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SECTION 1

INTRODUCTION

This report covers the period 1 November 1979 through 31

July 1981 and describes Georgia Tech's approach to the con-

struction of a chaff model. That approach, which is described in

the next section, was ambitious because the intent was to trace

the detailed aerodynamic and electromagnetic behavior of the

chaff dipoles and, at the same time, to model the propagation of

received signals through a radar system. Some of the goals were

achieved and some were not.

The objective was to devise a tool that could be used to

evaluate the effectiveness of chaff in a variety of Situations.

Unfortunately, "effectiveness" has nearly as many meanings as

there are individuals working in chaff concepts: some people are

interested in chaff performance only for the first few seconds

after dispersal, some are concerned with tracking errors due to

chaff and others are interested only in the near field fuzing
problem. Many of the agencies Involved have developed chaff

models to suit their own evaluation requirements, hence it is

perhaps not unexpected that the generation of yet another model

raises the question if duplication has occurred.

Duplication in some areas cannot be avoided, but in the

main, where previous work has been identified, Georgia Tech drew'

upon it. In the Georgia Tech model, for example, the scattering
patterns of dipoles of* arbitrary length are computed using' the

numerical scheme devised by Kuo and Strait at Syracuse University

[1]. Most chaff packages, even roll chaff, contain from fcur to

seven different dipole lengths and we sought to account for the

distribution in length. As far as can be deteruiined, there are

no chaff models that include this degree of detail. Another

sophistication in the model is the weighting of the chaff returns



according to the angular location of the dipoles within the

antenna radiation pattern, another detail not often accounted for

in chaff models.

This report covers the first two phases of a four-phase

effort, The'proposed phases were:

Phase I: Initial Chaff Model. Development
Phase II: Data Analysis
Phase III: Collection of Data (Measurements),

Upgrading and Validation of the Chaff
Model

Phase IV: Development and Integration of a Complete
Systems Model

The data analysis implied in Phase II was' for the purpose of

establishing dipole density distributiot's within a chaff cloud,

which presuppvses that such data already existed. Unfortunately,

the only data that were available were for a test run for which

cloUd mapping was not the primary' objective of the test. Other
data were desired to verify the power spectral signatures of

chaff, but these were not available.
As a result of some of the studies conducted in Phase I,

Georgia Tech determined the characteristics of an instrumentation
system that could acquire the desired information. The radar
should be a coherent, multiple polariation, scanning system.
The coherencr would yield information aoout the spectrum of the'

received signals, the polarization capability would help verify
dipole orientation distributions, and the scanning capability

could be used to assess volume distributions. It is not known if
such a system has been, employed for chaff evaluation; to the best

of our.kncwledge, it has not.
* Phases III and IV have not been funded and are not discussed

in this report, but Georgia Tech has proposed further Integration

of the efforts of others into the chaff model for Phase III.
Specifically, the dispersal model worked out by Traci, et-al.,

[2) was suggested as a means for describing the space/time

2



history of dipole volume density distributions, and the radar

model devised by Bogusch, et al., [3] was suggested as a means

for tracing the received signals thorugh a generic radar

receiver.

Georgia Tech's approach to the problem was to, develop a

quasi-deterministic description. -Since it is impossible to trace

the motion history and, consequently,' the time-varying radar

return of a million or more dipoles, we dealt with a smaller

number. This was done deterministically using the aerodynamic

properties reported by Brunk, et al. [41.' It was assumed that

the signature characteristics of elemental volumes of the cloud
matched those of a finite collection, and we thus invoked

sampling theory. The returns were normalized with respect to the

number of dipoles in the finite collection,- making it possible to

assign an amplitude to any volume within the cloud, providing the

number density of that volume is known.

A subroutine was developed to account 'for the spatial

dispersion of-a collection of falling dipoles and, when used in

conjunction with the electromagnetic scattering properties of

dipoles mentioned above, it was possible to compute the composite

return from the dipoles. This is because the complex return of

each dipole and, the relative phase due to its position in space

was included. The exercising of this part of the program with

progressively more dipoles in the sample collection suggested

that It is not the. number nor the density of the dipoles that

influences the scintillation, of the return, but the dipole motion

itself..

The plan was then to estimate the 'dipole density %unction in
Sthe cloud and to weight the net return from an elemental volume

according to the dipole number density and the position of the

elemental volume within the antenna radiation pattern. At first

it was asumed that the dipole number density followed a

trivariate Gaussian distribution (as might be representative of a

single "puff" of chaff), but the integral could not be evaluated

3'



analytically. The decision to resort to a numerical integration

scheme produced a subroutine that is Impractical because of the

time required to count dipoles.

Consequently, the model is incomplete. An attempt was made

in Phase II of the effort to fit bivariate Gaussian functions in

the transverse plane to experimental data, but the data proved

insufficient for this purpose. If future work is conducted using

this approach, it will be necessary to have better measurement

data or to use procedures such as those reported by Traci, et

al., to generate the volumetric dipole number,density distribu-

tions within a chaff cloud.

Furthermore, our work shows that numerical volume integra-

tion is very time consuming on a computer, as is the tracing of

the motion history of all but a small handful of individual

dipoles., Future efforts should be devoted to approximations of

the volume integral and the development of empiricaldescriptions

of the dipole density variation in a chaff cloud. The latter

requires more controlled experiments than have been conducted to

date.,

7.
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SECTION 2

MODEL OVERVIEW

Development of a chaff model involves at least four separate

kinds of considerations', two of them purely mechanical in nature

and two of them electrical. The former seeks to trace the

evolution of the chaff cloud and its subsequent motion, while the

latter traces the generation, scattering, and reception of radar

signals. The four parts of the model should address

1. Dispersal or distribution methods,

2. Cloud dynamics and environmental conditions,

3. Particle and aggregate scattering characteristics,

4. Victim radar characteristics.

The importance of each part of the model may be illustrated
by working backward through the list, commencing with the charac-

teristics of the victim radar. The signal output from the
receiver may be a visual display, or it may drive a processor

which delivers commands to a control system. This, signal, along

with its effect on an operator or a control system, ultimately

forms the 'basis of a performance evaluation. The signal charac-

teristics depend on the receiver input signal, receiver charac-

'teristics (such as gain, bandwidth, and noise figure), and any

signal conditioning or signal processing that'is performed.

The receiver input signal arises from .returns due to

clutter, multipath, desired and undesired targets,. and the chaff

cloud itself. The relative strengths of these returns depend on

* the radar scattering characteristics ,f each source of return and

in which parts of the antenna pattern t'ey may be found. Clutter

signals are due to direct terra~in reflections that occur at the

same effective range as the target, and multipath signals are due

to indirect reflections from the terrain between the target and

. .•



radar. Multipath returns are common when the target is at low

altitudes and clutter returns may become significant in the

presence of ground vegetation viewed at nongrazing angles of

incidence.

The return from the chaff cloud depends on how much of the

cloud lies in the antenna main beam, and, of course, even the

signal received via the sidelobes can be significant for the

large radar cross sections normally presented by chaff. Because

the radar waves penetrate the cloud with little attenuation, the

dipole density (number per unit volume) and the spatial disposi-

tion of the cloud with respect to the radar beam must be known.

This implies a knowledge or estimate of the cloud size, shape and

position, and the distribution of particles within it. Thus, the

effect of the environment on the cloud particles should be esti-

mated.

The orientation 'of the dipoles depends on their aerodynamic

properties, and the electromagnetic scattering from the cloud is

influenced by the orientation and size of the dipoles. As far as

can be determined, there is only one study of the motion and

orientation history of thin dipoles falling through the air

(4]. That study showed that dipoles tend to follow helical paths

as they fall and that they tend to maintain the initial angle of

attack. It should be noted that the dipoles were dropped in-

dividually in still air for that study.

"Finally, the growth and evolution of the cloud depend on the

initial conditions of dispersal. Several deployment methods can

be postulated, ranging from continuous, seeding from an aircraft

moving at constant velocity at a given altitude to the bursts of

several chaff munitions cannisters launched from the ground. The

dipole density 'distribution within the cloud obviously varies

with time and with the method of dispersal, and the fall rate and

cloud drift depend on local wind and ,turbulence conditions.

Thus it can be seen that several mechanical and electrical

processes must be analyzed, and the approach proposed by Georgia

6
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Tech was to develop a modular program. The modular approach
allows various portions of the model to be changed as the need

arises without disturbing the remaining portions of the model.

This also makes it possible to introduce or to "inject" test

parameters directly into the program for testing and debugging

purposes, and permit parallel (simultaneous) development of the

modules.

The conceptual form of the chaff model is shown in Figure 1,

where it is, assumed that all pertinent input parameters have been

delivered to the program and have been appropriately stored. The

main flow of computation is downward through the center of the

diagram, with inputs called from either side of the diagram as

needed. Note that environ!mental parameters are called early in

the computations to establish the statistics of chaff cloud

growth and motion, and that certain particle dipole factors are

called at one stage while others are called later. Certain

victim radar characteristics are similarly required for the scat-

tering computations while others are needed later to calculate

the effect of signal processing at the output stage. The final

module in the diagram computes the action of any servo loops in

the radar and simulates the information normally d.spli&yed by the

radar to an operator.

For the initial development of the-chaff model, it was felt

that clutter and multipath- effects were small enough to' be

neglected. This is typically the case, for a ground-based radar

whose antenna is' pointed a few degrees or more above the

horizon. If it later turns out that clutter and multipath

effects are significant, these can be embedded in modules that

feed .the scattering module near the center of the diagram of

Figure 1. Similarly, if it appears useful to add (nonchaff)

radar target returns, a target module may be developed and added

to the model. However, it is felt thtt these were ancillary to.

the main effort of the initial model development.

7



INITIAL CONDITIONS

number of dipoles
dispersal rate,
velocity,

Fplacement ENVIRONMENTAL
PARTICLE FACTORS

length to width air density, wind
ratio, mass, velocity, wind di-
drag coefficient profile

i i~!!ii ti~~olil:.turbulence.

fall rate, growth
rate,drift,dipolee

_________________density, distribu -_________

Ition, orientation
VICTIM RADAR PARTICLE SCATTERING

f requency, antenna angular dependence,

pattern, polariza- legth dependence,
tion, pulse shape, frequency depen-
duration SCATTERING MODULE dence

statistics of
received signal

lin amplitude and

VICTIM RADAR phase VICTIM RADAR

receiver gain, "signal processing,

bandwidth, noise filtering, doppler

figure spread,,integra-

S--------------- SIGNAL CJTPUT tn time

statistics of
loutputvoltage

versus time

S SERVO LOOPS

displays',tracking,
acquisition,
scanning

Figure 1. Conceptual form of,-the complete chaff m'odel.
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For the purposes of initial model development, not all the

features displayed in Figure 1 were included. For example, dis-

persal was assumed to be the default case of corridor chaff, and

chaff puffs per se. were not included. Although some work was

undertaken on the characteristics of four classes of radar (see

Section 7), the radar receiver characteristics remain to be

modeled.

The configuration of the initial model is shown in Figure

2. The input to the radar receiver consists of a mean signal

amplitude and a, normalized time signature which, when combined,

describe the instantaneous complex signal in time. The mean

signal amplitude was to be generated by an integration routine

which evaluates the returns from dipoles in a thin spherical

shell at constant range from the radar.

