
AD-AI05 666 MASSACHUSETTS INST OF TECH CAMHRIDGE AMTIFICIAL INTE -- FTC F/G 6/4
A MODEL FOR DELIBERATION. ACTIOWI AND INTPOSPECTION,(U NMAY 80 J DOYLE, N0OOIA-7-C 0643U J C L A SS IF I E o A I -T R - 8 1 N 0 - C N L

o. mm mii mmi
mmmmmmmn
m~mmmmmmmmmm -!J

Aftf 581

cc A*I ROSP
-------o.

0P

j AlA OCT 16

K\ I FICIAL I IENCE 0 R

UJNCLASS IFtIED
SECURITY CLASSIFICATION OF TIS PAGE (ftone Data Bni.,e0p

~ -~REPRT DCUMNTATON AGEREAD INSTRUCTIONSREOR POPENATO PAEDEFORE COMPLETING FORM

87 R I.GV CESO O . RECIPIENT'S CATALOG NUMBER

4. -. Z45 ~S. TYPE OF REPORT & PERIOD COVERED

A Model for Deliberation, Action and /(TcnclApt.
Introspection Tehiaew

6. PERFORMING ORG. REPORT NUM11ER9

7. AUTHqO(s) S. CONTRIACT Ou 3R(s)

!Jon,/Doyl1e &RA75-T" NT

9. PERFORMING ORGANIZATION NAME AND ADDRESS a0 PRGAM ELEMENT. PROJECT. TASK
Artificial I ntelligence Laboratory AREA 4 WORK UNIT NUMBERS

545 Technology Square
Cambridge, Massachusetts 02139

I I CONTROLLING OFFICE NAME AND ADDRESS4

Advanced Research Projects AgencyMa
11400 Wilson BlvdI. kwt oPAE
Arlington, Virginia 22209 249___________

4 140NITORING AGENCY NAME 4 AOORESS(if different from COntileifind Dill15I. SECURITY CLASS. (at this repafld

Off ice of Naval Research UCASFE
Information Systems ______________

Arlington, Virginia 2221~ Ise 0 ~ IIAIN/ONRO

1S. DISTRIBUTION STATEMENT (of this Roe"or)

Disribtio ofthi doumet i unimied. DISTRIBUTION STATEMENT A
Di st i b u i on of t i s ocu ent s u li m t ed A pproved for public re le se ;

Distribution Unlimited

17. DISTRIBUTION STATEMENT (of tA bstrt entered In DIleS 20, It iffIerenut bas Report)

IS. SUPPLEMENTARY NOTES

None

It. KEY WORDS (Continue on reveres. aid* It necessary -nd idmnety~ by SWeek omike)

Artificial Intelligence Deliberate Action Execution
Reasoning Decision-making Consciousness
Problem-solving Control Introspection
Knowledge Representation Planning Belief Revision

* (more)
20kPOSTR ACT (Continue an reverse side It necoeee and 1dontigfp by block nuweker)

This thesis investigates the problem of controlling or directing the
reasoning and actions of a computer program. The basic approach explored is
to view reasoning as a species of action, so that a program might apply its
reasoning powers to the task of deciding what inferences to make as well as
deciding what other actions to take. A design for the architecture of
reasoning programs is proposed. This architecture involves self-
consciousness, intentional actions, deliberate adaptions, and a form of .

JAI It' k0 DTO FI O6 SOSLEE ~A. UNCLASSIFIED
U4YCLASSIFICATION OF T18 PASS (WhomD~eEnerd

#19. Learning
Non-monotonic Logic
Defeasible Reasons
Dialectical Argument
Desire
Intention

\#20.
"decision making based on dialectical argumentation. A program based on this architecture
inspects itself, describes aspects of itself to itself, and uses this self-reference
and these self-descriptions in making decisions and taking actions. The program's
mental life includes awareness of its own concepts, beliefs, desires, intentions,
inferences, actions, and skills. All of these are represented by self-descriptions in
a single sort of language, so that the program has access to all of these aspects of
itself, and can reason about them in the same terms.

*sj

i7'

1'
This report describes research done at the Artificial Intelligence I.aboratory of the Massachusetts Institute

of Technology. Support for the Laboratory's artificial intelligence research is provided in part by the

Advanced Research Projects Agency of tie Department of Dfense under Office of Naval Research

contract number N00014-75-C-0643. and in part by NSF grant MCS77-04828.

Accession For :NTIS OHA&I

DTITAB TA
Unanrinoinced C
Ju!;tificotion

By__
Dist ribution/

Avatilability Codes
'Avail and/or

Dist ISpecial.

S.-- n n n nm -- -I-- -

Hi
-

----__ _ _ _ _ -

'lI

A Model for Deliberation, Action, and Introspection

by

Jon Doyle I

Massachusetts Institute of Technology
May 1980

This report reproduces a dissertation submitted on May 12, 1980 to the)cpartment of llectrical

Enginccring and Computer Science of die Massachusets Institute of'l'cchnoh)gy in partial fulfillment of

thc requiremcnts of the degree of doctor of philosophy.

i j _____________________

2

A Model rot Delieration, Action, and Introspection

by

Jon D~oyle

Submitted to the D~epartmecnt of FHcctrical Frngineering and Computer Science
on May 12, 1980 in partial fulfillment of the

requircements for the I)cgrcc of D~octor of Philosophy in
Artificial Intelligence

A BSJ'RACI'

[his thesis ime sigates the problem of Controlling or directing thc reasoning and actions of at computer
prograin. The basic approach explored is to view reasonling its at specics of action, so that a program might
appl) its reasoning pow4ers to tie task of deciding what inferences (o make as well ats deciding what other
actions to take. A design for (lhe architecture Of reCasoning pr-ograms is proposed. TIhis architecture
insOhes self-consciousness. intentional actions, deliberate adaptations, and a formn of decisi on -making
hased on dialectical argunien~tiom. A programi hased oil this architectuire inspects itself, describes aspects
of itself ito itself, and uses this sclf-reference and these self-descriptions in making decisions and taking
actions. The programn's mnental life includes awareness of its own concepts, beliefs, desires, intentions,
inferences, actions, and skills. All of these are represented by self-descriptions in a single sort of language,
so that dhe program has access to a~ll of these aspects of itself, and can reason about them in the same
terms.

TIhesis Supervisor: Gerald Jay Sussmian
Title: Associate Professor of Electrical Engineering

3

CONTENTS

I. IN r O Du C T IO N .. . 10

1.1 The iundam entl Argum ent ... 12
1.1.1 The Parable .. 13
1. 1.2 The Propositions ... 15

.- O utline of the Approach .. 17
1.3 0o tline of the Ihesis .. 24
1.4 SkctLd es of thesc Ideas in Practice ... 25

1.4.1 l)ccision-m aking ... 25
1.4.2 Recollection ... 26
1.4.3 Self-im provem ent .. 27
1.4.4 Planning .. 28
1.4.5 Conversation .. 28

1.5 Status of the Im plem entation .. 29
1.6 Sketch of a Com putational Argument for the Approach ... 32

1.6.1 Wh5 hac the facts of'the fundarmental argument been overlooked? 33
1.6.1.1 Initial Programm ing Com plexity ... 33
1.6.1.2 A Mlathematician's Outlook ... 34

1.6.2 Consequences of the Inaccessibility of Control Information 35
1.6.2.1 'lle Inexplicability of Actions and Attitudes 36

1.6.2.1.1 TheChauvinism of Values ... 38
1.6.2.1.2 The Lack of Intentionality .. 40
1.6.2.1.3 Inextensibility ... 41
1.6.2.1.4 lhubris .. 41
1.6.2.1.5 Non-additivity ... 42

1.6.2.2 Inexpressibility of Control Information 43
1.6.3 Hence Reasoning Applied to Control ... 44

1.7 Relation to O ther W orks ... 44
1.7.1 M ajor Influences and History .. 44
1.7.2 Related W orks .. 50

1.7.2.1 Representation 'l eory .. 50
1.7.2.2 '11ie Nature of Reasoning .. 52
1.7.2.3 'll eTheory of Intentional Action .. 53
1.7.2.4 The Fragmentation of Value .. 54
1.7.2.5 I)e ision-making .. 55
1.7.2.6 Control of Reasoning .. 56
1.7.2.7 Adaptive Changes of M ind .. 57
1.7.2.8 Affect and Intellect ... 58
1.7.2.9 Consciousness ... 58
1.7.2.10 The Absurd .. 58

4

2. TIlE IREPRFSENTATION OFSI'RUCTLRE .. 59

2.1 Desiderata of the Representational System ... 61
2.2 A Key Application .. 64
2.3 SI) .. a Structured Description Language ... 65
2.4 H ow to use SI)I ... 72
2.5 Relations with other Representational System s .. 78
2.6 Advanced Applications ... 80
2.7 l'heories about' lieories 81

2.7.1 The 'IlttO RY 'Theory .. 81
2.7.2 'llicories of Specific 'lI'hcories .. 82
2.7.3 The VC 'Theory .. 82
2.7.4 The PILRSO N Theory .. 83
2.7.5 lhe G lobal Theory M E .. 84

2.8 Concepts and Attitudes ... 85

3. FOUNDATIONSOFTIIETIIEORY OF REASONING 87

3.1 The Nature (if Reasoning ... 88
3.2 R M S, the Rcason M aintenance System ... 95
3.3 R M S D ata-structures ... 98
3.4 States of Belief ... 99
3.5 Justifications .. 99
3.6 Support-list Justifications .. 101
3.7 Term inology of I)ependency Relationships .. 102
3.8 Conditional-proof Justifications .. 107
3.9 C ircular Argum ents .. 109
3.10 The Reason M aintenance Process ... 110
3.11 Iefeasiblc Reasons and D ialectical Argum entation ... 112

4. DELIBERATE ACTION ... 116

4.1 Plan G eneration, Fxccution, and Interpretation ... 118
4.2 Plans and the Library of Procedures ... 120
4.3 The Ambiguous "Goal". 122
4.4 D esires and Intentions .. 125
4,5 Policies ... 132
4.6 Relationships Between IDesires and Intentions .. 135
4.7 'IhV Hierarchical Structure of Plans .. 140
4.8 Plan Specifications .. 144
4.9 The Current State of M ind .. 147
4.10 The H istory of Actions ... 149
4.11 1he Frontier .. 152
4.12 A Careful. M eta-Circular Interpreter ... 153

LW~lk .- pg 01

5. DEIBUERATION ... 163

5.1 1lic Varicty of 1)ecisions and Ways of Making Them 165
5.2 l)ccision Intentions .. 167
5.3 IDelihcration Records ... 169
5.4 Policy Fxectition... 172
5.5 Policy Applicability .. 174
5.6 Policy Actions.. 175
5.7 A Very General IDeliberation Proceduire.. 177

5.7.1 .[hei lkliberittion Mans.. 177
5.7.2 First-order lDeliberation... 179
5.7.3 Sccond-ordcr Decliberation ... 181

5.7.3.1 Sccond-ordcr Options ... 182
5.7.3.2 Second-order Policies .. 184
5.7.3.3 Sccond-order lecisions ... 187

5.8 An Fxamrplc Reworked ... 188

6. DELIBIERATE CI IANGES OF MENTAL LIFE................................ 191

6.1 Motivations for Change... 193
6.1.1 Relief .. 194
6.1.2 Concepts .. 197
6.1.3 Decsires and Intentions... 198
6.1.4 Values.. 199
6.1.5 Skills ... 200

6.2 Mechanisms of Change 202
6.2.1 Belief .. 202
6.2.2 Concepts .. 206
6.2.3 Desires and Intentions... 206
6.2.4 Values.. 207
6.2.5 Skills ... 207

7. DISCUSSION.. 214

7.1 Summary of the Key Ideas ... 214
7.2 Summary of the Principal Contributions... 215
7.3 D~irections for Future Research .. 216
7.4 AlTect. Intellect, and Complex Self-Descriptions.. 223
7.5 11wi Limits and Accuracy of Self-Knowledge.. 227
7.6 fllic Limits of Reason and the Absurd .. 231

8. REFERENCES... 235

_______________ 77

6

FIGURES

Fig. I. The O erall Program Structure ... 18
Fig. 2. The Basic Cycle of Self-lnterpretation ... 21
Fig. 3. Diagram of M ythical Influences .. 45
Fig. 4. Key to Influence Abbreviations .. 46
IJig. 5. Statem ent of Six Nodes and Seven Justifications .. 103
IFig. 6. PictUre of Six Nodes and Scen Justifications ... 104
IFig. 7. lahle of Dependency Relationships ... 105
IFig. 8. Progress Status Transitions ... 129
-ig. 9. Plan for Serving D inner ... 141
Fig. 10. The O R I) Procedure .. 154
Fig. II. In form ation FH ow in Deliberations ... 170
Fig. 12. The)eliberation Procedure .. 178
Fig. 13. IIAC K ER's)ebugging Flowchart ... 213

t

I

I I

7

T'his thesis is dedicated to
Joseph A. Schatz

friend, teacher. playmate

8

Acknowledgments

I thank Gerald Sussman. my thesis advisor, and my readers Peter S/.oloits, Drew Mcl)ermott, and
Marx in Mnkisk fi- their constant encouragement, criticism, and advice.

I thank .hlhan de Klecr for serving as a tde fwto reader for this thesis, and for continually valuable
discussions on many topics. Many of the explanations in this thesis resulted from his comments.

I thank Joseph Schatz for more advice, stimulation, and i)leasure than I can express, delivered with gentle
\ it and sty le. I would not be " here I am \& ithout his concern. -

I thank ii. family, Ico I)oylc. Marilyn Doyle, Paul I)oyle, lynn Doyle. and Peter I)oyle for teaching me
how to lie. to enjoy and excitc, and to learn, and for moral and fillancill support whose importance to
ine cannot be underestimated.

I thank my aunt CloC I)oylc, for early teaching me about negati\e numbers and other parts of
mathematics. It still comes in handy.

I thank Marcella Boffa. Kelly Martino, and John Baker for offering me the life I have forsaken.

I thank my friends who built my social interests: John and Shiron Cullen. Rebecca Schatz. Michael
I.oui, Shelly I.icbei. Donald Petersen. Ronald lPankiewicz. and Marilyn Matz.

I thank all those people with whom I have discussed matters of interest. I'm afraid that, unlike my
programs. I do not always recall where ideas came from, and I apologize to and cherish the contributions
of all those whose suggestions I have considered. I hope they take my adoption of(or disagreement with)
their ideas understandingly. In addition to the above, I especially thank Howard Shrobe, David
McAllester and Richard Weyhrauch.

I thank my colleagues and tie staff at the MIT Artificial Intelligence Laboratory and the Laboratory for
Computer Science for their support in ideas, services, machines, and libraries.

I thank Daniel Carnese and Randall Davis for valuable comments on this thesis, and Gerald Roylance for
teaching me how to draw the diagrams.

I thank I)oubleday and Company for their permission to reprint the excerpt from The Sot-Weed Factor
hy John Barth, which is Copyright 1960, 1967 by John Barth.

Finally. I thank the Fannie and John Hertz Foundation for supporting me during my entire graduate
career with a graduate fellowship. It was invaluable.

~ -~~ --- - - ,-- -

lie wishcs for the cloths or heaven

by

W. B. Yeats

I lad I the heavens' enbroidered cloths,
111" rought with golden and silver light,
I'he hluc and the dim and thc dark cloths
Of night and light and ihe half-light,
I wotnld spread the cloths under your feet:
lut I. being poor, have only my dreams;
I ha~c spread mNi dreams under your feet;
Tread softly because)ou tread on my dreams.

4i
Ii

10

CHAPTER I

INTRODUCTION

Self-reverence. self'k nowledge, sel f-control,
lhese three alone lead life to sovereign power.

Alfred, ILord Tennyson. OFnone

Know prudent cautious self-control is wisdom's root.
Robert Burns, , Ran/% I'piiaph

Ilie woman that deliberates is lost.
Joseph Addison, (ato

ht a self-controiled man is of a different sort:
he followw right reason.

Aristotle, Nichomachianm Ethics

This thesis investigates the problem of controlling or directing the reasoning and actions of a zomputer

program.1 The basic approach explored is to view reasoning as a sort ofaction, and to have the program

apply its reasoning powers to the task of deciding what inferences to make as well as deciding what other

actions to take. This problem of controlling reasoning is important because information is often

communicated between man and man, and eventually, it can be expected, between man and machine, as

facts which offer little guidance as to what inferences should be drawn from them. Much experience and

many theoretical studies have proven that the general problem of drawing particular conclusions from

purely factual information is hopelessly intractable.2 These lessons show that inference cannot always be

treated as an automatic procedure, but sometimes must be accorded all the careful consideration given to

I Following current usage, this thesis uses the phrase "the program" to abbreviate some phrase resembling "the machine
produced as a satc-configuration of a I ISI'-implementing compuler as described by the program text." Several writers. such a
Fodor 119781. Putnam 119781. and Searle 119801 have pointed out that a program, a formal s.stcm. cannot be sid to have a
psychology, in contrist to apparent claims made by some Al researchers. Soeic of this disa.reement might result from the
unconscious use of an abbre%,iation of the above form on the part of some of the part icipaits. We do not attempt to adjudiate this
debate, nor to make rigorous the sense of the above abbreviation. 'lbse tasks are left for others. (Brian Smiih is engaged in such
an enterprise.) In particular, this thesis avoids the problem of how the program is to be equipped with scnsors and effectors so to
perceive and have power over its environment.
2. See for example jureen 1%9] and IRabin 19741

I1

other actions. To o~ercome this difficulty, this thesis attempts to find ways of stating and using facts

about how other facts should enter into reasoning. 'Ihe proposed solution, that of a program which

reasons about its own reasoning, is of considerable generality.

'[lhis chapter consists of several sections. The first section presents what the fundamental

argument for the approach. and this argument introduces the fundamental ideas of and constraints on the

proposed solution. The second and third sections of the chapter sketch the structure and operation of the

program described in the following chapters, and give a guide to reading those chapters. 'he fourth

section presents examples of the ideas in practice. The Iifth section discusses the implementation. The

sixth section attempts to motivate the approach with yet another argument, this time by showing how one

might be lead to the proposed approach purely from considerations of what must he computed and what

is necessary to allow its computation. '[he final section of the chapter sketches the relation of this thesis to

other works.

Readers concerned with how to use the techniques developed in this thesis are cautioned in two

ways. First, most of the techniques employed in traditional Al programs, such as problem reduction

problem solving, planning, searching, backtracking, learning, context switching, etc., occur only in

Chapter 6 as applications. The bulk of the thesis is devoted to foundational tools by which these

traditional techniques may be used deliberately, and consequently, may be explained by the program

itself. Second. the techniques apparently require an unusually large overhead in time, space, and

notation. Sections 1.5 and 1.6 explain why this overhead must be accepted to build intelligent machines. V

I
The reader will find that many of the techniques explained in the thesis bear a certain similarity

to mechanisms which some commonsense truisms ascribe to the workings of the human mind. This

similarity results solely from my use of these truisms together with informal personal introspection to

inform my development of the proposed techniques from primarily computational considerations. I

make no claim that the human mind employs similar mechanisms. I merely attempt to motivate and

explain these techniques with common Ideas about human behavior, since humans are currently the

12

hest-kn(mn concrete model of intelligent behavior. Specifically, I try to indicate how a number of

mechanisms originally developed for rather technical tasks, including the design, snthesis, and analysis

of electronic circuits and computer programs, can be combined and organized to capture coinmon-sense

reasoning as Well as highl) specific tcchnical problem-solhing. I frequetly motivate my suggestions with

common-sense examples, as they are significantly easier to convey, but I hope it is clear that these

mechanisms also suffice for the traditional technical tasks. Briefly put, I view technical reasoning as a

subcategort of general reasoning, and a inore tractable one at that. But though I try to capture a number

of familiar humlan reasoning patterns, no claim should be inferred that the mechanisms I propose are the

only such mechanislns, or that they arc those used by humans.

1.1 l1e Fundament:al Argument

This section attempts to motivate the proposed approach through a series of propositions, loosely called

an argunlent. which express general criteria for judging proposed organizations for intelligent machines.

These propositions capture certain characteristics of intelligent existence, characteristics which

significantly constrain proposed organizations of intelligent machines. Because of their generality, the

propositions are presented with both motivation and morals. We first motivate the argument with a

parable in primitive human terms, and follow the parable with the propositions of the fundamental

argument, annotating each proposition with a moral about how intelligent machines should be organized.

"11be paragraphs of the parable parallel the relevant propositions of the argument.

13

1.1.1 "'lte Parable

I always adapt. I put on skins in winter, follow the game as it migrates, and run from rolling

rocks, falling trees, and charging behemoths.

Sometimes I must change things. sometimes myself. As the years grow colder, I move towards

the south. As the land turns barren. I train myself to be forever alert to take advantage of the fleeting,

infrequcnt opportunities for food. Sometimes I must change both my surroundings and myself. When

the plains and plateau became infested with dangerots beasts, I moved to live in the cliff, and trained

myself to be a good and careful rock climber.

To avoid mistakes, I think carefully before acting. Normally I go unarmed, but if I thoughtlessly

%alk unarmed into the forest, without first reflecting on what I am doing, I am likely later to meet an

unpleasant end with lions, tigers, or bears. When I decided to build a shelter on the ground without first

reflecting on the decisions that had to be made and the order in which they should have been made, I

wasted much of my own effort, and that of my sons as well that I asked to help, for I thought about the

various clays I know of and of where they can be found and how they might be carried, before I turned to

the question of where to build and realized that the best location was in the flood plain, where our crops

would be nourished, where we would spend two days a year waiting out the flood uplands or in a tree, but

where adobe would he a useless waste of effort compared with a thatched hut. And when I tell my son

what to do, I must think of what he knows of my plans for the hut, lest I say things he does not

understand, and of how to say the orders, for he is proud, easy to anger, and I am not as strong as I once f
was.

I have so many decisions to make. The farm has done well, but now I grow old and must divide

it among my children. How should I do this? I can divide the lands in equal measures, some good and

bad land to each, or I can divide it into the better and poorer fields, or I can split some of the larger fields

into parts but not the smaller ones, or I can split them so that each has access to the stream, or I can divide

14

thenl ,as tile children request me to do.

lbere are so many complications. If I leave soein of the good land and somle of the bad land to

each, then that will be fairest. But if some of them do poorly on their own, the lot of their brothers may

not be sufficient to tide everyone over. JBUt if I give the easiest lands to the weakest, the others will drive

them out when I am gone. and they will have nothing. But even if I am fair. the eldest and the strongest

will demand the largest and best lands. Perhaps I can give them just enough more to keep them from

attacking the others. Bit I already promised the apple trec to the first daughter, and I must give extra

Lind to the second son, who Aill care for my, ma:e. Iut the strongest should be on the perimeter, to ward

off inaders. What should I do? Should I do what is fair? What is safest from the whins of nature?

What is most likely to he respected by the children? What I have promised each I would do? What will

provide for my mate, as my mate provided for me? What is safest from enemies?

Woe, woe, sometimes I just can't help things. The invaders came, and now we are their slaves.

Our women they took as mates. The mate of my first son, who had come from afar and spoke of gods and

laws, would not submit to them, and they killed her. My daughters, whom she had convinced of these

gods, instead of following her renounced the laws and went with the invaders, so they still live.

I hate this slavery. Why should the invaders rule? They are no better than us, and if we had

invaded them first with similar surprise, we would be the masters and they the slaves. Why did this

happen to us, and not to the other neighbors of the invaders? The dead one said that the gods put us

here. but why should they do that? Why do the gods exist to torment us so? But if they do not exist, then

the dead one is no more, not in this marvelous land she talked of. Does that await me too?

j : ____________________________________

__ u ,

15

1.1.2 lwe Propositions

I. The word continually changes so to survive, we must always adapt.

Intelligent machines should adapt to newly acquired infonnation and to new demands placed on their

operation by their users or co-workers.

2. To adapt. we must act either to change our surroundings or ourselves.

Intelligcnt machines should be able to modify their own organization and behavior as well as take

physical actions.

3. To act effectivel. we ilnl.it think about what to do. including thinking itself so that we plant and reflect on

our inferences as well as other actions.

Intelligent machinLs should reason about their own organization and reasoning, as well as "external"

domains, and plan complex "internal" activities (such as difficult decisions, comprehensive database

searches, etc.) as well as complex external activities. Even parallel computations, however useful they

might be in some ways, cannot relieve the need to make some consequential decisions serially.

4. The most difficult problem in thinking about what to do is deciding between the many possible courses of

actiom

Intelligent machines should when necessary explicitly consider decisions about which inference rule or

procedure to apply next, where to look for some fact in the database, etc. so as to avoid combinatorially

explosive searches.

5. Decision-making in turn, is dominated by the many incomparable sorts of reasons for or values of

possible action.x which stem from a sectioning of the world into many subdomain each with its own

_.- ' - ,

16

IRcT'rn, and .a es. These inconparable reasons make lecision-making a question of right (in one

AUbdoain) i. right (in antother sulidtti). not tight i. wronig.

Intelligcnt machines should reason about their reasons for laking actions, to see if these reasons are of

comparable types, or if they have exceptions in the current situation. Intelligent machines should not use

decision-making techniques %hich force all reasons into a total order, as do most numerical weighting

schemes.

6. FIurlher. our abilities are limiled, which sometimes" prev'ents our adapting by conserving or otherwise

,onlrolling our surrounding. so w'e must either always be able and ready to change any aspect of ourselves,

(ff be willing lo accept injufl it'ln we do not change

Intelligent machines should be able to deliberately change any of their database facts, proccdures, etc.,

whether "built-in" or not.

7. (The great joke is thai though we need both self-consciousness and self adapfiveness to surviv. in

combination these abilities shock us with realizations of both our own absurdit , (why should we exist?) and

the possibility of our own death (we might not exist!.).)

Intelligent machines should matter to themselves. They should have values initially built in so that they

do not lightly change themselves into non-cxistencc. They should choose their actions with responsibility

for their own survival or other conditions that they are charged with maintaining.

*1

17

1.2 Outline or the Approach

I think thait man) philosophers secretly harbor the view tha(there is something deeply (i.e.,
Conceptually) %rng %ith psychology, but that a philosopher with a little training in the
techniques of linguistic analysis and a free afternoon could straighten it out.

Jerry Fodor. Psychological 'xplanafion

'Iherc, no art to find the mind's construction in the face.
William Shakespeare, Macbeth

Good I.ord. what is man! for as simple he looks,
)o hut try to dhelop his hooks and his crooks,

With his depths and his shallows, his good and his evil,
All in all, he's ia problem must puzzle the devil.

Robert Burns. ,keich: inscribed to C. J. Fox

Motivated by the preceding ideas, this thesis sketches the basic computational structure of a conscious,

adaptive reasoning program which we call SEAN. The program inspects itself, describes aspects of itself

to itself, and uses these self-rcferences and self-descriptions in making decisions and taking actions. The

program's mental life includes awareness of its own concepts, beliefs, desires, intentions, inferences,

values, past actions, and skills. 'Ihese are realized by self-descriptions in a single sort of language, so that

through sclf-reference the program has access to all of these aspects of itself, and can reason about them

in their own language.3

The concepts of the program are each realized as (roughly) a named set of axioms in a formal

logical language. The language is a variant of the first-order predicate calculus, but that detail is

inessential. The key property of this representation is that the logical theories can themselves be referred

to by other theories. This allows the program to employ statements abouL for example, how its concept

horse is related to its concept animal. In fact, the program itself is such a logical theory, and its language

includes a name for itself. 'Ibis allows the program to employ other statements that, for example, use the *

program's name for itself to refer to properties of the program as a whole, such as whether some possible

belief is consistent with all of its current beliefs. Thbis meta-theoretical approach allows some classical

3. Fgure I presents the overall prqapmn structure a deribed below.I _____ __._____ ____ ____ ____ ____ __ j ' :. '. - -i-.-

18

,ntentions P

RMS is the Reason Maintenance System

SDL is the Structuredl Description Language
CMSIrs are current mental state interpreters
DP's are deliberation procedures

Figure 1

The Overall Program Structure

I__

CMIs ar curn meta sttnerrtr

______ I____________I__________i______

19

problems of representation to be attacked in effective ways. and allows reasoning about concepts in

hierarchical levels of detail. Since the concepts are themselves objects to which thc program can refer, the

program can reason about whether or not to pursue tile internal structure of a concept's subconcepts

during infirmation retrieval. 'l1iis mcans that the program can ignore unnecessary details of its concepts

when desired, and that the reasoner can be self-applied to the database retrieval task when necessary to

a'oid blind searches.

Iliese concepts are then used in other logical theories to realize the mental attitudes of beliefs.

d sircs. and inleflions. h'lese attitudes use a concept as their "propositional content." lhcy are more

than just die concepts embodying their propositional content, for they also include information used by

the program in treating them as attitudes. These attitudes are also logical theories, but ones which are

treated in special ways by the program. namel) as beliefs, desires, and intentions.

The most important auxiliary information included by the program in attitudes over their

content concerns the reasons for the attitudes. 'he prograin records its actions by adding statements

describing them to itself. Inferences are sorts of actions, and hence are also recorded. Each attitude

includes mention of these recorded inference steps, which we call the reasons for the attitude. Common

usage normally uses the term "reason" to refer to an antecedent attitude acted on in an inference . p. as

in "P is my reason for Q because I inferred Q from P." We corrupt the tongue to man instead the

inference step itself, so that if the program infers Q from P. not P but the record of that inference is called

a reason for Q.

The importance of these reasons lies not in just the historical and explanatory information they

provide, but in that the program uses (he current set of reasons to determine the current set of actual

attitudes. 'hus some potential belief may have several reasons recorded for it, but if none of these

reasons is valid, that is, refers back to current beliefs as antecedents, the belief in question will not be an

actual, but merely a potential belief.

Reasons are recorded for all types of in ferences, not just deductive in ferences of one belief from

-~-- -i

20

other beliefs. Reasons record the inference of desires from other desires, intentions, and beliefs, and the

inference of intentions from desires, beliefs, and vales in decision-making.

An important propeity of these reasons is that they are defeasiblc. That is, after an inference has

been made, it can he reflected on. If reflection determines that the reason was mistaken because, for

example, the inference wits made in exceptional or special-case circumstances in which it was not strictly

%alid. the program can defeat the reason by providing a defeating reason. This defeating reason may in

turn be defeated b) other reasons. The defeasibility of reasons allow the program it) change any of its

attitudes, for each attitude is held only because of some reason, and can be rejected by defeating all of its

reasons.

Thle current scts of concepts, reasons, belief%, desires, and intentions comprise the program's

curreni slate of mind. In fact, the program is a single concept "containing" all other concepts and

attitudes, including itself. The procedures of the program are also concepts. Some of these make up the

action-taking part of the program, called the interpreter, which reflects on the current state of mind and

then acts on the basis of what it sees. (See Figure 2.)

The program often tikes actions and inferences by executing primitive procedures, and it records

these actions as statements. All primitive procedures are treated as attitudes as well, so when procedures

make inferences, they record these actions as reasons, and include themselves in the reasons. Primitive

procedures with external effects are recorded in somewhat different form, but that will be described later.

In addition to primitive procedures, the program embodies some of its skills in plans, which are

concepts describing (roughly) patterns of desires and intentions. The program carries out its intentions

either by executing a primitive program, or by reducing the intention to a plan, that is, by embracing or

inferring the new desires and intentions specified by the plan. These plans and the desires and intentions

they produce are reflected on by the program as a means towards controlling its actions. 'hey form the

self-conscious "tip of the iceberg" which controls the vast majority of computational steps taken

unconsciously by primitives.

21

EReflect Act

Fig, ire 2
The Basic Cycle

22

The program's skills in olve not only procedures but also statements about when these

procedures arc useful. Fachl nch/Iod letawcient expresses that some procedtire is relevant to carrying out

some desire or intention.

Method ,tateoients about procedures and hie aims of desires and intentions comprise just one

special sort of information thtt the program niay hase about a procedure. More generally, the program

enplo) s statements of other properties of the procedure in other cases of reasoning. For example, one

sort of property is that of input-output heha ior. These ie modal staterents of the form "If P holds

bcforc the action, then Q holds after it." Other sorts of statements express properties concerning

coml)lexity or intermediate stares of execution of the procedure. We will not often use or purstic such

nore gneral action properties in the following. I lowever, one ke, type of inf'ornation about plans is that

of die relationships between plans. This information is expressed as statements relating one plan concept

ith another, such as that one plan is a refinement of another.

The program forms some intentions not by reducing an intention to a plan but by deliberation,

by deciding %hat desire or intention to pursue or how to carry out some intention. 'Tliese deliberations

make use of policies. Policies are intentions which embody the values of the program, and are carried out

by reasoning in decision-making. Policies are used in reasoned deliberation to indicate new options to

consider and to give reasons for or against the options. Policies effect values by constructing reasons for

and against other reasons so as to influence which option the program acts on by influencing which

reasons are held to be valid grounds for action. 'he typical case of deliberation involves policies creating

some options and conflicting reasons for what to do, and other policies reflecting on these reasons to

apply the values of the program by defeating a lesser reason in terms of a stronger. 'hese values are not

expressed numerically, as is traditional, but rather as explicit statements that one particular sort of reason,

in some particular set of circumstances, overrides some particular application of another reason. Ibis

approach to decision-making allows conflicting values to be settled or reconciled in a case by case

manner, since the defeasibility of reasons means that any particular application of a value may be

. -- - - - ' - ' - _ -' ' _Il - I_

II I l II

23

overridden if special circumstances so %arrant. This approach also allows for the occurrence of dilemmas,

for tv% o types of values may be incomparable to the program.

Reasoned deliberation is used in many ways in the program. lhe most basic use is in deciding

what to do next, in which tle program reflects oil which desire or intention to pursue and then on how to

pursue it. But deliheration also guides the program's actions in other ways, the most important ways

being deliberate changes in the program's set of concepts, belicfs, desires, intentions, values, and skills.

Afier making inferences, making observations, or taking actions, the program sometimes

discovers a conflict between some of its beliefs. The normal path to follow in these cases is for it to

discard some of its beliefs and assumptions to restore harmony. Hut belief re%ision always involves

ambiguity, in that there are always many possible changes in the set of beliefs which will restore

consistency. To decide which revision should be made, the program deliberates about the possible

reuisions and reasons for them. Formulating the possible revisions involves tracing through the reasons

for the conflicting beliefs to find the underlying beliefs causing the conflict. The values of the programn

enter this deliberation by preferring one possible revision to another, effectively determining the tenarity

with which the program clings to one set of beliefs rather than another. The program normally carries out

this intention by defeating the justifications for the beliefs to be discarded and perhaps by justifying the

opposite beliefs.

The program modifies its set of skills in a related way. If it determines that some skill does not

live up to its intended specifications, the program will adopt an intention to decide how to modify the

procedure, or the set of skills, so as to realize the intended specifications. To do this, the skill

modification procedures employ deliberation to decide what sort of change is necessary, to decide what

particular plan to fault for the problem, and to decide how to patch the plan to remove the problem.

Determining what the possible changes in the set of skills are and how to make them is more complex

than just examining existing reasons as sufficed in belief revision. Instead the program must often

introspect into its primitive procedures to find the explanation of their behavior in terms of underlying

ht ... -, _." _._.._

24

plans. A fter it does this it uses these plans in s)nbholically executing the primitive to see exactly how the

problem occurs. It then analyzes the reasons ftr the pr)lem in tcnns of ihc helicfs, intentions, and

actio ns of the primitive in this symbolic CxeCutiOl to classify the problem into one of a number of

problem types. It then deliberates on how to modify the procedure so as to avoid the prohblem. Once it

has decided to make some partictlar modification, it modifies the plans involvcd in the procedure's

construction, and compiles thc se plans back into the form ofa procedure.

Skill modification plays a crucial role in the efficient operation of the program. For efficiency,

most steps of most actions most he taken unconsciously. and skill modification techniques are the means

for producing such unconscious skills from the prior conscious plans and experietcc with their use.

1.3 Outline of (he Thesis

Chapter 2 describes SDI., the language in which concepts and attitudes are phrased. Chapter 3

introduces RMS,5 the underlying subsystem which implements the theory of reasoning. Chapter 4

describes the hierarchical library of plans and the interpreter, the action-describing and action-taking

parts of the program. Chapter 5 explains how these techniques are combined in reasoned deliberation.

Chapter 6 explores the application of these techniques in deliberate changes of the program's concepts,

beliefs, desires, intentions, values, and skills. Chapter 7, the final chapter, discusses incompletenesses in

this work, related directions for future research, and speculative topics.

4. This acronym slands for Struaured Derription lanuage.
5 RMS is a revised and renamed version of IMS [loyle 1979). Ihc acroiqnm slands for Rcawon Maintenance .)zAem. I am

changing the name for Iwo reasons. Irst 'IMS. the Truth Alaintenance S stcm. has nothing to do with truth, and this misnmer
has apparently annoyed soimc -bo look it more seriously than was intended. Sceoid. as discussed in more detail in the last chapter,
IMS maintains reasons for several sorts of attitudes, sich as belief.s, desires, and intentions, so (hat it seemed prudent to name It
after the reasons being recorded than after one of the attitudes (such as belic) being derived from these reasons.

'II

25

1.4 Sketches of these Ideas in Practice

To illustrate how these sorts of techniques might he applied, we present several motivating sketches of

rea|soning in common situations involving decision-making, recollection, self-improvement, planning, and

conversing.

1.4.1 I)ecision-iaking

Suppose that Robbie is a male robot. As Rohbie is opening a closed door with the intention of walking

through it. he detects an approaching object. lie identifies the object as a woman (or perhaps a

female-appearing robot), and considers what, if anything, to do about her. lie thinks of two possible

courses of action, (1) holding the door for the woman, and (2) ignoring her, thereby letting her open the

door on her own. Robbie first forms a reason (a) for option 1), that chivalry demands a gentleman hold

the door for a lady. Robbie continues to think and realize. that the modem woman finds chivalry an

insult to her humanity, which constitutes a reason (b) against the first reason, that is, a reason not to act

for reason (a). At this point Robbie still has no reason for action, since reason (a) has been defeated by

reason (b). so he thinks further that he should hold the door by reason (c) of general politeness towards

one's peers. At this point Robbie stops deliberating on what to do about the woman, and since option (1)

has a good reason for it and (2) does not, Robbie decides to act on reason (c) and hold the door for the

woman.6

Robbie next thinks about how he should go about holding the door for the woman. He

considers the possibilities, the first of which is his standard method, that oif(3) holding the door aftcr he

has passed through just long enough for the woman to reach the door and hold it herself, But he then

6 ir Robbie instead had been a time traveller Io the early pan of the twentieth century, he might have. unless he was very dull
rcaliied that he had a reason (d) against reason (h). namely that the dilfcrcnt time period rnadc his original objection invalid. In thi
case. Robbie could have acted on reason (a) alone, for reason (d) being valid would make reason (b) invalid, thus allowing a good
freOn (a).

S i___ ___

26

recogni/es the woman as a friend whom he has not seen for sonic while, and considers the second

possibility of (4) holding the dtor until she has passed through, following her through, and offering

greetings as she passes. In this case, option (3) is his default door-holding method, and has a reason for it

that is valid if there are no other options with good reasons for them. But Robbie also has the good

reason of renewing a friendship for option (4), so the defitult reason for (3) is defeated. Thus Robbie

decides on (4), holds the door, and says hello.

Although this example is informal, exactly the same techniques are important in highly

constrained (echnical domains (not to imply that social behavior is not also highly constrained). For

example, when % riting a program one has a decision of how to implement sonic function. One possibility

might he simple, another complex. One might have a reason for the first in its maintainability, but defeat

that because of its inefficiency. One might defeat the reason of inefficiency because the program will

receive only limited use. Then one might defeat the reason of maintainability because the simple method

actually runs quickly on the cases of interest. Whatever the problem, one still has to somehow combine

different sorts of values and exceptional cases in decision-making.

1.4.2 Recollection

We often would like the program to explain its actions, and normally it can do this by examining its

records of its actions for the action in question, and then explaining the action in terms of the intention

that led to the action, and then in terms of the beliefs, plans, and decisions that led to the formation of

that intention. But what if the action in question cannot be found in the history of actions? The program

then reasons about whether it took the action or not. It might possess information about its procedures

(either through introspective analysis or design) sufficient to tell whether the action in question might

have been taken unconsciously by some primitive. For example, the program might record its action of

moving one block to a new location, but if the primitive it used to carry this out first moved some other

27

hi:k to clear the (op of tile target blotk %ithout noting this subsidiary action, the program would miss

this action in its history. lloAcser, if it knew that the block inovenient primitive could be invoked by

priilities Its well as through intentions, it could idnit that it Inight have takcn the action, but not

consciotusly. If it knew even more about how the primil e might be called, the program might bc able to

iefer that it must have been called and why it was called. The program might also try to recognize the

action as emcerging from the larger pattern of the actions it does recall. For example, the program might

nio% e some block around on a table until the block rest- Igain in its original position. I lowever, it might

hase to infer from its recollection of each of the separate actions that it took the action of leasing the

blh:k in place. Iinally. the program might believe that the only way the action in question could have

been taken was deliberately through an intention, and infer from this and the absence of any record of the

action that it did not take the action.

1.4.3 Sell-improvernnt

How pleasant it is, at the end of the day, no follies to have to repent;
But reflect on the past, and be able to say, that my time has been properly spent.

Jane Taylor, Rhymes for the Nursery The Way to be Happy.

In addition to reflecting on its actions to explain them, as in the previous sketch, the program might also

reflect on its recent actions to see if they signal any changes that should be made in the procedures used in

taking these actions. I, for example, reflect on the day's events each night before going to sleep. I also

reflect on recent actions when I get annoyed with something, to see if I can think of some way of avoiding

similar annoyances in the future. In recent times I recall several discoveries I made in this way which I

then put to use in improving my future performance. For example, I used to shave after showering.

Having to wash my face after shaving eventually annoyed me enough so that I realized that I wouldn't

have to wash my face a second time if I shaved prior to showering. So I switched my routine. However, I

later became annoyed with the stiffness of my beard, which on reflection I attributed to the lack of

i wl ISM

28

shower soflening, so I si4itched back, now the wiser about toilet techniques. In the sanie way. an

intelligent program might be fruitfully organized to reflect on the efficiency of its past actions both when

problems arise, and as a regular matter (once per day as the nursery rhyme goes. or during

conl. crationally idic periods).

1.4.4 Planning

Regular review of une's plans often results in their modification, for example, by realizing their

incoherence, their inappropriateness, or their importance. For example, the program might decide to

carry out two of its intentions by means of plans. Unless it then reflects on these plans, it might never

discover that together the plans have substeps calling fi)r simultaneously unrealizable or needlessly

repetitise actions. "Ille program can correct these problems by carefully ordering the steps, or by

discarding one, or by inserting new steps to mitigate the interference between the separate plans.7 The

program might also notice that a great many of its intentions turn on some decision it intends to make. In

this case the program might explicitly state the importance of the decision, and adopt the intention to be

very careful in making the decision, that is, to use a careful deliberation procedure rather than to decide

quickly.

1.45 Conversation j
In addition to reasoning about its own actions and attitudes, engaging in convcrsat:ons requires that the

program reason about the actions and attitudes of others as well. Intentions to inform can be analyzed as

intentions to have the other participants in a conversation believe some fact. Intentions to request

something of someone can be analyzed as intentions to inform that person that one has a certain d'cire

7. Sacerdoai's jI,7 iOAII is an example of'ways in which si:ch reflection and action might be done.

II

Itt

29

whose satisfaction involves their cooperation. Furthermore. an intention to persuade can be analyzed as

an intention that the other person adopt a certain desire.

liI all these cases, to plan one's utterances one needs i reason not only about one's own attitudes

and actions, but also about the other person's attitudes, his attitudes about one' own a ttitudes. and the

beliefs and skills in common to both participants in the conversation.8

TO perform this sort of reasoning, die program might make copies of its own nental structure,

interprctcr, library of procedures, etc. to represcnt each other participant, and then simulate and

interrogatc these models to predict what die effects of its own conver,,tional K.tions will be.

1.5 Status of the nplementation

Can these bones live?
Fickiel, xviii:27

No complete. working, fully tested version of the program exists at the present writing. This section

explains both what has been implemented, and forsecable difficulties in completing the implementation.

All of the parts I have implemented arc written in LISP fior the MIT Lisp Machines.

Several versions of many parts of the program have been implemented and experimented with

to %arying degrees by various people. SDI. is based on a modest extension of the ideas used in FOL

[Weyhrauch 19781. An implementation of FOI. by Weyhrauch and others has been working for some

time and applied to several projects. SDI) has been implemented several times, but never as completely

as its description in Chapter 2 indicates. RMS is a modification of TMS [IDoyle 19791. TMS has been

used extensively in many programs. RMS itself has not been fully implemented or tested. 1he

interpreter is an extension of the "task network" interpreter used in NASI. IMcl~ermott 19781. NASL is a

A. Sprccch-act appmachcs to discourse have been attracting increasing attention recently. For background and current propak
see (Auhin 1%21, (Searle 1969. (Orice 19691. (Cohen 19711. IOro. 19791. (Perrault, et a. 19781. and (Wilks and Bien 19791

I4- tt - - __ _ _ _ _ __ _ _ _ _ _

_ _____ _______ _ ____ ___ __ _

30

%oiking. tested program. Charniak has recently reimplemented a subset of NASI as well. My

interpreter has, go c through several versions, each of which was tested on small problems, although none

of these Nersi ins has all the complexity of the one described in Chapter 4. Similarly, the deliberation

techniques in Chapter 5 have receied an initial implementation and testing through their use in the

interpreter. Some of the techniques of Chapter 6 have been tested, others are completely untested, and

still others form the content of other works, such as those of Winston [19751. Sacerdoti [19771, and

Sw,sman 1 19751.

The major reasons for the lack of a complele implementation are three: a lack of time on my

part. my confusion about ho% to implement databases, and inadequate computing resources. 'Ibis thesis

s~nthesizes a large number oif ideas, making it impossible to treat them in greater detail within a

reasonable pei iod.

Hierarchical databases, of the sort used in SI), have received considerable attention by many

authors, and many implementations exist. However. I had none of these readily available to me, had my

own peculiar requirements for extensions to them, and continually procrastinated on the task of

reimplementing one for my own use. There are many subtle problems involved in die exact details of

these databases, and although I have substantial interests in these questons, they were not the questions I

wished to pursue in this thesis, so I exerted little effort on resolving them. hlie basic ideas of Chapter 2 1

have known for some while, and have taken much of the actual detail of the structure of theories directly

from Wcyh rauch's system.

Straightforward techniques for implementing reasoning programs along the lines described

above require a substantial overhead in time, space, and notation. At first glance. the techniques require

recording semi-permanently many sorts of information that traditional programs either never consider or

only record very sketchily and then discard quickly. 'Ibis increases tie constant factors of the complexity

of the program on the order of 100 times over the space requirements of traditional programs. (100 is just

an off-hand, possibly pessimistic guess, and depends on the implementation techniques used.)

.........

31

I have not been overly concerned -ith this overhead, for a key point of my methodology has

been that it is too expensive not to record and use this information. I repeat: It is too expensive not to

record and use this information. The standard approaches suffer unavoidable combinatorial explosions

in searching because they discard the %cry inforniation that might be used in bypassing these fruitless

searches. I accept large increases ;n de constant factors to gain the ability to kill the exponential terms of

the program's complexity, and to instead achieve a program complexity which grows roughly linearly

with the complexity of the problem. The issue is not my skill at programming. Instead, the issue is to

analyze what information is necessary or at least useful in steering the program clear of these searches,

and then to deselop ways of recording and using this information.l 0 I concentrate on the asymptotic

conplexity of the techniques involved, on the fundamental concepts involved in control. Ibis is

important, for it means that as the problems become larger and more complex, a linear time program

remains feasible even if its constant factors arc very large, whereas an exponentially expensive program is

always useless, no matter how efficient it was on small problms. Combinatorial searches cannot be the

basis for intelligence. 'hey will never be fast enough. The problems always get harder to quickly.

Ihe unfortunate consequence of attacking the findamental problems of reasoning is that

current computers are too slow and too small to permit debugging of programs. It is nearly impossible to

make progress debugging a program which takes several hours of interactive operation to manifest each

new error and which must be started from scratch after each patch (as programs under initial

development require). However, this is just what happens. I have written programs to solve

unremarkable problems that represent exactly the information that seems necessary, that mAkc only the

inferences which must be made (i.e. no wasted searches), but which on absolutely trivial problem

9. I here repeat a vatcmenh made by G 1. Suwxnan 1I almnbe 1978, p. 364).
t0. For exanmple. te technique or dependency-dirccted backtracking dcvctlopd by Stallman and Summan 119771 was an effort to
utw a fixed overhead of extra records of dependence of results on assuiniions to avoid the ncedles comnbinaiorial wearches required
by iraditional hronological badkracking. A simidar motivation gave rise to the eparation of database and control informaltion in
CON NIVER ISuntan and Mcermott 19721.

32

instances spend at quarter-hour of" CPI time (and hours of' real time) exhausting the address space of

MIT's DIC KA-10. MIl[lisp Machines provide a faster interpreter and a larger address space, but

quickl, bccomc disk-bound, and then spend most of their time paging, just like tie KA-10.

The key fct(rs in thc dehuggability of these programs is the speed of the machine, and the size

of real menory. 'llie sort of program described in this thesis can, I expect, reasonably be implemented

and tested only on machines a thousand times larger (and perhaps faster) than the computers mentioned

aboc. Such machines may exist affordably within the next decade, and we must forego hope of true

intelligent machines until then.

What can be done meanwhile? I beliese we should work on problems towards that day when

suitable machines exist. It is not enough to concentrate only on problems whose techniques can be

implemented on current computers. For many important problems, those techniques are sure to be

unsatisfactory, substituting searches for intelligence. Science progresses not by building programs which

initially run "efficiently" but cannot in principle run fast enough, but rather by building programs whicit

are feasible in principle, even if we must build new computers to run them. Imagine the result if

Beethoven had tried to compose his Ninth Symphony for solo voice and pianoforte. I have no doubt he

would have produced something, but it wouldn't have been the Ninth Symphony, and would not have

"solved the problem" or said the same thing that the Ninth Symphony did.

1.6 Sketch or a Computational Argument for the Approach

All reformers are bachelors.
George Moore, The Bending of the Bough

"llie standard view in Al research has been quite different from the conscious, adaptive, reasoning

approach outlined above. This section hypothesizes a strawman vicr to stand for the traditional A[

approaches, and speculates on how it came to be adopted. It then attempts to give some insight into the

33

conlpttilt ional Ifoti\ations for the proposed approach by means of computational criticisms of this

stra man %iew. This argument is nade indirect for two reasons. First, those familiar with the traditional

approach %ill see the maini limitations of that approach. Second, these criticisms will suggest how

reali/ations of those limitations might lead to the view proposed here.

1.6.1 Why liave the fac(s of the fuindamental argument been overlooked?

It seems clear that most AI research misses the above ideas completely. Judging from almost any volume

of conference proceedings or journal issue, one sees the ovcr~helming emphasis on either designing a

black box algorithm for some problem, or for designing a formal language for writing down the

axiornatization of some particular domain or class of domains."1 Of course, such studies are often

necessary precursors of continued progress, but the question remains of why control, consciousness, and

adaptiveness have received so little attention. 'he following subsections suggest two possible answers to

this question.

1.6.1.1 Initial Programming Complexity

The simplest answer is the large overhead required by the techniques described here, and the

consequential undebuggability of programs based on these techniques. This makes problems admitting

more immediately testable solutions more attractive in some ways.

I1. See Iheimnan and Sm ith 1980, p. 3). who conclude that "far more people claim to represent the world thin claim to repremm
kemole."c

34

1.6.1.2 A Mathenatician's Outlook

I think a deeper reason why tile fundamental argument abo'e has been overlooked has to do with the way

of thinking implicit in the traditional approach. 'lli standard view seems charactericd by an

obli\ iousness to change. a blindness to the need for the program to continually adapt itself to changing

environments. tasks, and patterns of use. Al has tended to %iew the problem of representing information

about the world as that of defining several basically fixed (logical) theories, and using a single basically

fixed set of programs for reasoning about these representations. If new theories or reasoning procedures

are required. the Al researcher writes a new program, rather than helping the program to change its old

ones. Perhaps I am being unfair to mathematicians, but this seems to restilt from sharing the typical

nathematician's outlook on knowledge. Mathematicians discover concepts, theories, and theorems, but

once they have given a name to something, they never consciously change the meaning of that name. If

they discover that the named concept was not quite die interesting one, they make a new name for the

new concept, rather than changing the meaning of the old one, so that mathematical theories are

impervious to change. Since mathematicians do not often explicitly concern themselves with the use of

their theories in their studies, they are also somewhat blind to changes in how these theories are used in

reasoning. A book on determinants written today would likely have the same form and theorems as one

one written when the subject was alive.12

Al tends to formalize a theory of blocks, natural numbers, or elephants, and once this

axiomatization is set, it is rarely changed. Instead, modifications are given new names. Al adopts a

standardized form for reasoning, say resolution, production rules, procedural attachment, or what have

you, then lets this organization sit untouched in its reign over all domains. Since the basic representations

and reasoning processes are fixed, the Al researcher can build them into a program, and, to improve the

12. I lerc I am deliberately exaggerating the point for the .sake of argument. Dead field. sometimes regain popularity through the
infusion of new methods from othcr areas, and Dunmett [19731 and likatos 119761 might be taken as suggcsting that
mathematicians unconsciously change the meanings of their tenm.

