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I. Introduction

Distributed data base systems have been advocated as

the solution to a large number of data processing problems

by increasing data accessibility, security, and throughput

while reducing cost and resource requirements.

Unfortunately, commercially available distributed data base

systems have not yet appeared. This paper attempts to

provide the potential user or designer of a distributed data

base system with an understanding of the basic operational
characteristics of such systems. The emphasis is upon the

mechanism for data access which is an essential component of

any data base system. Our intention is that the reader gain

an appreciation of the capabilities and complexities of

distributed data base management from the explanation of the

data access mechanism.

This paper first discusses the basic structure of

distributed data base systems by detailing the functions of

the system components. Then in parts three and four,

mechanisms are presented for the placement and access of

data in a distributed data base system. The fifth part

deals with the movement of data among machines and then the

sixth section briefly discusses the concept of

multiprocessor backend machines. The final portion

discusses data integrity considerations in distributed data

bases.
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II. BagL ground

A distributed DBMS involves a network of computers

whose software systems and applications share the functions

of the data base system and the stored data. The processors

in the network may be classified into any of the following

four functional categories:

1. Frontend--to act as a telecommunications monitor

and provide the user interface to receive input

and transmit output;

2. Host--to execute the application program;

3. Backend--to control and prouide data access

through execution of data base system

operations;

4. Bi-functional--the combination of host and

backend functions.

The organization of distributed data base systems has

been discussed by several authors [11,16,20,25]. While

terminology in the various reports varies, their basic

structures are very similar. The architecture of

distributed data base management described in this paper is

further explained in [18].

The most elementary form of an example of a distributed

data base management system is the backend DBMS; see Figure

1. Canaday et al. [2] first proposed and prototyped the

backend DBMS concept. A key component of any distributed

data base system is the interprocessor communication

system. The type of functions which must be supported by an

interprocessor communication system are--
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1. transmiting data and commands between tasks

(e.g., application program and DBMS tasks);

2. making the topology of the network transparent

to the application program;

3. synchronizing the tasks which exchange data to

insure no data is lost, garbled, or pilfered.

References [4,12,22,23,29] describe currently operational

systems.

The utilization of an interprocessor communications

system can be illustrated by considering the simple case of

a single host, single backend system. A task in the host

requests a service from the DBMS system. The residual DBMS

system contained on the host interacts (through the

communications system) to request the service from the

backend. A task on the backend computer performs the data

base function, including any necessary I/O operations on the

data base. The results of that activity are then returned

to the requesting host task (through the communications

system). Hence, the backend processor can be thought of as

an I/O device for the host machine.

Backend data base management systems have been shown to

be feasible approaches to the enhancement of data processing

systems [2,14,18]. Further, it has been suggested that a

backend data base system minimizes the task-switching

overhead on the host CPU and provides for a smaller primary

memory requirement for both data base system and application

software on the host CPU in comparison to a single machine

DBMS. In general, a backend DBMS, due to its capacity for

concurrent execution, has the potential for providing a
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substantial increase in throughput over a single machine

system.

Figure 1 illustrates the distribution of software

functions over the two processors in a backend-host DBMS

environment. As depicted in the figure, the data base

software in the host consists only of a host interface

routine (HINT) between the Communication System and the

application program. For each data base command issued by

the application program, the HINT formats a message which

indicates the action that the backend processor must take to

complete the data base operation. The message is

transmitted to the backend machine via the Communication

System. The backend interface task (BINT) unpacks the

message and passes the information to a Data Base task which

acts as a surrogate at the backend node for the application

program. The Data Base task presents the data command to

the DBMS model. The execution of the command may result in

one or more I/O operations. Completion of the data base

operation results in data and/or status information being

returned to the application program; the path for access and

response is indicated in Figure 2.

The backend DBMS configuration can be extended in a

variety of ways in realizing a distributed data base. A

first step might be to spread the data base management

function over several backend processors. The primary

difficulty in the development of a multiple backend

configuration is the determination of the correct backend

processor for a particuar data base operation. A mechanism

for the selection of a backend processor is presented in

- w I I 
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Section IV.