These returns involve the product of the antenna radiation

pattern in space and. the dipole density distribution within the

cloud, and we sought to accommodate the general case in which the
antenna is not necessarily pointed directly at the cloud. -Unf or-

tunately, this portion of the program was not completed before

the end of- the contract had been reached. The output from the

integration scheme was to have been the mean signal amplitude for

each of several contiguous range bins, much as is recorded during

chaff tests conducted by Office of Missile Electronic Warfare

Systems (OMEWS) and other agencies.

The dipole motion model shown at the left side of Figure 2
was developed on-the basis of the study by Brunk, et al.- [4],,and

it includes. a turbulence model and a steady wind drift

component. The motion model is based on an approximate solution

of the aerodynamic forces on a slender fiber and it commences

with the. generation of initial. positions and orientations of a

collection of~a finite number of dipoles. The change in position

and orientation of each di'pole over a small interval of time is
computed under the assumptions that the air density, projected
area of the dipole and the aerodynamic drag force remain constant
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Figure 2. Initial chaff model..
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over the time interval. It turns out that the tirae interv&l must
be less than about 10 ms in order for the approximations to hold,
hence it would require many small increments to index time for a

complete cloud duration of 30 minutes. For this reason, time
signatures only 60 seconds long are generated by the sub-
routine. The dipole positions and orientations are updated on

the basis of the small changes during the interval.
The dipole scattering model makes use of the exact solution

for the currents induced along the 'dipole by the incident wave.
The numerical procedure is known as the method of moments, and

the subroutine is largely 'a modification of a program devised

elsewhere [1]. The subroutine generates the complex scattering
pattern (i.e., phase and amplitude) of a dipole of given

electrical length and stores the pattern in tabular form. This
is performed for each dipole length (not each dipole) in a given
chaff package and needs to be done only once for each length.
Whenever the scattering amplitude is needed by other subroutines,
a value is extracted from the table using a linear interpolation

scheme.

-Since the return from a collection of dipoles is the
coherent sum of individual contributions, the motion moael is
used in conjunction with the tables produced by the electromag-
netic scattering model. The summation of the individual returns
generates a normalized time signature which can be transformed to
the time domain if desired. Indeed, this transformation was

envisioned to be used in modeling *the radar recetiver and the
processing that takes place there, but, as with the volume inte-

gration module, 'this portion of the model was not completed.
Section 7 outlines the kinds of signal processing that takes

place in four different kinds of radar systems.'

i n1



SECTION 3

ELECTROMAGNETIC MODEL

In addition to a dozen or more different chaff designs in

the U.S. Armv inventory, there may be experimental designs that

need to be evaluated., Hence it was necessary to develop a way to

compute the return irom a dipole of arbitrary length 'at an

arbitrary frequency. The return from a single dipole depends

only on the orientation of the dipole with respect to (a) the

incident electric polarization and (b) the aspect angle. The

return from many dipoles depends on the spacing between dipoles

as well as upon the orientation. These features are included in

the program modules as described in the following sub-sections.

3.1 SCATTERING FROM A SINGLE DIPOLE

As .can be seen from Table 1, most chaff loads contain

more than one length of dipole, and since the radar frequency is

allowed to be arbitrary, we must have a way of calculating the

scattering pattern of a dipole'of arbitrary length. To do so, we

used a program developed at Syracuse University [1]. The program

was modified slightly to suit our particular requirements;

although the user must be aware of an error in the original

program (5], the error had no impact on our own application.

The program makes use of the method of moments, whose

principal exponent was Harrington [6]. The basic approach is to

write the'integral equation' for the currents induced on a wire of

finite length and to reduce' the equation to a system of homo-

geneous linear equations. It is assumed that the wire is small

enough that there are no significant circumferential currents,

implying that the wire must be much smaller in diameter than the

incident wavelength, typically less than X/50. For practical

radar frequencies and chaff dipoles, this condition is almost

always satisfied.

The excitation of the wire may be due to one or more

voltage sources inserted at gaps'along the wire, or it may be due

12



TABLE 1. CHAFF LOAD PARAMETERS

Length, Number,
Type Designation Cut No., Inches Millions

Cartridge HR-129T/AL 1 2.00 0.75
RR-144/AL 1 0.66 5.25

RR-163/AL 1 1.20 0.079
2 0.60 0..5925

1 1.99 0.034
2 1.12 0.034

RR-171/AL Roll 1 3 0.82. 0.102
4 0.71 0.130
5 0.61 0.136

Rol'l

6 1.74 0.032
7 1.12 0. 032

RR-171/AL Roll 2 8 0.82 0.032
9 0.45 0.2?7
i0 0.36 0.390

1 0.75 0.36
2 0.63 0.72
3 0.59 0.13

RR-125/AL 4 0.56 0.72
5 0.39 0.36
6 0.36 0.72
7 0.31 0.18

1 0.70 2.25
2 0.60 3.00

RR-146/AL 3 0.51 1.50
4 0.45 2.25
5 0.39 3.75

1 0.70 1.5
2 0.64 3.0

Package RR-147/AL 3 0.62 4.5
4 0.59 1.5

1 1.84 1.50
2 1.61 0.54'
3 1.07 0.75

RR-153/AL 4 0.63 1.50
5 0.55 1.50

1 1.84 1.50
2 1.61 0.75
3 -1.07 0.75

RR-153 A/AL 4 0.63 1.50
5 0.55 2.25

1 1.60 0.375
2 1.34 0.375

RR-178 (XN-2) 3 0.97 0.750
4 0.64 0.750
5 0.54 1,-250
6 0.34 1.500

13



to an incident plane wave. The reduction of the integral equa-

tion to a system of homogeneous equations is accomplished by

dividing the wire into a collection of subsections. The current

supported by any subsection is due to the incident wave as well

as to the fields radiated by other subsections of the wire. The

problem amounts to determining the current strength on each sub-

section such that the resulting distribution satisfies the

boundary conditions, namely that the current must.be continuous

and that it vanish at the wire ends.

The solution to the problem obviously,, requires the compu-

tation of,a finite collection of ihatrix elements. These elements

are computed (in the Syracuse program) under the assumption that

the current distribution along a wire subsection has a triangular

shape, rising linearly from zero at either end to a peak at the

midpoint. A matrix inversion is required. When the inverted

matrix is multiplied by the excitation vector (a column matrix),

the current distribution along the complete wire 'is determined.
The smaller the subsections, the more accurate the solu-

tion. For generally acceptable precision, 'the subsections should

be no more than A/20 in length, but since the memories of modern

computers typically limit the matrix to about 200 x 200 = 40,000

matrix elements at most, wires more than IOA long cannot be

handled accurately.

Once the currents have been computed via the matrix in-

version, they can be summed in a 'discretized" version of the

radiation integral. This yields the far scattered field which,

when normalized to the incident field strength, is a direct

measure of the radar cross section of the wire.

It is much' easier to compute the bistat" field in

several directions fbr a single direction of incidence than it is

to compute the backscattered field for several directions of

incidence. This is because each new direction of incidence re-

quires a new matrix inversion. In the program implementation of

this computation, the lengths of the individual dipole cuts are

14
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fetched from a table of chaff. information not unlike Table 1.

For example, 5 different lengths would be fetched for the RR-

146/AL chaff. These are normalized with respect to the incident

wavelength, and the modified Syracuse program (which is called

SCAT in the Georgia Tech program and is embedded as a subroutine)

is called.

Subroutine SCAT computes th.e backscattering cross section

for each dipole length at 91 aspect angles ranging from broadside

to end-on (i.e., at one-degree ;increments) and returns these

values to the main program. The main program stores the values

in a. look-up table acccessed by other subroutines. In the case

of 'RR-146/AL, five such tables would be created and saved.

Figures 3 through 6 are comparisons of the backscattering

patterns predicted by SCAT and the measured patterns reported by,

Chang and Liepa [7]. The computed data are shown as solid lines

and the measured, data as dashed lines, and the amplitudes are in

decibels with respect to a square wavelength. The amplitudes of

the broadside and near broadside lobes generally agree within

about I dB for the shorter dipoles, but this deteriorates to as

much as 6 dB for some of the narrow lobes in Figure 6. The loca-

tions of the major lobes agree better for the shorter dipoles

than for the longer ones; the misalignment between measured and

predicted lobe locations ranges from about 3 degrees in Figure 6

to none in Figure 3. The traveling wave lobes. (the large ones

near the sides of the patterns) seem to be the hardest ones to

match with any degree of 'oonsistenby, being overestimated by

about .3 dB' in Figure 3 and underestimated by 2 dB to 4' dB in

Figures 4 through 6.'

The fact that the predicted lobe' locations always lie,

closer toward the center of the pattern than the measured on.es

suggests one of two possibilities, or perhaps both. For'one, tile

theory may not ancount for the small but finite charge that ac-

cumulates at the wire ends.' For another, the dipoles measured b,.

Chang and Liepa may be fatter than those used in the model. In

15 .
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any event, the discrepancies between theory and measurement shown

in these figures are not considered serious.

3.2 SCINTILLATION CHARACTERISTICS OF MANY DIPOLES

One of the objectives of the model is to simulate the

signal scintillation as thousands of dipoles change position with

respect to each other. The dominant cause of scintillation is

due to the rate of change of dipole position -- not the spacing

between the dipoles. In a deterministic synthesis of

scintillation, we can use only a small'number of dipoles to model

a cloud of millions, and the question comes tV mind how small a

sample is adequate.

In an attempt to answer that question, we conducted a

series of simple numerical tests on a finite collection of half-

"wave dipoles. The dipoles were allowed to fall along helical

paths as suggested by the study of Brunk, etý al. (4],. and the

phasor sum of their returns was computed at closely spaced time

intervals. This was' performed for as few as 8 and as many as

1024 dipoles. The resulting time histories were transformed to

the frequency domain so that the power spectral densities could

be examined.

The radar cross section of a half-wave dipole can be

expressed as (8]

V0 - • e 1

where, -O.M the broadsideradar cross section of the dipole,
,approximately 1.23 X21

p - unit vector aligned 'along the dipole axis,

e - unit vector aligned along the incident electric

vector.

Since there are many dipoles whose returns are 'to be summed vec-
torially, we must keep track of their positions. If the distance

from the dipole to some origin is • ,

20



= (p %e) 2 ei 2 kr°i (2)

where i is a uni vector along the direction of propagation of

the incident wavw. The time dependent quantities in Equation (2)

are the dipole orientation p and its position r.

According to the Brunk team, freely falling dipoles

follow spiral trajectories. This was determined from

photographic records of more than 300 individual "drops" in a

quiescent chamber. The dipoles tend to maintain their initial

pitch angle. The parameters of the motion are the spiral

rate a, the radius of gyration a, the pitch angle y of the spiral

path, and the angle of attack a with respect to the spiral

path. Figure 7 illustrates these parameters.

For simplicity, we allow the incident wave to propagate

in the direction i - -x in the coordinate -system of Figure 8.

