AD=AL05 666 MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTE=~FTC F/6 6/4

A MODEL FOR DELIBERATION:, ACTION AND INTROSPECTION, (W)
NOOO14=75-C=0643

MAY 80 J DOYLE.
UNCLASSIFIED Al=-TR~d8%

r-4
£

——

e
Ne
e
g
&
=
<
o
<<

ACHUSETT
FICIAL I

),

D I O bl Ll o

UNCLASSIFIED
- SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
< jif [AL — REPORT DOCUENTATION PAGE oEr AP INSTRUCTIONS
o[7 REPORT ER 2. GOVY ACCESSION NOJ 3. RECIFIENT'S CATALOG NUMBER
TR-581 'ADLAAQS(Q(Q
/' 4. TUTLE and-Sarbtitbohc = o~ _ A d 4-" TYPE OF REPORT g.;s\a!oo COVERED
: A Model for Deliberation, Action an Vi PR o
Lo ; { Technical Repert .
N— Introspection . w.[w R /
! 6. PERFORMING ORG. REPORT NUMBER
e
7. AUTHOR(#) - B /<. . CONTRACT OR GRANT NUMBER(s)
S , Jon/ Doyle L—» ' tﬁ4-75-c-ﬂ643/f
et /N 7. MCS77-84828
9. PERFORMING ORGANIZATION NAME AND ADDRESS . ;;OO;;H ELEMENT. PROJECT, TASK
’ Artificial lntelligence Laboratory AREA & WORK UNIT NUMBE RS
r 545 Technology Square
: Cambridge, Massachusetts 02139
: 11. CONTROLLING OFFICE NAME AND ADDRESS 12, -
Advanced Research Projects Agency May #8¢ :
; 1400 Wilson Blvd 15. WUMBER OF PAGES
3 Arlington, Virginia 22209 249
1 4 MONITORING AGENCY NAME & ADDRESS(I different from Controlling Offi 18. SECURITY CLASS. (of this repart,
i Office of Naval Research UNCLASSIFIED
Information Systems
Arlington, Virginia 2221 an ggs{xeg:cnlouﬁowovuomc
6. DISTRIBUTION STATEMENT (of this Report)
f DISTRIBUTION STATEMENT A
Distribution of this document is uniimited. Approved for public release;
Distribution Unlimited
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, ! different frem Report)
T 18. SUPPLEMENTARY NOTES
None
19. XEY WORDS (Continue on reverse side If y and | fy by block ber)
Artificial Intelligence Deliberate Action Execution
Reasoning Decision-making Consciousness
Problem-solving Control Introspect]on
Knowledge Representation Planning Beiief Revision ()
. more
20 ARSTRACT (Continue on reverse side If necessary and identify by back number)))]
This thesis investigates the problem of controlling or directing the .
reasoning and actions of a computer program. The basic approach explored is
to view reasoning as a species of action, so that a program might apply its
reasoning powers to the task of deciding what inferences to make as well as
deciding what other actions to take. A design for the architecture of
reasoning programs is proposed. This architecture involves self-
consciousness, intentional actions, deliberate adaptions, and a form of ~=,& .7/
i 0
. DD 3% W73 Sormion oF § wav &4 1§ owoLutE 3/("‘- UNCLASS IFIED ’
@ O ’4/ ‘{ p 3 ECURITY CLASSIFICATION OF THIS PAGE Deta Bntered)
(e B ————
l .

#19. Learning
Non-monotonic lLogic
Defeasible Reasons
Dialectical Argument
Desire
Intention

\

\\«#20.
\
decision making based on dialectical argumentation. A program based on this architecture
inspects itself, describes aspects of itself to itself, and uses this self-reference
and these self-descriptions in making decisions and taking actions. The program's
mental life includes awareness of its own concepts, beliefs, desires, intentions,
inferences, actions, and skills. All of these are represented by self-descriptions in
a single sort of language, so that the program has access to all of these aspects of
itself, and can reason about them in the same terms.

)

e e e~ e v

IRt T LB y

— - ————— -

cother sie Bl s b N I ¢ ety i T

This report describes rescarch done at the Artificial Intelligence).aboratory of the Massachusctts Institute
of Technology. Support for the Laboratory’s artificial intelligence rescarch is provided in part by the
Advanced Rescarch Projects Agency of the Department of Defense under Office of Naval Research

contract number N00014-75-C-0643, and in part by NSF grant MCS77-04828.

Accession For
NTIS CRAXI !

DTIC TAB Wl *f
Unannounced O b

Justification .}

|
|
| Distribution/ f
| Avallability Codes |
77 laveil andfor | 1’
Dist | Speoilal

A

T
——r——a~——

f

A Model for Deliberation, Action, and Introspection

by

Jon Doyle

Massachusetts Institute of Technology

| May 1980

This report reproduces a dissertation submitted on May 12, 1980 to the Department of Electrical
Engincering and Computer Science of the Massachusetts Institute of Technology in partial fulfillment of
the requirements of the degree of doctor of philosophy.

o R e w96 s R

A Model {or Deliberation, Action, and Introspection

by ' :
Jon Doyle ' .

i
|
Subniitted to the Department of Flectrical Enginecring and Computer Science g
on May 12, 1980in partial fulfitiment of the
requiremnents for the Degree of Doctor of Philosophy in
Artificial Intelligence

ABSTRACT

‘This thesis investigates the problem of controlling or directing the reasoning and actions of a computer oo
program. ‘The basic approach explored is to view reasoning as a species of action, so that a program might o
apply its reasoning powers to the task of deciding what inferences to make as well as deciding what other
actions to take. A design for the architecture of reasoning programs is proposed. This architecture
involves setf-consciousness. intentional actions, deliberate adaptations, and a form of decision-making
hased on dialectical argumentation. A program based on this architecture inspects itsclf, describes aspects
of itself to itself, and uses this self-reference and these self-descriptions in making decisions and taking
actions. The program’s mental life includes awareness of its own concepts, beliefs, desires, intentions,
inferences. actions. and skills, Al of these are represented by self-descriptions in a single sort of language,

so that the program has access to all of these aspects of itself, and can rcason about them in the same
terms.

‘Thesis Supervisor: Gerald Jay Sussman

e

Title: Associate Professor of Electrical Engineering

. , J
3
CONTENTS 1
i
|
1. INTRODUCTION 10
1.1 The Fundamental ATBUIMICIIL ..o e sesas sssssssssnsssessssmsseassossessasssenas 12)
1.1.1 The Parablecereeccceneenrecrnereensaneee 13
112 TRC PROPOSILIONS c.oveeiiveevecnecreie e reas ot sevesessnass . . 15
L2 Ouline of the APPrOach ..t e e ssrs s s ssssaesssanssssssassssssessanees 17
1.3 OuINe OFC TRESIS .ooeereiieiercisieeriesettrcries s setossssssnsessssnstssassiessasesasssssnsss sessssesans 24 ;

1.4 Sketches of these 1deas in Practice ...
1.4.1 Decision-makingeeeceee
142 RCCOMCCUON oeireerecreeeeereer et ses st esssessessasssssnsrsessessnsorssessssesananssssssesess
1.4.3 ScHf-improvementoeovvereererervererrneneinnees
1.4.4 Planningoveeneveveeens
1.4.5 Conversation

1.5 Status of the Implementation

1.6 Sketch of a Computational Argument for the Approach

1.6.1 Why have the facts of thie fundamental argument been overlooked? 33
L6.1.1 Initiad Programming Complexity . ..c.ceceveennerenee RY)
1.6.1.2 A Mathematician’s Outlook 34

1.6.2 Consegucences of the Inaccessibility of Control Informationeececveevivenee 35
1.6.2.1 ‘I'he Inexplicability of Actions and Attitudes ... 36

1.6.2.1.1 The Chauvinism of VaUESccceeemnncseccininiesenneesesscsnisnasase 38
1.6.2.1.2 "T'he Lack of Intentionality 40
1.6.2.1.3 Inextensibility . 41
1.6.2.1.4 Hubris 41
1.6.2.1.5 Non-additivity - 42

1.6.2.2 Inexpressibility of Control Information 43
1.6.3 Hence Reasoning Applied to Control 4
1.7 Relation to Other Works 4
1.7.1 Major Influences and History 4
1.7.2 Related Works 50
1.7.2.1 Representation Theory 50
1.7.2.2 "The Nature of Reasoning ... 52
1.7.2.3 'The Theory of lntentional Action 53
1.7.2.4 "The Fragmentation of Valucs 54
1.7.2.5 Decision making ..c.veceeeeerneveesenseiessesnen 55
1.7.2.6 Control of REASONINGccovcevrevvervmmieressnssnee 56
1.7.2.7 Adaptive Changes of Mind . 57
1.7.2.8 Affcct and Intellect reret st e e Rt estese R R et anbasaaa eI sne RS 58
1.7.29 Consciousncss ‘ 58

1.7.2.10 "The Absurd 58

4
2. THE REPRESENTATION OF STRUCTURE 59
2.1 Desiderata of the Representational Systemuvvveveccerennn, 61 l ’
2.2 A Koy APPLICALIONoiveriircecrmenessesssissrssssssssssssarasensassosaas . 64 _
2.3 SDI., a Structured Description Language 65 ’,
24 Howto use SDL 72 T
2.5 Relations with other Representational Systems .78 !
2.6 Advanced Applicationsovvevesenreennns 80 i
2.7 Thearics aBOUL TICOTICS ouverceeeceeeee v rerrsesessesnrsasasrsesessssasessssssses 81 i
2.7.1 The THEORY ‘Theory ... cereuee e e s R et st ser bt s as b sasennas 81
2.7.2 Theorics 0f SPECific TRCOTIESoovceeerveniirerrnreecssnirinenssasesesnensassssiesens 82
2.7.3 The VO 'Theory eeocneveeccnceneesvnnens versreesensessastranaras 82
2.7.4 The PERSON Theoryeevennee. 83
2.7.5 'THe Global ThEory ME ... sssmsrassssesssssssssssssensassssssssassssssssens 84
2.8 Concepts and Attitudescoveveeecrnnee 85
3. FOUNDATIONS OF THE THEORY OF REASONING 87 ;
|
3.1 "The Nature of Reasoning 88
3.2 RMS. the Reason Maintenance System .. 95
3.3 RMS Data-structures 98
34 Suates of Belief 99
3.5 Justifications 9
3.6 Support-list Justifications 101
3.7 ‘Ferminology of Dependency Relationships 102
3.8 Conditional-proof Justifications 107
3.9 Circular Arguments 109
3.10 "The Reason Maintenance Process 110 1
3.11 Defeasible Reasons and Dialectical Argumentation 112 i
; t
4. DELIBERATE ACTION : 116 ‘ |
4.1 Plan Generation, Fxccution, and Interpretation 118 d
4.2 Plans and the Library of Procedures 120 ’
4.3 The Ambiguous "Goal” . 122 :
4.4 Desircs and Intentions 12§
45 Policies 132 ‘.
4.6 Rclationships Between Desirces and Intentions 135 |
4.7 ‘The Hidrarchical Structurc of Plans 140 :
48 Plan Spccifications 144 i
49 ‘T'he Current State of Mind 147 |
4.10 ‘The History of Actions 149 ;
4.11 The Frontier 152]
4.12 A Carcful, Mcta-Circular Interpreter 153 ?

2 ey e e

T ———

e T AR T

w

S
5. DELIBERATION 163
5.1 "the Variety of Decisions and Ways of Making Themoccvicevcernsnnnnnieescsnierennes 165
8.2 DICCISION TNICHLIONSoovverncrerresieireseesssssssssssesrasessassssrsisssessssssssnsosesrascsnsansansesnsososasesen 167
5.3 DClDCTUION RCCOTAS ..errereeereereeresreaneneensee s senssstsssessesst sessssssssesssenssssensssssssaseses ssasessens 169
5.4 PONCY EXCCULIONo.iererirteeeteisesssesessassisssssssssssnsssssssarssssssssssarsosesessenssrssnersasssssrasas 112
5.5 Policy APPHCaIlItYcoviiiiirirernnsnnserressencsceseessassessinsssssesminarsassasssessant o 174
5.6 PONCY ACHONS .ooeveiveraererrerenessseacessesssssssnsassonsssssassrsarassresssasacscssases . 175
5.7 A Very General Deliberation ProCCAUTEoevervevenrcineieeceecree e sereersssssesrcsessssennens 177
S5.7.01 The DeliBCration PlANSovooreceiinneecesrrencesesesseesssssessesesssssssssssssasenssssees
5.7.2 First-order Deliberation
5.7.3 Sccond-order Deliberation
5.7.3.1 Sccond-order Optionseeccveeenene
5.7.3.2 S0CONT-OFACT POUCICSvevveeesererererecsrnenissesserenssnsasesssesssssssnsssrsesssesssnases
5.7.3.3 Second-order Decisions ...
5.8 An Example Reworked ..eececovincnecencssnnns
6. DELIBERATE CHANGES OF MENTAL LIFE 191
6.1 Motvations for ChanGEe ...ttt e nrssas et sessea sesesensesasssissses 193
6.1.1 Belicf cereresssas o R s e aresta et sensae 194
6.1.2 CONCEPLS .o.eoeeereimeerrarenseersessarsserins srsssssessansssensarasessssntassassentosesisesassnssssssssssecseens 197
6.1.3 Desires and INLCRUONScceveerencereeerreeseersessaeserseseseresssassesssessssssescsssmssess 198
6.1.4 Values 199
6.1.5 Skills 200
6.2 Mcchanisms of Change v . 202
6.2.1 Belief 202
6.2.2 Conccepts 206
6.2.3 Desires and Intentions . 206
6.2.4 Values 207
6.2.5 Skills 207
7. DISCUSSION 214
7.1 Summary of the Kcey Ideas 214
7.2 Summary of the Principal Contributions 215
1.3 Directions for Future Rescarch 216
7.4 Affect, Intellect, and Complex Sclf-ICSCTIPHONSoevvcierncvrmmesisensersanerssssessassisseese 223
1.5 'the Limits and Accuracy of Scif-Knowledge 227
7.6 ‘The Limits of Reason and the Absurd 231
8. REFERENCES 23§
[: - p— v ——

FIGURES

Fig. 1. "The Overall ProOgram SUUCIUTEvcceeeeerrrnccetsesnsssssetsessensesssssesssessssssrssrsesssacsssensssasssessoress 18
Fig. 2. 'I'he Basic Cycle of Sclf-Interpretation
Fig. 3. Diagram of Mythical INFIUCNCESooiciirirrnniererccesrnrerciscisnssssannassssssssssesssessssessassnsnssassrsees 45
Fig. 4. Key to INflUence ADDICVIALONScieeeonrerreinscr e sernissese e sesrsssssssesssscsssasesesssnsnessssnssss 46
Fig. 5. Statement of Six Nodes and Scven Justifications
Fig. 6. Picture of Six Nodes and Scyven Justificationsooveveeerecvnene.
Fig. 7. Table of Dependency Relationships ...
Fig. 8. Progress SWtus TranSitionsc.veeveereeersecrsesesneesessssasmerans ertetre sttt ash s s nasanane
Fig. 9. Plan for Serving DInnerccovevreneecenrnecne
Fig. 10. THe TORPIHD PROCCAUTE ...t seosese st st scnasssssssessrasesessesstesssnansasesssess
Fig. 11 Information Flow in IDCHDCIALIONSc.ccecmcvivierisesecireirssssssesssnnsssrcosessssssessessessssssassssessees
Fig. 12. 'Ihe Deliberation Procedure
Fig. 13. HACKER's Debugging Flowchart

J e L L IR]

AW g i ASN B2 Y D oatrilg

——— S e e r e

~ e

This thesis is dedicated to

Joseph A. Schatz
fricnd. tcacher, playmate

o e feh de W e ekl WS i m e R MR et e R 4 4 AR o eRe

Acknowledgments

| thank Gerald Sussman. my thesis advisor, and my rcaders Peter Srzolovits, Drew McDermott, and
Marvin Minsky for their constant encouragement, criticism, and advice.

I thank Johan de Kleer for serving as a de facto reader for this thesis, and for continually valuable
discussions on many topics. Many of the explanations in this thesis resulted from his comments.

1 thank Joseph Schatz for more advice, stimulation, and pleasure than | can express, delivered with gentle
wit and style. 1 would not be where Tam without his concern. -

I thank my family, F.co Doyle. Marilyn Doyle, Paul Doyle, Lynn Doyle. and Peter Doyle for teaching me
how to live, o enjoy and excite, and o Tearn, and for moral and financial support whose importance to
mc cannot be underestimated.

1 thank my aunt Cloe Doyle, for carly tcaching me about ncgative numbers and other parts of
mathematics. M still comes in handy.

I thank Marcclla Boffa, Kelly Martino, and John Baker for offering me the life I have forsaken.

| thank my friends who built my social interests: lohn and Sheron Cullen, Rebecca Schatz, Michael
I.oui, Shelly Licbher, Donald Petersen, Ronald Pankiewicz, and Marilyn Matz.

1 thank afl those people with whom | have discussed matters of interest. I'm afraid that, unlike my
programs. | do not always recall where ideas came from, and | apologize to and cherish the contributions
of all thuse whose suggestions | have considered. 1 hope they take my adoption of (or disagreement with)
their ideas understandingly. In addition to the above, 1 especially thank Howard Shrobe, David
McAllester and Richard Weyhrauch.,

| thank my collcagues and the staff at the MIT Artificial Intelligence Laboratory and the Laboratory for
Computer Science for their support in ideas, services, machines, and libraries.

I thank Danicl Carnesc and Randall Davis for valuable comments on this thesis, and Gerald Roylance for
tcaching me how to draw the diagrams.

] thank Doubleday and Company for their permission to reprint the excerpt from The Sot-Weed Factor
by John Barth, which is Copyright 1960, 1967 by John Barth,

Finally, I thank the Fannic and John Hertz Foundation for supporting me during my cntire graduate
carcer with a graduatce fellowship. 1t was invaluable,

* e e ST ST s g e V= A AP L FOmV AT e ST« O T e ey

et mamn et e P W o

P U PR

1

9]

‘,

|

!

4 .

He wishes for the cloths of heaven

by i

W. B. Yeats

i
4

Had I the heavens' embroidered cloths,
Enwrought with golden and silver light,

The blue and the dim and the dark cloths

Of night and light and the half-light,

I would spread the cloths under your feet:
But 1. being poor, have only my dreams;

I have spread my dreams under your feet;
T'read softly because you tread on my dreams.

. e o o s

e - m— e -

10

CHAPTER |

INTRODUCTION

Sclf-reverence. self-knowledge, self-control,
These thiee alone lead life to sovereign power.
Alfred, Lord Tennyson. OFnone

Know prudent cautious self-control is wisdom's root.
Raobert Burns, A Bards Fpitaph

The woman that deliberates is lost.
Joseph Addison, Cato

But a sclf-controlled man is of a different sort:
he follows right reason,
Aristatle, Nichomachian Ethics

‘This thesis investigates the problem of controlling or directing the reasoning and actions of a computer
prugmm.l The basic approach explored is to view reasoning as a sort of action, and to have the program
apply its reasoning powers to the task of deciding what inferences to make as well as deciding what other
actions to take. This problem of controlling reasoning is important because information is often
communicated between man and man, and eventually, it can be expected, between inan and machine, as
facts which offer little guidance as to what inferences should be drawn from them. Much experience and
many theoretical studies have proven that the general problem of drawing particular conclusions from
purely factval information is hopclessly intractable.2 These lessons show that inference cannot always be

treated as an automatic procedure, but sometimes must be accorded all the careful consideration given to

). 'ollowing current usage. this thesis uses the phrase "the program” to abbreviate some phrase resembling “the machine
produced as a siate-configuration of a | 1SP-implementing compuler as described by the program text.” Several wrilers, such as
Fodor [1978]. Putnam [1978). and Scarle [1980) have pointed oul that a program, a formal system. cannot be said 10 have &
msychology, in contrast Lo apparent claims made by some Al researchers. Some of this disagrecement might result from the
unconscious use of an abbreviation of the above form on the part of some of the participants. We do not attemt to adjudicate this
debate, nor to makc rigorous the sensc of the above abbreviation. Those tasks arc left for others. (Brian Smeith is engaged in such
an enterprisc.) tn particular, this thesis avoids the problem of how the program is 10 be cquipped with sensors and effectors 5o as 10
perceive and have power over its environment.

2. Sce for examplc [Green 1969) and [Rabin 1974).

ANCN

st 7 o Sudides SHE R Wt SaBA L &

A

L5

L m
5

AN

b

other actions. To overcome this difficulty, this thesis attempts to find ways of stating and using facts
about how other facts should enter into reasoning. The proposed solution, that of a program which
rcasons about its own reasoning, is of considerable gencrality.

‘This chapter consists of several scctions. The first scction presents what the fundamental
argument for the approach, and this argument introduces the fundamental idcas of and constraints on the
proposed solution. The second and third sections of the chapter sketch the structure and operation of the
program described in the following chapters. and give a guide to reading those chapters. The fourth
section presents examples of the ideas in practice. The (ifth scction discusses the implementation. The
sixth section attempts to motivate the approach with yet another argument, this time by showing how one
might be lead to the proposed approach purely from considerations of what must be computed and what
is necessary to allow its computation. ‘The final section of the chapter sketches the relation of this thesis to
other works.

Readers concerned with how to use the techniques developed in this thesis arc cautioned in two
ways. First, most of the techniques employed in traditional Al programs, such as problem reduction
problem solving, planning, scarching, backtracking, learning, context switching, etc., occur only in
Chapter 6 as applications. The bulk of the thesis is devoted to foundational tools by which these
traditional techniques may be used dcliberately, and consequently, may be explained by the program
itsclf, Second, the techniques apparently require an unusually large overhead in time, space, and
notation. Sections 1.5 and 1.6 cxplain why this overhcad must be accepted to build intelligent machines.

The rcader will find that many of the techniques explained in the thesis bear a certain similarity
to mechanisms which some commonsense truisins ascribe to the workings of the human mind. This
similarity results solcly from my use of these truisms together with informal personal introspection to
inform my development of the proposed techniques from primarily computational considerations. 1
make no claim that the human mind cmploys similar mechanisms. 1 mercly attempt to motivate and

explain these techniques with common ideas about human behavior, since humans arc currently the

Pt oy,

ben

e

—— it . e s

e PR Ay SN KR A BB MR YN Y N 5 B 2h -

N ot —————————

hest-known concrete model of intelligent behavior. Specifically, 1 try o indicate how a number of
mechanisms originally developed for rather technical tasks, including the design, synthesis, and analysis
of electroniv circuits and computer programs, can be combined and organized to capture common-sense
reasoning as well as highly specific technical problem-solving. 1 frequently motivate my suggestions with
common-sense cxamples, as they are significantly casicr to convey, but 1 hope it is clear that these
mechanisms also suffice for the traditionat technical wasks. Bricfly put, I view technical reasoning as a
subcategory of general reasoning, and a more tractable onc at that. But though 1 try to capture a number
of ﬁll]li‘i;lr human reasoning patterns, no claim shoudd be inferred that the mechanisms 1 propose are the

only such mechanisims, or that they are those used by humans.

LI The Fundamental Argument

This section attempts to motivate the proposed approach through a series of propositions, looscly called
an argument. which express general criteria for judging proposed organizations for intelligent machinces.
‘These propusitions capture certain characteristics of intelligent cxistence, characteristics which
significantly constrain proposed organizations of intelligent machines. Because of their gencrality, the
propositions arc presented with both motivation and mdrals. We first motivate the argument with a
parable in primitive human terms, and follow the parable with the propositions of the fundamental
argument, annotating cach proposition with a moral about how intetligent machines should be organized.

‘The paragraphs of the parable parallel the relevant propositions of the argument,

13

LL1 ‘The Parable

I always adapt. 1 put on skins in winter. follow the game as it migrates, and run from rolling
rocks, falling trees, and charging behemoths.

Somectimes | must change things. sometimes mysclf. As the years grow colder, | move towards
the south. As the land turns barren, 1 train myself to be forever alert to tke advantage of the flecting,
infrequent opportunitics for food. Sometimes | must change both my surroundings and mysclf, When
the plains and platcau became infested with dangerous beasts, | moved to live in the cliff, and trained
mysclf to be a good and careful rock climber,

Toavoid mistakes, 1 think carcfully before acting. Normally 1 go unarmed, but if 1 thoughtlessly
walk unarmed into the forest, without first reflecting on what | am doing, 1 am likely later to meet an
unpleasant end with lions, tigers, or bears, When | decided to build a shelter on the ground without first
reflecting on the decisions that had to be madc and the order in which they should have been made, 1
wasted much of my own cffort, and that of my sons as well that | asked to help, for I thought about the
various clays | know of and of where they can be found and how they might be carried, before I turned to
the question of where to build and realized that the best location was in the flood plain, where our crops
would be nourished, where we would spend two days a year waiting out the flood uplands or in a tree, but
where adobe would be a useless waste of cffort compared with a thatched hut. And when [tell my son
what to do, 1 must think of what hc knows of my plans for the hut, lest | say things he does not
understand, and of how to say the orders, for he is proud, casy to anger, and 1 am not as strong as [once
was.

I have so many decisions to make. 'The farm has donc well, but now | grow old and must divide
it among my children. How should 1 do this? 1 can divide the lands in equal mcasures, some good and
bad land to cach, or | can divide it into the better and poorer ficlds, or 1 can split some of the larger ficlds

into parts but not the smaller ones, or I can split them so that cach has access to the strcam, or | can divide

) ¢ N AT e Iy, Y T o
B S ARSI fgobinga. ¢ ARy AR T a2

-

i dea

A

-

PO Y N

kS O b b G RIS . 5.

. my —

T

them as the children request me to do.

‘There are so many complications. If I leave some of the good land and some of the bad land to
cach, then that will be fairest. But if some of them do poorly on their own, the lot of their brothers may
not be sufficient to tide everyone over. But if 1 give the casiest lands to the weakest, the others will drive
them out when T am gone, and they will have nothing. But even if Fam fair, the cldest and the strongest
will demand the largest and best lands. Perhaps | can give them just enough more to keep them from
attacking the others. But 1 already promised the apple tree to the first daughter, and 1 must give extra
land to the second son, who will care for my mate. But the strongest should be on the perimeter, to ward
off imaders. What should | do? Should | do what is fair? What is safest from the whims of nature?
What is most likcly to be respected by the children? What [have promised cach [would do? What will
provide for my mate, as my mate provided for me? What is safest from enemies?

Woc, woe, sometimes | just can't help things. The invaders came, and now we arc their slaves.
Our women they took as mates. The mate of my first son, who had come from afar and spoke of gods and
laws, would not submit to them, and they killed her. My daughters, whom she had convinced of these
gods. instecad of following her renounced the laws and went with the invaders, so they still live.

I hate this slavery. Why should the invaders rule? They are no better than us, and if we had
invaded them first with similar surprise, we would be the masters and they the slaves. Why did this
happen to us, and not to the other neighbors of the invaders? The dead onc said that the gods put us
here, but why should they do that? Why do the gods cxist to torment us so? But if they do not cxist, then

the dead onc is no more, not in this marvelous land she taiked of. Docs that await me too?

DR

e 4

- e —

15

1.1.2 The Propositions
1. The world continually changes, so to survive, we must always adapt.

Intelligent machines should adapt to newly acquired information and to new demands placed on their

operation by their users or co-workers,
2. To adapt, we must act either to change our surroundings or ourselves.

Intelligent machines should be able to modify their own organization and behavior as well as take

physical actions.

3. To act effectively, we must think about what to do, including thinking itself, so that we plan and reflect on

our inferences as well as other actions.

Intclligent machincs should reason about their own organization and reasoning, as well as "cxternal”
domains, and plan complex “internal” activities (such as difficult decisions, comprehensive database
scarches. ctc.) as well as complex external activitics. Even parallel computations, however uscful they

might be in some ways, cannot relicve the need to make some consequential decisions serially.

4. The most difficult problem in thinking about what to do is deciding between the many possible courses of

action.

Intelligent machines should when necessary cxplicitly consider decisions about which inference rule or
procedure (o apply next, where to look for some fact in the database, etc. so as to avoid combinatorially

cxplosive scarches.

3. Decision-making in turn, is dominated by the many incomparable sorts of reasons for or values of

possible actions, which stem from a sectioning of the world into many subdomains, each with its own

vy,

O

[T

f e o S AR oy

16

concerns and values. These imcomparable reasons make decision-making a question of right (in one

subdomain) vs. vight (in another subdamain), not right vs, wrong.

Intelligent machines should reason about their reasons for taking actions, to sec if these reasons are of
comparable types, or if they have exceptions in the current situation. ITatelligent machines should not use
decision-making techniques which force all reasons into a total order, as do most numerical weighting

schemes.

6. Further. vur abilities are limited, which sometimes prevents our adapting by conserving or otherwise
controlling our surroundings, so we must either always be able and ready to change any aspect of vurselves,

or be willing 10 accept injury when we do not change.

Intelligent machines should be able to deliberately change any of their database facts, procedures, etc.,

whether “built-in" or not.

7. (The great joke is that though we need both self-conscivusness and self-adaptiveness to survive, in
combination these abilities shock us with realizations of both our own absurdity (why should we exist?) and

the possibility of our own death (we might not exist!).)

Intclligent machines should matter to themscelves, They should have valucs initially built in so that they
do not lightly change themsclves into non-existence. They should choose their actions with responsibility

for their own survival or other conditions that they arc charged with maintaining,

el

haad

17

1.2 Outline of the Approach

| think that many philosophers sccretly harbor the view that there is something deeply (i.c.,
conceptually) wrong with psychology, but that a philosopher with a little training in the
echniques of linguistic analysis and a free afternoon could straighten it out.

Jerry 1-odor, Psychological Explanation

Therc » noart to find the mind's construction in the face.
William Shakespeare, Macbeth

Good Lord. what is man! for as simple he looks,

Do but try (o develop his hooks and his crooks,

With his depths and his shallows, his good and his evil,

Allin all, he's a problem must puzzle the devil.

Robert Burns, Skeich: inscribed to C. J. Fox

Motivated by the preceding ideas. this thesis sketches the basic computational structure of a conscious,
adaptive rcasoning p?ugram which we call SEAN. ‘The program inspects itself, describes aspects of itsclf
t itself, and uscs these self-references and self-descriptions in making decisions and taking actions. The
program's mental life includes awareness of its own concepts, beliefs, desires, intentions, inferences,
values, past actions, and skills. These are realized by sclf-descriptions in a single sort of language, so that
through self-reference the program has access to all of these aspects of itsclf, and can reason about them
in their own language.3

The concepts of the program are cach realized as (roughly) a named sct of axioms in a formal
logical language. The languagc is a variant of the first-order predicate calculus, but that detail is
incssential. The key property of this representation is that the logical theories can themsclves be referred
to by other theorics. This allows the program to employ statements about, for cxample, how its concept
horse is refated to its concept animal. [n fact, the program itsclf is such a logical theory, and its language
includes a name for itsclf. "This allows the program to cmploy other statements that, for cxample, usc the

program’s name for itsclf to refer to propertics of the program as a whole, such as whether some possible

belief is consistent with all of its current belicfs. This meta-thcorctical approach allows some classical

3. Figure 1 prescnts the overall program structure as described below.

T s By Nr I T LT
N

o ik
v g, VA

prey

18
Self-concept
A f { b I J
Beﬁefs | |
Concepts
Desires #
Reasons
Intentions Procedures
Polices Feasible Intentions RMS SDL CMSl's DP's
RMS is the Reason Maintenance System
SDL is the Structured Description Language
CMSI's are current mental state interpreters
DP's are deliberation procedures
Figure 1
The Overall Program Structure

PR PR N L

19

problems of representation to be attacked in cffective ways, and allows reasoning about concepts in
hicrarchical levels of detail. Since the concepts are themselves objects to which the program can refer, the
program can reason about whether or not to pursuc the internal structure of a concept’s subconcepts
during information retricval. This mcans that the program can ignore unnccessary details of its concepts
when desired, and that the reasoner can be scif-applied to the database retrieval task when necessary to
avoid blind scarches.

‘These concepts arce then used in other logical theories to realize the mental attitudes of beliefs.
desires. and intentions. These attitudes use a concept as their "propositional content.” "They are more
than just the concepts embudying their propositional content, for they also include information used by
the program in treating them as attitudes. Thesc attitudes are also logical theories, but ones which are
treated in special ways by the program, namely as helicfs, desires, and intentions.

The most important auxiliary information included by the program in attitudes over their
content concerns the reasons for the attitudes. The progran records its actions by adding statements
describing them to itself. Inferences are sorts of actions, and hence are also recorded. Fach attitude
includes mention of these recorded inference steps, which we call the reasons for the attitude. Common
usage normally uses the term “rcason” to refer to an aniccedent attitude acted on in an inference stcp, as
in "P is my reason for Q because | inferred Q from P." We corrupt the tongue to mean instcad the
inference step itsclf, so that if the program infers Q from P, not P but the record of that inference is called
a reason for Q.

‘The importance of these reasons tics not in just the historical and cxplanatory information they
provide, but in that the program uscs the current set of reasons to determine the current sct of actual
attitudes. ‘Thus some potential belief may have several reasons recorded for it, but if none of these
rcasons is valid, that is, refers back to current belicfs as antecedents, the belicf in question will not be an
actual, but mercly a potential belief,

Reasons are recorded for all types of inferences, not just deductive inferences of onc belicf from

——y " -

A 2

_____ . o %34 T e R A i
e, e J% Lw@j’!ﬁ?‘ .

IR O oo o B - ¥ e il PN KRPY - ay me - WDN A -

20

other beliefs. Reasons record the inference of desires from other desires, intentions, and beliefs, and the
inference of intentions from desires. belicfs, and valuces in decision-making.

Animportant propeity of these reasons is that they are defeasible. That is, after an inference has
been madec, it can be reflected on. 1f reflection determines that the reason was mistaken because, for
example, the inference was made in exceptional or special-case circumstances in which it was not strictly
vilid, the program can defeat the reason by providing a defeating reason. This defeating reason may in
wrn be defeated by other reasons. The defeasibility of reasons allow the program to change any of its
attitudes. for cach atitude is held only because of some reason, and can be rejected by defcating all of its
FCasons.

The current sets of concepts, reasons, beliefs, desires, and intentions comprise the program’s
current state of mind. n fact, the program is a single concept "containing™ all other concepts and
attitudes, including itself. ‘The procedures of the program are also concepts. Some of these make up the
action-taking part of the program, called the interpreter, which reflects on the current state of mind and
then acts on the basis of what it sces. (Sce Figure 2.)

The program often takes actions and inferences by executing primitive procedures, and it records
these actions as statements. Al primitive procedures are treated as attitudes as well, so when procedures
make inferences, they record these actions as reasons, and include themselves in the reasons. Primitive
procedures with external effects are recorded in somewhat different form, but that will be described later.

In addition to primitive procedures, the program embodics some of its skills in plans, which are
concepts describing (roughly) patterns of desires and intentions. The program carries out its intentions
cither by exccuting a primitive program, or by reducing the intention to a plan, that is, by embracing or
inferring the new desires and intentions specificd by the plan. These plans and the desires and intentions
they produce are reflected on by the program as a means towards controlling its actions. They form the
sclf-conscious “tip of the iccberg™ which controls the vast majority of computational steps taken

unconsciously by primitives.

[PPSR

R

21

Reflect Act

w

Figure 2
The Basic Cycle

Rh gl e TTRATY TP ":'v. " : - L
e LR R ey TR
il ey

22

The program's skills involve not only procedures but also statements about when these
procedures are useful. Fach merhod statement expresses that some procedure is relevant to carrying out
some desire or intention,

Method statements about procedures and the aims of desires and intentions comprise just one
specid sort of information that the program may have about a procedure. More generally, the program
cmploys statements of other properties of the procedure in other cases of reasoning. For example, one
sort of property is that of mput-output behavior. These are modal statements of the form “If P holds
before the action, then Q holds after i Other sorts of statements express propertics concerning
complexity or intermediate states of exccution of the procedure. We will not often use or purstic such
more general action propertics in the following. However, one key type of information about plans is that
of the relationships between plans. This information is expressed as statements relating one plan concept
with another, such as that one plan is a refinement of another.

The program forms some intentions not by reducing an intention to a plan but by deliberation,
by deciding what dcesire or intention to pursuc or how to carry out some intention. These deliberations
make usc of policies. Policics are intentions which embody the values of the program, and are carried out
by rcasoning in decision-making. Policics arc used in reusoned deliberation to indicate new options to
consider and to give rcasons for or against the options. Policies cffect values by constructing reasons for
and against other rcasons so as o influence which option the program acts on by influencing which
rcasons arc held to be valid grounds for action. The typical casc of deliberation invalves policies creating
some options and conflicting rcasons for what to do, and other policics reflecting on these reasons to
apply the values of the program by defeating a lesser reason in terms of a stronger. These values are not
expressed numecrically, as is traditional, but rather as explicit statements that one particular sort of reason,
in some particular sct of circumstances, overrides some particular application of another reason. 'This
approach to decision-making allows conflicting values to be scttled or reconciled in a casc by case

mannecr, since the defeasibility of rcasons mcans that any particular application of a valuc may be

e P Hmmn 8w

RS TN

- gt

23

overridden if special circuinstances so warrant. This approach also allows for the occurrence of dilemmas,
for two types of values may be incomparable to the program.

Reasoned deliberation is used in many ways in the program. ‘Ihe most hasic usc is in deciding
what to do next, in which the program reflects on which desire or intention to pursuc and then on how to
pursue it. But deliberation also guides the program’s actions in other ways, the most important ways
being deliberate changes in the program's sct of concepts, beliefs, desires, intentions, values, and skills.

After making inferences, making observations, or taking actions, the program somctimes
discovers a conflict between some of its beliefs. The normal path 10 follow in these cases is for it to
discard some of its belicfs and assumptions to restore harmony. But belicf revision always involves
ambiguity, in that there are always many possible changes in the sct of beliefs which will restore
consistency. To decide which revision should be made, the program deliberates about the possible
revisions and reasons for them. Formulating the possible revisions involves tracing through the reasons
for the conflicting beliefs to find the underlying beliefs causing the conflict. The valucs of the programn
enter this deliberation by preferring one possible revision to another, effectively determining the tenacity
with which the program clings to onc set of beliefs rather than another. The program normally carries out
this intention by defcating the justifications for the beliefs to be discarded and perhaps by justifying the
oppusite beliefs.

‘The program modifics its sct of skills in a related way. If it determines that some skill does not
live up to its intended specifications, the program will adopt an intention to decide how to modify the
procedure, or the set of skills, so as to realize the intended specifications. To do this, the skill
maudification proceduses employ deliberation to decide what sort of change is necessary, to decide what
particular plan to fault for the problem, and to decide how to patch the plan to remove the problem.
Determining what the possible changes in the sct of skills are and how to make them is more complex
than just cxamining cxisting rcasons as sufficed in belief revision. Instecad the program must often

introspect into its primitive procedures to find the explanation of their behavior in terms of underlying

. o ham

R VS S P

—

. SRS

24

plans. After it docs this, it uses these plans in symbolically exceuting the primitive to see exactly how the
problem occurs. 1t then analyzes the reasons for the problem in terms of the beliefs, intentions, and
actions of the primitive in this symbolic exccution to classify the problem into one of a number of
problem types. It then deliberates on how to modify the procedure so as to avoid the problem. Once it
has decided 0 make some particular modification, it modifics the plans invotved in the procedure’s
construction. and compiles these plans back into the form of a procedure.

Skill modification plays a crucial role in the efficient aperation of the program. For efficiency,
most steps of most actions must be taken unconsciously, and skill modification techniques are the means

for producing such unconscious skills from the prior conscious plans and experience with their use.

1.3 Qutline of the Thesis

Chapter 2 describes SDI* the language in which concepts and attitudes are phrased. Chapter 3
introduces RMS.® the underlying subsystem which implements the theory of rcasoning. Chapter 4
describes the hicrarchical library of plans and the interpreter, the action-describing and action-taking
parts of the program. Chapter 5 explains how these techniques are combined in reasoned deliberation.
Chapicr 6 cxplores the application of. these techniques in 'dclihcratc changes of the program’s concepts,
beliefs, desires, intentions, values, and skills. Chapter 7, the final chapter, discusses incompletencsses in

this work, related directions for future rescarch, and speculative topics.

4. 'This acronym stands for Structured Description 1anguage.

5 RMS is a revised and renaincd version of ‘TMS [Doyle 1979). ‘The acromym stands for Reason Maintenance System. | am
changing the name for two reasons. 1irst, TMS, the Truth Maintenance System, has nothing 10 do with (ruth, and this misnomer
has apparcntly annoyed somc who look it more scriously than was intended. Sccond, as discussed in more detail in the last chapter,
RMS maintains reasons for several sorts of altitudes, such as belicfs, desires, and intentions, so that it scemed prudent to name it
afier the reasons being recorded than afier one of the attitudes (such as belicf) being derived from these reasons.

a0

s -

PR i

25

1.4 Sketches of these ldeas in Practice

To illustrate how these sorts of technigues might be applicd, we present several motivating sketches of
reasoning in common situations involving decision-inaking, recollection, self-improvement, planning, and

conversing.

1.4.1 Decision-making

Supposc that Robbic is a male robot. As Robbic is opening a closed door with the intention of walking
through it. he detects an approaching object. He identifics the object as a woman (or perhaps a
female-appearing robot), and considers what, if anything. to do about her. He thinks of two possible
courses of action, (1) holding the door for the woman, and (2) ignoring her, thereby letting her open the
daor on her own, Robbic first forms a reason (a) for option (1), that chivalry demands a gentleman hold
the door for a lady. Robbic continucs to think and realize, that the modern woman finds chivalry an
insult to her humanity, which constitutes a rcason (b) against the first rcason, that is. a rcason not to act
for reason (a). At this point Robbie still has no rcason for action, since rcason (a) has been defeated by
rcason (b), so he thinks further that he should hold the door by reason (c) of general politeness towards
onc’s peers. At this point Robbic stops deliberating on what to do about the woman, and since option (1)
has a good reason for it and (2) docs not, Robbie decides to act on reason (c) and hold the door for the
woman.®

Robbic next thinks about how he should go about holding the door for the woman. He

considers the possibilitics, the first of which is his standard mcthod, that of (3) holding the door after he

has passed through just long enough for the woman to reach the door and hold it herself. But he then

6. Il Robbic instcad had been a time travelier o the carly pant of the iwenticth century, he might have, unless he was very dull,
realized that he had a reason (d) against reason (b), namely that the different time period made his original objection invalid. fn this
casc, Robbic could have acicd on reason (a) alone, for reason (d) being valid would make rcason (b) invalid, thus allowing a good
reason (a).

26

recognizes the woman as a friend whom he has not seen for some while, and considers the second
possibility of (4) holding the door untit she has passed through, following her through, and offering
grectings as she passes. In this case, option (3) is his default door-holding method, and has a reason for it
that is valid if therc are no other options with good reasons for them. But Robbic also has the good
reason of renewing a friendship for option (4), so the default reason for (3) is defeated. Thus Robbie
decides on (4), holds the door, and says hello.

Although this example is informal, exactly the same techniques arc important in highly
constrained technical domains (not to imply that social behavior is not also highly constrained). For
example, when writing a program onc has a decision of how to implement some function. One possibility
might be simple, another complex. One might have a reason for the first in its maintainability, but defeat
that because of its incfficiency. One might defeat the reason of inefficiency because the program will
receive only limited use. Then one might defeat the reason of maintainability because the simple method
actually runs quickly on the cascs of interest. Whatever the problem, one still has to somchow combine

different sorts of values and cxceptional cascs in decision-making.

1.4.2 Recollection

We often would like the program to cxplain its actions, and normally it can do this by examining its
records of its actions for the action in question, and then cxplaining the action in terms of the intention
that led to the action, and then in terms of the beliefs, plans, and decisions that led to the fonmation of
that intention. But what if the action in question cannot be found in the history of actions? The program
then reasons about whether it took the action or not. It might possess information about its procedures
(cither through introspective analysis or design) sufficient to tell whether the action in question might
have been taken unconsciously by some primitive. For example, the program might record its action of

moving onc block to a new location, but if the primitive it used to carry this out first moved some other

.-

2

block to clear the top of the target block without noting this subsidiary action, the program would miss
this action in its history, However, if it knew that the block movement primitive could be invoked by
primitives as well as through intentions, it could admit that it might have taken the action, but not
comsciousty, I it knew cven more about how the primitive might be called, the program might be able to
mfer that it must have been called and why it was called. The program might also try to recognize the
action as emerging from the larger pattern of the actions it does recall. For example, the program might
move some black around an a table until the block reste again in its original position. However, it might
have to infer from its recollection of cach of the separate actions that it took the action of leaving the
block in place. Finally, the program might belicve that the only way the action in question could have
been taken was deliberately through an intention, and infer from this and the absence of any record of the

action that it did not take the action.

1.4.3 Scll-improvement

How pleasant it is, at the end of the day, no follics to have to repent;
But reflect on the past, and be able to say, that my time has been properly spent.
Janc Taylor, Rhymes for the Nursery. The Way 1o be Happy.
In addition to reflecting on its actions to explain them, as in the previous sketch, the program might also
reflect on its recent actions to see if they signal any changes that should be made in the procedures used in
taking these actions. 1, for example, reflect on the day’s cvents cach night before going to slecp. | also
reflect on recent actions when 1 get annoyed with something, to sec if | can think of some way of avoiding
similar annoyances in the future. In recent times 1 recall several discoveries I made in this way which |
then put to use in improving my futurc performance. For example, 1 used to shave after showering.
Having to wash my face after shaving cventually annoyed me cnough so that 1 realized that 1 wouldn’t

have to wash my face a second time if | shaved prior to showering. So | switched my routine. However, |

later became annoyed with the stiffacss of my beard, which on reflection I attributed to the lack of

Y TR ¥ S

PR PSR PR

R e T I Y I

28

shower softening, so | switched back, now the wiser about wilet techniques. In the same way. an
intelligent program might be fruitfully organized to reflect on the efficiency of its past actions both when
problems arise, and as a regular matter (once per day as the nursery rhyme gocs. or during

comersationally idle periods).

1.44 Planning

Regular review of onc’s plans often results in their modification, for example, by realizing their
incoherence. their inappropriateness, or their importance. For example, the program might decide to
carry out two of its intentions by means of plans. Unless it then reflects on these plans, it might never
discover that together the plans have substeps calling for simultancously unrcalizable or needlessly
repetitive actions. ‘The program can correct these problems by carcfully ordering the steps, or by
discarding onc, or by inserting new steps to mitigate the interference between the separate plans.” The
program might also notice that a great many of its intentions turn on some decision it intends to make. In
this case the program might explicitly state the importance of the decision, and adopt the intention to be
very carcful in making the decision, that is, to use a carcful deliberation procedure rather than to decide

quickly.

145 Conversation

In addition to rcasoning about its own actions and attitudes, engaging in conversacons requires that the
program rcason about the ctions and attitudes of others as well. Intentions to inform can be analyzed as
intentions to have the other participants in a conversation believe some fact. Intentions to request

something of someone can be analyzed as intentions to inform that person that onic has a certain desire

7. Sacerdoti’s [157! NOAH is an example of ways in which su:ch reflection and action might be done.

oih D= At SR

—_—

[, SR U e

29

whose satisfaction involves their cooperation. Furthermore, an intention to persuade can be analyzed as
an intention that the other person adopt a certain desire.

Tn all these cases, o plan one's utterances onc needs to reason not only about one’s own attitudes
and actions, but also about the other person’s attitudes, his attitudes about one” own aititudes, and the
belicfs and skills in common to both participants in the conversation ?

To perform this sort of reasoning, the program might make copics of its own mental structure,

interpreter, library of procedures, cte. to represent cach other participant, and then simulate and

interrogate these models (o predict what the effects of its own conversational actions will be,

1.5 Status of the Implementation

Can these bones live?
Frekicl, aviii:27
No complete. working, fully tested version of the program cxists at the present writing. This section
cxplains both what has been implemented, and forsecabice difficultics in completing the implementation.
Al of the pants 1 have implemented are written in LISP for the MIT Lisp Machines.

Scveral versions of many parts of the program have been implemented and experimented with
to varying degrees by various people. SDIL. is based on a modest extension of the ideas used in FOL
[Weyhrauch 1978). An implementation of FOL. by Weyhrauch and others has been working for some
time and applicd to scveral projects. SDI. has been implemented several times, but never as completely
as its description in Chapicr 2 indicates. RMS is a modification of TMS [Doyle 1979]. TMS has been
used cxtensively in many programs. RMS itsclf has not been fully implemented or tested. The

interpreter is an extension of the "task network” interpreter used in NASL. [Mclermott 1978). NASL is a

8. Specch-act approaches 1o disoourse have been attracting increasing atiention recently. For background and current proposals,
sce [Austin 1962], [Scarke 1969], [Grice 1969], {Cohen 1978}, [Grosz 1979], [Perrault, et si. 1978), and [Wilks and Bien 1979].

30

working. tested program. Charniak has recently reimplemented a subset of NASI. as well. My
terpreter has gone through several versions, cach of which was tested on small problems, although none
af these versioms has all the complexity of the one described in Chapter 4. Similarly, the deliberation
technigues in Chapter 5 have received an initial implementation and iesting through their use in the
interpreter. Some of the technigues of Chapter 6 have been tested, others are completely untested, and
still others form the content of other works, such as those of Winston [1975). Sacerdoti [1977), and
Sussman [1975).

The major reasons for the fack of a complete implementation are three: a lack of time on my
part, my confusion about how o implement databases, and inadequate computing resources. ‘This thesis
synthesizes @ kuge number of ideas, making it impossible to treat them in greater detail within a
reasonable period.

Hierarchical databases, of the sort used in SD1., have received considerable attention by many
authors, and many implementations exist. However, | had none of these readily available to me, had my
own peculiar requirements for cxtensions to them, and continually procrastinated on the task of
reimplementing one for my own use. There are many subtle problems involved in the exact details of
these databases, and although | have substantial interests in these questions, they were not the questions |
wished to pursue in this thesis, so I exerted little effort on resolving them. The basic ideas of Chapter 2 1
have known for some while, and have taken much of the actual detail of the structure of theories directly
from Weyhrauch’s system.

Straightforward techniques for implementing reasoning programs along the lines described
abave fcquirc a substantial overhead in time, space, and notation. At first glance, the techniques require
recording semi-permancatly many sorts of information that traditional programs cither never consider or
only record very sketchily and then discard quickly. This increases the constant factors of the complexity

of the program on the order of 100 times over the space requirements of traditional programs. (100 is just

an ofT-hand, possibly pessimistic guess, and depends on the implementation techniques used.)

!

31

I have not been overly concerned with this overhead, for a key point of my methodology has
been that it is oo expensive nof 1o record and usc this information. I repeat: It is too expensive nof to
record and use this information.® The standard approaches suffcr unavoidable combinatorial cxplosions
in scarching because they discard the very information that might be used in bypassing these fruitless
scarches. 1 accept large increases in the constant factors to gain the ability to kili the exponential terms of
the program’s complexity, and to instead achieve a program complexity which grows roughly linearly
with the complexity of the problem. The issuc is not my skill at programming. Instcad, the issuc is to
analyze what information is necessary or at least useful in steering the program clear of these scarches,
and then to develop ways of recording and using this information.’® § concentrate on the asymptotic
complexity of the techniques involved, on the fundamental concepts involved in control. This is
important, for it means that as the problems become larger and more complex, a lincar time program
remains feasible cven if its constant factors arce very large, whereas an exponentially expensive program is
always uscless, no matter how cfficient it was on small problems. Combinatorial scarches cannot be the
basis for intclligence. They will never be fast cnough. The problems always get harder to quickly.,

The unfortunate consequence of attacking the fundamental problems of reasuning is that
current computers are too sfow and too small to permit debugging of programs. It is nearly impossible to
make progress debugging a program which takes several hours of interactive operation to manifest each
new error and which must be started from scratch after each patch (as programs under initial
devclopment require). However, this is just what happens. 1 have written programs to solve
unremarkable problems that represent exactly the information that scems necessary, that make only the

inferences which must be made (i.c. no wasted scarches), but which on absolutcly trivial problem

9. { here repeat a tatement made by G 1. Sussman {1 .atombe 1978, p. 364).

10. For example. the technique of dependency-directed backtracking developed by Staliman and Sussman {1977) was an cffort to
use a fined averhead of extra records of dependence of resufts on assuntions 1o avoid the needless combinatorial searches required
by traditional chronnlogical backtracking. A similar motivation gave rise Lo the separation of daabasc and control information in
CONNIVER [Sussman and McDermott 1972,

- e s R '"L’l‘l”_w_ + P"‘!‘W—"F"'\“?‘-w,." MR S >, T

S et v s

Ry

instances spend a quarter-hour of CPU time (and hours of real time) cxhausting the address space of
MIEEs DEC KA-10. MIT Lisp Machines provide a faster interpreter and a larger address space, but
quickly became disk-bound, and then spend most of their time paging, just like the KA-10.

The key factors in the debuggability of these programs is the speed of the machine, and the size
of real memory. The sort of program described in this thesis can, | expect. reasonably be implemented
and tested onty on machines a thousand times larger (and perhaps faster) than the computers mentioned
above. Such machines may exist affordably within the next decade, and we must forego hope of true
intelligent machines until then.

What can be done meanwhile? 1 believe we should work on problems towards that day when
suitable machines exist. It is not cnough to concentrate only on problems whose techniques can be
implemented on current computers. For many important problems, those techniques are sure to be
unsatisfactory, substituting scarches for intetligence, Science progresses not by building programs which
initially run “cfficiently” but cannot in principle run fast cnough, but rather by building programs whici
are feasible in principle, even if we must build new computers to run them. Imagine the result if
Beethoven had tried to compose his Ninth Symphony for solo voice and pianoforte. 1 have no doubt he
would have produced somcthing, but it wouldn't have been the Ninth Symphony, and would not have

"solved the problem” or said the same thing that the Ninth Symphony did.

