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L INTRODUCTION

A. Objectives
The objectives of this study were:

1. to review the available information on the velocities, masses, and spatial

distributions of glass fragments from windows broken by airblast;

2. to sumarize the results from experiments to assess the biological effects

of window “ragments; and

3. to predict the glass-fragment hazavds inside structures *n relation tu blast

overpressure.
B. Background
For the nuclear detunations in Japan, the most far-reaching blast hazard to

people inside structures was from window-glass fragments. Patients were treated for la-

cerations received out to 3.2 km from ground zevro in Hiroshima and out to 3.8 km in Naga-

saki (Reference 1). In both cities, che area of glass breakage was nearly sixteen times

as great as the area of significant structural damage.
Laberateory ctudies have prnvided information on the overpressure levels required

to shatter windows (Reference 2). Velocitias, masses, and spatial distributions of frag-

ments have been measured by trapping the fragments in Styrofoamﬁ}(expanded polystyrene)

witness plates located behind windows in houses subjected to large cuemical or nuclear ex-

plosions (References 3 and 4). Yields ranged from 14 tons HE to 29 KT nuclear and incident

overpressures ranged from 2 to 34 kPa.
Biological effects have been studied using individual glass fragments fired from

an airgun and impacted against anesthetized dogs and sheep (Reference 5). A similar study

was conducted with acrylic fragments (cited in Reference 4). Anesthetized shecp have been

expoced behind glass windows mounted on the end of a shocktube, and dogs have been exposed

behind windows in a house subjected to a nuclear detonation (Reference €).




. NATURE OF WINDOW BREAKUP

When a glass pane is dislodged from its mounting by a blast wave, normally almost the
entire exposed, or unclamped. portion of the pane shatters into numerous fragments whose
size generally decreases with increasing overpressure. Figure 1 shows reconstructions of
three typical window panes broken by a sonic boom with a peak incident overpressure of ap-
proximately 3 kPa. Most of the fragments had one or more sharp points, but there was a
wide variety of shapes. In general, the cleavage surfaces were approximately perpendicular
to the planer surfaces of the fragments.

Motion-picture records have shown the breakage of glass windows with either two
91x91x0.305~cm panes or ore 137x183x(.574-cm pane mounted on the end-plate clesing a shock-
tube. For either type of window, the fragments appeared to form a cloud which expanded in
all directions as it translated. Most of the fragments underwent significant rotation be-
fore they had translated z m. However, many of the fragments could not be characterized
as tumbling and in a random orientation. The leading hal® of a cloud was roughly hemi-
spherical in shane with a significant number of the larger fragments appearing to have
their flat surfaces tangent to the hemisphere. This tendency was diminished, but still
evident, at 4 m. The vraguents in the trailing half of a cloud appeared to be randomly
oriented hefore they hao translated 2 m. In general, for a given overpressure, the larger
panes produced larger fragments which tumbled 1ess than the fragments from the smaller
panes.

Figure 2 is a post-shot view of the interior of a room in which two 122x229x0.607-cm
panes of glass were exposed face-on to a shockwave having a peak incident overpressure of
4 kPa (Reference 3). Forty-six fragments were trapped in the witness plate located 2.1 m
downstream of the window. Other, persumably less hazardous, fragments struck the Styrofoam
leaving impressions but were not retained. Still other fragments missed the witness plate

entirely. Many fragments can be seen either laying on the floor or still retained in the

frame.

®
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PANE NO. 1

PANE NO. 3

Figure 1.

Reconstructions of three
30x48x0.17-cm panes of
sheet glass broken by a
sonic boom with a pesk
incident overpressure ot
about 3 kra (after ref-
crence 4).




Figure 2.
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Postshot view of the interior of a room in which two 122x229x0.607-cm panes cof
glassy were oxposed face-on to a large HE detonation at an incident overpressure
of 4 kPa ‘.11 er reference 3).
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1. QVERPRESSURE TO SHATTER WINDOWS
The peak overpressure required to shat*er a window in a building has been found to
be a function of pane area and thickness, type cf glass and mounting used, orientation of

the window with respect to the blast wave, flaws in the glass, and stresses introduced

