the victim radar. The signal output from the
receiver may be a visual display, or it may drive a processor
which delivers commands to a control system. This. signal, along
with its effect on,an'operator or a control system.'ultimately
- forms the basis of a performince evaluation. The_stgqai'charac-
teristics depend on the feceiver input signal, receiver charac-
‘teristics (such as gain, bandwidth, and noise'figure), and any
signal conditioning or signal processing that is ﬁérformed. _

The receiver input signal arises from .returns due to
.clutter, multipath, desired and hndesired.ttigets.-and the chaff .
cloud 1tseiﬁs The relative strengths 6: these returns depehd'on
the radar scattering characteristics of each source of return and
in which parts of the antenna pattern t“ey may be found. Clutter
signals are due to direct terragn.reflectione'that occur at the
same effective range as the target, and multipath signals are due
to indirect reflections from the terrain between the target and




radar. Multipath returns are common when the target is at low
altitudes and clutter returns may become significant in the
presence of ground vegetation viewed at nongrazing angles of
incidence.

The return from the chaff cloud depends on how much of the
cloud lies in the antenna main beam, and, of course, even -the

'signal received via the - sidelobes can be significant for the

large radar cross sections normally presented by chaff. Because
the radar waves penetrate the cloud with little attenuation, the
dipole density (number per unit volume) and the spatial disposi-
tion of the cloud with respect to the radar. beam must be known.
This implies a knowledge or estimate of the cloud size, shape and
position, and the distribution of particles within it. Thus, the
effect of the environment on the cloud particles should be esti-
mated. ' '
The orientation of the dipoles depends on their aerodynamic
properties, and the electromagnetic scattering from the cloud is
influenced by the orientation and size of the dipoles. As far as
can be determined, there is only one study of the motion and
orientation history of <hin dipoles .falling through the air
{4]. That study showed that dipoles tend to follow helical paths
as they fall and that they tend to maintain the initial angle of
attack., It should be noted that the dipoles were dropped in-
dividually in still air for that study. '
Finally, the growth and evolution of the cloud depend on the
initial conditions of dispersal. Several deplo"ment methods can’
be postulated,kranging trom continuous seeding from an aircraft

.moving at constant velocity at a given altitude to the bursts of
'several chaff munitions cannisters launched from the ground. The

dipole density ‘distribution within the cloud obviousiy‘ varies

'with time and with the method of dispersal, and the fall rate and

cloud'drift depend on local wind and turbulence conditions.
Thus.it ounfbe seen that several mechanical and electrical
processes must be analyzed, ghd the approach proposed'by Georgia




Tech was to develop a modular program. The modular approach
allows various portions of the model to be changed as the need
arlses without disturbing the remainlng portions of the model.
Th1s also makes it possible to introduce or to "inject" test
parameters directly into the program for testing and debugging
purposes, and permit parallel (simultaneous) deveiopment of the
modules. ' '

The conceptual form of the chaff model is shown in Figure 1,
where it is assumed that all pertinent input parameters have been
delivered to the program and have been appropriately: stored. The
main flow of computation is downward through the center of the-
diagram, with inputs called from either side of the diagram as
needed. Note that enviroomental perameters are called early in
the computations to establish the statistics of - chaff <cloud
growth and motion, and that certain particle dipole factors are '
called at one stage while others are called later. Certain
victim radar characteristics are similarly required for the scat-
tering computations while others are needed later to calculate
the effect of signal processing at the output stage. The final
module in the diagram computes the action of any servo loops in
the radar and simulates the 1nrorma.tiou norma;ly d..splayed by the
radar to an operator. C

For the initial development of the chaff model, it was felt
that clutter and multipa.th effects were.sm;l_enough to’ be
. neglected. This is typically the case for a ground-based radar '
whose antenna 1is pointed a few degrees or more above the -
horizon. If it later turns. out that clutter and multipath
‘effects are significant, these can be embedded in “modules that
feed - the scattering module near the center of the diagram of
.Pigure 1. Similarly, it 1t appears useful to add (nonchaff)
radar target returns, a target module may be developed and added
to the model. However, it is felt that these were ancillary to
the main effort of the initial model development.
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INITIAL CONDITIONS

number of dipoles
dispersal rate,
velocity,

PARTICLE FACTORS
length to width

|ratio, mass,

drag coefficient

placement

_

CLOUD DYNAMICS .

fall rate, growth
rate,drift,dipole
density, distribu-|

turbulence

- ENVIRONMENTAL

~ FACTORS

ir density, wind
elocity, wind di-
ection, profile

VICTIM RADAR

frequency, antenn
pattern, polariza-
tion, pulse shape
duration -

tion, orientation

- -IPARTICLE SCATTERING

~angular dependence,

ergth dependence,

| SCATTERING MODULE

statistics of
received signal
in amplitude and

VICTIM RADAR

receiver gain,
bandwidth, noise

VICTIM RADAR

signal processing,
filtering, doppler
spread, - integra-

figure

phase
' SIGNAL CITPUT

ticn time

statistics of
output voltage
versus, time

. SERVO LOOPS

displays,tracking,
acquisition,
scanning

'Figure 1. Conceptual form of the complete chaff model.
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For the pufposes of initial model development, not all the
features displayed in Figure 1 were included. ' For example, dis-
persal was assumed to be the default case of corridor chaff, and
chaff puffs per se were not included. Although some work was
undertaken on the characteristics of four classes of radar (see
Section 7), the radar receiver characteristics remain to be
modeled.

The configuration of the initial model is shown in Figure
2. The input to the radar receiver consists of a mean signal
amplitude and a normalized time signature which,'when combined,
describe the instantaneous complex signal in time. The mean
signal amplitude was to bé generated by .an intégration routine .
which evaluates the returns from dipoles in a thin spherical
shell at constant range from the radar.

These returns involve the product of the antenna radiation
pattern in space and. the dipole density distribution within the
oloud, and we sought to accommodate tho general case in which the
antenna is not necessarily pointed directly at the cloud. ‘Unfor-
tunately, this portion of the program was not completed before

'the end of the contract had been reached. The output from the

integration scheme was to have been the mean signal amplitude for
each of several contiguous range bins, mich as is recorded during
chaff tests conducted by Office of Missile Electronic Warfare
Systems (OMEWS) and other agencies.

The dipole motion model shown at the left side of Figure 2
was developed on' the basis of the study by Brunk. et al. [4], and
it includes a turbulence model and a steady wind drift

- component. The motion model is based on an approximate solution

of the aerodynamic forces on a slender fiber and it commences
with the. generation of initial positions and orientations of a
collection of a finite number of dipoles. The change in posxtion
and orientation of each dipole over a small interval of time 1is

" computed under the assumptions that the air density, projected
~'area of the dipole and .the aerodynamic drag force remain constant
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ove} the time interval. It turns out that the time interval must
be less than about 10 ms in order for the approximations to hold,
hence it would require many small increments to index time for a
complete cloud duration of 30 minutes. For this reason, time
signatures only 60 'seconds 1long are generated by the sub-
routine. The dipole positions and orientations are_updated on
the basis of the small changes during the interval. '

~ The dipole scattering model makes use of the exact solution
for the currents induced along the dipole by the incident wave.
The ‘numerical procedure is known as the method of moments, and
the subroutine is largely 'a modification of a program devised

" elsewhere [1]. The subroutine generates the complex scattering

pattern (i.e., phase and amplitude) of - a dipole of given
electrical length and stores the pattern in tabular form. This
is performed for each dipole length (not each dipole) in a given

‘chaff package and needs to be done only once for each length.

Whenever the scattering amplitude'is needed by other subroutines,
a value is extracted from the table using a linear interpolation
scheme. ' ' ’

‘Since the return from a collection of ‘dipoles is the
coherent sum of individual contributions, the motion moael is
used in conjunction with the tables produced by the electromag-
netic scattering model. The summation of the individual returns
generates a normalized time signature which can be transformed to
the time domain if desired. fIndeed. this transformation was
envisioned to be used in modeling the radar receiver and the
processing that takes place there, but as with‘the éolume inte--

- gration module, this portion of the ‘model was not completed.

Section 7 outlines the kinds of signal processing that takes
place in four different kinds of radar systems.’ '
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'SECTION 3
ELECTROMAGNETIC MODEL

In addition to a dozen or more different chaff designs in
the U.S. 'Armv'inven'tory,' there ma.y be experimental designs that
need to be evaluated.. Hence it was necessary to develop a way to
compute the returr trom a dipole of arbitrary ie'ngth ‘at an
arbitrary frequency. The return from a jsingle dipole depends
only on the orientation of ;he dipole with respect to '(a) the

“incident electric polarization and (b) the aspect angle. The

return from many dipoles depends on the spacing between dipoles
as well as upon the orientation. These features are included in
the program modules as described in the following sub-sections. .

3.1 SCATTERING FROM A SINGLE DIPOLE

As can be seen from Table 1, most chaff loads contain
more than one length of dipole, and since the radar frequency is
allowed to be arbitrary, we must have a way of calculating 'the
scattering pattern of a dipolé'of arbitrary length. To do so, we
used a4 program developed at Syracuse, University [,1]'. . The '.program
was modified slightly to suit our particular requirements;
although the user must be aware of an error in the original

.program (5], the error had no impact on our own apblication.

The program makes use of the method of moments, whose
principal exponent was Harrington [6]. The basic approach is to
write the: integral equation for the currents induced on a wire of
finite length and to reduoe' the equation to.a system 'of homo-~ .

bgeneéus linear equations. It 1s assumed that the wire is small

enough that there are no .significant circumferential currenté. ,
implying ‘that the wire must be Jmch smaller in diameter than the .
incident wavelengf.h, typically 1less than A/50. For practical
radar' ffequéncies and chaff dipoles, this condition is almost

alway_s satisfied.

