
AD-7At4 212 INTE NATIONAL BUSINESS
SERVICESWINC WASHINGTON

DC FI 9/2
SOFTWARE LIFE CYCLE MANAGEMENT WORKSHOP (2ND) AUGUST 21 -22 197-ETC(U)
AUG 78 V R BASILI. E H ELY DAAK7O 78 0030

UNCLASSIFIED 7CH139-C NL
.3 EEEEIIIIEE

EIIIIu-IEEEEEE
IEIIEIIEEEEEEE
EIEEEEEEEEEEEE
EEEEEEEEIIEEEE
IIIEIIEEEEEEIl
llEEEEEE//EEEEE

AUVS GOGI

90

M

pU

tinJ

am'.

SP1 1981"

Cpo ~ Il"IV "Pe oit

PROCEEDINGS PREPARED/DELIVERED BY INTERNATIONAL BUSINESS SERVICES, INC.

UNDER CONTRACT DAAK70-78-D-0030

SECOND SOFTWARE LIFE CYCLE MANAGEMENT

WORKSHOP

20-22 AUGUST 1978

ATLANTA, GEORGIA

SPONSOR

U.S. ARMY INSTITUTE FOR RESEARCH IN

MANAGEMENT INFORMATION AND COMPUTER SCIENCE

313 CALCULATOR BUILDING
GEORGIA INSTITUTE OF TECHNOLOGY

ATLANTA, GEORGIA 30332

WORKSHOP CHAIRMAN WORKSHOP DIRECTOR

VICTOR R. BASILI EDWARD H. ELY

UNIVERSITY OF MARYLANP AIRMICS

Tne views, opinions, and/or findings contained in this
report are those of the authors and should not be con-
strued as an official Department of the Army position,
policy, or decision, unless so designated by other
documentation.

I)[STRIn3UT1ON STIATKI. A

Appvisved fot public reo'oe;
D;lriiition Unlimited

UNCLASS IF I ED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
_______________________________________ BEFORECOMPLETINGFORM

I. REPORT NUMBER 2. OVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (en a) Y.4-IyPE Op.EI-ORT & PERIOD COVERED

Second Software Life Cycle Management Workshop_- 2inal g8.;'inal/Auust1:978
August 21-22, 1978, Atlanta, GeorgiaR N

7. AUTHOR(e). .. -- ,-c T"R GRANT NUMBER(.)
Editors: _.co-r R. IBasil i j.,nivert y of

Maryla----an -dlEdward-If. jElyj AIRMICS,/ DAAKTG-78-D-O030 ,

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

International Business Services, Inc. ARE>)WDR kJhINUMBERS
1090 Vermont Ave, NW Suite 1010 r g (//
Washington, D.C. 20005 __ -- _---=-----_

I1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

US Army Institute for Research in Management 21-22 August 1978
Information and Computer Science (AIRMICS), 13. NUMBER OF PAGES

115 O'Keefe Building, GIT, Atlanta, GA 30332 220
14. MONITORING AGENCY NAME & ADDRESS(If different trm Controlling Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED
15s. DECLASSIFICATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

DISTRIBUTION A
::... -, .- "ISO

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, It different &om Report)

1. SUPPLEMENTARY NOTES

Co-sponsored by the IEEE Computer Society

19. KEY WORDS (Continue on reverse aide it necessary and identify by block number)

Software Life Cycle Workshop, Life Cycle Cost Curves, Management Tools for
Software, Software Reliability, Productivity, Budget, Models.

20. ASTRACT ('Cantue - reareve a* o ae en d identlfy by block number)

This report contains summaries of the sessions conducted at the workshop and
position papers presented to the workshop. Session summaries are:

Life Cycle Management Methodology Dynamics - Theory
Life Cycle Management Methodology Dynamics - Practice
Life Cycle Management Measurement Models - Predictive
Life Cycle Management Metrics - Measures & Empirical Studies L

O 73o T h 1T47N OF I Nov as is OBSOLETE ,NCLASSIFTED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

INCL.ASSIFIFD
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

Position papers are:

"Modeling, Measuring & Managing Software Cost"

"Improving the Signal/Noise Ratio of the System Development Process"

"A Step Towards the Obsolescence of Programming"

"A Contingency Theory to Select an Information Requirements Determination
Methodology"

"A Life-Cycle Model Based on System Structure"

"The Implications of Life-Cycle Phase Interrelationships for Software
Cost Estimating"

"Software Technology and System Integration"

"Establishing a Subjective Prior Distribution for the Application of
Life-Cycle Management for Computer Software"

"Design Process Analysis Modeling-An Approach for Improving the System
Design Process"

"Life-Cycle Cost Analysis of Instruction--Set Architecture Standardization

for Military Computer-Based Systems"

"Useful Evaluation Tools in the Design Process"

"Programmers are too Valuable to be Trusted to Computers"

"Software Cost Modeling: Some Lessons Learned"

"Progress in Modeling the Software Life Cycle in a Phenomenological Way

to Obtain Engineering Quality Estimates and Dynamic Control of the Process"

"Software Cost Modeling: Some Lessons Learned"

"A Software Error Detection Modcl with Applications"

"Laws and Conservation in Large-Program Evolution"

"Validation of a Software Reliability Model"

"Progress in Software Reliability Measurement"

"The Work Breakdown Structure in Software Project Management"

"Operation of the Software Engineering Laboratory"

"Some Distinctions Between the Psychological and Computational Complexity
of Software"

"A Review of Software Measurement Studies at General Motors Research
Laboratories"

"Software Science--A Progress Report"

"Cost Effectiveness in Software Error Analysis Systems"

"Statistical Techniques for Comparison of Computer Performance"

"Software Complexity Measurement"

"The Utility of Software Quality Metrics in Large-Scale Software Systems

Development"

IUNCLASS I F I ED
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

UNCLASSIFIED

"Reliability Evaluation and Management for an Entire Software Life Cycle"

"Analysis of Software Error Model Predictions and Questions of Data

Availability"

Accession For

NTIS GRA&I
DTIC TAB

Justification T

By_ SEP 1 981
D ist r ibut ion/
Availability Codes

Avail and/or DDist Special

1INCTASSTI TFD

I

PREFACE /

Increasing complexities and challenges of
modern systems development have set forth equally
new and urgent complexities and challenges relative
to advancements in management of computer software
life cycles.

As an agency of the United States Army
Computer Systems Command, the Army Institute for
Research in Management Information and Computer
Sciences (AIRMICS) was honored to be able to spon-
sor the Second Software Life Cycle Management Work-
shop. This forum brought together some of the most
notable contributors within the field of software
life cycle management. The collective thoughts of
this prestigious group are reflected in these pro-
ceedings and should significantly enhance and in-
fluence the course of future life cycle management
directions.

My sincerest personal appreciation is
extended to all those who participated and made
the Workshop a highly successful venture in tech-
nology exchange.

Clarence Giese
Director, AIRMICS

IN DEDICATION TO THE MEMORY OF OUR COLLEAGUE,

ROBERT McHENRY

TABLE OF CONTENTS

PAGE

I. PREFACE - Dr. Clarence Giese

II. EXECUIIVE SUMMARY - Victor Basill, Edward H. Ely, Donovan Young 1

111. QUESTIONS 4

IV. SESSION SUMMARIES

LIFE CYCLE MANAGEMENT METHODOLOGY 7

DYNAMICS - THEORY

Chairman: John H. Manley, Johns Hopkins University

LIFE CYCLE MANAGEMENT METHODOLOGY 21

DYNAMICS - PRACTICE

Chairman: Raymond W. Wolverton, TRW Defense and Space Systems

LIFE CYCLE MANAGEMENT MEASUREMENT 32
MODELS - PREDICTIVE

Chairman: Lawrence H. Putman, Quantitative Software Management, Inc.

LIFE CYCLE MANAGEMENT
METRICS - MEASURES & EMPIRICAL STUDIES 44

Chairman: L. A. Beladv, Thomas J. Watson, Research Center/IBM

V. POSITION PAPERS

A. LIFE CYCLE MANAGEMENT METHODOLOGY

DYNAMICS & THEORY

"Modeling, Measuring & Managing Software Cost"

John R. Brown, Boeing Computer Services Company

"Improving the Signal/Noise Ratio of the System Development Process" 52
Melvin E. Dickover, SoftTech, Inc.

"A Step Towards The Obsolescence of Prograiiming" 60
Harvey S. Koch, University of Rochester

"A Contingency Theory to Select An Information Requirements 63

Determination Methodology"
1. David Naumann & Gordon B. Davis

University of Minnesota

"A lffe-Cycle Model Based on System Structure" 66
Francis N. Parr, Imperial College of Science

and Technology/England

L . I

Page

"The Implications of Life-Cycle Phase Interrelationships for 70
Software Cost Estimating"

Robert Thibodeau and E.N. Dodson
General Research Corporation

B. LIFE CYCLE MANAGEMENT METHODOLOGY
DYNAMICS-PRACTICE

"Software Technology and System Integration" 77
Robert McHenry & J.A. Rand

IBM Corporation

"Establishing a Subjective Prior Distribution 81
for the Application of Life-Cycle Management

for Computer Software"
George J. Schick & Chi-Yuan Lin
University of Southern California

"Design Process Analysis Modeling--An Approach for 88

Improving the System Design Process"
Barbara C. Stewart

Honeywell Systems and Research Center

"Life-Cycle Cost Analysis of Instruction--Set 93
Architecture Standardization for'Military

Computer-Based Systems"
Harold Stone, University of Massachusetts

Aaron Coleman, U.A. Army

"Useful Evaluation Tools in the Design Process" 95
C.E. Velez

Martin-Marietta Aerospace Corporation

"Programmers Are Too Valuable to Be Trusted to Computers" 99

Gerald M. Weinberg, Ethnotech, Inc.

"Software Cost Modeling: Some Lessons Learned" 129
R.W. Wolverton & B.W. Boehm

TRW Defense & Space Systems Group

page

C. LIFE CYCLE MANAGEMENT MEASUREMENT
MODELS-PREDICTIVE

"Progress in Modeling the Software Life Cycle 105

in a Phenomenologlcal Way to Obtain Engineering Quality Estimates
and Dynamic Control of the Process"

L. H. Putnam

"Software Cost Modeling: Some Lessons Learned" 129
Barry W. Boehm and R.W. Wolverton
TRW Defense and Space Systems Group

"A Software Error Detection Model with Applications" 133
Amrit L. Goel, Syracuse University

"Laws and Conservation in Large-Program Evolution" 140
Neir M. Lehman, Imperial College of Science &

Technology/England

"Validation of a Software Reliability Model" 146
Bev Littlewood, City University/England

"Progress in Software Reliability Measurement" 153
John D. Musa, Bell Telephone Laboratories

"The Work Breakdown Structure in Software Project Management" 156
Robert C. Tausworthe, Jet Propulsion Laboratory

"Operation of the Software Engineering Laboratory" 162
Victor R. Basili & Marvin V. Zelkowitz, University of Maryland

D. LIFE CYCLE MANAGEMENT MEASUREMENT
METRICS-MEASURES & EMPIRICAL STUDIES

"Some Distinctions Between the Psychological and
Computational Complexity of Software" 166

Bill Curtis, Sylvia B. Sheppard, M.%. Borst
Phil Milliman. Tom Love

General Electric Company

"A Review of Software Measurement Studies
at General Motors Research Laboratories" 172

Joseph L. Elshoff, Computer Science Department
General Motors Research Lahortories

"Software Science--A Progress Report" 174
Maurice H. Halstead, Purdue University

"Cost Effectiveness in Software Error Analysis Systems" 180

Maryann Herndon, San Diego State University

"Statistical Techniques for Comparison of 182
Computer Performance"

Sandra A. Mamrak, The Ohio State University

"Software Complexity Measurement" 186

Thomas J. McCabe, Independent Consultant

"Thc Utility of Software Quality Metrics in 191
Large-Scale Software Systems Developments"
James A. McCall, General Electric Company

"Reliability Evaluation and :,atiigement for 195
an Entire Software Life Cycle"

Isao Miyamoto, Nippon Electric Company, LTD/Japan

"Analysis of Software Error Model Predictions and 209

Questions of Data Availibility"
Alan N. Sukert, Rome Air Development Center

VI. ATTENDEE LIST 216

II. EXECUTIVE SUMMARY
OF THE

SECOND SOFTWARE LIFE CYCLE MANACEMENT WORKSHOP

By Victor R. Basili, Edward H. Ely and Donovan Young

The Second Software Life Cycle Management by analyzing the consequences of a set)f
Workshop brought together 40 Software'Life Cycle assumptions about the development process
Management Technology researchers and 90 attendees calibrated by data. Chairman, Lawrence
to discuss theory, practice and technology in H. Putnam.
managing software over its life cycle.

B. Empirical Models: Models based on
Building on last year's progress in out- analysis of data from past and ongoing

lining, identifying and describing the phenome- development projects. Chairman, L. A.
nology of software development, this year's par- Belady.
ticipants discussed progress in validating, refin-
ing, extending and exploiting the models and
metrics reported in Software Phenomenology (work- Participants submitted papers in advance,
ing papers of the Software Life Cycle Management summing up their research and reporting new un-
Workshop, August 1977). The main concern ex- published results. These papers appear in te
pressed by most participants was to foster the present proceedings.
emergence of a viable life cycle management
technology that could eventually allow accurate The two-day workshop began with short pre-
estimation and control of time and resources sentations by each of the participants to stim-
necessary to develop and support software in the ulate ideas and discussions. This was followed
military environment. by a formal discussion session addressing a set

of questions (included herein) regarding topics
Topics of interest included (1) description of interest to the Department of the Army. The

and understanding of various components of the four groups outlined above met concurrently, each
life cycle, (2) ways to delineate and analyze discussing a subset of questions. The results
relationships among component activities, (3) were orally presented by the four Chairmen to
milestones and other tools to help direct, coor- the Workshop at large. Summarized versions of
dinate, understand and control research and workshops findings and recommendations for each
development in software life cycle management, of the four topic areas prepared by session
and (4) development of management tools using Chairmen are included at the end of this Execu-
the results of life cycle management research to tive Summary.
help plan and manage software development pro-
jects. A very interesting banquet address was de-

livered by Mr. E. Larry Dreeman, Chairman of the
The Workshop was divided into Measurement National Security Team, Federal ADP Reorganiza-

and Methodology areas, and each of these areas tion Study, the Presidential Reorganization Pro-
was subdivided as follows: ject. Mr. Dreeman's remarks centered on the pre-

liminary findings of the study team's efforts and
1. Methodology clearly outlined the potential sotfware and re-

A. Theory: Identification of life lated system management challenges facing Depart-

cycle components and their interre- ment of Defense.

lationships, based on a comprehensive
view of the overall software develop- This Workshop attracted substantative papers
ment process. Chairman, John H. Manley. from several of the most widely-cited investiga-

tors in software management. Taken as a whole

B. Practice: Formal definitions and the papers demonstrate rapid progress in software

managment tools found or expected to management science, especially in the field of

be useful in life cycle management software cost modeling and prediction (Boehm and

and control. Chairman, Raymond W. Wolverton 11291,Elshoff 1172-, Halstead[1741,Nauman

Wolverton. and Davis [631,Parr [66], Thibodeau and Dodson PO7,
Stone and Coleman[91, Velez 1951, PutnamD05], and

2. Measurement Tausworthe [1561t less rapid but significant pro-
gress is shown in the field of coftware mainten-

A. Predictive Models: Models derived ance and reliability estimation and control (Cur-

*Numbers in brackets 'efer to page numbers in this

document.

2

tis et al [166,Goel U331, Littlewood[146,Musa [153] assumptions give rise to different mathe-
Miyamoto [1951 and Sukert [2091). Some progress is matical forms of life-cycle curves, all
evident in formal monitoring proceddres for soft- having similar goodness of fit to his-
ware management (Dickover [521,and Basili and Zel- torical data. Parr[66] and lhibodeau and
kowitz [162])and in automation of estimation tasks Dodson[70] offer alternatives to the
(Shick and Lin[81]), both of which were areas in Rayleigh curve.
which many participants expressed intense in-
terest and hopes for further results. 4. Reliable data for calibration of lif-cY-

cle curves may not be available. In the
The main conclusion that can be drawn from absence of data-based verification, des-

the collection of papers is that tools for soft- pite the recommendations of the previous
ware management and quantitative assessment of Workshop, a promising alternative is to
the software process are in a state of rapid generate life-cycle curves by aggregating
development. Despite severe difficulties with data from PERT analysis (Boehm and Wol-
definitions, taxonomies and data, and despite verton [129],Parr [6t, Tausworthe [156).
the fact that the consensus at the end of the This would allow more detailed estimation,
1977 Workshop was that better measurement and and would sidestep the difficulty that
definition tools were needed before successful empirical data cannot discriminate among
management tools could be developed, the papers alternative aggregated life-cycle curves.
tended to concentrate on management tools and
measurement rather than definitions. Even the 5. Little progress has been made in develop-
phenomenological papers were written and presen- ing automated management tools for life
ted with a clear view toward managerial appli- cycle management of software, Real-time
cation. Participants agreed that the technical decision-aiding systems would be desir-
papers in the Second Workshop were more evalua- able. Velez [95] has reported an auto-
tive and less speculative than those published mated way of expressing a target system
last year. This was seen as a sign of real pro- as a data base in a special language,
gress, but it was also agreed that additional giving a tangible, measurable object
evaluations based on common definitions and real that exists prior to writing an), target-
data are still lacking and badly needed, system code (details not revealed).

Schick and Lin[81 report automation of
a small but important task--interactive-

Summary of Findings ly aiding an expert in the development of

subjective probability distribution for
The findings of the Second Workshop include a random variable. A PERT-type work-

the firm conclusions reported by the discussion breakdown procedure has been partially
sessions and the technical papers, validated by automated (Tausworthe [1561).
discussion at large among participants and atten-
dees. These findings may be summarized as fol- 6. Lines of code per man-month is not a sat-
lows: isfactory indicator of productivity and

should be replaced by measures that in-
1. Formal life-cycle management tools are corporate quality and complexity as well

useful in the development phase (Boehm as length. Reports of successful length-
and Wolverton [129[,Parr[66], Stewart [88], only productivity measurement (Curtis et
Velez [951, Putnam [195). Management tech- al [66, Halstead [1

7 4
]seem to contradict

niques for the development phase of all this finding; but their data did not cross
kinds of software are presented by organizational boundaries, and Halstead's
Dickover [52]and by Naumann and Davis data came from an organization that en-
[631. Many limitations of these methods forces standardized coding complexity
ere discussed; for example, Naumann and and corrects line-of-code counts for reuse
Davis cite experience that formal methods of standard code.
are more useful for low-uncertainty pro-
Jects than for projects involving truly 7. Software reliability modeling is rapidly
new software. maturing, so that models such as those of

Littlewood[1
4
6]and Musa[1531can be used

2. ll classes of software should be managed routinely. Elshoff[172]reports success

a,-cording to a common framework, but with an (unspecified) predictive measure
different management procedures should be for estimating the time to revise a pro-
used for each phase of the life cycle, gram.
A specific set of life cycle phase defi-
nitions was prLposed by the Methodology/ 8. Good life-cycle models should possess
Theory session group. many detailed characteristics such as

those proposed by the Methodology/Theory
3. Overall life-cycle cost curves are use- session group.

ful and promising, but not yet well vali-
dated by real data from a multiplicity of
environments. Many different sets of

3

9. The key goal regarding management infor- 4. Large-scale data-based validation pro-
mation tools is increased visibility by Jects should be undertaken to validate
the manager at all times. This implies and refine existing and proposed models
a local terminal able to report key pro- and metrics and to help provide a basis
ject aggregates on demand, for standardization of data collection

and model parameters.
10. Software life cycle management problems

are people-oriented, not machine-oriented, 5. A taxonomy of software environments
according to the almost-unanimous consen- should be established, and research
sus of participants. should be done to elucidate distinc-

tions among individualized software
11. Little or no progress has been made in environments. A well-founded taxonomy

evaluating maintainability. Effective would allow objective classifications
software life spans have been impossible that are indispensable in controlling
to estimate in a good or explicit way. sources of variance in statistical
Software seems to possess finite life studies of life cycle phenomena and
and, thus, must be redone or scrapped metrics.
within a few years. It appears to be
extremely unusual to pay as much as a 10 6. Better and more detailed milestone def-
per cent premium for maintainability. initions need to be established to pro-

vide managers with objective project
12. Changes, modifications and enhancements checkpoints that can be assessed quan-

should not be classed and treated as titatively.
maintenance. Most participants agree,
however, that perceived software flexi- 7. More transfer of technology is needed
bility (ease of accomplishing prospec- from project to project and from or-
tive modifications) should be considered ganization to organization. Intensi-
during design and procurement decisions, fied effort is needed, not only to pro-
and there should a'so be a recognition vide technology-transfer vehicles such
during the development phase that changes as these Workshops, but also to provide
are inevitable to keep software working training in methodology and tools for
while its environment evolves, software managers. Effort is also

necessary to encourage life cycle
management research projects to be
carried out in conjunction with ongoing

Summary of Recommendations software development and maintenance
programs. The Measurement/Predictiv

The recommendations of the Second Workshop discussion group recommends that soft-
are the firm recommendations reported by the ware project managers not be asked t',
discussion sessions and the consensus recommenda- experiment on their projects, but only
tions expressed by the participants and attendees, to allow data to he collected in a
These recommendations are summarized as follows: neutral manner. Experimentb should

make data available to managers to h,.lp
1. Researchers and managers should adopt a them manage.

standardized set of definitions of terms
in software life cycle management. A Recommendations that (1) represent minorit,
task force or definitions committee should opinions within the discussion groups or (.) rep-
be organized to work on this problem. resent personal opinions of the discussion rup

chairmen are omitted from the above ;ummarv !,ut
2. Resources should be set aside specifically are included in the session summaries which lol-

to validate, classify and test software low.
management models. A project should be
initiated to produce an evaluative review
or "catalog" of existing descriptive and
predictive life-cycle models, describing
each model and listing its assumptions,
purpose, capabilities and imitations.

3. Research should be done to provide real-
time automated management tools for each
phase of software life cycle management,
using automated metrics and measures that
incorporate past project histories and
current project information. Automated
tools for programmers are also needed.

4

III. QUES'rIONS FOR

SOFTWARE LIFE CYCLE MANAGEMENT WORKSHOP

The following are a list of questions of interest in the area of

Software Life Cycle Management. They are meant to generate discussion

and hopefully elicit information of benefit to the community. When con-

sidering these questions, keep in mind both the process and the product.

MILESTONES:

Are there better ways to characterize and measure progress than the

standard definitions of milestones as points in time? Can we capture the

dynamics of the process, i.e., the interactivLness, the user's involvement?

Are there different types of definitions of progress with respect to

time and with respect to classes of projects, e.g., first-time efforts,

standard developments, etc.?

BUDGET:

What should the people-loading curve b- across the life cycle of a

system? What effect do different methodologies have on the shape of that

curve? How do you decide how much do to do within a fixed budget? What is

the effect of size and organization on the budget? What generic factors

are/should be present in software cost-estimating formulas? What are the

techniques for measuring work accomplished versus budgeted dollars?

PRODUCTIVITY:

Are there better ways to measure group productivity than lines of code

per man month? How can one measure individual productivity or produ iivitv

on small projects? What are the important factors for measuring productivity

during development, during modification?

TOOLS:

Where should we be going in terms of automated tools for managing

the software development process and aiding the development personnel

(Management information vs. product generating tools)? What should tools

encourage?

EMPIRICAL STUDIES:

What do we really need to know to understand the process better?

What Information should he collected about the process, the product and

their Interaction, and for what purpose? What kinds of experiments and

evaluations should be performed? How can we capture the idea of program

complexity? How can program managers be convinced tc conduct experiments

on their programs? What progress, If any, is being wade on the transfer of

learning from project to project within and between organizations?

5

MODELS:

Give a set of criteria for good predictive models of the software

life cycle. How could statistical and analytical models be combined?

Is there a need for a "standard" set of generic models of the software

life cycle process?

METHODOLOGIES:

What are the components of an overall methodology? Where should

software technology be going? Are there " s andardizable" methodologies?

What effect do different software development characteristics have on tile

implementation or adaption of methodologies in practice? How do you

characterize a methodology? How many methodologies exist in practice?

MAINTENANCE/MODIFICATION:

Is there a way to determine and measure tile effective life span for

software systems? How do you know when to redo a system? What are the

design trade-offs for maintainability? At what point in tile life cycle

should maintenance considerations be included? What strategy should be

used to transfer software from developer to maintainer?

MANAGEMENT:

What are the major ingredients in the management of software? What

makes it unique? What makes it different from hardware, for example?

How should the organizational structure relate to the problem to be solved

and the different interactive phases of development? To what extenit slrouid

managers be technically trained/involved? To what extent should techlliCl

personnel be managerially trained/involved? Are there different classifica-

tions of software that require different methods of management (e.g.,

embedded vs. non-embedded)? What are they? Are there predictable crises

in the software life cycle and what are the early warnings?

ENVIRONMENT:

Is there anything different in tile above with respect te future tech-

nological developments, e.g., small computer environments, standardized

modules? What changes need to be made? Is there any "scaling" effect?

GENERAL:

What parts of the above questions should he attacked first? What are

solvable in the next five years? What questions would you like to see

asked next year? What should research efforts concentrate on? What art,

tile ten top software life cycle management terms that need definition?

What is your source authority for present definitions, e.g., ANSI?

6

... WDFkSil~p ill ogL FO 2S S se

Dr. Giese in progress.

z

Dr. Clarence ,iese (right), Direc-
tor of AIRMICS, gave the Welcoming

Address

Mr. Lawrence Putnam (2d from L.) chairs session on Pre-
dictive Measurement Models

I J

Mr. E. Larry Dreeman (right), Chairman /
of the National Securltv Team, chats
with attendees after his hanquet seocch

Attendees in Ceneral Session.

IV. SESSION SUMMARIES

I. LIFE CYCLE MANAGEMENT METHODOLOGY
DYNAMICS & THEORY

Chairmanz Dr. John H. Manley, Johns Hopkins 11niversitv

PANELISTS

John R. Brown Harvey Koch

Thomas DeLutis J. David Nauman

Melvin E. Dickover Francis N. Parr

Robert Thibodeau

7

SOFTWARE LIFE CYCLE MANAGEMENT: DYNAMICS THEORY

Summarized cy

Dr. John H. Manley

The Johns Hopkins University
Applied Physics Laboratory

Laurel. Maryland

software life cycle, to includeAbstract milestoning, could be improved upoh.

The Dynamics Theory Group discussed
the conceptual relationships of software We also learned from the plenary
to a system life cycle model, and session that the other three groups
management to a composite software life intended to concentrate on the Full-Scale
cycle model. A "standard" software life Development phase of the Department of
cycle management model is proposed that is Defense (DoD) system life cycle which is
a modification of the generally accepted primarily involved with the program
Department of Defense system life cycle management aspects of developing software.
model. The group agreed that there are at Therefore, the predominant activity
least five distinct types of Army addressed by our group was management of
management involved in a major system the complete software life cycle, with
software management life cycle, and linked emphasis on aspects other than the more
quantitative life cycle milestones to popular area of program management of the
elementary decision theory. Other software development process. It was our
findings are reported that suggest several feeling that the Army should be concerned
profitable areas for Army software with a wider range of management problems
management research. A summary of a to include:
separate report being submitted to the
Chairman of the President's ADP a. Developing better ADP and
Reorganization Project National Security tactical system requirements that include
Team is included as a sequel to the highly software as component parts.
stimulating Monday night banquet
presentation. The report recommends that b. Administering (as the buyer)
ADP resource management policymaking for the software development technical
technical issues be centralized; ADP management process which in many cases is
resource acquisition management control be carried out by outside contractor
functionally decentralized, and; a systems organizations.
management approach similar to that
developed for embedded computer systems be C. Developing a better under-
used for ADP system life cycle management. standing of how to economically maintain

software contained in operational systems,
both as a user and logistician.

Introduction Thus, our deliberations were directed
more from the perspective of Army

The Dynamics Theory Group focused on managers, be they corporate, field,
the theoretical aspects of software life technical, program, or logistics. We then
cycle management (SLCM). We interpreted took our first step into the arena of
our workshop charter quite literally and software life cycle management methodology
decided not to get involved with the theory by trying to identify life cycle
details of management practice or tools components and their relationships based
since it appeared during the opening upon this Army manager perspective of the
plenary session that the other three software development process.
groups would adequately cover those
aspects of SLCM. Therefore, we tried to
answer only a few of the most basic SLCM Mana ement Differences
questions that were central to our Fact or Fancy?
dynamics theory" view of the world. For

example, we tried to determine whether or The first specific question we
not traditional ways of modeling the addressed was: Are there different

8

classifications of software (for example, We recommend that our proposed

embedded versus non-embedded or functional software life cycle management model shown
versus non-functional) that require in Figure 1 be used as a strawman baseline
different methods of management and, if for a follow-on research effort by the
this is true, what are they? Army to add conceptual detail to the

individual life cycle subphases. Since the
We reached the unanimous conclusion top lqvels of life cycle phase terminology

that: used in existing Department of Defense
documentation remain the same, that is,

Appropriate management methods Conceptual, Validation, Full-Scale
that are applicable to different Development, Production, Deployment and
phases of the life cycle do not vary Support phases, we do not advocate
across different classes of software, replacing any existing documentation but
but, the specific management method would simply modify it as described below.
U-d can be and usually is different
for different phases of the software Conceptual Phase
life cycle.

As shown in Figure 1, the Conceptual
This first finding prompted us to Phase has been divided into two subphases,

closely examine the life cycle management Conceptual Requirements Definition and
process using a somewhat different Conceptual Requirements Validation.
perspective than has been customary in the
past. As a first step, we found that we Definition Subphase. Most front end
could use the Department of Defense (DoD) major system requirements development
system life cycle as it is commonly activity is performed by DoD functional
understood (Reference 1) to generally fit user or field organizations for major
our individual theories of what software systems. In fact, field commands usually
life cycle management means. However, we employ relatively large groups of people
werea forced to make what turned out to be (development planners) who perform this
several conceptually significant type of analysis on a continuing basis.
modifications to that "system" model in Since they necessarily possess almost a
order to develop a useful "software" life purely functional systems orientation, any
cycle management working model. ADPE (Automatic Data Processing Equipment)

Defense system Full-scale
life cycle Conceptual Validation development Production Deployment Support

malor phase

Software
'life cycle Requirements Requirements Validation Full1scale Production Debugging Fine tunipg Maintenance Modification
subphase definition validation development t I

Corporate A A A A A A
management
decisions Program Ratification Production Deployment Turnover Disposal

decision decision decision decision decision decision

Type of
management

Functional or Primary Advisory Advisory Advisory Advisory Advisory Advisory Advisory
line

TechnicalAdioy dvsr

new technology Primary Advisory Advisory Advisory Adwsory

Program Primary Primary Primary Primary Primary Primary

Logistics Advisory Advisory Advisory Advisory Advisory Primary Advisory

Fig. 1 Software life cycle management model.

9

included in such systems is almost always subphases, Conceptual Requirements
embedded in the classic sense of the Definition and Conceptual Requirements
original definition, that is: Validation. As will be explained later,

the changes in the participant mix from
"...a computer can be considered the first subphase to the next has a

to be of the embedded variety when it direct bearing on management of the
is: software life cycle.

1. physically incorporated
into a larger system whose primary Validation Phase
function is not data processing; and The Validation Phase is essentially

one in which the DoD validates the

2. integral to such a solution to the previously validated

system from a design, procurement and greater system requirement. This is the

operations viewpoint.' (Reference 2). first phase where software is generally
acknowledged explicitly as a system
resource. Specifically, in this phase the
program characteristics of performance,

It is important to note that such work cost and schedule are validated and

does not usually involve software refined through extensive study and

requirements analysis at this, the very analysis, actual hardware development, or

front end of the greater system life cycle possibly prototype testing. The main idea

subcycle, but nevertheless always here is that hardware development and
represents the inital activity on first- evaluation may provide corporate

management (Service Staff, Office of the
time systems. Secretary of Defense and the Congress)

The term "greater system" will be with a better definition of program

referred to subsequently and requires characteristics, higher confidence that

clarification. In the context of embedded risks have been resolved or minimized, and

computer resources in the tactical or a greater confidence in the ultimate

defense systems world, the greater system outcome than could the paper studies

refers to the tank, aircraft or missile generated during the preceeding Conceptual

that contains the embedded computers, Phase.

computer programs and computer data as
component parts. We will show later that In this second major phase, an intal
this same interpretation can also be Program Office cadre is expanded to a full
conceptually applied to greater (data program office and, if a major system is
processing) systems such as supply, involved, software becomes an item of
personnel, transportation, payroll and so specific interest as directed by Secretary

forth, of Defense level instructions (for
example, see Reference 3).

Validation Subphase. The Conceptual
Requraement Validation subphase comes
next. It is distinct from the preceeding Full-Scale Development Phase
subphase in that additional players are
involved during the important paper During the next major life cycle
feasibility study activities. When deemed phase, the system including all of its
necessary (always for major defense support items is designed, fabricated and
systems) these feasibility studies are tested. The intended output is, as a
usually carried out jointly by both the minimum, a preproduction system that
using (field) and development commands, closely approximates the final product,
The development commands are three of the the documentation necessary to enter the
Joint Logistic Commands (JLC) consisting Production Phase, and the test results
of the Army's Materiel Development and that meet requirements. Since software
Readiness Command (DARCOM), the Air Force can be replicated precisely, this phase is
Systems Command (AFSC) and the Naval the most important with respect to the
Material Command (NMC or NAVMAT). These development of quality software, and where
conceptual system feasibility studies most of the emphasis has been placed to

seldom involve outside contractors and date (as opposed to hardware where
usually have high miitary security production problems can be severe and very
protection, thus being quite invisible to costly).
both the academic and commercial software
communities. Production Phase

Thus, we see the conceptual phase as When more than one copy of a system
necessarily consisting of two distinct must be produced, this phase becomes

10

important, especially if production of though it has been proven to meet the
copies is to be carried out over a period original systems specification through
of years as in the case of major defense extensive testing.
systems. One of the most difficult areas
of management in this phase involves Fine Tuning Sub hase. Thus, a second
change control, with its difficulty being distinct subphase we hca1 Fine Tuning is
directly proportional to the amount of necessary. This involves tailoring the
change activity. The same methods of system to meet current user requirements.
planning, development and testing should When one reflects on the length of time
be followed to make system changes during involved for systems to pass through the
production runs as were used previously in Full-Scale Development and Production
the Full-Scale Development phase. phases, it is small wonder that they

usually do not meet "current" user's
When producing copies of software requirements that have evolved over a

systems for multiple users, the same period of perhaps 2, 5 or 10 years. Only
principles apply and a quite close analogy when this fine tuning is completed
to hardware methods can be conceptualized, however, should the system be allowed to
Latent defects will emerge during this enter what we generally understand as the
phase and the user will continue to Support Phase. But, how does one
require changes to the system, both in determine when this activity is truly
hardware and software. Each change must finished? Again, we recommend the Army
be treated as a mini full-scale focus a significant research effort on
development, both in principle and in this critical problem area.
fact, especially with regard to management
methods. In any event, the end point of the

Deployment Phase is quite clear, the
system and all of its associated software
has been "thrown over the wall" to the

Deployment Phase logistics or support manager.. ready or

This phase has been interpreted and not.

defined somewhat differently by each of
the three military services and is
consequently difficult to describe in Support Phase
terms of a "standard" software life cycle
model.As has been reported in this workshop

events generated when final copies of new and elsewhere, the Support Phase is now

systems are actually put into operational regarded as the highest cost phase with

use in field organizations. We feel that respect to the total software life cycle.

additional emphasis should be placed on It is the one on which we need to focus

the management activities in this phase, most of our attention if we ever hope to

especially with respect to the problems of significantly reduce software life cycle

transfer of development management costs. This is also the phase in which
responsibility to the support management most of the ADP or non-embedded computer
team. It is an extremely difficult system action resides. In short, the
problem to determine precisely the point Support Phase is where most of our money
when any system (or copy thereof) becomes is spent and where the Army should
truly "operational." We recommend that concentrate its research efforts at
the Army follow up on this point with finding ways to reduce software support
further research to develop an effective costs.
system (software) deployment strategy. To
provide a starting point, we offer the In view of its importance, the
following description of two proper Dynamics Theory Group spent most of its
subphases which we feel must be included time discussing this phase an, its
as a minimum, software life cycle manfgement

implications. We began by defining what
Debugging Subphase. At the beginning activities should be carried out in the

of the Deployment Phase when a new system Support Phase. We decided that software
is produced and first handed over to the support should include at least the
using organization, the embedded software following continuing tasks:
will necessarily contain latent defects.
This means that the initial activity in
the phase will involve bug removal, or a. Continuing correction of

simply trying to get the system to run latent bugs and technical deficiencies in
smoothly in the user's environment. We software as they are discovered.
call this the Debugging subphase. This
does not mean, however, that when most b. Making system changes due to
bugs are removed, the system will fully modifications to equipment (hardware) that
meet current user requirements, even fails, wears out or is replaced for othere ctechnical reasons.

11

c. Any other external impact receives it in the field and operates ir
forcing a software change that does not until its disposal. This type of
affect user greater system functions, management is primarily concerned with how

the greater system performs its military
These activities are what we consider mission. All computer resources are

to constitute normal software maintenance treated as embedded, that is, as component
in a quite general context, parts of the greater system. The

functional manager's continuing bottor
Modifications, however, will also line activity is to plan, develop anI

occur for other reasons. The main one employ systems as necessary to achieve hi
being that the user requires a change to operational objectives.
the functional characteristics of his
greater system. If such a modification Whenever a new system or major system
involves changing software (or hardware), modification concept defined by the
a quite different type of support activity functional manager includes future or even
will be required. state-of-the-art technology, scientific

and engineering people are usually
Once the support manager begins to employed in the Requirements Concept

invoke this last type of change process, Validation subphase to perform technical
he is changing more than the data feasibility studies, and later to develop
processing components and, unfortunately, any required new technology. It is
this fact is not always recognized in the generally recognized that day-to-day
professional community. Whenever the geel reciedtat day-to-day
greater system is impacted, the life cycle management of scientists and engineers is
begins a new subcycle that is very similar quite different than so called "lineto jumping back to the Full-Scale management" of personnel who operate
D ojupen phae ao theFullan e greater systems in the field. There are,
Development phase and possibly to an even in fact, different curricula in most major
earlier phase. Since this means that we universities that address engineeringmust reapply project management methods management/administration separately from
through the modification development, business management/administration. Thus,
debugging and fine tuning processes, we it must be recognized that in the early
have defined this continuing cyclical stages of the software life cycle,
activity as a separate subphase called technical management as a subset of
System Modification. general management is often involved.

Validation Phase ManagementSystem Disposal

Once the system begins the Validation
Eventually, whether it be six months Phase, planning for system development

or fifty years, when corporate management begins in anticipation of an approval for
decides that the greater system is no system full-scale development and eventual
longer needed by the organization, it is production. It is here that the type of
removed from the active system inventory, program office is defined, the
thus ending the software management life determination of the type of contracts to
cycle. be used, decisions on which components

will be developed in-house and which out-
house, the type and level of expertise the

Management Relationships program nanager should have and so on.
to the Once these preliminary matters are

Modified SoF-ware Life Cycle determined by corporate management, aprogram manager is hired and a program
office cadre assembled. This is the point

As shown in Figure 1, five distinct when program management as a separate type
types of management are involved during is begun as an addition to the existing
the different phases and subphases of the functional area management and technical
life cycle. Their relationships to the management teams already on board.
phases and also to each other are briefly
described below. The distinguishing feature of program

management as a type is that the program
manager must live within three basic

Conceptual Phase Management constraints:

From this very first life cycle phase a. A "fixed" budget.
through to the ultimate disposal of the
system, the functional manager is (or b. An "inflexible" schedule.
should be) involved. He is the first one
to organize a team to develop the initial c. A "constantly changing"
greater system requirements. He oversees specification of the greater system he is
his system during its development, chartered to build.

12

This type of management is the one we the top-level decision makers involved
generally talk about at workshops and with deciding: (a) when the system can
conferences such as this, usually to the proceed from one major phase to the next
exclusion of the other types shown in the (Defense System Acquisition Review
expanded life cycle model. This is not Council), (b) whether or not the system
reant to imply that the program management will be funded from year to year
for a new system development or major (Congress), (c) whether a particular
modification to an existing system is not computer will be approved for purchase
a most critical occupation. However, our (General Services Administration), (d)
group recognized that this is definitely whether the system is needed to fulfill
not the only type of management involved greater National security needs
in the overall software life cycle. (President, Secretary of Defense, Service

Secretaries, Joint Chiefs of Staff and the
Service Staffs) and so forth. We

Full-Scale Development consolidated all of these top-level
Phase Management managers under the global title of

corporate management.

Sometime during the
development phase,

logistics people must get involved to
insure that the greater systems being Army Management Implications
developed will be delivered as
"maintainable" during the operations The implications for Army management
phase. Once the logisticians get on board that stem from our life cycle model and
as shown in Figure 1, they remain involved the concomitant management relationships
with the system until its ultimate described above are contained in this
disposal. section of our report. Our discussions in

developing the modified software
management life cycle model generated many

Production/ Support digressions, some of which resulted in
PhaseManagement theoretical conclusions that we felt

warranted reporting, while others did not.
When the system has been Thus, the following topics are offered as

developed to the point that the major bugs a selection of those we feel are worth
have been removed and it has been fine consideration by the Army as potential
tuned to satisfy the user, responsibility topics for further research.
for the system is formally transferred
from the program manager to the logistics
manager and the user for the remainder of
the life cycle. As mentioned before, the Life Cycle Cost Implications
system can be changed (sometimes quite
drastically) by the logistics manager with Upon close examination of a variety of
no outward appearance of change to the Army and other automated systems, we found
user in functional characteristics. When that we could easily fit any kind of a
the user requires a change, however, both greater system into the modified life
the user and the logistician must work cycle model described above. Clearly,
together with a project manager to major defense systems such as missiles,
eventually develop a new system, that is, tanks, aircraft, command and control
System XYZ-Model 2, -Model 3, -Model 4 or systems, ships or the like that contain
-Model n. embedded computer resources pass through

every phase we have described. For
Notice that we make the distinction example, one speaker commented in the

between "program" and "project" managers. opening plenary session that the B-52
The program manager is the one involved bomber s original conceptional requirement
with the original development of the was developed in approximately 1948 and
wietr th tem. A duelont othe system deployed in approximately 1952.
greater system. A succession of project Since that time, it has undergone many
managers are those responsible for making major modifications. He stated quite
modifications to the delivered greater accurately that it is highly unlikely that
system during the Support Phase of the anyone at the beginning of that program
system life cycle. However, both program could have foreseen that the B-52 would
and project managers use the same tools still be flying today, 30 years after
and techniques to perform their important system concept definition.
functions.

The management implication of such
long term continuing modifications to a

Corporate Software Life Cycle Management major system is that their cost over theSfe cycle cannot be planned or even

Of course, overseeing all of the speculated with any degree of reasonable
management types mentioned thus far are accuracy. Thus, our group concluded that:

13

The planned cost of software will be discussed separately as the next

embedded in a system should terminate major management implication titled

with the initial entry of the system "Procurement Management Implications."

into the System Modification subphase
of the Support Phase of its life
cycle. b. There is another major

difference between embedded and non-
From that point on, each new embedded computer systems with respect to

modification should be treated as a management. This is that the embedded
separate project to be independently computer system is normally involved in
managed over a mini-life cycle, the complete life cycle model as developed

by our group. Most ADP management efforts
Another example closer to the are only involved with the Support Phase

Automatic Data Processing community is the of the life cycle, since major ADP systems
automated post or base supply system that such as supply, personnel, finance,
is common throughout the Department of inventory control and so forth were
Defense. The Conceptual Phase for the originally developed 10 to 20 years ago.
automated supply system began in the Current software development programs are
1950's and the system became fully either of the maintenance or modification
operational in the 1960's. Since then, variety and do not, in most cases, involve
the system has been in the Support Phase. new functional systems that begin in the
This perspective of that greater system, Conceptual Phase.
that is, the automated base supply system,
indicates that it may never reach the
Disposal milestone. Thus, we have had for Procurement
the past decade a succession of both Management Implications
maintenance actions and system
modifications which have been successfully We stated above that the methodology
carried out as they became necessary. In for procuring Automatic Data Processing
no case, however, has a totally new supply Equipment (ADPE) is different than that
system emerged which required starting used for procuring Embedded Computer
back at the beginning of a complete Systems (ECS) in the Department of
greater system life cycle. Defense. Thus, the answers to the

questions of whether or not ECS or ADP
systems require different types of

Embedded Computer Resource management practice or different types of
Management Imilications life cycles are simply yes and no,

respectively.
Our finding above that the supply

system is conceptually the same as the The distinction that has been made
B-52 with respect to its embedded computer between these two categories of automated
resources has another implication. As systems was a direct result of differences
some of the original greater system in procurement regulations stemming from
embedded computers wear out and have to be the 1965 "Brooks Act" (Reference 4). The
replaced, they fall under the Maintenance Armed Services Procurement Regulation
subphase. If the original software is (ASPR) is used to procure defense systems
captured through emulation on replacement and, in most cases, any computers embedded
machines, we have not really changed the in such systems. These are excluded from
system in the eyes of the functional user. the ADPE procurement regulations that
However, if we make a modification to implement Brooks Act guidelines, as
satisfy new or emerging user requirements, administered by the Office of Management
then we go through the project management and Budget (OMB) and the General Services
and the development life cycle as far back Administration (GSA).
as the change warrants.

Implementation of instructions
Upon closer examination of the concerning "GSA-controlled" ADP computers

differences between so-called embedded on one hand, and "excluded" embedded
computer systems and non-embedded or computers on the other, has resulted in
general purpose automatic data processing, two separate series of directives and
we found that the basic distinctions instructions at the Office of the
between these two categories were as Secretary of Defense level. The ADPE or
follows: controlled computer procurements fall

under the purview of the Assistant
a. There is a definite Secretary of Defense (Controller) and are

difference in procurement methodology in controlled under the "4000 Series"
the DoD between embedded computers and instructions. The excluded embedded
commercially available ADPE. In fact, computers fall under the jurisdiction of
this area of of such great importance it the Office of the Undersecretary of

LI

14

Defense for Research and Engineering. In addition to the curse of the user
They use the ASPR for most ADPE and his changing requirements, the program
procurement actions as governed by "5000 manager also has a problem if new
Series" instructions, technology is involved in that the

technical manager will want to insure that
To complicate matters further, each any innovations developed by his

service has developed its own unique scientific and engineering people are
method for implementing the 4000 and 5000 correctly incorporated into the new
Series regulations quite independently of system.
one another. Hence, the answer to the
original question is yes, embedded
computer systems (ECS) and ADP systems do But that's not all. The program
require different types of management, but manager has yet another individual to
not different types of life cycles, answer to, the logistics manager who is

looking for better and more complete
This creates a problem of documentation, well defined system

qualification for the managers involved in interfaces, modularized architecture, and

the life cycle of the system. In no way, evidence of the use of modern programming
however, does this change the model practices or structured techniques so that
presented as the procurement method is the system will be easy to maintain.
only a policy guideline for management tc
follow. In spite of the problems these

overseers may impose upon the program

Functional Manager Involvement manager from time to time, he must
incorporate their "parochial views" into

Now what did we learn from an his program plans. The fifth set of
examination of this revised life cycle managers, corporate, are responsible for
model? First, we found that functional insuring that this is done in such a way
managers must stay involved in the to best serve the interests of the overall
software aspects of their greater systems organization, be it the Army, Department
throughout the life cycle which, as we of Defense or the Country.
have seen, can be an extremely long time.
They cannot abrogate this responsibility. In short, we feel that this
The implication here is that there must be conceptually explains both the necessity

an office of primary responsibility for five interacting types of software
established for that system and the management and the difficulty program
responsibility carefully transferred managers have in coping with this
between the inevitable succession of situation during the software life cycle.
responsible incumbents. This
responsibility for the functional
operation of that system must have a Qualifications and Exceptions
continuous thread throughout the system
life cycle. There are, of course. qualificationsand exceptions to the model presented in

Figure 1. Some of the more important ones
Software Management Interactions that should be considered are summarized

St e m below.

We have shown previously that there
are really five distinct types of Army Degree of Structuredness. The degree
management involved in the complete life of risk or novelty ifn a software
cycle of software that is a component part development project or its "degree of
of any automated system. The implications structuredness" must be considered when
of having five types of management we using the model. Those projects which are
found to be worth investigating in some very similar to others that have been done
detail, before, or those involving modifications

to major systems generally do not require
Our model illustrates that one of the sufficient numbers of scientists and

most difficult problems for a program engineers to be employed to warrant the
manager during the Full-Scale Development special aspects of technical management.
phase of a major system is that he must On the other hand, a major project such as
respond to the continuous management SAFEGUARD or APOLLO would obviously
oversight of the functional or line manger require many technical managers to handle
and his changing requirements. Program the large numbers of scientists and
managers would always recommend, if they engineers working on the system in their
had the choice, 'that the user or attempts to advance technology state of
functional manager stay out of their hair the art.
during the development phase.

15

Project Size. Much time has been This led to a further conclusion that

devoted in this and many other conferences any milestone in a software life cycle

to describing differences in life cycle management model must be a point of

management based upon problems of scale. measurement at which information on the

For example, a short term, one-man project state of the life cycle process is

to design and develop applications collected for the sole purpose of serving

software to solve an ad hoc engineering as an input to help solve a specific

problem may have an entire life cycle as management decision problem. It is

short as a few months. Clearly, the five significant that this is in concert with

varieties of management described above the principles of elementary decision

would not all be used. However, major theory which can be used to great

defense systems that must undergo the advantage in improving all levels of

Defense System Acquisition Review Council software life cycle management. Thus, we

(DSARC) process normally involve all five emphasize that:
types of management and have life cycles
as long as 20 to 30 years. Milestones should represent the

termination of specific activities or
It is sufficient to say that there is tasks and also provide a measure of

a drastic difference between a one-year the degree of completeness (or
development for a small system versus the quality) of those activities. Hence,
30-year life cycle of a major defense they must be quantitative to be useful
system. to management for judging the progress

of a system through its life cycle.
If they are not quantitative in

Reliability Requirements. Software nature, they simply cannot adequately
reliability for systems such as a support this necessary measurement
management information system that function.
operates occasionally using only
historical information is clearly not as
critical as for real time, operational
systems involving missile guidance,
nuclear safety or life support. In Milestone Taxonomies
general, our group feels that, as system
software reliability requirements A secondary question as to whether or
increase, the need for more of the five not there are or can be various
types of management involvement also classifications or taxonomies of
increases, thus lengthening the overall milestones we found not to be relevant to
software management life cycle, our other findings. Even though a manager

who is interested in controlling a budget
Other qualifications can, of course, might use a different set of milestones

be added to those described above, than, say, a technical manager who is
However, during the course of our interested in keeping track of progress in
deliberations we could not think of any the engineering development of a system,
qualification or exception that would we feel that at some point in the
negate the life cycle model as we have management hierarchy there exists (or
described it. That is not to say that one should exist) a single program manager who

or more could not be uncovered through a oversees the greater system that would be
more thorough analysis. interested in all of the milestones

regardless of how they are classified.

SLCM Milestones
Iterative Process Milestones

Another major topical area discussed

by the Dynamics Theory Group involved the One interesting conclusion reached by
milestones that delimit phases and our group came after a discussion with
subphases of the software management life respect to the meaning of milestones in an
cycle model described above, iterative environment. This environment,

for example, is one in which a computer
program keeps cycling back through its

Purpose and Nature of Milestones development phases perhaps because it has
not passed an operational test. This

The first question we asked ourselves could be a computer program that has been
was: Who are these milestones for? Our certified to be bug free and is in fact
conclusion was that this question can have running satisfactorily, but has not yet
only one logical answer. Software life completed the Fine Tuning subphase of the
cycle management milestones should be Deployment Phase.
designed for the direct use of the five
types of management decision makers
described above.

16

The milestone that indicates If the computer program has not passed
termination of the Fine Tuning subphase the criteria established for that
must have associated with it a set of milestone and is considered bad, the
metrics which are used to judge the program manager can be viewed as sitting
quality of that computer program. This at Node 3. Now he is faced with multiple
quantitative data is used by a management alternatives to decide upon. For example,
decision maker to help him decide when should the program be killed? Should the
that computer program is ready to proceed program be allowed to proceed while that
into the Modification subphase of the life particular computer program is sent back
cycle, for more work and so on?

Implications of Milestones Similarly, if we take the middle case
for Decision Making at Node 2 where a computer program isdetermined to be marginal based upon a set

Figure 2 illustrates a toy model of a of milestone quantitative criteria, there
decision tree which contains three again would be several alternatives from
possible states of nature that might occur which the decision maker must choose.
at a milestone in a software life cycle.
Branch A indicates that the software is of When we reflect upon this type of a
good quality, Branch B fair quality, and model, we can see the striking resemblance
Branch C poor quality, to the program progress review briefings

given to corporate managers by program
If the computer program is judged to managers with respect to various aspects

be of good quality at that milestone, and of their programs. It is common practice
the decision maker is viewed as sitting at to show categories such as budget,
Node 1, he might be faced with only a software, hardware, organization and
single alternative with respect to what schedule in red, yellow or green colors
the next directive to issue will indicating "in trouble," "potential
be..."continue on." problems" or "no problems," respectively.

Start of task StartleftnexorPath of accomplishment milestone Management decision task oror activity

t"Continue on"

A activityue O

("B Problems encountered 2"e oetss

3 ~"Start over a ain" 4

Fig. 2 Software management decision tree concept.

, ._ _.. ._.... .. .j

17

What this really means in terms of it appeared that many of the findings and,
decisions, decision makers, and software in particular, the recommendations were

life cycle management is simply this, a quite controversial. After the

milestone is meaningless unless it has presentation, I had the opportunity to

associated metrics. The metrics must be discuss several aspects of the study with
such that they provide meaningfull Mr. Dreeman in more depth that led to his

information to the manager at whatever request for a formal input to the study.

level so that he can make appropriate A sumnary of my personal response to this

decisions, that is, choose the best request is outlined below for the benefit

perceived alternative course of action of those who attended Mr. Dreeman's

ased upon the information presented. presentation.

Milestone Metric Research Central Problem

Now the basic question remains: How My 18 years of involvement in the
do we measure attributes of software such military computer resource management area
as quality or completeness at required has led me to conclude that:
milestones?

The primary cause of many of
Some work is being done in this area today's Department of Defense ADP

but clearly not enough. An extremely management problems involves the
important research direction for the Army obsolescence of the centralization of
to pursue is to develop a set of common ADP management control policies.
measurable milestones for SLCM projects.
Each milestone must have associated with This does not mean that I do not agree
it relatively easily measured attributes that there should be centralized
of the products delivered at the end of policymaking and guidance to prevent chaos
the activity it stands for. in this 8-10 billion dollar a year

Department of Defense business area. The
Furthermore, we must all realize that distinction I make is between policymaking

progress of software through its life and control.
cycle is not measured by time, but by
accomplishments. Thus, there must be some
description of measurable criteria with Recommended Solution
which to determine physical evidence of
progress. These milestone accomplishment I recommend that policymaking for
critera must bp complete enough and in technical issues continue to be
sufficient detail that the resulting centralized in the form of a Department of
measurements will be sufficient to Defense ADP "focal point" to serve as an
generate relevent management decisions, interface with other Agencies, the General

Services Administration, the Office of
Management and Budget and the Congress.

Postscript In addition to the single interface
function, the focal point will develop

Federal ADP Reorganization Study policies and guidance in the areas such as
the following:

The workshop's featured speaker, Mr.

E. Larry Dreeman, reported on the findings a. Standardized methodologies
of the Federal ADP Reorganization Study for the acquisition of automatic data
National Security Team which he chaired. processing equipment (ADPE).
Mr. Dreeman's team was chartered to
investigate ADP activities in the b. Guidance with respect tc
Department of Defense. This was a portion standardization of computer programming
of one of 31 Federal government languages for use within the Department of
reorganization projects initiated by Defense.
President Jimmy Carter. The overall
project study objective was to investigate c. Guidance and standardizatior
ADP in the Federal government and to of computer and peripheral interfaces
recommend inprovements in the government's within the Department of Defense.
use of information technology;
specifically, to improve delivery of d. Standardization of data
government service, improve acquisition elements and codes used within the ADF
management and use of information environment in the Department of Defense.
technology and eliminate duplication and
overlap. The problem with the centralization

scheme as it exists today is that the
Mr. Dreeman's presentation evoked a authority for purchasing computers and

very active response from the audience as associated software is retained at

18

excessively high levels. This hinders Arguments Pro and Con
effective equipment and software
replacement programs designed to prevent Critics of the above systems
the massive hardware obsolescense problem approach" to ADP management state that we
accurately reported by the National would soon return to chaos in the ADP
Security Team in its "Draft Report" environment if we dismantle the current
(Reference 5). strict review process which proceeds from

the lowest levels all the way up through
Thus, I strongly recommend that: the General Services Administration and,

incidentally, takes nine months to a year
The authority to purchase and a half for approvals for equipment

computers and software should be over $50,000.
decentralized to the maximum extent
possible subject to centralized I contend that realistic and well
technical standardization policies, thought out policies developed by the

centralized ADP policy officials can be
enforced by existing Inspector General and

Furthermore, the purchasers of auditor organizations within the
ADPE and coumnercially-available Department of Defense. It is their job to
software in the DoD should use a make sure that all policies dicLated from
"systems approach" similar to that higher authority are, in fact, carried out
used for the acquisition of weapon at the lowest levels of all military
systems hardware and software using organizations. Therefore, the technical
the Armed Services Procurement policies, such as the use of specific
Regulation and as further defined in higher order languages and standard data
Air Force Regulation 800-14 (Reference elements and codes can be easily checked
6). for compliance during the normal visits to

DoD installations by these enforcement
This means that DoD functional agency representatives.

managers should have more control over the
type and quality of ADPE and software that With respect to the argument that the
is used within their areas of expertise costs could go out of control if this
and jurisdiction, centralized authority is not retained at

the highest levels, I contend that the
Relationship of ADP Management budgetary process itself will hold down
to ECS Management costs, probably to a greater degree than

one can achieve with centralized
We must recognize that the reason for management control. The reason for this

the success of recent (I stress the word is that the functional line or staff
recent) defense system procurements manager receives one slice of the budget
involving embedded computer hardware and pie as his total share for any given
software lies not in the use of the fiscal year. If it can be proven to him
"excluded" special-purpose, militarized that a new piece of ADPE can rcduce costs,
computers but in the perspective of the improve organizational efficiency,
program manager who is developing a system increase functional system performance, or
which is not an ADP system but rather an has any other purpose that is worth
aircraft, tank, missile or spacecraft. spending some of his limited monetary
This same embedded computer system resources on, he will probably approve it.
philosophy can be profitably applied in However, all functional managers within
the AD? environment, that commander's organization are also

trying to get their own pieces of the same
For example, any DoD personnel manager pie slice. This adversary situation with

should treat his ADP equipment, computer respect to the budgetary process is normal
programs, supplies, people, computer data, in all areas at the present time to the
and all other computer resources as but best of my knowledge, except for ADPE. I
component parts of his "personnol system." believe that if ADPE authority for
The ADP manager should no longer be purchase is decentralized to the lowest
permitted to unilaterally dictate what functional levels possible, the normal
specific types of equipment are necessary budgetary process will be much more
and allowable for the personnel manager to effective in reducing overall ADP costs
perform his function. A more effective than does the present highly centralized
role for the ADP "single manager" should management control system.
consist of providinig the personnel manager
and other line and staff managers with Finally, with respect to the potential
technical advice and service as requested. problem of not having expert help if thereis not a strong central technical

organization that retains the authority tc
pass judgment on ADP purchases, I submit
that a very effective organization already

19

exists to help users with this function, 3. We feel that additional emphasis
the Federal Simulation Center (FEDSIM). should be placed on the management
This agency can be called in by any activities in the Deployment Phase of the
functional manager in the Department of software life cycle, especially with
Defense as a consultant to help them with respect to the problems of transfer of
the technical problems of performance development management responsibility to

tradeoffs, make or buy di n, ue the support management team. We recommend
decisions, source that the Army follow up on this point with

selection, competitive procurement, and so further research to develop an effective
forth. system (software) deployment strategy.