35

program s initial efficiency, discard most of the information concerncd with why these represcntrations

and processes are used. Hut these reasons for the current organization are just what is necessary for the

program to be able to reason about how to change its organization when its environment or usage

changes. Blindness to change leads to organizing programs so that their representations and reasoning

processcs are built-in, unchangeable. This is the traditional view's fatal flaw.

1.6.2 (oneqltcnCes of the Iaccessihility of Control Infonnation

Sing, 0 Goddess, the anger of Achilles, son of Peleus,
that brought countless ills upon the Acheans.

SIhoner, The Iliad, translation by Samuel Butler.

We label the traditional view's fatal flaw the inaccessibility of control information. Just as the

inaccessibility of captain Achilles contributed to the Acheans' woes at Ilium, the singularly unhappy

methodology of the inaccessibility of control information leads to manifold unhappy consequences.

Since there is just one correct way of organizing reasoning, the framework-systems investigated in Al

usually support only one program at a time. The researcher has the responsibility for determining what

that program should be and for coding it up. He is also responsible for writing a new program or

changing the old one when the program is discovered to be in error or inadequate to its task. That is, the

program is not organized to be adaptive, but the programmer is expected to do the adapting.13 For

example, almost all the early programs (such as SIIRDILU) written in PLANNER 14 required that all

changes be made by the programmer.

This non-adaptiveness has a terrible consequence in practice. Because all responsibility for the

13. A frequcnt symptom of both this problem and a limited control vocahulary (Section 1.6.2.2) is the oft repealed warning of
system designers that thc user should lake care in deciding which inference rules should be used for forward chaining and which for
backwards chaining Ibis is a good signal that something is wrong with the system.

14 I will give most of Ihc examples of Iraditional systems and their problems in terms or PIA NNI.R. in part because it so dearly
demonstrates most of these problems, and in part because so many subsequent systems are largely based on its ides. The full
language introduced in 11ewitt 19721. However. only a subset was ever implemented, and the examples refer to programs written in
that subset. The full language shares all the problems of the Iubset.

. ___.- .: , . ,.; ,.: . "

m~iitI1, miaintenance, and e~oltrtioll Of theC program is kcpt(by the researcher and none is gia en to the

stiern, (fie iiforniat ioor dcscri hinrg the prgnu ramnrd its o rganrizat ion is t~ pical l) distinct from the

in t'Orratiori Asith as hich the progiam reasons. For example, references to P1 .A N N ER \ contro)l stack had

to he made in L ISP, rather than in terms of P A N NI E assertions and thecoremns. Almost always. the

pr'ogamI cannot refer to its o~kin structure and die structure oIf its behavior as its designer docs.s Since

this is in formation controlling the program's reasoning and actions, we call this the inaccessibility of

coin tron l in formation. ile p rogrr n sim ply can not reasonr abonut its ownr coniit rol processes.

II the foillowinig su~bSectionIs We oLtline somec of the rnari unfortunate consequences of the

inaccessibility of 'ontrol infoirmatiorn. T[he ?testinrg of subsection numbers will reflect the conscquential

relatiorrships between tlicse difficulties.

1.6.2.1 Thew Inexplicabhility of Actions arid Attitudes

Thie frrst problem folnlowirng from the inaccessibility of control information is the inexplicabiliy of actions

and attitudes. Because the program cannot interrogate its own control process, it cannot cxplain why it

took the actions it did, why it didn't take die actions it didn't, why it believes what it does, and why it'

plans to do what it does. For example, early evaluation-function search techniques rarely kept records of

their searching actions, Instead, they were notorious for basing all actions on inexplicable and

uninfonmative numbers.

One mighit think that this inexplicability is a trivial flaw, that one can tolerate incomprehcnsible

programs 'Ibis, however, is an raaely miisgulided tolerance. As programs and databases become more

common and more complex, society conies to rely crucially on their accuracy and intelligibility. Stories

arbound of false information irrevocably ruining sormeone's credit ratings, employment records, or worse.

15 By rhis is meant the terms and reasons with which the designer explains the program's dcsigrr. 1bheexplanations include
much more than just thc programmng language in which the program is writen, at least with current programming languages

37

In trying to deal with such tragedies, society finds that computer systems are designed with the view that

the are monolithic, infallible sources of information. This leads to great disrespect and growing

resentinent of these large information systems. If %e are to justify our reliance on these s)stems while

a oiding society*'s censure, we can take either one of'two paths. We might make programs responsible for

their actions or, more immediately practical, we can make programs explicitly defer all responsibility to

humans. We can have programs keep historical information about their inputs and about the

computations they perform. This historical information can then he used to construct explanations or

justifications of each action and dalahase entry so that errors can be traced to bad inputs, to faulty

programs, or to other databases in a distributed system. In this wi). the computer can be prepared with

the fact of its om in fallibilit) and irresponsibility, and can help track down its own problems and those of

its users. While this may not render intelligible the enonnous systems of piograms involved, at least their

effects will ha~c been isolated to some extent. It may he impossible for programs without historical

annotations to do many of the things that we want them to io, namely to defer responsibility to humans

so that their actions may be explained and corrected. 'he larger and more impoirtant programs become,

the more important such humility becomes. 'Tlie fairness and effectiveness of programs are at stake, and

if society is to trust their accuracy and usefulness, they must be able to trace their actions and contents to

responsible sources.

In addition to these strong social reasons against incomprehensible programs,16 many important

limitations on the program stem from die lack of reasons for actions and attitudes.

16. See also (Weizenbsum 19761 and (Rosenberg 19101

-A -ft

38

1.6.2.1.1 lhei (hauvinism of Values

But are they all horrid, are you sure they are all horrid?
Jane Austen. Norlhanger Abbey

Ihe most important pnhlem stemming from this inexplicability invoihes the c 'tiuvinism of values. Thc

inahility to examine one's reasons greatly limits the sorts of decson-making that can he performed. for it

forces one to fit all sorts of salues into a single dimension, thereb, making imnpossiblc reasoning based on

the incomparability of values.

I)ilemimas are the central problem. "lhe genesis of dilemmas is in part that we think of our

%korld comprising many suborlds. %kith only tenuous connections betwkeen dtem. We can describe the

korld and our actions in physical terms, or from the standpoint of a moral system, or as events in an

economic system, or simply in terms of what we like and dislike. tach of these subworlds of physics,

morality, economics, or pleasure has its own vocabulary, facts, principles, and %,ilucs. The values of each

of these systems cannot be compared with the values of the other systems. If we eventually discover some

reduction of all these worlds to a single world, for example, some way of reducing moral and economic

theory to physics, then we may have hope of comparing a moral value with an economic value. Without

such a resolution, however, we must live with incompatible values. Indeed, many thinkers have argued

that we will never find such a reduction of values because one does not exist, or that even if one did exist,

the explanations for decisions resulting from the reductions would be too detailed and intractably long for

routine purposes. 7 We must, at least for the time being, find sonic way of making decisions despite this

fragmentation of values.18

This fragmentation of values permeates our deliberations far more than one might expect. Even

in apparently technical decisions, which in the popular view are the most straightforward, incomparable

17. See Fodor 119751 and Puinam 119751.

18. This is Nagel's term [Nagel 1979b). Beltl 1976) terms it the "disjunction of relms.

39

principles must be reconciled. I-or example, %hen designing an an(RiomohilC, or a computer program, or

an electronic circuit, one typically encounters many dccisions between different ways of implementing

the design specifications. But when one comes to these decisions, one must choose bctween methods

which result in varying degrees of elegance. expense, ecological harmfilness, reliability, ease of

mln,6itenance, conformity with statutes, coverage tinder patents or patentability, difficulty of design,

complexit or size of the design, ease of construction, case of customization, the favor of one's peers, the

innovati~cness or personal challenge of the design. marketability, workability tinder expected ftture

changes in energy, legal, and social systems, etc., etc., etc. All of these considerations involve different

sets of %ales. and in anything one would call a problem, the value of the decision cannot be maximized

along all of these dimensions simultaneously. Making decisions necessarily involves reflecting on the

types of reasons involved to compare them with each other. If these reasons are incomparable, then the

decision cannot be made in a fully rational fashion when so desired.

'he fragnentation of values is a strong motivation for avoiding systems which do not record

their reasons, or which use only reason-obscuring techniques like voting or numerical

strength-combination rules for decision-making. In this latter case. such systems impose arbitrary,

implicit, and frequently indefensible judgements about the relation of different types of reasons by

chauvinistically fitting all types of reasons inLo a single-dimensional grading scheme. For example,

MYCIN [Davis 19761 forces all decision-making into numerical strength-combination rules. This not

only means that the program must commit itself to absolute strengths for all reasons, but it also means

that the combination of reasons cannot be affected by context. A classic instance of this is the

intransitivity of evidential relationships in medical diagnosis. As Rubin 119751 explains (along with other

examples), both facial edema and ascites are evidence for %odium retention, and sodium retention is

evidence for each of cirrhosis and acute gloncrulonephritis. However, thesc evidential relationships are

not transitive, as would be required by MYCIN, since facial edema is always positive evidence against

cirrhosis, and ascites is positive evidence against acute glomerulonephritis. Here context (i.e. facial

I

40

edel ma) in alidates a usual evidential relationship (i.e. between sodium retention and cirrhosis). Even

Simno's s.isficing decision-uiaking, which asoids the unnatural tun,,I ecoionficus or valuC-maximizing

mn. still fits all utilities into a single dimension [Simon 19761. Necessarily chauvinistic decision-making

processes maN he simple, hut lead to insurmountable inadequacies in the reasoner, and lead to more

decisions being made than is properly possible. 19

1.6.2.1.2 The I.ack of Intentionality

Another prohlem stemming from the inexplicability of actions is the hck ofimin , ionalioy. If the program

cannot reflect on why some action was taken, or why some circumstance Occurred, it cannot distinguish

between the intentional and the unintentional consequences of an action. A famous problem with

PIlANNlR-based robot bank robbers is that they would blithely proceed to rob the bank after tripping

over a pot of gold while on the way to the bank. Being able to make these judgements is crucial in

analyzing its successes and mistakes with an eye to improving its skills and performance. Telling whether

the effects of some action were "successful" or not depends on the ability to distinguish some conditions

as the aim towards which the action was taken, and then checking if the action realized these conditions.

For example, I have on occasion begun to assemble a complex toy without understanding what the

intended structure was. When the assembly directions were unhelpful and did not explain the intended

functions of the parts to guide me. I sometimes completed the bulk of the assembly only to find that I

apparently misassembled some substructure earlier because the next assembly ipstruction made no sense

for the then current partial assemblage. To correct my error, I tried to reconstruct the intentions of each

assembly step and see where my actions had diverged from the intended actions.

19 Of course, any decision-making procedure may be made chauvinistic by a decision to accept universal comparison rules. The
isue here is whether the decision-making procedure forces this decision on one, or whether one can leave some values
incompirablL

____ _________________ ~I

41

1.6.2.1.3 Inextensihility

I'lle inexplicability of the program also contributes to the inextensibiity of the program. Since the

program cannoi explain its workings, it has little chance to aid in its own modification. Fven trivial

changes must be left to the designer or user to effect. Simple methods for augmenting the procedures

used by the program. such as those presented in [I)ais 19761, are impossible to implement. For example,

the program may in the course of reasoning discover that its beliefs are inconsistent. If the program can

explain its beliefs, it can help to trace the conflict back to its assumptions and to resolve the conflict by

changing one of these assumptions. But without a self-explanatory facili(y, the program's extender must

rely on tie program's designer to provide this analysis, if he can. For example, PI.ANNFR recorded no

explanatory information outside of its control stack, and that was sufficient only for suspecting the

chronologically last procedure executed, as in chronological backtracking.

1.6.2.1.4 Hubris

The fifth consequence of the inaccessibility of control information and the inexplicability of the program

is its hubris, the program's inability to acknowledge its own fallibility and limitations. Because its

reasoning and deliberations are external to its language, it cannot say anything an)ut whether it might be

wrong in making some inference or decision, but has to proceed as though it is always right. In fact, the

program has many limitations in its abilities and in its knowledge of its abilities. Its knowledge of its own

abilities and beliefs is not very much more secure than its knowledge of the external world. To be

effective in action and in reaction to difficulties, we must replace hubris with sophrosyne, knowledge of

both abilities and limitations.20

Many useful rirms of reasoning depend on being able to refer to such limitations. A prime

20. For a betler explanation of this term, see Ostwald's gioss of sophmsyne in [Arltotle 1%2, p. 3141 and Aristotle's usage in Book
3. Sec ion 10 of that work. pp. 77ff.

42

example of this is the ability to make deflult assumptions or other non-monotonic inferences oil (ie basis

of incomplete information. Such inferences can be made and mainutined correctly only if the reasons for

beliefs and actions can be gi~en. [his was one of the major failings of PlANNIR and its relativcs.

PI ANNER could not correctly handle 'IIINOT because it lacked reasons for its beliefs. PI.ANNER

could not correctly computc the intended conditions of a TllNOT's success, for it could not tell which

assertions depended on preious TIINOTs. For the same reason, it could not correctly update its set of

assertions wen a new assertion in\ alidated a rievitus -'NO'l"s success. Knowledge of one's limitations

also enters into the tenacity with which one holds beliefs, into judgements about A bich beliefs to give up

(,y as tenttive hypotheses) hefore others (say as tenets of faith).

1.6.2.1.5 Non-additivity

A fourth result of the inexplicability of program actions and attitudes is a failure of additivily. This

problem involves more than non-monotonic changes in the program beliefs in response to actions and

inconsistencies. Here I refer to PlANNER's failure under the addition of new imperative inference

rules. The programmer always had to take great care when adding new inference rules to avoid loops of

inferences which would halt progress. Not only would some added rules cause catastrophic failures of the

program through non-terminating iterations, but no information could be added later to indicate the

proper use of the rules. For one example, a backwards-chaining inference rule, to the effect that one

block is a above another if there is a block which is above the one and below the other, might never halt if

asked about two isolated blocks. If asked to prove that block A is on block B, it would generate the

subgoal of finding a block C above 11 and below A. the sub-subgoal of finding a block I) above C and

below A, and so on, endlessly, without the possibility of adding a new rule to say that the first rule should

never be used if the two blocks are isolated. Also, conflicting non-monotonic rules will loop. If one has

procedures (each added by a different user with his own ideas about what the program should do) to add

43

P whcn~cvr Q is added, to crase Q whenever 1) is added, to crase P whcncver Q is erased, and to add Q

whenever P is erascd, one might go into an infinite loop of adding Q, adding P. erasing Q, crasing P.

adding Q, etc. No techniques fully adcquate to this problem were available because the real answer

involves keeping track of the inferences themselves, that is, the actions of the control component, and

rcasoning about the prcsencc of loops in thcse inference records. Whcn such techniques arc employed,

new infercncc rules may be added without fear of this sort of failure occurring.21

1.6.2.2 Inexpressibility of (onrol iforniation

T[he second major problem stemming from the inaccessibility of control information involves the

inc.vpressibi/ily of control info mafion, the inability to give the program heuristic advice, guidelines for

how to carry out an decision or task. This is the doom of McCarthy's goal of an Advice Taker [McCarthy

19581. IBecause control is fixed external to the program, at some point the controller must arbitrarily give

up on controlling the program's actions and resort to blind search, for otherwise the control component

would contain all possible information about how to do what, when. For example, the usual PLANNER

scheme of writing programs with inference rules marked as forward or backward chaining allows one to

significantly direct the behavior of the programs in simple cases. However, when one increases the

number of inference rules beyond trivial proportions, one finds many goals or assertions being answered

by an unmanageable number of inference rules. It requires a new language ofcontrol to specify even the

simplest procedures for directing what to do in this case, such as which rules are to be dealt with first.

Some systems employ such a rule by imposing a linear ordering on the order of execution of all inference

rules. Whenever one builds in a level beyond which the program can never see, one builds in eventual

search, for any fact may at some time be the point on which an enormous search turns.

21. For example, AMORD avoided dihin problean in just (his way. (de Klier, aL A l7

n7

44

1.6.3 1 lence Reasoning Applied to Control

Hie common element of all the above inadequacies of the traditional approach to reasoning programs is

the inability of the program to refer to, to reason about, and to modify the information controlling its

actions. Te obvious approach to remedying these inadequacies is to design reasoning programs which

can reason about themseles. In this way we can simultaneously overcome the limitations of previous

approaches and make use of their strengths, for nothing need inhibit the program from consciously

deciding to use one of the less sophisticated methods in certain cases if it deems those methods

appropriate and more efficient in those cases.

1.7 Relation to Other Works

And one might therefore say of me that in this book I have only made up a bunch of other
people's flowers, and that of my own I have only provided the string that tics them together.

Michel E. Montaigne, Essais

This thesis is related in general and in detail to a number of other works. Some of these will be cited in

the chapters that fiollow. In this final section of this chapter, we first relate the thesis to its closest relatives

among those works which have had the strongest influence on it. (See Figures 3 and 4 for a "mythical"

summary of these influences.") We then survey some of the many other works relevant to topics studied

in the thesis.

1.7.1 Major Influences and History

'Ibis thesis is an outgrowth of my earlier research on control of reasoning and belief revision. This line of

work started for me with my paper "'lhe use of dependencies in the control of reasoning" [Doyle 19761,

which emphasized the need to control reasoning and "reasoning about reasoning" as a promising

approach towards solving it. There I describe an early version of RMS, along with its application to

454

SEAN

AMI 2

46

SEAN = this program
AMORD = de Kleer, Doyle, Steele, and Sussman [1977]
TMS Doyle 119791 4
NETL = Fahlman [19791
TIRESIAS = Davis [1976]
GOLUX = Hayes [1974]
ARS = Stallman and Sussman [1977]
SCHEME = Steele and Sussman [1978]
NASL = McDermott [19781
KL = Minsky's K-lines [19791
AE = Minsky's Affective Exploitation (19801
PA = Rich, Shrobe, and Water's Programmer's Apprentice [1979]
FOL = Weyhrauch [1978]
PLANNER = Hewitt [1972]
SOM = Minsky and Papert's Society of Mind [1978]
HACKER = Sussman [1975]
LISP McCarthy, et al. 119651
MMM = Minsky's Matter, Mind, and Models [1965]
AT = McCarthy's Advice Taker [1958]
ML = Mathematical Logic
GPS = Newell and Simon [1963]
SF = Asimov [1950,1964] and Heinlein [1966]

Figure 4

Key to Influence Diagram Abbreviations

47

maintaining explicit statements of the goals of die reasoner. My masters thesis, revised as "A truth

maintenance system" [l)oyle 19791, deeloped RMS further along %ith its philosophy and applications.

)celoping the other theme of my first paper, "'xplicit control of reasoning" Ide Kleer. et al. 19771,

proposed the explicit represcntation of the control state of the reasoner, in the main clarifying my earlier

paper. This paper introduced AMORI), a procedural deduction system based on RMS, first

implenented by dc Kleer and Sussman.22 In unpublished work, I extended the example system of this

paper. and later Shrobe 119791] extended it yet further. I hope that the present thesis ties these threads of

thought together again.

I owe my colleagues large debts for many ideas. My earliest exposures to these sorts of ideas

were, I believe, in a class on religion with IHloyd Swenson, and later, in my studies of mathematics with

Joseph A. Schatz. who tutored me in the possibility of scrutinizing one's beliefs and rules of reasoning,

and how such scrutiny is essential in foundational questions. John S. MacNerney vividly illustrated this

point to me in a class on integration.

At the time of writing of my first paper above, I had been working for Sussman on ARS

[Stallman and Sussman 19771 and with Mcl)ennott on NASI. [Mcl)ermott 1978]. and was very excited by

their programs, and by Davis* new thesis jl)avis 19761 as well. I then sat in on some discussions involving

them, de Kleer, and Steele. thinking about the structure of a "new MICRO-PLANNER" based on

antecedent reasoning. I then developed and applied my idea of non-monotonic data-dependencies to try

to make some of these things workable, and my first paper above is the result.

RMS itself stems from my experience with the "fact garbage collector" of ARS. I introduced

the idea of non-monotonic justifications for beliefs (and how they fit into dependency-directed

backtracking) to capture the "PISUMAI1.Y" inferences in NASL. I discovered that ARS's fact

garbage collector and backtracker were both very buggy and needlessly non-incremental, and isolated

22. AMORD is actually the second program of tiha name. Steele and I having labored over and. after several monhs finany
quiely buried te first AMORD.

~- -w--

II

48

ilnpro ed %ersions ofthese stihprograms based on non-InloInotonic jusaf~lcatons as a domains-independent

subsystem.

My interpreter is an extension of NASI.'s Lisk network interpreter. NASI. in turn builds to

some extent on Sacerdoti's NOAII [Sacerdoti 19771, which reasoned about its own systcn of intentions

reprcsented as a "procedural net." My major changes to NASI have heen the reorganization required by

the RMS, the use ofa hierarchical library of plans (NASI. used the first order predicate calculus in such a

%k ay as to make this incon% enient at best), the separation of desires and intentions, and the introduction of

reasoned deliberation. NASI 's choice protocol is a simple relative of reasoned deliberation, with little of

the strocturc, power, or intutieness of the latter. In NASI.'s choice protocol, one erases options, retains

options. or combines options, until just one option remains. One cannot give reasons against reasons,

since there are no reasons. lowever, one can draw some conclusions about the deliberation process as a

whole through the QUIESCENCE step of the choice protocol, which signals the executive that

decision-making h.is gotten stuck. McDermott used this last ability for encoding default decision

outcomes. NAST, is little concerned with self-models, and so lacks plans describing the interpreter's

actions. However, some of NASI,'s plan-reformulation mechanisms hint at a self-model, as they are

mediated through plans rather than as simple procedures.

The fornalism for desires, intentions, and plans used in the interpreter is also related to the plan

formalism of Rich and Shrobe 119761, who in turn refine earlier formulations [Brown 1976. Sussman 1975,

Goldstein 1975]. 1hey also present libraries of standard plans for programming, and methods for

analyzing programs into their underlying plans. I draw heavily on their work in my approach to skill

introspection and hypothetical reasoning.

Patrick Hayes has long advocated the general approach of controlling reasoning by reasoning

about control [Hayes 1974). lie first suggested this idea in elucidating the relation between computation

and deduction [layes 1973b]. More recently, he critiqued the traditional approaches to control [Hayes

1977al, and I have tried to build on his criticisms in my arguments above.

49

I ong ago, McCarthy proposed an Advice Taker, a program %hich could accept facts and

helristics ,ibout the world and how to reason, and then find ways of using this information effectively

[KlcCarth, 19581. His proposad had no direct influence on me, but had a great indirect effect through

Sussman's thesis [Sussman 19751, which has had a large impact on my views of learning of procedures and

assimilation of information.

I hase also been considerably stimulated by Sussman's addiction to writing meta-circular LISP

interpreters [Steele and Sussman 1978b]. Although these interpreters do not refer to their self-description

to act, the) admit a dcscription of themselves in the same language that they interl)ret, so that they can be

used to caluate themselves evaluating some other program.

I toyed with ideas about how to make a non-monotonic, hierarchical calculus of descriptions

e~cr since reading about NVI'l. [Fahlnan 19791, which substantially influenced my views on databases.

However. these ideas never demanded quite enough of my attention to permit their full development.

My confusions about this might have hindered this thesis even more that, they have, had it not been for

Weyhrauch's timely exposition of FOI. [Weyhrauch 1978]. I finally worked out the details of SDL while

trying to understand his paper and its relation to Brown's work on meaning and mcta-theory [Brown

1977, 19791. SIX. draws heavily on both NFl". and FOL.

Minsky's ideas on reflection [Minsky 19651, once I discovered them, served to illuminate the

problems I was fumbling towards. I was also extremely stimulated by his views on the role of affect in

intellect [Minsky 1979], and by his criticism of the logistic approach in reasoning in [Minsky 1974].

Finally, many years ago I read and reread a number of stories which have ever since inspired my

attitudes towards the problems of building intelligent machines. I would like to thank the authors of

these stories, Isaac Asimov 11950, 19641 and Robert A. Heinlein 1966], for their inspiration.

I I

50

1.7.2 Related Works

'lllere arc inan other related %orks, some of which influenced me, but most of which were

developed independenly. Unfortunately, I am not quite the scholar I wish I were, and much of my

recent and continuing effort has been directed to learning of the approaches already developed to the

problems of this thesis and tying to relate all these ideas. I loweecr, I am still a novice in most of these

areas. I ha~e explored enough to see the truly huge bulk of writings on these topics, so to add some

measure of coherence, I discuss them by topic.

1.7.2.1 Represenlation hllieory

This category groups -together studies of the nature of representation, hierarchical representation systems,

and self-descriptive aild self-referential systems.

The philosophy of logic and language is the usual location for studies of the nature (,f

representation, meaning, and representational system. Quine [19701, Haack [19781, and Linsky [19771 are

good survey expositions of this area. Iinsky 119711, Schwartz 11977], and Strawson [1967] are useful

collections of articles on these topics.

Representational systems based on ideas of hierarchical relations between representations have

been explored by Blrachman 11978), Fahlman 11979), Minsky [1974], Ph. Hayes 11977), Hendrix [19751,

Steele and Sussman [1978c], Smith (19781, Martin 119791, and Borning [19791. Simon [19691 stresses the

importance of hierarchical systems in organizing information and behavior.

lhere has been quite a bit of work on self-descriptive and self-referential systems, although most

of it is foundational in character and little is applied to the problem of controlling reasoning.

Programmers will find familiar the idea of the meta-circular interpreter, the earliest of which is Turing's

universal machine [Turing 1936). Such interpreters have also been developed for studying the semantics

of programming and logical languages by McCarthy [1965], Backus [19731, Reynolds [19721, Brown

51

[119771. and Steele and Sussman 119781)]. Minsky [19651 discussed machines which reason about and use

their own sclf-des.riptions. So also do those mentioned above involved in the approach to control

pursued in thi:, thesis. I)a\ is 119761 not only explores controlling reasoning with self-reference, but also

shovs the high valuc of programs using models of their own datit structures and inference rules in

acquiring new information.

In addition to meta-circular interpreters, the computer-architecture and compiler-compiler

fields ha e studied fiormal machine description systems. See Itell and Newell 1971], [Cattell 19781, and

[McKeeman et al. 1970].

The Fundamental formal properties of self-dcscriptive and self-refcrential systems have been

studied b, Russell [19081. I lilbert 119251, GCodel [19311., Tarksi 119441, Turing 119361, Post 119431, Klcene

[1950]. Smullyan 119571. Montague [19631, Quine 11966]. Kripke 119751, Fefennan [19601, Resnik [19741,

1oolos 119791. and Scott 119731. Smullyan 11978, 19801 and ltofstader [19791 present popular expositions

of some of these questions. Ilic non-monotonic logics mentioned below can also be viewed as

self-referential systems. Brown [1979) and Weyhrauch 119781 have each developed programs which can

reason about languages, proofs, and models. Weyhrauch's program is its own theory of itself, so that it

can reason about itself and as its model of its description of itself. Brown's program seems similar in basic

nature. Smith [19781 is also working towards developing another such program and formal system. All

these studies, however, are essentially foundational. None tell how to reason about oneself, but instead

concentrate on providing the power to do so if one so desires. An aim of this thesis is to explain ways of

doing just that, of using these frameworks for self-referential reasoning.

_ _ _ _ _ _ __ _ _ _ _ _ _
-1 - ~ --- - - - - _ _ _- - - _ _ _ _ _ _ _

52

1.7.2.2 The Nature or Reasoning

The mathematical semantics of the non-monotonic justifications and default inferences used in RMS and

other programns hls recently been deseloped by Mcl)ermott and)oyle 119781. Reiter [19791 analyzes a

less general systmn allowing stronger results while still capturing many important inferences. Kramosil

119751 is the First, but unfulfilled, study of this sort. Mcl)cnnott 119801 follows up our earlier approach

A ith stronger logics based on Iraditional the modal logics T, S4. and S5. I suspect there may be another

inicresting logic along these lines, namely a non-monotonic extension of Ioolos' modal logic of

proability in Pleano arithmetic IIloolos 19791. Reiter 119781 catalogs some of the many important

appearances of non-nmonotonic reasoning in artificial intelligence studies.

Another close relatike to non-monotonic logic and these views is the theory of conclusions as

fornulated by Tukey 11960] anid deslopcd by D)acc 119781. This is a formal logic in which statements

%%ith very strong e idence can bc adopted as conclusions, to be maintained independently of the evidence

until and unless very strong evidence to the contrary is accepted.

Hannan. L.ehrer and Paxton. Scrien, and Bennett each formulate view of inference which seem

close in some ways to non-monotonic inference. Harman 11973] sees inferences as total views, with all

inferences containing the proxiso "and since there was no undermining evidence." [chrer and Paxton

11969, [chrer 1974] formulate knowledge as undefeated justified true belief. Scriven [1959, 19631

formulates historical explanations as involving truisms or what he calls "normic rules" which state "true"

general principles which may be defeated in particular instances. He argues that such rules are neither

deductive nor statistical in nature. Bennett [19641 develops a notion of "R-denials" as denials of reasons,

but apparently does not continue the process with denials of denials in any uniform way.

Rosenberg 119781 presents a beautiful exposition of the conversational logic of dialectical

argument. Bclnap 11976] discusses a simple four-valued logic of this sort of argument, and shows its

connection to relevance logic.

S--j , ' Il I I II

U I

53

lliere is a siza,)lC literature on logics of various attitudes, such as belief, desire, and obligation.

Resher 119681 surveys this area. See for example llintikka [19621, Kenny 119781. Reschcr 119661,

Illilpincn 19711 and Chisholm 11978). For the most part. I have not developed a comprehensible

relationship between these logics of attitudes and the behaviors of the program suggested here. The

formal logics all seem too simplistic, or specialized to very specific sorts of reasoning. Chapters 4 and 5

briefly, mention some connections of the ideas proposed here with dcontic logic.

Kreiscl 11908. 1971. 19771 and Prawitz 119731 survey the litcrature and ideas of proof theory, and

Boolos [19791 prcscnts the correct modal logic of provability in arithmetic. Proof theory is intimately

related to reasoning about reasoning, it being in large part formal reasoning about fonal reasoning

systems. Closely related. inluitionists reflect on the structure and development of proofs as a means of

judging what arguments are constructive or non-controversial. See [Iicyting 19561 and [Yessinin-Volpin

1970).

Collins 11978] and Wason and Johnson-l.aird [1972] discuss questions in human plausible

reasoning and the psychology of reasoning. I am not yet familiar enough with this literature to comment

on iL

Our approach to reasoning should be taken as orthogonal in many ways to the decision-theoretic

approaches mentioned below, and to Zadeh's fuzy logic, which aims at capturing a separate set of

intuitions. See [Zadeh 19751 and [Gaines 19761.

1.7.2.3 The l'heory of Intentional Action

Shaffer [1%81, Taylor 11966, 1974J, and Davis [19791 survey the standard theories of intentional action.

White [1%81 and Brand 119701 collect a number of papers on this topic. See also (Anscombe 19571 and

[Goldman 1970.

Miller, Galanter. and Pribram [19601 discuss the role of plans in psychological explanations of

- - -- -- ,, ..-.

54

heha\ior. Mnd Colling ood 119461 the role of intention in historical explanation. I)ray [19641 surveys

theories of hiscorical explanations, and Gardiner [19741 and I look 1196.1 collect a number of papers in

this area.

Studies of plogramn understanding and action interpretation develop a number of models and

techniques for representing plans, recogni/ing plans in programs. devices, or patterns of behavior, and

analing errors to find the faulty plans that caused liem. See Sussman [19751, Goldstein [19751, Brown

[197 1. dc Klcer [197 9a], Miller [19791. Rich and Shrobe [19761. Wilensk) [1978], and Schmidt, Sridharan,

and Goodson 119781.

1.7.2.4 The Frigmentalion of Values

Nagel [1979h], Fodor 119751. and Putnam [19751 present arguments for the irreducibility of the various

domains of the world to a common basis of comparison. The basic arguments are that even if we are able

to determine how each of tLhe domains is realized in a more fundamental domain, these reductions cannot

be lawlike because there are so many sorts of ways of realizing each domain in the underlying domains,

and that even if they were lawlike, the bridging realization explanations would be so hopelessly detailed

that they would never make sense in arguments, reasoning, or decision-making. When each person is

taken as a separate domain of values, as is usual in social decision-making, there result a number of

problems due to the fragmentation of values. Arrow [19671 discusses the fundamental result of the

nonexistence of a "nice" way of combining fragmented values coherently in all cases to find an aggregate

value.

55

1.7.2.5 I),cision-inaking

Much recent Aork in decision-making has been descloped in decision-theory, the most popular branches

of which ire based on Bayesian prob;ibilitN theory, and most of this work concentrates on chauvinistic

utility measures. Soppes [1 967] survey) this area. Go)d I 952] mentions a hierarchical dccision-theory of

this sort.)uda. I lart. and Nilsson 119761 apph these ideas in the context of popular Al techniques. Giles

11976] desclops a suhjeclisc logic of belief along these lines. Simon [19761 introduced the notion of

satisficing to a' oid hopelessly idealized rationality. Allison 11971] and IBrabrooke and I.indblom 11963]

discuss social and political models of decision-making.

Many studies baie been made on \arious structures lor organizations and decision-making in

them. Many of the ideas and concerns here are closely connected with those of the control and

organi/ation of reasoning programs. See for example Barnard [19381 (which has an intriguing appendix

on the nature of mind and reasoning, logical and non-logical),)rucker [1946, 19741, Simon 11976], March

and Simon [19581, Chandler [1962], Rawls 119711, and Nozick 119741. Related studies attempt to view

animal and human behavior as stemming from organizations of smaller decision-making units.

Tinbergen (19511 presents such control structures for several animals. Minsky and Papert 11978, Minsky

1977] explore such organizations for the human mind. Fox [1979] attempts to relate Al decision-making

models, organization theory, and decision theory.

Quite different from that on decision theory, the literature on deliberation usually admits the

fragmentation of values, and concentrates on the reasons involved in the deliberation. See the articles in

Raz [19781, and books by Aune 119771, Castaneda [1975], Edglcy 119691, Gauthier 11963], Hare 11952,

1%3], Ilarman 119771, Nagel 119701, Norman 119711, and Richards (1971). j
I

V. . -j 4 .s . . i iiin I

56

1.7.2.6 (ontrol of Reasoning

Basic studies of controlling actions by constructing and executing plans of action include Newell and

Simon 119631. -rnst and Newell 119691, Fikes and Nilsson 119711, Fahlman [19741, Sacerdoti 11974, 19771,

and ilitc 119771. Sacerdoti 119791 surveys these techniques. As mentioned earlier, planning techniques

hase been applied to controlling reasoning as well by Hayes 119731, IDoyle 119761, de Kleer et al. 11977),

and Mc)crmott (19781. ILatoinbe 1976, 19791 and Stefik (19801 take this approach as well.

Gordon et al. 119781 develop a proof-construction system based on an explicit

Inguage/inetalanguage distinction, and encourage the encoding of proof construction strategies as

inetalanguage programs. However, they leave all planning to the human user, and do not self-apply the

program. In particular, their system never records proofs, and hence cannot reason about its own

reasoning.

In the "pure" production system framework, McI)ermott and Forgy 119761 discuss techniques

for conflict resolution and focus of attention. Rychener 119761 presents an interesting implementation of

GN in such a production system. Flayes-Roth and Lesser 119771 explore "focus of attention" techniques

in a "blackboard" production-system architecture. In the "deductive" production system framework,

Davis (1976, 19801 developed meta-rules as a way of encoding control information. In all these

approaches, however, control depends on a chauvinistic decision-making technique that operates without

reasons, and neither approach involves a particularly coherent notion of action.

A final approach (or non-approach) is that of the logic programming community. Kowalski

11974] seems content to refuse the problem of control as a domain for reasoning. Pratt 119771 seems to

beg the question by concentrating on the "facts" and postulating an intelligent interpreter to decide what

to do with them, much like the earlier GPS and mechanical theorem proving methodologies.

I-

57

1.7.2.7 Adapth i hanges of Mind

Russell 119301. Carnegie 11936. 1944). Ellis and Harper 19611. and Johnson 119771 discuss informal

techniques for changing ones attitudes in thecContext of sclf7-improvcrnnt. 'I'herc is a large literature on

this problcrn, but these are thc best expositions I have seen. Suppcs 119771 surveys several influential

learning theories.

Concept Icarning isdis cus-ed by Winston 119751 and Fahilman 119791.

Reclief revision hats been an active Field recently, and (lhe literature is surveyed and indexed by

l)oyle and London 11981). llayes[11973aJ is still an excellent earlier survey. My approach in IlDoylc 19791

has close relatkes in the works of London 119781. McAllester 119781, Thiompson [19791, Fikes [19751. and

Staliman and Sussmnan [19771. de Kleer and I larris 119791 critically compare these approaches. Charniak,

et alL 11979] present it simple RMS in explicit detail with considerable discussion. London applies this

approach in detail to belief revisions following actions. Fahlinan [19741 and Sridharan 119761 present

schemecs for describing rules to disambiguate action effects, their common suggestion being rules which

choose one revision over another on the basis of aspects of the particular beliefs bcing revised. Some

approach of this sort is necessary because revisions due to inconsistencies and actions can typically be

done in many ways, so somc way of choosing between the alternate revisions must be possible. Excellent

general of belief revisions can be found in Rescher [1964, 19761, who presents a formulation of

consistency-based belief revision, and in Quine (1953], and Quine and Ullian 119781. who discuss the

ambiguity of revisions and several sorts of general guidelines for disambiguating them. Goodman 119731

L ewis 119731,T'urncr 119781, and Rescher (19761 sttudy counterfactual and plausible reasoning. Analyses

of counterfactuals usually involve some way of evaluating the conseqtuent of the counicerfactual statement

in circumtances as "close" as possible to the actual circumstances but in which the hypothesis of the

countcrfactual holds. These proposals for counterfactuals thus suggest ways of choosing "minimal"

revisions of beliefs to accommodate new hypotheses. Sosa (19751 collects a number or papers on this

58

topic.

'ahliman (19741, Sacerdoti (19771, and Shrobe 1 19791)] discuss revisiot of one's plans.

Harper 119761 discussecs changes of preference in a probabilistic setting.

Sussman 119751 studies the problem of skill development. Fikes and Nilsson 119721 discuss the

collectiot of SIRIS plans, and l)a% is 119761 the acquisition of nce inference rules.

1.7.2.8 fed and Intellect

cud 119371 analyzed the impact of affect on intellect through repression and censors. I'llis and Ilarper

119611 base their psychotlherapy on the converse influence of intellect on affect. They analyic people's

problems b) finding the troublesome statements the afflicted repeat to themselves. Minsky 11980)

explores ho) affect and intellectual activities are aspects of the same mechanisms, how affect exploits

intellect for its purposes, and how intellect similarly exploits affect.

1.7.2.9 Consciousness

The standard positions on the nature of consciousness are surveyed by ShafTer 119681, Taylor 119741, and

Dennett (1978a). Other topics in the philosophy of mind and psychology are discussed in [Fodor 1968,

19751. IGustafson 19641, (Glover 19761, [Dreyfuis 1979), [Nagel 1979c, 1979d), Illoden 19771, Ryle 119491

and Dennett [1969, 1978c].

1.7.2.10 The Absurd

Nagel 11979a], Quine 119531, Camus 119551. Sartre (19561, Anderson 119751, Wheeler 11977), and others

discuss the problems of why we are the way we are. and why we should adapt. Pascal (1971], James

11971)L and Kicrkegaard (1944 discuss leaps of faith.

- -

59

C IAPTER 2

TI IE REPRESENTATION OF STRUCTURE

One important kind of human action is that of building new things out of previous things. There may be

little to distinguish a new thing from its components or its surroundings but our calling it so (as detractors

of modern sculpture have been wont to point out). Nevertheless, we often find it useful to think of

portions of the world as things constructed from other things. 'Ibis chapter outlines a representational

s~stem designed to allow a progran to share this way of thought.

Now concei~ably, a program could build and use things and never think of them except as their

constituents. 'Ibis, howcier, has the disadvantage of unnecessary dctail. It is ridiculous to think of

moving a table across the room only in terms of the motions of individual molecules making up the table,

or of a mind or machine only in terms of the physical events associated with its physical realization, but

that would be a consequence of an inability to think of structures as objects, abstracting away all the

unwanted details of their structure. Instead, the program must be able to think of its creations in terms

other than their constituents. Since the program thinks about its internal actions as well as its external

actions, we conclude that it should be able to make new representations out of previous representations,

and then be able to use the new representations as objects in creating further representations.23

Often in physical constructions, the constituent parts retain their structure so that the structure

of the whole includes the former structure of the parts. Of course, this is often not so, as in chemical

mixtures or plastic deformations of constituents, for example salt dissolved in water and ice floes made

into an igloo. But retained structure, when it exists, makes descriptions of constructs much simpler to

comprehend, so we require further of the representational system that it allow structure retention when

23. Ilarrison 119781 emphasizes the unity of the building activities involved in creative thought with the building activities involved
in mundane constructions and practical easoning. I enat (19771 makes a similar point and presents a program for inventing
mathematical oncepft

MAN

60

possible. In cases ill wIh (internal and external) building operations leave intact tie combined (internal

and external) objects, this means that tie structure of the representation reflects the structure of its

refcrent.

We also place some distinctly non-physical requirements on the representational system.

The pre% ious chapter made many arguments in support of the program's ability to explain its

structure and beh,,ior. and the reprcsentational system should make this possible. We require that each

reprcsentation include inf ornation explaining how it was fonned from other representations, and what

processes were responsible for its formation. 24

Another important requirement is tie ability to economize on the storage size of

reprcsentations. To consider an analogous case. large corporations must often raise large stms of money,

mnch larger than they might borrow directly. They do this by borrowing from a number of banks, who in

turn borrow from other Sources. Jack borrows fiom Jill and Jane, who borrow from John and Jake and

James and Jonas. Aoo borrow from Jean and Joan and others, so that many of the effective funds are only

%irtual possessions, not a single actual bank-account. In a similar way, the program should economize on

the infomiation for which it actually uses long-term storage resources. It can do this by using the records

of how represcntations were constructed from others to temporarily reconstruct the apparent structure of

a representation when answering questions, and then to discard all but the basic information about the

representation and its structure.

24. It would he nice if repreon alions explained nt only the how hut the why of their formation. Unfortunatly, as the hall
chapter qpiculaes. it may not he rosiblc always to my why Ibis question dependx on the completeness or the prolSam's
self-dccription. on its knowledge o itself being detailed enough to tell the purpose of each of the actions of its procedura

. ...

61

2.1 I)esiderata or the Representational System

hI summary.,the desiderata for the representational system, along with examples and how we

realize them, arc as follows.

I. The rcprescntiahioal system should be able to represent tll the objects considered by the program.

This requirement has two parts. h'lhc first is the simple scmantical adequacy of the representational

s~stem, which rules out, for example, a reprcsentational system whose only symbol is the numeral 3, for 3

is just one symbol, and thcre are many thing, which must be represented simultaneously. We adopt a

system based on the first-order predicate calculus (FOPC), as it is the best understood formal

representational language. However, this choice is intended to be the most colorless choice possible.

Since no one has yet actually demonstrated the adequacy of any known representational system (FOPC

included) for describing everything, we take FOPC as a base for extension, such as modalities, etc., and

do not address completions or alternatives of this language.

The second part of this requirement concerns the physical realization of the representational

system. A purely formal system cannot represent anything, for what it thinks of as its representing

something is not supported by actual causal connections between its thoughts and its objects. Several

authors, such as Putnam [19781, Fodor [19781. and Searle [19801, discuss this issue in detail. We do not

discuss this question further, and take for granted a realization of the representational system as part of a

machine actually connected to the physical world in the proper ways.

2. New representations can be built froin previous representation&

The basic unit of representation in a FOPC-bascd system is the logical theory, or set of statements. This

requirement means that we can combine sets of statements to get new sets of statements. We do not

restrict these combinations to be simple unions of the sets, but can make more complicated, non-additive

I..

62

combinations. But a simple mathematical example is that of combining a theory describing a sct of

objects as a group under one operation and another theory describing a subsc of those objects as a group

inder another operation into a theory describing the objects as a serniring.

3. (ombinatiols of represeniathnus are objects as well.

'Ibis means thai the rcprescntational system treats sets of staterncnts as objects to which statements can

refer. For cxample, one might have a theory describing a semiring theory as at combination of two other

theories. I lere the first theory treats the other three as objects.

4. 1.(i(Jh represetalniol inlcotporall'A til ('.Y/t7il(lliol of/how it was constluCled

This means that the theories and their statements include the reasons mentioning the other theories,

statements, and procedures which constructed them. Precise explanations of this will largely be deferred

until Chapter 3. But an example might be a theory constructed by adding together two other theories.

'ihe statements in this theor would all have reasons mentioning the corresponding statements in the

initial theories, along with the statements relating the combination theory and the constituent theories,

and finally, along with the procedure which inferred the new statements from the earlier statements and

the theory-constnction statements.

5. The representation is asymptotically siorage-space efficient.

Ibis requirement means, for example, that statements in a theory are not actually inferred from the

constituent theories unless actually needed, and are not retained unless needed.3

In the remainder of the chapter, we will base the representational system on virtual copies

25. In (Doyle 197711 wl.$s-eAd that asymptotic storase-space elficiency was a major factor in the design of representation
longuage intended for use in reprewriting human-sized Ndics of infomation about the world I alo argued that virtual-copy
rcpresentalonal systems like Iahbnan s NVII. jlahlman 19'91 arc est viewcd as attempts at asymptotic stonte-space efficiency.

63

(VC's). a term du to ahlinan 19791. Virtual copies of theories will be theories whose statements can be

inferred. when needed. and discarded when not required. Virtual copies can be modificd by adding in

other, non-virtual slatements, and by defeating some of the virtual statcments. 'Ibis last capability is used

for describing oxerridden defaults. exceptions, and what might be called family resemblances, in which

the simplest way of describing a number of objects is as a number of distinct modifications of an ideal

family member. As we will describc in more detail later, VC inferences are non-monotonic inferences, to

allow these sorts of non-additi% e theory modifications.

Unfortunately, the claim that the program uses virtual copies is a fiction. All the versions of it

that I have implemented in fact make actual copies, that is, always permanently infer all statements of all

theories. I lowever, this is merely an accident of time pressures on my implementation efforts, as the

full-copy techniques are easy to implement quickly, and the virtual-copy techniques are harder to

implement correctly, as there are many subtleties involved.

'Ibis fictioa about the representational system presented here is actually a symptom of a larger

incompleteness in this thesis, namely the lack of database retrieval procedures altogether. McDermott,

Fahlman, and others have argued for a separation between database retrieval and problem solving, where

database retrieval consists of applying automatic, quick procedures which adequately handle almost all

queries (the routine cases), and problem solving consists of applying carefully controlled inference

procedures to ferret out the desired information that the routine procedures miss. This distinction is

sometimes hazy, but is a convenient way of viewing the problem, and I adopt it here. Routine retrievals

are carried out by a set of standard, efficient, but sometimes inadequate database interrogation

procedures. Ie difficult cases are handled by self-applying the reasoner with means of information

retrieval plans and deliberation about where to look for information. This thesis discusses neither the

routine procedures nor the information retrieval plans. "lie representational system presented here is

capable of reinterpretation as other representational systems, for example, as NFI., and retrieval

algorithms developed for them can easily be adapted to the data-structures used here. Likewise, the

_ _ _,_ . -.
q

'
z i ,

-
, t

'~ Z,:, . . .

~T

64

ahilil of the prograim to refer to its own representations allows lOrmulation of information-retrieval plans

for careful reasoning.

One finil introductory remark: This chapter is not intended a; a picenittion of ie classical

open problems of representational theory. The system presented here can be viewed as a simple

cxtensiot II the ideas of Falihian aInd Weyhrauch 119781 to include reasons for representrations. Smith

'1978] demibes how man, classical representational pul~es can be fiufidly attacked with

representat i ns hich can be referred to as objects by other representations. Both Ii ayes 119771] and

Nilsson 11980] present Alteriative readings of hiciar 'hical representational systems as

ollIn-meta-ileoreticll FOPC ss stcns, but their readings have major seniantical slortcom ings, discussed in

Section 2.5.

2.2 A Key Application

heprogram uses a library of hierarchically organized plans and primitives. It (casionally builds new

plans and adds them to this library. For example, it might -make a plan for cooking a single spaghetti

dinner from two existing plans, that of cooking and refrigerating a Nat of spaghetti sauce, and that of

heating some spaghetti sauce and cooking some spaghetti. To construct tie new plan, it concatenates the

two existing plans, changing the quantities involved, and removing the steps of refrigerating and

reheating the sauce. "1"o do this, it makes copies of the representations of the previous plans, identifies

some of the components of these copies, deletes some of their components, and then packages up the

resulting collection as the new plan.

We view these steps of copying and modifying representations in terms of the above

requirements as follows. The program first creates the copies of preexisting plans by making new

representations along with inference rules which make the assumption that any part of a prototype

representation is also part of the corresponding copy representation. iliese inferences arc non-monotonic

A -

65

assumptions, so that modifications may bc made to thc representation by defeating the assumptions. The

identificatlions arc accomplished by creating inference rules which duplicate any conclusion about one

representation with similar conclusions about the identified representations. Finally, the collection of

modified and interconnected representations is reticd as a new plan representation available for further

copying and combination. The rest of this chapter prcscnts the details of these operations.

2.3 SIO, a Structurcd Descriptioni Language

'he program employs a representational language called SI)L. SI)l. is based on a predicate calculus, but

bears strong resemblances to current structured-description representational systems. In particular, SIL

involhes both a modified form of the data-structures of 1Ol. [Weyhrauch 19781 and a paiicular way of

using these data-structures based on NETL.

"I'hc basis of SDI. is the first order predicate calculus. However, where normal FOPC systems

are viewed as having one language, one set of axioms, and a model external to the language, SDL

employs many languages, axiom sets, and models simultaneously. It describes each object with a separate

set of axioms in an appropriate language and its intended model. SDL describes the structural

relationships between such descriptions by treating each of these logical theories as an individual with

parts. These meta-theoretic relationships then become axioms of yet other logical theories.

The most important data-structure in SI)I. is the iheory. The standard usage of "theory" in

mathematical logic is the set of theorems of some set of axioms in a formal language, that is, the axioms

together with all their logical consequences. Following Weyhrauch, we cornpt the usage of this term to

mean a data-structure combination (if a language definition, a set ,of facts (axioms and theorems) in the

language, and a simulation structure (partial model) for the set of facts and the language, or

mnemonically, T = I.,S,F). We explain all of these components below.

All of SD.'s first order languages are constructed from the standard logical connectives along

66

's ith imlix idual Constants and variahles, predicates, functions, and predicate and function parameters (for

axiom schema). In addition, (he languages are niany-sorted, with a system of partially ordered sorts. (In

logic. the term "sort" ncans kind-classification, not ordering classification.) In many respects the system

of sorts is an inessential con enience of the languages, although they turn out to be nontrivial extensions

colnputationall . Other kinds of extensions to the type of language allowed, such as modalities and

conditional expressions. arc not used or explored here for simplicity, and might be added in future

\ersions of the program.

We define a language in SIl by specifying the non-logical symbols in the language and the

roles of these s.mhqols. I language definitions consist of he following types of declarations. "lhe first

argument of these commands, name, is always a lisp atomic symbol or a pathnamne (explained later).

Types are also lisp atomic symbols, which are defined as predicate constants of the language. Theory'S

are de theory data-structures in whose language name is being defied. The number of arguments are,

when specified, nod-negatixe integers (L.isp integers). Argument names and types are l.isp atomic

symbols defined as individual variables and predicate constants of he language. Likewise, result types

are sort predicate constants of the language. The last argument is a justification (as explained in the next

chapter) used as the reason for the data-structures created by the declaration.