Allowing the axis of the helical trajectory to be displaced from

the origin, we designate its location by (xo,yo). Consequently,

the exponent in Equation (2) is

-i2k[x 0 + a cos(A + st)]

where A is the initial angular position around the path.

Finally, we assume, as suggested by the Brunk study, that the

dipole maintains its initial orientation with respect to the

horizontal.' Call this angle 0 - y - a. Therefore, Equation (2)

becomes

V'i - V7 sin 2 e exp 1-i2k[x 0 +'a cos(A + Qt)]I (3)
'00

For a collection of dipoles, we used a random number

generator to establish the distributions listed in Table 2.

Then, using an assumed radar frequency of 10.5 'GHz, we computed

the return for' each dipole using Equation (3) and summed them

21,
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Figure 7. Geometry of the helical path* folloved by a falling dipole.
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vectorially. A selection of time histories and power spectra are
displayed in Figures 9 through 15. The amplitudes on these

figures are with respect to an arbitrary level, hence absolute
values cannot be inferred from them.

Figure 9 shows the phase and amplitude of the return from

20 dipoles computed at 0.5 millisecond intervals. The maximum

rate of change of phase is about 60,000 degrees per second, or
167 Hz. The closest spacing between nulls is at the left of the

diagram and is about 4 ms, implying that frequencies as high as

25C Hz may be expected in the spectrum.

Figure 10 is the time history for 32 dipoles for a dura-

tion of1 1 second, a much longer period than for Figure 9. Figure

11 is the power spectrum as obtained from a Fourier transforma-

tions of the signal of Figure 10 to the frequency domain. The
phase information was retained in performing this transformation

and a Hanning weighting function was used,.; Figure 11 would imply

that the highest significant frequency is about 50 Hz, somewhat

less than the values deduced from the 20-dipole data in Figure

9.

The time history of the return from 512 dipoles is given

in Figure 12; in comparison of this history to the 'history for 32

dipoles in Figure 10, it is difficult to detect much difference

in the 'scintillation. The power spectrum (Figure 13) is somewhat

broader, however, with significant frequencies as high as 75
Hz. The results for 1024 dipoles are shown in Figures 14 and 15;

the spectrum is slightly narrower than that of Figure 13.
These comparisons suggest that a small number of dipoles,

perhaps as few as 50 or 100, are adequate for modeling the scin-
tillation characteristics of a much larger number of dipoles.

There appears to be a slight trend toward greater bandwidths for
greater numbers of dipoles, but this trend is weak at best. For

a radar frequency of 10.5 GHz, the maximum signal bandwidth
appears to be about 150 Hz (from -75 Hz to +75 Hz).
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The bandwidth does not seem to be related to the dipole

number density. Since the dipoles in Figures 9 through 15 were

all uniformly distributed over the same horizontal distance, 1024

dipoles were much 'more concentrated than 32 dipoles. Thus, the

bandwidth is fixed by the- dipole motion properties -- not by

their concentration. This fact makes it possible to separate the

scintillation characteristics from the absolute dipole concentra-

tion levels in the cloud.
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SECTIOCN' 4

DIPOLE MOTION MODEL

The simple model presented in Section 3.2 was only for

the purpose of selecting a large enough number of dipoles to

ensure that the cloud signal scintillation characteristics could

be simulated using a small enough number of dipoles that the

computer running time could be minimized. The effects of turbu-

lence were ignored; for the purpose of accounting for local tur-

bulence, a more sophisticated motion model is needed. Such a

model is developed below.

The general, first order equation of motion for a chaff

particle is

d 1 ATf ½pAp CD (u-v)ku.-v)I (4)

where

m mass of the particle,

p - atmospheric density,

Ap - surface area of the particle projected onto the

plane normal to v,

CD - drag coefficient,

U atmospheric velocity, the instantaneous sum of

steady and turbulent components,

v - particle velocity,

SB - -mgz - the body force,

g - acceleration due to gravity.,

- unit vector in the upward direction.

The motion history can be determined by solving Equation

(4) for v, but this cannot be done analytically due to the random

and unpredictable ,components of i. To simplify the'integration

34
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of Equation (4), therefore, we shall assume that a time interval

can be chosen small enough that p, ApI CD, and the turbulent

components of u are sensibly constant during the interval. This

time interval should be less than about 10 milliseconds.

We represent the atmospheric velocity as

U x(u'x + U"x ) + y(U'y + Ul" ) + z(u'z + U"lf (5)

where the single primes denote the steady velocity components and

the double primes denote the turbulent components. Equation (4)

"can be split into three equations, each corresponding to motion

along one of the three Cartesian coordinates,

.dv xd-' E- c (u - V )2 (6)

dvzT z F (UZ - Vz)2 (8)

where ± P Ap CD

.2m(9

The (±) sign option is necessary to preservc the v ctor sense of

the velocity difference (u,- v)'in Equation (4), and we shall

assume that whichever option is required, it is nown• thereby

fixing the value of c.

Equations (6) and (7) can be rewritten as

dv e cdt
(u -v) 2

where the subscripts have been omitted for conveni nce. Integra-

ting, we have.

(u v) v(t) - Ct + at

35
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Solving for v,

U -- V

v(t) u - 1 + E At(u - V (10)
0

where At is the tinme interval and vo is the velocity 'at the be-

ginning of that interval.

The displacement P over the time interval can be found by

integrating Equation (10), with the result

P(t) = P0 + uAt- I tn[l + cAt(u - vo)] (11)

where P. is the particle position at the beginning o,' the inter-

val. This is a pure translation due to the horizontil components

of the atmospheric velocity. To this must be added the horizon-

tal components of the spiral motion mentioned in Subsection

3.2. These added components can be represented by

x -x 0 + a cbs(A + Qt) (12)

y " yo + a sin(A + Qt) (13)

Consequently, the horizontal positions are given by

x(t) -x + (UC. + U" )At + a cos(A + Qt)0 x x

+ £n[in + tAt(u' + u" - V
ex x ox

y(t) Y Yo + (U'1y + u" )At + a sin(A + Qt)

1 (15)
+ ntnl + cAt(u + u vy y oy

and the velocity components are

36
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U' + U -- Vo

v (t) = (U' + U" ) - + U OXx x 1 + At(u' + u" v - (16)S x ox

v t (up + Ul U' y + U" -- v° " (17)y y y 1 + CAt(Uy + U"y - V)
y y oy

The solution for the vertical direction is more compli-

cated because of the gravity term. Equation (8) can be written

as

dV =- dt (18)

C

where we have again ignored subscripts and where V - u - v. The

integral of Equation (18) has two different forms depending on

the sign of c. These .forms are

dx = 1 tan-(

X2 + c 2  .c

Sdx 1 In' x cJ X2 _ C2  2c X + c

Thus, for c < 0, which corresponds to uz < Vz,

.. tan1  [u ~vt tan'1 - CeAt

or

vz (t) (u'z + u's) - c tan tan-1 z ° 0 cC•t (19)

where

C Im Ap CD (20)

'37



Equation (19) must be integrated to find the displacement:

fZ(t)dz t 0 +at (U+ + Ul)dt - +f t tan(E-ceAt)dt

z0 t 0  t0

where

us + U" - V
UOz +Ufz voz

tan& = (21)C

The result is (u'+ u)At 1 'n cos(ccAt)
Z(t) = z 0 z + U)At - - tn

z z 1(22)

+ ZVZ sin(cett)

When c > 0, corresponding to uz > vz, the integration of

Equation (18) yields

£1n u - v(t) 1 c U u V0 + - 2ceat

U- v(t)- u+v c U j 0 cA

which, when solved for v(t), gives

S (u z + U"z Voz + c tanh(ceat).
v (t) (U' + U" ) - c ' + Uv, tanh(ct) (23)
z z z c ,+ "u'-" u - Vo ) tanh(ccat) (23)

In order to integrate Equation (23) to find the displacement, we

can 'express Equation (23) as

,o+,t. +Aot-t+A

j dz f u dt +,c 1 +, de dt (24),Z~ ,to to 1 dept

010 0

where
u + C -2ceto

de -2ct0e(25)

oz

p 2ce (26)
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The integral of the last term in Equation (24) is

S2 n(l - dept)

P.

henice the solution is

2c 1 - dept
z(t) = z0 + (u + c)At - I_ n ptn

1 - de

Inserting the values of d and p,

z(t) zo [(u's + *u z) +c At

- tnI +[u + uz ) + (c -Vo)Ie 2 CeAt (27)

- ± '- + u"- (c + Vo)]

In summary, Equations (14) and (15) give the

displacements in the horizontal plane and Equations. (16) and (17)

are the velocities. Depending on the sign of Equation (9), the

displacement and velocity in the vertical plane are given by

Equations (19) and (22) or by Equations (23) and (27).

In the implementation of these Motion equations, the new

particle positions and velocities are updated from the previous

ones-, and At is the time interval 'over which the updates are

made. The parameters required to'generate a time history are

1. Particle characteristics (length, diameter and mass),

2. Initial position,

3. Initial orientation,

4. Spiral characteristics (rate, radius and sense)

5. Drag coefficient of the particle,

6. Atmospheric characteristics (density and velocity)

7. Turbulence components, and

8. Time increment.
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The particle characteristics are available in a table stored

internally. Whenr a given, chaff load is specified, the length,

diameter ani mass of the chaff dipole types are retrievable. The

initial positions and orientations of the dipoles are randomly

generated; typically they are uniformly distributed throughout a

relatively small cube. Once the chaff is released, the time is

incremented and the motion for each dipole is computed according

to the equ'ations derived above.

The sequence is started by raudomly generating the

initial angle of attack and the Reynolds number. Since these two

variables determine other properties of the motion via the solu-

tions of transcendental equations, an iterative procedure is used

to establish the remaining initial conditions. The starting

values for the angle of 'attack and the Reynolds number are used

as inputs to a look-up table which returns the axial and normal

.orce coefficients cN and, CA. This pair of coefficients is used

to compute the drag coefficient,

CD- CA cosa + CN sins (28)

Also, the projected area is

A - -LD2 +LDsins (29), p 4

where D and L are the dipole diameter and length.

We now have the values necessary to compute the dipole

velocity along the helical path,

V 2mg siny ) 1 /2

. CDA .(30)

The vertical velocity component is

v - v sinyT (31)

• , 40.



and, for the purposes of establishing the initial conditions, we
will choose the angle of attack, a, such as to force Equation

(31) to take on a specified value, typically 1 or 3 feet per

second, depending on the chaff type. Using the value computed

from Equation (30), this angle, is

a n 2mg v 2  1/3

Q =Aarc sin PApCD -6 (32)

The Reynolds number depends on the velocity,

Re = pv L/u (33)

Where p is the kinematic viscosity of the air. The value of Re

is computed using Equation (33) and is compared with the value

initially generated randomly. If the value computed frc:i Equa-

tion (33) is close enough to the generated value, the initial

conditions for the dipole are regarded as being established. If

not, the new value of a i used with the remaining parameters to

compute a new Reynolds nu,.. a, and the procets is iterated until

a Reynolds number is computed that matches the one generated. We

have now established the initial, conditions.,

The spiral rate is then computed using

2v CSM
L'cos CR (34)

'where Csm is the side moment coefficient and CNR' is the 'damping

derivative for the side moment plane. Both coefficients are

tabulated as functions of the angle of attack and the Reynolds

number. The spiral'radius is

a cosy (35)

where Y = 6 + 8 is the helical pitch angle. Having computed

these quantities, we can now determine the motion history by

41



indexing through time and using the horizontal and vertical

velocity and position equations derived above.

