EVALUATION OF ALPHA ALUMINUM PHOSPHATE FOR ADVANCED ACOUSTIC WAVEGUIDES

J. Gualtieri, A. Ballato

UNCLASSIFIED DELET-TR-81-15
EVALUATION OF ALPHA ALUMINUM PHOSPHATE FOR ADVANCED ACOUSTIC WAVE DEVICES

JOHN GAULTIERI
ARTHUR BALLATO
ELECTRONICS TECHNOLOGY & DEVICES LABORATORY

August 1981

DISTRIBUTION STATEMENT
Approved for public release; distribution unlimited.

US ARMY ELECTRONICS RESEARCH & DEVELOPMENT COMMAND
FORT MONMOUTH, NEW JERSEY 07703
NOTICES

Disclaimers

The citation of trade names and names of manufacturers in this report is not to be construed as official Government endorsement or approval of commercial products or services referenced herein.

Disposition

Destroy this report when it is no longer needed. Do not return it to the originator.
REPORT DOCUMENTATION PAGE

<table>
<thead>
<tr>
<th>REPORT NUMBER</th>
<th>AD-A104685</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td>EVALUATION OF ALPHA ALUMINUM PHOSPHATE FOR ADVANCED ACOUSTIC WAVE DEVICES.</td>
</tr>
<tr>
<td>AUTHOR(S)</td>
<td>JOHN GUALTIERI</td>
</tr>
<tr>
<td></td>
<td>ARTHUR BALLATO</td>
</tr>
<tr>
<td>PERFORMING ORGANIZATION NAME AND ADDRESS</td>
<td>US Army Elct Tech & Devices Laboratory (ERADCOM) ATTN: DELET-MA Fort Monmouth, NJ 07703</td>
</tr>
<tr>
<td>CONTROLLING OFFICE NAME AND ADDRESS</td>
<td>US Army Elct Tech & Devices Laboratory (ERADCOM) ATTN: DELET-MA Fort Monmouth, NJ 07703</td>
</tr>
<tr>
<td>REPORT DATE</td>
<td>August 1981</td>
</tr>
<tr>
<td>NUMBER OF PAGES</td>
<td>46</td>
</tr>
<tr>
<td>DISTRIBUTION STATEMENT (of this Report)</td>
<td>Approved for public release; distribution unlimited.</td>
</tr>
<tr>
<td>KEY WORDS</td>
<td>Crystal resonators Alpha aluminum phosphate</td>
</tr>
<tr>
<td></td>
<td>Crystal oscillators Berline</td>
</tr>
<tr>
<td></td>
<td>Piezoelectric crystals Frequency control</td>
</tr>
<tr>
<td></td>
<td>Piezoelectric vibrators Acoustic wave devices</td>
</tr>
</tbody>
</table>
| ABSTRACT | Alpha aluminum phosphate (berlineite) has been investigated as a highly piezoelectric material potentially suitable for use in advanced bulk and surface acoustic wave devices. Areas of investigation include: (1) crystal structure, (2) methods of crystal growth, (3) defects in structure, (4) the presence of water impurities, (5) piezoelectric resonators, and (6) the equivalent electrical circuit. Calculations have been carried out for frequency constant, piezoelectric coupling factor, and linear temperature coefficient as functions of orientation for general, doubly rotated plate orientations, and disclose.
quartz-like properties with coupling factors appreciably larger than quartz. Measurements indicate larger than expected losses, indicative of incorporation of impurities during growth; suggestions for further work are given.
CONTENTS

INTRODUCTION .. 1
CRYSTAL STRUCTURE 6
CRYSTAL GROWTH 12
DEFECTS .. 12
THE H$_2$O IMPURITY 14
RESONATORS ... 15
THE EQUIVALENT CIRCUIT 29
REFERENCES ... 45