when the pane was mounted. Figures 3 and 4 show predictions for a 5Q-percent probability
of failure of sheet- and plate-glass windows oriented either face- or side-on to the blast
wave {Reference 2) Each line in the figures extends across the range of pane areas nor-
maily used for glass of the indicated type and thickness. These predictions were derived
for an explosive yield greater than 1 KT, a cliearing distance (i.e., the distance from the
center to the edge of the wall containing the face-on window) greater than € m, and an as-
pect ratio of the pane greater than 1/3. It was recommended that thin, weak muntins be 4
ignored, and thus the area within substantial frame members be considered as the pane area.
In Figure 3, it can be seen that the incident overpressure for a 50-percent proba-
bility of failure is between 0.6 and 6.0 kPa for most face-on windows. Note also that the
type of glass, plate or sheet, influences the overpressure required for Tailure more for

thin panes than it does for thick panes. For a small, thin pane exposed to a relatively

high overpressure, the failure time could be short compared to the time reguired for a
rarefraction wave to travel the clearing distance. In such cases, the probability of break-
age should be influenced more by the neak overpressure on the window than by its orientation.

Figure 4 shows that, rur a 50-percent failure rate of ordinary single- or double-strength

sheet-glass windows, the peak overpressure on the window is essentially the same for the

face- and side-on orientations.

V. FRAGMENT VELOCITY AND MASS

Figure 5 gives the velocities and masses of the 87 fragments trapped 2.1 m behind a

glass window with two 107x51x0.317-cm panes oriented face-on in a room exposed to a 175-ton
HE detonation at a peak incident overpressure of 4 kPa (Reference 3). Only the data for
trapped fragments are plotted bccause the velocity and mass of a fragment that was not re-

tained in the witnesc ‘.late could be estimated only in those cases where the impression was

1"
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detonation at an incident overpressure of 4 kPa (after reference 3).
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relatively flat. Neither th2 velocities, ranging from 7 to 56 wm/sec, nor the masses, rang- i

1 ing from 0.05 to 22 g, showed a significant variation with impact location. The results

of a least- squares linear-regression analysis appear as a solid line, and dashed lines are

drawn one standard error of estimate above and below the regressior line. The geometric- i
1

e

mean velocity and mass are indicated by a "+" on the regression Vine.

Figure 6 is a plot of geometric-mean fragment velocity vs peak overpressure on

0.3175-cm-thick glass windows in 1- and 2-story houses exposed to a long-duration blast
wave (Reference 3). The data were obtained using explosive yields varying from 14 tons
HE to 29 KT nuclear, distances between windows and witness plates ranging from 0.9 to

5.2 m, and pane thicknesses between 0.163 and 0.671 cm. A scaling factor, given in the

figure, was used to adjust the velocities for glass thicknesses other than 0.3175 cm.
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indow (after reference 3).
This factor indicates that the geometric-mean velocity was 14 percent greater for 0.203-cm
glass, and 9 percent less for 0.671-cm glass, than the corresponding velocity for 0.1375-cm
glass. Although the overpressure required to break a window was approximately inversely
proportional to pane area (Figure 4), the geometric-mean fragment velocity (Figure 6) seemed
to be reasonably independent of pane area.

Velocities were also measured from the motion-picture records showing the clouds of
fragments emanating from glass windows mounted on the end-plate closing a shocktube
(Table 1}. The maximum velocities of both the leading edge and the middle of each cloud,
in addition to the time (measured from when the blast wave first struck the window) and
translation distance required for the leading edge to reach maximum velocity, were deter-

mined. As the incident overpressure increase?, the acceleration times decreased, and the
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acceleration distances appeared to approach an upper limit of approximately 0.9 m for the
91x91-cm panes and 1.3 m for the 137x’83-cm panes. In no case did the fragments appear
to slow downsignificantly before reaching the biclogical targets at a distance of 2.1 or
4.3 m.

Independent of the overpressure ievel ar type of window used, the maximum velocity
of the leading edge of the cloud tended to be a factor of 1.10 times the maximum velocity
of the middie of the ¢loud. For each shocktube test, the average inpact velocity was
taken to be the geometric mean of the maximum velocity of the middle of the cloud and the
maximum velocity of the leading edge of the cloud divided by 1.10. These computed average
velocities are nlotted in Figure 7 as a function of the peak overpressure (i.e., the re-
flected overpressure) on the window. It can be seen that, for a given peak overpressure

on the window, the mean fragment velocities for windows on the shocktube were greater
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Figure 7. Glass-fragment velocities for a window mounted
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tube vs peak overpressure on the window.




than the predictions (dashed lines), derived from the equation in Figure 6, for windows

in houses. At least part of this difference was vrobably due to the fact that, for a

house, the reflected pressure on a front-facing window decays to the stagnation pressure

as the rarefaction wave coming from the edges of the frunt wall reaches the window, . con-

dition that would not apply to windows mounted on the closed end of a shocktube.