The excitation of the wire may be due to one or more
voltage sources inserted at gaps along the wire, or it may be. due

12




TABLE 1. CHAFF LOAD PARAMETERS

Length, Number,

Type Designation Cut No. . Inches Millions.
Cartridge RR-129T/AL 1 2.00 © 0.75
RR-144/AL 1 0.66 5.25
RR-163/AL 1 1.20 0.079
2 0.60 " 0.5925
1 1.99 0.034
2 1.12 0.034
RR-171/AL Roll 1 3 0.82. 0.102
. 4 0.71 0.136
5 0.61 0.136
Roull .
6 1.74 0.032
: 7 1.12 0.032
RR-171/AL Roll 2 8 0.82 0.032
' 9 0.45 0.227
.0 0.36 0.390
1 0.75 0.36
2 0.63 0.72
3 0.59 0.18
RR-125/AL 4 0.56 0.72
5 0.39 0.36
6 0.36 0.72
7 0.31 0.18
1 0.70 2.25
: , 2 0.60 3.00
RR-146/AL 3 0.51 1.50
4 0.45 | 2.25
. s 0.39 3.75
1 0.70 1.5
2 0.64 3.0
Package RR=147/AL 3 0.62 4.5
' ’ 4 0.59 1.5
! 1 1.84 1.50
2 1.61 0.54"
3 1.07 0.75
RR-153 /AL 4 0.63 1.50
. S 0.55 1.50
1 1.84 1.50
2 1.61 0.75
3 ~ 1,07 0.75
RR~153 A/AL 4 0.683 1.50
5 0.55 2.25
1 1.60 0.375
: 2 1.34 0.375
RR-178 (XN-2) 3 0.97 0.750
4 0.64 0.750
5 0.54 1.250
6 © 0.34 1.500

13
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to an incident plane wave. The reduction of the integral equa-
tion to a system of homogeneous eqguations is accomplished by
dividing the wire into a collection of subsections. The current
supported by any subsection is due to the:.incident wave as well
as- to the fields radiated by other subsections of the wire. The
problem amounts to deiermining the current strength cn each sub-
section such that the resulting distribution satisfies the
boundary conditions, namely that the current must . be contlnuous
and that it vanish at the wire ends. ‘
"The solution to the problem obviously. requlres the compu-
tation of . a finite collection of matrlxte;ements. These elements
are computed (in the ‘Syracuse program) under the assuﬁption that
the current distribution along a wife subsection has a triangular
shape, rising linearly from zero at either end to a peak at the
midpoint. A matrix inversion is required. When the 1nv*rted
matrix is multiplied by the excitation vector (a column matrix);
the current distribution along the complete wire is determined.
‘ The smaller the subsections, the more accurate the solu-
tion. For generally acceptable precision, the subsections should
be no more than A/20 in 1length, but since the memories of modern

computers typically limit the matrix to about 200 x 200 = 40,000

matrix elemants at most, wires more than 10A long cannot be
handled accurately.

' Once the currents have been computed via the matrix in-
version, they can be summed in a lescret}zed" version of the

- radiaticon 1ntegra1. This yielde the far scattered field which,

when normalized to the incident field strength is a direct
measure of the radar cross section of the wire. ’
It is much easier to compute the bistat® field in

several directions for a sihgle direction of incidéence than it is

to compute the backscattered field for several directions of
incidence. This is because each new direction of incidence re-
quires a new matrix invers;on.‘ In the program  implementation of
this computatiqn, the lengths  of .the individual dipole cuts are

14




fetched from a table of chaff. ‘information not unlike Table 1.
For example, 5 dlfferent lengths would be fetched for the RR-
146/AL chaff. These are normalized with respect to the incident
wavelength, and the modified Syfacuée program (which is called
SCAT in the Georgia Tech program and is empedded és é subroutiné)
is called. -

Subroutine SCAT computes the backscattering cross section
for each dipole length at 91 aspect angles ranging frbm broadside
to end-on (i.e., at one-degree 'increments) and returas these .
values to the. main program. The main program stores the values
in a look-up table acccessed.by other subroutines. In the case
of ‘RR-146/AL, five such tables would be created and saved.

Figures 3 through 6 are comparisons of the backscattering
patterns predicted by SCATiand the measured patterns reported by
Chang and Liepd {7]. The computed data are shown as solid lines
and the measured data as dashed 1lines, and the amplitudes are in
decibels with respect to a square wavelength. The amplitudes of
the broadside and near broadside lobes generally agree within
about 1 dB for the shorter dipoles, byt this deteriorates to as
much as 6 dB for somé of thé narrow liobes in Figure 6. The loca-
tions of the. major lobes agree better for the shorter dipoles .
than for the longer ones; the misalignment between measured and
rredicted lobe 1locations ranges from about 3 degrees in Figure 6\
to none in Figure 3. The travellng wave lobes. (the large ones
near the sides of the patter“s) Seem to be the hardest ones to

. match with any degree of gons1stency, being overestimated 6 by

about .3 dB in F&gure 3 and underestlmated by 2 dB to - 4 dB in
Flgures 4 through 6.° ‘ ‘
' The fact that the predxcted lobe’ locatzons always lle;-

closer toward the center of the pattern than the measured onas

‘suggests one of two pos51b111ties, or'perhnps both. ., For ‘one, ti.e
‘théory may not ancount for the small but fihite'charge that ac-

cumulates at the wire ends.  For another, the dipoles measured b:
Chang and Liepa may be fatter than those used in the model. In

.15
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any event, the discrepancies between theory and measurement shown
'in'these'figures are not considered serious.

3{2‘. SCINTILLATICN CHARACTERISTICS OF MANY DIPOLES

_.' One of the objectives of the model is to simulate the
signal scintillation as thousands of dipoles change position with
‘réspect to each other. The dominant cause of scintillation is
due'tq the rate of change of dipole position -- not the spacing
between the dipoles. In a deterministic synthesis of
scintillation, we can. use only a small number of dipoles to model

. a cloud of millions, and the question comes to mind how small a

sample is adequate. . : _

In an axtempt'to answer that question, we conducted a
series of simple numerical tests on a finite collection of half-
wave dipoles. ' The dipoleé were'alloygd to fall along helical
‘paths as suggested by the study of Brunk, et al. {4], and the
phasor sum of their returns was computed at closely spaced time
intervals. ' This was performed for as few as 8 and as many as
1024 dipoles. The resulting time histories were transformed to
the ftrequency domain so that the power spectral densities could
be examined. ‘

The radar cross section of a half-wave dipole can be

expressed as [8]
GV e v (1)

where. o_ = the broadside,radar cross section of the dipole,

' .4appr6ximate1y 1.23 a2, | S
unit vector aligned along the dipole axis,
= unit vector aligqed alqng thg incident electric

DT
[

vector.

Since there are mgny'dipoles whose returﬁs are to bé'summgd vec-
‘torially, we must keep track of their positions. If the distance
from the dipole to some origin is r ,

20
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/5 = 4o (p - e)? elZkrd

(2)
where { is a uni. vector along the direction of propagation of
the incident wavi. .The tlme dependent quantities in Equation (2)
are the dipole orientation p and its position r.
- According to the Brunk team, (freely fallxng dlpoles
follow spiral trajectories. This was determined from
photographic records of more than 300 individual "drops" in a
quiescent chamber. The dipoles tend to maintain their initial
'pitch angle. The parameters of the motion are the spiral
rate 9, the radlus of gyration a, the pitch angle vy of the splral
path, and“the angle of attack a with respect to the spiral
path.' Figure 7 illustrates these parameters.

' " For simplicity, we allow the incident wavé to propagate
in the direction ; = —; in the coordinate system of Figure 8.
| Allowing the axis of the helical trajectory to be displaced from
the origin, we designate its location by (xo;yo). Consequently,
the exponent in Equation (2) is

-i2k{x  + a cos(A + at)]

where A is . the initial angular position around the path.

Finally, we assume, as suggested by the Brunk study, that the

dipole maintains its initial orieqtation with respect to the

"horizoh;al.' Call this angle ¢ = y ~ a. Therefore, Equation (2)
becomes ’ : '

Yo = /9 sin?e exp {-12k[x_ + a cos(A + at) ]} 3)

For a éollection of dipblgs. we :use'd a random number
generator to establish the distributions 1listed in Table 2.

Then, using an assumed radar frequency of 10.5 GHz, we computed

the return for each dipole using Equation (3) and summed them

21
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Figure 7. GCecmetry of the helical path
' followed by a falling dipole.
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‘vectorially. A selection of time histories and power spectra are
displayed 'in Figures 9 through 18. The amplitudes on these
figures are with respect to an arbitrary 1level, hence absolute
values cannot be inferred from them.

Figure 9 shows the phase and amplitude of the return from
20-dipoles computed at 0.5 millisecond intervals. The maximum
rate of change of phase is about 60,000 degrees per secohd, or
167 Hz. The closest spacing between'nulls is at the left of the
.diagram and is about 4 ms, implying that frequencles as high as
25C Hz may be expected in the spectrum.

F1gure 10 is the time history for 32 dipoles for a dura-
tion of 1 second, a much longer period than for Figure 9. Figure
11 is the power spectrum as obtained from a Fourier transforma-
tions of the signral of Figure 10 to the frequency domain. The
’phaSe-inforhation was retained in performing this trinsformation
and a' Hanning weighting function was usedm¥‘Bigure Ll would imply
that the highest significant frequency is about 50 Hz, somewhat
less than the values deduced from the 20-dipole data in Figure
9. ‘ o

The time history of the return from 512 dipoles is giveh
in Figure 12;.in comparison of this history to the 'history for 32
dipoles in Figure 10, it is difficult to detect much difference
in th2 'scintillation. The power spectrum (Figure 13) is somewhat
brosder, however, with significant frequencies as high as 75
Hz. The results for 1024 dipoles are shown' in Figures'14 and 15;
the spectrum is slightly narroWerﬂfhan that of Figure 13.°

' These comparisons suggest that a small number of dipoles,
.perhaps as few as 50 or 100 are adequate for modeling the scin-
t111ation characteristics of a. much larger' number' of dipoles.’
There appears to be’ a slight trend toward greater bandwidths for
greater numbers of dlpoles, but this trend is weak at best. For
a radar frequency of 10.5 GHz, the. maximum signaI' bandwidth
. appears to be about 150 Hz (from -75 Hz to +75 Hz). '
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The bandwidth does not seem to be'related t6 the dipole
number density. Since the dipoles in Figurés 9 th:ough 15 were
all uniformly distributed over the same horizontal distance, 1024
dipoles were much 'more. concentrated than 32 dipoleSs"Thus, the
bandwidth is fixed by the' dipole motion properties -- not by
their concentration. This fact makes it possible to separate the
scintillation characterist;cs from the absolute dipole concehtra-
‘tion levels in the cloud. | S
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SECTION 4
DIPOLE MOTION MODEL

The simple model presented in Section 3.2 was only for
the purpose of selecting a largé enough number of dipoles to
ensure that the cloud Signal scintillation characteristics could
be simulated using a small enough number of dipoles that the
computer runnihg time could be minimized. The effects of turbu-
lence were ignored; for the purpose of accounting for local tur-
bulence, a more sophisticated motioﬁ model is needed. Such a
model is developed bhelow. ' ' , '

The general, first order equation of motion for a chaff
particle is

M eseA CE@-DI@-D +B 4)

where'
m = mass of the particle,
[ = atmospheric density,
A = surface area of the particle projected onto the
plane normal to v,

Cp = drag coefficient.
U = atmospheric velocity, the instantaneous sum of
steady and turbulent components, ' |
Vv = particle velocity,
B = -mgé =« the body force,
g = acceleration due to graviiy,
z = unit vector in the upward direction.