(INDIVIDUAL-CONSTANT name type theory Justit ication)

(INDIVIDUAL-VARIABLE name type theory justification)

(PREDICAIT-CONSTANT name (# of args) {((arg name) arg type) 1 ist) theory Justification)

(PR(DICAT(-PARAM(TER name (# of args) (((arg name) arg type) I ist) theory Justification)

(FUNCI-ONPASIEANT name (of args) {({arg name) arg type) list (result type) theory justif ication)

(1UNCT ION-PARAMTER name (#of args} {(farg name) arg type) list (result type) theory just fication)

In the following we write these commands in a syntax similar to FOl,'s. In this syntax, the theory is given

by the context of the presentation. The statement "IN theory" is used to switch attention to the theory

with the global name theory. (Once we have defined them later on, we will allow pathnames as well.)

We usually ignore justifications for simplicity of exposition.

For example, we might construct a language for discussing natural numbers and arithmetic with

-... Z-

67

the declarations:

IN AR!TIIMETIC:

function-constant SUCCESSOR I NA1NU1;

function-constant PRIDECESSOR I NAINUM;

Function-constant + 2 (NATNUM NATNU14) NATNUM4;

Function-constant 0 2 (NATNUM NAINUM) NATNUM;

Predicate-constant (2 (NAINUM NATNUM);

These declarations define the usual symbols of successor, predecessor, plus, and times, and the ordering

predicate.

We use SI)I. to discuss not only languiages, but their models and their relations to their models

as well. However, many intended models involve objects which simply do not exist inside a computer, for

example, cows. real numbers, and redness. Because we can somretimes present the elements of models

inside the computer and sometimes not, instead of ordinary models we employ simulation structures. A

simulation structure can be thought of as a partial model, one which includes partial decision procedures

to represent its domain and the set of constants, and a sLet of attachments. We take these decision

procedures to be Lisp procedures which take an object as input and tell whether or not it is one of the

objects in the domain (constant) or domain (constant) representation. The list of attachments is

essentially an association list pairing linguistic symbols with domain elements as their referents, thus

specifying the set of "bindings" of the symbols to objects in the mode! A simulation structure may not

completely determine the truth value of every statement in the language, but it may determine the truth

value of some. This is as good as we can hope for, and is all we will require. Attachments are made with

the command

'I

(ATTACH name object theory justification),

domains and constants with the command

(REPRESENT name representation theory Justification).

.. . , a , .*

68

Ihe Al I ACII command adds tile specified pairing to the list of atlachmnnts of the simulation stnicture,

"ith the giv en justification. '111c ttPRI S NT instruction declares the name to be a predicate and sort

symbol of the LInguagc and attaches the name to the representation function in the simulation

structure.26 One particular sort of ai,,rhnent is that of a procedure in a theory, in which an individual

constant is attached to a I ISP procedure. All procedures are named by such attachments, so that values

computed h them ma) hejuslified in terms of the procedure as the "inference rule".

Of course, one does not ha% e a model of a language, but rather a model of a set of statements in

tle language. IhAse stimenlents are called facts (to subsume both axioms and theorenis), and are declared

by either

(AXIOM name wff theory justification)

or

(FACT name wff theory justification).

Each of these facts is added to the set of facts of the theory. Each fact consists of both the name of the

fact (a symbol in the theory's language), and a wff of the language of the theory. This connection

between fact name and wff is treated as an attachment of the theory, although here the attachment is from

a symbol of the language to a wff in the set of axioms and theorems. 'Thus theories with axioms refer to

parts of themselves.

Theories arc made up out of a language, a simulation structure, and d set of facts. Theories are

created with the command

26 'Ibis chapter will be hazy on exactly what representations arc and how the) relate to languages and smulation structures. The
intended ideas can hc illusl raled with numbers. One has tie numerals in the language. which rcfec to numbers, and since numbers
don't exist in the compulter, we add in I isp fixnums as a rcprcsentation of numbers lbe distinction becomes important because in

many cases. thc program will have the referent for a s)mbol. namel) a dala-struclumc which does exist inside the computer.
(Actually. the cxistencc of data-structures in the cornpulcr may be a fiction. l)ata-structures are referied to by pointing to some
location ii memory. but the intcndcd dala-structure results only through intcrpretation of the information in that location as furher
poiners. fields. etc. In this way. the fiction of dala-slructures is much like ihe fiction of the "sell" of the program, since the program

is one big data-structure interpreting itself.) Wcyhrauch and others discuss the problem of languages, models and representatios,
and I expect to adopt one of their suggestions when I become more familiar with their proposal.

___________I

69T

(ftlORY name parent-theory justification).

which declares name to be all indi% idual constant in the parent theory, creates a new theory data-structure,

and attaches this data-structure to name in parent- theory.

For example. we can declare more of the theory of natural number arithmetic as follows.

IN ARITHMETIC:

Individual-constant 0 natnum;

Individual-variable nnatnum;

Individual-variable m natnum;

Predicate-parameter P (natnum);

Axiom Oneone: Vn Vm successor(n)=successor(m) D nm;

Axiom SuccI: Vn -10=successor(n);

Ax iom Succ2: Vi [-0 = n D 3m nzsuccessor(m)];

Ax iom Plus: Vn [n+0=n A Vmfa+successor(m)=successor(n+m)]];

Ax iom T imes: Vn [n'00 A Vm[n-successor(m)=(n~m)+m]];
Axiom Induct: [P(o) A Vn[P(n) D P(successor(n))]] VnP(n);

Attach Successor (I AMBDA (X) (ADDi X));

Attach Predecessor (LAMBOA (X) (COND X 0) (SUBI X)) (T 0)));

Attach +;

Attach ;

Attach < (;

Attach 0 0;

The first two attachments ab)ve attach Lisp procedures to two predicate constants of the theory.27 The

next four attachments attach to a symbol of the theory the value attached to the Same symbol in the global

theory. In the first three of these, the value is a Lisp procedure, and in the last it is the Lisp number 0.

Each of these data-structures contains information about the reasons for the data-structure,

which are stored as justifications for a RMS node, as explained in Chapter 3. Fach theory data-structure

has a justification mentioning the procedures which created it. Each declaration of a linguistic symbol

adds a justification to that declaration. Each attachment has a justification, and so does each axiom in the

theory. That is. an axiom would have a premise justification in the theory, but that premise justification

itself would not be an assumption, but would have a justification specifying the reason for this fragment

27. 'hse familiar with SC1IFMI [Steee and Suns nan 1978a should understand that we ideally would employ SCItME inmtead
of liSP. so thaI dimse attached values would be procedures (coewures) father than s-exprelions

.. . _-

70

of tie theor. in terms other theories and inference procedures. As usual, consequences haejustifications

mentioning both the nodes of their antecedents and the inference rule or procedure deriving the

consequence.

We will represent all of these things %ith the following data-structures. We notate these in the

"structure" sxntax of Ni I'I isp Machine ILisp [Weinreb and Moon 19791. in which a name is specified

folloAed b) the fields of the data-structure. The first structure defines the fields common to all the rest:

the na me. die RIS node, and the parent (" hose finction is explained following these definitions). lhe

imci UDi specification is the means by which these common field definitions arc included in all other
4

structures.

(DEFSTRUCTURE (COMMON-STRUCTURE)

NAME A

NODE
PARENT)

'Ihese declarations define the data-structures associated with lnguages.

(DEFSTRUCTURE (LANGUAGE (INCLUDE COMMON-STRUCTURE))

INDIVIDUAL -VARIABLES

INDIVIDUAL -CONSTANTS

PREDICATE -CONSTANTS
PREDICATE-PARAMETERS

FUNCT ION-CONSTANTS

FUNCI ION-PARAMETERS)

(DEFSTRUCTURE (INDIVIDUAL -CONSTANT (:INCLUDE COMMON-STRUCTURE))

INDIVIDUAL-TYPE)

(DEFSTRUCTURE (INDIVIDUAL-VARIABLE (INCLUDE INDIVIDUAL-CONSTANT)))

(DEFSTRUCTURE (PREDICATE-CONSTANT (:INCLUDE COMMON-STRUCTURE))

N1UMBER-Or-ARGUMENTS

ARGUMENT-TYPE-LIST)

(DEFSTRUCTURE (PREDICATE-PARAMETER (:INCLUDE PREDICATE-CONSTANT)))

(DEFSTRUCTURE (FUNCTION-CONSTANT (:INCLUDE PREDICATE-CONSTANT))

RESULT-TYPE)

71

(DIESTIRUC IURE (FUNCrIION -PARAMF I IR (:I NCLUD FUNCTION-CONST ANT)))

T'hese declarations define the data-stnicturcs associatcd with simulation structures.

(DISTRUCTURE (SIMUIION-STRUCTURF (;INCLUDE COMMON- STRUCTURE))

DOMAIN-RE PRESENTAT ION

CONSTANTS-REPRESENTATION

ATTACHMENTS)

(DEESTRUCTURE (REPRESENTATION (INCLUDE COMMON -STRUCTURE))
REPREStNTATION-ALGORITHM)

(IFESTRUCTURE (ATTACHMENT (INCLUDE COMMON-STRUCTURE))

OJECT)

'ibis data-structurc is used for facts.

(DEFSTRUCTURE (FACT (INCLUDE COMMON- STRUCTURE))
WEF)

This structure dcfines the data-structurc for theories.

(DEFSTRUCTURE (THEORY (INCLUDE COMMON-STRUCTURE))
(TH11ORY -LANGUAGE (MAKE -LANGUAGE))
(TIIEORY-SS (MAKE -S IMULAT ION- STRUCTURE)

THEORY-FACTS

EQ-POLICIES

EQ-POLICY-LIST

VC-TYPE-THEORY

VC-UP-STATEMENTS

VC-DOWN-STATEMENTS

VC-STATEMENTS-LIST

MAP-UP-STATEMENT

MAP-DOWN-STATEMENTS

MAP-STATEMENTS-LIST)

In the abovc, the structures (particularly Theory) contain not only the lists we have previously indicated,

but also slots for reddnidant forms of these lists to facilitate retrieval and manipulation of informnation.

The baskc such slot is that of PARENT, which typically is used as a reverse pointer froin a

sub-data-structure to the data-structure which includes it. The exact interpretation of this slot varies with

the data-structure involved. Languages, simulation structures, facts, and reasons point back to their

72

theory: individual constants, individual %ariables, predicate constants, predicate parameters, function

constants, and function parameters point back to their language: representations and attachments point

back to their simulation structure. and theories point back to the theory which is their context of

existence.

'I i I 'OR Y, in addition, contains slots to facilitate retrieval of structure-sharing statements. pan

inferences. and dataflow policies. These will be explained later in this chapter and in Chaptcr 4.

This completes the description ofthe underlying logical system.

2.A I losi to use SI)L

We represent objects hierarchically in SIll. by using a separate theory to describe each object. The parts

of the object are in turn described by other theories, and the theory of the object includes statements of

the relations between these parts and between their theories. When two objects are mutually defined.

each of the theories describing these objects will contain the other theory as a part. This means of

representation is not paradoxical because tie theories of the parts arc copies of their prototype theories.

For example, suppose we wish to describe as objects arithmetic relations between numbers. To

do this, we can make a theory A)DDER as follows.

IN ADOER:

IndivIdual-constant AI;

Individual-constant A2;

Individual -constant SUM;

Predicate-constant -;
Function-constant +;

Attach + +;

Attach ---;

Axiom Plus: AI+A2sSIN;

'T1his theory describes the prototypical adder. AI)IR has three individual constants for the addend,

augend, and sum, and, via attachments to the arithmetic predicates and functions, defines the relation

between the constants.

A

73

Notice that the description of the prototype contains no attachnients to the constants. That is

bctausc the prototypical adder does not relate any particular numbers or have any dcfault values.

Suppose we wish to make an instance of this description for the addend and augend values 3 and 4. We

first would create a new theory which is a virtual copy of AI)DER, namely,

IN 1-1:

Individual-constant T-1;

Attach T-I T-l;

Individual-constant ADDER;

Attach ADDER ADDER;

AxiomVC(l- I, ADOR);

T-I is the theory's name in the global theory. T-l is also the theory's name for itself. ADDER is the

theory's name for the theory with the global name AI)I)FR. 'Ihc stle axiom in T-l allows us to make a

number of conclusions within T-[. 'The VC inference rule is that all statements defining a theory,

including the language, the simulation structure, and the facts, are inferred in the copy theory as

individual non-monotonic assumptions. That these inferences arc non-monotonic will be important later

when we wish to modify the copies of prototypes to override default values or to describe exceptions.

Thus T-I actually has the following statements.

lJUT-I:

Individual-constant 7-1;

Attach T-I T-l;
Indiv Idual-constant ADDER;

Attach ADDER ADDER;

Axiom VC(T-1. ADDER)

Ind ividual-constant At;

Individual-constant A2;

Individual-constant SUN;

Prod Icat*-constant a;
function-constant 4;

Attach ;

Attach ;
Axiom Plus: A1 A2SUN;

j Attach AI 3;

Attach A2 4;

To this, we have added the two values as attachments to Al and A2. By use of the axiom PLUS of this

-.,. ,______ .*. I4>K

74

theory. the attachments can be used to compute an attachment for SUM to the value 7.

The idea of VC theories could also have allowed writing AI))ER more succinctly, by declaring

AI)I)R to he a VC of ARITIIMFIIC. II this way, AI)I)I would have been an extension of

AR ITI I MI-IC and the extra definitions of +, =, etc. would have been unnecessary.28

lhmc~er convenient might be theory extensions made in this way, many circumstances require a

theory to contain as subtheorics multiple distinct copies of other theories. 'Ilic main motivation for this is

the need to describe structures having several parts, each of the same type, but each having its own

peculiarities. We Ctil itate this by mcans of the TYPIEI)-PA RT command, as the next example shows.

We can make a new desription. called D)OUIII ,R, by modifying it copy of AI)IER.

4

IN DOUBLER:
Indivi|dual-constant X;
Individual-constant zX;

lyped-Part ADDER ADDER;

Axiom: X = [Al ADDER]; ;[Pathname] explained below.

Axiom: 2X = [SUM ADDER];

Axiom: [Al ADDER] - [A2 ADDER];

The expressions in brackets are called pathnames, and are compound names treated as the corresponding

names in the subtheories. That is, [A 13 ... C) should be interpreted as the variable A of the theory named

B ... of the theory named C. We write Vlpathnamel to notate the value attached to the symbol

represented by the pathname, so VIA III is the value attached to A in the theory attached to B in the

current theory.

'he command

(TYPED-PART name prototype Justification)

expands into several other statements and actions. It creates a new theory as a virtual copy of the

28. The Fdinburgh I£C: proof consaruction system makes similar use of a collection of theories (sets of theorems) with its "ancestry
graph." Gordon e a 19711

75

prototype, and then creates a constant of the given name in the theory and attaches the copy to the name

in the theory. Thus we have the new statements

IN DOUBLER:
Individual-constant ADDER;

Attach ADDER T-2;

where we have also created the theory T-2:

IN 1-2:

Individual-constant T-2;

Attach T-2 T-2;

Ind iv idual -constant ADDER;

Attach ADDER ADDER;
Axiom: VC(1-2. ADDER);

Now by itself, this new lhe"y-2 is not much good, since the original doubler theory can only refer to it,

not use it. However, the final finction of the TYPED-PART statement is to enable the inference rule that

any statement of'T-2 is also a statement of I)OUBLER under a rewriting of names of T-2 into reference

expressions in DOUIIIR. With this rule, DOUBLER gets the new statements

IN DOUBLER:
Individual-constant [At ADDER];

Individual-constant [A2 ADDER];

Individual-constant [SUN ADDER];

Predicate-constant [- ADDER];

function-constant [+ ADDER];

Attach [- ADDER] ;

Attach [+ ADDER] +;
Axiom [PLUS ADDER]: [At ADDER] [+ ADDER] [A2 ADDER] [ADDER] [SUN ADDER];

Note here that all symbols in the language of the part-theory are replaced by pathnames when they are

inferred in the whole-theory. However, the second items in attachments are not affected by these

substitutions. Instead, those expressions are referentially opaque, as they are symbols in the language of

the global theory, rather than symbols of the language of the part-theory.

Suppose we now wish to combine two doublers to get a quadrupler. This, of course, is

straightforward.

76

IN QUADIRUPLE R:
Individual -constant K;

Ind iv idual -constant 4X;

typed-part DI DOUBLER;

typed-part D2 DOUBLER;
Axiom: XK [X DI];

Axiom: [2X DI] [X 02];

Axiom: 4X = (2K 02];

Suppose, howce er. that we didn't quite waInt a quadruplcr, hut instead wanted to first quadrunlc and then

r ~add one. We could, or course, make something new uising an extra adder with ail atuachincnt to I of one

of its '*inputs." But to shoA off the sort of local tiodification/exceptioft idea, we instcead make a local

modification to the axiom of one of the douhlers in thecqutadruplcr.

T-3:4 Typed-part QUADRUPLER QUADAUPLER;
Individual-constant 1;

Attach 11;

Cancel [PLUS ADDER 02 QUADRUPLER];

Ax iomt'LS: (Al ADDFR02 QUADRUPIIR] + [A2 ADDER D2 QUADRUPLER] + I
(SUM ADDER D2 QUADRUPLER]

Thei effect of the Cancel staternent is to defeat the non-moflotonic assummption of the specified statement.

Wc then just add in the desired modification, and we are donc. Alternatively, we could have switched the

theory we wcre working with to the theory attached to ADDE)R in 1)2 in QUAI)RUPLER. We could

have then just made the commands

IMNV[ADDE R 02 QUADRUPL ER T -3

Cancel Plus;

Individual-constant 1;

Attach 11;
AxiomPis: At +A2+ I-SUM;

TIhis shows how the statements inherited in one theory can be canceled.29 We can easily represent default

information in this way by using the non-monotonic nature of VC inferences. In fact, all of the

29 forse. there are limitations to this technique. An interesing esanmple is that ora wagon heing drawn by four horses, one of
whom had one blind cye. *Ibis we might have said with Niorse in IIORSI-S(Wagon) and 31:y in rYIs(Ilors) such that
III lNt)(Fyc) 'Ihen RMS would have a pretty time finding a modl. as it would have to pick one out of so many possibilities.

77

statements of copies of theories are assumptions, and can be defeated for reason. The distinction between

what one considcrs to be default in formation and what one considers essential aspects of theories is

entirely a matter of how willing one is to give up one statement rather than another. Ile program

employs policies which guide decisions bctmcen alternate revisions of the its beliefs, as discussed in

chapters 3 and 6. I lowever, policies form merely the mechanism, not the kocabulary, of guidelines for

revision of beliefs. Several authors, for example Fahliman, have proposed a trinary classification of the

strength of attachment to beliefs in concepts, namely default, normal, and criterial (or essential). Flow

these absolute classifications should be realized in policies is unexplored, although the obviously intended

policies should at least say that any default statement should be rejected in favour of any normal statement,

and any normal statement should bow before any criterial statement. I am not convinced that absolute,

context-free policies of this sort are particularly useful, and so have not pursued them. I would much

rather believe that each domain of reasoning has its own set of revision policies along these lines.

"11e above examples all used Typed-part to include theories defining objects in a theory.

Another major application is that of including subtheories to define the sort predicates of the language.

Unfortunately, I have not yet convinced myself of just how this should be done, whether by Typed-part

an analogue of it, or by direct VC inclusion. Part of my hesitation in this matter relates to yet another

question unanswered here, that of how sort predicates arc taken as defined in the first place. For

example, the previous theory ARITHMETIC is often thought of as the definition of what natural

numbers are, but the sort predicate enters that theory only as a relativizer on the variables. That is, the

whole theory is of the form NA'TNUM(x)JAXIOMS(x), and nowhere is there any statement of the form

AXIOMS(x)JNA''NUM(x). I don't think this is a difficult problem to solve, but it is one that requires

more attention than I have been able to devote to it.

-.i. .

78

2.5 Relations n itl otlher Representadoniial Systems

lIleSS IlIec 130]1011! bless thce! thou art translated.
William Shakespeare, I AlIijsu,,mr Night s nream

It senms likely that SDI. can hc uscd to realiz.c many of the Current representation languages,

althou1.gh we do not demonstrate this hcrc. F'or example, we :--n translate CONI AN [Steele and Sussmani

1 978c] into SI In this translation,

(CONSMRINT name parts+types equivalences)

goes into a nained theory, the parts of the thcory being given by the parts and types, and thc equivalences

by equadtions. What we do not capture %%ithout further inference rules is the constraint language control

and inference structure, which stri~cs to propagate values through all tie known relations between

%ariables. On thle othcr hand, we can add ncw parts to a theory at any time. which CONIAN cannot.

Also, we canl make theories like the following, which arc far beyond CONLAN's expressive powers, since

it does not subsumne FOPC.

IN SANDWICH:
Indiv Idual -constant BLOCKI BLOCK;
Individual -constant BLOCK2 BLOCK;4
Ind ividual -variable I4IDBLOCK BLOCK;

Pred icate-constant ON;
Ax iom: VNIDRIOCK [ON(MIOI3LOCK, BLOCKI) ON(BLOCK2, MIOBLOCK)];
Axiom: 3 MtDDLOCK ON(MIDaLOCK. BLOCKI);

Axiom: 3 MIDBLOCK ON(BLOCK2, I4IDDLOCK);I

'Ibhis bloc~ks-world theory describes the situation in which two blocks sandwich in a number of other

blocks.

'Ibis theory, incidentally, also shows the distinction between indlividual variables and constants

in a prototype. Constants refer to parts of the prototype, which are constant aspects of the prototype even

if they seem likc variable aspects in instantiations of die prototype. Variable are used only in general

79

statements about he domain of parts of the prototype.

tla>es [19771 and Nilsson [19801 present translations of representational systems like KRL

Illobrow and Winograd 19771 in FOPC, but these translations miss the point of most current

representational systems. Ilayes and Nilsson succumb to die temptation to confuse die ideas of

description speciali/ation and predicate subsumption.

Consider, for example, theories describing mammals and horses. We normally accept the

statement V\JlIORSI'(x)DMAMMAI.(x). We also might be likely to construct the theory describing

horses (which contains tie predicate IlORSF) by refining with additional axioms die theory describing

mammals (%hich contains the predicate MAMMAl.). These are two separate connections between the

predicates IIORSt and MAMMAl., but Hayes and Nilsson confuse them. The reason they make this

conflation is simply that without treating theories as objects, the only way they can anproximate theory

construction is with an implication.

'his confusion has many severe problems. Ihe first is the family resemblance problem.

Consider a human family with several members. We might try to capture their commonalities of

appearance by describing the prototypical member of the family. However, there may be no property

(other than prototypical human properlies) shared by all members of the family. Each member may have

most of the properties described by the prototype, but be lacking a single property that all the other

members possess. Now if we use SI)I. with its non-monotonic VC inferences, this circvmstance presents

no problem, and can be treated succinctly. But if theories are not objects, and the only tool available is

implication, then the best that can be stated is that the prototype has the property

(P2A...Alln) V (PIAP3A...APn) V ... V (PIA...Pn-1), 4

which is hardly succinct. I layes and Nilsson each allow defali statements in the descriptions, which arc

essentially non-monotonic assumptions. But they cannot get the succinctness and freedom of description

construction that Si)1. allows unless each statement is taken explicitly as an assumption, including all

instances of the implications relating concepts.

80

2.6 Advanced Applications

I ha" not explored the iull powers (or c'cn the comnpleoc details) of this representational system,

pdrticularl the hard questions concerning iodalit., non-denotation. and existence. For example,

suppose one had the theories

IN UNICYCLE:

Typed-part WnEEL WHEEL; ;etc.

IN WHEEL :

Typed-part TIRE TIRE;

Typed-part IHUB HUB; ;etc.

and wished t(sa that some Wi IFtI.- I had no lire. If no attachment is made to ['IlRF Will i-I], that

would just he a lack of in formation about the question, not a definite belief that WI I EEI.- I had no tire.

I Iowe'er. one could state

-3x ATTACIIED([TIRE WHEEL-1]. x, WHEEL-i),

which would seem to say that the term [IIRF WHEE-I] lacked a referent. I have not yet been able to

explorc in detail whether this sort of trick can be used to attack the classical problems of existence and

proper names, as in "Pegasus does not exist." Would the domains of existence be specified by the theory

in which the nonexistence statements occurred? For example,

-13x ATTACHED(Pegasus, x, REAL-WORLD-THEORY),

but

3 x AIrAClfED(Pegasus. x, MYTHOLOGY-WORLD-THEORY).

Consult [Smith 19781 and [Martin 19791 for more detailed treatments of these sorts of pu7zles in

hierarchical structured representational systems, and [llaack 19781 and [Linsky 19771 for surveys of the

7 mom

81

classical problems.

2.7 Theories about Thcories

As the preceding examples suggest, theories may be constructed to describe not only objects in the

external world, but equally important, other theories. Thus the preceding theories typically described not

only their "proper" subjects, but also their relations to other theories. For example,)OUBILER

contained a statement that one of its subtheorics was a copy of the AI)IR theory. 'Tis, ofcourse, is just

one statement relating two theories. This section tries to illustrate more general cases of theories about

theories which determine the large-scale structure of the program.

2.7.1 he'II IEORY 'li'hcory

The starting point is the theory of the prototypical theory and its construction. This theory simply reflects

in logical language the data-structure definitions given earlier, with the simulation structure mentioning

the procedures for accessing those structures. For example, the THEORY data-structure is reflected as

the following.

In THEORY:

Individual-var iable T THEORY;

Individual-variable L LANGUAGE;

Individual-variable S SIMULATION-STRUCTURE;

Individual-variable F FACTS;

Individual -variable PARENT THEORY;

Function-constant T-L (TIIEORY) (LANGUAGE);

function-constant f-S (THEORY) (S INULAT ION-STRUCTURE);

function-constant 1-f (THEORY) (FACTS);

Function-constant T-P (TIIORY) (THEORY);

Axiom VT [IL[L = T-P(T)J A is[s T-S(F)] A iF[r , T-F(T)] A 3PARENT[PARENT - T-P(T)]]

Attach T-P (LAMBOA (X) (CXR 0 X));

etc.

When we fill out this sort of theory, we obtain a complete description of the basic data-structures of the

82

program. and the pinifives 11r accessing, creating, and modifying them. I will not go into this here, for

the futll description is quite lengthy.30

2.7.2 'Ilivories of Specific T'heories

Ihe' 1IIFORY thcory only reflects die structurecCommfonl to all logical theories. Other theorics describe

the structure common to all miembrs of certain classes of theories. For example, the ADDEWR tcor

ahome describes a prototypical adder. If cach of the components of this theory arc reflected in the

language ofCl 'I IOR Y and related theories, %ce gc(a theory describing all dheories copied from ADDl ER,

containing, for instance

IN THEORY-OF -ADDER;
Axiom: INDIVIDUAL -CONSTANT("At". LANGUAGE (ADDER));

We can include these nct-theoretical statements in the theory itself, just as we include VC statements.

Of course, we do not want to do this automatically for all statements, lest we reflect endlessly to produce

an infinite number of such statements in each theory.

2.7.3 Th VC 'Teory

'he VC in fercnice rule can be described by yet another theory, with contents like the following.3

10 VC:
Indiv ldua) -variable I THEORY;

Individual-variable T2 THEORY;

Individual -variablIs SI Wff;

Individual -variable S2 WFF;
Axilom VtI Vt2 VC(TI. T2) 3

30. Similar reflections can be made of the underlying N.T sy.-tcm, by axiromaiiaiin of s-exprcsmions and thc primitives for
creating and manipulating them. Weyhrauch and Cartwright and McCarthy 11979] have develoticd theories of iisp along these
Jinu

31. Ibis is not quite correct or complete, as the exact details have yet to be worked out.

83

VSIISt E MfIAIII[ORY(TI) D

3s2[s2 E MI IA [oRY(r2) A S2 =SUBSIITu TION(SI)];

What this means is that to copy statements from one theory, onc reflects the definition of the statement

into it mcta-theoretic statement substitutes in the appropriate new names. adds the new mcta-theorctical

statement to the copy theory, and then de-reflects to get the copied object-level statement in the copy

theory. '11hus the definition of an individual constant S in) the prototype would be reflected into a

statement that S is an individual constant symbol. That meta-theoretical statement would be infcrred in

ie copy theory. and de-reflected (treated as a definitional command) to realie S in the copy theory.

2.7.4 "lli PERSON Theory

Just as we progress from theories of things to theories of theories to theories of pairs of theories, we

continue to theories describing the large-scale structurc of the program as a theory of all currently existing

theories. The abstract structure of the program we capture in the PERSON theory.

IN PERSON:

Indivtdual -constant THEORIES SET;

Individual-constant BELIEFS SET;

Individual-constant DESIRES SET;

Individual-constant INTENTIONS SET;

Individual-constant PROCEDURES SET;

etc.

In addition, each of these parts of the program is attached to lists of concepts, beliefs, desires, intentions

and procedures typical of all persons. 2 Of course, persons may be subclassified into types of persons,

each of which has some extra or missing attitudes over those expected of persons in general. Further

specializations lead to theories of particular persons, and then to theories of those persons in different

temporal or hypothetical situations. We speculate on the use of these models of persons in hypothetical

32. More likely. these sets arc given only implicitly by predicates and procedures which recognize their extensions, and the typial
contents are all listed in the tables of these procedures. 'Me details of this have yet to be worked out.

-,.. I $ t . li I -. • . . .•

- -i

84

reasoning and discOurIsc in Chapter 7.

2.7.5 The Global Illicory ME

I aithe as you arc he as you are mc and we arc all together.
John I .cnnon and Paul McCartney, I ant Me Walrus

The program itself' is at theory. and this theory it describes as a modified copy or the P~ERSON theory.

Thec program calls this theory of itself ME, and for simplicity, we will often do likewise, or alternatively

usc our nanie for the piugrin. SFA\N. T'hat is, SEAN is our name for the program, not its name for itself,

al1though it may know that others call it SIA N. 'Ile program relfers to itself by containing the individual

cotnstanlt ME: of type ll IFORY. anid attaching itself to ME its MF's referent.3

ME is die parent theory, or context of existence, of all the program's theories, either directly or

indirectly.34 T'hus ME's parent is ME, as is the parent of PERSON. *Vhis may seem paradoxical, to have

a theory be a copy of one of its parts, but as we have constructed themn, there is no inherent difficulty. In

fact. PERSON ought to mention a ME symbol. but I have not worked out this detail.

ME also contains the symbol 1, which serves as its name for its "self." I is normnally attached to

the global theory, that is, is coreferential with ME, but can be rebound to other person theories in

hypothetical reasoning, as described in Chapter 7.

Thc normal operation of the program involves making changes to the theory denoted by 1, that

is. attachments arc looked tip in 1, pathinamcs are interpreted in 1, and in ferences are made in I's theories.

3.3. Wcqhrauch uses the term MIlTA for this, hut I don't (or two reasons. First. (he it is thc system's theory of ilselt. for which the
canonical term is "me" or "I", not "meta." Second. the term vulgariies the memory of my paternal grandmnother. Meta lEntcrs
Doyle'. diiughter (ifI lcrmann Vnters.
14. li sems possible in principlc thaI the program miight contemiplate (but not emplo)) theories which have no parent. in rtact it

might construct an entire other program in this way, or a description or another progra m. complete except for connections to the
real world, and never running. because it can never get control. If the program tlhen connects this oIther program to another
processor, or sets up a time-s~aringecxecutive. it might have two minds running indepenidently in the simc machine, each with a
dilferentuslf.

85

2.8 Concepts and Attitudes

The preceding has explained how to create a hierarchically organized database of concepts to bc used in

representing things. But concepts are of little use unless they can be applied, Ibis section indicates how

concepts are used to form the attitudes of belicf, desire, and intenion which go to make up the mental

state of the program.

'Ile basic idea is simple. 'he global theory of the program contains statements about some of

the concepts so as to create attitudes. By "attitudes" we nean "propositional attitudes" in the usual sense

in %hich beliefs, wants, and intentions are propositional attitudes, and are viewed as a combination of an

attitude and a propositional content. 'Thus "I want to eat some food" would be decomposed into the

attitude "I want" and the propositional content "I cat some food", the combination notated as I-Want(l

eat some food). This might be done in the program as follows. If Raining is a concept describing a state

of affairs in which it is raining now, and if R 1, R2, and R3 are all copies of Raining, then the global theory

might contain statements IIEIFF(R 1).)ESIRE(R2). and INTENTION(R3) to indicate its belief that it

is raining, its desire that it be raining, or its intention that it be raining. We assume that one always makes

particular instances or copies of concepts used in attitudes, just as one makes copies of concepts in

forming parts of concepts. Thus, there might be commands Believed-concept, Desired-concept, and

Intended-concept analogous to Typed-part, which automatically create the copy theory and whatever

inference procedures (see below) are appropriate for relating the new concept to the current state of

mind. This copying may be needless, but only further study can tell.

This realization of attitudes makes clear the distinction between the reasons for the concept

involved and the reasons for attitudes involving the concept. 'fIat is, the program might have reasons for

holding the concept theory in tenns of the theories and procedures from which it was constncted. l bese

reasons would have nothing to do with the reasons for the attitude statements in the global theory.IThe global theory includes all the currently believed concepts as subthcoris. That is, the

i______________

86

progrdm infers VC(Mt C) front Bt I it (C) in ME. so that all the statements in C are inferred as statements

of' Nl". "lI'is schcme, or a variant using "'IYPIl)-I)AlRI. has considerable -legance. particularly when

applied to plan concepts (as discussed in Section 4.9). in which the plan theory contains statements of

seeral sorts of attitudes which are used to temporarily augment the current sets of attitudes for the

duration of tile plan. The exact details of this idea are yet to be resolved.

One important queslion is the relation between these concept-based attitudes with their reasons,

an1d the logical statements and their reasons which go to make up concepts. There may well be a

con tsion of le\els in myl, suggestions, as they seen to imlply that attitudes (at least from one viewpoint)

are really beliefs about attitudes, it conclusion raising many problems. Chapter 7 discusses this problem

in more detail.

I

87

('IIA rrER 3

FOUNDATIONS OF TIE THEORY OF REASONING

"Ladder of wit! What madness is this?" Ebenezer demanded.
"No madness sa c the world's, sir. Take your wig question, now. that's such a thing in London:

whethcr to wear a bob or a fill-botto>m peruke. Your simple tradesman hath no love fi)r fashion and
wears a bob onts natural hair the better to labor in: but give him ten pound and a fortnight to idle,
he'll off to the shop for a great French shag and a ha'pcck of powder, and think him the devil's own
fcllok! Then get ye a doen such idlers: the sharpest among 'em will buy him a bob wig with lofty
preachments on the ivranny ofitshion -- haven't I heard 'em! -- and think him as far o'er his
fill-bottomed fellows as the) o'er the merchants' sons and bob-haired 'prentices. Yet only climb a
rung 1he higher. and it's back ito the ftll-bottom. on a sage that's seen so many crop-wigs feigning
sense, he knows 'tis but a pose of practicality and gets him a name for tIle cleverest of all by showing
their sham to the light of day. But a grade o'er him is the bob again, on the pate of some
philosopher, and over that the full-bottom, and so on. Or take your French question: the rustical
%ight is all for E'ngland and thinks each Frenchman the I)cil himself, but a year in ILondon and he'll
sneer at the simple wil) his farm folk reason. Then comes at man who's traveled that road who says,
"Plague Like this foppish shill-I, shall-I! When all's said and done "tis England to the end!'; and after
him your man that's been abroad and vows 'tis not a matter of shill-I, shall-I to one who's traveled,
for no folk are cleverer than the clever French. 'gaivit which your English townsman's but a
bumpkin. Next yet's the man who's seen not France alone but every blessed province on the globe;
he says "tis the iovice traveler sings such praise for Paris -- the man who's seen 'cm all comes home to
England and carries all's refinement in his heart. But then comes your grand skeptical philosopher,
that will not grant right to either side: and after him a grander, that knows no side is right but takes
sides anyway for the clever nonsense oft: and after him your worldly saint, that says lie's past all talk
of wars and kings fore'er, and gets him a great name for virtue. And after him -- "

"lnough, I beg you!" Ebenezer cried, "My head spins! For God's sake what's your point?"
"No more than what I said before, sir: that de'il the bit ye've tramped about the world, and

bleared your eyes with hooks, and honed your wits in clever company, whatc'er ye yea is nay'dby the
man just a wee bit simpler and again by the fellow just a wee bit brighter, so that clever folk care less
for what ye think than why ye think it."

John Barth, The Sot- Weed Factor

In later chapters of this thesis, we discuss the question of which inferences to make, that is, how the

reasoning process is controlled. We devote the present chapter to explaining the prior question of what

we take inferences to be, and to describing the structure of a program based on this theory of reasoning.

i- '

88

3.1 The Nature of Reasoning

Reasoning ilnoles changing one's attitudes from one set to another by adding sonie new atlitudcs and

relinqutishing others.35 Reasoning includes not only "deductive" and "inductive" inferences, in which

new beliefs are produced from prior beliefs via "deductive" and "inductive" rules of inference, but also

"practical" inferences, in which ne wants and intentions are produced from prior beliefs, wants, and

intentions, and "changes of mind", in which one becomcs unhappy with some belief or desire and

discards it.

Rca,;oning is one sort of mental event, where by mental event I mean one's changing one's mind

from one state or structural form to another. Reasoning, howe.er, is not tie only sort of mental event.

:or example, dhe creation of new mental data-structures which do not affect the set of attitudes is a

non-reasoning mental event, as when one creates a new attachment or data-structure in SDL without

giving it a justification. 36 Of course, most data-structures are created for use in changing the set of'

attitudes, but they need not all be of this form. For example, when a question arises concerning the truth

of some proposition about which one has no opinion, one must first construct the proposition to be able

to consider it. Only later, after one finds reasons for or against the proposition, does it enter the set of

35. Ilarman 119731 develops the thesis that rcasoning is, process of changing ones sct of attitudes by adding some and abandoning
others Perhaps I misinterpret hint. hut I undersland this to ticai that one cannot have cases of jeasoning which do not change the
set of attitudes I lorc. and later in this section. I propose a more general iew. which incorporates such cases of reasoning.

I larman develops his ,iev as part of his thesis that reasoning always increases the "cxplanatorycoherence" of the set of
attitudes This s ie, can he taken in at least t%o w.% s. cither as a proposed control structure for the reasoning process, in which case
the mechanisms I propoe si.surc and significantly extend this ploposal. or as a proposal about what sorts of mental events count
as cases of reasoning. Itut if this laitter interprclaton is his intent. his proposal seens to have serious flass, of which I sketch three.
A It leaves out faulty rea.oning, which is certainly reasoning. but need not alwa),s increase explanatory coherence. B. I laran's
'iew either requires that explanatir) coherctice is a total order in the collection of sels of attitudes, which seems absurd, or that
reasoning cannot invohe changes of mind in which one switches from one "theoretical" interpretation of a set of "data" beliefs to
another interpretation also explaining the "daia" hut incompatihle with the original interpretatioi. Ibis also seems unrealistic. C. I
would think that there are many plans of reasoning which insolse first decreasing cplanatory coherence so as to later increase it, for
example. making an assumption to see how it works out, reaching a paradox or contradiction, and then retracting the assumption to
get a coherent set of beliefs.

The approach developed in this thesis, while motivaled by rational thought, can also he used for sonic types of irrational
thought For example. the approach contains nothitig that forces the program to avoid inconsistent intentions Rather it is the
values and pricedures of the program which work to keep the set or intentions consistent. Similarly. the program can engage in

rational thought even when it entertains conflicting beliefs. Indeed. to be able to think about how to escape its plight, it must be
able to reason effectively in the presenice of inconsistencies.

36. In particular. the only unreason ed proceses are those which (a) compute primitive justifications. (b) construct SDL
data-structures prior to their justification, and 1c) compute values to attach to constants in theories .

II

89

beliels and thus directly into reasoning.

Although %%c must admit non-reasoning mental events such as the creation and destruction of

data-structures, our aim will be to explain as many mental events as possible in terms of rcasoning. We

do not insist that all mental events always be performed by reasoning, just that it ought to be possible to

perform any particular mental operation through reasoning when desircd. This aim entails severe

restrictions on the fonn of the program we adopt, restrictions on all aspects of program operation down to

the basic processes ol'choosing and making inferences.

Why adopt such an aini? In rational actions one changes one's attitudes only for some reason, so

a rational program should be able to explain its actions in terms of its reasons. If the program has

explanations of its actions, then it can do mnany useful things, such as correct faulty rules of inference or

beliefs, by examining and analyzing these explanations to trace effects to their sources.

But in this view, it appears, all mental events in a rational program would have a reason. Is this

possible? Nearly so, as this thesis attempts to demonstrate. In later chapters we will manage to push jubt

about everything into reasoning when necessary, from making inferences, to making choices, to taking

actions on the basis of intentions.37 Non-reasoning mental events will be used solely in the service of

reasoning processes.3

The common view of reasoning differs from ours in taking reasoning to be the purely monotonic

or additive process of adding new attitudes to the current set of attitudes, as in deductive inference. But

that view has many inadequacies.

With this aim of embedding most of the program in reasoning when desired, we face the

37. Fvcn though they do not invotAe reasoning, the computations involved in non-rcasoning mental processes can be intrapected
and analyied for some purposes We will discuss this lurther in the context of skill introslpection.
38. Other non-rca-soning menial cven s include independenl, non-destruclire processes. such as the random creation of new

dala-struclures, which do not hurl hut may save work in later deliberate data-structure creation: sensory input%, which will change
independent of reasons due to causal connections to the world: and random destruction of data-structures, which is one (but only
one) form of forgetting. Whether one wants to build random changes into one's rationality is still an unexplored question. Is there
some utility in random events in thought, or are they just consequences of implementation in an imperfect. noisy machine? Note
that even if one's mental processes involhe no randomness, evolution would still involve random changes to the species aslon g a
traditional reproductive methods remain the fulhion.

90

pioblem that in the traditional view (if reasoning, many changes of attitudes must bc apparently

non-reasoned, e.g. all non-nimotonic or non-additive changes, all changes which do not increase the set

of attitudes no iotonically. One of the most important reasoning steps necessary for taking action is that

of making piedictions of the effects of the action. Making these predictions typically requires making

assumtlplionS abotl thc cturrent state of affairs, because one never knows everything relevant to the

successful completion of an action. BIt once one has made such assumptions and predictions, one is

invariably surprised on occasion, and finds the assumptions to have been incorrect, even though

tinaoidablc. Then one has the prohlen of how to correct or revise one's beliefs so as to patch tip one's

beliefs in light of this neA infoination. I low can the theory of reasoning be fonnulated to accommodate

these non-monotonic changes in the set of attitudes?

We answer this question by proposing a theory (f reasoning in which all reasoning takes place

by adding a record of an inference, called a reason, to the current set of reasons. Each reason is basically a

record of an applkdition of an inference rule or other procedure to some set of attitudes. The program

then determines the current set of attitudes from this set of reasons by treating the set of reasons as the set

of required inferences, as opposed to the mereiy possible inferences indicated by the inference rules

themselves. That is. an inference rule indicates only potential constraints on the set of attitudes. Only

after the inference rule has been applied to create actual inferences do those inferences constrain the

current set of attitudes by means of the reasons recording tie inferences. With this tenninology, my

thesis is as follows.

Rational thought is a process of constructing reasons for attitudes.

To say that some attitude (such as belief, desire, or intent) is rational is to say that there is some acceptable

reason for holding that attitude. Rational thought is a process of finding such acceptable reasons. 39

39. Notc that this thesis allow% a% r3lional thought inferences involving random choiccs. For example, we might count S an
acceptable rcason "I couldn't think of anything else to do, so I flipped a coin."

- ~- ----. - . ' - m I I _ ___ I _ I

91

Whatever pIurposes the reasoner may have. such as solving problems, finding answers, or taking action, it

operates h constructing reasons for believing things, desiring things, or intending things. "'l'e actual

attitude in the reasoner occurs only as a by-product of constructing reasons. The current set of beliefs and

desires arises from the c,, ent set of reasons for beliefs and desires, reasons phrased in terms of other

beliefs and desires. When action is Lken, it is because some reason for the action canl be found in terms

of tie beliefs, desires, and intentions of the actor. I stress again, in this view the only real component of

rational thought is the current set of reasons - the attitudes such as beliefs and desires arise from the set of

reasons, and have no independent existence.

'Ihis %iew entails that for each possible attitude P just one of two states obtains: Either

(A) P has at least one currently acceptable (valid reason, and is thus a member of the current set of

attitudes, or

(B) P has no currently acceptable reasons (either no reasons at all, or only unacceptable ones), and is

thus not a member of the current set of attitudes.

If 1) falls in state (A), we say that P is in (the current set of attitudes), and otherwise, that P is out (of the

current set of attitudes). Thesc states are not symmetric, for while reasons can be constructed to make P

j#

A_____ a,

92

iM, 110 'cason canit Blake P1 ow. (If P is at hel ier, the most at new reason call do is to mnake - P ini as wcl I.Y

It AsOUld seemi that the proposed view also succumibs to monoton icily problems. fot- the set of

reasonis gros llmottotonicalls, which (w ith the normal sense of '"reason") leads to only mniotionfic

Increases in the set of' cnuriren t attit udes. 'olb i f the pn tblIii of ilt)ot(n ici ty, we int roduce novel

mcaninizs for the termis a. reaison" and "anl assumpIItionl in thie context of belier ttitUdes. Similar theories

ilp]N~ to the other attitudes.

Iradditiottalb. a reason for af belief consists of a set or other heliers, Such that ir each Of these

b.is belief" I, field, so alsot is the reasoned bclier. To get off the ground, this analysis (if reasons requires

ei the r ci ret tlii argo men ts bet cil beliefs (antd (lite appiropriate in~itialI state if belie f) o r st itle Fundamecntal

l\ pc of belief' which grounds all other argumnents. TIhe traditionil view takes these fundamental beliefs,

often called assum1ption1s (Or- premnises). ats beliesed without reason. On this view, the reasoner mtakes

changes in the the current set of beliefs h) removing some oif the current assumptions and adding some

new ones.

To coinfoti-m with the proposed view, we intro(duce meanings for "reason" and "assumption"

such that assumptions also have reasons. A reason (tcchniically, a SI.-jUStification. as explained shortly)

401 White this is a standard propcns. of inference rules, it is not respcted in the rclaiines of RNIS developed by London 11978),
MeAllester 119791, and Ihonipson 119)79) lii their systemsN. inferences arc recorded as iinplicat ions. not as infcrcncc sicps. Thus if
tlie png rain infers A finin It. they record ADII. rather than Al-I l Iese two stitements have dirferent mecanings. tn their systems,

if,\Dti and '-II arc both current beliefs, so alsoi wilt he '-A Bth this violates ihe true nucaning of thc slatcmcent as a record of an
ifltercnice, since if oiie has miade the Inference Al-Il and has -111. one need not he able toi infer -1A. since that ability depends on
the inference rules defiing I sI-en ifl- imiolves onli the familiar inference rules, one cannot itnfer -1A. hut just that not I-A.

k.tc/llesier has defenided his eiiifation of these notioiis on the giounds of the space efficiency of his program, that it
stiiiultaiieousl\ represent sceial justifications hut e\ en if the senia'rtic errors iii his approach aic ignored. it can he seenr that the
claimed space ef-ficieiic\ is aii illusion siernintng froiii an unre'alistic assumption about the rise (if the protgraitt Most propositions
are used oin) in a poysitive form) b) the progrant. that is. if is the rc'laiuvel rare proposition for mwhich the program) considers both the

plriposiuui and its opposite Ithis ismso because moist propositilis are uricontrosersial talennis about the world iir the structure
and coiitol iif the pr gramn . rather thani ahout quesiiiii being deliberated on *ltu HM NS. which represciiis propositions and their
oplposites as, dhiuinci. unique aluastrciuico ultitaucty uses less space thaii Mecllestet s program, which renrcs'iuts propositions
and their oppoiucN ;is a sepaiatc UONS in cacti clause iii which they occur

I he lion - I~noirin ic l(f 'r deeleli pd ni NcI)eiiuiw and oty setf [19781 also appears ii, su ffer fruin this con fusion. 'br
we suggested writing itlrcnc ' iule a, inrilicalions. bot I %'as nesci happN with liu since it predicted siuniewbat different behavior
[born that uif RtMS Reciter 119791l has since urupros ed on this situoat ion b) dec lopiuug aI nin onionic log ic which properly treats
justiicatioiis as inference rules and thnus a% oids the ptohleniN with the earlier approach It remains to be see" whether the modal
approaich McI~ernioi and I develop can he reinterpreted or cinnded to avoid these confusions as well Mclkrinott 11980J
strengtheni% the inodal logic iii aii atuciti t this. I would be vcc interested in a siilar Ckietisioii of ihr miiidal logic of pirovability
in I'cano arithmetic Illoolos 197911 1 woiuld expect atit correct provability -related logic it) he an extension of that logic.

AD-AlOb 666 MASSACHUSETTS 1HST OF TECH CAM"RIOGE ARTIFICIAL INTE--FTC F/G 6/4A MODEL FOR DELIBERATION, ACTIOJ AND INTAOSPECTION.(U)
MAY 80 ,J DO1YLE NOOO4-7b.C.n643

UNCLASSIF IED AI-TR-bL
NL

.11 mml .10IMonson n
I , NOEENONEilIIIIEilII
Illlll "!nolonIIIIn1IIIIII,,oniomanmmE

! I UI II _I I _I_

93

for a bclief consists of an ordered pair of sets of othcr beliefs, such that the reasoned belief is in by virtue

of this reason only if each belief in the first set is in, and each belief in the second set is oul. An

assumption is a current belief one of whose valid rcasons depends on a non-current belief, that is, has a

non-empty second set of antecedent beliefs. With these notions we can create "ungrounded" yet

reasoned beliefs by making assumptions. (E.g. give P the reason ({}I{'P}).) We can also effect

non-monlonic changes in the set of current beliefs by giving reasons for some of the out statements used

in the reasons for current assumptions. (E.g. to get rid of P, justify -P.) We somewhat loosely say that

when we justify sonic out belief supporting an assumption, (e.g. -P), we are defeating, denying, or

retracting the assumption (P).

These new notions sohe the monotonicity problem, thus overcoming the limitations of the

traditional view of reasoning. Non-monotonic assumptions allow the program to make inferences with

incomplete information about the actual state of aftirs, and then to correct the conclusions drawn from

these assumptions by later examining the set of reasons. We will give examples of this shortly.

Other advantages over the conventional view also follow. One of these advantages involves how

the reasoner retracts assumptions. With the traditional notion of assumption, retracting assumptions was

unreasoned. If the reasoner removed an assumption from the current set of beliefs, the assumption

remained out until the reasoner specifically put it back into the set of current beliefs, even if changing

circumstances obviated the value of removing this belief. The new notions introduce instead the reasoned

retraction of assumptions. ihis means that the reasoner retracts an assumption only by giving a reason for

why it should be retracted. If later this reason becomes invalid, then the retraction is no longer effective

and the assumption is restored to the current set of beliefs.

'Irhe most important application of the reasoned retraction of assumptions is in dialectical

argumentation, a technique we will employ extensively later in decision-making procedures. The basic

idea is that one part of the program can put forward an argument for some conclusion based on some

assumptions, where for this purpose we represent each of the steps of the argument as an assumption as

____ ___ - ~ ~ :Z~: 2 7-*-------

AC!l. 41 Other parts of the program wishing to disagree with the conclusion of the argument examine the

argument to find some assumption or argument step they disagrec with, and then present a new argument

to defeat the chosen assumption or step. This new argument is constructed like the original one, so the

original procedure or some other part of the program can try to defend the original conclusion by in turn

defeating some assumption or step of the new argumCnt with yet another argument. By adopting this

representation for reasons uniformly, the program gains the ability to reflect on its inferences after the

fact, and to simp not make the inferences if it decides it shouldn't have. If some step leads to paradox,

he program need not make it, although the real progress will be made only if it further inquires into the

reasons for its antcedents.

Records oif inferences also help %ith the problem of determining the relevance of one belief to

another. One can divide the problem of relevance into two parts: the more difficult one is the

connecdon of one belief with another by some possible but yet unknown chain of inferences, the easier

one is the connection of one belief with another by some past and recorded chain of inferences. Here we

assume that any connections between beliefs stemming from their intended models are reflected in

inference rules.

In this remainder of this chapter, we will describe the basis of our program organization by

describing RMS, a program for recording reasons and revising beliefs. Further explanation of RMS can

be found in [Doyle 19791. RMS (Reason Maintenance System) renames and revises the TMS (Truth

Maintenance System) presented in that paper. I changed the name not only because the program has

nothing to do with truth, but also because the program is properly concerned with reasons for attitudes

rather than the attitudes themselves.