Postscript Summary
4. We recommend that the Army focus a

In summary, the three basic points I significant research effort on the
will be making to the National Security critical problem of trying to determine
Team Chairman, Mr. Dreeman, are as the point when software "fine tuning" is
follows: sufficiently complete to be able to

confidently transfer a system to the
a. A serious problem with ADP Support Phase of its life cycle.

management in the Department of Defense is
the obsolescense of Brooks Act 5. The planned cost of software
implementation policies, embedded in a system should terminate with

the initial entry of the system into the
b. I recommend that ADPE System Modification subphase of the

technical issue policymaking be Support Phase of its life cycle.

centralized to conform with the intent of
the Congress for single focal point 6. The answers to the questions of
cognizance and reporting. whether or not ECS or ADP systems require

different types of management practice or

c. I recommend decentralizing different types of life cycles are simply
the authority to purchase ADPE and yes and no, respectively.
software such that functional managers are
given the authority to develop their ADP 7. Milestones should represent the
resources just as they develop all other termination of specific activities or
resources at the present time. tasks and also provide a measure of the

degree of completeness (or quality) of
Thus, I do not believe there are any those activities. Hence, they must be

compelling reasons for continued quantitative to be useful to management
centralization for ADPE control at the for judging the progress of a system
highest levels of DoD management, and through its life cycle. If they are not
strongly request that the final National quantitative in nature, they simply cannot
Security Team recommendations to President adequately support this necessary
Carter be modified to incorporate these measurement function.
views.

8. An extremely important research
direction for the Army to pursue is to

In Conclusion develop a set of common measurable
milestones for SLM projects. Each

The Dynamics Theory Group lists the milestone must have associated with it
following conclusions and recommendations relatively easily measured attributes of
as those deserving further consideration the pioducts delivered at the end of the
by the Army in its attempt to improve activity it stands for.
software life cycle management:

1. Appropriate management methods Acknowledgment
that are applicable to different phases of
the life cycle do not vary across As Chairman of the Dynamics Theory
different classes of software. However, Group I wish to gratefully acknowledge the
the specific management method used can be contributions of both the participants andand usually is different for different the many attendees whose active
phases of the software life cycle, participation provided the material

2. We recommend that our proposed contained in this report. In particular I
software life cycle management model shown thank the participants, namely, Thomas
in Figure 1 be used as a strawman baseline DeLutis, Melvin E. Dickover, Harvey Koch,
for a follow-on research effort by the J. David Naumann, Francis N. Parr, Leon
Army to add conceptual detail to the Stucki and Robert Thibodeau for their
individual lfe cycle subphases individual contributions that helped make

the workshop a most stimulating experience

for all of us.

20

References

1. "Major System Acquisitions," DoD
Directive 5000.1, January 18, 1977.

2. Manley, JohrL H., "Embedded Computers -
Software Cost Considerations," in
AFIPS ConferenceProceedings , V. 4_
1974 Hati uta Con erence.
Montvale, N.J., APIPS Press, 1974, pp.
343-347.

3. "Management of Computer Resources in
Major Defense Systems," DoD Directive
5000.29, April 26, 1976.

4. "Brooks Bill," Public Law 89-306; 40
U.S.C. 759.

5. "National Security Team Report
(DRAFT), Federal Data Processing
Reorganization Study, President's
Reorganization Project, 7 July 1978.

6.. "Management of Computer Resources in
Systems," Air Force Regulation 800-14,
Vol. I, 12 Sept 75, and "Acquisition
and Support Procedures for Computer
Resources in Systems," Air Force
Regulation 800-14, Vol. II, 26 Sept
75, Department of the Air Force,
Washington, D.C.

j*

II. LIFE CYCLE MANAGEMENT METHODOLOGY

DYNAMICS PRACTICE

Chairman: Dr. Raymond W. Wolverton

TRW Defense & Space Systems

PANELISTS

George J. Schick Harold Stone

Barbara C. Stewart Ivan Jaszlics

Gerald M. Weinberg

21

SOFTWARE LIFE CYCLE MANAGEMENT - DYNAMICS PRACTICE

Summarized by
R. W. Wolverton

TRW

possible (termed transition management) that -

properly implemented - does not require added

development time for testing. This is an extreme-

INTRODUCTION ly powerful hypothesis for future AIRMICS study.

Seven position papers are given here that re- G. J. Schick and C. Lin of USC show quantita-

flect the practice and experience of each partic- tive techniques for determining the manager's

ipant in the dynamics of software life cycle preference for prior distributions that are needed

management. On the basis of his past contributions in software reliability models using Bayesian

to the field, each participant was invited by the probability theory. Predictive reliability models

U.S. Army Institute for Research in Management assist the manager is estimating the number of

Information and Computer Science (AIRMICS). Along errors indigenous to the software system under

with the position papers, the participants dealt development and the amount of time required to

extemporaneously with a list of questions offered reduce the indigenous error population to an

by the AIRMICS technical chairman, Dr. Victor acceptably low level. Their solution lies in an

Basili. Three of the questions were selected for automated question and answer dialog with the

group discussion as having the most interest at practitioner to find his level of indifference to

this time and the greatest potential leverage in alternatives that Imply statistical fractiles. In

reducing cost and risk for future AIRMICS projects. this way mathematically tractable estimates of

The findings In these three areas, management error-reduction can be made that incorporates the

dynamics, software tools, and life cycle ma'nte- practitioner's software experience and intuition.

nance, are summarized here. The participants for
this session of AIRNICS 78 are: One of the stated assumptions is that soft-

ware development is not a branch of mathematics

George J. Schick, University of Southern but rather a special form of communication, person

California to person and person to machine. B. C. Stewart of

Honeywell Systems offers a new discipline for
Barbara C. Stewart, Honeywell Systems alleviating the intrinsic difficulties of communi-

Harold Slone, University of Massachusetts cation, particularly early in the design process,
that combines an analysis model and analytical

Ivan .1. Jaszlics, Martin Marietta, Denver procedures. Her methodology has the benefits of

rerald Weinber, Ethnotech, Inc. assuring that both design goals and organizational
goals are met, providing a means to evaluate the

Ray W. Wolverton, TRW Systems Group cost effectiveness of the organization's design

Kenneth Kolence, Institute for Software methodology; and establishing a measn by which

Engineering differing design methodologies can be q(Iailtit;j-

tivelv compared.

In addition, all attendees (approximately 50) par- Harold Stone of the University of Massa-

ticipated in generating answers to the three
questions chosen by thegroup (i.e., participants ,husetts and Aaron Coleman of the U.S. Army

plus attendees). (CORADCOM) report on their hardware/software life-
cycle model that measures the cost of stan-

OVERVIEW dard1zing the computer instruction set together
with the support tools for the military computer

R. C. McHenry and J. A. Rand of IBM contrib- family (MCF). Their results show that the GYK-41

uted a position paper, although circumstances (PDP-11), out of the set of four semifinalists in

prevented its oral presentation. They believe that the MCF study, ranks as the best choice for the

the very nature of top-down development allows it MCF under their criteria of comparison. They use

to become a powerful tool and technique for system a 22-year interval for acquisition and deployment

Integration, thereby leading to earlier and more of candidate MCF computers and support software -

complete system readiness than would otherwise be 1980, 1985, an,, 1990 - with each lot deployed for

possible. Their key point Is that by incremental 10 years. Their model Is successful in Identi-

development and testing, a new discipline is fying the critical cost-drivers and in estimating

22

their relative importance, although it is not tive models that relate their cost estimates to
intended to predict dollar costs with accuracy. A software phenomenology and project dynamics. A
crucial factor in the life-cycle cost analysis is potential solution to these needs is given by nine
that the greater the value of the software tool criteria defining the goodness of a software cost
base, the lower the cost per line of applications model. With respect to the emphasis on dynamics
code. Their model estimates the tool value as a of the AIRMICS workshop, the structural form of
function of time to reach time varying estimates the cost model can be used at RFP time (e.g., it
of productivity. Their analysis shows that the does not ask for input data available only after
GYK-41 (PDP-Il) offers a cost savings of $1.5 design) and at all subsequent development cycle
billion over the next lowest contender, reviews. As more and more verifiable input data

become available they replace the estimates, un-
C. E. Valez and Ivan J. Jaszlics of Martin known data estimates are made current, and the

Marietta, Denver, present a position paper on use- manager can see the inception-to-date information
ful evaluation tools in the design process. Their on the estimated cost to complete and time to
hypothesis, supported by initial experience, is complete. Each cost element can be traced to a
that design languages are emerging for identfying work unit in the work breakdown structures (WBS),
requirements, design components, and design speci- and the manager can readily spot the trouble
fications on the basis of which coding can areas through management by exception techniques.
commence. They believe that several design A tie-in to the WBS is essential to show what is
languages apply at different levels of the design (and is not) included in the resulting cost
process. One of the main purposes of a given estimate.
design language is to provide the human the
capacity for interaction beyond the first available Kenneth Kolence, president of the Institute
solution to the best solution for his requirements. for Software Engineering, stands by his position
Two often neglected phases in a design language that the field has advanced to the point where we
approach are included in their potential solution: now have a discipline of-software physics. What

the definition of the man-machine interface and is needed to tap this resource is an understanding
computer resource requirements. They believe that of what this means relative to work performed, the
an integrated software design concept is essential capacity to take on new work, and the use of the
to comprehensive definition of the system devel- metrics now observable. One then organizes the
opment interfaces. The importance of program work of software design around a forecast for the
design languages for the upcoming generations of use of facilities. The problem regarding soft-
software cannot be over-emphasized, ware acquisition scheduled for the mid 1980's is

to define in 1978 what data is really needed,
Gerald Weinberg of Ethnotech, Inc., expresses collect it, analyze it by the laws of software

his views on why the expected gains from program- physics, and incorporate it into an action plan.
ming tools have been slow in arriving, and often
disappointing when they do arrive. He believes MANAGEMENT DYNAMICS
that the problem lies in the failure to understand
the processes by which new technology is intro- Any person who influences the irreversible
duced. The role of training has been left by use of resources is in truth a manager whether
default to computers, under the assumption they are his title is that or not. Dynamics deals with
better or cheaper than human teachers. His forces and their relation primarily to motion
solution is to provide an overall climate for or time behavior but sometimes also to the

professional learning in which both the computer equilibrium of the acts of management. The word
has a role and the human teacher have a role. also implies patterns of change of growth. There-
Probably all the tools needed to solve the fore, management dynamics refers to the forces
elaphant's share of the software development pro- inherent in the process of leadership and their
blems have already been created, at the cost of interplay as a function of intensity and fre-
per ,aps a billion dollars a year, a micro- quency.
organismic sum of money has been spent on training
people to use those tools. This means the practi- Startup Conditions
tioner does not use the tools accessible to him.
We have spent billions for "tools", but not even Software management has the same major
penies on understanding what is needed to create components of organization and enactment as the
the professional technical leaders who will use successful management of any other complex human
them. The answer he advocates is to take computer endeavor, with two significant observed excep-
training out of the realm of computers and put it tions. First, managers do not generally recog-
in the brains of people. nize that the software development process has

more degrees of freedom than another project of
R. W. Wolverton and B. W. Boehm summarize the equilivent dollar value. This unique quality

more important lessons learned in developing a accentuates the recurrent people-oriented
cost model for TRW. The key issues are first a difficulties associated with span of control
need to develop agreed-upon criteria for the value through not knowing precisely what to control, by
of a software cost model, second a need to evaluate what criteria, at what timely milestone events.
existing and future models with respect to these
criteria, and third a need to emphasize construc- Senior managers are now in decision-making

23

roles by a traditional reward system based on for the manager to properly subdivide the problem
earlier career successes, where success is defined into manageable-sized packages of work and assign
by the manager's management. Often, the recog- clear lines of authority and comaensurate respon-
nition is based on earlier projects for which the sibility.
software component was smaller and the criteria
of success not clearly focused. These early pro- He must assign tasks to individuals (e.g.,
jects were often managed through intuitive, and sub-project managers) and set individual goals.
undescribable, methodologies. Inevitably, this One way to do this is to define subordinate
situation is accompanied by schedule slippage, objectives that, in turn, support senior objec-
cost overrun, and low-quality field software. tives. The manager assigns a measurable task to

an individual for completion by a certain date at
To further aggravate this condition, these a cost not to exceed so many dollars. Then the

(now) older in situ managers are overtaken by manager can constructively monitor and assist the
events in the form of accelerating advances in work objectives by periodic reviews organized to
computer technology and still more degrees of free- compare outputs against objectives, including cost
dom, increasingly difficult management decisions and schedule predictions versus actuals. A work
(shifting from, say, two-valued deterministic breakdown structure is a proven technique for
choices to multi-valued probabilistic choices), helping to avoid ambiguity. He has existing tools
and the conflict created by the need for "detach- to aid him in doing an effective job.
ment" for the sake of overall visibility on the
one hand, and the need for "involvement" for the Manapement Aphorisms
sake of in-depth understanding on the other hand.
If the top-level manager does not understand the Here is a collection of aphorisms put forth
complexity of the dynamics of the software devel- by this group during the AIRMICS 78 workshop.
opment process he is in difficulty. What a
manager does not understand he cannot manage. His a) Ensure that common standards apply to
recourse, often adopted unconsciously, is to move all parts of a project. Ensure that
from active management to reactive administration, the interfaces between modules are
He is now driven by events, and the otherwise managed at a high enough level for the
manageable project becomes unmanageable, consequences of any change to be

appreciated. No one can enforce an order
Paradoxically, too much "understanding" of that the consequences of a change be

the problem to be solved gives rise to too many appreciated.
good ideas for its solution. This can lead to
expensive gold-plating at one exteme or paralysis b) Simple projects can be managed by a
and delay at the other. Moreover, always under- traditional "scalar chain" line-staff

lying the management of software is that software relationship. Complex projects, which

tends to be invisible unless made visible, are more the norm, require staffing from
different disciplines. A matrix organ-

Second, managers do not generally recognize ization is required. Then conflicts

that a software project is of the same nature as a ensue between line and project; this is
called divine discontent.

comparably sized non-software project. Software
implementation needs a capital base for estab- c) Within a matrix organization the emphasis
lishing an overall professional working climate, in technology will shift over the use-
i.e., modern computing facilities, compilers, ful life of the software. The manager's
operating systems, effective support tools, trained management should have a written plan to
people, and a support group including configuration change the organization to suit the
and data management specialists. The work is done demands of the software evolution. If
by human beings, not machines. Some managers do the plan is not written down it does not
not acknowledge that software is, in fact, manage- exist.
able, and this leads to self-fulfilling prophecy d) A manager should have a technical back-
that it is not. Software is a thing, a product, ground and explicit training in manage-
an asset, it is as real as hardware and can be men and e manage -ange.menit skills. The manager should be
managed. relieved of the requirement that he is

Ideal Management Circumstances the most technically competent. He
should have the intrinsic ability to

The ideal ingredients of software management motivate and develop loyalty. This

can be identified unambiguously. However, it circumstance now meets the criteria of

appears that some things are so obvious as to be Murphy's Law.

overlooked or not applied when they are easily e) The ideal manager has superb management
within the manager's grasp. Management should training, but nobody notices.
accept and define the problem and set team goals. f) Everything good happens carly. Unmanaged
He should not accept fuzzy or Ill-defined project projects do not, unfortunately, have a
requirements; other non-software technical dis- high dnfnt ort uate To b
ciplines would reject many jobs readily accepted high infant mortality rate. To bring
by software managers. The most crucial step is an unmanaged project under crntrol

24

requires changing of the project manager, a given tool may have a useful lifetime of 10 or
revising the project plan, developing a more years. Although this group did not consider
new schedule and budget, and revising the quantitive aspects, say, of the breakeven cost
objectives. Otherwise, there is nothing for tool development, a plausible case will be
to it. made for the cost effectiveness of soundly con-

g) If you are a good leader who talks little, ceived (and transportable) tools based on group

they will say, when your work is dune and experience.
your aim fulfilled, "We did this our-
selves" (Lao-Tse). This view does not Croup Observations About Existing Tools
succeed east of Los Angeles. The key goal regarding the future of manage-

h) Few programmers become major officers of ment information tools is increased visibility by
the company. It is probably true that the project manager at any time. This goal
programmers have a less clearly defined implies walking to a local terminal and getting
career path than most professionals, project actual versus planned expenditures,

i) To sell an idea to management, make sure estimates of time and cost to complete, and other

management thinks of it first. There is statusing indicators especially management by

nothing that cannot be accomplished if exception indicators, for example, the cost from

one doesn't care who gets the credit. The inception to date for a particular module ex-
fact is that everybody does care who gets ceeding a predetermined threshold such as 10
the credit percent, within a certain period.

j) No project will succeed if the energy is Four steps are involved in reaching this
directed toward placing blame. One can goal:
find out if a project is beginning to be
in trouble by asking the secretary who in a) Clearly define the management infor-
the project is building a white file. marion process in an organization.

k) Hardware is built from documentation. b) State requirements for tools.
Software is built and then documented.
This documentation is often for an earlier c) Implement tools starting with the areas
version than "as built." Matching the
documentation to the software as delivered d) Audit existing tools for current effec-
is a management goal, frequently unreal- tiveness. Identify candidates for
ized. replacements.

1) Decisions regarding hardware design and
implementation are nearly irrevocable, One premis, is that the managment processis driven by the product structure. Management
whereas, the software manager can naively t description
operate from the false premise that he can tools must be unified with product
correct faulty decisions at a much later tools. The tools must be interactive in the sense
correctn faty deciionset auchs laer gthat task networks can be readily modified as thestage in the development process. He gets deinevops Tetak artoigpolm

to have this attitude for one project design developes. The task partitioning problem

only. is driven by the design partitioning problem and
the dynamics of circumstances over time.

m) Some human behaviorists who think about
"management success" are grounded in the Project aggregates (i.e., man loading versus
view of Machiavelianism, especially the time and modules complete versus time) should be
view that politics is amoral and that any made accessible'on a periodic or demand time
means however unscrupulous is justifiable basis. To meet this goal the actual progress
in achieving political power. Many must be compared against the planned progress.
successful managers become politicians and The ability to estimate needed resources from a
vice versa. skeleton design is implied.

SOFTWARE TOOLS Product design tools may be categorized as
existing tools or advanced. Existing or avail-

A tool is something necessary in the practice able tools customarily include assemblers,
of a vocation or profession, as a scholar's books linkers, program preparation aids (editors, etc.)
are his tools. This section gives an overview debug assist tools (path tracers, etc.) and high
and minimum detail on the wide-ranging concerns of level language manipulators (compilers, etc.).
this group on software tools. Advanced tools are defined to cover very high

level languages (automatic-program generators,
Table I shows a few up to date software tools etc.), products to assit in creating and debugging

for typical development cycle stages. Literally executive and real-time programs, products to
hundreds more exist. If one views maintenance, assist to performance analysis, and products to
especially enhancement maintenance, as a series of assist in verifying distributed data processing
mint-development cycles, one can apply essentially configuration.
the same tools to the sequence of planned enhance-
ments during maintenance. Under these conditions

25

Table I. Existing Software Tools

Language and

Tool Name Function Life Cycle Phase - Computer Where

Software Lost Estimates effort for development Proposal and major Fortran
Estimating cycle in man-months, by phase milestones CDC 66XX TRW
Program

Software Analyzes requirements by Conceptual Pascal TRW
Requirements relational data base CDC 7600
Engineering
Program

Manuscript Text is entered to a computer Conceptual and as Compass TRW
Preparation file by remote terminal and needed CPC CYBER 74
System edited CDC 6000 Series

Program Design Design is written in structured Definition Fortran Caine,
Language English by six contrul constructs 360/370, 1108, Farber

6XXX, DEC-1O, and

SEL 932, Gordon,
POP 10120111 Inc.

High-Powered Provides graphic display of Definition Fortran TRW
Accounting scheduling and resource 6XXX, Calcomp
Resources information
Program

Performance and Represents systems by event Definition and Fortran TRW
Configuration logic tree's before any code development CDC 6XO0, 7X0
Analysis Model exists

Software Design Supports design, code, test Developmjent Jovial J73, TRW
and Verification and maintenance of DAIS (simulation tool) Cobol. Assy,
System mission software Fortran

DEC 10

[ROPOSAL j CONCEPTUAL DEFINITiON d DEVELOPMENT INTEGRATION -

Go-Ahead Typical Development Cycle Phases Operational Demonstration

II

26

Why People Do Not Use Tools performance by putting off tedious or repetitive

actions that can be done by an algorthm into a
This group believes that the topmost issues computer. The person is then free to look for

is the need to invest time to educate and train patterns, trends, and relationships, analyze
the practitioner. As viewed by the manager, the results, and bring to bear his own creativity.
payoff for investment of time is not clear and not

presently well documen'ed or understood. Tools can and should encourage a professional
attitude toward work. The individual can more

Some existing tools work poorly and bias easily experiment and do creative tasks. He is

managers (and programmers) against future use of producing openness and visibility into an other-
any new tools. Programmers do not willingly learn wise invisible process. He can improve product
about the existence of new tools accessible to quality by systematically reducing indigenous
them. Progressive change is difficult to instill, errors and know that he has done so. In turn, the

Standardized abstracts and ascession lists would be manager sees an effective allocation of tasks
helpful here, especially in taking away the unknown between humans and machines according to quality

amount of research into the structure of the tool and then efficiency if quality has been assured.

and its utility from questionable sources. Tools More consistent results means more manageable
are not easily transported; what worked well for results.
one project may be commercially impossible for
another project because the computer and configura- Tool Selection Criteria
tion or language is significantly different,

The proposed tool should automate any

In sum, people do not use tools because: repetitive part of the programming or design
task, increase productivity, accuracy, and improve

a) They do not see a direct benefit to them, morale.

b) They do not understand the specific tool
and perceive a high risk of failure, low The proposed tool should automate the ex-

chance of success, or poor initial tool traction and correlation of vauious data files

behavior that could be blamed on them, containing management or technical information
about the program.

c) Management has coerced the project as a
whole into using a specific tool, despite The proposed tool should assist in formal-
inadequate training and planning for its izing software development procedures to assure
introduction. People wait for somebody a consistent management approach and development
else to be first. methodology. A tool should enable people to

d) They are pressed to meet a difficult operate at a higher level of competence. Some

schedule and have no time to experiment things only a tool can do and do well, e.g.,

with a new tool or the accompanying new indicate which branches of logic have and have not

techniques. been exercised for a given level of testing and a
selected data state vector.

e) They perceive that the proposed tool does
not work at all in their particular The proposed tool should:
environment. On the other hand, they may

not know the tool exists, a) Meet all known requirements, have
capacity for growth, accommodate a

In contrast, people do use tools because they reasonably wide application of use,

see a direct benefit to them, management encourages and have a long expected lifetime.
them in various ways, they see a good chance of

success (and no alternative without it), it is new b) Be maintainable, transferable (within

and exciting, there Is good introduction and technical limits of the intended

training strategy, they have slack time in which to environment), and adaptable for training.

experiment, they are rewarded by management c) Fit well with other tools already in use
measures for its use, and the tool is a part of a or planned. It should compare favorably
package they use anyway. with the capability of the tools it will

become a part of.

Intrinsic Advantage of Tools d) Compensate for a deficiency in resources

In the sense used here, tools should encourage or organizational layout. It should

a standard approach to solving a recurrent problem. meet cost/beneft criteria established

The form of the output should be such that It by group standards.

directly meets the informational requirements of e) Deal fairly with human factors, for
immediate and successive activities. For example, instance, by converting from arbitrary
a project management tool should generate reports internal units to external engineering

that directly compare the actual completion status units understandable by a person.

with the planned status without the inconvenience
of working among multiple reports.

Tools can and should encourage improved human

27

LIFE CYCLE MAINTENANCE four key =ncerns with varying It-vels of detail:
enhancement maintenance, introduction of a new

By coimonlv accepted practice, the software system or repair of an old system, design trade-
life cycle consists of the development phase and offs for maintainability, and effects of maint-
the maintenance phase taken collectively. enance of development.
Contract developers have been known to talk about
the "life cycle" when they really mean the "devel- Enhancement Maintenance
opment cycle." This clarification must be made
at once. A typical distribution of resources for One way to deal with the question of pre-
a large-scale software project might be IOC dicting and measuring the effective life span
people for two years in the development phase and for a software system is to adopt the point of
35 people for eight years in the maintenance phase, view that a software system will be around for-

ever. Let us define "forever" as 20 years.
Basic Maintenance Circumstances After the original package is delivered to the

operational user, the new point of view is that
In this hypothetical case, the development the original version will continuously evolve

phase exists from contract go-ahead to opera- under a mini-development cycle concept. Then,
tional demonstration and government acceptance by everything the contractor does in development is
DD Form 250. The maintenance phase, by definition, just repeated in the enhancement maintenance
is then the interval when everything that is not circumstance.
development happens to the software package. Of
the 480 man-years hypothesized, 200 man-years is Feasibility studies, tools, management pro-
expended in development and 280 man-years in main- gress monitoring, test and acceptance are carried
tanance. Thus about 40 percent of the life cycle out just as in the original development. Except
resources are given over to the building (i.e., now it is harder. Less core space is available
development) and about 60 percent to keeping the and more skill is required to shoe-horn in the
software package in the existing state of readi- add-ons. Arbitrary style of programming may have
ness, efficiency, or validity (i.e., maintenance), been replaced by structured programming or by a

program design language so the interface with
With the majority of the out-of-pocket existing software is more difficult. Regression

expense to the government going into something testing requires more skill, perhaps more soph-
we all call maintenance (60 percent versus 40 isticated tools, and a test rationale (perhaps
percent), unquestionably the most important with analytic models) must be available for
factors in maintenance need to be examined judging how far back to go with the test pro-
closely. Unfortunately, although maintenace is cedures to verify mission readiness given that
the most visible and costly phase it is the least chanes were made to the previsously accepted
documented and understood. In some areas of code.
specialization (GTE-AEL), they have a defined
life cycle of about twenty years (i.e., the life Two computers may be required, one to use
of a telephone switch). Probably in this example, online to keep the operational program going and
good records of reliability and cost are avail- another to develop the product improvement in
able but the ability to generalize from the consideration of debugging, system testing, and
specific is not productive for, say, a command operational readiness demonstration. The main
and control application, thrust of the discussion is that enhancement

maintenance can be thought of an extension of the
One reason the industry does not have good development process. The release of product en-

answers to strategic-planning issues in mainte- hancements is usually by block release, i.e.,
nance is that the government writes a contract for work can go on continuously but new software is
development and then writes a different (annual) introduced incrementally.
contract for maintenance, often under a level of
effort (LOE). All the thinking goes into devel- Introduction of a New System (When to Redo an Old
opment because the LOE type of maintenance is System
managed by a policy of sequence and priority.
The maintenance contractor, who may or may not be If we try to deal directly with the question
the developer, accepts any and all work required, of effective life span, we are faced with a
provided that each task is listed (sequenced) by dilemma. We believe the problem cannot be solved
the customer's priority needs. Not a great deal in a good or explicit way. The question of tech-
of strategic planning is needed in this case, nological obsolescence is not independent of
since the manager is reacting to his customer's economic considerations such as life time owner-
needs on a day to day plan. Usually any task ship, variable (and unknown) user requirements,
appearing on the lower 80 percent of the list is rapid new technology advances, and other prac-
never completed (Pareto's Law). tical considerations. Here, for example, a

contract developer could not rationally allow a
However, there are some things that can be budget percentage to cover maintenance problems

aaid and some intelligent steps the contract of all kinds. He would not be cost competitive
developer and the government can take to deal in his initial proposal. Experience shows that
with this circumstance. The group considered if an equally qualified builder is more than

28

10 percent higher in cost than the lowest bidder Design Tradeoffs for Maintainability
he will most likely lose. He cannot realistically
support an argument that in the long run his Too many factors are involved in designing
higher bid cost will prove to be lower when con- for maintainabilitv to consider the issue thor-
sidered over the entire useful life time of 10 or oughly. However, some isolated findings offer
20 years. promise for future AIRMICS studies:

After a certain point of growth, even with a) Creater effort in the beginning (defini-
modern virtual memory machines, the system will tion and design) by stressing ease of
have to be redone. Or, more easily argued is that understanding, modularity, and ease of
the software has to be redone because the user use (human engineering). This will be
wants to put all existing program (with some en- a commercially impossible goal unless
hancements) into a completely new computer con- some reward system is built into the
figuration: new language, new compiler, new data government procurement policy (i.e., an
storage and transfer method , and revised proto- incentive for doing more costly work).
cols for real-time interrupts. The question,
however, is why put an existing and mission ready b) Emphasis on software quality assurance
software package into a new computer configuration? and use of all available techniques to
In a more general sense, why are the perceived ensure correctness early in the software
attributes of the existing software package not life cycle. The more promising relia-
equal to the job at hand? bilitv models should begin to he intro-

duced into development test and beyond.
There are no inherent properties that c:m; be

used to measure (predict) the life span of a svs- cl ise of machine .ssists to detect pro-
tem. Given that we can all agree that the effec- gramcer errors.
tive lifespan in finite, the life span can be
observed to be over when: d) Use of library maintenance and other

tools to assist in correct changes to a
a) The unit cost/transaction exceeds the pr,,ran.

projected unit cost of a new system by
a sufficient margin. This estimated e) rireat -r emphasis ion adaptabilitv. Exper-
cost should include re-rin costs due ionic Ml.tws that large systems suffer
to low reliability. con! incial change in the first 12 months

and that after 2 to 5 vears tvplc;illv
b) The function that the system serves be- very little of tbe origi nal code is left

comes obsolete within the sponsoring ill the system.
organization. For example, a plant mav
be closed and a software system (e.c., '-r s of M, inte n-a-e ol Dovelcopmet t
process control) designed to serve it
no longer serves any purpose. M1,iijtenan- c'onsiderit ions play a role in all

phals too devolopmcnt. At each stage the product
c) Defense measures require that a hereto- of that stagi- is examined (at every design review,

fore benign ground system must be tr irs- i'dt walk-tilough, unit/string testing etc.).
portable and the computer hardware able The resilts . re reviewed and a decision made as to
to survive a pirtictilar niiclear exposure. whether the Staii, 411o11d b' reiterated, realizing

that deficiencie. ..ccepted at an earlier phase
fli short, it is time to redo the old system will result in maintenance difficulties later.

wheni it is Judged incrementallv cost-eftective to
recreate the svstem than to enhance it further. Perhaps the only workable approach to rediuc-
Tbhis can .. i..ir because radical changes in tie fun- I ng the cost of maintenance is for the government
ctitnal capabilitv are reqtired, or because the to adopt a procuirement policy in which the govern-
introduction of new hardware makes possible such ment explicitly acknowledges maintenance as part
a raihca1 chinge. It can also occur when the of- of the life ccv,le bv the kind of procurement con-
fort required to maintain and to enhance the ex- tract applied in the first place. Good procedures
ist ing system begins to grow so rapidly that it is now exist for orderly change proceduires to be
,hteliqer to redesign It. If a suitable measure of built into the contract. Powever, the implication
comilltX\ity canl be found, a plot of this measure usuallv Is that the sponsor anti the contract de-
against svstem age is a valuable indicator of when veloper are in adversary roles. Constraint will
the system is approaching a state in which main- he needed by the government program office in
tenance or enhancement is no loncer practical. keeping their requirement stable, which in turn
Some evidence suggests that there is an tipper keeps tie design and test act tvitv stable and
limit to the size of a change which may be made to matched to Its necessary anti sufficlent mission
a system at one time, and that tie original struc- demands, no more and no loss.
ture of the system is ,a severe constraint on the
natire of the functional changes which can be ac- MODIFTED DELI t

III HODRlOGY
commodated withot inltiat ing a complete redesign.

In this group we used an each-to-all Delphi

29

method in working toward group analysis of a
con mon problem. A position was given orallv by
each participant, and these appear as a written

paper in the next section. Where clarification
was needed, questions were asked about a given
position. Basically, more information was being
transferred than there was time to dig into all
of it. Questions were posed and the group nar-
rowed them down to a somewhat manageale list.
There were many more questions than answers,
and a fact probably worthy of notice. Research
is being applied to many problem areas, but the
more problems that are solved the more questions
are asked. Man's reach shall always exceed his
grasp.

One small facet of the interesting group
dynamics that occurs when many competent people
are in the same room grappling with the same
questions is given in the next two worksheets:

a) Pre-discussion self-rating sheet that
is concerned with the participant's
image of himself with respect to his

peer group before getting into substan-
tive issues. In this case the results
include this session, and John Manley's
Session I. The mean (x) and variance (s)
is indicated graphically on each question.

b) Post-discussion evaluation sheet that is
concerned with the participant's evalu-
ation of the results of two days of
group endeavor to answer questions of
interest to the administration of the
AIRMICS 78 workshop. As shown almost un-
animously the participants see the major
problems as people-oriented and hardly
at all machine-oriented. Such a con-
clusion is probably not verv surprising.
However, the worksheets may help the

reader to understand some of the comments
rising from this session. Every state-
ment made cannot help but reflect the
cultural attitude, subjective bias, and
knowledge of each participant.

I||

30

SOFTWARE LIFE CYCLE MANAGEMENT WORKSHOP

Atlanta - 21 - 22 August 1978

Code Number

I. Pro-Discussion Self-Rating Sheet

1. As an SLCM participant, my skills in Very highly No skill
software life cycle management would skilled at all
put me about here, relative to others. ___

1 2 3 4 5 6 7 8

2. I think my ideas are in basic ayreement Yes, Absolutely No, not at all
with the rest of the participants. *

1 2 3 4 5 6 7 8

3. I know most of the people in the SLCM Yes, No, none
workshop very well. pretty well at all

1 2 3 4 5 6 7 8

4. I have some definite ideas about what the Yes, a lot No, none
goals of the AIRMICS SLCM workshop are ________........

and should be. 1 2 3 4 5 6 7 8

5. I have been in software life cycle management Yes No
for longer than most of the other people here. ___

1 2 3 4 5 6 7 8

6. I have a lot of experience in SLCM practice Yes No
outside of a university environment. , * .- .

1 2 3 4 5 6 7 8

7. I am anticipating that the SLCM conference is Yes, I think No, I think it
going to be a good thing for goal-setting. it will be may be a

waste of time

1 2 3 4 5 6 7 8

8. My approach to problem solving for this con- Yet, absolutely No. not as all

ference is best described as "people oriented."l__ _ _No,_notatall

1 2 3 4 5 6 7 8

9. My approach to problem solving for this con- Yes, absolutely No. not at all
ference is best described as "machine oriented." . r

1 2 3 4 5 6 7 8

31

SOFTWARE LIFE CYCLE MANAGEMENT WORKSHOP

Atlanta - 21 - 22 August 1978

Code Number

II. Post-Discussion Evaluation Sheet

I. I feel satisfied with the __I'm not really happy with
results in general. 1 2 3 4 5 6 7 the results at all.

2. I got some ideas from , _ _ _ _ _I didn't learn a thing from
the feedback. 1 2 3 4 5 6 7 the feedback.

3. In general, I agreed with _ __I disagreed with everything
the ideas in the feedback. 1 2 3 4 5 6 7 in the feedback.

4. I could express my ideas _ _ _I couldn't really express what
OK this way. 1 2 3 4 5 6 7 I wanted to say.

5. I feel as if I really tI didn't feel the need to talk
wanted to talk to people. 1 2 3 4 5 6 7 at all.

6. I think people understood I have a feeling people didn't
my reasons pretty well. _ _ _ _ _ _understand or think about my

1 2 3 4 5 6 7 reasons.

7. I think the SLCM con- I don't think this SLCM con-
ference structure could ference structure could be
be operational in goal operational at all.
setting more generally. 1 2 3 4 5 6 7

8. I think it went too fast. I 2 3 4 5 6 7 I think it went too slowly.

9. I would be pleased to I would not wish to attend
attend the next AIRMICS .. 1k again.
conference. 1 2 3 4 5 6 7

111. LIFE CYCLE MANAGEMENT MEASUREMENT
MODELS - PREDICTIVE

Chairman: Mr. Lawrence H. Putnam

Quantitative Software Management, Inc.

PANELISTS

Barry W. Boehm Bev Littlewood

Amrit L. Goel John D. Musa

Mier M. Lehman Robert C. Tausworthe

Marvin V. Zelkowitz

32

LIFE-CYCLE MANAGEMENT MEASUREMENT MODELS: PREDICTIVE

SUMMARIZED BY

Lawrence H. Putnam

Quantitative Software 4anagement, Inc.

Current life cycle models have been inade- Plan Control Evaluate
quate to predict cost, schedule, quality and re-
liability. Group III examined the problem from Function ..
three perspectives: management issues, pheno- Cost
menological behavior and reliability measurement
and prediction. Time ..

Central to the thinking of all was the notion - Be adaptive to actual project data and
that models were needed that provided adequate requirements changes (i.e., must be
accuracy, faithfulness to the process, simplicity rime-varying or dynamic).
of use, timliness, and addressed investment and
management questions directly in management para- - Provide engineering accuracy (and uncer-
meters -- time, cost, manpower, cash flow, rate tainty measures until it is safe to
of progress, effectiveness and reliability, ignore them because of standards conven-

tions (e.g., building codes, electrical
The fundamental issues identified are: codes, etc.) in cost, schedule and qual-

" Lack of standard definitions and ity

metrics for the life cycle - Provide sensitivity profiles.

- activities - Be phenomenologically based.

- phases - Relate produce to resource comsumption

- milestones (both statically and dynamically) and
the technology being applied.

" A detailed process model is needed - Be capable of future growth.

" A catalog of existing descriptive - Be able to adequately treat known and
and predictive models is needed.and petiveg mhod coninee , future system types and development
The catalog should contain:eniomts

environments.

- Description of model

- Assumptions This group was composed of: Lawrence H.
- Purpose Putnam, of Quantitative Software Management, Inc.,
- Capabilities (positive and negative) Chairman; Barry W. Boehm of TRW Defense and Space

Systems Group; Amrit L. Goel, Syracuse University,
" A careful evaluation of existing Meir M. Lehman, Imperial College of Science & Tech-

models is needed (This should be done nology/England; Bev Littlewood, City University/
interatively with the creator to be London, England; John D. Musa, Bell Telephone Lab-
sure that important characteristics oratories; Leon G. Stucki, Boeing Computer Ser-
and nuances are not omitted in sum- vices, Inc.; Robert C. Tausworthe , Jet Propulsion
marization). Laboratory; Claude Walston, IBM Federal Systems

" A good life cycle model should Division; and Marvin V. Zelkowltz, University of

possess these characteristics: Maryland.

- Consider all activities and phases

Relate management parameters to The Group III people found it worthwhile to
management responsibilities sub-divide themselves into three sub-work groups,and to devote their attention to the special areas

of expertise in which they could deal with the

subject matter in greater depth and address a
smaller sub-set of the questions posed by the
Army in a more comprehensive manner. Three sub-

ject areas were to be explored. (1) Reliability

33

Models. The people who worked on this sub-task managing software products. Attempts have been
were John Musa, Bev Littlewood, and Amrit Goel. made in terms of productivity. Productivity has
(2) Life Cycle Models. The people concerned with been defined as total number of delivered source
this sub-task were M. Lehman, Claude Walston, lines of code divided by the effort required to
Marvin V. Zelkowitz. (3) Management Issues and produce the code. Basically, people are unhappy
the Resource Control aspects that fit within with this definition in that it doesn't really
the managerial framework. Barry Boehm, Bob relate to the rate of progress on the project.
Tauseworthe and Leon Stucki addressed these It is a difficult measure and in some sense may be
topics. counterintuitive to the common industrial inter-

pretation of rate of production used in the con-
text of the industrial production line.

We will consider these in the order of
Management Issues, Reliability Models and,
finally, the Life Cycle Models. The management sub-task group wrote these

managerial concerns into a group of problems in
which they identified the key factors, recommended

MANAGEMENT ISSUES an approach, and gave a prognosis with respect to
possibilities for success and the time frame in
which it might be possible to achieve the solu-

.'he Management Issues sub-task group con- tion to the problem. The first problem identified
.,ed itself with the following questions: by this group was problem: The inadequate accur-

What are the major ingredients in the management acy of current models. This has resulted in fre-
of software? What makes it unique? What makes quent overruns. Parameters are often difficult
it different from hardware? How should the to estimate, and the non-standard terms and
organizational structure relate to the problem metrics that are used in these various models
to be solved in the different phases of develop- complicate interpretation.
ment? To what extent should managers be tech-
nically trained? To what extent should techni-
cal personnel be managerially trained? Are there KEY FACTORS:
different classifications of software that re-
quire different methods of management (For exam- There are no standard metrics and terminology
ple, embedded computers and software vs. non-em- within the industry, or within major subdivisions
bedded computers and software)? Are there pre- of the government. There are inadequate empirical
dictable crises in the software life cycle, and applications of the models (i.e., there is no
if there are, what are the early indicators practical application and subsequent feed back so
associated with these crises? that the models are selt-improving).

Embedded within these broader questions then RECOMMENDED APPROACH:
is the overall set of fundamental questions
which we hope will be answered. They relate to Establish standard definitions; establish
what needs to be done to improve the process. refined data collection procedures; collect addi-
We might define these related actions under the tional empirical feedback leading to refinements
broader heading of impirical studies--basically, and tuning of models to make them better.
what we need to know to understand the process
better. What information should be collected
about the process, the product, and their inter- TIMING:
action and for what purpose? What kind of
experiments should be performed? How can we cap- Reasonably near term (2-3 years).
ture and express the idea of program complexity?
How can program managers be convinced to conduct
eAperiments on their programs? What progress is 0 PROBLEM: Models need to be evaluated with
being made on the transfer of learning from one respect to a set of management-orn-
project to another project within an organiza- ented criteria.
tion and between organizations?

KEY FACTORS:
An integral part of management, of course,

is resource planning and control. Within this Timeliness, updatability, definition, objec-
framework are those things having to do with tivity, detail, parsimony. The models should be
performance measures that will measure the actual extensible, contractible, tailorable. These
progress of a project against some time base should be a pragmatically understandable corres-
which we commonly called the milestones and in pondence between criteria. The models should
terms of rate of expenditure of the resources support sensitivity analyses. And the models
allocated to the project (which typically are: should be adaptive, that is, they should respond
manpower, dollars, computer time). The ability to the project dynamics; what is actually happen-
to relate performance measures to the consumption ing should be fed in As it occurs and the model
of resources has been especially difficult in should adapt to that in terms of the future pro-

I

34

jection it makes for the next few time intervals. TIMING:

Reasonably near term (2-3 years).
RECOMMENDED APPROACH:

There is a need to extract meaningful manage- * PROBLEM: The current models do not adequately
ment criteria from these Key Factors. Evalua- cover some key issues:
tions should be performed to establish a standard
accepted set of terminology to develop new - maintenance, conversion, block

classes of models that will handle a broader updates

range of phases and activities within the soft - the impact of new technology
ware development and maintenance process.

KEY ISSUES:
TIMING:

- Understanding the underlying phenomenology of
Reasonably near term (2-3 years), leading to the software building process and how to use

longer term pay-offs in the medium range it in the model.
(5-7 years) period. - the unknown domains of applicability of the

models.

* PROBLEM: Current models are not well related
to the project status indicators.

RECOMMENDED APPROACH:

KEY FACTORS: - determination of areas of applicability for

existing models (include underlying assump-

The definition of status indicators, (for tions).

example, CDR, or Critical Design Review). - develop additional models to cover the poorly
Obsolute software standards (e.g. MS-1521 and developed issues and areas; this implies
MS-881). Inadequate detail (e.g. work break- more detailed definitions and a greater data
down-structure, and lower level milestones). collection effort.

RECOMMENDED APPROACH: TIMING:

Define a more detailed life-cycle process Reasonably near term (2-3 years). Some areas
model (include a greater number of lower mile- wilJ require better data for significant pay offs
stones within the work breakdown structure). and this will necessitate longer periods of time
Relate global status indicators to the detailed within the mid-range period (5-7 years).
process model. Update the relevant software
standards. Relate the predictive models to the
detailed process model. 6 PROBLEM:

A lack of models for other areas of manage-
TIMING: ment purview

Reasonably near term (2-3 years). - other resources (e.g. core requirements),
other situations (e.g. distributed net-
works, micro-computers)

0 PROBLEM: Current models are inadequate in - personnel career progression
relating productivity and relia-bility. - life cycle dynamics of software as a

"Business Game" model similar to what is

now done in the large business schools

KEY FACTORS: in which a complete business scenario can
be played out and development outcomes

The terms are difficult to define. There determined depending on the input and the

are no standard definitions. actions of the players.

RECOMMENDED APPROACH: KEY FACTORS

Develop new models relating productivity - Complete absence of models of this type

with reliability; establish standard accepted - Non-standard situations and organizational
definitions that adequately describe in a structures within various business enti-
meaningful way productivity and reliability fea-- ties and various government organizations.
tures that we want to see within the models.

35

- subjective versus objective decision TIMING:
making

- requirements for such models are not Near future (2-3 years). Prospects for

recognized success are good.

RECOMMENDED APPROACH: 0 PROBLEM: Need a comparative study of existing

reliability models.

- create awareness for the value of such
models KEY FACTORS:

- develop model goals, requirements,
criteria, etc. - an analytical/anatomical comparison

- develop adequate models - predictively comparison

- train management to use the models in the - a physical interpretation of the para-
decision making process meters of the models

- sell management on the utility of using - simplicity and ease of understanding and
such models communicating in each of the models.

- range of applicability.

TIMING:

Reasonably near term (3-5 years). Prospect RECOMMENDED APPROACH:

for success is good In modeling quantitative
measures (e.g., life cycle dynamics, core). A serious analytical and empirical compara-

tive study to ensure a correct interpretation of

the models and the assumptions that have used

RELIABILITY been used in creating the models.

The reliability subtask group address the TIMING:
general set of questions concerned with models
but specifically directed their responses toward Such a comparative study should start in the
reliability-oriented models to put together an near future and possibly could be completed by
ordered set of criteria for good predictive 1980.
models in the reliability area.

Accordingly, the problems addressed in this • PROBLEM: The need to validate the assumptions
section are ordered in terms of their priority used in existing models.
of need.

KEY FACTORS:
6 PROBLEM: Need for data.

- the independence assumption of failure
time

KEY FACTORS: assumption of an exponential distribution

- A need for execution time data rather being the underlying relevant statistical

than calendar time data. distribution.

- better planning of data collection efforts
(this should be done in conjuction with RECOMMENDED APPROACH:
reliability researchers)

- need cost impact data A study should be carried out.

- need data on resources used in identify-
ing and collecting the data. TIMING:

Near future (2-3 years). The success in this
RECOMMENDED APPROACH: endeavor would depend considerably on the availa-

bility of data.
Detailed studies should be undertaken to:

- specify what data should be collected
and how. 6 PROBLEM: Relationship between test and opera-

tional environments.
- study should be reviewed by the principal

researchers in the field.

36

KEY FACTORS: 0 PROBLEM: Getting software reliability concepts
accepted and used.

- the effect on the reliability measures.

- how to construct an appropriate test KEY FACTORS:
environment.

- selling--convincing managers that these
RECOMM4ENDED APPROACH: concepts and techniques are useful.

- integration and simplification of concepts.

Research in the fundamental areas. - adapting reliability as a system require-

ment. One possible approach is that
reliability should be considered as one of

TIMING/PROSPECTS: the elements in an evaluation of a proposal.

Time of conclusion is not clear. This Other recommendations are included under the
appears to be a difficult problem. other problem areas.

* PROBLEM: Relationship between program struc- TIMING/PROSPECTS:
ture and reliability (including
combinatoric relationships). (2-5 years). Contingent upon success in

other problem areas.

KEY FACTORS:

- moder programming practices PROBLEM: What sort of error taxonomy is useful?

- module switching (N-th order Markov pro-
cesses) KEY FACTORS:

- information-theoretic approach - need an end-use orientation classification

scheme

RECOMMENDED APPROACH: - need to collect data

- Is a multi-variate model needed to handle
Further research error severity classes?

TIMING/PROSPECTS: RECOMMENDED APPROACH:

Medium term (3-5 years). Conduct a study on planned uses of error

data to develop an appropriate classification
scheme.

0 PROBLEM: What quality performance measures

are meaningful and useful? What
decisions would be supported? How TIMING/PROSPECTS:
might management decisions affect
selected performance measures? Medium term (2-5 years). Prospects reason-

ably good.

KEY FACTORS:

a PROBLEM: How is changing technology going
- availability to affect software reliability
- cost impact measure measurement?

- predict project completion
KEY FACTORS:

- tradeoffs between quality measures and

time/cost. - microprocessors

- networking

RECOMMENDED APPROACH:

Manager survey study. RECOMMENDED APPROACH:

- Augment Rome Air Development Center micro-
TIMING/PROSPECTS: processor study

- initiate networking study
Near term (1-2 years). Propects for success

are good.

.

37

TIMING/PROSPECTS: Question No. 3. What experiments and evalu-
ations need to be performed?

Near term (2-5 years). Start now. Prospects
are good. controlled experiments should not be used

because:

- We cannot isolate the problem.

The Group dealing with LIFE CYCLE SOFTWARE - Extrapolation is not possible for small
MODELS AND METHODOLOGIES FOCUSED ON THREE projects.
MAIN AREAS: - It is too expensive.

Initial answers to the questions posed The recommended approach should be to conduct
by AIRMICS. studies, gather data and tie back to analysis

" Some tentative early definitions, based on common definitions and standard measure-

" Some recommendations for further work. ments, techniques and models.

Question No. 1. What needs to be known to
understand the development process better? Question No. 4. How can we capture programcomplexity?

" activities - the relationship between the
the activities, the flow between the acti- * There are a number of existing investi-

vities, and the products coming out of the gations now ongoing.

activities, for example design for main- e We should monitor these carefully.
tainability.

" Measurement quantities. We need all the

classes of the measurement quantities -- Question No. 5. How can we convince managers

resource consumption measures, rates of to experiment on thier software projects?

accomplishment, or progress, and quality
metrics i.e., a capability to measure A straight answer is -- Don't attempt to

meticsi~e, acaabiityto easreconvince them to experiment. The real

these actual quantities and relate them to

the accomplishment that is being made, question is how to persuade managers to
measures of progress, quality, product- collect data for others to use. (Thereivity, as well as just resource consump- is a real problem here because of fear
tion in accomplishment of tume-related that collecting the data will be used
milestones against managers to show that they wasted

resources, that they didn't manage effect-
ively.)

" We need real data for each of these acti-
vities and measurable quantities. . A partial answer to this question is:

(1) feedback. It should be a two-way

" A full analysis is possible now. It flow. Data is captured from the

requires a concerted effort by a team of managers to measure progress and to

experts spanning the disciplines involved help improve the process, then they

in the total life cycle. should get the benefit of the feed-
back to help them manage better.

o A second partial answer is:
Question No. 2. What information should be

collected about the process, product and their (2) automate the collection effort; make

interactions? it painless to do so that it doesn't
interfere or take away from the effort

e The answer to this question is in part an that is devoted to the project.

answer to question 1, above. But we also
need to know for what purpose ? The
answer to this would appear to be to model Question No. 6. What progress is being made
and use for: on the transfer of learning from project to pro-ject and within organizations?

o Management, control and evaluation.

* Improvement of the process. o Not much. But workshops, such as theSoftware Life Cycle Management Workshop

Neither can be done adequately in order to and conferences on the subject of soft-

achieve full life cycle effectiveness without an ware engineering help. At least they

adequate understanding, bring to the forefront an awareness of a
lack of transfer of learning from project
to project, within and between organiza-
tions.

38

T In order to leave an effective transfer of Question No. 10. Do we need a new set of
learning, definitions and common terminology are models, or are there already models that adequate-
essential. ly satisfy the need?

o The answer to this seems to be that there
Question No. 7. What are the criteria for a already exist adequate models flow which

good predictive model? to build upon, but we need to have a cat-
aloging of these models to define their

" Parameters of the model should be: capabilities, the underlying assumptions

(1) based on a standard set of defini- and the validity of the results that they

tions. For example, time, effort, will yield. We need an extension in the

manpower, end product (quality of terms of the agreed upon definitions and

source) we need an extension of these models to
satisfy the criteria in response to ques-

(2) parameters should be measurable. tion No. 7, that is, it should satisfy the

(3) parameters should reflect the environ- management activities matrix -- the plan-

mental needs, not product attributes. ning, control, and evaluation, and should
identify the functions, the time and the

" Each model should adequately cover factors cost of each of those activities.
causing variation in model output.

" The set should be adequate to cover theentire life cycle. Question No. 11. What are the components of
an overall software engineering methodology?

" A clear understanding of the domain of
applicability. e there should be a statement of objectives

" Should support management activity i.e., * how to do it

management activities of planning, control & a means for quantitative evaluation (What
and evaluation should be able to be dis- is being done and achieved)
played against each function together with
the associated f.nction time and cost of e manageable

the activity. The table below shows this a executable by normal people in a normal
concept. environment

e a definition of the range of applicability

Plan Control Evaluate

Question No. 12. Where should software tech-
Function .nology be going?
Cost .. .

e In terms of products, which would includeTime microprocessors and their support soft-
ware, the technological thrust should be

Question No. 8. How can statistical and sna- to provide complete functional specifirt-

lystical models be combined? tions and to be able to tally a defined
set of standard interfaces.

We should not concern ourselves with this. 9 A continuous Life Cycle in which each
We consider it non-issue and it would more activity fully supports all those that
appropriately be left to individual re- follow.
searchers to apply the appropriate academ- * There should be high level environmental
ic tool in a solution to the problem at objectives and parameters.
hand.

Question No. 9. Is there a need for a stan- Question No. 13. "Are there standardizable

dard set of models? methodologies?" supposes that there is a need
within the Army and within the Department of

Yes. Defense for standardization. This implies a
taxonomy. There would be three dimensions in-

(1) to cover the life cycle. volved in the answer. The three dimensions are:

(2) for different environments. * Environment

(3) to handle factors involved in the
process, e.g., resources, reliability,
growth. There would be all kinds of * What is being addressed (for example,
time phases in order to take care of cost, reliability, performance).
overlapped activities, for example.

39

Question No. 14. The effect of software RECOMMENDATIONS:
engineering requirements and environmental factors
are fundamental to this. The answer to this is . Data collection and definitions. Recommend

adequately covered in the responses to the earlier setting up a standing committee for soft-

questions. ware life cycle management data collection,
involving idenLification and definition.

This might be done by some organization

Question No. 15. How can we characterize the such as AIRMICS.

methodology? The answer to this is again the * Establish a catalog of methodologies and

answer to 13. models. There should be a group to ident-

ify, to improve and to recommend adoption
of appropriate mechodologies and models.

Question No. 16. Is there a way to measure

the effective life cycle.
LIST OF NEEDED DEFINITIONS:

* The answer appears to be yes and,
as an

example, the evolution dynamics of Belady 1. Productivity
and Lehman is an approach that provides
considerable insight. 2. Life cycle phases

3. Lines of code

Question No. 17. When should a system be 4. Complexity

redone? We need both static and dynamic indicators. 5. Software maintenance (modification, enhance-
ment, debugging, error fixing)

" Study is needed in this area to classifv 6. Error
and catalog what these indicators should
be. 7. Reliability (quality metrics)

" Current practices in industry may be help- 8. Man month (effort measurement)
ful in this classification action. 9. Software (system)

10. Verification, validation.
With respect ot the general questions, what

are the priorities? We should go after solving

those issues relating to life cycle management of CONCLUSION:
software. It appears that the number one priority
is to establish a common set of definitions. All Good progress has been made in this software
of the others are important but they are hindered lifecycle management workshop. It is felt that
by a lack of required definitions. All these pro- the life cycle management workship is an important
blems that have been identified solvable in the forum focussing ideas for improvement in future
next five years. Most of the ones that have been action. The results observed in this workship
identified and commented upon are solvable in the appear to be fruitful and encouraging with respect
next fije years if the effort, direction and re- to what was identified and pointed out in the
sources are focussed on their solution, first software life cycle workshop a year ago.

Continuation appears to be clearly indicated.

What should next year's questions be focussed
on?

" Agreement on a common set of life cycle
components, or phases.

* Status of the current research now on/
going.

TENTATIVE DEFINITIONS

1. .LaY&-: A software project is large if it
involves at last two separately managed

groups.

2. Life cycle: The life cycle of a software

project encompasses all the activities from

first formal conception until final abandon-

ment. When we refer to "life cycle" of an

activity/phase, it must always be qualified

to some extent, (for example, we should refer

to the development cycle protion of the soft-

ware life cycle).

..- r ... i-

40

APPENDIX TO REPORT GROUP III

(Submitted by Leon G. Stucki)

I. PROGRAMMING ENVIRONMENT - A central repository, with supporting

Background data bases, for configuration management and con-

trol of all documentation and evolving program
e Paradoxically, the software community representations (design and code).

has automated everyone's work except their own. - Quality assurance mechanisms for check-

* Isolated tools and techniques have been ing adherence to project standards.

developed. - Automated error collection and reporting

" Software is still extremely labor inten in support of both quality assurance and config-

sive. uration management.

" Productivity improvements in software - A respository of test data and test re-

construction has not kept pace with hardware. sults traceable to user acceptance/test criteria.

e Software is rapidly becoming the limit-

ing factor in large systems. Current State

@ An automated programming environment
* Exaggerated claims have been and continue

with an integrated set of tools for the manage-

ment, control, testing, and documentation of to be made for isolated tools and techniques.

each stage the evolving software offers a means * Most program development is done with

for greatly reducing software costs and improv- severely inadequate tools.

ing software quality. * A compiler is frequently equated with a

e Tools within an automated programming programming environment. (In reality, a compiler

environment should include: constitutes only one small, albeit important, com-

- Source language level interpreters, for ponent of an automated programming environment).

statement-at-a-time execution and tracing * Much manual drudgery still prevails in

- Compilers, for both program debugging most current programming environments.

(e.g., extended syntax checking and user feedback) e Errors once discovered and removed may

and optimizing reappear due to the manual processes currently

- Cross-compilers employed in building today's systems.

- Text editors, CRT terminals * Management visibility into the progress

- Configuration management aids of software development is woefully inadequate.

- Automated verification and testing aids e Experimental use Is being made of selec-

- Interactive debugging aids tive "proven" tool and technique concepts not yet

o Functions provided by a programming widely available (e.g., static and dynamic ana-

environment should include: lysis aids).

- Mechanisms for controlling and document-
Future Trends

ing the communication process between users-ana-

lysts-programmers-managers. e Programming environments will be designed

39

Question No. 14. TIe effect of software RECOMMENDATIONS
engineering requirements and environmental factors
are fundamental to this. The answer to this Is e Data coIl Ict ion and defin t ions. Rtcommt nd
adequately covered in the responses to the earlier setting til a standing committee for sott-
quest ions. ware li fe cycle management data col ltCt ion,

involving identification and definition.
This might be done by some organization

Question No. iS. How can we characterize the such as AIR.MICS.
methodology? The answer to this is again the Establish a catalog of methodologies andanswer to 13. a saiil aao o etnooie n

models. There should be a group to ident-
ify, to improve and to recommend adopt ion

Question No. lb. Is there a way to measure of appropriate methodologies and models.

the effective life cvcle.