FIGURES:
1. Singly and doubly rotated plates 2
2. Frequency constants of (YXℓ)θ quartz and berlinit.. 3
3. Coupling factors of (YXℓ)θ quartz and berlinit.. 4
4. Typical surface wave device 7
5. Surface wave motion and electric field coupling 8
6. Coupling factors squared of (YXℓ)θ quartz and berlinit.. 9
7. Structure of dextro-rotary quartz and berlinit.. 10
8. Structure of laevo-rotary quartz and berlinit.. 11
9. Electrical and optical twinning 13
10. IR transmittance of quartz and berlinit.. 16
11. Frequency constants of (YX$\ell\ell$) $0^\circ/\theta$ berlinit.. 17
12. Frequency constants of (YX$\ell\ell$) $6^\circ/\theta$ berlinit.. 18
13. Frequency constants of (YX$\ell\ell$) $12^\circ/\theta$ berlinit.. 19
14. Frequency constants of (YX$\ell\ell$) $18^\circ/\theta$ berlinit.. 20
15. Frequency constants of (YX$\ell\ell$) $24^\circ/\theta$ berlinit.. 21
16. Frequency constants of (YX$\ell\ell$) $30^\circ/\theta$ berlinit.. 22
17. Coupling factors of \((YX\omega) 0^\circ/0 \) berlinite 23
18. Coupling factors of \((YX\omega) 6^\circ/0 \) berlinite 24
19. Coupling factors of \((YX\omega) 12^\circ/0 \) berlinite 25
20. Coupling factors of \((YX\omega) 18^\circ/0 \) berlinite 26
21. Coupling factors of \((YX\omega) 24^\circ/0 \) berlinite 27
22. Coupling factors of \((YX\omega) 30^\circ/0 \) berlinite 28
23. Temperature coefficients of \((YX\omega) 0^\circ/0 \) berlinite 30
24. Temperature coefficients of \((YX\omega) 6^\circ/0 \) berlinite 31
25. Temperature coefficients of \((YX\omega) 12^\circ/0 \) berlinite 32
26. Temperature coefficients of \((YX\omega) 18^\circ/0 \) berlinite 33
27. Temperature coefficients of \((YX\omega) 24^\circ/0 \) berlinite 34
28. Temperature coefficients of \((YX\omega) 30^\circ/0 \) berlinite 35
29. Loci of zero temperature coefficient for berlinite 36
30. Frequency constants for \((YX\omega)\phi \) berlinite 37
31. Coupling factors for \((YX\omega)\phi \) berlinite 38
32. Mode spectrograph of berlinite resonance 39
33. Block diagram of measurement 40
34. Equivalent electrical network 41

TABLES:

1. Frequency constants \(N \) and piezoelectric coupling factors \(k \) for \((YX\ell)\phi \) cuts of quartz and berlinite 5
2. Rotated Y-cut, pure shear mode, crystal class 32 14
3. Frequency constants and coupling factors of the thickness modes of X- and Y-cut berlinite 29
INTRODUCTION

Alpha-aluminum phosphate, also known as the mineral berlinite, occurs in rare deposits as a massive, granular material. In natural formations, the individual crystallites are sub-millimeter in size. Alpha-aluminum phosphate ($\alpha - AlPO_4$) is isotypic with quartz ($\alpha - SiO_2$). The two materials show a number of similarities with regard to their properties. For example, the growth habits of synthesized crystals are similar in that both display minor (1011) and major (0111) rhombohedra. Quartz also shows prism (1010) faces that rarely occur in $\alpha - AlPO_4$. The cleavage tendencies (on a microscopic scale) are related, quartz showing (1010) and rhombohedral (1011) cleavage, while $\alpha - AlPO_4$ displays only rhombohedral cleavage and partial microcleavage along the [1210] zone in the neighborhood of (1011)*. The hardnesses are different, and this is manifest in the grinding and polishing times required to finish crystal plates. Alpha-$AlPO_4$ plates are finished in 10 to 20% of the time necessary to finish quartz. Also, Knoop indentation hardnesses of quartz and $\alpha - AlPO_4$ are ~1000 and ~450, respectively. The mass densities of both materials are nearly equal, and their optical properties are similar. The acoustic velocity range of $\alpha - AlPO_4$ is about 15% lower than quartz, and the ratios of corresponding elastic constants are very uniform. The dielectric permittivities of quartz are about 30% lower than those of berlinite. Where the two materials differ substantially is in their piezoelectric constants, where berlinite enjoys a two- or three-fold advantage. This translates into a similar advantage in the piezoelectric coupling factor which governs the electromechanical transduction efficiency.