Figure 8 is a plot of geometric-mean trontal area of trapped fragments vs peak

overpressure on windows in 1- and 2-story nouses (Reference 3). Each geometric-mean fron-

tal area was computed by dividing the geometric-mean mass by both the pane thickness and

the density of the glass used (2.47 gm/cm3). The solid curve is the result of a least-
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squares regression analysis and the dashked curves are drawn one standard error of estimate
on either side. 1t can be seen that the geometric-mean frontal area decreases with increas-
iny overpressure, and that the scatter in the mean areas is considerably larger than the
scatter in the mean velocities (Figure 6). It should be noted that, at overpressures below
10 kP2, the mea.ured frontal areas for tihick glass (0.516 to 0.671 cm) were all larger than

what would have been predicted using the regression equation.

V. SPATIAL DENSITY OF FRAGMENTS

For each window tested face-on in a house, the spatial density of fragments tended to
be uniform over a portion of the witness plate equal in area to the window, but the density
normaily decreased beyond that area. This region of maximum density was directly behind
the window except in instances where the fragment velocities were low and the witness plate
was far from the window. In such cases, the maximum-density region was displaced downward
due to gravity's acting on the fragments while they traversed the distance to the witness
plate. Figure 9 is a plot of average density over the maximum density region plus 22.28
Fragments/m2 vs peak overpressure on 0.3175-cm-thick glass windows in houses exposed to a
Tong-duration blast wave (Reference 3). The rearession 1ine predicts a density of 10
fragments/m2 for an overpressure of 6.3 kPa, 100 frrgments/m2 for 29 kPa, and 1000 frag-
ments/m2 for 65 kPa. A scaling factor, given in the figure, was used to adjust the den-
sities for glass thicknesses other than 0.3175 cm. This factor indicates that the aver-
age maximum density of trapped fragments was 78 percent greater for 0.203-cm glass, and
63 percent less for 0.671-cm glass, than the corresponding density for 0.3175-cm glass.

In some instances, the witness plate was large enough to allow the spatial density
of fragments to be measured at angles as large as 22 degrees beyond the edge of the win-
dow. Figure 10 shows the ratio of the fragment density to the maximum fragment density
plotted as a function of angie beyond the edge of the window. Although there is a large
scatter in the data, the regression line indicates that at an angle of 25 degrees the

density of glass fragments was appioximately one-tenth of the density measured directly

behind the window.
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VI. BIOLOGICAL EFFECTS
A. Individual Fragments

Table 2 contains results from experiments in which glass and acrylic fragments
were impacted one-at-a-time against anesthesized and sheared sheep and dogs. The smali
glass fragments (0.0543 to 1.90 gm) with irregular shapes were impacted in a random orien-
tation (Reference 5), whereas the larger glass fragments (1 to 100 gm) with standardized
shapes were impacted point on. The acrylic fragments (1 to 100 gm) were irregular in
shape but were impacted point-on (cited in Reference 4). The geometric-mean angle sub-
tended by the acrylic fragments is given for each experiment. An angle of 180 degrees
indicates that the fragment was square in shape and impacted on one of its edges.

The impact area was either the thorax (between ribs), abdomen, head (in the area
of the frontal sinuses), or neck. In some cases, the neck and abdomen were covered with
two layers of clothing. The inner layer was an all-cotton tee shirt (145 gm/mz) and the
outer layer was a cotton-sateen material (285 gm/mz).

The types of injury recorded were (1) skin or body-wall penetration for impacts
on the abdomen or thorax and (2) skin penetration or skull fracture {varying from hair-
1ine to depressed) for impacts on the head. 1he average skin thickness was 3 mm for ail
of the impact areas. The average skin plus body-wall thickness was 18 mm for the thorax
and 12 min for the abdomen. The average skull thickness in the area of the frontal sinuses
was 1.3 mm.

Frayments of a given type and mass were impacted at various velocities in order
to establish the probabiiity of injury as a function of impact velocity. In each instance

it was found that the prchability of injury in probit units was approximately linearly re-

lated to the logarithm of velocity. A probit aralysis was performed on each group of data

and the results appear in the last two columns of Table 2. For several groups, there were
insufficient data to establish the slope of the probit line, although the fragment velocity
for a 50-percent probability of producing the indicated injury was estimated. In the tests

using fracments of two thicknesses and a common mass, no significant differences were noted
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in regard to the velocities required to produce a specified injury, and the data were
combined. Likewise, no significant differences in injury were noted for impacts on the
bare thorax or abdomen, and these data were combined.