In stepping through time, the angle of attack and, the

orientation angle 0 are deliberately "jiggled" by the addition of

small random changes. Turbulence is induced in the velocity

vector u by use of the description given by Brunk, et al., in

which a new (updated) velocity component is formed. from a

weighted sum of the old (previous) component and a random com-

ponent. This weighting uses correlation' coefficients that are,

in general, different for the, three components of the atmospheric

wind velocity.

In the z direction, the appropriate correlation

coefficient is

R ,At) = exp -At [1 + u 1 21 1 (36)

where T is the correlation time and L. is a length parameter.

The correlation time can be computed from

T- exp(2.2 - 6.5i) (37)dw %w

IdIi Lwz
where dw,

u- = the derivati e of the mean wind velocity

with altitud

i f an intensity

a w = 'the standard deviation of the intensity
distribution

dw
Lz, aw, d-, and i are ta ulated functions of altitude for a
"standard" atmosphere. Thus, T varies with altitude.

A new turbulent wind velocity can be generated from the

old one by the formula

42
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Si10 R u" it ,+ (1 -Rz2) 1/2 J (38)
U"z new = zzold' ( m

where Jm is a Gaussian velocity distribution with zero mean and a

standard deviation aW. Computation of the turbulent components

in the horizontal directions requires another pair of correlation

-coefficients,

exp fatj. (UXA (39

RY exp a &t B + ( , y 2, (40)

where

A (+ 20 (41)

B [ + ,I UJ-, (42)

The length parameters are related by Lz - 2Lx - 2Ly.. Finally,

the updated wind velocity components in the horizontal directions

are

U .Inew U U x 'iold'+ (1 - Rx2)1/ 2 Jm (43)

U" ' u" + 2)1/2 ( - (4y new y y 'old (m (44)

In these expressions, one should be careful to distinguish the

mean velocity components bearing single primes from the double

prtmed turbulent components.
Figures 16 through 18 are examples of how the position

history behaves for a collection of 16 dipoles. These figures

represent the projections of the dipole positions onto the three

coordinate planes for 55 seconds of free fall in a turbulent
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atmosphere. The position axes are ;,arked off at 50-foot inter-

vals and the dipoles were initial!:- -Iared in a cube 25 feet

along a side.

Figure 16 shows how the dipoles spread out in the hori-

zontal plane. At the end of 55 seconds, some dipoles, are as much

as 150 feet away from their' initial position,. suggesting drift

rates as high as 3 feet/second. Once in motion horizontally, the

dipoles tend to maintain that velocity. However, careful examin-

ation of the 12 frames shows that some of the paths have a dis-

tinct curvature that could represent spiral trajectories of very

large radius. A typical spiral should be less than 2 or 3 feet

in diameter.

A position history in a vertical plane is shown in Figure

17. The spreading out in the vertical plane is not as great as

in the horizontal plane. After 55 seconds, the centroid of the

cloud appears to be about 100 feet lower than it was at the be-

ginning, implying a fall rate of less than 2 feet per second.

Figure 18 shows the spreading in the other vertical plane. Ob-

serve that one dipole broke away from the main group and fell

about 40% faster than the others. This particular dipole

executed more than half a revolution around its spiral path

during the 55-second history,, suggesting a rate of about 0.1

* radian per second. (The dipole is ringed by a small' circle in

Figure 16 for identification.) Note that there seems to be

general drift along the x-axis, implying a steady wind component

of about a foot per second, which was, in fact, specified on

input.
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SECTION 5

DIPOLE DISTRIBUTION MODEL

5.1 PLUME DISTRIBUTION

To estimate the radar return from the cloud, we need to
know where the cloud is, what its shape is, the dipole density

distribution within the cloud, the radar location, the radar

pointing direction, and the antenna radiation pattern. An inte-

gration of the product of the dipole density function and the

antenna pattern function over the extent of the cloud will give a

number proportional to the mean radar return. The fine-grain

time varying signature can be described by separately exercising

the turbulence and scattering models already developed. Let us

focus for the time being on the amplitude only, and let the cloud

be "corridor chaff" dispensed continuously by an aircraft moving

at constant altitude and velocity.

A possible model of. the dispensed chaff cloud is a trun-

cated conical plume, as shown in Figure 19. Since the aircraft

velocity is much greater than the dipole settling rate, the plume

axis will be essentially horizontal. If we now conceive of the

plume as being attached to the aircraft, it will be "pulled" at a

velocity equal to the vector sum of the aircraft and viind veloc-

ities. For simplicity, we, assume the wind velocity (direction

and speed) to be constant. Then the cioud will'move as shown in

Figure 19, and we can predict where the plume axis will be at any

point in time. We now need to determine the 'dipole density dis-

tribution within the cloud4

The work of Traci, et al., suggests that tue dipole den-

sity, distribution in a plane transverse to the plume axis is a

bivariate Gaussian function. Although the Traci team dealt only

with chaff puffs (not plumes), their data may be used to estimate
tVe expansion rate of the cloud.

First let us assign a coordinate system to the plume, as

in Figure 19, where the plume axis coincides with one axis of a

right-handed Cartesian system. The distance u is measured up-
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Figure 19. Chaff plume model'and coordinate systema.

4.9



stream from the cloud centroid and v is measured transverse to

this dimension in a 'horizontal plane. The vertical distance z is

measured upward. Wo assume the transverse dipole density func-

tion has the form

p(vz) = exp [- 1/2 (-1)2 +( 0 . ] (45)
0av 0Z

where p0 is a constant related to the dispersal rate (i.e.,

dipoles per meter or dipoles per second), zc is the vertical

location of the plume axis and av and az are the standard devia-

tions in the transverse plane. These standard deviations

obviously increase with time or downstream distance from the

plume apex, and we need to establish the expansion rate. We

shall ignore for the moment the steady decrease in zc as the

cloud settles vertically to the ground.

Traci, et al., present' plots of, density contours for

several different atmospheric conditions for four elapsed times

after dispersal. The expansion rate can be estimated'by reading

the charts, solving Equation (45) for, av or az, and plotting the

results. We choose the atmospheric condition labeled Simulation

G iin the Traci report, corresponding to a shear profile with

neutral stability. From the Traci figures, Table 3 can be con-

structed for Po = 1000.

TABLE 3. PLUME PARAMETERS

t,min P v,m Z-Zc,m avm azm

2 - - - 50.0 30.0

12 15 210 150 72.5 51.8

22 5.1 330 210 135.2 86.1

32 2.69 430 250 159.9 93.0
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A.

Except for the data at t = 2 minutes, for which Traci, et

al., present oav and az as an analytical fit, the last two columns

were computed assuming the form given by Equation (45), and the

data as read from the Traci figures are listed in the first four

columns.

The open and closed circles in Figure 20 represent the

deduced values listed in Table 3. The curves are approximate

fits to those data assuming the' form

a = t)" 2  (46)

where £ is a characteristic "length" determined from the data.

(i.e., a curve fitting constant), a is the speed of the aircraft

and t is the elapsed time since dispersal. For a speed of 200

m/s, the characteristic lengths that produce the two curves in

Figure 20 are

V= 6.67 cm, zz 2.6042 cm

If we now insert Equation (46) into Equation (45), we have

p(a,v,z,t) po exp[ 1  v2 z c 21 (47)

The units in Equation (47) must be consistent, of course, so that

the exponent remains dimensionless.

If. we now assume that, once-cdispersed, the dipoles' have no

net motion along the plume axis, then the total number of -dipoles

in 'a thin transverse slice through the plume must remain"

constant. The dipoles may spread. out transversely, thereby

lowering the concentration, but the total number must not

change. In a transverse slice of thickness Au, therefore, there
will be an unvarying number of dipoles, N
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i I l

N = Au p(u,v,z,t) ds

Au Pc exp 21tJv dv exp 2U )dz

=2 at Au po4• v£
0 V Z

Consequently, the concentration p0 is a time dependent quantity,

t= 0 uN (48)
o2t Au 

1, tv Lz

Note that P0 has the ,dimensions of (volume)-I and is 'therefore a

dipole number density.

Roll chaff is commonly described by the number of dipoles

per inch packed into the roll, and the (chaff dispenser ejects the

dipoles at rates measured in inches per minute. 'Let n be the

number of dipoles per inch and let d be the dispersing rate in

inches per second. The number of dipoles dispensed in an inter-

val of At seconds is therefore

N - ndAt

The distance Au traveled by the aircraft during this interval is

"Au =At.

Hence,

N nd
Au

and

P0 (t) nd )"(49)
2(a1)2 tV'w II
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Therefore, the dipole density distribution is

•(•,~vozt) =nd
p~~ u v z~ ) 2(u + Uc ) € VW 9

2( [u )I L IV v )2 (50)

expXL
2(u + uc) IIz

where uc = at is the separation between the aircraft and the

cloud centroid and t is the elapsed time. since the aircraft

passed the point represented by the centroid.

Recognizing that u = at is the distance along the plume

axis at the point where p is measured, and accounting for in-

efficiencies due. to "birdnesting," we can express Equation (50)

as

; (ut,v,z,t) = rnd
2(u + uc) V w Iv 5Z1'[1 1 v2 (Zz-z21
exp 2(u uc I _2 +z-) 2

where r, is the efficiency. This, constitutes a complete descrip-

tion of the dipole number density as a function of position with-

in the cloud.

To 'gain some idea of what this distribution is, let us

assume a roll chaff package having 600,000 dipoles per inch dis-

pensed at a rate of one inch per minute. Hence, the dipoles are

dispensed at the rate nd = 104 dipoles per second. If the'

efficiency is 30% and if the aircraft travels at, 200 m/s, the

dipole density along the plume axis is, 101.553/(u + U.) dipoles

per m3. Thus, 100 meters from the apex the density is about 1

dipole per cubic meter.

For distributions of the form exp (-xZ/2a2) , the concen-

tration at x = 3.035 is only, 1% of the concentration at x = 0,
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and 99.73% of the dipoles are contained within these

boundaries. If we choose x = 6.07o as being representative of

the cloud thickness, the growth of the cloud is as shown in Table

4.

TABLE 4. PLUME DIMENSIONS

t, minutes width, m depth, m

10 556 348

20 787 491

30 966 602

5.2 VOLUME INTEGRATION

Given the dipole density distribution within the plume,

we have the task of finding the net received signal from that

distribution. We begin by considering the "conventional" form of

the radar range equation,

P -p a t Gr (X52)
r t (42)3R4

where Pr = received power,

- Pt = transmitted power,

Gt.= gain of the transmitting antenna,

Gr = gain of the receiving antenna,

= radar cross section of, an isolated target,

S= radar wavelength,

R = rarge from radar totarget.
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In this expression, it should be remembered that Gt and Gr
are angle-dependent functions that describe the concentration of

energy in a given direction. The two functions are equal for
radars employing a common transmit/receive antenna, and we shall

assume this to be the case. Since the chaff cloud is an extended

scatterer, the return from each dipole must be weighted according

to the antenna gain in the particular direction the dipole may be

found. Thus, Equation (52) must be applied to each dipole.