The coupling factor advantage of $\alpha - AlPO_4$ over quartz would have little practical value unless temperature-compensated crystal cuts existed as they do for quartz. Here again, the isotypism of berlinite and quartz appears to be a sufficient condition. For example, temperature compensation in this crystal structure (class 32) depends upon the anomalous (positive) value of $c_{66}/\alpha T$, which is related to the rotation of MO$_4$ (M = metal) tetrahedra under thermal expansion; (c_{66} relates a shear stress about the z axis to a shear strain about the same axis). Materials with open structures in which sizeable rotations can occur are candidates for positive temperature coefficients, and therefore probable temperature compensation**. Rotated-Y-cut plates have the configuration shown in (a) of Figure 1; a comparison of the frequency constant (one-half the acoustic velocity) and piezoelectric (electromechanical) coupling coefficient for the active mode of such plates in quartz and berlinite is given, respectively, in Figure 2 and Figure 3, and tabulated in Table 1.

Other materials surpass $\alpha - AlPO_4$ in coupling factor; for example, lithium niobate, but the attractive combination of strong coupling and temperature compensation of the acoustic velocity is absent in Li Nb O$_3$. Piezoelectric coupling factors substantially

* See list of references beginning on page 45.
FIGURE 1. SINGLY AND DOUBLY ROTATED PLATES
Figure 2. Frequency constants of (YX) at quartz and berlinite.
Figure 3. Coupling factors of $(YX\varepsilon)\theta$ quartz and berlinite.
| CUT | θ | N | |k| | k² |
|-------|------|-----|-----|-----|-----|
| | DEGREES | MHz-mm | PERCENT | PERCENT |
| BERLINITE | | | | | |
| AT' | 28.6 | 1.448 | 16.5 | 2.73 |
| BT' | -37.3 | 2.118 | 16.1 | 2.60 |
| Y | 0 | 1.696 | 24.0 | 5.74 |
| Z | ± 90 | 2.030 | 0 | 0 |
| QUARTZ | | | | | |
| AT | 35.25 | 1.661 | 8.80 | 0.77 |
| BT | -49.20| 2.536 | 5.62 | 0.32 |
| Y | 0 | 1.958 | 13.5 | 1.84 |
| Z | ± 90 | 2.338 | 0 | 0 |
larger than quartz, along with good temperature stability, permit the fabrication of both bulk and surface acoustic wave (SAW) devices with enhanced capabilities. A typical SAW delay line device is depicted in Figure 4; an alternating voltage applied between the interdigitated fingers of one port produces the wave motion shown in Figure 5. The second port produces, by the same piezoelectric effect, the voltage waveform delayed by the propagation time between the input and output structures. The structures become resonant at frequencies such that the acoustic wavelength is commensurate with the finger spacings. By controlling the finger lengths, widths, spacings, and polarities, sophisticated signal processing functions may be performed in a micro-circuit-compatible, planar configuration. Among the bulk or SAW devices of interest are voltage-controlled crystal oscillators (VCXOs) with increased tuning (pulling) range, temperature-compensated crystal oscillators (TCXOs) that operate well on harmonics because of increased coupling, convolvers, correlators, coupled-mode bulk and SAW filters, resonators and delay lines, encoders and decoders, and other signal processing devices. For such devices, the parameter of importance is not simply the coupling, but rather its square; the comparison of Figure 3 is given in terms of coupling squared in Figure 6. Because of the high applications potential of berlinite in this regard, it has become the object of considerable interest. References 1-22* can be applied to the problems associated with berlinite and alpha quartz.

CRYSTAL STRUCTURE

The crystal structure of \(\alpha - \text{AlPO}_4 \) is isotypic with that of \(\alpha - \text{quartz} \); in the latter structure, the Si atoms are layered in planes perpendicular to the c-axis. In the \(\alpha - \text{AlPO}_4 \) structure, atoms of Al and P comprise alternate layers. Thus, half of the Si positions are "replaced" by Al and the other half by P. This results in a doubling of the unit cell along the c axis. In either structure the MO4 tetrahedra are arranged in the form of a screw around the three-fold c axis. Both a left-screw and a right-screw are possible; these enantiomorphic forms are shown, respectively, in Figure 7 and Figure 8. This structure has been described, sometimes incorrectly, using various axial systems called settings\(^3\). The setting endorsed by most communications engineers and workers in the field of quartz crystal structure is the Z (+) setting. In this setting the minor rhombohedra, Z, are indexed \((1011)\) and the two-fold axis along which the Z axis is chosen develops a positive charge at its positive end on extension. This setting uses a right-handed coordinate system (RHCS) for right-quartz (dextrorotary) and a left-handed coordinate system (LHCS) for left-quartz (laevorotary). It should be understood that dextrorotary (optical) refers to a left-screw (LS) (physical), and laevorotary (optical) refers to a right-screw (RS) (physical). Donnay and LePage\(^1\) proposed a coordinate system whose handedness matches that of the crystallographic (physical) screw. This convention, we feel, would be very difficult to establish in the field of communications.