A distributed data base network may contain several

hosts, as well as several backend processors. In this

environment, each host processor selects the appropriate

backend machine to execute the data base command and

communicates with that machine in the manner described

previously. Return of data and status information by the
backend processor is carried out by attaching the identifier

of the host processor to the transmitted data.

The final step in the evolution of distributed data

base network topologies is to combine the functions of a

host and a backend machine on a single processor to form a

bifunctional machine. Use of bifunctional machines in a

distributed DBMS provides the potential for more efficient

utilization of system resources. The only restriction as to

the function of a processor in a distributed DBMS should be

its physical connections to secondary storage. Figure 3

presents a data base network with host, backend, and

bifunctional machines.

There are problems associated with the distributed DBMS

system; e.g., many of the requirements (logging, recovery,

deadlock) found in single machine DBMS's become considerably

more complicated in a distributed environment. In addition,

some problems (e.g., data translation, communication, data

redundancy and allocation) also arise. However, the

potential benefits to be derived from a distributed data

base system have spurred considerable research activity in

this area [11,16,20,26].

Implementation of distributed data base systems with
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more than two processors has been limited since attention

Sthas focused upon basic problems of backend software

development, intertask communication, and performance

optimization, as well as concurrent updating encountered in

a distributed DBMS. Such problems could cause major

performance problems in the operation of a distributed DBMS.

Theoretical solutions to the concurrency control problems

have been suggested, but performance has not yet been

properly tested (1,6,7,25,26,28]. Allocation of files in

distributed data base systems using linear programming

models has also been studied [3,5,9,13,15,21]. The problems

of integrity and security in distributed data bases and

recovery have received a limited amount of attention

[8,171.

The problem of data placement and access requires a

solution before a distributed data base system can be

developed. As stated previously, the host interface must be

able to identify the proper backend processor for each data

base operation. In addition, there must be a mechanism for

specifying the location of data in the network. An

additional requirement of a data access mechanism is that

procedures must exist for the movement of data among network

nodes under control of a (utility) program or an operator.

This paper presents a methodology for data placement and

access in a distributed DBMS satisfying this particular set

of requirements.

-!
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III. Data Placj ementJ~

A host interface routine must have the ability to

determine the location of a backend node containing data

requested by an application program. Alternative methods

for obtaining this information are to broadcast a query to

all backend nodes or to utilize a directory lookup facility.

We advocate the use of a directory since it involves less

communication. For purposes of this discussion, the

directory will be termed the network data directory.

A key concept of the network data directory, as viewed

by the authors, is that it does not contain the specific

location of each data item in the data base; but rather that

from its contents the location of every data item can be

derived. For a data base management system, a unit of data

distribution (granule) must be selected so that there is a

one-to-one mapping from the granule to the backend machine.

The actual distribution unit is dependent upon the

organization of the DBMS and will vary with the granule

equivalency available within -the actual DBMS utilized

[8,10,24].

The language for the definition and manipulation of the

network data directory can exist as a stand alone facility

for use by the DBA, or it can be incorporated into the data

definition language of the data base system. In order to

specify the placement and access of a granule in a

distributed data base, the backend processor controlling

access to the granule must be named in addition to the host

processors which may execute application programs accessing

that granule. This information can be compiled from
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statements similar to those shown in Figure 4 into the

network data directory format depicted in Figure 5.

The placement of the network data dictionary within the

network of distributed machines is a trade-off of

performance, reliability, and complexity of maintenance. A

central directory can be maintained easily, but a high

penalty in performance is paid to reference it across the

network. Furthermore, if the machine holding the directory

fails, the entire data base system fails. A distributed

directory can be composed which places a copy of the

directory entries for those granules accessible by a

particular host at each host node. The performance

improvement is quite clear since the directory access is

within the host running the accessing program.

The listing of the host processors in the network data

directory provides additional security for the distributed

DBMS. That is, the DBA can specify whether the granule can

be accessed globally or whether is must be restricted to

certain application functions residing on specific host

machines. Security restraints are imposed by the host

access control lists to limit the access to a granule by

specifically designated application programs. File names

are maintained in the network data directory to facilitate

the movement of files among machines in the network in the

case of failure or to improve performance. Figure 6

pictures a distributed data base and its network data

directory.