1.6 Sketch of a Computational Argument for the Approach

Al reformers are bachelors.
George Moore, The Bending of the Bough
‘The standard view in Al research has been quite different from the conscious, adaptive, rcasoning
approach outlincd above. This scction hypothesizes a strawman view to stand for the traditional Al

approaches, and speculates on how it came to be adopted. It then attempts to give some insight into the

33

computational motivations for the proposed approach by means of computational criticisms of this
strawman view. This argument is made indirect for two reasons. First, thosc familiar with the traditional
approach will see the main limitations of that approach. Second, these criticisms will suggest how

realizations of those limitations might lead to the view proposed here,

1.6.1 Why have the facts of the fundamentad argument been overlooked?

It seems clear that most Al rescarch misses the above idcas completely. Judging from almost any volume
of conference proceedings or journal issue, one sces the overwhelming emphasis on cither designing a
bluck box algorithm for some problem, or for designing a formal language for writing down the

N Of course. such studies are often

axiomatization of some particular domain or class of domains.
necessary precursors of continued progress, but the question remains of why control, consciousness, and

adaptivencess have received so little attention. ‘The following subsections suggest two possible answers to

this question,

1.6.1.1 Initial Programming Complexity

The simplest answer is the large overhead required by the techniques described here, and the
consequential undebuggability of programs based on these techniques. This makes problems admitting

more immediately testable solutions more attractive in some ways.

11. Sce {Brachman and Smith 1980, p. 3], who conclude that "far more people claim to represent the world than claim to represent
knowledge.”

.-

B T S Ny ey S T Y P I

S awr A

s——— M

1.6.1.2 A Mathcmatician’s Qutlook

| think a deeper reason why the fundamental argument above has been overlooked has to do with the way
of thinking implicit in the traditional approach. The standard view scems characterized by an
obliviousness to change. a blindness o the need for the program to continually adapt itself to changing
environments, tasks, and patterns of use. Al has tended to view the problem of representing information
about the world as that of defining several basically fixed (logical) theories, and using a single basically
fixed set of programs for reasoning about these representations. 1f new theories or reasoning procedures

are required. the Al rescarcher writes a new program, rather than helping the program to change its old

ones. Perhaps ¥ am being unfair to mathematicians, but this scems to result from sharing the typical

Ve e s SRR R e e s AT

mathematician’s outlook on knowledge. Mathematicians discover concepts, theories, and theorems, but

e

once they have given a namc to something, they never consciously change the meaning of that name. If
they discover that the named concept was not quite the interesting one, they make a new name for the
new concept, rather than changing the meaning of the old one, so that mathematical theorics are
impervious to change. Since mathematicians do not often cxplicitly concern themselves with the use of fy
their theorics in their studies, they are also somewhat blind to changes in how these theorics are used in
reasoning. A book on determinants written today would likely have the samce form and thcorems as one
onc written when the subject was alive.12
Al tends to formalize a theory of blocks, natural numbers, or clephants, and once this
axiomatization is sct, it is rarcly changed. Instcad, modifications arc given new names. Al adopts a
standardized form for reasoning, say resolution, production rules, procedural attachment, or what have
you, then lets this organization sit untouched in its reign over all domains. Since the basic representations .‘

and rcasoning processes are fixed, the Al rescarcher can build them into a program, and, to improve the

12. Here 1 am deliberately exaggerating the point for the sake of argument. Dead ficlds sometimes regain popularity through the
infusion of new methods from other arcas, and Dummett [1973] and 1akatos [1976] might be taken as suggesting that
mathematicians unconsciously change the meanings of their terms.

program’s initial efficiency. discard most of the information concerned with why these representations

and processes are used. But these reasons for the current organization are just what is necessary for the
program to be able to reason about how to change its organization when its environment or usage
changes. Blindness to change Ieads to organizing programs so that their representations and reasoning

processes arc built-in, unchangeable. This is the traditional view's fatal flaw.

1.6.2 Conscquences of the Inaccessibility of Control Information

Sing. O Goddess. the anger of Achilles, son of Peleus,
that brought countless ills upon the Acheans.
Homer. The Hiad, translation by Samucl Butler.

We label the traditional view's fatal flaw the inaccessibility of control information. Just as the
inaccessibility of captain Achilles contributed to the Achecans’ woes at Ilium, the singularly unhappy
methodology of the inaccessibility of control information Icads to manifold unhappy conscquences.
Since there is just onc correct way of organizing rcasoning, the framework-systems investigated in Al
usually support only onc program at a time. The rescarcher has the responsibility for determining what
that program should be and for coding it up. He is also responsible for writing a new program or
changing the old onc when the program is discovered to be in error or inadequate to its task. That is, the
program is not organized to be adaptive, but the programmer is cxpected to do the adapting.13 For
example, almost all the carly programs (such as SHRDLU) written in PLANNER required that all

changes be made by the programmer.

This non-adaptiveness has a terrible consequence in practice. Because all responsibility for the

13. A frequent symptom of both this problem and a limited control vocabulary {Scction 1.6.2.2) is the oft repeated warning of
system designers that the user should 1ake care in deciding which inference rules should be used for forward chaining and which for
backwards chaining This i 2 gond signal that something is wrong with the system.

14 1 will give most of the examples of traditional systems and their problems in terms of PLANNER, in part because it so clearly
demonstrates most of these problems, and in part because so many subscquent sysiems are largely based on ils ideas. The full
tanguage introduced in {icwitt 1972). However. only a subset was cver implemented, and the cxamplcs refer Lo programs written in
that subsct. The full language shares all the problems of the subset.

s et L OPERSTMMERE LTy % Yo T L T

IR som e ey o r—
: e)) .. A,

36

writing, maintenance, and evolution of the program is kept by the rescarcher and nanc is given to the
ssstem, the mformation describing the program and its organization is typically distinct from the
mformation with which the program rcasons. or example, references to PLANNER's control stack had
o be made in LISP, rather than in terms of PELANNER assertions and theorems. Almaost always. the
program cannot refer o its own structure and the structure of its behavior as its designer does.”® Since
this is infonnation controlling the programn’s reasoning and actions, we call this the inaccessibility of
control information, The program simply cannot reason about its own control processes.

In the following subsections we outline some of the many unfortunate consequences of the
inaccessibility of controt imnformation. "The nesting of subsection numbers will reflect the consequential

rekttionships between these difficulties.

1.6.2.1 The Inexplicability of Actions and Attitudes

‘The first problem following from the inaceessibility of control information is the inexplicability of actions
and anitudes. Because the program cannot interrogate its own control process, it cannot explain why it
touk the actions it did, why it didn't take the actions it didn't, why it belicves what it does, and why it”
plans to do what it does. For example, carly cvuluatiun-fuﬁction search techniqucs rarely kept records of
their scarching actions. Instcad, they were notorious for basing all actions on incxplicable and
uninfonnative numbers.

One might think that this inexplicability is a trivial flaw, that one can tolerate incomprchensible
programs. ‘This, however, is an gravely misguided tolerance. As programs and databascs become more
common and more complex, socicty comes to rely crucially on their accuracy and intelligibility. Storiés

abound of falsc information irrevocably ruining someone’s credit ratings, ecmployment records, or worse,

~

15 By this is meant the terms and rcasons with which the designer explains the program's design. These cxManations include
much more than just the programming language in which the program is written, at fcast with current programming languages.

"
. S .o
ok, ST [~ SN

L SN

TS

oI P e e

. gt 4) B e BT @ L

.. w-——'..- e o .

37

In trying to deal with such tragedies, socicty finds that computer systems are designed with the view that
they are monolithic, infallible sources of information. "This Ieads to great disrespect and growing
resentment of these large information systems. 1 we are to justify our reliance on these systems while
avoiding society’s censure, we can take cither one of two paths. We might make programs responsible for
their actions or, more immediately practical, we can make programs explicitly defer all responsibility to
humans. We can have programs keep historical information about their inputs and about the
computations they perform. ‘This historical information can then be used to construct explanations or
justifications of cach action and database entry so that crrors can be traced o bad inputs, to faulty
programs, or to other databases in a distributed system. In this way. the computer can be preparcd with
the fact of its own fallibility and irresponsibility, and can help track down its own problems and those of
its users. While this may not render inteltigible the enonmous systems of programs involved. at Ieast their
cffects will have been isolated to some extent. It may be impossible for programs without historical
annotations to do many of the things that we want them to 6o, namely to defer responsibility to humans
so that their actions may be explained and corrected. The larger and more important programs become,
the more important such humility becomes. ‘The fairness and cffectiveness of programs are at stake, and
if sucicty is to trust their accuracy and uscfulness, they must be able to trace their actions and contents to
responsible sources.

In addition to these strong social reasons against incomprehensible programs, 6 many important

limitations on the program stem from the lack of reasons for actions and attitudes.

16. Sec also (Weizenbaum 1976] and [Rosenberg 1980).

Bar- W) B

38

‘The most important problem stemming from this inexplicability involves the chauvinism of values. The
inability to examine one’s reasons greatly Hmits the sorts of decision-making that can be performed. for it

forces one to fit all sorts of values into a single dimension, thereby making impossible reasoning based on

Dileimas are the central problem. ‘The genesis of dilemmas is in part that we think of our
world comprising many subworlds, with only tenuous connections between them. We can describe the

world and our actions in physical terms, or from the stindpoint of a moral system, or as events in an

p-
1.6.2.1.1 The Chauvinism of Values
But are they all horrid, are you sure they arc all horrid?
Jane Austen. Northanger Abbey
the incomparability of vatues.
!
{

cconomic system, or simply in ternms of what we like and dislike. Each of these subworlds of physics,
morality, economics, or plcasure has its own vocabulary, facts, principles, and values. The values of each
of these systems cannot be compared with the values of the other systems. If we eventually discover some
reduction of all these worlds to a single world, for example, some way of reducing moral and economic
theory (o physics, then we may have hope of comparing a moral valuc with an economic value. Without
such a revolution, however, we must live with incompatible valucs. Indeed, many thinkers have argued
that we will never find such a reduction of values because one docs not exist, or that cven if one did exist,
the cxplanations for decisions resulting from the reductions would be too detailed and intractably long for
routine purposcs.]7 We must, at least for the time being, find some way of making decisions despite this
fragmentation of values.'®

This fragmentation of values permcates our deliberations far more than one might expect. Even

in apparently technical decisions, which in the popular view are the most straightforward, incomparable

17. Sec Fodor [1975) and Putnam {1975).
18. This is Nagel's term [Nagel 1979b). Bell {1976) terms it the “disjunction of realms™.

S e v e s

39

principles must be reconciled. For example, when designing an automobile, or a computer program, or
an clectronic circuit, one typically encounters many decisions between different ways of implementing
the design specifications. But when one comes to these decisions, one must choose between methods
which result in varying degrees of clegance. expense, ccological harmfulness, reliability, easc of
maintenance, conformity with statutes, coverage under patents or patentability, difficulty of design,
complexity or size of the design, case of construction, case of customization, the favor of one's peers, the
innovativeness or personal challenge of the design. marketability, workability under expected future
changes in encrgy, legal. and social systems, etc., ete., cte. Al of these considerations involve different
sets of values, and in anything one would call a problem, the value of the decision cannot be maximized
along all of these dimensions simultancously. Making decisions necessarily involves reflecting on the
types of rcasons involved to compare them with cach other. If these reasons are incomparable, then the
decision cannot he made in a fully rational fashion when so desired.

The fragnientation of values is a strong motivation for avoiding systems which do not record
their reasons, or which usc only rcason-obscuring techniques like voting or numerical
strength-combination rules for decision-making. In this latter case, such sysicms impose arbitrary,
implicit, and frequently indefensible judgements about the relation of different types of reasons by
chauvinistically fitting all types of reasons into a single-dimensional grading scheme. For example,
MYCIN [Davis 1976] forces all decision-making into numcrical strength-combination rules. This not
only mcans that the program must commit itsclf to absolute strengths for all reasons, but it also means
that the combination of rcasons cannot be affected by context. A classic instance of this is the
intransitivity of cvidential relationships in medical diagnosis. As Rubin [1975] explains (along with other
cxamples), both facial cdema and ascites are cvidence for sodium retention, and sodium retention is
cvidence for cach of cirrhuosis and acute glomendanephritis. However, these cvidential relationships are
not transitive, as would be required by MYCIN, since facial cdema is always positive cvidence against

cirrhosis, and ascites is positive cvidence against acute glomcrulonephritis. Here context (i.e. facial

40

edema) imvalidates a usual evidential relationship (i.e. between sodinm retention and cirrhosis). Even
Simon’s satisficing decision-making, which avoids the unnatural homo economicus or value-maximizing ‘
man. still fits all wilities into a single dimension [Simon 1976). Neccessarily chauvinistic decision-making
processes may be simple, but lead to insurmountable inadequacics in the reasoner, and lead to more

decisions heing made than is properly pussiblc.19

1.6.2.1.2 The Lack of Intentionality

L Another problem stemming from the inexplicability of actions is the lack of intentionality. 1f the program
cannot reflect on why some action was taken, or why some circumstance occurred, it cannot distinguish '

between the intentional and the unintentional consequences of an action. A famous problem with

PLANNER-based robot bank robbers is that they would blithely proceed to rob the bank after tripping
over a pot of gold while on the way to the bank. Being able to make these judgements is crucial in
analyzing its successes and mistakes with an cye to improving its skills and performance. Telling whether
the effects of some action were "successful” or not depends on the ability to distinguish some conditions
as the aim towards which the action was taken, and then checking if the action realized these conditions.

For example, I have on occasion begun to assemble a complex toy without understanding what the

i e e .. .

intended structurc was. When the assembly directions were unhelpful and did not explain the intended

functions of the parts to guide me, I sometimes complcted the bulk of the assembly only to find that |

t o BB harTe A

apparently misassembled some substructure carlier because the next assembly irstruction made no sense
for the then current partial assemblage. To correct my error, 1 tried to reconstruct the intentions of cach

asscmbly step and see where my actions had diverged from the intended actions.

19. Of course, any decision-making procedure may be made chauvinistic by a decision to accept universal comparison rules. The
issue here is whether the decision-making procedure forces this decision on one, or whether one can kave some values
incomparable.

41

1.6.2.1.3 Inextensibility

‘Ihe inexplicability of the program also contributes to the mextensibility of the program. Since the
program cannot explain its workings, it has little chance to aid in its own modification. Even trivial
changes must be left to the designer or user to cffect. Simple methods for augmenting the procedures
used by the program. such as those presented in [Davis [976], arc impossible to implement. For example,
the program may in the course of reasoning discover that its beliefs arc inconsistent. [f the program can
explain its beliefs, it can help to trace the conflict back to its assumptions and to resolve the conflict by
changing onc of these assumptions. But without a self-explanatory facility, the program’s extender must
rely on the program's designer to provide this analysis, if he can. For example, PEANNER recorded no
explanatory information outside of its control stack, and that was sufficient only for suspecting the

chronologically last procedure exccuted. as in chronological backtracking.

1.6.2.1.4 Hubris

The fifth consequence of the inaccessibility of control information and the inexplicability of the program
is its hubris, the program’s inability to acknowledge its own fallibility and limitations. Because its
reasoning and dceliberations are external to its language, it cannot say anything about whether it might be
wrong in making some inference or decision, but has to proceed as though it is always right. In fact, the
program has many limitations in its abilitics and in its knowlcdge of its abilitics. Its knowledge of its own
abilities and beliefs is not very much more secure than its knowledge of the external world. To be
ceffective in action and in rcaction to difficultics, we must replace hubris with sophrosyne, knowledge of
20

both abilitics and limitations.

Many uscful forms of rcasoning depend on being able to refer to such limitations. A prime

20. For a better explanation of this term, sce Ostwald's gloss of sophrosyne in [Aristotle 1962, p. 314] and Aristotic’s usage in Book
3, Section 10 of that work, pp. 771

—

42

example of this is the ability to make default assumptions or other non-monotonic inferences on the basis
of incomplete information. Such inferences can be made and maintained correctly only if the reasons for
belicfs and actions can be given. This was onc of the major failings of PLANNER and its relatives.
PI ANNER could not correctly handle THNOT because it lacked reasons for its beliefs. PEANNER
could not correctly compute the intended conditions of a THNOT's success, for it could not tell which
assertions depended on previous THNOTs. For the same reason, it could not correctly update its sct of
assertions when a new assertion invalidated a previous THNOTs success. Knowledge of one’s limitations
also enters into the tenacity with which one holds beliefs, into judgements about which beliefs to give ub

(say as tentative hypotheses) before others (say as tenets of faith),

1.6.2.1.5 Non-additivity

A fourth result of the inexplicability of program actions and attitudes is a failure of additivity. This
problem involves more than non-monotonic changes in the program beliefs in response to actions and
inconsistencics. Here [refer 10 PLANNER's failure under the addition of new imperative inference
rules. The programmer always had to take great carc when adding new inference rules to avoid loops of
inferences which would halt progress. Not only would sonic addcd rules cause catastrophic failures of the
program through non-terminating iterations, but no information could be added later to indicate the
proper usc of the rules. For one example, a backwards-chaining inference rule, to the effect that one
block is a above another if there is a block which is above the one and below the other, might never halt if
asked about two isolated blocks. If asked to prove that block A is on block B, it would gencrate the
subgoal of finding a block C above B and below A, the sub-subgoal of finding a block 1) above C and
below A, and so on, endlessly, without the possibility of adding a new rule to say that the first rule should
never be uscd if the two blocks are isulated. Also, conflicting non-monotonic rules will loop. If onc has

procedures (cach added by a different user with his own ideas about what the program should do) to add

R T

B LAl 4T el 65 AT XA SIS s +o

ey ——

43

P whenever Q is added, to crase Q whenever P is added, to crase P whenever Q s crased, and to add Q
whenever P is crased, one might go into an infinite loop of adding Q. adding P, crasing Q, crasing P,
adding Q. ctc. No technigues fully adeguate to this problem were available because the real answer
involves keeping track of the inferences themselves, that is, the actions of the control component, and
rcasoning about the presence of loops in these inference records. When such techniques are employed,

new inference rules may be added without fear of this sort of failure occurring.z'

1.6.2.2 Inexpressibility of Control Information

The second major problem stemming from the inaccessibility of control information involves the
inexpressibility of control infonnation, the inability to give the program heuristic advice, guidelines for
how to carry out an decision or task. This is the doom of McCarthy's goal of an Advice Taker [McCarthy
1958]. Because control is fixed external to the program, at some point the controtier must arbitrarily give
up on controfling the program’s actions and resort to blind scarch, for otherwisc the control component
would contain all possible information about how to do what, when. For example, the usual PLANNER
scheme of writing programs with inference rules marked as forward or backward chaining allows one to
significantly dircct the behavior of the programs in simple cases. However, when one increases the
number of inference rules beyond trivial proportions, one finds many goals or assertions being answered
by an unmanagcablc number of inference rules. It requires a new language of control to specify even the
simplest procedures for directing what to do in this casc, such as which rules are to be dealt with first.
Some systems ecmploy such a rule by imposing a lincar ordering on the order of exccution of all inference
rules. Whenever one builds in a level beyond which the program can never see, once builds in cventual

scarch, for any fact may at some time be the point on which an enormous scarch turns.

21. For example, AMORD avoided these problems in just this way. (de Kieer, ct al. 1977}

B Tt

44

1.6.3 1lence Reasoning Applied to Control

‘The common clement of all the above inadequacics of the traditional approach to reasoning programs is
the inability of the program to refer to, to reason about, and to modify the information controlling its
actions. ‘The obvious approach to remedying these inadequacics is to design reasoning programs which
can reason about themselves. In this way we can simultancously overcome the limitations of previous
approaches and make use of their strengths, for nothing need inhibit the program from consciously
deciding to use one of the less sophisticated methods in certain cases if it deems those methods

appropriate and more cfficient in those cases.

1.7 Relation to Other Works

And one might therefore say of me that in this book 1 have only made up a bunch of other
people’s flowers, and that of my own | have only provided the string that tics them together.
Michcl E. Montaigne, Essais
This thesis is related in general and in detail to a number of other works. Some of these will be cited in
the chapters that follow. In this final section of this chapter, we first relate the thesis to its closest relatives
among those works which have had the strongest influence on it. (Sce Figures 3 and 4 for a "mythical”

summary of these influcnces.”) We then survey some of the many other works relevant to topics studied

in the thesis.

1.7.1 Major Influcnces and History

‘I'his thesis is an outgrowth of my carficr rescarch on control of reasoning and belicf revision. This line of
work started for me with my paper “The use of dependencics in the control of reasoning™ [Doyle 1976},

which cmphasized the need to control reasoning and "rcasoning about reasoning” as a promising

approach towards solving it. There I describe an carly version of RMS, along with its application to

CoPWondins BRAL AL A - AN S WRAT - By, ~ o

P

45
SEAN
] |
AMORD
™S
NETL TIRESIAS GOLUX ARS SCHEME NASL
KL AE PA FOL PLANNE
q T 1—.-
11
SOM HACKER LISP
A
ML
MMM AL = oS
Figure 3
Diagram of Mythical influences

(See next page for mnemonic interpretations.)

b v e AT

.. nmtwm,wwm.?ﬂ@ﬁ'n R A

I}

-4

SEAN = this program

AMORD = de Kleer, Doyle, Steele, and Sussman [1977]
TMS = Doyle [1979]

NETL = Fahilman [1979]

TIRESIAS = Davis [1976]

GOLUX = Hayes [1974]

ARS = Stallman and Sussman [1977]

SCHEME = Steele and Sussman [1978]

NASL = McDermott [1978]

KL = Minsky's K-lines [1979}

AE = Minsky's Affective Exploitation [1980]

PA = Rich, Shrobe, and Water's Programmer's Apprentice [1979]
FOL = Weyhrauch [1978]

PLANNER = Hewitt [1972)

SOM = Minsky and Papert's Society of Mind [1978]
HACKER = Sussman [1975]

LISP = McCarthy, et al. [1965)

MMM = Minsky's Matter, Mind, and Models [1965]
AT = McCarthy's Advice Taker [1958]

ML = Mathematical Logic

GPS = Newell and Simon [1963]

SF = Asimov | 1950, 1964] and Heinlein [1966]

Figure 4

Key to influence Diagram Abbreviations

2.

PRSI IOTE. CHILITILA T - oW 0 S DT

§

47

maintaining explicit statements of the goals of the reasoner. My masters thesis, revised as "A truth
maintenance system” {Doyle 1979], developed RMS further along with its philosophy and applications.
Developing the other theme of my first paper, “Explicit control of reasoning” [de Kleer, ct al. 1977],
proposcd the explicit representation of the control state of the reasoner, in the main clarifying my carlier
paper. ‘This paper introduced AMORD, a procedural deduction system based on RMS, first
implemented by de Kleer and Sussman.22 In unpublished work, I extended the example system of this
paper. and later Shrobe [1979b] extended it yet further. | hope that the present thesis ties these threads of
thought together again.

I owe my colleagucs large debts for many ideas. My carliest exposures to these sorts of ideas
were, | belicve, in a class on religion with @loyd Swenson, and later, in my studics of mathematics with
Joseph A. Schatz, who tutored me in the possibility of scrutinizing one’s beliefs and rules of reasoning,
and how such scrutiny is essential in foundational questions, John S. MacNerncy vividly illustrated this
point to me in a class on intcgration.

At the time of writing of my first paper above, | had been working for Sussman on ARS
[Stallman and Sussman 1977} and with McDermott on NASL. [McDermott 1978], and was very excited by
their programs, and by Davis’ new thesis [Davis 1976] as well. | then sat in on some discussions involving
them, de Kleer, and Steele, thinking about the structure of a "ncw MICRO-PLANNER" based on
antecedent reasoning. 1 then developed and applied my idea of non-monotonic data-dependencics to try
to make somc of these things workable, and my first paper above is the result.

RMS itself stems from my experience with the “fact garbage collector” of ARS. | introduced
the idea of non-monotonic justifications for beliefs (and how they fit into dependency-directed
backtracking) to capturc the "PRESUMABLY" inferences in NASL. 1 discovered that ARS's fact

garbage collector and backtracker were both very buggy and needlessly non-incremental, and isolated

22. AMORD is actually the scoond program of that name, Sicele and 1 having labored over and, aRer scveral months, finally
quictly buricd the first AMORD.

A PN T4

-

ek

SR Ty gy A Raaiae Ay i

-— -

48

improved versions of these subprograms based on non-monotonic justifications as a domain-independent
subsystem.

My interpreter is an extension of NAS).'s task network interpreter. NASI. in turn builds to
some extent on Sacerdoti's NOAH [Sacerdoti 1977], which reasoned about its own system of intentions
represented as a "procedural net.” My major changes o NASIT hive been the reorganization required by
the RMS, the use of a hicrarchical library of plans (NASI. used the first order predicate calculus in such a
way as to make this inconvenient at best), the separation of desires and intentions, and the introduction of
reasoned deliberation. NASI's choice protocol is a simple relative of reasoned deliberation, with little of
the structure. power, or intutiveness of the latter. In NASI.'s choice protocol, one crases options, retains
options. or combines options, until just one option remains. One cannot give reasons against reasons,
since there are no reasons. However, one can draw some conclusions about the deliberation process as a
whole through the QUIESCENCE step of the choice protocol, which signals the cxecutive that
decision-making hus gotten stuck. McDermott used this last ability for encoding dcfault decision
outcomes. NASL. is little concerned with sclf-models, and so lacks plans describing the interpreter’s
actions. However, some of NASI.’s plan-reformulation mechanisms hint at a sclf-model, as they are
mediated through plans rather than as simple procedures. .

The formalism for desires, intentions, and plans used in the interpreter is also related to the plan
formalism of Rich and Shrobe [1976)], who in turn refine carlicr formulations [Brown 1976, Sussman 1975,
Goldstein 1975). They also present libraries of standard plans for programming, and methods for
analyzing programs into their underlying plans, [draw heavily on their work in my approach to skill
introspection and hypothetical reasoning.

Patrick Hayes has long advocated the general approach of controlling reasoning by rcasoning
about controf [Haycs 1974}, He first suggested this idea in clucidating the relation between computation
and deduction [Hayes 1973b). Morc recently, he critiqued the traditional approaches to control [Hayes

1977a], and 1 have tried to build on his criticisms in my arguments above.

[P W

Lag it

AR 3Pt 11l

49

1ong ago, McCarthy proposed an Advice ‘Taker, a program which could accept facts and
heuristics about the world and how to reason, and then find ways of using this information effectively
[McCarthy 1958]. His proposal had no direct influence on me, but had a great indirect cffect through
Sussman's thesis [Sussman 1975]. which has had a large impact on my views of lcarning of procedures and
assimilation of information.

1 have also been considerably stimulated by Sussman’s addiction to writing meta-circular LISP
interpreters {Stecle and Sussman 1978b]. Although these interpreters do not refer to their sclf-description
to act, they admit a description of themselves in the same language that they interpret, so that they can be
used to cvaluate themselves evaluating some other program.

1 toyed with idcas about how to make a non-monotonic, hicrarchical calculus of descriptions
cever since reading about NETL. [Fahlman 1979, which substantially influenced my views on databases.
However, these ideas never demanded quite cnough of my attention to permit their full development.
My confusions about this might have hindered this thesis even more thai they have, had it not been for
Weyhrauch's timely exposition of FOL. [Weyhrauch 1978). 1 finally worked out the dctails of SDL while
trying to understand his paper and its relation to Brown's work on mcaning and mcta-thcory [Brown
1977, 1979]. SDL. draws heavily on both NETT. and FOL.

Minsky's idcas on reflection [Minsky 1965), once I discovered them, served to illuminate the
problems | was fumbling towards. 1 was also extremely stimulated by his views on the role of affect in
intellect [Minsky 1979}, and by his criticism of the logistic approach in reasoning in [Minsky 1974).

Finally, many ycars ago | rcad and rercad a number of stories which have ever since inspired my
attitudes towards the problems of building intelligent machines. | would like to thank the authors of

these storics, Isaac Asimov [1950, 1964) and Robert A. Heinlein [1966], for their inspiration.

Sm——————r . IV | i ere o ool N, S U IO

(R P

50

1.7.2 Related Works

There arc many other related works, some of which influenced me. but most of which were
developed independently. Unfortunately, 1 am not quite the scholar | wish | were, and much of my
recent and continuing cffort has been directed to learning of the approaches alrcady developed to the
problems of this thesis and trying to relate all these ideas. However, [am still a novice in most of these
arcas. | have explored enough to sce the truly huge bulk of writings on these topics, so to add some

mcasurc of coherence, 1 discuss them by topic.

1.7.2.1 Representation Theory

‘This category groups:‘mgcthcr studics of the nature of representation, hierarchical representation systems,
and sclf-dcs.criptivc ;1i1d self-referential systems.

The philosophy of logic and language is the usual location for studics of the nature of
representation, meaning, and representational system. Quince [1970), Haack [1978], and .insky [1977) are
good survey expositions of this arca. Linsky [1971), Schwartz [1977), and Strawson [1967] are uscful
collections of articles on these topics.

Representational systems based on idcas of hierarchical relations between representations have
been explored by Brachman [1978), Fahlman {1979}, Minsky [1974], Ph. Hayes [1977)], Hendrix [1975),
Stcele and Sussman [1978¢], Smith {1978], Martin {1979], and Borning {1979]. Simon {1969] stresses the
importance of hicrarchical systems in organizing information and behavior,

‘There has been quite a bit of work on self-descriptive and self-referential systems, although most
of it is foundational in character and little is applicd to the problem of controiling rcasoning.
Programmers will find familiar the idca of the meta-circular interpreter, the carliest of which is Turing’s
universal machinc [Furing 1936]. Such interpreters have also been developed for studying the semantics

of programming and logical languages by McCarthy [1965), Backus [1973], Rcynolds [[972], Brown

PRV,

A —— 1 o M i A< 2

B T —

l s o .

T
— - -

51

{1977). and Steele and Sussman {1978h]. Minsky [1965] discussed machines which reason about and use
their own sclf-descriptions. So also do those mentioned above involved in the approach to control
pursucd in this thesis. Davis [1976] not only explores controlling reasoning with sclf-reference, but also
shows the high value of programs using models of their own data structures and inference rules in
acquiring new information.

In addition to meta-circular interpreters, the computer-architecture and compiler-compiler
ficlds have studied formal machine description systems, Sce [Bell and Newell 1971], [Cattell 1978), and
{McKeeman et al. 1970].

The fundamental formal propertics of self-descriptive and sclf-referential systems have been
studied by Russell {1908]. Hilbert [1925], Godel [1931]), Tarksi [1944], Turing [1936], Post {1943), Klcene
[1950]. Smullyan [1957]. Montague {1963], Quinc [1966). Kripke {1975}, Feferman {1960, Resnik [1974],
Boolus [1979]. and Scott [1973]. Smullyan {1978, 1980] and Hofstader [1979] present popular cxpositions
of some of these Juestions, The non-monotonic logics mentioned below can also be viewed as
sclf-referential systems. Brown [1979) and Weyhrauch 1978} have cach devcloped programs which can
reason about languages, proofs, and models. Weyhrauch’s program is its own theory of itsclf, so that it
can rcason about itself and as its model of its description of itsclf. Brown's program secms similar in basic
nature. Smith [1978] is also working towards dcveloping another such program and formal system. All
these studics, however, are cssentially foundational. None tell how to rcason about onesclf, but instead
concentrate on providing the power to do so if one so desires. An aim of this thesis is to explain ways of

doing just that, of using these frameworks for self-referential reasoning.

b o
Rt

L3

P

DR 0. T taed

L ———

52

1.7.2.2 ‘The Nature of Reasoning

The mathematical semantics of the non-monotonic justifications and default inferences used in RMS and
other programs has rcécnlly been developed by McDermott and Doyle [1978]. Reiter [1979] analyzes a
less general system allowing stronger results while still capturing many important inferences. Kramosil
[1975]) is the first, but unfulfilled, study of this sort. McDermott [1980] follows up our carlier approach
with stronger logics based on traditional the modal logics ‘T, S4, and SS. 1 suspect there may be another
nteresting logic along these lines, namely & non-monotonic extension of Boolos” modal logic of
provability in Peano arithinetic [Boolos 1979}, Reiter [1978] catalogs some of the many important
appearances of non-monatonic reasoning in artificial intelligence studies.

Another close relative to non-monotonic logic and these views is the theory of conclusions as
formulated by ‘Tukey [1960] and devioped by Dacey [1978]. ‘This is a formal logic in which statcments
with very strong evidence can be adopted as conclusions, to be maintained independently of the evidence
until and unless very strong evidence to the contrary is accepted.

Harman, I.chrer and Paxton, Scriven, and Bennett each formulate view of inference which scem
close in some ways to non-monotonic inference. Harman [1973] sces infercences as total views, with all
inferences containing the proviso “and since there was no undermining evidence.” 1.chrer and Paxton
{1969, Lchrer 1974) formulate knowledge as undefeated justified true belief. Scriven [1959, 1963]
formulates historical explanations as involving truisms or what he calls "normic rules” which state “true”
gencral principles which may be defeated in particular instances. He argues that such rules are neither
deductive nor statistical in nawre. Benneu [1964] develops a notion of "R-denials™ as denials of rcasons,
but apparently does not continue the process with denials of denials in any uniform way.

Rosenberg [1978] presents a beautiful exposition of the conversational logic of dialectical
argument. Belnap [1976] discusses a simple four-valued logic of this sort of argument, and shows its

conncction to relevance logic.

53

There is a sizanle literature on logics of various attitudes, such as belicf, desire, and obligation.
Rescher [1968) surveys this area. Sce for example Hintikka [1962), Kenny [1978]. Rescher [1966),
[Hilpinen 1971) and Chisholm [1978). For the most part, 1 have not developed a comprehensible
relationship between these logics of attitudes and the behaviors of the program suggested here. The
formal logics all seem too simplistic, or specialized to very specific sorts of rcasoning. Chapters 4 and §
bricfly mention some connections of the ideas proposed here with deontic logic.

Kreisel {1968, 1971, 1977} and Prawitz. [1973] survey the literature and ideas of prouf theory, and
Bootos [1979] presents the correct modal logic of provability in arithmetic. Proof theory is intimately
related to reasoning about rcasoning, it being in large part formal reasoning about formal reasoning
systems. Closely related. intuitionists reflect on the structure and development of proofs as a means of
judging what arguments arc constructive or non-controversial. Sec [Heyting 1956] and [Y cssinin-Volpin
1970).

Collins [1978] and Wason and Johnson-laird [1972] discuss questions in human plausible
reasoning and the psychology of reasoning. 1am not yet familiar cnough with this literature to comment
onit

Our approach to rcasoning should be taken as orthogonal in many ways to the decision-theoretic
approaches mentioned below, and to Zadeh's fuzzy logic, which aims at capturing a scparate set of

intuitions. Sce [Zadch 1975) and [Gaines 1976).

1.7.2.3 The Theory of Intentional Action

Shaffer [1968], ‘Taylor [1966, 1974], and Davis [1979] survey the standard theorics of intentional action.
White [1968] and Brand [1970] collect a number of papers on this topic. Scc also [Anscombe 1957} and
[Goldman 1970).

Miller, Galanter, and Pribram [1960] discuss the role of plans in psychological cxplanations of

” s 2 DT e o
______ . i LSRR T e

2

A s e

behavior. and Collingwood [1946] the role of intention in historical explanation. Dray [1964] surveys
theories of histarical explanations, and Gardiner [1974] and Hook [1963] collect a number of papers in
this area.

Studics of program understanding and action interpretation develop a nunber of models and
techniques for representing plans, recognizing plans in programs, devices, or patterns of behavior, and
analyzing errors to find the faulty plans that caused them. Sce Sussman [1975), Goldstein [1975], Brown
[1976}. dc Klcer [1979a). Miller [1979]. Rich and Shrobe [1976]. Wilensky [1978], and Schinidt, Sridharan,

and Goodson [1978].

1.7.2.4 ‘The Fragmentation of Valuces

Nagel [1979b], Fodor {1975} and Putnam [1975] present arguments for the irreducibility of the various
domains of the world 10 a common basis of comparison. The basic arguments are that cven if we are able
to determine how cach of the domains is realized in a more fundamental domain, these reductions cannot
be lawlike because there are so many sorts of ways of realizing each domain in the underlying domains,
and that cven if they were lawlike, the bridging realization explanations would be so hopelessly detailed
that they would never make sense in arguments, reasoniﬁg, or decision-making. When cach person is
taken as a separate domain of valucs, as is usual in social decision-making, there result a number of
problems due to the fragmentation of values. Arrow [1967] discusses the fundamental result of the
nonexistence of a "nice” way of combining fragmented valucs coherently in all cases to find an aggregate

value,

e

. B MO bun a

pr—

55

1.7.2.5 Decision-making

Much recent work in decision-making has been developed in decision-theory, the most popular branches
of which are based on Bayesian probability theory, and most of this work concentrates on chauvinistic
utility measures. Suppes [1967) surveys this arca. Good {1952]) mentions a hicrarchical decision-theory of
this sort. Duda. Hart. and Nilsson [1976) apply these idcas in the context of popular Al techniques. Giles
[1976] develops a subjective logic of belief along these lines. Simon [1976] introduced the notion of
satisficing to avoid hopelessty idealized rationatity. Allison [1971] and Braybrooke and I.indblom [1963]
discuss sacial and political models of decision-making.

Many studics have been made on various structures for organizations and decision-making in
them. Many of the ideas and concerns here are closely connected with those of the control and
organization of rcasoning programs. Sec for example Barnard [1938] (which has an intriguing appendix
on the nature of mind and rcasoning, logical and non-logical), Drucker [1946, 1974], Simon [1976], March
and Simon [1958), Chandler [1962]. Rawls [1971), and Nozick [1974]. Reclated studies attempt to view
animal and human bchavior as stemming from organizations of smaller decision-making units.
‘Tinbergen [1951] presents such control structures for scveral animals. Minsky and Papert {1978, Minsky
1977] explore such organizations for the human mind. l‘ox [1979] attempts to relate Al decision-making
models, organization theory, and decision theory.

Quite different from that on decision theory, the literature on deliberation usually admits the
fragmentation of valucs, and concentrates on the reasons involved in the deliberation. Sce the articles in
Raz [1978), and books by Aunc [1977], Castancda [1975), Kdgley (1969}, Gauthicr {1963}, Hare [1952,

1963}, Harman [1977), Nagel [1970], Norman [1971), and Richards [1971).

Tt e T L, et SRR T IRy TIRSLA T

PN

mai e P RN

e

1.7.2.6 Control of Reasoning

Basic studics of controlling actions by constructing and cxccuting plans of action include Newell and
Simon [1963). Ernst and Newell [1969), Fikes and Nilsson [1971], Fahlman [1974), Sacerdoti {1974, 1977),
and Tate [1977). Sacerdoti [1979) surveys these techniques. As mentioned carlier, planning techniques
have been applicd to controlling reasoning as well by Hayes [1973b], Dayle [1976). de Kleer et al. [1977),
and McDermou [1978]. Latombe {1976, 1979] and Stefik [1980] take this approach as well.

Gordon ¢t al. [1978] develop a proof-construction system based on an explicit
Language/mctalanguage distinction, and cncourage the encoding of proof construction strategics as
metalanguage programs. However, they feave all planning to the human user, and do not self-apply the
program. In particular, their system never records proofs, and hence cannot rcason about its own
rcasoning.

In the "pure” production system framework, McDermott and Forgy [1976] discuss techniques
for conflict resolution and focus of attention. Rychener {1976] presents an interesting implementation of
GPS in such a production system. Haycs-Roth and 1.esser [1977] explore "focus of attention™ techniques
in a "blackboard” production-system architecture. In the “deductive” production system framework,
Davis [1976, 1980] dcveloped mcta-rules as a way of cncoding control information. In all these
approachcs, however, control depends on a chauvinistic decision-making technique that operates without
reasons, and neither approach involves a particularly coherent notion of action.

A final approach (or non-approach) is that of the logic programming community. Kowalski
[1974] scems content w refuse the problem of control as a domain for rcasoning. Pratt {1977] scems to
beg the question by concentrating on the "facts™ and postulating an intclligent interpreter to decide what

to do with them, much like the carlier GPS and mechanical thcorem proving methodologies.

LAt A

. s,

R R T o R E T

57

1.7.2.7 Adaptive Changes of Mind

Russell {1930}, Carncgic [1936. 1944). llis and Harper [1¥61). and Johnson [1977] discuss informal
techniques for changing onces attitudes in the context of self-improvement. There is a large literature on
this problem, but these are the best expositions 1 have scen. Suppes [1977] surveys scveral influential
learning theories.

Concept learning is discussed by Winston [1975] and Fuhlman [1979).

Belicf revision has been an active ficld recently, and the literature is surveyed and indexed by
Doyle and London [1980). Hayes [1973a] is still an excellent earlier survey. My approach in [Doyle 1979]
has close relatives in the works of London [1978]. McAllester [1978)], Thompson [1979]. Fikes [1975), and
Staliman and Sussman [1977). de Klcer and Harris [1979] critically compare these approaches. Charniak,
ct al. [1979) present a simple RMS in explicit detail with considerable discussion. [.ondon applics this
approach in detail o belicf revisions following actions. Fahliman [1974] and Sridharan {1976} present
schemes for describing rules to disambiguate action cffects, their common suggestion being rules which
choose one revision over another on the basis of aspects of the particular belicfs being revised. Some
approach of this sort is necessary because revisions duc to inconsistencies and actions can typically be
donc in many ways, so somc way of choosing between the 5llcmatc revisions must be possible. Excellent
gencral of belief revisions can be found in Rescher [1964, 1976), who presents a formulation of
consistency-based belief revision, and in Quine [1953], and Quinc and Ullian [1978), who discuss the
ambiguity of revisions and scveral sorts of gencral guidelines for disambiguating them. Goodman [1973),
1.ewis [1973), ‘Turncr [1978], and Rescher {1976] study counterfactual and plausible reasoning. Analyses
of counterfactuals usually involve some way of evaluating the consequent of the counterfactual statement
in circumstances as “close” as possibic to the actual circumstances but in which the hypothesis of the
counterfactual holds. ‘These proposals for counterfactuals thus suggest ways of choosing “minimal®

revisions of belicfs to accommodate new hypotheses. Sosa [1975] cullects a number of papers on this

. - ML A2 _ . toh widinahhi i g TN . AR Sl e

e wn

N

PR R T A

58

topic,
Fahlman [1974], Sacerdoti {1977]. and Shrobe [1979b] discuss revision of one’s plans.
Harper [1976] discusses changes of preference in a probabilistic sctting.
Sussman [1975] studics the problem of skill development. Fikes and Nilsson [1972) discuss the

collection of STRIPS plans, and Dinis [1976) the acquisition of new inference rules.

1.7.2.8 \Mect and Intellect

Freud [1937] analyzed the imipact of affect onintelleet through repression and censors. 1Mlis and Harper
{1961] basc their psychotherapy on the converse influence of intellect on affect. ‘They analyze people’s
problems by finding the troublesome stitements the afflicted repeat to themselves. Minsky [1980)
cxplores how affect and intellectual activities are aspects of the same mechanisms, how affect exploits

intellect for its purposes, and how intellect similarly exploits affect.

1.7.2.9 Consciousness

The standard positions on the nature of consciousness are surveyed by ShafTer [1968], Taylor [1974], and
Dennctt [1978a). Other topics in the philosophy of mind and psychology are discussed in [Fodor 1968,
1975], [Gustafson 1964}, {Glover 1976, [Dreyfus 1979), [Nagel 1979¢, 1979d). [Boden 1977), Ryle [1949]

and Dennctt [1969, 1978¢).

1.7.2.10 ‘The Absurd

Nagel [1979a), Quinc {1953), Camus [1955]. Sartre {1956], Anderson [1975), Wheeler [1977), and others

discuss the problems of why we arc the way we are, and why we should adapt. Pascal [1971], James

[1971}, and Kicrkegaard [1944) discuss Icaps of faith,

AR e o B e Bt —— &

59

CHAPTER 2

THE REPRESENTATION OF STRUCTURE

Onc important kind of human action is that of building ncw things out of previous things. There may be
little to distinguish a new thing from its components or its surroundings but our calling it so (as detractors
of modern sculpture have been wont to point out). Nevertheless, we often find it useful to think of
portions of the world as things constructed from other things. This chapter outlines a representational
system designed to allow a program to share this way of thought.

Now conceirably, a program could build and use things and never think of them except as their
constituents. ‘This, however, has the disadvantage of unnccessary detail, It is ridiculous to think of
moving a table across the room only in terms of the motions of individual molecules making up the table,
or of a mind or machine only in terms of the physical events associated with its physical realization, but
that would be a consequence of an inability to think of structures as objects, abstracting away all the
unwanted details of their structure. Instead, the program must be able to think of its crcations in terms
other than their constituents, Since the program thinks about its internal actions as well as its external
actions, we conclude that it should be able to make new representations out of previous representations,
and then be able to use the new representations as objects in creating further rcprcscntations.23

Often in physical constructions, the constituent parts retain their structure so that the structure
of the whole includes the former structure of the parts. Of course, this is often not so, as in chemical
mixtures or plastic deformations of constituents, for cxample salt dissolved in water and ice flocs made

into an igloo. But retained structure, when it exists, makes descriptions of constructs much simpler to

comprchend, so we require further of the representational system that it allow structure retention when

23. larrison [1978) emphasizes the unity of the building activitics involved in crcative thought with the building activitics involved
in mundanc constructions and practical reasoning. [cnat (I1977] makes a similar point and presents a program for inventing
mathematical concepts.

[VSR T L

———

possible. In cases in which (internal and external) building operations leave intact the combined (internal
and cxternal) objects, this mcans that the structure of the representation reflects the structure of its
referent.

We also place some distinctly non-physical requirements on the representational system.

The previous chapter made many arguments in support of the program’s ability to explain its
structure and behavior, and the representational system should make this possible. We require that each
representation include information explaining how it was formed from other representations, and what
processes were responsible for its formation.*

Another impuortant vequirement is the ability o cconomize on the storage size of
representations. To consider an anatogous case, large corporations must often raise large sums of money,
much larger than they might borrow directly. ‘They do this by borrowing from a number of banks, who in
turn borrow from other sources. Jack borrows from Jill and Janc, who borrow from John and Jake and
James and Jonas, wao borrow from Jean and Joan and others, so that many of the cffective funds are only
virtual possessions, not a single actual bank-account. In a similar way, the program should cconomize on
the infommti('m for which it actually uscs long-term storage resources. It can do this by using the records
of how representations were constructed from others to temporarily reconstruct the apparent structure of
a representation when answering questions, and then to discard all but the basic information about the

representation and its structure.

24. It would be nice il representations explained not only the how but the why of their formation. Unfortunately, as the last
chapler peculates, it may not be possibic always to say why. ‘This question depends on the completeness of the program'’s
self-description. on its knowledge of itsclf being detailed cnough (o tell the purposc of cach of the actions of its procedures.

I " S

W SR NEETI RN

PV

oAk

61

2.1 Desiderata of the Representational System

In summary. the desiderata for the representational system, along with examples and how we

realize them, are as follows,

1. The representational system should be able to represent all the objects considered by the program.

This requirement has two parts. The first is the simple semantical adequacy of the representational
system, which rules out, for example, a representational system whose only symbol is the numeral 3, for 3
is just one symbol, and there arc many things which must be represented simultancously. We adopt a
system based on the first-order predicate calculus (FOPC), as it is the best understood formal
representational language. However, this choice is intended to be the most colorless choice possible.
Since no onc has yet actually demonstrated the adequacy of any known representational system (FOPC
included) for describing cverything, we take FOPC as a basc for extension, such as modalities, etc., and
do not address completions or alternatives of this language.

The second part of this requirement concerns the physical realization of the representational
sysiem. A purcly formal system cannot represent anything, for what it thinks of as its representing
something is not supported by actual causal connections between its thoughts and its objects. Several
authors, such as Putnam [1978], Fodor [1978]. and Scarle [1980], discuss this issuc in detail. We do not
discuss this question further, and takce for granted a rcalization of the representational system as part of a

machine actually connected to the physical world in the proper ways.

2. New represeniations can be built from previvus representations,

‘The basic unit of representation in a IFOPC-based system is the fogical theory, or set of statements. This
requirement means that we can combine scts of statements to get new scts of statements. We do not

restrict these combinations to be simple unions of the scts, but can make more complicated, non-additive

62

combinations, But a simple mathematical examplice is that of combining a theory describing a sct of
objects as a group under one operation and another theory describing a subsct of thuse objects as a group

under another operation into a theory describing the objects as a semiring.

3. Combinations of representations are objects as well.

This mcans that the representational system treats sets of statements as objects to which Statements can
refer. For example, one might have a theory describing a semiring theory as a combination of two other

theorices. Here the first theary treats the other three as objects.

4. Fach representation incorporates an explanation of how it was constructed,

This mcans that the theories and their statements include the rcasons mentioning the other theories,
statements, and procedures which constructed them. Precise explanations of this will largely be deferred
until Chapter 3. But an cxample might be a theory constructed by adding together two other theories.
‘The statements in this theory would all have rcasons mentioning the corresponding statements in the
initial theorics, along with the statements relating the combination theory and the constituent theories,
and finally, along with the procedure which inferred the new statements from the carlier statements and

the theory-construction statcments.

5. The representation is asymptotically storage-space efficient.

‘This requircment means, for cxample, that statements in a theory are not actually inferred from the
constituent theories unless actually needed, and are not retained unless nceded.”

in the remainder of the chapter, we will base the representational system on virtual copies

25. In [Doyle 1977] | suggesied that asymptotic storage-space cfficiency was a major factor in the design of representation
languages intended for use in representing human-sized bodics of information about the world 1 also argucd that virtual-copy
representational systems like Fahiman's NITTL {IFahiman 1979] arc best viewed as aliempts al asymptolic storage-space ¢fficiency.

+ S ypap— -y T R U ST AR

ot da e O . o+

i an——

F—

63

(VC’s), a term duc to Fahlman [1979]. Virtual copies of theorics will be theories whose statements can be
inferred. when needed. and discarded when not required. Virtual copices can be modificed by adding in
other, non-vistual statements, and by defeating some of the virtuat statements. This last capability is used
for describing overridden defaults, exceptions, and what might be called family resemblances, in which
the simplest way of describing a number of objects is as a number of distinct modifications of an ideal
family member. As we will describe in more detail later, VC inferences are non-monotonic inferences, to
allow these sorts of non-additive theory modifications.

Unfortunately, the claim that the program uses virtual copies is a fiction. All the versions of it
that | have implemented in fact make actual copies, that is, always permancntly infer all statements of all
theories. However, this is merely an accident of time pressures on my implementation cfforts, as the
full-copy techniques are casy to unplement quickly, and the virtual-copy techniques are harder to
implement correctly, as there are many subtleties involved.

This fiction about the representational system presented here is actually a symptom of a larger
incompleteness in this thesis, namely the lack of database retrieval procedures altogether. McDermott,
Fahlman, and others have argued for a scparation between database retricval and problem solving, where
databasc retricval consists of applying automatic, quick procedures which adequately handle almost all
querics (the routine cascs), and problem solving consists of applying carcfully controlled inference
procedures to ferret out the desired information that the routine procedures miss. This distinction is
sometimes hazy, but is a convenicnt way of viewing the problem, and 1 adopt it here. Routine retricvals
arc carricd out by a sct of standard, cfficicnt, but sometimes inadequate databasc interrogation
procedures. ‘The difficult cases arc handled by sclf-applying the reasoner with mcans of information
retricval plans and deliberation about where to ook for information. 'This thesis discusses neither the
routine procedures nor the information retricval plans. “Ihe representational system presented here is
capable of rcinterpretation as other representational systems, for example, as NETIL., and retrieval

algorithms decveloped for them can casily be adapted to the data-structurcs used here. Likewise, the

ability of the program to refer tw its own representations allows formulation of information-retricval plans
for careful reasoning.

One final introductory remark: This chapter is not intended as a presentation of the classical
open problems of representational theory. The system presented here can be viewed as a simple
extension of the ideas of Fahlman and Weyhrauch [1978] o include reasons for representations. Smith
{1978] describes how mamy classical representational puzzles can be fruitfully attacked with
representations which can be referred to as objects by other representations. Both Hayes [1977b] and
Nilsson [1980] present alternative readings of hicrarchical representitional — systems — as
non-meta-theoretical FOPC systems, but their readings have major semantical shortcomings, discussed in

Section 2.5.

2.2 A Key Application

‘The program uscs a library of hicrarchically organized plins and primitives. It occasionally builds new
plans and adds them to this library. For example, it might - make a plan for cooking a single spaghetti
dinner from two existing plans, that of cooking and refrigerating a vat of spaghetti sauce, and that of
heating some spaghetti sauce and cooking some spaghetti. 'To construct the new plan, it concatenates the
two cxisting plans, changing thc guantities involved, and removing the steps of refrigerating and
rcheating the sauce. ‘To do this, it makes copics of the representations of the previous plans, identifies
some of the components of these copices, deletes some of their components, and then packages up the
resulting collection as the new plan.

We view these steps of copying and modifying representations in terms of the above
requirements as follows. ‘The program first creates the copics of preexisting plans by making new
representations along with inference rules which make the assumption that any part of a prototype

representation is also part of the corresponding copy representation. These inferences are non-monotonic

R T O TURpVING R P

L ——

65

assumptions, so that modifications may be made to the representation by defeating the assumptions. ‘The
identifications arc accomplished by creating inference rules which duplicate any conclusion about one
representation with similar conclusions about the identificd representations. Finafly, the collection of
mudified and interconnected representations is reified as a new plan representation available for further

copying and combination. ‘The rest of this chapter presents the details of these operations.

2.3 SDL, a Structured Description Language

‘The program employs a representational language called SIL.. SDA. is based on a predicate calculus, but
bears strong resemblances to current structured-description representational systems. In particular, SDL
involves both a modified form of the data-structures of 1FOL. [Weyhrauch 1978] and a pa.ticular way of
using these data-structures based on NETL.

‘The basis of SDI. is the first order predicate calculus. However, where normal FOPC systems
arc viewed as having one language, one sct of axioms, and a model cxternal to the language, SDL
cmploys many languages, axiom sets, and models simultancously. It describes cach object with a scparate
sct of axioms in an appropriate language and its intended model. SDL describes the structural
rclationships between such descriptions by treating cach of these logical theories as an individual with
parts. These meta-theoretic relationships then become axioms of yet other logical theories.