L.IST OF NEEDED DEFINITIONS:
0 The answer appears to be yes and, as an -- O NED ____

example, the evolution dynamics of Belady 1. Productivity
and Lehman is an approach that provides
considerable insight. 2. LIfe cycle phases

3. Lines of code

Question No. 17. When should a system he 4. Complexity

redone? We need both static and dvnamic indicators. 5. Software maintenance (modificat ion, enhance-
slent,) debugging, error f ixing)

* Study is needed in this area to classify

and catalog what these indicators should 6. Error

be. 7. Rel iability (quality metrics)
" Current practices in industry may be help- 8. Man month (effort measurement)

ful in this classification action.
9. Software (system)

10. Verification, validation.
With respect ot the general questions, what

are the priorities? We should go after solving
those issues relating to lift cycle management of CONCLUS ION:
software. It appears that the number one priority
is to establishi a common set of definitions. All Good progress has been made in this softwale
of the others are important but they are hindered lifecyc Ie management workshop. It is felt that
by a lack of required definitions. All these pro- the lifte cycle management workship is an important
blems that have been identified solvable in the forum focussing ideas for improvement in luturv
next five years. Most of the ones that have been action. The results observed in this workship
identified and commented upon are solvable in the appear to be fruitful and encouraging with rtspect
next five years if the effort, direction and re- to what was identified ani pointed out in tt.
sources are focussed on their solution. ftirst software life cVcle workshop a year ago.

Continuation appears to be clearly indicated.

What should next year's quest ions be focussed
on.

" Agreement on a common set of life cycle'
components, or phases.

" Status of the current research now on/

going.

TENTATIVE DEFINITIONS

I. Larte: A software project is large if it
involves at last two separately managed
groups.

2. Life cycle: The life cvlt of a software
project encompasses all teit activities trm

first formal conception until final abaidon-
ment. When we refer to "lift, cycle" of an
activity/phase, it must always be qualified
to some extent, (for example, we should refer
to the development cycle protion of the soft-
ware life cycle).

41

and selectively implemented. o Acceptance/test criteria when incremen-

* Hardware manufacturers will provide tally developed and included 1 source code via

machine/language dependent environments, special comments (or test assertions) have been

a Techniques will developed to isolate lan- shown in experiment to improve software quality

guage and operating system dependencies as much and reduce testing time.

as possible (e.g., attempts will be standardize o This concept can be used in conjunction

the interfaces). with both dynamic run-time analysis systems and

o HOL standardization within DOD will make formal verification systems.

it possible, for the first time, to achieve a rich

program development environment accessible to Current State

larger numbers of people.
l Several prototype systems have been built

o The "National Software Works" concept will or designed; however, none are currently opera-

provide valuable knowledge on the success and tionally used.

failure of many of these concepts in a distribut- Examples:

ed environment. - Stucki's experiments with a PL/1 proto-
a Additional textual and graphical tech- type system at UCLA.

niques and automated tools will be developed for - University of Texas Gypsy programming
representing, documenting, and controlling the system.

iterative nature of early phases of program de-
o Current language work on DOD-1 has pro-

velopment (i.e., requirements and design). vided "an opening" through a very fuzzy assertion

o An integrated framework will be develop- concept.

ed for applying numerous analytical techniques - An assertion statement has been pro-

(e.g., consistency and completeness of testing, vided in the language, but its syntax and seman-

formal proof techniques for selected system tics and use are unspecified at this time.

components, static/dynamic/symbolic analysis of

subsystems). Future Trends

a The theory of testing will receive more

academic attention than in the past. o Further procedures will be developed for:

* Improved techniques will facilitate thf - specifying acceptance/test criteria

certification and recertification process of during the system requirements phase, and

future systems. - refining the acceptance/test criteria

throughout the subsequent design and construction

II. LANGUAGES AND ARCHITECTURE phases.

o Language work will provide new and more

Background powerful constructs for expressing self-test and

o Testing has historically been and cont- monitoring concepts.

inues to be very costly. o Automated tools employing these concepts

9 The concept of built-in test circuitry in will be able to greatly improve the testing and

hardware is widely acceptable and increasing in maintenance processes.

application. Similar approaches can and should

be applied to software. III. FRAMEWORK FOR MODELLING AND SIMULATION

o Top down elaboration and refinement of
Background

acceptance/test criteria can be generated
in par-

allel with system development. * Modelling and simulation have been used

widely by various analytical disciplines.

o The models of the various disciplines

42

have generally been incompatible.

a There is a need to provide a framework and

data base mechanism for controlling and accumulat-

ing knowlecge of a given system gained through

various modelling and simulation activities.

* Executive and utility functions include:

- Model/Data input preparation and storage

- Assistance in the creation and mainten-

ance of interfaces between models

- Assistance with output report prepara-

t ion

Current State

a The Air Force is currently studying the

requirements for at least one such system (i.e.,

General Modelling System project under ICAM).

* Other industry efforts in CAD/CAM (com-

puter aided design/computer aided manufacturing)

are exploring this area.

* Interfaces to hardware are increasing as

digltal computers replace analog devices.

Future Trends

e Prototype systems will be built and

studied. (Application specific systems will be

available.)

* Systems will support hierarchies of models

as well as interdisciplinary interfaces.

* Increased interaction will also be involv-

ed with actual sensor systems.

IV. LIFE CYCLE MANACEMENT MEASUREMENT
METRICS - MEASURES & EMPIRICAL STUDIES

Chairman: L.A. Belady
Thomas J. Watson Research Center

PANELISTS

Bill Curtis Sandra Mamrak

James L. Elshoff Thomas J. McCabe

Maurice Halstead James A. McCall

Maryann Herndon Isa, Miyamoto

Alan N. Sukert

_ _

44

MEASURES AND EMPIRICAL STUDIES

Summarized by

L. A. Belady

IBM Research

Following are the panel's observations and We may gain confidence in these metrics by
recommendations on the use of metrics to improve examining their usefulness in three roles. One
the understanding and management of the software role is to extract generally valid laws about
development and maintenance process. the behavior of large systems, large projects and

that of programmers. The second is to predict
the evolution of the very project or system being
measured. The third factor is psychological,

We see it encouraging that, compared to last namely the feeding back of the observations, and
year's workshop, the present papers are more predictors based on them, to the people who
evaluative than speculative. This trend should created or caused the process to happen. For
continue, moreover, emphasis should be on example Elshoff of GM Research found it often

'tn,: faets. During its short history, useful to make visible the otherwise invisible
software sciences have been characterized by a object, the program itself.
large number of ideas, techniques and tools pro-
posed, with the result that there are now more In fact, we are talking about the existing
ideas available than necessary or possible to and sufficiently validated metrics, many of them
apply. Yet there is a definite shortage of already applied, successfully and independently
~sc c ideas. Institutions and 'universities of hardware characteristics, to monitor the
have been developing new techniques and approach- development of new projects and the maintenance
es to improve the process. At the same time of older systems. Clearly, if we want to thor-
builders of large systems, and those who are in oughly and carefully evaluate the usefullness of
charge of maintaining these extremely complex an approach, we cannot rely exclusively on com-
man-made objects, are still forced to use anti- puter scientists and software engineers: other
quated methods. Neither party is at fault: the experts must also participate. Psychologists
problem is that there is no way to demonstrate for example are trained to evaluate complex situ-
whether an idea is viable and whether it will ations using the rigorous and well estahlishld
beneficially influence the development process, methods of experimental design and statistics.
Thus gathering facts about the software, and about What we, therefore, propose is a multi-disici-
the process developing it, is the most important plinary approach toward the evaluation of the
next step, without which there is no hope for a~lraly c'xistlnj but sparsely used ideas in
successful transfer of technology, order to weed out bad approaches, and to gradual-

lv improve and refine the ones, Whose potentill
But merely gathering facts is not enough. use for any or all of the above mentioned three

Facts should be structured and appear In a format roles is immediate. It is also important that
that permits the comparison of systems, sltua- we restrict measurements to a handful of ohserv-
tions, processes. We are convinced that there ables, such as Halstead's operators and operands,
already exist proposed and quite prmi.7nq and then deduce the other attributes such as
mctr'ar's which, although applied so far only to portability, modifiability, maintainability from
limited samples, showed Interesting results, primitive metrics.

Consequently, instead of inventing additional
metrics and thus increase unnecessarily the This leads us to the most difficult attri-
variety of available approaches, we must broaden bute of the process 1?Y17,tIi'F*y. While we
the basis on which existing metrics are applied, believe in its importance, we cannot accept it.;
Coming to mind are proposals by Halstead, McCabe, current unit of measure, namely lines of code
the Belady-Lehman measures performed on large per unit time or man-month. The reason for this
systems, and others found in the literature. We disbelief is twofold. First, most programmers
should concentrate on a handful of the most will be Just modifving and maintaining already
promising approaches, align them with each other existing programs. Secondly, in the future more
and standardize. and more new programs will be constructed out of

45

off-the-shelf components. Whether in modification would rapidly disappear while usable ones find
and maintenance, or system composition from larger their way into development, thus improving the
components, the line of code measure of producti- overall quality of the software life cycle. But
vity immediately falls. even without such an ideal, separate organization,

systematic gathering of facts on real projects
We measure productivity for perhaps two rea- would still tremendously improve the learning

sons. One is to monitor costs and the second is process and encourage the flow of information
to predict the resources necessary for the devel- about techniques and tools because measuring with
opment of new products. But the lines of code agree,' upon and aligned metrics facilitates
generated Is just one of the many components of comparison of methods applied, projects managed
the total cost. Clearly, the quality of develop- and software produced. Again, emphasis must be
ment Influences the cost of maintenance and modi- on facts, and on measured and comparable facts.
fication, to be performed over a long period of
time. Thus, if we want to measure productivity At the workshop it became also clear that
at all, then it has to be -omritcd l ?h a metric our universe of discourse is not homogeneous any
capturing quality. Only then can we have a solid more. There is no such thing as a typical pro-
measure for prediction, as well as for comparison gram, typical project, or typical siteition.
of different systems and projects. What is, indeed, badly needed is tLe taxonomy,

the ,Zasif ,tiol of may aspects of the life
As already indicated before, the major ob- cycle. Before we even start measuring, we must

stacle to progress and improvement is the dffi- know precisely what we measure and what we com-
culty to transfer technology, i.e., ideas iito pare against. We must set up the metrics and
real-life production situations. Take, for ox- the measurements according to whether they are
ample, a methodology, which in a small environ- about a small, medium or large size project,
ment, and mostly by the inventors of the method, whether we measure an on-line, interactive or
is believed to significantly better than the batch system or its development, and so forth.
currently used methods. First, the new idea must
fall on fertile ground. This means that not The other important aspect of taxonomy is
only do the receivers of the Idea have first to that we have to recognize the limiti o i,12 Z,
be cducatcd on the novelty being proposed but of all the metrics and models which we apply.
their mind has to be open and well informed about Similar to physics, life cycle management must
the large variety of other alternatives. Only also have scaling or model rule effects. Every
then can a dialogue develop and factual evalua- metric, every measurement method has its domain
tion take place before commitments to the new of validity. Beyond this domain of validity, one
method. Second, the dominant factor in success- may have to live with false results or else must
fully transferring technology is that a new pro- adjust the metric with some suitable parameters.
posal must demonstrate its viability by facts. Moreover, classification in the software develop-
Otherwise there is no change to transfer method- ment and maintenance must be along many dimen-
ology. sions: development, specification nd standard-

ization of error classes, categories o programs,
Project management is right in refusing processes and so forth. Briefly: taxonomy is

untested methods, untested ideas and techniques. one of the most important prerequisitts to good
Proposals must he demonstrated to be beneficial measurement and then to good and valid comparison
to the project. The major problem now is that we of the measured objects.
do not have any place, any joar or any organiza-
tional entity whe'c at a reasonable scale, me'thodc A specifically important case for precise
can be tested and their viability le'montratci. tcfinitions and standardization is the case of
Thus the creators of ideas remain frustrated. milestones. In general, it is desirable to sub-
They never see the utility of the ideas on which divide a project in two dimensions. Time is
they work so hard. Yet they should know which one of the dimensions: one would like to see
ideas make sense and which not. It is better to the precise transition point from one phase of
know that an idea does not make sense in real the life cycle to another; for example the point
life than to remain with the uncertainty about defined by the end of design and the beginning
its value and then blame the developers for not of implementation. The other dimension is the,
Implying something which is supported only by product itself, namely its decomposition into
speculation. major components. It is also necessary to de-

compose the cost estimates and then the actual
This leads us to the problem of where to cost items along both dimensions. Thus we must

generate facts about new proposed methods, tech- find ways to precisely specify and mutually
niques, tools and other novelty. Why does the agree upon this two dimensional grid which is
Army not set aside resources for the sole purpose applied over the total project in the time and
of validating the Ideas created inside and out- the product domains. Without agreed upon
side its own organization? Unusable novelty definitions, such as the events which specifv

46

the transition from one phase of the life cycle order to provide badly needed factual information
to another, milestones have absolutely no as a basis for coordinated research. We under-
meaning and their use probably causes more stand that the Rome Air Development Center will
confusion than allow for sound monitoring and soon be ready to play this extremely important
comparison, role. Also along centralization, we propose the.

rigorous definition of the following ten most
important terms: the six or seven phases of the

A few words about tools. We mean here tech- life cycle: requirement, specification, design,
niques and instruments which are necessary to etc: complexity, quality, productivity (and
extract the facts and then form metrics: the probably all the "abilities" which are so heavily
,oo Ia of data oolle:riou. Interestingly enough used, yet never defined). Some eflorts already

we all agree that there already exist built-in exist within the Air Force, the Army and GTE
methods, and techniques, which continuously Corp. Without such definitions technical people
collect data which in turn are never interpreted in large organizations are forced to use local
or used. In fact we believe that one could start definitions or take as source the trade magazines
immediately at practically zero cost to gather and professional literature.
data without the additional building of new
tools. Compilers are an example. During compi- In summary, we believe that a mzwtiL ati
jation large amounts of significant data are zaasiz',e shil't to f,, fi 'tl u mi Y' 1';!
collected, but after having produced the code, the knowle, d w, ae,,alhzha, must characterize
the contents of internal tables become discarded, the next years to come.
Intelligent use of already generated data as a
hasi; for metrics and meaningful comparisons
within and between the different systems and
projects would be an almost zero cost activity.
We invite the Army to first look around for
already existing tools and data already being
gathered before a vast and expensive tooling up
of projects starts.

We consider the order of importance of
things to be done as implicd in the order above.
Almost all proposals are doable within the next
five years. An exception is perhaps the error
taxonomy which should be a research effort. We
see also quite dark with respect to a good com-
prehensive and sensible productivity measure.
The Workshop Chairman wanted some questions for
next year's workshop. Well, Barry Boehm pro-
posed, the best such question: "What happened
to the recormendations of the previous year?"
We hope for the best.

We do not propose here specific re4earch
activities now. Rather, we call attention agair
to the multi- i':3U!t nary approach. The 'ole
or psychological research, particularly its role
in eviluating proposed methods and techniques,
should be significantly increased. Experts from
sociology and management sciences should also
play an Increasing role in life cycle related
r, search. Also, the use of time series analysis
must be introduced. But In any case, future
research should be based on actual data, more-
over, on aligned data. As long as scattered
research grcups all define and interpr,,t their
own data, or use other people's unaligned data,
we cannot expect that transfer of knowledge from
one place to another be possible. In fart, we
propose that a central data han, a~n '!,.aring
houe for data be established within boD In

V. POSITION PAPERS

LIFE CYCLE MANAGEMENT METHODOLOGY
DYNAMICS - THEORY

"Modeling, Measuring & Managing Software Cost"
John R. Brown, Boeing Computer Services Company

Improving the Signal/Noise Ratio of the System Development Process"
Melvin E. Dickover, SofTech, Inc.

"A Step Towards the Obsolescence of Programming"
Harvey S. Koch, University of Rochester

"A Contingency Theory to Select An Information Requirements

Determination Methodology"
J. David Naumann & Cordon B. Davis

University of Minnesota

"A Life-Cycle Model Based on System Structure"
Francis N. Parr, Imperial College of Science

and Technology/England

.1e Implications of Life-Cycle Phase Interrelationships for
Software Cost Estimating"

Robert Thibodeau and E. N. Dodson
General Research Corporation

47

MODELLING, MEASURING AND MANAGING
SOFTWARE COST

JOHN R. BROWN
Boeing Computer Services Company

Seattle, Washington 98124

Abstract

An appraisal of past experiences relevant to during which I had begun to understand that there

achieving awareness of the cost of software is were certain problems associated with software
provided in terms of personal recollections about development. It is especially important to note
the "good old days". The difference between what that I have not intimated that softwarc develop-
we plan to do and what we really do in developing ment was problem free prior to 1968 and plagued
software is discussed and identified as a signi- with problems thereafter. I have simply concluded
ficant source of the cost problem. A striking that in late 1967 and early 1968 soiethinq
similarity between the properties of computer pro- happened which prompted (in me) a rather kenn (but
grams and the characteristics of the software de- previously non-existent) awareness of some ,oft-
velopment process is suggested. Application of ware development problems. I found it instructis"
computer program analysis tools to support de- for my purposes to attempt t3 identify whtitever it
tailed evaluation of the development process is was that was special or different aibout that point
proposed. Some potential benefits regarding im- in time and have related memorable chbracteristics
proved understanding of software production costs below in no particular order.
are discussed and related to possible modification a I had recently been given my first real
of current software procurement practices. fiscal responsibility within a major

(large scale) software development activ-
ity.

Introduction S I was, prior to that time, only remotely
aware of the fact that software is devel-

A few years ago a good friend of mine wrote a oped for a customer. At this point I hn-
very interesting letter entitled, "Random Thoughts gan to be exposed to the needc, hopes,
on Software Integrity, or, Nostalgia for the Good fears, and frustrations of a custower w
Old Days". Among other things, the letter served a regular (almost daily) basis.
to refresh my recollection of the good old days * 1 was asked for the first time to deliver
while stimulating something akin to at least a a large program to a customer. In parti-
rough comparison of then and now. cular, it was a program which containel *i

In order to get my thoughts straight I found number of large, integral elelent, abot
I had to determine approximately when "then" stop- which I personally knew little nr oothi,,(
ped and "now" started. Having worked continuously * I become aware of the existence of the
in ore way or another with the production of com- incomplete requirement spocificatio,.
puter programs since sometime in 1960, it is per- More importantly, I becam conviced tha
haps meaningful to identify some point In time it layed a critical part in a ipose;lv
which separates the good old days from whatever "formal" software development p ,',.

one might call more recent times. For me such a
delineation comes at approximately the midway • I was asked (albeit very iiidirectly} d
point, that is in late 1967 or early 1968. As I not in so many words to cowpromise ":: -
pursued this train of thought, I became aware (or tangible" quality in favor of togihlv,
finally admitted to an awareness) of certain facts. timely (on schedule) delivery. I was suW
I believe that my findings are relevant to any sequently required to "explain awov' pro-

discussion on the claimed cost and difficulty of blems or relate them to known errors and

developing software, and I hope to demonstrate lack of specificity in the requiremn,
relevance in the following Daragraphs. specification.

I am not at all sure which of the ahove wa,
In Retrospect most instrumental in changing my view of what oft

At some point early in my rambling thought ware development is all about. Perhaps more ii
Atesoe point y in mysamblfng hoht t portant than any of the individual items was u, i-

process on the subject, I found myself hard put to mately the frame of mind which came from livinq
answer the question, "When did things start to go through atd coping with these new (for me) exptri
wrong?". After considerable soul searching, I was ences. The most striking characteristics of my
able to settle upon a fairly specific time period

48

new frame of mind was a strong realization that It appears that we can be comfortable with
software development costs a lot of money. (and readily accept) a not-quite-accurate picture
Coupled with this was the growing feeling that of the development process to which we attribute
there were some customers who were hard to con- serial orderliness and implicit continuity. Fur-
vince that they had gotten their money's worth, ther, and more important, we are hard pr(sed to
especially if the software did not work exactly learn very much about the real costs of software
as expected or better. Unfortunately, speci- development until we can shed the notion of a
fying exactly what is expected of software has fixed sequence of events and come to grips with
proven to be at least as difficult, if not more- the complex and highly dynamic interaction of
so, than specifying things in general [1,2,3]. these events which is characteristic of much soft-
In fact, a great deal of the thinking that has ware development activity. Fer instance, if we
been given to the cost and quality of software were to draw a flow diagram of the developvrnt
has concerned the difficulties inherent in process (both "before" and "after"), we could well
specifying intent (i.e., requirements), test- see the kind of contrast illustrated in Figures I
ing and demonstrating satisfaction of those and 2.

requirements, and providing for full and time-
ly -ommunication between software developers and
users [4,,6,7,8]. 1

About Software Life Cycle Cost

So far, I have simply related some of the 2
details and subsequent conclusions derivable
from a conversation with myself about the good
old days. It is perhaps apparent that I have
nore or less dispelled the notion that there 3
really were any good old days, but rather that
there was a time when, for a number of reasons,
programming was fun and my worries were few. 4

As is often the case with my rambling
thoughts about srftware development, however,
I eventually found myself taking a hard look at
the development process from a different but 5
potentially useful point of view.

Most, perhaps all, people who claim to know
how software gets developed roughly view the dev-
elopment process as a serial one which includes 6
the following (or equivalent) events:

1) Concept (Requirements) Definition

2) Detailed Requirements Specification 7

3) Preliminary Design

4) Detailed Design 8

5) Code and Debug

6) Checkout

7) Test Planning 9

8) Test Execution

9) Test Evaluation

10) Acceptance and Use 10

11) Maintenance (modification) and Re-Test
(as required)

There are many variations which are more or 11
less equivalent to the above and apparently many
different impressions about the proper ordering
of the events [9,10,11,12,13]. For purposes of
this discussion we can assume that some major
software development activities proceed through
phases leading to the above sequence of events
with the usual iterative occurrence of events 4 Figure 1. A "Before" View of Software Production

through 9.

49

Towards Understanding Production Cost

It is probably not through sheer coincidence
alone that we use the word "program" for very
large software development projects. If put to
the test, we can find many similarities between
the properties of the end item (i.e., the compu-
ter program) and the "program" or process through
which it was produced. We have labored long and
hard to develop techniques and tools [14,15,16,17,

3 18,19,201 which provide valuable insight
into the intricate and highly complex interactions
of the components of computer programs. We have
rigorously applied such tools in the study of com-
puter program efficiency and have saved ccuntles

4 thousands of seconds of computer time. Unfortur-a-
tely, we have not done nearly so well in shaving
seconds off the time required for development of
complex software systems. Perhaps it is tie
that we seriously considered application of such

5 tools in investigation of the other kind cf pro-
grams. Maybe then we could begin to develop a
better understanding of how software really gets
put together and where, in the process, the high
cost of software truly lies and where efforts to

6 reduce excessive cost can and should be concentrat-
ed [21,22]

7

8

A Proposal

9 I am particularly intrigued with the poten-
tial application of program path analysis and
usage monitoring tools [23,24,25] to help achieve
a more thorough understanding of what really takes
place deep within the development process. I

10 suggest, for example, that something aloug the
following lines could be done. First, we devise a
project (program) plan which possesses all the
conditional branching (go back and redo, etc.)
characteristics which are illustrated in the pre-

11 viously defined schematic labelled AFTER. Then,
as we think of the programmatic events ruch like
the segments or units of code within a program,
we may define a convenient notation and proLedure
for developing path-like sequences which alone or
in combination represent potential modes of tra-
versing the network [25,26,27]. Now if we also

Figure 2. An "After" View of Software Production took steps to assign time-to-complete (lC) and
cost-to-complete (CTC) values to each of the ele-
ven previously identified events, it is possible
to estimate significant project cost and schedule

50

variations as a function of our "best guesses" 14,18,19,23,24,25,26,27]. One might expect then
at the way project work will actually proceed. that we could readily acquire a capability to mon-
We must be careful however to consider the itor project-program operation and subsequently
following: compare expected-versus-actual operationi experi-

1) TTC and CTC values are probably varia- ence with life cycle costs.

ble and are functions of many factors Perhaps then if we:
including 1) state-of-the-art of the 1) develop and experiment with an approach
specific technological area, 2) level to procurement, program planning, cost es-
of experience and expertise of availa- timation and performance assessment some-
ble personnel, 3) event count (i.e.,
it may or may not be cheaper to write tin like that described here,

detailed requirements for the third 2) use tools to maximum advantage to support
time than for the second time), and more objective yet precise consideration
4) event predecessor relationships of pertinent cost factors, and
(i.e., it may cost more (or less) to 3) try to be as honest as possible with each
revise or redevelop a preliminary de- other about what all this means,
sign after extensive testing has been
completed than before), then I expect we will begin to gain the kind

in of insight needed in order to get a handle on and
2) Where appropriate perhaps in do something about the real problems relevant to

accordance with existing procurement the high cost of software development [28,29,30].
regulations or customer-contractor It is possible that, with practice, using the cost
agreements) those branching character- modeling technique, we could get pretty good at
istics which are to be disallowed must estimating at least upper and lower bounds on pro-
be taken into consideration. For exam- ject cost. It's possible also that in our quest
ple, there is at least a common sense for truly improved software engineering practice
requirement that test evaluation is not [29] the modeling technique can help us give more
followed by preliminary design more careful attention to the real cost payoffs from
than n times.. modern techniques and tools and further promote

3) It may be important to avoid the prema- their judicious and cost effective application to
ture conclusion that the path 1-2-3-4- future development activities. We might even be
5-6-7-8-9-10-11 obviously presents the able to stop talking about the good old days as if
most appealing cost picture, because it they were some time in the past.
may well be the most unrealistic path
in terms of potential development activ- References
ity.

Finally, we might look briefly at one possi- 1. Gunning, Robert, How to Take the Fog Out ofFinalywe igh lok biefy a on posi-Writing_, Dartuell Press, Inc., Chicago, Ill.,
ble derivative of the approach briefly outlined 1962 , 6 ages

above. For example, consider the possibility of 1962, 64 pages.

a customer somewhere who: 2. Hartman, P. H., and Owens, 0. H., "How to

1) has a problem to solve which requires Write Software Specifications," Proceedings of
procured services for the production of a Fall Joint Computer Conference, 967, pp. 779-
software system, and 790.

2) is willing and able to establish con- 3. Boehm, B. W., "Software and Its impact: A
straints of the type mentioned above in 2 Quantitative Assessment," Datamation, May 1973,

We can then conceive of competitive contrac- pp 48-59.
tors who submit proposals consisting of the usual
technical volume (i.e., background information, 4. Boehm, B. W., Brown, .1. R., et al., Character-
statement of work, technical approach, related istics of Software Quality, TRW Series of Sutt-
experience, facilities, etc.). Consider, however, ware Technology #1, North Holland, January,
a very different kind of management and cost vol- 1978, (Previously published as TRW Technical
ume which presents a predetermined number of cost Report No. 25201-6001-TU-00, December, 1973).
and schedule proposals corresponding to at least
the high likelihood paths through the network. 5. Brown, J. R., DeSalvio, A. J., Heine, D. E.,
The availability of tools to support this kind of Purdy, J. G., "Automated Software Quality
effort is assumed, since I personally know of a Assurance: A Case Study of Three Systems,"
large number of computer program analysis tools Prgram Test Methods (Ed. W. C. Hetzel), Pren-
which would require only minor modification to tice-Hall, 1973, pp. 181-203.
provide network analysis, path generation and dis
play capabilities. These tools are described at 6. Brown, J. R., and Hoffman, R. H., "Evaluating
length in the literature primarily addressing the Effectiveness of Software Verification -
subjects of automating software testing, monitor- Practical Experience with an Automated Tool,"
ing and measuring the thoroughness of testing, Proceedings of Fall Joint Computer Conference,
and static analysis of program structure [6,7,10, 1972.

51

7. Brown, J. R., "Improving Quality and Reducing 20. Stucki, L. G., and Foshee, G. L., "New Asser-
Cost of Aeronautical Systems Software through tion Concepts for Self-Metric Software," Pro-
Use of Tools," Proceedings of Air Force Aero- ceedings of the International Conference on
nautical Systems Software Workshop, April, Reliable Software, April, 1975, pp. 131-142.
1974. 21. Black, R. K. E., "Effects of Modern Program-

8. Kosy, D. W., "Air Force Command and Control ming Practices on Software Development Costs,"
Information Processing in the 1980's: Trends Digest of Papers from the Fall Computer Con-
in Software Technology," Rand Report No. R- ference, COMPCON 77, September, 1977, pp. 250-
1012-PR, June, 1974. 253.

9. Williams, R. D., "Managing the Development of 22. Brown, J. R., "Modern Programming Practices in
Reliable Software," Proceedings of the Inter- Large Scale Software Development," Digest of
national Conference on Reliable Software, Papers from the Fall Computer Conference,
April, 1975, pp. 3-8. COMPCON 77, September, 1977, pp. 254-258.

10. Brown, J. R., "Getting Better Software Cheaper 23. Brown, J. R., and Hoffman, R. H., "Automating
and Quicker," Practical Strategies for Devel- Software Development: A Survey of Techniques
oping Large Software Systems, Addison-Wesley, and Automated Tools," TRW-SS-72-03, May, 1972.
1975, pp. 131-154.

24. Brown, J. R., "Practical Applications of Auto-

11. Mangold, E. R., "Software Visibility and mated Software Tools," WESCON 1972, Session 21
Management: Technology," Proceedings of the and TRW-SS-72-05, September, 1972.
TRW Symposium on Reliable, Cost-Effective,
Secure Software, TRW-SS-74-14, March, 1974. 25. Krause, K. W., Smith, R. W., and Goodwin, M. A.

"Optimal Software Test Planning through Auto-
12; Boehm, B. W., "Software Engineering," IEEE mated Network Analysis," Proceedins of IEEE

Transactions on Computers, Vol. C-25, No. 12, Symposium on Computer Softwar-e Rliability,
December, 1976, pp 1226-1241. June, 1973, pp. 18-22.

13. Schluter, R. G., "Experience in Managing the 26. Brown, J. R.,and Lipow, M., "Testing for Soft-
Development of Large Real-Time BMD Software ware Reliability," Proceedings of the Interna-
Systems," Proceedings of AIAA/NASA/IZEEEACM tional Conference on Reliable Software, April,
Computers in Aerospace Conference, November, 1975, pp. 518-527.
1977, pp. 168-173.

27. Brown, J. R., an6 Fischer, K. F., "A Graph
14. Brown, J. R., "Software Test Tools: Techno- Theoretic Approach to the Verification of Pro-

logy," Proceedinqs of the TRW Symposium on gram Structures," Proceedings of the Third In-
Reliable, Cost-Effective, Secure Software, ternational Conference on Software Engineering
TRW-SS-74-14, March,1974. May, 1978, pp. 136-141.

15. Brown, J. R., "Why Tools?," Proceedings of 28. Sukert, A. N., "A Multi-Project Comparison of
Computer Science and Statistics: Eighth Software Reliability Models," Proceedings of
Annual Symposium on the Interface, February, AIAA/NASA/IEEE/ACM Computers in Aerospace Con-
1975, pp. 310-312. ference, November, 1977, pp. 413-421.

16. Mullin, F. J., "Considerations for a Success- 29. Brown, J. R., "Programming Practices for In-
ful Software Test Program," Proceedings of creased Software Quality," Software QuaitX
AIAA/NASA/IEEE/ACM Computers in Aerospace Management, Petrocelli Books, to be published
Conference, November, 1977, pp. 68-74. and presented at the Software Quality Manage-

ment Conference, September, 1978.
17. Kessler, M. M. and Kister, W. E., "Software

Tool Impact," Structured Programming Series, 30. Brown, J. R., Osterweil, L. J., and Stucki, L.
RADC-TR-74-300, Vol. XIV, May, 1975. G., "ASSET: A Lifecycle Verification and Visi-

bility System," Proceedings of COMPSAC 78, to
18. Osterweil, L. J., "A Methodology for Testing be published, November, 1978.

Computer Programs," Proceedings of AIAA/NASA/
IEEE/ACM Computers in Aerospace Conference,
November, 1977, pp. 52-62.

19. Reifer, D. J., "Automated Aide for Reliable
Software," Proceedings of the International
Conference on Reliable Software, April, 1975,
pp. 131-142.

52

IMPROVING THE SIGNAL/NOISE RATIO OF THE SYSTEM DEVELOPMENT PROCESS

Melvin E. Dickover

SofTech, Inc.

ABSTRACT APPROACH

Some of the problems of major system develop- The two causes of the problem are addressed
ments can be traced to the lack of a rigorously by producing a chain of documents that link the
linked chain of documents connecting the operational system user's conception of the system to an
needs and context to the design given to the imple- abstract, implementation-free specification of the
menters. A method of constructing such a rigorous system to be given to the implementer. The docu-
linkage using SADTC" models is outlined in this mentS constrain the implementer to produce just
paper. what the user needs, but leave him free to trade

off the alternative ways of realizing the system.

PROBLEM For this approach to succeed, the following
must be met:

Various problems have plagued the development 1. The documents must be formally, rigorously
of 1rge military systems. Among these problems linked one to the next.
is that the delivered system is not what the user
expected and is, in fact, nut very useful, even 2. For each document in the chain, one must be
though, in some sense, it works. Another problem able to decide what information is or is not
is that requirements seem to change rapidly during supposed to be in it.
development, either increasing cost and slipping
the schedule or decreasing the usability of the 3. These documents must relate to the things
product. The Department of Defense has been tryinq controlled in the major system acquisition process
to address these problems with new regulations that the DOD uses.
(CA-lOg, 5000.1, 5000.2, 5000.3, etc.); these regula-
tions will improve things. Some important holes The documents proposed here are a linked set
in the management process remain, however. of SADT models.[31 Before these documents are

The approach to technical program management described, it is necessary to provide a semiformal
definition of the terms used in the rest of the

taken in this paper assumes some of the troubles in paper.
major system acquisitions are due to the following
causes:

1. Something gets lost in the t -nslation from PE-INJYJP RMEWORK
stage to stage in the development process. "Noise" A .',.'. is a set of interacting "phenomena"
accumulates until the product differs appreciably of "actual reality." (Quotes indicate primitive
from the user's original version of it. Current

military documentation regulations do not prevent terms.)

this, because they specify form rather than sub-
stance. .., are predicates about "phenomena."

2. Many of what are called requirements changes " are propositions about "phenomena."
are in fact only requirements document changes
made necessary by the continual uncovering of old, A . i. is a relation between a set of
unchanged requirements not in the document because and a set of .','o.
the requirements definition process was inadequate.
11][21

SSADT is a trademark of SofTech, Inc.

53

A tidA' of a , is a relation between a set onto the de :,"<', ,. , since additional information
of qi,ct £,ozs about "phenomena" of the modtZ and about the :,: may be incorporated in the
,r;o;w 'o about "phenomena" of the w,, ,m ,t to some ':

tolerance. A :.,'':'*,.:j,. is a set of :.::,'z ';.,,

The .':, of a .. ,'Y is its set of .",:. applied to the -.,_ , .:', to constrain its set
of possible .:','':: ':a to be in the bounds descri-

In the definitions that follow, by model it is bed in the .. ' ,.:": , '. Some of these con-
meant a model produced using SADT. [3] straints are necessary to control the effects of

the additional information the :.

The V,,,., of a.K; is the choice of parti- contains.
tioning at the first level of the hierarchy. The THE CHAIN OF DOCUMENTS

is constrained to be consistent with the
The chain consists of the following documents:

The ,an! ,:!w of a ,; .i,' is a set of con- Concept of operations, functional model,
straints placed on the '-ici, so that it embodies design model, specification, as defined in the
the abstractions and perceptions of a certain kind previous section.
of person. (Not only must the v,*,'e satisfy the
,:":,: O, it must be formed of pieces a person The 'o','J t ,,,'u'. ,o describes how a new
recognizes.) system will be used, together with the existing

resources and weapons, to get a net increase in
A :,e,?- is a ::,:; ': of a person who the overall effectiveness of the entire set of

interacts with the . as it exists in "actual resources. Considered by itself, only system
reality.' performance can be measured. Considered in its con-

text, system effectiveness can be measured. The
A .fuiotional model is a ,odcz' of a .<,otc". concept of operations provides a purpose, view,

from the ,','x:' of a :wck' of that aijtcw. and context for a functional model. It binds
the document chain to the operational context.

An a -t',: :: ,:u (of an SADT diagram) is a
logical expression stating the relation among The ',.i.:"Z:,: ,.'ic7 describes how the sys-
input, control, and output arrows.[4] The at i v- tem must behave and what it must be able to do
ti":,, ru.e states the conditions (presence or for its user. The user's requirements for speed,
absence of data) on the input, control, and output accuracy, size, etc. are documented in the
arrows such that presence of data on the output functional model. Later this document will be
arrows will occur. A'atJpan , Zro transform used by the implementer to understand the user's
SADT diagrams into finite-state machine descriptions. "utility function" so implementation trade-offs

can be made to satisfy the user (rather than
An P: '" is a path traced through a ,:1> vague ideas of efficiency). The functional model

from its external input and control arrows to its binds the problem description to the operational
external output arrows, according to the .,,:.'J:',,,: context.

controlling each diagram of the ",,/,.
The i, on ric,,il describes the modular struc-

A :,uar:.' is a set of values applied to the ture (logical structure) of the system to be built.
external arrows of a ,,! before tracing an As defined above, it is the "simplest" description

a:: ,";of the t'. '1''. of the system in terms of constantines "structured
design." [51,[6],7,1 The functions in this model

A acx.t ,',, :tJ.' of a e:/e' r is a 1!I are allocated to hardware or software according
containing a ,', I:.,, . of that in. t' along to the trades made by the system engineers. The
with '#:" ', z1 "' Jo,,

• of 1;' m: it interacts structure constrains, but does not specify, the
with. A ,-';or '", :'.lou specifies the set of algorithms to be used. This model binds problem
all valid ,ot, J,': lu:; of a ,a'. structure to solution structure.

An ,'..or, -' " ' of ,' o, "o is an The ol'c,. ''t' , , chooses the logic or algor-
wt::',,:'" of a '' ,: ,, i!,,Ju, for some ithms of the system to get the behavior required

by the functional model. The specification binds
solution behavior to problem behavior.A I ,:'i zc, is a a,,. t,:,' 'Jut, of a person who

choses at each hierarchical level of detail of a The design model and specification do not
,IJ a partitioning that results in the least include any properties of the hardware or soft-
coupled pieces. ware used to implement the system. They do con-

strain the implementer to produce a system of a
A ,le,,< mode,:! of a o:-e ton is a fuuo;tmm! certain structure and behavior, and guide trade-

molh! of that rysern repartitioned from the vi,,', offs among alternatives with a utility function
of a ,'io;l.,w,. The funoti' , l m'del maps into, not from the functional model.

54

PROBLEM SOLUTION IMPLEMENTATION The argument to this point has relied some-
DESCRI- DESCRI- DESCRIPTION what on the properties of SADT models. However,
PTION PTION the concept is more general than that. It should

work for a modeling technique with the following
Required Capability why properties:
Concept of Operation what why
Functional Model how what why 1. Describes modular structure, hierarchically.
Design Model how what
Specification how 2. Provides for traceability from model to

model.
LINKS IN THE CHAIN

3. Contains a way of specifying activations
For the documents to form a chain, they must in terms of output value "events" under some

be linked. These links are made in the SADT input value "conditions."
models forming the chain. The SADT syntax pro-
vides a way of formally linking the models. SACT has been used because it is a natural lan-

guage for describing system structure hierarchi-
The concept of operations contains the cally. At each level, the pieces and their rela-

functional model embedded within it. The func- tions (dependencies) are expressed. The mechan-
tional model is, in a sense, a named subset of ism syntax allows traceability between models.
the concept of operations, drawn from another Activation rules directly transform SADT models
view. The design model is linked to the functional into finite-state machine descriptions. And,
model using the SADT mechanism syntax. Each func- the language is a simple, graphic one.
tion in the functional model contains a mechanism
"call" reference to the portion of the design As an illustration of how the mechanism nota-
model that realizes that function. The desiqn tion can connect one model to the next, consider
model can, if desired, be annotated with SADT the two SADT diagrams "communicate" and "handle
support arrows which relate portions of the medium." Each diagram is the first level decom-
design back to the functions in the functional position of a different model.
model. Thus, requirements traceability back
and forth from functional model to design is Box 3 on "communicate" has a downward point-
maintained. ing mechanism arrow that calls the AO diagram of

model CHM. Thus the "Handle Medium" diagram
The specification is an annotation of the realizes a box in another model.

design model. Thus no cracks between the models
that accumulate "noise" are permitted.

p*ctOE'CE _EMr4O, -EcMyPrTo KEY

zECV oSAS
2 01 _E0111-

ME{tyED D--

"

T
fl "Y* TI 117

55

() ,4oou4A roN C'

r~.P4tMTOIJE

ENtcR'trED -
ESAS

EMIrT

Moo I.rMoT'On

EmGcora

NSODE TITLE UB

ADEQUACY OF THE MODELS A MODEL OF THE CHAIN OF MODELS

To evaluate the adequacy of a model in the The SADT diagrams of this section present a
chain, each model is associated with a development model of a Naval system development from the view-
test, as follows: point of a program manager. The diagrams are

annotated to show where the documents of the chain
MODEL TEST MEANING can be used to help satisfy the requirements of

DSARC reviews that lead to formal milestone
concept of exercise Is it useful? decisions.
operations

Each document of the chain appears at a dif-
functional acceptance Does it work? ferent level of detail in the model. The concept

of operations appears at the first level on the
design integration Do the pieces AD diagram. The functional model appears at the

go together? second level on the A3 diagram, and so on. All
of these diagrams (AO, A3, A33) that describe a

specification verification Are the pieces document in the chain have the same form; each is
correct? related to its corresponding test. Diagram Al

corresponds to the concept formulation stage in a

A model is adequate if it can be used to major system acquisition.

develop a plan for its corresponding test. For
users, the concept of operations is sufficient if There are three reasons for including this

it can be used to outline an exercise that uses model: it gives a sample of an SADT model for

the new system. More requirements are forced out those unfamiliar with the method, it provides a

early in the process by consideration of details scheme for delegation of design authority, and it

of the test. provides a framework to discuss the order in which
the documents are produced in a real development.

This criterion also suggests what should be
excluded from models. Information beyond that The method of delegation of design oenhority

necessary to construct the test should be viewed embodied in the model was inspired by Cowen i l.

with suspicion; it may be merely extraneous, it At the operational level, "Build," Box 3, is (jelega-

may belong in a different model, and its inclusion ted, while authority for the other functionF is

at this level may overconstrain the next level's retained. Box 3 on A3 and A33 is similarly delega-

model. Not everything you know about a system ted. Each level is responsible for a model in the

needs to be in the next document you write about chain. Each delegation is accompanied by a con-

the system. straint to similiarly delegate and constrain.

I'

56

Responsibilities work out like this: repeated, depending on how feasibilities work
out. Opportunities for subtle activation paths
abound. On Diagram Al, Box 3 has a mechanism

concept of operations _,_ support arrow that indicates Diagram A3 (Build)
may be invoked in the course of evaluating costs

functional model E and effectiveness. This could arise if it becomes

design model necessary to build a feasibility demonstration
of some risky part of the system to fully evaluate

specification analyst an alternative.

implementationd--er program system The model allows many alternate activation
unit test < designer engineer operators, paths and dynamic behavior patterns in system

users development; however the documents produced at theverification <,7--- ' v f tend are constrained to relate to each other in a

integration test- particular way.

acceptance test 1-
in practice, an activation of this model may

exercise < begin with a functional model rather than a concept

of operations. Technologists may propose a functional
model of a new kind of system to find a use for a

The model shows the dependencies of a set of new technology. A concept of operations would be
activities and the documents they produce. It created for it, along with concepts of operations for

constrains, but does not specify, the exact order competing alternatives. A revision of the external
in which the development activities are carried details of the functional model would likely result,

out. For example, there are feedback loops on and a new functional model would then be created in

diagram AO that may cause activities to be depth.

pS(Ac z~t (• Afl. , zt -A 4 , r, t 'e, ,, 14?4 z

, ." e -', a

EO,,,Ytt, rNAVmoY C .

C ~o,,rv. rc,,N~ar~- - - - -I j4 _ NEW 5 ,5r,

. • i~ i I 'l ii r .1 11 ; , ,

57

R EQUIRED eAA481trI5 r,,IE~r Drsr*er,ofl (Zo s). MocfSTONE OIScrjVArf5 P,AWCAM)

14'OOfffS* PSCAO

EEVANb Coa~cnr Op

CEUHoR06y PE A 1 dp &r Oc'cr EVA/VA TiOW

P ASE -IR (mkAto.,e I s/t/tA9I

P~~ferred ~ ~ ~ tech- , /(P~e)4BC"

iJEVELOP W >'SFI-/L

C2C3 CO

RERE t lT~ -- BI5G/,Y CONS r RA/NT.

ffloU46RrEOf /TFASO//o

6/I/Of 1 C/NE S,,

5Z -9ARIERIS itfs iET

&,,VERn/s (rRbo,f,.-s
0050A rIOy~ Ntpot/TN, .41,

Co
1

FACTO 1RS. ,,,

O"Rt44l P/Sll tC/,

PC/Al/m4'Ma~rF P'FI'ACPONI C/SEVA I' Sf

58

ANALE Ol

L'N~A 4 CL Ci
MODEL,. D(,,,e fPA

cows" rgENr

SotrF rsAR Ne

/NcARN~~rVAoJlSr OOzO 'AR

FVNC~u TAOCL.i'(7

movet.,~~~ DEIs91e mosq

NIIR W5.5R(YF--

59

FUNMTONA& mooCeL. L C

PC,,"O COA .#f4,Nj

FUNCYOnAL
MO L ENAVOe

Des,& REQUIfEEhW
IWOO04LAja

j5rvuc ruo~ PERFORMAWE

09.1*V MODEL

AP£ces sAecloy

DESIGN g .SPEC.L F '

-ERI.AC6S) A ri

PE5'-N M'ODEL

.SPECfC4rO oe MAKE M esoaC. R D

Sofetewr DsgUigSrTI. fARDAeEe ae01

DES'" move

SPECs~E CAYTONI
,JARDWAe(/

By establishing a rigorously linked chain ofSotaeDsgUin ATIftchttef
Jocuments connecting requirements in their opera- d otech Incterntiongtd 9
tional context to a specification of what the t M R noehItrainlLd 98

implementer must build, the accumulation of noise 5 o r o , E n o s a t n , L L : S r c u ein the process is prevented. 5.Yudn .adCntatnLL:SrcueDesigA . Yourdon, Inc., New York, 1975.

By introducing a test for the adequacy of 6. Dickover, M.E., Principles Lf ousi and
each mdel, more requir uents are forced out oofe Design Us in t , Practch SATe
early in the process, and attention is focused the A ort: tte DesT.earlier on feasibility issues. Soech, Inc., Waltham, Mass., Technica

Publication #039, 1976.

lnis method has not been tried. However,
SADT has been used to construct a Concept of 7. Alexander, C., Notes on the Synthesis of Form,
Operations. A functional model has been built Cambridge, Harvard University Press, 1964.
and transformed into a design model [9]. As yet,
no design model has been completely turned into 8. Cowan, G. Jr., A General Structure for
a specification using activation rules; for Resource Manageent in a Computer Network.
various reasons other specification languages PhD. Thesis, Madison: Univ. of Wisconsin,
(e.g. programming languages), have been used. 1975.
The author intends to try the technique on a
software development in the near future. 9. Dickover, M.E. and Small, A., Analyzing and

Designing an EW Reprogramming System,
REFERENCES Proceedings of the 41st Symposium of the

ilitary Operations Research Societ, July
I. Ross, D.T., Quality Starts with Requirements 1978.

Definition. P.G. Hibbard and S.A. Schoman
Eds. North Holland Pub. Co., 1978, pp. 397-406.

ACKNOWLEDGEMENT
2. Ross, D.T. and Schoman, K.E., Structured

Analysis for Requirements Definition. IEEE The ideas in this paper were developed during
Trans. on Software Engineering, 3. 1, 1977,- work for Dr. Michael Melich of the Naval Research
pp. 6-15. Labor3tory. Many hours of discussion with him led

to these ideas, and his encouragement was respon-
3. Ross, D.T., Structured Analysis: A Language sible for their development. The Structured

for Communicating Ideas. IEEE Trans. on Analysis and Design Technique (SADT - a trademark
Software Engineering, 3. 1, 1-977,pp. 6-34. of SofTech, Inc.) was devised by Douglas T. Ross.

60

A STEP TOWARDS THE OBSOLESCENCE OF PROGRAMMING

Harvey S. Koch

University of Rochester

Graduate School of Management
Rochester, New York 14627

Abstract The systems analyst usually specifies the

operations to be performed on each data field.
One of the most difficult aspects of An example of the specifications are:

software development is transforming the systems
analyst's specifications into process specifi- i. Date

cations that can be understood and carried out
by a computer. We describe a method in this a. check whether date is current

paper that can be used to reduce the complexity b. calculate interest if not already
of the programmer's task and to ensure a higher done for previous period(s)
degree of correlation between the systems
analyst's specifications and the program 2. Bank Office

produced for the application. a. check whether valid

3. Teller

a. check whether teller number is

Currently, the programmer has tile task of valid for that office
interpreting and translating the user's require-

ments into specifications that can be understood 4. Type of Transaction

by the computer. As a result, a common a. deposit into accountl

phenomenon associated with each implementation
of a system is that the user's requirements have b. withdrawal from accountl - check

not been satisfied. To begin to solve this whether balance > 0

problem, we propose that the complexity of the c. transfer from accountl to account2
programming should be reduced. This will reduce if balance in accountl 0

the number of errors committed by programmers
and will allow what the systems analyst 5. Accountl

specifies to be more accurate. a. check whether still active

Ideally, we are striving towards the 6. Account2
elimination of programming in the form that it a. check whether still active.

currently exists. In this paper, we describe
one method that we are trying to apply as a An important characteristic of the systems

means to this end. The basic ideas of our analyst's specifications is that they are usually

methodology have been taken from [I]. More non-procedural and are centered around the data.

research is needed to assess its potential. The programmer, however, has the duty of taking

these non-procedural statements and transforming
We will describe our methodology in terms them into a program - i.e., something that is

of an example Then we will summarize the proce iral and process-oriented. There is much
cha racteristics of our approach. decision making that the programmer must do to

create a process for the computer. Specifically,
Our example is a bank transaction applica- he must decide:

tion. Specifically, the processing of a

universal form for deposit, withdrawal and I. In what order the fields should

transfer of funds between ccouats. The input be processed.
fields are:

1. date 2. What are the controls of instructionI. dateexecution.

2. bank office

3. teller
4. type of transaction
5. account number(s)

61

3. What must be synchronized and what are
the conditions for synchronization if
parallel processing is used. 1 2 3 5 6

Our methodology allows the programmer to
create independent portions of a program and ubcs
a translator to produce a program which inter- a a a a a

relates these independent program protions. For
each field of the input data, using the systems
analyst's specifications, we have a graphic b
representation:

ab c

FIGURE 2

b Relationship Between the Program Portions

4
The operations in fields 1, 2, 3, and b can

begin to be executed in parallel since the opera-
tions on these fields begin with intra-field

a b c relationships. Field 3 begins with an integrity
check that involves an inter-field relationship.
hence, 2a must be completed before 3a begins.

FIGURE 1 Operations 4a, 4b, and 4c must wait for all other
processing and integrity checks to have been

Independent Program Portions completed.

A translator can produce a program equivalent
A node with a number represents the fact to the graph in Figure 2 given the instructions

that the succeeding instructions should be.execu- represented in Figure 1. Instructions for each
ted to process that field. A node with a letter data field can be executed in parallel until
means that the instruction(s) associated with another data field is referenced. When an instruc-
that node should be executed. For instance, the tion references another data field, all previous
left-most graph represents the fact that two instructions that reference that data field must
operations ("a" - check whether date is current have finished execution.
and "b" - calculate interest if not already done
for previous period(s)) should be executed to In summary, we need to bridge the gap between
process the "date" field. First, the instruc- systems analysis and programming. We must look
tion(s) for "a" should be executed and then the for methods that foster (semi) automatic trans-
instruction(s) for "b". Since only one of "a", lation between the systems analyst's specifica-
"b", or "c" is executed for field 4, these three tions and the program code.

nodes are not represented in sequential fashion.
Our methodol'ogy assumes that the modules of

What we have represented in Figure 1 are the system have been identified in the design stage
data flow graphs for each input data field, Each and that the data items to be operated on in each
node of the graph represents an instruction or a module are known. For each data item, the i m
sequence of instructions. All instructions analyst then specifies what are the on-, io
that operate on the same field are chained be performed, The programmer then wr, . .
together, dent program portions for each data 1. A 8, s-

lator is then used to produce the program whirh
At this point, the specification step has interrelates the program portions. The Lnd result

been completed. We still have not specified, is:
though, what fields can be processed in parallel 1. closer interaction between the systems
and what synchronization events are needed. In analyst and the programer since the
existing design and implementation methodologies systems analyst writes his specifica-
these are defined in the design stage or as late tions after the design phase
as the time of coding.

2. reduction of decision-making responsi-
The graph below represents, in terms of data bilities for programmers; specifically

flow, the operations necessary to check data he does not decide on the sequencing ol
integrity, to process the data plus which instructions on different data items nor
instructions can be processed in parallel and on any synchronization conditions.
which operations must be synchronized.

62

3. the design of each module is based
upon its data items.

Our methodology can alleviate some of the
inconsistencies between the user's requirements
and the programmer's end product. Programming
is still necessary but it has been reduced in its
complexity. We anticipate future research by us
and others to further reduce the complexity of
programming and to change it from a process-
oriented activity. We hope that in the near
future, the process-oriented method of programming
will become obsolete.

References

I. B. Gavish and H. Koch, "An Extensible
Architecture for Data Flow Processing,"
Proceedings of the Fourth Workshop on Computer
Architecture for Non-Numeric Processing,
August 1978.

63

A CONTINGENCY THEORY TO SELECT AN INFORMATION REQUIREMENTS DETERMINATION METHODOLOGY

J. David Naumann

Gordon B. Davis

University of Minnesota
College of Business Administration

Minneapolis, Minnesota 55455

The system development life cycle is the central of task uncertainty; organizations respond by
concept in currently-used methods of managing and choosing from a set of four organizational strate-
controlling the determination of information re- gies to deal with the level of uncertainty.
quirements and designing and implementing process-
ing systems to meet those requirements. When or- The information requirements determination por-
ganizations specify the use of formal life-cycle- tion of information systems development can be
based methods for all application developments, the viewed as a problem in uncertainty; the formal life
results are mixed. The method may be helpful, but cycle methodology is a response to this uncertain-
in many cases, it may be detrimental. ty. Its intent is to make sure that the organiza-

tion does enough information processing (with re-
A single life-cycle method is not appropriate gard to requirements) that uncertainty is reduced

for all cases because applications differ in the to acceptable levels. However, since the informa-
certainty with which requirements can be estab- tion requirements uncertainty differs widely for
lished. This paper describes the contingencies different applications, a single formal life cycle
which define the uncertainties in the determina- approach is incapable of addressing the full range
tion of information requirements and describes al- of information systems development projects.
ternative strategies for information requirements
determination given different levels of uncertain- Contingencies
ty about information requirements. The methods
are no cycle, linear life cycle, recursive life In the determination of information require-
cycle, and prototype. ments for an information system application uncer-

tainty refers to knowledge of the "real" informa-
tion needs. Development contingencies which de-
termine information requirements uncertainty are
project size, degree of structuredness, user-task

Introduction comprehension, and developer-task proficiency. A

systems development project has some combination
Formal life cycle development methodologies are of these attributes (and perhaps other as yet

not consistently reflected in practice; concepts unspecified contingencies). The combination of
such as throw-away code, prototype systems, and contingencies determines the choice of development
recursive life cycles are receiving increasing methodology.
attention in industry. The profession has de-
veloped a paradox: the life cycle procedures when Project Size
carefully followed provide a high degree of assur-
ance of project success for many systems, but they The project size contingency has three key
may be prohibitively expensive and unwieldly for characteristics: duration, number of people in-
many others. This suggests that there may be dif- volved, and total dollar amount. These character-
ferent methods for different projects. istics are usually, but not necessarily, collinear.

That is, a high cost project usually requires many
A contingency theory is a theory which identi- people over an extended time period. Project size

fies alternative actions and presents factors to is not a good measure of the value of a systems
use in selecting the optimal alternative. For development project, but it is correlated with the

example, McFarlan proposes acontingency theory degree of uncertainty of the results of the devel-

for development project management. He identifies opment process.

project size, degree of structuredness, and degree
of company-relative technology as factors which Degrec of Structuredness

determine the best planning and control tool for
a project. One dimension of the Gorry and Scott Morton

(1971) framework for information systems is that

Uncertainty has been identified by Galbraith
2

of the relative structuredness of the decisions to

as a major factor in determining the optimal or- be supported by an information system. For in-
ganization structure. The difference between the formation systems information requirements deter-
amount of information necessary to perform a task mination, a high degree of structuredness means
and the amount of informntionpossessed is ameasure Lhat a general model exists which needs only to be

64

applied to the given organizational setting. A low to have no information requirements cycle. Exam-
degreeof structuredness means that there is no rou- ples are file conversions, reports from existing
tine procedure for dealing with the problem, there files or databases and small single-user models.
is ambiguity in the problem definition and uncer- These examples have in common: small size, high
tainty as to the criterion for evaluating solutions, degree of structure, users who understand what
Uncertainty about the decision to be supported is the systems are to do and how the implementation
an important factor in uncertainty about the out- will function, and developers who are experienced
come of the systems development process. in this kind of task. Explicit recognition of the

need for the "accept as specified" strategy will
User Task Comprehension lead to greater responsiveness and an increase in

development organization efficiency.
Related to but distinct from structuredness is

the comprehension that the user or users have of Linear Discovery
the task to be performed by the information system.
User task comprehension affects the strategy and If information requirements can be determined
development project success in much the same way as through a straight-forward process of interviewing,
degree of structuredness. If the users have a low fact gathering, and documentation, the proper stra-
degree of understanding of the task for which the tegy is to proceed step-by-step to system specifi-
system is intended, whether or not a general model cation. The method is therefore a linear applica-
of a problem exists, less is certain about the in- tion of the life cycle. Examples are transaction
formation requirements (and the users' acceptance level systems, single function accounting systems
of the results of the development process), such as accounts receivable or payable, and minor

modifications to existing information systems.
Developer Task Proficiency

The information requirements for large systems
Developer task proficiency is a measure of the which are highly structured and where user-task

specific training and experience brought to the comprehension and developer-task proficiency are
project by the development staff: project manager, high may be effectively determined by the linear
liaison staff, systems analysts, systems designers, discovery process. However, information require-
programmers, etc. It is not a measure of ability ments for a relatively small system may not be
or potential: rather it is a measure of directly determinable by this method if the decisions to be
applicable experience. This contingency indicates supported are relatively unstructured, or if the
the degree ot certainty with which the developer user does not comprehend the task, or if the de-
will be able to obtain and document the require- velopers have not previously produced such a svs-
ments (and also proceed with the remainder of the tem. Linear application of the life-cycle model is
development process). an effective strategy under the appropriate combi-

nation of contingencies.
Uncertainty-Reducing Strategies

Recursive Discover
The response to uncertainty produced by charac-

teristics of a systems development task, the using The linear discovery strategy may not produce
organization, and the developer organization (i.e., correct or complete or acceptable specifications
the contingencies) has frequently been unidimen- of information system requirements. The tradition-
tional. Under the traditional life cycle approach, al life-cycle approach extends to recursion for
formal procedures, reviews, committees, check such systems. One or more discovery tasks are it-

points, etc. are used for all projects.
4

There haF erated until a complete, consistent specification

been io recognition of the degree of uncertainty is determined and accepted. Examples are large,

from the contingencies. An alternative approach multiple-user systems, systems which are new to

is to: the user or developer organization, and systems

I. Identify the contingencies and determine the which support the relatively unstructured decisions

uncertainty, of tactical and strategic management. This ap-

2. Select an information requirements determi- proach assumes that a correct specification of re-

nation method suitable for the level of uncertainty. quirements can be made given sufficient time and

Figure 1 shows the relationship of uncertainty- effort. Where the contingencies indicate that is

reducing strategies to level of uncertainty, and a valid assumption, the recursive discovery strat-

suggests methodologies which are actualizations of egy is appropriate and effective.

these strategies. The strategies are: accept infor-
mation requirements as specified, linear discovery, Experimental Discovery

recursive discovery, or experimental discovery of
information requirements. Each has an associated A high level of uncertainty may be indicated by
method, a combination of the contingencies. Repeated it-

erations of discovery may not successfully produce

Accept as S1 'cified adequate specifications of information require-
ments in such cases. The life cycle method,

If information requirements are known and whether linear or recursive, Is Inappropriate when

agreed upon, then the proper strategy is to accept uncertainty is high. The strategy of experimental

the user's statement of need as adequate specifica- discovery as realized in the prototype design

tlion for implementation. The method is therefore method, reduces uncertainty by producing successive

65

(ONTIN;ENCY ANALYSIS INVILtAlIIyN RESUICkMEN'IS DEIERMINA1 10N
CONTINGENCY -COiNql lBTN nc(r rai t y eiocling

St rateLgy Methd gy

TYPE DE;REE UNCERTAINTY

Project Large + low Accept information no requirement
requirements as determination

Size Sa11 specified needed

Degree of
Structuredness Structured - li rr di-sovery of life cycle

i information requirements applied linearly

Unstructured +

User-task Complete - SL Irecursive discovery of life cycle applied
Comprehension .a -I information requirement recursivelv

Slight +

Developer task High High experimental discovery of Prototype
Proficiency Low + information requirements development

FIGURE 1

SYSTEMS DEVELOPMENT METiIODOLOGY SELECTION CONTINGENCY MODEL

approximations. Users and developers can easily 4. G. B. Davis, rianagement lifornation Systems:
see what is wrong with an implementation even Conceptual Foundations, Structures, and
though they are unable to completely specify its Development, McGraw-Hill, New York, 1974.

information requirements.
5

Examples of appropri-
ate applications of the experimental discovery ap- 5. C. Alexander, Notes on the Synthesis of Form,

ate pplcatonsof te epermenal dscoeryap-Harvard University Press, Cambridge, NA, 1964.
proach are decision support systems for upper man-

agement, interactive forecasting models, and small
(or large) systems to be implemented for many dif-
ferent users. Conscious selection of the experi-
mental dciscovery strategy may be the only effective
approach to information requirements determ ,tation
when the level of uncertainty is high.