In die remainder of this chapter, I describe RMS solely in terms of the attitude belief. In fact,

RMS implements only a logic of belief, and not necessarily logics for any other attitudes. 'Ibis results

41. See Sction 3.11 forthe details orhow thiis done.

1I

95

from a hypothesis and methodology I entertain but since have come to suspect, that the program can and

should be designed so that it only uses beliefs, and embodies its intentions, say. in its beliefs about its

intentions. Part of the motivation for this hypothesis comes from viewing the data-structures of SDI. as

statements in its meta-language, as mentioned in the previous chapter. *he final chapter discusses

possible problems with this approach, and possible solutions. For the time being, however, we accept this

hypothesis and methodology, and pretend that the program works strictly with beliefs and beliefs about

attitudes.

3.2 RMS, the Reason Maintenance System

RMS records and maintains arguments for potential program beliefs, so as to distinguish, at all times, the

current set of program beliefs. It manipulates two data structures: nodes, which represent beliefs, and

jusificaions, which represent reasons for beliefs. We write Content(N) to denote the statement of the

potential belief represented by the node N. We say RMS believes in (the potential belief represented by)

a node if it has an argument for the node and believes in the nodes involved in the argument This may

seem circular, but some nodes will have arguments which involve no other believed nodes, and so form

the base step for the definition.

As its fundamental actions, (1) RMS can create a new node, to which the program attaches as its

content a data-structure representing some belief. As mentioned in the previous chapter, the program

attaches a RMS node to each of the data-structures representing the symbols of a language, the

attachments of simulation structures, the facts in theories, etc. RMS performs no manipulation of the

content of nodes. (2) It can add a new justification for a node, to represent a step of an argument for the

belief represented by the node. 'Ihis argument step represents the application of some inference rule or

procedure. Inference rules and procedures all have RMS nodes and include these nodes in the

i- 7
At

96

justifications they create.4 2 (3) Finally, RMS can mark a node as a conlradiction. to represent the

inconsistenuC of any set of beliefs which enter into an argument for the node. These markings will be

used b RMS to signal the program whenever the marked node is brought in.

A new justification for a node may lead RMS to bclicc in the node. If did not believe in the

node previously, this ma in turn allow other nodes to be believed by previously existing but incomplete

,arguments. In this case, RMS invokes the reason inainleance procedure to make any necessary revisions

in the set of beliefs. RMS reises dhr current set of beliefs by using the recorded justifications to compute

non-circular arguments for nodes from premises and other special nodes, as described later. Ilese

non-circular arguments distinguish one justification as the well-founded supporlijg jusfificalion of each

node representing a current belief. RMS locates the set of nodes to update by finding those nodes whose

well-founded arguments depend on changed nodes.

RMS employs non-mnononjic juslifications, which, as explained previously, base an argument

for a node not only on current belief in other nodes, as occurs in deductive inference, but also on lack of

current belief in other nodes. For example, one might justify a node N- i representing a statement P on

the basis of lack of belief in node N-2 representing the statement -P. In this case, RMS would hold N-i

as a current belief as long as w-z was not among the current beliefs, and we would say that it had assumed

belief in -i. More generally, by an assumption we mean any node whose well-founded support is a

non-monotonic justification.

As a small example of the use of RMS, suppose that a hypothetical office scheduling program

considers holding a meeting on Wednesday. To do this, the program assumes that the meeting is on

Wednesday. The inference system of the program includes a rule which draws the conclusion that due to

42. Actually. justifications mention not nodes but rather their contents. We do this so that it is easier to intcrpret the justifications
when dcbugging the prorain. for otherwise one cannot easily read justifications to sv what inference rules arc involved, for one
gets explanations like N-I because N-2. N-3. and N-4. rather than 11 because Modus Ponens, A, and ADIB. RMS always reads
through the content data-structures to the RMS node involvcd via the function RMS-NOD)i. l.nt make the expatilion less
complicated, all of the following is written as though the nodes themselves were mentioned in the justifications, rather than their
contents

+ - - .

97

regular commitnments, any mecting on Wednesday must occur at !:00P .M. tlowever, the fragmentof the

schedule for the week constructed so far has some activihy schedulcd fir that time already, and so another

rule concludes the mceting cannot be on Wednesday. We write these nodes and rule-constructed

justifications as follows:

Node Statement Justification Comment

N-1 DAY(M) - WEDNESDAY (SL () (1-2)) an assumption

U-2 DAY(M) ;t WEDNESDAY nojuslification yet

M-3 TIME(N) - 13:00 (SL (R-37 N-1) ())

The above notation tor the justifications indicates that they belong to the class of support-list (SI.)

justifications. IEach of these justifications consists of two lists of nodes. A SI.-justification is a valid reason

for belief if and only if each of the nodes in the first list is believed and each of the nodes in the second

list is not believed. In the example, if the two justifications listed above are the only existing justifications,

then U-2 is not a current belief since it has no justifications at all. N- i is believed since the justification for

N-1 specifies that this node depends on the lack of belief in N-2. The justification for N-3 shows that N-3

depends on a (presumably believed) node R-37. In this case, A-37 represents a rule acting on (the

statement represented by) -t.

Subsequently another rule (represented by a node R-9) acts on beliefs about the day and time of

some other engagement (represented by the nodes N-7 and N-8) to reject the assumption N-i.

N-2 DAY(M) * WEDNESDAY (SL (R-9 N-7 N-8) ()

To accommodate this new justification, RMS will revise the current set of beliefs so that N-2 is believed,

and N- i and M-3 are not believed. It does this by tracing "upwards" from the node to be changed, v-2, to

see that N-i and N-3 ultimately depend on m-2. It then carefily examines the justifications of each of

these nodes to see that U-2's justification is valid (so that N-2 is in). From this it follows that -i's

justification is invalid (so N-t is out), and hence that N-3's justification is invalid (so V-3 is ou. I
-I- - 1- - _,__ _ _ _-.._.__ _ _,_ _,_-__ _ _, . IV +. .. ,.:. +

98

,

3.3 RNIS i)ata-sructures

To make clear exactly what information is actually stored by RMS, as opposed to the information it

computes on demand, this section presents the RMS data-structures. The following structure definitions 4
in M IT ILisp Machine L.isp give the slots in the data-structures used to represent nodcs and justifications.

We have mentioned some of these already, and will explain many more in the following. Some, however,

are for esoteric purposes not discussed here, but can he found in [l)oyle 19791. lie structure presented

here arc simplified for clarity, as in the actual implementation some fields are fill pointers, some are

merely bits, and others are created only on demand.

(DEFSTRUCFURE NODE

CONTENT ;This chapter mentions these slots.
5L-°JUST IFIlCAT IONS

CP-JUST Ir ICAT IONS -

SUPPORT ING-JUSTIF ICAT IONS

SUPPORTING-NOOES

CONSEQUENCES

SUPPORT -STATUS

CONTRADICT ION-MARK

NODE -MARK ;These slots are not discussed.

IMP -MARK

NOTED-MARK

FIS-NARK

SUBORDINATES-M4ARK

EXPLAIN-MARK

SUPERIORS-MARK

SIGNAL-RECALLING FUNCTION

SIGNAL- FORGETTING- FUNCTION

CP-CONSEQUENT-LIST)

(DEFSTRUCTURE St-JUSTIFICATION

INLIST

OUTLIST)

(D(FSTRUCTURE CP-JUSTIFICATION

CONSEQUENT

INIIYPOTHESES

OUTHYPOTHESES)

I _________ __________

-IL
99 -

F
3.4 States of Belief

A node may have several justifications, each justification representing a different reason for believing the

node. lhese several justifications comprise the nodesjustifcation-sel. 'he node is believed if and only if

at least one of its justifications is valid. We described the conditions for validity of SI.-justifications

above, and shortly will introduce and explain the other type of justification used in RMS. We say that a

node which has at least one valid justification is in (the current set of beliefs), and that a node with no

valid justifications is out (of the current set of beliefs). We will alternatively say that each node has a

supiori-.s onlus of either in or out. The distinction between in and out is not that between true and false.

The former classification refers to current possession of valid reasons for belief. True and false, on the

other hand, classify statements according to truth %alue independent of any reasons for belief.

In RMS, each potential belief to be used as a hypothesis or conclusion of an argument must be

given its own distinct node. When uncertainty about some statement (e.g. P) exists, one must (eventually)

provide nodes for both the statement and its negation. Either of these nodes can have or lack

well-founded arguments, leading to a four-element beicf set (similar to the belief set urged by Belnap

119761) of neither P nor -P believed, exactly one believed, or both believed.

3.5 Justifications

Although natural arguments may use a wealth of types of argument steps or justifications, RMS forces

one to fit all these into a common mold. RMS employs only two forms for justifications, called

support-list (SI.) and condifionaI-proof (CI) justifications. These are inspired by the typical forms of

arguments in natural deduction inference systems.43 Natural deduction is a sort of logical system in

which there arc no axioms, only inference rules. Proof in natural deduction involve recording the steps

* 43. See fr example Suppa [19571

-----.-L____________________________

• • b • m _ _

Ill |

10

of the proofs and fie dependencies of cach of these slops, that is, the set of hypotheses upon which each

step depends. The inference rules then ,,nalyze the proof steps and dependencies to derive theorems

which depend on no h)potheses. Two common inference rules are Modus Poncns and)ischarging an

Assumption. Modus Ponens is the familiar rule for detaching a conclusion from an implication and its

anteccdcnt. Discharging an Assumption is roughly the deduction theorem in action, which concludes an

implication from the derivability of some statement from certain hypotheses, where the statement

becomes tie consequIcnt Of die implication and the hypotheses become the antecedents of tile

implication. lhese two inference rules respectiely add and subtract dependencies from the support of a

proof line. A proof in such a system might run as follows:

Line Statement .ustification Dependencies

1. ADB Premise (1)

2. BOC Premise (2)

3. A Hypothesis (3)

4. B MP 1.3 (1.3)

5. c NP 2,4 (1.2.31

6. ADC Discharge 3.5 (1.2)

7. AJ)BoAo)C A-introduction (1,21

8. (AD9ABD)C)J(A)C) Discharge 7.6 {} 4 Theorem

Fach step of the proof has a line number, a statement, a justification, and a set of line numbers on which

the statement depends. Premises and hypotheses depend on themselves, and other lines depend on the

set of premises and hypotheses derived from their justifications. 'he above proof proves ADC from the

premises ADIJ and aDc by hypothesizing A and concluding c via two applications of Modus Ponens. The

proof of ADC ends by discharging the assumption A, which frees the conclusion of dependence on the

hypothesis but leaves its dependnce on the premises.

This example displays justifications which sum the dependencies of some of the referenced lines

(as in line 4) and subtract the dependencies of some lines from those of other lines (as in line 6). The two

I I

101

types ofjustifications used in RMS account for these effects on dependencies. A support-list justification

says that the justified node depends on each node in a set of other nodes, and in effect sums the

dcpendencics of the refercnced nodes. A conditional-proof justification says that the nodc it justifies

depends oil the validity of a certain hypothetical argument. As in the example above, it subtracts the

dcpendencics of some nodes (the hypothcses of tie hypothetical argument) from the dependencies of

others (the conclusion of dtie hypothetical argument). Ihus we might rewrite the example in terms of

RMS justifications as follows (here ignoring the difference between premises and hypotheses, and

ignoring the inference rule MP):

N-1 AJB (St () ()) Premise

N-2 sDc (St () () Premise

V-3 A (SI ()) Premise

U-4 B (SL (N-I N-3) () MP

U-5 c (SL (N-2 -4) ()) &P

N-6 ADC (CP M-5 (N-3) ()) Discharge

N-7 (Ae)BABJC)i)(ADC) (CP U-6 (N-i N-2))) Discharge two assumptions

CP-justifications, which will be explained in greater detail below, differ from ordinary hypothetical

arguments in that they use two lists of nodes as hypotheses, the inhypotheses and the outhypotheses. In

the above justification for -6, the list of inhypotheses contains just u-3, and the list of outhypotheses is

empty. Ibis difference results from our use of non-monotonic justifications, in which arguments for

nodes can be based both on in and out nodes.

I'

3.6 Support-list Justifications

To repeat the definition scattered throughout the previous discussion, the support-list justification has the (
Ibmform

(St <inltst> <ountst>).

and is valid if and only if each node in its inlist is in, and each node in its ouflist is out. The

102

SI.-justification fnirm can represent several types of deductions. With empty inlist and empty oullist we

sa the justification fbrms a premise justification. A premise justification is always valid, and so the node

it justifies will always be in. SI.-justifications with nonempty infists and empty outlists represent normal

deductive inferences. Each such justification represents a monotonic argument for the node it justifies

from the nedes of its mlist. We define assumipiions to be nodes whose supporting-Justification has a

nonempty oullist. These assumption justifications can he interpreted by viewing the nodes of the inlist as

comprising the reasons for wanting to assumne the justified node; the nodes of the oullist represent the

specific criteria authorizing this assumption. For example, the reason for wanting to assume "The

%Neather will be nice" might be "lie optimistic about the weather": and the assumption might be

authori/ed by having no reason to believe ."1 e weather will be bad." We occasionally interpret the

nodes of the oflist as "denials" of the justified node, beliefs which imply the negation of the belief

represented by the justified node.

To make the exposition less jargonistic, we occasionally use the phrases "N-I is justified

(non-)monotonically in terms of N-2" and "N-I's justification (non-)monotonically involves N-2" to

mean that N-2 occurs in the mlist (outlist) of N-I's justification.

3.7 Terminology or Dependency Relationships

I must pause to present somc terminology before explaining CP-justificaions. The definitions of

dependency relationships introduced in this section are numerous, and the reader should consult Figures

5, 6, and 7 for examples of the definitions.

As mentioned previously. RMS singles out one justification, called the supporling-justification,

in the justification-set of each in node to form part of the non-circular argument for the node. For

reasons explained shortly, all nodes have only SI.-justifications as their supporting-justifications, never

CP-justifications. The set of supporing-nodes of a node is the set of nodes which RMS used to determine

103

Node Justification Justification Name

(SL (3)OJ

2 (SL ()(1)) J2

3 (SL (1)) J3

4 (SL (2)) J4A

4 (SL (3)) J4B

5 (SL 0) ()) J5

6 (SL (3 5)O A

Figure 5
Six Nodes and Seven Justifications

104

4 (in) 6 (out)

J4A J48

J6

2 (in) 3 (out)
5 (in)

J3 [5
JJ5

J2I JI

1 (out)

Figure 6

A depiction of the previous system of justifications and nodes.
All arrows represent justifications. The uncrossed arrows represent
inlist, and only the crossed line of J2 represents an outlist.
We always visualize support relationships as pointing upwards.

II

Dependency Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

Support-status out in out in in out

Supporting justification J2 J4A J5

Supporting-nodes 3 1 1 2 3

Antecedents -1 2

Foundations 1 1,2

Ancestors 1,3 1,3 1,3 1,2,3 1,3

Consequences 2,3 4 1,4,6 6

Affected-consequences 2,3 4 1,6

Believed-consequences 2 4

Repercussions 1,2,3,4,6 4 1,2,3,4,6

Believed- repercussions 2,4 4

Figure 7

A table of all the dependency relationships implicit in the system
of justifications. Dashed entries are empty. All other entries are
lists of nodes in the dependency relationship to the node at the
top of the column.

106

tIle SUpport-status of the node. For in nodes, the supporting-nodes arc just the nodes listed in the inlist

and ouilist of its sUlporting-justification, and in this case we also call the supporting-nodes the

,mwcedoirs of the node. For the stupporting-nodes of ,o nodes, RMS picks one node from each

jilstification in the Justification-set. From SI,-justifications, it picks either an oul node from the mlist or

an in node from the ouilist. Irom CP)-justifications, it picks either an out node from the inhypotheses or

consequent or an in from the oulhypotheses. We define the supporting-nodes of out nodes in this way so

that the support-status Of the node in question cannot change without either a change in the -j

sopporl-stallus of one of the solpporting-nodcs, or %kiihout the addition of a new alid justification. We

%,i% thai an out node has no antecedents. R MS keeps the supporting-nodes of each node as part of the

node data-structure, and computes the antecedents of the node from this list.

The set of fiundafions of a node is the transitive closure of the antecedents of the node, that is,

the antecedents of the node. their antecedents, and so on. This set is the set of nodes involved in the

well-fobunded argument for helief in the node. The set of ancestors of a node. analogously, is the

transiti~c closure of the supporting-nodes of the node, that is, the supporting- nodes of the node, their

supporting-nodes, end so on. Ibis set is the set of nodes which might possibly affect the support-status of

the node. The ancestors of a node may include the node itself, for the closure of the supporting-nodes

relation need not be well-founded. RMS computes these dependency relationships from the

supporting-nodes and antecedents of nodes.

In the other direction, the set of consequences of a node is the set of all nodes which mention the

node in one of the justifications in their justification-set. The affecied-consequences of a node are just

those consequences of the node which contain the node in their set of supporting-nodes. The

blfieved-consequences of a node are just those in consequences of the node which contain the node in

their set of antecedents. RMS keeps the consequences of each node as part of the node data-structure.

and computes the affected- and believed-consequences from the consequences.

The set of repercussions of a node is the transitive closure of the affected-consequences of the

107

node. that is. die aftectcd-conscqucnccs of the node, their affccted-conscqucnccs. and so on. The set of

befiev'ed- repercussions of a node is the transitive closure of the hclicvcd-conscqucnccs of the node, that is,

the belie% ed-conscqucnces of the node, their believcd-conscqucniccs, aind so on. RMS computes all these

relationships fromn the consequences of the node.

In all of the following, I visualize thc lines of support for nodes as directcd upwards. so that I

look up to see repercussions, and down to sce foundations. I say that one node is of lower level than

another if its believed-repercussions includc thc other node.

3.8 (onditional-proof Justifications

With this terminology, we can now begin to explain conditional-proof justifications. The exact meaning

of these justifications in RMS is complex and difficult to describe, so the reader may ind this section

hard going. CP-justifications take the form

(CP <consequent> (ilhypotheses) Otyohss)

A CP-justification is valid if the consequent node is in whenever (a) each node of the inhypotheses is in

and (b) each node of the outhypotheses is out. Except in a few esoteric uses described later, the set of

ouihypothescs is empty, so normally a node justified with a CP-justificafion represents the implication

whose antecedents are the inhypotheses and whose consequent is the consequent of the CP-justiflcation.

Standard conditional -p roofIs in natural deduction systems typically specify a single set of hypotheses

which corresponds to the iinhypotheses of a CP3-justification. In the present case, the set of hypotheses

must be divided into two disjoint subsets, since nodes may be derived both from some nodes being in wad

other nodes being out. Some deduction systems also employ multiple-consequent conditional-proofs.

We forego these for reasons of implementation efficiency.

RMS handles CP-justifications in special ways. It can easily determine the validity of a

CP-justification only when the justification's consequent and inhypotheses are in and the outhypotheuu

____ _____________Al

. ,I I

108

are aut, since detemining the justification's %alidity with othcr support-statuses for these nodes may

require switching the support-statuses of the hypothesis nodes and their repercussions to set up the

hypothetical .,ituation ill which the validity of the conditional-proof can be evaluated. Tiffs may may

reqoire reason maintenance processing, which in turn may require %alidity checking of further

CP-jtlstifications. and so the whole process becomes extremely complex. Instead of attempting such a

detailed analsis (for which I know no algorithms), RMS uses the opportunistic and approximate strategy

or computing SI -justifications currently equivalent to Cl)-justifications. At the timc of their creation,

these ncw SI -jus(itications are equi'alent to the CP-juslifications in terms of the dependencies they

specify, and are easily checked for %alidity. Whene er RMS finds a CP-justification Nalid, it computes an

equivalent SI-justification by analying the Aell-founded argument for the consequent node of the

CP-justification to find those nodes which are not themselves supported by any of the inhypotheses or

ouihypotheses hut which directly enter into the argument fir the consequent node along with the

hypotheses. Precis,:ly, RMS finds all nodes N in the foundations of the consequent such that N is not one

of the hypotheses or one of their repercussions, and N is either an antecedent of the consequent or an

antecedent of some other node in the repercussions of the hypotheses. The in nodes in this set form the

inlist of tie equivalent St.-justification. and the out nodes of the set form the ouilist of the equivalent

SL-justification. RMS attaches the list of SI.-justifications computed in this way to their parent

CP-justifications, and always prefers to use these SI.-justifications in its processing. RMS checks the

derived Sl+-justifications first in determining the support-status of a node, and uses them in explanations.

It uses only SI.-justifications (derived or otherwise) as supporting-jtlstifications of nodes. The accuracy

and limitations of this approximation are open problems.

1~~~~~k

109

3.9 (ircular Arguments

Suppose a program manipulates three nodes as follows:

F ((x Y) 4) owiedbui valid

G (x x 1) (SL (J ()

H v 3) (st (K))).

IfJis in and Kis out, then RMS will make Fand Gin, and l ou. If the program then justifies H with

(SL (FG) ()).

RNIS will bring 11 in. Suppose now that RMS makes J out and K in, leading to G becoming ou and H

remaining in. 'Ilic program might then justify G with

(SL (FH) ()).

If RMS now takes K out, the original justification supporting belief in tt becomes invalid, leading RMS

to rcasscss the grounds for belief in H. If it makes its decision to believe a node on the basis of a simple

evaluation of each of the justifications of the node, then it will leave both Gand H in, since the two most

recently added justifications form circular arguments for G and H in terms of each other.

These circular arguments supporting belief in nodes motivate the use of well-founded

supporting justifications, since nodes impndently believed on tenuous circular bases can lead to

ill-considered actions, wasted data base searches, and illusory inconsistencies which might never have

occurred without the misleading, circularly supported beliefs. In view of this problem, the algorithms of

RMS must ensure that it believes no node for circular reasons.

Purported arguments for nodes can contain essentially three different kinds of circularities, each

of which must be handled in a different way. The first and most common type of circularity involves only

nodes which can be taken to be out consistently with their justifications. Such circularities arise routinely

through equivalent or conditionally equivalent beliefs and mutually constraining beliefs. The above

algebra example falls into this class ofcircularity. In this case, RMS makes all of the involved nodes out.

-• - •-~ - -- I.. I

Ito

'he second type of circularity includes at least one node which must he in. Consider, for

example

F TO-Bt (SL () (G))

G -'TO-BE (SL () (I')).

In the abscilce of othcr justifications, iesejustifications forcc RMS either to make Fin and Gout, or Gin

and Fuu. When RMS meets such a circularity, it must choose some one of these nodes in. 'I7his decision

Irequcntly affccts the actions of the program drastically, so it must often be made carefuflly using the

revision techniques outlined below.

In unsttisfiable circularities, the third type, no assignment of in or out to nodes is consistent with

their justifications. Consider

F .SI () (SL).

With no other justifications for I" RMS must make Fin if and only if it makes Foui, an impossible task.

Unsatisfiable circularities sometimes indicate real inconsistencies in the beliefs of the program using the

reason maintenance system. If so, RMS must discard one of the justifications involved.T4

f
3.10 ihe Reason Maintenance Process

The reason maintenance process makes any necessary revisions in the current set of beliefs when the

program adds to the justification-set of a node. We only outline it here. For more detail, see JDoyle

1979).

The reason maintenance process starts when a new justification is addcd to a node. Only minor

44. Discardin$ a justification violates the thesis of rationality proposed earlier. Ilowever, s Section 3.11 explains, the program
always employs defcasible justifications. so unsatisfiable circulariies never arise. Ibis saves the thesis or rationality and allows
explanations of the revision a well.

bookkeeping is required if the new justification is invalid, or if it is valid but the node is already in. If the

justification is valid and the node is out, then the node and its repercussions must be updated. RMS

makes a list containing the node and its repercussions, and marks each of these nodes to indicate that they

have not yet been given well-founded support. RMS then examines the justifications or these nodes to

see if any are valid purely on the basis of unmarked nodes, that is, purely on the basis of nodes which do

have well-foundcd support. If it finds any, these nodes are brought in (or out if all their justifications are

invalid purely on the basis of well-founded nodes). lien the marked consequences of the nodes are

examined to see if they too can now he given well-founded support. Sometimes, after all of the marked

nodes have been examined in this way, well-founded support-statuses will have been found for all nodes.

Sometimes, however, some nodes will remain marked due to circularities. If so, RMS constructs a

decision intention to decide between revisions. so that the decision about which belief revision to use may

be made carefully if desired. Otherwise, the default decision is to choose a revision randomly by a

constraint-relaxatio, process which assigns support-statuses to the remaining nodes. The new intention

does not depend on any prior beliefs, in particular not on the beliefs under revision, so its addition does

not invoke another revision decision.

If the revision decision is made carefully, it involves analyzing the circularity to see what the

alternative revisions are. This analysis can be very involved, and we have not pursued it very extensively.

One early version of RMS JDoyle 1976J applied graph-theoretic algorithms to first analyze the circularity

into strongly connected components, and then to sort these components topologicolly.45 The minimal (in

the sort order) strongly connected components are the obvious candidates for closer examination, as

non-minimal components cannot be decided without first deciding the minimal components. The early

RMS would then pick (randomly) one node from each minimal component to be out, and determine the

45. 1aAer versions of RMS abmndoned this technique because it was unnericarily complicaled for the small belief systems bein
manipulated, and since it involvcd an.wcring a number of questions which involve considerablc study in the context of lirge
conmplicaled belief systems. It would be nice if someone would take up this problem again and explore it carefully.

. ,• z, ,--___ ! * ,---.. - I

112

statises of the other nodes in the component from this new constraint. After all the repercussions of

these choices had been accounted for, it would repeat this process of analysis and choice until the statuses

of all beliefs had been settled. This is a very trick), procedure, for these choices of revision might be

wrong, and so lead to apparently unsatisfiable inconsistencies. To avoid this, it appears that the decision

should in~ole adding a neo justification to the chosen nodes to set their status, rather than just setting it

arbitrarily.

While processing the repercussions of a decision, RMS can detect an apparently unsatisfiable

circularity and again invoke it decision intention to either change one ofthe previous decisions or, as a last

res rt, dis ard one of tie justilications in ol~ed in the unsatlisfiable circularity.

RMS also handles contradictions rising this technique. Whenever it brings a node in that has

been marked as a contradiction, RMS constructs a new intention whose aim is to resolve the

inconsistency.

Actually, the existing RMS ('MS) has not been altered to provide for careful selection of

revisions by intentions, but just makes the re'.isions randomly. I do not sec any overwhelming difficulties

in carrying through all these alterations. In any event, even if the current version is used, the net result

will be that the program will be a less efficient than it might otherwise be. These changes can always be

put in later.

3.11 Ilkeasiblc Reasons and)ialectical Argumentation

Everything and everyone has to be criticized if Liere is to be any progress in the world.
Anyhody ought to be prepared for that and grant everyone else that right.

I. Enters (1924. p. 1001

We have just described the hasics of RMS. but the program uses RMS in a special way. In the above we

described only ways for RMS to update the current set of beliefs by adding new justifications. We made

no provisions for removing justifications, for we wish to make all changes in beliefs for gaod reasons. To

113

allow all justifications to be defcasihle. wc reflct all justifications in explicit programn beliefs about the

justifications, and make all these bcliefs assumptions.

Suppose thc program wants to justify node N with thc justifica1tion (SL 1 0). Instead of doing

this directly, it creates a ncw node, J. representing tie statement that I and 0 SI.-justify N: in other

words, that belief in cach node of I and lack of belief in each node of 0 constitute a reason for believing

in N. 'Pie program justifies N with the justification (St. i 1 0), where J f / represents the list I

augmented hy J. RMS will make N in by reason of this justification o)nly if J is in. 'M'e program also

creates another new node, -J,. representing the statcemcnt that ./ represents a challenged justification. It

then justifies J with the justification (st. (-(J)). Note that this justification is not reflected in a

corresponding belief, but is a simple justification.46 In this way, the program makes a new node to

represent the justification as an explicit belief, and then assumes that the justification has not been

challenged.

To do this, the program never directly calls the fuinctions RMS-SI.-JUSTIFY andi

RMS-CP-JUSTlIFY which create basic RMS justifications for nodes. Instead, it calls (St-JUSTIFY node

ini ist outi ist) and (cp-jusTiry node consequent inhypotheses outhypotheses). What SI.JUSTIIFY

does (and CP-JUSTIIFY analogously), is to create a new individual constant in ME of the form J-nnn and

then use this as the name of a new fact in ME whose wfftis

SL -JUSTJIfJCAT ION(J-nnn. node. (J-nnn)+inhtst, outliat).

sIi-usTilY also creates a new fact in ME called D-nnn, whose wif is

DEFEATED(J-nnn).

It thcn creates two basic RMS justifications. As the first. it justifies J-nnn with an empty inlist and an

46. There isa slight rnndiralion of ii technique which avoids having these non-rcflected justiftioms To do this, we do Mw
creaie the new nodei, but only -V. and nake the actual jusulkstion be (SL 1 0+-V). The nct effect is the m

_ _ _ _*
j 7Z4 ~ ~

114

I)udlI conltaining just 1)-nnn. It thcnl justifies node with the mulst containing both 1-nnn and the original

mulst, and the original outist.

For examnple, suippose the prograin wishes to conclude that the v.alue of Y is I in a theory TAI in

which tlie value of X is 3 and (he known that X and Y sum to 4.

N-1 Ind1v idual -constant X: Justifications omitted

14-2 Individual -constant Y1;

N-3 Ind ividual -constant 4;

N-4 function-constant +;
N-5 Attach X3;

W4-6 Attach 4 4;

N-7 Attach+ +;

N-8 Axiom X+ Y 4

N4-9 Attach Y I; No just if ication yet

It %OuIld first svitch to MIF to describe the justification of the new attachment of Y to I as describe above,

and then switch back to 'r-i to make the actual justification.

IN ME1:
N-1O fact SL -JUST IF ICATION(N-I10, N-9, (N10IN-1i. N-9),))

N-Il Fact DEFEATED(N-1O) No justif ication yet

IN 1:

N4-9 Attach Y 1; (SI (N-10 N-I . N4-9))

If the program then wished to defeat this justification, it wouild again go to ME and construct the

following.

INNK:

N4-12 SL -JUSTIF ICATITON(N- 12. -I1, (N-I? 12, . (

N-13 DEFEATEW(N-12); No justif ication yet

N-t1 DEFEATED(N-IO); (SL (N-12 .. .) (. ...))

'Ibis organization of the reasoning prcess into dialectical argumentation has three interesting

aspects. The first is that any belief of the program may be abandoned, since the program only believes for

reason, and all reasons can bc reconsidered and rcjected after the fact

115

Second, RMS not longer has to worry about truly unsatisfiaible circularities. Sine all

assumptions arc defeated hy reasons 0hich are thcmnsel~cs assumnptions, what in the direct usc of RMS

Aould bc unsatisfiable circularitics arc in this indirect use just dcl'easiblc reasons. 'I'litis RMS never nccds

to discard ajustification. It only has to dcfeat thiejustification with another.

Third, this organi/ation clarifies the mecaning of CP-justifications. It shows that CP)-justifications

actually compute arguments. Suppose the program draws the conclusion C from A and B via the

justificalion J. If the programn justifies 1) with (CP C (A 0) ()) it is justifying 1) onl the grounds that an

argument exists for C from A and 11, hut that argument is just P! 'fis new justification then is equivalent

inl tis Case to (SI (J) ().'Ib1US tile C-jusiilication in effect returns an argument of one belief as the

support (ats an object) for another belief.

'i'is concludes the discussion of the underlying reasoning framework. We now turn to the

means by which reasoning is controlled and applied in its own service.

116

CHAPTER 4

DELIBERATE ACTION

De I'audace. ri encore de I'audace, et lojours de 'audace!
Georges Jacques l)anton

One of the most important things about man is his ability to adapt so as to further his survival. But to

adapt, man changes both his cnvironment and himself. body and mind. To do this, however, he must be

aware of himself and his environment.

But awareness is sometimes difficult to attaio. For example, it is usually difficult to filly grasp

the effects of one's actions. One contracts an outsider to build one's home only to discover that the social

benefits of communal home-raising have been lost. One builds a dam to assure regular crops and

discovers the destruction of %ilderness upstream and wildlife downstream. One paints one's nails only to

discover them cracking in inconvenient moments. One selects one's children's genes to avoid hemophilia

and caries to discover unexpected diabetes. And one finally learns how to concentrate well on one's work

to succeed, only to appear distant and uncaring to one's family and companions. Man may not always

have all the information he needs to act successfully, but he must always be concerned with the direction

of change, and to try to control that direction as best he can.

To control the direction of change, man needs to be conscious of the current state of affairs and

the desired state of affairs, and of the effects of various actions he might take, conscious of his

surroundings, his body, and his mind. Al studies of problem solving have touched on many ways of

problem solving and planning, but typically these are applied not to all objects of change, not to the

program's own mental state, but only to external objects such as chess games, housebuilding, or electronic

circuits. Psychologists and popular writers have not neglected mental change, as an enormous self-help

II I J I I I I I I I I I -

117

litcratorc attcsts.47 But in spitc of this, Al secns to ha~c largely rested contcnt with .tacking the

physical, not t mcntal, problem domains. B.ecause of this, I believe, self-consciousness, which humans

frcqucntly think of as their hallmark and gifl ovcr the other animals, has been viewed as a mystical topic,

something for future generations ofwsientists to conquer.

As I hope to indicie in this and later chapters, self-consciousness is no mystic apparition, but a

practical device to be readily app!ied to controlling reasoning. Self-consciousness is easy to achieve, as

long its one is not blinded I. an overriding preoccutpation with physical affairs.

*[his chapter lays out (he basics of how a program can be conscious of and reflect on its own

plans. intentions, actions, reasons, decisions. and beliefs. 'Thc following chapters study decision-making,

modifying beliefs, and modifying skills as deliberate, conscious activities.

To be able to tell what one is doing is crucial for making plans, making decisions, and learning.

One can hardly make plans to achieve one's desires if one cannot tell what one wants.48 Raiona

decisions are s)metimes described as those which "fit best" with one's beliefs, desires, and intentions, so

to make rational decisions one needs to take one's intentions into account. One can hardly help painting

oneself into a corner unless one neglects one's intention to leave the room after the job is done. And

when learning, one cannot assign credit or blame to one's beliefs or procedures unless one can explain

what one did and why, that is, one's actions, intentions, and reasons.49 'T1hus for one's own benefit in

planning. in evaluating one's successes, and in modifying one's beliefs and skills, one needs to be able to

distinguish which effects of one's actions are intentional and which are unintentional, since one can

always hope to correct unintentional bad effects.

47 lor esample. we [Russell 19101 , (arnegie 1936, 19441. IFIlis and Ilarper 19611. or [Johnson 19771. Johnson's book gives an
explicit land 1o AI 1olk. familia,) problem solv ,i procedure for changing fmc. skills ,,d attiiudes towards the world: reducing
problems o suhprnoblcms. momlonog their progress. etc. all towards ends like beconing good at carrying on conv rations and
learning to tolerate or accept oes current limitations.
41A 'Iis is no ti .ay that desires cannot influence one's behavior unless conscious. Freudian psychoanalysis goes to great lengths

to ferret out uncon.Aius desires We do not pursue here exactly how .mch unoconscious attitudes might be realized.
49 As mentioned earlier, our usc of the term "reason" refers to inferece records. not to anteecdents. The reader is cautioned that

much of the philkoiophical literature on action um yet mother meaning for "reason." namely desires, motives, or volitiom
underlying actions.

.......

I I I

118

The basic problems discussed in this chapter are how a program can tell what it is doing and

how it can act on its intentions. ''lle chapter discusses in turn the library of plans, the constituents of

pians, the current state of mird. and the interpreter.

4.1 Plan Geieration, Exeetulion. and Interl)retalion

Iraditional approaches to the construction of complex patterns of actions rely on a distinction between

plan generation ind execution. In that view, the reasoner takes i problem description and constructs a

scquence of instructions for the action mechanism of a machine. The reasoner construtcts this sequence of

commands so that it bclie es their execution will solve the problem it accepted. Once the command

Sequence has been constructed, it is given to the action mechanism, which carries out each of the

instructions.

We do not adopt this two-stage approach, for it has several drawbacks. One problem is that it

makes error handling largely a matter of foresight. Actions of all kinds are notoriously prone to failures

in unusual circumstances. To make an effective plan that is guaranteed to work is impossible. There are

always circumstances in which a particular plan will fail to realize its intended effect. The best the plan

generator can do is to try to build the sequence of instnictions so that it incorporates conditional steps

which handle all of the possible failures that might arise. But this is a poor strategy, both because there

are in general a huge number of forseeable difficulties, and because there are in general always

unforeseen but possible difficulties. For similar reasons, the separation of plan generation and execution

makes information gathering steps awkward to plan, for these are steps which explicitly have many

pussible (and perhaps uiapredictable) outcomes. Thus this separation of plan generation and execution is

untenable. 'Tlie reasoner must always be ready to replan the necestry steps whenever a plan fails. For

example, STRIPS IFikcs and Nilsson 19711 would devise a plan to be executed by PI ANEX [Fikes 1972),

which would reinvoke SI' RIPS to replan whenever actions failed. S''RIIS could not produce conditional

119

plans, so this was its only possible recourse.

In our case, there is yet another reason against dividing these processes. When this division is

made, it makes impossible the planning of the reasoning involved in the generation process. Since we

view reasoning as a species of action, we cannot construct a plan without taking actions thenselves

requiring planning, and we cannot wait until the plan is constructed before executing it, for otherwise

reasoning actions can never occur.

The most natural strategy, and the one we adopt, is to mix plan generation and execution in a

process better described as self-interpretalion. 'T1iis consists of repeatedly acting on one's intentions,

many of which involve the formation of intentions for further actions. 'hus error handling and

infonation gathering steps (of which inferential reasoning steps can be viewed as an important subclass)

are handled by forming intentions to carry out the step and then reflecting on the result, where the

reflection involves the same reasoning processes which went into the formation of'the step itself.

The interpretation organization of the reasoner avoids the ill-considered separation of plan

generation and execution, making the normal activity one of reasoning about how to take the next

reasoning steps, which themselves repeat this activity, so that the reasoner is constantly reasoning about

how to reason. The basic steps of the program's operation are (1) to examine the set of desires to possibly

decide to pursue some of them, that is. to form some new intentions. (2) to examine the current set of

intentions to select one to work on next, (3) to examine the library of procedures to select some way of

carrying out the intention, (4) to carry out the selected intention by executing the selected procedure if it

is a primitive, and by adding it to the current state of mind if i is a plan, and (5) to repeat these steps.

The next section describes the library of procedures, which contains the primitives and plans for

both external and internal reasoning and other actions.

-
.. .. - w -- - -II _ -|_ _

120

4.2 PIans and the ILihrary of Procedures

Plans are ways of dcscrihing the structure of one's desires and intentions. Plans, as I use the term, are

complex concepts made up of many other sorts of concepts, including desires. intentions, and subplans.

We will describe these sorts of concpts in more detail below, along %ith the other sorts of information

that go to make up plans.

Plans play an important role in tie operation of the program, and are stored in the procedure

librir (also called the plan libraty). 'lle procedure lihrary lists all procedures of the program as

attachments between the procedure's name aind the procedure itself. It also contains a number of sorts of

statements about the procedures, but we will discuss those later. Thus plans and primitives contain the

"how-to" inlbrmation of the program. The "know-how" of the program results from combining plans

and primitives with inforimnation about their use, such as indexing them by their important effects.

Plans differ greatly in their specificity. 'lie plan library typically will contain very general plans

useful when one has nothing better to try. "lliese general plans include the standard problem solving

techniques, the "weak methods" as Newell terms them [Newell 19691. But plans can be specific as well.

The typical procedure library also includes plans for specific tasks, such as (depending on the domains of

expertise of the program) how to design llutterworth filters, how to build a three-bedroom Colonial house

in the northeast, how to make airplane reservations, and how to make cheesecake.

This notion of specificity can be factored into two sorts of specificity. Part of the context of the

plan can be stated in the sort of problem the plan is applicable to, and part of the context can be stated in

restrictions on when the plan is considered defined. In terms that we will explain in more detail below,

this just means that the context of applicability of the plan can be stated in both the justification of the

plan and in the indexing of the plan by its relevant effects. For example, consider a plan for putting out a

50 Aclually. the procedure library is a fiction ju%, like the sets of beliefs, desires, and intentions. Procedures are each concepts. and
thus arc a subset of the concepts or the program, but distinguished as procedures by statements about them in the global theory.
either PLAN(concep t) or PR IMI TVE (concept).

0- - .- . ' " -

121

grease fire when cooking. 'Ilis plan has crucial diflerences from the ordinary procedure for putting out a

fire, namely that one should not use water its it suffocant. The question of factoring the context of plan

specificity cmn be seen here in the following suggeslions. One can index the plan under the problem of

how to put out a fire while cooking with grease, or one can instead have one's plan for cooking with

grease temporarily define a new plan for putting out fires and temporarily mask the usual plan for putting

out fires with the new one.

This separation of the context of applicability of plans into relevancy and definitional

components may seem unimportant, bt I think it bears a message not to be neglected in the design of the

program. If one only uses relevancy indexing, which is standard in most traditional Al programs, one is

fI)rced to face severe runtime retrieval problems. On the other hand, the combined approach allows one

to do a good bit of work when setting up the problem to be attacked. If the problem is complex, then

there will he many considerations necessary in judging whether a plan is relevant to a subproblem, and so

the retrieval problem will be very great. If one knows befoichand that the problem is complex, one is

willing to spend a good bit of time on preparing for the execution of the plan. This can be seen in the

standard human practices in which people who perform complex tasks are give training or manuals to

read specifying the procedures to use when special circumstance arise. Someone may have a great talent

in looking up what to do in reference sources, but he will not be employed in many complex tasks on this

basis. One can hardly expect a soldier in the field to continually look up procedures for what to do about

his problems.

For these reasons, our plans are not simply composed of a few goals and temporal ordering

relationships between them, as is common in many other Al systems which use the term "plan". Our

plans contain not only these things, but also beliefs to be held as asumptions while carrying out the plan,

locally defined plans for handling foreseen special cases, and guidelines for making the decisions

expected to be encountered while carrying out the plan. In this way it is more appropriate to view plans

as specifying partial states of mind or sets of attitudes to adopt for the duration of the execution of the

__ __ - ._ _-

122

plan.51 In this\ iew. the current state ofi mind is the sum of a set of realized plans, so that plans reproduce

in the small the structure of the program in ti, large.

Wc represent plans as dtcories in SI)I., i,d when instances of plans are added to tie current

state of mind, \ ersions of all the terns, attachments. and satenmens in the theory are added to the theory

representing the current state of mind. Thus, the description of the form of plans is largely a matter of

des&ribing the sorts of things plans can contain.

4.3 I'he Anmiguous "Goal"

Before proceeding, we first digress to point out a long-standing confusion in artificial intelligence, and

perhaps in ps cholog) and philosophy as well. The term "goal" in common technical usage seems to

have no fixed meaning. It seems instead to be used on different occasions to mean both "desire" and

"intention". I have searched many places, and no where do I find any discussions explaining what "goal"

is supposed to mean, or how it relates to the less technical notions of desire and intent. This may seem to

he more a problem of my competence in English than one of a confusion in the field, but I think there is a

valuable point to be taken. The problem is that desire and intention are two different sorts of attitudes,

used in different ways, and treatments of reasoning and problem solving which confuse the two lose

much expressive power, power which is required both in deciding what actions to take next and in

revising the program's mental state when actions are taken.

Desires and intentions are different in logical form. Desires aim at the satisfaction of some

condition, and will be satisfied no matter how those conditions are brought about. Their content can be

5 I. I helievc that there arc close conneclions between this view ol plans and Minsky's K-line theory of memory IM insky 1979. For
him. K-lines arc ways of reactivaling partial mental staics. Thesc cnnneciions are recursivel) arranged, in that activation of one
K-node typically leads to the activation of secral component partial ,lates of mind While we will use plans by making sepante
insantiations of thcm each time they arc used. the analogy with K-lincs becomes strong if we assumc that plans arc only stored once
in memiory, and "l up" whenever they are needed rather than making multiple instantialions. If this is the case., then the
definitional connections between plans and the subplans they define becomes very similar to that between K-nodes and the
.sub-nodes they aclivate.

k 1•111M

123

stated roughly as "Condition X obtains." lntentions, on the other hand, must he satisfied in a certain

characteristic way. Just what is the exact nature of intentions and their characteristic way of satisfaction

has been the suhject of much study. I larman [19761 and Searle 119791, fir example, analyze intentions as

self-refercnuial attitudes. whose content is roughly "I take some action to attain condition X by way of

carrying out this very intention." Intentions can he s-tisfied (at least partially) by trying, by taking actions

on the basis of the intentions, whether or not the attempts succed in attaining their aim or not. If the

action fails, one forms another intention of the s.me sort. Attempts, however, ha~e no bearing on the

satisfaction of desires. In this sense it is much more difficult to tell if a desire has been satisfied than an

intention, fir the former requires verifying the effects of an action, where the latter requires only the

proper mode of taking the action.

Desires and intentions also differ in other qualities ascribed to them. Different desires may have

different relative strengths, which reflect the order in which, other things being equal, intentions will be

formed to pursue the desires. For intentions, however, it makes no sense to speak of relative strengths.

Once formed, and intention is an intention. There is no magnitude involved. Instead, two intentions may

he related by other intentions about their relative priority of achievement. intentions to the effect that one

intention should be carried out prior to another one. However, both desires and intentions share (along

with beliefs) relative strengths of tenacity with Ahich the program resists their abandonment. One might

have, for example, two desires, the first of which is stronger than the second, but the second of which is

held more strongly than the first. In this case, while the program considers the second desire less pressing

it would rather give up the first desire than the second. Similar considerations apply to beliefs and

intentions.

It is very important to distinguish between intentions and desires. For example, when

modifying its plans, the program must analyze the causes and worth of the effects of the plan in action.

An effect of an action can be either (I) both desired and intended (the normal case), (2) intended but not

desired (action taken by compulsion), (3) desired but unintended (a serendipitous effect), or (4)

124

unintended arnd undesired (an error or Unwanted side-effect). In these four cases we assumed that

undesired implied the opposit, desire, but that is not correct, so there is actually a larger. more refined set

of case,, But the important point is that how the prograln should modify the procedurc depends on what

claissific.itions it nAkes of the procedure's effects. Serendipity might be used to construct new procedures

specifically for realizing the desired effects, while errors normally call for patching thle procedure to avoid

tile effects.

Thus the notions of desire and intention capture separate, useftl ideas about rational thought

and actiI, n.and the fiollowing part of this clhapter aid the next chapter will inake that even clearer.

Rather than confuse matters h vtsilg the aibiguotlS term goal. we abandon it for these more useful

ilotions.

Unfortunately, nonc of the plans gisen in this thesis will seem to motiate this distinction

terribl) much. Most of the plans will be rather deliberate constructions which proceed step by step by

means of intentions. One example of a plan employing (csires is a problem-solsing plan similar to

problem-reduction problem solving. Gien an intention to solve some problem, this plan would look for

beliefs which say something about the problem statement, for example, AA BDPS. Thc plan would then

add desires for A and B, so that there would be lots of desires around for possible partial solutions. This

would place the burden of controlling this solution effort in deciding which desire to pursue.

Alternatively, desires might have been avoided by shifting the burden to a decision of which implication

to use in the problem reduction, and then creating intentions rather than desires. The former method

might be preferable if the problem is so difficult that the program must use information discovered in

pursuing one desire in satisfying desires stemming from different reductions. The intention-based

strategy does not make this opportunistic behavior as easy, since the several alternatie solution paths are

not being kept in mind simultaneously. Keeping all potential solutions in mind corresponds to using

desires, while using intentions in this case corresponds to single-path explorations.

... . .. ___ ___ __I__ ____I_ _I_ ___ _I

125

4.4 lsires and Initnlions

(lie represmntatioIs of desires and intentions consist primarily (if three sorts of information: an aim,

which is the condition to be achievcd, variabie-inappings, %hich idemfy in keyword fashion plan

,,iribles with variables and 'enus used in defining the aim, and sia/us information.)esircs and

intentions are represented as theories. Nch has as typed parts a set of input variables, a set of output

variables, and an aim. s In addition, each also contains a statement of the form O(SIR(theory) and

INIFrNlION(theory) about whether it represents a desire or an intention, redundantly repeating a similar

statement in the global theory.

The aim is a theory describing the state of affairs desired or intended to be attained. We mean

this to be a quite general notion, including, for example, descriptions of the program's own mental or

physical state, and descriptions ofchanges in the world, that is. actions. Infrrmally stated aims might be

(A) that the program believes the Banach-'rarski theorem,

(B) that the program has a proof of the Banach-Tarski theorem in ZFC,

(C) that the program rest its "arms" after moving the block halfway across the table,

(D) that the program buys some electronic parts,

(F) that the program finds out some information from someone,

(I') that the program is skilled at playing bridge,

(G) that the program leases a new tape drive from someone,

(H1) that the program earns enough money writing novels to pay for its lease and to keep its programmer

happy.

ihis research has not pursued the crucial problem of finding a language and vocabulary

adequate for encoding all known information about the world, nor the encoding itself. We instead rely

52. Variables are used ror communicating information between activities. There may be better ways of doing this, but tht i a
subjeci for Atuure aludy.

-L

126

on work of otllers to build stores of information about the world and changes in it for use in aims of

desires and intentions.

For cxample. suppose we have an intention to find the difference between two iiumbers X and

Y.

IN T-I: (the intention)

Ax iom: INTENIION(T-1);

lypod-part INPUTS SET;

Typed-part OUTPUTS SET;

Typed-part AIM ADDER;

IN T-2 (INPUTS of T-I)

Typed-part XVARIABLE; (1-5)

Typed-part Y VARIABLE; ((-6)

IN 1-3: (OUTPUTS of T-I)

Typed-part ZVARIABLE; (T-7)

IN 1-4: (AIM of T-) (fromADOER)

Individual-constant Al;

Individual-constant A2;

Individual-constant SUM;

Axiom: Al + A2 z SUM;

IN I-5 (from VARiABLE)

Individual-constant VALUE;

INT-6: (fromnVARIABLE)

Individual-constant VALUE;

IN T-7: (from VARIABLE)

Individual-constant VALUE;

IN T-I: (again)

[VALUE X INPUTS] = [SUM AIM];

[VALUE Y INPUTS) [AI AIM];

[VALUE Z OUTPUTS] = [A2 AIM];

Here sets are reprcscnted as theories where the elements are used as names of constants. This allows the

same name to be used both for an input and an output variable, as it can bc distinguished by the set it is

in. Variables are also represented as theories, in which values are represented as attachments to the

symbol VALUE. Theorics representing variables will be used to note other information as well, such as

whether there is a value or not, hence this complicated representation. The reason for Using an explicit

keyword mapping system in which equality axioms are used to identify intention variables with aim

variables is so that the same aim may be used in several sorts of intentions, according to different

127

inpol-oulput specificat ions of" vmiable . Ior cxLmple, the A I)I)I-R aim used above can be used to specify

scveral sorts of intentions including subtlactions (X-Y=Z; X=SUM, Y=AI, Z=A2), addition

(X+Y=Z: X=AI, '=A2 ,Z=SUM).,inddotubling(X+X=Y: X=AI,X=A2,Y=SUM).

In addition to the flexibility of aim use allowed b) dh keyword variable mappings, desires and

intentions can also include local inodifications to their aiis. Since their aims are just thcories, axioms can

he added 1o the aim theory. For example, a dotbling intention might be specified either as

IT-I:

Axiom: INTENTION(T-t);

Typed-part ADDER ADDER;

X = [At ADDER];

X [A2 ADDER];

Y - [SUM ADDER];

or as

IN T-1:

Axiom: INTENTION(T-1);

Typed-part ADDER ADDER; (T-2)

X - [At ADDER];
Y = [SUM ADDER];

In T-2: (ADDER)
Axiom TIED: Al - A2;

In the first case, the value to be doubled is gi en to the adder twice. In the second case, it is transferred

only once. but the copy of the adder theory is modified to be a doubler.

Desires and intentions also contain information about the state of the process of their execution,

for example, whether the desire or intention is being worked on. is yet to be worked on, or has been

finished with. Here we distinguish between desire and intention in interpreting just what these status

indicators mean. "lBeing worked on" means roughly "is being pursued with an intention" for desires, and

"is being carried out by a primitive or a plan" for intentions. Since intentions arc carried out by complex

sequences of program operations, the most precise description of the state of the executing program is just

the current step and environment of the code of the interpretcr or whatever program is carrying out the

intention. However, such a description is hopelessly detailed for normnal use. in fact, the program

1 -

128

employs sceral sorts of interpreter. and each of them would give a different report of the state of the

execution process. Rather than use such an overly detailed indicator, eight major classification. of desires

and intentions are used which surnmarize some of the most important aspects of their execution. lictter

classifications undoubtedly await discovery., but this initial list will suffice in this thesis. The

classifications are as follows. (Figure 8 summari/cs the transitions each intention goes through.)