The motion histo?y can be determined by solVing Equation
(4) for v, but this cannot be done analytically due to the random
" and unpredictable  components of u. To simplify the integration

34




of Equétion (4), therefore, we shall assume that a time interval
can Be chosen small enough that p, Ap, CD..and the turbulent
components of u are sensibly constant during the interval. This
time interval should be less than about 10 milliseéonds.

Ve represent.the atmospheric velocity as

2) (5)

O = = ' " ° U ’ " . ' "
u x(u x+ u x) + y(u y +u y) + z(u 2 +u

where the single prihes denote the steédy'velocity components and
" the double primes denote the turbulent components. Equation (4)
can be Split‘into three equations, each céftesponding to motion
along one of the three Cartesian coordinates,

dvx 2 :

T =€ (U - V) | (6)

dv

-t = - 2

gi- = € (U, - vy) (7)

dvz ‘ ) :

az— = ¢ (uz f vz) - g ‘ (8)
where ' ‘ ’

p A_C ‘
t't*zﬁ——n_ . (9)

The (+) sign option is necessary to preserve the vector sense of
the velocity difference (U - V) in Equation (4),| and we shall
assume that whichever opgion is required, it is nown, thereby
fixing the value of e¢. ’ ‘
Equations (6) and (7) can be rewritten as
___..Q.Y—_ - ;dt '
(u - v)2. .
‘where the subscripts have been ohittedxfor convenience. vIntegra-
ting, we have: | ‘
to + At

o

v(t)

\4
o

1

?E-:—VT- = ¢t
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Solving for v,

u -yv

: . .
v(t) =V - 5t o ) (10)

where At is the time interval and v. is the velocity 'at the be-

o
ginning of that interval. , ,
The displacement P over the time interval can be found by

integrating Equation (10), with the result
P(t) =P+ ust - % en[l + eat(u -v))] (11)

where Po is the particle posiiion at ;he beginning o7 the inter-
val. This is a pure translation due to the horizcntil components
of the atmospheric velocity. To this must be added the horizon-
tal components of the spirai motion mentioned in Subsection
3.2. These added components can be represented by

x = x, +acos(A +at) | - ' (12)

y =¥, + a sin(A + Qt) ‘ ‘ (13)

Consequently, the horizontal positions are given by

x(t) = x_+ (u',x +'u"x)At + a cos(A + qt)

2 | aa)
+;% tnfl + eAt(u'x f u"x - vpx))
RASS IR SN (u'y + u",);t +a sin(A + at) .
' ‘ (15)

+

o

' 4 n_
en{l + eAt‘u y Q’y 4v°y)]

and the velociti components are
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u'x +u -v

v (t) = (u'_ +u") - —s _OK (16)
X x . 0 x 1 + eAt(u x + u x - vox)
u'. +u" -v '
vo(t) = (u' +u") - oI (17)
AN y v/ T 1 SRy TNV

‘The solution for the vertical direction is more compli-
cated because of the gravity term. Equation (8) can be written

as
__._.__Vzd"' g = -edt , (18)
: I

where we have again ignored subscripts and where V = u - v. The
integral of Equation (18) has two different forms depending on
v the sign of €. These forms are ' ’

| f——————dx = L tan~1(%)
x'z + cz .. C c

[ e

Thus, for ¢ < 0, which corresponds td u, < Vg

’ , u -v
.tan-]" [%}- tan-; [—_.2_]: - lcht

o c c
or
. | L} "
i L ’ o ' -1 u’'_+ u - v : !
vz(t) - (u!z + u Z) - ¢ tan {tan [ . zZ cz 21 cht -(19)
f ‘where
| | ‘ ; 1/2 ‘ , |
2 v . :
c = {rﬁ"‘—c';"} o (20)

p
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Equation (19) must be integrated to find the displacement:

Z(t) | £ +at ,t ot | |
/ 4 = / (@', + ", )dt - c/, tan(E-ceat)dt

“o to o

where

uly YU - Vo o
tang = : o (21)

The resuit is
z(t) = z, + (u'_ + uz)At - % &n {cos(ceAt)

u' + u" -V (22)

+ z 2 02 sin(ceAt)}

‘When ¢ > 0, corresponding to u, >'vz, the integration of
Equation (18) yields '
u-v +c’

u - v(t) ~c ) -
&n { U-Vv(t) Fc  @-v -¢ } 2°94F.

which, when solved for v(t), gives

+ u“z - voz) + ¢ tanh(ceat)

(u',
" - voz),tgnh(ceA;)

U (23)

v, (L) = (u'g tu') -c

In order to integrate Equation (23) to'find'the displabement, we
can 'express Equation (23) as B ' '

- az(t) At +At. t_+At , o
: o) : f o 1+ aePt
dz = [ u dt +. ¢ , 2L 4t (24)
v t t 1 - aeP |

“o . o) ()
where

U =-v + C - =2cet ’ S L
) QZ 0 . . .

d = e ' - (25)
u-~v,,=~¢c i} I

p = 2ce , : (26)
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The integral of the last term in Equation (24) is
t - g in(l - dePt)

hence the solution is

, , t
P = » 2c 1 - def”
2(t) =z, + (u + c)at - == 4n Pt
1l - de -

Inserting the values of d and p,

z(t) = u",) +'cj at

Z

[

[(u' + u"g - (c +v )]

2ceAt

(u'z + uz") + (¢ - vo)]e (27)'.

o
gh‘ mu* +
EﬂH

_ In summary, Equations (14) and (15) give the
displacements in the horizontal plane and Equations. (16) and (17)
are the velocities. Depending on the sign of Equation (9), the
displacement and vélocity in the vertical plane are given by
Equations (19) and (22) or by Equations (23) and (27).

| In the implementation of these métion equations, the new
particle positions and velocities are updated from the previous
ones, and At is the time interval' over which the updates are
made. The parameters required to generate a time history are

1. Particle.characteriStics (length, diameter and mass),
‘2. Initial position, ' ‘ '

3. Initial orientation, ’ .

4; Spiral characferistics (rate, radius and sense)

5. Drag coefficient of the particle, l '

6. Atmospheric characteristics (density and velocity)

7. Turbulence componenﬁs, and

8. Time increméqt,
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Thé particle chéracteristics' are available in a table stored
intérnally. Whew;a given chaff load is specified, the 1length,
diameter and mass of the chaff dipole types are retrievable. The
initial wnositions ‘and oriéntdtions of the dipoles are randomly
generated; typically they are uniformly distributed throughout a

'relgtively small cube. Once the chaff is released, the time is

incremented and the motion for each dipole is computed accbrding
to the equations derived. above. ' '

The sequence 1is started by randomly generating the
initial angle of attack and the Reynolds number. Since these two
variables determine other properties of the motion via the solu-
tions of transcendeniél éQuations, an iterative procedure is used
to establish the remaining initial conditions. The starting
values for the angle of 'attack and the Reynolds number are used
as inpufs to a lookfup table which returns the axial and normal
.orcé coefficients CN and. C,. This pair‘of coefficients is used.
to compute the drag coefficient,

CD =,CA COSq'+ CN gind _ . , (28)

'Also,-the projected area is

‘I'l Ly N
Ap = 3 u?_+ L D sina . | (29)
where D and L are the dlpole diameter and length. .

We now have the values necessary to compute the dipole
veIocity along the helical path. :

12 T .
{2m§ siny / o L : o (30)

',The vertical velocity component is

v, =vsiny . o (31)
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and, for the purposes of establishing the initial conditions, we
will choose the angle of attack, a, such as tb force Equation
(31) to take on a specified value, typically 1 or 3 feet per
second, depending on the chaff type. Using the value computed
from Equation (30), this angle is ' ‘
1/3

ng VZZ . ' .
} -8 - ' (32)

‘'@ = arc sin —_—
: {p Ap CD
The Reynolds number depends on the velocity,

R, = pv L/u ~ (33)
where u is the kinematic viscosity of the air. The value of Rg
is computed using Equation'(33) and is compared with the value
.initially generated randomly. If the value'computed frcn Equa-
tion (33) is close enough to the generated value, the initial
conditions for the dipole are regarded as being established. If
not, the new value of a'i used with the remaining parameters to
compute a new Reynolds nu.. ., and the process is iterated until
a2 Reynolds number is Eomputed that matches the one.genérated. We
have now established the initial conditions..
The spiral rate is then computed using

__2v - Sou
Licqsel-» FNR

Q " (34)
‘where Cgy is the side moment coefficient and Cyg is the 'damping
derivative for the side moment plane. Both coefficients are
tabulated as functions of the angle of attack and the. Reynolds
number. The spiral radius is ' ' B
_ v o , a ey
a = il coSsY (35)
where vy = a + 8 is the helical pitch angle. Having computed"'
these 'quantities, we can now determine the wmotion history by
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indexing through time and using the horizontal and vertical
velocity and position'equations derived above.

In stepping through time, the angle of attack and, the
orientation angle 6 are deliberately "jiggled" by the addition of
small random changes. Turbulence 1is induced in the velocity
vector u by use of the description given by Brunk, et al.,'in
which a new (updated) velocivy component is formed. from a
weighted sum of the old (previous) component and a random com-
ponent. This weighting uses correlation coefficients that are,
in general, different for the three components of the atmospheriec
wind velocity. '

In the =z direction, the appropriate correlation

coefficient is
1 u'y 2 1/ .
Rz(u'z,At) = exp -4t [?7 + (f—_) ] : (36)
) ” |

where 1 is the correlation time and L, is a  length parameter.
The correlation time can be computed from - T

z* % dz’ .
"standard" atmosphere. Thus, t varies with altitude.

A new turbulent wind velocity can be generated from. the
old one by the formula '

- exp(2.2 - 3.51) ' _ ' (37)
- . dw w _
dz Lz
|
where . : .
' %g = the'derivati e'of the mean'wind velocity
with altitud o
i = an intensity
L. = 'the standard deviation of the intensity"
distribution| ‘ '
L d¥ = and i aré tabulated functions of altitude for a
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1/2 J

n (38)

C o= "
u ,RZU

- R2
zlo;d'f (1 Rz)

A lnew

where J_. is a Gaussian velocity cdistribution with zero mean and a

n

standard deviation o, .Computation of the turbulent components

-in the horizontal directions requires another pair of correlation

-coefficients,

_ - .i fu' \? 4
R, = exp { -At{f\ * 5% (:—:-) ]} , ’ (39)

"
= D T B A v ' '
Ry exp ‘-At [B * 55 (2Ly) ] ’ ‘ (40)
where .
f1g 241/2 )
A = r-_I. + (u X ) .‘ (41)
(2 V2L, | : ' , .
: S o2 4172
p= | 1. (oy ‘ (42)
A 8 £ \2Ly -

The length parameters are related by L, = 2L, = 2Ly. Finally,
the updated wind veldCity components in the horizontal directions -
are ' v

: - R 2y1/2 , _

+ (1 Rx ) Jm (43)

" ) " ] " Ve
Ux lnew 'R,“ x lold

L ylnev - Ryuy léid

+ (1 - nyz)“?vqm . (44)
In these expressions, one should be careful to distinguish™ the
mean velocity components bearing single primes from the double .
primed turbulent components.