The most important data-structure in SDI. is the theory, The standard usage of "thcory” in
mathematical logic is the sct of thcorems of some set of axioms in a formal language, that is, the axioms
together with all their logical consequences. Following Weyhrauch, we corrupt the usage of this term to
mcan a data-structurc combination of a language definition, a sci of facts (axioms and thcorems) in the
language, and a simulation structurc (partial model) for the sct of facts and the language, or
mnemonically, T = <L.,S,F>. We explain all of these components below.

All of SDL's first order languages are constructed from the standard logical conncctives along

with individuat constants and variables, predicates, functions, and predicate and function parameters (for
axiom schema). I addition, the kinguages are many-sorted, with a system of partially ordered sorts. (In
logic. the term “sort”™ means kind-classification, not ordering classification.) In many respects the system
of sorts is an inessential convenience of the Yanguages, although they turn out to be nontrivial extensions
computationally. Other kinds of cxtensions to the type of language allowed, such as modalities and
conditional expressions, are not used or explored here for simplicity, and might be added in future
versions of the program.

We define a language in SDI. by specifying the non-logical symbaols in the language and the
roles of these symbols. Language definitions consist of the following types of declarations. The first
argument of these commands, name, is always a Lisp atomic symbol or a pathname (explained later).
Types arc also |isp atomic symbuols, which are defined as predicate constants of the language. Theory’s
are the theory data-structures in whose language name is being defied. 'The number of arguments are,
when specified, noa-negative integers (lisp integers). Argument namcs and types arc Lisp atomic
symbols defined as individual variables and predicate constants of the language. Likewise, result types
are sort predicate constants of the language. The last argument is a justification (as explaincd in the next
chapter) used as the reason for the data-structures created by the declaration,

(INDIVIDUAL -CONSTANT name type theory justification)
(INDIVIDUAL -VARIABLE name type theory justification)
(PREDICATE -CONSTANT name {# of args}) {({arg name} arg type) 1ist} theory justification)

(PREDICATL - PARAMETER name (# of args} {((arg name} arg type) Tist} theory justification)
(FUNCTION-CONSTANT name (# of args} {({arg name} arg type) Vist} (result type)} theory justification)

(FUNCTION- PARAMETER name {# of args) {({arg name) arg type) Vist} {result type} theory justification)

In the following we write these commands in a syntax similar to FOL’s. In this syntax, the theory is given
by the context of the presentation. ‘The statement "IN theory™ is used to switch attention to the theory
with the global name theory. (Once we have defined them later on, we will allow pathnames as well.)
We usually ignore justifications for simplicity of exposition.

For example, we might construct a language for discussing natural numbers and arithmetic with

——— T =T m e ot = - . -

N

e

oy

67

the declarations:

IN ARTTHMETIC:

Function-constant SUCCESSOR | NATNUM;

tunction-constant PREDECESSOR 1 NATNUM;

function-constant +2 (NATNUM NATNUM) NATNUM;

function-constant * 2 (NATNUM NATNUM) NATNUM;

Predicate-constant < 2 (NATNUM NATNUM) ;

‘These declarations define the usual symbols of successor, predecessor, plus, and times, and the ordering
predicate.

We use SDI. to discuss not only languages, but their models and their relations to their models
as well. However, many intended maodels involve objects which simply do not exist inside a computer, for
cxample, cows, real numbers, and redness. Because we can somctimes present the clements of models
inside the computer and sometimes not, instead of ordinary modcls we cmploy simulation structures. A
simulation structure can be thought of as a partial model. one which includes partial decision procedures
to represent its domain and the sct of constants, and a sct of attachments. We take these decision
procedures to be Lisp procedures which take an object as input and tell whether or not it is one of the
objects in the domain (constant) or domain (constant) rcprescntation. The list of attachments is
essentially an association list pairing linguistic symbols with domain clements as their referents, thus
specifying the set of "bindings” of the symbols to objects in the mode! A simulation structure may not
completely determine the truth value of every statement in the language, but it may determine the truth

value of some. This is as good as we can hope for, and is all we will require. Attachments are made with

the command
(ATTACH name object theory justification),
domains and constants with the command

(REPRESENT name representation theory justification).

L P I TS o i —

~

v

AR gl P B hen oW ANLOD M . g R oA ¢ me

R I

- e -

68

The artach command adds the specified pairing to the list of attachments of the simulation structure,
with the given justification. The represint instruction declarcs the name w be a predicate and sort
symbol of the language and attaches the name to the representation function in the simulation

26
structure.

One particular sort of ailrchment is that of a procedure in a theory, in which an individual
constant is attached to a [ISP procedure. All procedures are named by such attachinents, so that values
computed by them may be justified in terms of the procedure as the "inference rule”.

Of course. one does nat have a model of a language, but rather a model of a set of statements in

the language. These statements are called facts (to subsume both axioms and thcorems), and are declared

hy cither

(AXIOM name wff theory justification)
or

(FACT name wff theory justification).

Each of these facts is added to the set of facts of the theory. Each fact consists of both the name of the
fact (a symbol in the theory’s language), and a wif of the language of the theory. This connection
between fact name and wiT is trcated as an attachment of the theory, although here the attachment is from
a symbol of the fanguage to a wiT in the sct of axioms and theorems. Thus theories with axioms refer to
parts of themselves.

Theories are made up out of a language, a simulation structurc, and a sct of facts. Theorics are

created with the command

26. ‘This chapicr will be hazy on exaclly what representations arc and how they relate to languages and simulation structures. ‘The
intended ideas can be illustrated with numbers. One has the numerals in the language. which refer to numbers, and since numbers
don’t exist in the computer, we add in | isp fixnums as a representation of numbers The distinction becomes important because in
many cascs. the program will have the seferent for a symbol. namely a dita-structure which doces cxist inside the computer.
(Actually, the existence of data-structures in the compuler may be a fiction. Data-structurcs are referied 1o by pointing to some
location in memory. but the intended data-structure results only through interpretation of the information in that location as further
pointers. ficlds. cic. In this way, the fiction of dawa-structuses is much like the fiction of the “sclfl” of the program, since the program
is onc big daw-structure interpreting itsell) Weyhrauch and others discuss the problem of languages, models and representations,
and I expect 1o adopt onc of their suggestions when | become more familiar with their proposals.

RS

o

69

(THEORY name parent-theory justification),

which dectares name to be an individual constant in the parent theory, creates a new theory data-structure,
and attaches this data-structure to name in parent-theory.

For example. we can declare more of the theory of natural number arithmetic as follows.

IN ARITHMETIC:
Individual-constant 0 natnum;
Individuval-variable n natnum;
Individual-variable mnatnum;
Predicate-parameter P (natnum);
AxiomOneone: Vn Vm successor(n)=successor(m) 2 n=m;
Axiom Succl: Vn T0=successor(n);
Axiom Succ2: Vn [T0=n D 3mn=successor(m));
AxiomPlus: Va [n+0=n A VYm[a+successor(m)=successor{n+m)]];
Axiom Times: Vn [n*0=0 A Vm[n*successor(m)=(n®m)+m]];
Axiom Induct: [P(0) A Va[P(n) I P(successor(n))]] D YaP(n);
Attach Successor (LAMBDA (X) (ADDI X));
Attach Predecessor (LAMBDA (X) (COND ({> X 0) (SUB1X)) (T 0)));
Attach + +;
Attach® ~;
Attach< ¢;
Attach00;

The first two attachments above attach Lisp procedures to two predicate constants of the theon'.n The
next four attachments attach to a symbol of the theory the value attached to the same symbol in the global
theory. In the first three of these, the valuc is a Lisp procedure, and in the last it is the Lisp number 0.
Fach of these dati-structures contains information about the reasons for the data-structure,
which arc stored as justifications for a RMS node, as explained in Chapter 3. Fach theory data-structure
has a justification mentioning the procedures which created it. Each declaration of a linguistic symbol
adds a justification to that declaration. Each attachment has a justification, and so does cach axiom in the
theory. That is, an axiom would have a premise justification in the theory, but that premise justification

itself would not be an assumption, but would have a justification specifying the reason for this fragment

27. Those familiar with SCIIEMI: [Stecie and Sussman 1978a) should undersiand that we ideally would employ SCHEME instead
of 1ISP, so tha(these attached values would be procedures (clasuscs) rather than s-cxpressions.

). AT A ———————

70

of the theory in terms other theories and inference procedures. As usual, consequences hase justifications
mentioning both the nodes of their antecedents and the inference rule or procedure deriving the
conscquence.

We will represent all of these things with the following data-structures. We notate these in the
“structure™ syntax of MIT Tisp Machine Lisp [Wcinreb and Moon 1979), in which a name is specified
followed by the ficlds of the data-structure. The first structure defines the ficlds common to all the rest:
the name, the RMS node, and the parent (whose function is explained following these definitions). The
JINctupt specification is the means by which these common ficld definitions are included in all other
structures.

(DEFSTRUCTURE (COMMON-STRUCTURE)

NAME

NODE

PARENT)
‘These declarations define the data-structures associated with languages.
(DEFSTRUCTURE (LANGUAGE (: INCLUDE COMMON-STRUCTURE))
INDIVIDUAL - VARIABLES

INDIVIDUAL-CONSTANTS

PREDICATE -CONSTANTS

PREDICATE-PARAMETERS

FUNCTION-CONSTANTS

FUNCT ION-PARAMETERS)

(DEFSTRUCTURE (INDIVIDUAL -CONSTANT (: INCLUDE COMMON-STRUCTURE))
INDIVIDUAL-TYPE)

(DEFSTRUCTURE (INDIVIDUAL -VARIABLE (: INCLUDE INDIVIDUAL-CONSTANT)))
(DEFSTRUCTURE (PREDICATE-CONSTANT (: INCLUDE COMMON-STRUCTURE))
NUMBER-OF -ARGUMENTS

ARGUMENT -TYPE-LIST)

(DEFSTRUCTURE (PREDICATE-PARAMETER (: INCLUDL PREDICATE-CONSTANT)))

(DEFSTRUCTURE (FUNCTION-CONSTANT (: INCLUDE PREDICATE -CONSTANT))
RESULT-TYPE)

PR

PR R § o

—y —

1

(DEFSTRUCTURE (FUNCTION-PARAMETER (: INCLUDE FUNCTION-CONSTANT)))

These declarations define the data-structures associated with simulation structures.

(DEFSTRUCTURE (SIMULATION-STRUCTURE (: INCLUDE COMMON-STRUCTURE))
DOMAIN-REPRESENTATION

CONSTANTS-REPRESENTATION

ATTACHMENTS)

(DEFSTRUCTURE (REPRESENTATION (: INCLUDE COMMON-STRUCTURE))
REPRESENTATION-ALGORITHM)

(DLFSTRUCTURE (ATTACHMENT (: INCLUDE COMMON-STRUCTURE))
0BJECT)

This data-structure is uscd for facts.

(DEFSTRUCTURE (FACT (: INCLUDE COMMON-STRUCTURE))
WFF)

This structure defines the data-structure for theories.

(DEFSTRUCTURE (THEORY (: INCLUDE COMMON-STRUCTURE))
(THEORY - L ANGUAGE (MAKE -LANGUAGE))
(THEORY-SS (MAKE -SIMULAT TON-STRUCTURE))
THEORY-FACTS
EQ-POLICIES
€Q-POLICY-LIST
VC-TYPE-THEORY
VC-UP-STATEMENTS
VC-DOWN-STATEMENTS
VC-STATEMENTS-LIST
MAP-UP-STATEMENT
MAP-DOWN-STATEMENTS
MAP-STATEMENTS-LIST)

In the above, the structures (particularly Theory) contain not only the lists we have previously indicated,
but also slots for redundant forms of these lists to facilitate retrieval and manipulation of information,
The basic such slot is that of PARENT, which typically is used as a reverse pointer from a
sub-data-structure to the data-structurc which includes it. The exact interpretation of this slot varies with

the data-structure involved. l.anguages, simulation structures, facts, and rcasons point back to their

v o Fuie, ARGV ST T

-

- -

i s men g

F—

n

theory: individual constants, individual variables, predicate constants, predicate parameters, function
constants, and function parameters point back Lo their language; representations and attachments point
hack to their simulation structure. and theorics point back o the theory which is their context of
cxistence.

THEORY, in addition, contains slots to facilitate retrieval of structure-sharing statements, part
inferences. and dataflow policies. These will be explained later in this chapter and in Chapter 4.

This completes the description of the underlying logical system.

2.4 How to use SDL

We represent objects hicrarchically in SDI. by using a scparate theory to describe cach object. The parts
of the object arc in turn described by other theorics, and the theory of the object includes statements of
the relations between these parts and between their theories. When two objects are mutually defined,
cach of the theories describing these objects will contain the other theory as a part. This means of
representation is not paradoxical because the theories of the parts are copics of their prototype theories.

For example, suppose we wish to describe as objects arithmetic relations between numbers. To
do this, we can make a theory ADDER as follows.
1N ADDER:

Individual-constant Al;

Individual-constant A2;

Individual-constant SUM;

Predicate-constant =;

Function-constant +;

Attach + +;

Attach==;

Axiom Plus: A1+A2=SUM;
This theory describes the prototypical adder. ADIDER has three individual constants for the addend,

augend, and sum, and, via attachments to the arithmetic predicates and functions, defines the relation

between the constants.

1
|
i
|
{
-
p
H
o
e

3

Notice that the description of the prototype contains no attachnients to the constants. ‘That is
because the prototypical adder does not relate any particular numbers or have any default values.
Suppose we wish to make an instance of this description for the addend and augend values 3 and 4. We

first would create a new theory which is a virtual copy of ADDER, namely,

INT-1:
Individual-constant T-1;
AttachT-1T7-1;
Individuai-constant ADDER;
Attach ADDER ADDER;
Axiom VC(T-1, ADDER);

T-1 is the theory’s name in the global theory. ‘1-1 is also the theory’s name for itself. ADDER is the
theory's name for the theory with the global name ADDER. ‘The sole axiom in T-1 allows us to make a
number of conclusions within T-1. The VC inference rule is that all statements defining a theory,
including the language, the simulation structure, and the facts, are inferred in the copy theory as
individual non-monotonic assumptions. That these inferences are non-monotonic will be important later
when we wish 10 modify the copies of prototypes to override default values or to describe exceptions.

Thus T-1 actually has the following statements.

| { RES T
Individual-consteant 7-1;
AMtach T-17-1;
Individual-constant ADDER;
Attach ADDER ADOER;
Axiom VC(T-1, ADDER)
Individual-constant Al;
Individual-constant AZ;
Individual-constant SUM;
Predicate-constant »;
function-constant +;
Attach + +;
Attach = «~;
Axiom Plus: A1+A2sSUM;
Attach Al);
Attach A2 4;

To this, we have added the two values as attachments to Al and A2. By use of the axiom PLUS of this

{ *

)
]

l B ke L —~—

o

E———
)

A O 8 T D P e TP P EE L T SR

R

—

74

theory, the atachments can be used to compute an attachment for SUM to the value 7.

The idea of VC theories could also have allowed writing ADDER more succinctly, by declaring
ADDER 10 be a VC of ARITHMETIC. 1In this way, ADDER would have been an extension of
ARTTHMETIC, and the extra definitions of +, =, ctc. would have been unncccssary.28

However convenient might be theory extensions made in this way, many circumstances require a
theory to contain as subtheorics multiple distinct copics of other theories. The main motivation for this is
the need to describe structures having scveral parts, cach of the same type, but cach having its own
peculiaritics. We facilitate this by means of the TYPED-PART command, as the next example shows.

We can make a new description, called DOUBLER, by modifying a copy of ADDER.

IN DOUBLER:

Individual-constant X;

Individual-constant 2X;

Typed-Part ADDER ADDER;

Axiom: X = [A1 ADDER]:

Axiom: 2X = [SUM ADDER];
Axiom: [A1 ADDER] = [A2 ADDER];

;[Pathname] explained below.

The expressions in brackets are called pathnames, and arc compound names treated as the corresponding
names in the subtheorics. That is, [A B ... C] should be interpreted as the variable A of the theory named
B .. of the theory named C. We writc Vlpathnamc] to notate the value attached to the symbol
represented by the pathname, so V[A B is the valuc attached 1o A in the theory attached to B in the
current theory.

The command
(TYPED-PART name prototype justificatfon)

cxpands into scveral other statements and actions. It creates a new theory as a virtual copy of the

28. The Edinburgh 1.CT proof construction system makes similar use of a colicction of theories (sets of thcorems) with its “ancestry
graph.” {Gordon et al. 1978}

e IR o] MATRTE A S AR . 5

75

prototype, and then creates a constant of the given name in the theory and attaches the copy to the name
in the theary. Thus we have the new statements
IN DOUBLER:

Individual-constant ADDER;

Attach ADDER T-2;
where we have also created the theory T-2:
Nr1-2:

Individual-constant T-2;

Attach 1-27-2;

Individual-constant ADDER;

Attach ADDER ADDER;

Axiom: VC(T-2, ADDER);
Now by itsclf, this new Theery-I-2 is not much good, since the original doubler theory can only refer to it,
not use it. However, the final function of the TYPEG-PART statcment is to enable the inference rule that
any statement of T-2 is alsv a statement of DOUBLER under a rewriting of names of T-2 into reference
expressions in DOUBLER. With this rule, DOUBLER gets the new statements
1N OOUBLER:

Indtvidual-constant [Al ADDER];

Individual-constant [A2 ADDER];

Individual-constant [SUM ADDER];

Predicate-constant [= ADDER]:

function-constant [+ ADDER];

Attach [= ADDER] =;

Attach [+ ADDER] +;

Axiom [PLUS ADDER]: [A1 ADDER] [+ ADDER] [A2 ADDER] [= ADDER] [SUM ADDER];
Note here that all symbols in the language of the part-theory are replaced by pathnames when they are
inferred in the whole-theory. However, the second items in attachments arc not affected by these
substitutions. Instead, those expressions are referentially opaquce, as they are symbols in the language of
the global theory, rather than symbols of the language of the part-theory.

Supposec we now wish to combine two doublers to get a quadrupler. This, of course, is

straightforward.

| §, phs THOSE ST TN Gl R A S ey T
i £ PR o ar,
e L, et oy WAL v ’ B s o
it —— —

ae we s ¥

[T Y S L T TN

— e ———— 4 wn ey g ey

e

e

76

IN QUADRUPLER:
Individual-constant X;
Individual-constant 4X;
Iyped-part D1 DOUBLER;
typed-part D2 DOUBLER;
Axiom: X = [XD1];

Axiom: [2X D1} =[XD2];
Axiom: 4X = [2X D2];

Suppose, however, that we didn’t quite want a quadrupler, but instead wanted to first quadrunie and then
add onc. We could, of course, make somcthing new using an extra adder with an attachinent to 1 of one
of its "inputs.” But to show off the sort of local modification/exception idca, we instcad make a local
mudification to the axiom of one of the doublers in the guadrupler.
7-3:

Typed-part QUADRUPLER QUADRUPLER;

Individual-constant 1;

Attach 11;

Cancel [PLUS ADDER D2 QUADRUPLER];

Axiom PLS: [A1 ADDFR D2 QUADRUPLER] + [A2 ADDER D2 QUADRUPLER] + 1

= [SUM ADDER D2 QUADRUPLER]

The effect of the Cancel statement is to defeat the non-monotonic assumption of the specified statement.
We then just add in the desired modification, and we are done. Alternatively, we could have switched the
theory we were working with to the theory attached to ADDER in D2 in QUADRUPLER. We could
have then just made the commands
IN V[ADDER D2 QUADRUPLER 7-3]:

Cancel Plus;

Individual-constant 1;

Attach11;

AxiomPls: Al +A2+1=SUM;

This shows how the statements inhcrited in onc theory can be canceled.?? We can casily represent default

information in this way by using the non-monotonic naturc of VC inferences. in fact, all of the

29. Of course. there are limilations to this lechnigue. An interesting cxample is that of a wagon being drawn by four horses, one of
whom had one blind cye. This we might have said with Jllorse in 1HORSI'S(Wagon) and Jkiye in LYES(1lorse) such that
BLINIXFye) Then RMS woutd have a pretty time finding a model, as it would have 10 pick onc out of so many possibilities.

< AT 4 A X LG g e 20, SNSRI AT ih AR MO -y

e meranim f o pas i3 e boar

n

statements of copics of theories are assumptions, and can be defeated for reason. The distinction between
what onc¢ considers 1o be default information and what onc considers essential aspects of theorics is
entircly a matter of how willing onc is to give up onc statement rather than another. ‘The program
cmploys policies which guide decisions between alternate revisions of the its belicfs, as discussed in
chapters 3 and 6. However, policies form merely the mechanism, not the vocabulary, of guidelines for
revision of beliefs. Scveral authors, for example Fahlman, have proposed a trinary classification of the
strength of attachment to beliefs in concepts, namely default, normal, and criterial (or cssential). How
these absolute classifications should be realized in policies is unexplored, although the obviously intended
policies should at least say that any default statement should be rejected in favor of any normal statement,
and any normal statement should bow before any criterial statement. 1 am not convinced that absolute,
context-free pnlic_ics of this sort arc particularly uscful, and so have not pursued them. | would much
rather believe that cach domain of reasoning has its own sct of revision policies along these lines.

The above examples all used Typed-part to include theories defining objects in a theory.
Another major application is that of including subthcorics to definc the sort predicates of the language.
Unfortunately, I have not yet convinced myself of just how this should be done, whether by Typed-part,
an analoguc of it, or by dircct VC inclusion. Part of my hesitation in this matter relates to yet another
question unanswered here, that of how sort predicates arc taken as dcfined in the first place. For
example, the previous thcory ARITHMETIC is often thought of as the definition of what natural
numbers are, but the sort predicate enters that theory only as a relativizer on the variables. ‘That is, the
whole theory is of the form NATNUM(x)DAXIOMS(x). and nowhere is there any statement of the form
AXIOMS(x)DNATNUM(x). | don't think this is a difficult problem to solve, but it is onc that requires

more attention than | have been able to devote to it

TR S P AP PR e T e

-

PR R . - BN e - e D 1o T Al T o s ORI IOTIRTY | 5 A AL 1 s O b

78

25 Relations with other Representational Systems

Bless thee, Bottom! bless thee! thou art translated.
William Shakespeare, A Midsummer Night's Dream
It scems likely that SDI. can be used to realize many of the current representation languages,
although we do not demonstrate this here. For example, we -an translate CONI AN [Stecle and Sussman

1978¢] into SDI .. In this translation,
(CONSTRAINT name parts+types equivalences)

gucs into a named theory, the parts of the theory being given by the parts and types. and the cquivalences
by equations. What we do not capture without further inference rules is the constraint language control
and inference structure, which strives o propagate values through all the known relations between
variables. On the other hand, we can add new parts to a theory at any time, which CONI.AN cannot.
Also, we can make theorics like the following, which are far beyond CONILAN's expressive powers, since
it docs not subsume FOPC,
IN SANDWICH: :

Individual-constant BLOCK1 BLOCK;

Individual-constant BLOCK2 BLOCK;

Individual-variable MIDBLOCK BLOCK;

Predicate-constant ON;

Axiom: V MIDBLOCK [ON(MTDBLOCK, BLOCK1) = ON(BLOCKZ, MIDBLOCK)];

Axiom: I MIDBLOCK ON(MIDBLOCK, BLOCK1):

Axiom: I MIDBLOCK ON(BLOCK2, MIDBLOCK);
‘I'his blocks-world theory describes the situation in which two blocks sandwich in a number of other
blocks.

‘This theory, incidentally, also shows the distinction between individual variables and constants

in a prototype. Constants refer to parts of the prototype, which arc constant aspects of the prototype even

if they scem like variable aspects in instantiations of the prototype. Variable are used only in general

&
i
)

19

statements about the domain of parts of the prototype.

Hayes [1977b] and Nilsson [1980] present translations of representational systems like KRL
(Bobrow and Winograd 1977] in +FOPC, but these translations miss the point of most current
representational systems. Hayes and Nilsson succuinb to the temptation to confuse the ideas of
description specialization and predicate subsumption,

Consider, for cxample, theories describing mammals and horses. We normally accept the
statement Va[HORSE(X)DMAMMAL(x)]. We also might be likely to construct the theory describing
horses (which contains the predicate HORSE) by refining with additional axioms the theory describing
mammals (which contains the predicate MAMMAL). ‘These arc two separate connections between the
predicates HORSE and MAMMAL but Hayces and Nilsson confuse them. The reason they make this
conflation is simply that without treating theories as abjects, the only way they can anproximate theory
construction is with an implication.

This confusion has many scverc problems. ‘The first is the family resemblance problem.
Consider a human family with several members. We might try to capture their commonalitics of
appearance by describing the prototypical member of the family. However, there may be no property
{(other than prototypical human propertics) shared by all members of the family. Each member may have
most of the propertics described by the prototype, but be lacking a single property that all the other
mcmbers possess. Now if we use SDI. with its non-monotonic VC inferences, this circumstance presents
no probiem, and can be treated succinctly. But if theorics are not objects, and the only tool available is
implication, then the best that can be stated is that the prototype has the property

(P2ALAPn) V (PLAPIALAPR) V .. V (PIA. Pn-]),
which is hardly succinct. lHaycs and Nilsson cach allow default statements in the descriptions, which are
cssentially non-monotonic assumptions. But they cannot get the succinctness and freedom of description
construction that SDI. allows unlcss each statement is taken explicitly as an assumption, including all

nstances of the implications relating concepts.

- bt A g P -

|

\

L
e ———————————— e |

80

2.6 Advanced Applications

1 have not explored the full powers (or even the complete details) of this representational system,
particularly the hard guestions concerning modality, non-denotation, and existence. For example,

suppose one had the theories

INUNICYCLE:

Typed-part WHEEL WHEEL ; ;etc.
IN WHEEL :

Typed-part TIRE TIRE;

Typed-part HUB HUB; ;etc.

and wished to say that some WHEEL -1 had no tire. If no attachment is made to [TIRE WIHIEEL-1), that
would just be a fack of information about the question, not a definite belief that WHEEI -1 had no tire.

However. one could state
3 3x ATTACHED([TIRE WHEEL-1], x, WHEEL-1),

which would scem to say that the term [TIRE WHEEI -1] lacked a referent. 1 have not yet been able to
explore in detail whether this sort of trick can be used to attack the classical problems of cxistence and
proper namgs, as in "Pegasus docs not exist.” Would the domains of existence be specified by the theory

in which the noncxistence statements occurred? For example,
—13x ATTACHED(Pegasus, x, REAL-WORLD-THEORY),
but
Ix ATTACHEB(Pegasus, x, MYTHOLOGY -WORLD- THEORY),

Consult [Smith 1978] and [Martin 1979]) for morc detailed trcatments of these sorts of puzzles in

hicrarchical structured representational systems, and [Haack 1978] and [Linsky 1977] for surveys of the

———yy = mmi— e - ——— e, ——

<. e A A O e e i o . et o e U My B g A2t MMt i s s St e L

81

classical problems.

2.7 ‘Theories ahout Theories

As the preceding examples suggest, theories smay be constructed to describe not only objects in the
external world, but equally important, other theories. Thus the preceding theories typically described not
only their “praper” subjects, but also their relations to other theories. For example, DOUBLER
contained a statement that onc of its subtheorics was a copy of the ADDER theory. ‘This, of course, is just
once statement relating two theories. "This section tries to iltustrate more general cases of theories about

theorics which determince the large-scale structure of the program.

bl 2.7.1 The THEORY Theory

The starting point is the thcory of the prototypical theory and its construction. This theory simply reflects
in logical language the data-structure definitions given carlier, with the simulation structurc mentioning
the procedures for accessing those structures. For example, the THEORY data-structure is reflected as

the following.

In THEORY:
Individual-variable T THEORY;
Individual-variable L LANGUAGE ;
Individual-variable S SIMULATION-STRUCTURE ;
Individual-variable F FACTS;
Individua)-variable PARENT THEORY;
Function-constant T-L (THEORY) (LANGUAGE):
function-constant 1-S (THEORY) (SIMULATION-STRUCTURE);
function-constant T-F (THEORY) (FACTS);
function-constant T-P (TIEORY) (THEORY);
Axiom VT [3LfL=T1-P(1)) A Js[S = T-5(1)] A Jefr=1-F(MHIA IPAREWT[PARENT = T-P(T)]]
Attach T-P (LAMBDA (X) (CXR O X));
otc.

When we fill out this sort of theory, we obtain a complcte description of the basic data-structurcs of the

P smia——

82

program. and the primitives for accessing, creating, and modifying them. 1 will not go into this here, for

the full deseription is quite Icnglhy.m

2.7.2 "theories of Specific Theories

The THEORY theory only reflects the structure common to all logical theories. Other theorics describe
the structure common to all members of certain classes of theories. For example, the ADDER theory
above describes a prototypical adder. If cach of the components of this theory are reflected in the
Tanguage of THEORY and related theories, we get a theory deseribing all theories copied from ADDER,
containing, for instance

IN THEORY-OF - ADDER

Axiom: INDIVIDUAL -CONSTANT("A1", LANGUAGE (ADDER));

We can include these meta-theoretical statements in the theory itself, just as we include VC statements.
Of course, we do not want to do this automatically for all statements, lest we reflect endlessly to produce

an infinite number of such statements in cach theory.

2.7.3 The VC Theory
The VC inference rule can be described by yet another theory, with contents like the following.31

INVC:
Individval-variable T1 THEORY;
Individual-variable T2 THEORY;
Individuai-variable S1 WFF;
Individual-variable S2 WFF;
Axiom V1 Ve2ve(re, 12) D ¢

30. Similar reflections can be made of the underlying Lisp system, by axiomatization of s-cxpressions and the primitives for
creating and manipulating them. Weyhrauch and Cartwright and McCarthy [1979) have developed theorics of Lisp along these
lines.

31 This is not quite correct or complete. as the exact details have yet to be worked out.

A R 1 T T T

-t

¥

—— i A aa

VS1{S1 € METATHEORY(T1) D
3s2[$2 € METATHEORY(T2) A\ 52 = SUBSTITUTION(S1)];

What this mcans is that 1o copy statements from once theory, one reflects the definition of the statement
into a meta-theoretic statement, substitutes in the appropriate ncw names, adds the new meta-theoretical
statement o the copy theory, and then de-reflects to get the copicd object-level statement in the copy
theory. ‘Thus the definition of an individual constant S in the prototype would be reflected into a
statement that S is an individual constant symbol, That meta-theoretical statecment would be inferred in

the copy theory, and de-reflected (treated as a definitional command) to realize S in the copy theory.

274 The PERSON Theory

Just as we progress from theories of things to theories of theorics to theories of pairs of theories, we
continue to theories describing the large-scale structure of the program as a theory of all currently existing
theorics. The abstract structure of the program we capture in the PERSON theory.
IN PERSON:

Individual-constant THEORIES SET;

Individual-constant BELIEFS SET;

Individual-constant DESIRES SET;

Individual-constant INTENTIONS SET;

Individval-constant PROCEDURES SET;

otc.
In addition, cach of these parts of the program is attached to lists of concepts, beliefs, desires, intentions
and procedures typical of all pcrsons.32 Of course, persons may be subclassificd into types of persons,
cach of which has some cxtra or missing attitudes over those expected of persons in general, Further

specializations lead to theories of particular persons, and then to theories of those persons in different

temporal or hypothetical situations. We speculate on the usc of these models of persons in hypothetical

32. More likely. these sets arc given only implicitly by predicates and procedures which recognize their extensions, and the typical
contents are all listed in the tables of these procedures. The details of this have yet to be worked out.

L RS e TR 0

R

e e g el e s

- m——ea

reasoning and discourse in Chapter 7.

2.7.5 "the Global Theory ME

I ant he as you are he as you are me and we are all together.
John Lennon and Paul McCartney, / am the Walrus

The program itself is a theory, and this theory it describes as a modified copy of the PERSON theory.
‘The program calls this theory of itsell ME, and for simplicity, we will often do likewise, or alternatively
use our name for the program. SEAN, "That is, SEAN is our naune for the program, not its name for itsclf,
although it may know that others call it SEAN. The program refers to itsclf by containing the individual
constant ME of type THEORY, and attaching itself to ME as ME's referent. 33

ME: is the parent theory, or context of existence, of all the program’s theorics, cither directly or
indircclly.34 Thus ME’s parent is ME, as is the parent of PERSON. This may scem paradoxical, to have
a theory be a copy of one of its parts, but as we have constructed them, there is no inherent difficulty. In
fact, PERSON ought to mention a ME symbol. but | have not worked out this detail.

ME also contains the symbol 1, which serves as its name for its “self.” 1 is normally attached to
the global theory, that is, is curcfcréntial with ME, but. can be rcbound 1o other person theories in
hypothetical rcasoning, as described in Chapter 7.

‘The normal operation of the program involves making changes to the theory denoted by 1, that

is, attachments are looked up in 1, pathnames arc interpreted in 1, and inferences are made in I's theories.

33. Weyhrauch uses the term MITTA for this. but | don't (or (wo reasons. Iinst, the it is the system’s theory of itself, for which the
canonical term is "me” or 1", not "meta.” Sccond. the torm vulgarizes the memory of my paternal grandinother, Meta Enters
Doyle. daughter of Hermann Enters.

M. It scems possible in principle that the program might contemplate (but not employ) theories which have no parent. In fact, it
might construct an cntire other program in this way. or a description of another program, complete except for connections (o the
rcal world. and ncver runming, hecause it can never get control. I the program then connects this other program (o another
processor, of seis up a time-sharing exccutive, it might have two minds running independcently in the same machine, cach with a
different self.

RN RLNTEI T ei.p W PLT§ S SRR

o SRR BN v hhesi it 6 29 % albbiinplg P

85

2.8 Concepts and Attitudes

The preceding has explained how to create a hicrarchically organized database of concepts to be used in
representing things. But concepts are of little usc unless they can be applied. This section indicates how
concepts arc used to form the attitudes of belicf, desire, and intention which go to make up the mental
state of the program.

‘Ihe basic idea is simple. The global theory of the program contains statcments about some of
the concepts so as to create attitudes. By “attitudes” we mean "propositional attitudes” in the usual sense
in which beliefs, wants, and intentions are propositional attitudes, and are viewed as a combination of an
attitude and a propositional content. ‘Thus "1 want to cat some food” would be decomposed into the
attitude "1 want” and the propositional content "1 cat some food”, the combination notated as I-Wany(l
cat some food). This might be dounc in the program as follows. If Raining is a concept describing a state
of affairs in which it is raining now, and if R1, R2, and R3 arc all copics of Raining. then the global theory
might contain statcments BELIEF(R1), DESIRE(R2), and INTENTION(R3) to indicate its belicf that it
is raining, its desirc that it be raining, or its intention that it be raining. We assume that onc always makes
particular instances or copics of concepts used in attitudes, just as onc makes copics of concepts in
forming parts of concepts. Thus, there might be commands Belicved-concept, Desired-concept, and
Intended-concept analogous to Typed-part, which automatically create the copy theory and whatever
inference procedurcs (see below) are appropriate for relating the new concept to the current state of
mind. This copying may bec needless, but only further study can tell,

This realization of attitudes makes clear the distinction between the reasons for the concept
involved and the reasons for attitudes involving the concept. ‘That is, the program might have rcasons for
holding the concept theory in terms of the theories and procedures from which it was constructed. These
reasons would have nothing to do with the reasons for the attitude stalements in the global theory.

The global theory includes alf the currently belicved concepts as subthcorics. That is, the

P

R

e oy e T

86

program infers ve(me, €) from set 165 (€) in ME, so that all the statements in C are inferred as statements
of ME. “Ihis scheme, or a variant using TYPED-PAR'T, has considerable elegance, particularly when
applied to plan concepts (as discussed in Scction 4.9), in which the plan theory contains statements of
several sorts of attitudes which are used to temporarily augment the current sets of attitudes for the
duration of the plan. ‘The exact details of this idea are yet to be resolved.

One important question is the relation between these concept-based attitudes with their reasons,
and the logical statements and their reasons which go to make up concepts. ‘There may well be a
confusion of levels in my suggestions, as they scem to imply that attitudes (at least from one viewpoint)

are really beliefs about attitudes, a conclusion raising many problems. Chapter 7 discusscs this problem

in more detail.

[R TR

R Yy S N P e R R E

R S e Bad i

bt — -

8

CIIAPTER 3

FOUNDATIONS OF TIIE TIHEORY OF REASONING

"l.adder of wit! What madness is this?” Ebenczer demanded.

"No madness save the world's, sir. Take your wig question, now, that's such a thing in .ondon:
whether to wear a bob or a full-bottom peruke. Your simple tradesman hath no love for fashion and
weirs a bob on’s natural hair the better to labor in: but give him ten pound and a fortnight to idle,
he'll off o the shop for a great IFrench shag and a ha'peck of powder, and think him the devil's own
fellow? Then get ye a dozen such idlers; the sharpest among “em will buy him a bob wig with lofty
preachments on the tyranny of fashion -- haven’t 1 heard ‘em! -- and think him as far o'er his
full-bottomed fellows as they o'cr the merchants” sons and bob-haired “prentices. Yet only climb a
rung the higher. and it's back 1o the full-bottom. on a sage that’s scen so many crop-wigs feigning
sense. he knows “tis but a pose of practicality and gets him a name for the cleverest of all by showing
their sham to the light of day. But a grade o'er him is the bob again, on the pate of some
philosopher, and over that the full-bottom, and so on, Or take your French question: the rustical
wight is all for England and thinks cach Frenchman the Devil himself, but a year in 1.ondon and he'li
sneer at the simple way his farm folk reason. Then comes 4 man who's traveled that road who says,
Plague take this foppish shill-1, shall-11 When all’s said and donc “tis Fngland to the end!’; and after
him your man that’s been abroad and vows “tis not a matier of shill-1, shall-1 to one who's traveled,
for no folk are cleverer than the clever French, “gainst which your English townsman's but a
bumpkin. Next yet's the man who's scen not France alone but every blessed provinee on the globe;
he says “tis the aovice traveler sings such praise for Paris -~ the man who's scen “em all comes home to
Ingland and carrics all's refinement in his heart. But then comes your grand skeptical philosopher,
that will not grant right Lo cither side: and afier him a grander, that knows no sidc is right but takes
sides anyway for the clever nonsense of't; and after him your worldly saint, that says he's past all talk
of wars and kings fore'er, and gets him a great name for virtue. And after him --"

"Enough, | beg you!” Ebenczer cried, "My head spins! For God's sake what's your point?”

"No more than what | said before. sir: that de'il the bit ye've tramped about the world, and
bleared your eyces with books, and honed your wits in clever company, whate'er ye vea is nay d by the
man just a wee bit simpler and again by the fellow just a wee bit brighter, so that clever folk care less
for what ye think than why ye think it.”

John Barth, The Sot-Weed Factor
In later chapters of this thesis, we discuss the question of which inferences to make, that is, how the
reasoning process is controlled. We devdte the present chapter to cxplaining the prior question of what

we Lake inferences to be, and to describing the structure of a program based on this theory of reasoning.

NP it & e s bows g § 5 PO i (e F

L

!
!

. : e e L
—— gy ———— < - P LA A Sy

88

3.1 The Nature of Reasoning

Reasoning involves changing onc’s attitudes from one sct (o another by adding some new attitudes and
relinguishing others. Reasoning includes not only "deductive” and “inductive”™ inferences, in which
new beliefs are produced from prior beliefs via "deductive” and "inductive” rules of inference, but also
"practical” inferences, in which new wants and intentions are produced from prior belicfs, wants, and
intentions, and “changes of mind”, in which onc becomes unhappy with some belief or desire and
discards it.

Reasoning is one sort of mental event, where by mental event I mean one’s changing one’s mind
from one state of structural form to another. Reasoning, however, is not the only sort of mental event.
FFor cxample, the creation of new mental data-structures which do not affect the sct of attitudes is a
non-reasoning mental event, as when one creates a new attachment or data-structure in SDI. without
giving it a justiﬁcation.“’ Of course, most data-structures arc created for use in changing the sct of
attitudes, but they need not all be of this form. For example, when a question ariscs concerning the truth
of some proposition about which one has no opinion, one must first construct the proposition to be able

to consider it. Only later, after one finds reasons for or against the proposition, does it enter the set of

35. Hlarman [1973] des clops the thesis that reasoning is © pracess of changing once's set of attitudes by adding some and abandoning
others Perhaps [misinterpret him, but 1 understand this to mean that onc cannol have cases of rcasoning which do nol change the
set of aititudes. Here, and later in this section. | proposc a more general view, which incorporates such cascs of reasoning.

1larman develops his viev. as part of his thesis that reasoning always increases the “explanatory cohierence™ of the set of
attitudes. ‘This view can be taken in at least two ways. cither as a proposcd control structure for the reasoning process, in which case
the mechanisms | propose subsume and sigmificantly extend this proposal. or as a proposal about whal sorts of mental events count
as cases of reasoning. Bul if this laiier interpretation is his intent, his proposal scems 10 have scrious flaws, of which 1 sketch three.
A It leaves out faulty reasoning, which is certainly reasoning, but need not always increase eaplanatory coherence. B. Harman's
view cither requires that explanatory coberence is a total order on the collection of sets of attitudes, which scems absurd, or that
reasoning cannot invoh e changes of mind in which one switches from one “theorctical” interpretation of a set of “data” beliefs to
another interpretation also explaining the “daia” but mcompatible with the onginal interpretation. "This also seems unrealistic. C. 1
would think that (here are many plans of reasoning which involve first decreasing evplanatory coherence so as to later increase it, for
cxample, making an assumption (o see how it works out, reaching a paradox or contradiction, and then reiracting the asumption to
gct a coherent set of beliefs.

‘The approach developed in this thesis, while motivaied by rational thought. can also be used for samie types of ifrational
thought 'or example. the approach contaias nothing that forces the program 1o avoid inconsisien! intentions. Rather it is the
values and procedures of the program which work to keep the set of intentions consistent. Similarly, the program can engage in
rational thought cven when it entertains conflicting beliefs. Indeed. 1o be abfe to think about how to cscape its plight, it must be
abic to reason cffectively in the presence of inconsistencies.

36. In particular, the only unrcasoned processes arc those which (a) compute primitive justifications, (b) construct SDL
daia-structures prior to their justification, and {¢) compule values to attach (o constants in theories.

A B b e e AR < -

89

belicfs and thus directly into reasoning.

Although we must admit non-reasoning mental cvents such as the creation and destruction of
data-structures, our aim will be to explain as many mental events as possible in terms of rcasoning. We
do not insist that all mental events always be performed by reasoning, just that it ought to be possible to
perform any particular mental operation through rcasoning when desired. ‘This aim entails severe
restrictions on the forn of the program we adopt, restrictions on all aspects of program operation down to
the hasic processes of choosing and making inferences.

Why adopt such an aim? In rational actions one changes onc’s attitudes only for some reason, so
a rational program should be able to explain its actions in terms of its rcasons. If the program has
explanations of its actions, then it can do many uscful things, such as correct faulty rules of inference or
beliefs, by examining and analyzing these explanations to trace effects to their sources.

But in this vicw, it appears, all mental events in a rational program would have a rcason. Is this
possible? Nearly so, as this thesis attempts to demonstrate. In later chapters we will manage to push just
about cverything into rcasoning when necessary, from making inferences, to making choices, to taking
actions on the basis of intentions.”’ Non-reasoning mcntél cvents will be used solely in the service of
reasoning proccsses.38

The common view of reasoning differs from ours in taking reasoning to be the purcly monotonic
or additive process of adding ncw attitudes to the current sct of attitudes, as in deductive inference. But
that view has many inadequacies.

With this aim of embedding most of the program in rcasoning when desired, we face the

37. liven though they do not involve reasoning, the computations involved in non-rcasoning mental processes can be introspected
and analyzcd for some purposes. We will discuss this further in the context of skill introspection.

38. Other non-reasoning memtal evemts include independent, non-destructive processes, such as the random creation of new
data-structures, which do not hurt but may save work in later deliberate data-structure creation: sensory inputs, which will change
independent of reasons duc to causal conncctions to the world; and random destruction of data-structures, which is one (but only
one) form of forgetting. Whether one wants lo build random changes into onc’s rationality is still an uncxplored question, Is there
some utility in random cvents in thought, or are they just conscquences of implementation in an imperfect. noisy machine? Note
that even if one's mental processes involve no randomncss, evolution would still involve random changes to the specics as long as
traditional reproductive methods remain the fashion.

Eye

problem that in the traditional view of rcasoning, many changes of attitudes must be apparently
non-reasoned, ¢.g. all non-monotonic or non-additive changes, all changes which do not increase the set
of attitudes monotonically, One of the most important reasoning steps necessary for taking action is that
of making predictions of the effects of the action. Making these predictions typically requires making
assumptions about the current state of affairs. because one never knows everything relevant to the
suceessful completion of an action. But once one has made such assumptions and predictions, one is
invariably surprised on occasion, and finds the assumptions to have been incorrect, even though
unanoidable. Then one has the problem of how to correct or revise one’s beliefs so as to patch up one’s
beliefs in light of this new information, THow can the theory of reasoning be formulated to accommodate
these non-monotonic changes in the sct of attitudes?

We answer this question by proposing a theory of reasoning in which all reasoning takes place
by adding a record of an inference, called a reason, to the current set of reasons. Each reason is basically a
record of an application of an inference rule or other procédurc to some sct of attitudes. The program
then determines the current set of attitudes from this set of reasons by treating the set of reasons as the set
of required inferences, as opposed to the mereiy pussible inferences indicated by the inference rules
themsclves. ‘That is. an inference rule indicates only potential constraints on the sct of attitudes. Only
after the inference rule has been applied to create actual inferences do those inferences constrain the
current sct of attitudes by means of the reasons recording the inferences. With this terminology, my

thesis is as follows.
Rativnal thought is a process of constructing reasons for attitudes.

"To say that some attitude (such as belicf, desire, or intent) is rational is to say that there is some acceptable

reason for holding that attitude. Rational thought is a process of finding such acceptable reasons.

39. Noic that this thesis allows as rational thought inferences involving random choices. I'or cxample, we might count as an
acceplable reason 1 couldn’t think of anything clse to do, so | flipped a coin.”

4

P P

e o o

n_ O ST AP . £ S

91

Whatever purposes the reasoner may have, such as solving problems, finding answers, or taking action, it
operates by constructing reasons for believing things, desiring things, or intending things. The actual
attitude in the reasoner occurs only as a by-product of constructing reasons. The current set of beliefs and
desires arises from the c.. ent sct of reasons for beliefs and desires, reasons phrased in terms of other
beliefs and desires. When action is taken, it is because some reason for the action can be found in terms
of the belicfs, desires, and intentions of the actor. 1 stress again, in this view the only real component of
rational thought is the current set of reasons - the attitudes such as heliefs and desires arise from the set of
reasons, and have no independent cxistence.

‘This view entails that for cach possible attitude P just onc of two states obtains: Either

(A) P has at least one currently acceptable (valid) rcason, and is thus a member of the current set of

attitudes, or

(B) P has no currently acceptable reasons (either no rcasuns at all, or only unacceptable ones), and is

thus not a member of the current sct of attitudes.

If P falls in state (A), we say that P is in (thc current set of attitudes), and otherwise, that P is out (of the

currcnt sct of attitudes). Thesc states are not symmetric, for while reasons can be constructed to make P

T ST S L .
REis ﬂ g&@ﬁ,“j.‘.“‘?'-’m\": . “;y, R N

92

. no reason can make P our. (ITP is a belief, the most a new reason can do is o make 7P inas well.)®

It would seem that the proposed view also succumbs to monuotonicity probleins, for the set of
reasons grows monotonically, which (with the nonmal sense of “reason™) leads to only monotonic
increases in the set of current attitudes. ‘T'o solve the problem of monotonicity, we introduce novel
meanings for the terms " reason” and "an assumption” in the contextof belief attitudes. Similar theories
apply to the other attitudes.

Traditionally, a reason for a belicf consists of a st of other beliefs, such that if cach of these
basis hehiefs is held, so abo s the reasoned belief. To get off the ground, this analysis of reasons requires
cither circular arguments between beliefs (and the appropriate intial state of belicf) or some fundamental
type of betief which grounds all other arguments. ‘The traditional view takes these fundamental beliefs,
olten called assumptions (or premises), as belicved without reason. On this view, the reasoner makes
changes in the the current set of beliefs by removing some of the current assumptions and adding some
NCw ones.,

To conform with the proposed view, we introduce meanings for "reason™ and “assumption”

such that assumptions also have reasons. A reason (technically, a Sl.-justification, as explained shortly)

40 While this 1s a standard property of inference rufcs. it is not respected in the relatises of RMS developed by London [1978],
McAllester [1978). and Thompsan [1979] Tn their systems. inferences are recorded as implications, not as inference steps. Thus if
the program infers A from B, they record ADB. rather than A]-B. These iwo statements have different meanings. In their systems,
W A and ~H arc both current beliehs, so also will be 1A Bui this violates the true meaning of the statement as a record of an
wierence. since 1T one has made the inference Al-B and has 8. anc nced not be able to infer YA, since that ability depends on
the inference rules defining | . 1-ven if |- involves only the familiar inference rules, ane cannot infer “TA. but just that not |-A.

McAllester has defeaded his conflation of these notions on the grounds of the space efficiency of his program, that it
simultancoushy represent several justifications but even 1f the semaatic errors in his approach are ignored. it can be seen that the
clmed space cfficiency is an lusion Memming Tom an unrealistic assumption about the use of the program. Mast propositions
are used enhy 1 a postive form by the program. that is. it is the refatively rare praposition for which the program considers both the
proposition and its oppostte This 1 so because mast propositions are uncontroversial stalements about the world or the structure
and control of the program . rather than about ¢uestions berng detiberated on Thus RMS. which represents propositions and their
opposites as distinel. unigue duata-structiies. ultimately uses less space than McAllester's program. which renresents propositions
and theis opposites as a separate CONS in each clause in which they occur

The non-menotosie legre develaped by Mcbermolt and mysel§ {1978 also appears to suffer from this confusion. There
we suggested writing inference iades an implhications. but was never happy wath this since it predicted somewhat dilTerent behavior
from that of RMS. Ruiter [1979) has since improved on this stuation by developmyg a non-maenatonic logic which properly treats
Jusitfications as inference rules and thus avoids the problems with the carlier approach Tt rensams to be seer whether the modal
approuch McDermott and | develop can be reintemreted or emended 10 avord these confusions as well MceDennott [1980)
strengthens the modal fogic w an atiempi at thss. § would be very mtcrested in a sinilar cdenson of the modal logic of provability
1n Peano arthmetic [Boolos 1979}, 1 would cxpect any correct provability-related logic 1o be an cxiension of that logic.

e S amam, e

LSV YT 4

ATl T A

PP YR Xl

v

AD=A10% 66b MASSACHUSETTS JWST OF TECM CAMHRIOGE ARTIFICIAL INTE==FTC F/6 674 -
A MODEL FOH DELIBERATION, ACTIOH AND INTROSPECTION, (U)
MAY 80U J 00YLE NOQOLU=TDaCanbul
UNCLASSIFIED AI-TR=581 NL

2 . 3 .
. R

R

93

for a belief consists of an ordered pair of sets of other belicfs, such that the reasoned belicf is in by virtue
of this rcason only if cach belief in the first set is in, and cach belief in the second set is out. An
assumption is a current belicf one of whose valid rcasons depends on a non-current belief, that is, has a
non-cmpty sccond sct of antcecdent beliefs. With these notions we can create "ungrounded” yet
reasoned belicfs by making assumptions. (E.g. give P the reason ({}.{—P}).) Wc can also effect
non~monotenic changes in the sct of curreat beliefs by giving reasons for some of the out statements used
in the reasons for current assumptions. (1.g. to get rid of P, justify —P.) We somewhat loosely say that
when we justify some our belief supporting an assumption, (e.g. —P), we arc defeating. denying, or
retracting the assumption (P).

‘These new notions solve the monotonicity problem, thus overcoming the limitations of the
traditional view of reasoning. Non-monotonic assumptions allow the program to make inferences with
incomplete information about the actual state of affairs, and then to correct the conclusions drawn from
these assumptions Ly later examining the set of reasons. We will give examples of this shortly.

Other advantages over the conventional view also follow. One of these advantages involves how
the reasoncr retracts assumptions. With the traditional notion of assumption, retracting assumptions was
unrcasoned. If the reasoner removed an assumption from the current sct of beliefs, the assumption
remained out until the reasoncr specifically put it back into the set of current beliefs, even if changing
circumstances obviated the value of removing this belief. The new notions introduce instead the regsoned
retraction of assumptions. This means that the reasoner retracts an assumption only by giving a reason for
why it should be retracted. If later this reason becomes invalid, then the retraction is no longer cffective
and the assumption is restored to the current sct of beliefs.

‘The most important application of the reasoned retraction of assumptions is in dialectical
argumentation, a technigque we will ecmploy extensively later in decision-making procedurcs. The basic
idca is that onc part of the program can put forward an argument for some conclusion bascd on some

assumptions, wherce for this purpose we represent cach of the steps of the argument as an assumption as

[

PRI VIS AL L

»aan .

e a i e

R S e

well.#' Other parts of the program wishing to disagree with the conclusion of the argument cxamine the
argument o find some assumption or argument step they disagree with, and then present a new argument
10 defeat the chosen assumption or step. ‘This new argument is constructed like the original one, so the
original procedure or some other part of the program can try to defend the original conclusion by in turn
defeating some assumption or step of the new argument with yet another argumient. By adopting this
representation for reasons uniformly, the program gains (he ability to reflect on its inferences after the
fact, and to simply not make the inferences if it decides it shouldn’t have. If some step leads to paradox,
the program need not make it although the real progress will be made only if it further inquires into the
reasons for its antecedents.

Records of inferences also help with the problem of determining the relevance of one belief to
another. Onc can divide the problem of relevance into two parts: the more difficult one is the
connection of onc beliel with another by some possible but yet unknown chain of inferences, the casier
one is the connection of onc belief with another by some past and recorded chain of inferences. Here we
assume that any conncctions hetween beliefs stemming from their intended models are reflected in
inference rules.