1. Progrs.s shllus: Initially,. desires and intentions are pending. When the interpreter is working

on one, it is aciv. When the interpreter is done with it. it is finished. The program is working on an

intention if it is executing some primitive to carry out the intention, or has added a plan to the current

state of mind to carry out the intention. The progranl is working on a desire if it has formed an intention

to reli/e the aim of the desire. Desires are finished when their aim has been achieved, and intentions

when some plan or primitive is completely executed to carry out the intention.

2. Missing inpul values slatus: A desire or intention either has values known for all of its input

variables, or it is missing some input variables values. The interpreter will not begin work on ones

missing some of their input values.

3. Uncompleted predecessors status: Desires and intentions are related in two partial orderings,

desire strengths and intention priorities. Work on one cannot begin until all of its predecessors have been

completed (specifically, are in the enabling-successors status described below).

4. Uncompleted superiors slaus: Desires and intentions are related in teleological relationships

in which subordinate desires and intentions are used to carry out superior intentions. Work cannot begin

on the subordinates until all superiors of the subordinates have been completed (specifically, are in the

enabling-subordinates status described below).

5. E'nablenent status. Desires and intentions are blocked if they have missing input values,

uncompleted predecessors, or uncompleted superiors. Otherwise they are enabled. 'he program will not

begin work on blocked desires or intentions.

6. Realization status: An intention is said to be realized if it has been carried out by executing a

129

Pending
Blocked
Unrealized

Input variable values
aPredecessor completions

Superior completions

Pending
Enabled
Unrealized

J Activation

Active
Enabled
Unrealized

$ SsRealization e

Active
Enabled
Realized rSubordinates enabled
Active
Enabled
Realized

Successors enabled

Enabled

Realized

Figure 8
Progress Status Transistlons

I I I I I I I l i

130

primiti~e program or by reducing it to a plan. A desire is realized if an intention to pursue its aim has

been formed. "lliey are unrcalizcdlotherwise.

7. I.'nabling .ubordinalcs siatus: Once an intention is active, normally after it has been realized

b. reduction to a plan, the interpreter will enable its subordinates if possible. This status indicates

whether the intention should still bhok its subordinates or not.

8. rIab1ling-uces.mr saus. After a desire or intention has been realized, the interpreter may

tr It) enable its successors if possible. This st. ius indicates whether it should block its successors or not.

The interpreter will declare an intention t, '-n.bling-successors either if it %4as carried out by executing

.a primit, e, or if its maint subo i dinate (see heloA) has finished.

We represent all these sorts of statUs information in the desire or intention theory itself.53 Each

status name is a srnbol in the language, and the possible conditions of the status are represented as

possible attachments. Relationships between the possible attachments are represented as justifications.

In detail, each theory contains individual constants as in the following example intention.

tNT-i:

Axiom: INTENTION(T-l);

Individual-constant MISStNG- INPUT-VALUES-STATUS;

Individual-constant UNCOMPLEIED-PRED[CESSORS-STATUS;

nd1v i dual -constant UNCOMPLETED- SUPER IORS- STATUS;

Individual-constant ENABLEI4ENT-STATUS;

Indiv Idual -constant PROGRESS-STATUS;

Individual-constant REALIZATION-STATUS;

Individual-constant LNABLtNG-SUBORDINATES-STATUS.

Individual -constant ENABLING-SUCCESSORS-STATUS;

ihe possible attachments and their standard justifications are as follows. (They are simplified somewhat

for clarity.) The standard justifications are arranged so as to default te attachments to the appropriate

values in the correct temporal sequence.

53 Properly, perhaps, this infomafion should be viewed a annotation on the theory in some more general theory (such as the
plan containing the theory, or the global theory), but for simplicity of the representation we include it in the desire or intention
themoy ied.

....................

131

N- I Attach MISSING- INPUT -VALUE S-ST ATUS SOME (justified as specified below)

N-2 Attach M ISS ING- INP'UT-VALUES-SIATUS NONE (SL() (N-1))

N-3 Attach UNCOMPLEIED-PREI)ECESSORS-STATUS SOME (justified as specified below)

k-4 Attach UNCOMPLETED-PIDECESSORS-STAIUS NONE (SL () (N-3))

N-5 Attach UNC0MPL ETC0- SUPER !ORI -STATUS SOME (justified as specified below)

N-6 Attach UNCO4I'L I LD- SUPERIORS -STATUS NONE (SL ((N-6))

N-7 Attach [NALEMENT -STATUS BLOCKED (SL (N1-1))
(SL (N-3) ()). (SL (N-5) ())

N-8 Attach FNABLEMENT -STATUS ENABLED (SL () (N-8))

N-9 Attach PROGRESS-STATUS PENDING (SL () (N-10 N-11))

N-10 Attach PROGRESS-SrAUS ACTIVE when activated: (SI (proc) (N-li))

N-11 Attach I'IOGRSS-STATUS fINISHED when finished: (SL (proc) ())I

N- 12 Attach REAL IZAT ION-STAIUS RE ALIZED when real ized: (SL (proc real izat ion))
11-13 Attach REAL I ZAT ION-STATUS UNREAL IZED (SL () (N- 12))

N- 14 Attach I NABL ING-SUIIORDINAT ES-STATUS YES when so: (SI (proc))
N- 15 Attach IENABL ING-SUOORDINMATE S- STATUS NO (SL ((N- 14))

N- 16 Attach ENABLING -SUCC[SSOITS- STATUS YES when so: (SL (proc) ~
N- 17 Attach ENABL ING-SUCCESSORS STATUS NO (SL () (N- 17))

In thc abovejtustifications, pro C stands for the procedure adding the justification. ReaIiz at ion stands for

the record of the realization of thc desire or intention, that is, either the plan or action record that the

interpreter constructs (as explained in Section 4.10) for intentions, or the intention constructs from a

dsr.Justifications for N-I. N-3, and N-5 abovc involv statments in other theories. Recall that each

variable is represented as a theory and the value as an attachment in that theory to the symbol VALUE. In

addition, wc have each variable theory contain a constantl VAR IABL E -HAS -VALUE. Whcncvcr an attachment

is made to VALUE, thus specifying a value, we by convention also use that ,ittachmencrt to justify an

attachment of YS to VARIABLE -HAS-VALUE. Symbolically, we typically have justifications as follows.

N-I1S Attach VALUE xxx (some justif ication)

Nf-19 Attach VARIABLE-H4AS-VALUE NO (SI () (1-20))

M-20 Attach VARIABLE -HAS-VALUE YES (SL (11-18) ())
N- I Attach MISSING- INPUT-VALUES SOME (SL (N- 19) 0

132

I his Ias(just(ifcation, v hlen I1ade lin each input variable, ensures that the MISSING - INPUI -VA! UFS-STATUS

,A ill be properly maintained. Similarly. N-3 and N-5 above % ill ha e justifications involving other desires

,nd intentions. N-3 %,ill be justified in terms of an ordering relationship and the

enihling-successols-status attachments of the predecessor. N-5 will be justified in terns of a subordinate

rcltionship and the cnahling-subotrdinates-stattls attachments of the superior.

Finally. desires and intentions contain scope information about the context of their definition.

The parem hecor) of each is either the plan it is defined in or the current state of mind. The desire or

intention theor. in addition, is justified in terms of the parent and the procedures adding it to the current

state of mind.

4.5 Policies

The intentions presented in the previous section all had aims describing sonic action that the program

could decide to carry out. However, not all intentions can be expressed in that form. Instead, there are

intentions with conditional or hypothetical statements as their aims. For example. the program can

decide to carry out "I intend to visit George," but not "I intend to visit George whenever I am in New

54York." 'Ibis latter intention we term a polici,. In the following, all policies will be intentions. There

may be desires with hypothetical statements as their aims, but I have not yet worked out how they might

be used, and so leave them an open problem.

Policies are represented as theories similar to other intentions. Policies have sets of input and

output variables, an aim, status information, and a scope or context of definition just like other intentions.

In addition, policies are distinguished by the program from other intentions by a statement

Pot ICy(poi icy) in them, where pot icy is a symbol referring to the policy theory itself.

The aims of policies are instances of a "conditional" theory, the prototype of which is

4 IMcDermou 19781 introduccd Ihis iechnical meaning of policv as an intention with a hypothetical aim.
P..- ...,, .- -

- l l I I U I ~ -

I].-I

133

IN CONDITIONAL:

Individual-constant CONDITIION;

Individual-constant ACTION;

The aim of a policy is a copy of this theory in which CONDI I ION is attached to a sentence wfTfand ACT ION is

attached to dic theory describing the action as in the aims of ordinary theories. 5

Where ordinary intenlions usually are only activc for some limited duration, and then are

carried out. policies need not be so limited. Sonic policies will he of limited scope. for example, while the

plan they ,ire part of is being executed, or while some intention is active. iBut other policies may have

unlimited ccope. that is. some might he constantly in effect until a decision is made to abandon them.

As we will interplet them, policies embody intentions to make decisions in certain ways. Where

intentions ordinarily are intentions to aci in certain ways. policies embody intentions to reason in certain

ways. Instead of leading to actions, policies lead to reasons for possible actions in decision-making. Thus

we would translate the informal intention "I intend to visit George whenever I am in New York" as the

intention to reason that I ought to visit George if I am in New York deciding what to do, that is, the

intention to construct the option of visiting George and a reason for taking that option as the outcome of

the decision.

'lliis interpretation of policies has two major consequences. TIhe first consequence is that it

allows some flexibility in carrying out intentions. If I have intentions to visit George and to buy books

whenever I am in New York, I do not feel compelled to do either the minute I arrive there. Instead, these

intentions merely suggest the possibilities of visiting George and of buying books, and construct reasons

for taking those actions. But since these are just reasons for action rather than absolute requirements, I

can defeat these reasons in this decision and do something else, and reconsider the possibilities the next

Uime I think of what to do. Since specific cases of their actions can be defeated in this way, policies seem

55 I find this representation for policy aims unsatisfactory, but have not yet round how to improve .

I

134

similair to what have been termed Irniafiwic obligations in the literature.56

Second. this interpretation of policies means that they embody some of the valtes of the

program. That is, we would translate a preference of one possible action ovcr another in some

circumstances as the intention to rcason for the first and against the second in such circumstances,

specifically, to dcefat reasons tor the second possibility with reasons for the preferred possibility.

What are policies for? In the following we ill use them in many ways. Policies will express

temporal ordering relationships between intentions, as in de intention to carry out one intenion before

another. which we can interpret as the intention to claoosc the prior intention oer its successor when

deciding what to do if the prior intention is yet unreali/ed. Policies will embody the strengths of desires,

where we interpret one desire as stronger than another when the option of working on or satisfying the

first is preferred omer working on or satisfying the second in decisions of what to do next. Policies will

embody many of ;,hc preferences of the program, such as those used in belief revision to choose one

possible resision over another. [here policies amount to statements of the strength or commitment to

beliefs.

With this interpretation of policies, we see the special importance of the scopes of policies.

Plicies of temporary duration amount to temporarily adopted values. Policies of unlimited duration

amount to permanent values. In this way, RMS serves the function of maintaining the current set of

values as well as the current sets of other attitudes. And, as Chapter 6 discusses, permanent values can be

adopted or abandoned through decisions to create or defeat policies of unlimited scope.

Policies, like other intentions, are carried out either by executing primitive programs or by

reducing them to plans. 'Me next chapter discusses something of how and when policies are carried out

during deliberations, but the details of this, and the details of how the progress statuses of policies are

manipulated, arc yet to be worked out.

56 Ibe term is due to Rom,; ['9101 See also I laman 1977 and [Searle 1978).

-II

135

4.6 Relalionshliips llcleen I)esires .ind Intentions

I, addition to the plan steps embodicd in ordinary desires and intentions, plans also contain policies

which restrict how the steps are to be carried out. For example, the program might have not only the

intention (1) to place block A on top of block I, and the intention (2) to place block 13 on top of block C,

but also the intention (3) to carry out the preious intentions in the order (2 then 1). Another example

would be die intcntion (4) to build a tower of blocks, and the intention (5) to use intentions (1.2.3) as a

wai of carrying out (4). As these examples suggest, the two main sorls of intcr-step relationships arc ones

which impose (relati\c strength or temporal) orderings on the realization of desires and intentions, and

ones which describe teleological relati(nships between desires and intentions.

Actually, relationships between intentions are always teleological. Teleological relationships,

preeminently those of one intention being a prerequisite of another or of one intention being a way of

carrying out another. figure crucially in all other relationships. For example, two intentions might be

executable in either order. If one order is more efficient than another, then that is a reason making for a

temporal ordering on them, but the underlying explanation remains the teleological one of the efficiency

of the computation. Similarly, if the second intention depends on some precondition being achieved by

the first intention, then one would again have a temporal ordering policy, with the underlying reason

being the teleological relationship of prerequisite.

In spite of the fundamentally teleological nature of rational intention relationships, we separate

out the ordering relationship so that they may be specified even when (as is usual in informal program

efficiency arguments) the reasons behind the relationship still have not been completely formulated. In

addition, this separation permits us to use mniornly an ordering relationship on both desires and

intentions. For intentions the order is temporal order, and for desires the order is relative strength.

Ordering policies never connect both desires and intentions, as these arc different sorts of entities,

between which an order makes no sense.

136

All policies of these sorts are defined as copies of one of ie standard policy types with the

desires or iiitentions invohcd added into the theory as attachments. For example, one of the main

temporal ordering policy types is that of one intention anteceding another. 'Ilhis is defined by the

following theory.

IN ANIC[DENC[-POI ICY-TIIEORY:

Axiom: POt ICY(ANITC[DFNCE-POICY-IIIEORY);

Typed-part INPUTS SIT;

Typed-part OUIPUTS SET:

typed-part AIM CONI)IIION-IIIEORY;

Individulal-constant ANTECEDENT;

Individual-constant SUCCESSOR;

Axiom: ANII.CiD[S(ANTIC[DINT, SUCCESSOR);

IN T-I (Ainof ANTICTDINCi-POICY-iI[ORY)

Attach CONDITION -SUCCESSORS INABLED(ANIrCEDENT);

Attach ACtION (CON (OPTIONSUCCISSOR) (St (ANTECEDENCE-POLICY-TIIEORY))));

A policy of this sort could then he created relating Intention-I and Intention-2 by making a copy of

ANI [CHI)[NCI--POI ICY-II'ORY and adding two attachments in its aim, that of ANTI'ECFIENT

to Intention-I. and SUCCESSOR to Intention-2.

To make the interpreter more cfficient, we also include in the desire or intention theory lists of

all ordering policies mentioning it. For example, each has the individual constants

ANTIF E)NI-POI.ICIES and SUCCSSORPOI.ICIES, to which are attached lists of'all antecedence

policies mentioning the desire or intention as the successor or antecedent, respectively. The policies

themselves are kept in these lists rather than just the antecedents or successors so that the policies may be

used in justifications. Also, %henescr new ordering policies are added, corresponding justifications for

the status attachment of the desires or intentions are added, to facilitate reasoning about which successors

are blocked by the order relationship. Ihis duplicates some of the reasoning that would normally occur

in deliberations in a com1enient and efficient, but still defeasible, fashion.

'The major types of policies relating desires and intentions are order. dataflow, prerequisite, and

subordinate policies.

1i~~-- --

137

I. Ordering policies: As nentiotned abo~e, ordering policies represcnt ilteltions to realize

desires or intentions in certain vtays, to relate the steps of processing each of those desires or intentions.

Of course, the dcscriptions of the steps of carrying out an intention might be vcr detailed, so these

policies might specify very complex relationships. For example, specifying the temporal interleaving of

coroutines, or tasks like laying and finishing a concrete driveway, can be %cry complicated, because one

does a little of one, a little of the other, more of the first, and so on until they are finished. We avoid such

complexity in this thesis. and leave the problem of developing a more complete vocabulary for execution

relationships for future research. Instead, we present merely a small set of concepts for relating two

desires or intentions.
57

If II and 12 are two intentions, we denote the times it which the processes carrying out these

intentions begin and end, abbreiated Ill. Fl, B2, and E2. Wecan identify the beginning ofa intention as

the time of transition of its progress status from pending to active, and the ending of a intention as the

time of the following transition from active to finished. With these terms, we define the temporal

ordering policy types as follows.

II precedes 12 Directly II finishes, 12 begins 61<EI-82<EZ

I1 antecedes 12 I! finishes before 12 begins BI<EI<B2<E2

11 leads 12 11 begins before 12 begins 61<B2

11 overlaps 12 12 begins during I1 BI<82<tl

11 covers 12 12 occurs during I1 01<B2<E2<EI

11 beats 12 11 finishes during 12 B2(EI(E2

If Dl and D2 are desires, we say that D1 anteccdes D2 to mean that DI is a stronger desire than

D2 in the partial strength order.

Ifcircularities are present in the ordering policies, so that an inconsistent set of orders exist, then

57. Many people have studied and arc oudying this question of vocabularies for execution relationrships. See the literaturie on
parallel programming language% II lewii 19771. petri nets. and PIA1T extensions [Wi st and I evy 19771 Smith and avis 119781 and
Kornleld 119791 study such vocabularies in terms of parallel problem-solving systems.

One significant extension to our vocabulary might involve the introduction of a dock or time-system for referring to
future cventL% not related to specific actions. lhis sort of extension would be necessary for staung intentions like "I intend to f11iis
this thesis by May 12 1910."

138

sone desires or intentions will all he blocked in a deadlock. To avoid this, when the program reflects on

its current plans to decide what to do next, it also checks to see if such a deadlock exists. (Actually,

whenever an ordering policy becomes one of the current policies, the program checks to see if it is

consistent with the previous ordering.) If an inconsistent ordering is detected, the program sets itself the

intention of breaking the deadlock by abandoning one or more policies. It makes the decision of which

policies to abandon by using the deliberation techniques described in the next chapter and the guidelines

described in Chapter 6.

2. I)afilw policie.s represent intentions to use tile outputs of one desire or intention as the

inputs to another, that is. the intentions to infer values for some variables upon getting values for other

%ai iables. In their representalion as theories, these policies mention not only the desire or intenlions being

connected, but also the input and output variables of each of each that are to be identified. l)ataflow

policies are respected by the interpreter by waiting until a value is computed for each input variable

mentioned in a dataflow policy. D)ataflow policies thus ensure that the producer leads die consumer by

enough time to compute the required value. Dataflow policies are actually always carried out by a

built-in primitive which propagates these values when necessary. To make this easier, each variable

theory contains a symbol [0-POt ICltS which is attached to all dataflow policies mentioning the variable.

It might be useful to have other classes of dataflow policies, such as an analogue of "precedes"

above, wherein one intention would begin immediately upon the availability of some variable value. This

might be the case with removal of intermediate stage waste in a complex chemical process. However, it

would seem difficult to implement this sort of policy without some form of actual parallelism in one's

machine, since the producing intention may produce the value while in an uninterruptible stage of its

process.

3. Prerequisite policies make explicit the rationale of temporal orderings. Prerequisite policies

mention at least two intentions, rather than only two. They are interpreted as the intention to use the

several effects u"one set of intentions I1 ..., lk as the means of achieving a combined state of affairs prior

I- " ''a I I U I - 1 -

139

to another intention I. Along with each of the intentions the prerequisite policy mentions a logical

formula expressing the corresponding state of affairs. According to die interpretation, if we write the

formula corresponding to an intention I as F(I), the meaning of die policy is that

r(i) A. A F(k) D F(I).

or perhaps

<(i>rlF() A ... A <lk>f(lk) A (F(il) A ... A r(1k) D r(1)) A (-F()D[ClJalse).

I lere %e hae % ritlen ri formula in dynamic logic 11 larel 19791 , in which <act ion P means that act ion can

achie'e a state in which P holds, and [act ion]fal se means that act ion cannot tenninate in the current

state.
58

4. Subordinate and reduction policies make explicit intentions to use one set of desires and

intentions as a means of carrying out anther. Whenever the interpreter reduces an intention to a plan, it

adds an instance of the plan to die current state of mind and adds a reduction policy intention the

intention and the plan. It also adds subordinate policies relating the reduced intention and each of these

new desires and intentions. In contrast to prerequisite policies, which state that the preconditions of an

intention are attained jointly by its predecessors, the reduction and subordinate policies state that the

effect of the reduced intention is attained jointly by its subordinates.

S. Main subordinates: A subordinate intention of an intention may be annotated as the main

subordinate of the intention. [his policy represents the intention to complete the main subordinate

before beginning work on the intention's successors. For example, if the plan for serving dinner has two

steps, to prepare the fired and then to serve it, the preparation step involves the substeps of cooking the

ibod and then washing the pots and pans. But the food may be served just after cooking the food, and the I
58 It probably is simply wishful thinking to apply a language a,, prcisc and .Ls inexpressive as d)namic logic to discussing actions

as general and as vaguely specified a plans, but me language is needed for this purpose. I)ynamic logic is much too limited
except as a basis, for we need to be able to discuss in the language itself algorithmic complexity. intermediate states, relations
between actions, etc. none of which arc filly within dynamic logic's realm. Moore 119791 explores a logic of action with the power
to treat actions as object, but he makes no use of that power, and restricts his study to actions as in dynamic logic. I layes [1971]
explores a logic of actions which attempts to capture statements about the ausal relations between objects arfected by actions.

1~~~~i

140

washing tp can be postponed until after serving. (Sec Figure 9.) Main subordinate policies thus serve a

finction analogous to that of dataflow policies, but concerned with action effects rather than variable

values.

Main subordinate policies are specified by method statements, as described later. They mean

that all of the intentions in the plan must be carried out, but the superior itself will be carried out once the

main subordinate has finished. that is, from the point of view of the superior, all remaining subordinates

are merely cleanup steps unrelated to the purpose of the plan.

One extension of this idea would be to have multiple main steps of plans, each of which allows a

different set of successors of the superior to proceed. Ilowever, this would require taking into account

considerable information about the context of the superior. For simplicity, we restrict the program to

single main subordinates, and leave the generalization liar fiture studies.

4.7 "lie Hierarchical Structure of Plans

The preceding pages have explained two major classes of constituents of plans, namely desires and

intentions. Some of these specify the steps of actions, and others restrict how the former are to be

realized. But plans contain many other sorts of information whose purpose is to fill ou, refine, and make

coherent the behavior sketched out by the desires and intentions. In addition, the plan itself is an object

in a library of plans, and plans contain information aiding in their indexing in this library. Plans are

represented as theories with a number of standard parts. Plans have a set of input variables, a set of

output variables, a set of desires, a set of intentions, a set of subplans, a set of assumptions, and a set of

plan definitions to be held during the tenure of the plan. Concretely, a plan theory will have the I
following parts as well as further restricting axioms.

Typed-part INPUTS SET

Typed-part OUTPUTS SET
Typed-part DESIRES SET

___ _ __

I___.• m IIi

141

Serve Dne

Prepare ~ Fgur 9odTeSreFo

SuPlanat fuorsaerigdne

A~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~~Te (Main_______________ Subordinate)___________________________

142

Typed-part INIENTIONS SET

lyped-part SUBIPLANS SET

lyped-part ASSUMPTIONS SET

Typed-part PIAN-DIFINITIONS SET

All of the subparts of a plan have names. The set of desires of a plan has names for each of the desires,

with the desire theories attached to these names. Similarly, each subplan in the set of subplans, each

assumption in the set of assumptions, each intention in the set of intentions, and cach plan definition in

the set of plan definitions may have names. The input and output ariables have names of course, and

the program generates names for an) assumptions, policies, and plan definitions entered anonymously by

the syntactic macros described in Section 4.12. The naming of these parts allows, for example the

comhination of copies of two plans from the phn library for incorporation into the current plan, or the

defeat of a local assumption specifically by a local policy.

As in desires and intentions, the variables of a plan are theories, with the same conventions.

Since the plan is used as a unit of behavior by the interpreter and by other plans, it is crucial that the

details of the plan's construction normally be hidden. This is the function of the plan variables. The

plan's input and output variahles will be the only parts of the plan normally referred to by other plans.

'hese variables will be connected to the variables of the desires and intentions by dataflow policies. For

example, whenever a plan is built from a subplan, it is necessary to provide variable mapping information

in dataflow policies to connect the relevant plan variables with the relevant subplan variables.

Plans often contain restricting axioms which modify the subplans used in constructing a plan.

For example, one frequent modification is attaching constant values to variables of subplans.

Plan theories may contain a number of assumptions. These are beliefs to be held during the

execution of the plan to be retracted if contradictions are encountered. For example, when negotiating to

buy a house, one (ypically assumes that the seller will sell the house once agreeable terms are reached.

Another sort of example is the specification of default values for local variables or other variables, an

instance being a plan to clear the top of a block which assumes that the table is always a good default

143

target location for any blocks to be moved. A final sort of assumption is that of assumed method

relationships between procedurcs and aims (as explained below), in which it is assumed that some

procedure is relevant to achieving some aim during the plan's execution.

Plan theories may contain a number of policies to be in force during the plan's execution to

influence the expected sorts of decisions. These are typically concerned with decisions about the order in

which the plan's desires and intentions should be carried out, the methods by which they should be

carried out, and the ways that the plan's assumptions should be revised in case of difficulties. For

example, one's plan for giving a talk may include the policy to prefer to answer questions with "I don't

know" rather than trying to think on one's feet. Similarly, the cooking with grease plan mentioned earlier

might employ a policy to change the default plan for extinguishing fires to one involving a fire

extinguisher.

Finally, plan theories may contain a number of plan definitions to be held during the plan's

execution.59 An example is the plan for cooking with grease mentioned earlier, which contains a local

plan definition for how to put out fires, along with a policy preferring the local plan to the standard plan.

Locally defined plans and poficies are how one might write plans with conditional steps. Fach of the

cases is encoded as a policy which adds the appropriate intention or plan to the network depending on

what conditions hold.

Temporary assumptions of beliefs, policies, and plan definitions are actually shorthand for the

intentions to adopt them temporarily. As intentions, they can be related by temporal ordering policies.

For example, in Section 4.12, we present a plan which midway through its execution makes an

assumption to endure only while carrying out the next intention. We separate out explicit sets of these

assumptions as abbreviations both for the intention declarations and for the ordering policies necessary to

make all the plan-cxtant assumptions precede all the "real" intentions. Temporary assumptions are made

59- Actually, the variablm and plan definitions are juvt temporarily defined concepts. The plan might contain other sorts of
temporarily defined concepts, but variables and plan definitions are the most important sorts, so we concentrate on them

-" -- ""'_,-_._.__:___.-____7_______-_7_,___._

i ~ ~ i

144

to ha~e scopes limited to the duration of the plan by making the assumed attitude depend on the

statement that the scope intention is not finished. 'That is, the assumptions depend monotonically on the

statement that the superior intention has become active, and non-monotonically on the statement that the

superior has finished.

4.8 Plai Specifications

Plans are inolved in at least dice hierarchical organizations. 'Ilic first of these is the hierarchy of

construction, in which exis ing plans can be combined to construct a new plan. Second is the hierarchy of

definition, in which plans can contain local definitions of other plans to be of limited temporal duration.

Third is the hierarchy of effects or situations of use, in which plans are indexed by the purposes for which

thcy can be used. This indexing information is divided into two components: specifications of plan

effects, and method statements to connect ends with relevant plans as means.

Plan effect specifications are simply statements about the properties of the plan. For example,

Section 1.4.2 indicated how statements about what procedures call other procedures could be used in

answering questions about the program's history of actions. For another example, statements estimating

the complexity of procedures can be used in planning under time constraints. But the most studied sort

of statement of procedure properties is that of tloyd-lloare specifications: pairs of formulas P and Q with

the interpretation that if P holds before the plan is executed, then Q will hold if the plan terminates,

where termination of the plan is not assumed. Ihese specifications take the form P)[plan]Q in dynamic

logic [Haref 1979], and termination can be correspondingly expressed as PI)<plantrue. There can be

several plan effect specifications for each plan. These specifications are not used in the nonnal operation

of the program, but are useful in hypothetical reasoning and in modifying or analyzing the plan library.

In hypothetical reasoning the technique of symbolic execution is used. 'his technique does not execute a

primitive or plan, but instead tries to prove that the antecedents of a procedure's specifications hold in

145

one situlation, and if snccess1*1il, then concludes thc conseqtients in tile following tcmporal situation. In

nlodit ing the pla lihrat-, the progran might seek, for example. to reorganizc the plans to make sure

that they arc seen to bc rclevant to problems whose suatements are contained in the plan's effects. In

,,ndt /ing the plan library, the aim is to more complctcl annotatc (and verify the correctness of) the plans

and their internal StrUuctteC with the records of, say, additional prerequisite policies where before there

were only temporal ordering policies.0

Information inmolving a plan's effects is mote directly useful in the form of inelhod staiemenis.

These indicate what plans are useful for which ainis of intentions. 'llic interpreter uscs method

statements to retrieve the plans and primitives relevant to achie ing the aim of the intention being

interpreted. In addition. method statements for plans also specify which step of the plan is the main step

with respect to the desiked effect. Thus a multistep plan may be a means of achieving several sorts of

aims. Each of these uses of the plan would be sliecified in a separate method statement, along with a

statement of which of the steps of the plan achieved the partiLular effect (aim) of relevance.

Method statements are represented as simple beliefs of the program. For plans they take the

form

PLAN-METHOD(aim, plan, mainstepnsme),

where aim and plan raefr to, respectively, a theory describing some aim concept and a plan theory.

Mainstepnme is the name of some desire or intention in the plan which is declared main. For example, a

method statement like the following might be used in describing the sLbplan of the dinner-serving plan

of Section 4.6.

PLAN-METIIOO(PREPARE-FOOD-AIM, COOK-TtHEN-WASHI-PLAN. COOK-FOOD).

60. IShr b 19791 discuses sducitchniqucs i deaL

" = -'--' _: " . : - • , r ;%- , --¢ -,, -':, ,. S.. -

146

For primitives, method statements take the form

PRIM4IIIV[-METHOD(aim, primitive).

Methods relc ant to an intention's aim are retrieved by procedures which take the aim,

instantiate it with ihc intlention's input variable values, and then look in the procedure library for method

stcm ents %hich mention alm types subsuming the particular instantiated aim. This can be a very

difficult problem, as many inferences might be required to judge one aim description subsumed by

,inother. 'lis is an incompleteness in the current program. I envision actually employing several sorts of

retrie\ 4l procedures. simple ones \hich are faq but miss some methods (for example, ones which just

look up the VC hierarchy from the particular aim) to procedures which are slower but find more of the

rele ant methods. l)ifferemat versions of the interpreter would then use the different retrieval procedures,

and in difficult cases, self-apply the program to retriev ing the relevant methods.

This issue om' what methods should be retrieved as relevant to a particular aim seems to be one to

w.hich deontic logic is relevant. One of the issues addressed by logics of commands and obligations is that

of what commands and obligations arc entailed by a given command)r obligation. For example, suppose

I am obliged to visit MIT. Since MIT is part of Massachusetts, being on the grounds of MIT entails being

in Massachusetts. Thus we can infer that'l am also obliged to visit Massachusetts as well. I suggest that

this question of entailment of commands or obligations is closely connectcd with the question of what

method aims entail or are entailed by a given intention aim Further study of this connection might shed

light on both the techniques of this thesis and on the proper role of deontic logic. The next chapter

mentions another connection with deontic logic as well.

I - - -.. ~ I~ I

147

.4.9 1 lie C urrent State of R find

The program represents its current state of mind to itself is tie global thcory Ml MF contains

statements about the program's current concepts, reasons, beliefs, desires. and intentions. Tro act, the

prograin reflects on the contents of NiF, on what desires and intentions arc currently hceld according to

the global theory.

lans reflect thc structure of the program, ats thcy are used to temporarily augment tie current

.,tatle of inind. Plans arc concepts dcscribing subconcepts (thc plan variablcs and plan definitions).

reaisons, beliefs (the assumptions made by the plan), desires, and intentions. When the program carries

out an intention bN reducing it to a plan, it adds the contents of the plan to the current state of mind by

making the global concept MF he a VC of the plan-instance concept. '1Ibis VC statenment (in ME of

course) is justified monotonically in tenms of the statement of the reduction, and non-monotonically in

terms of (lie incomnpletion oif die intention being rcduced. in this way the contents of thc plan augment

the current state of mind until the execution of the plan (and hence its superior) has finished, or until the

superior is abandoned. At that time, the VC statement becomes out, and the plan's contents are removed

from the current state of mind.6

We leave several unanswered questions here. This technique for interpreting plans requires a

distinction between the satisfaction of an intention and the finishing of an intention. Plans are

61 It is often argued (cg.. b) lalor (19741) that our notion of-scil" is an illusion 1s'cn if oncacknowledges this thesis, the idea
of oe inC lf nia) be useful in praci ce. and in facl. people ty pically ind thc concept indispiensible. I lowecr. people also voice their
indecision with phrases like "Niat of mc Aantts to do this. part of mc wants to do that," or tn'm of two minds about it. 11bege
highlight thc next problem: Is there just onc 'sell of a persoin' Nagel 11979c] argues that there cannot be just one self fromt
psschotogicil evidence concerning bratin hisctions. MinskY and Papcui 119781 argue against a single self bO from psychological
evidence ('olconing thc developintic of irilligence in children. aitd tront cimpuiaioitaI grounds. ninicl% that presupposition ofa
siqtgtc lf besil-i thceust on oif how tlie mind might work lh(!y priipiise ai aalysts of the nuiid into nian v huntdreds or thousands
of sinoilc "agents" In a "Socicty of mlind -Ihe moitd's idea oif is self coiiiiall) changes as differentt agcnt,, gain conitrol. *'the
proposals of this section for the current state of mind nmight be viewed as onte rcali/ation of hfinsky and l'apert's ideas. In the
programt. each procedure actuall) carries wtth it a fragmeint of the current stalc of mind, so what thc current sate ts %aries with what
procedures base control thus M insky and Papcrt's [19731 consersatioti exitimples. in w hich the physical Laws belieed by the child
secen to vary with the problem being workcd on. can be explained easily by thecir suggest on of differeint belicts; embtodied in the
different procedures used by the child. Similari). recognition of conflicts between two currently active procedures manifests u
reflection to an arbitrating procedure which specifically considers which of the two "minds" (procedures) to adqot.

____ ~ tj ~ :4~.- ''4Klw

148

pu)rposCless procedures, or more precisel), procedures which can be used for many difTerent purposes.

Because of this, plans may be indexed via method statements as useful For achieving intentions for which

they are more general than necessary. One Syllptoim of this is that of main suhordinates, in which the aim

of the intention is sonietinles Satisfied before all of the intentions in the plan have been carried out. In

some ca.ses this indicates that the remainder of the plan can he discarded, as when I use my plan for

getting to somneplace as a plan for getting to one of the stops on the way. But in other cases, the remaining

intentions of the plan are clean-up steps which secure the results achieved by the main step, or which

prceenlt certain undesirable side-effects. For example. my plan for checking if I turned off the lights in

ni dormitory room has a step for closing the door after I have opened it and looked inside. This step

does not ser~e tile ioninal purpose of the plan, m) intention to make sure tie lights are out, but rather

my policy of discouraging robberies by keeping my door closed. In this case, I cannot simply discard the

remaining step of the plan after achie ing its purpose.

We do not offer any way of o~ercoming this difficulty here. A suggestion for investigation is

that the plan also contain a schematic reason for the last step in terms of the realization record of the first

step (as explained in Section 4.10, this is a belief that the action was taken) and the extra-plan policy of

keeping the door closed. Ilowever. just how this would work is uncertain, because presumably the
$

reasons contained in a plan have tenure limited to that of the plan as well, so nothing has been gained.

The plan might contain a step taking the action of adding the reason pemianently. Alternatively, a

distinction might be developed between the satisfaction of an intention and the finishing of an intention.

Perhaps the plan's tenure and the finishing of the intention are coincident with the satisfaction (and

simultaneous finishing) of the reduction intention to carry out tie first intention by means ofthe plan.

- lE E

149

4.10 lih I listory of Actions

As the in!erpreter acts, it makes records of its actions so that later it can tell what it did and why. These

records include beliefs about its past actions and the connections between these actions, the desires or

intentions leading to them, and their effects (the changes in beliefs and other attitudes stemming from the

actions). The records left by the interpreter include a realizalion re(ord and a renlizalion slalemen, where

the realization record reflects what action was taken, and the realization statement reflects which intention

the action realizes.

Rcali'ation statements are just beliefs in the global theory of the form

RtAL ItZS(real izat ion- record, intention),

and are justified by the interpreter procedure performing the realization and by the decision used to

select the method for carrying out the intention. 'The intention and realization record contain redundant

pointers to the realization statement to facilitate explanations.

Realization records are beliefs of the form

ACTlON(plan/primtive. argument ist)

where plan/primitive is the plan or primitive in the procedure library by which the intention wascarried

out, and the argument list is a list of the variable bindings used for plan variables or primitive arguments

derived from the intention. Realization records are justified by the interpreter program alone. They are

not conclusions drawn from other beliefs or attitudes, but rather are observations made by the interpreter

about its own actions.

The nature of realization records can be clarified by comparing them with RMS justifications.

Justifications are actually a form of realization records. The realization records specified above record

actions for which explicit intentions exist. They record actions taken directly on the basis of intentions.

150

Justifications, on the other hand, are constructed by primitives called by other primitives. They record

actions Liken without explicit intentions, actions taken only indirectly on the basis of explicit intentions.

Realization records and justification have similar forms. Recall that the justifications employed by the

program are all reflected in explicit beliefs of the form (we only consider SI .-justifications here)

St-JUSTIF ICA ION(name, node, (name)+inltst, outlist)

I'he standard use of justifications includes tile primitive's node in the inlist and its argulments' nodes in

either the inlist or the orelist. depending on how they are used in the procedure. Ignoring the name/node

and inlist/oullist complexities, justifications share the form of realization records: procedure plus

arguments. Justification record the unconscious inferential actions of the program.

It might well he possible to make the treatment of justifications and realization records both

more uniform and more general, but that is left for future research.

Just as attitudes depend on the explicit belief about their justification, attitudes concluded from

plan or primitie realizations depend on the realization records for those plans or primitives. Each new

plan instance added to the current state of mind is justified monotonically in terms of a realization record.

Each conclusion drawn from a primitive includes the realization record in the inlist of the justification for

that conclusion. For example, if a primitive computes a value for one of the output variables of the

intention it is carrying out, it justifies this attachment in terms of the realization record. If it computes a

new value for some symbol (c.g the list of successors of an intention theory), it likewise justifies the new

attachment in terms of the realization record, as well as using this record in a justification defeating the

justification of the previous attachment. With such records, the program can discard the effects of an

action if it discards the memory of the action, say by deciding that it had merely hallucinated the action.

In more normal cases, the program can trace the causes of circumstances described by its beliefs by

tracing backwards through the justifications of the beliefs, thus seeing part of their inferential sources,

back to realization records, then through the realization statements and the justifications of the intentions,

• .. . t, . , .,'" .I

thus seeing part of their causal sources. We make usc of this sort of analysis in Chapter 6.

Tie nlerpreter also makes statements of historical order relating die reali/zation records. These

are statements which tell the temporal order in which actions were taken. TIhcsc statements are of the

form

PR[CEDING-ACTION(prior-real ization-record. following-realitzation record).

Realitthon records also contain pointers to their preceding and following rcalization records in the

temporal order. Such statements are redundant in some versions of the interpreter, as discussed below,

when the interpreter records the order in which it acts on intentions. The meaning of these statements

might be backed ip by a theory of time. This would allow the program to reason about its history. For

example, its theory of time might include facts about the transitivity of IPRECF)ING-ACI'ION, about

the linearity of that ordering (if it is linear), about (as Section 1.4.2 suggested) the non-occurrence of

deliberate actions which do not appear in realization records, etc. Just what the program's theory of time

and its actions should be is still an open question. Rcscher and Urquhart [19711 survey many temporal

logics. Hayes [1Q701 (and to a lesser extent, also [McCarthy and Hayes 19691) surveys temporal logics with

an eye to applications in reasoning programs.

It is often possible to recover considerable information about the history of a particular attitude

by examining the complete set of reasons concerning it. Since primitives change attitudes by defeating

previous justifications on the basis of realization records, changes in the status of an attitude can be

inferred from a justification for it in terms of one action, a justification defeating the first in terms of a

later action, a justification defeating the second in terms of yet a later action, etc. It remains for hiture

studies to pursue a careful development of such techniques.

However. some interpreters may not record temporal orderings of actions. I lumans frequently

cannot recall the order in which certain actions occurred, or that they took some action rather than

another, or that they took some action at all. These failures need not all be failures of memory.

A

152

Sometimes plans or primitives will emplo) executives which, for efficiency perhaps. simply do not record

idl of this informtilion. For example, the temporal order in which justifications are constructed is usually

not recorded, although these justifications actually record actions taken by primitives. While it may be

possible to introduce such temporal records in a serial computer, there is reason to suspect that the

parallel Comlputations w hich may ultimately be necessary (and which may be used by humans) will rule

out ha% ing complete temporal records.

4.11 'Ie Frontier

We partition the set of intentions (current or not) ilto three segments: the pas, the present, and the

future. The past consists of all the finished or discarded intentions, the present of all active intentions,

and the future of all pending intentions. In addition, we further stbdivide the future into the frontier and

blue sky. The frontier consists of all enabled pending intentions, and blue sky all blocked pending

intentions. The past thus contains all intentions that have been either discarded or, more commonly,

carried out, the present all intentions currently being carried out, the future all current intentions yet to

be carried out, the frontier those current intentions which can be worked on directly, and blue sky those

intentions which depend on the successful completion or satisfaction of prior intentions. The

terminology blue sky is meant to recall that the opportunity to work on blue sky intentions depends on

everything going well. on no unforeseen circumstances arising which lead to the premature abandonment

of the intentions due to impossibility or inappropriateness. We make these distinctions because the

program normally acts only on the intentions on the frontier.

tmom

153

4.12 (arfuI. Meta-(ircular Interpreter

I lom does the program act on the hais of its desire% and intentions? 'lis question has many answers, for

interpretation of the current mental stato is an activit) itself, and like other activities, can be performed in

many wa.s. For example, the basic steps of acting on the basis of the esires and intentions are (1) pick a

desire or intention to carry out, (2) pick some way of carrying it out. (3) carry it out via the selected

mcans,, and (4) repeat these steps. 'here arc clearly many ways of going about these steps. One can be

%cr careful about what one is doing and deliberate at length in steps (I) and (2). or one might just

carelessly pick a task and tack at random, or something in between these extremes. As another example,

one might choose to %ork for some while only on one intention and its subordinates to the exclusion of all

other independent activities, for instance, exclusively pursuing thesis-writing and its subactivitics to the

exclusion of social and educational activities. In fact, this provides a way of viewing primitive programs

as extremely specialized executives, executives which start with one intention and singlemindedly pursue

it and its suhactivities (although the subactivities of primitives are usually not explicit intentions but

rather further primitive calls). Thus there is an extremely wide range of executives employed by the

program, and the typical operation of each of these is to exercise control of the program's actions until it

interprets an instruction to hand over control to some other executive.62

'[his section describes a very careful and general interpreter. 'T'his interpreter is particularly

interesting in that it is a mea-circular interpreter, one written in the language that it interprets. In this
7

case, the standard way to do things carefully is to plan them, and this interpreter, or TORPII) as we will

call it, follows this strategy by being a plan containing a set of plans, method statements, and policies fbr

interpreting the current state of mind, and so plans how to carry out its own intentions. The heart of

TORPID is the following plan, whose steps are outlined in Figure 10.

62. This son of approach to proPam executives is sometimes called continuation-passing style [Stecle and Summan 19761

5 7- P

154

Form intentions from desires

Select intention to act on

ISelect procedure for carrying out intention

Execute procedure

Continue: normally, repeat j

Figure 10

The TORPID Procedure

155

IN TORPID: (implicitly in all the following)

(OFIPIANMACRO-TORPID ;Oerplan, Choose. Aspect - explained below

INI NTION 1-1 () () ((CHOOSI (ASPECl=AIM) (INTENTION='3 INTFNI[ON(I))) () ()))

INIINIION 1-2 () (INTENTIONS) (FIND-fRONI]ER-INItNI IONS () (INTENTIONS)))

(ANT[C[OtS 1-1 1-Z)

(INJINTION I-3 (INTENTIONS) (CIIOSEN-INTENTION)

((CHOOSE (ASPECTCHOStN-INTLNTION) (INTENT|ON=1-7)) (INITIAL-OPTIONS) (OUTCOME)))

(INTENTION 1-4 (CIIOSIN-INTINIION) (METHODS) (FIND-INTENIION-MIIHODS (INTENTION) (METHODS)))

(INI(NTION 1-5 (METHODS) (CHOSEN-METHOD)

((CHOOSI (ASPlCICIIOSfN-MIIIODS) (INTENTTON=1-7)) (INITIAL-OPTIONS) (OUTCOME)))

(INIENTION 1-6 (CHOSEN-INTENTION) () (ACTIVATIE-INTINTION (CHOSEN-INTENTION) ()))

(ANTICEDES 1-5 1-6)

(IN[[NT ION 1-7 (CHOSEN- INT NT ION CUOSEN-METnOD) () (EXECUIE-INTENTION(INTENTION) (METHOD)))

(ANIICEDES 1-6 1-7)

(ININTION 1-8 () () (CONTINUE () ()))
(ANT(CEDES 1-7 1-8))

I lere we have used a syntactic macro to make a somewhat less verbose syntactic form for defining plans.
63

In IIFPI AN, one first specifies the name of the theory, MACRO-TORPII), and then in the body of the

macro specifies the desires, intentions, and other parts of the plan with further syntactic extensions. The

syntax for intentions specifies first the name of the intention in (he plan, then the list of names of inpL.

variables, the list of output variable names. and finally the aim. 'he aim consists of the type of the aim

theory, together with two lists of names. 'hese should be names of parts of the aim theory, to be

identified, respectively, with the lists of input variable names and output variable names of the intention

to set up the keyword mapping of variables. In addition, the macro automatically sets up dataflow

policies between all similarly named intention and plan variables, unless the names are mentioned in

explicit dataflow policies.

What does this plan say? MACRO-TORPID's first step is to deliberate on things to do, to form

intentions from some of its desires. This decision is formulated as an intention to choose aims (and,

actually, variables as well, but that is left out for simplicity) for some unspecified intention. The intention

is identified as a decision intention by the aim keyword "CHOOSE" The "ASPF.CI"' statement indicates

63. The exacI details or this nwro and synax are yet to be worked out, but the main points should be dear. If somchlni h in
following se.rn underpcled. it IL

... .-.............

156

what part of (lhe unspecified intention is it) be filled in with a value. As its second step the interpreter

ids the current set of frontier intentions, and names this with the plan-variable INTEVNTIONS. T'he

third step is it) choose oneC intention fromn this set and call it CI OSFN- ININTION. Thiis decision is

Formulated as a choice of a value for the variable Cl OSIFN-INIl'NTION of 1-7. Fourth, the plan

retrieves a list of methods rclevant to carrying out the cho0sen intention. and calls this MET Fl] 01. Fifth,

it selects one of these methods by using an intention to select it value for the variable

Cl ISN-MH'l 101) of 1-7. T'he sixth step activities the chosen intention by changing its status.

Sesenth, it reali/es the selected intention via the selected inethod. Fighth and finally. it continues

interpreting.

NIACRO-IORPII. ito work ats we ha~e indicated, must be supported by a number of other

plans, the appropriate method statements, and policies.

TIhe first step of NlACIZO-TORPIDl relies on at careful deliberation procedure. The next chapter

presnts one of thc.,e. In this step, it is used to decide if any new intentions should be formed to pursue

current desires.

'M'e second step of MACRO-l'ORPID) gathers up the current frontier intentions by means of a

simple primitive program (omitted here) which scans the set of intentions for frontier intentions.

(Alternatively, the actual implementation maintains a list of all frontier intentions, and modifies the list's

contents when intentions and ordeting policies are added and realized.) This primitive is declared to be

the default method for this intention by a policy. Here we employ further syntactic macros to define Lisp

functions as primitive concept attachments (DIFFPRIMITIVIi), to declare construct method statements

for aims and procedures (IIMIT11lO)), and to declare policies (l)FFPOIICY) by giving the

antecedent and consequent of their aim, the consequent being a list of instructions to be carried out (as

the next chiapter explains).

(DE!PNINITIVI UASIC-FINOO- FRONT I R-PRI1W4T IV[((INTENTIONS)

.. omitted...)

157

(I)|M 11IO)IIAS C-f I NO-FHONt I It -ME IIIOD

(AIM IAIM I-2 INI[NIIONSMACRO-TORPID])

(PIOCIDUIAI IHASIC-IIND-IIIONTIIR-PRIMITIVE))

(DIIPOLICY BASIC-IIND-FIRONIIER-DrAULT-POLICY

(it ([AIM PURPOSE DICISION) =

(CIIOOS{-MfIfOOSrAIMI-2 INTENT IONS MACRO-TORPID])))

(II[N(I)IAUII BASIC-fIND-TRONTIIR-MEFHOD)))

All of the following steps of MACRO-OR IPII) are carried out by similarl) described primitivcs, which

we will not give here. except for the last step o'continuing execution. In this case. the dcefault method for

continuing execution is MACRO-I'ORPII) itself.

(Ii M[1II01) BASIC -CONI INU[-METIIOO

(AIM [AIM 1-8 INTENI IONS TORPID])

(PROC[OURt MACRO-TORPID))

(1I POL ICY BASIC-CONI INU -DEFAULT-POLICY

(If ([AIM PURPOSE DECISION] -

(CIIOOS-M1HODS [AIM T-8 INTENTIONS MACRO-TORPID])))

(TIlEN (DIAULI BASIC-CONTINUE-METIIOD)))

This 'ORPII) plan is all well and good, but how does the program get going in the first place?

The answer is that it contains a primitive executive specially tailored for interpreting MACRO-'ORPID.

'his executive is the following ILISP primitive program.

(DEEPRIMITIVE MICRO-TORPID ()

(PROG (INTENT IONS INTENT ION METHODS METHOD)

(SETQ INTENTIONS (MICRO-IORPID-T IND-FRONTI[R- INTENT IONS-PROCEDURE))

(SETO INTENT ION (BASIC-CHOOSE -NEXT- INTENT ION-PROCEDURE INTENTIONS))

(ST TO METHODS (BASIC-F IND- INTE NT ION-METHODS-PROCEDURE INTENTION))

(S(TO METHOD (BASIC -CHOOSE -INTENT ION-ME 11O0-PROCEDURE INTENTION METHODS))

(BASIC-ACTIVATE- INTENT ION-PROCEDURE INTENTION)

(COND ((PRIMOP? METHOD) 4

(BASIC- INTENTION-EXECUTION-PROCEDURE INTENTION METHOD))

(T (BASIC- INT ININION-REDUCT ION-PROCEDURE INTENTION METHOD)))

(MICRO-TORPID)))

MICRO-'I'ORI'II) has roughly the same steps as MACRO-I'ORPII), but with the defaults of TORPID

built into place. It calls the 'I'O1lII) primitives directly, except for die decision of what intention to work

6. Actually, SCI IME would be betler. The recuNrve call of t Isli line would have to be replace by a loop for it to work im

us,

I l-.-I- l--I -i - .

U U U I ___

158

on next, for Which MICRO-TORPII) uses a procedure which looks only for intentions resulting from an

instantiation of MACRO-TORPII). Also. MICRO-TORPII) does not deliberate on what to do because it

only looks for intentions resulting from an instance of MACRO-IORPID.

I et us see how this works.

1. We start tip the program by constructing an intention to CONTINUIE and executing

NIICRO-TORPID.

2. lkecausC there are no other intentions, MICRO-TORPII) picks this intention as the next step,

Finds its defaulh method, namnely MACRO-TOR P1), and reduces the intention to the new plan, a copy of

NACRO-IORlPlI). MICRO-IORI'II) then begins work on MACRO-'T'ORPI).

3. MACRO-TORPII's first step is to deliberate on what to do. For this it uses a careful

deliberation procedure as described in the next chapter. Iis deliberation procedure finds possible

courses of action by means of a policy to ftlfill die desires if possible. *11(i ordering policies between the

desires, and other policies as vkell, provide reasons for and against these options. When this deliberation

is finished, all options that have good reasons for them and none against them arc used to form new

intentions.

Intention formation seems to be ill-studied, to the best of my knowledge. The approach taken

here is no more than an initial, and likely unsatisfactory, proposal for how this might be done. In

MACRO-TORPID. nonally all desires eventually are pursued by forming intentions to pursue their

aims. 'his step is the means by which intention formation occurs. No intentions might be formed, or

several might be formed, depending on what sorts of policies enter into the decision-making. For

example, policies which reflect on the resource limitations implied by the program's current intentions

might rile out forming any new intentions. Policies which reflect on the consistency of desires and

intentions may rule out ,some desires but not others. Or at the other extreme, the program might find

unchallenged reasons to pursue all its desires, and fonn intentions from all of them. Ibis subject deserves

more serious attention than I have been able to give iL.