The utility of the host access control list (see Figure

4) is to validate dynamically each access of a host
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GRANULE IS identifier1

BACKEND IS identifier2

DEVICES ARE identifier3{,identifier4,... }

F(identifier5,access rigts)
HOST-TASKS ARE {(identifier6,access rights),..

ALL

Legend:

* Host Access Control ListI

.! -

Figure 4

Network Data Directory Definition Statements
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1!' Figure 5

Format of Network Data Directory
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application program to a granule. The access control list

is distributed to the backend at the time of execution of

the network data directory definition statements. This list

contains the identification of each program which can access

the granule and the manner of permitted access. At the same

time, a capability list (i.e., a list of granules accessible

-I by a host and the manner of access of each) is constructed

and sent to the hosts. This permits checking of access

rights at both the host and backend. This technique

provides dynamic verification of decisions which prevents

most errors on either host or backend from permitting

unwarranted data access, and thus individual errors must be

complementary to permit erroneous access to the data.

IV. Data Access

There are three phases of data access during the

- execution of an application program. First, all access

rights to data are established. Once this has been checked,

the program issues data manipulation commands. Third, the

termination of the program data request must be indicated.

In order to establish the application program access

rights, the application must issue a command, or commands,

*indicating the granules that may be accessed. For example,

- if a CODASYL DBMS were operating in a distributed

environment, a READY AREA statement could serve this

purpose. The host interface routine (HINT) extracts the

granule names from the access request command and, using the

name as a key to the network data directory, determines the
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backend machine for each granule. A message is then

transmitted (via the communication facility) to the backend

interface (BINT) requesting that the granule be made

available to the application program and that a task be

created, if one does not already exist, to execute the data

manipulation commands.

Several problems may arise which can hinder the

establishment of access rights. If the application program

does not satisfy all integrity and security requirements,

its request will be rejected; but even when integrity and

security constraints are met, device and machine

availability problems could arise. If after receiving the

access request from BINT, the DBMS discovers that the files

for the granule are not on-line, it must request that the

backend operator mount the data file. If the requested file

can be made available, access to the granule is granted by

the DBMS to the application program and an appropriate

response is returned to the application program; otherwise,

the application program is notified of the unavailability of

the granule.

In many data base systems, a single data base command

may result in operations on data units in several granules.

For example, in a CODASYL-type DBMS, the deletion of an

owner record from the data base may result in the deletion

of its member records. In such situations, the BINT routine

on the backend machine executing the data base command must

determine the granule names for each data unit involved in

the operation. The physical location of each granule is

determined from the network data directory. If other
A
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backend machines control access to granules affected by this

command, messages are transmitted to them by BINT indicating

the operations to be performed. This process could reoccur

several times before completion of the data manipulation

command, depending upon the complexity and distribution of

the data base. When the BINT routine on the original

backend machine has received completion messages from all of

the other BINT routines engaged in the completion of the

command, it then transmits a message with the appropriate

data and status information to the HINT routine on the host

machine. HINT then passes this information to the

application program.

- V. Data Movement

In a distributed DBMS, it may be desirable for reasons

of efficiency or security to change the physical location of

data or programs. Movement of application programs is

certainly a function of a network operating or load leveling

- system. The only data base involvement is setting the

network data directory (either statically or dynamically).

Movement of data is done on a granule basis and can occur

either by a programmed transfer between storage devices of

different backend machines or by an operator physically

moving a storage device volume from one computer to

another.

The case of data movement under control of an

application, or utility, program will be considered first.

When this occurs, the network data directory must be
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automatically updated to reflect the new location of the

transferred granules. There will be no effect on any host

application program. The data transfer requires that all

activity on the granules cease during movement. In order to

force a quiescent state, all new data base requests for the

granules must be held. Once all pending data base requests

are complete for the granules, the data transfer can be

accomplished (using network utility programs). The

procedure is:

PrQ.edure

Let Bs be the sending backend machine, Br be the

receiving backend machine, Us the network operating system

utility on Bs, and Ur be the network operating system

utility on Br. The steps indicated below must be followed

to move a granule, G, from Bs to Br.

1. The Us routine is called and instructed to move

G to Br.4 2. Us notifies the BINT routine on Bs that G will

be moved.

3. BINT on Bs will not accept any further messages

- for data base operations on G from the message

system routines on Bs. Any such pending

messages are returned to their host machines.