In this remainder of this chapter, we will describe the basis of our program organization by
describing RMS, a program for recording reasons and revising belicfs. Further explanation of RMS can
be found in [Doyle 1979]. RMS (Rcason Maintenance System) renames and revises the 'TMS (Truth
Maintenance System) presented in that paper. | changed the name not only because the program has
nothing to do with truth, but also because the program is properly concerned with reasons for attitudes
rather than the attitudes themsefves,

In the remainder of this chapter, | describe RMS solely in terms of the attitude belief. In fact,

RMS implements only a logic of belief, and not necessarily logics for any other attitudes. "This results

4], Sce Scction 3.11 for the details of how this is done.

L

. e——————

Whe N N

95

from a hypothesis and methodology 1 entertain but since have come to suspect, that the program can and
should be designed so that it only uses beliefs, and embodics its intentions, say, in its belicfs about its
intentions. Part of the motivation for this hypothesis comes from viewing the data-structures of SDIL. as
statements in its mcta-language, as mentioned in the previous chapter. The final chapter discusses
possible problems with this approach, and possible solutions. For the time being, however, we accept this
hypothesis and mcthodology, and pretend that the program works strictly with beliefs and belicfs about

attitudes.

3.2 RMS, the Reason Maintenance System

RMS records and maintains arguments for potential program beliefs, so as to distinguish, at all times, the
current sct of program belicfs. It manipulates two data structures: nodes, which represent beliefs, and
Jjustifications, which represent reasons for belicfs. We write Content(N) to denote the statement of the
potential belicf represented by the node N. We say RMS believes in (the potential belief represcented by)
a node if it has an argument for the node and belicves in the nodes involved in the argument. This may
scem circular, but some nodes will have arguments which involve no other believed nodes, and so form
the base step for the definition.

As its fundamental actions, (1) RMS can create a new node, to which the program attaches as its
content a data-structurc representing some belicf. As mentioned in the previous chapter, the program
attaches a RMS node to cach of the data-structures representing the symbols of a language, the
attachments of simulation structures, the facts in theorics, etc. RMS performs no manipulation of the
content of nodes. (2) It can add a new justification for a node, to represent a step of an argument for the
belief represented by the node. ‘This argument step represents the application of some inference rule or

procedure. Inference rules and procedures all have RMS nodes and include these nodes in the

e EW IR W %

L
B

1

1

L S

justifications they create.? (3) Finally, RMS can mark a node as a contradiction, to represent the
inconsistency of any sct of heliefs which enter into an argument for the node. These markings will be
used by RMS to signal the programm whenever the marked node is brought in.

A new justification for a node may lcad RMS to believe in the node. If did not belicve in the
node previously, this may in turn allow other nodes to be believed by previously existing but incomplete
arguments. In this case, RMS invokes the reason maintenance procedure to make any necessary revisions
in the set of beliefs. RMS revises the current set of beliefs by using the recorded justifications to compute
non-circular arguments for nodes from premises and other special nodes, as described later. These
non-circular arguments distinguish onc justification as the well-founded supporting justification of cach
node representing a current belief. RMS locates the set of nodces to update by finding those nodes whose
well-founded arguments depend on changed nodes.

RMS employs non-monotonic justifications, which, as cxplained previously, base an argument
for a node not only on current belief in other nodes, as occurs in deductive inference, but also on lack of
current belief in other nodes. For example, one might justify a node N-1 representing a statement P on
the basis of luck of belief in node §-2 representing the statement —P. In this case, RMS would hold w-1
as a current belief as long as N-2 was not among the current beliefs, and we would say that it had assumed
belicf in N-1. More gencrally, by an assumption we mean any node whose well-founded support is a
non-monotonic justification.

As a small example of the use of RMS, suppose that a hypothetical office scheduling program
considers holding a mecting on Wednesday. o do this, the program assumes that the mecting is on

Wednesday. ‘The inference system of the program includes a rule which draws the conclusion that due to

42. Actually, jusiifications mention not nodes but rather their contents. We do this so that it is casier Lo interpret the justifications
when debugging the program. for otherwise one cannol casily read justifications lo see what inference ruics are involved, for one
gets explanations like N-1 because N-2, N-3. and N-4, rather than B because Modus Poncns, A, and ADB. RMS always reads
through the content dala-structures to the KMS node involved via the function RMS-NODE. 'T'> make the exposition less
complicated, afl of the following is written as though the nodes themsclves were mentioned in the justilications, rather than their
contents.

e, ke

— e e e —

LERT S

97

regular commitments, any mecting on Wednesday must occur at 1:00 P.M. However, the fragment of the
schedule for the week constructed so far has some activity scheduled for that time alrcady, and so another
rule concludes the meeting cannot be on Wednesday. We write these nodes and rule-constructed

justificatioas as follows:

Node Statement Justification Comment

N-1 DAY(M) = WEDNESDAY (SL () (N-2)) anassumption
N-2 DAY(M) # WEDNESDAY no justification yet
N-3 TIME(M) = 13:00 (SL (R-37 N-1) ())

The above notation for the justifications indicates that they belong to the class of supporr-list (S1)
justifications. Each of these justifications consists of two lists of nodes. A Sl -justification is a valid reason
for belicf it and only if cach of the nodes in the first list is believed and cach of the nodcs in the second
list is not believed. In the example, if the two justifications listed above arc the only existing justifications,

then N-2 is not a current belief since it has no justifications at all. N-1 is believed since the justification for

¥-1 specifies that this node depends on the Jack of belicf in N-2. The justification for N-3 shows that ¥-3
depends on a (presumably belicved) node r-37. In this case, R-37 represents a rule acting on (the
statement represented by) ¥-1.

Subsequently another rule (represented by a node R-9) acts on beliefs about the day and time of

some other engagement {represented by the nodes n-7 and N-8) to reject the assumption N-1.

N-2 DAY(M) # WEDNESDAY (SL (R-9 K-7 N-8) ())

To accommodate this new justification, RMS will revise the current set of belicfs so that n-2 is believed,
and w-1 and N-3 arc not believed. 1t docs this by tracing "upwards” from the node to be changed, ¥-2, to
sce that §-1 and -3 ultimately depend on N-2. 1t then carcfully cxamines the justifications of cach of
these nodes to sce that §-2's justification is valid (so that w-2 is in). From this it follows that N-1's

justification is invalid (so ¥-1 is our), and hence that w-3°s justification is invalid (so ¥-2 is ou?).

|

|

AR Vb e 5k U A SO 3 Ly, b s S 8k g a7

e
1 N

p—

98 K

LR O

3.3 RNMIS Data-structures

oy,

A
o

To make clear exactly what information is actually stored by RMS, as opposed to the information it

computes on demand, this section presents the RMS data-structures. 'The following structure definitions

oo @ e

in MI'T 1isp Machine Lisp give the slots in the data-structures used to represent nodes and justifications.

We have mentioned some of these alrcady, and will explain many more in the following. Some, however,

7
o
4
)
“a
Ea
.
i
Y

are for csoteric purposcs not discussed here, but can be found in [Doyle 1979]. The structure presented
here arc simplificd for clarity, as in the actual implementation some ficlds arc full pointers, some are

mercly bits, and others are created only on demand.

(DEFSTRUCTURE NODE
CONTENT ;This chapter mentions these stots.

SL-JUSTIFICATIONS

CP-JUSTIFICATIONS 1%
SUPPORT ING-JUSTIFICATIONS 3
SUPPORT ING-NODES f
CONSEQUENCES é

SUPPORT-STATUS
CONTRADICT ION-MARK

NODE -MARK ;These slots are not discussed.
TUP -MARK

NOTED-MARK

FIS-MARK

SUBORDINATES -NARK

EXPLAIN-MARK

SUPERIORS -MARK

SIGNAL-RECALLING FUNCTION
SIGNAL-FORGETTING-FUNCTYION
CP-CONSEQUENT-LIST)

(DEFSTRUCTURE SL-JUSTIFICATION
INLIST
OUTLIST)

(DEFSTRUCTURE CP-JUSTIFICATION
CONSEQUENT
INKYPOTHESES
OUTHYPOTHESES)

e ——

N*Myﬂzn .

3.4 Statcs of Belicf

A node may have several justifications, cach justification representing a different reason for believing the

node. These several justifications comprise the node’s justification-set. 'The node is believed if and only if

“at least onc of its justifications is valid. We described the conditions for validity of Sl .-justifications

above, and shortly will introduce and explain the other type of justification uscd in RMS. We say that a
node which has at lcast one valid justification is i (the current sct of beliefs), and that a node with no
valid justifications is out (of the current sct of beliefs). We will alternatively say that cach node has a
support-status of cither in or out. ‘The distinction between in and out is not that between true and faise.
The former classification refers to current possession of valid reasons for belief. True and false, on the
other hand, classify statements according to truth value independent of any rcasons for belief.

In RMS, cach potential belief 10 be used as a hypothesis or conclusion of an argument must be
given its own distinct node. When uncertainty about somne statement (c.g. P) exists, one must (cventually)
provide nodes for both the statement and its negation. Fither of these nodes can have or lack
well-founded arguments, leading to a four-clement belicf set (similar to the belicf sct urged by Belnap

{1976)) of neither P nor =P believed, exactly onc believed, or both believed.

3.5 Justifications

Although natural arguments may usc a wealth of types of argument steps or justifications, RMS forces
onc to fit all these into a common mold. RMS cmploys only two forms for justifications, called
support-list (S1.) and conditional-proof (CP) justifications. 'These are inspired by the typical forms of
arguments in natural deduction inference systcms.“ Natural deduction is a sort of logical system in

which there arc no axioms, only inference rules. Proofs in natural deduction involve recording the steps

43. Sce for cxample Suppes [1957].

ot
L o il SN
AT \"..«gik‘. p8Y. Ty

e

100

of the proofs and the dependencies of cach of these steps. that is, the sct of hypotheses upon which cach
step depends. “The inference rules then analyze the proof steps and dependencices to derive theorems
which depend on no hypotheses. T'wo common inference rules are Modus Ponens and Discharging an
Assumption. Modus Ponens is the familiar rule for detaching a conclusion from an implication and its
antecedent. Discharging an Assumption is roughly the deduction thecorem in action, which concludes an
implication from the derivability of some statement from certain hypotheses, where the statement
becomes the consequent of the implication and the hypotheses become the antecedents of the
implication. ‘These two inference rules respectively add and subtract dependencics from the support of a

prooffine. A proof in such a system might run as follows:

Line Statement Justification Dependencies

1. ADs Premise (v

2. 8¢ Premise {2)

3. A Hypothesis 3)

4 B NP 1,3 1.3}

6. ¢ NP 2,4 {1.2,3)

6. ADC Discharge 3,6 {1,2)

7. ADBABDC A-introduction {1.2}

8. (ADJ8A8BIC)I(ADC) Discharge 7,6 (} A Theorem

Each step of the proof has a line number, a statcment, a justification, and a sct of linc numbers on which
the statement depends. Premises and hypotheses depend on themsclves, and other lines depend on the
sct of premises and hypotheses derived from their justifications. The above proof proves ADc from the
premises ADB and B¢ by hypothesizing A and concluding ¢ via two applications of Modus Ponens. The
proof of AD¢ ends by discharging the assumption A, which frees the conclusion of dependence on the
hypothesis but Icaves its dependence on the premises.

This cxample displays justifications which sum the dependencies of some of the referenced lines

(as in linc 4) and subtract the dependencics of some lines from thosc of other lines (as in linc 6). The two

Coae @ bwae i deine B hG €t s

Al P

0

types of justifications used in RMS account for these effects on dependencies. A support-list justification
says that the justified node depends on each node in a set of other nodes, and in cffect sums the
dependencies of the referenced nodes. A conditional-proof justification says that the node it justifies
depends on the validity of a certain hypothetical argument. As in the example above, it subtracts the
dependencies of some nodes (the hypotheses of the hypothetical argument) from the dependencics of
others (the conclusion of the hypothetical argument). Thus we might rewrite the cxample in terms of
RMS justifications as follows (here ignoring the difference between premises and hypotheses, and

ignoring the inference rule MP):

N-1 ADB (st () ()) Premise

N-2 8C (st () ()) Premise

N-3 A (st () (N Premise

N-4 B {SL (N-1 N-3) ()) MP

u-5 c (SL (N-2 N-3) (}) MP

N-6 ADC (CP N-5 (N-3) ()) Discharge

R-7 (ADBABDC)I(ADL) (CP N-6 (N-1 N-2) ()) Discharge two assumptions

CP-justifications, which will be explained in greater detail below, differ from ordinary hypothetical
arguments in that they usc two lists of nodes as hypotheses, the inhypdthcses and the outhypotheses. In
the above justification for x-6, the list of inhy‘pothcscs contains just 8-3, and the list of ouhypotheses is
empty. This difference results from our use of non-monotonic justifications, in which arguments for

nodcs can be based both on in and out nodes.

3.6 Support-list Justifications

To repeat the definition scattered throughout the previous discussion, the support-list justification has the
form
(St <imist> coul istd),

and is valid if and only if cach node in its inlist is in, and cach node in its oudist is our. The

T RN O L

g+

102

St -justification form can represent several types of deductions. With empty inlist and empty oullist, we
say the justification forms a premise justification. A premise justification is always valid, and so the node
it justifies will always be in. Sl .-justifications with nonempty infists and empty oudists represent normal
deductive inferences. Fach such justification represents a monotonic argument for the node it justifies
from the nedes of its inlist. We define assumprions 1o be nodes whose supporting-iustification has a
nonempty oudist. These assumption justifications can be interpreted by viewing the nodes of the inlist as
comprising the reasons for wanting to assume the justified node: the nodes of the ouflist represent the
specific criteria authorizing this assumption. For example, the reason for wanting to assume "The
weather will be nice” might be “Be optimistic about the weather”; and the assumption might be
authorized by having no reason to believe "The weather will be bad.” We occasionally interpret the
nodes of the ouflist as “denials” of the justified node, belicfs which imply the negation of the belief
represented by the justified node.

To make the exposition less jargonistic, we occasionally use the phrases "N-1 is justified
(non-)monotonically in terms of N-2" and "N-1's justification (non-)monotonically involves N-2" to

mean that N-2 occurs in the ilist (ouflist) of N-1's justification.

3.7 Terniinclogy of Dependency Relationships

I must pause to preseat somc terminology before cxplaining CP-justifications. The definitions of
dependency relationships introduccd in this section are numerous, and the reader should consult Figures
S. 6. and 7 for cxamples of the definitions.

As mentioned previously, RMS singles out one justification, called the supporting-justification,
in the justification-set of cach in node to form part of the non-circular argument for the node. For

reasons cxplained shortly, alf nodes have only Sl.-justifications as their supporting-justifications, never

CP-justifications. The sct of supporting-nodes of a node is the set of nodes which RMS uscd to determine

[SRS e

o =

Node

O O b s WN

103

Justification

(SL @0
(SLO ()
SLMO
(SL 0
SLE@M
SLo0
(SL 35 0)

Figure 5
Six Nodes and Seven Justifications

[—

— e —

Justification Name

J1
J2
J3
J4A

J5

1L

104
4 (in) 6 (out)
JaA B \ J48
J6
2(in) 3 (out) ;
5 (in)
J3 |
= l J5
i J1 |

J2

1

1 (out)

Figure 8

A depiction of the previous system of justifications and nodes.

All arrows represent justifications. The uncrossed arrows represent
inlist, and only the crossed line of J2 represents an outlist.

We always visualize support relationships as pointing upwards.

et A e v aee

105
'
' Dependency Node 1 Node 2 Node 3 Noded4 | NodeS | Node6
‘ Support-status out in out in in out
i Supporting-justification .) J2 . JaA J5
: Supporting-nodes 3 1 1 2 3
,x Antecedents - 1 - 2
: Foundations : 1 : 1,2
Ancestors 13 1,3 13 1,23 13
Consequences 23 4 1,46 . 6
Altected-consequences 23 4 1,6
Believed-consequences 2 4
‘ Repercussions 1,23.46 4 1,234,6 -
| Believed-repercussions 24 4 .
Figure 7

A table of all the dependency relationships implicit in the system
of justilications. Dashed entries are empty. All other entries are
lists of nodes in the dependency relationship to the node at the
top of the column.

Sl T s g e
: 3.mm‘:~f‘§‘~‘\f{- R

106

the support-status of the node. For in nodes, the supporting-nodes are just the nodes listed in the inlist
and awdlist of its supporting-justification, and in this casc we also call the supporting-nodes the [

antecedents of the node. For the supporting-nodes of our nodes, RMS picks one node from cach

Justification in the justification-set. FFrom Sl -justifications, it picks cither an out node from the inlist or -
an in nede from the onedist. From CP-justifications, it picks cither an ot node from the irhypotheses or

canscguent or an in from the outhypotheses. We define the supporting-nodes of out nodes in this way so

)

: that the support-status of the node in question cannot change without cither a change in the %
support-status of one of the supporting-nodes, or without the addition of a new valid justification. We g

say that an owes node has no antecedents. RMS keeps the suppaorting-nodes of cach node as part of the ‘,3. :

: ;
- ®
nade data-structure, and computes the antecedents of the node from this list.
H
The set of foundations of a node is the transitive closure of the antecedents of the node, that s, ':

the antecedents of the node. their antecedents, and so on. This set is the sct of nodes involved in the
well-founded argument for belief in the node. The set of ancestors of a node. analogously, is the
wransitive closure of the supporting-nodes of the node, that is, the supporting-nodes of the node, their
supporting-nodes, 2nd so on. This sct is the set of nodes which might possibly affect the support-status of
the node. The ancestors of a node may include the node itself, for the closure of the supporting-nodes
relation nced not be well-founded. RMS computes these dependency relationships from the
supporting-nodcs and antecedents of nodes.

In the other direction, the sct of consequences of a nodc is the set of all nodes which mention the
node in one of the justifications in their justification-set. The affected-consequences of a node are just
those conscquences of the node which contdin the node in their set of supporting-nodes. The
believed-consequences of a node are just those in consequences of the node which contain the node in
their set of antecedents. RMS keeps the consequences of cach node as part of the node data-structure,

and computes the affected- and believed-conseguences from the conscquences.

The set of repercussions of a node is the transitive closure of the affected-consequences of the

TN enemeg ..

107

node. that is, the affected-consequences of the node, their affected-consequences, and so on. The set of
believed-repercussions of a node is the transitive closure of the believed-consequences of the node, that is,
the believed-consequences of the node, their believed-consequences, and so on. RMS computes all these
rclationships from the consequences of the node.

in all of the following, 1 visualize the lines of support for nodes as directed upwards, so that |
look up o sec repercussions, and down to sce foundations. 1 say that onc node is of lower Icvel than

another if its believed-repercussions include the other node.

3.8 Conditional-proof Justifications

With this terminology, we can now begin to explain conditional-proof justifications. The exact meaning
of these justifications in RMS is complex and difficult to describe, so the reader may find this section
hard going. CP-justifications take the form
(CP <consequent> <inhypotheses> <oulhypotheses>).

A CP-justification is valid if the consequent node is in whenever (a) cach node of the /nhypotheses is in
and (b) cach nodc of the outhypotheses is out. Except in a few esoteric uses described later, the set of
outhypothescs is cmpty, so normally a nodc justified with a CP-justification represents the implication
whosc antecedents are the inhypotheses and whose consequent is the conscquent of the CP-justification.
Standard conditional-proofs in natural deduction systems typically specify a single sct of hypotheses,
which corresponds to the inhypotheses of a CP-justification. In the present case, the sct of hypotheses
must be divided into two disjoint subscts, since nodes may be derived both from some nodes being in and
other nodes being out. Some deduction systems also employ multiple-consequent conditional-proofs.
We forego these for reasons of implementation efficiency.

RMS handles CP-justifications in spccial ways. It can casily determine the validity of a

CP-justification only when the justification’s conseguent and inhypothescs are in and the outhypotheses

| o -

v NSRRI SRR AT G

-—

Y

RPN

Rl S

108

are out, stnee determining the justification’s validity with other support-statuses for these nodes may
require switching the support-statuses of the hypothesis nodes and their repercussions to set up the

hypothetical situation in which the validity of the conditional-proof can be evaluated. This may may

require reason maintenance processing, which in turn may require validity checking of further *
CP-justifications, and so the whole process becomes extremely complex. Instead of attempting such a
detailed analysis (for which I know no algorithms), RMS uses the opportunistic and approximale strategy
of computing S! -justifications currently equivalent to CP-justifications. At the time of their creation, i

these new SI-justifications are equivalent to the CP-justifications in terms of the dependencies they

b S s W

specify, and are easily checked for validity. Wheneyer RMS finds a CP-justification valid, it computes an

R

equivalent SI -justification by analyzing the well-founded argument for the consequent node of the

-

CP-justification to find those nodes which are not themselves supported by any of the ishypotheses or ‘
outhypotheses but which directly enter into the argument for the consequent node along with the
hypothescs. Preciscly, RMS finds all nodes N in the foundations of the consequent such that N is not one
of the hypotheses or onc of their repercussions, and N is cither an antecedent of the conscquent or an
antecedent of some other nade in the repercussions of the hypothescs. The in nodcs in this set form the
inlist of the cquivalent SI.-justification, and the out nodes of the set form the oudist of the equivalent

SL-justification. RMS attaches the list of Sl.-justifications computed in this way to their parent

k
1
L
4
o

CP-justifications, and always prefers to use these Sl-justifications in its processing. RMS checks the

derived Sk.-justifications first in determining the support-status of a node, and uscs them in explanations.
It uses only Sl.-justifications (derived or otherwise) as supporting-justifications of nodes. The accuracy

and limitations of this approximation arc open problems.

|
{
'_

-

109

3.9 Circular Arguments

Suppose a program manipulates three nodes as follows:

F (: (+ 1Y) &) onitted but valid
G (=x1 (st () (0
H (= v 3) (st (K) ().

If Jis in and K'is out, then RMS will make Fand G in, and #H our. 1€ the program then justifies H with
(st (FG) (),
RMS will bring H in. Suppose now that RMS makes J out and K in, lcading to G becoming out and H
remaining i ‘The program might then justify 7 with
(st (FH) 0).
If RMS now takes K our, the original justification supporting belicf in H becomes invalid, lcading RMS
to reassess the grounds for belief in H. If it makes its decision to believe a node on the basis of a simple
evaluation of cach of the justifications of the node, then it will leave both G and H in, since the two most
recently added justifications form circular arguments for (7 and H in terms of cach other.

‘These circular arguments supporting belief in nodes motivate the use of well-founded
supporting justifications, since nodes imprudently belicved on tenuous circular bases can lead to
ill-considered actions, wasted data basc scarches, and illusory inconsistencics which might never have
occurred wilhdut the mislcading, circularly supported beliefs. In view of this problem, the algorithms of
RMS must ensure that it believes no node for circular reasons.

Purported arguments for nodes can contain cssentially three different kinds of circularitics, each
of which must be handled in a different way. The first and most common type of circularity involves only
nodes which can be taken to be our consistently with their justifications. Such circularitics arise routinely
through cquivalent or conditionally cquivalent beliefs and mutually constraining beliefs. The above

algebra cxample falls into this class of circularity. In this case, RMS makes all of the involved nodes out.

e T T PR SRR A L R e
S RO S s . X e

110

The second type of circularity includes at Icast one node which must be in, Consider, for

cxample
F 10-BE (st () (G))
G —170-8¢ (st () (M).

In the abscnce of other justifications, these justifications force RMS either to make F i and G out, or G in
and Fout. Whea RMS meets such a circularity, it must choose some onc of these nodes in. ‘Vhis decision
frequently affects the actions of the program drastically, so it must often be made carcfully using the
revision technigues outlined below.

In unsatisfiable circularitics, the third type, no assignment of in or ouf to nodes is consistent with

their justifications. Consider

F {st () (M).

With no other justifications for I, RMS must make F in if and only if it makes F out, an impossible task.
Unsatisfiable circularitics sometimes indicate real inconsistencics in the beliefs of the program using the

rcason maintenance system. If so, RMS must discard onc of the justifications involved. ¥

3.10 The Reason Maintenance Process

The rcason maintenance process makes any nccessary revisions in the current set of belicfs when the
program adds to the justification-set of a node. We only outline it here. For more detail, sce [Doyle
1979).

The reason maintcnance process starts when a new justification is added to a node. Only minor

44. Discarding a justification violates the thesis of rationality proposed carslier. llowever, as Scction 3.11 explains, the program
always employs defcasibic justifications, so unsalisfiable circularitics never arise. ‘This saves the thesis of rationality and allows
explanations of the revision as well.

SR e L

Bkl LB A L b el O, ot ol S -

R ———— e

111

bookkeeping is required if the new justification is invalid, or if it is valid but the node is alrcady in. If the
justification is valid and the node is out, then the node and its repercussions must be updated. RMS
makes a list containing the node and its repercussions, and marks ciach of these nodes to indicate that they
have not yet been given well-founded support. RMS then examines the justifications of these nodes to
see if any are valid purely on the basis of unmarked nodcs, that is, purcly on the basis of nodes which do
have well-founded support. 1If it finds any, thesc nodes are brought in (or out if all their justifications are
invalid purcly on the hasis of well-founded nodes). Then the marked consequences of the nodes are
cxamined to see if they too can now be given well-founded support. Sometimes, after alf of the marked
nodes have been examined in this way, well-founded support-statuses will have been found for all nodes.
Sometimes, however, some nodes will remain marked due to circularitics. If so, RMS constructs a
decision intention to decide between revisions, so that the decision about which belicf revision to use may
be madc carcfully if desired. Otherwise, the default decision is to choose a revision randomly by a
constraint-relaxation process which assigns support-statuses to the remaining nodes. The new intention
does not depend on any prior beliefs, in particular not on the belicfs under revision, so its addition does
not invoke another revision decision.

If the revision decision is made carefully, it involves analyzing the circularity to sce what the
alternative revisions are. 'This analysis can be very involved, and we have not pursued it very extensively.
Onc carly version of RMS [Doyle 1976] applied graph-theoretic algorithms to first analyze the circularity
into strongly connccted componcnts, and then to sort these components wpologic:vlly.45 The minimal (in
the sort order) strongly connccted components arc the obvious candidates for closer cxamination, as
non-minimal components cannat be decided without first deciding the minimal components. The carly

RMS would then pick (randomly) one node from cach minimal component to be out, and determine the

45].aicr versions of RMS abandoncd this Icchnique because it was unnceessarily complicated for the small belief sysiems being
manipulated, and since it involved answering a number of questions which involve considerable study in the context of large
complicated belicf systems. 1t would be nice if somconc would take up this problem again and explore it carcfully.

Aty -

. PR .r.v'm@"wa-.{‘wh"» d T, -
—— . — i e -

R e B il & VT I

DTSN SR e

112

statuses of the other nodes in the component from this new constraint. After all the repercussions of
these chuoices had been accounted for, it would repeat this process of analysis and choice until the statuses
of all beliefs had been settled. This is a very tricky procedure, for these choices of revision might be
wrong, and so Icad to apparently unsatisfiable inconsistencics. To avoid this, it appears that the decision

should imvolve adding a new justification to the chosen nodes to set their status, rather than just setting it

arbitrarily.
While processing the repercussions of a decision, RMS can detect an apparently unsatisfiable

circularity and again invoke a decision intention to cither change onc of the previous decisions or, as a fast ! : 1

PRV

resort, discard one of the justifications imvolved in the unsatisfiable circularity.

RNy

RMS also handles contradictions using this technique. Whenever it brings a node /n that has

N Pl T2 U

been marked as a contradiction, RMS constructs a new intention whose aim is to resolve the
inconsistency.

Actually, the cxisting RMS (I'MS) has not been altered to provide for carcful sclection of
revisions by intentions, but just makes the revisions randomly. 1 do not sce any overwhelming difficulties
in carrying through all these aleerations. In any cevent, even if the current version is used, the net result
will be that the program will be a less cfficient than it might otherwise be. These changes can always be

put in later. |

3.11 Defeasible Reasons and Dialectical Argumentation

Everything and cveryone has to be criticized if Ciere is to be any progress in the world. !
Anybody ought to be prepared for that and grant everyonce clse that right. ‘
H. Enters [1924, p. 100]

We have just described the basics of RMS, but the program uscs RMS in a special way. In the above we
described only ways for RMS to updatc the current sct of beliefs by adding new justifications. We made

no provisions for removing justifications, for we wish to make all changes in belicfs for good rcasons. To

S

e —— -

113

allow all justifications to be defeasible, we reflect all justifications in explicit program belicfs about the
justifications, and make all these beliefs assumptions.

Suppusc the program wants to justify node N with the justification (sv 1 0). Instead of doing
this directly, it creates a new node, J. representing the statement that / and O Sl-justify N; in other
words, that belief in cach node of 7 and lack of belief in cach node of O constitute a reason for believing
in N. ‘The program justifics N with the justification (st J+ 1 0y, where J+ 1 represents the list 7
augmented by J. RMS will make N in by reason of this justification only if J is in. The program also
creates another new node, =1/, representing the statement that J represents a challenged justification. It
then justifies J with the justification (st () (—J}). Note that this justification is not reflected in a
corresponding belief, but is a simple justiﬁca(i(m.“’ In this way, the program makes a new node to
represent the justification as an explicit belicf, and then assumes that the justification has not been
challenged.

To do this. the program ncver directly calls the functions RMS-SL-JUSTIFY and
RMS-CP-JUSTIFY which create basic RMS justifications for nodes. Instead, it calls (SL-JUSTIFY node
fnlist out1ist) and (CP-JUSTIFY node consequent inhypotheses outhypotheses). What SL-JUSTIFY
docs (and CP-JUSTIFY analogously), is to crcate a new individual constant in ME of the form J-nnn and

then use this as the name of a new fact in ME whose wiT is
SL-JUSTIFICATION(J-nnn, node, {J-nAn)}+inlist, outliist).
S1.-JUSTIFY also creates a new fact in ME cafied P-nnn, whose wff is
DEFEATED(J-nnn).

It then creates two basic RMS justifications. As the first, it justifics J-nnn with an cmpty inlist and an

46. There is a slight modification of this technique which avoids having these non-reflected justifications. To do this, we do not
creale the new node J, but only ™, and make the actual justification be (SL J 0+™V/). The nct cfTect is the same.

114

ouflist containing just D-nnn. 1t then justifics node with the inlist containing both J-nnn and the original
inlist, and the original oudist.
For example, suppose the program wishes to conclude that the value of Y is 1 in a theory T-1 in

which the value of X is 3 and the known that X and Y sum to 4.

INT-1:

N-1 Individual-constant X; Justifications omitted
N-2 Individual-constant Y;

N-3 Indjvidual-constant 4;

N-4 function-constant +;

N-5 AttachX3;

N-6 Attach 4 4;

N-7 Attach + +;

N-8 AxiomX +Y =4

N-9 AttachY1; No justification yet

1t would first switch to ME to describe the justification of the new attachment of Y to 1 as describe above,
and then switch back to T-1 to make the actual justification.
INME:

N-10 Fact SL-JUSTIFICATION(N-10, N-9, (N-10N-1 ... N-9}, {});
(SL () (N-11))

N-11 Fact DEFEATED(N-10) No justification yet
INT-1:
N-9 AttachY1; (SL(N-10N-1 ... N-9) ())

If the program then wished to defeat this justification, it would again go to ME and construct the
following.
TN ME:
N-12 SL-JUSTEFICATION(N-12, N-11, {N-12, ...} {...});
(SL () (N-13))

N-13 DEFEATED(N-12); No justification yet
N-11 DEFEATED(N-10); (SL(N-12...)(...))

‘This organization of the reasoning process into dialectical argumentation has three interesting

aspects. ‘The first is that any belicf of the program may be abandoned, since the program only believes for

reason, and all reasons can be reconsidered and rejected after the fact.

.

Vrda G AR et

115

Sccond. RMS no longer has to worry about tiuly unsatisfiable circularities. Since all
assumptions arc defeated by reasons which arc themscelves assumptions, what in the dircct use of RMS
would be unsatisfiable circularitics arc in this indirect use just defeasible reasons. Thus RMS ncver needs
to discard a justification. ltonly has to defeat the justification with another.

Third, this organization clarifies the meaning of CP-justifications. 1t shows that CP-justifications
actually compute arguments. Suppuse the program draws the conclusion C from A and B via the
justification). If the program justifics 1) with (cp C (A 8) (). it is justifying 1 on the grounds that an
argument cxists for C from A and B, but that argument is just It This new justification then is cquivalent
in this case 10 (St (J) ()). Thus the CP-justification in cffect returns an argument of onc belief as the
support (as an object) for another belief.

‘Ihis concludes the discussion of the underlying reasoning framework. We now turn to the

means by which reasoning is controlled and applicd in its own service.

116

CHAPTER 4

DELIBERATE ACTION

De l'audace, <t encore de Uaudace, et tojours de l'audace!
Georges Jacques Danton
Onc of the most important things about man is his ability to adapt so as to further his survival. But to
adapt, man changes both nis environment and himself. body and mind. To do this, however, he must be
awarc of himsclf and his environment.

But awarencess is sometimes difficult to attain. For example, it is usually difficult to fully grasp
the cffects of onc’s actions. One contracts an outsider to build onc’s home only to discover that the social
benefits of communal home-raising have been lost. Onc builds a dam to assure regular crops and
discovers the destruction of wilderness upstrcam and wildlife downstream. Onc paints onc’s nails only to
discover them cracking in inconvenient moments. One selects one’s children’s genes to avoid hemophilia
and carics 10 discover unexpected diabetes. And one finally learns how to concentrate well on one’s work
to succeed, only to appear distant and uncaring to onc’s family and companions. Man may not always
have all the information he needs to act successfully, but he must always be concerned with the direction
of change. and to try to control that dircction as best he can,

To control the direction of change, man nceds to be conscious of the current state of affairs and
the desired state of affairs, and of the cffects of various actions he might take, conscious of his
surroundings, his body, and his mind. Al studics of problem solving have touched on many ways of
problem solving and planniﬁg. but typically these arc applied not to all objects of change, not to the
program’s own mental state, but only to external objects such as chess games, housebuilding, or electronic

circuits. Psychologists and popular writers have not neglected mental change, as an cnormous self-help

| oate S A e -

e

Vh v et

17

-

literature ullcsls.“

But in spite of this, Al scems to have largely rested content wilh attacking the
physical. not the mental. problem domains. Because of this, [belicve, sclf-consciousness, which humans
frequently think of as their hallmark and gift over the other animals, has been viewed as a mystical topic,
somcthing for future gencrations of scicntists to conquer.

As 1 hope to indicate in this and later chapters, sclf-consciousness is no mystic apparition, but a
practical device to be readily applied to controfling reasoning. Sclf-consciousness is casy to achieve, as
long as onc is not blinded by an overriding preoccupation with physical af¥airs.

This chapter lays out the basics of how a program can be conscious of and reflect on its own
plans. intentions, actions, rcasons, decisions, and belicfs. 'F'he following chapters study decision-making,
madifying belicfs, and modifying skills as deliberate, conscious activities.

To be able to tell what onc is doing is crucial for making plans, making decisions, and learning.
Onc can hardly make plans to achicve one’s desires if onc cannot tell what one wants.*® Rationai
decisions are somecuimes described as those which "fit best™ with onc’s beliefs, desires, and intentions, so

to make rational decisions one needs to take one’s intentions into account. One can hardly help painting

onesclf into a corner unless one neglects one's intention to leave the room after the job is done. And

when learning, one cannot assign credit or blame to onc’s beliefs or procedu~es unless one can explain
what onc did and why, that is, one’s actions, interitions, and reasons*® ‘Thus for onc’s own bencfit in
planning. in cvaluating onc’s successes, and in modifying onc’s beliefs and skills, one necds to be able to

distinguish which cffects of one’s actions arc intentional and which arc unintentional, since one can

b —

always hope to correct uninientional bad cffects.

47 For example. sce [Russel! 1930], [Carnegic 1936, 1944], [1:ltis and Vlamper 1961]. or [Johason 1977]. Johnson's book gives an
cxplicnt (and to Al folk. familiar) problem solving procedure for changing onc's skills and attihudes towards the world: reducing
problems 1o subproblems. monitonng their progress, cic.. all towards ends like beconing good at carrying on conversations and
icarning 10 tolerate of accept one's current fimitations.

48 ‘This is nat (v say that desires cannot influence onc’s behavior unless conscious. Freudian psychoanalysis goes 1o great lengths
to ferrel out unconscious desires. We do nal pursuc here exactly how such unconscious attitudes might be realized.

49 As memioned carlicr, our use of the term “reason™ refers to inference records, not to antecedents. The reader is cautioned that
much of the philosophical litcrature on action uscs yet another meaning for "rcason,” namely desires, motives, or volitions
underlying actions.

Ca et FER TR T SRS 3T y

|-

118

The basic problems discussed in this chapter are how a program can tell what it is doing and
how it can act on its intentions. ‘The chapter discusses in turn the library of plans, the constituents of

pians, the current state of mied. and the interpreter.,

4.1 Plan Generation, Execution, and Interpretation

‘Traditional approaches to the construction of complex patterns of actions rely on a distinction between
plan generation and exceution. In that view, the reasoner takes @ problem description and constructs a
sequence of instructions for the action mechanism of a machine. The reasoner constructs this sequence of
commands so that it believes their execution will solve the problem it accepted. Once the command
sequence has been constructed, it is given to the action mechanism, which carries out cach of the
instructions.

We do not adopt this two-stage approach, for it has several drawbacks. One problem is that it
makes crror handling largely & matter of foresight. Actions of all kinds are notoriously prone to failures
in unusual circumstances. Vo make an cffective plan that is guaranteed to w<‘)rk is impossible. There are
always circumstances in which a particular plan will fail to realize its intended effect. The best the plan
generator can do is to (ry to build the sequence of instructions so that it incorporates conditional steps
which handle all of the possible failures that might arise. But this is a poor strategy. both because there
are in general a huge number of forsceable difficultics, and because there are in gencral always
unforeseen but possible difficultics. For similar reasons, the separation of plan gencration and execution
makes information gathering steps awkward to plan, for these are steps which explicitly have many
passible (and perhaps uinpredictable) outcomes. Thus this separation of plan generation and exccution is
untenable. The reasoner must always be ready to replan the necessary steps whenever a plan fails. For
example, STRIPS [Fikes and Nilsson 1971] would devise a plan to be exccuted by PLANEX [Fikes 1972],

which would rcinvoke STRIPS to replan whenever actions failed. STRIPS could not produce conditional

i
¥
<
£
&
#
%
2
&

PUST—

U |

19

plans, so this was its only possible recourse.

in our casc, there is yet another reason against dividing these processes. When this division is
made. it makes impuossible the planning of the reasoning involved in the generation process. Since we
view reasoning as a species of action, we cannot construct a plan without taking actions themsclves
requiring planning, and we cannot wait until the plan is constructed before exccuting it, for othcrwise
rcasoning iactions can never occur.

‘The most natural strategy, and the one we adopt, is to mix plan generation and exccution in a
process better described as sclf-interpretation. This consists of repeatedly acting on onc’s intentions,
, many of which involve the formation of intentions for further actions. Thus crror handiing and

information gathering steps (of which inferential reasoning steps can be viewed as an important subclass)

!

! arc handled by forming intentions to carry out the step and then reflecting on the result, where the
‘ reflection involves the same reasoning processes which went into the formation of the step itself.
i The interpretation organization of the reasoner avoids the ill-considered scparation of plau

generation and exccution, making the normal activity onc of rcasoning about how to take the next
reasoning steps, which themselves repeat this activity, so that the reasoncer is constantly reasoning about
| how to reason. The basic steps of the program’s operation are (1) to examine the sct of desires to possibly
decide to pursue some of them, that is. to form some new intentions, (2) to examine the current set of
intentions to sclect one to work on next, (3) to cxamine the library of procedures to select some way of
carrying out the intention, (4) to carry out the selecied intention by exccuting the selected procedure if it
is a primitive, and by adding it to the current state of mind if i is a plan, and (5) to repeat these steps.

The next section describes the library of procedures, which contains the primitives and plans for

both external and internal reasoning and other actions.

\ .- - TCTRPNIETA ATETROTS et - o
r gy e gy T o —— — e R S

1; POMEDUSSNEPONSSIRSSNS SRR

120

4.2 Plans and the Library of I'rocedures

Plans are ways of describing the structure of onc’s desires and intentions. Plans, as 1 usc the term, are
complex concepts made up of many other sorts of concepts, including desires. intentions, and subplans,
We will describe these sorts of concepts in more detail below, along with the other sorts of information

that go to make up plans.

Plans play an important role in the operation of the program, and are stored in the procedure
library (also called the plan /ibrm)').50 The procedure library lists all procedures of the program as
attachments between the procedure’s name and the procedure itself. 1t also contains a number of sorts of
statements about the procedures, but we will discuss those fater. Thus plans and primitives contain the
“how-to™ information of the program. The “know-how™ of the program results from combining plans
and primitives with information about their use, such as indexing them by their important cffects.

Plans differ greatly in their specificity. ‘The plan library typically will contain very general plans
uscful when one has nothing better to try. ‘These general plans include the standard problem solving
techniques, the “weak methods™ as Newell terms them [Newell 1969). But plans can be specific as well.
The typical procedure library also includes plans for specific tasks, such as (depending on the domains of

expertise of the program) how to design Butterworth filters, how to build a three-bedroom Colonial house

e A A e

in the northeast, how to makce airplane rescrvations, and how to make cheesecake.

[4

‘This notion of specificity can be factored into two sorts of specificity. Part of the context of the s

i

]

plan can be stated in the sort of problem the plan is applicable to, and part of the context can be stated in i
restrictions on when the plan is considered defined. In terms that we will explain in more detail below, i

+
i

this just means that the context of applicability of the plan can be stated in both the justification of the

plan and in the indexing of the plan by its relevant effects. FFor example, consider a plan for putting out a

50 Actually, the pracedure library is a fiction just like the scts of helicfs, desires, and intentions. Procedures are cach concepts, and
thus are a subset of the concepts of the program, but distinguished as procedures by statements about them in the global theory,
cither PLAN(concept) of PRIMITIVE(concept).

P OO TR AT - . - AT 1 2l e LMY L LRI e oten it et IR AR i s
d]

-

[. T e TR SRRIERING ST TP s L T T

121

grease fire when cooking. “This plan has crucial differences from the ordinary procedure for putting out a
fire, namnely that one should not use water as a suffocant. The question of factoring the context of plan
specificity can be seen heie in the following suggestions. Onc can index the plan under the problem of
how to put out a fire while cooking with grease, or one can instcad have one’s plan for cooking with
grease temporarily define a new plan for putting out fires and temporarily mask the usual plan for putting
out fires with the new one.

This separation of the context of applicability of plans into relevancy and definitional
components may scem unimportant, but 1 think it bears a message not to be neglected in the design of the
program. 1f one only uses relevancy indexing, which is standard in most traditional Al programs, one is
forced to face severe runtime retrieval problems, On the other hand, the combined approach allows one
to do a good bit of work when setting up the problem to be attacked. If the problem is complex, then
there will be many considerations necessary in judging whether a plan is relevant to a subproblem, and so
the retricval problem will be very great. If one knows befurchand that the problem is complex, one is
willing to spend a good bit of time on preparing for the cxecution of the plan. This can be seen in the
standard human practices in which people who perform complex tasks are give training or manuals to
rcad specifying the procedures to use when special circumstance arise. Sumconc may have a great talent
in fooking up what to do in reference sources, but he will not be employed in many complex tasks on this
basis. One can hardly expect a soldier in the field to continually look up procedures for what to do about
his problems. |

For these reasons, our plans are not simply composed of a few goals and temporal ordering
relationships between them, as is common in many other Al systems which use the term “"plan™. Our
plans contain not only these things, but also beliefs to be held as assumptions while carrying out the plan,
locally defined plans for handling forescen special cascs, and guidclines for making the decisions
cxpected to be encountered while carrying out the plan. In this way it is more appropriate to view plans

as specifying partial states of mind or scts of attitudes to adopt for the duration of the execution of the

.

(PRI

122

plun.Sl In this view, the current state of mind is the sum of a sct of realized plans, so that plans reproduce
in the small the structure of the program in the large.

We represent plans as theories in SDI, ond when instances of plans arc added to the current
state of mind, versions of all the terms, attachments, and statements in the theory are added to the theory
representing the current state of mind. Thus, the description of the form of plans is largely a matter of

describing the sorts of things plans can contain.

4.3 The Ambiguous "Goal”

Before proceeding, we first digress to point out a long-standing confusion in artificial intelligence, and
perhaps in psychology and philosophy as well. The term "goal™ in common technical usage seems to
have no fixed meaning. 1t scems instcad to be used on different occasions to mean both "desire™ and
“intention”. 1 have scarched many places, and no where do | find any discussions cxplaining what “goal”
is supposed to mean, or how it relates to the less technical notions of desire and intent. This may seem to
be more a problem of my competence in English than one of a confusion in the ficld, but | think there is a
valuable point to be taken. The problem is that desire and intention are two differcnt sorts of attitudes,
used in different ways, and treatments of rcasoning and problem solving which confuse the two lose
much expressive power, power which is required both in deciding what actions to take next and in
revising the program’s mental state when actions are taken.

Desires and intentions are different in logical form. Desires aim at the satisfaction of some

condition, and will be satisficd no matter how those conditions are brought about. Their content can be

51. T helicve that there are close connections between this view of plans and Minsky's K-line theory of memory [Minsky 1979). For

him. K-lincs arc ways of reactivating partial mental states, ‘These conneclions are recursively arranged, in that activation of one
K-node typically fcads to the activation of several component pantial 4ates of mind. While we will use plans by making scparate
mstantiations of them cach time they are used. the analogy with K-lincs becomes strong if we assume that plans arc only stored once
in memory, and "lit up” whenever they are needed rather than making mulliple instantiations. I this is the case, then the
definitional connections between plans and the subplans they define becomes very similar to that between K-nodes and the
sub-nodcs they activate.

e Y e b g Bl At S

po

- T e AN, 1 AR, AR R

-

123

stated roughly as "Condition X obtains.” Intentions, on the other hand, must be satisfied in a certain
characteristic way. Just what is the exact nature of intentions and their characteristic way of satisfaction
has been the subject of much study. 1larman [1976] and Scarle [1979). for example, analyze intentions as
scif-referential attitudes, whose content is roughly "1 take some action to attain condition X by way of
carrying out this very intention.” Intentions can be satisficd (at least partially) hy trying, by taking actions
on the hasis of the intentions, whether or not the attempts succeed in attaining their aim or not. 1f the
action fails. one forms another intention of the same sort. Attempts, however, have no bearing on the
satisfaction of desires. In this sensc it is much more difficult to tell if a desire has been satisfied than an
intention, for the former requires verifying the effects of an action, where the latter requires only the
proper made of taking the action.

Desires and intentions also differ in other qualities ascribed to them. Different desires may have
different relative strengths, which reflect the order in which, other things being cqual, intentions will be
formed to pursue tic desires. For intentions, however, it makes no sensc to speak of relative strengths,
Once formed. and intention is an intention. Therce is no magnitude involved. Instead, two intentions may
be related by other intentions about their relative priority of achievement, intentions to the cffect that one
intention should be carricd out prior to another one. However, both desires and intentions share (along
with beliefs) relative strengths of tenacity with which the program resists their abandonment. One might
have, for example, two desires, the first of which is stronger than the sccond, but the second of which is
held more strongly than the first. In this case, while the program considers the second desire less pressing
it would rather give up the first desire than the sccond. Similar considerations apply to belicfs and
intentions.

It is very important to distinguish between intentions and desires. For cxample, when
madifying its plans, the program must analyze the causes and worth of the effects of the plan in action.
An effect of an action can be cither (1) both desired and intended (the normal case), (2) intended but not

desired (action taken by compulsion), (3) desired but unintended (a screndipitous cffect), or (4)

124

unintended and undesired (an crror or unwanted side-cffect). Tn these four cases we assumed that
undesired implied the oppuosite desire, but that is not correct, so there is actually a larger, more refined set
of cases But the important point is that how the program should maodify the procedure depends on what
classifications it makes of the procedure’s effects. Screndipity might be used to construct new procedures
specifically for realizing the desired cffects, while errors normally call for patching the procedure to avoid
the cffects.

Thus the notions of desire and intention capture separate, uscful ideas about rational thought
and action, and the following part of this chapter and the next chapter will make that even clearer.
Rather than confuse matters by using the ambiguous term goal. we abandon it for these more uscful
notions.

Unfortunately. none of the plans given in this thesis will scem to motivate this distinction
terribly much. Most of the plans will be rather deliberate constructions which proceed step by step by
means of intentions. One example of a plan employing dcesires is a problem-solving plan similar to
problem-reduction problem solving. Given an intention to solve some problem, this plan would look for
beliefs which say something about the problem statement. for example, AABDPS. ‘The plan would then
add dcsires for A and B, so that there would be lots of desires around for possible partial solutions. This
would place the burden of controlling this solution cffort in deciding which desire to pursue.
Alicrnatively, desires might have been avoided by shifting the burden to a decision of which implication
10 usc in the problem reduction, and then creating intentions rather than desires. The former method
might be preferable if the problem is so difficult that the program must use information discovered in
pursuing onc desire in satisfying desires stemming from different reductions. The intention-based
strategy docs not make this opportunistic behavior as casy. since the several alternative solution paths are
not being kept in mind simultancously. Kceeping all potential solutions in mind corresponds to using

dcsircs, whilc using intentions in this casc corresponds to single-path explorations.

I T o vy e e

[P |

—— . ————

125

4.4 Dusires and Intentions

The representations of desires and intentions consist primarily of three sorts of information: an aim,
which is the condition to be achieved, variable-mappings, which iderafy in keyword fashion plan
variables with variables and terms used in defining the aim, and status information. Desires and
intentions are represented as theories. Fach has as typed parts a sct of input variables, a set of output

variables. and an aim.%?

In addition, cach also contains a statement of the form DISIRE(theory) and
INTENTION(theory) about whether it represents a desire or an intention, redundantly repeating a similar
statement in the global theory.

‘The aim is a theory describing the state of affairs desired or intended to be attained. We mean
this to be a quite general notion, including, for example, descriptions of the program’s own mental or
physical state, and descriptions of changes in the world, that is, actions. Informally stated aims might be

(A) that the program belicves the Banach-Tarski thcorem,

(B) that the program has a proof of the Banach-Tarski theorem in ZFC,

(C) that the program rest its "arms” after moving the block halfway across the table,

(D) that the program buys some clcctronic parts,

{E) that the program finds out some information from somcone,

(F) that the program is skilled at playing bridge,

(G) that the program leases a new tape drive from someone,

(H) that the program carns enough money writing novels to pay for its leasc and to keep its programmer
happy.

This rescarch has not pursued the crucial problem of finding a language and vocabulary

adequate for encoding all known information about the world, nor the encoding itself. We instead rely

§2. Variables are used for communicating information between activities. There may be betler ways of doing this, but that s 8
subject for future study.

126

on work of others to build stores of information about the world and changes in it for use in aims of
desires and intentions.

For example. suppose we have an inteation to find the difference between two numbers X and

INT-1: (the intention)
Axiom: INTENTION(T-1);
Typed-part INPUTS SET;
Typed-part OUTPUTS SET;
Typed-part AIMADDER;

INT-2 (INPUIS of T-1)
Typed-part X VARIABLE; (T-5)
Typed-part Y VARIABLE; ([-6)

INT-3: (OUTPUIS of T-1)
Typed-part Z VARIABLE; (T-7)

INT-4: (AIMoOf T-1) (from ACDER)
Individual-constant Al;
Individual-constant A2;
Individual-constant SUM;
Axiom: Al + A2 = SUM;

INT-5: (from VAR1ABLE)
Individual-constant VALUE;

INT-6: (from VARIABLE)
Individual-constant VALUE;

INT-7: (from VARIABLE)
Individual-constant VALUE;

INT-1: (again) .
[VALUE X INPUTS] = [SUM AIM];
[VALUE Y INPUIS] = [A1 AIM];
[VALUE Z QUTPUTS] = [A2 AIM];

Here sets arc represented as theorics where the elements are used as names of constants. This allows the
same name to be used both for an input and an output variable, as it can be distinguished by the set it is
in. Variables arc also represented as theories, in which values are represented as attachments to the
symbol vaLut. Theories representing variables will be used to note other information as well, such as
whether there is a value or not, hence this complicated representation. The reason for using an explicit
keyword mapping system in which equality axioms are used to identify intention variables with aim

variables is so that the samc aim may be used in scveral sorts of intentions, according to different

R e I

—

127

input-output specifications of variables. For example, the ADDER aim used above can be used to specify
several sorts of intentions including subtactions (X-Y=7; X=SUM, Y=Al, Z=A2), addition
(X+Y=7:X=Al Y=A2 7Z=SUM).and doubling (X +X=Y; X=Al, X=A2, Y =SUM).

In addition to the fiexibility of aim use allowed by the keyword variable mappings, desires and
intentions can also include local modifications to their aims. Since their aims are just theories, axioms can

be added o the aim theory. For example, a doubling intention might be specified cither as

INv-1:
Axiom: INTENTION(T-1);
Typed-part ADDER ADDER;
X = [Al ADDER];
X = [AZ ADDER]:
Y = [SUM ADDER];

or as

INT-1:

Axiom: INTENTION(T-1);

Typed-part ADDER ADDER; (T-2)

X = [A1 ADDER];

Y = [SUM ADDER];
1n7-2: (ADDER)

Axiom TIED: A1 = A2;

In the first case, the value to be doubled is given to the adder twice. In the second case, it is transferred
only once. but the copy of the adder theory is modified to be a doubler.

Desires and intentions also contain information about the state of the process of their exccution,
for example, whether the desire or intention is being worked on, is yet to be worked on, or has been
finished with. Here we distinguish between desire and intention in interpreting just what these status
indicators mean. "Being worked on™ means roughly “is being pursucd with an intention™ for desires, and
“is being carricd out by a primitive or a plan” for intentions. Since intentions arc carricd out by complex
sequences of program operations, the most precise description of the state of the exccuting program is just

the current step and cnvironment of the code of the interpreter or whatever program is carrying out the

intention. However, such a description is hopelessly detailed for normal use. In fact, the program

128

cmploys scveral sorts of interpreter, and cach of them would give a different report of the state of the
exccution process. Rather than use such an overly detailed indicator, cight major classifications of desires
and intentions are used which summarize some of the most important aspects of their exccution. Better
classifications undoubtedly await discovery, but this initial list will sufficc in this thesis. The
classifications arc as follows. (FFigure 8 summarizes the transitions cach intention gocs through.)