Figure 11 is a plot of glass-fragment velocity, VSO’ for a 50-percent prob-
ability of penetrating skin e¢n the thorax or abdomen vs fragment mass, M, and the angle,
6, subtended by the fragment. Figure 12 is the corresponding plot for body-wall penetra-
tion. The lines on these figures were computed using the included regression equations
derived from the data for glass fragments impacted point on. The equations indicate that,
for a given 0 and M, the fragment velocity for body-wall penetration is a factor of 1.50
times the corresponding velocity for skin penetration. The lines closely fit the data for
point-on impacts, and the lines for a 6 of 180 degrees are also a fair approximation to
the data for impacts in a random orientation, at least for masses greater than 6.2 gm.

For masses below 0.2 gm, the data fall above the lines. Because the regression equations
are strictly empirical in nature, it is inadvisable to extrapolate to M's and 0's outside

the ranges actually tested.
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Figure 13 shows the relationship between glass-fragment Vgg, M, and 6 for pene-
j pi trating skin on the head, and Figure 14 shows the corresponding relationship for skull

fracture. The curves, which were fitted by eye, indicate that, for a 0 of either 45 or

90 degrees, Vg decreased with increasing mass. The Vgg for skin peretration for frag-

ments having a 0 of 180 degrees was approximately the same for 1- and 10-gm fragments.

e

Only one datum point was obtainad for skull fracture with a 6 of 18C degrees.

Figure 15 shows the effect of clothing on the glass~ and acrylic-fragment ve-
locities required to penetrate skin or body wall. Ry is the ratio of the Vgy tor skin on
the clothed abdomen to the Vg, for skin on bare thorax or abdomen. Ry is the ratio of the

V5o for body wall of clothed abdomen to the V50 for skin on bare thorax or abdomen. As €

increases above 45 degrees, both ratios appear initially to increase and then to level off

at @ maximum value of approximately 2.1 for R, and 2.5 for Rp. Although both Ry and Ry
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would be expected to be greater than 1.0 for all values of 6, the Rg curve was extrapolated
(dashed porticn) to asymptotically approack 1.0 at a @ of zero degrees on the assumption that
clothing would offer minimal resistance to a needle-like fragment. It was previously indi-
cated that the ratio of the Vg for body wall of bare thorax or abdomen to the Vgg for skin
on bare thorax or abdomen was approximately 1.50 for 0's ranging from 45 to 180 degrees.

By assuming that the 1.50 value also applies to a © of zero degrees, and by again assuming
that clothing would offer minimal resistance to needle-like fragments, the Ry curve was

extrapolated (dashed portion) toasymptotically approach 1.50 at a 0 of zerd degrees.
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B. Windows

Table 1 gives data for 5C anesthesized and sheared sheep exposed two-at-a-time
and side-on either 2.1 or 4.3 m behind a window mcunted on the end-plate closing a 3-m-
diameter shocktube. Some of the sheep were covered, except for the head, with two layers {
of clothing similar to that used on the biclogical tests with individual fragments. The }
windows were mounted in commercial aluminum frames and complied with standard building
codes. Each window consisted of either two 91x91x0.305-cm_paqgs of sheet glass (designated
as double-strength) or one 137x183x0.574-cm pane of plate glass.

The panes were broken by blast waves with peak reflected (against the end-plate)
overpressures ranging from 4 to 70 kPa and positive-overpressure durations ranging from 46
to 111 msec. Motion-picture records indicated that each biological subject was approximately
centered in the pattern of fragments from a window pane. Table 1 lists, for each subject, i
the maximum wound depth, the total number of incised wounds, and the numbers of skin and

body-wall penetrations. Th. average numbers of the three categories of wounds and the

mean impact velocity of the fragments (based upon the averaged impact velocities plotted ;
in Figure 7) were computed for ail subjects tested under similar conditions at approxi- % y
A mately the same overpressure level. Excluding the data for the one pane that did not .
break and for the three panes that were 4.3 m from the subjects, these valuyes are plotted

in Figure 16. Each of the six sections of the figure shows, for a given type of window

" —— ————

l and wound, the average number of wounds per bare or clothed subject as a function of the
mean impact velocity of the fragments. The curves in Figure 16 are fitted by eye. For

each type of wound and window, at all impact velocities, the number of wounds per bare

subject was greater than the numbter per clothed subject, except when both were zero. ;