4. The BINT routine on Bs determines the host

processors for G from the network data

directory.

5. The BINT routine on Bs requests that the message

system on Bs instruct the message utilities on
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all host machines for G that any messages for

this granule are to be held in the host machine

by the message system.

6. The BINT routine on Bs will notify Us when all

data base operations on G are complete.

7. Us sends a message to Ur indicating that G is to

be transferred to Br.

8. Us writes G onto secondary storage, thus

insuring that the latest version of G will be

moved.

- 9. Upon completion of the transfer, Ur informs all

HINT and BINT routines to change the network

data directory entries for A from Bs to Br.

10. The BINT routine on Br obtains the list of

hosts for G from the network data directory.

11. The BINT routine on Br notifies the host

message utilities that any queued requests

for data base operations on G may now be sent

to Br.

The interaction of the utility routine, host and

backend interface, and system software resulting from the

execution of Procedure 1 is illustrated in Figure 7. Only

the software directly involved in the data transfer is

pictured. Figure 8 give the network data directory for the

sample configuration of Figure 6 if G4 were transferred to

D2 on M2 from DI on MI .

The situation in which a physical file is moved

manually is more complex than a programmed transfer. The

most difficult situation arises when the file is active on a
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backend machine and the operator instructs the operating

system to remove the file from on-line status. As part of

the procedure for making the file unavailable, the list of

granules on the affected file is obtained from the device

header list. BINT is instructed to manage the cessation of

all activity for each of the designated granules by using

the method described for programmed transfer of the

granules. Any pending requests for operations on data in

the granule will be held in the host processor. When BINT

determines that all activity has terminated for each granule

on the file, the operating system informs the operator that

the file may be removed from the backend machine. When the

file is mounted on the new backend machine, its presence

must be made known to the network. The BINT routine on the

backend machine receiving the file must instruct all other

interface routines that the network data directory has been

modified to reflect the new location of the granules. The

BINT routine then communicates with the HINT routines of

each transferred granule indicating that it will now accept

data base operations for those granules.

Procedure 2 describes the operations required in the

physical movement of a file between backend machines in a

distributed data base system with no redundant data.

Let Bs and Br be backend processors as in Procedure 1.

Let Ud be a network operating system utility to

dismount a file and Un a network operating system utility to

mount a file.
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The steps shown below must be followed to move a file

from Bs to Br.

1. The Ud routine is called by the Bs operator.

2. Ud initiates steps 1 through 6 and 8 of

Procedure 1.

3- Ud notifies the operator of Bs that the file may

be moved.

4. The Bs operator removes the file.

5. The Br operator mounts the file.

6. The Un utility routine is called by the Br

operator.

7. Un initiates steps 10 through 12 of Procedure

1.

Constraints may exist on the movement of storage media

among backend machines. Naturally, the physical limitation

of device compatibility must be considered. A granule may

be spread over multiple files, in which case all files must

be moved together. This is determined from the list of file

names maintained in the network data directory.

VI. MuliUp1& Processor Backend

Throughout this paper, reference has been made to the S
backend machine rather than a backend processor. The reason

for this distinction is that a backend machine may be

composed of several processors. A multiple processor system

may be configured to achieve one or several objectives;

these include improved performance in parallel processing,

reliability of excess resources (processes, memory, devices,
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etc.) and locality of granules for fast access.

A multiple processor backend machine can be configured

in several topologies--two of which are discussed here.

First, a multiprocessor system where processors share all

memory and devices provides complete recovery and parallel

processing capabilities. This architecture is typically for

homogeneous processors or a vendor generic family of

processors. A second configuration of heterogeneous mini-

and/or microprocessors can accommodate a multiple processor

strategy via specialized memory-to-memory adapters (DMA)

[291, or via loose-coupling connections (such as channels or

telecommunications lines). The parallel processing strategy

is more complex because each processor runs distinct

software. As a backend, one processor must distribute

- requests for granule access across the affected processors

and collect responses before returning responses to HINT.

Recovery in this configuration will also require manual

intervention (physical file movement) if one processor

fails. Data movement among processors is not necessary
either for performance or recovery reasons in the first

configuration. Interprocessor movement of data could occur

for either of the above reasons in the heterogeneous

configuration. In such cases, data movement is accomplished

by treating the multiple processor system as a small but

complete distributed DBMS and applying Procedures 1 or 2.