* See list of references beginning on page 45.

6
FIGURE 4. TYPICAL SURFACE WAVE DEVICE
FIGURE 6. COUPLING FACTORS SQUARED OF \((YXZ) \Theta \) QUARTZ AND BERLINITE
Figure 7. Structure of Dextro-Rotary Quartz and Deplinite
FIGURE 8. STRUCTURE OF LAEVO-ROTARY QUARTZ AND BERLINITE
engineering given the international familiarity with the $Z (+)$ setting.

Unfortunately, the latest IEEE Standard on Piezoelectricity10 establishes a $Z (-)$ setting for left-quartz (RHCS for RS) and a $Z (+)$ setting for right-quartz (RHCS for LS). The atomic positions, sites, and fractional coordinates of the various settings are given by Donnay and LePage3. Alpha-quartz and $\alpha - AlPO_4$ are composed of 3-dimensional networks of MO_4 tetrahedra which may rotate under increased temperature to new positions, expanding the structure, and thus inducing a phase change to the hexagonal β-quartz structure (crystal class 622).

CRYSTAL GROWTH

Since $\alpha - AlPO_4$ has an $\alpha \rightarrow \beta$ phase transition similar to quartz at 581°C, and is also unstable below 135°C in phosphoric acid, hydrothermal growth is a viable technique. Except for the fact that $\alpha - AlPO_4$ has a retrograde solubility in H_3PO_4, standard quartz hydrothermal growth methods using steel autoclaves may be applied4-7. Crystals may be either nucleated spontaneously on the walls of the autoclave, or on oriented seed plates which are supported by platinum wires. However, no visual observation of in-situ growth can be routinely accomplished using these methods. Because of this restriction, considerable care must be exercised in both the preparation and process control of the growth run. However, hydrothermal techniques have been developed to grow $\alpha - AlPO_4$ that would permit direct observation of crystal formation during free-nucleated and seeded growth8,9. In these methods, saturated solutions of $H_3PO_4/AlPO_4$ are sealed in quartz or demountable glass vessels and placed in standard laboratory ovens. An arrangement for direct line-of-sight or imaging optics would be required for visual observation. A third hydrothermal method uses the sealed quartz ampoule concept, but the ampoule is heated by a circulating, transparent silicone oil bath whose temperature can be precisely programmed. In this method several ampoules are placed in a single or double silicone oil bath using Pyrex containers and are in full view. One can observe seed etch-back, nucleation and veil formation at the seed-crystal interface and in the bulk crystal. This allows, in a minimum number of runs, the determination of optimum growth conditions10.

DEFECTS

Five different types of defects have been found in $\alpha - AlPO_4$: twinning, crevicing, veiling, cracking, and surface etching. Except for twinning, the other defects can be alleviated by careful control and monitoring of the growth. Twinning and veiling are related to seed plate quality.

Twinning is common to $\alpha - AlPO_4$ as well as to quartz. Both Dauphiné (electrical) and Brazil (optical) twinning occur in each. The axial and electrical relationships involved in both types of twinning singly, and in combination, are given in Figure 9. In optical
ELECTRICAL AND OPTICAL TWINNING