Conclusion

A range of information requirements determina-
tion strategies is needed. Such strategies match
the level of uncertainty about the system specifi-
cation which is to result. The appropriate strat-
egy is determined by the extant contingencies.

Research is needed in two major areas of the
contingency theory: more precise operational def-
initions of the contingencies, and identification
and definition of other factors which effec* the
level of uncertaintv, should he demonstrated. The
range of discovery strategies and corresponding
information requirements determnaat ion methods may

be extended. The results of suck research will
lead to improved sv let ion, ,t met hodologv, and
more effective systems development.

Referetcie%

1. F. W. McFarlan, "Effe tive EI111 Project Manage-
ment," in Mana&in& the_ Dat aResource Function
(R. Nolan, E.). West Publishing Company,

St. Paul, 1974.

2. .I. Galbraith. Deesinivni (olex Organizations,

Addison-Wesley, Reading, MA, 1973.

3. ;. A. (;,rry and M. S. S;cott Morton. "A Frame-

work for Man;, emen' Information Systems,"

Sloan Xana&e.it Review, Volume 13, Number 1.

(Fail 1971). pp. 55-70.

66

A LIFE-CYCLE MODEL BASED ON SYSTEM STRUCTURE

F.N. PARR

Department of Computing and Control
Imperial College, London

Abstract dW-- - = W'(t) 1 - W(t))
A new model for the software dt (2)

development process is presented in which
the rate of progress is determined by the from which equation (1) can be derived.
extent to which the system under
development can be decomposed into modules The function p' (t) defined by this
which permit independent development. The expression is taken to be a "learning
pattern of resource consumption of a curve" which describes how the development
project over its life-cycle can be derived team becomes increasingly skillful in
from this model. The results are compared making decisions or solving problems
with previous predictions of a Rayleigh associated with this particular project.
curve pattern. Any function p' (t) can be plugged into the

model and will generate a predicted
life-cycle pattern belonging to the
Weibull family. However a reasonable fit
with empirical data from actual software
development projects can be obtained by

Introduction choosing a linear learning function
p (t) = a.t . The life-cycle pattern

PUTNAM and NORDEN (1),(2) have resulting from this choice is the Rayleigh
proposed a life cycle model for software function
development effort which predicts that the 2
rate of resource consumption on a project dW -at /2
should have a Weibull distribution in - a.t.e
time. In other words if W(t) is the dt
proportion of the total project completed
by time t then the rate of progress is The general shape of the Rayleigh
give by curve matches a very simple intuitive

dW -p(t) picture of the life-cycle of software.
..-.. p' (t) . e There is an initial design phase during
dt which the rate of resource consumption

increases steadily, a central peak of
effort corresponding to principal
implementation activity and a maintenance

ft phase during which the work rate decays
- p~u)du back to zero. These phases of development

-- dt I - e may be identified with the different
M). assumptions which made up the model of the

development process. The gradual decay of
, , behind this prediction work rate during maintenance is basically

1 lows. The objective the result of the problem space becoming
risponds to some larf exhausted. Since it was assumed that the

r',AA.ms to be solved goal of the software project was some task
'sijn decisions to which could be characterised by a fixed

making these finite pool of problems to be solved, then
-her actually as the work progresses this pool must

• ir,. The rate eventually empty. This must cause some
is assumed form of exponential slowing down of

*,., to the maintenance effort. However, the Rayleigl.
it time model's explanation of the initially

* .!;lable growing work rate in terms of increasing
-h we skill level being available is open to

several criticisms.

67

Firstly, a skill level which just measurements and predictions of life-cycle
grows linearly may be rather unrealistic, behaviour could be made.
Often the staff joining a development
project will have worked on closely The Programming Process
related projects before. There is little
reason to suppose that the skill of these As in the Rayleigh curve theory, the
people improves. It is also the case that new model will explain the decay in
programmers remain with a system only for workrate on an old system in terms of the
a portion of its life-cycle. In that case problem space becoming exhausted. For this
there is no reason for those who join late to happen the software must be intended to
on to be more skillful than those who provide some identifiable service. The
started. Taken to extremes, when a system following principle formalises that
is in the final maintenance stage of its concept.
life and probably has low priority it
would be most unlikely to attract the most Al. A software development project has
expert programmers as the theory suggests. associated with it some large but finite

set of subtasks to be completed - each of
Now it can be argued that linearity which is either a decision to be made or a

is only a first approximation and that problem to be solved.
these objections can be answered by
choosing a more realistic form for the Now this assumption is not intended
learning curve p (t). However, the model to imply that the size of the pool can be
as presented gives little guidance as to accurately predicted in practice before
what functions for p' (t) would be development work begins. It may even be
acceptable. The actual property being the case that the actual design chosen for
measured by p' (t) is not sufficiently the system may affect the size of the
precisely defined to allow an empirical subtask pool. We avoid all these
approach. Ideally one would like to difficulties by treating the subtasks as
measure the skill level on some actual infinitesimally small and normalising the
projects and fit a curve to it. In some total amount of work on each project to be
sense the Rayleigh function model merely one. This has the effect of focusing
transforms the problem rather than solving attention on the pattern of resource
it; the difficulty of predicting the consumption rather than trying to estimate
pattern of resource consumption of a its total amount. For the latter task one
project is exchanged for the difficulty of would need to be able to judge the quality
estimating how the skill level changes. of acutal system designs.

A final objection is that the To explain the increasing workrate in
Rayleigh model fails to distinguish the initial stages of a project something
between innate constraints on the process more detailed than a prediction of
of writing software and management's increasing "skill" level is required. we
economically constrained hiring and claim that the essential mechanism has to
methodology decisions. The trouble is that do with how much work may be carried out
the level of skill available on a project in parallel. At the very beginning of the
depends jointly on how long skilled project only a small team of analysts can
personnel have been assigned to it and be used since they must identify the basic
also on the tools and design methods functions which will be realised by the
which they use. A model based only on software. The initial requirements of
skill level therefore presents a picture design team has only limited use for
of software development as being an computing or programmer resources. It is
unalterable process. A more powerful only after the major functions and their
theory would show how the pattern of interfaces have been identified that these
development may be altered as a result of can be grouped into components and passed
the introduction of new software out for further design and implementation.
ergineering methods. The key fact is that if the initial

decomposition was done well, each of the
This paper presents an alternative components identified can be developed by

life-cycle model for software development separate programmers or teams of
which is based much more closely on the programmers working in parallel. Hence
nature of the development process. The more development resources can be
notion of skill level is replaced with the effectively applied and a faster rate of
idea that strong modularity in a program progress achieved as a result. Thus
is what governs the rate of progress since although management is free to follow any
it allows work by several teams to proceed hiring policy, if the system is to be
in parallel. This concept clarifies the developed as fast as possible for a given
role of project management's apparently cost, the rate of progress will be
free choice to hire staff while at the increasing during development.
same time suggesting how more precise

68

In the above paragraph design of a total project which is both visible and
component (specification of its unsolved at tire t. Then comLining axioms
input/output behaviour) was taken to A3 and A4 gives
always precede implementation. On a
large-scale project it may not be easy to dW
classify activities in that way. It has = a. V(t)
already been convenient to formalize the dt (3)
entire development task as a homogeneous
space of subtasks. At this level of where a is some arbitrary constant.
abstraction the natural way to indicate
which problems may be tackled in parallel The most interesting part of this
is to introduce a dependency relation R on model is concerned with characterising the
the pool of subtasks. rate of change of V(t). Now the only

mechanism for altering V is to complete a
A2. There is some partial order relation R subtask. This will certainly have the
defined on the subtasks of the project effect of removing one problem from the
such that visible-unsolved set; it may also make

x R< y some undetermined number of other unsolved
means that subtask x must be completed subtasks visible. Clearly V depends on the
before work on subtask y can begin, rate at which problems are buing solved:

Relation R has to be a partial order dV dW (average change
because if there were some circular chain ---------- in V for each
of subtasks dt dt problem solved

xl R< x2 R x3 ... R< xl
then the project could never be The actual change in the number of
completed. visible unsolved subtasks whensome problem is solved depends on the

particular problem, the dependency
Progress on the project is achieved relation R and which other problems have

by successively solving the subtasks been solved at that time. If the
defined in Al. As in the opening section particular subtask completed has no
let W(t) denote the proportion of the R-descendents then V is merely decreasedby
project completed at time t - this being one or, more correctly since we are
the ratio of the number of problems working in continuous time, dV/dt=-dW/dt.
solved at that time to the total number of But if there are unsolved R-descendants
problems on the project. Then it is whose other R-ancestors have all been
immediate that W should have value zero solved then these become visible and V may
when the project starts, one when it ends be increased. Clearly it is impracticalto
and increase monotonically in between. The handle each case explicitly so some
rate of progress on the project is dW/dt. averaging is needed.
Since the mechanism for achieving rapid
progress is to work in parallel, it is But the average change for each
reasonable to assume that more development problem solved LV(t) cannot be constant
resources are needed, over the life-cycle of the project. To

explain this we introduce the notion of
A3. The rate at which a software project terminal - a subtask of the project with
consumes programming and computing no R-descendants. Then terminals must be
resources is proportional to the rate of more dense towards the end of the
progress being made namely dW/dt. life-cycle than at the beginning. For a

terminal corresponds to a problem which
Now at time t the amount of the when solved opens up no further work. If

project still unsolved and therefore all the early subtasks in a project were
needing work is 1 - W(t). But in general terminal then the project would quickly
many of these tasks cannot be started at come to an end with no further work to be
time t because the R-relation requires done. Conversely a project with few
that other work be done first. Let us say terminal subtasks in its iater phases
that a problem is visible at time t if would never reach a proper maintenance
all its R-predecessors have been solved at mode. So one must expect that the density
that time. The following axiom formalises of terminals will increase as the project
parallelism as the mechanism of rapid progresses. Consequently LV(t) should
progress. initially be positive (most problems have

several R-descendants which becomeA4. The rate at which a software visible) and gradually turn negative as
development can usefully consume resources the project develops. In iact at the very
is proportional to the number of subtasks end of the project one can be certain that
which are visible and unsolved at that the work being done is terminal so as W(t)
time. L +1 then V(t)+-1.

Let V(t) denote the proportion of the

69

A simple but powerful law with these derived above is a zmooth bell-shaped
properties is curve. If parameter b is chosen with a

b value between one and zero then the curve
A(t) = c - d.W(t) is skewed to the right and becomes quite

similar in appearance to the Rayleigh
where b,c,d are arbitrary constants. In function. It can be argued that this .
order to meet the limiting requirement parameter is a measure of the extent to
above d=c-1. This leads to which a structured programming methodology

was used. For large b values give
dV dW bi dependency relations R with the terminals

- = - . - (c+1).W(t)I particularly strongly clustered toward the
dt dt (4) end. But the main tenet of improved

development methodology is exactly to
which together with equation (3) defines force the early decisions to be structural
the life-cycle pattern predicted by the ones which define modules for subsequent
new model for the development process. implementation; details of low -Level

implementation should be considered only
Analysis of the Model later in the project; these correspond to

terminal decisions. Hence the model could
Combining equations (3) and (4) gives be used to measure whether a project

2 succeeded in using its intended
d W dW b I methodology.

-- = a.- c - (1+c).W(t)
2 dt The fact that this new model predicts

dt life-cycle patterns approximating the
Rayleigh function as a special case is an

which may be integrated as it stands to advantage since empirical evidence has
give been published (2) supporting the use of
dW 1+c b+11 that function. The most obvious difference

..... a[c.W - - .W(t) between this and the Rayleigh curve theory
dt 1+b is that the life-cycle obtained here is

defined over all time rather than just
This can be seen to have the solution positive time. This is no great defect

since for many systems it is impossible to
1 define an exact date when the first

development work relevant to that system
WW(t) = r c+1 -ac(b+1)t 1/(I+b) was done.

+ e Finally it may be possible when
lb+1)c (5) analysing an actual project to obtain a

much more detailed picture of the
The function defined by equation (5) has dependency relation involved by
the desired property that as t becomes constructing some form of PERT chart. This
large and negative W(t) - 0. We also would enable a much tighter relationship
require that the total amount of work on milestones in development than has
the project is 1. This will occur if hitherto been possible. The accuracy of
1+c=(1+b)c which is solved by c=l/b. Hence estimates of completion dates should be
one obtains the simpler formula for improved in consequence.
progress in development

Bibliography

W(t) = (1) P. NORDEN, 'Using Tools for Projectr -a(b+1)t/bl 1/(b+1) Management', Management of Production,
1 + e M.K. Starr (ed.) , Penguin Books,

BPltimore, Md. 1970.
and the corresponding pattern of resoirce
consumption or workrate is found by k?) L. PUTNAM, 'A Macro Estimating
differentiating: Mechodology for Software Development',

(2+b) IFEE Computer Society, Compcon 1976,
.--- Washington D.C., September 1976,

dW a -pt ePt] \1+bI np.138-1 ;3.

dt b

where p = a(b+1)/b

Comments and Conclusions

The general form of the workrate

70

THE IMPLICATIONS OF LIFE CYCLE PHASE INTERRELATIONSHIPS - - .
FOR SOFTWARE COST ESTIMATING . .. -

Robert Thibodeau
E. N. Dodson

General Research Corporation
Economic Resources and Planning Operations

ABSTRACT implicit in our previous analyses. That assumpt-
ion was that life cycle cost is predictable using

Past attempts to establish mathematical ex- variables that simply describe the product and the
pressions that can predict the life cycle cost development environment (i.e., the type of con-
components for software systems have achieved tract, program management technique, etc.). We
only qualified success. The mathematical models have formed the opinion that while all these fact-
for these relationships included only variables hae ret opin ion t thee -that describe the software characteristics and ore are relevant, a large contribution to the re-

source requirements for any one phase derives
related environmental factors. This paper pre- from the ways in which the other phases are com-
sents the hypothesis that software cost estimat- pleted.
ing relationships must include the effects of re-
sources consumed in one life cycle phase on The way the project is executed in terms of
other phases. Such a model is difficult to vali- its relationship to the planned development and
date. This is primarily due to the need for other outside pressures determines haw the re-
greater quantities of data of greater precision o ousie prsuedteis how the re-sou ces are consumed. It also affects the quality
than is usually available. However, a prelimi- of the delivered product.
nary result detained from existing data is
positive. Therefore, additional research is We believe these relationships are intuitive
justified. for persons experienced in project management. We

would like to develop the hypothesis of phase in-
INTRODUCTION terrelationships by walking through two project

histories that illustrate the concept. In the
succeeding sections of the paper we will propose a

Our objective is to obtain reliable esti- model and show the results of applying it to actual
mates of software life cycle costs suitable for data.
initial planning. This requires the establish-
ment of empirical relationships between life
cycle cost and certain variables. We call these THE CASE FOR PHASE INTERRELATIONSHIPS

relationships Cost Estimating Relationships An important factor affecting the utilization
(CERs). of resources is the need to conform to a develop-

Our approach to establishing CERs for soft- ment plan. The plan is an essential management
ware lifercycl oest abeshing silr tof- tool for ensuring that needed resources are avail-ware life cycle costsl,

2
has been similar toabetthprecatherortiendite

other researchers. We have postulated the im- able to the project at the proper time and in the

portant relationships between the products and correct amountS. We would like to see how changes

the amounts of resources needed to develop and in the plan, caused either by changes in require-
operate them. We have collected project data de- ments or by failure to meet commitments, affectoperte hem Wehav coleced rojct atade- coat-driving parameters. Particularly, we would
scribing resources expended and program character- like to see how management actions influence the

istics and tried to substantiate the mathematical
measureable project descriptors.* Understandingexpressions. We have achieved relatively limited this relationship should permit a more accurate

success. The CERs developed to date have relat- analysis of the cost-driving variables.
ively low precision and are applicable only to en-
vironments where resource reporting and defini-
tions are comparable to that in which the data A Project With Significant Interrelationships

were obtained. Our experience is not unique. The Figure 1 shows the time spans and levels of
literature shows that literally hundres of soft- effort for the different phases of a software

ware and environmental parameters occurring sing- development project. This project and the other

ly and in almost endless combinations have been
one in this section are business data processingtested in efforts to predict life cycle coat.

Our failure to obtain quantitative relation- Project descriptors inclt-de man-hours for analy-
ships of a precision comparable to those available sis, coding, testing, etc. (planned and actual),
for estimating the costs of hardware systems has time span for the activities, numbers of per-
let us to question the assumption that was sonnel. application classification, etc.

71

systems deveioped by a military agency for world- of delays and parallel activities has a compound-

wide use. Both systems were written in COBOL. ing detrimental effect on a project schedule.*

Planned values are shown by solid lines and actual For example, when coding is begun before the com-
values by dashed lines. pletion of design, the designers are required to

communicate their results to the programmers in a

Notice that there is considerable scheduled raw, unqualified state (hence significantly in-
overlapping of the Design and Coding activities. creasing1the chance of design errors). Overlapping
This overlapping is a conmon practice, but it in- also rai;es the possibility that the designer may
creases the likelihood that changes in the design not charge a poor procedure when he discovers it,

will require parts of the system to be recoded, because he has already committed himself to the
Such a schedule might have been adopted because programmer. Many times the programmer may fill in

time was short or because people were available missing information by himself. By doing this he
only at certain times. In either case, over- may introduce errors into the system that will not
lapping causes any problems or delays to have in- be discovered until late in the testing program
creased impact on the work. when repairs will be time-consuming and expensive.

The Analysis activity of the project was We are not yet trying to build a case for
carried out at about the ,dfanned level of effort.* cause-and-effect relationships between increased
The long delay in its completion was accompanied consumption of resources and delays and over-
by some delay in the start of the Design activity, lapping activities. We are simply using an ex-
This latter delay was probably beneficial since isting project history to illustrate how inter-
failure to delay the start of an overlapped actions among activities may be seen to influence
activity can increase scheduling problems. How- the expected resource requirements. On the basis

ever, completion of Anelysis lagged until three of a single project one could simply conclude that
months after its scheduled date, and in the mean- the project was poorly planned and executed.
while both the Design and Coding activities were
started. A Project With Few Interrelationships

The delay in the completion of Analysis in- Figure 2 shows a project that was completed
dicates that some needed information was missing, in a better fashion. The Analysis and Design
some procedures were not defined, or unexpected activities overlapped but, significantly, the de-
problems occurred. Going ahead with the Design and sign was completed before coding started. Less
Coding activities would almost assure an increase effort was put into the analysis than had been
in the time required to code and test the system. planned, but there was an increase in the hours
This is a good example of one type of interaction required for the design:'**
between activities. The increased coding and test-
ing hours would not be predicted by any method that
relied solely on parameters related to those
activities. This is not to suggest that systems cannot be de-

veloped with overlapping activities. Many sys-

The delays, along with the substantial over- tems have distinct parts that can be coded before
lapping, were associated with a significant in- the entire design is completed. In a top-down de-
crease in the resources required to complete the sign where coding is by tiers, the coding can
project: often begin before the design is complete. These

are planned developments that would permit the
Estimated Actual Percent overlapping of these functions. We are concerned

Activity Man-Months Man-Months Increase here with the situation where the press of the

Analysis 4.5 6.6 47 development schedule or the slippage of preceding
Design 9.1 9.9 9 activities results in overlapping activities that
dig 419.1 36 would have been accomplished better sequentially.
Test & Even in a planned implementation of parallel

Integration 4.2 10.6 152 activities, however (and this includes top-downQualification design), whenever the coding begins before the de-

Testing 2.2 6.0 173 sign is completed there is an increased risk of
changes to the design or of mismatches in sub-

24.5 52.7 115 system interfaces. The project management must
weigh these risks in relation to the need for work-

The figures indicate that, for this project, load balancing and project scheduling.
delays and overlapped activities were associated
with large increases in the onsumption of re-

sources over what was expected. The combination
Many software development activities are difficult
to define. The line between analysis and design
becomes blurred in practice. In some instances

both functions are performed by the same individ-
We divided total man-hours by time span to de- ual, who may also do some or all of the coding.
termine average staffing. Therefore, any gaps in It may be that in this instance some of the analy-
the work would reduce the calculated staffing. sis hours were reported as design.

72

Percent in explaining the cost of testing is the effort
Estimated Actual Increase given to the earlier activity of design.* We be-

Activity Man-Months Man-Months (Decrease) lieve there exists--in effect-- the following type

Analysis 43 24 (44) of relationship.

Design 12 16 33

Coding 28 37 32

Test &
Integration 12 9 (25)

Qualification
Testing 3 6 00

98 92 (6)V
UJ

Lo

The project was completed on schedule. -

Notice that the project described in Figure 2 U_ _ _

was scheduled to have the Analysis phase continue MAN-MONTHS OF DESIGN
until after the completion of the design activi-

ties. This occurs most often when the system
specifications are not fully developed at the
start of the project. Functional requirements are This curve indicates that--over some range--if
allowed to change during the Design phase much more the effort given to design is reduced, there will
than a pragmatic approach would dictate. This is will be added effort required during the testing
the case with many information-system developments (as well as coding) phases because of errors and
where management participation in defining func- difficulties with the program. Conversely,
tional requirements is not sufficient. As details additional time spent in design of the software
of the design become established, the impacts of will reduce subsequent effort required for test-
the specifications become more apparent to members ing (and for coding).
of management, and their reactions require changes
in the specifications. Many project managers, Similar arguments can be made about rela-
therefore, do not attempt to finalize the system tionships between resources expended in coding or
specifications. Instead, they schedule the testing and the subsequent effect upon required
Analysis and Design phases concurrently. The resources after the software is installed. In
period of analysis after the completion of the de- these cases, man-months of coding or man-months

sign is used to complete the documentation of the of testing would be the abscissa and man-months
specifications. of maintenance would define the ordinate.

Another consequence of allowing the complet- These interrelationships pose a number of
ion of specifications to wait until the design is distinct analytical problems. First, the trade-
completed is that the effort required to make the off indicated above is shown for a given program
specification changes tends to be reported as part size. A simplistic attempt to correlate actual
of the coding and subsequent activities. Analysis design and testing resources without including
of project data from this point of view suggests program size will almost invariably result in a
that the practice may be quite common. Similar positive correlation. This is because total re-
problems of distinguishing product and resource source requirements tend to increase with program
consumption occur in other life cycle phases. size (and/or complexity) in a typical data base.
This complicates the analysis of phase inter- A data base is required that is large enough to
relationships. identify the variations in design and testing for

a constant program size; in effect, to determine

The preceding discussion has been presented the relationships illustrated below:**
in support of the contention that the relation-
ships among the software development phases may be ,
extensive and very important to the consumption of The importance of adequate design effort is
resources. As will be shown later, these relation- stressed throughout the literature. For ex-
ships extend into the Operation phase. ample, Boehm, et.al.,

3
in an analysis of soft-

ware errors found that design errors outweighed

JUSTIFICATION OF THE SELECTED MODEL coding errors 64% to 36%. Moreover, design
elturs took far longer to detect and correct.

Tradeoffs Between Phases

Considering the above discussion, we are in- Mathematically, these relationships can be ex-
terested in proving a methematical relationship Xc -alPXdb (or P b aoXdbX) where
that in addition to some measure of the product pressed as
resulting from the expenditure of resources con- X . design resources, Xt - test resources, and
tains a number of significant interrelationships d

among phases of the software life cycle. We want P - program size (or complexity), i.e., a measure
to show, for example, that a significant element of output.

73

1 2 3 4 5 6 7 8

x 7*4 ANALYSIS AND DESIGN

M CODING AND CHECKOUT

IP M4 TESTING

'H/MHO .AINTENANCE >

" P CHANGES NO N0 NO NO YES YES NO NO
0'~ P2

C
REPORTED ERROR RATECr Pl

0' 1 EQUAL TO IDEAL

MAN-MONTHS OF DESIGN GER THAN IDEAL

Where P1 P2' P3 are successively larger program Figure 3. Postulated Trade-Offs Among

sizes. Life-Cycle Man-Hour Parameters

The Proposed Model

These relationships are comparable to those For example, the second column indicates

discussed in basic economic tests on production that, with all other activities corresponding to

theory. However, the interrelationships among the the ideal and with no changes, less than ideal

phases are actually more complex. Design, coding, effort spnd on coding and checkout would be ex-

testing, and maintenance are all interrelated. A pected to cause a higher error rate of the de-

limitation on design resources may be passed livered software than the ideal.*

through all the way to maintenance. When the

system is installed, the logic and coding in- In conclusion: the development of low-risk,

adequacies stemming from insufficient design be- practical life-cycle cost estimating relation-

come apparent as added costs for program revision, ships requires the consideration of the inter-

Graphically, the result is a multi-dimension actions among the activities or phases. Further-

tradeoff surface. Arithmetically, the relation- more, we postulate that any analysis that does not

ships are of the following form: include these interactions will not succeed in
reducing the scatter that makes existing software

b Xc Xd Xk cost estimating schemes unsuitable for effective

d c t m project planning and control.

We believe that a few relationships should

dominate in this multi-dimensional set of pro- Data Collection Problems

spective interrelationships. The most important

is hypothesized to be between design and the sub- The interactions among life cycle phases de-

sequent testing period. If the results of the scribed by the above model pose some practical

testing period were reasonably uniform in terms of problems in data collection and interpretation

remaining errors, then the hypothesis could be that must be solved before valid data will be ob-

left simply between the Design and Testing phases. tained. To firmly establish the determinants of

However, the number of errors found during the software costs, we believe that actual cost data

Operations phase varies widely among reported must be recorded in keeping with a refined process

project histories. Thus, we broaden the hypothe- model that describes the interactions that occur

sis to state that reduced resources--relative to during system development.
1

In particular, man-

some norm--given to the design phase will result hours expended for, say, recoding during the

in greater resource requirements for testing and/ nominal testing phase should be recorded as such.

or in higher error rates during the Operations
phase.

Similarly, if insufficient resources are

committed to the coding phase, one can expect

(1) a requirement for more extensive resources One might argue that the "ideal" error rate would

during Test, and/or (2) higher error rates during be zero; but a practical solution would be to

the Operations phase. avoid spending large amounts of resources to
achieve zero errors. Therefore, it would be ex-

Figure 3 illustrates some other departures pected that proper planning would allow for some

from the ideal which may occur, and how they may small acceptable error rate. Obviously, this

be reflected in the error rate of the delivered tolerance of errors does not apply to defense
software, which is indicative of the reliability systems or man-rated systems, but it would be

of the software. acceptable for most information systems.

74

An adequate cost-reporting system also re- was fit to the data. The result is shown in

quires a corresponding record of the output (e.g., Figure 4.

lints of code) that is associated with the cost.
This is one of the major problems in cost-control The curvq show a definite tradeoff between

of software programs--it is comparatively easy to design effort and coding and testing. Further-

establish what costs have been incurred; the more, there is a diminishing return in reducing

missing element is the amount of progress that has coding and test time obtained by increasing the

been made. design effort beyond a certain point. This point
increases markedly with increasing program size.

APPLICATION TO AVAILABLE DATA There is an indication of a very heavy penalty for
failing to perform some minimum amount of design.

There is no shortage of mathematical rela-
tionships describing software phenomena. What is CONCLUSIONS

in pitifully short supply is reliable data with
which to prove them. Our selection of a hypo- The phase interrelationships hypothesis is an

thesis has increased the quantity and precision of intuitively satisfying model for explaining soft-

the data required to prove it. However, we be- ware life cycle resource requirements. Looking

lieve that no existing approach to modeling life along this line is justified by the failure of

cycle costs has been successful. Therefore, ex- simplier approaches.

tending the complexity of the model and conse-
quently the data requirement may be justified if A preliminary empirical test of the hypothe-

they produce a better prediction of resource sis with an extremely small data set is positive.

requirements. REFERENCES

It is especially difficult to obtain data de-
scribing the individual phases of the software 1. Graver, C.A., et.al., Cost Reporting Elements

life cyle. and Activity Cost Tradeoffs for Defense System
Software, CR-l-721, General Research

Life cycle phases are not defined consist- Corporation, March 1977.

ently or even accurately for most software
development projects. The activities that com- 2. Dodson, E.N., et.al., Advanced Cost Estimating

prise analysis as opposed to design are not clear- and Synthesis Techniques for Avionics Data

ly stated or understood by most project managers. Processing Software and Hardware, CR-l-701,
Furthermore, most of them don't care because they General Research Corporation, December 1976.
have more important problems to deal with,

3. Boehm, B.W., McClean, R.K., and Urfrig, D.B.,

If a milestone concept is used in the project Some Experience with Automated Aids to the

management, the project goes from, say, design to Design of Large-Scale Reliable Software,

coding at a specified point in time. If there are IEEE Transactions on Software Engineering,

changes to the design, the required effort will be Vol. SE-l, No. 1, March 1975.

reported as coding.

Even when projects are reported by activity,
it is difficult to distinguish consistently among
coding, unit testing, and system testing. These
activities may be conducted at several levels
simultaneously. Changes or detected errors can
require reiterations among the activities.

As a preliminary test of the phase interre-
lationships model, we attempted to use some available
data to describe the tradeoff between Design and
Coding and Testing. Coding and Testing were com-
bined in order to avoid the problem of distin-
guishing between these two phases.

Data was available from fourteen defense

system projects. An equation of the form:

- 40 M"
C

Where I - Size of delivered program in

0 lO00s of object instructions

D "anuonthe of system design

MMCT - Manmonths of coding and testing

a, b, c - Constants

75

TIME

6/10/74 12/9/74 1/24/75 5/23/75 9/9/75

A LY i i -I I i3 I i I i I I I i

DESIGN

LOWING CODING MA ' I
INTEGRATIAN j
TESTING I

I I

QUALIFICATION

TESTING - -...-

- PLANNED MITN
ACTUAL

Figure 1. Scheduled and Actual Activities in a Software Development:
Example 1

TIME

9/10/73 11/1/73 7/27/74 11/19/74

ANALYSIS-----

IOOUR INTEG AON

LOAING TESTING I

QUALIFICATION --- I

TESTING

-PL.ANNED AINTENANCE = =a

--- ACTAL

Figure 2. Scheduled and Actual Activities in a Software Development:
Example 2

lop!

I7-

1200

1 002040 0 0010

DEINMAMNh
--7-----

Fiue80e0iosisBten einEfr adCdn n TsigEfr

LIFF CYCLE MANAGEMENT METHODOLOGY
DYNAMICS-PRACTICE

"Software Technology and System Integration"
Robert McHenry & J.A. Rand

IBM Corporation

"Establishing a Subjective Prior Distribution
for the Application of Life-Cycle Management

for Computer Software:
George J. Schick & Chi-Yuan Lin

University of Southern California

"Design Process Analysis Modeling--An Approach for
Improving the System Design Process"

Barbara C. Stewart
Honeywell Systems and Research Center

"Life-Cycle Cost inalysis of Instruction--Set
Architecture Standardization for Military

Computer-Based System's"
Harold Stone, University of Massachusetts

Aaron Coleman, U.S. Army

"Useful Evaluation Tcols in the Design Process"
C.E. Velez

Martin-Marietta Aerospace Corporation

"Programmers Are Too Valuable to Be Trusted to Computers"

Gerald M. Weinberg, Ethnotecn, Inc.

"Software Cost Modeling: Some Lessons Learned"
R.W. Wolverton & B.W. Boehm

TRW Defense & Space Systems Group

77

SUMMARY

SOFTWARE TECHNOLOGY AND SYSTEM INTEGRATION

R. C. McHenry and J. A. Rand

IBM Corporation

Gaithersburg, Maryland

ABSTRACT The key characteristics of top-down development

suggest that:

Perhaps the least appreciated area of modern a. The evolving software is always
software technology is top-down development. Top- executable as a system
down development is far more than a programming
technique suitable for application to an b. The process is self-integrating.
individual work assignment. Top-down development
is a rich and powerful technique for project An adaptation of the top-down approach uas
implementation and for system integration. The conceived by O'Neill in 1972 and demonstrated in
characteristics of the top-down process the overlapped development and integration of the
(executable as a system and self-integrating) TRIDENT Command and Control System (3). The
suggest that the process may be a foundation of concept is that software, unlike hardware, can be
integration engineering, implemented in a system sense to be always

executable and that system integration can proceed
from the software (i.e., the computer) to the non-

INTRODUCTION programmable hardware.

In th'iJr previous report I , which introduced the
This paper provides key exerpts from a recent IBM term "integration enginzering", the authors
technical report (FSD 78-0034) by the authors. In generalized the top-down adaptation by defining a
addition, the workshop presentation summarizes the top for any system and by relating the system top
example system employed in the full report. to an integration strategy. The top of any system

is the logic for transitioning the system from
A number of trends in data processing appear to state to state. This definition is general since
justify establishing a discipline of integration even the simplist system must be turned on and
engineering. These trends include: off. In more complex systems there art, many

states including:
a. Aggregating larger systems

a. Initialization
b. Requiring higher availability

h. Maintenance

c. Distributing systems
c. Development

d. Developing systems concurrently.
d. Training

Mills has defined software as logical doctrine for
the harmonious cooperation of people and machines e. Reduced function
(1). When a system is defined to be a coherent
assemblage of people and hardware with specific f. Full function
capabilities, the system engineering and related
operating rules are, in fact, implemented in the g. Termination.
operational software. From this perspective, we
speculate that system integration and integration A key integration engineering hypothesis is that
engineering technology can be approached from transitioning logic is a candidate integration
software technology, strategy.

Our speculation can be illustrated, and perhaps The need for integration ,ngineering technology is
substantiated, by a single approach, top-down greater than the need for systems, hardware, or
development. Top-down development is one of the software engineering technology. Far more tools
least appreciated facets of software technology, exist to support design and development. In fact,
Top-down development is more than a individual implementational technology has progressed beyond
work assignment technique; it is a profound our ability to effectively employ it. The
technical and managerial strategy as well (2). continuing improvements in data processing

78

hardware have led to the introduction of Preoccupation with the full operational function
programmable hardware into many traditional non- state can lead to an unsatisfactory system since
programmable subsystems. While the resulting the early work must also specify the procedures
systems may be thought of as distributed, they required to transition the system from state to

often result from subsystem rather than system state. The requirements determination process
decisions. which precedes system development must specify the

functional availability (e.g., tolerable outage)

requirements to guide the eventual development of

OBJECTIVES procedure configurations for each state.

Each state has instrinsic procedures and exists in

The objectives of integration engineering will be a broader procedural environment which enables

realized by an approach that places state transition from state to state. A system top is

transitioning at the top of the system. Component the transitioning procedure and this perspective

boundaries for integration are not drawn between helps drive the entire process (function,
hardware and software. The boundaries are drawn development, test, operation).

around analyses that define the system states and
the state transitioning. Maintenance, training, Prototypes
and reduced function states thereby become an
integral part of the design and development Prototype systems are developed for concept
process, and appear as early milestones on the validation, feasibility determination, or
integration schedule, benchmark calibration purposes. The sussessful

prototype generally represents an early step in a

Early deliveries are aimed at integrating the major system acquisition. While the successful

lowest operating level (i.e., the maintenance prototype overcomes the certainty of specific
state): the configuration with the minimum failures, the typical prototype does not guarantee

available hardware. Each successive delivery (and full scale success. Serious problems or
integration) can be viewed as a transition from disappointing performance may arisr in scaling up
one operating state to the next higher one. After to an operational system. Consideration must be

integration of the final deliveries (full up given to scaling problems throughout the prototype

state), the preceding deliveries are retained planning.
rather than discarded.

One approach to prototyping is to scale down from
Delivery of a maintenanct state allows for the system design to the prototype design. In an

integration of hardware/software from a component evolutionary development approach, the prototype

level through the subsystem to the system level is a subset of the intended system. The prototype
with continuous availability of system test may, in fact, be an operational state of the

elements. This allows for verification of intended system.
performance at each level of integration without
dependence on higher levels performing correctly. Integiration

Since software, unlike hardware, can be
APPROACH implemented in a system sense to be always

executable, the system integration should proceed
from software (i.e., the computer) to the

Some underlying concepts of integration nonprogrammable hardware. Phased deliveries of
engineering are presented in the following software to software/hardware integration ensure

paragraphs. intermediate evaluations where managers can
determine progress and acceptability of

Top-Down Implementation concurrently developed components. Phased
deliveries provide the means of integrating

The top-down approach is patterned after the hardware and software incrementally rather than as

natural approach to system design and requires one enormous task late in the project. The
that programming proceed from developing the problems are found and corrected earlier uhile
control architecture (interface) statements and more schedule is available for retesting.
data definitions downward to developing and
integrating the function units. Top-down The test system should also be built incrementally

programming is an ordering of system development by phasing its development to match the system
which allows for continual integration of the test and integiation phasing.
parts as they are developed and provides for

interfaces prior to the parts being developed. Earlier, operating states were des(ribed and the
state transitioning procedures were considered to

Operatin& Modes be a top of any system. A process is postulated
to exploit the transitioning procedures as a

Operating st3tes or modes describe the various strategy for implementing and integrating the

configuratiols of system resources (people, larger than software system. The process

programs and equipment) which operate the system. considerations are:

p AD-AIIA 212 INTERNATIONAL BUSINESS SERVICES INC WASHINGTON DC F/6 9/2 ,
SOFTWARE LIFE CYCLE MANAGEMENT WORKSHOP (2ND) AUGUST 21-22 , 197--ETC 7U)AUG 78 V R GASILI, E H ELY OAAK70-7R-D-O030

UNCLASSIFIED 78CH1390-4C NL21 3lflllll llll
EEl/I/EEEEI!/E
E/I/I/E//EII/E
EE/IEI/IIEIII
EEEEEEEI/EEEI
///EIIEEEEEEEE
Im/I///I/EEEEEEE

79

a. The number of states and transitions a. Interface tests to assess hardware
required for integrating the system may integration during operation and testing
exceed the number required for operating
the system. b. Operability tests to assess functional

avai lability

b. The testing of reduced function
states is

progressive and is an integration process c. Equipment tests to assess availability
by-product rather than an afterthought to and to support corrective or preventive
full function state testing. The more maintenance
critical functions (i.e., those functions
occurring in more states) receive more d. Component status determination to support
testing. reconfiguration

c. Where development funding is spread over e. Data extraction for presentation or
many years (or under design-to-cost subsequent analysis.

limits) the evolving system can be
executed as a reduced system for testing In addition, the personnel readiness functions
or limited operation. (training and exercise) can be integrated into the

operational system.
Incremental Development ApklicabilitytoSubsystems

The top-down approach is applied in discrete
stages (initial, intermediate, final) to improve The analytical process by which a system is
manageability. Each stage is carried to readiness partitioned into states can be applied to
for system integration, subsystems and lower level subdivisions. A result

of the process is the transitioning procedure
The initial stage begins early in the schedule, which employs system parameters in its conditional
after the design specifications are developed, to logic. While we may consider any conditional
exercise and validate the interface between expression as choosing among states, at some point
executive and functional software and to obtain an we cease to distinguish states unless a
early validation of computer utilization software/hardware/people reconfiguration or major
allocations. component state change is involved. At the system

level we may wish to consider intra-subsystem
The intermediate stages are developed to exercise states as sub-states. (Sub-states have the
and vaildate the functional software interfaces property of being nested within states).
and selected critical system functions.
Simulation software provides inputs to the Now if we consider testing and more particularly
functional software in lieu of actual hardware integration to be conditional in nature, we may
inputs. Intermediate stage software is used for consider test and integration as transitioning
interface validation and early system hardware procedures. Similarly, incremental development
integration. may be considered in a transitional context.

The scheduling of initial and intermediate stages
must provide time for appraisal and redirection of TRANSITION MANAGEMENT
development. The final stage is developed to
provide all functions the software is required to
perform. A key hypothesis of integration engineering is

that the state and transition management is a
Software integration and verification is a natural part (i.e., the top) of the system and
controlled process by which intermediate and final should not require schedule extensions for
deliveries are integrated in simulation testing. Transition management is the
environments which at successive tests more fully implementation of the integration engineering
approximate actual use. The objectives are to apprcach stated under APPROACH. Some work remains
verify that the integrated software will perform to be done in order to generalize transition
its specified functions in the simulated implementation. The issues include the degree to
environment and to reduce the number of problems which:
encountered during system test and evaluation.

a. Transition management is dependent on the
System Readiness Functions operating system

In complex systems, the various assessment and b. The transition management function is
hardware maintenance support functions must be distributed in a distributed system
integrated into the operational system. These
functions include: c. The actual configuration/state is

transparent to the application functions

80

d. System readiness functions are various complete functions can be
implemented. performed.

Transition management, like integration b. Interface tests assess the capability of
engineering, exposes most system design issues all hardware units to intercommunicate
from the basic system architecture to component properly and to perform their electrical
reliability requirements. However, every system functions correctly. This test should
is in some way unique in the parameters that address each individual hardware unit and
define transition management. all of its signal interfaces. Detected

hardware unit failures should be
9perating System immediately displayed.

Transition management can be viewed as part of, a c. Alignment tests assist in the assessment
superset of, or a subset of the operating system. of sensor and/or system alignment
In practice transition management is all three, parameters.
If, however, the operating system interface to the
functions required by transition management (e.g., d. Performance monitoring tests check each
system loader, fault recovery, interrupt equipment unit and interface for proper
processing) is well defined and documented, then operation.
the degree of dependence would be minimized.

e. Fault location tests exercise the unit to
Distributed Management make a detailed determination of the

exact nature and location of the failure
The transition management function is completely for repair. They require that the
dependent on the system architecture. For subject equipment be dedicated to testing
example, in a distributed system the transition and repair.
management function itself could be distributed.
The issues raised here are the same as those These tests are required to operate "online" in
raised in connection with a distributed data that they will run concurrently with the
management system (e.g., master/slave versus peer operational program without any system
to peer, dead-lock avoidance, functional degradation, as opposed to an "offline" test which
integrity). The resolution of these issues leads is conducted independently of the operational
directly to questions about global status data, program and prohibits that program from meeting
informafion hiding, and the connectivity between its designated operational requirements.
nodes.

Application Functions REFERENCES

Obviously, the application functions must be
designed to be independent of the system 1. H.D. Mills, "Software Engineering," Science,
configuration. This is, however, achievable in Vol. 195, No. 4283, March 1977.
any system and made easier by functional bus
addressing (4). 2. C. L. McGowan and R. C. McHenry, "Software

Management," Research Directions in Software
System Readiness Technology, MIT Press, 1978.

The system readiness functions are the single most 3. R. C. McHenry and J. A. Rand, "Integration
important element to transition management, and Engineering: An Approach to Rapid System
one of the critical tools for integration Deployment," FSD 77-0179, IBM Corporation,
engineering. If the system has the flexibility Gaithersburg, 1977.
and redundancy to totally (or partially) recover
from a single failure, but cannot detect the 4. R. C. McHenry and J. A. Rand, "Software
failure when it occurs, then the system Technology and Integration Engineering,"
flexibility is wasted. FSD 78-0034, IBM Corporation, Gaithersburg,

1977.
The system readiness functions must provide fully
integrated, online system tests and equipment
diagnostics that operate in realtime. The
function should continually assess system
readiness to meet the defined mission while
causing minimum degradation to the operational
system. The readiness functions should include
the following tests:

a. Operability tests assess the capability
of the entire system to perform as
required. The test should address the
system as a whole and verify that the

81

ESTABLISHING A SUBJECTIVE PRIOR DISTRIBUTION FOR THE

APPLICATION OF LIFE CYCLE MANAGEMENT FOR COMPUTER SOFTWARE

G.J. SCHICK
and

CHI-YUAN LIN

UNIVERSITY OF SOUTHERN CALIFORNIA

ABSTRACT b. From the general shape of these functions afamily of probability functions are sugges-

In the development of large scale computer soft- ted. For instance an inverted gamma distri-
ware and in the management of the development pro- bution, a beta distribution, or say a log
cess it is often useful to model the reliability normal distribution might be hypothesized.
and/or the cost of development of these software Some of the summary output of the first
packages. The literature has many references that program become inputs for finding the para-
assume a model and show its usefulness as a manage- meters of the assumed distributions
ment tool. The reader is referred to references
[29 through 41]. Several of these publications use An example.of alog normal distribution is used
Bayesian methodology. There are divided opinions but other families of distributions could have been
as to the application of some of these models, e.g. selected as well.
some authors feel the exponential distribution found
so useful in the reliability field for hardware This paper does not explicitly deal with the
should not be applied to software. Others vehement- derivation of the posterior distribution which is
ly disagree. In fact some even show data that seem found via Bayes' Theorem in conjunction with in-
to substantiate their belief. The papers relating coming data. The prior distribution, however, is
to Bayesian methodology also assume a prior distri- an essential part of finding the posterior dis-
bution [34,35,36,37]. These assumptions in turn tribution. If the prior distribution found is in-
can also be challenged. In order to get an idea of tegrated with test information as data become
what type of a probability distribution might be available, then obviously this is more complete
apDlicable and what mathematical form might be ap- information than just test information alone.
propriate we offer here a structured approach in
assessing the probability distribution subjectively. INTRODUCTION
It is possible to base the analysis on either (1)the
subjective nrior distribution when no test data are The importance of consistent prior distribu-
ivailable, or on (2) a posterior distribution which tions is two-fold. First, these distributions re-
with the use of Bayes' Theorem, combines the prior flect consistent initial predictions because they
distribution with the likelihood function (the sam- are developed by a structured process. Second,
plinq evidence). these distributions are the starting point for

applying Bayes' Theorem to develop the posterior
It is probably true that the engineering prac- distribution by modifying the prior distribution

titioners by and large are not familar with Bayesian with actual data available later.
statistical concepts. Of course, there are excep-
tions. This paper offers a methodology of assessing This paper will show how a prior distribution
a prior distribution subjectively. Once this has can be found subjectively, even though no collater-
been done the general shape of the distribution can al data are available. Then, once this has been
be ascertained, then the search for the mathematical achieved, a family of known probability functions
form is greatly simplified. For instance, the pro- is used to ascertain if the found prior distribu-
bability distribution may be skewed, not exist for tion belongs to the given family. This paper does
negative values vf the random variable. This would not address the subject of determining the poster-
eliminate a wole series of probability models like ior distribution.
e.g., the normal distribution and give rise to a
host of others. While it is still possible to se- Two interactive computer programs were writ-
lect a model from many available basic models, the ten.
selection process is at least based upon sore c, -
dence, namely the opinion of the experts in charge a. Subjective assessment of fractiles.
of developing the software package. Two computer
programs were written. b. Using some of the fractiles found in (a),

a. Assessing a subjective prior distribution by the parameters of the log normal distribu-
elicitating answers to questions on a CRT tion are found. A log normal distribution
(Cathodp Ray Tube). The answers to these has been selected as an example but any
questions are used to plot the distribution other pertinent distribution could have
function as well as the density function, been used.

82

PREVIOUS WORK rather than laboratory experiments. They discuss probability encoding
in the context of decision analysis and popose the use -of a

More recently, decision theory has been considered as a general probability wheel to facilitate the encoding process.

framework for logical analysis of a decision problem under
uncertainty. As such, considerable attention has been given to At the Reliability Conference in 1970, Lin and Schsck 1131
problem formulation and methods for the assessment of a prior presented the use of an on-line computer system to assist a person in
distribution. For example, Schlaifer's recent book (221 is largely developing a prior distribution to represent his beliefs. Although the
devoted to the formulation and prior analysis of decision problems; console-aided procedure is illustrated by a problem in the reliability
posterior analysis is discussed only in the last part of the text. Howard field, this procedure is applicable to assessment of any prior
and his associates (see, for example, I I I I and 1251) have emphasized distribution. Since then, considerable experience with this procedure
the application of decision theory to complex, dynamic, and uncertain has been gained from experiments involving students in several
decision problems. In dealing with these problems, they have saitc n eiinter lse tteUiest fSuhr
explicitly included the problem formulation phase in the decision satistian
analysis cycle. California.

Decision theory, either concerned with specific models or general The present paper results from the authors' continued effort in
frameworks, treats uncertainty through subjective probability and making the probability assessment more practical by using modern
treats attitude toward risk through utility theory. Regardless of electronic computers. This paper offers a newly designed computer
whether the decision maker is concerned with prior or posterior program which has incorporated the experience gained from the use of
analysis, the prior probability distribution, reflecting his quantified

judgments about uncertainty, is an indispensable input to the analysis, the previous program. To simplify the assessment procedure, the new
program: (a) reduces the number of questions significantly (from 12

One difficulty associated with probability assessment is the to 6), (b) is highly conversational and interactive, (c) checks for
assessor's inconsistencies which often occur in formulating a pior consistency as the user answers question by question, (d) uses
distribution. The question of how to discover and remove graphical display rather than the typewriter terminal to help the user
inconsistencies is of general interest to decision analysts. Another visualize the assessment process as well as to greatly increase the speed
question of interest is how to fit a probability distribution using the of drawing the assessed probability curves, and (e) plots not only the
asse..ed fractile in order to make the subsequent analysis more cumulative function but also the density function. Once a subjective
tractable. Both of these questions are addressed in this paper. The distribution has been determined, a second computer program will fit
paper olfers two computer programs. The first program allows a a lognormal distribution to the subjective distribution to make the
person to interact with the computer via a graphical device (Cathode subsequent analysis of debugging problems more tractable
Ray Tube ICRTII durng his course of establishing a sibjective mathematically,
distribution. The second program fits a lognormal distribution to the
subjective distribution, METHOD OF ASSESSMENT

During recent years. subjective probability has been studied by Several methods have been suggested for estimating prior
researchers in various disciplines such as psychology, mathematics, distributions (see, for example, 1q 1. 1171. and 126l) Our computer
statistics, engineering, and business administration (as evidenced by program makes use of the method of equally likely suhintervals. which
the references at the end of the paper). While some of these studies are perhaps is the most commonly used approach. The basic idea of this
mainly theoretical or philosophical, others are experimentad. method is to ask the dectston maker, at any stage, to divide a given

interval into two judgmentally equally likely subintervals.
In their text 1171, Pratt, Raiffa. and Schlaifer present the

method of equally likely subintervals. Subsequently, Raiffa 1181 To begin with, the interval covering all possible values of an
illustrates this method in detail by providing a dialogue between a uncertain quantity (usually called a random variable) is split into two
decision analyst and his client. Schlaifer I221 advocates this method subintervals and the decision maker is asked to choose which
and offers a computer program for fitting a cumulative function subinterval to bet on. The dividing point is then changed until he feels
through assessed fractiles. indifferent between betting on one or the other subintervpi. When the

indifference point is reached, the decision maker feels that it is equally
For his experimental study, Winkler 126) developed a likely that the actual value of the uncertain quantity will fall above (to

questionnaire using four assessment techniques: (a) Cumulative the right of) or below (to the left of) this point. The indifference
Distribution Function - assessment of fractiles by means of equally point, which divides the entire interval into two subintervals with
likely subintervals or direct questions regarding fractiles, equal probabilities, is the median. Next, the decision maker is asked to
(b) Hypothetical Future Samples. (c) Equivalent Prior Sample specify a point which will further divide the subinterval to the left of
Information, and (d) Probability Density Function. He used this the median into two equally likely parts. This new point is the first
questionnaire to elicit prior distributions from 38 selected subjects quartile. Similarly, the subinterval to the right of the median may be
involved in his study. further divided into two equally likely parts. The decision maker may

proceed in this manner to divide any given interval (generated
The ue of penalty functions, or scoring methods, has been previously) into two equally likely subintervals.

discussed by several researchers as means of encouraging honest
asaessments. Specifically, de Finetti 131 presents the quadratic scoring Suppose we let xk designate the kth fractile of the uncertain
rule. Savage 1211 derives the general daft of strictly proper scoring quantity i, i.e.,
rules by considering probabilities as special cases of rates of
substitutions. Winklee discuses the use of scoring rules and other P(;4xk)k , 0 It I
payoff schemes (271 and reports his experimental results 1281.

Then, using the method of equally likely subintervals, the decision
StIl on Holstein and his associates (t241 and 1251) focus on maker is asked to respond to a series of questions which will lead to a

the subject of eliciting the opinions of experts in practical situations determination of xk values for such k as 0.5, 0.25, 0.75, etc.

83

COMPUTER PROGRAM The assessments thus obtained are summarized on the CRT The
program then fits a smooth cumulative distribution function through

The program stores a set of questions for tile method of equally the assessed fractiles. At your request, it will plot the cumulative curve
ikt subintervals Th qtstions are displayed successively oil a and the corre~pondtng density curve. If these graphs do not seem to
('RT, the user responds to the question, by typing his answers oil a refledt your judgments about the uncertain quantity, you will be
teletype. The response to each of the questions is processed guided by the program to revise your previous responses. Whenever
immediately and checked for logical consistency. yot are satisfied with the assessed distnbution. the mean and the

Asstimitig you are ile User of tile program, the first question calls standard deviation are computed. In addition, you may ask for 0.005.

for the lower limit of the probability distribution by asking you to: 0.015, 0.025 , 0.95 fractiles of the distribution.

"Specify the largest value such that you feel virtually COMPUTER OUTPUT

certain that the actual value of the Uncertain quantity will
fall abee thli value ' To illustrate the computerized method of probability assessment

discussed above, the computer output of an example is presented In
The second question. oii the oiher hand. calls for the tipper limit of this example. the expert is asked to quantify his judgments concerning
the distribution by asking ou to the debugging hours for a particular job. As we can see from this

output, the expert violates some of the probability axioms and is
"Spe ify the smallest value such that you feel virtually asked to revise his responses several times.
certain that the actual value of the uncertain quantity will
fall below thils salue'" THIS PROGRAM IS DESIGNED TO ASSIST YOU IN iAi QUANTIFYING YOUR

PROBABILITY JUDGMENTS CONCERNING AN UNCERTAIN QUANTITY,

In terms of the fractile notation described earlier. the first question ii) CALCULATING THE MEAN AND STANDARD DEVIATION OF THE PROBABILITY
DISTRIBUTION OBTAINED FROM THIS QUANTIFICATION. AND (C) FITTING THE

asks for xo and the second question asks for x1 . Vie progzram will ASSESSED DISTRIBUTION TO A THEORETICAL DISTRIBUTION

check to see if so is less than x I and if you feel virtually certain that
the actual Value of the uiicertain quantity will lie in between x0 and WHAT IS THE UNCERTAIN QUANTITY OF YOUR CONCERN NOW'

x I JNUIBER OF VE PUGGINc HiOURS

PLEASE RESPOND TO THE FOLLOWING QUESTIONS WITH YOUR CAREFUL

rThe third question asks)til to divide the interval deined by the limits JUDGMENTS
X0and x~ int tu Vo eqiilahl likel, siiuutersals The question says.:

(1) SPECIFY THE LARGEST VALUE SUCH THAT YOU FEEL VIRTUALLY
CERTAIN THAT THE ACTUAL VALUE OF THE UNCERTAIN QUANTITY

"Specif the value such that you feel it is equally likely that WILL FALL ABOVE THIS VALUE

the aciuil value of the ticerim quantit will fall above or
below ti' Val e " 650

42) SPECIFY THE SMALLEST VALUE SUCH THAT YOu FEEL VIRTUALLY

The answer io tlis question yields 'o . which s oltd lie in bIetween CERTAIN THAT THE ACTUAL VALUE OF THE UNCERTAIN QUANTITY
WILL FALL BELOW THIS VALUE.

0 aiid x I
too

the fourth iestion, which calls for x0 25.1i SORRY. YOU HAVE MISINTERPRETED THESE TWO OUESTIONS QUESTION III

ASKS FOR THE LOWER LIMIT OF THE UNCERTAIN QUANTITY PLEASE GIVE YOUR

"Suppose you were told that actual value is less than x0 .5. NEW ANSER TO II

Specify the value such that it is equally likely that the iW

actual value of the uncertain quantity is either above or QUESTION 121 ASKS FOR THE UPPER LIMIT OF THE UNCERTAIN QUANTITY

below this value " PLEASE GIVE YOUR NEW ANSWER TO (2).