This is not possible, of course, since there can be mil-

lions of dipoles in the cloud. Instead, we shall assume that the

return from an elemental volume of the chaff cloud is directly

proportional to the number of dipoles in that volume. If we

assume further that the number density varies continuously from

point to point in the cloud, Equation (52) can be written as a

volume integral,

pt 2 f G2- -a dV (53).
r (4n)3 Rp

where a must now be expressed in terms of the scattering cross

section per unit volume.
We assume that the scattering cross section per unit

volume can be obtained .(as described elsewhere in this report)

from the tumble average scattering per dipole; when multiplied by
the dipole number density p, as obtained in Section 5.1, this

gives the *desired quantity. Since the distance to the elemental
volume dV may vary considerably, 'the range R is retained within

tile integral of Equation (53).

The antenna power gain function G can be expressed as the
product of the boresight gain Go and the antenna voltage

pattern. The antenna pattern, in turn, can. be expressed as the

product of a pair of field patterns in orthogonal planes; we

allow these two patterns, to be different because it is quite

common to design radar antennas with fan beams. For simplicity,

we assume the antenna to be a paraboloidal reflector illuminated
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by a feed with a cosine aperture distribution taper in both

planes. The field pattern has the form,

f(w) - cos(nw/2) (54)
1 -W2

where w = (2/w) kL sin*,

L = the length of the aperture in the plane in

which 0 is measured,

* = the off-boresight angle,

k 2:/), the free space wave number.

If the gain is sufficiently high, the far sidelobes of the

pattern will occur at relatively small angles, whereupon Equation

(54) can be approximated by

w a 2.37793 ' 55)Ob

where *b is the half-power beamwidth as measured between the

half-power points (Lot the half beamwidth measured from the bore-

sight axis).

Since there are two patterns measured in orthogonal

planes, say in the azimuth and elevation directions, we can allow

these patterns to be different. Thus,, Equation (53) can be

expressed as

Pr = G' <A2 G F0a 2 Q.f(q) 4 p dV (56)
(4w) 3 .'

where G1, ,antenna boresight power gain,

'3>, - mean radar, cross section per dipole,

p 2.37793 S/Gb ,

q - 2.3,7793 e/Cb,

- angular displacement ot dV from the antenna
boresight in the azimuth direction,

C angular displacement in dV from the antenna,
boresight in the ele'-ation direction,
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L b = half-power antenna beamwidth in the azimuth
b ! direction,

C b = half-power antenna beamwidth in the elevation
direction,

p = dipole number density at the location ot dV.

The fourth power appears in the integrand because the power gain

becomes squared for a common transmitting/receiving antenna, and

the power gain is the square of the pattern of Equation (54).

It is desirable to evaluate the integral in Equation (56)

so as to display it as a function of range, If we choose a

spherical coordinate system centered on the radar, the element of

volume i•

dV R2 cose dc da (57)

Restricting attention to the contributions from only those

dipoles in a thin spherical shell of thickness ARl, the return

from that shell alone reduces to a surface integral,

X2 G 2 (A>
P P 0 __ ff [f(p)f(q) C cosC de dC d (58)

(41)3 R 2

where R is the range to the shell. The limits of integration

should be set so as to include the contributing portions of the

plume intercepted by the spherical shell. A scheme 'for

establishing the limits will be described later in this

section. Unfortunately, the integral in Equation (58) cannot be

evaluated analytically.

It is instructive to explore Equation (58) for a simple

case. To do so, we construct the coordinate system shown in

Figure 21. The plume coordinate system (u,v,z) is angled with

respect to the (x,y.;,.). system by an angle 6, with the positive u

direction being toward the dispensing aircraft. The origin of

p. the plume coordinate system is fixed at the center of the

plume. The plume length is designated by L and is determined by

H,5
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x

SFigure 21. Plume geometry in two coordinate systems.
* The radar is at x -y- 0.
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the duration of the seeding operation. For example, if it took

one minute for an aircraft moving at 200 m/sec to deploy the

chaff, the plume would be 12 km long.

The coordinates of the center of the plumne are Xc, Yc, Zc

SX = It COS E COS 0
•:C e C C

x = R cos e csi a

C Rc cos e sin ac (59)

z = R sin c

where Rc, EdP a are the slant range, elevation angle, and
C c C

azimuth angle to the plume center as seen by the radar located at

the origin of the x,y,z,, system. The u,v,z system origin is at

the plume center and the relationship between these two systems

is

x = xc - U cosa - V sin(c (60)

Y = YC + U S-inB - v cosB

u = - (x - x C) cos8 + (y - yC sin$ (61)

v = - (x - Xc) sinB - (y - y c cosa

As viewed in the u,v,z system, the radar lies at uo, vo, 0, where

Uo RC Cos e 0 cos(aC +

vo, Rc cos ec sin(a c +

Thus', if the slant range, elevation angle and azimuth angle

'(R,c,a) are known for a point in space, the location of the point.

in both coordinate systems is

x - Rtcose cosa u - U0 - R cos(a + 8)

y. ! R cose sina v W v 0 - R cosc sin(a +8) (62)

z -R sine, z = R sine
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We can calculate the dipole density distribution in a

horizontal plane for any time we choose, and it is then a simple

matter to plot the density as a function of the azimuth angle.

Let us assume, therefore, that the radar is located 5 km to the

side of the plume and at the same altitude as the plume axis,

perhaps being mounted on a helicopter. Thus, e = 0, and we

select 0 = w/2, ac = 0. Choosing a time t = 10 minutes fixes the

origin of the (u,v,z) system at a distance uo = 120 km for an

aircraft velocity of 200 m/s. For a dispensing rate of 104

dipoles per second and an efficiency of 30%, the dipole concen-

trations along circular arcs in the horizontal plane are as shown

in Figure 22.

For ranges less than 5 km, this circular trajectory never

touches the plume axis where the density takes on its highest

value. The path sweeps in close to the axis, then moves out

again; hence, the density profiles exhibit a single peak value

(dotted lines). For ranges greater than 5 km, the path crosses

the plume axis twice; hence, these profiles have a characteristic.

double hump (solid lines). The dashed line shows the case when

the circular trajectory grazes the plume axis (i.e., R = vo).

Note that for this particular time (t - 10 minutes), the maximum

dipole concentration is slightly less than 10-3 dipoles per cubic

meter.

As another example, consider a chaff cloud 1.7 km in

altitude while the radar is on the ground. Maintaining a cross-

track distance of 5 km places the plume xis 5.281 km from the

radar ,as measured along the slant range; see Figure 23., The

elevation angle to the plume axis is 18.780.

Figure 24 is a display of the dip le concentration in a

spherical shell 5.4 km in radius and cente ed on the radar. This

shell is slightly larger than the neare t point on the plume

axis, hence it intercepts the plume axis at two places. These

are clearly visible in the figure. The di play itself is of the

contours of constant dipole concentration, plotted on a grid of

61



C'4

....... 0.

-r4

oto

0

V '4

F--4

C4

062



plume

,.•F 5.281 km

S1.7 km radar

5 km 18.7v

Figure 23. Elevation angle to the plume axis
is 18.78* as seen from the radar.
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Figure 24. Dipole density distributions for a
plume 1.7 km in altitude, taken

• along a spherical shell 5.4 km in
radius. Contour labels are the
dipole number density per million

cubic meters.
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elevation and azimuth angles. Note that the vertical scale has

been expanded to a size ten times the horizontal scale, hence the

actual distribution is of the order of 40 degrees wide, but only

3 degrees tall. Note that the maximum concentration occurs at an

elevation angle near 18.35 degrees, somewhat lower than the 18.77

degrees shown in Figure 23. This is because the 18.71P iegree

angle is appropriate to a slightly smaller shell radius.

The function depicted by the contours in Figu-e 24 is the

density function p in Equation (51). The other functions of

importance are the antenna patterns f(p) and f(q). By way of

illustration, Figure 25 shows a typical radiation pattern for an

antenna with equal beamwidths in the azimuthal and elevation

planes of 3 degrees. Shown there are the contours of equal

intensity at the half-power level and for the first eight side-

lobes. Note that the half-power level is 3 degrees wide in both

planes, but that the pattern appears greatly elongated due to the

difference between the horizontal and vertical scales. The

scales were chosen to match those of Figure 24.

According to'the prescription given in Equation (58), the

square of the power pattern of Figure 25 must be multiplied by

the number density pattern of Figure 24, and that product (when

weighted by the cosine of the elevation angle) must be integrated

over the solid angle subtended by the chaff cloud. It should be

appreciated, however, that the representative patterns may be

shifted away from each other by a considerable angle. It should

also be appreciated that the 'pattern of Figure 24 'changes its

character with range.

Turning now to the limits of integration of Equation (58),
we may establish plume' boundaries such that the dipole
concentration in any transverse plane is some specifiable frac-
tion of the axial density. A convenient boundary is that where'
the density has dropped to 1% of its axial value, corresponding
to 3.035 standard deviations, and within this boundary lie 99.73%
of the dipoles. The surface satisfies the equation
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Figure 25. A, representation of the radiation pattern of an
antenna with a beamwidth of 3 degrees. The
central ellipse is the contour of the half-power
level and the remaining contours are the sidelobe
levels. Nulls in the pattern are not shown.
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V2  _(z - z 2 ) 2u in .01 (63)
£v z

which is the equation of an elliptical cone. The limits of inte-

gration may be established by finding the intersection of this

cone with a sphere of radius R, yielding contours in space which

may resemble those of Figure 24. The matheniatical description of

the contours is couched in a quartic equation which must be

expressed in terms of azimuth and-elevation. Partial derivatives

with respect to azimuth and elevation must be formed and forced

to zero, finally leading to the establishment of the limits.

The mathematical complications of *such a procedure out-

st.rip, by far, the detail needed for a practical

implementation. Thus 'we will make some simple approximations.

First, the elliptical cone axis will be assumed horizontal. The

7/ inclination of the cone axis to the horizontal is z/u (the ratio

of the dipole fall rate 'to the aircraft velocity) and amounts to

only a fraction of a degree. Second, the cone is a very slender

* one and we can approximate it with an elliptic cylinder. The

slenderness can be appreciated from inspection of Table 5, which

lists the, transverse distance from the 'cone axis to the point

where the dipole density has fallen to 1% of its axial value.

Over a length of 12 km, the width of the plume changes by

scarcely 26 meters from one end to the other, and its thickness

changes by barely 16 meters.

TABLE 5. TRANSVERSE PLUME DIMENSIONS

FOR t 1 10 minutes

u,km vm z - zc,m

-6 271.446 169.655
0 278.149 173.844
6 284.694 177.935
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Estai.lishing the limits of integration in, the elevation
plane would require that we find the planes tangent to the ellip-

tic -cylinder at its upper and lower surfaces, and containing the

radar. The lines of tangency do not, in general, lie at

positions where v = 0, but for small elevation angles, v is small

at the tangent line. Thus, we shall assume that the limits of

integration in the elevation angle can be found with acceptable

accuracy by setting z - zc = t 3.035 az and v = 0.