At mean impact velocities greater than 40 m/sec, the fragments were so numerous :
that areas of multiple, closely-clustered, incised wounds of greater than skin depth were
observed on all of the bare animals (see Table 1). In these areas there was an increased i
probability of several fragments' producing contiguous wounds which would have been counted

as cone wound. This accounts for the fact that, in Figure 16, the bare-subject curves, par- { |

ticularly those for 137x183-cm windows, generally went through a maximum at a velocity of
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approximately 50 w/sec. Althouch for velocities greater than 50 m/sec the recorded number
of wounds decreased, their maximum depths continued to increase with increasing velocity.
For mean fragment impact velocities greater than 53 m/sec, ail of the bare animals had
areas of denudation.

In general, the maximum wound depth increased with increasing fragment impact
velocity for clothed subjects as it had for bare subjects. However, areas of multiple,
serious, incised wounds or denudation were not observed on any of the clothed subjects.
Instead, there were large areas of welting under the clothing at the higher overpressures.
The curves for clothed subjects, unlike the curves for bare subjects, do not appear to go

through maximums.

The data for subjects 4.3 m from the window are not shown in Figure 16. In gen-
eral these data suggest that, for similar conditions, the number of injuries of a given
type at the 4.3-m range was on the order of one-half of the corresponding number of in-
juries at the 2.1-m range. The exception to this was for clothed subjects and mean frag-
ment velocities ranging from 41 to 52 m/sec, where the average number of incised wounds
was 7 at 2.1 m and 20 at 4.3 m, and the average number of skin penetrations was 4 at 2.1 m

and 7 a. om.

Vil. PREDICTION OF WOQUNDS vS OVERPRESSURE

The data btained with sheep behind windows were assumed to apply directly to man.
The skin (ar ' Sody-wall) thickness on a man and a sheep are approximately the same. The
surface area exposed to a window would be about 40 percent greater for a face- or back-on
man than the corresponding area for a side-on sheep. Therefore, the number of injuries in
Table 1 might be low for the extreme case of a man broad-side-on and centered behind a
window larger than nimself.

In order to use the data obtained with the shocktube to predict the number of wounds
for people in houses in relaticn to blast overpressure, it was necessary to recall that a
given overpressure produced larger fragment velocities for windows on the end of the shock-

tube than for windows in houses. The equation (Figure 6) for the dashed lines in Figure 7
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and the measured mean fragment velocity for each window on the shocktube were used to cal-
culate an "effective" peak overpressure which would have produced an equal velocity if the
window had been in a house exposed to a long-duration blast wave.

Figure 17 is a plot of the shocktube data (Table 1) for the number of wounds in rela-
tion to the calculated "effective" peak overpressure on the window. It should be emphasized
that this figure is assumed to apply to people approximately 2 m behind a window in a 1- or
Z-story house exposed to a long-duration blast wave. In such cases, the effective peak
overpressure would be the actual peak overpressure on the window; i.e., the reflected over-
pressure for a face-on window and the incident overpressure for a side-on window.

Reference 6 contains experimental data which can be used to confirm the prediction of
number of wounds in relation to overpressure. Two unciothed dogs were pesitioned side-on
behind forward-facing windows in two 1-story houses located at the same ground range from
a nuclear explosion. The peak incident overpressure was 26 kPa, reflecting to 59 kPa, and the
duration of the positive overpressure was 760 msec. The windows consisted of twenty 30x61x
0.32-cm panes of ordinary glass mounted in a steel frame. Each dog was approximately cen-
tered 3.4 m behind a window. The measured mean impact velocity of the fragments was 42.7
m/scc. One subject received 26, and the other 37, wounds involving the skin and usually
the underlying tissues. One subject rékeived two, and the other six, serious wounds arbi-
trarily defined as "a Tlaceration penetrating the skin wherein the missile either was stopped
by bone or passed into the tissues to a depth of 10 mm or more."

Either Figure 16 and the mean fragment impact velocity of 42.7 m/sec or Figure 17 and

the effective peak overpressure of 59 kPa can be used to predict that a sheep located 2.1 m
behind a 91x91x9.305-cm window in the same houses would have received approximately 42 skin
penetrations and 3 body-wall penetrations. Considering the many variabilities in the experi-

mental arrangements, these numbers are in good agreement with those observed for the two

dogs.
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