The program will check to see if this answer lies in between x0 and ow

YOUR ANSWERS TO THESE TWO QUESTIONS IMPLY THAT YOU FEEL VIRTUALLY
'0 5" CERTAIN THAT THE ACTUAL VALUE OF THE UNCERTAIN QUANTITY WILL LIE IN

BETWEEN t0E AND 6E DO YOU AGREE'

The fifth question, which calls for 0.73 is: N

"'Suppose you were told the actual value is greater than THEN YOU MUST REVISE YOUR ANSWERISI
Xo 5. Specify the value such that it is equally likely that the PLEASE TYPE YOUR NEW ANSWER TO 11

actual value of th,. uncertain quantity is either above or

below this value"" S0

PLEASE TYPE YOUR NEW ANSWER TO 121

This answer is checked to see if it hes in between xo5 and x i il

At this point, the program further checks for consistency ill SPECIFY THE VALUE SUCH THAT YOU FEEL IT IS EQUALLY LIKELYTHAT THE ACTUAL VALUE OF THE UNCERTAIN QUANTITY WILL FALLSpecific~ally. it asks ABOVE OR BELOW THIS VALUE

"Now. do you feel it is equally likely that the actual value 2§o

of the uncertain qii.iility will lie within the interval 141 SUIPOSE YOU WERE TOLD THAT THE ACTUAL VALUE IS LEUS THAN 2SR

between xo.:s and XO
75

or outsid' of this interval"
"

SPECIFY THE VALUE BIUCH THAT iT IS EQUALLY LIKELY THAT THE
ACTUAL VALUE Of THE UNCERTAIN QUANTITY IS EITHER ABOVE OR

BELOW THIS VALUE
If the check Is not met, the program wilt direct you to review and
revise each of your previous answers Otherwise, the program will 310

proceed to ask you to specify the most likely value (the mode) 'USER' RESPONSE APEARS IN ITALICS

84

I 0BUIVS YOU DIEWY ANWR Tm.I OUNEISN CAREFULLY. PLEASE GIVE IT
Some THOUGHT. 1.0

00 YOU NAS REALZE WHAT YOU 6I0 1011G11671?

YOUR ANSWER TO M4 SHOULD HAVE BEEN IN BETWEEN SO AND 216. PLEASE (L
TYPE YOU.R HOW ANSWER. a

150 no Do 450 mi. w m
El1 SUPOE YOUIWERE TOLD THAT THE ACTUAL VALUE IS GREATER THAN

2110. SPECIFY THE VALUE SUCH THAT IT IS EQUALLY LIKELY THAT THE Figuore 1. Oist-oono and Density Fu~nctions for De Bugng Hours
ACTUAL VALUE OP THE UNCERTAIN QUANTITY IS EITHER ABOVE OR
BELOW THIS VALUE.

.

lUP NOW. DO YOU PEEL IT IS EQUALLY LIKELY THAT THE ACTUAL VALUE om
OF THE UNCERTAIN QUANTITY WILL LIE WITHIN THE INTERVAL
BETWEEN 13O AND 000R OUTSIDE OF THIS INTERVAL? ...

SORRY. YOUR NO ANSWER INDICATES THAT YOUR ANSWERS TO QUESTIONS (3)
THROUGH 45l MAY NOT REPLECT YOUR PROBABILITY JUDGMENTS. SO, LET*S
REVIEW EACH OP THESE ANISWERS.

U3ALACCORDING TO YOUR ANSWER TO QUESTION 1) YOU PEEL IT ISI
EQUALLY LIKELY THAT THE ACTUAL VALUE OF THE UNCERTAIN 100)310 K0

QUANTITY WILL PALL ABOVE OR BELOW NO0. DO YOU AGREE?

YES
PEW, 2. CWimiilmjBe EYEOI*SIU1oS

14A)IWE NOW LOOK AT YOUJR ANSWER TO DUESTION (4) IF THE ACTUAL
VALUE OP THE UNCERTAIN QUANTITY WERE LESS THAN 2W. WOULD (9) WOULD YOU ACCEPT TH4ESE GRAPHS AS REASONABLY ACCURATE
YOU PEEL EQUALLY LIKELY THAT THE ACTUAL VALUE IS EITHER EXPRESSIONS OP YOUR JUDGMENTS CONCERNING THE UNCERTAIN
ABOVE OR BELOW 130? QUANTITY?

APO YES

1101 SUMMARY MEASUJRES OF THIS DISTRIBUTION ARE
PLEASE TYPE YOUR NEW VALUE POW WHICH YOU WOULD PEEL EQUALLY

MEAN 280.9094
STANDARD DEVIATION 156.4427

too
1111 DO YOU WANT TO SEE THE VARIOUS FRACTILES?

IBAIPINALLY. YOUR ANSWER TO QUESTION ISI IMPLIED THAT PF THE
ACTUAL VALUE OP THE UNCERTAIN QUANTITY WERE GREATER THAN YES

2EC YOU WOULD aEEL EQUALLY LIKELY THAT THE ACTUAL VALUE IS
EITHER ABOVE OR BELOW 4011. DO YOU STILL AGREE? MAN 0m ne1 Ma 11W COS Oil

ISAl NOW, LET'SCHECK THE CONSISTENCY OF YOUR REVISED ANSWERS THE 05 10 51 WOS SN OO 0* CS

LOGICAL CONSISTENCY REQUIRES YOU TO FELEUlL IEY .a40b S CO O 5

THAT THE ACTUAL VopLUE OP TH4E UNCERTAIN DUANTITY WILL LIE 00 0O 01 SO 11 1O00 SN OO
WITHIN TNE INTERVAL BETWEEN till) AND 400 OR OUTSIDE OF THIS ilea ell- MI.Wo 5 1 ON 111

INTERVAL. 00 YOU PEEL THAT WAY? I5 O- 08 S 0 SW 50 O 00

YES SOal 155 C 520 O 100 CO

17) SPECIFY THE MOST LIKELY VALUE ITHE MODEL CC4 1,.::0 aC WOS C O O CO

(8I ORPAT.YOU NOWHAVE DONE YOUR ASSESSMENTS AS SUMMARIZED CC NN 0= 228 W mO-C W

cumd. CORRIESPOO 05 C SSOO SS CN C
PROe. VALUE QUESTION ~SW SS SN S oi m

m2 Roe l CC als 3005 m05 aS OS .

: .00NO I mI is-a "1,1

0.. 400 5
1100 90 1 41 2t DO YOU RANT TO fIy THE ASSESSED DISTRIBUTION TO A THEORETIC AL

moos D0 ISTRIBUIION?

DO YOU WRISH TO RENVISE YOUR ANISER?w

NO 1131 DO YOU WISH TO QUANTIFY YOUR JUDGMEN'S CONCERNING ANY
OTHER UNCERITAIN DUANTITY?

POM THUS ASEUED POINTS. A SMOOTHED CUMULATIVE DIETRIBUTION WILL
BOBTAINED. WOULD YOU LIKE TO $iE THE GRAPHS POR THE DISTRIBUTION No

PUNCTION AND THE DENS TY FUNCTION?

THANK YOUJ FOR YOUR COOPERATION GOOBYE
YFv

85

AN APPLICATION FROM PROGRAM VERIFICATION DO YOUJ WISH TO PRINT Xt ANDC Y-NO0. YES*I. ROURN2 ?I
WHAT IS XMINXMAX,DELX

From the assestsnent procedure given earlier, several fractile ?100.650,20

points, the mean, and the standard deviation are available in the
summary output of the computer program. Any two fractile points, or X-VAI.IES Y-VALUIES It-VAlUES Y-VAUES
a fractile point and the mean, or a fractile point and the standard IOD 1. 2870E-03 40D 1. 287K6-05
deviation etc.. can be used to determine the parameters of the 120 2. 1016E-f 420 1. 18016(-03
lognormal distribution. A new program was developed that allows 140 2.91011E-03 440 9. 0793E-@01
some 20 different input combination pairs in the procedure for 160 3.3791E03 460 1.11801M-OS1
determining the parameters of the lognormal distribution. The density ISO 3.68M-W03 49) 6. 7I*-t
function of the lognormal distribution is given by;:0 .16O 0 .?500

220 3.707SE-03 520 4.811276E-011
240 3.5781[10 540 4. 1401I-OS1

i 5l I IIIns -_a,')21 260 3.237O0E-03 560 3.51159E04
fj) X x s>0 (1) 280 2.q,064-03 580 2.971IN-01

P>) es 30D 2.61305E(03 602.52707E -04
320 2.30Ma-03 620 2.i456E-011

where a and 13 are the parameters of the lognormal distribution. 6 .71%0 640 I. 011

It is well known that the mean E(x) and the variance V(x) are given 30 .(l

by: DO YOU WISH TO PLOT It AND Y: NOO., YES"I ?I

E(x) = ; = ex p(a + [1I/J2103)

V(x) = 02 = A2 I exp 02, -I

The mode of this distribution is at

MODE = eap (a 12)

while the median or 50th percentile. P50 , is at

Ps0 =

Insx-a
By letting y - - in 10) and using standard normal tables, the

90th percentile ws(udto be

go = exp 1 28213+-a).

Other frai tile points can he found in a similar fashion.

As we have seen the lognormal distribution has two parameters a 50 10020 301) 4110 50D 60 IM0 SO
and 13. Thus to fit a lognormnal distribution to the subjectively derived
distribution we only have to specify two values such as P50 and PqO. Fipir X Logirml Density Function wh, Medhan - M5 and Moda M 0
or the mean and the standard deviation. For the following ex-ampte
the mode = 200 and the median = 250 are used. The program Now the distribution function or density function can be visually

output include% a distribution linction and a density function. The compared with the subjectively derived prior distribution using the

latter is given in Figure 3. questionnaire involving the debugging hours. If -reasonable"
agreement has been achieved the mathematical form of the density has
been found Several combinations of input values might have to be
examined in order to achieve the "best" fit This form is important in
order to establish the posterior distnibution using iicomingdata and the

LOG NORMAL DISTRIBUTION likelihood function according to Bayes'Theorem. On the otherband. if

"reasonable" agreement between the two distribution functions has not
been achieved, a new family of distributions may be tried and/or the

DO YOU NEED THE COMBINATION PRINTOUlT? YES-1. N00 TO0 empirical distribution might be questioned. Ul1timately, agreement will
be found unless the lognormal distribution is not a valid model

WHAT IS *1I INPUT COMBINATION NJMBER ?13

MEDIAN r6

MODE - 200

ALPHA BETA WAN NAN STD DEV MODE PCULE TIME
5.5215 a 4124 211 00110 2. 50 139. 7W 20180MD61 0882

00 YOU WISH TO INIIGRAAI-N04.11 YESI1. RETURN2 10

86

REFERENCES 15. C. B. Morrison and D. 1. Davis, Allocating Time-to-Repair
Distributions, Annals of Reliability and Maintainability.

1. M. Alpert and H. Raiffa, A Progress Report on the Training of Vol 13, 1974.
Probability Assessors. Unpublished manuscript. Harvard
University. 1969. 16. D. G. Morrison. Critique of: 'Ranking Procedures and Subjective

2. Thomas Bayes, Essay Towards Solving a Problem in the Doctrine Probability Distributions'. Management Science. Vol. 14.

of Chances. The Philosophical Transactions, Vol. 53. pp. B253-254. 1967,
pp. 370-418. 1763.

17. 1. W. Pratt. H. Railla, and R. Schlaifer. Introduction to
3. Bruno de Finetti. Does it Make Sense to Speak of 'Good Statistical Decision Theory (preliminar editionl. McGraw-Hill.

Probability Appraisers'", in The Scientist Speculates An New York, 1965.
Anthology of Partly-Baked Ideas. I. J. Good. ed.. pp. 357-364.
Basic Books. New York, 1%2.

18. Howard Raiffa. Decision Analysis Introductory Lectures on
4 W. R. Downs and C Kaspanan, A Computerized Method or Choices Under Uncertainty. Addison-Wesley, Reading.

Synthesizing Repair rime, McDonnell Douglas Astronautics Massachusetts. 1968.
Company Paper Number WD 1455. also printed in annals of
Reliability and Maintainability, Vol 10, 1971. 19. Howard Raiffa and Robert Schlailer, Applied Statistical Decision

Theory, Harvard University. Division of Research. Graduate
5. Ward Edwards. A Bibliography of Research on Behavioral School of BusiessAdnisiistration. Boston. 1961

Decision Processes to 1%8, Memorandum Report No. 7. Human
Performance Center, University of Michigan, January 1969. 20. Leonard J. Savage. The Foundations of Statistics. John Wiley and

W. Edwards. H. Lindman. and L. J. Savage. Bayesian Statistical Sons, New York. 1954.

Interference for Psychological Research. Psychological Review,

Vol. 70, pp. 193-242. 1963. 21. Leonard J. Savage. The Elicitation of Personal Probabilities and
Expectations, Journal of the American Statistical Association.

7. (oldman and Slattery, Maintainability, John Wiley & Son, Vol. 66, pp. 783-801. 1971.
New York. 1964.

22. Robert Schlaifer, Analysis of Decisions Under Uncertainty,
8. G. Gnppo and R. M. De Milia. Verification of Quantitative McGraw-Hill, New York, 196').

Maintainability Requirements. ESD-TR-65-220, Air Force Sys-
tems Command L. G. Hanscom Field, Bedford, Massachusetts. 23. CarI-Axel S. Stael von Holstein. Assessment and Evaluation of

Subjective Probability Distributions, The Economic Research
9. IrvingJohnGood, The Estimation of Probabilities An Essay on Institute at the Stockholm School of Economics.

Modem Bayesian Methods. The M.I.T. Press. Cambridge. 11)65. St, ckholm. 1970

10. Charles Jackson Grayson. Decisions under Uncertainty Drilling 24. CarI-Axel S. Stael von Holstein, Encoding Subjective Probabilities
Decisions by Oil and Gas Operators. Harvard Univer-ty,)ivision for Decision Analysis: Practical and Experimental Experience.
of Research. Graduate School of Business Administration, presented at the Interdisciplinary Colloquium on Mathematics in
Boston. 196). the Behavioral Sciences, UCLA, April 21. 1972.

I. Ronald A. Howard. The Foundations of Decision Analysis, IEEE 25. CarI-Axel S. Stael von Holstein, A Tutorial in Decision Analysis,
Transactions on Systems Science and Cybernetics. Vol. SSC-4. Unpublished manuscript, Stanford Research Institute.
No. 3. September. 1%8. April. 1972.

12. Henry E. Kyburg. Jr.. and Howard E. Smokier, Studies in 26. Robert L. Winkler. The Assessment of Prior Distributions in
Subjective Probability, John Wiley and Sons, New York. 1964. Bayesian Analysis. Journal of the American Statistical

Association. Vol. 62. pp. 776-800. 1967.
1.. ('hi-Yuan Lin and George I. Schick. On-Line (Console-Aided)

Assessment of Pnur Distributions for Reliability Problems. 27. Robert L. Winkler, The Quantification of Judgment Some
Annals of Reliability and Maintainability, Vol. 9. 1970. Methodological Suggestions. Journal of the American Statistical

Association. Vol. 62. pp. 1105-1120, 19 '.
14. R D. Luce and P. Suppes, Preference. Utility, and Subjective

Probability. in Handbook of Mathematical Psychology, Vol. 3. 28. Robert L. Winkler, Probabilistic Prediction Some Expenmental
R. D. Luce. R. R. Bush, and E. Galanter, eds., pp. 249-410, Results, Journal of the American Statistical Association, Vol. 66.
John Wiley and Sons. New York, 1965. pp. 075-685, 1971.

87

29. G.J. Schick and R.W. Wolverton, "An Analysis 36. A.L. Goel and K. Okumoto, "Availability Anal-
of Competing Software Reliability Models," ysis of Software Systems Under Imperfect Main-
IEEE Trans. Software Eng., vol. SE-4, pp. 104- tenance," Technical Report 78-3, Dept. of In-
120, March, 1978. dustrial Engineering and Operations Research,

Syracuse Univ., NY , April 1978.
30. R.W. Wolverton, "The Cost of Developing Large

Scale Software," IEEE Transection on Computers, 37. A.L. Goel and K. Okumoto, "Bayesian Software
June 1974. Correction Limit Policies," Technical Report

78-8 Dept. of Industrial Engineering and Oper-
31. L.H. Putnam and R.W. Wolverton, "Quantitative ations Research, Syracuse Univ., NY, April 1978.

Management: Software Cost Estimating," Tutor-
ial, IEEE Computer Societies Ist International 38. Z. Jelinski and P.B. Moranda, "Software Reli-
Computer Software and Application Conference ability Research," McDonnel Douglas Astronau-
(COMPSAC 77), IEEE Catalogue Number EH0129-7, tics paper WD 1808, presented at the Conf. on
Chicago, Nov. 8 - 11, 1977. Statistical Methods for the Evaluation of Com-

puter System Performance, Brown Univ., Provi-
32. B. Littlewood and J.L. Verrall, "A Bayesian dence, RI, Nov. 1971; also Statistical Computer

Reliability Growth Model for Computer Soft- Performance Evaluation, W. Freiberger, Ed.,
ware," 1973 IEEE Symp. Computer Software Reli- New York: Academic, 1972.
ability, NY, April 30 - May 2, 1973, pp. 70-76.

39. J.D. Musa, "A Software Reliability Model," Proc.
33. A.N. Suker, "An Investigation of Software Reli- of Second Summer Software Eng. Workshop,

ability Models," Rome Air Development Center, Goddard Space Flight Center, Greenbelt, MD,
Griffiss Air Force Base, NY, Aug., 1976 (pre- pp. 35-47, Sept. 19, 1977.
print); presented at the 1977 Annu. Reliability
and Maintainability Symp., Philadelphia, PA, 40. W.L. Wagoner, "The Final Report on a Software
Jan. 18-20, 1977. Reliability Measurement Study," Technol. Div.,

The Aerospace Corp., El Segundo, CA, Aug. 973.
34. A.L. Goel and K.Okumoto, "An Imperfect Degug-

ging Model for Reliability and Other Quantita- 41. J.D. Musa, "A Theory of Software Reliability
tive Measures of Software Systems," Technical and Its Application," IEEE Trans. Software
Report No. 78-1, Dept. of Industrial Engineer- n., Vol. SE-I, pp. 312-327, Sept. 1975.
ing and Operations Research, Syracuse Univ.,
N.Y., April, 1978. 42. B. Littlewood, "A Semi-Markov Model for Soft-

ware Reliability with Failure Costs," Proc. of
35. A.L.Goel and K. Okumoto, "Classical and Baye- the Symp. on Comp. Software Eng., New York,

sian Inference for the Software Imperfect De- April 20-22, 1976, pp. 281-300.
bugging Model," Technical Report No. 78-2,
Dept. of Industrial Engineering and Operations
Research, Syracuse Univ., NY, April 197e.

88

DESIGN PROCESS ANALYSIS MODELING - AN APPROACH
for IMPROVING the SYSTEI DESIGN PROCESS

Barbara C. Stewart
*Honeywell Systems and Research Center

2. TOWARD A DESIGN PROCESS ANALYSIS DISCIPLINE

During an initial attempt to develop a design pro-
cess analysis discipline [l],astudy of the design
processes of various organizations and technology
environments resulted in the following observations:

Observation 1: The nost unique and constraining
factor in each industrial design
process appeared to be the organ-

ABSTRACT zation, structure, and management
of that process.x

A new discipline for improving the design process
of large complex systems has been proposed. The dis- Observation 2: In the industrial organization and
cipline consists of a modeling technique (Design Pro- management of each design process,
cess Analysis Modeling) combined with a set of ana- a number of critical information
lytical procedures. The Design Process Analysis Mo- flow factors existed which are
del and procedures are described, and some appli- also critical in the management
cations to such areas as computer logic design and of other types of industrial pro-
software chief programmer teams, are discussed. A cesses.
number of potential benefits of use of the discipline
are identified, including: 1) Verifying that both Observation 3: The most "successful" (where
technical design goals and organizational objectives success" is defined differently
are being met by the design process; 2) Providing a by different organizations) large
common approach for evaluating the cost-effectiveness system designs were those where
of an existing organizational design process; 3) Es- the organization and management
tablishing a framework within which different organ- of the design process itself were
izations can evaluate and compare design method- evaluated in terms of their impact
ologies, tools, and design automation techniques. on the system to be designed, and
Additional areas for research are suggested. where necessary changes in the de-

sign process were made prior to the
1. INTRODUCTION start of the design.

As all types of systems become larger, more com- These three observations pointed toward potential
plex, and more dependent on the use of sophisticated, applicability of traditional information systems
rapidly changing computing technology, the design analysis disciplines and industrial dynamics models
processes for such systems become more complex, cost- to sort out the organizational from the technical
ly, and higher risk. Today new computers must be elements of the design process.
designed and built using other computers, and new
software for one computer is designed using a larger In terms of the traditional systems analyst's
computer containing yet more complex software. With input-process-output model, the design process is
labor costs increasing and digital technology costs the "black box" (Fig. 1) which transforms inputs
decreasing, increased automation of the design pro- (the system requirements**) into outputs (the final
cess for large, complex systems is becoming a ne- system blueprints**), given a set of limited re-
cessity rather than an option. The problem in design sources, external constraints, available technology,
process automation, however, is that design processes and within the boundary of a particular organization.
within any given organization are extremely complex,
unique, and not well understood; also there are no
commonly accepted analysis disciplines to determine
the cost/benefits of automating a design process.
Thus in most cases the results of design process auto- r 3
matlon are less than optimal. (Example: the soft-
ware design process, which always involves use of ,, .
computers, is one of the least understood, high risk, t...
and high cost, types of system design.) A commonly .

accepted design analysis discipline is needed. It .

should be capable of wide application in different .
organizational and technology environments and should .
improve the success of any design process automation
project. L

his work was jointly supported by: U. S. Office of
Naval Research (Contract N00014-75-C-0650), U. S. Figure 1. Design Process Modeled as
Naval Air Development Center, and Design Analysis Input-Process-Output
Associates, Inc.

89

The problem can be stated as follows: 4. THE DESIGN PROCESS ANALYSIS MODEL

Design Process The Design Process Analysis Model is an adapt-

Analysis Problem: How to analyze and specify the ation of Forrester's single-loop feedback system

design process "black box" model [6]. This model provides a framework which

(Fig. 1) in such a way that the captures all the critical elements of the design pro-

final system blueprints accur- cess and their interrelationships. The elemental

ately and completely implement single loop model (Fig. 2) consists of two processes,
the Decision Process (a), as modeled by Gorry andtechnology, resources, exter- Morton [7] , and the Design Change Process (b), where-

nal constraints, and within the in the most current system blueprint is modified by
the organizational environment. the set of design actions (c) initiated as output of

the most recent decision. Design changes are embod-
ied in design information (d) which is fed back as
input into the decision process (a). Decision infor-
mation (e) is also fed back for input to subsequent
decisions. The entire single-loop design process is
initiated externally by the set of coals, resources,

Given Observations 1, 2, and 3 and the above pro- requirements, and constraints (f) analysis represent-
blem statement,and given the results of several case ing the output of a higher level decision which
studies [1] , we were led to the following assumption initialize the decision process, and which are used
It underlies the development of our design process to determine loop termination. (Termination occurs
analysis discipline: at the point when the design and design information

indicates that the requirements and goals for that
Assumption: De facto design processes already loop have been met. Each iteration of the loop takes

exist and are firmly enmeshed within a measurable amount of time and consumes a measurable
the organizational structure, busi- amount of resources.)
ness goals, resource and technology
limitations, and management style
of particular organizations. New
theoretical design methodologies EXT[RNAL F LII O INFORMAT!O %

and/or cost evaluation and prediction -,0ALI

tools which require changes in the -R,!IR£MNS. :-COWS IT E IIN IFR TO

existing process will not achieve I
desired results, unless we first "D-S NO %
analyze the existing design process,
its raison d'etre and its information ZEIGN I I'I~fDR TIO ACIION
requirements. (d)

\ I CANGL ANGE

3. REQUIREMENTS FOR THE DISCIPLINE LEIGN RROMIj
LOeP ROLINDAAY

Our concept of a design process
analysis disci-

pline involves a set of rules or procedures that can
govern the analysis of any design process, and a top-
level conceptual model of the process in which all of Figure 2. Single-loop Design Process
the key elements and their interrelationships can be Analysis Model Characterizes
identified. The intent of such analysis is "obser- Critical Elements of Design
vation of the real world as it is ... development of Process and their Inter-
best-fit models that describe but do not explain be- relationships
havior, interpretation of the models, and the for-
mulation and experimental confirmation, modification, The model distinguishes among three different
or rejection of theories ..." [5] types of design process information: 1) Design (or

"blueprint") information (d) which embodies the state
The design process analysis discipline should of the system design at a particular time. Examples

provide a common framework for: a) explicit defi- are engineering drawings, program listings, flow
nition and study of the key parameters in a specific charts, HIPO diagrams, etc. 2) Decision information
organization's design process, b) evaluation and com- (e,f) which embodies all of the management and con-
parison of the cost/benefits of various design method- trol information, requirements and constraints, cri-
ologies and tools, c) comparison of design processes teria for acceptance of the design, and decision his-
of different organizations and for differing tech- tory. Examples are project cost data, design speci-
nologies, and d) a starting point for more formal fications, design goals, organizational objectives,
modeling, analysis, and prediction of design cost and project plans, progress reports, etc. 3) Actions (c)
risks. implemented by action languages and media which effect

changes to the design (b).

Based on our initial work in this area[lJ , a

preliminary design process analysis model which meets
these requirements has been developed.

90

Design processes for large, complex systems in- The model has also proved useful in providing in-
volving multiple organizational elements can be model- sights concerning improvements in the design process-
ed as a multiple-loop design process where individual es of specific organizations.

loops are interconnected by actions or information as
shown in Fig. 3 (Detailed discussions of interconnec- LAYOU1 RULES LOG!
tion and mod ling of multi-loop design processes will ODiSGN STANEAROLS MON GNPOUIREQUIREMENTS KANAC,1

be found in F1J).OAGEM(NT CONSTRAINTS

1N:72A NCONTROL, FEEDBACK
INFORMATION INFORMATION

- ~~MULTI-LOOP LGCL :

DESIN PO E"INEBOUNDARC

L EVE L DECISIO
O 1 1ETAIL . . .

IN D IGN..
i i O~RGANW 'OA

EIGN Iw \. 'ro
CH... . :',E>IiT.- ", ':ON NODAL SIMULATIONS i EHPUNC

FCESIIN :,FDRM G'A CARD LAYOUTS CTI
- ..~ LOGIC DRAWINGS -

TERSOT LISTS
EDTS ERRGI L:SI

EIT EXE ION REPORTS

-- { {EQUAT ION

._____ DECISION INFORROTIO%

-- - ------- DESIGN ACTIONS

DESIGN INFORMATION
DECISON DEISIO LOSP WSS'DAPH

Figure 4. Computer Logic Design Process
(Hypothetical Case, Highly
Simplified)

LAYOUT RULES LOCI!(

DESIGN STANDARDS DSG
PRODUCT REQUIREMENTS MANGP
MANAGEMENT CONSTRAINTS

Figure 3. Example Iulti-Loop Design Process
Model Uses Decision Information Paths
to Differentiate Among Levels of
Design Detail and to Manage Design LOGIC LOGC

Process DESIGNER A

5. SOME BENEFICIAL APPLICATIONS OF THE MODEL __.._..... .

The Design Process Analysis Modeling technique DSGN

(Figs. 2 and 3) has proved useful in illustrating to I IAGNDSTIC

non-technical managers the differences among various L '----- -- - -NST IsIRE ORJ CTN

methodologies and design approaches. The following

are some simple examples: a) In structured program- AUTOMATED

ming the limitation to three basic logic elements SHsI TE I

(sequence, if-then-else, and do-while) can be des- n I_ ORGANIZATIONAL
cribed in terms of the model as limiting the set of - - [IrDARH
design actions (Fig. 2c); b) The differences between
"top-down design" and "bottom-up design" can be ex-- TECISION INEORTION EOUETIN FILE

pressed in terms of changes in the arrangement and DESI GN ACTIONS
connectivity of the design feedback loops; in terms -- DESIGN INFORMATION

of differences in the goals, constraints, and require- DI AL SIMULATION

ments at each design level; and in terms of changes in CARD LAHOI
tt LOGIC DRAWINGthe design and decision informtion paths; c) Use of CAI TST LISTS

HIPO or SADT diagrams would apply to the format of the SHT[EDI'
design information (Fig. 2d);d) Chief programmer teams
can be expressed as a particular method of intercon.-
necting the team members' decision and design change Figure 5. Revised Logic Design Process
processes via the decision and design information and (after Design Analysis)
action paths; e) A design walkthrough is a method for
closing certain design loops.

91

Fig. 4, for example, illustrates a highly oversim- h. Identification and evaluation of all alterna-
plified model of a hypothetical design process tives for modifying the existing design pro-
for a computer logic design group. Fig. 5 shows the cess, (design methodologies and approaches,
same hypothetical process as modified by automation automated design tools, languages, etc.) in-
of key elements (which were identified through use cluding requirements for all the elements of
of design process modeling and analysis)+. In the the design process model (decision process,
logic design example, major benefits resulted from actions, design process, design information,
closing the individual design loops earlier (by add- and decision information).
ing the logic simulation and synthesis system within
the organizational boundary (Fig. 5). This, in the Consistent application of these procedures with-
real world case, resulted in reducing the logic de- in the framework of the Design Process Analysis Model,
signers' turnaround time and the number of logic creates an analysis discipline which is useful in im-
errors introduced into the equation file, which in proving the effectiveness of design processes for any
turn reduced design cost. env~ronment.

Finally, the Design Process Analysis Model has 7. PRELIMINARY CONCLUSIONS CONCERNING THE DESIGN
proved useful in developing more detailed models and PROCESS
guidelines for certain types of design processes in
systems which are reasonably alike and in organi- Preliminary application of the model .nd analysis
zational environments whih are also reasonably alike, procedures to several design processes has led to the
For example, a model and guidelines have been develop- following conclusions which are currently being veri-
ed for the software development process of embedded fied:
computer systems, via analysis of the design pro-
cesses of forty-five separate product types in eight
different industrial organizations. a. Technology and technical skill requirements

aside, information is the critical element
6. DESIGN PROCESS ANALYSIS PROCEDURES in the design process, in relation to both

the eventual quality and cost of the system
As the model has evolved through its application being designed. As the number of people and

in various environments, a number of procedures have organizational elements involved in the
been developed to systematize the design analyst'!, design process increases, the criticality
approach. These procedures are similar to those used of the information also increases (c.f.
in traditional systems analysis for automation of F. Brooks observations in [8]), and there-
information processing systems, except that the De- fore the usefulness of design process analy-
sign Process Analysis Model is used as a framework. sis disciplines also increases.

The analysis procedures to be followed by the de- b. Many existing design processes operate vi-
sign process analyst include: tually open-loop; that is, there is no veri-

fiable link (until late in the process) be-
a. Analysis of the existing and/or future de- tween either the system design goals and

sign process environment, their embodiment in the design blueprint, or
the organizational management goals and their

b. Understanding and documentation of present embodiment in the de facto design process.
design process and its requirements: cost, (i.e. the design feedback loop duration is
time, and information flow, expressed in very long). As the number of people and
both English and in graphical form (c.f. organizational elements involved in the
Figs. 4 and 5). design process increases, the payoffs for

establishing shorter design feedback loops
c. Determination of current design process in- also increase (reference TRW's experience

adequacies and problem areas. [9]). Application of design process analy-
sis techniques prior to the start of the

d. Analysis of overall design process infor- design can be used to identify potential
mation flow, timing, content, format, as problems associated with lengthy design
well as the desired acceptable error rate feedback loops, and to indicate where and
in proposed modifications or automation how these loops might be shortened. (cf.
of the design process. differences between Figs. 4 and 5).

e. Analysis of computerized end products and c. Each organization and design environment has

human end products desired for the improved an extensive and specific set of design and

or automated design process, decision information processing requirements
which are unique to that organization and

f. Analysis of similar or interfacing processes its particular design process. Methodolo-
and systems within the organization. gies, techniques, and tools aimed at improv-

ing the design process should be evaluated

g. Determination of organizational implications in terms of the specific organizational de-

and special problem considerations involved sign environment, in order to be applied

in any new or revised design process. effectively. Design analysis techniques
provide a framework within which to compare
design methodologies and tools, and to

92

establish requirements for a particular design ACKNOWLEDGMENT
context. The author wishes to express her gratitude to

d. Evaluation, analysis, and prediction of cri- Professor G. Estrin of UCLA for his valuable dis-
tical factors (such as design cost) become cussions and invaluable support; to W. J. Dejka of
increasingly difficult as the number of people the U. S. Naval Ocean Systems Center for his
and organizational elements involved in the stimulating ideas on the "Science of Design;" and
design process increases. Use of design pro- to J. H. Stewart for providing the information
cess analysis provides a means for effectively concerning the computer logic design process.
sorting out the management, organizational,
technical, and human factors and their contri- REFERENCES
butions to overall design costs.

** For the purposes of this paper, a "system" is
8. RECOMMENDATIONS FOR FURTHER STUDY loosely defined as a grouping of parts that operate

together to achieve an explicitly stated common
Based on our experience we have identified three purpose (known as the "system requirements"), and

major areas for further study in Design Process Analy- the "final system blueprints" are defined as a one-
sis: for-one representation on paper of the final physi-

cally implemented system. (We here assume perfect
8.1 Refinement and Formalization of the Design mapping of final system blueprints to final physica.

Process Modeling Techniques and Analysis system.)
Procedures.

+ Elements added are the use of LOGAL, a computer
To date, the Design Process Model and Analysis hardware description language, and a logic synthesis

Procedures have been used informally to help capture simulator which uses the LOGAL description as input.
information concerning limited real-world design en-
vironments. In order to facilitate more widespread x This observation is consistent with those of
general use of these techniques, work needs to be Lehman [2], Belady [3], and Kolence [4].
done to make the models and procedures more formal,
and to develop automated tools to aid in analysis [1] B. C. SLewart: Design Analysis, An Approach
and modeling, for Improving the System Design Process, UCLA

Computer Science Dept., Los Angeles, Ca.,
8.2 Extension of the Verification Base October 1976.

[2] M. M. Lehman: Evolution Dynamics - A Phenomen-
The model and procedures have been used to anai,- ology of Software Maintenance, Software Life Cycle

ze only two classes of design processes, computer Management Workshop, U. S. Army Computer Systems
hardware design and embedded computer software de- Command, PP 313-323.
sign. We need to extend our application of the De- [IT--.-A. Belady and M. M. Lehman, A Model of Large
sign Process Analysis Model and procedures to addi- Program Development, IBM Systems Journal, Vol. 15,
tional classes of design processes in order to fur- No. 3, 1976.
ther verify our preliminary observations and conclu- [4] K. W. Kolence, On the Relationships Between
sions. Design Theory and Software Life Cycle Management,

Software Life Cycle Management Workshop, U. S. Arm
8.3 Model Development as Framework for Evaluating and Computer Systems Command, PP 175-186, August 1977.

Comparing Design Methodologies and Cost Esti- [5 M. M. Lehman, Software Life Cycle Management
mation Techniques. Workshop - Technical Introduction, Software Life

Cycle Management Workshop, U. S. Army Computer
A number of design methodologies and design cost S stems Command, PP3, 1977.

estimation techniques are being developed. Using the 161 J. W. Forrester, Principles of Systems, Wright-
Design Process Model as a framework, it would be use- Allen, Cambridge, Massachusetts, 1968.
ful to develop a standard approach (applicable to [7] G. A. Gorry and M. S. Morton, Management
various organization and design environments) for Decision Systems; A Framework for Management
determining the requirements for design methodologies Information Systems, MIT Sloan School of Management,
and cost estimating techniques, and for comparing Cambridge, Ma. 1972
them. [8] F. P. Brooks, Excerpts from the Mythical Man

Month, Datamation, December 1974.
9. SUMMARY [9] E. A. Goldberg, Applying Software Development

Policies, AIAA Software Mana ement conference,
In this paper we have summarized some recent work Los Angeles, California, December 1977.

in the development of a Design Process Analysis dis-
cipline, and have described a few of the benefits ob-
served in our preliminary application of the disci-
pline. We have also discussed some of our observa-
tions and conclusions drawn from experience with a
Design Process Analysis Model. A number of recom-
mendations for further research have been made.

93

LIFE-CYCLE COST ANALYSIS OF INSTRUCTION-SET ARCHITECTURE
STANDARDIZATION FOR MILITARY COMPUTER-BASED SYSTEMS

Harold Stone Aaron Coleman
University of Massachusetts and U.S. Army

School of Engineering CORADCOM
Amherst, Massachusetts 01003 Ft. Monmouth, New Jersey 07703

Abstract Military computer systems are starting to
take on characteristics of coimercial families in

This is a report of a life-cycle cost model that prior-generation computers are being reimple-
to measure the effects of standardization of compu- mented with new hardware to take advantage of the
ter instruction-set architectures on military com- technological improvements in cost and performance.
puter-based systems. The study considers six dif- At issue is the question of whether to standardize
ferent scenarios, one of which assumes that stand- o a family of implementations of single architec-
ardization is not done, but only four different ture or to use a iix of many architectures, each
computer architectures are used. The remaining used in an environment best suited to it. If
five scenarios consider the effects of standardiz- standardization appears to be attractive, than a
ing on each of the architectures UYK-7, UYK-19, further question is which computer architecture
UYK-20, GYK-12, and UYK-41 (PDP-ll). should be used as a standard. Standardization can

realize potential savings by eliminating duplicate
Standardization impacts life-cycle costs in efforts, but on the other hand it can incur addi-

several ways. There is an inherent difference in tional costs if a standard is used in an environment
the value and utility of the existing support soft- for which it is not well-suited. The question then
ware bases for the several architectures. The coin- becomes one of determining which standard is the
nercially supported architectures will augment and best overall standard.
maintain a substantial portion of the softwar se
free of government expenditure. Finally, some .r- The method used in this study to recommend a
chitectures are more efficient than others, and re- course of action is to compute the relative life-
sult in lower hardware costs if used as a standard. cycle cost for 78 representative Army/Navy computer-

based systems which are acquired and deployed over
The cost model attempts to incorporate these a 22-year interval. The systems are acquired in

factors in a meaningful way to judge the relative lots of 26 for three different time periods--1980,
importance of these factors and other factors on 1985, and 1990--with each lot deployed for 10
total life-cycle cost. The results of the model years. R&D costs prior to each acquisition are in-
show that the GYK-41 results in the least life- cluded in the cost model. Thus the cost model
cycle cost of any scenario over a broad range of serves to identify how a standard computer archi-
annual rates of investment in support software. tecture can impact life-cycle costs, and gives some
These conclusions are attributed to the fact that indication of the potential benefits and costs of
the GYK-41 ranks best or near best in each aspect the possible decisions. Any model of this type is
that impacts total life-cycle cost. subject to errors in estimates, so that the abso-

lute dollar figures computed must be viewed as in-
dicative of possible results rather than as pre-
dictions of the future. The model is successful

Introduction in identifying the important factors, and in es-

timating their relative importance if in fact the
The objective of the study reported here is model cannot be expected to predict dollar costs

to measure the economic effects of standardization with absolute accuracy.
of computer instruction-set architectures on mili-
tary computer-based systems. For the purposes of To isolate the key variable, computer ar-
this study, the term architecture refers to the chitecture,from different hardware implementations,
characteristics of a computer defined by its in- all computer systems are presumed to use the same
struction repertoire. Two computers are said to family of modules and chassis in their implementa-
have the same architecture if every assembly lan- tion. These modules are presumed to be Military
guage program for one computer runs on the other Computer Family (MCF) modules as specified by ITEK
and conversely. Two such computers may be vastly Corporation under contract to the U.S. Army. The
different in implementation and have radically dif- modules use a common collection of memory modules,
ferent costs and performances. The commercial input/output modules and bus interfaces, with dif-
computer world has demonstrated that a family of ferent CPU modules available to implement different
implementations of a single architecture is instruction-set architectures. We presume that

feasible and desirable. these modules can implement any of the instruction

Ii

94

sets for the UYK-7, UYK-19, UYK-20, GYK-12, and
UYK-41 (POP-i) computers. The most likely method-
ology for realizing the collection of instruction
sets from a common set of modules is to use CPU
modules specific to each architecture that inter-
face to the memory and input/output modules over a
general bus.

The cost model identifies costs arising from
principle sources (a) common costs, which are costs
such as product planning, R&D, and support software
required to mount an architecture in the field
apart from costs for specific systems; (b) hardware
life-cycle costs, which include acquisition, logis-
tics, and maintenance costs; and (c) software life-
cycle costs, which include initial acquisition op-
erations, and maintenance costs.

A c--,:ial problem in making the study is to
assess tte effects of the existing support software
tools and the effects of continued commercial in-
vestment in architectures for which there are com-
mercial counterparts. To this end we modeled the
effects as follows:

1. A fixed annual government expenditure for sup-
port software is assumed to occur over the life-
cycle. The study treats costs as a function of
this level of investment.

2. Part of the investment is used to maintain the
existing software base that is owned by the govern-
ment. What remains after maintenance is used to
procure additional support software.

3. Commercial tools incur no charges against
government funds for maintenance.

4. Although it is likely that commercial invest-
ment may augment the support software base for com-
mercial architectures, this model takes the con-
servative view that the present commercial base re-
mains fixed at its initial value for the entire
life-cycle.

This model assumes that

5. the greater the value of the software tool
base, the lower the cost per line of code of appli-
cations software. An equation derived from actual
cost data is used to predict this cost, and the mo-
del estimates the value of the tool base as a func-
tion of time to come up with time varying estimates
of productivity.

The results of the model show that at all
levels of software investment, the GYK-41 leads to
the lowest life cost. The savings is $1.5 billion
of the cost of a standard family of UYK-19 compu-
ters (22%), and about $5.1 billion (49%) of the
cost of standard UYK-7 and GYK-12 families for an
annual software investment of $2 million. Regard-
less how the specific effects of crucial variables
are on total life-cycle cost, the GYK-41 will show
up most favorably in comparison to the other ar-
chitectures because it is at least as good or bet-
ter than the other architectures in each of three
key variables that impact life-cycle cost.

a - _ _ _ _. . i - i - , - - -.* , m~ . . . r I -. '- -... - _.. .. . i i i ii '

95

USEFUL EVALUATION TOOLS IN THE DESIGN PROCESS

C. E. Velez

Martin Marietta Aerospace
Denver Division, P. O. Box 179
Denver, Colorado 80201

Abstract Several design languages that apply at
different levels of the design process, result in

An overview of our research activities in the different, concrete expressions of a design
area of software design tools is presented. Keyed product. It is these expressions of the design

on the concepts of discipline, formalism and product, stored as computerized data bases, which
practicality of computer aided design pro~rsses, provide the key to a maximally controlled software

and the need for quality assessments at all stages development activity. Indeed the state-of-the-art
in the life cycle, a concept of an integrated set in software engineering in general focuses on
of development and management tools is presented. design data bases for some level of software

Fundamental to this concept is the availability of expression.
a "static" quality measure applicable to a spect-

rum of specification levels of abstraction and the The availability of a machine readable data
use of simulation as an integral part of the base containing design information opens a whole
design process for dynamic analysis and validation, field of possibilities for learning more about

the design product. Going far beyond code
analyzers (which use source code statements as

Introduction the design level data base), we now have the means
for a broad range of feedback generators to aid

In considering the life cycle of a software the human in iterative refinement activities.
system, various stages or milestones have been

defined (e.g., AFR-800-14), ranging from require- Martin Marietta's expertise in this area is
ments definition and analysis to installation strengthened by a vigorous software engineering

maintenance. An awareness of total life cycle research program which continues to expand the
costs associated with software has surfaced a state-of-the-art. Specific recent accomplish-

need for improvements in the techniques governing ments have been achieved in the areas of design
the earlier software development stages: quality assessment as well as very high level

requirements identification, analysis, and design languages for requirements and design (14), (16).
development and validation applied through a Very high level languages allow an expression of
continuum of abstraction levels leading to coding a target system, i.e., a description at some

specifications. Key objectives of such techni- level, which can be used to form a database. This
ques include identification of "optimal" modular- database then provides us with a tangible,

ization strategies, the surfacing of inconsistent, measureable object. (The major related work is
incomplete, or ill-defined requirements, and the with static/dynamic code analyzers to determine

validation of early products in the life cycle, aspects such as program structuredness or

An emerging vehicle for the accomplishment of complexity. This, however, is after-the-fact:
these objectives are languages for identifying design measures are more cost effective if they
requirements, design components, or design can be used before code is produced). Therefore,

specifications. These are collectively referred our current software engineering research program
to here as design languages. Embedded around looks specifically at languages and features

supporting software for language processing, tailored to the measurement goal.
design data base creation, maintenance, and

assessment, such schemes become a design system In order to use measurement as a mechanism

which can serve as powerful tools for: for design assessment, some criterion is needed.
That is, while we have the raw data for measure-

" A disciplined way of expressing designs, ment, we still need to know what characteristic

" A distinct phase-to-phase staging of each our "measure" will be informative of. One

design task with subsequent traceability of criterion that can be used is one of structural
requirements, quality where "quality" can be associated with

* Computer-assisted documentation production as aspects of maintainability, reliability,

an automatic by-product, testability, or modularity. The assessment scheme

" Management control facilities due to the high then produces a "static" design quality metric
degree of visibility available through design or index.
data bases.

96

Before going further, we emphasize the establishes a graph by identifying and converting
distinction between software design as a process, appropriate linguistic objects to nodes (vrtices)
and the design as an end-result or product. Of the and relationships to link (edges). Graph links
many techniques proposed to positively influence between nodes must also be qualifiable as to
the design process, they all are motivated by the strength, type, or importance; i.e., weighted.
common goals of producing a system that is struct-
urally simple, maintainable, and testable, i.e., The design process is equated to the decom-
modules. If indeed, such characteristics can be position of this graph into a collection of system
induced into a design, the question arises as to "elements" (modules, programs, subsystems, etc.),
how they would then be embodied. Our hypothesis i.e., a clustering activity, which can be sub-
is that the essence of such quality character- jected to standard metric analysis. Measures such
istics - and others as well - is representable by as "strength" or "coupling" or "complexity" of a
the structural aspect of the design. Furthermore, structure are generalized in this framework and
we believe that the structure which supports or used at varying levels of abstraction.
"carries" these characteristics can be examined
as to the extent that one or more design goals For a fixed class of problems we have
is met. determined how the choice of a metric will

influence the quality measure produced - an
Another complimentary criterion is adjacency matrix produces decomposition based on

performance, which generally is measured by some the number of interfaces between and within
level of simulation attacking aspects such as man- clusters. A distance matrix produces a similar
machine interaction, adequacy of computer hardware, result but is a more comprehensive criterion
etc. In the remainder of this paper, tools useful applicable to highly complex graphs. Other metrics
to support both these aspects of measurement will which represent links as probability values,
be briefly outlined. information channel quanta, or component control

lines, would need further research to determine

Static Metrics and Decomposition the characteristics of structure that quality
indexes based on such metrics would reflect.

Design quality metrics have been addressed in
the past from various viewpoints. Andreu (1) uses Simulition Tools
a strength and coupling measure applied to a graph
representation of requirements and their inter- Our design approach includes a dynamic design
relationships for preliminary design. Myers (9) validation at key stages in the design process.
has developed a model in terms of probability Two such stages are the definition of the man-
measures applied to discrete strength and coupling machine interface (MMI) and ADP resource require-
factors of program modules which is used to assess ments (timing, memory, I/O parallelism, etc.) for
the ramifications of making program changes, the system. Key tools here include "virtual"
Schutt, et al (15) have applied an information 1/0 device simulation, functional simulation
entropy measure to hypergraph representations of languages, emulations, etc. Research in this
computer processes and data structures. And area has been directed at the interface definit-
McCabe (7) shows a method for determining quailty ions which allow such simulations to become a
as a function of module "structured-ness". Each of natural, cost-effective element of the design
these approaches relates in some way to a system pr'bcess. For example a top level clustering
decomposition measure. However, only Andreu analysis might support a delineation between
directly addresses the problem of forming the human operator and computer functions for an
decomposition itself. Parnas (1l) also gives a interactive application. In addition to design
strategy for decomposition (applied to the design validation from the human factors point of view,
process, rather than the product) but does not a simulation driven by a requirements/design data
attempt a design metric even though considerable base could surface key data/process structure
attention is given to resulting design quality, implications and drive the test scenario develop-

ment. Likewise, tools such as functional simul-
Each of these approaches assumes its own ation of hardware and software can surface key

specific starting point located somewhere in the resource allocation problems associated with the
software development spectrum. One can think of chosen hardware environment, if driven directly
all the points along such a spectrum as various from the problem data base. Such interfaces form
levels of expression of the design. And express- the basis for an integrated software design
ion, as a communication medium, will assume some facility concept described in the attached
linguistic form. These forms progress from figure.
natural language at the early concept/requirements
stage to high order programming languages at the
implementation stage. Rather than limit ourselves
to a specific form or level of expression, we would
like it to be arbitrary. In order to apply a
design strategy and measurement scheme to a given

expression, a transformation must produce an
encoded form of expression to which methods for
the analysis of structure and, eventually, quality
can be applied. The transformation process

97

Problem Definition

Information T Functions Interaction

I fF~,uctio Requiremens Analysis
Human Man-Machine.

0Resource - ucin neato

Environment 0 Clustering Analysis
000 0 Experience

0 Subjective

Compu ter

Functions

Top-Level

Design Analysis

0 Metrics
0 Functional

Implementation Simulation

Language Level Detailed Design AnalysisI

Code Development 0 Modularity
0 Behavior Simulation 0 Resource Require-

0 Libraries 0 Interfaces ments
0 Test Cases 0 S/W Decomposit-
O Binding t_ rardware Definitioni ion

'L esource Allocation

98

References:

I. Andreu, R. C., "A Systematic Approach to the
Design of Complex Systems: An Application
to DEMS Design and Evaluation," Center for
Information Systems Research, Report # 32,
MIT, 1977.

2. Andreu, R. C., "Set Decomposition: Cluster
Analysis and Graph Decomposition Techniques,"
CISR Preliminary Report, MIT/Sloan School,
June 1977.

3. Gileadi, A. N. and Ledgard, H. F., "On a
Proposed Measure of Program Structure,"
SIGPLAN Notices, May 1974.

4. Hamilton, M. and Zeldin, S., "HOS - A
Methodology for Defining Software," IEEE
Transactions, SE-2, March 1976.

5. Hartigan, J., Clustering Algorithms, Wiley,
1975.

6. Jackson, M. A., Principles of Program Design,
Academic Press, 1975.

7. McCabe, T. J., "A Complexity Measure," IEEE
Trans SE-2, No. 4, December 1976.

8. Myers, G. J., "An Extension to the Cyclomatic
Measure of Program Complexity," SIGPLAN
Notices, October 1977.

9. Myers, G. J., Reliable Software Throupb
Co mosite Design, Petrocelli/Charter,
New York, N. Y., 1975.

10. Paige, M.R., "On Partitioning Program Graphs,"
IEEE Transactions, SE-3, No. 6, November 1977,
p. 386.

11. Parnas, D. L., "On the Criteria to be Used in
Decomposing Systems into Modules," CACM 15,
12 (December 1972), p. 1053.

12. Robinson, L., "The Relationship of System
Families to HDM" (Hierarchical Development
Methodology) - Stanford Research Institute,
TR: CSL-50, June 1977.

13. Roubine, 0., "On the Design & Use of
Specification Languages," SRI Technical
Report CSL-48, October 1976 (AD/A-038 783).

14. Scheffer, P.A., "Computer-Aided Software
Design," Martin-Marietta Internal Report
D-22R, December 1977.

15. Schutt, D., "On a Hypergraph Oriented
Measure for Applied Computer Science,"
CompCon Proceedings, Septeber 1977, p. 295.

16. Velez, C. E., Scheffer, P. A., "On the
Problem of Software Design and Measuring
Quality", Martin Marietta Aerospace,
May 1978, pp. 223-229.

99

PROGRAMMERS ARE TOO VALUABLE TO BE TRUSTED TO COMPUTERS

Gerald M. Weinberg

0 Ethnotech, Inc. RFD #2 Lincoln, NE 68505

ABSTRACT "real world".

Most of the anticipated gains from program- Twenty years ago, computers were rcr77: ex-
ming tools have been slow in arriving, and often pensive--so expensive that FORTRAN had to be
disappointing when they arrive. A major cause ruled out of consideration for the language used
of this condition is the failure to understand in a programming course. In fact, even the rich-
the processes by which new technology is intro- est of the rich thought using a ,ornmutcr in a
duced. The role of training has been left by programming course was a frivolous extravagance.
default to computers, tinder the assumption that
they are cheaper or better than human teachers. Twenty years is a long time in a sheriff's
Methods of learning without using either comput- ife, and even longer in the life of the program-
ers or teachers are not even considered, though ming profession. Few remember those days, or
they are far more economical and effective. The even bcMiove that it was possihh.o to teach pro-
computer can have a role; the teacher can have gramming without a computer. Soon, at the rate
a role; but unless the overall climate for pro- personal computers are spreading, few will remem-
fessional learning is established, the computer ber what it was like to learn computing with a
and the teacher are hopelessly inadequate to the teachcr. In the four years since that WATFIV
full job of creating a corps of professional decision was rationalized, the "raw economics"
programmers. have changed so sharply that we could almost

afford to give each student a personal computer.
In this V'Ir oI 1978, it sounds archaic to say

Choosing a Teaching Language ",'ir instal lat ion" in the singtilar. What tnivtr-
sitv\ worth accreditat ion hasn't got a Ioz0n or

Every four years, along with county elec- more minis antd miclros scattered arotund thIi Lampus
tions,the local computer science professors raise l ike lonmecotung handbills?
the question of the correct teaching language
for programming. There's a lot of brave talk Still, the FORTRAN argument has survived the
about throwing the rascals out, many lunches latest reduction in hardware costs. Now it is

devoted to campaigning, a wave of confidence the micros that can't afford to run anything

just before the election, and then the ultimate else--except, heaven forbid, BASIC. Where does

defeat of the upstart. In the end, both FORTRAN this conservatism originate? Where will it end?
and the sheriff are reelected. They may be cor- How far will it spread? Why does it resist the

rupt; they may be incompetent; they may be creak- repeated efforts of language designers and imple-

ing with age; but they're at least familiar, mentors to break it down?

Like the county voters, professors are quite Using Software Tools

ready to rationalize the result. As the years
since 1956 have accumulated, the points in these The programming language is merely the oldest

arguments have, one by one, withered away. And yet and most familiar software tool, and universities

one remains, year after year, the backbone of are merely the oldest and most familiar tools for
conservatism everywhere. To quote a genuine social change. The same conservatism in theprofessor: adoption of new tools is found for all other

tools in all other institutions. If we can an-

"My decision to base this course on the swer our questions, the payoff could be stagger-
WATFIV programming language was founded ing.

not only on a recognition of real-world
applications but also on the raw econo- Of the many reasons for non-use of new tools,
mics of computer costs at our Installa- perhaps the most obvious is the lack of attention
tion." given to training. An elephantine sum of money

has been spent on the development of software

"Real-world" and "raw economics" are no- tools- the current rate probably exceeds a bil-
nonsense words--none of your Ivory-tower fol-de- lion dollars a year. In contrast, a micro-

rol. Let's look, therefore, at some of the "raw organismic sum of money has been spent on train-
economics" of computer costs for training in the ing people to use those tools.

100

Most of the tools--perhaps as a consequence variables
of this disparity between development and train- 9. computations inefficiently placed within
ing--are never or hardly ever used. Not only loops, yet rendered inaccessible to an optimizer,

do people continue to use FORTRAN, but they con- in a program that heavily used poanters 'for

tinue to use it without, for instance, even get-
efficiency"

tiig cross-reference listings of their program

variables. Even when their FORTRAN compiler

provides such a cross-reference, the installa- At the level of design, the program again showed
tion disables it, usually as a "standard", no influence of recent discussion in the industry,

because "it costs too much". And, even where let alone design tools and concepts. We found:

it is routinely produced, 90% of the programmers
never look at it--yet the cross-reference list- I. no checking whatsoever for valid input,

ing is one of the simplest software tools, one either bounds or values

of the most direct in its use, one of the most 2. unchecked input used to control cilcula-
convenient, and one of the most ancient. tions, as in computed branches

The situation is little better in the major- 3. a completely undesigned and error-prone

ity of installations that have abandoned FORTRAN input format

for "higher" languages. As an exercise in for- 4. an algorithm which was inefficient for
mal review techniques, our clients and students all but small cases of input
study published programs, which presumably are
held up as examples for novices to follow. In 5. no monitoring of performance of the al-

a typical review, of a program by two PhD Pro- gorithm, which might have indicated loss of per-formanee to the user
fessors of Computer Science, we studied the use
of PL/I. Although the specifications offered 6. incomprehensible error messages
ideal situations for employing each of them,
none of the following PL/I facilities were used: 7. comprehensible error messages that were

wrong or misleading

1. dynamic allocation of storage In our work, we have reviewed hundreds of

2. cross-section notation programs from dozens of installations. The pro-
grams display approximately the same range of

3. array expressions problems, and the installations display approx-

4. factoring of attributes imately the same non-use of tools. At least 75%

of the installations routinely debug using unfor-
5. subscript expressions matted hexadecimal dumps. At least 90% have
6. control of type conversions never used a preprocessor. Program libraries are

7. bit strings coming into use, but not in more than 50% of
installations. Test data generation is rare;

One could almost have removed the semicolons archiving of test data even more rare; and even
a rudimentary data set comparison is hardly everand, in effect, compiled the program on a used,

FORTRAN compiler.

Further examination of the program revealed, We're not speaking of the number of these

as is typical, no impact of the years of dis- tools that sit on the shelf, accumulating dust

cussion of programming style. Among the more and rent. We are counting the tool as "used"
pctifu stylistic practices we found: if someone uses it, even if for a minor part of

its capabilities, so these figures overestimate

1. intricate branching, including into and real professional use. Since we are spending

out of loops some money on training, what can it possibly be
teaching them?

2. superfluous statements based on incom-
plete understanding of the action of earlier The Computer as Instructor
statements

3. initialization of variables upon exit In view of the inadequate use of our expen-
from loops that used them sive tools, it is obvious that we are not teach-

ing programmers to use the computer adequately

4. use of single-character names such as in their programming work. The conclusion seems
K and R obvious--we must spend more on computers in our

5. use and reuse of scalar variables in a classes, not less.

program not pressed for storage Obvioue? It would seem so, until we look at

6. use of a name with a different meaning the way the computer is being used in classes.
in the program and in a comment explaining its Indeed, we are not teaching them at all--the
meaning computer is carrying the burden for us. As a

7. use of the keyword, PTR, as a data name result, we find ourselves standing on both sides
in a most confusing context of the same fence. It is the double thesis of

this essay that

8. general inconsistency in the naming of

101

1. The computer is insufficiently used in But, again, what is it they teach? By reviewing
programmer education, programs produced by these students, in class

and years later, you can learn what the computer
2. The computer is far overused in program- teaches about programming:

mer education.

Let's examine how the computer is used in a 1. accurate card punching, in abatch envi-

typical university course in programming. The roment

nature of this use may best be understood in 2. use of a text editor to overcome inaccu-
terms of an analogy. Suppose we have succeeded rate keying, in an on-line environment
in developing a "paper-grader" program for high-
school English courses, and that we have succeed- 3. spelling of keywords
ed in getting +he program used within the high- 4. consistent spelling of programmer-chosen
schools in the following way: words

5. a subset of the syntax of a programming1. The teacher lectures on one topic or language

another to 50-500 students.

2. The teacher gives an assignment to write But beyond these important lessons, the computer--
an essay. used in these ways--teaches a much deeper lesson,

one that will remain long after the WATFIV syntax3. The students write an essay, under is forgotten. That lesson is:

strict orders not to help anyone else or to

receive help from anyone else. Programs are shown to be correct by test.?n,. them.