Conceptually, therefore, we can imagine four parallel

lines in'space passing through the top, bottom and sides of the

plume at its midpoint, and being parallel to the u-axis. These

four lines may or may not pierce a sphere of arbitrary radius.

If a line dces pierce the sphere, it does so at two points, but

the points may not necessarily lie within the finite length of

the plume.

Considering first the azimuthal limits, we select the-

lines at the sides of the cylinder where z = zc and v +

3.035 ov. We may now ure the relationships in Equation (62) to

find the u coordinates where these two lines pierce the sphere of

constant radius. That is, we obtain the quadratic equation

R2 = (U - Uo)2 + (V - V )2 + 42 (64)

which can be so ved for any of the three variables on the right

side, provided t e rerhaining pair are held fixed in value..

The solution of Equation (64) for constant v and z i-

Su = u t [(R 2 
- Z 2 ), (v- Vo) 2 ] 1/2 (65)

The two lines v = vl, v 2 (for z = Zc) yield four solutions which

will be identified with subscripts:
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U!

u= uo [(R 2 - zc2) - (V 1 - V2 ]1 /2

U 2  u + [(R2 - z 2 ) - (v -'v )2]1/22 (66)

u = u 0 [(R 2 - Zc 2) - (V2 - V o)2l/2

U4  = U 0  + [(R2 zc 2) _ (V 2  V o 211/2

The solutions Equation (66) may not lie on the finite

elliptic cylinder, in which, case the sphere intersects one or

both ends of the cylinder. It turns out there are 22 possible

combinations, including those where there is no intersection at

all. The lack of an intersection is signified by a negative

number in the radicals of Equation (66).-

For, those cases where the spherical shell intersects th'e

end of the cylinder, we may insert u = ± L/2 into Equation (64)

and solve it for v. The general solution is

v = v0 ± [(R 2 
- z 2 ) _ (U - U0 )2]1/ 2  (67)

which gives two roots, of which only one is the required one.

One of the roots will be much smaller in absolute value than the

other, and this is the desired one. In fact, the desired root

must lie. in the range, v, < v < v 2 , or else the sphere would not

have intersected the end of the cylinder. We designate the

desired solutions as ,v3 for u = - L/2, and v 4 'for u = L/2.

It is possible for the sphere to intercept two separate

regions of the plume, as suggested by Figure 24, and the solid

angle integral may cover two disjointed patches;4 This occurs in

four of the 22 possible cases. The coordinates of the endpoints

of the azimuthal integration are. listed in Table 6. Note that

there are four cases (#4, #5, #8, #9) for which the integration

interval is split into two discrete regions. The coordinates can

be used to establish the azimuth angle via the use of Eqi .tions

(62). That is, if u and v are specific coordinates listed in
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Table 6, the azimuth angle can be computed from

arc tan L 4 -(

The limits of integration in the elevation plane are easy

to establish. Given an altitude and a range, the final formats

(for z) of Equations (62) can used. The upper and lower

limits are, respectively,
z + 3.035 aS•= a r c- s i n c _

sn 3.035 az (69)
• •I = arc sin
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SECTION 6

CHAFF DATA ANALYSIS

As has been seen from the discussion of the dipole concen-

tration variation within the cloud, the net received signal

depends ncot only on the dipole number density, but also upon the

radar antenna pattern and how this pattern is oriented with

respect to the cloud. Deconvolving the signal in an effort to

deduce the dipole distribution is not an easy task, but a limited

analysis of one test run was performed with' that in mind.

The Office of Missile Llectronic Warfare of White Sands

,issile Range released the results of a test run for analysis

purposes.. Designated as Experiment LC-38, which was conducted on

15 April 1980, the test was not primarily for the purpose of

cloud mapping, yet the radar operators slewed the antenna at

various times in a coarse attempt at cloud mapping. Had the

cloud been scanned systematically, and had we had more specific

information about the test conditions, the analysis could have

been more detailed.

Because the radar return from chaff is a result of a random

process (the dipole motion), a sample at any time is a random

variable. To estimate the average RCS per resolution cell with

moderate error, we need at least eight independent samples. The

chaff return dec6rrelation time -- the time interval between

independent samples -- is, of the order of 10 to 20 milliseconds

at 10 Gliz. Thus, 'typically 1 to 2 seconds' of data shiould be

collected for each data point on the spatial distribution

curves. But occasionally there were only two samples of the

signal for a fixed range and antenna boresight direction, and a.

,single datum based on the samples is not statistically

significant. Nevertheless, such data were included in the

analysis, even though they tend to inject irregularities into the

p)lotted distributions.
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The relationship between the cloud and the radar is known

only in terms of the azimuth and elevation angles off the antenna

boresight and the range. For the purpose of analyzing spatial

dipole distributions, two of these coordinates should remain

fixed while the third varies. In scanning a printoat of the

measurements, we identified seven data sc<,s in which only the

azimuth angle varied, two in which only the -elevation angle

varied and five in which only the range varied. Using these

fourteen data sets, we attempted to determine the spatial distri-
butions in azimuth, elevation, and range.

Prelir -iary examination of the measured da-a revealed a

skewness in the distributions, and two generalized forms were

postulated that could include or account for the skewness. These

are

:c -21
Y, (x) = C11 x exp(c 3 1 x) x > 0 (70)

ic •22

Y2 (x) = c 1 2 x exp(c 3 2 x2 ) x > 0 (71)

where yl(x) is a generic gamma density function (9] and Y2 (x) is

a generic Nakagami density function [10]. Normalized parametric

equations corresponding to y1 and Y2 are

Yl(x) (k -k1)! (kx/b)k- exp(-kx/b) (72)

1
2, 2/2/rn(MX 2

Y2 (x) (mx 2 /a 2 ) exp(_mx 2 /a 2 ) (73)

where

b expected vaiue of x,

k b 2 .'ivided by the variance of x,
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S C.

a- = expected value of x2 ,

r = tile gamma function.

Families of plots of these two functions are shown in

Figures 26 and 27. The parameters k and-m are measures of the

skewness of the two families, with progressively smaller values

generating progressively larger skewness. To fit the skewness in

the negative direction displayed by tile measured azimuth and

range data, we must reflect the curves about the axis x = 0,

which is equivalent to tihe replacement of the independent

variable by its negative. The functions y1 and y 2 will be

called the skewed exponential and the skewed normal functions,

respectively.

To determine the parameters that best fit the measured dis-

tributions,'we utilized the generalized linear regression formula

Z a + alu + a2 v (74)

where z is the estimate, u and v are functions of the independent
variable, and a0 , a,, and a2 are parameters that minimize the

mean square error,

N
-2 1,, Zz..) 2 (75)

where 'the sample zi is 'a function of tile dependent variable,

(i.e., the received signal or the hCS).

Equation (73) is ininitized by the substitution of Equation
(74) for zi and then, the formation of the partial derivatives

waith respect to o, a,, and a2. Forcing these derivatives to

zero generates a system. of three equations whose solution gives
tle relationships needed for the minimization of Equation (75).

The'relationships are summarized in Table 7.
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Figure 26. The skewed exponential distribution.,
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Figure 27. The skewed normal distribution..
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TABLE 7. CURVE FITTING PARAMETERS

Quantity Skewed Exponential Skewed Normal

Z Iny Iny

Z In y In y

ao I n C 1  In C 12

a, C2 1  C2 2

a,) C3 1  C3 2

u nx nX2

Programs that compute the optimum regression coefficients

(thie C's) for these two kinds of distributions were devised for a
programmable hand calculator. The programs also compute a nor-

!2

malized correlation coefficient R , which is a measure of the

"goodness of fit" between the estimate y and the measurement of

y. A perfect fit is registered when R2 =

The measurements used by Geoirgia Tech *in the analysis were

summarized in a data *print-out--nearly two inches thick. Each

record contained a header that listed the azimuth angle,, eleva-

tion angle, and range, and the returns were given for two dif-

ferent pulses a hundred pulises apart. The returns for these two

ýpulses were spli t into the contributions from 15 range bins, and

th u arithmetic sum of the 15 contributions was listed in a final

column in the record. For the distribution in azimuth and elev-

ation, it was this "sum" column that was used as the dependent

RCS value.
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Measured and fitted distributions are shown in Figures 28

through 34 for the azimuthal variation, for which the range and

the elevation angle remained fixed. The solid data points repre-

sent the average value of the "sum" column for as many pulses as

occurred within an azimuth "window" 0.1 degree wide.

Occasionally there were only two such pulses (the two in a single

record) because the azimuth angle remained within the window only

for that record; the circled data points signify this event. The

number of pulses used to form the datum points represented by the

uncircled points was typically four or more.

These plots show that the signal distributions are skewed,

with higher tails iný the direction of smaller azimuth angles.

The measured data do not always trace out smooth curves, and the

irregularity is due, in part, to' the sparseness of the sampling

represented by the circled data. Had we had access to magnetic

tapes containing all the data (instead of every hundredth pulse),

the distributions probably would have been smoother. Although

such detailed information would have required several orders of

magnitude more processing, that effort could have been handled

easily by a computer. As it was, the limited data available had

to be manually keyed into a hand calculator.

Fitting the distributions given by Equations (72) and (73)

required some judginent as to where to set the Origin, since these

equations require that x > 0. Apparently this judgment was not

quite so good in some cases as it was in others; for example, the

representations in Figures 28, 33, and 34 show the peak of. the

fitted equation shifted somewhat from the, peak suggested by the

measured data. The amplitudes in these three figures are also

somewhat lower tnan the measured data. On tile other, hand,

Figures 29, 30, 31., and 33 show reasonably good fits. For all

figures except Figure 30, the amplitudes of the returns exceed

.100 P2,

Both distrioutions given, by Equations (72) and (73) were

used in the linear regression' analysis and the one having the
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Figure 28. Distribution of radar return In azimuth
for records 57-123.
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Figure 30. Distribution of radar return in azimuth
for records 410-439.
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Figure 31. Distribution of radar return in azimuth
for records 498-525.
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* Figure 32. Distribution of radar return in azimuth
for records 582-670.
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Figure ý3. Distribution of radar return in azimuth
for records 745-811.
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Figure 34. Distribution of radar return in atiuth
for,2records 920-1000
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better fit was chosen and plotted inFigures 28 through 34. The
"better" f it was determined by a comparison of the normalized

correlation coefficient, which is listed in. Table 8 for the

azimuth data along with several other statistical values, namely

the RMS error of the estimate expressed in square meters and as a

percentage. Note that the skewed, normal distribution yielded t'Ae

better correlation for all the azimuth data, except for those in

Figure 31, for which the skewed exponential is a better fit.

The spread listed for these data sets indicates the cross

range distance covered by that particular set of data; it was

computed from the azimuth angle change and the range. Note that

the 'spread ranges f rom less than a km to more than- 3.5 kmn, but-

this should not be construed to represent the cloud size in the

cross range direction. The actual size isý not known because its

orientation with respect to the antenna beam is not known.