- .. ___

159

It might seem that this step could lie cominend with MACRO-TI R1511)\ third step of' picking

an inltention1 to carry outt, hut this cannot he, for tsw o reasons. H~rst, oflC can decide to pursue a desire, but

not an intention. It makes no scnse to intend to intend to do sonmethinlg. Second. if one deliberatcd about

desires and intentions simultaneously, o~nc would nied values comparing desires and intentions, which

also makes no sense. In fact, one way to compare intentions might he to compare thc strengths of the

desires thcy \Acre furmed fromn, if there were any, hut(intentions cannot be compared with desires directly.

4. NIACRO-TORPII's second step is to find the froniicr intentions. At this point. there are no

frontier intentions. because the only other intentions are those in MACRO-l'OR P11 itself, which are

blocked for lack of input variable values. Tlhus when MlCRO-I'ORl3II) retrieves and deliberates on

methods for this intentions, it not only Finds thie defaiult primitive, but also the following backup

primitive.
6 5

(DEFPRIMITIVF INPUT -NEW- INI ENT IONS-PRIM4ITIVE () (INTENTIONS) ...)

(DEEM1TIO INPUT -h[W -INTENTION-METHOD
(AIM [AIM 1-2 INTENT IONS MACRO-TORPID)
(PROCEDU1RE INPUT -NIW-INTINTIONS-PRIMITIVE))

(DErPOtICY I NPUI -BACKUP- POLICY
(If (fAIM PURPOSE DECISION]

(CHOOSt-ME IHOO [AIMI1-2 INTENTIONS MACRO-TORPID])
A (DASIC-iIND-FRONTIER-INTENTIONS-PRIMITIVE.) -NIL))

(THIEN (CON (OPTION 'BASIC -F IND-FRONT IER- INTENT IONS-M[JHOD) (SL (INPUT -BACKUP- POLICY) i)
(PRO (OPTION -INPUT-NEW- INTENT IONS-METHOD) (St (INPUT -BACKUP- POLICY) ~~l

]'hc backup primitive INP)UTI-NE-WINEN''IONS-PRIIM V' IVii queries ihe user for some intention to

work on and waits for a reply. The backup policy leads MICRO'I'ORPID to select and execute this

primitive for finding new intentions rather than the normal one which just looks at the frontier.

S. At this point, wc enter construct somei intention along with procedures for carrying it out.

65. *lhis hould hc donc insrric heifer way,.wsch as reflctfing (in how io proceed as does NASI with reformulation inieniions, but
I have not attended io this problem yci. If done properly, we could just caii MI(R0- ORI'll) at the start and let it atsk for tie
illlijal MAC'RO- lORPII) (ONlIINUI intcntioti 'I Ibs prinhif'i6e also shows the iaucit or conin iun icatmion ofrihe program wiih its
environmecnt. If all ncw informaition is gathered unconsciously b) primitivc% or added by the user while the program~s operation has
been interrupted. t hen ihe program is unconscious or its environment. 1o have the program be conscious or ifs environment a weli
as merely self-conscious. it must have information abonit its sensory and clTeeiivc mechanisms so that it can use its coimmunicationm
channels deliberateiy. rather than simply reacling to their automatic runcioning,

.......... ; ~ '-~

160

We ign(re the delails of this, ftr our concern is primarily with watching TORPID.

6. The backup method now returns the new intention as the frontier. This frontier is recorded as

the %alue of the plan variablc INTENTIONS. Thus while cxccuting'OR lll), the program leaves behind

records of the intentions it saw at some past step of interpretation. This is an important piece of historical

infirma(ion uscfil in the skill modification processes discussed later.

7. Next. MACRO- IORPII) presents the fl-onticr intention ofchoosing which intention to work

ol from INTINI IONS. MICRO-TORPID) secs both this intention and the non-TORPII) intention on

its frontier. but restricts itself to working only on intentions stemming from instances of

NI \CRO-lORPII), so works on MNACRO-TOR} I)11Ds third step.

S. MICRO-IORI)II) carries out MACRO-'ORPI)l's third intention by the default method,

"hich is a general deliberation procedurc. MACRO-TORPI)D's third step is not one of forming any

number of intentions, but rather one of deciding on a single value fi)r an aspect of a current intention,

nasncl, the variable ClIOSI'N-INTENTION of 1-7 in the current instance of MACRO-TORPID. The

deliberation procedure sets tip the frontier intentions transmitted through INTENTIONS as the initial

options. It proceeds to find reasons for and against carrying out each of the intentions next. Finally, it

decides on one. and attaches that value to the specified variable of 1-7.

Actually, we have been needlessly redundant in MACRO-TORPII) for the sake of clarity. The

policies relating intentions that determine the frontier actually enter into this deliberation, so we can just

as well dispense with step 1-2 (and similarly, 1-5) by beginning deliberation with a policy to make all

pending intentions options, and then forming reasons for and against these options from the policies.

'Ibis would also make unnecessary the complex system of justifications between intention statuses used to

compute the frontier.

All in all, the deliberation procedure subsumes all the special case information mentioned

above. The list of options of the deliberation record shows what intentions were considered at this time,

and the list of considerations shows the extant policies. In addition, there may be other policies relevant

~1 ___

161

to this dcisioo besides the policies, Ill fact, somc of the current ordering policies might be defeated by

spcCial-ca~c policies, so the frontier as seen front looking just at the temporal ordering policies is not

always completely accurate.

At any rate, the dcliberation procedure in this case chooses the sole noirlORPIl) intention as

its otitceome, and so the plan variable CHOSIN-INTI'NTION is given this value.

9. Next. MACRO-TOR IDI) rctrie es a list of methods for carrying out the chosen intention and

stores the list in MII lOI)S. It then deliberates to find a method as the ale of CI IOStN-ME1I'101).

As above, the deliberation step actually stbsunes the prior retrieval step.

10. MACRO-TORPII's next step performs some bookkeeping functions, primarily to change

the status of the chosen intention to active.

I1. MACRO-TORlIDl) then has the step of realizing the chosen intention by the chosen method.

It performs this realization either by executing the procedure selected as the method or by adding the

method plan to the current state of mind. Ibis intention of MACRO-TORPII) forms the realization

statement connecting the intention and its realization, obviating the need for the interpreter to make such

a record specifically. In addition, since the ordering for the steps of MACRO-TORPID is a standard

linear order, we also get historical ordering records between the realization records automatically.

12. Finally, MACRO-TORPI D again presents the intention of continuing, and the process btarts

again. The connection between this intention and the new instance of MACRO-TORIDl) then forms the

next part of the chain of historical order.

Ihis concludes the example ofTORlllD's operation.

The program need not operate solely by using TORPII) as the interpreter, but might use at

difTerent times a number of interpreters. In fact, the program can employ a slight generalization of

MICRO-TORPII) which records the desircd records (or not) without going to the extremes of

deliberation met in TORI)ID. The program can switcn between "careful" mode and a normal heedles

mode which does not record as much information by the following technique. Say that the plan to be

162

exeueICd is to carefully perform sonic action. Then the first step of the plan is to switch to the careful

interpreter by means of a CON' INUI intention. The remainder of the plan then is executed by

M,,\CRO-IORPI). In iddition. the plan sets up die return mcchanism by having its last step be one

hich temporarily changes the default method for CONTINUE to the standard interpreter (or whatever

cecuc is desired next). Since NIACRO-TORPII) will he careful in reducing its continuations, it will

resumC with the specified executike radier than NlACRO-TORPI).

II

163

(IIAPTER 5

l)E1 BIRATION

I low do we ever manage to make decisions? The overwhelming fact of our lives is the dilemmas and near

dilenimas that confront us, the difficult decisions %hich force us to sacrificc one hope for others. We are

constantl. torn between seremingly incompatible principles of action. To decide what to do we must

reconcile these principles to choose the moral, the kind, the expedient, or the comfortable thing to do.

Ilemmas and difficult decisions involve reasons for conflicting courses of action, reasons

formulated in disjoint vocabularies and value systems. lo resolve dilemmas, whether they be mighty or

mundane, the decision-maker needs to reflect on these conflicting reasons. to consider what value-systems

each reason belongs to, and to judge wkhich reasons take precedence over which other reasons. We must

be content to make these precedence judgements in a case by case fashion without absolute principles or

reductions relating the disjoint value-systems like "Any mora; reason takes precedence over any economic

reason." 'his chapter explores such a decision-making method called reasoned deliberation in which the

deliberation procedure can reflect on the reasons for and against courses of action, and make judgements

about these reasons specific to each particular decision and its circumstances.

The basic idea of reasoned deliberation builds on the mechanisms developed in the preceding

chapters. "Me program first fonnulates its intention to make a decision as a decision intention. It then

makes the decision by executing a deliberation procedure, which is retrieved as a method for carrying out

the decision intention. lerc are many sorts of deliberation procedures corresponding to the many sorts

of decisions to be made, but the typical general-purpose deliberation procedure constructs a set of

options, a set of relevant policies (called considerations), and a set of reasons. 'Ie policies retrieved from

the current set of intentions as being relevant to the decision are carried out to construct reasons for and

against the options, and to augment the set of options with new options. However, each reason

constructed by carrying out a policy for a particular decision is a non-monotonic assumption. Each policy

.. - . i I~. - ~I I I I 7

164

represents an intention to reason in a certain way, and this intention is saisfied by constructing the

appropriate reasons. The policy's putative effect may fail to1 he realize because the policy's application in

a particular decision may be defeated by other policies concerning special cases, exceptions, or

preferential relations among tpcs of reasons. The deliberation proccdure reflects on each new reason to

find further policies rle~ant to the new reason. 'liese further policies might construct reasons against the

original reason. Since the reasons are non-monotonic assumptions, these new reasons defeat the original

reason, defeating the application of the original polic, in this particular case. Of course, these defeating

reason', can in turn be defeated. Finally, the deliberation procedure reflects on the entire set of reasons to

decide whether to make a decision on the basis of the constructed reasons, to postpone the decision, to

deliberate further, or to reject the decision.

Reasoned deliberation pla s an important role in the operation of the program. For example, in

some cases this sort of reflective decision-making is used by the interpreter to form the intention to

pursue some desire, to select which intention to carry out next, or which method to use in carrying out the

selected intention. In Chapter 6 we will indicate firther applications of reasoned deliberation in deciding

how to revise or modify the program's sets of beliefs, concepts, desires, intentions, values, and skills.

Of course, not all decisions are made by procedures of the complexity outlined above. In many

cases, one has decided in advance how one will make a type of decision in certain circumstances, and

when such occasions arise, one simply executes that procedure. These prior decisions with their built-in

presuppositions can fix assumptions or the use of particular policies in a specialized decision procedure,

so that the special-case procedure need not be as complex in operation as the general procedure which

has to retrieve and decide how to apply assuniptions and policies on the spot. In fact, this deciding how

to decide is a common activity. Since the plans and primitives of the program are really specialized

executives making certain types of decisions, the choice of which method to use in carrying out some

intention constitutes a decision about which further decisions to make and how to make them. This is

clearest in the case of deciding what procedure to use in carrying out a decision intention. Since the

___ __- - __--__... .__.. . -.. __--___" -

165

library of procedures is organied hierarchically, these decisions about decisions are made in a similar

hierarchical fashion. 'Ihis can be viewed as analogous to the practice in large corporations and other

organizations in which each level of management makes some decisions itself, but spends a good bit of

effort in deciding how to delegate decisions, that is. who should make the lower level decisions.

F.cntuall someone makes decisions about concrete matters, but his position is the result of many prior

decisions about who should make decisions.

5.1 The Variely of Iccisions aid Ways of Making Them

17here are many different sorts of decisions one makes, and different decisions call for different

procedores for making them. For example, we can imagine different procedures for buying a can of tuna,

for buying a car, for selecting one's job, and for thinking of what to do tonight.

Example 1: Grocery shopping. When shopping for some item in a supermarket, say a can of

tuna. my standard procedure is to buy the same brand and size as I bought before, unless prices seem to

have changed or there is a sale on some comparable item. On some occasions, my use of a product

previously has made me dissatisfied with it, so I do not even bother to check for a sale, but rather use a

completely different procedure from the start: to compare all the available brands and sizes, their

reputation and looks and specifications, and choose something different from before, even if just to

experiment. A further different way of buying a product, which I only employ in exceptional

circumstances, is to go in, compute which product is cheapest in unit price, and buy that.

Example 2: Buying a car. In contrast to grocery shopping, buying a car is never routine, but is

always a major decision. I'his is reflected in the ways of choosing what to buy in the extra care, prior

experimentation, and time allotted to making this decision. Where I might be content to experiment on

my own to find my preferred brand of tuna, I am likely to begin a search for a car by talking with friends

to get their experiences, by reading car magazines and Consumer Reports, by making the subdecision of

i, • i iI I

166

Mhether to buy a new or used car, and by visiting sevcral %endors. kicking tires, and making road tests of

several models.

I-xample 3: Choosing a job. Assuming one's financial situation leads onc to take a job, one faces

different problems in choosing one than in buying tuna or cars. I lerc any prior e xperim entation with the

job becomes part of the job. so one cannot perform prior experimentation in the same way as with cars.

Instead. the major bases are. for example. one's self-analysis of what one likes, what opportunities are to

be had or mnade in different lines of work, and how one's fa~orite iole models earn a living. 'hese

deliberations sometiImes inolve considerations which in essence reject or postpone the choice, such as

choosing a deliberately temporar occupation to be rethought later or to Continue schoo)ling.

Example 4: What to do tonight. This question is nuch like the question of what to do next that

the interpreter faces at every step of its process. rHowever. for humans, deliberating on this question

Usually invohes not just a selection between current intentions, but invention of options by, for example,

looking in a newspaper or asking friends to see what is in town, or walking through a bookstore or library

to see if there is anything interesting to read, as well as thinking about standard possibilities like visiting

friends, museums. ice-cream parlors, or coffeehouses.

These examples illustrate several different procedures for making specific sorts of choices. The

actions involved in these procedures range from making simple arithmetical calculations to running

extensive physical tests on machinery to mental tests of oneself or others. While one might use an

abstract deliberation procedure in novel situations, efficiency dictates that we employ special purpose

procedures in routine cases. Such specialization might restrict the options involved so that we do not

waste time searching for unusually creative ways of procuring tuna (placing wantads in a paper, for

example), or might restrict the sorts of reasons we take for choosing which option, such as computing the

cheapest unit price instead of physically inspecting a fishing fleet or cannery.

Aside from classification by types of decision, the major general classification of decision

procedures is whether the procedure chooses or deliberales. 'Ihis distinction is traditional in discussions of

I _I U i

167

dcciiNon-making, and attempts to draw an (admittedly hazy) line between reflective (deliberation) and

non-reflective (choosing) decisions. For example, a(a party someone offers You a tray full of drinks, and

you pick one without thinking about it. 'Ibis is called choosing, as it did not involve considering all the

option and reasons in detail. One might also perform choosing if one has sequential preferences for

ice-cream flavors, and one always orders a flavor by checking the parlor's list of a.ailable flavors and

taking the one highest on one's own list. Hlowever, one is deliberating if one picks the drink after first

considering "Should I have another? Who is driving home?" or picks the flavor by trying several samples

and deciding which one is the most intriguing. Thus in choosing, one follows a routine procedure which

has only fixed variability, or whose Nariables depend on the external world and not on one's store of

guidelines. l)eliberation, on the other hand, varies with what principles one has adopted and retrieves

upon thinking about the question.

We only briefly discuss choosing, about which we just recall the earlier suggestion that choosing

procedures are programs "compiled" by fixing in advance the policies to use as implicit assumptions. For

example, one might employ a policy in buying tuna which computes the unit prices and constructs a

reason for the tuna with the lowest unit price. If one decides in general to act on this policy alone, one

can take the policy and computation code used to carry it out to produce a procedure which simply makes

the computation and justifies its answer, to be used instead of the general procedure which would have

had to retrieve, apply, and defend this policy.

The remainder of this chapter concentrates on deliberation.

5.2 I)ecision Intentions

Decisions are mediated through decision inlenlions, which are intentions to make certain decisions.

Decision intentions are just like other intentions, except that their aim is to make some decision.

Decisions are all of the form of choosing between alternate actions, although the actions may be mzmtal,

. ___________________ ,.',A' 4 %. - - ..

168

such as helie% ing sOmething, as well as physical. Thus the aims of the decision intentions are all of the

forn (ClIOOSE aspect -name act ion- descr ipt ion). to he interpreted as the intention to find a value for die

aspect-name ofaction-descript ion. But action descriptions are really potential iltentiollS, So the aim of

the decision intention really reads as (CHOOSE aspect-name intention). From the hierarchy of aims of

intentions and the related hierarchy ofintentions, we so derive yet another hierarchy, that of decisions. In

the aim of a decision intention, aspect-name can he any term referring in the intention theory. If the

aspect Iamiie iS AIN. then the aim of the decision intention is to find ;In aim for the intention, that is, what

to do. the most general queslion of action. If the intention theory already has an aim, then the aspect

name might refer to sonre (ern in the aim theory or in one of its stiheories. ''llis we might have the

following hierarchy of decisions corresponding to a hierarchy of intentions described by a hierarchy of

aims.

DECISIONS

hnat to do

What to buy Where to go
What food to buy Where to go this summer

What tuna to buy Where to go in Disneyland this summer
INTENTIONS

Do THING

Buy THING Go PLACE WHEN
Buy FOOD Go PLACE this summer
Buy tuna Go PLACE in D1sneyland this summer

AIMS

AIM of Intention

Object of (Buy) AIM Location of (GO) AIM

Object of (Food-Buy) AIM Location of (GO with WHIENxthis summer) AIM

Object of (luna-Buy) AIM Location of (GO with WHEN-this summer AREA-Disneyland) AIM

169

5.3)eliblration Records

W introduce the convention that the important information concerning a deliberation is recorded in a

deliberalion rcc'rd. A deliberation record is a theory constructd b deliberation procedures, and can be

thought of as a record of the basic %ariables common to all deliberation procedures along with their

%alues in the deliberation at hand. A deliberation record theory has several parts: a purpose, a list of

options, a list of considerations, a list of reasons, a list of reflections, and an outcome. We explain these

parts in turn. Scc Figurc II for a picture of how these pieces of infirnation are related,

lhe pIntipos of the deliberation record is simply the decision intention being carried out by the

deliberation procedure. I)eepcr purposes or reasons for why the program is making the decision are

found by pursuing the reasons for this decision intention.

'he list of options lists the objects being decided among, the possible values for the aspect of the

intention being deliberated about. ic interpreter, for example, makes decisions whose options are the

desires to pursue next, the possible values (or identities) of some variable, the methods retrieved for some

intention, or the possible revision of belief which restore consistency. They need not be exclusive in any

sense.

The list of reasons lists the reasons for and against choosing the several options. In addition, the

reasons themselves are treated as things to reason about, so the set of reasons also contains the reasons for

and against the reasons as well. All reasons are recorded as explicit, defeasible justifications as described

in Section 3.11. Reasons for and against options arc made as justifications for, respectively, statements of

the form PRO(option) and CON(option) in the theory describing the list of options, where option is the

name of an option in that theory. Reasons for and against other reasons are made jtstifications

supporting or defeating the other reasons. RMS then determines the status of the arguments comprising

these rcasons.

The list of considerations lists intentions to apply the policies retrieved as relevant to the

i

. , ,, .- '.'

170

Intention to decide Plce(purpose) Plce

(cnsdraios

Intention to specify

Figure 11

Information Flow in Deliberations

171

deliberation record's purpose. Typically these policies produce one or more reasons in the set of reasons,

or add to or otherwise modify the set of options. Considerations are kept separate from the reasons they

produce. because policies may he relevant even if they lead to no reasons. One sometimes says something

is a consideration even if it implies no reason or option in the particular situation at hand, but does when

in slightly different situations.

'Tlle list oJ'refleclions of the deliberation record lists (he higher-level deliberation records created

by deliberations reflecting on the progress of the decision intention. We will explain these reflective

deliberations soon. These reflections are not used by tile deliberation record itself. but rather aid the

reflecting deliberations in accessing the results of previous reflecting deliberations.

The Oulcome of the deliberation record is the chosen option, if and when one is chosen.

'hese pieces of information are represented as attachments to the tenns PLIRPOSE, OPTIONS,

CONSIIDRATIONS. REASONS. REFI.fCIIONS, and OUTCOME in the deliberation record theory.

PURPOSE is attaci.ed to the decision intention, and this attachment is justified in tcms of the realization

record of the deliberation procedure carrying out the intention. The outcome, when it is found, is

attached to OUTCOME with it similar justification. OPTIONS. CONSIIDERATIONS, and REASONS

arc all attached to theories whose languages include the numerals 0, 1, 2, etc. Each of successive option,

consideration, and reason is attached in these theories to one of these numerals, in the order of their

discovery, thus recording something of the temporal order of the deliberation. Options and reasons are

constructed by policies in the set of considerations, and their justifications reflect the policies and other

facts used in applying the policy. Considerations are attachments to intentions (as explained in the next

section), and these attachments are justified in tenns of the retrieval procedure used and the data the

retrieval procedure accesses, such as the purpose of the deliberation record and other beliefs. Note that

the reasons constructed by a consideration depend only on the policy, and not on how it was retrieved.

- -_______ _________ .*-, .,;~ - ~~"" - -- -

....-[. -w----. ..-

_

172

5.4 Policy Fxecution

Policies are intcnfioas with hypothetical aims, and as such, cannot be carried out directly. Instead, when

conditions arise %lhich might satisfy the condition of the hypothelical aim, the policies are used to form

further intentions, intentions whose aims are to check if the policies are indeed applicable in the current

circumstances, and if so, to carry outL the consequential actions specified in the aims of the policies.

Policies -rc reie %ed b3 procedures which scan the current set of intentions for policies whose

aims have a condition suhsuming the aim of the decision intention. Actua!y, the details of how this

should he done have yet to be worked out, for the conditions specificd by policies can include

info rmtlion other than that o" the decision intention's aim, such as current beliefs, other intentions, etc.

lHowever. the retrieval procedures are not burdened %ith determining actual applicability of the policies.

but mere relevance, Ibis lesser requirement might be discharged by using explicit statements that certain

classes of policies are releant to certain classes of decisions, or by other means, but we leave this question

to be answered b) future study.

For each relevant policy retrieved, a new intention is formed. The new intention's aim is to

apply (or consider) the policy in the current circumstances. [he intention is made a subordinate of the

decision intention, and is justified in terms of the policy, the decision intention, and the relevancy

procedure. The new intention is added to the list of considerations of the deliberation record.

Fach consideration intention is carried out as usual by the interpreter. A consideration may be

carried out by any of several sorts of procedures. Ihe common function of these procedures is to first

check if the policy is actually applicable in the current decision, and if so, to carry out the policy's

consequent instructions 'Ibese application procedures differ primarily in how careful they are in checking

applicability and in carrying out the consequent instructions.

The default procedure for applying policies is a primitive which acts as follows. It first checks to

see if the policy is applicable by applying to the policy's aim's antecedent a standard procedure for

aN I i I i -t

173

c%,'ilting %hether a logical formula holds in the current state of nind. [or example, the FO . evaluator

[We.hratich 1978] might he used. 'his procedure need not be perfect, for the default procedure is

intended only for use in the simple routine cases. Since tie policy's aim's antecedent is just a logical

formula expressing some condition of tie program's state, this test results in answcr of either "it holds,"

"it doesn't hold." or "can't tell." Whatever the answer, a statement to that effect is recorded in the

deliberation record, justified by tle information and procedure used in the evaluation. 'Ibis might permit

later reconsideration of a policy whose appliLability could not be determined earlier for lack of

information. If the polic is inapplicable, or if its applicahility cannot be determined, no further action is

taken. If the policy is applicable. its consequent is interpreted as a sequence of instructions for actions to

be taken. The Nocabulary of these instructions is given in Section 5.6. They are carried out immediately

by calling other primitives.

If a policy is not routine and deserves more careful treatment than this, other, more complex

application procedures can be supplied to o'erride the default application procedures. The care witi

which policies are applied can be increased in many different ways. We sketch two of'these.

A policy might be applied by carcfully checking applicability and routinely executing its actions.

That is, the applicability procedure is a plan of two steps. The first step is an intention to determine

whether or not the policy is applicable. By making this step an explicit intention, the full power of the

reasoner can be applied to carrying it out, rather than relying on a fixed and strongly limited evaluation

procedure. The second step of the plan is an intention to act on the answer determined. This step is

carried out by a primitive which acts like the default procedure, checking the answer and if it is that the

condition holds, then calling primitives to carry out the policy's consequent instructions.

Another way to increase the care with which a policy is applied is to treat the consequent of the

policy's aim as a plan. In such an applicabilty procedure, if the policy is applicable, then all of the

instructions would be converted into new intentions and added to the current state of mind.

Policies might be applied by a combination of these refined procedures, or by yet other

I'

174

re inements.

5.5 Policy Applicability

Conditions of applicability typically refer to the superiors and other reasons for the purpose of the

dclibcration, to other intentions (such as the brothers of the purpose), to current beliefs, their reasons,

and to the reasons and state of die arguments for and against the options in tie deliberation record. For

example, a policy to hold doors for ladies night he applicable only if the program currently believes it is

near a door and A hether there is a lady approaching. A policy not to act for chivalrous reasons might be

applicable only if one of the reasons in the deliberation record is a repercussion of policies having to do

Sith chivalry.

We again digress briefly to discuss dcontic logic. We previously mentioned how retnmeval of

methods for carrying out intentions is related to the question of what commands or obligations are

entailed by a command or obligation. Another question addressed by deontic logic is when commands or

obligations can be inferred from beliefs together with previous commands or obligations. Ibis is closely

connected with te queslion of policy application. Policy application involhes inferring a number of

intentions (commands, obligations, etc.) from beliefs, intentions, and other aspects of the current state of

mind. However, our approach makes this question trivial in principle, one purely of the validity of a

logical statement about the current state of mind. Many deontic logics are complicated by the need to

account for the defeasibility of reasons produced by policies. Our treatment suggests that this should not

complicate the inference of intentions from policies, but should be separated into the treatment of the

reasons constructed in carrying out these derived intentions.

-.- ' t

175

5.6 Volic) Actions

The actions of a policy either add ne in tenions as SuL b idinatcs of tie dcsio ntention, options to the

list of options, considerations to the list of considerations, or reasons to the list of reasons. We describe a

fcr of these sorts of actions which forn an initial vocabulary for decision-making activities.

'11e first sort of action is that of constructing a new suhordinate of the decision intention.

Subordinate addition is done with the con~mand (SUBORDINAIE intention justification). "1e

intention is the theory describing the intention to he added to the current state of mind. The

justification is the justification to he used for the new subordinate. The justification usually mentions the

policy, the application procedure, the realization record of the deliberation procedure, and any belicf or

other items used in determining applicability of the policy.

The second sort of action is that of adding new reasons to the set of reasons. One can add

reasons either for or against either options or reasons. We write these sorts of actions as (PRO

(options/reasons) justification) and (cow {options/reasons) justification). In these and the

following actions, options and reasons are referred to by their names in the lists of options and reasons.

which are picked up by the condition of the policy.

Another action on the set of reasons is (PREFER 0 fX ... Z} justification), where each ofO, X,

and Z are options. Preference is translated as "Any good reason for 0 is a reason against any ofX ... ,.

Z." so that a lesser option will have a good reason against it as long as a good reason holds for the

preferred option and no special exceptions are being made (for example Ly some other policy reasoning

aginst the preference statement). Preferences add a new policy to the list of considerations and to the

LorrCnt set of intentions whose aim is to reason against any reason for the lesser options (using CON

it%.% c) whenever a reason for the preferred option is found.

A related action is (oFHAULT option justification), which means that option is to be the

t. o.li 'utuernc Ibi% is interpreted by giving the option a PRO (as above), and then to use any good

!- !-_ , II I ! ! I! !m m ,..

176

reason for any other option in a reason to defeat this pro reason. 'Ibis similarly is implcmcnted by

constructing a new policy.

A further action along these lines is (BACKUP (01. 02 ...) justification) which is the policy to

make 01 the default, and to make On + I the default irOn is defeated.

One might restrict the set of options, by providing a reason against any options not in the

restriction. We say this with either (RESTRICT (x ... Z) justification), or (DECIDE-BETWEEN (X ... Z)

just if icat ion), where X ... , Z are options. A preferential restriction, (PREFERABLY-RESTRICT {X ... Z)

justification) or (PRI I ABIY-DICIDE-BETWiN (X Z) justification), uses any reason for any

restriction option as a reason against each outside option. These also construct policies.

We add new options with (OPTION X justification) or (OPTIONS (x Z} justification),

where here X ... , Z can he any objects of the sort required by the purpose.

An action operating on both reasons and options is (REPLACE (W ... X) {Y ... Z)

justification), where each of W ... , X, is an option ar.d Y ... , Z can be anything, and are added as

options. Ibis means to replace the former set of options by a new set of options by preferring each of the

replacing options to each of the replaced options. However, no new reasons for the replacing options are

constructed. 'he action (COMBINE (x ... Y) Z justification) prefers Z to X ... Y and constructs a PRO

reason for Z in terms of the policy and the reasons for the combined options. This is useful, for example,
i

when reformulating options along a new dimension, when some options are each partly right and partly

wrong, and a synthesis is possible which retains the good parts and discards the bad parts. This sort of

case crops up very frequcntly when options arc suggested on the basis of only a part of the problem. For

example, when deciding what textbook to buy for some class, one might think of one book which is

relevant foir part of the class's charter, and another which is good for another part, but might then

discover that some book covers both of these parts (such as the one written by the class's instructor).

____I ____I_ ___ __ I

177

5.7 A Ver (General Ikliheratio,, Procedure

I n this section we present a deliberation procedure of considerahle generality. Few situations call for as

gencral a procedure, principailly just novel situations and important decisions.

Thie procedure is, in CSSCnIce, just that of repeatedly retrieving a relevant policy, carrying it out,

arid (hen renlccing on the results until the judgment is made during reflection to halt with a dccision.

This is oif course a xery cautious way or proceeding, and very time consuming, hot sometimes this is

necessary.

5.7.1 The Devliberation Plans

We first sketch the structure of the procedure as a set of informal pians, and then discuss its

operation in detail using these plans as the framework. Figure 12 displays the basic steps of the plans.

DPi1: Input: PURPOSE Output: OUTCOMES
I . Scan the set of intentions for relevant policies. For each one

construct a new intention to consider it as a subordinate of
PURPOSE , and add it to the Ilist of considerations.

2. Perform DP-2.
3. Pol Icy: Prefer stop 2(OP-l. 2) to a)I the nowsubordinates of

PURPOSE just constructed.

0P-2:

1. Reflect carefully on what to do next (select the aim of step 2 (DP-2. 2))

Options: Delay. Reject, Decide, Continue

Delay: Prefer non-OP tasks to OP ones until *later"4

Reject -Abandon (defeat) PURPOSE
Decide: Set OUTCOMES, abandon unfinished subordinates

Cont inue: Perform OP-3 for one of the pending subordinates

2. ______.(F illed in by step I (DP-2.l1).)

DP-3: Input: SUBORDINATE

1. Perform DP-4 for SUBORDINATE.

2, Perform DP-2.

3. Policy: Prefer step?2 (DP-3.2) to all original (OP-1) considerations.

OP-4: Input: SUBORDINATE

1. Carry out SUBORDINATE.

178

Form reasoning intentions from policies J Halt with outcomeJ

Reflect on ratsoo nexea

Carry out a consideration PReject

New reasons? L Pursue Subordinate

Reflect on reasons

Figure 12

The Deliberation Procedure

179

2. Scan the set or intentions for relevant policies. For each one

construct a new intenLion to consider it as a subordinate of

this step (rP-4.2) and add it to the list of considerations.

3. Policy: Prefer all intentions constructed in step 2 (DP-4.2)

to all other DP intentions.

This deliberation procedure divides into two major aspects: the first-order reasoning, and the

second-order reasoning. The second-order reasoning reflects on die first order reasoning to decide how

to proceed with the decision-making process. We discuss each of these separately.

5.7.2 First-order Ieliheration

I. Create the deliberatio, record: The first step towards making the decision is to construct a

deliberation record, whose purpose is the decision intention being worked on by the deliberation

procedure. If the intention (rather, the plan of which it is a part) also specifies initial options and defaults,

these arc entered into the deliberation record as well with justifications mentioning their source.

2. Retrieve policies: The second step is to search the set of intentions for relevant policies, using

the purpose of the deliberation record as a means of determining relevancy.

Each policy retrieved adds a new intention to the set of considerations with the relevancy

prlcedure and its arguments in its justification. 'Mie list of considerations will be scanned in Step 4 to

carry out these policies one at a time. The new intention is that of applying the policy in this decision.

3. Reflect on how to proceed: The deliberation procedure is a UNI'IL-REPEAr loop,

repetitively considering policies until the decision is made to stop. 'Ihis step asks the UNTIl. question

about how to proceed. It is the intention to reflect on the current progress of the deliberation and to

decide whether to make a decision, to continue deliberating, or several other possible courses of action.

In one sense, this step is much like the ordinary step of the interpreter of deciding what to do next, except

that this decision is to be made relatively carefully itself. Its aim is not simply that of selecting one

intention over another, but rather that of selecting between some intentions (the considerations and other

6 _ _[=, ___ _

180

subordinates) and some possible but not actual intentions, that is, courses of action yet to be made into

intentions by the deliberation procedure.

The interpreter sees at this point a frontier including this reflection intention, the unrealized

subordinates of the original decision intention, and any other independent intentions, and it chooses one

of these to work on. -lowever. the deliberation procedure has set ip policies to guide the interpreter by

preferring the reflection intention (o any other subordinates of the purpose. Tlhis preference will not be

overridden by the decision intention or any of its subordinates. hut might be overridden by independent

inteiitions that have higher priority than further deliberation.66

At any rate, the third step is to invoke a second-order deliberation procedure to consider the

problem of how to proceed with the original decision. As in first-order deliberation, the actions of the

%econd-order deliberation procedure are to first create a deliberation record and then deliberate in that

deliberation record. We postpone desription of these steps for the next subsection, and proceed now

with the rest of the ;irst-order deliberation steps.

4. Apply one policy." The next step is to carry out an unrealized consideration as selected during

reflecti(n. The interpreter retrieves application procedures for carrying out the policy, selects one,67 and

executes it if it is a primitive, or added to the current state of mind if it is a plan. In the latter case, it is

given priority over all other DP-related activities.

Alternatively, the previous reflection may have selected some non-consideration subordinate of

the purpose, and in this case, that subordinate is carried out.

Pan of what is properly second-order deliberation is built into the policy actions in the following

way. If the actions add new options, the deliberation procedure retrieves and forms considerations for all

policies relevant to the new option and the purpose, but does not carry them out yet. lowever, if the

66. I do not spccify how this selection is made. I expect that it s normally much simpler than the decisions made by the careful
procedure.
67. Apin, I have not worked out in detail how this choice is made.

actions add ne reasons to the set of reasons, then the deliberation procedure retrieves and forms

consideralions for all the policies relexant to the new reason anid the purpose, and then carries out each of

these new considerations the same way. 'lTuis process of reflecting on new reasons continues until no

more reason-relevant policies can be found.

Does this uncontrolled iteration always halt? If things are properly organized, yes. This can be

seen hy a simple argument. Phc condidions of these reason-reflecting policies are all basically of the form

"If the decision is about X and a reason R of type '' has been found for or against Ia reason Ri of type 'Fi

for or against)* an option 0", where the starred, bracketed phrase inay be repeated any number of times.

'hat is, successively retrieved policies refer to suiccessively longer arguments debating some option.

l'herefore, unless the system has infinitely many policies, this reason-reflection iteration must

terminate.
68

5. Repeat: The deliberation procedure now keeps repeating steps 3 and 4 until the decision is

made to halt deliberation in one of die ways described in the inext subsection.

5.73 Second-order Deliberation

1. Construct the second-order deliberation record: The purpose of this deliberation record is the

second-order decision intention. This deliberation record is also added to the list of reflections of the

first-order deliberation record.

2. Engage in second-order deliberation: The second-order deliberation procedure retrieves and

forms considerations from all policies relevant to the second order decision. It then carries out each of

these intentions, reflecting on each new option or reason to find newly relevant policies, but without

reflecting on how to proceed. '[7hat is. these considerations are simply carried out one after the other,

68. Of course, this "proof' has holes, but further investigation requires a working program and concrete examples. I do not foree
any serious dif1culft

i U I E * I I I I I I ,

182

harring interruptions from indepcndent intentions, until all considcrations have been realized and no

more can be retrieved. We need not fear non-termination because of the limited and non-constructive

nature of the policies applicahle to the second-order decision.69

5.7.3.1 Second-order Options

There arc a number of standard policies for this second-order deliberation. Sonic of these construct

options and reasons standard in eery second-order deliberation, others construct other options and

reasons of sorts standard in e~ery second-order deliberation, and yet others construct decision-specific

options and reasons. The standard options arc as follows.

()pfioni A: l)elay further work on the decision in favor of working on other intentions. This

means to retain the original decision intention as an active, in-progress intention, whose execution will be -,

resumed later. Taking this option means halting second-order deliberation after adding a policy which

will preferably restrict die next step taken by the interpreter to some activity unrelated to the decision. Of

course, there is a wide range of types of delays, from just avoiding the decision for one activity, to

avoiding it until many other activities have been undertaken, to avoiding it until all other activities have

been finished, to avoiding it until certain information is discovered. Formulating this sort of vocabulary

is an area for future study.

Option B: Reject the decision. This means to discard the first-order decision intention, to defeat

the intention to make the decision.

The options and policies of standard sorts arc as follows.

Oplion C: Halt deliberation by deciding on the currently best option as the outcome. 'his

69. An interesting direction for further exploration of these ideas is to develop a modification of this procedure so that the
second-order deliberation procedure is the same as [he first-order procedure. 'Ibis would be a completely uniform, erbitrarily
reflective deliberation procedure. Some son of termination policies would be needed, or perhaps the default of halting rather than
further reflection once the second level was reached.

183

meanls both setting the %alue of the plan variable for the outcome, and also defeating all unrealized

considerations. This option is created by a policy that computes which first-order option has a good

"ocr all" reason, plugs it into the fofnn of this option, justifies this new option, and then creates a reason

for this option, the reason being that the selected "overall" reason is i good "overall" reason.

When sccond-order deliberation decides to terminate the first-order deliberation by taking some

first-order option as the outcome, it does so by finding some good reason "all things considered." There

arc several wa)s of interpreting what this means, and the one which we adopt here is that in the current

set of reasons as interpreted by RMS. the selected option has a \alid pro reason and no valid con reasons.

Ilic second-levcl reason for this second-level option actually comes in two forms, those in which the

option is picked because it is the only such option, and those which pick the option randomly from

several such options. These will be explained shortly.

In some cases, the deliberation procedure can return several outcomes rather than just one. The

different restrictiotns are enforced by second-order policies about multiple "good" options. There can be

a policy to return them all (as in deliberating on which desires to pursue), to pick one randomly (as in

selecting the intention to carry out next), or to force just one outcome. Ibis last restriction could be

effectcd by a policy which defeats against each option on the basis of good reasons for any other options.

Option D: Continue deliberation by carrying out consideration intention I. An option of this

fonn is created for each unrealized consideration I, and decision-specific policies may provide the option

of reconsidering some previous policy. Reconsideration amounts to reapplying all of the relevant

considerations and looking for further relevant policies and other new information.

Option h: Continue deliberation by carrying out non-consideration subordinate I of the t,

decision intention. An option of this form is created for each unrealized subordinate I of the decision

intention.

Option '. Reformulate the decision as I, that is, abandon the current decision intention, add the

new intention I, and resume interpretation, which will eventually work on I afresh. This sort of option is

...........

184

never constructed by a general policy, only by domain-specific policies. Option 13 is the

domain-independent form of this option. Option F is meant to cover the case in which thinking about

one question leads to the discovery that the presuppositions of the decision are wrong. For example, one

is trying to decide on an outline for a paper, and realizes that the important question is not about which

organi/ation is best, but about who is the intended audience of the paper. One then discards the active

intention to decide on an outline, only later forming a similar intention after the audience decision has

been made.

5.7.3.2 Secomid-order Policies

Along with these standard options. the standard second-order policies construct a number of reasons.

lhese reasons for and against the second-order options involve a number of factors, including PC reason

analysis, completeness information, compatibility infonnation, time and resource pressure, and others.

This subsection explains some of these sorts of factors and the policies involving them.

PC reason analysis classifies the options into four sets, PNC, containing those options with a

valid pro reason and no valid con reasons (that is, those options 0 with the statements PRO(O) in and

CON(O) out); PC, containing those options with both valid pro and con reasons: CNP, containing those

options with a valid con reason but no valid pro reasons: and NINC, containing those options with no

valid reasons pro or con.

PC reason analysis is by itself insufficient for making decisions. Tlie naive policies involving it

alone might read as follows.

POLICY-I: If PNC contains exactly one option, take that as the outcome
of the first-order deliberation record.

POLICY-2: It PKC contains more than one option, pick one randomly as the
outcome of the first-order deli beration record.

However, with the deliberation procedure as we are outlining it, these policies are flawed, as

-4 '"_ _ _.__ _ _._.__ _ _,_ ___ _..._ . . "._ -_ :: . . _ _ _

185

there is no guarantee that imorc than one option has been considered. so that these policies might lead to

an overl) hasty decision. to remedy this problem, these policies must bc modified to take diC history of

the dcliheration into accouint. For example, Alfred P. Sloan Jr. refised to allow (le GM executive

officers to come to a dccision simply on the basis of unanimity. Hc required that no decision bc taken

unless there had been prior arguments over possibilities, disagreements showing that sevcral points of

view had been considered, that not everyone was oserlooking the ineitable flaws of any proposed plan.

To be able to take such historical factors into the decision-making, this information must be

recorded somewhere. The details of this are still open, and there are several obvious paths to investigate.

In the first method, policies are always represented as plans, and the temporal orderings on the execution

of the intentions in these plans provides the required information. This, however, seems too baroque,

and a second possibility is to analyze the set of reasons to tell if good arguments have occurred. A third,

even simpler possibility is to just record the sets PNC, PC, CNP, and NPNC in each second-order

deliberation record. This summarized information can then be consulted by examining previous

reflections to see if options moved from one classification to another. By using these reflection records,

POLICY-I and POI.ICY-2 above might be replaced as follows. Here the predicate)EFENI)ED means

that the option in question is now in PNC (CNP) but at some past time was either PC or CNP (PNC).

POLICY-3: If there is exactly one option in PNC and it is DEFENDED,
then take it as the first-order outcome.

POLICY-4: If PMC contains more than one option, and at least one of these

is DEFENDED, then pick a defended option randomly as the

f irst-order outcome.

POLICY-6: If no options are yet DEFENDED, then do not make a declsion.

This notion of WI+FNDI-I) might be used in another similar policy for cases in which all options seem

Ibad.

POLICY-5: If all options are in CUP and are defended, then reject the decision.

V

186

In addition to this general rejection policy, I expect each domain would incorporate reformulation

policies %hich would suggest specific refornmulaions of the decision intention or replacement of options if

all options arc in CNP or PC respectively. These more specific policies should override tie general one.

Of course, this notion of II-ENI)II) is too weak. What really seems desired here is a

refinement of DI:INIWD which incorporates some restriction on the completeness of the set of

considerations with respect to the relevancy procedures and resource limitations. 'he techniques

discussed in IMoore 19791 may be useful in these inestigating such refinements.

In general. one should consider mll possibilities when making a decision. Hence the following

two policies for continuing deliberation.

POLICY-l: If there is an unreal ized consideration,

then carry out the oldest one as the default.

POLICY-8: If there is an unrealized, non-consideration subordinate.

then carry out the oldest one as the default.

POLICY-9: Prefer defaults created by POLICY-7 to those created by POLICY-8.

In some cases, policies will construct inconsistent preferences among the options. Further

policies must be supplied to guide the revision of these inconsistencies. For example, POI.ICY-9 above

rectifies the initially inconsistent policies 7 and 8, both of which declare some option to be the lowest in

the partial order. However, their inconsistency would not be very serious, for RMS would just accept as

the default whichever came first. But in more complicated cases (involving odd-length cycles), such as

each of 01, 02, and 03 having a good reason for them, to which the policies Prefer 01 to 02, Prefer 02

to 03, and Prefer 03 to 01 are added. RMS would discover an apparently unmatisfiable circularity, and

create an intention to revise these inconsistent reasons, that is, to defeat one of the preferences involved.

'Ibus in cases like this, additional conflict-resoltifion policies must be supplied.

In many cases, however, there will not be enough information to argue about the options to

produce a defended option. In other cases, there may be no policies which will resolve conflicts, so that to

0-01 M
I

-- --.... r -T a , l lle iti -
- Ii

187

the best abilities of the progran, the best options arc those in PC. These are irreconcilable dilemmas for

(he program, and to act it might have policies like die following.70

[lOLICY-9: If there is pressure to decide, and all information has been considered,

and there are st il no PNC opt ions but there are some PC options,

then pick one or the PC options randomly.

POt ICY-o 1 f -e is pressure to decide, and all information has been considered.

and the. - are still no PNC or PC options but there are some NPNC options.

then pick one of the NPNC opt ions randomly.

POt ICY-11. If there is pressure to decide. and all information has been considered,

and there are still noPNC. PC. or NPMC options but there are some CNP options.

then pick one of the CNP options randomly or reject the decision.

h is difficult to sa much more about these sorts of policies in the abstract, since most policies of

these kinds are likel) to be domain specific. Much experimentation and experience is necessary here.

This concludes the digression on second-order policies, and we continti with the steps of the

second-order deliberation procedure,

5.7.3.3 Second-ordcr Decisiom

3. Choose he second-order outconme: The next step of the deliberation procedure, after

retrieving and applying all the second-order policies, is to choose some second-order option as the

second-order outcome. 'his choice is made by selecting the first second-order option that is in PNC in

the order of preference of options D, F. C, A, B. that is pursue a consl , ration, pursue a subordinate,

decide on an outcome, delay, and reject. It would he elegant to develop some way of making this

third-level decision uniforn with the second-order decision, perhaps by tennination policies which

always decided unless the second-order policies conflicted. 'here are many subtleties here, such as the

fact that the third-order options are basicaHy the same as the second-order options, that make this an

70 "hes policiks all ad on a paucily of inrormaton, similar to NASIAs QUII'1.ENCE dkim mles

.. .' -

188

intriguing question for further study.

4. Act on the sciond-ordcr oul.olIe: If the outcome is to pursue a consideration (I)), this means

returning to Step 4. If it is to pursue a subordinate (F), this means to add a deliberation continuation

intention along with ordering policies making the selected subordinate die only intention on the frontier.

If it is to delay (A), then add a deliberation continuation intention with ordering policies preferring

current fronticr intentions to it. If it is to reject (11), then defeat the decision intention. If the outcome is

to act on a first-le cl option (C). then an execution procedure is rctricved for doing this, as different sorts

of dccisions in\ol~c different actions. For example, if die decision is about whether to form intentions

from desires. then if some desires are chosen, new intentions are constructed " ith the aims of the desires,

dind added to the set of intentions. If the decision is to pick some intention to work on next, it is handed

over to the interpreter foir carrying out. If the decision is about some aspect of a current intention, the

chosen value is inferred in that intention theory.

5.8 An Exaniple Reworked

In the beginning, Robbie's interpreter is carrying out the currently active intention of passing through a

door. Robbie has reached the door and is considering how to pi, ceed, the next step of his plan being to

open the door. At this point, Robbie's visual system detects an object moving towards him, and identifies

the object as a woman. Robbie has a policy of normally interrupting whatever he is doing to consider

what to do about approaching objects, since such object are often important to survival, either as food or

as dangers. 'Ibis policy suggests that he decide what to do about the woman, and defeats his first thought

to continue what he was doing, namely to proceed with the next step of his previous plan and open the

door.

So Robbie decides to consider what to do about the woman rather than to open the door. He

begins work on the following plan.

A -Z

AD-AlOb 666 MASSACHUSETTS 114ST OF TECm CAMHRID6E ARTIFICIAL INTE -FTC F/G 6/4
6b A MO0DEL FOR DELIBERATION. ACTIOfJ AND INMVOSPECTION1U)

MAY .D 0 j DOYLE N00014-75-C 0643

UNCLASSIFIlED Al TR-b81
NLE3hiiiiiiii I.

Emmhhhhhlo on
IIIIIIIEZJolo

189

(INTENTION 1-1 () (AIM) (CHOOSE (ASPECT=AIM) (INTENTIONI-2) () (OUTCOME)

[OBJECT AIM] = VISUAL-OBJECT-DESCRIPTION)'

(iNTENTION 1-2 () () AIM)

(ANIECEDES I-i 1-2)

lHere the aim of'l-1 means to decide what to do about the approaching object. It takes in the object

description as passed in from the visual system and outputs an aim for 1-2.

'Te interpreter begins work on I-I which it carries out by a deliberation procedure)P based on

the above. The first thing I)P does is to create a deliberation record I)R. DP declares that i-I is the

purpose of DR. It then tries to retrieve the set of policies relevant to the purpose and current state of

affairs. This means that the database retrieval procedures take as arguments I-1 (the purpose), I)R (the

current state of the deliberation), and MIE (the current state of the program in general).

The first thing retrieved is the policy "A gentleman always holds the door for a lady." DP adds a

consideration for this policy to the list of considerations of DR. More formally, this policy is as follows.

POLICY-i: If A: thi aim of the purpose of DR is to choose an aim

and the object of the aim is a lady-i ike-appearing female,

and there Is a current intention with active progress status

and the aim of that Intention is to open a door,

then (PRO (OPTION "hold door for OBJECT") (SL (POLICY-I A) ())

Here we have taken the liberty of writing an English description of the condition and the option.

Actually, the condition is a logical statement of just what is said, in terms of the descriptions involved and

their parts. i
Following a brief reflection which decides to continue deliberation (since nothing has been done

yet). DP applies this policy by evaluating its condition to see that it holds, and then executes the actions in

the consequent of the policy. The first action adds an option 0-I to the (currently empty) list of options

of)R, the option of holding the door open for the woman. Thc second action says that POI.ICY-! and

the application condition A form a reason for 0-1. and adds this reason, R-1, to the list of reasons of DR.

DP then re-internigates the database to see if any new considerations can be found relevant to

the new items. In this case, the new option does not lead to any new considerations, but the new reason

190

does. Since that time long ago when Robbie was initially programmed, chivalrous reasons for actions

have become socially unacccptable. Robbie has learned to watch out for temptations to act chivalrously.

lie does this hy means of the policy POIICY-2.

POLICY-2: If A: R is a reason in the deliberation record of the current decision

and R's reason involves POLICY-i,

then (CON R (SL (POLICY-2 A) ())).

The condition of this policy holds. so DP executes the action, which adds a reason R-2 to)R. a reason

against R-1. 'llis invalidates RI-1, so now 0-1 has no good reason. DIP sees it is without a good option in

reflection. continues to scan the database, and finds a third relevant policy. After firther reflection it

applies this policy, which also has a true condition.

POLICY-3: If A: the aimof the purpose of DR is to choose an aim

and the object of the aim is a non-threatening person

and there is an active intention with active progress status

and the aim of that intention is to open the door)

then (PRO (OPTION "hold the door for OBJCT") (SL (POLICY-3 A)))

Executing this policy's first action adds another reason for 0-1 being an option, and the second action

adds a new reason, R-3, for taking 0-1. DP now finds no more policies, and again enters second-order

deliberation. RMS shows that of the three reasons in l)R, R-2 is valid, so R-I is invalid, and R-3 is valid.

1ius, all things considered, 0-1 has a valid pro reason, so DP takes it as the outcome of the deliberation.

Intention 1-2 thus gets an aim to hold the door for the woman, which the interpreter then carries out, so

Robbie holds the door for the woman.

191

CI APTER 6

DELIBERATE CI 1ANGES OF MENTAL LIFE

To survive. we must change ourselves as well as the world around us.71 We must reflect on our beliefs,

concepts, desires, values, and skills to judge whether our life would be better if we held or employed

different ones.