Figures 16 through 18 are examples of how the position.
history behaves for a collection of 16 dipoles. These figures
represent the projections of the dipole positions onto the three
coordinate planes for 55 seconds of free fall in a turbulent
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atmosphere. The position axes are arked off at 50-foot inter-
vals and the dipoles wefe iniviali-s nlared in a cube 25 feet
along a side. ’ '

' Figure 16 shows how the dipoles spread 6ut in the hori-
zontal plane. At the end of 55 seconds, some dipoles.are as much
as 150 feet away from their initial position, suggesting drift
rates as high as 3 feet/second. Once in motion horizontally, the
dipoles tend to maintain that velocity. However, careful examin-
ation of the 12 frames shows that some of the ‘paths héve a dis-

“tinct . curvature that could represent spiral trajectories of very

largé radius. A typical spiral should be less than 2 or 3 feet
in diameter.

A position history in a vertical plane is shown in Figure
17. The spreading out in the vertical plane is not as great as
in the horizontal plane. After 55 seconds, the centroid of the'
cloud appears .to pe about 100 feet lower than it was at the be-~
ginning, implying a fall rate of less than 2 feet per second.
Figure 18 shows the spreading in the other vertical plane. Ob-
serve that one dipole7broke away f;om the main group and fell
about 40% faster than the  others. This particular dipole
executed nmore than half a rgvolution around 1its spiral path
during the 55-second history, suggesting a rate of abour 0.1
radian per sgcénd. (The dipole is ringed by a smalI eircle in
Figure 16 for 'identification.) Note that there seems to be
generil‘drift along the x-axis, 1mp1Ying a ste&dy wind coﬁponent
of about a foot per second, which was,, in vfact;‘ specified 'dn'

input.
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SECTION 5
DIPOLE DISTRIBUTION MODEL

5.1 PLUME DISTRIBUTION
To estimate the radar return from the cloud, we need to

know where the cloud is, what its'shape is, the dipole density
distribution withihl the cloud, the radar loca;ion, the radar
pointing diréction, and the antenna radiation pattern. An inte-
gratioﬁ of the product of the dipole density function and the
antenna pattern function ovef the extent of the cloud will give a
number brqportional to the mean radar return. The fine-grain
time varying signature can be described by separately exercising
the turbulence and‘scattering models already developed. Let us

"focus for the time being on the amplitude cnly, and.let the cloud
' be "corridor chaff" disperised continuously by an aircraft moving

at constant altitude and velocity.
A possible;model of  the dispensed.chaff cloud is a trun-
cated conical plume, as shown in Figure 19. Since the aircraft

velocity is much greater than the dipole settling rate, the plume’

axis will be essenfially horizontal. If we now conceive of the
plume as being atygchéd to the aircraft,.it will be "pulled" at a
velocity equal to the vector sum of the aircraft and wind veloc-
ities. For simplicity, we ' assume the wind velocity (direction
and. speed) to be constant. Then the cioud will move as shown in

* Figure 19, and we can predict where the plume axis will be at any
‘point in time. We now need to determine the dipole density dis-

;ribution within the cloud. .

The work of Traci, et al., suggests that tue dipole den-
sity distribution in a'plane transverse to the plume axis is a
bivariate Gaussian function. Although the Traci team dealt iny

with Chaff puffs (not plumesj, their data may be used to estimate

tlie expansion rate of the cloud. . '

First le; us aésign a éoordinate system to the plume, -as
in Figure 19, where the plume axis coincides with one axis of a
right-hadded'Cartesian system. The diétance u is measured up-
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Figure 19. Chaff plume model and coordinate Qyétem. .
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stream from the cloud centroid and v is measured transverse to
this dimension in a ‘horizontal plane. The vertical distance z is
measured upward. We assume the transverse dipole density func-

- tion has the fornm

‘ : z2 -2z 2 '
p(v,2) = p_ exp [~ 1/2 {(;‘iﬂ + (—a—c) ; 1 5
v A '
where LIS is a constant rélated to the dispersal rate (i.e.,
dipoles per meter or dipoles per second), Z, is the vertical
location of the plume axis and o, and'oZ are ‘the standard devia-
tions in tﬁe transverse plane. These standard deviations
obviously increase with time or downstream distance from the
plume apex, and we need to establish the expansion rate. We
shall ignore for the moment the steady decrease ip Z, as the
cloud settles vertically to the ground.

Traci, et al., present‘uplots of. density contours for
several different atmospheric conditions for four elapsed times
after d1sperSa1. The expansion rate can be estimated by reading
the charts.fsolving Equation (45) for‘ov or g,, and plottihg the
results. We choose the atmospheric condition labeled Simulation
6 iu the Traci report, corresponding fo & shear profile. with
neutral stability. From the Traci figures, Table 3 can be con-

spructed for Py = 1000.

TABLE 3. . PLUME PARAMETENRS

m ¢

t,min‘_ p v,m z:zc,m_ L zM
2 - - e 50.0 30.0
12 15 . 210 - 150 72.5 51.8
22 5.1 330 210 135.2 86.1
32  2.69 430 . 250 159.9 93.0
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Except for the data at t = 2 minutes, for which Traci, et
al., present o, and o, as an analytical fit, the last two columns
were computed assuming the form given by Equation (45), and .the
data as read from the Traci figures are iisted in'the first four
columns. ' L , . _
The open and closed circles in Figure 20 represent the
deduced values 1listed in Table 3. The curves are approximate '

fits to those data assuming the form
o= (24 t)/2 . | (46)

where £ is a characteristic ‘"length" determined from the data
(i.e., a curve fitting constant), U is the speed of the aircraft
and t is the elapsed time since dispersal. For a speed of 200
m/s, the characteristic lengths that produce the two curves in

Figure 20 are

. lv = 6.67 cm, lZ =2,6042 cm .

If we now insert Equation‘(46) into Equation (45), we have

1 { v2 +‘ (z.-2,) 2 |
2ut

p(u,v,z,t) =p_exp [ -
o O

(47)
The units in Equation (47) must be consistent, of course, so that
the exponent remains dimensionless. ‘ ‘

If we now assume tha;. once dispersed, the.dipdles have no

‘net motion along the plume axis, then the total number of ‘dipoles

in 'a thin transverse slice through the plume must remain’
constant.' The dipoles may‘vspread‘ out transversély, thereby
lowering the ‘concentration, but the total number must not -
change. In a transverse slice of thickness Au, therefore. there
will be an unvarying number of dipoles, N
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'jr su p(u,v,z,t) ds
S
- v2 \ - (z - 2)% Y
bu p exp (— S ') dv exp (-————7————) dz
- 2uts, - 2ute, :

2utAup°/n£vzz .

]

]

Consequently, the concentration Po is a fime dependent quantity,

Py (t) = N | | (48)

2ut Au V= L, 4,

. Note that p_ has the.dimensions of (volume)~! and is therefore a

dipole number density.
Roll chaff is commonly described by the number of dipoles

' per inch packed into the roll, and the chaff dispenser ejects the

dipoles at rates measured in inches per minute. "Let n be the
number of dipoles per inch and let d be the dispersing rate in
inches per second. The number of dipoles dispensed in an inter-

val of At seconds is therefore
N = ndAt .

The distance Au traveled by the aircraft during this interval is

' Au = uAt.
Hence,.
N nd
Au ﬁ :
and
P (t) = — .nd - (49)

2(1)2 LI
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Therefore, the dipole density distribution is

p(i,u,v,z,t) = nd
2(u + qc)u v D | (50)
1 vz (2 -2.)°
com [ A (g 5
2(u + u ) v Z
c o
where u, = Ut is the éeparation between the aircraft and the

. c .
cloud centroid and t is the elapsed time. since the aircraft

passed the point represented by the centroid.

Recognizing that u = Ut is the distance along the plume.
axis at ‘the point where p is measured, and accounting for in-
efficiencies due - to "birdnesting;" we can express Equation (50)

as
P(u:ﬁxvtzlt) = nnd
2(u +u_ ) uvr 22
C . vV 2z \ (51)
2 (z -2)
.exp[-'z—(-a—i-‘r—) Z—*—ri‘”
[+] v A

where n is the efficiency. Thiszconstitutes a complete descrip-
tion of the dipole number density as a function of positidn with-
in the cloud. ’

To 'gain some idea of what this distribution is, 1let us
assume a roll chaff. package having 600.000 dipoles pen'inch dis-
‘pensed’at a rate of one inch per minute. Hence, the dipoles are
dispensed. at the rate nd = 104 dipoles per second. - If the
_efficiency is 30% and if -the aircraft travels at. 200 m/s, the
dipole density along the plume axis 181101.553/(u +'ﬁc) dipoles
per mp. Thus, 100 meters from the apex the density is about 1
dipole per cubic meter. _ : .

For distributions of the form exp (-x%/2¢2) , the concen-
tration'at x = 3.035 is ohly 1% of the concentration at x = 0,
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and 99.73% of the dipoles are contained within these
boundaries. If we choose x = 6.070 as being representative of

the cloud thickness, the growth of the cloud is as shown in Table
4.,

TABLE 4. PLUME DIMENSIONS

't, minutes width, m depth, m
10 , 556 348
20 787 491
30 966 602
5.2 VOLUME INTEGRATION

‘' Given the dipole deﬁsity distribution within the plume,

we have thg task of finding the net received signal from that
distribution. VWe begin by consideriag the "convgntional" form of |
.the fadar range equation; '

G,.G_or? o
pr =-Pt fE_E___ (52)
(4n)3R"
where P = recéived power,

Py = transmitied power,

Gt = gain of the transmitting antenna,

Gp = gain of the receiving antenna, —_—

¢ = radar cross section of an isolated target}'
A = radar waveleqéth,

R = range from radar to target.
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In this expression, it should be remembered that Gy and G,
are angle-dependent functions that describe the concentration of
energy in-'a given direction. The two functions are equal for
radars employing a common transmit/receive antenha, and we shall
assume this to be the case. Since the chaff cloud is an extended
scatterer, the return from each dipole must be weighted according
to the ahtenna'gain in the particular direction the dipole.may be
found. Thus, Equation (52) must be app;ied to each dipole.

ThisAis not possible, of course, since there can be milf
lions of dipoles in the cloud. Instead we shall assume that the
return ‘from an elemental volume of the chaff cloud is directly

P-4

proportlonal to the number of dipoles in that volume. If we
assume further that the number density varies continuously from
'point to point in the c¢loud, Equation (52) can be written as a

volune integral,

: P, a2 , .2 : .
p = -t . f G2 o 4v (53).
r (4m)3 ' RY

where o‘must now be expressed in terms of the scattering‘pross
section per unit volﬁme.