REFERENCE STATE

DAUPHINE' TWIN

BRAZIL TWIN

COMBINED TWIN

right

right

left

left

FIGURE 9. ELECTRICAL AND OPTICAL TWINNING.
twinning, the domains of opposite handedness can be distinguished when the sample is viewed between crossed polarizers. In electrical twinning, the electrical polarity of the piezoelectric a axes in the twinned sections is reversed. Note in Figure 9 that in optical or Brazil twinning the electrical polarity is also reversed. The piezoelectric properties of a particular twinned sample could be radically altered. For example, in a piezoelectric crystal of class 32, the piezoelectric constant driving the pure shear mode of rotated-Y-cut plates is e_{26}. This constant becomes modified by the type of twinning present, and, according to Table 2, a 50% fraction of Brazil twinning would reduce e_{26}, and therefore the electromechanical coupling, to zero. Brazil twinning is very common in α-AlPO$_4$, while Dauphiné twinning is rarely observed. Both types are best detected by etching in saturated solutions of ammonium bifluoride. The twinning behavior of α-AlPO$_4$ is similar to that displayed by the amethyst variety of quartz. Amethyst almost always displays Brazil twinning and only rarely Dauphiné twinning.

TABLE 2 - ROTATED Y-CUT, PURE SHEAR MODE, CRYSTAL CLASS 32

<table>
<thead>
<tr>
<th>TWINNING TYPE</th>
<th>e_{26}</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAUPHINÉ</td>
<td>$T e_{11} \cos^2 \theta - e_{14} \sin \theta \cos \theta$</td>
</tr>
<tr>
<td>BRAZIL</td>
<td>$T e_{11} \cos^2 \theta + T e_{14} \sin \theta \cos \theta$</td>
</tr>
<tr>
<td>COMBINED</td>
<td>$- e_{11} \cos^2 \theta + T e_{14} \sin \theta \cos \theta$</td>
</tr>
</tbody>
</table>

$T = (1-2A)$

A = Fraction of Active Area Twinned

Since Brazil twinning in amethyst is considered to be a consequence of the heavy iron impurity level, it is possible that Brazil twinning in α-AlPO$_4$ may also be impurity-induced.

THE H$_2$O IMPURITY

The dominant physical/chemical imperfection in α-AlPO$_4$ is undoubtedly the large H$_2$O content, as shown by infrared absorption in the 4000-2000 cm$^{-1}$ region. Other impurities, for example the transition metal ions, are easily reduced to the limits of detectability by the crystallization process itself. One exception if Fe, which is, no doubt, related to the formation of ferric phosphates and mixed aluminum and ferric phosphates. The presence of water is possibly related to:

1. the growth process, i.e., the availability of H$_2$O through the reaction of H$_3$PO$_4$ with AlPO$_4$; (2) the fact that cavities sometimes occur in framework structures and may be occupied by replacable or irreplacable H$_2$O molecules; (3) the existence of compounds such as
variscite and metavariscite which have been shown to have the structure $\alpha\text{P}_4\text{O}_8 \cdot 2\text{H}_2\text{O}$ and have infrared absorption spectra remarkably similar to $\alpha\cdot \text{P}_4\text{O}_8$.

In the case of quartz, the correlation of material Q and infrared absorption due to OH in the neighborhood of 3500 cm^{-1} is well established. The IR transmission of $\alpha\cdot \text{P}_4\text{O}_8$ was measured in the 4000 to 2000 cm^{-1} region with a Perkin-Elmer Model 21 spectrophotometer. Figure 10 compares the IR transmittances of α-quartz and α-berlinite. Quartz samples must be at least 1 cm thick to record any absorption, while $\alpha\cdot \text{P}_4\text{O}_8$ must be thinned to at least $250\mu\text{m}$ because of the intense absorption in this region. The presence of a large amount of hydrogen is indicated.

Using formulas developed for quartz13, we obtain an absorption coefficient at 3410 cm^{-1} from the expression

$$\alpha(3410) = (1/t) \cdot \log_{10} \left[T(3800)/T(3410) \right] = 20 \text{ cm}^{-1},$$

where t is thickness and T is transmission. The hydrogen concentration may be found from

$$N_H = 2.16 \times 10^{16} \text{ H} \alpha(3410) = 1400 \times 10^{-6},$$

where H is the half-width of the peak absorption line. By contrast, using electron paramagnetic resonance (EPR) techniques, which are only sensitive to the presence of hydrogen atoms,

$$N_H = 75 \times 10^{-6} \text{(Reference 14)}.$$

This large difference suggests that most of the hydrogen could be present as water molecules. Recently, Shand and Chai15 have confirmed the existence of large amounts of water in berlinite using Raman scattering spectroscopy (RSS). Again, using a formula developed for quartz15, the infrared Q may be found from