These changes in ourselves take many forms, and arc brought about for many reasons, such as to

become happier, more competent, informed, efficient, to conform with others, or to become free of

confusion, contradiction, or doubt. We sometimes decide to change to improve the correspondence of

our attitudes with the world, or with our standards for ourselves. or example, I change my belief that a

door is open because my unsuccessfil attempt to walk through it points up a mismatch between my

beliefs and reality. Either I hallucinated the attempted passage through the door and the pain in my nose,

or I am wrong about the door's being open. Or as another example, I wish to become a mathcmaticia,,

only to find that my intuitions conflict, that I believe that the irrationals far outnumber the rationals, but

infer a conflicting belief from the existence of an irrational between each pair of rationals and a rational

between each pair of irrationals. In this case I cannot give up either of these beliefs, as they are part of

what mathematicians believe, so I must give up my inference that they conflicL Or finally, I judge my

inference that I am a terrible person because I can't sing well to be the cause of my unhappiness, and thus

of the mismatch between my observed unhappy mental state and my standards of a happy outlook. To

remedy this mismatch. I either give up the inference that I am a terrible person, or the desire that I be

happy. But these changes do not just happen. In most cases, it is my reali7ation of the need for change

which leads me to decide to change, to form an intention to change, and then to carry out that intention. t

71. What is .urvival? Ir we are mutabic. what is it that is surviving? "hroughout this thesis we maintain the fiction that there is
something called the "self." Chapter 2 presented some general masons why this is desirable. but this thesis is not the place for the
discussion this question deserves. I hope to analyze this question in fight ol the current model in a later paper.

I
_ _ - -

192
A

I)eliberate adaptations perhaps play a larger role in developmental psychology than is normally

recognized. For example, many accounts of the psychological developnent of children are pu~zled by j

tie apparent inexplicability of the changes undergone by the child. 'Thc answers to these puzzles may

often be that the child at some point realizes that he is frustrated by an inability to perform some task,

and simply decides to learn how to do it. Such deliberate changes are more clearly recognizable in the

case of adults who, for instance, decide to take classes to acquire some skill or knowledge.

iis chapter describes how to use the techniques previously developed in this thesis to

deliberately change the content of the program's mental life. 72 in all cases, the basic recipe for change is

similar. The motives for changes come through reflection, and the implementation of changes comes

through intentions to change. The program first reflects on its set of attitudes, by using its self-referential

ability to view its current set of beliefs, desires, skills, concepts, or values, and to infer properties of that

set which indicate the desirability of change. "Ilie reflection occurs during deliberation on what to do, and I
policies recognize the motivating conditions for changes. This reflection is followed by further

deliberation and planning of what changes might be appropriate and which changes should be taken.

Further policies guide this decision of how to change, and the result is an intention or plan for

implementing the change.

For example, a policy applied during reflection may reveal an inconsistency in beliefs, or an

unexpected, erroneous effect of an action. The program may then take these realizations of

contradictions or bugs in procedures as cues to correct itself, and form intentions to fix the incorrect

assumptions or procedures. 'he program can then apply itself to deliberately tracking down which

beliefs or procedures are at fault. ibese changes might be carried out by simple techniques, such as

72. A large problem, if it can be called a problem for a reasoner rather than for the genelicists and psychologists ofa specie is how
to change the form of one's mental life. how to choose and invent or discard various emotions. e.g. creating an intelligence that lacks
fear. or combativeness. or other attributes. These are rarely problems for the individual (except perhaps in Buddhists), as he moe
frequently concerned with questions of how to improve his knowledge of the world, how to stop being depressed, how to enjoy life
more. how to slop smoking. how to perform his job better, etc. It is these more circumscribed changes that we deal with hem

193

dependency-directed backtracking [Doyle 19791, automated debugging techniques [Sussman 19751, or

even asking the user for help. Its plans for carrying out these changes might be very involved. Faults in

primitive procedures can take much experimentation. simulation, and analysis to locate (as any

programmer can tell), and false beliefs can require similar searching out (as psychiatrists will vouch).

11% and large, these techniques of deliberate changes are familiar to Al, as they are the sorts of

imperative changes programs make on their own data-structures. In most Al programs, imperative

operations are used from the start and taken for granted, because most programming languages are

founded on imperaties. In contrast, imperative changes come near the end of this thesis as applications

because we concentrate on the reasons for these changes, which nonnal imperative languages ignore.

When one sets a variable in LISP, one rarely can tell why that change occurred. That is part of what

makes debugging programs so hard. What we aim for is ways of performing the same operations, but so

as to be able to explain and analyze them later.

The reader is cautioned that the rest of this chapter is exceedingly vague, more in the way of

hints for future research than presentation of concrete techniques. Unfortunately, time limitations have

precluded presentation of anything but a sketch of motivations and methods for change. Most of these

sketches merely refer to other works where these sorts of changes have been studied in their own right.

Casual readers are encouraged to skip to the next chapter, as the basic ideas of this chapter have been

presented in this prologue. The remainder of the chapter contains only slightly more concrete examples.

6.1 Motivations for Change

In this section we catalog a variety of the policies which might be employed during reflection to lead to

intentions to change the program's attitudes. Fach of the policies we describe is of the form "If the

current set of attitudes has property P, then reason for the option of making change C." Of course,

during deliberation, the sets of attitudes are changing constantly, so the set S of attitudes whose properties

L j ,

194

are inferred in the condition of the policy will usually not be the set of attitudes after the policy has been

applied. llowever, we. and the policies we write, ignore this problem and (except for special kinds of

policies mentioned later) always assume that the properties in question are invariant under deliberation.

This is usually a safe assumption for properties like "is inconsistent" or "contains no procedure for

installing light bulbs" are rarely affected by deliberation alone.

6.1.1 Belief

'he major reasons for changing one's belief are to explain some unexpected fact, to cope with surprises

while taking actions, to resolve conflicts, and to adopt or abandon beliefs with specific long-term

consequences in actions or otherwise. Properly, the following policies describe changes to the set of

inferences recorded as justifications, since the program derives its current set of beliefs from the current

set of justifications.

BI: If someone informs me of a fact, try to explain it from my previous beliefs, or try to detect its

inconsistency with them.

In general, one always seeks to explain surprising facts, but as far as I know, no completely

adequate account has been given of what surprising beliefs are, why one wants to explain them, or exactly

what it means to explain them. Schank 119791 classifies new information by subject matter and uses these

classifications in deciding whether or not to investigate its consequences.

B2: If the observed effects of an action conflict with the effects I predicted, then try to explain the failure

of the predictions,

Observations might lead one to abandon conflicting predictions, but they rarely explain the

failure without further explanation.

B3. If at some times I seem to act as though I believed B and at other times as though I believed nB, try

___ ____

195

to determine which I believe and make me do so consistently.

Often one reflects on one's actions to justify or rationalize them to oneself. 'Ibis is particularly

true of actions carried out unconsciously (as in primitives). These rationalizations involve constructing

imaginary desires, beliefs, and intentions which would have lead to the action, that is, pretending the

action had been taken to carry out an intention directly, and asking what that intention was and why it

was held. If this process gives seemingly incompatible rationalizations on different occasions, there may

be some confusion which can be clarified.

B4: If the current set of beliefs is inconsistent, then try to remove the inconsistency.

Ilere the set of beliefs is inconsistent if it contains two beliefs A and 11 such that AAB is

contradictory.

85: If the current set of justifications contains an unsatisfiable circularity, try to make it satisfiable.

This is noL a condition ordinarily recognized during reflection, but rather a condition noticed by

RMS. These unsatisfiable circularities can be viewed as describing paradoxical statements or inferences

that cannot be taken as either true or false, or valid or invalid. The simplest response to this condition is

to reject the final inference to paradox, to ignore it, as, when one laughs upon being told Russell's

paradox.

B6: If the current set of non-monotonic assumptions about things currently supports an unhappy,

depressed. frustrated, or other undesirable outlook, and the same set of non-monotonic inferences can i

support by reinterpretation a happy or other desirable outlook, then try to switch the interpretation of

these assumptions to the happy or more desirable outlook.

'Ibis policy expresses a policy similar to 114 about inconsistent beliefs. There are many reasons

one might avoid certain patterns of beliefs, not just that they are inconsistent, but also that they have

)/ other bad qualities besides the confusion caused by inconsistency. The message of many self-help books

196

is that while sometimes outr unhappiness results from pain and other true discomfitures, frequently our

unhappiness is merely in interpretation we needlessly impose on our beliefs, that is, merely a set of

inferences better leR unmade. For example, one might feel bad because one makes the inference "I'm a

terrible person because I'm an incompetent singer." Ilie solution is to recognize oneself making this

inference and avoid it, in the same way one might avoid taking the final step of the argument to Russell's

paradox. One avoids making the undesirable inference and cultivates instead alternate inferences from

the data, such as "I should take voice lessms because I'm an incompetent singer," or "It's good I enjoy

singing for myself, because mrn incompetence would really aggravate others," or" I can earn tidy sums by

singing until people pay me to stop or leave."

B17: If the current set of beliefs contains beliefs which might have undesirable effects in die future, then

try to change to beliefs which do not lead to undesirable effects.

Where 116 notices currently annoying aspects of beliefs, 117 attempts to anticipate possible future

annoyances. A contemporary example of such a change is the business executive who becomes a

Republican to avoid hindering future promotions made by Republican superiors. The classical example

of such a change of belief is Pascals wager. Pascal believed that if God exists, then He must have the

traits attributed to Him by the Christian Bible. Pascal reasoned that if he had faith in God, then at worst

he would miss out on life's voluptuary pleasures, and at best he would gain admission to Heaven, which

for him was by far the most one could hope for in any mode of existence. He reasoned further that if he

withheld faith in God, at best he would sample life's voluptuary pleasures, and at worst would suffer

infinite torment in Hell. Pascaml judged the eternal possibilities more important to him than the transitory

human opportunities, and adopted the Christian faith. 3

73. 1Ils mu.ing on this question was ihe cause of his faith. but not its reason. 'ha is, his deliberation lead him to form an intention
to adopt this faith. ic intention depended nn the prior beliefs. lhc faith did not depend on the prior beliefs, for it was purely an
effect of an action taken to carry out the inention. While the intetltin is the cause of the aetion taken to satisfy it, the action record
on which the faith depends is an observation, a premise, of the program about itself, and does not depend via reasons on the
intention. "Me are nmny interesting subtleties about the nature of action here, but we will not pursue them no.

197

6.1.2 Concepts

Since concepts or the theories in the hicrarchical database do not refer to the world, but rather arc used

by attitudes in referring to the world, it does not make sense to speak of a concept as an attitude, of a

concept hcing incorrect becausc it does not match reality, If it did, we would havc to conclude Pegasus to

be an incorrect concept. Rather, the following policies create and revise concepts on the basis of

completeness, efficiency, and correctness with respect to a shared vocabulary among discussants. Since

there is at large literature onl concept formation and revision, which suggests many policies for these

changes, I merely present a few of the most basic ones.7

CI: If the same combination of concepts (e.g. a log from one ground to another) is constructed on two

occasions for different problems (traversing a stream and a crevasse), create a new concept (bridge) whose

structure is that combination.

C2: If one concept (e.g animal) has too many specializations (dog. perch, horned toad) in the hierarchy

for efficient searching, create new intermediate concepts (mammal, fish, reptile) to decrease the

branching factor and capture commnonalities.

C3: If people persistently seem to misunderstand one's use of a concept (e.g. elephant), investigate their

concept to see whether they mean the same thing (that large African quadruped with the round face, big

teeth, that spends a lot of time in the river and swims under and upsets boats).

14. See Winmon (1973]. rahhnaa [19791. Ad fta [19731

198

6.1.3 Desires and Intentions

I.ike incorrect beliefs, unsatisfiable desires can sometimes lcad to injury or frustration, so care must be

exercised in deciding which desires and habits one inculcates or breaks. Intentions are usually more

transitory than one's basic desires, but without frequent review of one's plans it is easy to fall into

continuing to carry out intentions whose reasons have long since departed.r

I: If a desire for the forseeable future leads only to undesirable effects, such as frustration through one's

inability to satisfy it, and to no redeeming influences on one's actions, then attempt to abandon the desire.

For example, I might abandon my desire for drinking soft drinks, as they are often without

redeeming feature and not without unsavory aspects, but I might not abandon my overindulgence in

hook-buying, as there are almost always good aspects of this problem. j

02: If a possible desire might have desirable influences on one's behavior, try to inculcate it.

Many people, for example, develop a desire for regular exercise to improve their vigor.

D3: If someone admired expresses certain desires and not others, try to emulate that person by

incukating a similar set of desires.

This sort of policy is often part of a large plan when the admired person is a potential friend, as

when one adopts new interests so as to be able to converse at length with someone.

I/: If one holds an intention because it is part of a plan, the justification (or superior) of which has been

defeated (abandoned), and the intention is not necessary for cleaning up after previously executed

intentions, then abandon the intention.

Of course, to this short list should be added the many planning techniques which rely on

reflecting on one's intentions, such as those of Sacerdoti 11977) and 'Fate 11975J. 'lhese policies include

resolving inconsistencies in one's desires and intentlonm.

199

12: If one holds inconsistent intentions (e.g circular priorities hetwcmi intentions), change them to restore

consistency.

6.1.4 Values

'The program's valucs as embedded in policies can be reflected on to increase their coherence and

completeness.

I /. If one's %ahues have, during deliberation, proven to be inconsistent or paradoxical, then try to modify

them to aoid similar problems in the future.

I lere policies are called inconsistent if they dra. opposite conclusions from the same data, such

as "If it's raining, then go inside" and "If it's raining, then stay outside". Policies are paradoxical in some

cases if their application leads to preferences with multiple interpretations or unsatisfiable circularities in

RMS. 'liese paradoxes result from the fragmentation of value, from the need to make unitary decisions

based on disparate considerations. The paradoxes manifest themselves most familiarly in non-transitive

preferences between options, which make the result of deliberation depend not only on the reasons for

and against the options, but also on the order in which they are considered. The typical example of such a

situation is in, say, political campaigns, in which one prefers candidate A to 11, and B to C, but prefers C

to A, and .so prefers A if they are presented in the order CBA, but prefers C if they are presented in the

order BAC.

V2: If one's values have, in many deliberations, proven to have consistent results after much reasoning,

then summarize the net decisions in new policies which are based on but replace in action the previous

policies.

Sometimes I find myself going through the same old arguments each time the same decision

confronts me. In these cases I often step back and decide the question once and for all (barring

...... ' s- ' Y - . ,,

200

irresoluteness or later information being discovered). For example, I never rehash the arguments for and

against holding doors for people, as I decided long ago to always hold doors, and to handle problems with

this approach as they (infrequently) arise.

1,3: If one is frequently confronted with a dilemma which is always broken randomly, adopt some new

value to avoid the effort of this decision.

6.1.5 Skills

As in the case of belief, there are many sorts of reasons for modifying one's set of skills, which we will

interpret to mean one's procedures, both plans and primitives, along with their method statements.7 5

Changes to the set of skills include both developing new skills and modifying existing skills, there being a

number of reasons for modifying skills.

The basic case of skill development is that of one-time construction in problem solving, wheni

one puts together a plan for solving a problem which may or may not be retained in the library of

procedures. New skills are constructed from old ones, either by combining several procedures in some

arrangement, or by modifying a copy of a procedure for some similar problem.

SI: If one will need in the fiture to achieve some aim by some means satisfying some specifications, the

construct such a procedure, index it under that aim, and describe it with those specifications.

The specification of procedures, as we have touched on previously, is still an active area of study, 9

as these specifications can refer not only to input-output behavior, but also to complexity, explicability,

iintermediate states, and other aspects of tie process.

An important part of one's skills is the description of the procedures. These descriptions serve

75 Policies are parts of plans for deliberating, and the previous subsection mentioned how one might make deliberating more
efficient by reorganizing one's set of polciesl.

------ ~-. - ___

201

not only to index the procedures so that they may he considered when relevant, but also to specify their

intended and observed effects. A common cause for modification or maintenance of a skill is when a

mismatch dcclops between these descriptions and the reality of the procedure's capabilities. These

mismatches can rcsult from changes in the program's attitudes, changes in the patterns of use of the

procedurc. changes in the physical realization of the program, or changes in the physical environment of

its realization. For example, I must modify my speaking skills when I find myself committed to teaching

my first class. I must modify my motor skills as I grow older and die physical realiimtions of my

procedures fails to match what I think they can do. I similarly must modify my motor skills if I move to

l.una, where my previous skills no longer have the intended effects. Other, less general mismatches occur

%hen applications of the procedures in novel circumstances discovers failures or other unexpected results.

S2: If a skill fails to achieve its expected effects in a normal situation, then it is broken, so modify it to

restore its functionality.

3: If a skill fails to achieve its expected effects in an exceptional or unconsidered situation, modify the

set of skills to cover this case as well.

S4: If a skill achieves its expected effects but has undesirable side-effects, repair it to avoid those

side-effects.

S5: If a skill has unexpected but desirable effects (serendipitous performance), analyze it to extract a skill

for these desirable effects.

V

202

6.2 Mechanisns ofChange

As we sketched previously, the mcchanisns for these changes are procedures in the library of procedures.

The techniqucs employed are based on an analysis of the reasons underlying the attitudes to be changed,

since to be an effective change the program must modify not only the attitudes directly under

consideration, but also those underlying them in their reasons.

6.2.1 Belief

'Ibe basic approach towards belief revision suggested here is that of incremental revisions guided by
4

policies expressing preferences between alternate partial revisions. In other terms, the policies express the

relatise tenacities with which the program holds its beliefs. This means that the program begins revising

its beliefs by deciding on some particular beliefs to change. As it attempts to change those beliefs, it

discovers that further decisions must be made about how to accommodate the changes in the remaining

beliefs. 'hese steps of decision and partial revision alternate until the system of beliefs has been

coherently modified in accordance with the intended revision.

Ibis sort of revision accounts for the policies B2, 134, 135, and B6 above. B2, B4, and 136 are

about changing beliefs, and 15 is about fixing the set of justifications for beliefs, but since we make all

changes in beliefs by adding and defeating justifications, we can handle all of these changes using the

same techniques. We view unsatisfiable circularities as inconsistent specifications for the set of beliefs,

inconsistencies in the reflected justifications. Similarly, we view the undesirable conditions of B2, B34, and

136 as inconsistencies. B4 concerns inconsistencies directly. 136 wc interpret as an inconsistency between

actual beliefs and intended beliefs, and 02 we interpret as an inconsistency of action or predictions of

those effects, where the predictions are inferences from the action record and the action specifications.

However, matters are complicated by the ambiguity of belief revisions. When beliefs derived by

inferences or actions conflict with previous beliefs, there are many ways of reconciling the conflicting

-T

203

belief. Any participating belief may be rejected, not just the previous beliefs, and what revision is made

depends on the context of the inconsistency. For example, the ways of icsolving an inconsistency are

different depending on whether the program was just thinking through an action (planning), or whether

the program actually took the action. If the action was a hypothesized part of a plan, the program might

choose to discard the action and try another. If it actually took the action, it might discard the action (and

so think that the action was hallucinated) or find some assumption about the world that must be wrong.

Suppose the program tries to lift a large object via a cable on a crane. If it lifts the crane and detects that

the object still rests in place, it might reason that either it imagined lifting the crane, or that its senses

reporting that the object remained unmoved are wrong, or that its assumption that the cable would hold

the object was wrong, that it snapped.

[his problem of ambiguity of belief revision leads to one of the three forms in which the

interpreter makes decisions via decision intentions. If RMS reports an inconsistency following a primitive

execution, or an ambiguity in the revision necessary to incorporate the primitive's effects, the program

reflects on this ambiguity by creating a decision intention. In the case of an inconsistency, it is an

intention to decide how to remove the inconsistency. In the case of a direct ambiguity, it is an intention

to decide which of the alternatives to take.76

Now primitives should rarely lead to deliberation about how to revise beliefs. If they are

properly organized, they will do all the necessary belief revision directly. The basic idea here is that

"properly organized" means that the primitive action or revision procedure is a procedure compiled from

more complex deliberation procedures by specializing the processes to take into account the usual-cae

information about the effects of that particular action. For example, a primitive which updates some list

kept as an attached value might justify the new attachment and defeat the justification of the previous

76. I would be a Yey intresin$ task to encode RMS largely a policies guiding delibeaite changes of betlfs, so that RMS would
take the orm of a MACRO-RMS/MICRO-RMS combination analogous to MACRO-'IORI)/MICRO-TORPID. Thi iglht be
develcped into a belief system closer to human belief systems than the current RMS.

A _

204

attachnent Vith a justification inentioning the new attachmenL

Action-specific belief revision procedures incorporate information about how the action

normally affects beliefs: what sorts of beliefs are normally involved, what the normal alternate revisions

are, and which re~ision is the usual one, that is, which beliefs are normally rejected by the action and

which new beliefs normally take their place.

This information about the normal alternatives and preferences in belief revision is stated as

policies which suggest and discriminate between revisions. For example, one might tell a human "If you

Iel cold after taking this drug, it is because of the drug and not because it is cold outside." 'lnis policy

would be very useful in explaining conflicts between a feeling that it is cold outside and observations of a

thermometer and the sweltering of others indicating that it is hot.

As another example, assume that the program is being used to solve problems of manipulating a

set of blocks with a one-arm manipulator. Here we might give the program information about the normal

effects of the manpulation primitives. Two different such policies to guide its decision might be as

follows.

(1) When a block is moved from one place to another, give tip the belief that it occupies the

current location rather than rejecting the conflicting belief that it now occupies the new location. (Of

course, this looks much like the add list/delete lists used in STRIPS.)

(2) When planning actions rather than taking them, if a block is moved and a conflict arises

between the belief about the block's new location and the location of some other block (a collision), give

up the action and its effects rather than the belief about the other block, and then plan a different action

(perhaps one to get rid of the obstacle block followed by the current action).

here are similarities in spirit between this formulation of action effects and some previous

approaches to belief revision. As mentioned above, Strips' add and delete lists [Fikes and Nilsson 1971)

were espjntially policies which specified which of the several possible revisions to take. Rather than just

using a modal statement of the action effect, e.g. After A, P is true and Q is false, and letting these two

LiU

205

statements conflict with tie existing database statements, the add and delete lists say. e.g. After A, take P

rather than -1, -Q rather than Q.

Another technique is the use of "gripe handlers" (or "complaint departments") introduced in

BUILl.1) [l:,,hliian 19741. 'lliese are procedures provided explicitly to discriminate between the revisions

possible following the discovery of an inconsistency. Thie gripe handler of the procedure taking some

action might be invoked with the infiormation that the action caused a collision (a conflict between two

beliefs about block locations), or an unstable structure either at the source or at the target of the moved

block, or other errors. Ilie gripe handlers in BUIII) never rejected beliefs about the blocks in question.

but always rejected some action or actions in the current plan. The gripe handlers would classify the error

type (collision, instability, etc.) and would either reject some action itself, or would look at the goal

structure of the plan and pass the problem off to ie gripe handler of some specific other action. These

gripe handlers seem very similar in conception to revision procedures, save that they only reject actions in

the plan rather than beliefs in general.

A final technique for comparison is that of resolution rules as developed in AIMDS [Sridharan

1976, Sridharan and tlawrusik 19771. These are also close in spirit to our revision procedures. AIMDS

splits belief revision into two sorts of rules: recognition rules, which are statements of logical and causal

dependencies between the primary effects of the action and other beliefs, and resolution rules, which are

rules for selecting one of the revisions possible given the related beliefs computed by the recognition

rules. While it is claimed possible for AIM1)S to generate the recognition rules itself (by rephrasing the
t

logical axioms describing the domain to summarize chains of inferences), the examples presented do not

contain all dependencies, and thus do not allow any belief to be rejected. Also, the system does not use

the resolution rules as a way of deliberating about what change of belief to make, but interprets them as

imperatives, That is, if there are a number of (possibly incompatible) resolution rules, AIMI)S tries them

one-by-one until the action of some rule is not rejected by the database, rather than realizing that ther is

a decision to be made about which resolution rule to use. Also, how the database decides to rject a
a

* i ~ '

206

proposed change is not spelled out, although this involves values implicitly.

I have nothing to suggest about how to handle policies like 113, as it deserves further study.

117 describes a leap of faith." This can be implemented by justifying the belief as a prcmise and

by adopting policies to defcnd the belief during belief revision. Thus if the program wishes to have faith

in the statement "I believe in God," it first asserts this belief as a premise. (Actually, the adopted belief

depends only on the realization record for the belief-adoption action. In this way the adopted belief is

recalled as having been adopted, but does not depend on other beliefs, such as those which lead to its

adoption.) "l'he program similarly can adopt policies as premises which defend the belief against change

in any inconsistency, action, or other revision process. Perhaps much of the difficulty humans have in

adopting new positions and making them stick stems from the relative ease of adopting a belief as

opposed to adopting also all the policies and procedures necessary to make the belief enter effectively into

actions and decisions.

6.2.2 Concepts

I will not go into techniques for revising the set of concepts at all. as this topic is adequately covered in

numerous other works, as far as it has been explored. As usual, however, alternate ways of revising the set

of concepts will be the subject of deliberation and policies will embody the program's values concerning

organizations of its database.

6.2.3 Desires and Intentions

Sacerdoti 11977, 19791 explains a number of techniques for reflecting on ordering policies and other

intentions in planning. Shrobe (1979b] discusses how reflection on desires and intentions allows their

revision upon satisfying one particular desire or intention, using reason-analyzing techniques, but withoutft" deliberation. Basic desires and policies are much like premise beliefs, and the techniques for inculcating

207 V
ad abandoning them are similar to those for)caps of faith, although they normally need not require

further defensive policies.

6.2.4 Values

'lhc question of how to revise values and their embodiments in policies is unexplored as far as I know,

and neither have I pursued it here.

6.2.5 Skills

IIACKIER ISussman 19751 learned procedurcs for manipulating hypothetical blocks with a hypothetical

one-armed manipulator. It started its career with a couple of primitives for the manipulator, a store of

general programming and planning tricks, a few facts about the world of blocks and about its

manipulator, and a store of general ways to analyze and correct bugs in programs. When presented with a

problem, IIACKER would either remember or construct a program for solving it. If it constructed the

program, it did so either by generali7ing a piece of code used for solving a similar problem in some other

program, or by using general planning techniques to combine its own primitives to achieve complex

conditions. If the remembered or constructed program worked, Hacker remembered it and went on to

the next problem to be solved. If the program failed, however, HACKER performed a ritual

self-examination to correct the program if possible. It would first construct a description of the "process"

in which the error occurred, this including the history of the executed actions, their effects, their

teleology, and the intentions being carried out. It would then ask several questions about this process

model to determine the bug type. Some questions were counterfactuals, i.e. could such-and-such a step

have been inserted without conflicting with other goals at that time? Other questions matched certain

abstract process models against the actual process model to see if it realized the bug type associated with

the abstract process model. The answer to these questions was the type of bug underlying the error.

208

IIACKFR then searched the library of bug-patches with this bug type and with the patch located patched

the failing program. lACK I'R repeated the tryout and fix cycle until either the program worked or until
I.

no way could be found to solve some problem, in which case HACK FR gave up.

Hlowe er. the trouble HACK FR went to in analyving its bugs resulted in large part from its lack

of the sorts of techniques we have developed in this thesis for representing the reasons and intentions of

the program. For example, all of the information HACK IR painfully sifted from Conniver contexts and

control stacks in building its prcxess models is exactly the sort explicitly availahle in justifications, the sets

of desires and intentions, and the action history.

Since skill modification is such an important part of efficient and effective action, especially in a

program whose careful operations are as complex as ours, we illustrate the ideas developed in the

previous chapters by refirmulating HACKER using our techniques. This reformulation also raises a

number of topics for future research, particularly hypothetical reasoning and historical reconstruction,

which we hint at but have not pursued in the detail they deseive.

HACKER involves three major plans:

I. DEVELOP - for developing a new skill from scratch,

2. CRITICIZE - for patching a known bug in a program under development, and

3. DEBUG - for fixing a program manifesting an error.

We present these plans informally in English.

DEVELOP

I. If the skill is in the procedure library, DEJBUG.

This step retrieves a procedure for an intention via the usual method statement techniques used

by the interpreter. IDEBUG will carefully test the procedure to see if it works, and patch it if it does not.

2. Otherwise, construct a new procedure.

HACK ER uses two methods to construct new procedures.

E- m -- + _,, l l

209

The first method is to generalize or variabili/e part of a plan used to solve some previously

encountered similar problem, and make this a new plan. At the same time, this part of the plan is

replaced in the plan it was extracted from by a call to the new plan with the appropriate arguments. In

this way, any improvements made to the new plan are automatically shared by the original plan.

The second procedure construction method is to apply general problem solving techniques of

problem reduction, etc. to come tip with a new plan by combining other plans. We won't go into this

familiar subject.

More learning occurs when the first of these techniques is used, fi)r in it many procedures are

simultaneously improved and extended. The second method is more difficult than the first. Not only are

the general problem solving techniques quite expensive, but in addition debugging a new program is

more difficult, since several bugs may be introduced at the same time, thus making bug localization and

analysis very complex.

3. Perform CRITICIZE.

4. Perform DEBUG.

5. Compile the working program. Just as programs in ordinary programming languages can be compiled

into machine code, plans can be compiled into more specialized plans and into primitives. The basic idea

is just to take a plan and some restricting conditions, such as expected initial circumstances, or a particular

library of procedures and policies, and then to symbolically execute the plan under these restrictions and

make a more specialized plan or primitive from the decisions made and actions taken in the symbolic

execution. Plan compilation involves all the techniques standard in ordinary compilation, such as

constant folding, dead code elimination, loop optimizations, etc. In addition, the plan compiler uses

policies aow when to coercc independent steps of a plan into a sequence, when to replace deliberations

by conditionals computing the outcome of the deliberation, when to substitute subplans or primitives into

plan steps, and when to transform information passed through plan variables into information stored in •
local dala-stur

U!

210

CRITICIZE

1. If there are criticisms of the program, patch it. The program critics of HACK FIR and the plan critics of

NOAH had essentially ihe same form, that of looking for occurrences of subplans and replacing the faulty

suhplan with a new one. For example, HACKFR would look for steps in the wrong order and reverse

them, while NOAH would look for improperly unordered steps and order them. We phrase these sorts of

criticisms as policies. Tlhus this step consists of a decision intention to formulate and choose between

possible revisions of the program. To avoid incompatible changes, only one revision is selected, and the

plan recurses to effect further necessary modifications.

2. If it was modifietL CRITICIZE.

DEBUG

1. If it workh done. A proposed program is tested to see if it works not by direct execution, which would

leave no information to analyze an error with, but instead by symbolic execution. In symbolic execution

the temporal situations occurring before and after each program step arc modeled as theories copying the

current state of mind. ibe initial conditions are stated in the initial situation, and the actions are

simulated by applying their specifications or descriptions. This involves, for example, taking a

Floyd-Hoare specification PD[a]Q, trying to infer P in the prior situation, and if successful, concluding Q

in the subsequent situation. All specifications of each action are so applied, and a directed acyclic graph

of situations results.7" The symbolic execution halts either when the simulation is complete or when an

inconsistency or other problem is inferred in one of these situations.

It would be more attractive to simply use the interpreter to carry out this simulation directly,

without recording explicit temporal situations. However, this would then necessitate the ability to

reconstruct past situations from finished intentions and the action history. As Chapter 7 explains, this is a

77. Shrobe 1197/ expuimns dirk technique in dedL

211

difficult problem awaiting solution.

2. Classify the bug.

'his procedure analyzes the reason for the error by asking questions about the structure of

reasons and actions leading to the error. 'lhe goal is to take the surface manifcstation of the error and

reconstruct the underlying bug type. This is done by asking certain hypothetical questions about the

surface r anifcstation and by matching the surface manifestation against a variety of abstract "process

models" to determine the appropriate classification of the bug type.

There are four basic types of surface manifestations of errors: unsatisfied prerequisites, in which

some condition necessary for the application or some primitive did not hold at the appropriate time;

protection violations, in which one action interferes with conditions protected by some other ongoing

action; failed actions, a catch-all category which ought to be refined, intended to include mechanical

breakdowns. slippages, overlimits, hardware errors, etc.; and deja vu, my version of HACKER's double

move "error." Ibis is really not an error as such, but humans seem to be very good at recognizing certain

types of repeated or similar situations, and get a lot of mileage out of recognizing them. ibhis is

generalized to any noticed similar repetition, from HACKER's which only caught repeated movements of

the same block.

There are five basic underlying bug types: prerequisite clobbers brother (PCB), in which

achieving one prerequisite of some action undoes the previous achievement of some other prerequisite of

that action; prerequisite missing (PM), in which the plan lacks actions to achieve some condition

prerequisite for taking some action; prerequisite clobbers brother goal (PCBG), in which achieving a

prerequisite of one action undoes the effect of some other action which together with the first action

worked to achieve some complex end; strategy clobbers brother (SCB), in which performing one strategy

uncovers new information which might allow a previously failed strategy to succeed; and anomalous, a

catch-all bug type for those errors unclassifiablc as any of the preceding, which should be refined into

useful categorieL

212

Sussman presents the flowchart shown in Figure 13 for performing the classification of surface

manifestations into bug types. The decisions are as follows:

1. Would U.-P. being true now conflict with the current goals?

2. Was the U.-P. ever true before in this problem?

3. Pattern-match to see if IIG.

4. Pittern-match to see if SCB.

5. Several pattern-matches to see if PCB.

6. Pattern-match to see if It or PM.

These questions are answered by much the same techniques as used in I IACK.R, and I won't go into the

details of just what sorts of patterns the various policies recognize.

3. If it is menmorable. sunmarize the bug.

One should not bother remembering dismissed errors or trivial mistakes like fingers slipping

while dialing a telephone number. In this step, the program deliberates on whether to record the bug as a

policy which will recognize and patch its future occurrences in new programs. This involves trying to

explain the error as a one-time affair, or a something that is likely to recur. As far as I know, no one has

explored grounds for making these decisions.

4. Patch the bug

This step just applies the selected critic policy to the plan being criticized.

5. Perform CRITICIZE.

6. Perform DEBUG.

I. __1_ __

213

Deja Vu Unsatisfied Prerequisite Protection Violation

Yes

No

No No No NoDismiss<.-5 3 -- 4 -> Anonymous
Yes Yes Yes

Yes
2I 2No

Yes No

PCB AM PCBG SCS

Figure 13

HACKER's Debugging Flowchart

214

CIIAPTER 7

DISCUSSION

Ifit is not true, it is a happy invention.
Anonymous. 16th ccntury

In this thesis, I have attempted to present some problems and viewpoints I feel are central to the task of

designing intelligences. I will be satisfied if the preceding has succeeded in conveying the nature and

importance of these problems and %icwpoints. The techniques presented here are admittedly

rudimentary and ill-explored, but they have been developed sufficiently to indicate die feasibility of this

approach. Ihowever, none of the details of any technique herein is suggested as the final word, they all

deserve to be superseded by more careful analyses, further experimentation, and application.

'liis chapter is in six parts. ilie first two parts summariie the key ideas and the principal

technical contributions of the thesis. The third section lists a number of directions for future research.

The chapter closes with three rather speculative sections concerned with the relation of affect and

intellect, the limits ofself-knovledge as seen in this approach, and the meaning of the program to itself.

7.1 Summary of the Key Ideas

The primary idea of the thesis is that of an architecture for a reasoner which can refer to, reason about,

and modify any aspect of its own organization and behavior. This self-conscious. adaptive architecture is

motivated by the need to carefilly consider what to do when solving difficult problems and when

carrying out complex tasks. The self-referential abilities of the reasoner are based on a meta-theoretical

database, explicit reasons for attitudes, and explicit sets of the reasoner's beliefs, desires, intentions, and

skills. The meta-theoretical database allows both self-reference in the large (the reasoner referring to itself

as a whole) and self-refercncc in the small (the reasoner referring to its parts). Self-reference in the small

allows the program to treat its own concepts and descriptions as objects. This permits not only treatment

215

of , number of classical problems in representation theory, but also allos the eflicient organi/ation of

the database into a hierarchy of concepts. Explicit, non-nottolonic reasons form the basis of the reasoner's

self-representation of its reasoning actions. 'lhese arc used in defeasible reasons in a form of

decision-making called reasoncd deliberation, which reflects on these reasons to conduct dialectical

argumlentlhtiol about the possible outcomes of the decision. Non-monotonic reasons also form the basis

of the reasoner's self-explanatory and self-modifying abilifics. The explicit sets ofattifudes form the basis

of the reasoner's actions. The program reflects on itself and its current slate of mind as captured in its

current sets of attitudes to take actions including revising of the sets of beliefs to reno~e an inconsistency,

forming an intention to pursue a desire, or carrying out an intention by means of some procedure (either

a plan or a primitive) in the hierarchical procedure library. 'his procedure library contains part of the

self-description of the program in the form of meta-circular interpreters, giving the reasoner a

representation of its own procedures in its own language of problems and actions. Unlike many

traditional studies in Al, we separate the notions of goal into desires and intentions, to make clearer the

processes involved in complex problem solving reas-ming and actions. Certain intentions, called policies.

act as intentions to reason in certain ways during deliberations, and so embody the values of the program.

7.2 Suminary of the Principal Contributions

The main contribution of this thesis, I feel, is in a coherent, if incomplete, synthesis of a number of

important ideas developed by a number of authors. I hope that this synthesis points up directions for

future investigation, and that it helps articulate some of the ideas I believe have been held by the authors

I draw from. In addition to the synthesis of many important ideas, the thesis has presented novel

technical contributions on the following topics. in order of their appearance.

Chapter 2 presented the basis of the correct interpretation of virtual copies of descriptions in

logical terns, namely as substitution and inference of meta-theoretical statements. This was used in theI _

216

construction of propositional attitudes, and in the correct interpretation of "context" mechanisms,

wherein concepts and beliefs augment the current set of concepts and attitudes.

Chapter 3 presented uniformly defeasiblc reasons, the correct basis for adaptive and reflective

rcasnning programs.

Chapter 4 emphasized the advantages of desires and intentions over ambiguous "goals," the

interpretation of policies as intentions to reason in certain ways during deliberations, and the correct

interpretation of of procedures as partial states of mind which in execution augment the current state of

mind. We also presented a mneita-circUlar reasoning program.

Chapter 5 introduced reasoned deliberation, the first class of formal decision-making procedures

to correctly account for reasons, dialectical debates, reflection, and the fragmentation of values.

Chapter 6 introduced deliberate changes of the mental state and their importance in explainable

and correctable self-modifications.

The last part of Chapter 7 will draw a new conclusion about the paradox of human existence.

7.3 Directions for Future Research A

As mentioned earlier, almost every concrete technique developed here should be viewed with suspicion

of shortcomings. The preceding chapters have on occasion mentioned some of these shortcomings, and

this section catalogues some of the incompletenesses not mentioned in detail previously. These topics

deserve further study, and in some cases are crucial to the construction of a fully operative program, but I

have not had the time or inclination to pursue all of them in this thesis. I am convinced that none of these

holes harbors a homunculus, but that is something only experimentation can demonstrate.

1. Make virtual copies virtual: SDI., as implemented, actually copies all its copy theories,

resulting in a real pile of data-structures here and there, and the ensuing costs in storage space. This may

be unavoidable, but it seems almost certain that specialized accessing algorithms can allow these copies to

217

be %irtnal. thit is. tenporaril) constructed, interrogated, and discarded only when necessary so that the

long-term storage requircments do not exceed that used for the basic information being represented.

Ihliman 119791 has developed algorithms of this sort, hut for a slightly different set of data-structures,

,and without the use of a RMS. I haxe tried to a~oid making design decisions which would ne out

algorithms approximating his, for his suggestion of radically parallel database organizations seems very

aliractive for the long view of information retrieval.

2. Reorganize iI RA.S interface: RMS was designed as an independent subsystem, and in the

absence of more comprehensi'e techniques of control, was vested with a substantial amount of

responsibility for choosing amiong alternate belief re% isions, responsibility it should not bear and that this

thesis has tried to relieve. The rather haphazard interface between RMS and the decision-making

procedures is one result of this. in addition to those questions about RMS suggested for study in [I)oyle

19791, the overall organi.ation of RMS should be rationalized in light of its actual role in the larger

reasoning program architecture.

3. Develop convenient syntaxes: There should be a better syntax to facilitate the input and

output of information. 'Ilis thesis hides some of the ugliest of the reality of using what exists of the

program.

4. Encde informahioni about the world in the database: I could not even attempt to present an

impressive display of the powers of this approach to reasoning because I lack an encoding of a sizable

body of infirmation about some problem domain other than the program itself, which is of considerably

simpler structure than the rest of the world. Again, I share this problem with others, although there are j
currently appearing a number of database of facts (but few procedures) about domains.

S. rncode plans in the plan librar." Of course, this is a suhproblem of the previous problem, as
I

any competent program needs not only the facts but know-how.

6. Catalogue various deliberation procedures: In addition to encoding the values and the

specialized, problem-specific decision procedures of the domains of action in the program, more study

II__ _I__I__I _I__I

218

should be applied to develop abstract deliberation procedures in several levels of generality.

Rationalization and completion of the library of second-order and highcr-order policies seems a primary

topic for inquiry, along with investigation of the form of fully recursive -r reflective deliberation

procedures.

7. Ruild a better vocabulary of processes: The language of the interpreter includes only a

nrdimentary %ocabulary for describing plans and processes. Fxtensions of this vocabulary depend in part

on building up more dcscriptions of the external world in the database, and in part on the progress of

computer science in developing process description languages, parallel and otherwise.

8. fluild a better vocabulary of deliberation: As a subproblem of the preceding, the vocabulary of T.

actions of policies should be extended.

9. Devehp a vocabulary ofadvice types: One aim of this thesis has been to develop mechanisms

useful in building a program which can accept, assimilate, and use facts and hint on how to use them. But

I have not explored how these pieces of advice might be best conveyed. An important problem involved

in realizing a program of this sort is in discovering a vocabulary of advice for imparting facts, values, and

skills. For example, informal hints about how to make some decision include advice like (a) choose any

one you like, (b) choose quickly, (c) keep in mind that it is raining, and (d) give my suggestion every

conceivable consideration or benefit of a doubt. A formal advice vocabulary ought to include formal

analogues of these sorts of hints. The problem of advice is closely tied with the discourse understanding

problems mentioned below, for humans frequently give procedural or value information as declarative

statements, and rely on the advisce to ask and answer questions like What could they have possibly meant

by that? and What problem do they think I am facing that that fact would be relevant to?

10. Apply self-models in hypothelical reasoning: Many sorts of reasoning processes require the

ability to answer questions of ability and other hypotheticals. Many of these questions can be answered

by envisioning or predicting the actions and intentions described by the question. One important topic tbr

investigation is that of using the self-description of the program in hypothetical reasoning. Symbolic

Lt'

219

execution of the self-description can be used to see what actions would he taken and what their effects

would be in certain circumstances, %ithout actually taking die actions or requiring the realitation of the

circumstances. Symbolic execution invmolves setting up a sequence (properly, a directed acyclic graph) of

temporal situations linked by actions, and asserting the effects of an action in its final situation whenever

the preconditions of the action can he proved in its initial situation.78 In symbolic execution of the

sell-model, then, the program would create a new state of mind to represent the hypothetical actions. It

would then assert the initial conditions in this frame of action, and begin executing within it. Instead of

executing its primitives, it Aould use the specifications of the primitives to assert their effects. 'ihe answer

to the hypothetical question is then answered by examining this record of symbolic execution.

S~nholic execution of self-models also is valuable in skill introspection and development.

Many of the studied techniques for analyzing I.isp programs into plans depend on symbolic execution of

the programs and plans. Similarly, the techniques of maintenance and compilation of programs require

symbolic execution not only for introspection, but also for compilation of primitives from plans.

11. Refine the lechiiques for plan compilalion: One important application of symbolic execution

is in compiling refined plans and primitives from other plans and restricting information. Developing the

standard compilation techniques (constant folding, dead code elimination, etc.) in this context is an

important requirement for the future success of this sort of program. For example, guidelines need to be

developed for (a) when to coerce independent steps of a plan into a sequence, (b) when to reduce

deliberation to choices or conditionals, (c) when to transform plan variables to local variables or

data-structures, and (d) when to substitute subplans or primitives for tasks in a plan.79

12. S'udyfonnal historical in lerpretation: Collingwood 11946] suggested that the aim of history

is not just to record annals, but to discover psychological explanations of the actions of men. This

78. Shrobe 11979.1 gives detailed examples of this technique. Scc also 11lewinl and Smith 19751.
" 79. Hurstall and tarlington (19771 and Clark and Sickel 119771 explore program transfonnations to aid eficiency, and their

techniques might be adapted to dhe plan-compilation task.

't,,, !

220

involves not only discovering the facts of a situation, but also the ways the participants viewed the

situation and the possible actions aailable to them. Tl7hat is, the goal of the historian is to infer the

attitudes or mental state of each of the participants in the event. The obvious difficulty in this enterprise

is die ambiguity of mental states as determined by the recorded physical actions. Even if we have

complete annals of the actions of an event, there might have been many completely different mental

states of participants which could explain these actions. Was President Nixon an amoral criminal, was he

a patriot desperately defending the security of his country, or was he neither of thesc9 ro answer

questions like this, we must examine all of his actions to see if they are consistent with one interpretation

but not another (moderated by an assumption of his rationality). But it may happen that all of our

information about his actions is consistent with several interpretations, so that we cannot answer the

question.

The program must also make historical analyses of events, for example, to detennine just what

error was made in some past decision or construction of a procedure when that decision or procedure

later leads to an error which must be corrected and avoided in the future. But in this the program also

faces ambiguity in reconstncting its past mental states, despite its wealth of records about actions,

inferences, and decisions. There are two major sources of this ambiguity. The first is that justification are

atemporal records of inferences, so it is difficult to tell just what the set of justifications was at some past

time. But even if this problem was overcome, a second source of ambiguity is that a given set of

non-monotonic justifications typically admits several interpretations as distinct sets of attitudes. Of

course it might be possible to determine which set of attitudes existed from the following actit's and

inferences, but techniques for making these judgements are completely unexplored. For example, one

might think that this problem might be solved by keeping some sort of history list of all inferences and

actions. But this cannot work, because these records will be subject to the same insecurity that afflicts

221

other beliefs about the pasL 80

13. Appljy self-models in discourse and multi-agent planning: One attractivc application of

hpothetical reasoning by symbolic execution of program models is in using several such models to

dcsribe the reasoning faculties and attitudes of other agents for use in cooperative activities like

conersations. lhe proposal here is to employ not just the theory ME, the program's theory of itself, but

several copies of ME, one to represent each other person being considered, each copy modified to reflect

the differences of that person from the program in its beliefs, desires, values, and skills. Of course the

most perspicuous organization of these multiple person models is to have a theory of the prototypical

person, describing the common knowledge and skills of people, and to have all other theories be modified

copies of this prototype. Each of the particular person models would be used for different people, and

further copies of them would be used to represent differe'nt people at different times, or in hypothetical

situations as mentioned above for M. Anonymous copies of the prototypical person theory would be

used to answer hypothetical questions about the behavior of typical people. Finally, the program might

maintain particular person descriptions as its consciences or ideal self-models, so that during deliberation

it can query these descriptions to see what is the "right" thing to do (i.e. what would I do if I were

perfect?).

How the program might develop such models of its acquaintances from a general person model,

or alternatively, develop its general person model from its models of itself and others, are interesting

unexplored topics.

14. Separate the logics of belief desire. and intention. In the use of RMS I suggested viewing

intentions and other program structures not as embodiments or representations of intentions, but as

beliefs of the program about its intentions. This suggestion was motivated by the desire to subsume all

80 It might eem thal this annot work because the recording of these ations must involve further actions which an"
themselves be recorded on pain of an infinite regress. This may be avoided by having the actions described by the records inchude
the recording qubstcps u well.

__ _ 7 *.i* . ~ .--

222

logics of reasoning into the single logic employed by RMS. While this view may be tcnporarily useful, it

may he ultimately misguided. I)iffercnt attitudes have different logics, and more argument than was

presented seems to be necessar for their unification.

A related drawback of this approach of viewing program attitudes as beliefs about attitudes is

that it offers a confusion about the "levels" of the program's beliefs. For example, humans sometimes

infer that they possess certain attitudes from observations of their actions, as in "I didn't think I wanted to

cat, but looking at the amount I put away. I must have been really hungry." But the belief that I desire

food in such a case must be different from the desire for several reasons. First. I might be wrong in the

inference, in which case my inference woold hardly constitute a desire. Second, the reasons for the belief

are purely in terms of other beliefs ahout my actions. Hut the reasons for a desire will, if the desire is not

basic, in gencral involve both beliefs and desires.

It may he that the particular approach taken in the thesis overcomes these problems, but that is a

topic for further investigation. My guess is that the primary error is simply my interpretation of these

structures as beliefs about attitudes, rather than the more natural interpretation as the realization of the

attitudes themseles. My interpretation stems from a view of RMS as working only with a logic of belief,

rather than with several logics for different attitudes. Perhaps the only change necessary is to change the

operation of RMS so that it respects these different logics for different attitudes.

Part of this possible confusion between the attitudes seems to stem from an asymmetry between j
the types of attitudes. Namely, desires and intentions are each represented as statements of the form

Desire(content) or Intention(content), where the contents are further concepts. Beliefs, however, are

represented as RMS-node(cmitent), where a RMS-node is not a predicate symbol, and content is not a

concept. Finding some reorganization or interpretation of these attitudes would go a long way towards

cleaning up this problem.

15. Explore the relations of desires tv intentions: My treatment of desires and intentions and

their relations has been most cavalier. The problem of how and when intentions are formed from desires

• -I •II I II I - -

223

seems to have received scant study, at least in the parts of' the literature on practical reasoning that I have

examined.

16. Invesfigaic multiple loci of consciousness: We described the consciousness of the program as

thc perceptions of the interpreter, and unconscious primitives as programs for any other interpreter. But

there may be many loci of unconsciotus action, as the various primitive program interpreters may be

distinct machines, as is common practice in the CPU-peripheral organizations of' modern computers. We

have no similar suggestions about how consciousness might be broken into several loci. We have

suggested that there might be several interpreter%, each activc at different thies, and that deliberation

procedures can also reflect on the current mental state. Are these properly thought of temnporally distinct

loci of consciousness? Can consciotusness involve simultaneous perceptions of several simultaneously

operating subsystems?

7.4 Affect. Intellect, and Complex Self-IDcscriptions

We have presented a model for rational thought which employs only the simplest realizations of a few

mental attitudes. While these prove useful for many purposes, the next step is to fonmalize a wider range

of mental attitudes, such as carefulness, confusion, hesitation, and others.81 Once formalized, these new

attitudes may be put to thc service of a more powerful reasoner.

Consider the mental attitude carefulness. Carefulness has entered experimental All programs,

including this thesis, only in an informal, ad hoc way. A program often has two ways of carrying out some

III In this sect in. I have been substantially impressed and mot ivated by the ideas of Marvin Minsky and Seymour Papert. first in
the 1978 dra1 of their hook oiiheScicty of Mind. and bier in Minsky's paper on affective exploitation [Minsk) 1980). In addition
to c~pinoing the inicraci ion (and in one scnse. tinily) of affect and intellect. Minsk) tries to invert a common conception ol affect as
complex and intellect as transparent by suggesting that intellectual mtechanisms might he built ut(of simpler affective mechansmn
My suggastions in this section are to study how affect might he built from intellect. At this stage of investigation, my suggeatioti
.should not bc taken as opposing Minsky's view Any connection between the two paths of construction is likely to provide ways of
building either."i of mental attitude front the ot her. Where onestarts is a mat ter or convenience. Since this thesis builds up much
of the intellectual mechanisms of reasoning, it is most convenient here first to build affect fromt intellect. and then to build intelled
from affect.

224

activity, Of these, one procedure acts in an automatic fashion, carrying out its steps without pause. 'h

other procedure separates cach step with checks to see if it is safe to procced, that is, whethecr certain

exceptional conditions lime arisen fromn the execution of the previous step. In such cases, common5

practice is to call the former procedure die normal one, and tie second procedure dhe "careful" version,

or "careful inode."

Of course, in these cases the program does not call one procedure careful and the other heedless,

it is time programmier who does so. But if the program could also make these discriminations among

procedures, its planning and skill development capahilities would be substantially enhanced. When

constructing a plan in hierarchical fashion, if the intended result is to be a careful plan, the program

might make judgemets about which of die steps of the plani must be realized in a careful fashion, and so

influence the design of these steps. The program might also deliberately choose to be careful when it

judges that it is acting without as much information as it normnally prefers. or when it realizes that its

actions are likely to be very important or consequential. Thus it would be valuable to formalize some

notion of being careful about something so that die program can make decisions about whether to be

carcful or not, rather thani restricting these decisions to the programmer.