, | We assume that the scatterlng .cross section per unit
volume can be obtained (as descrlbed elsewhere in this .report)
" from the tumble average scatterlng per dlpole, when multiplied by
the dipole number -density p, as obtained in Section 5.1, this
‘g;Qes the desired quantity. Since the distance to the elemental
volume dV may vary considerably, the fdnge R is retained within
the integral of Equatlon (539).

The antenna power galn function G can be expressed as the
product of * the Dboresight - gain G, and the vantenna voltage
" pattern. The antenna pattern, in turn, can be expressed as the
eproduct of a pair of field patterns in orthogcnal planes; we
allow these two patterns. to be different becagse it is quite
common to. design radar antennas with fan beams. For simplicity,
we assume the antenna to be a paraboloidal reflector illuminated
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by a feed with a cosine aperture distribution taper 1ian both -
planes. The field pattern has the form, '

f(w) = cos(ww/2) : (54)
1 - w2 . , §
where woo= (2/%) KL siné¢, L
L = the length of the aperture in the plane in

which ¢ is measured,
¢ = the off-boresight angle,
= 2%/, the free space wave number.

If the gain 1is sufficiently high, the ‘far sidelobes of the
pattern will occur at relatively small angles, whereupon Equation
(54) can be approximated by

v = 2,37793 - o | (55)
%y .
where ’b is the half-power beamwidth as measured betWeen’ the
nalf-power points (not the half beamwidth measured from the bore-
sight axis). )

Since there are two patterns measured in orthogonal
planes, say in the azimuth and elevation directions, we can allow
these patterns to be different. Thus, Equation (53) can be
expressed as ' | ‘ : -

2 2 : :

P = 22 5% f {J-Elﬁ-lﬂl-f d } Yo av (56)

(4%)3.. v . : :

where G, = antenna boresight power gain, ' 3
(32‘ = mean radar cross section per dipole,

p = 2,37793 a/ab , -
q = 2.37793 c/;b,
a

= angular displacement of dV from the antenna
boresight in the azimuth direction,

3 = angular displacement in dV from the antenna,
boresight in the elevation direction,
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e = half-power antenna beamwidth in the azimuth
direction, .

€y = half-power antenna beamwidth in the elevation

' direction,

o = dipole number density at the location ot dV.

The fourth power appeArs in the integrand because the power ‘gain
becomes squared for a common transmitting/receiving antenna, and
tlie' power gain is the square of the pattern of Equation (54).

It is desirable to evaluate the .integral in Equation (56)
so as to display it as a function of range. If we choose ‘a
épherical coordinate system qentered on thé radar, the element of

volume ic
dV = R? cose de da ' : (57)

Restricting attention to ‘the contributions from only those
dipoles in a thin spherical shell of thickness AR, the return
from that shell alone'reduces to a su:face integral,
22 G2 (o
o

& f * € da’
p =P f(p)f(q) » cose de da (58)
r t (4%)3 R2 f [ I

w#here R is the rdnge to the shell. The limits of integration
should be set so hs to include ;he contributing portinns of the
plume interceptedllby. the spherical - shell. A schene 'for'
establishing the limits will be described later in this

section. Unfortunately, iheAintégral_in Equation (58) cannot be

evaluated analytically.

It is instructive to expldre Equation (58) for a simple
case. To do so, we cdnstruct-the-coordinate system shown in
Figure 21. The'plume'coordlnate‘system (u,v,z) is angled with
respect to the (X,¥.:2) system by an ang'e 8, with the positiQe u
direction being toward the dispensing aircraft. The origin of
the plume coordinate system is fixed at the center of the
plume. The plume length is qestgnated by L and ﬁs determined by
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the duration of the seeding operation. For example, if it took
one minute for an aircraft moving at 200 m/sec to deploy the
chaff, the plume would be 12 km long. '

The coordinates of the center of the plume are Xar Yoo 2¢

X =R c¢cOS €_ CcOS a
C c c
' = R_ cos €_ sin a
Ye c e c (59)
Zz = R_sin ¢
c c c

e’ %% are the slant‘ range, elevation angle, and
azimuth angle to the plume center as seen by the radar located at
the origin of the x,y,z, system. The u,v,z system origin fé at
the plume center and the relationship between these twolsystems

is : '

. where Rc, €

X = x,-u cosg - v sinB
‘ (60)
y =V, + u sing - v cosB
u = - (x - xc) cCOsSB + (y - yc) sing
. (61)

vV = - (X - xc) sing - (y - yc) coss

As viewed in the u,v,z system, the radar lies at Uy Voo 0, where

= +
u, Rc cos € cos(oc 8)

v = i +
o ,Rc cos €, s:.n(ac 8)

Thus, if the slant range, elevation angle and azimuth angle
(R,e,a) are kqown for avpoint~in space, the location of the point
in both coordinate systems is ' '

x = R.cose cosa o umug « R cos(a + 8)
§ y = R cose sina VeV, - R.CObc sin(a + B) (62)
o z = R sine .z = R sine

:
.
H
v
L4
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‘track distance of 5 km places the plume

We can calculate the dipole . density distribution in a
horizontal plane for any fime we choose, and it is then a simple
matter to plot the density as a function of the azimuth angle.
Let us assume, therefore, that the radar is located 5 km to the
side of the plume and at the same altitude as the plume axis,

perhaps being mounted on a hellcopter. Thus, € = 0, and we
select B8 = n/2, @, = 0. Choosing a time t = 10 minutes fixes the
origin of the (u,v,z) system at a distance u, = 120 km for an

aircraft velocity of 200 m/s. For a dispensing rate of 104
diponles per -second and'an efficiency of 30%, the dipole concen-
trations along circular arcs in the horizohtal plane are as shown
in. Figure 22. A o | _

A For ranges less than 5 km, this circular trajectory never
touches the plume. axis where the density takes on its highest
value. The path sweeps in close to the axis, then moves out
again; hence, the density profiles exhibit a single peak value
(dotted lines). For ranges greater than 5 km, the path crosses.
the plume axis twice; hence, these profiles have a characteristic.
double hump (solid lines). The dashed line shows the case when
the circular trajectery grazes the plume axis (i.e., R = Vol

Note that for this particular time (t =10 minutes),,the maximum

dipole concentration is slightly less than 103 dipoles per cubic
meter..
As another example, consider a chaff cloud 1.7 km in
altitude while the radar is on the ground. Ma;ntaxning a cross-
ins 5.281 km from the
radar'.as measured along the slant range;| see ;Figure 23.. The
elevation angle to the plume axis is 18.78°. . '
; Figure 24 is a display of the dipole concentration in a
spherical shell 5.4 km in radius and centered on the radar. This
shell is slightly larger than tbe nearest point onethe plume
axis,  hence it intercepts the plume axis |at two -places. Tﬁese
are clear1y>visible in the figure. The dibplay itself_is of the
cpntohrs of corstant dipole concentration, plotted on a grid of
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elevation and azimuth angles. Note that the vertical scale has
been expanded to a size ten times 'the horizontal scale, hence the
actuai distribntion is of the order of 40 degrees wide, but only
3 degrees tall. Note that the maximum concentration occurs-  at an
elevation angle near 18.35 degrées, somewhat lower than the 18.%%
degrees shown in Figure 23. This is - because the 18.78 .iegree
angleiis appropriate to a slightly smaller shell radius.

The function depicted by the contours in Figu-z 24 is the
density function p in Equation (51). The other functions of
importance are the antenna patterns f(p) and £(q). By way of
illustration, Figure 25 shows a typical radiation pattern for an
antenna with equal beamwidths in the az.muthal and elevation
planes of 3 degrees.' . Shown there are the contours of equal
intensity at the half-power level and for the first eight side-
lobes. Note that the half-power level is 3 degrees wide in both
planes, but that the pattern appears greatly elonga;ed due to the
difference between the horizeoatal and vertical scales. The
scales were chosen to match those of Figure 24. '

According to the prescription given in Equation (58), the
square of the power pattern of Figure 25 must be multiplied by
the number density pattern of Figure 24, and that product (when
weighted by the cosine of the eleyition angle) must be integrated
over the solid angle subtended by the chaff cloud. It should be
appreciated V however, that ‘the representative patterns may be
shlfted away from each other by a considerable angle. It should

" also be appreclated that the pattern of Flgure 24 - changes 1ts

chardcter with range.

Turning now to the limlts of 1ntegration of Equation (58),
we may establlsh plume boundaries such that the dipole
concentration in any transverse plane is some specifiable frac-
tion of the_axial density. A convenient boundary is that where-
the density has dropped to 1% of its axial value, corresponding
to 3.035 standard devi;tions, and w;thin tnis boundary lie 99.73%
or the dipoles. The surface satisfies the equation :
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Yoo Zl 2°) = - 2u an .01 (63)
v z '

which is the equation of an elliptical cone. The limits of inte~
gration may be established by finding the intersection of this
cone with a sphere of radius R, yielding contoufs in space yhich
may resemble those of Figure 24. The mathenatical deécription of
the contours is couched in a quartic equation which must be
expressed in terms of azimuth and -elevation. Partial derivatives
with respect to azimuth and elevation must be formed and forced
to zero, finally leading to the establishment of the_limits.

The mathematical complications of ‘such a procedure out-
'strip; by far, the detail  needed for a practical
implementation. Thus ' we will make some simple approximations.
First, the elliptical cone axis wili.be assumed horizontal. The

“inclination of the cone axis to the horizontal is z/u (the ratio

of the dipole fall rate ‘to the aircraft velocity) and amounts to
only a fraction of a degree. Second, the cone is a very slender
one ‘and we can approximate it with an elliptic cylinder. The
slenderness can be appreciated from inspection of Table 5, which
lists the transverse distance from the 'cone axis to the point
where the dipole density has fallen to 1% of its axial value.
Over .a length of 12 km, -the width of the plume changes by
scarcély‘ze meters from one end . to the other, and its thickness
changes by barely 16 meters.