4. The essay is graded by our computer
program on the basis of This is a curious lesson. To quote the ori-

a. spelling errors ginal sermon on structured programming by Edsger

b. grammatical errors Dijkatra:

5. The paper is returned to the students "...the extent to which the program
with the grade, correctness can be established is not

purely a function of the program's
NWhat do you suppose the students will learn? external specifications and behaviour

but depends critically on its internal
The reason this analogy is good is that we structure."

don't have to guess what the students will learn.
We already know. Even without the computer, In short, what the computer is teaching is pre-
this is the way many high school English class- cisely antithetical to the principal lesson of
es teach composition, and the results are noto- the strongest movement for improved programming
riously bad. Many of the students learn to since the invention of the assembler. It is
spell; some learn to avoid incorrect grammar; teaching this lesson every day, in every school
essentially none learn to corunicate. in the country, to thousands and thousands of

present and potential programmers.
In programming education, the "paper grader"

is already built into the compiler. Because pro- But there is a second high-level lesson--a
gramming assignments must be recycled through meta-lesson, actually--a lesson about learning
the grader until all "spelling and grammar" itself:
errors are eliminated, the emphasis on these
aspects is all the stronger. In many classes, We learn to program by throwing 7arbage
the professor has no time or stomach for reading into a computer and seeing what oomes out.
the actual programs. In some, not even the
out:ts are read. In such classes, students This lesson is like the prejudices of our youth--
turning in Jt'ong outputs never find out from deeply set and hard to change. What's more, it's
the instructor. Students turning in fake being taught earlier and deeper, now that person-
outputs arc never found out by the instructor. al computers are so readily available. What are

we going to do with the next generation of pro-
To solve the problem of unread output, grammers?

sophisticated schools have developed "grader"
programs which exercise the student programs Render unto the computer...
using test inputs and scoring the resultant
outputs. Graders definitely raise the level of Computers are excellent at teaching--about
computer assistance--but mostly to the harried computers. For instance, no amount of lecturing
instructor, not to the student. After all, for about syntax errors seems to make the slightest
classes with hundreds of neophytes, how else impression on the majority of students--unless
ca, the legions of warm bodies be handled econ- It is a slightly negative one. A compiler,
omically, or handled at all. though, patiently and mercilessly teaches syntax

to one recalcitrant student after another.
Grader programs, to give them their due, Cleverly used, It can even motivate some students

actualIv can represent an advance over the simple to learn 1,rini p 's of syntax, though they have
compiler checking that most schools still use. to obtain those principles elsewhere.

102

Some toolmakers say that syntax and spelling In the "real world". What we can't live with is

are unimportant lessons, because tools can be this student's ignorance of the programmer's role
built to correct any errors. I can agree with in life.

them only partly, for no system will ever be able
to correct a!! errors of any type. Consequently, It was not for the programmer to decide how
even the most brilliant programmer must, at some much the professor wanted to spend on exams. His
time, learn the hard lessons of syntax and spell- guess about what the professor wanted led him to
ing--or else waste hundreds of frustrating hours, authorize printing of several thousand exams that

had to be discarded. The deadline was missed,
Furthermore, even when the most sophisticated and the old system of a typed exam had to be

and careful proof techniques are applied to the used. Unless one is programming for one's own
most magnificently structured program, the comput- amusement, the final decision about whether or
er may reveal two kinds of error that can slip not a program is correct rests not with the com-
through. First, there are the simple proof- puter, nrt with the programmer, but with the
reading errors--errors that plague the most advan- party with the problem. And woe unto us as the
ced mathematics journals as well as the most hordes of computer hobbyists hit the professional

humble programs. Second, there is the complete ranks--for them, a! programming is strictly for
misunderstanding of the problem, personal amusement.

Though a programmer may prove that the pro- Another relevant point, of course, is that
gram does what she things it does, she can neVer the programmer had not the slightest idea that
prove that what she thinks it should do is what his program was wrong. He didn't even know it
the user or users wanted it to do. In one sense, was wrong from an "efficiency" point of view.
there are no wrong programs, only different This lesson, neither the computer nor the pro-
programs. The only hope we have of discovering fessor could teach.
if we've solved the right problem is by giving
the proposed solution back to the originator(s). There are, in the end, a multitude of lessons

one must learn to become truly a professional pro-

Consider the following utterly typical grammer. Each such lesson has its own character-
example. A professor of archaeology was teach- istic ways of being learned. In designing pro-
ing a large introductory course, assisted by the gramming courses, we must see that each lesson
computer to the extent of its printing individ- is taught in the most CfTotive way, and not
ualized examinations drawn at random from a pool merely that a certain number of students can be
of questions. An advanced student in the com- "processed" for a whole semester without demand-

puter science department had been given the job ing a tuition refund.
of writing the program to print the exams, but
the program had one slight flaw. Rather fre- How to Teach a Programming Course
quently, one exam contained the same question
twice, or even three times. Rather than sampl- With or Without a Computer

ing the question pool "without replacement", the
How do we design such a programming course?

program was sampling "with replacement The general pattern should now be clear:

The professor noticed this defect and con-
fronted the student. He was told that the pro- 1. Use the computer to teach what only the

gram couZd sample without replacement, but that computer can teach.

the process was "very inefficient". He knew 2. Use people to teach what only peor'!c

that the professor certainly would not want to can teach.
pay the extra cost, so it would be better to 3. Make the "economic" choice between com-
print, say 14 questions to be sure of getting 10 puter and people onlv in those cases where either
unique ones. The students just had to be told
to answer "the first 10 unique questions", can do the job with equal effcetiveness.

No doubt an introductory course ought to
The reader may want to speculate just which N ob nitoutr oreogtt

The eadr ma wat t speulae jut wich begin with one or two encounters with the machine,
of the many poor algorithms this student program- to teach

mer had chosen. In fact, the technique was

conceptually very simple. When sampling "without
replacement" was specified, the program would 1. the overall process by which programs

produce a tentative exam and then test to see if get created

it contained any repeated questions. During 2. the finicky nature of computing machines
program test, 10 questions were being drawn from

a pool of 20, which meant that about 30 exams had 3. the mismatch between such machines and

to be drawn to get one without duplicates! our abilities to be precise

We must be careful to draw the correct moral After these lessons are taught, at least on

from this tale. Most professors of computer an introductory level, the class should turn to

science would lament this miserable student's its human resources to learn more difficult

ignorance of algorithms. Although that kind of lessons. A typical assignment might involve:

ignorance is sad, we could learn to live with it

115

103

1. a problem posed by the instructor acting with machine economics. We can use this method
as "user" but with certain lessons in mind quite successfully when there is no compiler for

2. each student making a trial solution, on the language we want to teach, when there is no

paper compiler at all, and c ,' o: to,'., i' ',,

When the probability of a program working the
3. each student evaluating the trial solu- first time is so high, in many circumstances there

tion of another student is not much to be gained from actually running

4. small groups of students, sometimes with the program. Cetttng rid of the computer, or at
instructor supervision, arriving at a composite the very least controlling the incredible variance

solution it usually introduces, permits u, to plan with
more confidence, and to stick with the plan as

5. sometimes trying the composite on the the semester unfolds. Indeed, once freed of the

machine constraints of the machine, thlie course economics

6. groups exchanging solutions for more depend mostly on the availability of teacher and

formal review, sometimes guided by the instructor classroom, but once beyond the barest introduc-
in front of the entire class t ion, . group of programmers can teach

C;'CO. in this way, ou the job or off.

In such a class, the students ingest a much

richer and more meaningful diet of programming Actually, the economics of the on-the-job

information. They avoid time wasted on syntax training reverses the usual college assumptions.

and spelling, which are corrected as a byproduct The students are likely to be making higher sal-

of the informal evaluations--and which in any aries than the instructor, and certainly are when

case could be taught by machine except for the considered as a class. It simply doesn't pay to

fact that it's actually cheaper and more effect- transport professional programmers to a cross-

iye to do it through reviews! From student to town campus for programming lectures when they

student, from teacher to student, passes know- can learn much more in less time by inspecting

ledge about ic, about 'LMcnn40,1'C, about .z7, o'- each others' work.

.thris, about ics'gn, about too's, about hundreds
of little pieces of programming "widsom" that There is an implicit challenge here, to the

collectively set apart the professional from the. professional teacher who wants to stay out of

amateur. And were It not too presumptuous, we the unemployment lines. With the leader,

might have mentioned that once in a while know- a small group of programmers can multiply their

ledge even passes from student to teacher, learning through review techniques. The leader

has to help them invest the money saved on lec-

But what of the "raw economics"? We've tures and machine time in fruitful alternatives,

speculated about this. We've experimented with such as instrumented runs that permit them to

it. Our experiments surpass even our wildest make design and algorithm comparisons that would

speculations. Of course, the first saving comes be difficult to perform analytically.

because teams of 5 students run only one-fifth

the number of assignments through the computer. The loader can give them more problems to do

Yet the lessons for each student are far greater in the same time, or guide them in exploring

than the old secretive method, for each student more alternatives on the same problems. In this

sees many approaches, not just one. way, the students can be nudged along the path to

design, rather than to even more obscure bit-

Secondly, the number of runs to produce a twiddling. Tc ,Is can b:, evaluated in actual use,

correct program (and not Just a "working" pro- perhaps giving some return for the billions we've

gram) Is drastically reduced. The magnitude of invested in them. But it will take a lot of

reduction depends somewhat on the size of the running for an instructor to stay ahead in such

problem, but a typical figure for student batch an environment.

problems is from an average of 20 runs to an

average of 2. Actually, ":.st programs run cor- This new envirrnment may not suit the old-

rectly the first time on the machine--in the fashioned teacher who the the instruJtor job as

students can demonstrate it. They had better be a kind of Olivier playing Hamlet to packed houses
of sleeping students. Neither may it suit the

able to; If not, the other teams cut It to pieces. ty pi cmut o e her min and
typical computer jockey whose narrow mind and

Thirdly, the programs themselves typically dogged persistence have served to get so many A's
will run more, efflcienrly--once attention is on from the usual programming classes. If such

design, rather than grammar and spelling. The people are thus encouraged to leave the program-
factor of 30 lo:;t by the archaeologist's program- mIng profession, it can be counted as another

mer would not be untypical, but suppose we modest- plus for this system of professional education.

lv put this factor as 2. Putting the three fac-

tors together we reduce machine costs by a factor Some Future Jttstory,

of about 100 (5 x 10 x 2). Certainly that's
enough "raw economics" to permit us to choose If we study the development of other high
our programming tools on the basis of what they technology fields, such as, electrical engineer-
will teach t not what they will cost. Ing, machine tools, telephoni s steam power,

and printing, we see t h.t :c,'ut'g is not unique.

But the benef its to education (to not stop We may be going through the stages faster, but

104

we're going through them all the same. Our first References
quarter century has been fast-paced, and driven
almost entirely by the "technological imperative". Much of what I know about how people use com-
Hardware sales have been the alpha and omega of puters was summarized several years ago in
our narrow world. Anything that didn't promote
the sale of more hardware was left behind in the Thhe Psycology of Computer Programming
rush for survival in the technology jungle. New York: Van Nostrand Reinhold, 1971

For the past few years, since IBM "unbundled", Son~ good work has been done in isolated places
the sales managers have come to understand that since then, but has never been summarized in one
software is a product, just like hardware--but place. Ben Shneiderman of the University of
with an even greater potential market. The soft- Maryland is working on such a summary, in the
ware rush is now in its adolescent stage, and form of a book of readings, which I hope will
repeating the entire hardware history at an soon be available.
even faster pace.

Our own work since 1971 has been concentrated
Yet, today, after an investment of perhaps in five areas--structured programming; systems

200 billion dollars in hardware and software, thinking; formal technical reviews; team program-
the achievements are relatively small. Relative ming; and programming tools. We've published
to what? Relative to what the future--if history several books and films on structured programming,
is any guide--holds in store. One measure of seen as a human activity rather than a branch of
our immaturity is the lack of any true program- mathematics or computer science. We've published
ming profession. The career path of choice for several books on systems thinking and problem
programmers today is "up and out". For most, solving, and have more books and films in process.
there is nothing to learn after mastery of Our work on formal technical reviews is summar-
grammar and spelling, so there is little economic ized in
incentive to retain a higher-paid "experienced"
programmer where a freshly trained beginner is EthnoTECHnical Review Handbook
available. Daniel P. Freedman and Gerald M. Weinberg

Lincoln, NE: Ethnotech, Inc., 1977
And, when an individual does surpass this

narrow training, there is nobody in management We are working on a similar handbook to summarize
to recbgnize how valuable such a professional what we have learned about team programming. Our
really is. The managers, after all, once took principal educational activity has been our
a "programming" course. They know that program- Technical Leadership Workshop, in which we train
ming is unprofessional, shallow, and unmanageable, professionals in all five of these areas, and in
They know that money spent on training is wasted, special courses centered on one area or the other.
and would be better invested in some new hard-
ware, or a software tool that promises to replace Our principal published effort in the area
a few programmers, of teaching and motivating people to use program-

ming tools is
All of have been hypnotized by a running

sales pitch consisting of fallacious "raw econo- High Level COBOL Programming
mics" and illusory "real worlds". We have spent Gerald M. Weinberg, Stephen E. Wright
billions for "tools", but not pennies on under- Richard Kauffman and Martin A. Goetz
standing what is needed to create the professional Cambridge, MA: Winthrop Publishers, 1977
technical leaders who will actually use them.
We've spent millions on "schooling", but skimped We are now preparing a course for data processing
on real learning. As a result, our tools lie on management on the effective introduction of
the shelf, misunderstood and little used. Our teams, tools, and technical reviews.
systems seem to cost too much, but conference
after conference merely repeats the sales pitch
of its predecessor--buy more things! Our systems
fail to satisfy, but all we hear is that people
don't understand the finicky nature of computers--
the next generation will solve all that.

The next "generation" will come when we out-
grow our adolescent fascination with toys and
develop an adult interest in people. Then we
will begin, as other technologies have done, to
master the social and psychological forces that
are the real power behind successful technology--
and the real reason for technology in the first
place. An excellent starting point would be to
take computer training out of the hands of com-
puters. And perhaps put it in the brains of
people.

LIFE CYCLE MANAGEMENT MEASUREMENT
MODELS-PREDICTIVE

"Progress in Modeling the Software Life Cycle
in a Phenomenological Way to Obtain Engineering Quality Estimates

and Dynamic Control of the Process"
L. H. Putnam

"Software Cost Modeling: Some Lessons Learned"
Barry W. Boehm and R. W. Wolv,,rton

TRW Defense and Space Systems Group

"A Software Error Detection Model with Applications"
Amrit L. Goel, Syracuse University

"Laws and Conservation in Large-Program Evolution"

Heir M. Lehman, Imperial College of Science &
Technology/England

"Validation of a Software Reliability Model"
Bev Littlewood, City University/England

"Progress in Software Reliability Measurement"

John D. Musa, Bell Telephone Laboratories

"The Work Breakdown Structure in Software Project Management"

Robert C. Tauswortlic , Jet Propulsion Laboratory

"Operation of the Software Engineering Laboratory"
Victor R. Basili & Marvin V. Zelkowitz, University of Maryland

_-.I. .. I I I]

105

PROGRESS IN MODELING THE SOFTWARE LIFE CYCLE IN A PHENOMENOLOGICAL
WAY TO OBTAIN ENGINEERING QUALITY ESTIMATES AND DYNAMIC CONTROL

OF THE PROCESS

Lawrence H. Putnam

Quantitative Software Management, Inc.
1057 Waverley Way
McLean, VA 22101

Abstract

This paper reports on the progress made in base is implied and the manager is really asking for
dynamic phenomenological modeling of the software much more. Typically, he really wants these answers:
life cycle. An overview rationale is presented to
demonstrate the need for a dynamic life cycle
model. The software life cycle behaves like a nar- Can I do it?
row band gaussian process. The linkage to informa-
tion theory is suggested and the concept that soft- How much will it cost?
ware systems have a characteristic bandwidth and
behave like bandpass filters is used to quantify How long will it take?
Brooks' Law and show why managers have little flex-
ibility in specifying the development time of a How many people at any time?
system. Productivity varies inverse ly as the
square root of the average applied manpower, hence What kind of skills?
managerial efforts to speed up projects, increase
productivity and cut costs are non-productive be- What are the risks?
cause these measures are functionally related in a
counterintuitive way. An example is presented to Are there trade-offs? What are they?
show how the Norden/Rayleigh model is used to gen-
erate quantitative answers to the management How do the constraints affect these answers?
questions: Can I do it? How much will it cost?
How long? How many people? What's the risk? These are the questions we can now answer.
What's the trade-off? In Section I a broad overview of the software

cycle is provided. Section III shows how to apply
I. Introduction this model to a real world software project.

Answers to the management questions are determined
To do meaningful tasks in the functional areas quantitatively and presented in a form directly

of modern government and business entities, most usable by financial and project managers. To pro-
large scale software takes 2-3 years to develop, and vide a framework for this work, the fundamental
has an operational life of 6 to 10 years before being aspects of software systems development and its
replaced. This is a life cycle. A model of this interrelationship with physics and information
life cycle has been developed and can be used to theory is presented in Section IV. Finally, sum-
forecast and manage the costs, schedules and man- mary tables are presented in the last section for
loading requirements of large software projects. quick reference to the techniques necessary for
Time is the independent variable whether explicitly forecasting costs and schedules.
treated or not (careful attention to management
thinking, guidance, etc., will show that time is I. Overview of the Software Life Cycle
always implicitly recognized and is central to their
planning and thinking--all budgets, plans, and con- Many industrial processes are linear or nearly
tracts have a time base). linear. This means that

Managers ask these questions of software pro- Quantity = rate x time
jects just as they do of any other process that
consumes resources: where rate is a constant.

How much will it cost? In a people-intensive activity it means

How long will it take? Effort = manpower x time

Because the answers to these questions will go Cost = Cost/unit effort x effort
into a resource allocation plan, or budget. a tl;e

where manpower (a rate) is assumed constant and

106

cost/unit effort is a standard cost, or a time of how a process will behave over an 8 or It year
average, period based on the information we have now. lut

our input infornration about the system we plan to
A further assumption is that the production build, or are building, is continually chanqinq for

rate (number of "widets"/day) is directly proper- a variety of reasons. Requirements change because
tional to manpower (ettort/day), or since the time of external factors (regulatory; the way we do busi-
base is the same, ness, etc.).

Effort Product (no. of items) This requirements change process means that
our estimate done a short time ago becomes obsolete

This doesn't work for software because software and needs revision to reflect today's reality.
production rates are not linear with time and the
effort is not directly (linearly) proportional to This can be done by just re-estimatinq using
product. the new input information if the developm-ent has

not yet started. However, if development is under-
Sometimes mildly non-linear rates can be re- way the problem is different. We have to adapt on

placed by averages over time (standard labor cost- the fly. We have to assess what an incremental
ing is an example). change applied at a specific time will have on the

process at all future times. Clearly, this is a
If the rates are continuously varying then the dynamic modeling requirement. Again we want the

solution lies in the use of the calculus. This is answers expressed in the form of answers to the
a scary word because many people have not studied management questions so that managers can reprogram
it and have heard that it is vague, abstract, hard resource allocation and assess risks in terms of
to apply and only long hairs use it to prove obscure contractual obligations.
scientific points of no practical consequence.

Now a static model that does not adapt to the
We have to accept that built-in bias, solve real data coming from the actual project can only

the problce using calculus and then present the re- do this in a very imperfect and superficial way.
sults in a tabular and graphical form which can re- All the current models (loty, PRICE-S, IBM, (,RC,
late the curvilinear relationships in a form pala- TRW) except one (Putnam) are static - they do not
table to ost planners and decision makers. treat time explicitly and they do not have the ca-

pability to adapt to the actual behavior of the
Now, if our problem is not only curvilinear in system at any instant of time in that -0 vear

its fundamental relationships but als', possesses a life cycle period.
random character, this means the probability arid
statistical Taws come into play. it means we cannot The best data you will ever have is that coii-
measure rates, effort, time, and oroduct with qreat ing from the project you ,'....,,' , ni i. A fare-
precision because these quantities are always fluc- ful fitting of that data to a mode' that is faith-
tuating about some average (arid that average may be ful to the phenomenology involved will jive the
changing over time), so what we have to do is work best possible answer and, jireover. will cintiual-
with averages of the quantities and a measure of ly adapt to the dynamic of the chan(ge rocess.
the variability of the ,:!antities (standard devia- This ieans that it is alwavs converrinq towari ihe
tion). This is an important philosophical point true answer which, alas, is always unknowr (exactl')
because it means that only a certain level of accu- irtil the process is over. But the i onveroent pro-
racy and precision is possible arid all efforts to perty is highly useful because it means we are al-
do better' are futile. It further means that the ways getting closer and closer to the true behavii'
statistics improve precision with higher arid higher even though we can only determine the average be-
levels of aggregation and get worse with increasing havior and the statistical uncertainty (due to the
levels of disaggregation. The implication of this random character) at any instant.
is that precise, detailed, work breakdown struc-
tures are highly unlikely to be accurate or mean- But the statistical uncertainty i,, useful, 7t
inqful in a quantitative way. lets us control the process. If we carn estimrte

that one year' from now a system should require ' "
Given this background, the software estimating people with a statistical uncertainty (' I ') Of S

and control problem is really a different problem people, and we find when we get to that point that
depending on where one is in the software life 40 people are working on the system, then higher
cycle. management will know that something significant ,,

happened due to a real cause because there is less
During the feasibility and functional design than 1 chance in 10(0 that such a lar(le excurqin

phases, it is a pure estimation problem using from the predicted would occur because of pure
phenomenology and past experience (data) to fore- chance (random fluctuation).
cast a time varying future event. A model of the
observed behavior is appropriate. This model should This is academic for the Ist line proiect
be a time varying model and should have parameters manager; he knew when he had to add people, or
that relate directly to the management questions. shift resources. It may not be apparent to finan-
The Rayleigh/Nordenidel Putnam has chosen meets cial and budgetary officials well removed frn,:
these criteria, daily contact who review the project only periodi-

cally from records and reports.
A life cycle forecast is an intelligent "guess"

I
107

On the other hand an excursion of , 3 or 4 true and there will be no capability to do oew de-
people would be normal - inherent in the random velopment work if the software house has to work
character of the process - no cause for concern, with a fixed manpower or budget constraint (very

common in government).
So an adaptive model is necessary for dynamic

update to tell us where we are and where we appear Given this background, let's examine how we
to be heading based on all information available now. use the Rayleigh/Norden equation to obtain engineer-
The Rayleigh/Norden model does this by continually ing quality answers during the early specification
fitting each piece of new information to revise the and functional development phases of a software pro-
most recent estimate. The technical term for this ject. The following example will illustrate simple
is "adaptive filtering". It is really a real time applications of several powerful techniques.
Process controller that gives the optimal future
resource allocation (consumption) pattern at any III. txanple of an EarlySizing, Cost and Schedule
instant in time. The Box (13,15) fitting technique Estimate fo" anAAlication Software System
is the implementation of the adaptive

filtering con-

cept. Software development has been characterized by
severe cost overruns, schedule slippages and an in-

The requirements change process is modelled ability to size, cost and determine the development
using the second order Rayleigh differential equa- time early in the feasibility and functional design
tion. This c-iq be made to respond in real time be- phases when investment decision must be made. Mana-
cause it can be solved step-wise in discrete fashion gers want answers to the following questions: Can
using the very general Runge-Kutta numerical solu- I do it? How much will it cost? How long will it
tion to differential equations. The theory is a take? How many people? What's the risk? What's
little deep, but the implementation is verystraight the trade-off? This portion of the paper shows
forward on a calculator or computer because all one how to size the project in source statements (S s),
has to know is: how to relate the size to the management parameters

- the actual elapsed time, t (life cycle effort (K) and development time (te))

and the state-of-technology (Ck) being applied tc
- the actual manpower on board, 'the problem through the software eouation,

- the cumulative effort expended so S C k K1 '3 td4 / 3 The software equation is then
far, y s "

- the best estimate of the difficulty solved using a constraint relationship K Dt d,/2 where 1'Dl is the magnitude of the difficulty qra-from previous experience, K/td dient empirically found to be related to syster

where K is the life cycle effort and development characteristics measuring the degree
t is the development title, of concurrency of major task accomplishment. Monted Carlo simulation is used to generate statistics on

- and an estimate of how much the diffi- variability of the effort and development time. The
culty is likely to change a-, a result of a require- standard deviations are used to mat" risk profiles.
ments change. Linear thinking is reasonably valid Finally, having the effort and development time
here. If about 25 of the application programs parameters, the Rayleigh/Norden equation is used to
are affected by a requiremments change then there generate the manpower and cash flow rate at any
will be about a +25 change in the difficulty. point in the life cycle. The results obtained in-
So, ionstrate that engineering quality aumantitative

S 2 * 2t 2 (1, 2 .25) answers to the management questions can he obtained
td y + 'din time for effective manaqement decision making.

= K/td 2 (1 + .25) Backgroundcind a)proach

is the form we used to study the impact of the re- Over the past four years the author has studied
quirements change process. We just project ahead the manpower vs time pattern of several hundred
at t + 't, t + 2At, t + 3\t, etc., and see how "¢, medium to large scale software develop)ment projects
y compare with the earlier estimates made prior to of different classes. These iorniects all exhibit a
the impact of the requirements change process. The similar life cycle pattern of behavior - a rise in
di'ference will be the incremental manpower and
effort required to acconiodate the change.

Tracking and fittin throughout the life cycle Mills projected saturation with maintenance work
is important because 60] of the life cycle effort a few years ahead leaving no capability to (to newgoes on in the operations and maintenance phase. work unless there was an ever expanding software
If this is treated as a level-of-effort task, then work force. Mills implicit assumption was level-of-
far more resources than are necessary are used. effort on existing systems and no death process.
This inhibits future development capability given The Rayleigh equation automatically accounts foroh-
budget constraints. Moreover, some 70-80' of total se lscence aid death and hence provides for new de-
software work is in the operations and maintenance velopment capability. This is what actually happens
phase so unless this work is optimally controlled, and is demonstrated by the data.
then the projection of Harlan Mills* will become

108

projects (and all the large ones) follow a time pat- effort (K) and time (td) to produce it and C is a
tern described by the life cycle curves of Norden

(7,8) which are of the general Weibull class and quantized constant defining a family of such curves.

more specifically the Rayleigh form, Cn is a channel capacity measure in the infornation

12t 2t theory sense, but in a more practical sense, it seems
= K/td2. t . e - td where 9 is the manpower to be a measure of the state-of-technology beingd applied to a particular class of system.

at any time t; K is the area under the curve and is
the nominal life cycle effort in manyears; td is Substituting for P we obtain the software

the time of peak manpower in years and corresponds equation:

very closely to the development time for the system. S 2.49 C n(K/t 2-2/3 K/6

Even though large systems seem to follow this n
general pattern, some small systems do not. They 2.49 -2 13 4/ 3

seem to have a more rectangular manpower pattern. Ss
= K6 -K n K3

The reason for this is that the applied manpower
pattern is determined by management and by contrac- S C K1/ 3 4/ 3 where C has now
tual agreements. Many small projects are estab- s K d K

lished as level-of-effort contracts - hence rec-
tangular manloading. For large projects this is subsuied - C
generally inadequate because managers have a poor n

intuitive feel for the resources to do the job. Ac- Having this expression which now relates the
cordingly, they tend to respond to the needs of the product in source statements to the Rayleigh man-
system reactively. This results in time lags and

underapplication of effort at some instant in time, power parameters (which are also the management
but the effect is a reasonably close approximation parameters), we turn to a practical way in which to
to Rayleigh manloading estimate the size (S s), effort (K) and development

time (td) of a software project early in the re-
The author has shown in earlier works (9-14)
Tatheauhore s sRayleigh la li work Is t) quirements and specification phase of the project.that there is a Rayleigh law at work. It is the This will let us answer the management questions

Ist subcycle of the overall development curve
called the design and coding curve (detailed logic necessary for effective investment decisions for the

design and coding). This is also a manpower curve software project.

that is proportional to the analyst and programmer We will do this in the form of a case history
manpower - the direct productive manpower. This for a proje,.t we will call SAVE. First, we will

curve is denoted 51. Its form is show a way to obtain a good estimate of the number

- 2 Mof source statements. We'll plot the softwareequa-~to an estats 2fwenreltebtoth
Kt 2t (MY/YR) tion and establsh a feasible region for our develop-

/td ment time parameters, we will impose a constraint
original definition of K and td for the overall relation involving K and td. We will do a Monte

burdened life cycle curve. When this curve is Carlo simulation to generate variances for K and
multiplied by the average productivity (PR) for the td' With these numbers ii hand, we can then do a
project it yields the rate of code production. trade-off analysis, pick a reasonable effort (cost)

dS *time combination and complete our translation into
d : =s = 2.49 PR 51, where the 2.49 is quantitative answers to the management questions.
dt The answers we obtained will be close to optimal

for the given constraint and, moreover, we will
necessary to account for the definition of produc- automatically have a sensitivity and risk profile.
tivity as a burdened number (i.e., includes over-
head and support activities). Now the time inte- Initial Sizing
gral of the rate of code production yields the to-
tal number of source statements, Given the broad, preliminary design of SAVE

consisting of the processing flow of the major
55 7 functions and the estimates by the designers of thedS dt = 1; 2.49 fy dt size range of the major functions, we can make a

dt preliminary estimate of the development time, devel-

S PR . 2.49.K/6. opment effort and development cost to build the sys-
tem. (See Figure 1.)

The author has found that the P'R is related to
the Rayleigh parameters K and td in the following The input data from the project team are in the

d form of size ranges for each major function. Three
manner (14): or four team members estimated the size of each

PR Cn (K/t d2)
2 13 where the term K/td2 has function as follows:

been defined as the system difficulty in terms of - Smallest possible size (in source statements) - a

- Most likely size - m

109

APPLICATION SOFTWAREs

SOLVING THE SIZING-ESTIMATING PROBLEM

- FEASIBILITY SIZING

- ESTABLISH BOUNDS ON SIZE (DELPHI, BAYESIAN

- ESTABLISH BOUNDS ON EFFORT, $, DEV. TIME (1 75-100 %)

-. DECISION SIZING (I 1 25% EFFORT, $, td)

- PRELIMINARY DESIN DONE (KNOW MAJOR FUNCTIONS-
Ss ESTIMATE, TECHNOLOG'Y STATE POSSIBLE)

- CONVERGE TO TRUE BEHAVIOR

- FIT REAL DATA (ADAPTIVE FILTERING)

20-40%

of - CONTROL

- FIT REAL DATA (MINORsof tw-ar PARAMETER ADJUSTMENT)

work

60 - 80 % of software
work

rnrqrtl ' 11?l~ ,IfIf,(T IOIN WIOSnm i P I A AM4P IA IT IAAA4E

j.riwA 'fQ i Ii.AI r4/ '1. (I I

r (0 t ri

Fiqure 1. THE SOFTWARE LTFE LYCLE

110

- Largest possible size - b course, if the input estimates change, we should re-
do our calculations and revise the results accord-

These were averaged for each function and resulted ingly.
in the first 3 columns of Table 1. This was in ef-
fect a Delphi polling of experts and their consensus. Development Time-Effort Determination
(aving done this with several groups of systems en-
gineers, it is interesting to note that they are Table 2 is a result of using the softwareequa-
very comfortable with this procedure.) tion which relates the product in source statements

to the effort, development time and state-of-tech-
Note that this results in a broad range of nolo~y being applied to the project. The equation

possible sizes for each function and that the dis- is derived partly from theory and partly from an
tribution is skewed on the high side in most cases. empirical fit of a substantial body of productivity
This is typical of the Beta distribution, the char- data. The form of the equation is:
acteristics of which are used in PERT estimating.
We adopt the PERT technique to get an overall sys- 1/3 4/3
tern size range and distribution. s k td

1. An estimate of the expected value of a where S is the number of end product delivered
Beta distribution is:s source lines of code, an information measure.

E a + 4m + b
- 6 Ck is a state-of-technology constant. For the

The overall expected value is just the sum of the environment anticipated for SAVE this constant is
individual expected values. 10040. C k can be determined by calibration against

N the software equation using data from projects de-
veloped by the same software house using similar

E = Ei . technology and methods.

i-I K is the life cycle effort in man years. This
is directly proportional to development effortThis is Lhe sum of the fourth column of Table 1

(98475 Ss). (Dev Effort = .4K) and cost ($TMY . K = SLC cost;

/_MY . (.4K) $ Dev).
2. An estimate of the standard deviation of

any distribution (including Beta) is the range with- t is the development time in years. This
in which 99 of the values are likely to occur di- d
vided by 6, i.e., corresponds very closely to customer turnover.

l = b-al /6. tion. Figure 2 shows a parametric graph of this equa-

The overall standard deviation is the square root
of the sum of the squares of the individual stan- Table 2 presents three scenarios for 5 differ-

dard deviations, i.e., ent points in the size distribution curve. The ex-
pected case is given in the row labelled E. The

/N= 1 1/2 column under td 2 years gives a nominal develop-

tot 11 % ment effort of 23.59 man years, SI.18M cost
(@ 50,00O/MY) to do 98475 source statements.

This results in a much smaller standard deviation The fastest (or minimum) possible time for
than one would "guess" by just looking at the in- 98475 source statements is 1.81 years. The corres-
dividual ranges: the reason iE that some actuals ponding development effort is 35.4 MY, and cost of
will be lower than expected (Ei); others will be $1.77 million. The assumption here is that the

higher. The effects of these variations tend to system is a stand alone and the gradient condition

cancel each other to some extent. This cancelling of !VDI = 15 cannot be exceeded.

effect is best represented by the root of the sum The risk biased column is based on dcliberatel
of squares criterion, adding time (.4 of a year) to the minimum time to

The result is increase the probability of being able to deliver
the F roduct at the contract specified date. This
biasing is to allow for external factors such as

E = 98475 source statements late delivery of a computer, an average number of
requirements changes during development, etc. In

tot = 7081 source statements the case of 98,475 source statements, this would be
1.81 + .4 = 2.21 years. The corresponding expected

and the 99, range is 77,000 - 120,000 Ss, or we are development effort is 15.91 MY; S.8 million cost.
s Note that development effort and cost go down as

99;. sure that the ultimate size will be in this time to do the job is increased. This is Brooks'
range if the input estimates do not change. Of law at play. Conversely, there is no free lunch--

SIZE -EFFORT - TIME
TRROE-OFF CHART

a C, 100410 GRAD 14.7

s my - 2$ My I my

250

boo i.00 2b.00~ ooo 3E 0 b. 00 S6.00 6,1.00 7b. 0 eb.oo 9b.o 00 Ooc
SYSTEM SIZE xID

Figure 2

112

Table I.

Standard
Ss S S Expected Deviation

Least Most Likely Most Ss S s
Major Function a in b

Maintain 8675 13375 18625 13467 1658

Search 5577 8988 13725 9109 1258

Route 3160 3892 3800 4588 940

Status 850 1425 2925 1579 346

Browse 1875 4052 8250 4389 1063

Print 1437 2455 6125 2897 731

User Aids 6875 10625 16250 10938 1563

Incoming Msg 5830 8962 17750 9905 1987

Sys Monitor 9375 14625 2:3000 15979 3104

Sys Mgt 6300 13700 36250 16225 4992

Comm Proc. 5875 8975 14625 9400 1458

9847 5 7081

Table 2. SAVE

Assumption: On-line, interactive development,
Top down structured programming,
HOL, Contemporary development
environment. No machine constraints.

Ck = 10040; Standalone System -- F= 15

td 2 yrs Fastest Risk Biased

S Dev Effort t Dev Effort t + .4 yr 0ev Effort

s(MY) d (MY) d (Y

-3 77000 11.28 1.63 25,80 2.03 10.71

($,564M) ($1,29M) ($.55M)

-I 91394 18.86 1.75 32.16 2.15 14.12

($.943) ($1.61) ($.71M)

E 98475 23.59 1.81 35.40 2.21 15.91

($1.180M) ($1.77M) ($.796M)

+l., 105556 29.05 1.86 38.71 2.26 17.77

($1.45M) ($1.84M) ($.89M)

+3 120000 42.69 1.97 45.65 2.37 21.77

($2.135M) ($2.28M) ($1.09M)

113

if time is shortened the cost goes up, dramatically. The results of the simulation are given in the

This can be illustrated by obtaining the trade- next table. Notice that the simulated estimated

off law from the software equation. Solve the soft- development effort is the same as the expected de-

ware equation for K: terministic value and the development time is also
the sdme. This is as it should be. The simulation

1/3 produces the right expected values. The real value
Ss = C K1/3 4/3 = C (Kt 4) in the simulation is that it produces a measure of

k td k d the variation in effort and in development time
which we can used to construct risk profiles.

Kt 4 'S '3d =Ck / Major Milestone Determination

S_ 3 The results of the simulation determination of

K = the development time are used to generate the major
d milestones of the project.

This is the trade-off law. In terms of development These milestones relate to the coupling of sub-
effort E = .4K so cycles of the life cycle to the overall project

r Ecurve (9-14). Examination of several hundred sys-
3 tems shows this coupling is very stable and predict-

S 4 able. The empirical milestones resulting from these
E = .4 / C) d MY earlier studies shows the following scaling.

Milestone Fraction of
In our specific case Event Development Time, td

E 00405 /td Critical Design Review .43

and we can trade-off between 2 years (contract con- Systems Integration Test .67

straint, say) and 1.81 years--the minimum time for Prototype Test .80
our gradient constraint. Start Installation .93

Parameter Determination By Simulation Full Operation Capability 1.0

While Table 2 gives a fairly broad range of Table 4 converts this to the appropriate des-
solutions that answer many "what if" questions, it criptors and actual time schedule for this project.
is an essentially deterministic solution; that is,
it assumes we know the input information exactly. Risk Analysis
Of course, we don't.

The results of the SAVE simulation for develop-
A better solution, then, is one in which we ment time, development effort and development cost

treat the uncertainties in our input information can be shown in the form of probability plots. As-
in obtaining our solution. This is generally not suming a normal (gaussian) distribution, all that is
feasible analytically, but is nicely handled by necessary is an estimate of the expected value
Monte Carlo simulation. In our case we do this by (plotted at 50',' level) and the standard deviation
letting the input number of Ss vary randomly about (plotted offset from the expected value at the 16

probability level) to generate the line. Then one
the expected value (98,475) according to our com- can determine the probability of any value of the
puted standard deviation, o = 7081, and letting quantity in question. For ease of presentation, the

Ss plots are summarized in Table 5. For example, there

the stand-alone gradient (IVDI
=

15) vary within is a 90 probability that the software development

the statistical uncertainty of its measured (com- will not take more than 40 MY of effort. There is
puted) value (= 2). a 99. probability it will not take more than 45 IYS kof Development effort. There is only a 10 proba-

We then run the problem on the computer bility it will take less than 30 MY of Development

several thousand times with these random varia- effort.

tions in parameters and generate the statistics
of the variation in our answer. This is a much The result for the development time is extreme-

better measure of what is likely to happen as a ly important from a conceptual point of view. The

result of the uncertainties in the problem. small standard deviation is both a curse and a
blessing. It says we can determine the development

114

Table 3.

SAVE SIMULATION

INPUT TO SIMULATION

98475, S 7081

* :D =1 5, k.'D 2

Technology Constant 10040

RESULTS OF SIMULATION

Number of iterations = 2170

Expected Development Time - 1.81 years

Standard Deviation, Development Time = .063 years

Expected Development Effort = 35.1 Manyears

Standard Deviation, Development Effort = 3.77 Manyears

Table 4.

SAVE MILESTONES

t d 1.81 years

EVENT ! t/td time from start time from start
(years) (months)

CDR .43 .79 9

Software .67 1.21 15
S.I.T.

Hardware .so 1.44 17
S.I.T.

Start .93 1.68 20
Installation

Start
Acceptance 1.0 1.81 22
Test

Complete
Acceptance 1.14 2.06 25
Test

IZ5

time very accurately (,1 tl/td - 3.5) but at the for the software development effort (Phase II). The
cash flow is just the average dollar cost/MY times

same time it tells us we have little latituftp i,; Y.
adjusting the development time to meet contractual
requirements. Cash Flow Phase II = /IY . S/YR

For example, = .063 years is .063 (52) Table 6 combines the software development ef-
o d fort (Phase I) with the initial design and system

+ 3.28 weeks; 3 = 3 (3.28) = + 9.U weeks; specification (Phase 11) overlap and the hardware
S't integration and test effort. The column labelled

d total adds the separate efforts together at each

= + 9.83 + 10 weeks time period to show the total people on board. The
cash flow rate is the annualized spending rate at
that instant in time (assuming an average burdened

So, if we add 3 to td we will be 99 sure cost/MY of $50,000). The last column gives the
cumulative cost at each two month interval. Note

that td will not exceed the actual value from ran- that the total cumulative cost is greater than the
predicted software development cost. This is be-

dom causes. This does not mean that requirements cause we have included the phase-out cost of Phase I
changes or late delivery of a computer will still effort ples the hardware planning integration ef-
permit the software to come in at + 10 weeks of the fort.

expected time. These are external factors that will
change td and must be specifically accounted for. Figure 3 shows the time-phased manloading of

the Phase 11 part of the project as laid out in
Table 6. Note that the ove-all curve is slightly

This is the curse. The system is very sensitive distorted from the nominal software development
to external perturbations and thee will generally effort because of Phase I phase-out and hardware
cause development time increments grater than 2 or planning efforts. Milestones are also shown on this
3 t (a 90 day delay in test bed computer delivery, figure to graphically portray where these should

td occur.

say).
Linear Pron~ammin_ Alternative

But, knowing this great time sensitivity, man-
agement can use it effectively in planning and con- An alt-rnafive method for the Rayleigh para-

tracting so that risk is always acceptable. The meter determination is linear programning. Since

major point is: time is riot a free good. Develop- we art dea'ing with only two unknowns, K and td'
ment time cannot be-epe-ciie-dby-mnagement. The and have a number of constraint conditions involving

system determines that (i.e., software systems are these parameters, we can easily turn it into a two
inherently narrow band processes with sharp cutoff dimensional linear programmving problem which can be
characteristics, a point that will be elaboratcd on solved graphically. The nice feature of this ap-
later). proach is that a number of the constraints can he

Manpower and Lash Flow Pattern expressed directly in management terms. Desi~in to
cost and design to contract time is possible within
the constrained optimization procedure. This pro-

% 4w that we have the parameters for develop- cedure is outlined below. ihe following constrint
ment effort and development time we can generate the conditions apply:
manloading and cash flow pattern for the software
development period (and even the life cycle, if we
choose). The Rayleigh/Norden equation gives the S; = CK K

1/3
td4/3 Software equation

instantaneous manpower. t

= K/td
2

t . e / 2 t d MY/YR K/td tmax Maximum peak nnpower

K/td '0 , 0ax Minimum peak manpower

K E/.4 35.1/.4 = 87.75 MY

td 1.1 years K/td D Maximum difficulty

so e K/td '03 Maximum difficulty gradient87.75 1(.1 YYft(-J)2 t .exp (t1(.1
2

YY

td K contract delivery time

$/MY (.4K) _ Total budgeted amount for develop-
ment

116

Table 5.

SUMMARY OF SAVE PROBABILITY PLOTS

Probability that DEV TIME DEV EFFORT DEV COST (PH II)
value will not be (t) (E) ($)
greater than yegrs Manyears Millions

1 1.55 25 1.25

10 1.73 30 1.50

20 1.76 32 1.60

50 1.81 35.1 1.76

80 1.86 38.5 1.93

90 1.90 40 2.04

99 1.97 45 2.25

Table 6.

EXPECTED SAVE MANLOADING & CASH FLOW RATE

t PH II PH I Hdwre Total Cash Flow Cum. Cost
(Mos.) (People) (People) (Peoplej (People) Rate ($ Million)

0 0 10 0 10 $.5 M/yr

2 5 8 0 13 $.65 M/yr .096

4 9 6 0 15 $.80 M/yr .217

6 13 4 1 18 .90 .358

8 17 0 2 19 .95 .513

10 21 0 2 23 1.15 .688

12 24 0 3 27 1.35 .896

14 26 0 3 29 1.45 1.129

16 28 0 4 32 1.60 1.383

18 29 0 4 33 1.65 1.654

20 30 0 4 34 1,70 1.933

22 30 0 6 36 1.80 2,225

24 20 0 4 24 1.20 M/yr 2.405

117

SAVE MANLOADING PLAN

MANPOWER CRITICAL DESIGN REVIEW
(MY/YR)

SOFTWARE SYSTEMS INTEGRATION TEST

HARDWARE SYSTEMS INTEGRATION
TEST

, - START INSTALLATION
50 START ACCEPTANCE TEST

40

COMPLETE ACCEPTANCE
TEST

+-99/ PROBABILITY LEVEL30 HARDWARE /f -

20

10

SPH I EFFORT

0

0 6 12 18 24 30 (MONTHS) TIME

.5 1.0 1.5 2.0 2.5 (YEARS)

Figure 3

118

These constraint conditions can be linearized Trade-off is possible along the line between

by taking logarithms and using the simplex method td = 1.83 years, K = 84 MY and td 2 years,
of solving the linear programming problem. The

simplest objective functions are cost and time. One K = 61 MY without violating constraints.

generally wants to minimize one or the other of
these. Typically we do both and then trade-off in Here it is easy to see the counterintuitive

the region in between. nature of productivity. Note that productivity in-
creases with development time because the requir d

Assume these constraints applied to SAVE: effort (C) goes down as time is increased.

Number of S 98475 One other point is important. If the techno-
N logy constant is snaller, the Ss z 9H475 line would

Maximum development cost -$2 million shift parallel to the right (direction of increas-
ing time). If the constraints remained numerically

Maximum time (contract delivery) 2 years the same, the fpasitle region would change because

of the relocation of the Ss line. The time Lc'-
Maximum manpower available at peak manning straint could probably not be met and a relaxation
(hiring constraint, say) 28 people of that constraint would have to be sought.

Minimum manpower you desire to employ at This is a deterministic solution. However, by
peak manning 15 people extending tne idea of simulation, the linear pro-

gramming concept can be embedded %ithin a simulation

Maximum difficulty graJient - 15 and the uncertain constraints can be allowed to vary
randomly about their mean values and the statistical

Maximum difficulty 50 uncertainty for the minimum time and minimum cost

solutions can be obtained by running the problem a
Minimum productivity > 2000 S s/ MY few thousand times.

These translate into: Results of the Example

log 98475 log 10040 We have shown that the management questions/3 log K + 4/3 log td 5 4) posed at the beginning can be answered quantita-

log K = log (2 x 106/5 x 104(.4)) tively to acceptable engineering accuracy for a
software project during the specification preDara-

log td log 2 tion phase. We need only know the state-of-tech-nology we are going to apply to the devel, ment,

log K - logt d log (,e28) estimate the number of lines of code using the PERTtechniques, and use the software equation with a

log K - log td = log (e 15) constraint relationship to solve for the manage-ment parameters (K,td) of the Rayleiqh/Norden equa-

log K - 3 log td = log 15 tion. Simulation provides suitable statistics for

risk estimation.
log K - 2 log td

=
log 50

log K = log (98475/ .4(2000)) IV. A Look at Fundamentals

Having shown some of the consequences of tne
The intersection of these lines bound the Rayleigh equation and its application to the soft-

feasible region. An optimal solution will be at ware process let's examine why we have selected this
some intersection point. Further, because of the model rather than a number of other density functions
equality constraint it must be along the Ss = 98475 that could be fitted to the data. We return to

line. The limiting conditions in this case are: Norden's initial formulation to obtain the differen-

td is 2 years, maximum peak manpower 28 people tial equation.

and Ss = 98475 source statements. Figure 4 shows Norden's (8) description of the process is:

the solution. The rate of accomplishment is proportional to

Reading off the solutions we see that: the pace of the work times the amount of work re-
maining to be done. This leads to the first order

td K E PR differential equation

(yrs) (MY) (MY) (S /MY)

Minimum
Time 1.83 84 33.6 98475/33.6

=
29-1

Minimum
Cost 2.0 61 24.4 98475/24.4

=
4036

$1.22M

119

lINEAR PROGRAMMING SOLUTION
FOR SAVE

K S 98475
(MY)- .L

300 - - --------- -----

PR =2000" '

D EV COST $2 M
10
9 0 ------

80 MINIMM TIME SOLUTION
70

T- TRADE-OFF REGION
60 ,

50 - MINIMUM COST SOLUTION

40 .;.

30

20d 2

10"

4 5 6
DEVELOPMENT TIME (YEARS)

Figure 4

120

We translate this into software terms and the
S= 2 at (K-y) Rayleigh parameters.

where 5 is the rate of accomplishment, 2at is the f(t) is Y the rate of accomplishment, or
"pace" and (K-y) is the work remaining to be done.

Making the explicit substitution for a = 1/2 td
manloading.

we have t/ t2 (K-y). t/ t 2 is Norden's linear F(t) is y the cumulative fraction complete,

d d or the cumulative effort.

learning law. F is K the ceiling, or the life cycle effort.

This is also the form of a generalized diffu- g(t) is Norden's "pace" (2at) and a function of
sion process related to Fick's equation of diffusion the system (innovation), the software organization
of mass transfer, Newton's equation of viscosity in (social system), tools, constraints, state-of-tech-
momentum transfer and Fourier's equation of heat nology being applied (channels), and the customer
conduction (21,22). providing requirements, specifications and changes

thereto (change agent).
The development by Mahajan and Schoeman (21)

of the time pattern of the diffusion process is Writing the diffusion equation in these Ray-
sketched below in the context of the spread of an leigh/Norden terms we have
innovation:

f(t) is the proportion of adopters at time, t = g(t) (K-y)(at2

F(t) is the cumulative proportion of adopters g(t) K-K(1-e

at time t -Keat2

9= g(t) K

is the limit of the cumulative fraction of
If g(t) is equal to Norden's linear learning law

adopters then g(t) = 2at = t/ 2 where j(t) may be interpre-

f(t) = d F(t)
dt ted as the probability density for system develop-

ment being completed at td. g(t) may also be thought
Now the rate of diffusion at any time is pro-

portional to the potential adopters available at of as the innovation frequency or the group problem
that time, or, in other words, as the cumulative solving frequency.
number of adopters approaches its ceiling, F, the
rate of diffusion decreases proportionately. Thus Substituting 2at for g(t)

f(t) L F(t) (F-F(t)) we have 2 K ate-at
dt the derivative form of the Rayleigh equation.

There is a "constant" of proportionality which will
be labelled g(t) to indicate it may be a functionhaving a time dependence. Then Writing the equation in the diffusion form, we

have 9 = t/t2 (K-y). We differentiate once more

f(t) = g(t) . (F-F(t)). d
with respect to time and obtain

This is the rate equation of the diffusion pro- Y = K/t2 - y/t2 + t(-Y)/t2 or

cess. One initial condition is required to solve d d d

it. "The rate of diffusion... is controlled by g(t), "' 2 2 = K/t2
the value of which depends on the specific innova- y + t/t2 + Y/t K D which has also
tion, the social system in which it is difft; .d and
the channel and change agents used to diffus it: been obtained in a somewhat different development
g(t) = f (innovation, social system, channels, by Fix (23 . This is a form of what we shall call
change agents). For a given innovation in a speci- the dynamic software equation. The Rayleioh inte-
fic social system, the use of effective channels gral is its solution which can be verified by direct
and change agents may be catalytic, affecting g(t) substitution. Note that this equation is similar to
and, hence, the rate of diffusion --- g(t) may also the non-homogeneous 2d order differential equations
be interpreted as the probability of an adoption at frequently encountered in mechanical and electrical
time t. Since l-F(t) is the proportion.. .not adopt- systems. There are two important differences. The
ed, the product g(t) . (F-F(t)) gives the expected forcing function, 0 = K/t2, is a constant rather
proportion of adopters at time t" (21). d

121

than the more usual sinusoid and the 9 term has a The software differential equation
variable coefficient, t/t2, proportional to the 1st

d J + 6t/td2 1 + 6/td2 yl = K/td2
power of time. The differential equation immediately d d d
suggests the electrical and mechanical analogs. The is really a powerful narrow band filter. One can
electrical circuit is that for charginq a capacitor see this by perturbing the right hand side with a
with a constant voltage applied through a variable large magnitude but fast sinusoid. Very little rip-
resistor whose resistance increases linearly with ple shows up on the y1 curve and yl is very smooth.
time. A large random perturbation on the right hand side

responds similarly, i.e., the system filters out
all but the narrow band of frequencies the system is

R R . t) sensitive to.

v C This means that managers have to input work
patterns that have frequencies that will be seen by
the system, i.e., low frequency step functions vs.

R(t) high frequency pulse functions (this may imply that
short duration crash catch-up efforts are largely

C ineffective; in any event they have no long term
i 4r cost and time increases).

T TArmed with these hints, one can take the Fourier
transform of Yl curve and obtain the spectrum of

We may also think of this as simple low pass frequencies the system will respond to. The Fourier
filter. transform of a Rayleigh equation in time is itselfRayleigh in frequency (radians/year). The transform

is given in tables of Fourier Sine Transforms. Plot-
ting the spectrum shows that it is indeed narrow and
responds significantly only to signals having periods
from 2 to 8 years, i.e., step-like functions, againvi T v° for systems in the range of interest (I tio<4 years).
In general, the pulse width of a management action
has to be on the order of twice the development time

This comparison will become important later after we to have long term consequences on the system.
relate the differential equation more closely to the
software process. This leads naturally to the idea that software
Systems Have a Bandwidth systems have a characteristic system band width

(Bs % .6/td). Then one can look at thu problem in
It ws sate eariertha thefunametalin terms of the signal to noise ratio and use the

Rayleigh equation is the design and coding rate results given in texts on random signals and noise

curve which is proportional to the rate of code pro- (1 gv18s19,20).

duction. The second order differential equation for (17,18,19,20).

this process expressed in manpower terms is
Uses of the Software Equation6t6K

Y'I + 1 + t Yl = t The differential equation y+ t/t 2 + 1/t

The sketch below shows the relation of the Y1 K/td is very useful because it can be solved step-

by-step using the Runge-Kutfa sobution. The solu-curve to the overall manloading curve, 5,. tion can be perturbed at any point by changing
K/t2 = D, the difficulty. This is just what happens

in the real world when the customer changes the re-
quirements or specifications while development is in

Y process. If we have an estimator for D (which we do)

ZZ~~~~ ~~ tareae /2to the system characteristics, say
the number of files, number of reports and number of
application programs, then we can calculate the
change in D and add it to our original D, continue
our Range-Kutta solution from that point in time and
thus study the time slippage and cost growth conse-
quences of such requirements changes. Several typi
cal examples are given in reference 13.

i __" , iB ll il

122

So, even though we have to use some sophisti-
When we convert this differential equation to cated techniques to solve the problem conceptually,

the design and coding curve S1 by substituting the actual implementation and obtaining of answers

is mostly grocery store arithmetic with a little
td / ,, we obtain graphing (except for the Runge-Kutta solution which

should be done by computer or programmable calcula-
Y" 6t/t2 SI +

6
/t

2
Yl 6K 1 t2, tor; simulation should be done on a machine; Box

d method can be done graphically very nicely with good

accuracy.)

multiplying this by the PR and conversion factor as

before, we obtain an expression that gives us the We have shown that the management questions can

coding rate and cumulative code produced at time t. be answered before software development starts and,
perhaps more importantly, we can continually up-
date and converge to the true behavior by adaptively

t S S using the real data stream in a dynamic way through-
55s + 2 =24.PRKt2 out the life cycle of the system. Thus, both pre-

P d diction and control are possible to obtain and use

2.49 C (K/t
2
)
1
/
3 in an engineering context.

d Finally, we sum up with a few observations im-

S + 6td
2

+ 6 S = 2.49 C (D)
1/ 3

portant to software managers.

d d Software Lessons for Executives

Since D is explicit, this equation can also be * SOFTWARE DEVELOPMENT IS DYNAMIC
perturbed at any time t in the Runge-Kutta solution
and changes in requirements studied relative to -- NOT STATIC
their impact on code production. Of course the

earlier expressions for Ss and Ss could do the same. 0 PRODUCTIVITY RATES ARE CONTINUOUSLY

An example of code production for SIDPERS using VARYING -- NOT CONSTANT
the Range-Kutta solution is given below. PRODUCTIVITY RATES ARE A FUNCTION OF

THE SYSTEM DIFFICULTY --

V. Summary of Estimating Techniques MANAGEMENT CANNOT ARBITRARILY
at Various Stages of

the Life Cycle INCREASE PRODUCTIVITY

The following tables summarize the techniques S BROOKS' LAW GOVERNS -- TIME AND MAN-
that have been outlined and illustrated earlier in
the paper. The adaptive filtering technique of Box POWER ARE NOT FREELY INTERCHANGE-
(13,15) has not been repeated herein. It is impor-
tant. Since it is adequately covered in the refer- ABLE. (SHORTENING THE "NATURAL"
ences, it is sufficient to say that the Rayleigh/
Norden manpower curve is linearized by taking loga- DEVELOPMENT TIME OF A SYSTEM IS
rithms. Then the actuil manpower (or coding rate)
data can be fit by least squares, or plotted, to de- VERY COSTLY -- AND MAY BE

termine the paraireters K and td* This technique has IMPOSSIBLE)

been applied to several hundred systems and works
well, providing there is sufficient time history.

123

Table 7.

Runge-Kutta Solution to the Coding Rate Differential Equation for SIDPERS

Coding Rate Cu.ulative Code
(Ss/year) (Ss)

t (years) (000) (000)

0 0 0

.5 52.8 13.6

1.0 89.2 50.0

1.5 101.0 98.6

2.0 90.8 147.0

2.5 68.4 187.0

3.0 44.2 215.0

3.5 24.9 223.b

td - 3.65 20.33 236.0 ,----- Actual size

4.0 12.3 241.0 at extension
was close to

4.5 5.36 246.0 this

5.0 2.09 247.0

SIDPERS parameters

K = 700 MY

td = 3.65 years

D = 52.54 MY/yr

PR = 914 Ss /MY (burdened)

DIFFERENTIAL EQUATION

S + t S + 1 S = 2.49. -R . D= 2.49.(12009D-213).D

(365)2 (365) = 2.49 (1091/(D'3

,-6- v6 = 29902 (52.54)

= 111785

124

Table 8.

SUMMARY OF ESTIMATING EQUATIONS

Phase Technique Eqation

Feasibility Rayleigh parameter (1) Ss = Ck K
1/3 td4/3

Functional estimation by:
Design (a) Simulation (2) K/td 3 = Dj

(b) Linear rrogramming

(3) K/td2 = ,DJ

S(4) Klt d = e/--max

Solve (1) with (2), (3) or (4)

(a) & (b) are conceptually the

same.

Development Initially, use result ln(&/t) = (K/td
2) - t2

above: 2td2

Box Technique:

then fit actual overall

manpower using Box tech- Input , t, t2; solve for td, K

nique. Fit code produc-

tion rate using same Input Ss, t t2; solve for td /VT, Ss
technique. This will up-

date parameters. Generate

manloading curve.

Operations & Box method as above:

Maintenance correlate with K = E/ - TotalS
.•4 PR Toa= s

td actual, since these E

data are available from

development.
2 . tt 2 K/t2

Development, Requirements change. Use Y + t/td 2i + 1/td y K/td +AD

Operations & Range-Kutta method to

Maintenance access future impact. AD is usually positive; exception is

when a portion of system is killed

o a a

125

Another table will help to specify the solution in terms of the management questions.

Table 9.

SUMMARY OF ESTIMATING TECHNIQUES FOR USE BY MANAGERS

Question Answer

Can I do it? Is calculated td . contract time? (Yes - OK)

Is calculated cost:$/MY(.4K) : contract cost?

(Yes - OK)

Is difficulty and difficulty gradient reasonable

for class of work?

lDKL50 unless there is a good precedent and

lots of parallelism can occur.

VDl ±-7 new

15 standalone
27 rebuild

55 composite

Is Ck consistent with past experience, type

system, language, tools, machine environment?

(Yes - OK)

How much will it cost? Dev. Cost = $/MY(.4K)

How long will it take? De.v. time = d

where K, td come from Ss = Ck K1 3 td4 3

and simultaneous solution of
Kd2 = (D(

K/t d-

K/td = VDJ

K/td = r max

Max cost = I/MY(.4K)

td < contract time

2 2
How many people at any time? (t) = K/td2 t . e't/ 2td (MY/YR)

td

Cash flow? $ (t) = T/MY . ' (t) ($/YR)

What kind of skills? Subjective by manager

What are the risks? Standard deviations for K, td , $, $, E. E, td

are plotted on probability paper to assess risk.

126

What are the trade-offs? (Ss)3 .4

t d 3
S/M s 4

$ DEV k

td4

How do constraints affect the answers? If constraints cannot be met, trade-off law has

to be invoked to get K, td in a reasonable

range. Lengthening td will usually do this. If

can't meet time, gradient constraint, project is

not do-able as is. Size of system (S s) nas to

be reduced.