Very little data were available to conduct this, kind of

analysis in the elevation plane. Only two sets were found for

which the azimuth angle and the range were held fixed while the

elevation angle was varied. These data are plotted in Figures 35

and 36,' and the information is quite spar se. All of these data

points~ were the averages of only two samples (two pulses) spaced

100 pulses apart. Figures 35 and 36 consist of only 5 and 4

measurements, respectively.

Despite the paucity of elevation plane data, the distribu-

tions fit a positive skew, in contrast to the negative skew noted

in the Azimuth variations. Nevertheless, the sense of direction

is unimportant because angular changes can be measu red in either

direction. As mentioned earlier, the thickness of the cloud is

much less in the vertical direction than the horizontal,, and

Figures 35 and 36 tend to verify this.

The statistical data for the two elevation angle variations

are summarized in Table 9. For both, runs, the skewed normal

distribution represents the better fit. Note for the data in

Figure 36 that the correlation coefficient is close to unity,
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TABLE 8. SUMMARY OF STATISTICAL DATA FOR TIHE
AZIMUTH VARIATIONS

Figure No,. 28 29 30 31 32 33 34

'Elevation
angle 18.44 19.14 19.93 19.40 18.70 19.12 19.01

Range (kin) 18.45 17.40 17.40 18.39 18.39 17.46 17.46

Spread (km) 1.67 2.01 0.84 1.02 2.56 2.11 3.52

R12 0.783 0.893 0.896 0.982 0.758 0.772 0.5b5

RMS error, m 90 59 2 22 49 49 141

• error 49 27 29 15 48 42 71

R 0.852 0.909 0.957 0.958 0.816 0.911 0.666

RMS error, m 81 62 2 30 42 25 109

%error 44 28 20 21. 41 22 55

k 14.3 11.4 5.1 3.5 5.4 5.0 5.2

m 4.6 3.8 1.7 ,1.5 2.1 1.8 2.2
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Figure 35. Distribution of radar return in'elevation
*for records 1188-1203.
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Figure'36. Distribution of radar return int elevation
for records 1283-1289.
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indicating a very good fit. This is due in part to the sparse-

ness of the data: there being only four points to "run the curve"

through.

TABLE 9. SUMMARY OF STATISTICAL DATA FOIL
THE ELEVATION VARIATIONS

Figure 35 36

Azimuth angle 189.25 194.00

Range, km 16.56 16.56

Spread, m 184 197

R 12  0.972 0.086

RMS, error, m 3.8 1.0

error 14 12

2 0.974 0.997

RMS error, m 2.4 0.5

, error 9 6

k 2.15 3.22

m 0.95 1.35

Turning no to the radar returns as functions of range while

azimuth and el vation remained fixed, it is convenient to plot

the results as function of the range gate number instead of the

actual range. his has been done in Figures 37 through 41 (five

data sets); eaci datum in these plots is an average of 6 samples
(2 samples for ach of 3 successive records). The gate width is
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Figure' 40.ý Distribution of radar' return in range
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400 ns, hence the plots are of the radar return over successive

60-meter intervals. Except for Figure 40 whose total width is

0.72 kin, the total width of each figure is 0.96 kin.

Like the azimuth distributions, tie distributions in range

have a negative skew. Figure 39 is an exceptional case, showing

only the tail of the distribution; for this one data set, a

simple exponential function was assumed to be a representative

fit. The results of the range dependent analysis is summarized

in Table 10. The summary shows that the data are quite well

fitted, with the largest error being only 9.2 m and the smallest

*oeff cient of determination being 0.93. The skewness varies

,•ri,. small values (k = 6.O, m = 3.9) to large (k = 1.0, m =

.).(;3), dependin;g on, which particular data 'set one examines.

TABLE 1U. SUMMARY OF STATISTICAL DATA FOM
THE RANGE VARIATIONS

Figure 37 38 39 40 41

I
Azimuth
angle 163.37 172.90 174.33 174.24 174.00
Elevation
anagle, 18.93 19.13 19.93 19.40 18.70
Range, kin 18.54 17.40 17.40 18.39 18.39

It 2 0.930 0.977 0.930 0.990 0.991
i.,;S error, m. 9.2 1.6 0.6 368 1.2
, error 34 17 31 18 14

0R,2 0.971 0.947 - 0.990 0.993
RVS error, m 6.8 3.1 - 3,3 1.0

error 2. 33 16 12

k 6.0 2.5 1.0 5.4 4.0
m 3.9 0.6 - 2.3 1.7'

Most of range, azimiutih, and elevation distributionsshown in

:,igures 28 through 41 are approximated better by the skewed
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normal distribution than the skewed exponential distribution.

The exponential dependence on the square of the independent vari-

able in Equationi (73) suggests that the Gaussian (normal) distri-

bution assumed for the chaff cloud represents a natural choice,

although we must admit that the cause of the skewness in the

measured data is unknown. If the distributions of chaff

particles in time and space are to be more deeply explored, ex-

periments need to be devised in which cloud mapping is the prime

objective of t.le test, in contrast to the kind of data analyzed

here.
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SECTIQN 7

CHAFF CLUTTER POWER IN PROCESSORS

In. general, the processed signal at the radar output caused

by chaff scattered returns is a function of the chaff parameters

(size, orientation, spatial distribution, velocity distribution),

the radar parameters (transmiitted power, antenna gain, polariza-

tion and pattern) and the radar processor (simple pulse, pulse

width withN MTI, pulse Doppler, or CW). This section is concerned

with developing mathematical expressions for generic radar pro-

cessors used to process the received power from dynamic chaff

clouds. It is assumed that the relative positions and velocities

of the chaff dipoles with respect to the subject radar are avail-

able from other analyses as given in earlier sections.

7.1 NONCOHERENT PULSE RADAR

Perhaps the simplest radar processor is that associated with

a noncoherent pulse radar. In this case, the processor consists

of a filter matched to the transmitted pulse and followed by an

envelope detector. The processed signal as a function of time

has a complex envelope 2(t) and an amplitude envelope Z(t) given

by

Z(t) - •a.'(Ti,'=i) eJi e p(t.- -i) (t)m •(76)

where p(t) is the normalized processed pulse,. Ti is the. time

delay of the fth scatterer. (chaff dipole), wi is the radian

Doppler frequency of the ith scatterer, T. is the phase shift
i

(reflection and delay components), and ai is the amplitude of

the return for the ith scatterer, which :an be expressed as
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a. = --- 1/2

I [(4w) 3 Ri 4 Lc
1. C

In Equation (77), Pt is the radar transmitted power, G(ai,ei) is

the one-way power gain of the antenna as a function of the off

boresight angles ai and ci, X is the wavelength, %i is the in-

stantaneous RCS of the ith scatterer, R. is the slant range

between the radar and the ith scatterer, and L denotes the

clutter processing loss..

At any instant To = 2R /c of- time delay corresponding to

range RO, the instantaneous amplitude of the return signal from

Equation (76) is

= a(ti,w) e, I e 1 0 P(To -0 T) (78)

and the instantaneous clutter power is

P(t ) Z2([ ) (79)

For the case of a simple pulse, the' radar hlas no Doppler

frequency resolution and the summation is taken over the range

resolution cell centered at o= 2Ro0/C.

The' random variable Z(To) is generally treated as having a

Rayleigh density function which results in an exponential density
for P(ro) The ayerage instantaneous clutter power is defined

as the expected value of P(To) • If the phase angles Ti qare

treated as independent random variables uniformly distributed

over the interval (0,2w), then the average instantaneous 0ower of
the chaff return is
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C P(To) = E [Z 2 (t)] ai 2  O - Ti) (80)
00 1 0 (0

where ai is tile instantaneous amplitude of the ith scatterer as

given by Equation (77) and P(To) is the processed pulse shape

normalized to a maximum of unity. If the scatterers are suf-
ficiently dense, then the summation can be replaced by the inte-

2
gral fp(T) p (T0 - T) dT.

In the chaff clutter program, separate subroutines are used

for computing the instantaneous positions and' radar cross sec-

tions of the dipoles. Radar reference coordinate systems such as

those shown in' Figures 42 and 43 are required to compute the line

of sight angles from radar to the various scatterers (used in the

calculations of wi and i. ) and the off-boresight antenna angles

of the scatterers (aisi) used in the -antenna pattern
functions. Figure, 42 shows the relationship between the 'antenna
coordinates (x',y',z') and the reference coordinates (x,y,z) for

a ground-fixed system. Here ýo and 00 are the azimuth and ele-
vation angles of the antenna boresight direction and it is

assumed that the antenna lies in the (x',y') plane. The coordin-

ate transformation equations are

x= x cos~o - z sin*o

y -x sino0 sin0 + y coso - z cos*o sineo (81)

zo x sino cosO o + y sinG + z -Cos cos0
0 0 0 0' 0

From Figure 43, -the off-boresight antenna angles in the horizon-

tal and vertical planes can be determined as
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Figure 42. Earth cartesian coordinates (s, y, Z)
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Figure 43. Antenna off-boresight angles. (s andy, )
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(82

-1e.=a , 2 + Z,

i.=tn'1/ (82),i

The exact computation of the average single pulse clutter

power for the noncoherent pulse case requires accurate mathe-

matical representations of the antenna gain function G(a,ý) and

the pulse weighting function p (T) . In many cases, this func-

tional information is not available and various standard mathe-

matical representations must be used (such as sinx/x, Taylor,
Gaussian, and Chebyshev antenna patterns, Gaussian and rectangu-'
lar pulse shapes). When G(a,.e) and p(T) are known accurately,

the computation of Equation (80) may require excessive computer

resources for detailed functions and a large number of chaff

particles. Thus, relatively simple approximations of the known

or postulated antenna pattern and pulse weighting are useful in V
obtaining first order estimates of of the received clutter
power. Given the uncertainties in radar cross section and rela-
tive position and velocity of the scatterers, simple approxima-
tions for G(a,e) and p(r) appear to be adequate if chosen

judiciously'.

Perhaps the simplest approximation of the antenna patterns
in a and c is the rectangular function shown in Figure 44. In

this case, the gain function is represented as: G(a,c) - G for
-6c/2 c c <(A/2 and -Aa/2 < a < Aa/2, and zero otherwise, where
Go is the average gain and 4c and Aa are the equivalent
beamwidths in the two orthogonal planes. If the processed pulse

is also -assumed to be rectangular, then the processed clutter

power can be approximated as

Pt G0 2 A2 (83)

0  (4,) 3. ' •. (83)

oc
where the summation is taken over all scatterers within the range

resolution cell and the c and a beamwtdths. This. formulation
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10



requires a search of the scatterer coordinates to determine those

scatterers which are positioned within the appropriate angle 'and

range intervals, a calculation of the RCS of the subject

scatterers, a summation of the RCS values, and multiplication by

a constant.

If better accuracy requires that the effects of antenna

sidelobes be included in the average power computations, then the

approximation shown in Figure' 45 may be employed. Here GO is the

average main beam antenna gain and G is the average sidelobe

level. For this case, the average chaff clutter return at the

range Ro is
P t A,2

Lc [G '0 • i + Gs 'i aj (84)
0 (4s) 3 R L

0

where the summation i is over the statterers in the main beam and

the summation j is over the scatterers in the sidelobes.