TABLE 5. TRANSVERSE PLUME DIMENSIONS
FOR t = 10 minutes

u,kp ‘<Y,m z -z ,m
-6  271.446 " . 169.655
0 . 278.149 . " 173.844
6 284.694 | 177.935

/
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Establlsmng the limits of mtegrdtmn in, the elevatlon
plane would require that we find the planes tangent to the e111p-
tic cylinder at its upper and lower surfaces, and containing the
radar. The 1lines of tangency do not, in general, lie at
positions where v = 0, but for small elevation angles, v is small
at the tangent line. Thus, we shall assume ‘that thé limits of
lntebratlon in the elevation angle can be found with acceptable
accuracy by setting z - 2z, = %+ 3.035 o, and v = 0.

c
Conceptually, therefore, we can imagine four parallel

~lines in''space passing through the top, bottom and sides of the

plume at its midpoint, and being parallel to the u-axis. These
four lines may or may not pierce a sphere of arbitrary radius.
If a line dces pierce the sphere, it does so at two points, but
the points may not necessarily ;ie within the finite length of
the plume. '

Considering first the azimuthal 1limits, we select the-

lines at the sides of the c¢ylinder where z = Zg and v = %

~ 3.035 0. We may now ure the relationships in Equation (62) to-

find the u coordinates where these two lines pierce the sphere of
constant radius. That is, we obtain the quadratic equation

2 - —u )2 1 _ 2 2
R .(u u )+ (v —v)e + 3z (64)
wnlch can be solved for any of the three variables on the rlght
side, provided the remaining pair are held fixed in value.'
The solution of Equation (€4) for constant v and z ic

wmuge [R2-22) = (v-v2] M2 (©3)

The two lines v |= v,, v2 (for 2z = z,) yield four solut1ons whlch
will be identified with subscripts:
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u, =u_ - [(RZ -z 2) - (v]_ - VC;)Z}].-/Z

1‘ o “e
u, = ug + t(R? -AZCZ) - (v —'vo)2]1/2‘ 66)
Ug = ug - [(RZ - 2.2 - (v, - v0)2]1/2
u, = q6 + [(r2 - zcz)__ (v2 ; vo)z]l/Z

The solutions hquatlou (66) may' not lie on the finite
elliptic cy;lnder, in whlch case the sphere intersects - 6ne or
both ends of the cylinder. It turns out there are 22 possible
combinations, ihcluding those where there is no intersection at
all. The lack 6f an intersection is signified by a negative
number in the radicals of Equation (66) .

For those cases where the spherlcal shell intersects the
end of the cyllnder, we may insert u = + L/2 into hquatlon (64)
and solve it for v. Thne general solution is

<
]

[(RZ - 22) - (u - u )2 ]t/2 (87

which gives two roots, of which only one is the required one.
One of the roots Wlll be much smaller in absolute value than the
other, and thls is the desired one. In fact, the desired root
must 11e in the range. vy < v < vy, or else the sphere would not
have intersected the end of the cylinder. We designate the’
desired solutions ‘as V3 for u = - L/2 and v4‘for‘u = L/2.

o It is p0351b1e for the sphere to intercept two separate
reglons of the. plume, as suggested by Figure 24, and the solid
angle 1ntegra1 may cover two disjointed patchesi This occurs in
four of the 22 possible cases. The coordinates 6f the endpoints
of the azimuthal integration are. listed. in Tablé 6. Note that
there are four cases (#4, #5, #8, #9) fof_which the integration

interval is split into two discrete regions. The coordinates can
be used to establish the azimuth angle'via‘the,use of Eqi .tions
(62). That is, ‘if u and v are specific coordinates listed in
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Table 6, the azimuth angle can be computed from

v -V

a = arc tan -~ B8 (68)

- 4y
o

The limits of integration in the elevation plane are easy
to establish. Given an altitude and a range, the fina1 formats4
(for 2) of Equations (6G2) can ‘= used. The wupper and lower

limits are, respectively,
— z + 3.035 ¢

i . C
€, = arc sin — T -
f -~ ; 6(.‘
2z, -~ 3.035 o, (69)
€, = arc sin
1 1 R




SECTION 6
~CHAFF DATA ANALYSIS

As has been seen from the discussion ol the dipole concen-
tration variation within the cloud, the net r.ceived signal
depends nct only on the dipole number density, but also upon the

" radar antenna pattern and how this pattern is oriented with

respect to the cloud. Deconvolving the signal in an effort to
deduce the dipcle distribution is not an easy task, but a limited
anajlysis of one test run was performed with' that .in mind.

The Office of Missile Llectronic Warfare of White Sands
WMissile Range released the-résults of a test run for analysis
purposes. Designated as Experiment LC-38, which was conducted on
15 April 1980, the test was not primarily fof the purpose of
cloud mapping, yet .;he radar operators slewed the antenna at
various times in a coarse attempt at cloud mapping. Had the
cloud becn scanned systemat'ically, and had we had more specific.
rinformation about the test conditions, the ahalysis could have
been more detailed. '

, Because the radar réturn from chaff' is a result of a random
process (the dipole motion), a sample at any time is a random
variable. To estimate the average RCS per resolution cell with -
moderaie error, we need at least eight independent samples. The
chaff return decorrelation time -- the time interval between.
independent samples --'is| of the order of 10 to 20 milliseconds
at 10 GHz. Thus, ‘typically 'l to 2 seconds' of data should be
cnllected for ,each' data point' on the spatial distribution
curves., But occasionaily there were only two sampies of ‘the
signal . for a fixed range and antenna boxjesight di'réction', and a.
single datum based on the samples is not statisttcally
significant. Nevertheless, such data were included in the
analysis. even though they tend to inject ipregularities into the
plotted distributions. ' C
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~ The relationship between the cloud and the radar 1is known
only in terms of the azimuth and elevation angles off the antenna

boresight and the range. For the purpose of analyzing spatial

‘dipole distributions, two of these ccordinates should remain

fixed while the third wvaries. In scanning a printout of the
measurements, we identified seven data scis in which only the
azimuth angle varied, two in which only the ‘elevation angle
varied and five in which only the range varied. Using these
fourteen data sets, ve attempted to determine the spatial distri-
butiohs in azimuth, elevation, and range. ' .
~ Prelir 1ary examination of the measured da‘a reveéled. a

skewness in the distributions, and two generalized forms were
postulated that could include or account for the skewness. These

are

~ . 2 1 .
y1 (x) = €11 X exp(calx) N x>0 (70)

y ( ) = ¢ xczz exp(c,n%x?) > 0 ' 71

(%) = €15 X plcyz - X ‘ (71)
wnere,§1(x) is a generic gamma density function [9] and yz(x) is
a generic Nakagami densipy function [10]. Normalized parametric

equations corresponding to y1 and ¥y are

- ' ' k ’ k- ‘ ! ' )
¥(x) = iy (kx/0)5 7 exp(~kx/b) | (72)
- - 2/m m "% o ‘
y,(x) = [CEESYH (mxz/ﬁz) exp(-mx2/a2) - (73)
wherg
b = expected vaiue of x,

K = b< ‘ivided by the variance of x,
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a expected value of x2,
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]

the gamma function.

Families of plots of these two functions are shown in
Figures 26 and 27. Tﬁe parameters k and m are measures of the
skewness of the two families, with progressively smaller values
generating progressively larger skewness. To fit the skewness'in
the negative ‘direction displayed by the measured azimuth and
range data, we must reflect the curves about the éxis x = 0,
which 1is equivalent to the replacement of the 1ndependent
variable by its negative. The functions y1 and y 9 will be
called the skewed exponentlal and the skewed normal functions,
respectlvely.

To determine the parameters that best fit the measured dis-
tributions, we utilized the generalized linear regressidn formula

2 = a + au + a,v (74)

where 2 isthe estimate, u and v are functions of the independent
variable, and ag, al, and ap are parameters that minimize the
mean square error, '

N
- 1 - . . .
2=y X (2 o-z)? , (75)
i=1 :

vhere the sample ii isa function of  the dependent variable.
(i.e., the received signal or the hCS). '

.Equation (70) is miniwmized by the substxtutlon of Equation
(74) tor =z; and then the formation of the partial derivatives
with respect to ao,'al,‘and ag. Fdrcing these derivatives tdi-
zero yenerates a system of three equations whose solution giveb
the rnlatlonbhxps needed for ‘the minimization of Equation (75).
The - relatlonships are summarized .in Table 7. '
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TABLE 7. CURVE FITTING PARAMETERS -

Quantity Skewed Exponential . Skewed Normal

z iny o tny

Z . in y : in y
a. , ‘ in Cyy . 2n Cyop
ay Cay Cog
. ag ' C31 . C32

u ' in x v in x

v X x2

Programs that computé the optimum regression coefficiénts

"(the C's) for these two kinds of distributions were devised for a

programmable hand calculator. The programs also compute a nor-
malized correlation coefficient R2 which is a measure of the
"goodness of fit" between the estimate y -and the measurement - of
y. A perfect fit is registered when RS = 1;

The measurements used by Georgia Tech 'in the ana1y51s were

$unmar11ed in a data prlntout* nearly two inches thick. - Each

record contalned a header that listed the azimuth angle, eleva-

' tion angle, and range, and the returns were given for two dif-

ferent pulses a hundred pulses apart. The returﬁs for these two

:pulses were split into the contributions from 15 range bins, and. .

tihe arithmetic sum of the 15 contributions was listed in a final
column in the record. For the distribution in azimuth and elev~'
ation, it waSvthis "sum" column that was used as the aependeht
RCS value. " | o
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Measured and fitted distributions are shown in Figures 28
through 34 for the azimuthal variation, for which the range and
the elevation angle remained fixed. The solid data points repre-
sent the average value of the "sum" column for as many pulses as
occurred within an azimuth "window" 0.1 degree wide.
Occasionally there were only two such pulses (the two in a single
record) because the azimuth angle remained within the window only
for that récond; the circied data points signify this event. The
number of pulses used to form the datum points represented by the
uncircled points was typically four or more.

These plots show that the signal distributions are skewed,
with higher tails 1in' the direction of smaller azimuth angles.
The measured data do not always trace out smooth curves, and the
irregularity is due, in part, to the sparseness of the sampling
represented by the circled data. Had we had access to maghetic
tapes containing all the data (instead of every hundredth pulse),
the distributions probably would have been smoother. Although
such detailed information would have reqnired several orders of
magnitude more processing, that effort could have been handled
easily by a computer. As it was, the limited data available had
to be manually keyed into & hand calculator. '

Fitting the distributions given by Equations ﬁ72)»and (73)
required some judghent as to where to set. the origin, since these
equations require that x > O. Apparently this judgment was not
yuite so good in some cases as if was in otﬁers; for'example, the

representations in Figures 28, 33, and 34 show'fhe peak of. the

fitted eyuation shiftéd,somewhdt from the . peak suggested by the
heasured data. The amplitudes in these three fiéurés are also
somewhat lower tnan the measured data. On the other . hand,
Figures 29, 30, 31,”and.33 show reasonably good fits. For all
figures except Figure 30,_fhe amplitudes of the returns exceed
100 m2.’ |

Both distrioutions given by Equations (72) and (73) were
used in the linear negreSsion'analysié and the one having the
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Figure 28. Distribution of radar return in azimuth
for records 57-123, '
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Figure 30. Distribution of radar return in azimch'
~ for records 410-439. '
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Figure 31. Distribution of radar.return in azimuth 
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Figﬁre 32. Distribution of radar return in azimuth
for records 582-670.
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for records 745-811.
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~ Figure 34. Distribution of radar teturn in azimuth

for records 920-1000.
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better fit was chosen and plbtted in Figures 28 through 34. The
"better" fit was determined by a comparison of the normalized
correlation coefficient, which is listed in Table 8 for the
aiimuth data along with several other statiétical values, namely

the RMS error of the estimate expressed in square meters and as a

percentage. Note that the skewed,normal_distribution yielded the
better correlation for all the azimuth data, except for thuse in
Figure 31, for which the skewed exponential is a better fit.