$$Q = 1.69 \times 10^5/\alpha(3410) = 8,500.$$

RESONATORS

Frequency constants, piezoelectric coupling factors, and temperature coefficients of frequency for the plate thickness modes have been computed for doubly rotated17 cuts of berlinite based on the measurements of Chang and Barsch19. For the doubly rotated orientation shown in (b) of Figure 1, having the orientational notation $(YXwE)$, the frequency constants N_m (in MHz-mm) of the three thickness plate modes are given in Figure 11 to Figure 16 for $\varphi = 0^\circ$ (60°) 300° and $\theta < 90^\circ$. The modes $m = a$, b, and c denote, respectively, the quasi-longitudinal, fast quasishear, and slow quasishear modes in the plate thickness direction. In Figure 17 to Figure 22 are given the corresponding curves of piezoelectric coupling $|k|$. Figure 23 to
FIGURE 10. IR TRANSMITTANCE OF QUARTZ AND BERLINITE
Figure 12. Frequency Constants of (YXe) 60°/9 Berlinite
FIGURE 13. FREQUENCY CONSTANTS OF (YXwC) 12°/θ. BERLINITE
FIGURE 14. FREQUENCY CONSTANTS OF (YH\textsubscript{2}) 18°/θ BERLINITE
FIGURE 15: FREQUENCY CONSTANTS OF (YX⁺⁺) 24°/8 BERLINITE
FIGURE 16. FREQUENCY CONSTANTS OF (YXwE) 30°/θ BERLINITE
FIGURE 19. COUPLING FACTORS OF $\langle YX_{\phi} \rangle 12^\circ/\theta$ BERLINITE
FIGURE 21. COUPLING FACTORS OF (Yxwε) 24°Φ BERLINITE
Figure 28 display the linear temperature coefficient of frequency f_a of these three modes.

The loci of zeros of first-order temperature coefficient of antiresonance frequency as a function of φ and φ have also been determined, and are shown in Figure 29.

The frequency constants N_m and coupling factors $|k|$ are given in Figure 30 and Figure 31, respectively, for the thickness modes a, b, and c of berlinite plates having orientations (YXw).

Table 3 gives the values of N_m and $|k_m|$ for both X-cut ($\varphi=0^\circ$, $\varphi=30^\circ$) and Y-cut ($\varphi=0^\circ$, $\varphi=0^\circ$) α-Al PO$_4$. The "c" mode linear temperature coefficient of frequency for cuts (YXw) monotonically decreases from $+40 \times 10^{-6}/K$ at the Y-cut, to zero at the X-cut: for the "b" mode the corresponding values are $-95 \times 10^{-6}/K$, increasing monotonically to $-30 \times 10^{-6}/K$.

An Al PO$_4$ crystal plate was cut from an as-grown specimen close to a major rhombohedral face (YXf) $a \approx 500$. The plate thickness was 0.31 mm and the fundamental resonance frequency was 5 MHz. The resulting mode spectrum is shown in Figure 32. Other resonances were found out to the 13th harmonic at 65 MHz. In the measurement, the sample was placed in a special air-gap holder. A block diagram of the various components associated with this measurement is shown in Figure 33.

THE EQUIVALENT CIRCUIT

The equivalent electrical circuit for a piezoelectric plate vibrator in the vicinity of a single resonance is shown in Figure 34. The circuit element values are expressible in terms of the material...
Figure 26: Temperature Coefficients of (YXw2) 189°/9 Berlmit
FIGURE 28. TEMPERATURE COEFFICIENTS OF $(Yxw)_3$ GERLINITE
FIGURE 30. FREQUENCY CONSTANTS FOR \((YX)\) : BERLIl'Il-

\[\theta - 0^\circ \]

\[N \]

\[\text{MHz} - \text{mm} \]

37
Figure 31. Coupling factors for (Yw)₃ berlinite.
Figure 33. Block Diagram of Measurement

Air Gap Holder

HP 8610 Generator Sweeper

WK 8910 Bridge

HP 8407 Network Analyzer

Oscilloscope
constants and geometry as follows:

\[C_0 = \varepsilon A/t \]
\[C_1 = 8 C_0 k^2/\pi^2 \bar{M}^2 \]
\[R_1 = \tau_1/\tau_1 = \pi^2 \bar{M}^2 \eta/8 C_0 k^2 \bar{c} \]
\[L_1 = \bar{M}^2/32 C_0 k^2 f_0^2(\bar{M}) \].