7.2 COHERENT MTI

Pulse radars are frequently equipped with WTI signal procet-

sors to reduce the undesired returns from scatterers such as

ground, rain, and chaff clutter. The radar must be phase

coherent on a pulse to pulse basiS, either through the use of a

coherent transmitter or by phase locking the receiver to the

transmitted pulse. In either case, the MTI processor acts as a

periodic narrow band notch'. filter or a wide bandpass filter,

centered at zero Doppler frequency with a period equal to the

PRF. If the clutter return has a non-zero center Doppler

frequency,, it must be shifted to zero before MTr processing is

performed, either by manual or automatic frequency tracking. This

is required to center the undesired returns in the filter stop

band.

MTI filters introduce a weighting'of the scatterer return as

a function of its doppler frequency. The average clutter power

received at the delay time T0 corresponding to range Ro from the
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chaff scatterer, in this case can be written as

C = P(T) 'ai2 IH(wi)IZ pZ(0° -i) (85)

where ai is given by Equation (77), p(To) is the normalized pro-

cessed pulse and H(wi) is the frequency response of the filter.

The Doppler frequency of the scatterer is

2f 0
w. - -(2r) - (Vi - r an (86)

where fo is radar frequency, c is the speed of light, V1 is the

scatterer velocity, V-r is the radar velocity, and anri is the unit
vector from the radar to the ith scatterer.

Various types of MTI filters are possible. They may be

analog or digital, with or without feedback paths, The simplest

analog form has the functional representation:

IH(W)1 2 = (2)2n (sin wT/2) 2 n (87)

where T is the pulse period and n is. the order of the canceller

(n - 1 for a single delay canceller,, ni 2 for a double delay

canceller, etc.). If Equation (77) is used to compute 'the

average clutter power, then the approximations discussed in

Section 7.1 for the pulse shape p(T) and antenna gain

function G(a,c) may be used. The calculations for the MTI case

require the additional computation of H(w) and the

weighting IH(w)12 of the chaff scatterers. If the scatterers are

sufficiently dense in range and Doppler, then the'average clu'tter

power as given by EquatiOn (85) can be approximated by the double

integral

C. o,) p2( - T)dT f 21(w)H (w) 2 ,dw (88)

whore ol(T) the clutter power density in delay (range) and o2(W)
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is the clutter power density in Doppler. Bef ore one can use

Equation (88), the densi~ties P 1(T) and P2(w) must be calculated

from'other subroutines based on the relative position and Doppler

frequencies of the scatterers.

7.30 CW DOPPLER RADARS

Another general class of radars is known as CW Doppler

radars. These radars transmit a continuous. narrow band signal

and resolve targets in angle and Doppler frequency. *A true CW

Doppler radar has no range resolution, because scatterers at~ all

ranges in the antenna main beam and possibly the antenna side-

lobes contribute to the return recei 'ved at a given time. Through

the use of signal modulation, for example, frequency modulation,

a limited amount of range resolution may be achieved. Two

antennas are generally required for signal isolation in CW

systems.

For the'CW radar with no intentional modulation, the average

power return f rom a set of scatterers can be described by the

equation

22

C a i W - w)12  (89)
(4) Ri Lcci

where Pa is- the average radar transmitter power and G, A, a, Ri,

and Lcare -as defined in Lquation (77). The quantity H c(W) is

*the frequency response of the Doppler filter normalized to a,

maximum of unity, w c is the center' frequency of the filter,

and Wiis the Doppler frequency of the scatterer as given by

Equation (86).

If all the scatterers lie in the main beam of the antenna,

the a suitable. approximation would be to weight the scatterers

*by an average gain Go as discussed in Section 7.1. When a sig-

nit icant numtber of scatterers appear in the sidelobes, then the

antenna gain, function shown in Figure 45-would provide a simple

weighting. If the scatterers are spaced sufficiently close in

106

i;



range so that Ri is approximately the same for all scatterers,

then a constant range Ro can be used in (89).

The Doppler filter function Hc (w) ideally should be the

measured frequency response of the filter. When measured data.

are not availble, the filter design characteristic (such as
Bessel, Chebyshev, etc.) would be applicable. If it is desired

to minimize the computations associated with the filter
weighting, then a Gaussian filter or other approximation similar

to those in Figures 44 and 45 for the antenna patterns could be

used.,

7.4 PULSE DOPPLER RADARS p

Pulse Doppler (PD) radars combine the features of simple
pulse and CV radars to obtain resolution. in range and Doppler.

The transmitte4 waveform is a periodic series of pulses which are

phase coherent on a pulse-to-pulse basis. Processing is accom-

plished with a comb filter matched to the pulse train or matched

to a single line of the spectrum through the use of range gates

and a Doppler filter bank. Processing is simplified in the case

of high PRF (approximately 50% duty cycle) pulse Doppler radars

because only a single range gate is required. Clutter computa-

tions are complicated by the presence of range ambiguities due to

multiple time around returns in high PRF PD radars, arid by

Doppler ambiguities due to returns from scatterers whose Doppler

frequency differs by -multiples of the PRF from the center

frequency of the Doppler filter in low PRF PD radars.

The general form for *the average backscattered power for a

,set of discrete scatterers illuminated by a PD radar is

f -707 a 1i2 IX(i. -,rit Awi )j 2  (90)

where the amplitude 'of the individual scatterers ai is given by

Equation (77) and X(,r,w) is the ambiguity function of the proces-

sed signal, evaluated at the delay, offset - T- Ti and
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Doppler offset Awi. The ambiguity function is defined as the

response of the processor to a signal offset in Doppler from the

center frequency of the processor and is given by the equation

1 - (91)
x(t,AW) 2 F(w -Ai) H(w) eJwtdw (91)

where F(w) is the voltage spectrum of the complex signal

and H(w) is the frequency response of the filter.

For an unweighted pulse train in which there is-no pulse-to-

pulse modulation, the signal spectrum for N pulses is

() sin(w6/2) • sin(NwT/2

Fw6/2 N(T/2

where 6 is the individual pulse width and T is the period of the

pulses. Note that NT is the total duration of the processed

signal. The function F(w) is sketched in Figure 46 for a typical
case; it is characterized by a sequence of strong lobes of mag-

nitude N6 and width 1/NT, spaced apart by the pulse repetition
period lI/T. Between these strong lines, the spectrum is weak and

the variation is rapid due to the sin(NwT/2) term. Not shown in
the sketch is the slow variation due to the sin(w6/2) term.

If the filter. function H(w) is assumed to be an ideal band-

pass filter with a bandwidth B - 1/NT, then X(t,Aw) as given by

Equation (91) can be approximated by

" 6 sin (N,&wT/2')
X(t,'aw) N 6 sinNAwT2 (93)

for scatterers located in the range, gate of width 6 centered at

delay To M 2 Ro/c, or delays T' plus multiples of T when range

ambiguities are present. The number of range ambiguities, for

high PRF Doppler radars is given by the relationship ,

N a - 2 (Rr, Mx- Rmin)/cT. (94)
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Figure 46. ' Spectrum of the transmitted signal."
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where Hmax. and Rmin are the maximum and minimum ranges to the

scatterer cloud and T is the pulse period of the radar.

If the approximations in the previous paragraph are used in

Equation (90), the average clutter power at range delay T0

becomes

C = Z ai2 N 6 [in(NawiT/2 2i aNT [-S N A WiT/2"(5

where Amw is tho relative Doppler frequency of the ith scatterer

with respect to the center frequency of a particular Doppler

filter. If the spread in the Doppler frequencies of the

scatterers is small, then it may be possible to

replace Awi by Awic for all scatterers, where Awic is the center

Doppler frequency of the Doppler spread of the scatterers.

In calculating the average processed clutter from Equation

(95), the radar parameters N (number of pulse integrated), T (the

radar pulse period), and 6 (radar pulse length)' are required.

The quantity Aw is calculated by assuming the center frequency

of the Doppler filter is known. For example, it may be the
Doppler frequency of a target or the center Doppler frequency of

the chaff. Then it may be offset from the computed scatterer

Doppler frequencies wi" Equation (94) is used to compute the

number of range ambiguities., For the computation of Aai 2 (see

Equation (77)), the radar parameters corresponding to peak power

Pt, antenna ,gain pattern G(a,c), radar wavelength ), and loss
function Lc are required. The radar-to-scatterer slant range Ri

and scatterer RCS ai are computed in other subroutines. The

approximate antenna patterns shown' in Figures 44 and 45 may be

employed to minimize the computations.
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SECTION 8
SUMMARY AND CONCLUSIONS

This report summarizes the work performed on two phases of

what was to have been a four-phase program. The principal effort

has been to assemble the components of a chaff modeling program,

but not all the elements have been completed. The approach has

been to characterize the scintillation of the return from a chaff

cloud by the modeling of a relatively small number of dipoles,

under the assumption that this small number (up to about 1000,

and even lOOG dipoles is probably many times more than actually

needed) adequately simulates the scintillation due to all dipoles

in the cloud.

The electromagnetic scattering from a single dipole and the

motion histories of many dipoles are used to generate the scin-

tillation spectrum. Our studies suggest that the total spectrum

is less than 150 Hz wide. This part of the model provides only

the time varying signals, and the amplitudes are normalized with

respect to a single dipole. To scale the amplitude upward to

correspond with the contributions of thousands of dipoles within
a given range cell, we postulated a dipole concentration function

having a bivariate Gaussian distribution in a plane transverse to

the plume axis.

This amplitude depends on the product of the antenna radia-

tion pattern and the dipole concentration.. within a spherical

shell of constant radius. Since both functions vary within the

shell, an integration is implied. However, the integral cannot

be evaluated analytically unless restrictive conditions in

symmetry are imposed. And even though numerical integration can

indeed be performed, the computer running time for such schemes

may discourage the use of the algorithm for routine evaluation of

tactical scenarios. Thus, the model in its current configuration

is better suited for diagnostic purposes.
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An analysis of thfe rpsul 'ts of a single chaff test suggests.
that the Gaxussian distribution is a reasonable approximation of

the transverse dipole concentration. The analysis showed that
although the density distributions are skewed, they are described

better by a. skewed normal di~stribution 'than by a skewed exponen-

tial distribution. Unfortunately, cloud mapping was" not the

primary objective~ of the test and' the number of segments in the

data records useful for-analysis was few.

The electromagnetic features of chaff cloud scattering are

much easier to account for than the motion of the,' chaff particles

and their distributions in space. The effects of local turbu-

lence were accounted for by the use of. a specific turbulence

*profile. Such profiles change from day to day, season to season

and place to pl.ace. Hence it is impractical to attempt to gener-

ate more general models.
As it stands, the chaff model requires a great deal of com-

puter time to trace the motion histories of even a small collec-
tion of dipoles and to carry out the numerical integration of a
postulated dipole. distribution. Hence, the model m~ay consume

* large amounts of computer resources for evaluating specific
,tactical scenarios. The model is incomplete because the radar

receiver ,module ori~ginally. contemplated was not constructed.

However, a study of four classes of receiver processors was

undertaken to define the, features that need, to be included in
such a module.

As for future requirements, a receive module should be

constructed and techniques should be investigated for reducing

the running time. It would be, helpful to devise- empirical
descriptions of the dipole concentration levels based on measured

data.
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