1. Progress status: itially, desires and intentions are pending. When the interpreter is working
on ong, it is acrive. When the interpreter is done with it it is finished. ‘The program is working on an
intention if it is cxccuting some primitive to carry out the intention, or has added a plan to the current
state of mind to carry out the intention. The program is working on a desire if it has formed an intention
to realize the aim of the desire. Desires are finished when their aim has been achicved, and intentions
when some plan or primitive is completely exccuted to carry out the intention.

2. Missing input values status: A desire or intention cither has values known for all of its input
variables, or it is missing some input variables values. The interpreter will not begin work on ones
missing some of their input values.

3. Uncompleted predecessors status: Desires and intentions are related in two partial orderings,
desire strengths and intention priorities. Work on one cannot begin until all of its predecessors have been
completed (specifically, arc in the cnabling-successors status described below).

4. Uncompleted superiors siatus: Desires and intentions are related in teleological relationships
in which subordinate desires and intentions arc used to carry out supcrior intentions. Work cannot begin
on the subordinates until all supcriors of the subordinates have heen completed (specifically, are in the
cenabling-subordinates stiatus described below).

S. Enablement status: 1esires and intentions are blocked if they have missing input values,
uncomplcted predecessors, or uncompleted superiors. Otherwisc they are enabled. The program will not
begin work on blocked desires or intentions.

6. Realization status: An intention is said to be realized if it has been carried out by cxccuting a

P T L A

gt e e gy~ ——

129

Pending
Blocked
Unrealized

Input variable values
= Predecessor completions
| Superior completions

Pending
Enabled
Unrealized

o Activation
4

A

Active
Enabled
Unrealized

e Realization
A 4

Active
Enabled
Realized

> Subordinates enabled
Y
Active

Enabled
Realized

J » Successors enabled
y

Active
Enabled
Realized

Figure 8
Progress Status Trangigtions
o, B TR T e YT S

— P,

130

primitive program or by reducing it to a plan. A dcsire is realized if an intention to pursue its aim has
been formed. They arc unrealized otherwise,

1. Enabling subordinates status: Once an intention is active, normaily after it has been realized
by reduction to a plan. the interpreter will enable its subordinates if possible. This status indicates
whether the intention should still block its subordinates or not.

8. Fnabling-successors stanes: After a desire or intention has been realized, the interpreter may
try to cnable its successors if possible. ‘This status indicates whether it should block its successors or not.
The interpreter will declare an intention ¢ 7 . ~nabling-successors cither if it was carried out by cxecuting
aprimitve, or i its smain subordinate (see below) has finished.

We represent all these sorts of status information in the desire or intention theory itself.33 Each
status name is a symbol in the language, and the possible conditions of the status are represented as
pussible attachments. Relationships between the possible attachments are represented as justifications.

In detail, cach theory contains individual constants as in the following example intention.

INT-1:

Axiom: INTENTION(T-1);

Individual-constant MISSING-INPUT-VALUES-STATUS ;

Individual-constant UNCOMPLETED-PREDCCESSORS-STATUS;

Individual-constant UNCOMPLETED-SUPERIORS-STATUS;

Individual-constant ENABLEMENT-STATUS;

Individual-constant PROGRESS-STATUS;

Individual-constant REALIZATION-STATUS;

Individual-constant ENABLING-SUBORDINATES-STATUS;

Individual-constant ENABLING-SUCCESSORS-STATUS;

The possible attachments and their standard justifications arc as follows. (They arc simplificd somewhat

for clarity.) The standard justifications arc arranged so as to default the attachments to the appropriate

values in the correct temporal scquence.

53 Properly, perhaps, this information should be viewed as annolation on the theory in some more gencral theory (such as the
plan contining the theory, or the global theory), but for simplicity of the represeatation we include it in the desire or intention
theory itscif.

et e e

& azeny

toapi

W AT ain i A ¢ e D0

C o — —————

o o - —

131

N-1 Attach MISSING- INPUT-VALUES-STATUS SOME (justified as specified below)
N-2 Attach MISSING- INPUT-VALUES-STATUS NONE (SL () (N-1))

N-3 Attach UNCOMPLETED-PREDECESSORS-STATUS SOME (justified as specified below)
N-4 Attach UNCOMPLETED-PREDECESSORS-STATUS NONE (SL () (N-3))

N-5 Attach UNCOMPLETED-SUPLRIORS-STATUS SOME (justified as specified below)
N-6 Attach UNCOMPLETED- SUPERTORS - STATUS NONE (SL () {N-56))

N-7 Attach ENABLEMENT-STATUS BLOCKED (SL (N-1) (),
(SL (N-3) ()). (SL (N-8) ())
N-8 Attach fNABLEMENT-STATUS ENABLED (SL () (N-8))
N-9 Attach PROGRESS-STATUS PENDING (SL () (N-10 N-11})
N-10 Atlach PROGRESS-STATUS ACTIVE when activated: (SL (proc) (N-11))

N-11 Attach PROGRESS-STATUS FINISHED when finished: (SL {(proc) ())

N-12 Attach REALTZATION-STATUS RIALIZED when realized: (SL (proc realization) ())
N-13 Attach REALIZATION-STATUS UNREALIZED (SL () (N-12))

N-14 Attach ENABLING-SUBGRDINATES-STATUS YES when so: (SL (proc) ())
N-15 Attach [NABL ING-SUBORDINATES-STATUS NO (SL () (N-14))

H-16 Attach ENABL ING-SUCCESSORS-STATUS YES when so: (SL (proc) ())
N-17 Attach ENABLING-SUCCESSORS STATUS NO (SL () (N-17))

In the above justifications, proc stands for the procedurc adding the justification. Realization stands for
the record of the realization of the desire or intention, that is, cither the plan or action record that the
interpreter constructs (as explained in Section 4.10) for intentions, or the intention constructs from a
desire.

Justifications for N-1, N-3, and N-§ above involve statements in other theorics. Recall that each
variable is represented as a theory and the valuc as an attachient in that theory to the symbol vaLve. In
addition, we have cach variable theory contain a constant VARIABLE -HAS-VALUE. Whenever an attachment
is made to vaLue, thus specifying a value, we by convention also usc that attachment to justify an
attachment of YES (0 VARTABLE-HAS-VALUE. Symbolically, we typically have justifications as follows.

N-18 Attach VALUE xxx (some justification)
N-19 Attach VARIABLE-HAS-VALUE NO (St () (N-20))

¥-20 Attach VARTABLE-HAS-VALUE YES (SL (N-18) ())
N-1 Attach MISSING- INPUT-VALUES SOME (SL (N-19) ())

132

Ihis Last justification, when made for cach input variable, ensurcs that the MUSSING - INPUT -VALUES -STATUS
will be properly maintained. Similarly, N-3 and N-S above will have justifications involving other desires
and intentions. N-3 will be justified in terms of an ordering relationship and the
cnabling-successors-status attachments of the predecessor. N-5 will be justified in terms of a subordinate
relationship and the enabling-subordinates-status attachments of the superior.

FFinally. desires and intentions contain scope information about the context of their definition.
The parent theory of cach is cither the plan it is defined in or the current state of mind. The desire or
intention theory. in addition, s justified in terms of the parent and the procedures adding it to the current

state of mind.

4.5 Policies

The intentions presented in the previous section alf had aims describing some action that the program
could decide to carry out. However, not all intentions can be expressed in that form. Instead, there are
intentions with conditional or hypothetical statements as their aims. For example. the program can
decide 1o carry out "1 intend to visit George,” but not "I intend to visit George whenever 1 am in New
York.” 'This latter intention we term a policy.s‘1 In the fdllowing, all policies will be intentions. There
may be desires with hypothetical statements as their aims, but 1 have not yet worked out how they might
be used, and so leave them an open problem.

Policies are represented as theorics similar to other intentions. Policies have sets of input and
output variables, an aim, status information, and a scope or context of definition just like other intentions.
In addition, policics arc distinguished by the program from other intentions by a statement

POL ICY(policy) in them, where poticy is a symbol referring to the policy theory itself,

‘The aims of policies are instances of a "conditional” theory, the prototype of which is

54 [McDermou 1978] introduced this icchnical meaning of policy as an intention with a hypothctical aim.

e - I L PN e L L5 R

(R IS VR APRREN

ST

£33

IN CONDITIONAL :
fndividual-constant CONDITION;

Individual-constant ACTION;

The aim of a policy is a copy of this theory in which conn1 110N is attached to a sentence wif and ACTION is
attached to the theory describing the action as in the aims of ordinary theories.>

Where ordinary intentions usually arc only active for some limited duration, and then are
carricd out, policics need not be so limited. Some policies will be of fimnited scope. for example, while the
plan they arc part of is being cxccuted, or while some intention is active. But other policics may have
unlimited scope. that is. some might be constantly in effect until a decision is made to abandon them.

As we will interpret them, policies embody intentions to make decisions in certain ways. Where
intentions ardinarily are intentions to act in certain ways. policics embody intentions to reason in certain
ways. Instead of leading to actions, policies lead to reasons for possible actions in decision-making. Thus
we would translate the informal intention “I intend to visit George whenever 1 am in New York” as the
intention to reason that [ought to visit George if I am in New York deciding what to do, that is, the
intention to construct the option of visiting George and a reason for taking that option as the outcome of
the decision.

This interpretation of policies has two major conscquences. The first consequence is that it
allows some flexibility in carrying out intentions. If 1 have intentions to visit George and to buy books
whenever [am in New York, [do not feel compelied to do cither the minute 1 arrive there. Instead, these
intentions mercly suggest the possibilitics of visiting George and of buying books, and construct reasons
for taking thosc actions. But since these arc just rcasons for action rather than absolute requirements, 1

can defeat these reasons in this decision and do something clsc. and reconsider the possibilities the next

time I think of what to do. Since specific cases of their actions can be defeated in this way, policics seem

55. 1 find this representation for policy aims unsatisfactory, but have not yet found how to improve i.

——pyy = - —mae e o e ——————— e e —— i - -

e d

134

similar to what have been termed prima facie obligations in the literature. %6

Sccond, this interpretation of policics means that they embody some of the values of the

program. That is, we would translate a preference of one possible action over another in some

circumstances as the intention to reason for the first and against the sccond in such circumstances,
specifically, to defeat reasons for the second possibility with reasons for the preferred possibility.

What are policics for? In the following we will use them in many ways. Policies will express
temporal ordering relationships between intentions, as in the intention to carry out one intention hefore
another, which we can interpret as the intention o cloose the prior intention over its successor when
deciding what to do if the prior intention is yet unrcalized. Policies will embody the strengths of desires, :
where we interpret one desire as stronger than another when the option of working on or satisfying the
first is preferred over working on or satisfying the sccond in decisions of what to do next. Policies will
embody many of the preferences of the program, such as those used in belief revision to choose one
possible revision over another. There policies amount to statements of the strength or commitment to
beliefs.

With this interpretation of policics, we sec the special importance of the scopes of policies.

e v

Policies of temporary duration amount to temporarily adopted values. Policies of unlimited duration
amount to permancnt values. In this way, RMS serves the function of maintaining the current set of

values as well as the current scts of other attitudes. And, as Chapter 6 discusses, permanent valucs can be

Ao ek e deir e

adopted or abandoned through decisions to create or defeat policies of unlimited scope.
Policics, like other intentions, are carried out cither by exccuting primitive programs or by
reducing them to plans. The next chapter discusses something of how and when policies are carried out i

during deliberations, but the details of this, and the details of how the progress statuses of policies are

manipulated, arc yct to be worked out.

$6 The term is duc to Ross [1930] Scc also {Illarman 1977) and (Scarle 1978].

135

4.6 Relationships Between Desires and Intentions

In addition to the plan steps anbaodicd in ordinary desires and intentions, plans also contain policies
which restrict how the steps arc to be carried out. FFor example, the program might have not only the
intention (1) to place block A on top of block B, and the intention (2) to place block B on top of block C,
but also the intention (3) to carry out the previous intentions in the order (2 then 1), Another cxample
would be the intention (4) to build a tower of blocks, and the intention (5) to use intentions (1,2,3) as a
way of carrying out (4). As these examples suggest, the two main sorts of inter-step refationships are ones
which impose (relative strength or temporal) orderings on the realization of desires and intentions, and
ones which describe teleological relationships between desires and intentions,

Actually, relationships between intentions are always teleological. Teleotogical relationships,
preeminently thosc of one intention heing a prerequisite of another or of one intention being a way of
carrying out another, figure crucially in all other relationships. For example, two intentions might be
exccutable in cither order. If one order is more cfficicnt than another, then that is a reason making for a
temporal ordering on them, but the underlying explanation remains the teleological one of the cfficiency
of the computation. Similarly, if the sccond intention depends on some precondition being achicved by
the first intention, then one would again have a lcmporai ordering policy, with the undcrlying reason
being the teleological relationship of prerequisite.

In spite of the fundamentally telcological nature of rational intention relationships, we scparate
out the ordering relationship so that they may be specificd cven when (as is usual in informal program
cfficicncy arguments) the reasons behind the relationship still have not been completely formulated. In
addition, this scparation permits us to usc uniformly an ordering relationship on both desires and
intentions. For intentions the order is temporal order, and for desires the order is relative strength,
Ordcring policies never connect both desires and intentions, as these arc different sorts of entitics,

between which an order makes no sense.

e v LR e, T B,

e

136

All policies of these sorts are defined as copics of one of the standard policy types with the
desires or intentions involved added into the theory as attachments, For example, one of the main
temporal ordering policy types is that of onc intention anteceding another. 'This is defined by the
following theory.

IN ANTECEDENCE -POLICY-THEOQRY:

Axiom: POL1CY(ANTECEDFNCE-POL ICY-THEORY);

Typed-part INPUTS SET;

Typed-part QUTPUTS SET;

Typed-part AIMCONDITION-THEORY;

Individual-constant ANTECEDENT;

Individual-constant SUCCESSOR;

Axiom: ANTLCEDES{ANTECEDINT, SUCCESSOR);

INT-1- (Aimof ANTFCIDENCE-POLICY-TUEORY)

Attach CONDITION “SUCCESSORS - NABLED(ANTTCEDENT);

Attach ACTION (CON (OPFION SUCCI SSOR) (SL (ANTECEDENCE-POLICY-THEORY) ()));

A policy of this sort could then be created relating Intention-1 and Intention-2 by making a copy of
ANTECEDENCE-POLICY-THIORY and adding two attachments in its aim, that of ANTECEDENT
te Intention-1, and SUCCESSOR to Intention-2.

To make the interpreter more cfficient. we also include in the desire or intention theory lists of
all ordering policies mentioning it. For cxample, cach has the individual constants
ANTECEDENT-POLICIES and SUCCESSOR-POLICIES, to which are attached lists of all antecedence
policics mentioning the desire or intention as the successor or antecedent, respectively. The policies
themselves are kept in these lists rather than just the antecedents or successors so that the policies may be

used in justifications. Also, wheneser new ordering policies are added, corresponding justifications for

the status attachment of the desires or intentions are added, to facilitate reasoning about which successors

’
’

arc blocked by the urder relationship. “Ihis duplicates some of the reasoning that would normally occur
n deliberations in a convenient and cefficient, but still defeasible, fashion.
‘The major types of policies relating desires and intentions are order. dataflow, prerequisite, and

subordinate policies.

137

1. Ondering policies: As mentioned above, ordering policies represent intentions to realize
desires or intentions in certain ways, to relate the steps of processing cach of those desires or intentions.
Of course. the descriptions of the steps of carrying out an intention might be very detailed, so these
policies might specify very complex relationships. For example, specifying the temporal intericaving of
coroutinges, or tasks like laying and finishing a concrete driveway, can be very complicated, because one
does alittle of one, a little of the other, more of the first, and so on until they are finished. We avoid such
complexity in this thesis, and Icave the problem of developing a more complete vocabulary for exccution
relationships for future research, Instcad, we present merely a small set of concepts for relating two
desires or intentions.>’

If [1 and 12 are two intentions, we denote the times at which the processes carrying out these
intentions begin and end, abbreviated BL. E1, B2, and E2. We can identify the beginning of a intention as
the time of transition of its progress status from pending to active, and the ending of a intention as the

time of the following transition from active to finished. With these terms, we define the temporal

ordering policy types as follows.

11 precedes 12 Directly I1 finishes, 12 begins B1<E1=B2<E2
11 antecedes 12 I1 finishes before 12 begins B1<E1<B2<E2
11 leads 12 11 begins before [2 begins B1<B2

11 overlaps I2 12 begins during I1 B1<B2<E1

It covers 12 12 occurs during I1 B1<B2<E2<E1
11 beats 12 11 finishes during 12 B2<E1<E2

If DI and D2 are desires, we say that D) antecedes D2 to mean that D1 is a stronger desire than
D2 in the partial strength order.

If circularitics are present in the ordering policics, so that an inconsistent sct of orders exist, then

57. Maay people have studied and arc studying this question of vocabularies for cxecution relationships. See the literstures on
paralicl programming languages [lewitt 1977, petri nets. and PR extensions [Wiest and |.evy 1977). Smith and Davis [1978] and
Kornfcld [1979) study such vocabularics in terms of paralle! problem-solving sysiems.

One significant extension to our vocabulary might involve the introduction of a clock or time-system for referring to
future cvents not related to specific actions. ‘This sort of extension would be necessary for staling intentions like 1 intend to finish
this thesis by May 12, 1980.”

e N
—

5 A BEY B L e 4 e -
T fma\ “)m S o TN e -

R PYY FTRGR I LY O PO SR

138

some desires or intentions will all be blocked in a deadlock. To avoid this, when the program reflects on
its current plans o decide what to do next, it also checks to see if such a deadlock exists. (Actually,
whenever an ordering policy becomes one of the current policies, the program checks to sce if it is
consistent with the previous ordering.) !f an inconsistent ordering is detected, the program sets itself the
intention of breaking the deadlock by abandoning one or more policies. Tt makes the decision of which
pulicies to abandon by using the deliberation techniques described in the next chapter and the guidcelines
described in Chapter 6.

2. Daraflow policies represent intentions to use the outputs of one desire or intention as the
inputs to another, that is, the intentions to infer values for some variables upon getting values for other
variables. In their representation as theories, these policies mention not only the desire or infentions being
connected. but also the input and output variables of cach of each that arc to be identified. Dataflow
policies arc respected by the interpreter by waiting until a value is computed for cach input variable
mentioned in a dataflow policy. Dataflow policies thus ensure that the producer leads the consumer by
cnough time to compute the required aluc. Dataflow policies are actually always carricd out by a
built-in primitive which propagates these values when necessary. To make this casier, cach variable
theory contains a symbul £Q-poL1¢1ES which is attached to all dataflow policies mentioning the variable.

It might be useful to have other classes of dataflow policies, such as an analogue of “precedes”
above, wherein one intention would begin immediately upon the availability of some variable value. This
might be the casc with removal of intermediate stage waste in a complex chemical process. However, it
would scem difficult to implement this sort of policy without some form of actual parallelism in onc’s
machine, since the producing intention may produce the value while in an uninterruptible stage of its
process.

3. Prerequisite policies make explicit the rationale of temporal orderings. Prercquisite policics
mention at least two intentions, rather than only two. ‘They are interpreted as the intention to use the

several effects o one sct of intentions 11, ..., Tk as the means of achicving a combined state of affairs prior

s e 2T w W A -

PR, T

FL e 2k

ek

139

to another inteation 1. Along with cach of the intentions the prerequisite policy mentions a logical
formula cxpressing the corresponding state of affairs. According to the interpretation, if we write the

formula corresponding to an intention | as (1), the meaning of the policy is that

I A AR DE(T),
or perhaps
AN A A ORI) AFII)A . AFIK) D)) A (TF() D1 }ralse).

Here we have written a formula in dynamic logic [Harct 1979), in which <action>p mcans that action can
achieve a state in which P holds, and [action]false mcans thal action cannot terminate in the current
state.*8

4. Subordinate and reduction policies make cxplicit intentions to use one sct of desires and
intentions as a means of carrying out another. Whenever the interpreter reduces an intention to a plan, it
adds an instance of the plan to the current state of mind and adds a reduction policy intention the
intention and the plan, It alsv adds subordinate policics relating the reduced intention and cach of these
new desires and intentions. In contrast to prerequisite policies, which state that the preconditions of an
intention are autained jointly by its predecessors, the reduction and subordinate policies state that the
effect of the reduced intention is attained jointly by its subordinates.

S. Main subordinaies: A subordinate intention of an intention may be annotated as the main
subordinate of the intention. This policy represents the intention to complete the main subordinate
before beginning work on the intention's successors. For example, if the plan for scrving dinner has two

steps, to prepare the food and then to serve it, the preparation step involves the substeps of cooking the

food and then washing the pots and pans. But the food may be served just after cooking the food, and the

58 I probably is simply wishful thinking to apply a language as precisc and as incxpressive as dynamic logic (o discussing actions
as general and as vagucly specified as plans, but some fanguage is needed for this purpose. Dynamic logic is much oo limited
excepl as a basis, for we need to be able (o discuss in the language itsclf algorithmic complexity, intermediale statcs, relations
between actions, etc . nonc of which are fully within dynamic logic's realm. Moore [1979] explores a logic of action with the power
to treat actions as objects. but he makes no usc of that power, and restricts his study Lo aclions as in dynamic logic. 1layes [1971)
explores a logic of aciions which attempts to capture statements about the causal relations between objects affected by actions.

- —————— e e . P q‘ ‘,z, ; Ti‘;Tx‘ S e -
s ‘—-———w ~

A A GG 658 Pl S T SRl ek 1T v

P TN

e d

140

washing up can be postponed until after serving. (Sec Figure 9.) Main subordinate policies thus serve a
function analogous to that of dataflow policies, but concerned with action cffects rather than variable
values.

Main subordinate policics are specified by method statements, as described later. They mean
that all of the intentions in the plan must be carried out. but the superior itself will be carried out once the
main subordinate has finished. that is, from the point of view of the superior, all remaining subordinates
are mercly cleanup steps unrclated to the purpose of the plan.

Onc extension of this idea would be to have multiple main steps of plans, cach of which allows a
different set of successors of the superior to proceed. However, this would require taking into account
considerable information about the context of the superior. For simplicity, we restrict the program to

single main subordinates, and Icave the generalization for future studies.

4.7 The Hierarchical Structure of Plans

The preceding pages have cxplained two major classes of constituents of plans, namely desires and
intentions. Some of these specify the steps of actions, and others restrict how the former are to be
realized. But plans contain many other sorts of information whose purposc is to fill out, refine, and make
coherent the behavior sketched out by the desires and intentions. In addition, the plan itsclf is an object
in a library of plans, and plans contain information aiding in their indexing in this library. Plans are
represented as theories with a number of standard parts. Plans have a sct of input variables, a set of
output variables, a set of desires, a sct of intentions, a sct of subplans, a set of assumptions, and a set of
plan definitions to be held during the tenure of the plan. Concretely, a plan theory will have the

following parts as well as further restricting axioms.

Typed-part INPUTS SET
Typed-part OUTPUTS SET
Typed-part DESIRES SET

2 0 TRV W,y VL B

RN 3o it s wee e Lk

—

141

Serve Dinner

Subordinate Subordinate

Then
Prepare Food —tp Serve Food

Subordinate Subordinate
Then (Main Subordinate)
Then
Cook Food P Wash Pots and Pans
Figure 9

Plan for serving dinner

e e PuGy sk 2 B

142

Typed-part INTENTIONS SET

Typed-part SUBPLANS SET

Typed-part ASSUMPTIONS SET

Typed-part PLAN-DEFINITIONS SET
All of the subparts of a plan have names. The set of desires of a plan has names for cach of the desires,
with the desire theories attached to these names. Similarly, cach subplan in the sct of subplans, cach
assumption in the set of assumptions, each intention in the set of intentions, and cach plan dcfinition in
the st of plan definitions may have names. The input and output variables have names of course, and
the program gencrates names for any assumptions, policies, and plan definitions entered anonymously by
the syntactic macros described in Section 4.12. "the naming of these parts allows, for cxample the
combination of copics of two plans from the plan library for incorporation into the current plan, or the
defeat of a local assumption specifically by a local policy.

As in desires and intentions, the variables of a plan arc theories, with the same conventions.
Since the plan is used as a unit of behavior by the interpreter and by other plans, it is crucial that the
details of the plan’s construction normally be hidden. This is the function of the plan variables. The
plan’s input and output vasiables will be the only parts of the plan normally referred to by other plans.
These variables will be connected to the variables of the desires and intentions by dataflow policies. For
cxample, whenever a plan is built from a subplan, it is necessary to provide variable mapping information
in dataflow policies to connect the relevant plan variables with the relevant subplan variables.

Plans often contain restricting axioms which modify the subplans used in constructing a plan.
For example, onc frequent moedification is attaching constant values to variables of subplans.

Plan theories may contain a number of assumptions. These are beliefs to be held during the
exceution of the plan to be retracted if comradictions are encountered. Yor exampic, when negotiating to
buy a house, onc typically assumces that the scller will scll the house once agrecable terms are reached.

Another sort of cxample is the specification of default values for local variables or other variables, an

instance being a plan to clear the top of a block which assumcs that the table is always a good default

143

target location for any blocks to be moved. A final sort of assumption is that of assumed method
relationships between procedures and aims (as cxplained below), in which it is assumed that some
procedure is relevant to achieving some aim during the plan’s exccution.

Plan theories may contain a number of policies to be in force during the plan’s exccution to
influence the expected sorts of decisions. These are typically concerned with decisions about the order in
which the plan’s desires and intentions should be carried out, the methods by which they should be
carried out, and the ways that the plan’s assumptions should be revised in casc of difficultics. For
cxample, one’s plan for giving a lalk may include the policy to prefer to answer questions with “I don't
know " rather than trying to think on one’s feet. Similarly, the cooking with grease plan mentioned earlier
might employ a policy to change the default plan for cxtinguishing fires to one involving a fire
extinguisher.

Finally, plan theorics may contain a number of plan dcfinitions to be held during the plan's
exceution®® An cxample is the plan for cooking with grease mentioned carlier, which contains a local
plan definition for how to put out fires, along with a policy preferring the local plan to the standard plan.
l.ocally defined plans and policics are how once might write plans with conditional steps. Each of the
cases is encoded as a policy which adds the appropriate intention or plan to the network depending on
what conditions hold.

Temporary assumptions of beliefs, policies, and plan definitions are actually shorthand for the
intentions to adopt them temporarily. As intentions, they can be related by temporal ordering policies.
For cxample, in Scction 4.12, we present a plan which midway through its cxccution makes an
assumption to endure only while carrying out the next intention. We separate out cxplicit sets of these
assumptions as abbreviations both for the intention declarations and for the ordering policics necessary to

make all the plan-cxtant assumptions precede all the "real” intentions. Temporary assumptions arc made

59. Actually, the variables and plan definitions are just iemporarily defined concepis. The plan might contain other sorts of
temporarily defined concepts, but variables and plan definitions are the most important sorts, so we concentrate on them,

- Lo it RS T T e T PR, T T D
-

144

to have scopes limited 1o the duration of the plan by making the assumed attitude depend on the
statement that the scope intention is not finished. ‘That is, the assumptions depend monotonically on the
statement that the superior intention has become active, and non-monotonically on the statement that the

supcerior has finished.

4.8 Plan Specifications

Plans arc imvolved in at least three hicrarchical organizations. The first of these is the hicrarchy of
construction, in which existing plans can be combined to construct a new plan. Sccond is the hicrarchy of
definition, in which plans can contain local definitions of other plans to be of limited temporal duration.
Third is the hicrarchy of effcets or situations of use, in which plans arc indexed by the purposes for which
they can be used. This indexing information is divided into two components: specifications of plan
cffects, and method statements to connect ends with relevant plans as means.
Plan cffect specifications are simply statements about the propertics of the plan. For example,
Scction 1.4.2 indicated how statements about what procedures call other procedures could be used in
answering qucstions about the program’s history of actions. For another example, statements cstimating
the complexity of procedures can be used in planning undcr time constraints. But the most studicd sort
of statement of procedure propertics is that of Floyd-Hoare specifications: pairs of formulas P and Q with
the interpretation that if P holds before the plan is exccuted, then Q will hold if the plan terminates,
where termination of the plan is not assumed. These specifications take the form pD[p1an]Q in dynamic
logic [Harc! 1979]. and termination can be correspondingly cxpressed as PD<plan>true. There can be
several plan cffect specifications for cach plan. These specifications are not used in the normal operation
of the program, but are uscful in hypothetical reasoning and in modifying or analyzing the plan library.
In hypothetical reasoning the technique of symbolic exceution is used. This technique does not exccute a

primitive or plan, but instcad trics to prove that the antecedents of a procedure's specifications hold in

e LT SRR PR S e—

R X Y FT NPT Iy Ay e o

e s e sy, |

Bl oS5 e

145

epe sitnation, and i suceessful, then concludes the consequents in the following temporal situation. In
maodifying the plan fibrary, the program might scek, for example, o reorganize the plans to make sure
that they are scen to be relevant o problems whose statements are contained in the plan’s effects. In
analyzing the plan library, the aim is to more completely annotate (and verify the correctness of) the plans
and their internat structure with the records of, say, additional prerequisite policies where before there
were only temporal ordering policics.f’0

Information involving a plan’s effects is maoie directly uscful in the form of method statements.
‘These indicate what plans are uscful for which aims of intentions. ‘The interpreter uses method
statements to retrieve the plans and primitives relevant to achieving the aim of the intention being
interpreted. In addition. method statements for plans also specify which step of the plan is the main step
with respect 1o the desiied ceffect. Thus a multistep plan may be a means of achicving several sorts of
aims. Fach of these uses of the plan would be specified in a separate method statement, along with a
statement of which of the steps of the plan achicved the particular effect (aim) of refevance.

Mcthod statements arce represented as simple beliefs of the program. For plans they take the

form

PLAN-METHOD(aim, plan, mainstepname),

where aim and pian refer to, respectively, a theory describing some aim concept and a plan theory.
Mainstepname is the name of some desire or intention in the plan which is declared main. For example, a
method statement like the following might be used in describing the subplan of the dinner-serving plan

of Section 4.6.

PLAN-METIHOD(PREPARE - FOOD-AIM, COOK-THEN-WASH-PLAN, COOK-F00D).

60. {Shrobe 1979a] discusses such techniques in detail.

——

146

For primitives, method statements take the form
PRIMITIVE-METHOD(aim, primitive).

Mecthods relevant to an intention’s aim are retricved by procedures which take the aim,
instantiate it with the intention’s input variable valucs, and then look in the procedure library for method
statements which mention aim types subsuming the particular instantiated aim. ‘Fhis can be a very
diftficult problem, as many infercnces might be required to judge one aim description subsumed by
another. This is an incompleteness in the current program. [envision actually employing several sorts of
retricval procedures, simple ones which are fast but miss some methods (for example, ones which just
look up the VC hicrarchy from the particular aim) to procedures which are slower but find more of the
relevant methods, Different versions of the interpreter would then usc the different retricval procedures,
and in difficult cases. self-apply the program to retrieving the relevant methods.

This issuc o what methods should be retrieved as relevant to a particular aim seems to be one w
which deontic logic 1s relevant. One of the issues addressed by logics of commands and obligations is that
of what commands and obligations arc entailed by a given command or obligation. For example, suppose
I am obliged to visit MIT. Since MIT is part of Massachusetts, being on the grounds of MIT entails being
in Massachusetts. Thus we can infer that | am also obliged to visit Massachusetts as well. T suggest that
this question of centailment of commands or obligations is closcly connected with the question of what
method aims entail or arc entailed by a given intention aim. Further study of this connection might shed
light on both the techniques of this thesis and on the proper role of deontic logic. The next chapter

mentions another conncction with deontic logic as well.

— - - SRR e M s

S

—— -4—-‘~‘

— -
t

-

—— e D

147

4.9 ‘Ihe Current State of NMind

The program represents its current state of mind 10 itself as the global theory ME. ME contains
statements about the program’s current concepts, rcasons, beliefs, desires, and intentions. To act, the
program reflects on the contents of ME. on what desires and intentions are currently held according to
the global theory.

Plans reflect the structure of the program, as they are used to temporarily augment the current
state of mind. Plans are concepts describing subconcepts (the plan variables and plan definitions),
reasons, beliefs (the assumptions made by the plan), desires, and intentions. When the program carries
out an intention by reducing it to a plan, it adds the contents of the plan to the current state of mind by
making the global concept ME be a VC of the plan-instance concept. ‘This VC statement (in ME of
course) is justificd monotonically in terms of the statement of the reduction, and non-monotonically in
terms of the incompletion of the intention being reduced. In this way the contents of the plan augment
the current state of mind until the execution of the plan (and hence its superior) has finished, or until the
supcerior is abandoned. At that time, the VC statement becomes out, and the plan’s contents are removed
from the current state of mind.8!

We leave several unanswered questions here., This technique for interpreting plans requires a

distinction between the satisfaction of an intention and the finishing of an intention. Plans are

61 Itis oficn argued (c.g.. by Tavlor [1974]) that our notion of "seIf” is an illusion Even if onc acknowlcdges this thesis, the idea
of onc’s self may be uscful in practice. and n fact. people typically find the concept ndispensible. 1loweser, people also voice their
indecision with phrases like "Pat of me wants 1o do this. part of me wants to do that.” or "I'm of Iwo minds about it." These
highlight the next problem: Is there just one "self* of a person? Nagel [1979¢] argues that there cannot be just one self from
psychological evidence concernng bram bisections. Mansky and Papert [F978] arguce against a single seif both from psychological
evidence concerning the devclopment ol intelhgence in children, and Jrom computational grounds, namely that presupposition of a
single self begs the question of how the mind might work They propose an analysis of the mind into many hundreds or thousands
of simple "agents” in a "socicty of mind * ‘The mind's idea of s scif continually changes as different agents gain control. ‘The
proposals of this section for the currenl state of mind nught be viewed as one realization of Minsky and Papent's ideas. In the
program, cach procedure actually carries with it a fragmem of the current state of mind. so what the current statc is varics with what
procedures have control Thus Minsky and Papen’s [1973] consersation exaples, in which the physical laws believed by the child
scem (o vary with the problem being worked on, can he explained castly by their suggestion of different beliefs cmbodied in the
different procedures used by the child. Similarly, recognition of conflicts between two currently active procedures manifests as
reflection 10 an arbitraling procedure which specifically considers which of the iwo “minds™ (procedures) to adopt.

S B Y e g ey -
B FRRE Y -, PN l*s. -

e e

148

purposcless procedures, or more precisely, procedures which can be used for many different purposes.
Because of this, plans may be indexed via method statements as useful for achicving intentions for which
they are more general than necessary. One symptom of this is that of main subordinates, in which the aim
of the intention is sometimes satisfied before all of the intentions in the plan have been carried out. In
some cases this indicates that the remainder of the plan can be discarded, as when 1 use my plan for
getting to someplace as a plan for getting to one of the stops on the way. But in other cases, the remaining
intentions of the plan are clean-up steps which sccure the results achicved by the main step, or which
prevent eertain undesirable side-effects. For example. my plan for checking if T turned off the lights in
my dormitory room has a step for closing the door after ¥ have opened it and looked inside. This step
does not serve the nominal purpose of the plan, my intention to make sure the lights are out, but rather
my policy of discouraging robberies by keeping my door closed. In this case, 1 cannot simply discard the
remaining step of the plan after achicving its purpose.

We do not offer any way of overcoming this difficulty here. A suggestion for investigation is
that the plan also contain a schematic reason for the last step in terms of the realization record of the first
step (as explained in Section 4.10, this is a belicf that the action was taken) and the extra-plan policy of
keeping the door closed. However, just how this would work is uncertain, becausc presumably the
rcasons contained in a plan have tenure limited to that of the plan as well, so nothing has been gained.
The plan might contain a step taking the action of adding the reason permanently. Alternatively, a
distinction might be developed between the satisfaction of an intention and the finishing of an intention.

Perhaps the plan's tenure and the finishing of the intention are coincident with the satisfaction (and

simultancous finishing) of the reduction intention to carry out the first intention by means of the plan.

A AP s Sl e O I B 8

.

149

4.10 The llistory of Actions

As the interpreter acts, it makes records of its actions so that later it can tcll what it did and why. These
records include beliefs about its past actions and the connections between these actions, the desires or
intentions leading to them, and their effects (the changes in beliefs and other attitudes stemming from the
actions). The records left by the interpreter include a realization record and a realization statement, where
the realization record reflects what action was taken, and the realization statement reflects which intention
the action realizes.

Realization statements arc just belicfs in the global theory of the form

REALIZES(realization-record, intention),

and arc justified by the interpreter procedure performing the realization and by the decision used to
sclect the method for carrying out the intention. ‘The intention and realization record contain redundant
pointers to the realization statement to facilitate explanations.

Rcalization records are beliefs of the form

ACTION(plan/primitive, argument Tist)

where p1an/primitive is the plan or primitive in the procedure library by which the intention was carried
out, and the argument list is a list of the variable bindings uscd for plan variables or primitive arguments
derived from the intention. Recalization records are justificd by the interpreter program alone. They are
not conclusions drawn from other belicfs or attitudes, but rather are obscrvations made by the interpreter
about its own actions,

The nature of realization records can be clarified by comparing them with RMS justifications.
Justifications arc actually a form of realization records. ‘The realization records specified above recosd

actions for which explicit intentions cxist. They record actions taken directly on the basis of intentions.

R Iag_&‘&fm<&!ms-u LT e e

150

Justifications, on the other hand, are constructed by primitives called by other primitives. They record
actions taken without explicit intentions, actions taken only indirectly on the basis of explicit intentions.
Realization records and justification have similar forms. Recall that the justifications employed by the

program are all reflected in explicit beliefs of the form (we only consider S1 -justifications here)

SL-JUSTIFICATION(name, node, (name}+inlist, outlist)

The standard vsc of justifications includes the primitive’s node in the inlist and its arguments’ nodcs in
cither the snlist or the ouist. depending on how they are used in the procedure. Ighoring the name/node

and infist/oudlist complexitics, justifications share the form of realization records: procedure plus

R e ks

arguments. Justification record the unconscious inferential actions of the program.

It might well be possible to make the treatment of justifications and realization records both
more uniform and more general, but that is Ieft for future rescarch.

Just as attivudes depend on the explicit belicf about their justification, attitudes concluded from
plan or primitive realizations depend on the realization records for those plans or primitives. Fach new
plan instance added to the current state of mind is justified monotonicafly in terms of a realization record.
Each conclusion drawn from a primitive includes the realization record in the inlist of the justification for

that conclusion. For example, if a primitive computes a value for one of the output variables of the

intention it is carrying out, it justifics this attachment in terms of the realization record. 1f it computes a

new value for some symbol (c.g the list of successaors of an intention theory), it likewisc justifics the new

i
»
4
3
3
é
pd

attachment in terms of the realization record, as well as using this record in a justification defeating the
justification of the previous attachment. With such records, the program can discard the cffects of an
action if it discards the memory of the action, say by deciding that it had merely haltucinated the action,

In more normal cascs, the program can trace the causes of circumstances described by its beliefs by

tracing backwards through the justifications of the beliefs, thus seeing part of their inferential sources,

back to realization records, then through the realization statements and the justifications of the intentions,

151

thus seeing part of their causal sources. We make usc of this sort of analysis in Chapter 6.
‘The interpreter also makes statements of historical order relating the realization records. These
are statements which el the temporal order in which actions were taken. These statements are of the

form

PRECEDING-ACTION(prior-realization-record, following-realization record).

Realization records also contain pointers to their preceding and following realization records in the
temporal order. Such statements are redundant in some versions of the interpreter, as discussed below,
when the interpreter records the order in which it acts on intentions. ‘The meaning of these statements
might be backed up by a theory of time. This would allow the program to reason about its history. For
cxample, its theory of time might include facts about the transitivity of PRECEDING-ACTION, about
the linearity of that ordering (if it is lincar), about (as Section 1.4.2 suggested) the non-occurrence of
deliberate actions which do not appear in realization records, ctc. Just what the program’s theory of time
and its actions should be is still an open question. Rescher and Urquhart [1971] survey many temporal
logics. Haycs [1970] (and to a lesser extent, also [McCarthy and Hayes 1969]) surveys temporal logics with
an cyc to applications in rcasoning programs.

Itis often possible to recover considerable information about the history of a particular attitude
by examining the complcte sct of reasons concerning it. Since primitives change attitudes by dcfeating
previous justifications on the basis of rcalization records, changes in the status of an attitude can be
inferred from a justification for it in terms of one action, a justification defeating the first in terms of a
later action, a justification defeating the second in terms of yet a later action, ctc. It remains for future
studics to pursuc a carcful development of such techniques.

Howcver, some interpreters may not record temporal orderings of actions. Humans frequently
cannot recall the order in which certain actions occurred, or that they took somce action rather than

another, or that they took somc action at all. These failures neced not all be failures of memory.

152

Sometimes plans or primitives will employ executives which, for efficiency perhaps. simply do not record i

all of this information. For example, the temporal order in which justifications are constructed is usually s
not recorded, although these justifications actually record actions taken by primitives. While it may be

possible to introduce such temporal records in a scrial computer, there is reason to suspect that the

parallel computations which may ultimately be necessary (and which may be used by humans) will rule

out having complete temporal records.

4.11 The Frontier :

We partition the set of intentions (current or not) into three scgments: the past, the present, and the
Suture. ‘The past consists of all the finished or discarded intentions, the present of all active intentions,
and the future of all pending intentions. ln addition, we fusther subdivide the future into the frontier and
blue sky. The frontier consists of all enabled pending intentions, and blue sky all blocked pending
intentions. The past thus contains all intentions that have been cither discarded or, more commonly,
carried out, the present all intentions currently being carried out, the future all current intentions yet to
be carricd out. the fronticr those current intentions which can be worked on directly, and bluc sky those

intentions which depend on the successful completion or satisfaction of prior intentions. The

& e svasemae s eae s et caees

terminology blue sky is meant to recall that the opportunity to work on bluc sky intentions depends on
everything going well, on no unforescen circumstances arising which lead to the premature abandonment
of the intentions duc to impossibility or inappropriateness. We make these distinctions because the

program normally acts only on the intentions on the frontier.

e ————

153

4.2 A Careful, Meta-Circular Interpreter

How does the program act on the basis of its desires and intentions? This question has many answers, for
interpretation of the current mental state is an activity itself, and like other activitics, can be performed in
many ways. For example, the basic steps of acting on the basis of the desires and intentions are (1) pick a
desire or intention to carry out, {2) pick some way of carrying it out, (3) carry it out via the sclected
maans, and (4) repeat these steps. There are clearly many ways of going about these steps. One can be
very carcful about what one is doing and deliberate at length in steps (1) and (2), or onc might just
carclessly pick a task and tack at random, or somcething in between these extremes. As another example,
onc might choose to work for sume while only on onc intention and its subordinates to the exclusion of all
other independent activitics, for instance, exclusively pursuing thesis-writing and its subactivities to the
exclusion of social and cducational activitics. In fact, this provides a way of viewing primitive programs
as extremely specialized exccutives, exccutives which start with one intention and singlemindedly pursue
it and its subactivitics (although the subactivities of primitives arc usually not explicit intentions but
rather further primitive calls). ‘Thus there is an extremely wide range of executives ecmployed by the
program, and the typical operation of cach of these is to exercisc control of the program’s actions until it
interprets an instruction to hand over control to some olhcf exccutive.52

‘This section describes a very careful and gencral interpreter. ‘This interpreter is particularly
interesting in that it is a meta-circular interpreter, one written in the language that it interprets. In this
casc, the standard way to do things carcfully is to plan them, and this interpreter, or TORPI as we will
call it, follows this strategy by being a plan containing a sct of plans, method statements, and policics for
interpreting the current state of mind, and so plans how to carry out its own intentions. The heart of

TORPID is the following plan, whose steps arc outlined in Figure 10.

62. This sort of approach (o program exccutives is sometimes called continuation-passing style [Stecle and Sussman 1976].

s b W —""f‘:.;v‘;l‘ S VoRaR I -
IETY. L, o i S
3 ——. = —

et . g b RO PRAB - P

PR |

Form intentions from desires

1

Select intention to act on

l

Select procedure for carrying out intention

!

Activate intention

l

Execute procedure

l

Continue: normally, repeat

Figure 10
The TORPID Procedure

| SO Sheans SO e

“ i e AL eu

P

T ke P

""‘"”"JL J

;;_

i

£ ____
g e gy

155

INTORPID: (implicitly inall the following)

(DE ¢ PLAN MACRO-TORPID ;Defplan, Choose, Aspect - explained below
(INTENTION 1-1 () () ((CHOOSE (ASPECT=AIM) (INTENTION=31 INTENTION(T))) () ()))

(INTENTION 1-2 () (INTENTIONS) (FIND-fRONTIER-INTENTIONS () (INTENTIONS)))

(ANTECEDES [-11-2)

(INTENTION [-3 (INTENTIONS) (CHOSEN-INTENTION)

{({CHOOSE (ASPECT=CHOSEN-INTENTION) (INTENTION=1-7)) (INITIAL-OPTIONS) (OUTCOME)))
(ENTENTION 1-4 (CHOSEN-ENYENTION) (METHODS) (FIND-INTENTION-METHODS (INTENTION) (METHODS)))
(INTENTION 1-5 (METHODS) (CHOSEN-METHOD)

{ {CHOOSE {ASPfCT=CHOSEN-METHODS) (INTENTION=1-7)) (INITIAL-OPTIONS) (OUTCOME)))
(INTENTION 1-6 (CHOSEN-INTENTION) () (ACTIVATE-INTENTION (CHOSEN-INTENTION) ()))

(ANTECEDES I-51-6)

(INTINTION 1-7 (CHOSEN-INTENTION CHOSEN-METHOD) () (EXECUTE-INTENTION (INTENTION) (METHOD)))
(ANTECEDES 1-6 1-7)

(INTENTION 1-8 () () (CONTINUE () ()))

(ANTLCEDES 1-7 1-8))

Here we have used a syntactic macro to make a somewhat less verbose syntactic form for defining plans."3
In DEFPLAN, one first specifics the name of the theory, MACRO-TORPID. and then in the body of the
macro specifics the desires, intentions, and other parts of the plan with further syntactic extensions. The
syntax for intentions spegcifics first the name of the intention in the plan, then the list of names of inpu:
variables, the list of output variable names. and finally the aim. The aim consists of the type of the aim
theory, together with two lists of names. These should be names of parts of the aim theory, to be
identified, respectively, with the lists of input variable names and output variable names of the intention
to set up the keyword mapping of variables. In addition, the macro automatically sets up dataflow
policies between all similarly named intention and plan variables, unless the names are mentioned in
cxplicit dataflow policies.

What does this plan say? MACRO-TORPID's first step is to deliberate on things to do, to form
intentions from some of its desires. This decision is formulated as an intention to choosc aims (and,

actually, variables as well, but that is Ieft out for simplicity) for some unspecified intention. The intention

is identificd as a decision intention by the aim keyword "CHOOSE." The "ASPECT™ statcment indicates

63. The cxact details of this macro and syniax are yet 1o be worked out, but the main points should be clear. If somcthing in the
following scems underspecified, i is.

IS T b NPER TR oW IR TN

- -

156

what part of the unspecified intentien is 10 be filled in with a value. As its sccond step the interpreter
finds the current sct of frontier intentions, and names this with the plan-variable INTENTIONS. The
third step is to chouse one intention from this set and call it CHOSEN-INTENTION. This decision is
formulated as a choice of a value for the varnable CHOSEN-INTENTION of I-7. Fourth, the plan
retrieves a list of methods relevant to carrying out the chosen intention, and calls this METTIODS. Fifth,
it sclects one of these methods by using an intention to sclect a valuce for the variable
CHOSEN-METHOD of I-7. The sixth step activates the chosen intention by changing its status.
Seventh, it realizes the sclected intention via the sclected method. Eighth and finally, it continues
intcrpreting.

MACRO-TORPID, to work as we have indicated, must be supported by a nuimber of other
plans, the appropriate method statements, and policies.

The first step of MACRO-TORPHD relies on a carcful detiberation procedure. The next chapter
presents one of these. In this step, it is used to decide if any new intentions should be formed to pursue
current desires.

‘The second step of MACRO-TORPID gathers up the current frontier intentions by means of a
simple primitive program (omitted here) which scans the sct of intentions for fronticr intentions.
(Alternatively, the actual implementation maintains a Jist of all fronticr intentions, and modifies the list’s
contents when intentions and ordering policies are added and realized.) This primitive is declared to be
the default method for this intention by a policy. Here we employ further syntactic macros to define Lisp
functions as primitive concept attachments (DEFPRIMITIVE), to declare construct method statcments
for aims and procedurcs (DEFMETHOD), and to declare policies (DEFPOLICY) by giving the
antecedent and consequent of their aim, the conseguent being a list of instructions to be carricd out (as
the next chapter cxplains).

(OEFPRIMITIVE BASIC-F IND-FRONTIER-PRIMITIVE () (INTENTIONS)
...omitted. .)

Sl T Y L e P

- —— e

157

(DE§ME THOD BASIC-F IND- FRONT IER-ME 110D
(AIM [ATM | -2 INTENT LONS MACRO- TORPID])
{PROCEGURE BASTC-FIND-FRONTIER-PRIMITIVE))
(DETPOLICY BASIC- T IND-FRONTILR-DE FAULT-POLICY
{1 ({AIMPURPOSE DECISION] =
(CHOOSE -ME THODS [ATM 1-2 INTENTIONS MACRO-TORPID])))
(THEN (DEFAULT BASIC- IND-TRONT IER-ME THOD)))

All of the following steps of MACRO-TORPID are carried out by similarly described primitives, which
we will not give here, except for the last step of continuing exccution. In this casc, the default method for

continuing exccution is MACRO-TORPID itself.

(DETME THOD BASTC -CONT 1 NUT - MEYHOD
(AIM [AIM 1-8 INTENTJONS TORPID})
(PROCEQOURE MACRO-TORPID))
{(DLIPOLICY BASIC-CONI INUE ~DEFAULT-POLICY
(11 ([AIM PURPOSE DECISION] =
{ CHOOSE -MEL 1THODS [ATM T-8 INTENTIONS MACRO-TORPID])))
(THEN (DEFAULT BASIC-CONT INUE-METHOD)))

‘This TORPID plan is all well and good, but how does the program get going in the first place?
‘I'he answer is that it contains a primitive exccutive specially tailored for interpreting MACRO-TORPID.

This exccutive is the following 115p% primitive program.

(DEFPRIMITIVE MICRO-TORPID ()
(PROG (INTENTIONS INTCUNTION MLTHODS METHOD)

(SETQ INTENTIONS (MICRO-TORPID-F IND-FRONTICR- INTENTIONS - PROCEDURE))
(SETQ INTENTION (BASIC-CHOOSE -NEXT- INTENT 1ON-PROCEDURE INTENTIONS))
(SETQ METHODS (BASIC-F IND- INTENTION-METHODS-PROCEDURL INTENTION))
(SETQ METHOD (BASIC-CHOOSE - INTENTJON-ME THOD-PROCEDURE TNTENTION METHODS))
(BASIC-ACTIVATE- INTENT ION-PROCEDURE INTENTION)
(COND ((PRIMOP? METHOD)

(BASIC- INTENTION-LXECUTION-PROCEDURE TNTENTION METHOD))

(7 {BASIC- INTENTION-REDUCT TON-PROCEDURE INTENT ION METHOD)))
(MICRO-TORPID)))

MICRO-TORP1D has roughly the samie steps as MACRO-TORPID, but with the defaults of TORPID

built into place. It calls the TORPID primitives directly, except for the decision of what intention to work

64. Actually, SCHI'MI: would be better. The recursive call of the last Jine would have Lo be replace by a loop for it to work in
LISP.

v.d

PPV

b T W G E G BN S

158

on next, for which MICRO-TORPID uscs a procedure which looks only for intentions resulting from an
instantiation of MACRO-TORPID. Also, MICRO-TORPID doces not deliberate on what to do because it
only looks for intentions resulting from an instance of MACRO-TORPID.

l.et us sec how this works.

1. We start up the program by constructing an intention to CONTINUE and exccuting
MICRO-TORPID.

2. Because there are no other intentions, MICRO-TORPID picks this intention as the next step,
findy its default method, namely MACRO-TORPID, and reduces the intention to the new plan, a copy of
MACRO-TORPID. MICRO-TORPID then begins work on MACRO-TORPID.

3. MACRO-TORPID's first step is to deliberate on what to do. For this it uses a careful
deliberation procedure as described in the next chapter. ‘This deliberation procedure finds possible
courses of action by mcans of a policy to fulfill the desires if possible. The ordering policics between the
desires. and other policics as well, provide reasons for and against these options. When this deliberation
is finished, all options that have good reasons for them and none against them arc used to form new
intentions.

Intention formation seems to be ill-studied, to the best of my knowledge. The approach taken
here is no more than an initial, and likely unsatisfactory, proposal for how this might be done. In
MACRO-TORPID, normally all desires eventually arc pursucd by forming intentions to pursue their
aims. This step is the means by which intention formation occurs. No intentions might be formed, or
scveral might be formed, depending on what sorts of policics enter into the decision-making. For
cxample, pulicies which reflect on the resource limitations implied by the program’s current intentions
might rule out forming any ncw intentions. Policies which reflect on the consistency of desires and
intentions may rule out some desires but not others. Or at the other extreme, the program might find
unchallenged reasons to pursuc all its desires, and form intentions from all of them. This subject deserves

more scrious atteation than | have been able to give it.

v b

PRTRTIY Spvr

159

1t might seem that this step could he combined with MACRO-TORPI's third step of picking
an intention to carry out. but this cannat be, for two reasons. First, onc can decide to pursue a desire, but
not an intention. 1t makes no sense to intend to intend to do something. Sccond, if one deliberated about
desires and intentions simultancously, one would need values comparing desires and intentions, which
also makes no sense. In fact, one way to compare intentions might be to compare the strengths of the
desires they were formed from, if there were any. but intentions cannot be comparced with desires directly.