What is the cost and schedule impact of a At the time of impact, solve

requirements change (during development)? + t/td2 + 1/td 2 y = D +AD for , y. Plot

for all t, compare with previous Y, y curves.

Ynew() Knew

Yold ('
= Kold

K new - K old =AK

AE = AK (.4).

A LC Cost = S/M . AK; A DEV cost = $-Y . AE

new (peak) gives new td. (Lagrangian 3

point interpolation can give this precisely.)

then Atd = slippage

Stdnew td .

_____- __ I_____________________________

127

Glossary of Notation S5s No. of delivered lines of executable

source code. Does not include

comments. What the programmer writes

as opposed to machine language in-

K Rayleigh/Nordon life cycle effort structions.

parameter; work units, man years, man Ck A state of technology constant. Re-
months, etc. lates to the software equation

td Rayleigh/Norden time parameter. Time Ss = Ck K
3 d 4/3. A channel capacity

which peak marpower normally occurs for constraint in the information theory
large software projects. Mathematically sense. (May be thought of as the

the peak of the curve, diameter of the "pipe" regulating the

= K/td 2 . t . e-t2/2td 2. "flow" of source code).

/MY - Average dollar cost per man year of
E - Development effort. Area under effort.

Rayleigh manpower curve up to td (peak). $ 0EV - Development cost in dollars.

Nominally, E = .4K. $ DEV =$/M . E.
max Peak manpower. Normally occurs at td yy -Cumulative effort at time t.

kmax K - (man years).
tdv td - Manpower at time t. (MY/YR).

2

K/td 2 System Difficulty, a force-like term. - Rate of change of manpower at time
Ratio of effort to development time t. A force-like term. (man years per

squared. year2).
3

K/td 3 Proportional to magnitude of difficulty

gradient. VD = i (-2K/td 3) + J(/td 2)

vo 1 -2K" + (ltd 2

2K/td3 since l/td2 is always a small

number in the systems context.

R Productivity. Defined as the total
number of source statements (S s) divided

by the development effort (E).

PT = Ss source statements/MY.

E .4K

This is generally a burdened number

which includes overhead (non-

programming) effort.

128

References 12. Putnam, Lawrence H., "The Influence of the
Time-Difficulty Factor in Large Scale Soft-
ware Development," Digest of Papers, IEEE
Fall COMPCON '77 Fifteenth IEEE Computer
Society International Conference, Sept. 1977,

1. Brooks, F.P. Jr., The Mythical Man-Month, Wash., D.C. pp. 348-353.
Addison-Wesldy Publishing Co., Reading, MA.
1975. 13. Putnam, Lawrence H., and Wolverton, Ray W.,

Quantitative Management: Software Costing
2. Morin, Lois H., Estimation of Resources for Estimating, ATutoria for COMPSAC '77,

Computer Programming Projects, MS Thesis, The IEEE Computer Society's First Interna-
Univ. of North Carolina, Chapel Hill, N.C., tional Computer Software and Applications
1973. Conference, Chicago, Ill., 8-10 Nov. 1977.

3. Gehring, Phillip F., and Pooch, Udo W., 14. Putnam, Lawrence H., "A General Empirical
"Software Development Management," Data Man- Solution to the Macro Software Sizing and
agement, Feb. 1977, pp. 14-18. Estimating Problem," to appear in IEEE

Transactions on Software Engineering,
4. Gehring, Phillip F., Improving Software De- Summer, 1978.

velopment Estimates of Time and Cost, Paper
presented to 2nd International Conference on 15. Box, George E.P and Pallesen, Lars, Software
Software Engineering, San Francisco, Budgeting Model, Mathematics Research Center,
13 Oct.1976. University of Wisconsin, Madison (Feb. 1977

5. Gehring, P.F., A Quantitative Analysis of pre-publication draft).

Estimating Accuracy in Software Development, 16. DA Pamphlet No. 18-8, Management Information
Ph.D. Thesis, Texas Univ., College Station, System, A Software Resource Macro-estimating
TX, Aug. 1976. Procedure, Hq. Dept. of the Army, Feb. 1977.

6. Aron, Joel D., A Subjective Evaluation of 17. Carlson, A. Bruce, Communication S stems:
Selected Program Development Tools, Papers An Introduction to Signals and Noise in
of the Software Life Cycle Management Work- Electrical Communication, McGraw-Hill, Inc.,
shop, Airlie, Va., Aug. 1977, sponsored by New York, 1968.
US Army Computer Systems Command.

18. Schwartz, Mischa, Information Transmission,
7. Norden, Peter V., "Useful Tools for Project Modulation, and Noise, McGraw-Hill Book

Management." Management of Production, Company, second edition, New York, 1970.
M.K. Starr (Editor), Penguin Books, Inc.,
Baltimore, Md., 1970, pp. 71-101. 19. Thomas, John B., An Introduction to Statis-

tical Communication Theory, John Wiley &8. Norden, Peter V., Project Life Cycle Model- Sons, Inc., New York.
ling: Background and Application Of The
Life Cycle Curves, Papers from the Software 20. Baghdady, Elie J., editor, Lectures on Com-
Life Cycle Management Workshop, Airlie, Va., munication Systems Theory, McGraw-Hill Book
Aug. 1977, sponsored by US Army Computer Company, Inc., New York, 1961.
Systems Command.

21. Mahajan, Vijay and Schoeman, Milton E.F.,
9. Putnam, Lawrence H., "A Macro-Estimating Generalized Model for the Time Pattern of

Methodology for Software Development," the Diffusion Process, IEEE Transactions on
Digest of Papers, Fall COMPCON '76, Thir- Engineering Management, Vol. EM-24, No. 1,
teenth IEEE Computer Society International February 1977, pp. 12-18.
Conference, Sept. 1976, pp. 138-143.

22. Furth, R.H., Fundamentals Principles of
10. Putnam, Lawrence H., "ADP Resource Esti- Modern Theoretical Physics, Permagon Press,

mating: A Macro-Level Forecasting Metho- Oxford, 1966.
dology for Software Development," Proceed-
in s of the Fifteenth Annual US Army Opera- 23. Fix, George J., The Dynamics of Software De-
tions Research Symposium, 26-29 Oct. 1976, v nt , Papers from the Software Life
Forher, Va., pp. 323-327. Cyce Management Workshop, Airlie, Va.,

Aug. 1977, sponsored by the US Army Computer
11. Putnam, Lawrence H., A General Solution to Systems Command.

the Software Sizing andl Estimating"Problem,
as presented at the Life Cycle Management
ConferenceAmerican Institute of Industrial
Engineers, Wash., D.C., 8 Feb. 1977.

129

SOFTWARE COST MODELING SOME LE SSONS Ll-ARNEl)

B.W. Boehm and R.W. W.olverton
TRW Defense and Space Systems Group

Redond]6 Beach, ('A 90t278
August 1979(

ABSTRACT 9,. Prospectis eness. D~oes the mnodel avoid thre use of intorina-

This paper sumarizes some ot the lessons we learned recently tion w4hich will riot he A4ell known until the proct is
in developing a software cost estimation model tor TRW. With coinpist
respect to the AIRMICS Workshop, we will concentrate on tlirce [in tire process ofl deselop'rng thIe I R% SC I P miodel and
issues which we found particularly important and useful to ad- esaluating emistirre models (Refs. 1-10. Nc tunid each otl these

*dress in anr industry-wide context at the Workshop. These issues criteria imiportant ti terins ot leSSOnIs VIC 5LCc learning AboUt
* are: sottware cost niodhelitre. lossi ire sonic of tire results of ut

1. There is a need to develop a set of well-defined. agreed-on evaluation and model developmernt %kith respcct to the first four
criteria for rte "goodness" of a software cost model, criteria.

2. There is a need to evaluate existing and future models with 1.1 Definition.
respect to these criteria. Where we ran a software cost model to support a cost proposal

*3. There is a need to emphasize "constructive" models which one of' the first questions we would get from thie prunpuisal
relate their cost estimates to actual software phenomenology manager was. "Does this estimate include thre cost ofrnairaeint.t
and project dynamics. reqluirements anlss trining'. computer operators'"' etc. Wec

were somewhat s urprised to find that the documentation for

iiost existing cost models doesn't satisf ,actolrily ainswer this ques-
I. CRITERIA FOR THE GOODNESS OF A SOFTWARE tion. For the TRW SCEP model, we found that the best solution

COST MODEL was to define a standard-fonin Work Breakdown Structure I Fig.

Our initial criteria reflected our primary objective in I and use it to define which costs were included in our estinmates
developing the new TRW Software Cost Estimating Program and which were excluded.
(SCEP): to serve as an aid in developing cost estimates for I.X
competitive proposals on large Government software projects. u~s s Cnrlc

One may have other objectives for developing a cost model e.g.
to evaluate the impact of using new techniques which may
require a somewhat different set of criteria. srci rEEOPE MAN.esc~ on.AN

Here is a list of the criteria we found important in our context: iSi EALD13 .. DT

I. Definition. Has the model clearly defined which Costs it is T -?IIE SES

estimiating. and which costs it is excluding'!?""IUV
2. Fidelity. Are the estimates close to thre actual costs ex- AU-S-5.(POTS

pended on tire projects? OIT rQNoL

3. Objectivity. Does the model avoid allocating most of thre SXZI ISJI ROTS. SX522? (O,,~c ITM4CLAN S-)4Rt-l
software cost variance to poorly-calibrated subjective "C" T' SXT UI P1 X1 ETCD

factors (e.g. complexity)? That is, is it hard to juggle thme A TE ST X" DES~ IIEV1? ?L5

model to get any result you want? SW 55 22 54 SACCEPT. TEST
IX21 S/. SX ESIG AA?' TEC (SAL SUPI.
IX?) SWi5~ (53Z CPEIE t E VII S 'V4. Constructiveness. Can a user tell why the nmodel gives the 5.22 P.RC DESIGN- S.

estimates it does? Does it help him understand the software sgzirESG Aas~ (050?500'
D4 ? DEIN 01 c 110

job to be done'? WITS2 Poll

SAN) PRCw 5505.5. Detail. Does the model easily accomnmodate the estimation SX1 SR AUL

of a software system consisting of a number of subsystems s~sZ. CCI -............

and units? Does it give (accurate) phase and activiybek S.~r PC0PO SASR . ; : ts
dows? 1 32 DA SU t5OPVW*E COST ESTIMATI

6. Stability. Do small differences in inputs produce small
diffrencs inoutpt cot esimats?. 1. Work Breakdown Structure Activity Hierarchy

7, Scope. Does the model cover the class of software projects
whose costs you need to estimate? "Clearly, this criterioin is specific to the objective of cost predic-

8. Ease of Use. Are the model inputs and options easy to tion. For other obectives, sch as technmology impact assessmnnrt,
understand and specify? a retrospective model could be appropriate.

~ideit. c. Refine tile model parameters via a two-round Delphi exercise

We found that some eisilig models seemed to work well for involving 10 experienced TRW line and project managers.

some classes of software and not very well for others. For d. Calibrate the model parameters using an initial sample oh
xaiiple, Fig. 2 presents the results of our analysis of the Boeingc seven completed projects.

and Pu tt lmI
0 tO stiunation models when applied to their own

d iI e ois e. Evaluate the model using a sample of 20 completed projects.
(Boeing and US Army Comuputer Systems Command) data. It isincluding e initial seven. This evaluation was done by an
seen that the Boeing imiodel appears to estimate small projects idcpudg thi arty.
reasonably well. but gives extreme overestimates on large pro- Independent third prty.

iects. while tile Putnam model does just the reverse. It would be
hiili% valuable for the field if similar information were available s TD w . Ro . .'. ., l

itlh respect to other models and other software project WGE 5OSc ,.. ' S

attributes. G8 CT INST. , A F A
NO. ROUTINE$ x x x

7NO. E" Is T$•
NO. OATR TSON;

BOEING RESULTS ON BOEING OJECTS KUWNTATION

PUTNAM RESULTS ON USA.-SN PROJECTS 0N -PERSNNEL x
PROGRA

M
TYPE x x x x

ATTRIR. COSAPLEKIPT
LNGUIL x A

OA RLE USE X I . I
.AROWA o, tl(coNsrt(,m" x x I x, x IIx

ATRO RE -SU
X

SATIR toAE CONSTRAINT K RI K A+

KH1. CONFIGURATION (

PROJECT PFRSONL0515

MOS /S EKOCKEIENCE A U
A T TRIA . P E R S. C O N T IN U IT Y A •

U Kcs APPLIC, EREK. x X x x A" SAAS 08 E
04LANSUACE EXPER.

TMMI I AOL TECH.IOUESI X I, x

0
COCOm N R. CU.O.OT!.R I F U K I

AE TOOIT C TCU. ROTS. KDEFINITION I A

E1KK7chMARDIS 01T O "'p- a 5AT1.5.4A SCHEULE X X

SP IT S TRSX STANSINS SECURIT X •
STa 0S CO-SUTER ACCESS X K X

L_ IO U ~ aK TARVEL/UEKOSTIIG K 5
5 '0 SO 'm 700 1" WW x

ACTUAL = MO T 0 REC OIREDOUALCr

ACTUAL MANYKIAS&

Fig. 2. Estimator Fidelity venus Project Size: Boeing and Putnam Models Fig. 4. Factors Used in Various Cost Models

For comiparisc. Fig. .3 shows thle perfornance of the TRW The high value of R
2 ,

the square of the correlation coefficient.
SCEP model on 20 completed TRW projects. should be interpreted with considerable care. For example, the

sample consists of only mediun-to-ve-ry large TRW government

PROJECT SIZE: MEOIUM TO VERY LARGE contract software efforts: we are not sure how it performs on
PROJECT TYPE: C3, AVIONICS. SENSOR, ANALYTIC, SUPPORT other types of software effort. Further, the calibration is on past

projects. We have included a factor to cover the impact of soft-
ISMC ' ' . ware technology improvements: however, until we get miore

experience in comparing SCEP estimates with the resulting
project actuals. we lust consider the nodel stiil in an experi-

0.93 mental state.
PREDICTED / 1 b i
MANI cyle 1SS
IrRO POCT
DESCRIPTORS) / Figure 5 shows one of the results of our analysis of the RICA

PRICE S model in September I177. (it i. possible that the
model may have been subsequently changed). it shows the/

40 / extreme sensitivity of the model to the subjective complexity
.EOCOM LETEtSDCPLX factor. If you describe a project as "HARD", the

MAPOJECTSDPX ouapoeta

0/ model will produce a cost estimate that is 0-7 times higher than

0 400 Boo S200.... if you describe the project as "EASY". This is a huge source of
ACTUAL MANMONTH$ variation for a parameter that is entirely subjective. As we

3 have found from experience, it means that a user can make the
model produce any cost estimate he wants, simply by modifying

the subjective complexity factor. (In fact. PRICE S has a mode
The sequence of activities in developing, calibrating and called ECIRP which will do this for you automatically). Doing

evaluating the model was as follows: this may solve a user's short-tent pricing problem, but it hardly

a. Sursey the current state of the art in cost estimation. Fig. 4 leaves you with the feeling that you have performed any objee-

shows one of the results of the survey, a suitmiary of the ti'e and meaningful cost estimation function for the user.

factors used in the major current cost estimation models. In developing the TRW SCEP model, we found that we were

b.)evelop a baseline model. The phase-sensitive nature of the unable to avoid including a complexity factor. However, we have

model is based on a model developed earlier by the authors made the complexity rating an attribute of each individual unit

to evaluate the cost impact of new software technologies;
I I in the software, and provide users with a set of scales for cal-

it is functionally similar to tIhe Boeing model(in this regard. brating the complexity of tifferent types of units. Figure o

131

EXAMPLE RATINGS FOR COMUTATIONAL.TYPE UNIT

show tile onilcml scale tor co~itipoitatioiilal 'numiierical aitalsis 1 . VERY LOW A COMPUTATIONS TO EVALUATE SIMPLE

IvlctIIIasa \11Ile. IllaN iig such a scale mtakes thI e coilI p c\- EXPRES-51ONS: A - R C -ID I

it' rtin IIIIICI mrcobjective. %erihiable attribute.

A LOW * USE OF STANDARD MATH AND STATISTICAL

Be
ROUTINES AND BASIC MATRIX -VECTOR

7 OUCT CLASS TYPICA OPERATIONS

240 0,0)U
1: I . 3 . AVERAGE * USE OF BASIC NUMERICAL ANALYSIS SKILLS

0 o.- RCIAL I E.G, MIVAIATE INTERPOLATION
20 C I-IORDINARY' DFF ERENTIAL EOUATIONS

%t-SEC AVIONICS 1 1.8
Uu.COS.'AC I"c 2-0

I60 MANILL SP Z 4 * HIGH * DIFFICULT RUT STRUCTURF'D NUMERICAL

ANALYSIS E G NEAR -SINGULAR MATRIX2 EOUATIONS. PARTIAL DIFFERENTIAL EQUATIONS

01 VER HIGH DIFFICULT. UNSTRUCTURED vUIR!CrL
VERYHIGH ANAL YSIS E.G., EAST. NIGHUIEACCURATE

-1 ANALYSI OFNISY. STOCHASTIC DATA

S SCOLO 0.0 Fig. 6. Example of Complexity Scale: TRW Cost Model

a SCX 3. 5' ili tLermsi of tilLett imact li Of a L'tri 11gl Requred QJualmt l Ili,
-_Px -,project activities. Ini genieral, we have tonl~od thIat such t abls dl0

. .Sy U .U- i h sr l tilie LIost iiiidel bet ter Unld erstanld tile so 't Ir
PELATFORM, PL TFM job t lle\ aire preparinig for. Si 1i a r-I . %ve feel theeE provide a li111,

Fig. 5. Effect of Complexity Factor in RICA Price S Model (Sept. 1977) betweeni the "Predictive Mlodels" and -Life Isd)viirlics

poirtionii of' tie Workshop whlich sheserve dsjclSSI Oil alid expIalJi
1 .4 oust rustiv tic'" tioii dulrilivtilie V~orkshiiip.

wre U~se tilL I R\% SCI P iiodel as a lileals of c ross-clieckinii
sej~rat cot etliiats dvclipe bs rolct ersillleliiidifer- .,7 Other I-actors.
seprat cot etillat,,devlolIedh pojet prsnne il di~er .- \e hiasc eiicoiiuitered similar lessotis leariied with respect tol

cut ssa~s. Inita-i~bl . this leads to diflerelice, lieteeii tile olther I.Ictors, Il tile abhivC 11t: deaIl0. stibihits . Ctc. III: leitli
v.Irtou~s estimiates. aind a iced tol uiiderstaiid %0i% ltte %kJ1 hige -oitait ii il ae secld u lsusil lel ndti
or lowver thant tile other. Simiirs- prjc esne5\5 o :lsrilso ilpprpeld u JNIIslLte ndll

priliect pesliil lt o hre . liiwc,,cr. se hope tliie call sers e as tolpics tior disclissioll
kntows ut p rojec t termis ivl is ffe~ren1t tact or ratinlgs g~v tc fiii tteWrniis

diftereiit cost esttlates.atil orlip

Ili Order to hll, a nswver these II net ilils, ild Ii order to 2 fd rTl SIlSI- 1O KS tI

promtSe acculrat e t actor rat iligs by iuse rs, sic hlave proidsed 1.1 tal SUI isle 1 SLASFR iO KS-

for cacll of' thle factors Ii the I RWk SCI P modisel tilat shios tile)id11th dicsinase hre rc iliCsles

Imipact onl prsiiect activities of tile N ariiIus factoirsaind their sllsiisiIlic~MIlI wsI d be usetli to) dIIlISY i tile V1 iirksiop

ratings. I-Or exami~ple. thle table fur tile "RequiredL QUAlIt\ a. " fat criteria are imiportaiit tor tile iltilit\ 01ta software iol

Faictor is shoiwnii F iigure Whe aiiici user rates hlis s\stelin I, ostiltatiiiil iitdeI'
liaviiig a \Ver\ lutli' : Re, luluIred Qlualits . thle SCI P IIIo*del %ill Is.llignrl 111%% do cllrelt predl tis c iiiiscls stick Ills 55 it

Inicrease tOle ciist if peivr ing tle vlriiilis phlases Ot 5\ stelii respect to these criteria? Are thlere Ilerieral detioenicies Ii

developmilenit b\ I Lertaini I.ictoi. 55i~ Iin ar\ \ b phase, tie clirrelit litIIdelS ~. uilormi or collarabl Lei~tillils VI

tile ill I Igure th)Us tell' thilerC vli\ is co~st5 s e~ leased. i Ilkiil need aIttenltion"l

FACTOR RATING ROTS. ANALYSES PRELIM. DESIGN DETAIL DEStGN CODE & UNIT TEST INTEG. & TEST

I. PFCUIREO VIL *I-ITTLE DETAIL :LITTLE OF TAIL -BASIC DESIGN INFO. -MINIMAL U.T. PLAN. -M.INIMAL TEST PLANS
OUCI;IT Y *MANY TEPOS *MANY TOD S*MINIMAL VODES -MINIMAL FCOES. PATH - NO TEST F 'vOCrFo'YrS

:LITTLE VALIO'N - LITTLE VERIF'N - MINIMAL, CA. CM TrST. STOS CHECK * N QTS. UINTESTED
*M'NIIAL PLANS * MIN:MAL 00. CM. STOS. -M IIMAL CCIlT-I *I.-AML 00. CM *MlWYAL al.. CNA
'0i CM. U CCEPT.f MiIN.IMAL Poll -NO DRAFT US'ER MAN. -IlNIMAL 1, 0 AND OFF. * INA .L S~S.OFF.

K*MIISMAL SRR -NO DRiAFT USER MAN. N0%41NUE, TESTS N~M '..%L TESTS
*MIIMVIL USER IANi. * MINIMYL AS liLLT OCiJ.

L :171ASIC INFO.' VALIO'N EIASIC INFO.' VERIF'N *M)OERATE DETAIL *IBIAUIC U.T. rL AN *PU_'IC TEST PLANS
*FRFQI'FNT TEID'S *EREOUENT TRD BARSIC UOFS ' PAI -PARIAL FOE'S. PATH *v,'.MAUL iEST PICED.
*YASIC PLAiNS -BIASIC OR CM, STDS CM. COR TEST, SODS CHLOE *NrIJ1II NT RUIS UNTESTED
'01. CM ACCEPT.) -BASIC Poll -MINIMAL USER MAN. -OAS1(LA CI0. 1.1.EM. *1i55 C OA. CIO VIV.

*iTASIC Skil -MINIMUL USER MAN. *PARIAL. 1'0 ANDOFF $E. PARTIAIL STRiESS. OrE.
NOMINAL VESTS iN%I.,AL TrSTS

S FULL TRW POLICIES FULL TRW POLICIES FULL TRW POLICIES FULL TRW POLICIES FULL TT.V POLIClES

14 -DETAILED VALIO*N, - DETAILED VERIF'N, *OIETAILED VERIFEN, -DETAIL ED U.T. PLAN , *DrCTAfLEO TrST YLANS.
PLANS. 5RR OA, CM, STOS. FOR. GA, CM. SOS. CDR FCL'S. 0A0. C a. DOC N I'ICE DURES. GA. CM.

COO'N DOC N CODn WAUE TII US OIXN
*EXTENSIVE 01 F. *EPIENSIVE ST41rSS. OFF.

NOM NJAI TESTS NLOM, NAL TI STS

SN *DETO'LED VALID'N, -DETAILED VERIF'N, -DETAILED VERIF'N, s*t-iTAIL ED Vi T. "L AN. *%VE Q1 Or TAIS, ED TE ST
PLANS. SRR GA, CM. STOS, POR. 0A. CM, STOS, CDR, , 1'... A CA. CM. OC Nt ' I SO TU, OA, CM,

*iVAV I NTERFACE DOC'N DOC'N 6- Ell VdAl K I 111 1:5.
ISUPPORr. RESPONSE) I *VVINTERFACE *IVIV INTERFACE *SFKY F i: .- E OFr. x. nlirl '-rIV

NOMIINAl. ili I .S I0*IVtAV INTl III ACE *VllA ICE

Fig. 7. Example of Factor/Rating Definitions: TRW Cost Model

132

c. I'o what extent do current predictive models explain soft-
ware life-cc le d) nanujcs? 'Are there ways to help close the
gap between models and project dynamics?

ERIE NCLS

I 1- A \,eson, Management Iiantdbook for the Estimation of
Computer Programming Costs. SD, Ai)-At48750. 31 October

2. R.\A. Wolverton. -The Cost of' Developing Large-scale Soft-
ware." 11-1:1 Trans. on Col puters. pp. (,15-030, June I474.

3. L.II. Putnam, A General Solution to the Software Siing and
I stimating Problem., as presented at the Life Cycle Manage-
ment Conference, AIII. Washington. D.C. lebruar 8, 1977.

4. J.R Herd, J.N. Postak. .I Russell. and K.R. Stewart. Soft-

wart Cost Estimation StudS Study Results. Doty Associates.
Inc.. Final [echnical Report. RADC-TR-77-220, Vol. I (of
two). June 1977 NTIS No. AD-A042264.

5. D.L. Dotq. P.J, Nelson. and K.R. Stewart, Software Cost
Estimation Study Guidelines for Improved Software Cost
Estimating. Doty Associates. Inc.. Final Technical Report.
RADC-TR.77-220, Vol. II (of two). August 1977: NTIS
No. AD-A044609* see also errata sheet, J.l. Herd Dot)
Associates. Inc.. 410 llungerford Dr.. Rockville, MD 20850.
0 June 1978.

6. John Schneider. IV. A Preliminary Calibration of the RCA
PRICE/S Software Cost Iestinmation Model. NTIS No. AD-
A046808. September 1977.

7. JD. Aron. Estimating Resources for Large Programming
Systems NATO Science Committee. Rome, Italy, October
1969.

8. C.P. Felix and C.E. Walston, "'A Method of Programming
Measurement and Estimation," IBM Sys. J., Vol. 16. No. I.
1977.

9. R.K.D. Black. R.P. Curnow. R. Katz. and M.D. Gray. BCS
Software Production Data, Boeing Computer Services. Inc..
Final Technical Report. RADC-TR-77-116. March 1977: NTIS
No. AD-A039852.

10. L.H. Putnam and R.W. Wolverton. "Quantitative Management:
Software Cost Estimating," IEEE Comp. Soc. First Int'l Com-
puter Software and Applications Conf, (COMPSAC 77). IEE
Catalog No. EHO 129-7, Chicago, IL. Nov. 8-11, 1977, 326 pp.

11. B.W. Boehm. C.A. Bosch. A.S. Liddle, and R.W. Wolverton,
"The Impact of New Technologies on Software Configuration
Management." TRW Report to USAF-ESD, Contract F19628-
74-C-0154, 10 June 1974.

133

A SOFTWARE ERROR DETECTION MODEL WITH APPLICATIONS

Amrit L. Goel
Syracuse University

Syracuse, New York, USA

Abstract 2. Time Dependent Model and
Quantities of Interest

This paper deals with the modelling
of software errors encountered in a small 2.1 Model Development
and a large software system. A determin-
istic analysis of software failure process Before analyzing the stochastic
is presented to obtain an appropriate mean behavior of the software failures, it is
value function for a non-homogeneous useful to make a simpler analysis ignoring
Poisson process. Several quantitative statistical fluctuations in the number of
measures for software quality assessment software failures. Suppose n(t) is the
are also proposed. Statistical techniques cumulative number of software errors
of inference about unknown parameters are detected by time t and n(t) is so large
discussed and detailed analyses of software that it can be treated as a continuous
error data from two systems are presented. function of t. We assume that the number

of undetected errors at any time is finite
and hence n(t) is a bounded, non-decreasing

1. Introduction function of t. We further assume that the
total number of errors to be eventually

The importance of modelling and detected, n(-)=a. Then, we have
analysis of software error phenomena has
been well recognized during the last few 0 O when t=0
years and many studies have addressed this n(t) a when t=- (i)
problem, see for example (1,4,5,6,7,8,9, Now let the number of errors detected
10,12,13,14,15,16,17]. An important in (t,t+At) be proportional to the number
objective of most of these investigations of undetected errors, i.e.
has been to develop analytical models for
the error phenomenon in order to compute n(t+At)-n(t) = bfa-n(t)}At (2)

quantities of interest such as the number where b is a constant of proportionality.
of errors detected by some time t, the From (2) we get the differential equation
number of remaining errors at time t, the
software reliability function, and the n'(t) = ab-bn(t). (3)

mean time to software failure. Such Solving this for n(t), we get
quantities are useful for planning purposes, -bt
both in the development and the operational n(t) = a(l-e-). (4)
phases of software systems. A stochastic analysis of this phenomenon

using a time dependent Poisson process (a
In this paper we develop a time de- non-homogeneous Poisson process) and the

pendent model for software errors and role of n(t) in such analysis is presented
illustrate its applicability via analyses next.
of error data from two software projects.
The model considered here is a non-homo- Let [N(t),t 0] be a counting process
genious Poisson process whose mean value (number of errors in (0,tl). The differ-
function is derived by a deterministic ence between n(t) and N(t) is that the
analysis of the software failure process former is a deterministic number while the
in Section 2. Several quantities of inter- latter is a random variable. The N(t) pro-
est are then given to establish quantitative cess is a NHPP with intensity function) (t)
measures for software performance. A de- if
scription of the first project (a large (i) N(0) = 0
scale software project) and error analyses (ii) {N(t),t-01 has independent incre-
are given in Section 3. Software error data ments -
based on CPU time from a small project is (iii) P{2 or more events in (t,t+h) =o(h)
given in Section 4. (iv) P{exactly 1 event in (t,t+h)) =

x (t)h+o(h).

134

If we let = a+a(l-e-bt)-2a(l-e
- bt)

t -btm(t) 0\(s)ds or Var(N(t)) = ae (14)

then it can be shown nthat Now suppose yn is the number of errors

PiN(t)=n' - (m()f eM(t) n-0. (6) found in a testing period tn, i.e. N(tn)=Yn .

In other words, N(t) has a Poisson distri- Then the conditional distribution of K(t
bution with expected value E[N(t)j=m(t) is n

for t'O and m(t) is called the mean value P{N(t)=x!N(t)=Yn} = PiN(-)=y +x)
function of the NHPP. n n n n

or
The deterministic model (4) derived y +x

above has been found to be a good descrip- P(i(t)=x N(t)=Y a n -a
tor of the software failure process when n n n (y +x) e
applied to actual data sets. For this

reason we choose 'he mean value function x=0,1,2,... (15)
to be As

tbe m(t) =a(l-e bt. Also

Note that
E[N(tn)IN(tn)=yn = a-yn. (16)

This conditional distribution is important
EN(-) = m(-) a. (8) for deciding whether the software system

In other words, the parameter 'a' can be under development can be released or not.
interpreted as the expected total number The decision should be made based on the
of software errors to be detected until number of errors remaining in the software

complete debugging, assuming such debugging because it plays an important role in soft-

to be perfect whenever an error occurs. ware reliability.

2.2 Quantities of Interest Reliability function. It can be

shown that the reliability function, R(t),

We obtain expressions for the follow- after the last failure occurs at time s is

ing quantities to establish the performance given by
measures for software reliability assess- R(t) e- a {e - -e -b(s(1
ment. For t (17)

This is the conditional reliability func-
Cumulative number of software errors. tion.

For given a and b the distribution of N(t),
the cumulative number of software errors 2.3 Estimation of Parameters
detected by time t, is given by

_-bt n a(l-e-bt For the case under consideration the
_________= -n!- e e data is given in pairs (yi,ti), i=l,2,...,n

n=0,1,2,... (9) where y. is the number of software failure

i.e. N(t) has a Poisson distribution with by time ti. To obtain the estimates of

mean parameters a and b of the model derived in

EN(t) = a(l-e- b). (10) Section 2.1, we proceed as follows.

Note that Property (ii), along with properties
an -a (i), (iii) and (iv) of a NHPP, provides a

P{N()=n} = i- e , n=0,1,2,... (11) complete statistical characterization for
the NHPP so that the joint counting prob-

number of errors to be detected if debug- ability can be determined for any collection

ging is carried out indefinitely, is also of times tl t2 tn . That is,

a Poisson distribution with mean 'a'. PN(t1)=y1 ,N(t2)=y2,. N(t

Remaining number of software errors n
and related results. Let g(t) be the num- II P(N(t)-N(ti)=yi-Y
ber of errors remaining in the system at i=l il)=Yil

time t. Then y -y

N(t) = N(-)-N(t), (12) n { m(t -
m(t n

EN(t) = ae
- bt, (13) i=l (yi-Yi(l)!

and The likelihood function for given
Var(N(t))=Var(N(-))+Var(N(t))- data (yi,ti), i=l,2,...,n, is

- 2Cov(N(t) ,N())

135

bt bti yi-Yi denoted by DS1 to DS4. The description and
n {a(e -e } the total number of errors detected during

L(a,bly,t)= I: the formal testing phase for each data set
i=l (Yi-Y-i)! are given in Table 2.

-bt In this paper the number of software
-a(l-e n) (19) errors detected during the formal testing is

counted on a weekly basis. Also, for each data
Taking logarithm of (19), we get set the software errors detected during the first
Z(a,bly,t) RnL,(a,bly,t) nine weeks are eliminated due to the fnct that

(t -n t "this represents the period of increasing number
n n -bt. of software errors and we are interested in aral-

= Y (yi-Yi-l)ina+ E (yiYi-l) n(e _ yzing the software failures over the period when
i=l i=l they are decreasing. Data about the STR's fcr
-bt -bt the 15 week period for the four cases (DSl to

-e)- a(l-e n). (20) DS4) can be obtained from references

Then, MLE's a and b must satisfy 3.2 Software Error Data Analysis

0, =0
In this section we analyze the data

or sets DSI to DS4 to develop time dependent
-bt models described above.a(l-e n)= Y'n (21)

and Mean value function. The simultaneous
non-linear equations (21) and (22) are

-bt. -bt i 1 solved numerically for each data set to
-bt (y i-yil) (t e -t e obtain the estimates a and Thus, for

atne n -bt -bti. data set DSl, the solution is a=1348,

e -e i-l b=0.124 and the fitted mean value function
(22) is 1348 (l-e- 0124t). This is also an

Equations (21) and (22) can be solved estimate of the expected number of software
numerically to obtain the maximum likeli- errors detected by time t. A plot of the
hood estimates a and bactual and the fitted values of the numberh taof error detected during formal testing for

3. Software Error Data Analysis for this case is given in Figure 1. Also showna Large Scale Project in this figure are the 90% upper and lower
bounds for the N(t) process which can be

3.1 A Large Scale Software Project computed from equation (9). Inspection of
this figure indicates that the fit is very

The data under study has been taken good. Estimates for other data sets are
from a large scale project reported in obtained similarly and are summarized in
Thayer et al [16]. This project represents Table 3.
an initial delivery of a large command and
control software package written in 10
JOVIAL/J4. It consists of 115,346 total
source statements and 249 routines. Some
other characteristics of this project are -000 __
summarized in Table 1. The error data
used for this study is taken from the
Software Problem Reports (SPR's) generated L 80D -
during the formal testing phase of this
project. The majority of software errors
were detected during Validation (Jun 1- 61348
Aug 12), Acceptance (Aug 13-Aug 24), and 6
Integration phases (Aug 25-Oct 26). How- 0 t,24

ever, the operational data spanning a 400-
period of approximately one year (Oct 27-
Nov 12) was also analyzed. The only time
frame readily available from the data was 200
the calendar day. The data also contain
the mistakes by the operators and the
.explanatory" errors, i.e. the fix is a I
change to a comment statement or the fix 00 5 0
is not to a routine. These explanatory TIME (WEEK)
errors do or do not indicate the type of Fig. 1. Actual and fitted software errors
change. Therefore, the original data have and 90% bounds for the N(t)
to be restructured into four sets of data process for Data Set DSl

136

TABLE 1
Project Characteristics (TRW)

Size (Total source statement) 115,346
Number of routines 249
Language JOVIAL/J4
Formal Requirements To function level
Co-contractor Yes
Subcontractor No
Operating Mode Batch
Formal Testing Validation (6/1/73-8/12/73)

Acceptance (8/13/73-8/24/73)
Integration (8/25/73-10/26/73)
Operational Demonstration (i0/27/73-Ii/12!73)

TABLE 2
Description of the Data Set

Total Number of Errors

6/1/73-10/26/73 10/27/73-11/12/73
Data Set Description (24 weeks) (22 weeks)

DSl Original Data - TT - EXI - EX2 2191 198
DS2 Original Data - TT - EXI 2621 263
DS3 Original Data - TT 4367 540
DS4 Original Data - TT - EX2 3937 475

TT represents the mistakes by the operators.
EXI represents the -explanatory errors which do not indicate what type of change (module,

documentation, compool, data base) was involved.
EX2 represents the explanatory errors which indicate type of change.

TABLE 3
A Summary of Data Analyses

Set DSI DS2 DS3 DS4 F-11D
Quantit_

a 1348 1823 3958 3466 107

0.124 0.112 0.0768 0.0771 0.0367

Var(a) 48.7 62.2 147.3 136.6 10.3

Var(b) 0.00745 0.00643 0.00460 0.00492 0.00365

0a,b -0.571 --0.648 -0.856 -0.855 -0.002

Estimated Number of Remaining
Errors at the end of Integration 210 340 1251 1084 0
Testing

Number of Errors Detected During 198 263 540 475 --
Operational Demonstration Period

Joint confidence region. To obtain From (23) and (20) we get
a (l-q)100% joint confidence region for a n n -bt
and b we use the following approximation: n n -

1 2 1- (yi-y 1)loga+ 1 (Y-ii)log(e -
(a,bly,t)-x(a,bl,t) = 2; (23) i=l -bt i1l

-eti) a -btn-e)- a(l-e) = c (24)

137

where Phase. By comparing the entries in the last
Ctwo rows, we see that the predicted values

£,b1) 2 X2;z are quite close to actual ones.

Confidence regions for desired values of
can be obtained by solving equation (24). Expected number of remaining errors
For datr set DSl, the joint confidence and confidence bounds. The expected number
regions for a, b for a=.10, .25 and .50 of remaining errors is computed from equa-
are drawn in Figure 2. tion (13) for estimated values of a and b.

Also, we can show that 100(1-a)% confidence
bounds for EI(t) are given by

150 I i {f(ab)+tn 2 ;a/ 2 V{f(a,b)11 (29)

0-1348where
450 -0-24bt

O f(a,b) ae

7.f if a
140 - Vf(a,b)} = (, - (30)

_ iJ [=a, b=b

15 90% confidence bounds for EN(t) for data
set DSl are computed from the above equa-

4 tions and are shown in Figure 3. Also shown
1300- is a plot of the actual number of remaining

errors during the 15 week period. From the
figure we see that the actual errors fall

125(within the 90% bounds.

01 Oil 012 013 014 015 1500 1 1 |
PARAMETER b

Fig. 2. Joint confidence regions for a 0 o 1348

and b for Data Set DSI
1200 b -0124

Asymptotic properties. For large n,
the mle's (a,b) follow a bivariate normal Fi Jptted--

distribution (BVN): , At,"al

(j BVNU (25) C
(ab) ((a uo600

where the variance-covariance matrix E is
given by

r r- 0
aa ab 0(26

ba bb

and 0
2 0 3 6 9 12 15

rab E 3 (27) TIME (WEKS)

For data set DSl the estimated variance- Fig. 3. 90% confidence bounds for the
covariance matrix is expected number of remaining soft-

[2368 -0.207 1 (28) ware errors at time t for Data

L-0.2071 5.554l0-5J Set DSI

From (28) the standard deviations of a and 4. Software Error Data Analysis

b are Var(a)=48.7, Var(b)=0.00745 and the Based on CPU Time
estimated correlation coefficient is In this section we discuss the anal-

a,b = 571 ysis of software error data collected from
a small project. The errors in this case

Values of Var(a), Var(b) and 1a,b are considered as a function of CPU times
for data sets DSI to DS4 are given in rather than the calendar time, as was the
Table 3. Also given is the number of case for the data analyzed in Section 3.
errors detected during the Operational

138

/

4.1 Software Error Data The joint confidence regions for a
and b for u=0.10, 0.25 and 0.50 are drawn

The error data, as reported by in Figure 5.
Wagoner [171, were collected from the
computer program F-lID which obtains fil- 140
tered navigation solutions from data taken
by receiving equipment carried on an air-
craft. This program is a data reduction 130--
program consisting of approximately 30009
4000 FORTRAN statements and required one 7
month for development and checkout. The 120
number of errors were counted with CPU
(running) time. Wagoner [17] analyzed the
data by a Weibull distribution with CPU 0 o- ^01
time as the independent variable.

4.2 Data Analysis

The analysis procedure for this data
set is similar to that of Section 3.2.

For the F-lID data given in [17], the ea =to
estimates of a and b from (21) and (22) are 0 -O0 7
a=107 and b=0.0367. The fitted mean value
function is

m(t) = 107(1-e 0 "0367t 0025 003 005 004 0045 005
This is an estimate of the expected 0AP003 3ETER b

number of software errors detected by
time t, where t is in CPU seconds. A plot Fig. 5. Joint confidence regions for b
of the actual and the fitted values of the and a for F-lID Data Set
number of errors detected during the devel-
opment and checkout phases of F-lID pro- The estimated variance-covariance
gram in CPU time is given in Figure 4. matrix is
Also shown are the 90% upper and lower F 107 -8.0-10 - 5

confidence bounds for the N(t) process. 107

Inspection of this figure indicates that _80×10- 1329 i0- J
the fitted model satisfactory explains the

actual error occurrence phenomenon. and the estimated correlation coefficient
is a,b=- 0.002.

The 90% confidence bounds for the
expected number of remaining errors, VN~tj,

15 1G are shown in Figure 6. Also shown is a

plot of the actual number of remaininq
errors during 250 CPU seconds period.

I' : r bour J

itt ed

0 .10775

r b 00367 R5

50 Wc

250

0~ 50 10 S 200 250
TIME (SECONDS) O 011 , b

0 50 lo0 15() 00 r'o
TIME (SECON01

Fig. 4. Plots of the actual and fitted Fig. 6. 90% confidence bounds for the
number of errors and confidence expected number of remaining
bounds versus CPU time software errors at time t for

Data Set F-llD

t -
139

5. Concluding Remarks 190 Musa, J. D., (1975), "A Theory of
Software Reliability and its Applica-

In this paper we have used a non- tion," IEEE Trans. on Software
homogeneous Poisson process to model the Engineering, Vol. SE-1, No. 3, pp.
software error phenomenon in a two soft- 312-327.
ware systems, one large and one small.
Based on a deterministic analysis of the 1101 Okumoto, K. and Goel, A. L., (1978),
failure process, we have derived the mean "Availability Analysis of Software
value function of this process. Various Systems under Imperfect Maintenance,"
quantities of interest are derived to pro- Technical Report No. 78-3, Department
vide quantitative measures for software of IE & OR, Syracuse University.
quality assessment. Estimation of para-
meters has been discussed and the results (11 Roussas, G. G., (1973), A First Course
used to get fitted models for several data in Mathematical Statistics, Addison-
sets. Also, joint confidence bounds for Wesley.
the parameters are obtained. These can be
used to obtain confidence bounds for the 112) Schick, G. J. and Wolverton, R. W.,
performance measures of the software sys- (1972), "Assessment of Software
tem being analyzed. Reliability," McDonnell-Douglas

Astronautics Company Paper WD1872.
6. References

(13) Schneidewind, N. J., (1975), "Analysis
Ill Akiyama, F., (1971), "An Example of of Error Processes in Computer Soft-

Software Debugging," 1971 IFIP Con- ware," Proceedings: 1975 International
gress, pp. TA-3-37 to TA-3-42. Conference on Reliable Software, pp.

337-346.
[21 Cox, D. R. and Lewis, P. A., (1966),

The Statistical Analysis of Series [141 Shooman, M. L., (1972), "Probabilistic
of Events, Methuen, London. Models for Software Reliability Pre-

diction," Statistical Computer Per-
(31 Donelson, J. III, (1975), "Duane's formance Evaluation, pp. 485-502,

Reliability Growth Model as a Non- Academic Press, New York
homogeneous Poisson Process," IDA
Log No. HQ76-18012. 1151 Sukert, A. N., (1977), "An Investiga-

tion of Software Reliability Models,"
[41 Endres, A., (1975), "An Analysis of Proc. 1977 R & M.

Errors and Their Causes in System
Programs," Proceedings: 1975 Inter- 1161 Thayer, T. A. et al, (1976), "Soft-
national Conference on Reliable Soft- ware Reliability Study," TRW Defense
ware, pp. 327-336. and Space Systems Group, Final Tech-

nical Report, RADC-TR-76-238.
[51 Goel, A. L. and Okumoto, K., (1978),

"An Imperfect Debugging Model for 117) Wagoner, W. L., (1973), "The Final
Reliability and Other Quantitative Report on Software Reliability
Measures of Software Systems," Tech- Measurement Study," Aerospace Report
nical Report, No. 78-1, Department No. TOR-0074(4112)-l.
of It & OR, Syracuse University.

(6) Jelinski, J. and Moranda, P. B.,
(1972), "Software Reliability
Research," 1972 International Sym-
posium on Fault-Tolerant Computing,
IEEE Computer Society.

171 Littlewood, B. and Verrall, J. L.,
(1973), "A Bayesian Reliability
Growth Model for Computer Software,"
Applied Statist., Vol. 22, pp. 332-
346.

181 Miyamoto, I., (1975), "Software Reli-
ability in On-Line Real Time Erviron-
ment," Proceedings: 1975 Interna-
tional Conference on Reliable Soft-
ware, pp. 194-203.

140

LAWS AND CONSERVATION IN LARGE-PROGRAM EVOLUTION

M.M. Lehman

Department of Computing and Control
Imperial College of Science and Technology

London SW7 2BZ

amend or emend the requirement, the specification,
the code, the documentation; repair the system;

ABSTRACT improve and enhance it. They do this in response
to fault reports, user requests, business require-

The paper analyzes the nature of the laws ments, managerial directives or their own inspir-
that have been identified by the work of Belady, ation. Human thought and judgement plays a de-
Lehman and others. Prograi maintenance and evolu- cisive role in the process that results from this
tion is planned, managed and implemented by people, continuing sequence of exogenous, seemingly stoch-
yet the laws that govern the process are more akin astic, inputs.
to those of biology and even modern physics, then,
as had been previously supposed, even more fuzzy Thus, we should not expect to discover laws
than those that apply to economics and sociology, of program evolution that yield the precision and

predictability of the laws of physics [LEH77].
After a brief discussion of the first four Any laws that emerge could reasonably have been

laws, highlighting the underlying phenomena and expected to be even weaker than biological laws
natural attributes, the paper concentrates on the since the latter arise from observation cf the
fifth law. It shows what, how, and why it repre- collective behaviour of cellular systems which,
sents a conservation phenomenon, the conservation whilst living, are, at least at the level of
of familiarity, human understanding, non-intelligent. We should

not even expect to observe behaviour that displays
the regularity that has been abstracted into laws

INTRODUCTION in the social and economic sciences, for example,
the so-called "Law of Supply and Demand". After

A recent paper [LEH78] discussed five laws all the programming process is planned and con-
of Uakte-pto9tam evolution dynamics; laws that have trolled by an organizational and management struc-
emerged €'._ the studies of Belady, Lehman and ture that is sensitive and reactive to the de-
others o.-r he last seven years as summarized in mands, pressures, circumstances and contingencies
the bibliography of the above referenced paper. of each moment. Thus, no regularity should be
The main objective of the present contribution is expected. Each action and event is surely deter-
to discuss one specific aspect of these laws, ck- mined by the needs of the moment. The process
3evvatiokl. Some general introductory remarks are, must surely be completely stochastic.
however, desirable.

One of the first and most surprising, yet
In the first place we should stress that the most fundamental, results of our observation and

discussion here is limited to ewtgc programs de- analysis of the dynamics of evolution of some
fined by; "a ftaqe-powqam iS one, that ha6 beeki im- eight programs, ranging over a wide spectrum u:
pfeanted op maintained by at feixit two bndepende- implementation and usage environments, has been
ntey manaqed groupi". Such a program will be the that this is not so. Regularities, trends and

responsibility of an organization having two or patterns appear and dominate large program evol-
more levels of management, will have the property ution. The common features and patterns of
of "variety" [BEL78] and will he outside the intel- behaviour reflect common characteristics (BEL78]
lectual grasp of the individual. A program not from which laws can be deduced; laws which, within
satisfying the definition may possess one or the spectrum outlined, lie unexpectedly somewhere
nother of the other properties and may display between the laws applying to biological organisms

some or all of the characteristics of "taAqene66" and those that emerge from the study of socio-
[BEL78], but we do not consider them here. economic systems. And these laws in turn can be

used to create powerful, reliable and cost-
PROGRAM EVOLUTION LAWS WITHIN effective life-cycle management tools.

THE SPECTRUM OF SYSTEMS OF LAWS
THE UNDERLYING CAUSE FOR REGULARITY

The evolution of software systems is clearly
not a natural process governed by immutable laws Once the phenomenon has been recognized,
of nature. Changes to a program are neither Init- the mechanisms underlying it are not difficult
ated nor occur spontaneously. People do the work; to understand. In the first instance, the program

141

and its documentation in all their versions - the than can tile specific acts of an individual. Any
system - has a damping effect analogous to an ever- laws can thus only relate to the gross, statisti-
increasing inertial mass. As a totally unintelli- cal dynamics of a large program system over a
gent mechanism, the computer executes, and there- period of time. But as such they find application
fore impacts, its operating environment, precisely in system prognosis, planning and project control.
and only as the code in association with any input Equally (or even more importantly) they yield
data, instructs. Cood intentions, hopes of cor- understanding that should permit improvement of
rectness, wishful thinking, even managerial edict the programming process and advance tle develop-
cannot change the semantics of the code as written ment of software engineering science and practice.
or its effect when executed. Nor can they affect
tLe relationship between a specification and its FEEDBACK CONSEQUENCES OF INCREASING
implementation, or that between both of these and UNDERSTANDING OF THE PROCESS
operational circumstances. That is the freedom of
the designer, the implementor and the user to make Increasing understanding in turn raises
changes or additions and to obtain the desired pro- another problem. To what extent can knowledge and
gram behavior is increasingly constrained by exist- understanding of the laws that regulate the pro-
ing code, documentation and past program applica- gramming process in an environment unaware or in-
tion and behaviour. The code is unforgiving; there sensitive to their existence, be used to invalid-
is no room for imprecision or logical error. Thus, ate them, or for that matter, to perpetuate them
any deviation leads to a need for corrective by appropriate (or inappropriate) managerial res-
actions. The resultant feedback over the entire ponses? Space does not permit us to address this
system process and organization increasingly causes question in detail. We merely assert that the
the observed regularity, present laws reflect deeply rooted aspects of

human and organizational behaviour. Associated
These facts alone suffice to explain the con- with the mechanistic forces that define and con-

sistency of the observations. Other factors merely trol the automatic computational process, they are
strengthen the phenomenon. In particular large sufficiently fundamental to be treated as absol-
programs are, in general, created within large ute, at least in our generation. As knowledge of
organizations and for large numbers of users; them Is permitted to impact the programming iro-
otherwise they could not be economically justified cess, as programming technology advances, they
or maintained. Moreover, their very size and the may require restatement or revision, they may be-
complexity of both the program and the application come irrelevant or obsolete. But for the time
for which it is intended means that decisions take being, we must accept and learn to use, not to
time, sometimes considerable time, and large ignore, them.
numbers of people to implement. The resultant de-
lays provide exogenous pressures and endogenous THE LAWS
opportunities for change. Thus the overall circum-
stance and environment acts like a filter to smooth The First Law
out tle global consequences of individual decis-
ions, whilst also, paradoxically, adding tile occas- We now comment briefly on the laws summarized
ional stochastic disturbance. It also acts as a in figure 1, so as to expose some of the more fun-
brake - economic and social - that inhibits or damental truths that they reflect. The laws have
softens decisions that would have too drastic an been fully discussed in earlier publications
impact. For example, large budgets can, in [LEH78 and b4bliography].
general, be neither suddenly terminated nor drasti-
cally Increased. In practice they can only be Tc law c &''ltbuiiui ChtMu' arises from the
changed by a fractional amount. Similarly a work fact that the world, in this case the computing
force cannot be instantaneously retrained, relocat- environment, undergoes continuing change; all pro-
ed or dismissed; at best a task force can be sent grams are models of some part, aspect or process
in, and can cause a local perturbation, of the world. They must therefore he changed to

keep pact, with the needs of a changing environ-
In summary, large program creation and main- ment, or become progressively less relevant, less

tenance occurs in an environment with many levels useful and less cost effective.
of arbitration, smoothing and feedback correction
that, in general, act to eliminate perturbations The Second Law
at the output. The existence of regularity and of
laws abstracting that regularity becomes reasonable Tile La1w o4 licIClai,1 CornMCet'x(t, (an analogue
and understandable. or instance of the second law of thermodynamics)

Is a consequence of tie fact that a system Is
THE ;ROSS NATURE OF THE LAWS changed to improve its capabilities and to do so

in a cost-effective manner. Thus change objec-
The detailed instantaneous behaviour of the tives are expressed in terms of performance

programming process and of the system that is the targets, system resources that will he required
object of its activity, is the consequence of during execution, Implementation resources, com-
human decision and action. Specific individual pletlon dates and so on. With multiple objectives
events cannot therefore be predicted more precisely it is impossible to optimize all simultaneously.

142

Hence the completed project and system must repre-

I . THE LAW OF CONTINUING CHANGE sent a compromise that results from judgements and
decisions taken during the implementation process,

A LARGE-PROGRAM THAT IS USED UNDERGOES often on the basis of time, group or management
local optimization. Structural maintenance, which

CONTINUING CHANGE OR BECOMES PROGRESS- is not often mentioned in project objectives since

IVELY LESS USEFUL. THE CHANGE OR DECAY it yields no immediate or visible benefit, will
inevitably suffer. Each change will thus degrade

PROCESS CONTINUES UNTIL IT IS JUDGED system structure a little more. The resultant

MORE COST-EFFECTIVE TO REPLACE THE SYSTEM continuing accumulation of gradual degradation,
ultimately leads to the point where the system can

WITH A RE-CREATED VERSION. no longer be cost-effectively maintained and en-
hanced unless and until a clean-up is undertaken.

II. THE LAW OF INCREASING COMPLEXITY
The Third Law

AS A LARGE-PROGRAM IS CONTINUOUSLY
The Fundamenta Law of Laotge-Pto'am evota-

CHANGED ITS COMPLEXITY, REFLECTING tion was previously called the Law o6 StatiticaUy

DETERIORATING STRUCTURE, INCREASES Smooth Gtowth fLEH78]. It expresses the observa-
tion we have already made above that large-program

UNLESS WORK IS DONE TO MAINTAIN OR evolution is not a purely stochastic process that,

REDUCE IT. at each instance, reflects the decisions and
actions of the people in the environment in which

III. THE FUNDAMENTAL LAW OF LARGE- it is maintained and in which it is used. The Law
states that, at least in the current state of the

PROGRAM EVOLUTION art, there exists a dynamics whose characteristics
are determined during conception'and the early

THERE EXISTS A DYNAMICS OF LARGE-PROGRAM life of the system, the process and the organiza-

EVOLUTION WHICH CAUSES MEASURES OF GLOBAL tion that maintains them. The characteristics of
this dynamics increasingly determines the gross

PROJECT AND SYSTEM ATTRIBUTES TO BE CYC- trends of the maintenance and enhancement process.

LICALLY SELF-REGULATING WITH STATISTIC- Feedback effects are an inherent factor in the
self-stabilizing control process that evolves.

ALLY DETERMINABLE TRENDS AND INVARIANCES. Hence cyclic effects, not necessarily with a pure

IV, THE LAW OF INVARIANT WORK RATE period, emerge.

The Fourth Law
THE GLOBAL ACTIVITY RATE IN A LARGE PRO-

GRAMMING PROJECT IS STATISTICALLY IN- The Law of Invakian1t Work Rate is assumed to
reflect a conservation property. The quantity or

VARIANT. (FOR EXAMPLE: NORMALLY DIS- quality being conserved has however not been
TRIBUTED IN TIME WITH CONSTANT MEAN AND clearly identified. The Law is believed to be a

consequence of the fact that, in general, human
VARIANCE). organizations seek, and seek to maintain, stabil-

ity or, more accurately, stable growth. As sug-

V. THE LAW OF CONSERVATION OF gested above, sudden changes in, for example,

FAMILIARITY (PERCEIVED COMPLEXITY) staffing, budget allocations, manufacturing levels,
product types are avoided, are, in general, not

FOR RELIABLE, PLANNED, EVOLUTION, A possible. A variety of managerial, union and
governmental checks, balances and controls ensure

LARGE-PROGRAM UNDERGOING CHANGE MUST BE overall progress to the ever changing, ever dis-
tant objective of the organization; or its col-
lapse. The Law also, in a sense, reflects the

TION (RELEASED) AT INTERVALS DETERMINED organizational response to the limitation which,

BY A SAFE MAXIMUM RELEASE CONTENT we shall show, underlies the fifth law.

(CHANGED OR NEW) WHICH, IF EXCEEDED, Thus with hindsight it becomes clear that
CAUSES INTEGRATION, QUALITY AND USAGE the discovery of some derivative of an activity

measure that is invariant, or better, statisti-

PROBLEMS WITH TIME AND COST OVER-RUNS cally invariant (for example, normally distributed
in time with constant mean and variance) could
have been anticipated. What is not really under-

INCREMENT OF GROWTH INVARIANT. stood (except vaguely as reflecting the limita-
tions of absorbtive capacity) is why in large-

,_ _ _,_ _program maintenance projects, measures of work
input rate should be the quantity to display such

FIGURE 1: THE FIVE LAWS OF LARGE-PROGRAM invariance. But the fact remains that for all the
EVOLUTION systems observed, the count of modules changed

143

(handled) or changes made per unit of time, as program will be manipulated or used without
averaged over each release interval, has been (apparent) need for concentrated thought. External
statistically invariant over the period of perception of its intrinsic complexity will be at
observation, a minimum. It the limit the program may be said to

be approaching zero pe eived comptexity for people
The Fifth Law working consistently on or with it.