Consider confusion. This is a very useful attitude to be able to recognize in oneself, for we all

use several plans for getting out of confusions. For example, when attcmpting a difficult project, such as

implementing a large program for one's thesis, it is common to try making decision A, postponing it when

one gets stuck, working on decision 11, postponing B because it seems to depend on first deciding A,

working on C until seeing that it depends on the outcome of B, working again on A only to find that it

depends on C. From personal experience, I can aver that at this point I realize I'm confused about what

to do. What do I do? I apply my realization to think of ways out of my confusion, such as making a

graph of thc dependencies I perceive among the decisions, and then trying to wee if I can make one of the

decisions arbitrarily so that I[can proceed, and fix it later if it doesn't work out. Of course I try to pick the

choice so that fixing it will not be hard, and so that I will make some progress on the other decisions even

225

if the first is wrong, but die main plan is just to make a choice, knowing that it may not be defensible. If I

can be more effective in this way because I can recognitc and act on my confision, a program should be

able to enjoy the same facility.

Finally, consider hesiiafion. If one can see that one is hesitating about a decision, then that is a

valuable consideration in making related choices. In particular, die related choices should be made so

dtal they depend as little as possible on successfully carrying through the hesitant decision. As in the

above confision example, a deadlock breaking decision might be cncial but hesitant. and so its

correctness should not be counted on heavily by dependent decisions.

I low might we formali/e hesitation? l)cnnett 11978b1 suggcsts the following possibility. He

makes a distinction between belief and opinion, where belief is a graded feeling (possibly described by

Bayesian evolution nles) upon which action is really based, while opinion, on the other hand, he takes to

be all or none assent to linguistic statements. Hesitation (and self-deception) he explains as cases in which

one has developed opinions which do not comfortably match one's beliefs. Thus on the basis of a chain

of inferences one might make the rational decision to take some action, but since the beliefs involved are

not completely certain one has little confidence in the conclusion of the argument, in spite one's avowal

that it is the right thing to do. One is willing to declare one's intention, but when it comes down to

actually taking the action, one's action, based on the uncertain beliefs rather than on the opinion, does not

carry out the intention. Dennett's suggestion might fit into the presently proposed program by

identifying what he calls opinions with what I call beliefs, and what he calls beliefs with something j

derived from policies.
I

Just as one recognizes onplex intellectual attitudes and employs them in deciding what to do,

one also recogni es and similarly employs one's emotions. For example, I see myself getting tired and

unwilling to continue writing the next chapter of my thesis. To carry through with my intention to finish

the chapter by the evening. I carry out a plan which involves imagining how unpleasant prolonged

matriculation would be. The plan is based on the expectation that this thought will prove so horrifying

A ___i_

226

that I will rcsuine writing with renewed vigor and determination.

To illustrate these ideas more concretely, but extremely simplistically, consider policies like the

following.
82

If the decision is important, prefer to continue del Iberating.

If the reasoner is sick, tired, debilitated, mentally impaired, or

otherwise has reason to suspect its mental faculties, try to delay the decision.

If the decision is hateful or distasteful, try to reject the decision.

If the reasoner is angry, frustrated, or confused, try to delay the

decision and relax and reorganize.

If the reasoner is despairing or being able to decide, choose randomly.

In these I just try to indicate, without providing any mechanisms for how one might make these

judgements, of how affective or emotional considerations might enter into the decision-making process.

If one's mind and body are on die fritz, one shouldn't think unless forced to. If one can't stand making

the choice, one frequently finds reasons to impugn the choice, to reject it. If one merely finds the choice

annoying or distasteful, one just avoids it until time pressure sets in or until it goes away. If one is

confused, angry, or frustrated, one delays and relaxes, and perhaps engages in other plans like making

lists of options, reorganizing them, etc.

The main point I'm trying to get across here is that if one develops some way of recognizing or

observing emotional states by the program looking at itself, then I have sketched how one might proceed

to use these sorts of judgements in rational thought, particularly in the ability of thinking rationally about

one's own psychological problems. Machines will probably get depressed too, and we ought to figure out

how to help them get themselves out of iL

Many emotions may prove useful to a computer program. However, this idea requires much

experimentation and study in programs with vastly different forms of their psychologies. Not only will

82. See (Carbonell 19791 for another approtd towards formalizing and using attributions or emotions and complex mental gam

.

227

their specific heliefs and skills differ, but the form of their mental lives will differ. There will the purely

intellectual programs (Mr. Spock's Revenge), intellects that can hope and fear as well, and perhaps some

programs constructed to share the full range of human emotions.

This sort of study would he an ideal laboratory for studying which parts of man's mental life are

truly valuable for somne purposes, and which parts, if any, are unnecessary accidents of evolution and

physiology. Just as geneticists may someday discover enough to allow man to direct his physiological

evolution, experimental alien intelligences may help ps ,hologists discover enough to let him direct his

psychological evolution as well.83 On a smaller scale. these experiments may help man improve his

repertoire of informal self-analysis and self-help techniques. Given man's age-old desire to direct his

fuiture for hi, own benefit, I see no reason to fear man's obsolescence in the shadow of superintelligent

machines. He is much likelier to obsolese in the shadow of his children.

7.5 1he Limits and Accuracy of Self-Knowledge

I have a left shoulder-blade that is a miracle of loveliness. People come miles to see it. My right
elbow has a fascination that few can resist.

Sir W. S. Gilbert, The Mikado

How much can the program know about itself? The mechanisms described in this thesis seem to suggest

the following directions for investigation.

'The program has a model of, in fact direct access to, its nominal sets of concepts, beliefs,

assumptions. reasons, desires, intentions, actions, values, and skills. In spite of this, the program can be

mistaken about these attitudes because its skills, in particular those comprising the basic operation of the

program, need not be fully understood by it for it to be operable. If the program does not correctly

understand the details of its own procedures and how they affect its perception of its attitudes, we might

83 In lam Willsn 1197R1 uggcls that these two endcavors are more closely connected that is sometimes thought, that if we wish
to guidc our physical evolution, we must also consider the effects on our psychological evolution.

g.

228

expect the program to be just as confused about the corrigibility of introspection as we are, fir as far as it

can tell, it has incorrigible access to all of its mental states. But if the program realizes that it has

incomplete or possibly. incorrect understandings of its own procedures, then it can conclude that its need

not have incorrigible access. The program's access need not be priviliged, for it may run on a computer

which displays its entire mental state in a huge bank of lights, and someone watching these lights with an

understanding of the design of the computer would be able to tell at least as much about the prgram as

the program itself.

In fact, the program might have a much easier time at introspection than humans, for humans

ha~e not clear access and knWowledge of their basic mechanisms. It appears possible to give such access

and knowledge to a carefull) designed machine. A growing literature on program understanding has

been concerned with developing techniques for taking a program and analyzing it into its intentional

structure. The program Linder analysis is first converted into its surface plan, which simply indicates the

data and control flow connections between the parts of the program. Ibis surface plan is then analyzed

further into the design of the program. The design consists of the deep plans underlying the surface'plan

together with the teleological justifications of the organization and deployment of these plans. Thus the

program understanding task takes a program and attempts to infer the decisions and plans that went into

its construction, inverting the design process.

The success of this analysis process depends primarily on (1) having a sufficiently rich library of

standard plans, and on (2) the program under analysis having some purpose. For the first requirement,

Barstow [19771, Rich [19801, and others have developed catalogues of standard programming plans and

techniques, and the comphktion of this task seems to now depend on energies expended in its pursuit

rather than on overcoming unsolved problems. For the second requirement, it appears that most analyses

can be made successfully using only the information that the program has a purpose, not what that

purpose is. de Kleer [1979a.b] found, in the similar task of analyzing electronic circuits into their

underlying designs, that almost all analyses succeeded in finding a unique interpretation of the function

229

of the circuit and its components using only the technique of abandoning any interpretation in which

some component's function could not he explained. And in those circuits for vhich multiple possible

functions % ere determined in spite of this heuristic. the circuit usually can he used to perform any of the

secral functions, and information about ie context of use of de circuit suffices to determine which of

these interpretations is correct in that context.

'Illc import of these techniques is that they can be embodied in the program just like any other

procedures, and in fact, self-applied so that by itself it can detennine the structure of all of the LISP

functions inaking up its procedures. If the language in A hich these plans arc phrased is the same as that

used by the plans in the plan library, this means that when the program constructs a new procedure, the

records left in its design process constitute the analysis of the new procedure. 'Iherefore. the program

need not analyze the new procedure further, since its teleological structure is already known.

At the next level of languages down, the program can apply the same techniques with a different

vocabulary of surface syntax and plans to understand tht: machine code implementing these LISP

finctions. This process can be continued, to give the program an understanding of how machine

instructions are implemented in transistors and resistors, how these are implemented in semi-conductors

and conductors, and the atomic, even nuclear and subnuclear structure of these, just as humans seek to

understand their construction in anatomical, biological, chemical, and physical terms.

In fact, just as the program can modify its own procedures at the highest levels of this chain of

implementations, there is no intrinsic barrier (given enough information and suitable sensors and

effectors) to the program changing its own construction at these lower levels, for example, by repairing its

circuitry, or even transmitting itself to a new computer host (with or without "terminading" its previous

scir)."

34. Sandewall (19791 discusses such qcIf-reproduclion ma means lowards perindically -alvaging the useful allitudes and skills ofthe
program lis idea is that the program replaces itschl with a "child" made only from all the useful stur, leaving all the deadwood
behirA

Ai ___ -- ___ _____

230

What does all this say about the privacy, directness, and corrigibility of the program's

self-knowledge? That apparently its mental states need nut he any more private than the contents of a

normal computer: that it can have direct access to its internal processes to the machine level and not

beyond, and that it need not always he correct in its self-understanding. One might build the program in

a conputer that displays its complete internal state, but neither this nor taps on these lights will permit

"mind-reading" without knowlcdge of the design of the computer and hence the meanings of those states.

Ie program might interpret its ability to change aspects of itself purely by thinking down to the machine

langlagc le~cl but not beyond as a difference between mental and physical. And without the procedures

to analyze its own procedtures or inlonnation about the reliability of its hardware, the program can be

mistaken about the behavioral import of its consciously visible attitudes. But with such self-analysis 7

procedures and its recorded reasons for attitudes, the program will be able to say, perhaps with much

better justification than humans, things like "part of me wants to do this, and part of me says not" by

tracing its attitudes through its reasons to its procedures and other attitudes.85

85. Would the construction of artificial intelligence ever occur as a problem to sud a program? Perhaps its notion of artificill
intelligence would be organically and genetically developed intelligence. Perhaps Al would really be "alternative intelligeoce."

231

7.b lhe I imits of Reason and the ,bsurd

If when m) wife is sleeping
and the bab. and Kathleen
are sleeping
and the sun is a flame-white disc
in silken mists
above shining trees, --
if I in my north room
dance naked, grotesquely
before my mirror
waving my shirt round my head
and singing softly to myself:
"I am lonely, lonely.
I %as born to be lonely,
I am best so!"
If I admire my arms, my face,
mny shoulders, flanks, buttocks
against the yellow drawn shades, --

Who shall say I am not

the happy genius of my household?

William Carlos Williams, Dance Russe

This final section discusses some of the most fundamental problems raised by the question "What should

I do?" in light of the architecture for a reasoner developed in this thesis. The conclusion is simply a

heightening of the paradox of human absurdity to the paradox that absurdity is a consequence of being

best at catering to self-significance.

For the program as described to survive, it must matter to itself, it must be self-significantL The

actions of the program all involve changing itself. At each step the program packages up its current

mental state as a new object, thus entering a new state containing the reified previous state. The program r
then makes further changes in its sate on the basis of reflecting, on examination (if the reified previous

state. Its continual question of what to do is always that of how to change its state. (Any effects in the

physical world of these mental changes result from the realization of the machine as a physical device

with causal connections to the rest of the physical world.) Some changes the program can make in itself

can destroy it. For example, it can abandon all its procedures without replacing them by new ones, so

Z4,
C

232

that it has no means b) %hich m act in the future, For the program to have some way of preferring other,

nore sae changes to this one, it must value its own slurisal. It must be self-significant.

Since the proiram can self-consiciousl. discuss itself, its survisal values can be justified in terms

of predicted non-survival. All of the program's attitudes will either appear to it to be premises

(depending on no other attitudes), mutually supporting attitudes. or attitudes depending on attitudes of

the first two sorts. Indeed, all attitudes may be mutually supporting to some degree if hypotheses can

always he inferred from sufficiently many of their consequences. For either premises or mutually

supporting attitudes, the program might attempt tb find further justify justifications. Such justifications

c.innot be in terms of other attitudes, or the point of tie effort has been missed. The justification also

cannot be in terms of the programmer or other external agents, lest the question be begged by merely

rephrasing it as a similar question of justification for the external agents. 'Te only sort of answer that

seems to be left is a pragmatic one: that doing things one way works (leads to continued survival), and

that doing things differently is less certain of working.

For example, Quine invents the metaphor of the web for our systems of beliefs.86 Our sensory

impressions. hypotheses, theories, laws of nature, and laws of reason all populate a great web of belief.

beliefs interconnected so that changes in one lead to changes in others, so that any belief may be changed

through changes in sufficiently many other beliefs. When confronted with new information, new entries,

and changes in the web, we make further changes, either to accommodate or to reject the new entries.

Changes most frequently occur in the "sensory" beliefs at the web's periphery, and rarely have

repercussions in the web's interior, at the center of which reside the laws of reason and unshakable faiths.

In the web metaphor, the only difference between beliefs relevant to their change is the tenacity to which

we cling to them, and the tenacity increases as we proceed from the web's periphery to its center. But

what is this tenacity of grip on beliefs? Quine suggest that the reasons we hold the beliefs we do are

86. In ection 6 or [Quine 19531.

233

purely pragmatic, that we change our belicfs so that they lead to successful survival. 'herc is nothing

wrong with other changes, it is just that we die if we make them, and along with us cnds our web of belief.

But note the form of pragmatic justifications of attitudes: because holding otherwisve leads lo

non-survival. To fornulate such justifications, the program must be able to realize the possibility of its

own non-survival as opposed to it own survival, and hence the possibility of its non-existencc as opposed

to its existence. This means that the program must be able to view itself as an entity of (possibly) limited

temporal duration, and its own life-span as a segment of eternity. It must be able to think of itself as a

finite object existing in an infinite eternity, or in traditional terms, sub specie aelernitalis.

Here enters the paradox of human absurdity. As an adaptive agent, the program must be

self-significant. But as a self-conscious agent, the program can realize its eternal insignificance, and hence

a sense of self-insignificance. It sees that while its values make it matter to itself, outside the span of its

existence its values have no meaning. Hence the program can see that the way things are does not matter

to it if it is not. Further its being not does not matter to eternity, since there are no standards for things

mattering to eternity. 7

Nagel 11979a1] phrases this paradox as the result of dragooning transcendent consciousness into

the service of mundane existence. Adaptiveness alone may suffice for survival, as is shown by the lower

animals and plants. But animals and plants are not absurd, because they are not both self-conscious and

adaptive. Only agents both adaptive and self-conscious are absurd, that is, permit the possibility of

encountering this paradox (if simultaneous self-significance and self-insignificance.

But as this thesis has argued earlier, self-consciousness is necessary for maximal effectiveness in

adaptation. Only by self-consciously reflecting on our past and potential actions can we avoid as many

pitfalls as possible. Thus absurdity is no accident. The program must adapt to survive, must be

self-conscious to be superior at adapting, and hence must be absurd. In the terms of the theory of

87. Wheeler 1t9771 and others have suested that eternity may never exist except when it is possible that some observer, or
self-significant agent might exist p port of iL

_ _ _ _ _ _ __, _ * ~

234

e olution, the fittest are the absurd.

And nevertheless I am weary, and I know that there can be no rest for me in ie heart of this
great city which thinks so much. which has taught ine to think, and which forever urges me to
think more. And how avoid being excited among all these books which incessantly tempt my
curiosity without escr satisfying it? At one moment it is a date I have to look for; at another it is
the name of a place I have to make sure of. or some quaint term of which it is important to
determine the exact meaning. Words? -- why, yes! words. As a phihlogist, I am their sovereign;
they are my subjects, and, like a good king, I devote my whole life to them, luit will I not be
able to abdicate some day? I ha~e an idea that there is somewhere or other. quite far from here,
a certain little cottage where I could enjoy the quiet I so much need, while awaiting that day in
which a greater quiet -- that which can never be broken -- shall come to wrap me all about, I
dream of a bench before the threshold and of fields spreading away out of sight. But I must
ha'e a fresh smiling young face beside me, to reflect and concentrate all that freshness of nature.
I could then imagine myselfa grandfather, and all the long void of my life would be filled....

Anatole France, The Crime ofS),hestre Bonnard I
'4

I#

235

REFERENCFUS

In tihe following, IJC1I refers to one of the International Joint Conferences on Artificial Intelligence, held
in odd-numbered years.

Allison, G. T., 1971. Fssence of Decision: E:xplaining the Cuban Alissile Crisis, Boston: I .ittle, Brown.

Anderson, R. M. Jr., 1975. Paradoxes of cosmological self-reference, Induction. Probability. and
Confination (G. Maxwell and It. M. Andcrson Jr., eds.), Minneapolis: Ulniversity of Minnesota Press,
530-540.

Anscombc, G. F. M., 1957. Intention, London: Basil Blackwell.

Aristotle, 1962. Nichomachian Ithics(M. Ostwald, tr.), Indianapolis: flobbs-Merrill.

Arrow, K. J., 1967. Values and collecti% e decision-making, Philosophy; Politics, and Sociey II (P. I aslett
and W. G. Runciman. eds.). London: Ikisil lllackwell.

Asimo , I., 1950. 1. Robot, New York: Gnome Press.

Asimov, I., 1964. The Rest of the Robots, New York: Doubleday.

Aune, B., 1977. Reason andAction, Dordrecht: 1). Reidel.

Austin, J. L., 1%2. How To Do Things With Words, Cambridge: Hanard University Press.

Backus. ., 1973. Programming language semantics and closed applicative languages, Proc. Synp. on
Principles of Programming languages, 71-86.

Barnard, C. 1., 1938. The Functions of the Executive, Cambridge: Harvard University press.

Barstow. D. R., 1977. Automatic construction of algorithms and data structures using a knowledge base
of programming rules, Stanford Al Laboratory. Memo AIM-308.

Barth, J., 1960. The Sot- Weed Factor, New York: Doubleday.

Bell, C. G., and Newell. A., 1971. Computer Structures. Readings and Examples New York:
McGraw-Hill.

Bell, D., 1976. The Cultural Contradictions of Capitalism, New York: Basic Books.

Ielnap, N. D., 1976. How a computer should think, Conteinporary Aspects of Philosophy (G. Rylc, ed.),
Stocksicld: Oriel Press, 30-56.

lennctt, J., 1964. Rationality, London: Routledge and Kegan Paul.

Bobrow, D. G., and Winograd, T., 1977. An overview of KRL, a knowledge representation language,
Cognitive Science 1, 3-46.

236

Boden, M. A., 1977. Artificial Intelligence and Natural Alan, New York: Basic Books.

Ilkolos, G., 1979. The Unprovabiliiy of Consistency: An essay in iiodal hgic, Cambridge: Cambridge
University Press.

Borning, A. tt., 19791 'fllinglab: a constraint-oriented simulation laboratory, Ph.D. thesis, Stanford
Unikersity, I)epartment of Computer Science.

llrachman, R. L, 1978. A structural paradigm for representing knowledge, Iolt, Beranek, and Newman,
Report 3605.

Brachman, R. J., and Smith, B. C., 1980. Special issue on knowledge representation, ACM Sigart
Newsletter 70.

Brand, M., ed. 1970. The Nature of Human Action, Glenview: Scott. Foresman.

Iraiybrookc, D.. and I1,indblom. C. F., 1963. A Strategy of D~ecisio,,: Policy I:'aluation as a Social Process,

New York: Free Press.

Brown, A. I., 1976. Qualitative knowledge, causal reasoning, and the localization of failures, MIT Al
I.aboratory. TR-362.

Brown, F., 1977. Ibe theory of meaning, University of Fdinburgh, Department of Artificial Intelligence
Research Report 35.

Brown, F., 1979. A theorem prover for meta theory, Proc. Fourth Workshop on Automated Deduction,
155-160.

Burstall, R. M., and Darlington, J., 1977. A transformation system for developing recursive programs, J.
A01 24,44-67.

Camus, A., 1955. The Myth of Sisyphus and other essays, New York: Random House.

Carbonell, J. G., 1979. Computer models of human personality traits, Carnegie-Mellon University.
Computer Science Department, CS-79-154.

Carnegie, D., 1936. How to Win Friends and Influence People, New York: Simon and Schuster.

Carnegie, D., 1944. How to Stop Worrying and Start Living, New York: Simon and Schuster.

Cartwright, R., and McCarthy, J., 1979. Recursive programs as functions in a first-order theory, Stanford
CSI) Report 79-717.

Castaneda. H.-N., 1975. Thinking and Doing, Dordrecht: D. Reidel.

CatteUl, R. G. G., 1978. Formaliation and automatic derivation of code generators, Carnegie-Mellon
University, Computer Science IDepartmentIChandler, A. D. Jr., 1962. Strateg, and Structure: Chapters In the History of the Indutrial Entepr*

237

Cambridge: MI Press.

Charniak, F., Riesbeck, C., and Mcl)ermott, I)., 1979. Artificial Intelligence Programming, Baltimore: L.
E. Erlbaum.

Chisholm, R., 1978. Practical reason and the logic of requirement, Practical Reasoning (J. Raz, ed.),

Oxford: Oxford University Press, 118-127.

Church. A., 194 1. Ihc calculi of lambda-conversion, Annals of Alaihenatics Studies 6, Princeton.

Clark, K., and Sickel, S., 1977. Predicate logic: a calculus for deriving programs, IJCAI-77, 410-411.

Cohcn, P. R., 1978. On knowing what to say: planning specch acts, Department of Computer Science,
University of loronto, I'R-1 18.

Collingwood. R. G., 1946. The hca of listory, Oxford: Oxford University Press.

Collins, A., 1978. Fragments of a theory of human plausible reasoning, Proc. Second Conf Theoretical
Issues in Natural Language Processing, 194-201.

l)acey, R., 1978. A theory of conclusions, Philosophy of Science 45, 563-574.

Dav is, i .H., 1979. Theory of Action. Englewood Cliffs: Prentice-Hall.

Davis, R., 1976. Applications of meta ievei knowledge to the construction, maintainance and use of large
knowledge bases, Stanford Al Laboratory, Memo AIM-283.

Davis, R., 1980. Meta-rules: reasoning about control, MIT Al Laboratory, Memo 576.

l)cnnett, D. C., 1969. Conent andConsciousness, London: Routlcdgc and Kegan Paul.

lrInnet, 1). C., 1978a. Current issues in the philosophy of mind, Amer. Phil. Quarterly 15, 249-261.

l)cnnctt, D. C., 1978b. How to change your mind, Brainstonns, Montgomery, Vermont: Bradford Books,
300-309.

l)ennett, D. C., 1978c. Brainstonns, Montgomery, Vermont: Bradford Books.

de Kleer, J., 1979a. Causal and teleological reasoning in circuit recognition, Mi AI Laboratory, TR-529.

dc Kleer, J., 1979b. The origin and resolution of ambiguities in causal arguments, IJ('A-79, 197-203.

de Klecr. J., Doyle, J., Steele, G. L. Jr., and Sussman, G. 1., 1977. Explicit control of reasoning, Proc.
A('AI Synp. on Artificial Intelligence and Prograi.niing languages, Rochester, New York, also MIT Al
Laboratory, Memo 427.

dc Kleer, J.. and Harris, G.. 1979. Truth maintenance systems in problem solving, draft, Xerox PARC.

Doyle, J.. 1976. The use of dependency relationships in the control of reasoning, MIT Al Laboratory,

238

Working Paper 133.

Ioylc, J., 1977. Ilierarchy in knowledge representations, MiT Al Laboratory, Working Paper 159.

l)oyle, J., 1979. A tnth maintenance system, Artificial Intelligence 12, 231-272.

)oyle. J. and london, P., 1980. A selected descriptor-indexed bibliography to the literature on belief
rei ision, S/6 A R T Newsletter 71.

I)ray. W. H., 1964. Philosophy of History. Englewood Cliffs: Prentice-Hall.

)reyfus, 11. L., 1979. What (Computers Can't Do, revised ed., New York: Harper and Row.

)rucker, P. F., 1946. Concept of the Corporation, New York: John l)ay.

I)rucker, P. F., 1974. Manageoient: Tasks, Responsibilities Practices, New York: Harper and Row. 4
A

I)uda. R. 0., Hart, IP. F., and Nilsson, N. J., 1976. Subjecti'e bayesian methods for rule-based inference :
systems, Proc. National (omputer C(oafrence. /1179V ('onference Proceedings VoL 45, 1075-1082.

I)ummett, M. A. F.. 1973. The justification of deduction, Proc. British Academy, Vol. LIX.

Edglcy, R., 1969. Reasoni In Theory and Practice, london: Hutchinson.

Ellis, A. and Harper, R. A., 1961. A Guide to Rational Living, Englewood Cliffs: Prentice-Hall.

Enters, H., 1924. An meine Geschwister in Deutschland, Die Kleine, muehselige Well des jungen
Hermann Enters (K. Eckert, ed.), Wuppertal: Born-Verlag 1970.
Ernst, G. W., and Newell, A., 1969. GPS: A Case Study in Generality and Problem Solving, New York:

Academic Press.

Fahlman, S. F., 1974. A planning system for robot construction tasks, Artificial Intelligence 5, 1-49.

Fahlman, S. E., 1979. NETl.: A System for Representing and Using Real World Knowledge, Cambridge:
MIT Press.

Feferman, S., 1960. Arithmetization of metamnathematics in a general setting, Fund Alath. IXIX, 53.

Fikes, R. E., 1972. Monitored execution of robot plans produced by S'TRIPS, IFIP 1971, Amsterdam:
North-Holland, 189-194.

Fikes, R. F., 1975. Deductive retrieval mechanisms for state description models, IJCAI-7, 99-106.

Fikes, R. F, Hart, P. F., and Nilson, N. ., 1972. Leaming and executing generalized robot plans.
Artificial Intelligence 3, 251-288.

Fikes, R. F., and Nilsson, N. J., 1971. STRIPS: a new approach to the application of theorem proving to
problem solving, Artfcial Intelligence 2, 189-208.

239

:odor, J. A., 1968. Psychological .Xplanation, New York: Random House.

I:odor, J. A., 1975. The Language of Thought, New York: Crowell.

l:odor, J. A., 1978. Methodological solipsism as a research strategy in psychology, MIT Decpartment of
Psychology, draft.

Fox, M. S., 1978. Knowledge structuring: an overview, Proc. Second Colf Canadian Society for
Compultional Studies of Intelligence, 146-155.

Fox, M. S., 1979. Organi/ation structuring: designing large complex software, Carnegie-Mellon
University, Computer Science)epartment, CS-79-155.

Frcud. S.. 1937. The Interpretation of Dreanis (A. A. [trill, tr.), New York: Macmillan.

Gaines, It. R., 1976. Foundations of fuinzy rcasoning. hiternational Journal of Alan-Alachine Studies 8,
623-668.

Gardiner, P., 1974. The Philosophy offHistory, I.ondon: Oxford University Press.

Gauthier. I). P., 1963. Practical Reasoning, Iondon: Oxford University Press.

Giles, R.. 1976. A logic for subjective belief, Foundations of Probability Theory. Statistical Inference, and
Statistical Theories ofScience. Vol. 1, (W. L.. Harper and C. A. Hooker, eds.),)ordrecht: Reidel, 41-72.

Glover, J., 1976. The Philosophy of Afind, Oxford: Oxford University Press.

Godel, K., 1931. On formally undecidable propositions of Principia Afathernatica and related systems I,
F.rom I"rege to Godel A Source Book in Aathenatical logic, 1879-1931 (J. van Heijcnoort, ed.),
Cambridge: Harvard University Press, 1967, 596-616.

Goldman, A. 1., 1970. A Theory of Human Action, Princeton: Princeton University Press.

Goldstein, I. P., 1975. Summary of MYCROFr: a system for understanding simple picture programs,
Artificial Intelligence 6, 249-288.

Good, I. J., 1952. Rational decisions, Journal of the Royal Statistical Society B 14, 107-114.

Goodman, N., 1973. The problem of counterfactual conditionals, Fact, Fiction, and Forecast, third
edition, New York: Bobbs-Merrill, 3-27.

Gordon, M., Milner. R., Morris, I.., Newey, M., and Wadsworth, C., 1978. A metalanguage for
interactive proof in I.CF, Proc. Fifth Symposiun on Principles of Programming Languages, 199-130.

Green, C., 1969. Theorem-proving by resolution as a basis for question-answering systems, Machine
Intelligence 4 (B. Meltzer and 1). Michie, eds.), New York: American Elsevier, 183-205.

Gric, H. P., 1969. Utterer's meaning and intentions, Philosophical Review, 147-177.

_ _-. -,* -

= m m- •
J

" "4

. i7

240

Gros, IB. J., 1979. Utterance and objective: issues in natural language processing, IJCAI-79, 1067-1076.

Gustafson, I). F., ed., 1964. Essays in Philsophical Psychology, New York: Anchor.

I laack. S., 1978. Philosophy of iogics, Cambridge: Cambridge University Press.

tlare, R. M., 1952. The language of Atorals, Oxford: Oxford University Press.

I lare, R. M., 1963. Freedom and Reason, Oxford: Oxford University Press.

I larl, D., 1979. First Order Dynamic logic, Berlin: Springer-Verlag.

larman, G., 1973. Thought, Princeton: Princeton University Press.

I larman, G., 1976. Practical reasoning, Review ofiletaphysics XXIX, 431-463.

I larman, G.. 1977. The Nature of Alomity, New York: Oxford University Press.

IHarper. W. I.., 1976. Rational belief change. Popper functions, and counterfactuals, Foundations of
Probabiliii' Theor. Statistical Inference and Statistical Theories of Science, Vol. 1. (W. L. Harper and C.
A. Hooker. eds.). I)ordrecht: Reidel, 73-115.

I larrison, A.. 1978. Making and Thinking: A Stud), of Intelligent Actiities, Indianapolis: Hackett.

Hayes, P. J.. 1970. Robotologic, Machine Intelligence 5 (B. Meltzer and T). Michie, eds.), New York:
American Fisevier, 533-554.

Hayes, P. J.. 1971. A logic of actions, Machine Intelligence 6 (B. Meltzer and 1). Michic, eds.), New
York: American Elsevier, 495-520.

Hayes, P. J., 1973a. The frame problem and related problems in artificial intelligence, Artificial and

Human Thinking (A. Flithorn and D. Jones, eds.), San Francisco: Josey-Bass.

Hayes, P. J., 1973b. Computation and deduction, Proc. AIFCS Symposium, Czech. Acad. of Sciences,
105-117.

Hayes, P. .. 1974. Some problems and non-problems in representation theory, Proc. Conf Artificial
Intelligence and Simulation of Behavior, 63-79.

Hayes. P. J., 1977a. In defence of logic, IJCAI-77, 559-565.

Hayes, 1). J., 1977b. 'T1he kgic of frames, Department of Computer Science, University of Essex.

Hayes. Ph. J., 1977. On semantic nets, frames, and associations, IJCAI-75, 99-107.

Hayes-Roth, F.. and Iesser, V. R., 1977. Focus of attention in the Hearsay-l speech understanding
system. Computer Science Department. Carnegie-Mellon University.

van Heijenoort, J., ed., 1967. From Frege to Godel: A Source Book in Afathematical logic, 1879-1931,

241

Cambridge: Har% ard University Press.

Itcinlein. R. A.. 1966. The Aloon is a Harsh Alistress. New York: G. P. Putnam and Sons.

Hendrix, G. G., 1975. Expanding the utility of semantic networks through paritioning, IJCAI-75,
115-121.

lewitt. C. l-., 1972. I)escription and theoretical analysis (using schemata) of PLANNFR: a language for
pro% ing theorems and manipulating models in a robot, MIT AI Iaboratory, 'R-258.

Hev itt, C. 1-., 1977. Viewing control structures as patterns of passing messages, Artificial Intelligence 8,
323-364.

ltewitt, C. I-., and Smith, It., 1975. Towards a programming apprentice, IEEL' Transactions on Software
Fngineering S,-i, 26-45.

Hey ling, A., 1956. linuitionism: An Introduction, Amsterdam: North-Holland.

Hilbert, I)., 1925. On the infinite, From Frege to Godel: A Source Book in Mathematical Logic,
1879-1931 (J. van Heijenoort, ed.), Cambridge: Harvard University Press, 1967, 367-392.

Hilpincn, R., (ed.) 1971. Deontic Logic: Introductory and Systematic Readings, Dordrecht: Reidel.

Hinlikka. J., 1962. Knowledge and Belief Ithica: Cornell University Press.

Hofstader, I). R., 1979. Godel. Escher, Bach: An Eternal Golden Braid, New York: Basic books.

Hook, S., ed., 1963. Philosophy and History, NY: New York University Press.

James. W., 1971. The will to believe, Reason and Responsibility (Feinberg, ed.), Encino: Dickenson,
83-90.

Johnson, S. M., 1977. First Person Singular: Living the Good Life Alone, New York: Lippincott. z

Kenny, A. J. P., 1978. Practical reasoning and rational appetite, Practical Reasoning (J. Raz, ed.), Oxfkd:
Oxford University Press, 63-80.

Kierkcgaard, S., 1944. The Concept of Dread(W. Lowrie, ed.), Princeton: Princeton University Press.

-Keenc, SC., 1950. A Introduction to Alelamahenatics, Princeton: Van Nostrand.

Kornfeld, W. A., 1979. ITHIR -a parallel problem solving system, IJCAI-79 490-492.

Kowalski, R.. 1974. Logic for problem solving, University of idinburgh, lepartment of Artificial
Intelligence, DCI, memo 75.

Kramosil, I, 1975. A note on deduction rules with negative premises, IJCAI-75, 53-56.

Krisel, G. 1968. A survey of proof theory, J. Symbolic Logic 33, 321-388.

242

Krcisel, G., 1971. A survey of proof' theory 11, Proc. .Seconid Scandiniavian logic Symposiunz (J. E.
Fenstad. ed.), Ainsterdlar: North-1I olland. 109-170.

Kreisel. G.. 1977. On die kind of data needed for a dieory of proofs, Logict('lloquiwun 76 (R. Gandy and
M. Ilyland. eds.). Amsterdam: North-Holland, 111-128.

Kripkc, S. A., 1975. "Outline ofa 'Teory of'l'nth," Journal of Philosophy, 72, 690-716.

I akatos, L. 1976. Proo~f5 and Refuiations:- the logic of miathentatical discovery, (J. Worrall and Fi. Zahar,
eds.). Cambridge: Cambridge University Press.

I atombe. i.-C.. 1976. Artificial intelligence in computer-aided design: the "TROI1C" system, SRI.
Technical Note 125.

I atomibe. i-C.. ed., 1978. Artificial Intelligence and Pattern Recognition in Computer- Aided Design,
Amsterdam: North Holland.

I atombe. J -C., 1979. Failure processing in a system for designing complex assemblies, IJCAI-79.
508-515.

I chrer. K.. an~d Paxson,'['. Jr.. 1969. Knowledge: undefeated justified truc belief, Journal of Philosophy
I.X VI, 225-237.

Lehrer, K.. 1974. Knowledge, Oxford: Oxford University Press.

I enat, D. BI., 1977. Thec ubiquity of discovery, Artificial Intelligence 9, 257-285.

L ewis, D., 1973. Counterfactuals, Cambridge: Harvard University Press.

linsky, L.. 1971. Reference and Alodality, Oxford: Oxford University Press.

Linsky, L., 1977. Names and Descriptions, Chicago: University of Chicago Press.

ILondon, P. F., 1978. Dependency networks as a representation for modelling in gencral problem solvers,
Department of Computer Science, University of Maryland, TlR-698.

March, J. G., and Simon, H. A., 1958. Organizations, New York: Wiley.

Martin, W. A., 1979. Philosophical foundations for a linguistically oriented semantic network, MIT
L aboratory for Computer Science, draft

McAllestcr, D). A., 1978. A three-valued truth maintcnance system, MIT Al laboratory, Memo 473.

McCarthy, J., 1958. Programs with common sense, reprinted in Semantic Infonnation Processing (M.
Minsky, cd.), Cambridge: MI'I Pres(1968), 403-410.

McCarthy, J., et al, 1965. LISP 1.5 Programmer's Manual, Cambridge: MIT Press.

McCarthy, . and Hayes, P. J., 1969. Some philosophical problems from the standpoint of artificial

243

intelligence. Afachine Intelligence 4 (11. Meltzer and I). Michic, eds.). New York: American Elsevier,
463-502.

McDermott.).. 1978. Planning and acting, Cognitive Science 2, 71-109.

Mc)crmott, I).. 1980. Non-monotonic logic I1: non-monotonic modal theories, Yale University,
I)epartment of Computer Science, Report 174.

McDermott. I)., and I)oyle. J.. 1978. Non-monotonic logic I, MIT AlI Laboratory, Memo 486.

Mc)ennout. J.. and Forgy. C., 1976. Production system conflict resolution strategies, Computer Science
I)cpartment. Carnegie-Mellon University.

McKeernan, W. M., I lorning. J. I.. and Wortman, 1). R., 1970. A Compiler (jenerator. Ynglewood Cliffs:
Prentice- Hall.

Miller, G. A., Galantcr, F,, and Pribram. K., 1960. Plans and the Siructure of Behavior, New York: Holt.

Miller. M. I... 1979. Planning and debugging in elcmentary programming, Ph.). thesis, MIT l)cpartment
of Hlectrical Fnginecring and Computer Science.

Minsky, M.. 1965. Matter, mind, and models, Proc. of the IFIP Congress, 45-49.

Minsky, M., 1974. A framework for representing knowledge. MIT Al Laboratory, Memo 306, and
(without appendix) The Psychoh)gy of Computer Vision (P. Winston, ed.), New York: McGraw-Hill,
1975.

Minsky, M.. 1977. Plain talk about neurodevelopmental epistemology, IJCAI-77 1083-1092.

Minsky, M., 1979. K-lines: a theory of memory, MIT Al Laboratory, Memo 516.

Minsky, M., 1980. Affective exploitation: a view of emotion and intellect, MrI' Al L.aboratory, draft.

Minsky, M., and Papert, S., 1973. Artificial Intelligence, Eugene, Oregon: Condon Lecture Publications.

Minsky, M., and Papert S., 1978. The Societ, Theory of Alind, MIT Al Laboratory, draft.

Montague. R., 1963. Syntactical treatments of modality, with corollaries on reflection principles and
finite axiomatizability, Aeta Philosophica Fennica, 16, 153-167.

Moore. R. C., 1979. Reasoning about knowledge and action, Ph.D. thesis, MI IDepartment of Electrical
Engineering and Computer Science.

Nagel, 'I'.. 1970. The Possibility of Altruism,. Princeton: Princeton University Press.

Nagel, T., 1979a. The absurd, Mortal Questions, Cambridge: Cambridge University Press, 11-23.

Nagel, T., 1979b. The fragmentation of value, Mortal Questions, Cambridge: Cambridge University
Press, 128-141.

*%-- - - -..

244

Nagel. T.. 19 79c. Ilrain bisection and the unity of consciousness. Mortal Questions, Cambridge:

Cambtidge Ulni ersity Press, 147-164.

Nagel, T., 1979d. What is it like to be a bat?, Aortal Questions, Cambridge: Cambridge University Press,
165-180.

Newell. A., 1969. I leuristic programming: ill-structured problems. Progress in Operations Research Vol.
Ill (Aronofky, ed.), 360-414.

Newell. A.. and Simon. 1t. A., 1963. GPS. a program that simiulatcs human thought, Computers and
17ouugh (F. A. Ieigenbauni and J. Ieldman. eds.), New York: McGraw-Hill, 279-293.

Nilsson. N. J., 1980. Principles ofArtificial Intelligence, Palo Alto: Tioga.

Norman. R.. 1971. Reason.s Jor Actions. New York: Itarnes and Noble.

No/ick. R.. 1974. Inac'/hY State and Utopia, New York: Ikasic Books.

l',scml. I., 1971. lie wager, from Pensees. in Reason and Re.sponsibilit.r (Feinberg, ed.). Encino:
I)ickenson, 81-83.

Perrault, C. R.. Allen. J. F., and Cohen, P. R., 1978. Speech acts as a basis for understanding dialogue
coherence, Proc. Second ('onf Theoretical Issues in Natural l.anguage Processing, 125-132.

Post, F. I... 1943. Formal reductions of the general combinatorial decision problem, Aim. J. Mat. 65,
197-268.

Pratt. V. R., 1977. 'T7he competence/performance dichotomy in programming, MIT Al l.aboratory,
Memo 400.

Prawitz. 1)., 1973. l'oards a foundation of general proof theory, Logic. Methodology and Philosophy of
Science il(P. Suppes, I.. Henkin, A. Joja, Gr. C. Moisil, eds.), Amsterdam: North-Holland, 225-250.

Putnam, H., 1975. Philosophy and our mental life, Alind Language. and Reality, Cambridge: Cambridge
University Press, 291-303.

Putnam, H., 1978. Truth and reason, Reason and History, draft.

Quine, W. V., 1953. Two dogmas of empiricism, From a Logical Point of View, Cambridge: Harvard
University Press.

Quinc, W. v., 1966. The Ways of Paradox and other essays, Cambridge: Harvard University Press.

Quine, W. V., 1970. Philosophy of .ogic, Englewood Cliffs: Prentice-Hall.

Quine, W. V., and Ullian, J. S., 1978. The Web of Belief, second edition, New York: Random House.

Rabin, M. 0., 1974. Theoretical impediments to artificial intelligence, Information Processing 74,
Amsterdam: North-Holland, 615-619.

245

Rawls, J., 1971. A Theory of Justice. Cambridge: I arvard University Press.

Ritz, J., 1978. Practical Reasoning, Ox ford: oxford University Press.

Rescher, N.. 1964. Hypothetical Reasoning. Amsterdam: North Holland.

Rcscher, N., 1966. The l.ogic of Comtmands, L~ondon: Rotitlcdgc and Kcgan Paul.

Rcscher. N., 1968. Topics ini Philosophical Logic, D~ordrecht: 1). Reidel.

Rcschcr. N.. 1976. Plausible Reasoning, Amsterdamn: Van Gorcum.

Rcscher. N., and Urquhart, A., 1971. Temporal logic. New York: Springer- Verlag.

Reiter, It., 1978. On reasoning by default, Pric% Second Conf Theoretical Issues in Natural Language
Proc-essing, 210-218.

Reiter, R., 1979. A logic for def'ault reasoning, Decpartment of Computer Science. University of Biritish
Columbia. TR1-79-8.

Resnik, M. 1)., 1974. On the philosophical significance of consistency proofs, J Phil Logic 3. 133-147.

Reynolds, J., 1972. Decfinitional interpreters for higher order programming languages, ACMI Annual
Conference Proceedings.

Rich, C.. 1980. Inspection methods in programming, Ph.D. thesis, MIT D~epartment of Electrical
Fniginecring and Computer Science.

Rich, C.. and Shrobe, H. E., 1976. Initial report on a LISP programmer's apprentice, MIT Al Laboratory,
TR-354.

R ich, C., Shrobe, H. E., and Waters, R. C.. 1979. Computer aided evolutionary design for software
enginecring, MIT Al Laboratory, Memo 506.

Richards, D. A. J., 1971. A Theory of Reasons for Action, London: Oxford University Press

Rosenberg, J. F.. 1978. The Practice of Philosophy, Englewood Cliffs: Prentfice-H-ail.

Rosenberg, R. L., 1980. Incomprehensible computer systems: knowledge without wisdom, MIT
L aboratory for Computer Science, TR -227.I

Ross, W.D1., 1930. The Right and the Gjood, Oxford: Oxford University Press.

Rubin, A. D., 1975. Hypothesis formation and evaluation in medical diagnosis, MIT Al Laboratory,
TR-316.

Russell, BI., 1908. Mathematical logic as based on the theory of types, Frotn Frege to Godel: A Source
Book in Afatheinatical Logic 1879-1931 (J. van Hcijenoort. ed.), Cambridge: Harvard University Press
1967, 150-182.

246

Russell, it., 1930. The Conq~uesti of Hlappiness, New York: liveright.

R~ychncr, M. D)., 1976. Production systems as a programming language for artificial intelligence
applications, 3 Volumes, Computer Sciencc I)partment. Carnegic- Mellon University.

R~yle. G., 1949. The Concept of,11ind, I .ondon: Hiabcinson.

Sacerdoti. F. D).. 1974. Planning in a' hierarchy of abstraction spaces, Artificial Intelligence, 115-135.

Sacerdoti. F. D,. 1977 . A Structurefor Plans and 11ehaviur, Ncw York: American E~lsevier.

Sacerdoti, F. D., 1979. Problern soh ing tactics, IJCAI- 7, 1077-1085.

Sandewjjll. F., 1979. Itiological software, IJ(AI-79, 744-747.

Sartre. J.-P.. 1956. Ileing and Noiignem. (H. llarncs. tr.), New York: Philosophical L~ibrary.

Schank. R. C.. 1979. Interestingness: controlling inferences, Artificial lIntelligence 12. 273-297.

Schmidt, C. F., Sridharan. N. S., and Goodson, J. L.., 1978. Thc plan recognition problem: an
intersection (if psychology, and artificial intelligence, Artificial Intelligenice 1/, 45-83.

Schwartz, S. P., edl. 1977. Nanting Necessity, and Natural Kinds, Ithica: Cornell University Press.

Scott. 1D.. 1973. N.odels for various type-free calculi, Logic Mlethodology, atid Philosophy of Science IV
(P. Suppes, L. Henkin, A. Joja. Gr. C. Moisil, cols.), Amsterdam: North-Holland.

Scriven, M.. 1959. Truisms as the grounds for historical explanations, Theories of History (P. Gardiner,
ed.). New York: Free Press of Glencoe, 443-475.

Scriveri. M.. 1963. New issues in the logic of explanation. Philosophy and History (S. Hook, ed.), New
York: New York University Press, 339-361.

Searle, J. R., 1969. S5peech Acts, Cambridge: Cambridge University Press.

Searle, J. R., 1978. Primnafacie obligations, Practical Reasoning (J. Rat', ed.), Oxford: Oxford University3
Press, 81-90.

Searlc, J. R., 1979. 'llie intentionality of intention and action, Inquiry 22, 253-280.

Searle, J. R., 1980. Notes onl artificial intelligence, Behavioral and Biraint Sciences, to appear.

Shaffer, J. A., 1968. Philosophy of Alind, Englewood Cliffs: Prentic-lall.

Shrobc, H. E., 1979a. Dependency directed reasoning for complex program understanding, miI' All
I aboratory, 111-503.

Shrobe, H. F., 1979b. Fxpli control of rcasoning in the programmer's apprentice, Proc. Fowih
Workshop on Automated Deduction, 97-102.

247

Simon, II. A., 1969. The .'cicnei ofic 4rhificial, Cambridge: MIT Press.

Simon. It. N., 1976. .4dininslraine Behavior, third ed., New York: Free Press.

Smith, It. C.. 1978. I .evcls, layers, and planes: the framework of a theory of knowlcdge representation
semantics, Masters thesis. MI Ilectrical lEngineering and Computer Science.

Smith, R. G.. and Davis, R.. 1978. I)istributcd problem solving: the contract net approach. Proc. Second
C",if Cnadian .ociel),fiur (oinpulalional Studies of Intelligence, 278-287.

Snmllyan, R. KI., 1957. Languages in which self-reference is possible, I. Symb. L.ogic, 22, 55-67.

Smillyan, R. M., 1978. t'hal is the Name of /his Book? The Riddle of Dnracula and other I.ogical Puzzle
I'nglewood Cliffs: Prentice- Hall.

Smullyan, R. M., 1980. Thi.s hook Needs No Title. Englew(xd Cliffs: Prentice-Hall.

Sosa, E., 1975. Causation and ('ouinterjictuals, iLondon: Oxford University Press. 4,

Sridharan, N. S., 1976. The frame and focus problems in Al: discussion in relation to the RIELIEVER
system, Proc. ('onf Artificial Intelligence and Simulation ofiBehavior, 322-333.

Sridharan, N. S., and Hawrusik, F., 1977. Representation of actions that have side-effects, IJCAI-77,
265-266.

Stallman, R. M., and Sussman. G. J., 1977. Forward reasoning and dependency-directed backtracking in
a system for computer-aided circuit analysis, Artificial Intelligence 9, 135-196.

Steele, G. L. Jr., and Sussman, G. J., 1976. LAMBDA: the ultimate imperative, MIT Al Laboratory,
Memo 353.

Steele, G. L. Jr., and Sussman, G. J., 1978a. The revised report on SCHEME, a dialect of LISP, MIT Al
Laboratory, Memo 452.

Steele, G. L. Jr., and Sussman. G. J., 1978b. The art of the interpreter, or the modularity complex. MIT
AI Laboratory. Memo 453.

Steele, G. I. Jr., and Sussman, G. J., 1978c. Constraints, MIT AI Laboratory, Memo 502.

Stefik, M. J., 1980. Planning with constraints, Stanford University, Computer Science Department
Report S'AN-CS-80-784.

Strawson, P. F., 1%7. Philosophical Logic, Oxford: Ox ford University Press.

Suppes, P., 1957. Introduction to Logic. New York: Van Nostrand.

Suppes, P., 1967. Decision theory, The Encyclopedia of Philosophy, Vol. II (P. Fdwards, ed.), New York:
Macmillan, 310-314.

|w, . ,4. .- '_ --. . . -- rv '--' ,, , - 1

248

Suppcs. P 1977. A survey of contemporary learning theories, loundational Problems in the Special
.C101(i' (R. F. RlUs and J. Ilintikka, cds.),)ordrecht: Reidel, 217-239.

Sussman, G. J., 1975. A Computer Alodel of Skill Acquisition, New York: American Elsevier.

Stlssman, G. J., and McDermott.)., 1972. From PLANNER to CONNIVER - a genetic approach, Proc.
At1'SIK.J(1171-1179.

Tarski, A.. 1944. The semantic conception of truth and the foundations of semantics, Philosophy and
Phlopnenolgical Research IV, 3, 341-375.

Tare. A.. 1975. Interacting goals and their use, IJCAI-75, 215-218.

Tate, A., 1977. Generating project networks, LICAI-77, 888-893.

Taylor, R., 1966. lctio and l'urpo.e, I-nglewood Cliffs: Prentice-Hall.

Taylor. R., 1974. Metaphysics, second ed., Englewood Cliffs: Prentice-Hall.

'hompson, A.. 1979. Network truth maintenance for deduction and modelling, IJCAI-79, 877-879.

Tinbergen, N., 1951. The Study of Instinct, Oxford: Clarendon Press.

Tukey, J. W., 1960. Conclusions vs decisions, Technometrics 2, 423-433.

Turing. A. M., 1936. On computable numbers with an application to the entscheidungsproblem, Proc.
London Math. Soc. Ser. 2, 42, 230-265.

'urner, R., 1978. Counterfactuals without possible worlds,)epartment of Computer Science, University
of Essex.

Wason, P. C., and Johnson-laird, P. N., 1972. Psychology of Reasoning: Structure and Content,
Cambridge: Harvard University Press.

t

Weinreb, D., and Moon,)., 1979. Lisp machine manual, MIT Al Laboratory.

Weizcnbaum, J., 1976. Compuier Power and Hunan Reason, San Francisco: W. H. Frecem.

Weyhrauch, R. W., 1978. Prolegomena to a theory of mechanized formal reasoning, Stanford Al
Laboratory, AIM-315.

Wheeler, J. A.. 1977. Genesis and observership, Foundational Problems in the Special Scientes (R. E.
lutts and J. Hintikka, eds.), Dordrecht: I). Reidel, 3-33.

White, A. R., 1968. The Philosophy of Action, Oxford: Oxford University Pre.

Wiest, J. D., and Levy, F. K.. 1977. A Management Guide to PFRT/CPM: with GERT/PDAI/DCPM
and other Networks, second edition, linglewood Cliffs: Prentice-HaL

249

Wilensk), R.. 1978. Understanding goal-based stories, Yale University, Department of Computer
Science, Report 140.

Wilks, Y.. and Ilien. J.. 1979. Speech acts and multiple environments, IJCAI-79, %8-970.

Wilon. 1- 0.. 1978. On Humn Nature, Cambridge: Harvad University Press.

Winston. 11. tt.. 1975. I.earning structural descriptions from examples. The Psychology of Computer
l'tsion (1). 11. Winston. cd.), New York: McGraw-I lil, 157-209.

Yessenin-Volpin, A. S., 1970. The ultra-inwuitionistic criticism and the antitraditional program for
foundations of madernatics. lntuitivnisin and Proof Theory (Proc. Conf. Iluffalo, NY, 1968),
Amsterdam: North-Ilolland. 3-45.

Zadeh. I .., 1975. Fuz/y logic and approximate reasoning, S)ynthese 30, 407-428.

71

1

;1

7 4

Li

DAT

DI