Whereas performance considerations have not been

stressed here, multiple processor backends must be

configured with specific data distributions and a required

performance in minpd. The first system is only susceptible
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to slow processor or slow device service due to request

queues. The second architecture is susceptible to serious

line delays because of loose couplings. Such an

architecture also suffers from the overhead of

interprocessor synchronization. However, this topology does

not suffer device contention. Thus, tuning of such a system
is via distribution of granules across processors, whereas

the monolithic multiprocessor only distributes granules

across devices.

In general, the performance of software functions in a

multiple processor environment follows very much the same

form as that described for the single backend environment.

However, maintaining the support of a memory-to-memory

communication link falis upon the network software.

Further, other functions will cause more overhead as the

level of complexity of the interactions increases.

VII. DataInert

A distributed data base system contains several

potential hazards relative to the integrity of data, that

either are not present or are less severe in a single

machine DBMS. Some data transmission errors and the

maintenance of redundant data items are unique to
distributed systems. Although recovery and deadlock do

require special attention in the single machine environment,

their proper treatment in a distributed DBMS requires more

complex measures. We now consider the ramifications of

these hazards upon the procedures for data placement,
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access, and movement.

The function of protecting the data base from the

effects of data transmission errors lies with the

communication system. The detection of major problems such

as nonavailable links or grossly malfunctioning

communication lines must be a basic part of any intermachine

communication system. Failure to establish a link is

indicated by a mes-i-g from the communication system to the

transmitting interface routine; this may either attempt a

retransmission (after some delay) or abandon the

communication. When a host interface detects a major

communication failure, it returns an error code to the

application program which permits the program to decide how

to terminate gracefully. If the application program

terminates due to communication failure, the HINT routine

can initiate a rollback and recovery procedure when a

communication path is available. A BINT routine does not

initiate any recovery procedure upon detection of a

communication failure. For reasons of data consistency,

recovery must be initiated by the host computer [17]. The

HINT routine awaiting the response from BINT could

eventually detect the communications failure through a

- timeout mechanism and then initiate the recovery mechanism

when communication is reestablished.

- Multiple copies of specific data items in a network

provide increased performance if the data items are accessed

predominantly in a retrieval mode [3,5,15,21]. If a copy of

the data item is placed on a backend physically proximate to

the host machine which accessed the data, intermachine
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communication would be reduced; however, update of redundant

data poses some complex integrity problems. The mechanisms

* for operation in a distributed data base system presented in

this paper do not consider the problem of data redundancy.

In order to provide for the on-line update of redundant

data, concurrency control methods similar to those presented

in 11,5,7,25,26,28] would have to be employed.

The mechanism for data access presented in this paper

does not consider the possibility of deadlock. In order to

permit operation in a shared update environment, a

concurrency control mechanism must be incorporated. The

data movement procedures require the establishment of

exclusive access to the granule prior to the transfer of

data. Since the data movement procedure holds exclusive

access to only one granule, no deadlock can occur due to

data movement.

VIII. C /QflQ .iR±.QJ1 .,

This paper has presented a mechanism for the

distribution of a data base management system in a manner

that is transparent to the application program. The

software structures presented lbe- presuppose an underlying

computer network with the necessary hardware and software to

allow interprocessor communication via a standardized

message system. The basis for data base distribution is the

network data directory which provides information on the

location of each data base granule.

The mechanisms detailed here provide a data
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distribution facility that is relatively easy to realize.

However, many of the problems of distributed data bases

111,16,20,271 still require practical solutions. The

dilemmas posed by deadlock, backup, recovery, and security

are extremely complex. Another formidable stumbling block

for distributed data base systems is the general lack of

portability and compatibility within both hardware and

software systems. The system described here is

implementable on homogeneous networks with moderate effort.

For heterogeneous networks, advances in software

portability, hardware compatibility, and standardized

communication protocols are required. Progress is being

made in these areas although it is hampered somewhat by the

marketing philosophy of locking the user in' to a vendor's

product line. Even within the product line of a single

vendor, the appearance of commercial distributed data base

systems is still some years away.

'I

*1

II
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