4. MACRO-TORPID's sccond step is to find the frontier mientions. At this point, there are no
tronticr intentions. because the only other intentions are those in MACRO-TORPID itsclf, which are
blocked for lack of input variable values. Thus when MICRO-TORPID retricves and deliberates on
methods for this intentions, it not only finds the default primitive, but also the following backup

primilive.(’5

(DEFPRIMEITIVE INPUT-NEM-INTENTIONS-PRIMITIVE {) (INTENTIONS) ...)
(DEFMETHOD INPUT-NEW- INTENT ION-METHOD
(AIM [AIM 1-2 INTENTIONS MACRO-TORPID])
(PROCEDURE INPUT -NEW- INTENTIONS-PRIMITIVE))
(DEFPOLICY INPUT-BACKUP-POLICY
(IF ([AIM PURPOSF DECISION] =
(CHOOSE -ME THOD [AIM 1-2 INTENTIONS MACRO-TORPID])
A (BASIC-FIND-FRONTIER- INTENTIONS-PRIMITIVE) = NIL))
(THEN (CON (OPTION 'BASIC-FIND-FRONTIER-INTENTIONS-METHOD) (SL (INPUT-BACKUP-POLICY) ()))
(PRO (OPTION ' INPUT-NEW- INTENTIONS-METHOD) (SL (INPUT-BACKUP-POLICY) (}))))

Thc backup primitive INPUT-NEW-INTENTIONS-PRIMITIVE queries ihe user for some intention to
work on and waits for a reply. The backup policy leads MICRO-TORPID to sclect and exccute this
primitive for finding ncw intentions rather than the normal one which just looks at the frontier,

S. At this point, we enter construct somie intention along with procedures for carrying it out.

65. “This should be donc in some better way. such as reflecting on how to praceed as does NASH with reformulation intentions, but
1 have nat attended 1o this problem yet. 1f done properly, we could just call MICRO-TORPH) at the start and let it ask for the
initid MACRO-TORPID CONTINUE intention. This primitive also shows the paucity of communication of the program with its
cnvironment. I all new information is gathered unconsciously by primitives or added by the uscr while the program's operation has
been interrupted. then the program is unconscious of its environment. Vo have the program be conscious of its environment as well
as mercly self-conscious, it must have information about its scnsory and cffective mechanisms so that it can usc its communication
channels deliberately, rather than simply reacling (o their automatic functioning.

e i FREST BRET e e,

3

oh gl R Sk e o R L.

e

B~ U P

160

We ignaore the details of this, for our concern is primarily with watching TORPID.

6. The backup method now returns the new intention as the fronticr. This frontier is recorded as
the value of the plan variable INTENTIONS. Thus while exccuting TORPID, the program lcaves behind
records of the intentions it saw at some past step of interpretation. This is an important picce of historical
information uscful in the skill modification processes discussed later.

7. Next. MACRO-TORPID presents the frontier intention of choosing which intention to work
on from INFENTIONS. MICRO-TORPID sces both this intention and the non-TORPIHD intention on
its frontier. but restricts itself to working only on intentions stemming from instances of
MACRO-TORPID, so works on MACRO-TORPID's third step.

8. MICRO-TORPID carrics out MACRO-TORPI's third intention by the default method,
which 1s a general deliberation procedure. MACRO-TORPID's third step is not one of forming any
number of intentions, but rather onc of deciding on a single value for an aspect of a current intention,
namely the variable CHOSEN-INTENTION of I-7 in the current instance of MACRO-TORPID. The
deliberation procedure sets up the frontier intentions transmitted through INTENTIONS as the initial
options. It proceeds to find reasons for and against carrying out cach of the intentions next. Finally, it
decides on one, and attaches that vatue to the specified variable of 1-7.

Actually, we have been needlessly redundant in MACRO-TORPID for the sake of clarity. The
policies relating intentions that determine the frontier actually enter into this deliberation, so we can just
as well dispense with step 1-2 (and similarly, 1-5) by beginning dcliberation with a policy to make all
pending intentions options, and then forming reasons for and against these options from the policies.
This would also make unnccessary the complex system of justifications between intention statuses used to
compule the frontier.

All in all, the deliberation procedure subsumes all the special case information mentioned
above. The list of options of the deliberation record shows what intentions were considered at this time,

and the list of considerations shows the extant policics. In addition, there may be other policics relevant

o

i
i
Fy
L
i
i
o

10 this decision besides the policies. In fact, some of the current ordering policies might be defeated by

special-case policies, so the frontier as scen from looking just at the temporal ordering policics is not

always completely accurate.
At any rate, the deliberation procedure in this case chooses the sole non-TORPH) intention as

161

its outcome. and so the plan variable CHOSEN-INTENTION is given this value.

9. Next, MACRO-TORPID retrieves a list of methods for carrying out the chosen intention and
stores the Jist in METHODS. 1t then deliberates to find a method as the value of CHHOSEN-METHOD.

As above, the deliberation step actually subsuines the prior retrieval step.
10. MACRO-TORPIDY's next step performs some bookkeeping functions, primarily to change

the status of the chosen intention to active,
1. MACRO-TORPHD then has the step of realizing the chosen intention by the chosen method.

It performs this realization cither by executing the procedure sclected as the method or by adding the
mecthod plan to the current state of mind. ‘This intention of MACRO-TORPID forms the realization
statement connecting the intention and its realization, obviating the need for the interpreter to make such

a record specifically. In addition, since the ordering for the steps of MACRO-TORPID is a standard

lincar order, we also get historical ordering records between the realization records automatically.

12. Finally, MACRO-TORPID again presents the intention of continuing, and the process starts

again. The connection between this intention and the new instance of MACRO-TORPID then forms the

next part of the chain of historical order.
This concludes the example of TORPI's operation.
‘The program nced not operate solely by using TORPID as the interpreter, but might use at

different times a number of interpreters. In fact, the program can employ a slight gencralization of

MICRO-TORPID which records the desired records (or not) without going to the cxtremes of

deliberation met in TORPID. The program can switch between “careful” mode and a normal heedless

mode which does not record as much information by the following technique. Say that the plan to be

162

executed s o carcfully perform some action, Then the first step of the plan is to switch to the careful
interpreter by means of o CONTINUL intention. The remainder of the plan then is exccuted by
MACRO-TORPI. In addition, the plan sets up the return mechanism by having its last step be one
which temporarily changes the default method for CONTINUE to the standard interpreter (or whatever
exccutive is desired next). Since MACRO-TORPID will be careful in reducing its continuations, it will

resume with the specificd exccutive rather than MACRO-TORPID.

= —— s e e

163

CHAPTERS

DELIBERATION

How do we ever manage o make decisions? The overwhelming fact of our lives is the dilemmas and near
dilemmas that confront us, the difficult decisions which force us to sacrifice one hope for others. We are
constantly torn between seemingly incompatible principles of action. To decide what to do we must
reconcile these principles to choose the moral, the kind, the expedient, or the comfortable thing to do.

Dileiinas and difficult decisions involve reasons for conflicting courses of action, reasons
formulated in disjoint vocabularics and value systems. To resolve dilemmas, whether they be mighty or
mundane, the decision-maker needs to reflect on these conflicting reasons, to consider what value-systems
cach rcason belongs to, and to judge which reasons take precedence over which other reasons. We must
be content to make these precedence judgements in a case by case fashion without absolute principles or
reductions relating the disjoint valuc-systems like "Any mora: reason takes precedence over any economic
reason.” ‘This chapter explores such a decision-making method called reasoned deliberation in which the
deliberation procedure can reflect on the reasons for and against courses of action, and make judgements
about these rcasons specific to cach particular decision and its circumstances.

The basic idca of recasoned deliberation builds on the mechanisms developed in the preceding
chapters. The program first formulates its intention to make a decision as a decision intention. It then
makes the decision by exccuting a deliberation procedure, which is retricved as a method for carrying out
the decision intention. There are many sorts of deliberation procedures corresponding to the many sorts
of decisions to be made, but the typical gencral-purpose deliberation procedure constructs a set of
options, a sct of relevant policics (called considerations), and a sct of reasons. The policies retricved from
the current sct of intentions as being relevant to the decision are carried out to construct reasons for and
against the options, and to augment the sct of options with new options. However, cach reason

constructed by carrying out a policy for a particular decision is a non-monotonic assumption. Each policy

— g T T~ T e

164

represents an intention to reason in a certain way, and this intention is satisfied by constructing the
appropriate reasons. The policy's putative effect may fail to be realize because the policy's application in
a particular decision may be defeated by other policies concerning special cases, cxceptions, or
preferential relations among types of reasons, ‘The deliberation procedure reflects on cach new reason to
find further policies relevant to the new reason. These further policies might construct reasons against the
original reason. Since the reasons arc non-monotonic assumptions, these new reasons defeat the original
reason, defeating the apptication of the original policy in this particuiar casc. Of course, these defeating
reasons can in turn be defeated. Finally, the deliberation procedure reflects on the entire set of reasons to
decide whether to make a decision on the basis of the constructed reasons, to postpone the decision, to
dcliberate further, or to reject the decision.

Reasoned deliberation plays an important role in the operation of the program. For example, in
some cases this sort of reflective decision-making is used by the interpreter to form the intention to
pursuc some desire, to select which intention to carry out next, or which method to use in carrying out the
sclected intention. In Chapter 6 we will indicate further applications of reasoned deliberation in deciding
how to revise or modify the program’s sets of beliefs, concepts, desires, intentions, values, and skills.

Of course. not all decisions are made by procedures of the complexity outlined above. In many
cases, one has decided in advance how one will make a type of decision in certain circumstances, and
when such occasions arise, onc simply exccutes that procedure. These prior decisions with their built-in
presuppositions can fix assumptions or the use of particular policies in a specialized decision procedure,
so that the special-case procedure nced not be as complex in operation as the gencral procedure which
has to retrieve and decide how o apply assumptions and policies on the spot. In fact, this deciding how
to decide is a common activity. Since the plans and primitives of the program are really specialized
exccutives making certain types of decisions, the choice of which method to use in carrying out some
intention constitutes a decision about which further decisions to make and how to make them. This is

clearest in the casc of deciding what procedure to use in carrying out a decision intention. Since the

P

> e A W ———

165

library of procedures is organized hicrarchically, these decisions about decisions are made in a similar
hicrarchical fashion. ‘This can be viewed as analogous to the practice in large corporations and other
organizations in which cach level of management makes some decisions itself, but spends a good bit of
cffort in deciding how t delegate decisions, that is, who should make the lower level decisions.
Eventually someone makes decisions about concrete matters, but his position is the result of many prior

decisions about who should make decisions.

5.1 The Variety of Decisions and Ways of Making Them

‘There arc many different sorts of decisions onc makes, and different decisions call for different
procedures for making them. For example, we can imagine different procedures for buying a can of tuna,
for buying a car, for sclecting onc's job, und for thinking of what to do tonight.

Example 1: Grocery shopping. When shopping for some item in a supermarkct, say a can of
tuna. my standard procedure is to buy the same brand and sizc as | bought before, unless prices scem to
have changed or there is a sale on some comparable item. On some occasions, my usc of a product
previously has made me dissatisfied with it, so | do not even bother to check for a sale, but rather use a
completcly different procedure from. the start: to comﬁarc all the available brands and sizes, their
reputation and looks and specifications, and choosc something different from before, cven if just to
experiment. A further different way of buying a product, which 1 only cmploy in exccptional
circumstances, is to go in, compute which product is cheapest in unit price, and buy that.

Fxample 2: Buying a car. In contrast to grocery shopping, buying a car is ncver routine, but is
always a major decision. ‘This is reflected in the ways of choosing what to buy in the extra care, prior
experimentation, and time allotted o making this decision, Where 1 might be content to experiment on
my own to find my preferred brand of tuna, 1 am likely to begin a scarch for a car by talking with friends

to get their expericnces, by reading car magazines and Consumer Reports, by making the subdecision of

——y — -~

>

SRV

e W, s e

166

whether to buy a new or used car, and by visiting several vendors, kicking tires, and making road tests of
; several models. |
Example 3: Choosing a job. Assuming one’s financial situation Icads one (o take a job, onc faces .
different problems in choosing one than in buying tuna or cars. Here any prior experimentation with the
jub becomes part of the job, so one cannot perform prior experimentation in the same way as with cars,

Instead. the major bases are, for example. one’s self-analysis of what one likes, what opportunities ase to

] be had or made in different lines of work, and how onc’s favorite role models carn a living. These

' deliberations sometimes involve considerations which in essence reject or postpone the choice, such as :

! :
choosing a deliberately temporary occupation to be rethought later or to continue schooling. !

Example 4: What to do tonight. This question is much like the question of what to do next that

4 the interpreter faces at cvery step of its process. However. for humans, deliberating on this question ¢

usually involves not just a sclection between current intentions, but invention of options by, for example,

looking in a newspaper or asking friends to see what is in town, or walking through a bookstore or library
to sce if there is anything interesting to read, as well as thinking about standard possibilitics like visiting
fricnds, museums, ice-cream parlors, or coffechouses,

‘These examples illustrate several different procedures for making specific sorts of choices. The

actions involved in these procedures range from making simple arithmectical calculations to running

o — o ——— e —

extensive physical tests on machinery to mental tests of oneself or others. While onc might use an
abstract deliberation procedure in novel situations, cfficiency dictates that we employ special purpose

procedures in routine cascs. Such specialization might restrict the options involved so that we do not

waste time scarching for unusually creative ways of procuring tuna (placing wantads in a paper, for
example), or might restrict the sorts of reasons we take for choosing which option, such as computing the
cheapest unit price instcad of physically inspecting a fishing flect or cannery.

Aside from classification by types of decision, the major gencral classification of decision

procedures is whether the procedure chooses or deliberates. ‘This distinction is traditional in discussions of

167

decision-making, and attempts to draw an (admittedly hazy) line between reflective (deliberation) and
non-reflective (choosing) decisions. For example, at a party someone offers you a tray full of drinks, and
you pick one without thinking about it. This is called choosing, as it did not involve considering all the
option and reasons in detail. One might also perform choosing if one has sequential preferences for
icc-cream flavors, and one always orders a flavor by checking the parlor's list of available flavors and
taking the one highest on onc’s own list. However, onc is deliberating if onc picks the drink after first
considering "Should | have another? Whao is driving home?" or picks the flavor by trying scveral samples
and deciding which onc is the most intriguing. Thus in choosing, onc follows a routine procedure which
has only fixed variability, or whose variables depend on the external world and not on onc’s store of
guidetines. Deliberation, on the other hand, varics with what principles one has adopted and retrieves
upon thinking about the question.

We only bricfly discuss choosing, about which we just recall the carlier suggestion that choosing
procedures arc programs “compiled” by fixing in advance the policics to use as implicit assumptions. For
cxample, onc might employ a policy in buying tuna which computes the unit prices and constructs a
reason for the tuna with the lowest unit price. If onc decides in gencral to act on this policy alone, one
can take the policy and computation code used to carry it out to produce a procedure which simply makes
the computation and justifics its answer, to be used instcad of the general procedure which would have
had to retricve, apply, and dcfend this policy.

The remainder of this chapter concentrates on deliberation.

5.2 Decision Intentions

Decisions arc mcdiated through decision intentions, which arc intentions to make certain decisions.
Pecision intentions are just likc other intentions, cxcept that their aim is to make some dccision.

Decisions arc all of the form of choosing between alternate actions, although the actions may be mental,

by

LR E oF R g DT et dh SRS L
pt ¥- had PRSI, 2
s, e R E aeh A, T8 IR
bliilnst -

4

A

|
f ,

168

such as believing something, as well as physical. Thus the aims of the decision intentions are all of the

form (CNOOSE aspect-name action-description), to be interpreted as the intention (o find a value for the ‘ tl
aspect-name Of action-description. But action descriptions arce really potential intentions, so the aim of |
the decision intention really reads as (CHOOSE aspect-name intention). [-rom the hicrarchy of aims of
intentions and the related hicrarchy of intentions, we so derive yet another hicrarchy, that of decisions. In i
the aim of a decision intention, aspect-name can be any term referring in the intention theory. [f the

aspect name is a1u, then the aim of the decision intention is to find an aim for the intention, that is, what

: !
to do. the most general question of action. If the intention theory already has an aim, then the aspect : ‘
] !
. [3 :
name might refer to some term in the aim theory or in onc of its subthcorics. Thus we might have the : !
i
i
following hicrarchy of decisions corresponding to a hicrarchy of intentions described by a hicrarchy of i
aims. :
DECISIONS
wnat to do
What to buy Where to go
What food to buy Where to go this summer ’ i
What tuna to buy where to go in Disnaeyland this summer
H
INTENTIONS ‘
Do THING . i 3
A
Buy THING Go PLACE WHEN
Buy FOOD Go PLACE this summer F
Buy tuna Go PLACE inOisneytand this summer 1
AIMS
AIM of intention
Object of (Buy) AIM Location of (GO) AIM
Object of (Food-Buy) AIM Location of (GO with WHEN=this summar) AIM '
Object of (Tuna-Buy) AIM Location of (GOwith WHEN=this summer AREA=Disneyland) AIM i

| . a— — -
M

|

}
i i
vt
.-I ———

169

5.3 Deliberation Records

We introduce the convention that the important information concerning a deliberation is recorded in a
deliberation record. A deliberation record is a theory constructed by deliberation procedures, and can be
thought of as a record of the basic variables common to all deliberation procedures along with their
values in the deliberation at hand. A deliberation record theory has several parts: a purposc, a list of
options. a list of considerations, a list of reasons, a list of reflections, and an outcome. We explain these
parts in turn. See Figure 11 {or a picture of how these picees of information are related.

The purpose of the deliberation record is simply the decision intention being carried out by the
deliberation procedure. Deeper purposes or reasons for why the program is making the decision are
found by pursuing the rcasons for this decision intention.

‘The fist of options lists the objects being decided among, the possible values for the aspect of the
intention being deliberated about. ‘The interpreter, for example, makes decisions whose options are the
desires to pursuc next, the possible values (or identities) of some variable, the methods retrieved for some
intention, or the possible revision of belief which restore consistency. They nced not be exclusive in any
sense.

The list of reasons lists the rcasons for and against choosing the scveral options. In addition, the
reasons themselves are treated as things to reason about, so the set of reasons also contains the reasons for
and against the rcasons as well. All rcasons are recorded as explicit, defeasible justifications as described
in Section 3.11. Rcasons for and against options arc made as justifications for, respectively, statements of
the form PRO(option) and CON(option) in the theory describing the list of options, where option is the
name of an option in that thcory. Rcasons for and against other reasons arc made justifications
supporting or defeating the other reasons. RMS then determines the status of the arguments comprising
these reasons.

The list of considerations lists intentions to apply the policics retricved as relevant to the

B e ke R IR SR S

Intention to decide Policies
(purpose)

)\

\

Relevant policies
(considerations) re—

Options Reasons

Intention to specify
(outcome)

Figure 11

Information Flow in Deliberations

171

deliberation record’s purpose. Typically these policies produce one or more reasons in the set of rcasons,
or add to or otherwise modify the sct of options. Considerations arc kept separate from the reasons they
produce. because policies may be relevant even if they lead o no reasons. One sometimes says something
is a consideration even if it implies no reason or option in the particular situation at hand, b.ut does when
in stightly different situations.

‘The list of reflections of the deliberation record lists the higher-level deliberation records created
by dcliberations reflecting on the progress of the decision intention. We will explain these reflective
deliberations soon. These reflections are not used by the detiberation record itself, but rather aid the
reflecting deliberations in accessing the results of previous reflecting deliberations.

The outcome of the deliberation record is the chosen option, if and when one is chosen,

These picces of information are represented as attachments to the terms PURPOSE, OPTIONS,
CONSIDERATIONS, REASONS, REFLECTIONS, and QUTCOME in the deliberation record theory.
PURPOSE is attacu.ed to the decision intention, and this attachment is justified in terms of the realization
record of the deliberation procedure carrying out the intention. The outcome, when it is found, is
attached 1o OUTCOME with a similar justification. OPTIONS, CONSIDERATIONS, and REASONS
arc all attached 1o theories whose languages include the numerals 0, 1, 2, etc. Each of successive option,
consideration, and reason is attached in these theories to onc of these numerals, in the order of their
discovery, thus recording something of the temporal order of the deliberation. Options and reasons are
constructed by policies in the set of considerations, and their justifications reflect the policies and other
facts used in applying the policy. Considerations are attachments to intentions (as cxplained in the next
section), and these attachments are justificd in terms of the retrieval procedure used and the data the
retricval procedure accesses, such as the purpose of the deliberation record and other beliefs. Note that

the recasons constructed by a consideration depend only on the policy, and not on how it was retrieved.

IR O D s s - Bhiiiibe . S S

o ARG e e Saue e oA aeREAus .

C e amy

172

5.4 Policy Fxecution

Policies are intentioas with hypothetical aims, and as such, cannot be carried out directly. Instcad, when
conditions arisc which might satisfy the condition of the hypothetical aim, the policics are used to form
further intentions, intentions whose aims arc to check if the policies arc indeed applicable in the current
circumstances. and if so, to carry out the consequential actions specified in the aims of the policies.

Policies are retricved by procedures which scan the current set of intentions for policies whose
aims have a condition subsuming the aim of the decision intention. Actualy, the dcetails oi how this
should be done have yet 10 be worked out, for the conditions specificd by policies can include
information other than that of the decision intention’s aim, such as current belicfs. other intentions, eftc.
However. the retricval procedures are not burdened with determining actual applicability of the policies,
but mere relevance. This lesser requirement might be discharged by using explicit statements that certain
classes of policics are relevant to certain classes of decisions, or by other means, but we Icave this question
to be answered by future study.

For cach relevant policy retrieved, a new intention is formed. The new intention’s aim is to
apply (or consider) the policy in the current circumstances. The intention is made a subordinate of the
decision intention, and is justificd in terms of the policy, the decision intention, and the relevancy
procedure. ‘Fhe new intention is added to the list of considerations of the deliberation record.

Fach consideration intention is carricd out as usual by the interpreter. A consideration may be
carricd out by any of several sorts of proccdures. The common function of these procedures is to first
check if the policy is actually applicable in the current decision, and if so, to carry out the policy’s
consequent instructions These application procedures differ primarily in how careful they arc in checking
applicability and in carrying out the consequent instructions.

The default procedure for applying policics is a primitive which acts as follows. It first checks to

sce if the policy is applicable by applying to the policy's aim’s antecedent a standard procedure for

PRE ST P

RS

-t mn kDt e U w2 s

—— -

173

evaluating whether a logical formuta holds in the current state of mind. For example, the FOI. cvaluator
[Weyhrauch 1978] might be used. This procedure need not be perfeet, for the default procedure is
intended only for use in the simple routine cases. Since the policy’s aim’s antecedent is just a fogical
formula expressing some condition of the program's state, this test results in answers of cither "it holds,”
“it doesn’t hold.” or "can’t tell.” Whatever the answer, a statement to that effect is recorded in the
deliberation record, justified by the information and procedure used in the cvaluation. This might permit
later reconsideration of a policy whose applicability could not be determined carlier for lack of
information. 1 the policy is inapplicable, or if its applicability cannot be determined, no further action is
taken. If the policy is applicable. its consequent is interpreted as a sequence of instructions for actions to
be taken. ‘The vocabulary of these instructions is given in Section 5.6. They arc carried out immediately
by calling other primitives.

If a policy is not routine and deserves more careful treatment than this, other, more complex
application procedures can be supplied to override the default application procedurcs. The care witi
which policics are applied can be increased in many different ways. We sketch two of these.

A policy might be applicd by carcfully checking applicability and routinely exccuting its actions.
That is, the applicability procedure is a plan of two steps. The first step is an intention to determine
whether or not the policy is applicable. By making this step an explicit intention, the full power of the
rcasuner can be applied to carrying it out, rather than relying on a fixed and strongly limited evaluation
procedure. The sccond step of the plan is an intention to act on the answer determined. This step is
carricd out by a primitive which acts like the default procedure, checking the answer and if it is that the
condition holds, then calling primitives to carry out the policy's conscquent instructions.

Another way to increase the care with which a policy is applicd is to treat the conscquent of the
policy’s aim as a plan. In such an applicability procedure, if the policy is applicable, then all of the
instructions would be converted into new intentions and added to the current state of mind.

Policies might bc applicd by a combination of these refined procedures, or by yet other

e L TR R S B

>

174

refinements.

55 Policy Applicability

Conditions of applicability typically refer to the superiors and other reasons for the purpose of the
deliberation, to other intentions (such as the brothers of the purpose). to current beliefs, their reasons,
and o the reasons and state of the arguments for and against the options in the deliberation record. For
cxample, a policy to hold doors for fadies might be applicable only if the program currently believes it is
near a door and whether there is a lady approaching. A policy not to act for chivalrous rcasons might be
applicable only if onc of the reasons in the dehiberation record is a repercussion of policics having to do
with chivalry.

We again digress bricfly to discuss deontic logic. We previously mentioned how retrieval of
methods for carrying out intentions is related to the question of what commands or obligations are
entailed by a command or obligation. Another question addressed by deontic logic is when commands or
obligations can be inferred from beliefs together with previous commands or obligations. This is closely
conncected with the question of policy application. Policy application involes inferring a number of
intentions (commands, obligations, ctc.) from belicfs, imcr.ni(ms. and other aspects of the current state of
mind. However, our approach makes this question trivial in principle, one purely of the validity of a
logical statement about the current state of mind. Many deontic logics arc complicated by the need to
account for the defeasibility of reasons produced by policies. Our trecatment suggests that this should not
complicate the inference of intentions from policics, but should be scparated into the treatment of the

reasons constructed in carrying out these derived intentions.

A N X

el

\

Py T RVIPRETRIP R W B S LY BV

-]

175

5.6 Policy \ctions

The actions of a policy cither add new intentions as subordinates of the decisior tention, options to the
list of options, considerations to the list of considerations, or reasons to the list of reasons. We describe a
few of these sorts of actions which form an initial vocabulary for decision-making activities.

The first sort of action is that of constructing a new subordinate of the decision intention.
Subordinate addition is donc with the comimand (SUBORDINATE intention justification). ‘The
intention is the theory describing the intention to be added to the current state of mind. The
justification is the justification to be used for the new subordinate. The justification usually mentions the
policy, the application procedure, the realization record of the deliberation procedure, and any beliefs or
other items uscd in determining applicability of the policy.

The sccond sort of action is that of adding new reasons to the set of reasons. One can add
rcasons cither for or against cither options or reasons. We write these sorts of actions as (PRO
{options/reasons} justification) and (CON {options/reasons) justification). In these and the
following actions, options and rcasons are referred to by their names in the lists of options and reasons,
which are picked up by the condition of the policy.

Another action on the set of rcasons is (PREFER 0 {X ... Z} justification), where cach of O, X,
... and Z. arc options. Preference is translated as "Any good reason for O is a reason against any of X, ...,
7.” so that a lesser option will have a good reason against it as long as a good reason holds for the
preferred option and no special exceptions are being made (for example by some other policy reasoning
against the preference statement). Preferences add a new policy to the list of considerations and to the
current sct of intentions whose aim is to reason against any reason for the lesser options (using CON
abvinc) whenever a reason for the preferred option is found.

A related action is (DEFAULT option justification), which mecans that option is to be the

1 tault outcome This s incerpreted by giving the option a PRO (as above), and then to use any good

176

reason for any other option in a rcason o defcat this pro reason. This similarly is implemented by
constructing a ncw policy.

A further action along these lines is (BACKUP {01, 02 ...} justification) which is the policy to
make Ol the default, and to make On+ 1 the Jefault if On is defeated.

Onc might restrict the set of options, by providing a reason against any options not in the
restriction. We say this with cither (RESTRICT (X ... 7} justification), of (DECIDL-BETWEEN {X ... 2}
justification), where X, ... 7 arc options. A preferential restriction, (PREFERABLY -RESTRICT {X ... Z}
justification) OF (PREFERABLY-DICIDE-BETWEEN {X ... 7} justification), uses any rcason for any
restriction option as a reuson against cach outside option. These also construct policies.

We add new options with (OPTION X justification) or (OPTIONS {X ... Z} justification),
where here X, ... 7 can be any objects of the sort required by the purpose.

An action operating on both rcasons and options is (REPLACE (W ... X} {Y ... 2}
justification), wherc cach of W, ..., X, is an option ard Y, .., 7Z can bc anything, and arc added as
options. This means to replace the former sct of options by a new set of options by preferring cach of the
replacing options (o each of the replaced options, However, no new rcasons for the replacing options are
constructed. The action (COMBINE {X ... Y} Z justification) prefers Z to X ... Y and constructs a PRO
reason for 7. in terms of the policy and the reasons for the combined options. This is useful, for example,
when reformulating options along a new dimension, when some options are cach partly right and partly
wrong, and a synthesis is possible whicli retains the good parts and discards the bad parts. This sort of
case crops up very frequently when options arce suggested on the basis of only a part of the problem. For
cxample, when deciding what textbook to buy for some class, onc might think of onc book which is
relevant for part of the class’s charter, and another which is good for another part, but might then

discover that some book covers both of these parts (such as the one written by the class’s instructor).

Camersm—— -

- .

W

e = —

5.7 A Very Geaneral Deliberation Procedure

In this scction we present a deliberation procedure of considerable generality. Few situations call for as

general a procedure, principally just novel situations and important decisions.

e

‘The procedure is, in cssence, just that of repeatedly retricving a relevant policy, carrying it out,
and then reflecting on the results until the judgment is made during reflection to halt with a decision.
This is of course a very cautious way of proceeding, and very time consuming, but sometimes this is

necessary.

5.7.1 The Deliberation Plans

We first sketch the structure of the procedure as a set of informal pians, and then discuss its

operation in detail using these plans as the framework. Figure 12 displays the basic steps of the plans.

DP-1: Input: PURPOSE Output: OUTCOMES
1. Scan the set of intentions for relevant policies. For each one
construct a new intention to consider it as a subordinate of
PURPOSE, and add it to the Jist of considerations.
2. PerformDP-2.
3. Policy: Prefer step 2 (DP-1.2) to all the new subordinates of
PURPOSE just constructed.

DP-2:
1. Reflect carefully on what to do next (select the aimof step 2 (DP-2.2)).
Options: Delay, Reject, Decide, Continue
Delay: Prefer non-DP tasks to DP ones until "later”

RPN

4
fieject - Abandon (defeat) PURPOSE
Decide: Set OUTCOMES, abandon unfinished subordinates f
Continue: Perform DP-3 for one of the pending subordinates g
2. (Filled inby step 1 (OP-2.1).) 5
i
DP-3: Input: SUBORDINATE H
1. ParformDP-4 for SUBORDINATE . 7
2. Perform DP-2. !
3. Policy: Prefer step 2 (DP-3.2) to all original (DP-1) considerations. *
f :
; OP-4: Input: SUBORDINATE
1. Carry out SUBORDINATE. .
i !
o . e R R e R T e .
B——— ——y T T T TR oo T T T s e s - o -

3

—_“—__—“

178
Form reasoning intentions from policies =p-1 Halt with outcome
¥
- Reflect on what to do next " Delay X
4
Carry out a consideration > Reject :
A 4
No
New reasons? =p-| Pursue Subordinate
Yes
v
Reflect on reasons
Figure 12
The Deliberation Procedure

ARG | PSRRI o3 Y3512 M 3 skt S o s et S SR R R A

179

2. Scan the set of intentions for relevant policies. for eachone
construct a new intention to consider it as a subordinate of
this step (DP-4.2) and add it to the Vist of considerations.
3. Policy: Prefer ali intentions constructed instep 2 (DP-31.2)
to all other DP intentions.
‘This deliberation procedure divides into two major aspects: the first-order reasoning, and the

sccond-order reasoning. ‘The sccond-order reasoning reflects on the first order reasoning to decide how

to proceed with the decision-making process. We discuss cach of these scparately.

5.7.2 First-order Deliberation

1. Create the dcliberation record: "'he first step towards making the decision is to construct a
deliberation record, whose purpose is the decision intention being worked on by the deliberation
procedure. ifthe intention (rather, the plan of which it is a part) also specifies initial options and defaults,
these are entered into the deliberation record as well with justifications mentioning thci} source.

2. Retrieve policies: 'The second step is to scarch the set of intentions for relevant policies, using
the purpose of the deliberation record as a means of determining relevancy.

Fach policy retrieved adds a new intention to the set of considcrations with the relevancy
procedure and its arguments in its justification. The list of considerations will be scanned in Step 4 to
carry out these policies one at a time. The new intention is that of applying the policy in this decision,

3. Reflect on how to proceed: The dcliberation procedure is a UNTIL-REPEAT loop,
repetitively considering policics until the decision is made to stop. This step asks the UNTIL. question
about how to proceed. It is the intention to reflect on the current progress of the deliberation and to
decide whether to make a decision, to continue deliberating, or several other possible courses of action.
In onc sensc, this step is much like the ordinary step of the interpreter of deciding what to do next, except

that this decision is to be made relatively carcfully itsclf. Its aim is not simply that of sclecting one

intention over another, but rather that of sclecting between some intentions (the considerations and other

180

subordinates) and some possible but not actual intentions, that is, courses of action yet to be made into
intentions by the deliberation procedure.

The interpreter sees at this point a frontier including this reflection intention, the unrealized
subordinates of the original decision intention, and any other independent intentions, and it chooses one
of these to work on. However, the deliberation procedure has set up policies to guide the interpreter by
preferring the reffection intention to any other subordinates of the purpose. This preference will not be
overridden by the decision intention or any of its subordinates. but might be overridden by independent
intentions that have higher priority than further deliberation.%

Aty rate, the third step is to invoke a sccond-order deliberation procedure to consider the
problem of how to proceed with the original decision. As in first-order deliberation, the actions of the
second-order deliberation procedure are to first create a deliberation record and then deliberate in that
deliberation record. We postpone description of these steps for the next subsection, and proceed now
with the rest of the irst-order deliberation steps.

4. Apply one policy: The next step is to carry out an unrealized consideration as selected during
reflection. The interpreter retricves application procedures for carrying out the policy, selects one,%” and
exccutes it if it is a primitive, or added to the current state of mind if it is a plan. In the latter case, it is
given priority over all other DP-related activities.

Alternatively, the previous reflection may have sclected some non-consideration subordinate of
the purposc, and in this case, that subordinate is carricd out.

Part of what is properly second-order deliberation is built into the policy actions in the following
way. If the actions add new options, the deliberation procedure retrieves and forms considerations for all

policies relevant to the new option and the purpose, but does not carry them out yet. However, if the

66. 1 do not specify how this sclection is made. T expect that it is normally much simpler than the decisions made by the careful

procedure.
67. Again, 1 have not worked out in detail how this choice is made.

€t CHIhe B e Tt dra v DM

s A

181

actions add new reasons o the set of reasons, then the deliberation procedure retrieves and forms
considerations for all the policies relevant to the new reason and the purpose, and then carries out cach of
these new considerations the same way. This process of reflecting on new reasons continues until no
maore reason-relevant p(ﬂ}i.cics can be found.

Ducs this unconlr&lcd iteration always halt? If things are properly organized, yes. This can be
seen by a simple argument. The conditions of these reason-reflecting policics are all basically of the form
"1f the decision is about X and a reason R of type ‘T has been found for or against {a rcason Ri of type Ti
for or against}* an option O”, where the starred, bracketed phrase may be repeated any number of times.
That js, successively retrieved policies refer to successively longer arguments debating some option,
‘Therefore, unless the system has infinitcly many policies, this reason-reflection iteration must
terminate.5®

S. Repeat: The deliberation procedure now keeps repeating steps 3 and 4 until the decision is

madec to halt deliberation in one of the ways described in the uext subsection.

5.7.3 Second-order Deliberation

1. Construct the second-order deliberation record: The purpose of this deliberation record is the
second-order decision intention. ‘This deliberation record is also added to the list of reflections of the
first-order deliberation record.

2. I'ngage in second-order deliberation: The sccond-order deliberation procedure retrieves and
forms considerations from all policics relevant to the second order decision. It then carries out cach of
these intentions, reflecting on cach new option or reason to find newly relevant policics, but without

reflecting on how to proceed. ‘That is, these considerations arce simply carried out one after the other,

68. Of course, this “proof™ has holes, but further investigation requires a working program and concrete examples. 1 do not foresee
any scrious difficulties.

3]

. R I N

#

LR R TR AT\ e

182

barring interruptions from independent intentions, untit all considerations have been realized and no
more can be retricved. We need not fear non-termination because of the limited and non-constructive

nature of the policics applicable to the second-order decision.%

5.1.3.1 Second-order Options

There are a number of standard policies for this sccond-order deliberation. Some of these construct
options and reasons standard in every sccond-order deliberation, others construct other options and
rcasons of sorts standard in every sccond-order deliberation, and yct others construct decision-specific
aptions and reasons. The standard options arc as follows.

Option A: Delay further work on the decision in favor of working on other intentions. This
means to retain the original decision intention as an active, in-progress intention, whose execution will be
resumed later. ‘Taking this option means halting second-order deliberation after adding a policy which
will preferably restrict the next step taken by the interpreter to some activity unrelated to the decision. Of
course, there is a wide range of types of delays, from just avoiding the decision for one activity, to
avuiding it until many other activitics have been undertaken, to avoiding it until all other activities have
been finished, to avoiding it until certain information is discovered. Formulating this sort of vocabulary
is an arca for future study.

Option B. Reject the decision. This means 1o discard the first-order decision intention, to defeat
the intention to make the decision.

The options and policies of standard sorts arc as follows.

Option (. Halt dcliberation by deciding on the currently best option as the outcome. This

69. An inlcresting direction for further exploration of these ideas is to develop a modification of this procedure so that the
second-order deliberation procedure is the same as the first-order procedure. This would be a completely uniform, erbitrarily
reflective deliberation procedure. Some sort of termination policies would be needed, or perhaps the default of halting rather than
further reflection once the second leve! was reached.

St r——— 1k e A A . G ...

183

means both setting the value of the plan variable for the outcome, and also defeating all unrealized
considerations. This option is created by a policy that computes which first-order option has a good
“overall” reason, plugs it into the form of this option, justifics this ncw option, and then creates a reason
for this option, the reason being that the selected "overall” rcason is a good "overall” reason.

When sccond-order deliberation decides to terminate the first-order deliberation by taking some
first-order option as the owcome, it docs so by finding some good reason "all things considered.” There
are several ways of interpreting what this means, and the one which we adopt here is that in the current
set ol reasons as interpreted by RMS, the selected option has a valid pro reason and no valid con reasons.
The second-level reason for this second-level option actually comes in two forms, those in which the
option is picked because it is the only such option, and those which pick the option randomly from
several such options. These will be explained shortly.

In some casces, the deliberation procedure can return several outcomes rather than just one. The
different restrictions are enforced by second-order policies about multiple "good” options. There can be
a policy to return them all (as in deliberating on which desires to pursue), to pick onc randomly (as in
sclecting the intention to carry out next), or to force just onc outcome. This last restriction could be
cffected by a policy which defeats against cach option on the basis of good reasons for any other options.

Option D: Continue dcliberation by carrying out consideration intention 1. An option of this
form is created for cach unrcalized consideration 1, and decision-specific policies may provide the option
of reconsidering some previous policy. Reconsideration amounts to rcapplying all of the relevant
considerations and looking for further relevant policies and other new information.

Option F: Continue dcliberation by carrying out non-consideration subordinate | of the
decision intention. An option of this form is created for cach unrcalized subordinate 1 of the decision
intention.

Option I: Reformulate the decision as 1, that is, abandon the current decision intention, add the

-

new intention I, and resume interpretation, which will eventually work on 1 afresh. This sort of option is -

PRI B 0 SO e S AR 2RI IRt R, MRS -
) N T A Pt) e .
oo s ek .mﬁ g w,w'm_’pka. et T S e
>

Coenlre Wy s g

-, W e

ey

184 '

never constructed by a general policy, only by domain-specific policies. Option B is the ‘
domain-independent form of this option. Option F is meant to cover the case in which thinking about
one question leads lh.c discovery that the presuppositions of the decision are wrong. For example, one
is trying to decide on an outline for a paper, and realizes that the important question is not about which

organization is best, but about who is the intended audience of the paper. One then discards the active

. intention to decide on an outline, only later forming a similar inteation afier the audience decision has '
[been made. .
i o
) ¥
; *
j
§ 5.7.3.2 Second-order Policies .
; 2
[
Along with these standard options. the standard sccond-order policics construct a number of reasons. ;
)

These reasons for and against the second-order options involve a number of factors, including PC reason -

analysis, completencss information, compatibility information, time and resource pressure, and others.
This subscction explains some of these sorts of fuctors and the policies involving them.

PC reason analysis classifics the options into four sets; PNC, containing those options with a
valid pro reason and no valid con rcasons (that is, those options O with the statements PRO(O) in and
CON(O) our); PC, containing thosc options with both valid pro and con rcasons; CNP, containing those
options with a valid con rcason but no valid pro reasons; and NPNC, containing those options with no

valid seasons pro or con.

PC reason analysis is by itsclf insufficient for making decisions. The naive policics involving it
alone might read as follows.
POLICY-1: If PNC contains exactly one option, take that as the outcome

of the first-order deliberation record.

POLICY-2: If PNC contains more than one option, pick one randomly as the
outcome of the first-order deliberation record.

However, with the deliberation procedure as we are outlining it, these policies are Nawed, as

————————E AR

,._-T»

185

there is no guarantee that more than one option has been considered. so that these policics might lead to
an overly hasty decision. ‘T'o remedy this problem. these policics must be modificd to take the history of
the dclibcm(i(m.inw account. For example, Alfred P. Sloan Jr. refused to allow the GM exccutive
officers to come to a decision simply on the basis of unanimity. He required that no dccision be taken
unless there had been prior arguments over possibilities, disagreements showing that scveral points of
view had been considered, that not everyone was overlooking the incvitable flaws of any proposed plan.

To be able to take such historicat factors into the decision-making, this information must be
recorded somewhere. The details of this are still open, and there are several obvious paths to investigate.
In the first method, policies are always represented as plans, and the temporal orderings on the execution
of the intentions in these plans provides the required information. This, however, sccn;s too baroque,
and a sccond possibility is o analyze the set of reasons to tell if good arguments have occurred. A third,
cven simpler possibility is to just record the sets PNC, PC, CNP, and NPNC in cach sccond-order
deliberation record. This summarized information can then be consulted by cxamining previous
reflections to see if options moved from one classification to another. By using thesc reflection records,
POLICY-1 and POLICY-2 above might be replaced as follows. Here the predicate DEFENDED means
that the option in question is now in PNC (CNP) but at some past time was cither PC or CNP (PNC).
POLICY-3: If there is exactly one option in PNC and it is DEFENDED,

then take it as the first-order outcome.
POLICY-4: If PNC contains more than one option, and &t 1east one of these

is DEFENDED, then pick a defended option randomly as the

first-order outcome.
POLICY-5: 1f nooptions are yet DEFENDED, then do not make a decision.
This notion of DEFENDED might be usced in another similar policy for cases in which all options seem

bad.

POLICY-6: If ali options are in CNP and are defended, then reject the decision.

Sdve -

L R A

186

In addition to this general rejection policy, 1 expect cach domain would incorpurate reformulation
policics which would suggest specific reformulations of the decision intention or replacement of options if
all options arc in CNP or PC respectively. These more specific policies should override the general one.

Of course, this notion of DEFENDED is too weak. What recally seems desired here is a
refinement ‘of DEFENDEID which incorporates some restriction on the completeness of the set of
considerations with respect to the relevancy procedures and resource limitations. The techniques
discussed in [Moore 1979] may be uscful in these investigating such refinements.

In general. one should consider all possibilitics when making a decision. Hence the following
twao policies for continuing deliberation,
POLICY-7: 1f there is an unrealized consideration,

then carry out the oldest one as the default.

POLICY-8: If there is anunrealized, non-consideration subordinate,
then carry out the oldest one as the default.

POLICY-9: Prefer defaults created by POLICY-7 to those created by POLICY-8.

In some cascs, policies will construct inconsistent preferences among the options. Further
policies must be supplied to guide the revision of these inconsistencics. For example, POLICY-9 above
rectifics the initially inconsistent policics 7 and 8, both of ;\/hich declare some option to be the lowest in
the partial order. However, their inconsisiency would not be very serious, for RMS would just accept as
the default whichever came first. But in more complicated cascs (involving odd-length cycles), such as
cach of O1, 02, and O3 having a good rcason for them, to which the policics Prefer Ol to 02, Prefer 02
to 03, and Prefer O3 to O1 arc added. RMS would discover an apparently unsatisfiable circularity, and
create an intention to revise these inconsistent reasons, that is, to defeat one of the preferences involved.,
‘Thus in cases like this, additional conflict-resolution policies must be supplied.

In many cases, however, there will not bc cnough information to arguc about the options to

produce a defended option. In other cascs, there may be no policies which will resolve conflicts, so that to

I M0 Bt s < s« < h P4 e i e

T Ry R

I - e e @ W

———gy i e o = s —— e ——————

187

the best abilities of the program, the best options are those in PC. These are irreconcilable dilemmas for
the program, and to act it might have puolicies like the following.70
POLICY-9: If thére is pressure to decide, and all information has been considered,

and there are sti)) no PNC options but there are some PC options,

then pick one of the PC options randomly.
POL lCY-lO If ~e is pressure to decide, and all information has been considered,

and the. . are still no PNC or PC options but there are some NPNC options,

then pick one of the NPNC options randomly.
POLICY-11. If there is pressure to decide, and all information has been considered,

and there are still no PNC, PC, or NPNC options but there are some CNP options,

then pick one of the CNP options randomly or reject the decision.

Itis difficult to say much more about these sorts of policies in the abstract, since most policies of
these kinds are likely to be domain specific. Much experimentation and experience is nccessary here.

This concludes the digression on sccond-order policics, and we continuc with the steps of the

sccond-order deliberation procedure.

5.7.3.3 Second-order Decisions

3. Choose the second-order outcome: The next step of the deliberation procedure, after
retrieving and applying all the second-order policies, is to choose some second-order option as the
sccond-order outcome. ‘This choice is made by sclecting the first sccond-order option that is in PNC in
the order of preference of options D, E, C, A, B, that is pursue a consiur ration, pursuc a subordinate,
decide on an outcome, defay, and reject. [t would be clegant to develop some way of making this
third-level decision uniform with the second-order decision, perhaps by termination policies which
always decided unless the second-order policics conflicted. ‘There are many subtletics here, such as the

fact that the third-order options are basicatly the sume as the sccond-order options, that make this an

70. These policies all act on a paucity of information, similar to NAS].'s QUIISCENCE choice rules.

Ty s v s

.o _lﬁar‘ﬁzmw aWaveni TR W '

188

intriguing question for further study.

4. Act on the second-order vutcome: If the outcome is to pursue a consideration (1), this means
returning to Step 4. I it is to pursue a subordinate (E), this means to add a deliberation continuation
intention along with ordering policies making the selected subordinate the only intention on the frontier.
If it is to delay (A), then add a deliberation continuation intention with ordering policics preferring
current fronticr intentions to it Ifitis to reject (B), then defeat the decision intention. [f the outcome is
to act on a first-level option (C), then an execution procedure is retrieved for doing this, as different sorts
of decisions involve different actions. For example, if the decision is about whether to form intentions
from desires. then if sume desires are chosen, new intentions are constructed with the aims of the desires,
and added to the set of intentions. I the decision is to pick some intention to work on next, it is handed
over to the interpreter for carrying out. If the decision is about some aspect of a current intention, the

chosen value is inferred in that intention theory.

5.8 An Example Reworked

In the beginning, Robbic’s interpreter is carrying out the currently active intention of passing through a
door. Robbic has reached the door and is considering how to proceed, the next step of his plan being to
open the door. At this point, Robbic’s visual system detects an object moving towards him, and identifies
the object as a woman. Robbic has a policy of normally interrupting whatever he is doing to consider
what to do about approaching objects, since such object are often important to survival, cither as food or
as dangers. ‘This policy suggests that he decide what to do about the woman, and defeats his first thought
to continue what he was doing, namely to proceed with the next step of his previous plan and open the
door.

So Robbic decides to consider what to do about the woman rather than to open the door. He

begins work on the following plan.

FORSE AL SERRTY

AD=A105 666

UNCLASSIFIED

MASSACHUSETTS INST OF TECH CAMARIOGE ARTIFICIAL INTE==FTC F/6 6/4

A MODEL FOR DELIBERATION, ACTION AND INTROSPECTION, (V)
MAY 80 J DOYLE . NOQOL1U=T75=C=np43
AI=TR=581

e et ey g —
“

189

(INTENTION I-1 () (AIM) (CHOOSE (ASPECT=AIM) (INTENTION=1-2) () (OUTCOME)
LOBJECT AIM] = VISUAL -QBJECT-DESCRIPTION)}
(INTENTION [-2 () () AIM)
(ANTECEDES 1-1 1-2)
Here the aim of I-1 means to decide what to do about the approaching object. It takes in the object
description as passed in from the visual system and outputs an aim for [-2.

The interpreter begins work on 1-1 which it carrics out by a deliberation procedure DP based on
the above. ‘The first thing DP dacs is to create a deliberation record DR, DP declares that |-1 is the
purposc of DR. It then tries to retricve the set of policies relevant to the purpose and current state of
affairs. ‘This means that the database retricval procedures take as arguments I-1 (the purposc), DR (the
current state of the deliberation), and ME (the current state of the program in general).

‘The first thing retricved is the policy "A gentleman always holds the door for a lady.” DP adds a
consideration for this policy to the list of considerations of DR. More formally, this policy is as follows.
POLICY-1: If A: ths aimof the purpose of DR is to choose an aim

and the object of the aim is a 1ady-1ike-appearing female,
and there is a current intention with active progress status
and the aimof that intention 1s to open a door,
then (PRO (OPTION "hold door for OBJECT™) (SL (POLICY-1A) ()))
Here we have taken the liberty of writing an English description of the condition and the option.
Actually, the condition is a logical statement of just what is said, in terms of the descriptions involved and
their parts.

Following a bricf reflection which decides to continuc deliberation (since nothing has been done
yet). DP applics this policy by evaluating its condition to sce that it holds, and then exccutes the actions in
the consequent of the policy. The first action adds an option O-1 to the (currently empty) list of options
of DR, the option of holding the door open for the woman. The second action says that POLICY-1 and
the application condition A form a reason for O-1, and adds this reason, R-1, to the list of reasons of DR.

DP then re-interrogates the database to see if any new considerations can be found relevant to

the new items. In this case, the new option docs not lead to any new considerations, but the new reason

- —— o

. P ¢~ S 3+ ¥ ¢

- —— —

—— .

190

does. Since that time long ago when Robbic was initially programmed, chivalrous reasons for actions

have become socially unacceptable. Robbie has learned to watch out for temptations to act chivalrously.

He dacs this by means of the policy POLICY-2.

POLICY-2: If A: R is a reason in the deliberation record of the current decisfion

and R's reason involves POLICY-1,
then (CONR (SL (POLICY-2A) ())).

The condition of this policy holds, so DP executes the action, which adds a reason R-2 to DR, a reason
against R-1. This invalidates R-1, so now O-1 has no good reason. DP sces it is without a good option in

reflection, continues to scan the database. and finds a third relevant policy. After further reflection it

applics this policy, which also has a true condition.

POLICY-3: If A: the aimof the purpose of DR is to choose an aim

and the object of the aim is a non-threatening person
and there is an active intention with active progress status
and the aim of that intention is to open the door)
then (PRO (OPTION "hold the door for OBJECT™) (SL (POLICY-3 A)))
Executing this policy’s first action adds another reason for O-1 being an option, and the second action
adds a new rcason, R-3, for taking O-1. DP now finds no more policics, and again enters sccond-order
deliberation. RMS shows that of the three reasons in DR, R-2 is valid, so R-1 is invalid, and R-3 is valid.

Thus, all things considered, O-1 has a valid pro reason, so IDP takes it as the outcome of the deliberation.

Intention I-2 thus gets an aim to hold the door for the woman, which the interpreter then carrics out, so

Robbic holds the door for the woman.

it Datemer AR B SRR S

191

CHAPTER 6

DELIBERATE CHANGES OF MENTAL LIFE

N

different ones.

e A m e ey — ——

discussion this question deserves. | hope Lo analyze this question in light of the current modct in a later paper.

To survive. we must change oursclves as well as the world around us.”” We must reflect on our beliefs,

concepts, desires, values, and skills to judge whether our life would be better if we held or employed

‘These changes in ourselves take many forms, and arc brought about for many reasons, such as to
become happier, more competent, informed, cfficient. to conform with others, or to become free of
confusion, contradiction, or doubt. We sometimes decide to change to improve the correspondence of
our attitudes with the world, or with our standards for ourselves. For example, | change my belicf that a
door is open because my unsuccessful attempt to walk through it points up a mismatch between my
belicfs and reality. Fither I hallucinated the attempted passage through the door and the pain in my nose,
or I am wrong about the door’s being open. Or as another example, 1 wish to become a mathematiciau,
only to find that my intuitions conflict, that I believe that the irrationals far outnumber the rationals, but
infer a conflicting belief frum the existence of an irrational between cach pair of rationals and a rational
between each pair of irrationals. In this case I cannot give up cither of these beliefs, as they are part of
what mathematicians believe, so | must give up my inference that they conflict. Or finally, I judge my
infcrence that | am a terrible person becausc [can't sing well to be the cause of my unhappiness, and thus
of the mismatch between my observed unhappy mental state and my standards of a happy outlook. To
remedy this mismatch, 1 cither give up the inference that T am a terrible person, or the desire that I be
happy. But these changes do not just happen. Tn most cases, it is my realization of the need for change

which lcads me to decide to change, to form an intention to change, and then to carry out that intention.

71. What is survival? If we are mutable. what is it that is surviving? Throughout this thesis we maintain the fiction that there is
something called the “sclf.” Chapter 2 presented some gencral reasons why this is desirable, but this thesis is not the place for the

ped IO =T e B e

ey P AT b e g

|
1
i

|

——— e gy e e

-

vy

192

Deliberate adaptations perhaps play a larger role in developmental psychology than is normally
recognized. For example, many accounts of the psychological development of children are puzzied by
the apparent incxplicubilily of the changes undergone by the child. ‘The answers to these puzzies may
often be that the child at some point realizes that he is frustrated by an inability to perform some task,
and simply decides to learn how to do it. Such deliberate changes arc more clearly recognizable in the
case of adults who, for instance, decide to take classes to acquire some skill or knowledge.