The spread listed for these data sets indicates the cross
range distance covered by that parficular set of datg; it was
computed from the azimuth angle change and the range. the that
' the spread ranges from less than a km to more than 3.5 km,'but
this should not be construed to represent the cloud size in the
Cross range direction. The actual size is' not known because its
orientgtion with respect to the antenna béih is not known.

Very little data were available to conduct this, kind of
analysis in the elevation plane. Only two sets were found for
which the azimuth angle and the range were held fixed while the
elevation angle was varied. These data aré plotted in Figufes 35
and 36, and the information is quite sparée. All of these data
" points. were the averages of only two sampies (two pulses) spaced
100 pulses apart. Figures 35 and 36 consist of only § and 4
measurements, respectively. I o

Despite the paqcity of elevation plane data, the distribu-
tions fit a'positive skew, in contrast to the negative skew noted
in the azimuth variations. ‘Nevertheless, the sense of direction

is unimportant because angular changes can be measured in either

"direction. As mentioned earlier, the thickness,of the cloud is
" much less in the vertical direction than the horizontal, and
Figures 35 and 36 tend to verify this. ‘

The statistical data for the two elevation angle variations

are summarized in Table 9. For both runs, the skewed normal
distribution represents the better fit. Note for the.data,in
Figure 36 that the correlation coetficient'is close to unity,

. 86
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TABLE 8. SUMMARY OF STATISTICAL DATA FOR THL
' AZIMUTH VARIATIONS

Figure No. 28 29 30 31 32 33 34
'Elevation _ ) : : '
angle 18.44 19.14 19,93 19.40 18.70 19.12 19.01
Range (km) 18.45 17.40 17.40 18.39 18.39 17.46 17.46
Spread (km) 1.67 2.01 0.84 1.02 2.56 . 2.11 3.52
Ry % 0.783 0.893  0.896 0.982 0.758 0.772 0.505
RMS error, m 90 59 2. 22 49 49 141
% error 49 27 29 15 48 42 71
Rg? . 0.852 0.909 0.957 0.958 0.816 0.911 0.666
RMS error, m 81 62 2 30 42 25 109
% error 44 .28 20 21, 41 22 55
K 4.3 1.4 5.1 3.5 5.4 5.0 5.2
m . 4.6 3.8 1.7 .-1.5 . 2.1 1.8 2.2
87
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Figure 35.
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‘for records 1188-1203.
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T

‘1———”—-———- 200 m

®
- ®
@ ‘ ' 1
1 24 SR N S S R S
17.6 17.8 18.0 18.2

elevation aﬁgle, degrees

Figure 36. Distribution of radar return in élevatibnvl

for records 1283-1289.
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indicating a very good fit. This is due in part to the sparse-
ness of the data, there being only four points to ‘"run the curve"

through.
TABLE 9. SUNMARY OF STATISTICAL DATA FOR
THE ELEVATION VARIATIONS
Figure 35 36
Azimuth angle 189.25 | 194.00
‘Range, km . : 16.56 16.56
Spread, m 184 197
7
Ry 0.972 0.986
RMS, error, m 3.8 i 1.0
% error : 14 ' .12 -
Bo?  0.974 0.997
RMS error, m 2.4 . 0.5
% error 9 6
K N 2.15 .. 3.22

m 0.95 1.35

Turning now to the radar returns asvfdnctipns of fange while
azimuth and elevation remained fixed, it is~cohvenient to plot
the results as function of the range gate number instead of the

actual range. This has been done in Figures‘37 through 41 (five

data sets); each datum in these plots is an average of € samples
(2 samples for each of 3 successive records). The gate width is

90.
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radar cross section, m?

50

Elevation: 19.40°
Range: 18.39°

40—

Azimuth: 174.22°

range gate number

Figure 40. Distribution of radar return in taﬁge
for rezords 516-519. '
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40C ns, hence the plots are of the radar return‘over'successive
60-meter intervals. Lkxcept for Figure 40 whose total width is
0.72 kin, the total width of each figure is 0.96 km.

lLike the azimuth distributions, tLe distributions in range
have a negative skew. . Figure 39 is an exceptional case, showing
only 'the tail' of the distribution; for this one data set, a
'simﬁle exponential function was assumed to be a representative
fit. The results of the range dependent analysis is summarized
in Table IO.V The summary shows that the data;are quite well
fitted, with the largest crror being only 9.2 m and tne smallest
~oefficient of determination being 0.93. The skewness varies
tron small values (k = 6.0, m = 3.9) to large (k = 1.0, m =

3.63 5, depending on which particular data set one examnines.

~TABLE 1u, SUMMARY OF STATISTICAL DATA FOR
' THE RANGE VARIATIONS

Figure 37 38 39 40 41

Azinuth’

angle 163.37 172.90 174.33 174.24 174.00
Flevation

angle. 14.93 19.13 19.93 19.40 18.70
Range, Km 15.54 17.40 - 17.40 18.39  18.59
Ry 2 : 0.930 . 0.977 0.930 0.990 0.991
Pshs eI‘I'Ol’. I {902 106 006 3-8 1.2

% error 34 17 31 18 14
Ro? 0.971 0.947 - 0.990° 0.993
RIS error, m 6.8 3. - 3,3 1.0
% error 25 33 - 16 12

" 5.0 5.5 1.0 —5.4 3.0

Most of range, azinuth, and elevation distributions'showﬁ in.
“igures 28 through 41 are approximated better by the skewed

S




normal distribution than the skewed exponential distribution.
The exponential dependence on the square of the independent vari-
able in Equation (73) suggests that the Gaussian (normal) distri-
bution assumed for the chaff cloud fepresents a natural choice,
although we nmust admit that; the cause of the skewness in the
measured data is unknown. If the distributions of chaff
particles in time and space are to be more deeply explo'red, ex-
periments need to be devised in which cloud mapping is the prime
bb‘jective'of the test, in contrast to the kind of data analyzed

here.,




SECTION 7 _
CHAFF CLUTTER POWER IN PROCESSORS

In. general, the processed signal at the radar output caused
by chaff scattered returns is a function of the chaff parameters
(size; orientation, spatial distribution, velocity,distribution),
the radar parameters (transmitted power, antenna gain, polariza-
tion and'pattern) and the radar.processor (simple pulse, pulse
width with MTI, pulse Doppler, or CW). This section is concerned
with developing mathematical expressions for generic radar pro-
cessors used to process the received power from dynamic' chaff
clouds. It is assumed that thé relative positions and velocities
of the chaff dipoles with respect to the subject radar are avail-
able from other analyses as given in earlier sections.

7.1 NONCOHERENT PULSE'RADAR ‘
Perhaps the simplest radar processor is that associated with

a'noncohenent pulse radar. In this case, fhe processor consists
of a filter matched to the transmitted pulse and followed by an
envelope detectof. The processed signal as a function of time
iilas a complex envelope ‘E(t) and an amplitude envélope‘Z(t) given
by ‘

E . JYy o Jogt ‘ . :
2(t) = |[®fa;(1;,0) e T oe p(t - 1) | = lz)] (76)

where p(t)_is the normalized  processed pul,se._'ri is the fime
delay of the ith scatterer (chaff 'dipole), w..is the radian

‘ i
'Doppler_frequency of the ith‘scatterer, Yi is the phase shift
(reflection and delay components), and ai is' the amplitude ot

;th

the return for th¢ i scatterer, which ~an be expféSSed as
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2, 2 1/2
G (Gi,Ei) ) S

a = t 1 (77)

i 3 4
F4w) Ri L.c

[n Equation (77), Pt is the radar transmitted power, G(ai;ei) is
the one-way power gain of the antenna as a function of the off

boresight angles a, and ¢ A is the wavelength, o, is the in-

i i?
stantaneous RCS of the 1th i

between the radar and the ith scatterer, and 'Lc denotes -the

" clutter processing loss.. _
At any instant T, = 2R0/c of time delay corresponding to

range R,, the instantaneous amplitude of the return signal from

Equation (76) is

JY. Ju.rt D N
() = | 1§3ai<ri.mi> e. e " %p(ry -~ 1) | (78)

and the instantaneous clutter power is

P(ry) = 22(1,) o | 1Y)

For the cdse of a simple pulse, the' radar haé no Doppler
frequency resolution and the summation is taken'over‘the range
resolution cell centered at T, = 2R /c.

The random variable Z(T ) is generally treated as having a
Rayleigh density function whlch results in an exponential density
for (r ) « The average instantaneous clutter power, is defined
as the expected value of P(t ) . if the phase angles V are

. treated as independent random variables uniformly distributed ,

over the interval (0,2r), then the average instantaneous power of
the chaff return is : : :
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scatterer, R. is the slant range'




E (2%(r)] ,=Zi: a;? p?(1, - 1) (80)

(@]

]
. g
~

-

(]

th scatterer as

where aj 1is the,instantanéous amplitude of the i
given by Equation (77) and p(To) is the processed pulse shape
normalized to a maximum of unity. If the scatterers are suf-
ficiently dense, then the summation can be replaced by the inte-
gral Jfo(1) pz(ro - T)‘dT«.