In the above, \(A \) is the electrode area of the plate, \(t \) the plate thickness, \(k \) the piezoelectric coupling factor, \(M \) the (odd) harmonic number, \(\tau_1 \) the motional time constant, \(\varepsilon \) the dielectric permittivity, \(\eta \) the elastic viscosity, \(\bar{c} \) the piezoelectrically stiffened elastic stiffness, and \(f_0(\bar{M}) \) the nominal resonance frequency at the \(\bar{M} \)th harmonic.

The effective piezoelectric constant \(e \) driving the mode in question (\(e'_{\varepsilon} \) for the plate thickness modes of \(Y \)-cuts) produces the stiffening of the effective elastic constant \(\bar{c} \) of the mode:

\[\bar{c} = c + e^2/\varepsilon. \]

The frequency constant \(N \) for a mode is one-half the acoustic velocity of the modal waves:

\[N = \left(\frac{1}{2} \right) \sqrt{\bar{c}/\rho}, \]

where \(\rho \) is the mass density. Because the resonance frequencies \(f_0(\bar{M}) \) occur when the plate is very nearly an odd number of half-wavelengths thick,

\[f_0 = (\bar{M}/2t) \sqrt{\bar{c}/\rho} = \bar{M} N/t. \]

The frequency \(f_0 \) is related to the equivalent circuit parameters by

\[(2\pi f_0(\bar{M}))^2 \cdot L_1 C_1 = 1, \]

and the motional time constant is

\[\tau_1 = \eta/\bar{c} = R_1 C_1. \]

The time constant is related to the quality factor, \(Q \), by

\[2\pi f_0 \tau_1 Q = 1, \]

and the piezoelectric coupling factor \(k \) is obtained from

\[k^2 \varepsilon \bar{c} = e^2. \]

Many of the important relationships needed to evaluate the properties
and behavior of piezoelectric vibrators are expressible in terms of normalized quantities Q, r, M and E. The capacitance ratio r for the fundamental harmonic ($\bar{A} = 1$) is

$$r = C_0/C_1 = \pi^2/8k^2.$$

The figure of merit, M, and figure of excellence are defined as

$$M = Q/r$$

$$E = Q^2/r.$$

Electrical measurements made on the piezoelectric vibrator yield values for the equivalent circuit parameters which then permit evaluation of these auxiliary quantities.

Alpha-\(\alpha\) PO\(4\) plate resonators have not yet been made to yield performance characteristics approaching those of quartz resonators\(^9\)\(^\text{--}^\text{11}\). Problems involving resonator processing are presumably a contributing factor, but material related deficiencies such as twinning and water content are probably equally important. At present, it is found that the electromechanical coupling falls between the limits

$$0.20 < k (\text{max}) < 0.25.$$

It therefore follows that the capacitance ratio is bounded by

$$20 < r < 30.$$

Using the presently measured range of Q values, namely,

$$10^3 < Q < 10^4,$$

we find that one of the following sets of inequalities hold:

$$E > Q > M > r,$$

or

$$E > Q > r > M.$$

The vibrator characteristics of presently available berlinite are thus such that it can be placed entirely within the classification region outlined for water-soluble piezoelectric crystals and partly within the classification region of piezoelectric refractory materials\(^\text{22}\).

Further characterization of this material is called for in regard to a number of physical parameters, including the following: viscosities, third order elastic stiffnesses, second and third order temperature coefficients of the stiffnesses, first order temperature coefficients of the piezoelectric constants and dielectric permittivities, thermal conductivities, and specific heat. Also to be studied should be the surface properties such as etching and polishing characteristics.
The twinning properties must be regarded as potentially most important as well. With respect to resonator applications, such as filter devices, the strengths of unwanted modes, and the general complexion of the resonance mode spectrum should be investigated, along with the possible existence of a berlinite "SC-cut", where electrode stresses and thermal gradient stresses are compensated.

With the synthesis of higher purity berlinite, the above-mentioned investigations can be carried out; these will disclose the future of this promising material for frequency control and signal processing applications.
REFERENCES