This chapter describes how to usc the techniques previously developed in this thesis to
deliberately change the content of the program’s mental fife.” In all cases. the basic recipe for change is
similar. ‘The motives for changes come through reflection, and the implementation of changes comes
through intentions to change. The program first reflects on its set of attitudes, by using its sclf-referential
ability to view its current sct of belicfs, desires, skills, concepts, or values, and to infer propertics of that
set which indicate the desirability of change. The reflection occurs during deliberation on what to do, and

policies recognize the motivating conditions for changes. This reflection is followed by further
deliberation and planning of what changes might be appropriate and which changes should be taken,
Further policies guide this decision of how to change, and the result is an intention or plan for
implementing the change.,

For example, a policy applied during reflection may reveal an inconsistency in beliefs, or an
uncxpected, crroncous cffect of an action. The program may then take thesc realizations of
contradictions or bugs in procedurcs as cues to correct itsclf, and form intentions to fix the incorrect
assumptions or procedures. The program can then apply itself to deliberately tracking down which

beliefs or procedures are at fault. These changes might be carried out by simple techniques, such as

72. A large problem, if it can be called a problem for a reasoner rather than for the gencicists and psychologists of a species, is how
to change the form of one's mental lifc, how to choose and invent or discard various emations, ¢.g. creating an intclligence that lacks
fear. or combativencss. or other attributes. These are rarcly problems for the individual (except perhaps in Buddhists), as he is more
frequently concerned with questions of how to improve his knowledge of the world, how to stop being depressed, how to enjoy life
more, how {0 Stop smoking. how to perform his job better, etc. It is these more circumscribed changes that we deal with here.

B N ‘WW

¢ e S

‘.

- WL

e DI D

@ vty ——
"1

193

dependency-directed backtracking [Doyle 1979], automated debugging techniques [Sussman 1975}, or
cven asking the user for help. Its plans for carrying out these changes might be very involved. Faults in
primitive procedures can take much experimentation, simulation, and analysis to locate (as any
prograsnmer can telf), and false beticfs can require similar scarching out (as psychiatrists will vouch).

By and large, these techniques of deliberate changes arce familiar to Al, as they are the sorts of
imperative changes programs make on their own data-structurcs. In most Al programs, imperative
operations arc used from the start and taken for granted, hecause most programming languages are
founded on imperatives. [n contrast, imperative changes come near the end of this thesis as applications
because we concentrate on the reasons for these changes, which normal imperative languages ignore.
When onc sets a variable in ISP, one rarely can tell why that change occurred. ‘That is part of what
makes debugging programs so hard. What we aim for is ways of performing the same operations, but so
as 10 be able to explain and analyze them later.

The rcader is cautioncd that the rest of this chapter is exceedingly vague, more in the way of
hints for future research than presentation of concrete techniques. Unfortunately, time limitations have
precluded presentation of anything but a sketch of motivations and methods for change. Most of these
sketches mercly refer to other works where these sorts of changes have been studied in their own right.
Casual readers are encouraged to skip to the next chapter, as the basic ideas of this chapter have been

presented in this prologuc. The remainder of the chapter contains only slightly more concrete examples.

6.1 Motivations for Change

In this section we catalog a varicty of the policies which might be cmployed during reflection to lead to
intentions o change the program’s attitudes. Each of the policics we describe is of the form "If the
current sct of attitudes has property P, then rcason for the option of making change C." Of course,

during dcliberation, the sets of attitudes are changing constantly, so the sct S of attitudes whose properties

et

Ty e 2

B e . T E L I R

194

are inferred in the condition of the policy will usually not be the set of attitudes after the policy has been
applicd. However, we, and the policics we write, ignore this problem and (except for special kinds of
policics mentioned later) always assume that the propertics in question arc invariant under deliberation.
This is usually a safe assumption for propertics like “is inconsistent™ or “"contains no procedure for

installing light bulbs™ arc rarcly affccted by deliberation alone.

6.1.1 Belicf

The major reasons for changing onc's belief are to explain some uncxpected fact, to cope with surprises
while taking actions, to resolve conflicts, and to adopt or abandon beliefs with specific long-term
consequences in actions or otherwise. Properly, the following pulicies describe changes to the set of
inferences recorded as justifications, since the program derives its current set of beliefs from the current

sct of justifications.

BI: 1if somcone informs me of a fact, try to explain it from my previous beliefs, or try to detect its

inconsistency with them.

In general, one always sccks to explain surprising facts, but as far as 1 know, no completely
adequate account has been given of what surprising beliefs are, why one wants to explain them, or exactly
what it mcans to cxplain them. Schank [1979] classifics new information by subject matter and uses these

classifications in deciding whether or not to investigate its conscquences.

B2: If the observed effects of an action conflict with the effects | predicted, then try to explain the failure

of the predictions.

Observations might lead onc to abandon conflicting predictions, but they rarcly explain the

failure without further cxplanation.

B3: If at some times 1 scem to act as though | believed B and at other times as though | believed =B, try

PAGPEPNCPRR TORC VR » T Y SRR L Tl S

[
J
4
f

$

195

to determine which § believe and make me do so consistently.

Often once reflects on one’s actions to justify or rationalize them to oneself. This is particularly
truc of actions carried out unconsciously (as in primitives). These rationalizations involve constructing
imaginary desires, beliefs, and intentions which would have lead to the action, that is, pretending the
action had been taken to carry out an intention directly, and asking what that intention was and why it
was held. If this process gives seemingly incompatible rationalizations on different occasions, there may

be some confusion which can be clarified.

B4: 1f the current sct of beliefs is inconsistent, then try to remove the inconsistency.
Here the set of beliefs is inconsistent if it contains two beliefs A and B such that AAB is

contradictory.

BS: 1f the current st of justifications contains an unsatisfiable circularity, try to make it satisfiable.

This is no. a condition ordinarily recognized during reflection, but rather a condition noticed by
RMS. These unsatisfiable circularities can be viewed as describing paradoxical statements or inferences
that cannot be taken as cither truc or false, or valid or invalid. The simplest response to this condition is
to reject the final inference to paradox, to ignore it, as when onc laughs upon being told Russell’s

paradox.

B6: If the current set of non-monotonic assumptions about things currently supports an unhappy,
depressed. frustrated, or other undesirable outlook, and the same set of non-monotonic inferences can
support by rcinterpretation a happy or other desirable outlook, then try to switch the interpretation of
these assumptions to the happy or more desirable outlook.

‘This policy cxpresses a policy similar to 4 about inconsistent belicfs. There arc many reasons
onc might avoid certain patterns of belicfs, not just that they are inconsistent, but also that they have

other bad qualitics besides the confusion caused by inconsistency. The message of many sclf-help books

) ¥

e Sl hIRBER

Wy e R

[
1
|
;
G 1
2
>
a
;
;;
gx
7o
¥,
L
4
3
3
&
4
-*
o
'
L}
<
)
.
I
ftﬁ
Vo
i
by
p

S g e s

196

is that while sometimes our unhappiness results from pain and other true discomfitures, frequently our
unhappiness is merely an interpretation we needlessly impose on our beliefs, that is, merely a set of
inferences better left unmade. For cxample, one might feel bad because one makes the inference "I'm a
terrible person because I'm an incompetent singer.” The solution is to recognize oneself making this
inference and avoid it, in the same way onc might avoid taking the final step of the argument to Russell’s
paradox. One avoids making the undesirable inference and cultivates instead alternate inferences from
the data, such as "I should take voice lessons because I'm an incompetent singer,” or "1t's good 1 enjoy
singing for myself, because my incompetence would really aggravate others,” or * 1 can carn tidy sums by

singing until pcople pay me to stop or leave.”

B7: 1f the current sct of belicfs contains belicfs which might have undesirable effects in the future, then
try to change to beliefs which do not lead to undesirable effects.

Where B6 notices currently annoying aspects of beliefs, B7 attempts to anticipate possible future
annoyances. A contemporary cxample of such a change is the business exccutive who becomes a
Republican to avuid hindering future promotions made by Republican superiors. The classical example
of such a change of belicf is Pascal's wager. Pascal believed that if God exists, then He must have the
traits attributed to Him by the Christian Bible. Pascal reasoned that if he had faith in Ged, then at worst
he would miss out on life’s voluptuary pleasures, and at best he would gain admission to Heaven, which
for him was by far the most onc could hope for in any mode of existence. He reasoned further that if he
withheld faith in God, at best he would sample life’s voluptuary pleasures, and at worst would suffer
infinitc torment in Hell. Pascal judged the eternal possibilitics more important to him than the transitory

human opportunitics, and adopted the Christian faith.”

73. His musing on this qucstion was the cause of his faith, but not its reason. ‘That is, his deliberation lead him to form an intention
10 adopt this faith. The intention depended on the prior beliefs. ‘The faith did not depend on the prior beticfs, for it was purcly an
effect of an action taken to carry out the intention. While the intention is the cause of the action 1aken 10 satisfy it, the action record
on which the faith depends is an observation, a premise, of the program about itself, and docs not depend via reasons on the
intcntion. There are many intercsting subiletics about the nature of action here, but we will not pursue them now.

Y N

o

LRIy VA

197

6.1.2 Concepts

Since concepts or the theorics in the hicrarchical database do not refer to the world, but rather arc used
by attitudes in referring to the world, it does not make sense to speak of a concept as an attitude, of a
concept being incorrect because it does not match reality. If it did, we would have to conclude Pegasus to
be an incorrect concept. Rather, the following policics create and revise concepts on the basis of
completencss, efficiency, and correctness with respect to a shared vocabulary among discussants. Since
there is a large literature on concept formation and revision, which suggests many policies for these

changes, [merely present a few of the most basic ones.™

CI: If the same combination of concepts (c.g. a log from onc ground to another) is constructed on two
accasions for different problems (traversing a stream and a crevasse), create a new concept (bridge) whose

structure is that combination.

C2: 1f onc concept (c.g animal) has too many specializations (dog, perch, horned toad) in the hicrarchy
for cfficient scarching, create new intermediate concepts (mammal, fish, reptile) to decrease the

branching factor and capturc commonalities.

C3: If people persistently scem to misunderstand one’s use of a concept (c.g. clephant), investigate their
concept to sce whether they mean the same thing (that large African quadruped with the round face, big

teeth, that spends a lot of time in the river and swims under and upscts boats).

74. Sce Winsion {1975], Fahiman {1979}, and Fox [1978].

198

6.1.3 Desires and Intentions

l.ike incorrect beliefs, unsatisfiable desires can sometimes Iead to injury or frustration, so care must be
exercised in deciding which desires and habits one inculcates or breaks. Intentions arc usually more
transitory than onc's basic desires, but without frequent review of one’s plans it is casy to fall into

continuing to carry out intentions whose reasons have long since departed.

D1: 1f a desire for the forsecable future leads only to undesirable effects, such as frustration through one's
inability to satisfy it, and to no redceming influences on one's actions, then attempt to abandon the desire.
For example. 1 might abandon my desire for drinking soft drinks, as they arc often without

redeeming feature and not without unsavory aspects, but | might not abandon my overindulgence in

hook-buying, as there arc almost always good aspects of this problem.

N2: If a possible desire might have desirable influences on one’s behavior, try to inculcate it.

Many pcople, for example, develop a desire for regular exercisc to improve their vigor.

D3: If somcone admired cxpresses certain desires and not others, try to emulate that person by

inculcating a similar sct of desires.

This sort of policy is often part of a large plan when the admired person is a potential friend, as

when one adopts new interests so as to be able to converse at length with someone.

1: 1f one holds an intention because it is part of a plan, the justification (or superior) of which has been

defeated (abandoncd), and the intention is not necessary for cleaning up after previously exccuted
intentions, then abandon the intention,

Of course, to this short list should be ‘added the many planning techniques which rely on

reflecting on onc’s intentions, such as those of Sacerdoti [1977) and Tate [1975). 'These policics include

resolving inconsistencices in one’s desires and intentions.

K3

B LA I

[EF R IV ST SN PR T T IL SOV T S R SN e R L I

12: 1f onc holds inconsistent inteations (¢.g circular priorities betwe:n intentions), change them to restore

consistency.

6.1.4 Values

The program’s valucs as embedded in policies can be reflected on to increase their coherence and

complcteness.

I'1: 1 one’s values have, during deliberation, proven to be inconsistent or paradoxical, then try to modify
them to v oid similar problems in the future.

Here policies are calied inconsistent if they draw oppaosite conclusions from the same data, such
as "If i's raining. then go inside™ and "If it's raining, then stay outside”. Policics are paradoxical in some
cascs if their application leads to preferences with multipie interpretations or unsatisfiable circularities in
RMS. ‘These paradoxces result from the fragmentation of value, from the need to make unitary decisions
based on disparate considerations. The paradoxes manifest themsclves most familiarly in non-transitive
preferences between options, which make the result of deliberation depend not only on the reasons for
and against the options, but also on the order in which they arc considered. The typical example of such a
situation is in, say, political campaigns, in which onc prefers candidate A to B, and B to C, but prefers C
to A, and so prefers A if they are presented in the order CBA, but prefers C if they are presented in the

order BAC.

V2: If onc’s values have, in many dcliberations, proven to have consistent resuits after much reasoning,
then summarize the net decisions in new policies which are based on but replace in action the previous
policies.

Sometimes | find mysclf going through the same old arguments cach time the same dccision

confronts me. In these cases [often step back and decide the question once and for all (barring

——— —

T R W g it e A gt A il

———e -

200

irresoluteness or later inforimation being discovered). For example, I never rehash the arguments for and
against holding doors for people, as 1 decided long ago to always hold doors, and to handle problems with

this approach as they (infrequently) arise.

¥3: If onc is frequently confronted with a dilemma which is always broken randomly, adopt some new

value to avoid the cffort of this decision.

6.1.5 Skills

As in the case of belief, there are many sorts of reasons for modifying one’s set of skills, which we will
interpret to mcan once’s procedures, both plans and primitives, along with their method statements,”
Changes to the set of skills include both developing new skills and modifying cxisting skills, there being a
number of reasons for modifying skills.

The basic case of skill development is that of onc-time construction in problem solving, when
one puts together a plan for solving a problem which may or may not be retained in the library of

procedures. New skills are constructed from old ones, either by combining several procedurcs in some

arrangement, or by modifying a copy of a procedure for some similar problem.

S1: If one will need in the future to achicve some aim by some mecans satisfying some spccifications, the
construct such a procedure, index it under that aim, and describe it with those specifications.

‘The specification of procedures, as we have touched on previously, is still an active arca of study,
as these specifications can refer nou only to input-output behavior, but also to complexity, explicability,

intermediate states, and other aspects of the process.

An important part of onc’s skills is the description of the procedures. These descriptions serve

75. Policics are parts of plans for deliberating, and the previous subsection mentioned how onc might make deliberating more
cfTicient by reorganizing one’s sct of policies.

R R N

P

R e e ey WP S nlirte s s et e Al A G NI i B A NG b moUh W P

201

not only to index the procedures so that they may be considered when relevant, but also to specify their
intended and observed cffects. A common cause for modification or maintenance of a skill is when a
mismatch develops between these descriptions and the reality of the procedure’s capabilities. These
mismatches can result from changes in the program's attitudes, changes in the patterns of use of the
procedure. changes in the physical realization of the program, or changes in the physical environment of
its realization. For example, 1 must modify my speaking skills when 1 find myself committed to teaching
my first class. | must modify my motor skills as | grow older and the physical realizations of my
procedures fails to match what 1 think they can do. | similarly must modify my motor skills if I move to
1.una, where my previous skills no longer have the intended effects. Other, less general mismatches occur

when applications of the procedures in novel circumstances discovers failures or other unexpected results.

S2: If a skill fails to achieve its expected effects in a normal situation, then it is broken, so modify it to

restore its functionality.

S3: If a skill fails to achicve its expected effects in an exceptional or unconsidered situation, modify the

set of skills to cover this casc as well.

S4: If a skill achieves its expected cffects but has undcsirable side-cffects, repair it to avoid those

side-cffects.

S5: If a skill has unexpected but desirable effects (serendipitous performance), analyze it to extract a skill

for these desirable effects.

—— g~ =+ o e e —

202

6.2 Mechanisms of Change

As we sketched previously, the mechanisins for these changes are procedures in the library of procedures.
‘The techniques employed are based on an analysis of the reasons underlying the attitudes to be changed,
since to be an cffective change the program must modify not only the attitudes directly under

consideration, but also those underlying them in their reasons.

6.2.1 Belief

‘The basic approach towards belief revision suggested here is that of incremental revisions guided by
policies expressing preferences between aliernate partial revisions. In other terms, the policies express the
relative tenacities with which the program holds its belicfs. This means that the program begins revising
its beliefs by deciding on some particular beliefs to change. As it attempts to change those beliefs, it
discovers that further decisions must be made about how to accommodate the changes in the remaining
beliefs. These steps of decision and partial revision alternate until the system of beliefs has been
coherently modified in accordance with the intended revision.

This sort of revision accounts for the policics B2, B4, BS, and B6 above. B2, B4, and B6 are
about changing beliefs. and BS is about fixing the sct of justifications for belicfs, but since we make all
changes in belicfs by adding and defeating justifications, we can handle all of these changes using the
samc technigues. We view unsatisfiable circularitics as inconsistent specifications for the sct of beliefs,
inconsistencics in the reflected justifications. Similarly, we view the undesirable conditions of B2, B4, and
B6 as inconsistencics. B4 concerns inconsistencics directly. B6 we interpret as an inconsistency between
actual beliefs and intended beliefs, and B2 we interpret as an inconsisicncy of action or predictions of
thosc cffects, where the predictions are inferences from the action record and the action specifications.

However, matters arc complicated by the ambiguity of belief revisions. When belicfs derived by

inferences or actions conflict with previous beliefs, there are many ways of reconciling the conflicting

TP e B iy L dmee -

LIy e L T

203

beliel. Any participating belicf may be rejected, not just the previous beliefs, and what revision is made
depends on the context of the inconsistency. For example, the ways of resolving an inconsistency are
different dcpcndi‘ng on whether the program was just thinking through an action (planning), or whether
the program actually took the action. If the action was a hypothesized part of a plan, the program might
choosce to discard the action and try anather. If it actually took the action, it might discard the action (and
so think that the action was hallucinated) or find some assumption about the world that must be wrong.
Supposc the program trics to 1ift a large object via a cable on a cranc. If it lifts the cranc and detects that
the object still rests in place, it might reason that cither it imagined lifting the cranc, or that its scnscs
reparting that the object remained unmoved are wrong, or that its assumption that the cable would hold
the object was wrong, that it snapped.

This problem of ambiguity of belicf revision leads to one of the three forms in which the
interpreter makes decisions via decision intentions. If RMS reports an inconsistency following a primitive
exccution, or an ambiguity in the revision necessary to incorporate the primitive's effects, the program
reflects on this ambiguity by crcating a dccision intention. In the case of an inconsistency, it is an
intention to decide how to remove the inconsistency. In the case of a direct ambiguity, it is an intention
to decide which of the alternatives to take.®

Now primitives should rarely lead to dcliberation about how to revise beliefs. If they are
properly erganized, they will do all the necessary belief revision directly. The basic idca here is that
"properly organized” means that the primitive action or revision procedure is a procedure compiled from
more complex deliberation procedures by specializing the processes to take into account the usual-case
information about the cffects of that particular action. For example, a primitive which updates some list

kept as an attached value might justify the new attachment and defeat the justification of the previous

76. It would be a very interesting task (o cncode RMS largely as policics guiding deliberale changes of belicls, 3o that RMS would
take the form of a MACRO-RMS/MICRO-RMS combination analogous to MACRO-TORPID/MICRO-TORPID. This might be
developed into a belief sysiem closer (0 human belief systems than the current RMS.

S yey t VEA. L sew v e - e ~» v

204

attachment with a justification mentioning the new attachment.

Action-specific belief revision procedures incorporate inforimation about how the action
normally affects beliefs: what sorts of belicfs are normally involved, what the normal alternate revisions
are, and which revision is the usual one, that is, which belicfs are normally rejected by the action and
which new belicfs normally take their place.

This information about the normal alternatives and preferences in belief revision is stated as
policics which suggest and discriminate between revisions. For example, one might tell a human "If you
feel cold after taking this drug, it is because of the drug and not because it is cold outside.” This policy
would be very uscful in explaining conflicts between a feeling that it is cold outside and observations of a
thenmometer and the sweltering of others indicating that it is hot.

As another example, assume that the program is being used to solve problems of manipulating a
set of blocks with a onc-arm manipulator. Here we might give the program information about the normal
cffects of the mampulation primitives, Two different such policies to guide its decision might be as
follows.

(1) When a block is moved from onc place to another, give up the belief that it occupies the
current location rather than rejecting the conflicting belief that it now occupies the new location. (Of
course, this looks much like the add list/delete lists used in STRIPS.)

(2) When planning actions rather than taking them, if a block is moved and a conflict arises
between the belief about the block's new location and the location of somce other block (a collision), give
up the action and its cffects rather than the belief about the other block, and then plan a different action
(perhaps one to get rid of the obstacle block followed by the current action).

There are similaritics in spirit between this formulation of action cffects and some previous
approaches to belief revision. As mentioned above, Strips’ add and dclete lists [Fikes and Nilsson 1971)
were csenntially policics which specified which of the several possible revisions to take. Rather than just

using a modal statement of the action cffect, e.g. After A, P is true and Q is false, and letting these two

SR AP A5 - - - et W VIl — R S —

i st A sebmaB e sarmef e

.

T

o,

205

statements conflict with the existing database statements, the add and delete lists say, c.g. After A, wake P
rather than =P, =Q rather than Q.

Anu(hq technigue is the use of “gripe handlers” (or "complaint departments”) introduced in
BUILD [Fahlman 1974). ‘These are procedures provided explicitly to discriminate between the revisions
possible following the discovery of an inconsistency. The gripe handler of the procedurc taking some
action might be invoked with the information that the action caused a collision (a conflict between two
beliefs about black locations), or an unstable structure cither at the source or at the target of the moved
hlofk, or other errors. ‘e gripe handlers in BUILD never rejected beliefs about the blocks in question,
but always rejected some action or actions in the current plan. ‘The gripc handlers would classify the error
type (collision, instability, ctc.) and would cither reject some action itself, or would look at the goal
structure of the plan and pass the problem off to the gripe handler of some specific other action. These
gripe handlers scem very similar in conception to revision procedures, save that they only reject actions in
the plan rather than beliefs in general.

A final technique for comparison is that of resotution rules as developed in AIMDS [Sridharan
1976, Sridharan and Hawrusik 1977]. These are also closc in spirit to our revision procedures. AIMDS
splits belief revision into two sorts of rules: recognition rules, which are statements of logical and causal
dependencies between the primary effects of the action and other beliefs, and resolution rules, which are
rules for sclecting one of the revisions possible given the related belicfs computed by the recognition
rules. While it is claimed possible for AIMDS to generate the recognition rules itsclf (by rephrasing the
logical axioms describing the domain to summarize chains of inferences). the examples presented do not
contain all dependencies, and thus do not allow any belicf to be rejected. Also, the system docs not use
the resolution rules as a way of deliberating about what change of belicf to make, but interprets them as
imperatives. That is, if there arc a number of (possibly incompatible) resofution rules, AIMIS tries them
onc-by-onc until the action of some rule is not rejected by the database, rather than realizing that there is

a decision to be made about which resolution rule to use. Also, how the database decides to reject a

ST e e R
S AR

LAY L""t’:‘_‘:';’ _ \

R T S T A T

-

-

206

proposcd change is not spelled out, although this involves valucs implicitly.

| have nothing to suggest about how to handle policies like B3, as it deserves further study.

B7 describes a "lcap of faith.” "This can be implemented by justifying the belicf as a premisc and
by adopting policies to defend the belief during belief revision. Thus if the program wishes to have faith
in the statement "1 believe in God,” it first asserts this belief as a premise. (Actually, the adopted belief
depends only on the realization record for the belief-adoption action. In this way the adopted belief is
recalled as having been adopted, but docs not depend on other beliefs, such as those which lead to its
adoption.) The program similarly can adopt policics as premises which defend the belicf against change
in any inconsistency, action. or other revision process. Perhaps much of the difficulty humans have in
adopting new positions and making them stick stems from the relative case of adopting a belief as

opposed to adopting also ali the policics and procedures necessary to make the belief enter effectively into

actions and decisions.

6.2.2 Concepts

1 will not go into techniques for revising the set of concepts at all, as this topic is adequately covered in
numerous other works, as far as it has been explored. As usual, however, alternate ways of revising the set
of concepts will be the subject of deliberation and policies will embody the program’s valucs concerning

organizations of its database.

6.2.3 Decsires and Intentions

Saccerdoti [1977, 1979] cxplains a number of techniques for reflecting on ordering policies and other
intentions in planning. Shrobe [1979b] discusscs how reflection on desires and intentions allows their
revision upon satisfying onc particular desirc or intention, using rcason-analyzing techniquces, but without

deliberation. Basic desires and policics are much like premise beliefs, and the techniques for inculcating

SR S

N S

Al iy MO IR AR L v o vs

c—— o e e e ey ——

207

and abandoning them are similar to those for Jeaps of faith, although they normally need not require

further defensive policies.

6.2.4 Values

‘The question of how to revise values and their embodiments in policics is uncxplored as far as [know,

and nceither have | pursued it here.

6.2.5 Skills

HACKUER [Sussman 1975} learned procedures for manipulating hypothetical blocks with a hypothetical
onc-armed manipulator. 1t started its carcer with a couple of primitives for the manipulator, a store of
general programming and planning tricks, a few facts about the world of blocks and about its
manipulator, and a store of gencral ways to analyze and correct bugs in programs. When presented with a
problem, HACKER would cither remember or construct a program for solving it. If it constructed the
program, it did so cither by gencralizing a picce of code used for solving a similar problem in some other
program, or by using general planning techniques to combine its own primitives to achieve complex
conditions. If the remembered or constructed program worked, Hacker remembered it and went on to
the next problem to be solved. If the program failed, however, HACKER performed a ritual
self-examination to correct the program if possible. 1t would first construct a description of the “process”
in which the error occurred, this including the history of the cxecuted actions, their cffects, their
telcology, and the intentions being carricd out. It would then ask scveral questions about this process
model tw determine the bug type. Some questions were counterfactuals, i.c. could such-and-such a step
have been inscrted without conflicting with other goals at that time? Other questions matched certain
abstract process models against the actual process model to sce if it realized the bug type associated with

the abstract process model. The answer to these questions was the type of bug underlying the crror.

J

208

HACKER then scarched the library of bug-patches with this bug type and with the patch located patched
the failing program. HACKER repeated the tryout and fix cycle untif cither the program worked or until
no way could be found to solve some problem, in which case HACKER gave up.

However, the trouble HACKER went (o in analyzing its bugs resulted in large part from its lack
of the sorts of techniques we have developed in this thesis for representing the reasons and intentions of
the program. For example, all of the information HACKER painfully sifted from Conniver contexts and
control stacks in building its process models is exactly the sort explicitly available in justifications, the sets
of desires and intentions, and the action history.

Since skill modification is such an important part of efficicnt and cffective action, especially in a
program whose carcful operations arc as complex as ours, we illustrate the ideas developed in the
previous chapters by reformulating HACKER using our techniques. 'This reformulation also raises a
number of topics for future rescarch, particularly hypothetical reasoning and historical reconstruction,
which we hint at but have not pursued in the detail they deseive.

HACKER involves threc major plans:

1. DEVEL.OP - for developing a new skill from scratch,
2. CRITICIZE - for patching a known bug in a program under development, and
3. DEBUG - for fixing a program manifcsting an error.

We present these plans informally in Fnglish.

DEVELOP

1. If the skill is in the procedure library, DEBUG.
This step retricves a procedure for an intention via the usual method statement techniques used
by the interpreter. DEBUG will carcfully test the procedure to sce if it works, and patch it if it does not.
2. Otherwise, construct a new procedure.

HACKER uscs two methods to construct new procedures.

o A

TR L M G N - S A B A RAR S T o

.t

'M#vm ———

209

The first method is to gencralize or variabilize part of a plan used to solve some previously
encountered similar problem, and make this a new plan. At the same time, this part of the plan is
replaced in the p!an it was extracted from by a call to the new plan with the appropriate arguments. In
this way, any improvements made to the new plan arc automatically shared by the original plan.

The second procedure construction method is to apply general problem solving techniques of
problem reduction, ctc. to come up with a new plan by combining other plans. We won't go into this
familiar subject.

More learning occurs when the first of these techniques is used, for in it many procedures are
simultancously improved and extended. ‘The second method is inore difficult than the first. Not only are
the general problem solving techniques quite expensive, but in addition debugging a new program is
more difficult, since several bugs may be introduced at the same time, thus making bug localization and
analysis very complex.

3. Perform CRITICIZE.

4. Perform DEBUG.

5. Compile the working program. Just as programs in ordinary programming languages can be compiled
into machine code, plans can be compiled into more specialized plans and into primitives. The basic idea
is just to take a plan and some restricting conditions, such as expected initial circumstances, or a particular
library of proccdures and policics, and then to symbolically excecute the plan under these restrictions and
make a more specialized plan or primitive from the decisions made and actions taken in the symbolic
exccution. Plan compilation involves all the techniques standard in ordinary compilation, such as
constant folding, dcad code climination, loop optimizations, etc. In addition, the plan compiler uses
policies about when 10 coerce independent steps of a plan into a sequence, when to replace deliberations
by conditionals computing the outcome of the deliberation, when to substitute subplans or primitives into
plan steps, and when to transform information passed through plan variables into information stored in

Jocal data-structures.

LW RN

P

A ovn A gt Mg o iy M RN G g g R

210
CRITICIZE

1. If there are criticisms of the program, patch it. The program critics of HACKER and the plan critics of
NOAH had essentially the same form, that of louoking for occurrences of subplans and replacing the faulty
subplan with a new one. For example, HACKER would look for steps in the wrong order and reverse
them, while NOAH would look for improperly unordered steps and order them. We phrase these sorts of
criticisins as policics. Thus this step consists of a decision intention to formulate and choose beiween
pussible revisions of the program. To avoid incompatible changes, only one revision is sclected, and the
plan recurses to cffect further necessary modifications.

2. If it was modified, CRITICIZE.
DEBUG

1. If it works, done. A proposcd program is tested to sce if it works not by direct execution, which would
lcave no information to analyze an crror with, but instcad by symbolic exccution. In symbolic execution
the temporal situations occurring before and after cach program step arc modeled as theories copying the
current state of mind. The initial conditions are stated in the initial situation, and the actions are
simulated by applying their spcecifications or dcscriptibns. This involves, for example, taking a
Floyd-Hoare specification PD[a)Q, trying to infer P in the prior situation, and if successful, concluding Q
in the subscquent situation. All specifications of each action are so applied, and a directed acyclic graph
of situations results.”” The symbolic exccution halts cither when the simulation is complete or when an
inconsistency or other problem is inferred in onc of these situations.

It would be more attractive to simply usc the interpreter to carry out this simulation directly,
without recording cxplicit temporal situations. However, this would then necessitate the ability to

reconstruct past situations from finished intentions and the action history. As Chapter 7 cxplains, this is a

77. Shrabe [1979a] cxplains Uvis technique in detail.

P Wi

SRR R T

211

difficult problcm awaiting solution.
2. Classify the bug.

This prpccdure analyzes the reason for the crror by asking questions about the structure of
reasons and actions leading to the crror. "The goal is to take the surface manifestation of the crror and
reconstruct the underlying bug type. ‘This is donc by asking certain hypothetical questions about the
surface manifestation and by matching the surface manifestation against a variety of abstract "process
muodels” to determine the appropriate classification of the bug type.

‘There are four basic types of surface manifestations of errors: unsatisfied prerequisites, in which
some condition necessary for the application of some primitive did not hold at the appropriate time;
protection violations, in which onc action interferes with conditions protected by some other ongoing
action; failed actions, a catch-all category which ought to be refined, intended to include mechanical
breakdowns, slippages, overlimits, hardware crrors, ctc.; and deja vu, my version of HACKER's double
move “error.” This is really not an error as such, but humans scem to be very good at recognizing certain
types of repeated or similar situations. and get a lot of mileage out of recognizing them. This is
generalized to any noticed similar repetition, from HACKER's which only caught repeated movements of
the same block.

There are five basic underlying bug types: prerequisite clobbers brother (PCB), in which
achicving one prercquisite of some action undoes the previous achievement of some other prerequisite of
that action; prerequisite missing (PM), in which the plan lacks actions to achieve some condition
prerequisite for taking some action; prerequisite clobbers brother goal (PCBG), in which achieving a
prerequisite of one action undocs the cffect of some other action which together with the first action
worked to achicve some complex ond; strategy clobbers brother (SCB), in which performing one strategy
uncovers new information which might allow a previously failed strategy to succeed; and anomalous, a
catch-all bug type for thosc errors unclassifiable as any of the preceding, which should be refined into

uscful categories.

S Raf e -

R U e b R

Y
»

212 /

Sussman presents the flowchart shown in Figure 13 for performing the classification of surface

-

manifestations into bug types. The decisions arc as follows: |

T AN

1. Would U.-P. being true now conflict with the current goals?

e

2. Was the U.-P. ever true before in this problem?
4

3. Pattern-match to sce if PCBG.

4. Pattern-match to see if SCB.
5. Several pattern-iatches to see if PCB,

6. Pattern-match o see if PCB or PM.

These questions are answered by much the same techniques as used in HACKER, and 1 won’t go into the
details of just what sorts of patterns the various policies recognize.

3. Ifit is memorable. summarize the bug.

e e AT A VR DD e St - S Mmoo A st b

Onc should not bother remembering dismissed crrors or trivial mistakes like fingers slipping

while dialing a telephone number. In this step, the program deliberates on whether to record the bug as a
policy which will recognize and patch its future occurrences in new programs. This involves trying to

cxplain the error as a one-time affair, or a something that is likely to recur. As far as | know, no one has

cxplored grounds for making these decisions. ;

4. Paich the bug

This step just applics the selected critic policy to the plan being criticized.

5. Perform CRITICIZE.

6. Perform DEBUG.

g~ VN

213

»

0"

Deja Vu Unsatisfied Prerequisite Protection Violation
\(Y
Yes
1 >
No V
. No¥ Y No No
Dismiss &€=5 3 = 4 —» Anonymous
Yes
| Yes | Yes
/ | 4 Y
Y
=2
No
Yes ' No /
PCB PM PCBG SCB
Figure 13
HACKER's Debugging Flowchart

e

Lo, gy, £t boag v B S R TR

214

CHAPTER 7

DISCUSSION
Ifit is not true, it is a happy invention.
Anonymous, 16th century

In this thesis, | have attempted to present some problems and viewpoints 1 feel are central to the task of
designing intelligences. 1 will be satisfied if the preceding has succceded in conveying the nature and
importance of these problems and viewpoints. The techniques presented here are admittedly
rudimentary and ill-explored. but they have been developed sufficiently to indicate the feasibility of this
approach. However, none of the details of any technigue herein is suggested as the final word: they all
deserve to be superseded by more careful analyses, further experimentation, and application.

This chapter is in six parts. The first two parts summarize the key ideas and the principal
technical contributions of the thesis. ‘The third scction lists a number of dircctions for future research.
‘The chapter closes with three rather speculative sections concerned with the relation of affect and

intcllect, the limits of self-knowledge as scen in this approach, and the meaning of the program to itself.

7.} Summary of the Key Ideas

‘The primary idea of the thesis is that of an architecture for a rcasoner which can refer to, reason about,
and modify any aspect of its own organization and behavior. This self-conscious, adaptive architecture is
motivated by the need to carefully consider what to do when solving difficult problems and when
carrying out complex tasks. The sclf-referential abilitics of the reasoner arc based on a meta-thcoretical
databasc, explicit reasons for attitudes, and cxplicit scts of the rcasoner’s belicfs, desires, intentions, and
skills. The meta-theoretical dutabase allows both scif-reference in the large (the reasoner referring to itself

as a wholc) and self-reference in the small (the reasoncr referring to its parts). Sclf-reference in the small

allows the progfam to treat its own concepts and descriptions as objects. This permits not only treatment

LSRR ' SR

AL w4

- Amp——

il

215

of « number of classical prablems in representation theory, but also allows the efficient organization of
the database into a hicrarchy of concepts. Lxplicit, non-monotonic reasons form the basis of the reasoner’s
sclf-rcprcscnuuiqn of its reasoning actions. ‘These are used in defeasible reasons in a form of
decision-making called reusoned deliberation, which reflects on these reasons to conduct dialectical
argumentation about the possible outcomes of the decision. Non-monotonic reasons also form the basis
of the reasoner’s self-explanatory and self-modifying abilitics. ‘The explicit sets of attitudes form the basis
of the reasoner’s actions. The program reflects on itself and its current state of mind as captured in its
current sets of attitudes to take actions including revising of the scts of belicfs to remove an inconsistency,
forming an intention o pursue a desire, or carrying out an intention by means of some procedure (cither
a plan or a primitive) in the hierarchical procedure library. This procedure library contains part of the
sclf-description of the program in the form of mera-circular interpreters, giving the reasoner a
representation of its own procedures in its own fanguage of probiems and actions. Unlike many
traditional studics in Al, we scparate the notions of goal into desires and intentions, 1o make clearer the
processes involved in complex problem solving reasoning and actions. Certain intentions, called policies,

act as intentions to reason in certain ways during deliberations, and so embody the values of the program.

7.2 Summary of the Principal Contributions

The main contribution of this thesis, I feel, is in a cohcrent, if incomplicte, synthesis of a number of
important idcas developed by a number of authors. 1 hope that this synthesis points up directions for
future investigation, and that it helps articulate some of the ideas I belicve have been held by the authors
I draw from. In addition to thc synthesis of many important ideas, the thesis has presented novel
technical contributions on the following topics. in order of their appearance.

Chapter 2 presented the basis of the correct interpretation of virtual copics of descriptions in

logical terms, namcly as substitution and inference of meta-theoretical statcments. This was used in the

IO

216

construction of propositional attitudes, and in the correct interpretation of "context”™ mechanisms,
wherein concepts and beliefs augment the current sct of concepts and attitudes.

Chapter 3 prgscmcd uniformly defeasible reasons, the correct basis for adaptive and reflective
rcasoning programs,

Chapter 4 emphasized the advantages of desires and intentions over ambiguous “goals,” the
mterpretation of policies as intentions to reason in certain ways during deliberations, and the correct
interpretation of of procedures as partiat states of mind which in excecution augment the current state of
mind. We also presented a meta-circular reasoning program.

Chapter § introduced reasoned deliberation, the first class of formal decision-inaking procedures
o correctly account for reasons, dialectical debates, reflection, and the fragmentation of values.

Chapter 6 introduced deliberate changes of the mental state and their importance in explainable
and correctable self-modifications.

The last part of Chapter 7 will draw a new conclusion about the paradox of human existence,

7.3 Dircctions for Future Research

As mentioned carlicr, almost every concrete technique dc.vclopcd here should be vicwed with suspicion
of shortcomings. The preceding chapters have on occasion mentioned some of these shortcomings, and
this section catalogues some of the incompletencsses not mentioned in detail previously. These topics
deserve further study, and in some cases are crucial to the construction of a fully operative program, but I
have not had the time or inclination to pursuc all of them in this thesis. | am convinced that none of these
holes harbors a homunculus, but that is soincthing only experimentation can demonstrate.

Y. Make virtual copies virtual: SDI., as implemented, actually copics all its copy theories,
resulting in a real pile of data-structures here and there, and the ensuing costs in storage space. This may

be unavoidable, but it scems almost certain that specialized accessing algorithms can allow these copics to

e

A R L

Batid B SU- Y-S ol “Alv Tos ks ‘P

217

be virtual, that is, temporarily constructed, interrogated, and discarded only when necessary, so that the
long-term storage requirements do not exceed that used for the basic information being represented.
Fahlman [1979] has developed algorithms of this sort, but for a slightly different sct of data-structures,
and without the use of a RMS. I have tried to avoid making design decisions which would rule out
algorithms approximating his, for his suggestion of radically parallel databasc organizations seems very
attractive for the long view of information retricval.

2. Reorganize the RMS interface: RMS was designed as an independent subsystem, and in the
absence of more comprehensive tcclmiquc§ of control, was vested with a substantial amount of
responsibility for choosing among alternate belicf revisions, responsibility it should not bear and that this
thesis has tricd to relieve. The rather haphazard interface between RMS and the decision-making
pracedures is one result of this. In addition to those questions about RMS suggested for study in [Doyle
1979]. the overall organization of RMS should be rationalized in light of its actual role in the larger
reasoning program architecture.

3. Develop convenient syntaxes: ‘There should be a better syntax to facilitate the input and
output of information. This thesis hides some of the ugliest of the reality of using what cxists of the
program.

4, Encude information about the world in the database: 1 could not even attempt to present an
impressive display of the powers of this approach to rcasoning because I lack an encoding of a sizable
body of information about some problem domain other than the program itself, which is of considerably
simpler structure than the rest of the world. Again, I share this problem with others, although there are
currently appearing a number of database of facts (but fow procedures) about domains,

S. Encode plans in the plan library: Of course, this is a subproblem of the previous problem, as
any competent program needs not only the facts but know-how.

6. Catalogue various deliberation procedures: In addition to cncoding the values and the

specialized, problem-specific decision procedures of the domains of action in the program, more study

B e e S

e ol

I N

-y

218

should be applicd to develop abstract deliberation procedures in several levels of generality.
Rationalization and completion of the library of sccond-order and higher-order policies seems a primary
topic for inquiry, along with investigation of the form of fully recursive ~r reflective dcliberation
procedures.

7. Build a better vocabulary of processes: The language of the interpreter includes only a
rudimentary vocabulary for describing plans and processes. Extensions of this vocabulary depend in part
on building up more descriptions of the external world in the database, and in part on the progress of
computer science in developing process description languages, paralict and otherwise.,

8. Build a betrer vocabulary of deliberation: As a subproblem of the preceding, the vocabulary of
actions of policies should be extended.

9. Develop a vocabulary of advice types: Onc aim of this thesis has been to develop mechanisms
uscful in building a program which can accept, assimilate, and use facts and hint on how to use them. But
I have not explored how these picces of advice might be best conveyed. An important problem involved
in recalizing a program of this sort is in discovering a vocabulary of advice for imparting facts, values, and
skills. For example, informal hints about how to make some dccision include advice like (a) choose any
one you like, (b) choose quickly, (c) keep in mind that it is raining, and (d) give my suggestion every
conceivable consideration or benefit of a doubt. A formal advice vocabulary ought to include formal
analogues of these sorts of hints. The problem of advice is closcly tied with the discourse understanding
problems mcentioned below, for humans frequently give procedural or value information as declarative
statements, and rely on the advisee to ask and answer questions like What could they have possibly meant
by that? and What problem do they think I am facing that that fact would be relevant to?

10. Apply self-models in hypothetical reasoning: Many sorts of rcasoning processes require the
ability to answer questions of ability and other hypotheticals. Many of these questions can be answered
by envisioning or predicting the actions and intentions described by the question. One important topic for

investigation is that of using the sclf-description of the program in hypothetical reasoning. Symbolic

b Me Mgl N e

219

exceution of the sclf-description can be used to sce what actions would be taken and what their effects
would he in certain circumstances, without actually taking the actions or requiring the realization of the
circumstances. Symbolic exccution involves sctting up a sequence (properly, a directed acyclic graph) of
temporal situations linked by actions, and asserting the cffects of an action in its final situation whenever
the preconditions of the action can be proved in its initial situation.”® In symbolic exccution of the
sclf-model. then. the program would create a new state of mind to represent the hypothetical actions. It
would then assert the initial conditions in this frame of action, and begin exccuting within it. Instcad of
exceuting its primitives, it would use the specifications of the primitives to assert their effects. The answer
to the hypuothetical question is then answered by examining this record of symbolic exccution.

Symbolic execution of self-models also is valuable in skill introspection and development.
Many of the studicd techniques for analyzing bisp prt.)grams into plans depend on symbolic exccution of
the programs and plans. Similarly, the techniques of maintenance and compilation of programs require
symbolic execution not only for introspection, but also for compilation of primitives from plans.

11. Refine the technigues for plan compilation: One important application of symbulic cxecution
is in compiling refined plans and primitives from other plans and restricting information. Developing the
standard compilation techniques (constant folding, dead code climination, ctc.) in this context is an
important requirement for the future success of this sort of program. For example, guidclines need to be
developed for (a) when to coerce independent steps of a plan into a sequence, (b) when to reduce
deliberation to choices or conditionals, (c) when to transform plan variables to local variables or
data-structures, and (d) when to substitute subplans or primitives for tasks in a plan.79

12. Study formal historical interpretation: Collingwood [1946] suggested that the aim of history

is not just to record annals, but to discover psychological explanations of the actions of men. ‘This

78. Shrobe [1979a] gives detailed examples of this technique. Sce also [lewitt and Smith 1975).
79. Bursiall and Darlington {1977} and Clark and Sicke! [1977) cxplore program transformations to aid cfficiency, and their
techniqucs might be adapted to the plan-compilation task.

T LT T G TR R R R TR b T T

v,
-

e W e e . e - o - - - - -]

te

e e

-

Ty y T gk 3 R W AR [y PR

P S SO

Era——

220

involves not only discovering the facts of a situation, but also the ways the participants viewed the
situation and the possible actions available to them. That is, the goal of the historian is to infer the
attitudes or mental state of cach of the participants in the event. The obvious difficulty in this enterprise
is the ambiguity of mental states as determined by the recorded physical actions. Even if we have
complete annals of the actions of an event, there might have been many completely different mental
states of participants which could explain these actions. Was President Nixon an amoral criminal, was he
a patriot desperately defending the security of his country, or was he ncither of these? To answer
questions like this, we must cxamine all of his actions to scc if they arc consistent with onc interpretation
but not another (moderated by an assumption of his rationality). But it may happen that all of our
information about his actions is consistent with several interpretations, so that we cannot answer the
question.

The program must also make historical analyses of events, for example, to determine just what
crror was madc in some past decision or construction of a proacedure when that decision or procedure
later leads t an crror which must be corrected and avoided in the future. But in this the program also
faces ambiguity in reconstructing its past mental states, despite its wealth of records about actions,
inferences, and decisions. There are two major sources of this ambiguity. The first is that justification are
atemporal records of inferences, so it is difficult to el just what the set of justifications was at some past
time. But cven if this problem was overcome, a second source of ambiguity is that a given set of
non-monotonic justifications typically admits several interpretations as distinct sets of attitudes. Of
course it might be possible 1o determine which set of attitudes cxisted from the following actions and
inferences, but techniques for making these judgements are completely uncxplored. For example, one
might think that this problem might be solved by keeping some sort of history list of all inferences and

actions. But this cannot work, because these records will be subject to the same insecurity that afflicts

- wl,

-

g

[T

i o Bk AGRY AR v A el Sl

-

AR ¢ . S IR AN

S e T

L e

221

other beliefs about the pasl.so

13. Apply self-models in discourse and multi-agent planning: Onc attractive application of
hypothetical reasoning by symbuolic exccution of program models is in using scveral such models to
describe the reasoning faculties and attitudes of other agents for use in cooperative activities like
comersations. The proposal here is to employ not just the theory ME, the program’s theory of itself, but
several copies of ME, one to represent cach other person being considered, cach copy modified to reflect
the differences of that person from the program in its beliefs, desires, values, and skills. Of course the
most perspicuous organization of these multiple person models is to have a theory of the prototypical
person, deseribing the common knowledge and skills of people, and to have all other theories be modified
copics of this prototype. Fach of the particular person models would be used for different people, and
further copics of them would be used to represent different people at different times, or in hypothetical
situations as mentioned above for ME. Anonymous copics of the prototypical person theory would be
used to answer hypothetical questions about the behavior of typical people. Finally, the program might
maintain particular person descriptions as its consciences or ideal sclf-models, so that during deliberation
it can query these descriptions to sce what is the "right” thing w do (i.e. what would I do if | were
perfect?).

How the program might develop such models of its acquaintances from a general person model,
or alternatively, develop its general person model from its models of itself and others, are interesting
unecxplored topics.

14. Separate the logics of belicf, desire, and intention. In the usc of RMS 1 suggested viewing
intentions and other program structures not as embodiments or representations of intentions, but as

beliefs of the program about its intentions. This suggestion was motivated by the desire to subsume all

80. 1t might scom that this cannot wark because the recording of these actions must involve further actions which cannot
themsclves be recorded on pain of an infinite regress. This may be avoided by having the actions described by the records include
the recording substcps as well,

l“‘ Py YN PR

T TR L, e, AR QTR T T e e DT

EERTTYE. NS S et R N LRSS B

222

logics of reasoning into the single logic cmployed by RMS. While this view may be temporarily useful, it
may be ultimately misguided. Different attitudes have different logics, and more argument than was
presented scems to be necessary for their unification.

A related drawback of this approach of viewing program attitudes as beliefs about attitudes is
that it offers a confusion about the “levels” of the program’s beliefs. FFor example, humans sometimes
infer that they possess certain attitudes from observations of their actions, as in "I didn’t think [wanted to
cat, but looking at the amount 1 put away, I must have been really hungry.” But the belicf that 1 desire
food in such a case must be different from the desire for several reasons. First, I might be wrong in the
inference, in which case my inference would hardly constitute a desire. Second. the reasons for the belief
arce purcly in terms of other beliefs about my actions, But the reasons for a desire will, if the desire is not
basic, in gencral imvolve both belicfs and desires.

It may be that the particular approach taken in the thesis overcomes these problems, but that is a
topic for further investigation. My gucss is that the primary error is simply my interpretation of these
structures as beliefs about attitudes, rather than the more natural interpretation as the realization of the
attitudes themselves, My interpretation stems from a view of RMS as working only with a logic of belief,
rather than with scveral logics for different attitudes. Perhaps the only change necessary is to change the
operation of RMS so that it respects these different logics for differemt attitudes.

Part of this possible confusion between the attitudes seems to stem from an asymmetry between
the types of attitudes. Namely, desires and intentions are cach represented as statements of the form
Desire{content) or Intention{content), where the contents arc further concepts. Beliefs, however, are
represented as RMS-node(content), where a RMS-node is not a predicate symbol, and content is not a
concept. Finding some reorganization or interpretation of these attitudes would go a long way towards

cleaning up this problem.

15. Explore the relations of desires to intentions: My treatment of desires and intentions and

their relations has been most cavalier. The problem of how and when intentions are formed from desires

v AL R W e s

Ca e e P ST

D e T s 4 By

223

scems to have received scant study, at least in the parts of the literature on practical reasoning that | have
cxamined.

16. Investigate multiple loci of consciousness: We described the consciousness of the program as
the pereeptions of the interpreter, and unconscious primitives as programs for any other interpreter. But
there may be many loci of unconscious action, as the various primitive program interpreters may be
distinct machines, as is common practice in the CPU-peripheral organizations of modern computers. We
have no similar suggestions about how consciousness might be broken into several loci. We have
suggested that there might be several interpreters. cach active at different times, and that deliberation
procedures can also reflect on the current mental state. Are these properly thought of temporally distinct
loci of consciousness? Can consciousness involve simultancous pereeptions of several simultancously

operating subsystems?

7.4 Afect, Intellect, and Complex Sclf-Descriptions

We have presented a model for rational thought which cmploys only the simplest realizations of a few
mental attitudes. While these prove uscful for many purposces, the next step is to formalize a wider range
of mental attitudes, such as carefulness, confusion, hesitation, and others.?! Once formalized, these new
attitudes may be put to the scrvice of a more powerful reasoner.

Consider the mental attitude carefulness. Carcfulness has cntered experimental Al programs,

including this thesis. only in an informal, ad hoc way. A program often has two ways of carrying out some

81 In this scction, | have been substantially impressed and motivated by the idcas of Marvin Minsky and Scymour Papert, first in
the 1978 draft of their book on the Socicty of Mind. and later in Minsky's paper on affective exploitation [Minsky 1980). In addition
10 exploring the inferaction (and in one sense, unity) of affect and intellect. Minsky tries to invert a common conception of affect as
complex aud intellect as transparent by suggesting that intellcctual mechanisms might be built out of simpler affective mechanisms,
My suggestions in this scetion are to study how afTect might be built from intellcet. At this stage of investigation, my suggestions
should not be laken as opposing Minsky's view Any conncction between the two paths of construction is likely 1o provide ways of
building either sort of menta! attitude from the other. Where onc stants is a matter of convenicnce. Since this thesis builds up much
of the intellectual mechanisms of rcasoning, il is most convenicnt here first 1o build affect from intellect, and then to build intellect
from affect.

e, ik E

i te

ST}

iy B AT gt £E i A R g Sl A BRI ¥ R g, Fi0 e I T By S

224

activity. Of these, one procedure acts in an awtomatic fashion, carrying out its steps without pausc. The
other procedure scparates cach step with checks to see if it is safe to proceed, that is, whether certain
exceptional conditions have arisen from the exccution of the previous step. In such cases, common
practice is to call the former procedure the normal one, and the second procedure the “careful” version,
or “carcful mode.”

Of course, in these cases the program does not call one procedure careful and the other heedless,
it is the programmer who does so. But if the program could also make these discriminations among
procedures, its planning and skill development capabilities would be substantially enhanced. When
constructing a plan in hicrarchical fashion, if the intended result is to be a careful plan, the program
might make judgements about which of the steps of the plan must be realized in a careful fashion, and so
influcnce the design of these steps. The program might also deliberately choose to be careful when it
judges that it is acting without as much information as it normally prefers, or when it realizes that its
actions arc likely to be very important or consequential. Thus it would be valuable to formalize some
notion of being carcful about something so that the program can make decisions about whether 1o be
carcful or not, rather than restricting these decisions to the programmer.