In the chaff clutter program, separate subroutines are used
for computing the instantaneous positions and radar cross sec-
tions of the dipoles. Radar reference coordinate systems such as
those shown in' Figures 42 and 43 are required to compute the line
of sight angles from fadar to.the various scatterers (used in the
calculations of w, and o ) and the off- bore51ght antenna angles
- of the scatterers (ai,ei) used . in the -antenna pa?tern
functions. Figure 42 shows the relationship between the ‘antenna
coordinates (x',y',z') and the reference coordindtes (x,y,2) for
a ground-fixed system. Here °o and eo are the azimuth and ele-
vation angles of the antenna boresight direction and it is
assumed that the antenna lies in the (x',y') plane. The coordin-
ate transformation equations are '

! = 3 -
X x}coa¢o Z sin¢°

. - 3 - .
y' = -x 31n¢° sine° +y coseo A cos¢° sineo ‘ '.(81)
iyt s -8 + , ¥y
z' = x sinoo gpaeo + Yy sine° Z'COSOO.COSGO

From Figure'4§ ‘the off -boresight antenna angles in the horizon-
tal and vertical planes can be determined as -
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Figure 42. Earth cartesian coordinates (s, y, 2)
‘ and antenna coordinates (x', y', z').
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-1 Vi o
ei = tan x'.z ; z.‘)l/z | - -
i ' i - (82)
: X. , |
a, = tan~t zl'
t i

The exact computation of the average single pulse clutter
power for the noncoherent pulse case requires accurate mathe-

matical representations of the antenna gain function G(a,¢) and'

the pulse weighting function .p (tr) . In many cases, this func-
tional information is not available'and various standard mﬁthe-'
matical representations must be used (such as sinx/x, Taylor,
Gaussian, and Chebyshev antenna patterns, Gaussian and recfangud
lar pulse shapes). When G(a,e) and p(t) are known accurdﬁely,

the computation of Equation (80) may require excessive computer .

resources for detailed functions and a large number of ,ehaff
particles. Thus, relativer,simple approximations of the known
or postulated antenna pattern and pulse weighting are useful in
obtaining first order estimates of of the received clutter
power. Given the uncertainties in radar cross section and rela-
tive position and velocity of the scatterers, simple approxima-
tions for G(a,c) and p(t) appear to be adequate if chosen
judiciously. | '

Perhaps the simplest approximation of the antenna patferns‘-

in a and ¢ is the rectangular  function shown in Figure 44.  In
this case, the gain function is represented as: G(a,e) = Go for
-4€/2 € € < A¢/2 and -4a/2 < & ¢ Aa/2, and zero otherwise, where

G, 1s the average gain and dc and Aa are the equivalent -

'beamwidths in the two orthogonal planes.  If the processed pdlse

is also assumed to be rectangular. then the proéessed clutter
' power can be approximated as :

' P. G 2 a2 L .
(4x)3 R ¥
. (o} Lc :

where the summation is taken over all scatterers/withn the range
resolution cell and the ¢ and a beamwidths. This formulation
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|
I
| G,
]
l . .
_ . Gg | o cs1
| .
) ) AR r' ‘ ' ] _———
o Y.
2 . 2

Figure 45. Antenna paf'tvtern appréxination' including sidelobes.
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‘requires a search of the scatterer coordinates to determine those
.scatterers which are positioned within the appropriate angle ‘and

range intervals, a calculation of the RCS of the subject.

scatterers, a summation of the RCS values, and~mu1tiplication by
a .constant. '

. If Dbetter accuracy requires that the effects of antenna
sidelobes be included in the average power computations, then the
appfokimation shdwn in Figure 45 may be employed. Here 'G, is the
average main beam antenna gain and Gsz is the average sidelobe

level. Fpr this case, the average chaff clutter return .at the

range Ry is

- P, A2 | )
t )
C =DP(r.) = (G 2&g +G_,2 & o] (84)
o (47)3 Ro“ Lc o 1 71 st J J

where the summation i is over the scatterers in the main beam and
the summation j is over the scatterers in the sidelobes.

7.2 COHERENT MTI ' v
Pulse radars are frequently equipped with MTI signal proces-

sors to reduce the undesired returns from scatterers such as
_ground, rain, and chaff clutter. The radar must be phase

coherent on a pulsé to pulse basis, either through the use of a

c¢oherent transmitter or Xw'.phaSe loékinglthe receiver to the
transmitied'pulse. In'either,casé, the MTI prScessor acts as a
‘periodic ,nafrow band notch filter or a wide bandpass filter,
centered at zero Doppler frequency with a period equal to the
~ PRF. If the clutter . réturn has a non-zero center Doppler
frequency, it must'bé shifted to zero before MTI processing is
'performed, either by manual or automatic frequency tracking. This
.18 required to center the undesifed returns in the filter étop
band. | B
_ MTI filtéré introduce a'weighﬁing'of the scatterer return as
a function of its doppler frequency. The average clutter power

received at the delay time T corresponding to range Ro.from the
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chaff scatterer, in this case can be written as
cC = P'("r‘o)" Ji: a; 2 [H(uw;y]? pz(To - 1) ~ (85)

where a; is given by Equation (77), p(1,) is the normalized pro-~
cessed pulse and H(ui) is the frequency response of the filter.
“The Doppler frequency of the scatterer is

2f _

. o v £12 . .
Wi = ~(2n) T (Vl - Vr) ari (86)

‘where f, is radar frequency, c is the speed of light, Vi is the .

_scatterer velocity, Vr is the radar ve;ocity. and ;}i is the unit
vector from the radar to the ith scatterer.

Various types of MTI filters are possible. They may be
" analog or digital; with or without feedback paths. The simplest
analog form has the functional representation: '

|H(w)|2 = (2)2" (sin wT/2)2" (87)
where T is the pulse period and n is the order of the canceller

(n = 1 for a single delay canceller, n = 3 for a double delay
canceller, etc.). If Equation (77) is used to comphte ‘the

average clutter power, then the approximations discussed in

- Section 7.1 for the .pulse shape p(t) and antenna gain
function G(a,c) may be used. .The calculations for the MTI case
require the ’additionél computation . of H(w) and ‘the
weighting |H(w)|2 of the chaff scatterers. If the scatterers are
sufficiently dense in range and Doppler, then'the'average‘cldtter

pover as given by Equation (85) can be approximated by the double

intégrdl
-_ :. f . S j . ‘- . |
c W—ro) /oy (v) (1, = T)dY pz(m)lﬂ(u)l dwv  (88)

where pl(t) the clutter powgr'density in deiay (range) and pz(u)
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is the clutter power density in Doppler. Before one can use
Equation (88), the densities ¢, (1) and p,(w) must be calculated
from other subroutines based on the relative position and Doppler

frequencies of the scatterers.

7.3 CW DOPPLER RADARS .
Another general class of radars is known as CW Doppler

radars. These radars transmit a continuous narrow band signal

and resolve.targets in angle and Doppler frequency. ‘A true CW
Doppler radar has 1o range resolution, becaose scatterers at all
ranges invthe antenna main beam and possibly the antenna side-
lobes contribute to the return reczived at a given time. Through
the use of signal modulation, for example, frequency modulation,
a limited amount of range resolution may be achieved. Two
antennas are generally required 'for signal 'isolation in CW
systems.

For the 'CW radar with no intentional modulation, the average
pover return from a set of 's_cattere'rs can be described by the
equation o

, 2
. DIRARUUNE
i % S

| (4%)°R{ L,

2 g(ui)

where PA is the average rédar transmitter power and G, i, g, Ry,
and L are as ‘defined in Ekyuation (77). The quantity H (w) is

the frequency response of . the Doppler filter normalized to a.

maximum of unity. u is the center’ frequency of the filter,
and w g is the Doppler frequency of the scatterer as given by
bquation (86).
If all the scatterers lie in the main beam of the antenna.
- then a suitable approximation would be to weight the scatterers
by an average gain G, as discussed in Section 7.1. When a sig-
ntficant number of scatterers appear in the sidelobes, then the
antenna gain function shown in Figure 45 would provide a simple

weightinb. If the scatterers are spuced sufficiently close in
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range so that R; 1is approximately the same for all scatterers,
theﬁ a constant range R, can be used in (89).

The Doppler filter function Hc(u) ideally should be the
measured frequency response of the filter. When measured data
are not availble, the filter design characteristic (such as
Bessel, Chebyshev, etc.) would be applicable. If it is desired
to minimize the computations associated with the filter
. weighting, then a Gaussian filter or other approkimation similar

‘to those in Figures 44 and 45 for the antenna patterns could be

used.

7.4 PULSE DOPPLER RADARS ‘ _ _
Pulse Doppler (PD) radars combine the features of .simple

pulse and CW radars to obtain resolution in range and Doppler.
The tradsmitteq waveform is a periodic series of pulses which are
phase coherent on a pulée-toépulse basis. Processing is accom-
plished with a comb filter matched to the pulse train or matched
to a single line of the spectrum through the use of range gates

‘and a Doppler filter bank. Processing is simplified in the case

of high PRF (approximately 50% duty cycle) pulse Doppler radars
because only a single range gate .is required. Cluﬁter computa-
- tions are complicated by the presence of range ambiguities due to
muitiple time around returns in high PRF PD radars, and by
Doppler ambiguities due to returns froh scatterers whose Doppler
frequency differs by multiples of the PRF from the center
frequency of the Doppler filter in low PRF PD radars.

. The . general form for .the average backscattered power for a

'set of discrete scatterers illuminated by a PD‘rad$§~is '

S : é_] R ' .
C= F-(tos -; ay IX(‘to - T Ami)lz N (90)
wheég the amplitude of the individual scatterers a; is given by

Equation'(77) and X(t,w) ;S the ambiguity function of thé.proces-
sed signal evaluated at the ¢e1a&. oftset'Ari » 16 -7 and
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Doppler offset Awi. The ambiguity function is defined as the
response of the processor to a signal offset in Doppler from the
center frequency of the processor and is given by the equation

x(t,8w) = E% Jf F(u - dw,) H(w) eI*%du (91)

where ﬁ(u) is the voltage spectrum of the complex signal
and H(m) is the frequency response of the filter.

For an unwe1ghted pulse train in which there is no pulse-to-
pulse modulation, the gsignal spectrum for N pulses is

P - & Sin(wd/2) . sin(NwT/2 ' -
F(u) = § =575 NwT/2 : (92)

 where & is the individual pulse width and T is the period of the
pulses. Note that NT is the total duration of the processed
signal. The function ﬁ(w) is sketched in Figure 46 for a typical
case; it is characterized by a sequence of strong lobes of mag-
nitude N6 and width 1/NT, spaced apart by the pulse repetition
period 1/T. Befween these strong lines, the spéctrum is weak and
the variation is rapid due to the sin(NuT/é) term. Not shown in
the sketch is the slow variation(due to the sin(wé/2) term.

If the filter function H(w) is assumed to be an ideal band-
pass filter with a bandwidth B = 1/NT, then X(t,Aw) as given by
Equation (91) can be approximated by '

X(t,0u) = gy SpERE/B I | (93)

for scatterers located in tlie range. gate of width § centered at
delay L, " 2 R /c, or delays T plus multiples of T when range
.ambiguities are present.. The number of range ambiguities for
high PRF Doppler radars is given by the relationship '

Naf- 2(amng min)/cT : (94)
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Figure 46,

Spectrum of the transmitted signal.
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where Rmpax. and Rpin are the maximum and minimum ranges to the
scatterer cloud and T is the pulse period of the radar.

If the approximations in the previous paragraph are used in
Equation (90), the average clutter power at range delay 1t
becomes 4 ' '

(o)

' s‘in(NAu.'r/z)]- 2 :
= 2 _$ [ i : :
c 4‘1: 8% Na FT |TWReT/Z ] | (93)

where Awi is the relative Doppler frequency of the ith scatterer
with respect 1o the center frequency of a particular Doppler
filter. If the spread in the Doppler frequencies of the
scatterers is small, then it may be possible to