Consider confusion. This is a very useful attitude to be able to recognize in onesclf, for we all
use several plans for getting out of confusions. For cxample, when attempting a difficult project, such as
implementing a large program for one’s thesis, it is common te try making decision A, postponing it when
one gets stuck, working on decision B, postponing B because it scems to depend on first deciding A,
working on C until sccing that it depends on the outcome of B, working again on A only to find that it
depends on C. From personal experience, 1 can aver that at this point | realize I'm confused about what
to do. What do | do? | apply my rcalization to think of ways out of my confusion, such as making a
graph of the dependencics 1 perceive among the decisions, and then trying to see if | can make one of the
decisions arbitrarily so that [can proceed, and fix it later if it docsn't work out. Of course 1 try to pick the

choice so that fixing it will not be hard, and so that [will make some progress on the other dccisioqs even

i

S

R g e N e I

e BN

&

ety

ey

225

if the first is wrong, but the main plan is just to make a choice, knowing that it may not be defensible. If [
can be more cffective in this way because | can recognize and act on my confusion, a program should be
able to enjoy the same facility.

Finally, consider hesiration. If one can see that one is hesitating about a decision, then that is a
valuable consideration in making related choices. In particular, the related choices should be made so
that they depend as little as possible on successfully carrying through the hesitant decision. As in the
above confusion example, a deadlock breaking decision might be crucial but hesitant, and so its
correctness should not be counted on heavily by dependent decisions.

How might we formalize hesitation? Dennett [1978b) suggests the following possibility. He
makes a distinction between belief and opinion, where belief is a graded fecling (possibly described by
Baycsian cvolution rules) upon which action is rcally based, while opinion, on the other hand, he takes to
be all or nonc assent to linguistic statements. Hesitation (and sclf-deception) he explains as cases in which
onc has developed opinions which do not comfortably match onc's beliefs. Thus on the basis of a chain
of inferences one might make the rational decision to take some action, but since the beliefs involved are
not completely certain one has little confidence in the conclusion of the argument, in spite one’s avowal
that it is the right thing 10 do. One is willing to declare one’s intention, but when it comes down to
actually taking the action, one’s action, based on the uncertain beliefs rather than on the opinion, does not
carry out the intention. Dennett's suggestion might fit into the presently proposcd program by
identifying what he calls opinions with what | call belicfs, and what he calls beliefs with something
derived from policies.

Just as onc recognizes complex intellectual attitudes and employs them in deciding what to do,
one also recognizes and similarly ecmploys onc's emotions. For example, | see mysclf getting tired and
unwilling to continue writing the next chapter of my thesis. To carry through with my intention to finish
the chapter by the cvening, | carry out a plan which involves imagining how unpleasant prolonged

matriculation would be. The plan is based on the cxpectation that this thought will prove so horrifying

o

- Al Ay E g S A STID T 4 g, Iy R 4

226

that 1 witl resuine writing with renewed vigor and determination.

To iltustrate these ideas more concretely, but extremely simplistically, consider policics like the

following.82

If the decision is important, prefer to continue deliberating.

If the reasoner is sick, tired, debilitated, mentally impaired, or
otherwise has reason to suspect itsmental faculties, try to delay the decision.

If the decision is hateful or distasteful, try to reject the decision.

If Lthe reasoner is angry, frustrated, or confused. try to delay the
decision and relax and reorganize.

If the reasoner is despairing of being able to decide, choose randomly.

In these T just try to indicate, without providing any mechanisms for how onc might make these
judgements, of how affective or emotional considerations might enter into the decision-making process.
If onc’s mind and body arc on the fritz. one shouldn’t think unless forced to. If onc can’t stand making
the choice, one frequently finds reasons to impugn the choice, to reject it. 1f one mercly finds the choice
annoying or distasteful, one just avoids it until time pressure sets in or until it goes away, If one is
confused, angry, or frustrated, onc delays and relaxes, and perhaps engages in other plans like making
lists of options, reorganizing them, etc.

The main point I'm trying to get across here is that if onc develops some way of recognizing or
observing cmotional states by the program looking at itscif, then I have sketched how onc might proceed
to usc these sorts of judgements in rational thought, particularly in the ability of thinking rationally about
onc’s own psychological problems. Machines will probably get depressed too, and we ought to figure out
how to help them get themselves out of it.

Many cmotions may prove uscful to a computer program. However, this idea requires much

experimentation and study in programs with vastly different forms of their psychologics. Not only will

82. See [Carbonell 1979] for another approach towards (ormalizing and using attributions of cmotions and complex menta) states.

b 5 RlEh W 2 L B v L aL e e

B =

e a—————— e - - el o TR RS e e T T

their specific beliefs and skills differ, but the form of their mental lives will differ. ‘There will the purely
intellectual programs (Mr. Spock’s Revenge). intellects that can hope and fear as well, and perhaps some
programs constructed to share the full range of human emotions.

This sort of study would be an idcal laboratory for studying which parts of man’s mental life are
truly valuable for some purposcs, and which parts, if any, arc unnccessary accidents of evolution and
physiology. Just as geneticists may someday discover enough to allow man to direct his physiological
cvolution. experimental alien intefligences may help psychologists discover enough to fet him direct his
psychological evolution as well® On a smaller scale. these experiments may help man improve his
repertoire of informal sclf-analysis and self-help techniques. Given man’s age-old desire to direct his
future for his own benefit, | sce no reason to fear man's obsolescence in the shadow of superintclligent

machines. He is much likelier to obsolesce in the shadow of his children.

7.5 The Limits and Accuracy of Sclf-Knowledge

I have a left shoulder-blade that is a miracie of loveliness. Pcople come miles to sce it. My right
clbow has a fascination that few can resist.
Sir W. S. Gilbert, The Mikado

How much can the program know about itsclf? The mechanisms described in this thesis seem to suggest
the following dircctions for investigation.

The program has a model of, in fact direct access to, its nominal scts of concepts, beliefs,
assumptions, reasons, desires, intentions, actions, values, and skills. In spite of this, the program can be
mistaken about these attitudes because its skills, in particular those comprising the basic operation of the

program, nced not be fully understood by it for it to be operable. 1f the program does not correctly

undcerstand the details of its own procedures and how they affect its perception of its attitudes, we might

83. In fact, Wilsun [1978] suggests thal these two endcavors arc more closcly connected that is sometimes thought, that if we wish
to guide our physical cvolution, we must also consider the effects on our psychological cvolution.

=

228

expect the program to be just as confused about the corrigibility of introspection as we are, for as far as it
can tell, it has incorrigible access to all of its mental states. But if the program realizes that it has
incomplete or possibly incorrect understandings of its own procedures, then it can conclude that its need
«
not have incorrigible access. The program’s access need not be priviliged, for it may run on a computer
which displays its entire mentat state in a huge bank of lights, and somcone watching these lights v.vith an
understanding of the design of the computer would be able to tell at least as much about the pr(’gram as
the program itself,

In fact, the program might have a much casier time at introspection than humans, for humans
hane not clear access and knewledge of their basic mechanisms. 1t appears possible to give such access
and knowledge to a carcfutly designed machine. A growing literature on program understandigg has
been concerned with developing techniques for taking a program and analyzing it into its intentional
structure. The program under analysis is first converted into its surface plan, which simply indicates the
data and control fluw connections between the parts of the program. This surface plan is then analyzed
further into the design of the program. The design consists of the deep plans underlying the surface plan
together with the telcological justifications of the organization and deployment of these plans. Thus the
program understanding task takes a program and attempts to infer the decisions and plans that went into
its construction, inverting the design process.

The success of this analysis process depends primarily on (1) having a sufficiently rich library of

standard plans, and on (2) the program under analysis having some purpose. For the first requirement,

Barstow [1977). Rich [1980), and others have developed catalogues of standard programming plans and

techniques, and the complction of this task scems to now depend on energics expended in its pursuit
rather than on overcoming unsolved problems. For the second requirement, it appears that most analyses
can be made successfully using only the information that the program has a purpose, not what that
purpose is. de Kleer [1979a,b] found, in the similar task of analyzing clectronic circuits into their

underlying designs, that almost all analyses succeeded in finding a unique interpretation of the function

dithen <ol BRI AR) B At ve VIteede cha L MR o

mgE———— T T T e DGR U L

< - —————

229

of the circuit and its components using only the technigue of abandoning any interpretation in which
some component’s function could not he explained. And in thosce circuits for which multiple possible
functions were determined in spite of this heuristic. the circuit usually can be used to perform any of the
several functions. and infornation about the context of use of the circuit suffices to determine which of
these interpretations is correct in that context.

The import of these techniques is that they can be embaodied in the program just like any other
pracedures, and in fact, sci-applicd so that by itsclf it can determine the structure of all of the LISP
functions making up its procedures. 1f the language in which these plans are phrased is the same as that
used by the plans in the plan library, this means that when the program constructs a new procedure, the
records left in its design process constitute the analysis of the new procedure. ‘Thercfore, the program
nced not analyze the new procedure further, since its teleological structure is alrcady known.

At the next level of languages down, the program can apply the same techniques with a different
vocabulary of surface syntax and plans to understand the machine code implementing these LISP
functions. This process can be continued, to give the program an understanding of how machine
instructions arc implemented in transistors and resistors, how these arc implemented in semi-conductors
and conductors, and the atomic, even nuclear and subnuclear structure of these, just as humans seek o
understand their construction in anatomical, biological, chemical, and physical terms.

In fact, just as the program can modify its own procedures at the highest levels of this chain of
implementations, there is no intrinsic barrier (given cnough information and suitable sensors and
effectors) to the program changing its own construction at these lower levels, for example, by repairing its
circuitry, or even transmitting itself to a new computer host (with or without "terminaiing” its previous

"sclf"). 44

84. Sandcwall [1979] discusses such self-reproduction as a means lowards periodically salvaging the uscful attitudes and skills of the
program. llis idca is that the program rcplaces itself with a “child” made only from all the uscful stuff, leaving all the deadwood
behind.

I

230

What docs all this say about the privacy, directness. and corrigibility of the program’s
sclf-knowledge? ‘That apparently its mental states need not be any more private than the contents of a
normal computer; that it can have dircct access to its internal processes to the machine level and not
beyond: and that it need not always be correct in its seif-understanding. One might build the program in
a computer that displays its complete internal state, but neither this nor taps on these lights will permit
“mind-rcading” without knowledge of the design of the computer and hence the meanings of those states.
The program might interpret its ability to change aspects of itself purcly by thinking down to the machine
language leve! but not beyond as & difference between mental and physical. And without the procedures
to analyze its own procedures or information about the reliability of its hardware, the program can be
mistaken about the behavioral import of its consciously visible attitudes. But with such sclf-analysis
procedures and its recorded reasons for attitudes, the program will be able to say, perhaps with much
better justification than humans, things like “part of me wants to do this, and part of me says not" by

tracing its attitudes through its reasons to its procedures and other attitudes. 85

8S. Would the construction of artificiai intelligence ever occur as a problem to such a program? Perhaps its notion of artificial
intelligence would be organically and genctically developed intelligence. Perhaps Al would really be "aliernative intelligence.”

e RRTERE AEN b o W o el - ML s SAm

% g e

21

7.6 Vhe Limits of Reason and the Absurd

If when my wife is sleeping

and the baby and Kathleen

are sleeping

and the sun is a flame-white disc
in silken mists

above shining trecs, --

if 1 in my north room

dance naked, grotesquely

before my mirror

waving my shirt round my head
and singing softly 1o myself:

“I am loncly, loncly.

1 was born to be lonely,

1 am best so!™

If | admirc my arms, my face,
my shoulders, flanks, buttocks
against the yellow drawn shades, --

Who shall say I am not
the happy genius of my houschold?

Villiam Carlos Williams, Dance Russe
This final section discusses some of the most fundamental problems raised by the question “What should
1 do” in light of the architecture for a reasoner developed in this thesis. The conclusion is simply a
heightcning of the paradox of human absurdity to the paradox that absurdity is a conscquence of being
best at catering to scif-significance.

For the program as described to survive, it must matter to itsclf, it must be seif-significant. The
actions of the program all involve changing itsclf. At each step the program packages up its current
mental state as a new object, thus entering a new state containing the reified previous state. The program
then makes further changes in its sate on the basis of reflecting, on cxamination of the reified previous
state. Its continual question of what to do is always that of how to changg its state. (Any cffects in the
physical world of these mental changes result from the realization of the machine as a physical device
with causal conncctions to the rest of the physical world.) Some changes the program can make in itself

can destroy it. For example, it can abandon all its procedures without replacing them by new ones, so

boogn o F AN g

EUMWES g 22 T TN

232

that it has nomeans by which o act in the future. For the program o have some way of preferring other,
more sane changes to this one, it must value its own survival, 1t must be sclf-significant.

Since the program can sclf-consciously discuss itsclf, its survival values can be justified in terms
of predicted non-survival. All of the program’s attitudes will cither appear to it to be premiscs
(depending on no other attitudes). mutually supporting attitudes. or attitudes depending on attitudes of
the first two sorts. Indeed, all attitudes may be mutually supporting to some degree if hypotheses can
always be inferred from sufficiently many of their consequences. For cither premises or mutually
supporting attitudes, the program might attempt ﬁ) find further justify justifications. Such justifications
cannat be in terms of other attitudes, or the point of the effort has been missed. The justification also
cannot be in terms of the programmer or other external agents, lest the question be begged by merely
rephrasing it as a similar question of justification for the external agents. ‘The only sort of answer that
seems to be left is a pragmatic onc: that doing things one way works (leads to continued survival), and
that doing things differently is less certain of working.

For example, Quine invents the metaphor of the web for our systems of belicfs.3 Our sensory
impressions, hypotheses, theories, laws of nature, and laws of rcason all populate a great web of belief,
belicfs interconnected so that changes in one lead to changes in others, so that any belicf may be changed
through changes in sufficiently many other belicfs. When confronted with new information, new entries,
and changes in the web, we make further changes, cither to accommodate or to reject the new cntries.
Changes most frequently occur in the "sensory” beliefs at the web’s periphery, and rarely have
repercussions in the web's interior, at the center of which reside the laws of reason and unshakable faiths.
In the web metaphor, the only difference between beliefs relevant to their change is the tenacity to which
we cling to them, and the tenacity increases as we proceed from the web’s periphery to its center. But

what is this tenacity of grip on beliefs? Quinc suggest that the reasons we hold the belicfs we do are

86. 1n scction 6 of [Quine 1953).

e

A RE e Pt desad e Qe W

fe

233

purcly pragmatic, that we change our beliefs so that they lead to successful survival. There is nothing
wrong with other changes. it is just that we dic if we make them, and along with us ends our web of belief.

But note the form of pragmatic justifications of attitudes: because holding otherwise leads to
non-survival. "To formulate such justifications, the program must be able to realize the possibility of its
own non-survival as opposed to it own survival, and hence the possibility of its non-existence as opposed
1o its existence. This means that the program must be able to view itself as an entity of (possibly) limited
temporal duration, and its own life-span as a segment of eternity. It must be able to think of itself as a
finite object existing in an infinite eternity, or in traditional terms, sub specie acternitatis.

Here enters the paradox of human absurdity. As an adaptive agent, the program must be
self-significant. But as a self-conscious agent, the program can realize its cternal insignificance, and hence
a sensc of self-insignificance. It sces that while its values make it matter to itself, vutside the span of its
existence its values have no meaning. Hence the program can sce that the way things are does not matier
to it if it is not. Further its being not does not matter to cternity, since there are no standards for things
mattering to ctemity."

Nagel [1979a] phrascs this paradox as the result of dragooning transcendent consciousness into
the service of mundane cxistence. Adaptivencss alone may suffice for survival, as is shown by the lower
animals and plants. But animals and plants arc not absurd, because they are not both self-conscious and
adaptive. Only agents both adaptive and scif-conscious are absurd, that is, permit the possibility of
encountering this paradox of simultancous sclf-significance and sclf-insignificance.

But as this thesis has argucd carlier, self-consciousness is necessary for maximal effectiveness in
adaptation. Only by sclf-consciously reflecting on our past and potential actions can we avoid as many
pitfalls as possible. Thus absurdity is no accident. The program must adapt to survive, must be

sclf-conscious to be superior at adapting, and hence must be absurd. In the terms of the theory of

87. Whecler [1977) and others have suggested that eternity may never exist except when it is possible that some obscrver, or
self-significant agent might exist as part of it.

e e
‘L;}; N2 Tk e o
Nl e e,

Y -

234

cvolution, the fittest are the absurd.

And nevertheless Tam weary, and 1 know that there can be no rest for me in the heart of this
great city which thinks so much, which has taught me to think, and which forcver urges me to
think morc. And how avoid being cxcited among all these books which incessantly tempt my
curiosity without cver satisfying it? At one moment it is a date 1 have to look for; at another it is
the name of a place | have to make sure of, or some quaint term of which it is important to
determine the exact meaning. Words? -- why, yes! words. As a philologist, | am their sovereign;
they are my subjects, and, like a good king, 1 devote my whole life 1o them. But will I not be
able to abdicate some day? 1 have an idea that there is somewhere or other, quite far from here,
a certain little cottage where 1 could enjoy the quict | so much need, while awaiting that day in
which a greater quict -- that which can never be broken -- shall come to wrap me all about. 1
dream of a beneh before the threshold and of ficlds spreading away out of sight. But | must
have a fresh smiling young face beside me, to reflect and concentrate all that freshness of nature,
I could then imagine myself a grandfather, and all the long void of my life would be filled....

Anatole France, The Crime of Sylvesire Bonnard

gt gt Bl ¢ . i B AR AR o V-

. e

wa - Th

- e s sy ——

M

235

REFFRENCES
In the following. IJC AT refers o onc of the International Joim Conferences on Artificial Intelligence, held
in odd-numbered years.
Altison, G. T., 197, Essence of Decision: Fxplaining the Cuban Missile Crisis, Boston: L ittle, Brown.

Anderson, R. M. Jr, 1975. Paradoxes of cosmological sclf-reference, Induction, Probability, and
Confirmation (G. Maxwell and R. M. Anderson Jr., eds.), Minncapolis: University of Minnesota Press,
530-540.

Anscombe, G. E. M., 1957, Intention, | ondon; Basil Blackwell.
Aristotle, 1962. Nichomachian Ethics (M. Ostwald, tr.), Indianapolis: Bobbs-Merrill.

Arrow, K. J., 1967. Values and collective decision-making, Philosophy. Politics, and Society 111 (P. | aslett
and W. G. Runciman. eds.). London: Basil Blackwell.

Asimov, 1., 1950. 7, Robot, New York: Gnome Press.

Asimov. I., 1964. The Rest of the Robots. New York: Doubleday.

Aune, B., 1977. Reason and Action, Dordrecht: 1J. Reidel.

Austin, 1. L., 1962. How To Do Things With Words, Cambridge: Harvard University Press.

Backus, J.. 1973. Programming language scmantics and closed applicative languages, Proc. Symp. on
Principles of Programming I.anguages, 71-86.

Barnard, C. L., 1938. The Functions of the Fxecutive, Cambridge: Harvard University press.

Barstow. D. R., 1977. Automatic construction of algorithms and data structures using a knowlcdge base
of programming rulcs, Stanford Al Laboratory, Memo AIM-308.

Rarth,)., 1960. The Sot-Weed Factor, New York: Doubleday.

Belt, C. G., and Newell, A., 1971. Computer Structures: Readings and Fxamples, New York:
McGraw-Hill.

Bell, D., 1976. The Cultural Contradictions of Capitalisim, New York: Basic Books.

Belnap, N. D., 1976. How a computer should think, Contemporary Aspecis of Philosopky (G. Ryle, ed.),
Stocksficld: Oricl Press, 30-56.

Bennett, J., 1964. Rationality, London: Routledge and Kegan Paul.

Bobrow, D. G., and Winograd, T., 1977. An overview of KRL, a knowledge representation language,
Cognitive Science 1, 3-46.

.) . EREL A Ll Noa S ST
o 5 i, hANANRRTIR e T3 —

e -

R

A RIS Sl 4 I e -

2

stesendamthninnmnd

 ———————p——— — =

j*:.

236

Boden, M. A 1977, Aniificial Intelligence and Natural Man, New York: Basic Books.

Boolos, G.. 1979. The Unprovability of Consistency: An essay in modal logic, Cambridge: Cambridge
University Press.

Borning, A. H.. 1979. Thinglab: a constraint-oricnted simulation laboratory, Ph.D. thesis, Stanford
University, Department of Computer Science.

Brachman, R. J., 1978. A structural paradigm for representing knowledge, Bolt, Beranck, and Newman,
Report 3605.

Brachman, R. J., and Smith, B. C., 1980. Spccial issuc on knowledge representation, ACM Sigart
Newsletter 70.

Brand, M., ¢d. 1970. The Nature of Human Action, Glenview: Scott, Foresman.

Braybrooke, D., and Lindblom, C. E., 1963. A4 Sirategy of Decision: Policy I-valuation as a Social Process,
New York: Free Press.

Brown, A. [.., 1976. Qualitative knowledge, causal rcasoning, and the localization of failures, MIT Al
l.aboratory, TR-362.

Brown, F., 1977. The theory of meaning, University of Edinburgh, Department of Artificial Intelligence
Rescarch Report 35.

Brown, F., 1979. A thcorem prover for meta theory, Proc. Fourth Workshop on Automated Deduction,
155-160.

Burstall, R. M., and Darlington, J., 1977. A transformation systcm for developing recursive programs, J.
ACM 24, 44-67.

Camus, A., 1955. The Myth of Sisyphus and other essays, New York: Random House.

Carbonell, J. G., 1979. Computer modcls of human personality traits, Carncgic-Mclion University,
Computcr Science Department, CS-79-154,

Carnegie, D., 1936. How to Win Friends and Influence People, New York: Simon and Schuster.
Carncgie, D., 1944. How 10 Stop Worrying and Start Living, New York: Simon and Schuster.

Cartwright, R., and McCarthy, J., 1979. Recursive programs as functions in a first-order theory, Stanford
CSD Report 79-7117.

Castaneda, H.-N., 1975. Thinking and Doing, Dordrecht: D. Reidel.

Cattell, R. G. G, 1978. Formalization and automatic derivation of code gencrators, Carncgie-Mellon
University, Computer Science Department.

Chandler, A. D. Jr., 1962. Strategy and Structure: Chaplers in the History of the Industrial Enterprise,

A v

Wk Ll

[

237

Cambridge: MIT Press.

Charniak, E., Riesheck, C.. and McDermott, ., 1979. Artificial Intelligence Programming, Baltimore: L.
E. Erlbaum.

Chisholm, R.. 1978. Practical reason and the logic of requirement, Practical Reasoning (J. Raz, ed.),
Oxford: Oxford University Press, 118-127.

Church, A., 1941, The calculi of lambda-conversion, Annals of Mathematics Studies 6, Princcton.
Clark, K., and Sickel, S.. 1977. Predicate logic: a calculus for deriving programs, /[JCAI-77, 410-411.

Cohen, P. R., 1978, On knowing what to say: planning spcech acts, Department of Computer Science,
University of Toronto, 'TR-118.

Collingwouod. R. G., 1946. The lica of History, Oxford; Oxford University Press.

Collins, A., 1978. Fragments of a theory of human plausible reasoning, Proc. Second Conf. Theoretical
Issues in Natural Language Processing, 194-201.

Dacey, R., 1978. A theory of conclusions, Philosophy uf Science 45, 563-574.
Davis, 1.. H., 1979. Theory of Action, Englewood Cliffs: Prentice-Hall.

Davis, R., 1976. Applications of meta level knowledge to the construction, maintainance and use of large
knowlcdge bascs, Stanford Al Laboratory, Mcmo AIM-283,

Davis, R., 1980. Meta-rules: reasoning about control, MIT Al Laboratory, Memo 576.
Dennett, D. C., 1969. Content and Consciousness, 1.ondon: Routledge and Kegan Paul.
Dennett, D. C., 1978a. Current issucs in the philosophy of hind, Amer. Phil, Quarterly 15, 249-261.

Dennett, D. C., 1978b. How to change your mind, Brainstorms, Montgomery, Vermont: Bradford Books,
300-309.

Dennett, D. C., 1978¢. Brainstorms, Montgomery, Vermont: Bradford Books.

de Kleer, J., 1979a. Causal and teleological rcasoning in circuit recognition, MIT Al Laboratory, TR-529.
de Klicer, J., 1979b. The origin and resolution of ambiguitics in causal arguments, JJCA7-79, 197-203.

de Kleer, J., Doyle,)., Stecle, G. L. Jr., and Sussman, G. J., 1977. Explicit control of rcasoning, Proc.
ACM Symp. on Artificial Intelligence and Programming Languages, Rochester, New York, also MIT Al
| aboratory, Mcmo 427.

de Kleer, J., and Harris, G.. 1979. Truth maintcnance systems in problem solving, draft, Xerox PARC,

Doyle, J.. 1976. The use of dependency relationships in the control of reasoning, MIT Al Laboratory,

. B S BT T e sl L

238

Working Paper 133.
Doyle, 1., 1977. Hicrarchy in knowledge representations, MIT Al Laboratory, Working Paper 159.
Doyle, 3., 1979. A truth maintenance system, Artificial Intelligence 12, 231-272.

Doyle. J.. and Tondon, P., 1980. A sclected descriptor-indexed bibliography to the literature on belief
revision, SIGART Newsletter 71.

Dray, W. H., 1964. Philosophy of History, Englewood CIliffs: Prentice-Hall,

Dreyfus, H.1.., 1979, Whal Computers Can't Do, revised ed., New York: Harper and Row.
Drucker, P. 1., 1946. Concept of the Corporation, New York: John Day.

Drucker, P. F., 1974. Management: Tasks, Responsibilities, Practices, New York: Harper and Row.

Duda. R. O.. Hart, P. k.. and Nilsson, N. J., 1976. Subjective baycsian methods for rule-based inference
systems, Proc. National Computer Conference, AFIPS Conference Proceedings Vol. 45, 1075-1082.

Dummett, M. A. E., 1973. The justification of deduction, Proc. British Academy, Vol. LIX.
Fdgley, R., 1969. Reason in Theory and Practice, 1.ondon: Hutchinson.
Ellis, A. and Harper, R. A., 1961. A Guide to Rational Living, Englewood Cliffs: Prentice-Hall,

Enters, H.. 1924, An meine Geschwister in Dcutschland, Die Kleine, muehselige Welt des jungen
Hermann Enters (K. Eckert, ed.), Wuppertal: Born-Verlag 1970.

Ernst, G. W., and Newell, A., 1969. GPS: A Case Study in Generality and Problem Solving, New York:
Acadcmic Press.

Fahiman, S. E., 1974. A planning system for robot construction tasks, Artificial Intelligence 5, 1-49.

Fahlman, S. E., 1979. NETL.: A System for Representing and Using Real Wurld Knowledge, Cambridge:
MIT Press.

Feferman, S., 1960. Arithmetization of metamathematics in a gencral sctting, und. Maih. LX1X, 53.

Fikes, R. E., 1972. Monitored exccution of robot plans produced by STRIPS, IFIP 1971, Amsterdam:
North-Holfand, 189-194.

Fikes, R. E., 1975. Deductive retrieval mechanisms for state description models, JJCA/-75, 99-106.

Fikes, R. E., Hart, P. E.,, and Nilsson, N, J., 1972. Lcarning and cxccuting generalized robot plans,
Artificial Intelligence 3, 251-288.

Fikes, R. E., and Nilsson, N. J,, 197). STRIPS: a new approach to the application of thcorem proving to
problem solving, Artificial Intelligence 2, 189-208.

T

At

wenl LATRE) Nk AR v il W B

[

239

.
Fodor,). A, 1968. Psychological Fxplanation, New York: Random House.

Fodor, J. A, 1975, The Language of Thought, New York: Crowell.

Fodor, J. A.. 1978. Methodological solipsism as a research strategy in psychology, MIT Department of
Psychology, draft,

Fox, M. S., 1978. Knowledge structuring: an overview, Proc. Second Conf. Canadian Society for
Computational Studies of Intelligence, 146-155.

Fox, M. S., 1979. Organization structuring: dcsigning large complex software, Carncgic-Mcllon
University, Computer Science Department, CS-79-15S.

Yreud. S.. 1937, The huterpretation of Dreams (A. A. Brill, tr.), New York: Macwmillan.

Gaincs, B. R., 1976. Foundations of fuzzy rcasoning, /nternational Journal of Man-AMachine Studies 8,
623-668.

Gardiner, P., 1974. The Philosophy of History, 1 .ondon: Oxford University Press.
Gauthicr. D, P., 1963. Praciical Reasoning, |.ondon: Oxford University Press.

Giies, R., 1976. A logic for subjective belicf, Foundations of Probability Theory, Statistical Inference, and
Statistical Thearies of Science, Vol. 1, (W. 1.. Harper and C. A. Hooker, ¢ds.), Dordrechi: Reidel, 41-72.

Glover,)., 1976. The Philosophy of Mind, Oxfosd: Oxford University Press.

Godel, K., 1931. On formally undecidable propusitions of Principia Mathematica and related systems 1,
IF'rom Frege 10 Godel: A Source Book in Marhematical Logic, 1879-1931 (). van Hcijcnoort, ed.),
Cambridge: Harvard University Press, 1967, 596-616.

Goldman, A. 1, 1970. A Theory of Human Action, Princeton: Princeton University Press.

Goldstein, 1. P., 1975. Summary of MYCROFT: a system for understanding simple picture programs,
Artificial Intelligence 6, 249-288.

Good, 1. J., 1952. Rational decisions, Journal of the Royal Statistical Society B 14, 107-114,

Goodman, N., 1973. The problem of counterfactual conditionals, Faci, Fiction, and Forecast, third
cdition, New York: Bobbs-Merrill, 3-27.

Gordon, M., Milner, R., Morris, 1., Newey, M., and Wadsworth, C., 1978. A mectalanguage for
interactive proof in LCF, Proc. Fifth Sympuosium on Principles of Programming l.anguages, 199-130.

Green, C., 1969. Theorem-proving by resolution as a basis for question-answering systems, Machine
Intelligence 4 (B. Mcltzer and 1). Michic, cds.), New York: Aincrican Elscvicr, 183-208.

Grice, H. P., 1969. Utterer's meaning and intentions, Philosophical Review, 147-177.

pro %Wi-g%’ [
Ry S PO

A A I L ka8 DN S Pkl & § o AR 20731 Sl

t

240

Gross. B. 5., 1979, Utterance and objective: issucs in natural language processing, 7JCAI-79, 1067-1076.
Gustafson, 1), ., ed., 1964. Essays in Philsophical Psychology, New York: Anchor.

Haack. S., 1978. Philosophy of Logics, Cambridge: Cambridge University Press.

Hare, R. M., 1952, The I anguage of Morals, Oxford: Oxford University Press.

Hare, R. M., 1963, Frecdom and Reuson, Oxford: Oxford University Press.

Harel, D., 1979. First Order Dynamic 1 .ogic, Berlin: Springer-Verlag,

Harman, G.. 1973. Thought, Princeton: Princeton University Press.

Harman, G.. 1976, Practical rcasoning, Review of Meraphysics XX1X, 431-463.

Harman, G.. 1977, The Nuature of Morality, New York: Oxford University Press.

Harper, W. L., 1976. Rational belicf change, Popper functions, and counterfactuals, Foundations of
Probability Theory. Statistical Inference, and Stavistical Theories of Science, Vol. 1, (W. 1.. Harper and C.
A. Hooker, eds.), Dordrecht: Reidel, 73-115.

Harrison, A.. 1978. Making and Thinking: A Study of Intelligent Activities, Indianapolis: Hackett.

Haycs, P. 1., 1970. Robowl'ogic. Machine Intelligence S (B. Mclizer and D, Michie, eds.), New York:
Amcrican Elscvier, 533-554.

Hayes, P. J.. 1971. A logic of actions, Machine Intelligence 6 (B. Meltzer and 13. Michic, eds.), New
York: Amcrican Flsevier, 495-520.

Hayes, P. J., 1973a. The frame problem and related problems in artificial intelligence, Artificial and
Huwnan Thinking (A. Elithorn and D. Joncs, eds.), San Francisco: Josey-Bass.

Hayes, P. J., 1973b. Computation and deduction, Proc. MFCS Symposium, Czech. Acad. of Sciences,
105-117.

Hayes, P. J.. 1974. Somc problems and non-problems in representation theory, Proc. Conf. Artificial
Intelligence and Simulation of Behavior, 63-79.

Hayes. P. 1., 1977a. In defence of logic, 1JCAI-77, 559-565.
Hayes, P. J.. 1977b. The logic of frames, Department of Computer Science, University of Essex.
Haycs, Ph.)., 1977. On scmantic ncts, framces, and associations, JJCAI-75, 99-107.

Hayes-Roth, F., and lesser, V. R., 1977. Focus of attention in the Hearsay-11 speech understanding
system, Computer Science Department, Carnegic-Mcllon University.

van Hcijenoort, J., ¢d., 1967. From Frege to Godel: A Source Book in Mathematical Logic, 1879-1931,

241

Cambridge: Harvard University Press.
Hcinlein, R. A., 1966. The Moon is a Harsh Mistress. New York: G. P. Putnam and Sons,

Hendrix, G. G., 1975. Expanding the utility of semantic networks through partitioning, IJCAI-75,
115-121. :

Hewitt, C. E., 1972. Description and theorctical analysis (using schemata) of PLANNER: a language for
proving theorems and manipuliting modcls in a robot, MI'T Al Laboratory, TR-258.

Hewitt, C. E., 1977. Vicewing control structures as patterns of passing messages, Artificial Intelligence 8,
323-364.

Hewitt, C. k., and Smith, B., 1975. Towards a programming apprentice, /ELE Transactions on Sofiware
Ingineering SI-1, 26-45.

Heyting, A., 1956. Intuitionism: An Introduction, Amsterdam: North-Holland.

Hilbert, 1., 1925. On the infinite, From frege to Godel: A Source Book in Mathematical Logic,
1879-1931 (). van Heijenoort, ed.), Cambridge: Harvard University Press, 1967, 367-392.

Hilpinen, R., (¢d.) 197). Deontic 1.ogic: Introductory and Systematic Readings, Dordrecht: Reidel.
Hintikka, J., 1962. Knowledge and Belief, Ithica: Cornell University Press.

Hofstader, . R.. 1979. Godel, Escher, Bach: An Eternal Golden Braid, New York: Basic Books.
Hook, S., ed., 1963. Philosophy and History, NY: New York University Press.

James, W., 1971. The will to believe, Reason and Responsibility (Feinberg, ed.), Encino: Dickenson,
83-90.

Johnson, S. M., 1977. First Person Singular: Living the Good Life Alone, New York: Lippincott.

Kenny, A.). P., 1978. Practical reasoning and rational appetite, Practical Reasoning (J. Raz, ¢d.), Oxferd:
Oxford University Press, 63-80.

Kicrkegaard, S., 1944. The Concept of Dread (W. Lowric, ¢d.), Princeton: Princeton University Press.
Kicene, S.C., 1950. An Introduction 1o Metamathematics, Princeton: Van Nostrand.
Kornfeld, W. A., 1979. ETHER - a parallel problem solving system, IJJC AI-79, 490-492.

Kowalski, R., 1974, L.ogic for problem solving, University of Edinburgh, Department of Artificial
Intelligence, DCL. memo 75.

Kramosil, 1, 1975. A notc on deduction rules with negative premises, JJCAI-75, 53-56.

Kreisel, G., 1968. A survey of proof theory, J. Symbolic Logic 33, 321-388,

R L P A

AU A, PRI OO 15 oy s e ek e

T e yp——— T,

242

Kreisel, G., 1971, A survey of proof theory I, Proc. Second Scandinavian Logic Symposium (). E.
Fenstad, ed.), Amsterdam: North-Holland, 109-170,

Kreisel. G.. 1977. On the kind of data needed for a theory of proofs, Logic Collogquium 76 (R. Gandy and
M. Hyland, eds.). Amsterdam: North-Holland, 111-128.

Kripke, S. A, 1975. "Outline of a Theory of Truth,” Journal of Philosuphy, 72, 690-716.

lLakatos, 1.. 1976. Proofs and Refuiations: the logic of mathematical discovery (J. Worrall and E. Zahar,
¢ds.). Cambridge: Cambridge University Press.

patombe, J.-C., 1976. Artificial intelligence in computer-aided design: the "TROPIC" system, SRI,
Technical Note 1285,

Latombe, J.-C., ed., 1978. Ariificial Intelligence and Pattern Recognition in Computer-Aided Design,
Amsterdam: North- Holland.

lLatombe, J.-C., 1979. Failure processing in a system for designing complex assemblies, IJCAI-79,
508-515.

l.chrer, K. asid Paxson, T. Jr., 1969. Knowledge: undefeated justified true belicf, Journal of Philosophy
1.XVI 225-237.

Lchrer, K., 1974. Knowledge, Oxford: Oxford University Press.

Lenat, D. B, 1977. The ubiquity of discovery, Artificial Intelligence 9, 257-285.
Lewis, D., 1973. Counterfactuals, Cambridge: Harvard University Press.
Linsky, L., 1971, Reference and Modality, Oxford: Oxford University Press.
Linsky, L., 1977. Names and Descriptions, Chicago: University of Chicago Press.

London, P. E.. 1978. Dependency networks as a representation for modelling in general problem solvers,
Department of Computer Scicnce, University of Maryland, TR-698,

March, J. G., and Simon, H. A., 1958. Organizations, New York: Wiley,

Martin, W. A, 1979. Philosophical foundations for a linguistically oricnted semantic network, MIT
| aboratory for Computer Science, draft.

McAllester, D. A., 1978. A three-valued truth maintenance system, MIT Al Laboratory, Memo 473.

McCarthy, J., 1958. Programs with common scnse, reprinted in Semantic Information Processing (M.
Minsky, cd.), Cambridge: MI1 Press (1968), 403-410.

McCarthy, J., et al, 1965. LISP 1.5 Programmer’s Manual, Cambridge: MIT Press.

McCarthy,)., and Hayes, P. J., 1969. Some philosophical problems from the standpoint of artificial

DA e R e o -

i

!

N

243

intelligence. Machine Intelligence 4 (B, Mcltzer and 1. Michie, eds.). New York: Amcrican Elsevier,
463-502.

McDermott, D, 1978. Planning and acting, Cognitive Science 2, 71-109,

McDermott. .. 1980. Non-monotonic logic 11: non-monotonic modal theories, Yale University,
Department of Computer Science, Report 174,

McDermott, D., and Doyle, J.. 1978, Non-monotonic logic 1, MIT Al Laboratory, Mcmo 486.

McDermott.)., and Forgy, C., 1976. Production system conflict resolution strategies, Computer Science
Department, Carnegic-Mellon University.

McKeeman, W. M., Horming. 1. L. and Wortman, . B., 1970. A Compiler Generator. V:nglewood Cliffs:
Prentice-Hall.

Miller, G. A., Galanter, E., and Pribram, K., 1960. Plans and the Structure of Behuvior, New York: Holt.

Miller, M. 1., 1979. Planning and debugging in clementary programming, Ph.1). thesis, MI'T Department
of Electrical Iingincering and Computer Science.

Minsky, M.. 1965. Matter, mind, and models, Proc. of the IFIP Congress, 45-49.

Minsky, M., 1974. A framework for representing knowledge, MIT Al Laboratory, Memo 306, and
(without appendix) The Psychology of Computer Vision (P. Winston, ¢d.), New York: McGraw-Hill,
1975.

Minsky, M., 1977, Plain talk about ncurodevelopmental epistemology, 1JC A1-77, 1083-1092,

Minsky, M., 1979. K-lines: a theory of memory, MIT Al | aboratory, Mecmo 516.

Minsky, M., 1980. Affective exploitation; a view of emotion and intcllect, MIT Al Laboratory, draft.
Minsky, M.. and Papert, S., 1973, Arniificial Intelligence, Eugene, Oregon: Condon 1.ccture Publications.

Minsky, M., and Papert, S., 1978. The Society Theory of Mind, MIT Al l.aboratory, draft.

Montague. R., 1963. Syntactical trcatments of modality, with corollarics on reflection principles and
finite axiomatizability, Acta Philosophica Fennica, 16, 153-167.

Moore, R. C., 1979. Reasoning ahout knowledge and action, Ph.[. thesis, MIT Department of Electrical
Engincering and Computcr Scicnce,

Nagel, T., 1970. The Possibility of Altruism, Princeton: Princeton University Press.
Nagel, T., 1979a. The absurd, Mortal Questions, Cambridge: Cambridge University Press, 11-23,

Nagel, T., 1979b. The fragmentation of value, Mortal Questions, Cambridge: Cambridge University
Press, 128-141.

»
gy~ - .

SR B i e PIETT RIapT ey Tpregy AR E R

244

Nagel. T.. 1979. Brain bisection and the unity of consciousness, Mortal Questions, Cambridge:
Cambridge University Press, 147-164.

Nagel, 1., 1979d. What is it like to be a bat?, Mortal Questions, Cambridge: Cambridge University Press,
165-180.

Newell. AL, 1969. Heuristic programming: ill-structured problems. Progress in Operations Research, Vol.
H1T (Aronofsky, ed.), 360-414.

Newell, A.. and Simon, H. A., 1963. GPS, a program that simulates human thought, Computers and
Thenaght (B, AL Feigenbaum and J. Feldman, eds.), New York: McGraw-Hill, 279-293.

Nilsson. N. J., 1980. Principles of Ariificial Intelligence, Palo Alto: Tioga.
Norman, R.. 1971, Reasons for Actions, New York: Barnes und Noble.
Nozick, R.. 1974, tnarchy, State and Uropia, New York: Basic Books.

Pascal, B., 1971. ‘The wager, from Pensees, in Reason and Responsibility (Feinberg, ed.), Encino:
Dickenson, 81-83.

Perrault, C. R.. Allen, J. F._ and Cohen, P. R.. 1978. Speech acts as a basis for understanding dialogue
coherence, Proc. Second Conf. Theoretical Issues in Natural Language Processing, 125-132.

Post, E. 1... 1943. Formal reductions of the general combinatorial decision problem, Am. J. Math. 65,
197-268.

Pratt. V. R.. 1977. The competence/performance dichotomy in programming, MIT Al laboratory,
Memo 400.

Prawitz, 1).. 1973. Towards a foundation of gencral proof theory, Logic. Methodology, and Philosophy of
Science 1V (P. Suppes, |.. Henkin, A. Joja, Gr. C. Moisil, eds.), Amsterdam: North-Holland, 225-250.

Putnam, H.. 1975. Philosophy and our mental life, Mind, I.anguage, and Reality, Cambridge: Cambridge
University Press, 291-303.

Putnam, H., 1978. Truth and reason, Reason and History, draft.

Quine, W. V., 1953. 'Two dogmas of cmpiricism, From a Logical Point of View, Cambridge: Harvard
University Press.

Quine, W. v., 1966. The Ways of Paradox and other essays, Cambridge: Harvard University Press.
Quinc, W. V., 1970. Philosophy of 1.ugic, Englewood Cliffs: Prentice-Hall,

Quine, W. V., and Ullian, 1. S., 1978. The Web of Belief, sccond cdition, New York: Random House.

Rabin, M. O., 1974, Theorctical impediments to artificial intelligence, Information Processing 74,
Amsterdam: North-Holland, 615-619.

POV e v

© K ash %

245

Rawls, J.. 1971. 4 Theory of Justice, Cambridge: Harvard University Press.

Raz, .. 1978. Practical Reasoning. Dxford: Oxford University Press,

Rescher, N., 1964. Hypotheticul Reasoning, Amsterdam: North Holland.

Rescher, N., 1966. The I.ogic of Commands, | ondon: Routledge and Kegan Paul.
Rescher, N, 1968. Topics in Philosophical Iogic, Dordrecht: . Reidel.

Rescher, N., 1976. Plausible Reasoning, Amsterdam: Van Gorcum.

Rescher, N., and Urquhart, A., 1971. Temporal I.ogic, New York: Springer-Verlag.

Reiter, R., 1978. On rcasoning by default, Proc. Second Conf. Theoretical Issues in Natural Language
Processing, 210-218.

Reiter, R., 1979. A logic for default reasoning, Department of Computer Science, University of British
Columbia, TR-79-8.

Resnik, M.)., 1974. On the philosophical significance of consistency proofs, J. Phil. Logic 3, 133-147.

Reynolds, J., 1972. Definitional interpreters for higher order programming languages, ACM Annual
Conference Proceedings.

Rich, C.. 1980. Inspcction methods in programming, Ph.D. thesis, MIT Department of Electrical
Engincering and Computer Science.

Rich, C., and Shrobe, H. E., 1976. Initial report on a LISP programmer’s apprentice, MIT Al Laboratory,
TR-354.

Rich, C., Shrobe, H. E., and Waters, R. C., 1979. Computcr aided cvolutionary design for software
engincering, MIT Al lLaboratory, Memo 506.

Richards. D. A.)., 1971. A Theory of Reasons for Action, London: Oxford University Press.
Rosenberg, J. F., 1978. The Practice of Philosophy, Englewood Cliffs: Prentice-Hall,

Rosenberg, R. L., 1980. Incomprchensible computer systems: knowledge without wisdom, MIT
l.aboratory for Computer Science, TR-227.

Ross, W. D)., 1930. The Right and the Good, Oxford: Oxford University Press.

Rubin, A. D., 1975. Hypothesis formation and cvaluation in medical diagnosis, MIT Al Laboratory,
TR-316.

Russell, B., 1908. Mathcmatical logic as based on the theory of types, From Frege 1o Godel: A Source
Book in Mathematical Logic, 1879-1931 (). van Hcijenoort, ed.), Cambridge: Harvard University Press,
1967, 150-182.

246

Russell, B.. 1930. The Conguest of Happiness, New York: Liveright.

Rychner, M. .. 1976. Production systems as a programming language for artificial intelligence
applications, 3 Volumes, Computer Scicnce Department, Carncgic-Mellon University.

Ryle. G., 1949. The ('ohcrpl of Mind, 1.ondon: Hutchinson.

Sacerdoti, E. 1., 1974. Planning in a hicrarchy of abstraction spaccs, Artificial Intelligence 5, 115-135.
Sacerdoti, E.D 1977, 4 Structure for Pluns and Behavior, New York: American Flsevier.

Sacerdoti, E. 1., 1979. Problem solving tactics, 1JCA1-79, 1077-1088.

Sandewall, E. 1979, Biological software, IJCAI-79, 744-747.

Sartre. J.-P..1956. Being und Nothingness (H. Barnes, tr.), New York: Philosophical Library.
Schank, R. C.. 1979, Interestingness: controlling inferences, Artificial Intelligence 12, 273-297.

Schmidt, C. F.. Sridharan, N. S.. and Goodson, J. L., 1978. The plan recognition problem: an
intersection of psychology and artificial intelligence, Artificial Intelligence 11, 45-83.

Schwartz, S. P, cd. 1977. Naming, Necessity, and Natural Kinds, Ithica: Cornetl University Press.

Scott, 1., 1973. Models for various type-frec calculi, Logic, Methadology and Philosophy of Science IV
(P. Suppes, 1. Henkin, A. Joja, Gr. C. Moisil, eds.), Amsterdam: North-Holland.

Scriven, M., 1959. Truisms as the grounds for historical explanations, Theories of History (P. Gardiner,
cd.), New York: Free Press of Glencoe, 443-475.

Scriven, M., 1963. New issucs in the logic of explanation, Philosophy and History (S. Hook, ed.), New
York: New York University Press, 339-361.

Searle, J. R., 1969. Speech Acts, Cambridge: Cambridge University Press.

Secarle, 1. R., 1978. Prima facie obligations, Practical Reasoning (). Raz, ed.), Oxford: Oxford University
Press, 81-90.

Searle, J. R., 1979. The intentionality of intention and action, /nquiry 22, 253-280.
Searle, J. R., 1980. Notcs on artificial intclligence, Behavioral and Brain Sciences, to appear.
Shafler,). A., 1968. Philosophy of Mind, Englewood Cliffs: Prentice-Hall.

Shrobe, H. K., 19793, Dependency directed reasoning for complex program understanding, MIT Al
1.aboratory, TR-503.

Shrobe, H. E., 1979b. Explicit control of rcasoning in the programmer’s apprentice, Proc. Fourth
Workshop on Automated Deduction, 97-102.

B3,y ik fs AaTan N wl A ph AU cbm wky o

P 2 SR

PTpE——

247

Simon, H. A., 1969. The Sciences of the Aniificial, Cambridge: MIT Press.
Simon, H. A, 1976. Admimstrative Behavior, third ed.. New York: Free Press.

Smith, B. C.. 1978. |.cvcls, layers, and planes: the framework of a theory of knowledge representation
semantics, Masters thesis, MIT Electrical Engineering and Computer Science.

Smith, R. G.. and Davis, R.. 1978. Distributed problem solving: the contract net approach, Proc. Second
Conf. Canadian Society for Computational Studies of Intelligence, 278-287.

Smullyan, R. M., 1957. T.anguages in which self-reference is possible, J. Symb. Logic, 22, 55-67.

Smullyan, R. M., 1978. What is the Name of this Book? The Riddle of Dracula and other Logical Puzzles,
Englewood Cliffs: Prentice-Hall.

Smullyan, R. M., 1980. This Book Needs No Title, Englewood Cliffs: Prentice-Hall.
Sosa, K., 1975, Causation and Counterfactuals, 1.ondon: Oxford University Press.

Sridharan, N. S., 1976. The frame and focus problems in Al: discussion in rclation to the BELIEVER
system, Proc. Conf, Artificial Inielligence and Simulation of Behavior, 322-333.

Sridharan, N. S., and Hawrusik, F., 1977. Representation of actions that have side-cffects, JJCAI-77,
265-266.

Stallman, R. M., and Sussman, G. J., 1977. Forward reasoning and dependency-directed backtracking in
a system for computer-aided circuit analysis, Artificial Intelligence 9, 135-196.

Stecle, G. L. Jr., and Sussman, G.)., 1976. LAMBDA: the ultimate imperative, MIT Al Laboratory,
Memo 353.

Stecle, G. 1.. Jr., and Sussman, G. J., 1978a. The revised report on SCHEME, a dialect of LISP, MIT Al
I.aboratory, Memo 452.

Stecle, G. L. Jr., and Sussman. G. J., 1978b. The art of the interpreter, or the modularity complex, MIT
Al l.aboratory, Memo 453,

Stecle, G. L.. Jr., and Sussman, G. J., 1978¢c. Constraints, MIT Al Laboratory, Mcmo 502.

Stefik, M. J., 1980. Planning with constraints, Stanford University, Computer Scicnce Department,
Report STAN-CS-80-784.

Strawson, P. F., 1967. Philosophical I.ogic, Oxford: Oxford University Press.
Suppes, P., 1957. Introduction to ogic. New York: Van Nostrand.

Suppes, P., 1967. Decision theory, The Encyclopedia of Philosophy, Vol, 11 (P. Edwards, ed.), New York:
Macmillan, 310-314,

ams

“

RN D s | BRI BI Ao s T

248

Suppes. P 1977, A survey of contemporary learning theories, Foundational Problems in the Special
Sciences (R E. Buus and). Hintikka, eds.), Dordrecht: Reidel, 217-239.

Sussman, G. 1., 1975. A Computer Model of Skill Acquisition, New York: American Elsevier.

Sussman, G. J., and M;:I)crmnlt. .. 1972. From PLANNER to CONNIVER - a genetic approach, Proc.
AFIPS FICC, HT1-1179.

Tarski. A.. 1944, The semantic conception of truth and the foundations of semantics, Philosophy and
Phenomenological Research 1V, 3, 341-375.

‘Tate, A.. 1975. Interacting goals and their use, 1JCAI-75, 215-218.

Tate, A., 1977. Generating project networks, 1J(CA/1-77, 888-893.

Taylor, R., 1966. Action und Purpose, Englewood Cliffs: Prentice-Hall.

Taylor, R., 1974. Metaphysics, sccond cd., Englewood Cliffs: Prentice-Hall.

Thompson, A., 1979. Network truth maintenance for deduction and modclling, 1JC A1-79, 877-879.
‘Tinbergen, N.. 1951. The Study of Iustinct, Oxford: Clarcndon Press.

Tukey. J. W., 1960. Conclusions vs decisions, Technometrics 2, 423-433.

Turing. A. M., 1936. On computable numbers with an application to the enischeidungsproblem, Proc.
London Math. Soc. Ser. 2, 42, 230-265.

Turner, R., 1978. Counterfactuals without possible worlds, Department of Computer Science, University
of Essex.

Wason, P. C., and Johnson-laird, P. N., 1972. Psychology of Reasoning: Structure and Content,
Cambridge: Harvard University Press.

Weinreb, D., and Moon, 1., 1979. Lisp machinc manual, MIT Al Laboratory.
Weizenbaum, J., 1976. Computer Power and Human Reason, San Francisco: W. H. Freeman.

Weyhrauch, R. W., 1978, Prolegomena to a theory of mechanized formal reasoning, Stanford Al
Laboratory, AIM-315.

Wheeler, J. A., 1977. Genesis and obscrvership, Foundational Problems in the Special Sciences (R. E.
Butts and J. Hintikka, cds.), Dordrecht: 1. Reidel, 3-33.

White, A. R., 1968. The Philosophy of Action, Oxford: Oxford University Press.

Wiest, J. ., and Levy, F. K., 1977, A Management Guide 10 PERT/CPM: with GERT/PDM/DCPM
and other Neiworks, second cdition, Englewood Cliffs: Prentice-Hall.

PV T

OgrYe R PP

e e —— ———

249

Wilensky, R.. 1978. Understanding goal-based stories, Yale University, Department of Computer
Scicnce, Report 140,

Wilks, Y.. and Bien_ 1., 1979. Speech acts and multipie environments, 7/CAl-79, 968-970.
Wilson, ¥ O.. 1978. On Human Nature., Cambridge: Harva,d University Press.

Winston, . H.. 1975, 1.carning structural descriptions from cxamples, The Psychology of Computer
Pision (P. 4. Winston, cd.), New York: McGraw-Hill, 157-209.

Yessenin-Volpin, A. S, 1970. ‘The ultra-intuitionistic criticism and the antitraditional program for
foundations of mathematics, Inuitionism and Proof Theory (Proc. Conf. Buffalo, NY, 1968),
Amsterdam: North-Holland, 3-45.

Zadeh, 1., 1975. Fuzzy logic and approximatce reasoning, Synthese 30, 407-428.