The Law o6 Con.tvat./ion o6 Famindaxity As changes are introduced, as the new release
(Peceived Comptexity was previously referred to is gradually created and as it becomes available,
[LEH78] as the Lw of l n2ement2 CYowth L t6. new and unfamiliar code appears. The program
Its discovery was based on data from three of the behaves differently in execution, in its inter-
systems observed, each of which was made avail- action with and impact on the operational environ-
able to users on a release basis. In each case ment. Even the pagination in the previously fam-
the incremental growth of the program varied iliar documentation has changed and any need for
widely from release to release. But the average reference entails a major search. The system has
over a relatively large number of releases re- become uncomfortably unfamiliar, the degree of un-
mained remarkably constant. That is a high-growth familiarity depending on the extent and inaptitude
release would tend to be followed by one with of the change (See below.).
little or no growth, or even by a system shrink-
age. Or two releases, each of about average A major intellectual effort is now required
growth, would be followed by one with only slight by each person involvea before any completely suc-
growth. Moreover releases for which the net cessful and cost-effective interaction with the
growth exceeded about twice the average, proved new system can occur. The system has suddenly
to be minor, or major, disasters (depending on become complex. Its perceived complexity is high.
the degree of excess) with poor performance, poor
reliability, high fault rates, cost and time Even those who participated in the prepara-
over-runs. This evidence suggests that initial tion of the new release will normally have been
release quality is a non-linear function of the involved directly with only a small part of the
release incremental growth. From a more complete change, a small portion of the system. They too
phenomenological analysis, along the lines out- can only learn to understand the new system in its
lined below, and for which a mathematical model totality from the moment of its completion. More-
needs to be constructed, we hypothesise that the over until the complete system is available all
quality is exponentially related to the magnitude acquisition of knowledge and understanding of the
of the changes implemented in the release, changes and of the new system, must be based on

feading of code and documentation text, or on
The phenomenon was detected at a very partial execution of system components on test

early stage of our evolution dynamics studies, cases or system models. Only with final integra-
was featured in our earliest models [BEL71], and tion does the full executable program become avail-
has been applied as a planning and control para- able. We shall suggest that when the release
meter for a number of years. The full explana- content exceeds some critical amount only OpeAa-
tion, however, has only recently become apparent. tiona experience with the comptete system can

bring or restore the degree of knowledge and fam-
The release process was originally iden- iliarity, the global viewpoint, that is essential

tified as a stabilization mechanism [BEL71]. for the cost-effective maintenance, enhancement
Once a large-program is in general use its code and exploitation of the large program.
and documentation are normally in a state of flux.
A fault is fixed locally, perhaps fixed differ- Thus, in general, at the moment of release
ently or not at all in other installations. Minor or shortly befdre that time a major learning
or major changes, local adaptations, are made. effort will begin and this will involve all those
Code is changed without a corresponding change to associated with the system, not just the users.
documentation. Documentation is changed to cor- All changes and additions must be identified,
respond to observed behaviour without a full and understood and experienced, their significance
detailed analysis of the precise semantics of the within the operational context of the total system,
code within the context of the total system and appreciated. Once this has been done the old
under all possible environmental conditions, degree of comfort with the system will return, its
Only at the moment of release does there exist an perceived complexity is once again zero, the level
authoritative version of the program, the code of familiarity has been restored.
and its documentation. Even this may include
multiple versions of modules say, for clearly de- Clearly the awount of hard work that must be
fined alternative situations, involved to achieve this, the Intellectual effort

required, depends amongst other factors, on the
For an old release each implementor, each attitudes of people, on the organization, on the

tester, each salesman, each user will be familiar number and magnitude of changes introduced. More-
with the version of the program with which he over, as already observed, this dependence must be
has been associated. This familiarity will have at least quadratic, probably exponential. For
bred, not contempt, but a certain degree of re- changes to the system interact with one another.
laxation, of ability to work with the program in Changes implemented in the same release, that is
order to accomplish specific objectives. The in the same time interval, must each be understood

144

not only in themselves, but also in the context of and with hiring policies
all the others, of the unchanged parts of the sys- established make up of the project, the average
tem and of past and future applications. The level will remain at best, unchanged; more probably
source of the drastic growth in difficulty in re- decline [LEH64].
storing the familiarity required of and with the
program if it is to be once again correctly and For different ,rganizations, different sys-
efficiently maintained and exploited, is clear. tems, different structures, different methodolo-
Figure 2 is intended to suggest ''difficulty" gies, different processes, the average level will,
versus magnitude of release content' relationship, of course, be different. This implies that any
The axis of the curve are not calibrated since at models will contain exogenous variables. Thus it
present neither concept nor suitable measures are establishes a potential for improving the level in
well defined. But their relevance to the Fifth any given circumstance once the phenomenot, the
Law requires us to analyze the nature and conse- organization and the programming process are under-
quence of these concepts. Incidentally, the con- stood.
cept of "difficulty" introduced here clearly
relates to that of Norden and Putnam [SLC77]. But
the precise relationship has not yet been estab- Difficulty
lished.

Before proceeding with the analysis one
brief remark should be made. The Fifth Law as now
formulated talks about release content and its
magnitude (previously incremental growth). The
content certainly includes new or changed code, but
must also involve deleted code, new or changed
function and new or changed documentation. For
example, the observations that inspired the law

were measured in terms of modular growth and we
have in fact consistently found module-based mea-
sures in terms of modular growth and we have in
fact consistently found module-based measures to be
more accurate and useful than those based on in- Th - - - - rreshold res

struction counts. But there is at present no clear
or agreed measure of release content, the magnitude - celease
of a change. It is not even clear that the concept content

possesses a metric. It must be left to the future Average absorptive cai-city

to identify or define measures and to provide an
improved formulation of the Fifth La'. Meanwhile FIGUsR 2: DIFFICULTY - RELEASE CONENF REI.A2iXC'SUP

we must clarify the concepts and increase under-
standing of, at least, the phenomenology, thereby
we will provide a basis for ultimate formalization. Given the above insight irto the growth; of

difficulty in understanding and working with's
With this clarification we may now proceed system as the release content increases, and its

with the analysis. Everyone's ability to master a consequences, as a result of feedback that slows
new or changed object is limited, though people down both utilization and further evolution as svs-
clearly differ in their capability to absorb the tem structure deteriorates, that the number of
new knowledge, to achieve full understanding of the faults increases, documentation lags and perfor-
changed program. Thus the impact of changes will man-e declines, we are now in a position to appre-
undoubtedly vary from person to person according ciate the Fifth Law.
to many factors that will include, but are not
limited to, their learning ability and absorptive If the release content, the magnitude of the
capacity. But for a given large-program In its change and/or the Incremental growth, is less than
given environment and where many people are Inevit- some threshold region (Figure 2) the integration
ably involved, the delays that are incurred, the and operationa installation of the new system
mistakes that are made, the destructuring that should be fairly straightforward. No major pro-
occurs before full familiarity is restored, the blems should be experienc.-d in mastering the new
direct and indirect cost of familiarization, release; it may well be tliat the change may be
depends on the average ability of all the people absorbed, familiarity restored without actual sys-
involved. After all, while the above-average tem operation exposure.
person will regain mastery more quickly, make
fewer mistakes, achieve a temporary advantage When the release content lies in a threshold
(which will probably cause him to be promoted or region which may not be precisely delineable, qual-
moved out of the project fairly quickly), the ity, performance, completion and installation pro-
below-average person will fall behind, will per- blems are to he expected. SI ippage and cost over-
haps lose contact, make more mistakes, do more rnn may occtur. A subsequent, low growth, release
damage. He may well be re-assigned to a less will be required to clean lip the system and restore,

* demanding role with less Impact on the project or it to a state that permits further cost-effective
even fired. But the damage will have been done evolution.

I .., , , II l l l l I

145

Finally if a release whose content exceeds istics of Large Systems": Part I, Chapter
the threshold region is attempted serious problems 3, in "Research Dirvctions in Software
will he encountered. Slippage and cost over-run Technology". Sponsored by the Tri-Ser-
will occur unless the plans take account of the vices Committee of the DOD. Proc. of the
greatly increased difficulties that will be exper- Conference on Research Directions in Soft-
ienced. If not properly planned it may lead to ware Technology, October 10-12, 1q77,

the effective collapse of the system or, as we have Brown U., Providence, R.T. and MIT Prs
observed in at least two instances, to an effect 1978.
that we have termed system 6i 6ion. Since only
release of the system to end users and to the [LEH691 M.M. Lehman: "Mediocraty in Middle Manage-
developers provides full exposure, even when ade- ment", unpublished manuscript.
quate resources and time has been provided, such
a release will still require to be followed by -i [LEH77] M.M. Lehman: "Human Thought and Action as
restoration or clean up release, an Ingredient of System Behaviour": in

"Encyclopaedia of Ignorance", Ed. Duncan
The Fifth Law abstracts these observations, and Weston-Smith, Pergamon Press, 1977,

adding an additional factor, that of the emergence pp.347-3
54

.
of invariant average incremental growth or content.
The latter is also a consequence of the additional [LEH78] M.M. Lehman: "Laws of Evolution Dynamics -
exogenous pressure for accelerated functional Rules and Tools for Programming Manage-
growth or content. The latter is also a conse- ment": Infotech State of the Art Confer-
quence that is a characteristic feature of large- ence, "Why Software Projects Fail", April
program applications and, in general, of organi- 1978. To be published in Conference
zational nvironments. Proceedings 1978.

[SLC77] In "Software Phenomenology - Working
FINAL WORD Papers of the (First) S.L.C.M. Workshop",

Airlie, VA, August 1977. Published by
One last word should be added. The first ISRAD/AIRMICS, Computer Systems Command,

recognition of the laws discussed was based en- U.S. Army, Fort Belvoir, VA, Dec. 1977.
tirely on an examination and analysis of data
from some very large programs. However, once they
are formulated the laws must be examined in their
own right to achieve the transition from phenomen-
ology to science. These laws of large-program
development and evolution are now beginning to be
understood in this way. They are seen to express
very basic attributes of computing, of the pro-
gramming development, maintenance and usage pro-
cesses, of programs themselves, and of the organi-
zations and environments in which these activities
are carried out.

Once this irterpretation of the laws in
terms of more fundamental phenomena has been
achieved we must re-examine the old data and
examine new information in the light of the laws
as un&tztood. Deviations must be explained and
interpreted. Contradictions may require re-formu-
lation and re-interpretation of a law or even its
rejection. There is, of course, nothing new in
these comments. They form the very basis of the
scientific method. They are added here to assert
the belief that the laws as formulated have been
substantiated by experience and by experimental
data to the point where they can stand in their
own right until evidence and developing insight
and understanding demands their change.

REFERENCES

[BEL71] L.A. Belady and M.M. Lehman: "Programming
System Dynamics or the Meta-Dynamics of
Systems in Maintenance and Growth": IBM
Research Report, RC3546, September 1971,
pp.30.

[BEL78] L.A. Belady and M.M. Lehman: "Character-

146

VALIDATIhN OF A SJF'I'RI:t1 RLLIABILIIY' UI)EL

Bey Littlewood

Niatliemat ics Department, City Univers i ty,
St. Jol Street, london EliV 41B, Lngland

In order to model the reliability growth which takes
place as a result of the bug-fixing attempts, ,e
treat { i } as a sequence of random variables with

SUMnI'__. pdfs:

The paper reports some preliminary results idf(X i 'a, I i expi-yi)A
from an attempt to use real data to validate the 1

software reliability model proposed by Littlewood r ()
and Verrall [1j. A goodness-of-fit test is for X , (2)
employed to compare actual times-to-iailure with
the distributions of times-to-failure predicted = 0, othenise.
by the model. IThe test shows the model to fit
with remarkable fidelity. It is suggested that It is easy to see that the unconditional distribut-
this is evidence in support of the author's ion of I is not exponentiaT.
earlier coiMent-; -,"

The unknown quantities in the model are a and
,'i). It is via the second of these that the model
reflects past and future changes in reliability,

1. Introduction -o this 4ro-th function will be of particular
practical importance. ie suggest L 1] that a choice

In recent papers K2, 31 I have criticised some of parametric family be made for this function,
of the assumptions underlying much work op software then the estimation problem concerns the parameters
reliability measurement. in particular, I ha/e of the function together with a.
suggested that some authors 1 3, 4 ,,, - rke
assumptions about the relationship betieen ami Our original hope, when first working on the
perfonlunce reasures (failure rate, distribution of model, was that the growth function parametric
future time-to-iailure, :tc., and static measures :ai ly might e known a . hlis no, seems
.ninber of remaining bugs) which are extremely il ikel, so we propose that several fa:, los b~e
implausible. have argued, also, that some of te tried and that ,b ich best fits the data be used.
peculiar properties of software (e.g. lack of t is fortunate that the inference procedure
natural degradation, uniqueness cf each item) might adopted allows a comparison to be rode between the
result in much of the convontional reliability families (maximum. likelihood techniques, for
theory, created f-r hardware systems, being example, do not enable a choice to be made beteen
inappropriate. 1- is my contention that the model models in this ay.
developed jointly iy John Verrall and ryself avoids
some of these pitfalls - ,lbeit at the expense of hen the parameters of the model have been
other disadvantages. i"he results reported here are estimated, distributtions of future times-to-
the beginning of an attempt to validate this IOdel l ailure can be calculated. I rom these it is
using real-life data. It is intended to examine possible to calculate any reliability mea'ures 01
more closely in future work the point- raised in interest, such as failure rate, reliabil ity
121 and 131, but these preliminar-y results appear JLuictin. Since the purpose of this study is
to lend encouraging support. validation of the model, I have concentrated on the

percenta e points of the predicted time-'o-failure
D. Description of the calculat ions tistrit ions.

Our model is described in references ill, Iable I lists the 13o observitiol<s: these are
and C91, here details of the parameter estimation the successive execution times ,iO SepdSl, . Ich
procedures can be found. Briefly, we assume (in terminating with a software failure. ,'t ice the
conmmn with most workers in this field) that the great variability: a feature of software reliability
time between (i-I)th and ith failures of the data which must be reflected hy any' good rd1 I.
program has (conditionally) the exponential pdf: Figure 1 is an example of part of the output

,df(ti = ti from the program which pertorms the calculat ions.
in this case, the first 35 observations ire tred

147

in the calculation, and the growth function being Table 2 shows to be inferior to the linear one,
used was linear: (i) = a + 3,i. [here are thus gives an excellent fit (see Fig. 3).
three unknown-parameters: 1, 2, ,, which are
estimated using the 35 data points. [he routine In Figure 4 a test is carried out of longer

which estimates these's (a is taken care of via a term prediction. Here projections are made relating
Bayesian analysis) operates by searching in the 2- to the distributions 16 to 20 failures in the
dimensional l-space to find those values which future, using the linear growth function. The
best fit the 35 data points observed so far. The quality of these results is, again, remarkably
program allows this search to be started at two good.
different points: the two results should be quite
close as a check on convergence. An objective It is particularly noticeable, in Figures 2 and
measure of the quality of the fit of the growth 4, that the fit is at its best in the right hand
function is given by the value of the goodness-of- tail of the distribution. Since it is precisely
fit statistic, WSTAT: this should be small. Based here that our model differs from the simpler
on estimates of the parameters utilising the 35 exponential models, by having long right-hand tails
failure times so far observed, the program then in the predicted time-to-failure distributions
calculates and displays percentage points of the (causing infinite mttf), this seems evidence in
next 20 predicted times-to-failure. 1hus 19.uS is favour of the controversial allegations of my
the 10% point, 57.11 the 25% point, 158.94 the 50% earlier papers -2, 3].
point (median), etc., of the next (36th) tine-to-
tailure. the number in parentheses gives the 4. Conclusion
position on the predicted distribution of the
actual observation: it is these numbers ihich are Although the results shown here relate to only
usedto validate the model. Thus in this case, the one set of data, they are encouraging in the support
actual 36th observation (65 seconds) lies at the they give to our model. In fact the quality of fit
0.276 (27.6%) point of the distribution predicted between predictions and observations is better than
from 35 failure times. I expected when I embarked upon this validation

exercise. ['his work will continue, and it is hopedThe calculations have been performed success- to analyse more data shortly, but already there isively upon the first 30 , 40, ... , 120, 125 the beginnings of a case in support of the argumentsobservations in the series. Since there is no gvni eeecs[3ad[]

reason for choosing a particular growth
, the calculations have all been carried fhe program which performs these calculations

out on both (i) = is still being developed, and it is hoped to

and M = +2publish a version of it eventually. in the meantime,

wIP + a212. if anyone would like a listing of the current
2 iversion, please let me know. Alternatively, I

The measure of goodness-of-fit (WSTAT in Fig. 1) would be very happy to have the opportunity of
is used to choose between these for each calculation. analysing any software failure data which readers
Table 2 shows that the linear growth function is may have.
superior except for 40, 45, IS rb-ervations.

Acknowledgement
5. [he results I am very grateful to John Musa for providing

It should be emphasised that the objective of the data upon which this paper is based, and for
these calculations was to measure the quality of the many helpful suggestions and comments over the
predicted time-to-failure distributions. [his is last couple of years. His forbearance in the face
a more stringent test than procedures such as of my own awful software engineering practices is
comparing predicted mttf's with average times-to- also much appreciated.
failure. In fact, a secondary objective was to see
whether my suspicion of the non-existence of mttf Referencesfor software could be tested 2 3T

f11 LITrLEW)OOD,B. and VLERRALL,J.L., "A Bayesian
It can easily be seen that if the model is a reliability growth model for computer software"

good one, the numbers in parentheses in the output Applied Statistics (J. Royal Statist. Soc.,
(see Fig. 1) can be regarded as a random sale ers)Vol.22 3,1973, pp. 332-346.
from a uniform distribution on (0

. is

observation underlies the results shown in Figures [21 LITTLEWOOD,B.,"Software reliability measurement
2, 3, 4. - some criticisms and suggestions", in Soft-

ware Phenomenology, working papers of lst--"LQ'
Fig. 2 shows the quality of predictions 1 to 5 workhop,1977, pP. 473-488.

steps ahead using the linear growth function. Here
100 actual observations are compared with the 100 C3] LITTLEWOD,B., "How to measure software
predicted distributions based on calculations using reliability, and how not to...", Proceedings
successively 30, 35, ... 125 observations. As can of 3rd International Conference on Software
be seen from the Kolmogorov-Smirnov test, the fit is Engineering,IEEE, 1978, pp. 37-45.
extraordinarily good.

L4 JELINSKI,2. and MORANDA,P.B., "SoftwareLven the quadratic growth function, which

148

reliability research", in Statistical Comuter
Performance Evaluation, Ed--W. Freiberger. Number of W Statistic
New York: Academic, 1972, pp. 465-484. observations (WSTAT)

calculations
[s] SHtOIMAN,.I., "Operational testing and software based upon (i) B 1+82i (i) = ii* 2i 2

reliability estimation during program develop-
ment", in Record. 1973 IEEE Symposium on
ComPuter Software Reliability, NY, NY, 1973, 30 .0259 .0327
pp. 51-57. 35 .0714 .0717

reiailty.0617 .0589
[b] MUSA,J.D., "A theory of software reliability 45 .0571 .0567

and its application", IEEE Trans. on SE, SE-I, 4S .0524 .0553

3, 1975, pp. 312-327. so .0427 .0553
60 .0427 .0587

L71 GOEL,,,.L. and OKUMDTO,K., "An imperfect 65 .0595 .0822

debugging model for reliability and other 70 .0918 .1088

quantitative measures of software system", 75 .08 .108
Tech. Report 78-1, April 1978, Dept. of Ind. 7S .0842 .1028
L g. and 0. R., Syracuse U., NY 13210. 80.0 .0706 .0886

T 85 .0687 .0886

L81 LITfLEI)OD,B. and VERRALL,J.L.,"A Bayesian 90 .0761 .0874

reliability growth model for computer software", 90 .0755 .0802

same source as [53, pp. 70-76. 100 .0780 .0800
105 .1021 .1016

[9] LITTLEWOOD,;. and VERRALL,J.L., "A Bayesian 110 .0999 .1001

reliability model with a stochastically 11_ .817 .0860

monotone failure rate", IEEE Trans. on Rel., 120 .1027 .1066
R-25, 2, 1974, pp. 108-1T. 125 .1243 .1267

3. 30. 113. PI. I",. Table 2. Comparison of the two growth functions

q. 11?. ill for the series of calculations. It

l. 7?. . 4. can be seen that the linear function

00. h.n. 12n. ?h. 114. provides a better fit except in the

;).5. 242. 6P. 4?2. cases of calculations based upon 40,

i1 0. 10. 1146. 600. 15. 45, and 105 observations.

36. 4.). R. ??).
I 17A. 5P. 4L,7. 300.

'4. 263. CS?. 'h5. 117.
IJ3. 7c).?. P1. 1351.
14P

. 21. 233. 134'. V'7.
103. 236. 31. 36Q. 'aR.
0. ?32. 330. 365. 122?.
543. In. 16. 529. J79.

52g. 2Q1. R60. P0. 1011.
"?Q. 2oj. j"1n . I,6. I "}Ni .

06. c0.3. 3"7 . WP.
724. 2323. 2'"30. 14h1. H11'4.
'12. 261. 1NI~t. fif,c. '143L;.

30. IVA". Ill-. (). ,1110.

1247. 043. 70ID. W7,. 245.
720. 10047. 647. 30f6. 446.

22. 9qq a 04P. I0?. 22.
75. 6H?. 5509. 1((. i1).

1071. 371. 7q(l. h15D. 3321.

4116.

Table 1. The 136 successive failure times upon
which the calculations are based. Notice
the great variability of the data, and
the obvious improvement in reliability
as time passes.

149

NUME1ER OF FAILUREi 31)

PAGE I
RESULTS FROM FITTING PARAMETERS TO TIME DATA.

F IRST SECOND
RESULT RESULT

ALPHA I.SiQ7 1.51H6

BE TAI -I.,(12Q -0. QR6

BE TA? 7.PRd4 7 P378

WSTAT (I.0714 0.1{714
PAGE 3

TIMES TO NFXT FAILURE

IILFS T 36 iq.6. '7.11 1,.-4 41j.75 1007.37 (0.,)6)
%ILES T 37 20.?0 '.18.0 163.37 425.20 1035.4 ' (0.'21)
1ILES T 3 20.75 60.2 167.80 436.P1 1063.53 (0.242)
%ILS T 30 21.24 61. q 172.23 3H.' 1091.61 (n.754
%ILFS T 40 21.R4 63.4R 176.66 4". 111.A9 .(0,64'.
%ILES T a I ??.-4) 6o{17 19A100 471.41 1147.77 (0. 37)
%ItFL I 42 22.94 66.66 18.2? 492.Q, I17p.R' (0.'.97)
%ILES T 43 23.4H 68.?t 1.q9Q 4q4 .dR 120 J.Q3 (0.729)
1ILES T ,4 24.03 6Q.RS 194.38 r06.n1 1232.01 (0.571)
IdLES T 4, 24.5A 71.44 -19R.E81 517,55 1260 00 (0.4q7)

%ILES T 46 25.13 73.03 2n3.24 '29.09 12R8.17 (0.486)
%ILES T 47 25.6s 74.62 207.67 540.61 1316.26 (0.025)
%ILES T 48 26.22 76.21 212.10 552.15 1344.34 (0.257)
%ILES T 4q 26.77 77.81 216.53 563.68 1372.42 (0.924)
%ILES T 50 27.32 79.40 220.Q6 575.21 140(1.50 (0.896)
%ILES T 51 27.R7 80.q9 22,.3Q 586.75 1428.58 (0.387)
%ILES T 52 28.41 82.58 229.83 598.28 1456.66 (0.076)
%ILES T 53 28.96 84.17 234.26 604.R1 1484.74 (0.499)
%ILES T 54 2q.51 85.77 238.69 621.35 1512.R2 (0.348)
%ILES T 55 30.06 87.36 243.12 632.88 1540.Q0 (0.606)

Figure 1. Example of output from the program which performs the calculations
described in the text of the paper. WSTAT is the value of the
goodness-of-fit statistic, used in the optimisation routine, at
its minimun: i.e. at the point in B-space which will be used as
the estimate in the predictions. It is the value oi this statistic
which enables a comparison to be made between different growth
functions: the best growth function is that which has smallest
WSTAT.

The percentiles given here are, from left to right, 10%, 2S%,
50% (median), 75%, 90%. The last column shows the position of
each actual observation on the distribution which is predicted
for it based, here, on the first 35 observations.

150

1.0

.9

.8

.7

D n

Kolmogorov-Smirnov test: .4

Dn.f = .o75V/!= .7S

P(D ./r > .75) = .6872

.3

." /

/

0. .1 .2 .3 .4 .5 . o .7 .8 .9 1.

Figure 2. lest of fit between actual observations and predicted distributions,
using a linear growth function. There are 100 observations used; the
prediction is 1 to 5 steps ahead.

The fit is extremely good, as may be seen from the K-S value of .6872.
Notice particularly the closeness of the points in the right-hand
portion of the plot to the line.

151

* 1.0

* ".9

./7

.8

.5 .7

D nn

.4

:iolmogorov-Smirnov test: .3

Dn./ii = 1.1 for n - 100

X; .P(n.6 > 1.1) = .1777

0.0 .3 .4 6 .

Figure 3. Quadratic growth function, prediction 1 to 5 steps ahead.
Although the quadratic does not fit as well as the linear
function (see Table 2), the predictions are again very good.
The K-S value is much smaller than for the linear case,
but is still not significant at the 10% level.

'1

t

152

1.0/ .

.9

.8

.7

.b

Z D .5

Kolmorov-Smirnov test: .4
D.Ii = .79 for n =90

P (D ni V> .79) .6605 .3

.2

.1

0. .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

Figure 4. Linear growth function, longer range prediction: 16 to 20 steps
ahead. This time only 90 observations could be used because of the
length of the data vector. Again the fit is extremely good, as seen
from the K-S statistic. Good fit in right-hand tail of distributidns
again.

153

PROGRESS IN SOFTWARE RELIABILITY MEASI'REMENT

John D. Musa

Bell Telephone Laboratories

Whippany, N. J. 07981

ABSTRACT Project Deve]u.sen txj[r ence

This paper summarizes progress made The execution tIme, th,,ry tl-cn
in the past year in the application of and is currently beinf, ap!,ld t 'arious
the execution time theory [1] of software development proje -ts. 'ons der-,t_! .xpvr-
reliability. It also discusses a con- lnce has been accrued in hlrndlir-, t artl-
tinuing mutual critical examination of cular circumstances relatei t(, -ach jro.'ect
the Littlewood model [2] and the author's f3]. The accumulation and a n o'f
execution time theory. this experience is continuln -. Sc th(,

particular problems that have been
addressed are:

Introduction
(a) handlinr design change',

Work associated with the execution
time theory of software reliability in (WI specifics of parameter es* tV:i,
the last year falls into four principal and
areas:

(c) details of program parameter
(a) collection of data for model reestimation.

verification, Curront work Includes investa Igatl a
(b) accumulation of experience in appli- methods for improving predictiono rude S ,

cation of the theory to project projects that employ sequential 1ntc.r' I u
development, with resultant and testing.
re finement s,

Measurement of ('omputatloii

(c) application of the theory to t'enter Software
measurement of computation center
software, involving service monitor- The execution time theory was recently
Ing and change control, and applied to operatiug, system software in a

large general purpose computation center
(d) investigation of execution time over a period of 15 months Mi]. I(ean-

.model simulation as an aid to time-to-fallure (MTTP) trerds of softwro
management decisions. components wee shown to correlate very

well with periods of system deradation
In addition to the foregoing work, or Improvement. The trends can ho moni-

substantial effort was expended in mutual tored as a basis for controlllng 0yster .
critical examination of the Littlewood modification (modi fications ar, susonded
model and the author's execution time when the MTTF is below an acceptable
theory, resulting in disposition of some level), rea.-irning malntenanc, pr.oon
of the issues that had been raised at the amonfg software components, and e. ermi iv a-
first SLCM Workshop and sharpening others, when to make eutovers to new reie:;

regress .,ns to old releases:

Data Collection
SImulati on as anld t)

Failure interval data has now been MnS-1ment lee
collected for ten software development
projects and four operational software hin, ,"xp,,rimout '1 Ion wa o t,,,ed

systems. Resource expenditure data has with simul atiri f h, exee'uit 1 1 11!1(, rlo, n l
been collected 'or four developmant pro- as an aild In maklngl mgm entl eoI : !,r;: I
jects. This data is being analyzed with 5-1. Xarametors f .e mil that. wte'r'

regard to the execution time model of soft- nssoclotod with differont mana'eura
ware reliability and Its assumptions to 'pI lonn, w,,re sercted, ina iulat !,)n wi.;
determine how well or poorly the model fits usod tO dol elcl no the eot,, I s n o' hi'dll
reality. and costs.

_ _ _ __ J

154

Fol. 0101101 le, t' onev I'v)jeot , thle tpre- r'el'lected lin 1tln' Ai:ti'1l.ilO 1 1

iscted ,omlel~l~ Tol l tWOS 00101 cl'er~d to li-th ltalili1'ilt -T 1' l''il ,':h5

be too tate arid ' I al ition,- were runl to l(entlles oail be ~ t llljv in jo :el
1

2 rte IT! I 11 t h l' C 1t(' , , C kin vaiu 1'V1-1 SMCAdelI, the uAicrertalnily 1 i'' - ' -
titevv~h E10 01. arid of vduc li,, lion fidenoe 10 1e rval '1 ; 15 il 1 1,Ilc

the~ MT; Oh o'UC!tl Po t' iIs parvticu lar subparalfleters t11: 1,., ' l ii
eil at t I pav 1 iu 1'iv po iri. i r t ite IV e t simate1 Id 1 1t fIP;W I V(tlt X

Std ,l ed, atd I),". I eopie ov w11'killg ovrt: 1111 111 ervals apt. 110 l jeerv'l'ieov !" I t n
Wore"- f'lni I k, li' a rj .e rovliio

'1111c lit I. i Ia ~)dv uiv'. t~icri I Iti fol!1 ht- rolo'i r. rufll 1 (1 ' -
t htr '*'''' j 1 1ha oni y aL 11odelate 'voln ;tIi I Iti, rmarly V;I11 . .! I 1l. ' '' - a
iIj: I 01v 1 1 'he, '''it lei, loll dat1 o Ili 0, o i a I e lip a'r~ 'v V'l I~ Il :- b. *t ' lno 111 l '(lh i
p, jlt ,i C1 to I1 ht p1 10 lt , th le 1 ml ac I wa s i' 111. ,' l .vld ttnoss "1,1 ; ":t t, I I '
atvt 1 jibi I(eoarecr o ver a su rfac e 1 s1 r(nu ire>d)

:11ut h nr Isi~ appl'ac I"' lna;: '(x17ui~n k- InvA
r t ,1t wno d id A ocu do Ti me, tod 10' maq t Ion to PdetPer-' 1 nlv t he Ibaa,1I

v'i:,es ajrid I heir, lasfldfenop 1nfltO ~i'V,v
t .:Ai tt.lowo anld the tu th,)v have it r I O-Wood 5 ilpl'oacvh a s~rO hamft. t morle

b- Ii it -t '' ont I nuIi- ,It Ia L !eooral1 , a t a ,01 ci 0o1' one or t wo o)rders t
iI I lo,14 ac oil1 'orI 111' 'a -it o thle r ' o ftw a re nilallI tu d- Or'eri t or o -ii ut A nfr telii rpmleti

jibI j'' 'idol' li wr nitall Th 'uthr ~t us Whther the(addedl
st1 "mlted hyo' ire f,,- rzl I ri 1t jilue of 1' ,*rievnI Ity 1L worl'h I the cogst; th alitiil i'
Z''otI"i r'' t'i'i l't, i od e 1

1 sIi" bv at prroach mayi w'- Ii be ait!.'ilv1'Caa

:li'' 'h' s'loi I~ ' 1 1 11 ;'; -rach q iickly 1lends *ela n icafl J!:
tc- a; Vial i ts It) -o I ornpu' atl I'I I ., lv
cetaInal toIr(oll'! the c x ,' 11 nf I'll.

,v I~ hay'', b eli I-old)vI inav, 1''- 1 ljlr-i I :ic 2 1 1 f, 1v l 1 1' z ll
''Il 1 'i : 1It If Ia~ e1PIP Atid, I P. Id,- 111t 'o val I h v 1 '1 1 hore -Colv Iv I o

1a It s o 1111 11-l thaI thle''' r* s-i o5 , e d I p01i r 1o -,,iem; I i 1.1

1tt ,hlj nI 1 t. y3l Toel ale 1i11i- 1v; ve I 1 ! 0 -,'

1. , litl i t wr vd fa lu ve C arid ('I ra1 lrI at y1l 16 '1Th f-se or o !t 1t
r,1 b 1 t y . We usree that Ij 1 s1 inj r t an t

bie abhle to ('i tlit etho11,' tjri e 01' errocrs 1 -In the :I 1) an 1 lo I lr. d1 rfler a -
I),auz~e *rh i3 uanit ity Is related to the ' id1111''11' 1 ; -1 illct i I hp Is lbares-

1-1 -'r ort thalI will h e required ari nl the-:. ''h, "j 171a1 tiet 171
1115, i iv , Tt schedules. We Irp btt in ,it ait, 1 leal I l l ptliI l(i -1 01110 a l 1,((-!

'1:1''oIiO ir iit exocut ionl I. itte rather, thati o the urehl en, (. , f'vouaOn 1 n rl'01 ti00'
.:flia'1m ii, 1 tim key metrlc related 10 vor""-us !', c I i, 11 "I) Uti 11 '%). ! 11 ,, Ae w d

!e't w'i1' r I , I It i b y 1 L t h Toes isu 1' ttio iit t hat t le aitithor' ni od,'

an eX~n x t j urn i I 1: t I Ilu t i n1C fa il are lo vend (ol ((tar' (I'lleh I jiv it- aIssLru.t!2911
tr IT- ryai1 1 h 1111 the "''1ITT ox 1 1'1 vit It!" pesc-tu il l h

f il erl n1 aol I hal. a pro-ram I i- mpei'l'0
1-. !1 lloemid riedI , I te failIure '1 Wil''oita ly fVil . Pa1-e"d yin "I:

ri'a e 1-a ra1i' M V thIe ex i One nt iaI d 1.I-,rlb- 'I1' b1 f wll "Itwr. mna rIiae' r and I~ I i', i 111Kw n
1, lo lz I srn 1-'; 1 ve a krnmIm i d Ist, rItbu - In11.vFl r (r~l'lin-i h he auth,1o r t, tI I o-1 y h" ' iI
lion-i ens!' , whos;e I:iartiet.o rls arccouit~s for 1 tils IF, a1. xoellerit mml,11' Cf' rt iity1
re I I i b ll* jt'/ er(i'wtti The i'rowtht paramlete r 'The rare assWhll Ihi - rit 10 tl'l ' 0

is 'aO e ,li(t 11n (il~lil ly I1 ri iWv sutirararn(1- the trueo do 1i1t .!lst I fy ttie :1Ide 'I v 11 fxl t V
t r. 0 Of t hi'' 11,1rit tal fa:ilure niumh,'1 'Itid the iddocd comjnput lt o1 I halt t he
In thie ailtl'' 51110, the exj-0r1~nt lal f1 tt lewos (I mipd-1 " niv, I ve .

di-otrIbul, oun C
0

'IAVul i'atl pairamete-r 15 a
fIxed I se

1
IaI1 y two s-,uhpararieter) flili- Allic 1 'ti'te Ilt tir efl''

tiotori'> thfi i', lint lal VF lilure numaber'. To 1) X cI I t -I t irn t mie d' 1 t 1 , - !'
two ;ubparaineter.; ,iiitial NITIT" and t ital I I i 'II' iirldorl11 ilIi'', 15 I , ll

f'ailuren expected, tiave rea;dl ly undercl 00d -eltiim! c' <,t~it rv-t111,' 'ind (ilII
phy..Ical iriterprett 11111. t hie I o,'od Ie. ,' so 1 mowh:3it KIt 'I

i"1'n omiIlI tin v11 1101 arevi :11v01 lv'
Bo0th modelIs v Iew t he repi r p 7,oi 1'litily , 1 aid 1 or -1'', 1

asbelnve st; tIstical In, naiture. Iii thi' at rem1 t to Ill ~ "i11t oI' tiw I I
Littlewiiad model, this uricortalrify Is fuIIyV, tie 01 1 l-, l 'di--IlJ''1 ' t'~ 1
e xh Ib Ited I n t he e xpunen tlalI dIs t rlhIilii ot, 1jr fr , ~i Cm !; wt I1' ,ith- oil tli'

fatiure rate paramet-r -It sp1 V h.,vI rlO a1 11111, 1 was a; ;-l I -I . At 11 'I l'V,''1 teIIo
distribution. Th~fs dlrst-rihuTin 111111 hi' ma11de hy he! ti l 11 lewd '11 %ti l'. :11t 11"r, 1k

FOP
155

speed upj t tie m i til at ion pr~ocess the PI I Patrtic ia A. HiamilIto art d John D.
P Itt lewoed Model a e s. Perhaps the se Mu so, ' MeaS U"nr ng e 1ab ility Of
studles wil I eisult in y~e finerrerts to Computat ion ('enter, Sof'tware," in
bcth models. At any rate, their, similzar- Proc. 3rd Int. Conf. SoftwareQ
Itt es anid dlt'l'erences arid advantages and Eni fleer i ng , Atlanta, Ga ., pp ;)?C f
disadvantages should come Into sharper May 10-12, 1978.
foc us.

[]John P. Musa, "The Ufse of' Software
Refrenes el abi iy Measures It) Pro~ect,

Mana 7ement ," paper submitted to 2nd
I1 D. . Musa, "A Theory of Software Int. (onaputer Softwro -anid

Reliability and Its Application," Aplications C'onference, Chicag-o,
IEEE Transact ions on Software Nov. 33-1C, 1978.
Englnee-jnZ, Vol. S-, No. 3,
pp. 312-327, September 1975. []B. LittlewooO, "Software Reliability

2]B. Littlewood and J. L. Verrall, "A Measurement : Some Criticisms anid

Bayesian Reliability Growth Model for Surggestions," in Software

Computer Software," J. Roy. Statist. Phenomenology - Working Papers of
Soc.(Seres , ApliedStaistis),the Software Life Cycle Management
Soc.(Seies , Aplie Sttistcs rksho , Airlie, Virginia,

Vol. 22, No. 3, PP. 332-346, 1973. op . 73-488, August 21-24, 1977.

[31 J. D. Musa, "Software Reliability
Measur~ement," in Software 7~ B. 1.ittlewood, "How to Measure
Phenomenology - Wor~king Papers of SFoftware Reliability, and How Not
the Softwar-e Life Cycle Management lo," in Proc. 3rd. Int. Conf.
Workshop, Airlie, Virginia, S~oftware Engrineering, Atlanta, Ga.,
pp. 427-452, August 21-23, 1977. 7W5, May 10-1?, 1978.

156

THE WORK BREAKDOWN STRUCTURE IN SOFTWARE PROJECT MANAGEMENT

Robert C. Tausworthe

Jet Propulsion Laboratory
4800 Oak Grove Drive

Pasadena, California 91103

The Work Breakdown Structure (WBS) is a everything proceeds according to the PLAN, there

vehicle for breaking an engineering project down is no need to deviate.

into subproject, tasks, subtasks, work packages,
etc. It is an important planning tool which links Programmers well-schooled in modern tech-

objectives with resources and activities in a niques 2 would approach the writing of this PLAN in
logical framework. It becomes an important status a structured way, using top-down design methodol-
monitor during the actual implementation as the ology modular development, stepwise refinement,
completions of subtasks are measured against the hierarchic layering of detail, structurally sound
project plan. Whereas the WBS has been widely constructions, and semantically definite document-
used in many other engineering applications, it ation. Such an approach would tend to bring a
has seemingly only rarely been formally applied measure of organization to the PLAN, understand-
to software projects for various reasons. Recent ability to its documentation, and reliability to
successes with software project WBSs, however, its execution. If created in this way, the result-
have clearly indicated that the technique can be ing format of the PLAN work tasks would have the
applied, and have shown the benefits of such a attributes of what is known in the engineering
tool in management of these projects. industry as a "Work Breakdown Structure".3

This paper advocates and summarizes the use The Work Breakdown Structure (WBS) is an
of the WBS in software implementation projects. enumeration of all work activities in hierarchic
The paper also identifies some of the problems refinements of detail, which orgainzes work to bc
people have had generating software WBSs, and the done into short, manageable tasks with quantifiable
need for standard checklists of items to be inputs, outputs, schedules, and assigned responsi-
included. bilities. It may be used for project budgeting of

time and resources down to the individual task level,
Introduction and, later, as a basis for progress reporting

relative to meaningful management milestones. A
If one were to be given the tas!F of ritinC a software management plan based on a WBS contains

program in which the target language instruction the necessary tools to estimate costs and sched-
set was not entended to be executed by some dumb ules accurately and to provide visibility and
computer, but, instead, by intelligent human be- control during production.
ings, then that programmer might be thought to
have an easier job than his colleagues who write Such a plan may be structured to evaluate
their programs for machines. However, a little technical accomplishments on the basis of task and
reflection will show that his job is much more dif-
ficult for a number of reasons, among which are activity progress. Schedules and PERT/CPM

4 net-

ambiguities in the English language and a multitude works may be built upon technical activities in

of human factors.
1 However, such a program, often terms of task milestones (i.e., accomplishments,

named the PLAN, is an essential part of almost outputs, and other quantifiable work elements).

every industrial project slated for success. Projected versus actual task progress can be re-
viewed by technical audit and by progress reviews

One of the difficulties in writing this pro- on a regular (say monthly or bi-weekly) basis.
gram is the supplying of enough detail so as to be Formal Project Design Reviews are major check
executable without ambiguity by those programmed. points in this measurement system.
Another is getting the right controls into the
program so that the programees perform as stated But knowing modern programming theory does
in the PLAN. Still another is making the plan little good if one does not also have the pro-
complete, having all contingencies covered and a
prcper response to each supplied. And one final gramming experience to apply it to. Similarly,

pr(blem of note here is making the plan bug-free, the knowledge of what a WBS is, what its goals are,

or reliables, o that once execution starts, if what its benefits are, and what its structure is
p osupposed to be like, does not necessarily instruct*The work reported In this paper was carried out

at the Jet Propulsion Laboratory of the California one in how to apply that knowledge toward develop-
Institute of Technology under contract NAS 7-100, ing a WBS for his or her own project.
sponsored by the National Aeronautics and Space

Administration. In the coming sections of this paper, I shall

157

review some of the characteristics and benefits of over the project duration). The value of m is a-
the WBS, and then discuss how these can b, develop- reflection of the team average productivity and
ed and applied in software implementation projects. is a measure of the ability estimate their pro-
I will orient this material principally toward ductior rate. Both are attestations to team ef-
new-software production tasks, although many of the fectiveness -- first, in their ability to produce,
concepts will be applicable also to continuing and second, in the ability to create a work plan
maintenance and operations tasks, as well. which adequately accounts for their time.

The Work Breakdown Structure The project should require M/m reporting pe-
riods to complete, which time, of course, should

The goals assumed here for generating the WBS not depend on whether a WBS was made or not (I am
are to identify work tasks, needed resources, im- discounting, in this discussion, whether WBS
plementation constraints, etc. to that level of de- generation increases or decreases productivity).
tail which yields a sought-for accuracy in the orig- Thus, M/m should be a constant value, relatively
inal PLAN, and to provide the means for early cal- speaking. If M is made large, tasks are smaller
ibration of this accuracy and corrective replan- and shorter, so proportionately more of them are
ning, if required, during the actual implement- completed each reporting period. The project
ation. schedule will, in fact, assume some productivity,

or mean accomplishment rate, but an actual per-
How refined should this WBS be? Let me answer formance value will generally be unknown until

this question by showing how the WBS and schedule progress can be monitored for some period of time.
projection accuracy are interrelated.

But while the numbers M and c may not affect
If a project has identified a certain number the team productivity, they do directly influence

of equi-effort milestones to be achieved during the effectiveness with which a project can monitor
the course of implementation, then the mere number its progress and predict its future accomplish-
of milestones achieved by a certain date is an ments. Generation of a WBS, of course, gives (or
indicator of the progress toward that goal. A estimates) the parameter M. Monitoring the com-
graph of accumulated milestones as a function of pletion of milestones provides estimates for m and
time, sometimes called a "rate chart", permits c. From these, projections of the end date and
certain predictions to be made about the future calculations for the accuracy of this prediction
completion date rather handily and with quanti- can be made. Based on such information, the pro-
fiable accuracy, especially if the milestones are ject can then divert or reallocate resources to
chosen properly. take corrective action, should progress not be

deemed suitable.
Let it be supposed that it is known a priori,

as a result of generating the WBS, that a project In this simplified model, a best straight-
will be completed after M milestones have been met. line fit through the cumulative milestone progress
These milestones correspond to all the tasks which over the first r reports (of an expected R=M/m
have to bg accomplished, and once accomplished, are reports) at regular AT intervals will predict the
accomplished forever (i.e., some later activity time required to reach the final milestone. It
does not re-open an already completed task; if will also provide an estimate of m and o. The
such is the case, it can be accommodated by making normalized predicted completion date may be ex-
M larger to include all such milestones as separate pected to deviate from the projected value (as a
events). The number M, of course, may not be pre- one-sigma event) by no more thans
cisely known from the first, and any uncertainty
in M is certainly going to affect the estimated eM 1.48 ,'I (R/rM)'2
completion date accuracy. Such uncertainties can
be factored in as secondary effects later, as within first-order effects. The value o, = o/m'

needed for refinement of accuracy. represents the normalized variance of an individual
task milestone (it is limited to values of less

Now, let it be further supposed that it has than unity in the underlying model).
been possible to refine the overall task into
these M milestones in such a way that each task is The bound permits the specification of WBS
believed to require about the same amount of effort characteristics which enable accurate early pre-
and duration to accomplish. Viewed at regular dictions of future progress. High overall accuracy
intervals (e.g., bi-weekly or monthly), a plot of depends on a combination of low , and large M.
the cumulative numbers of milestones reported as One may compensate for inaccurate appraisals of
having been completed should rise linearly 5 until productivity only by generating a very detailed

project completion. WBS!

As an example, suppose that a lO end-date
More quantitatively, let m be the average prediction accuracy is required by the end of the

number of tasks actually completed during each first quarter (r/R = .25) of a project. Then the
reporting period, and let a be the standard de-
viation of the actual number of milestones com- tradeoff figure is M/o1

2 = 876. Hence, if the
pleted each reporting period about the mean vaiue WBS is highly uncertain (,=l), that WBS should
(the values of m and a are presumed to be constant contain 876 equi-duration milestones! If the

158

project is confident that it can hold more closely
to its average productivity (and has most contin- oM 1 0.432 o1 (d/wy)

gencies provided for), with a oi=0.5, then it needs Note that accuracyis related to the total man-
only about 220 milestones. A one-man-year project year effort in a project, other things being equal.
with bi-weekly reporting, one milestone per report A 3-man-year project completing 1 task per manweek
(26 milestones in all) must demonstrate a oi=0.17 can expect to have o. < 0.216 o,; with a oi0.4
level of task prediction accuracy! (12 days per weekly task) The end-date estimation

accuracy is within 10%.

It is therefore both necessary and important
to generate a detailed WBS rather carefully, and Generating The WBS
to monitor milestone achievements relative to this
WBS very faithfully, if accuracy in predicting the There is no mystery about making a WBS.
future progress of a project is of great impor- People do it all the time, although they seldom
tance. call the result a WBS. Most of the things we do,

in fact, are probably first organized in our heads,
Reasonable Schedule Accuracy and for small undertakings, most of the time that

works out well. For more complex undertakings,
A project engineer on a 2-year, 10-man task especially those involving other people, it be-

may perhaps be able to manage as many as 876 sub- comes necessary to plan, organize, document, and
tasks, each formally assigned and reported on. review more formally.
That amounts to about one subtask completion per
week from each of the 9 workers. But the genera- The general algorithm for generating a WBS is
tion of the descriptions for the 876 tasks will even fairly simple to state. It goes something
require considerable effort. Moreover, it is un- like this:
likely that such a detailed plan would have a a
also as large as one week; if the project engineer I. Start with the project statement of work,
has the ability to break the work accurately into and put this TASK on top of the "working
876 week-long subtasks, he or she can probably stack".
also estimate the task deviations well within a
week. 2. Consider the TASK at the top of the work-

ing stack. Define technical performance
The ability of the project engineer (or plan- objectives, end-item objectives, reli-

ning staff) to generate a clear and accurate WBS ability and quality objectives, schedule
will determine the level to which the WBS must be constraints, and other factors, as ap-
taken. Greater accuracy of the work breakdown propriate; inputs and materials required
definition produces greater understanding and for starting the task; accomplishments
clarity of the actions necessary to complete task and outputs which signal the completion of
objectives. If the work is understood, readily the task; known precedent tasks or mile-
identified, and achieveble as discerned, the con- stones; known interfacing tasks; and re-
fidence of reaching the objectives is high. Thus, sources required, if known. Determine
the further the subtask descriptions become re- whether this task can be accomplished
fined, the better the estimator is able to assess within the duration (or cost) accuracy
the individual subtask durations and uncertainties, goal.

Refinement ceases when the sought-for M/M 2 is 3. If the goal is achieved, skip to the next
reached. step; otherwise, partition the current

Practically speaking, a work-plan wito tasks TASK into a small number of comprehensive

shorter than one week in duration will usually component subtasks. Include interfacing

require too much planning and management overhead tasks and tasks whose output is a decision
to be worthwhile. On the other hand, a work plan regarding substructuring of other sub-tasks. Mark the current TASK as a "mile-
with tasks longer than one or two weeks will prob- s pull ts cript off the-

ably suffer from a large o0. Thus, a breakdown stone", pull its description off the work-

into one- or two-week subtasks is probably the ing stack, push it onto the "finished

most reasonable target for planning purposes. stack", and push each of the subtask des-
criptions onto the working stack.

A work-year consists of about 47 actual weeks 4. Repeat from step 2 until the working stack
of work (excluding vacation, holidays, sick-leave, is empty.
etc). Therefore, a project of w workers can rea-

sonably accommodate only about 47w/d tasks per
year (including management tasks) of duration d 5. Sequence through all items from the "fin-

weeks each; spread over y years, the total number (costs) into the proper milestones.

of milestones can reach M=47wy/d, so that the
practical accuracy limit one may reasonably ex- The steps in this algorithm are not always
pect at the one-quarter point in a project simple to perform, nor can they always be done cor-
(r/R=.25) is about rectly the first time, nor without sometimes refer-

159

ring to items already put into the "finished" list, useful automated WBS entry, update, processing,
The process is one of creation, and thus it re- and report generation aids impose standards on
quires judgement, experience, identification of software projects that are intended to facilitate
alternatives, tradeoffs, decisions, and iteration. the project management activity and make it more
For as the project statement of work is refined, effective. Initial scheduling and downstream re-
eventually the implementaltion of the program it- scheduling of subtasks are aided by a WBS database
self appears as one of the subtasks to be refined, that contains precedence relationships, durations,
When this subtask is detailed into component parts, costs, resource requirements, resource availabili-
the work descriptions begin to follow the influ- ty and similar constraints on each subtask. PERT
ences of the program architecture, organizational and critical-path methods (CPM) are applied direct-
matters, chronological constraints, work locations, ly to the WBS database, resulting in a preliminary
and "whatever makes sense". schedule. Alterations of this schedule are then

effected by editing the WBS via additional con-
Therefore, the formation of the WBS, the straints recorded into the database. Actual pro-

detailed planning, and the architectural design duction progress is measured by marking milestone
activity are all mutually supportive. The archi- completions, which are then plotted into a rate
recture indicates how to structure the tasks, and chart and all significant milestones are pro-
the WBS goals tell when the architectural phase jected to a best-estimate completion date.
of activity has proceeded far enough. Scheduling
makes use of the WBS as a tool and in turn influ-
ences the WBS generation by resolving resource Problems
conflicts.

The Work Breakdown Structure is a well known,
But there are many subtasks in a software effective project engineering tool. It has not

project which are not connected with the architec- been applied to software projects as often as it
ture directly, such as requirements analysis, pro- has to hardware and construction, probably because
ject administration and management, and prepara- the planning and architectural design tasks in
tions for demonstration and delivery. The struc- software have not always been sufficiently inte-
ture of these subtasks, being independent of the grated as to be mutually supportive, because all
program architecture, can be made fairly standard of the management, support, and miscellaneous
within a given organization for all software pro- tasks were seldom fully identifiable and detail-
ductio:.s. However, since there is no automatic or able during the planning phase, because separation
closed-loop means to guarantee whether all the of work into manageable packets quite often re-
planning factors that need to be put into the WBS quires design decisions properly a part of the
actually get put into it, a standard WBS checklist detailed design phase, because a basis for esti-
can be a significant boon to proper software pro- mating subtask durations, costs, and other con-
ject planning, to decrease the likelihood of some- straints has not existed or been known; and be-
thing "dropping through the cracks". cause software managers have not been trained in

WBS methodology. Modern software engineering
A Standard WBS Checklist studies of phenomenology and methodology are be-

Previous DSN experience
6 at The Jet Propul- ginning to close the gaps, however.

sion Laboratory with WBS methodology has permitted The existence of useful tools and methods
moderately large software implementation projects does not assure their acceptance, nor does their
to detect schedule maladies and to control project acceptance insure project success. Plans and
completions within about 6% of originally scheduled controls are essential project aids, but unfor-
dates and costs. The WBSs were formed by indi- tunately, they also do not guarantee success.
viduals with extensive software experience, over- The WBS is a planning, monitor, and control tool
seen by an expert manager. None of the software whose potential for successful application within
individuals had ever made a WBS before, and the a software project has been demonstrated. How-
manager had never tried one on a software project. ever, further researches and demonstrations are
Together, with much travail, they assembled ad hoc necessary before a WBS-oriented software plan-
items into a workable system. ning and control methodology and system are as

well integrated into the software industry as
A candidate standard WBS outline and checklist structured programming has only recently become.

is currently being assembled and evaluated within Fortunately, many organizations and individuals
The Deep Space Network (DSN) at The Jet Propulsion are sensitive enough to the software management
Laboratory. This Standard WBS checklist includes crisis of past years that inroads are being worked
many factors gained from previous successes and on7

contains items to avert some of the identified
shortcomings. Table I shows the upper-level struc- Happily, the solutions will almost certainiy
ture of this WBS checklist. Detailed task descrip- not be unique, but will range over limits which
tions are also in process of documentation and accommodate management and programming styles,
evaluation. A short application guidebook is plan- organizational structures, levels of skill, areas
ned, to instruct cognizant individuals in the meth- of expertise, cost and need-date constraints, and
od, approach, and practice. human and technical factors.

Such a checklist and guidebook, together with

160

Table I

SOFTWARE IMPLEMENTATION PROJECT

Detailed Work Breakdown Structure

Outline

1. ANALYZE SOFTWARE REQUIREMENTS
.1 Understand functional and software requirements
.2 Identify missing vague, ambiguous, and conflicting requirements
.3 Clarify stated requirements
.4 Verify that stated requirements fulfill requestor's goals
.5 Assess technology for supplying required software
.6 Propose alternate requirements or capability
.7 Document revised requirements

2. DEVELOP SOFTWARE ARCHITECTURE
.1 Determine architectural approaLh
.2 Develop external functional architecture
.3 Develop software internal architecture
.4 Assess architected solutior, vs. requirements
.5 Revise architecture and/or renegotiate requirements
.6 Document architecture and/or changed requirements

3. DEVELOP EXTERNAL FUNCTIONAL SPECIFICATION
.1 Define functional specification standards and conventions
.2 Formalize external erironment and interface specifications
.3 Refine, formalize, and document the architected external operational view of tl.e software
.4 Define functional acceptance tests
.5 Verify compliance of the external view with requirements

4. PRODUCE AND DELIVER SOFTWARE ITEMS
.1 Define programming, test and verification, QA, and documentation standards and conventions
.2 Formalize internal environment and interface specifications
.3 Obtain support tools
.4 Refine and formalize the internal design
.5 Define testing specifications to demonstrate required performance
.6 Define QA specifications
.7 Code and check the program
.8 Demonstrate acceptability and deliver software

5. PREPARE FOR SOFTWARE SUSTAINING AND OPERATIONS
.1 Train cognizant sustaining and maintenance personnel
.2 Train cognizant operations personnel
.3 Deliver sustaining tools ano materials
.4 Deliver all software and data deliverables te operations
.5 Install the software and data into its operational environment
.6 Prepare consulting agreement between implementation and uperations

6. PERFORM PROJECT MANPGEMENT FUNCTIONS
.1 Define project goals and objectives
.2 Scope and plan the project
.3 Administrate the implementatinn
.4 Evaluate performance at roduct
.5 Terminate the project

161

References

1. Avots, I., "Why Does Project Management Fail?"
California Management Review, Fall 1969,
Vol XII, No. 1, Pages 77-82.

2. Tausworthe, Robert C., Standardized Develop-
ment of Computer Softwar-, Prentice-Hall,
En-glewood Cliffs, N.J., 1977.

3. Hajek, V. G., Management of Engineering Pro-
jects, McGraw-Hill Publishing Co, New York,
N.Y. 1977.

4. DoD and NASA Guide, PERT/COST, Office of The
Secretary of Defense and NASA, Washington,
D.C., June, 1962.

5. Tausworthe, Robert C. "Stochastic Models for
Software Project Management", Deep Space Net-
work Progress Report no. 42-37, Jet Propulsion
Laboratory, Pasadena, CA., February. 1977,
pages 118-126.

6. McKenzie, M., and Irvine, A. P., "Evaluation
of The DSN Software Methodology", Deep Space
Network Progress Report no. 42-46, Jet
Propulsion Laboratory, Pasadena, CA., August,
1978.

7. Lehman, M. M., et. al., Software Phenomenology,
working papers of The Software Life Cycle
Management Workshop, U.S. Army Institute for
Research in Management Information and Computer
Science, Atlanta, GA., August, 1977.

...

162

OPERATION OF THE SOFTWARE ENGINEERING LABORATORY*

Victor R. Basili and Marvin V. Zelkowitz

Department of Computer Science
University of Maryland

College Park, Maryland 20742

Abstract computer at the University of Maryland was chosen
as the basic data base system [Stonebraker 76].

The paper discusses the current status of the This activity resulted in the following steps:
Software Engineering Laboratory. Data is being
collected and processed during the development of A generalized table-driven program was implemented
several NASA/Goddard Space Flight Center ground that converted the raw typed-in forms to a format
support projects. The data is used to evaluate acceptable to INGRES. However, it soon became
software development disciplines and various apparent that the major problems were not program
models and measures of the software development oriented, but were in the human communication
process. Emphasis is placed upon models of re- necessary to carry out this activity.
source estimation, the analysis of error and
change data, and program complexity measures. Forms were frequently filled out containing names

not yet recognized by the data base. Other fields
were sometimes missing or unclear. Constant inter-

The Softw'are Engineering Laboratory is a research action between the University personnel and the
prcject between NASA/Goddard Space Flight Center programmers filling out te forms became necessary
and the Department of Computer Science of the in order to solve this problem.

University of Maryland. Ground support software,

in the six to twelve man-year range, developed for Thus, the first change in procedure was to rewrite
the Systems Development Section of NASA, is studied the data validation program for the PDP 11/70 at
in detail for determining the dynamics of software NASA. Forms are turned in to a single individual
development and the effects of various features assigned to the Laboratory. The form is scanned
and methodologies on this development [Basili and manually and any errors are br.ught to the atten-
Zelkowits 77]. Most data is collected in a set of

tion of the programmers. The validation program
reporting forms that are either filled out period- finds additional errors that can be quickly cor-
ically by all project personnel (e.g., a weekly rected. Correct forms are written to tape for
Component Status report) or whenever certain events transmittal to the University.
occur (e.g., a Change Report Form when an error is
corrected). This report describes the activities This activity led to a second task--a revision of
of the laboratory for the last twelve months, the forms. We observed that the programmers pre-

ferred a "checklist" format rather than a set of
The initial goal of the Software Engineering Lab- "fill in the blanks," even if more checks were
oratory was the collection of valid data and the needed than blanks. Many of the early forms were
entering of this data into a computerized data studied for typical responses and the forms were
base. During the last twelve months, this process modified appropriately. In addition, some seem-
has been implemented and the analysis of the data ingly useful information, but based upon data that
has begun. This report will be divided into four was generally not being given by the programmers,
sections briefly outlining each of the major ac- has been deleted in order to lessen the apparent
tivities undertaken by the laboratory: (1) Data overhead perceived by the programmers partici-
Collection Activities, (2) Resource Estimation, paring in the laboratory.
(3) Error Analysis, and (4) Program Complexity.

Another activity now under way is the movement of
Data Collection Activities the data base to the PDP 11/hO at NASA. Due to

the smaller size of the PDP 11/45 at the Univer-
The first task of the laboratory was to implement sity and the relative inefficiency of INGRES for
a data base that accurately reflected software de- large-scale applications, operation of the Uni-
velopment. The INGRES data base system operating versity setup is starting to become cumbersome.
under the UNIX operating system on a PDP 11/45 The PDP 11/70 should eliminate that problem.

Summarizing the activities of the past year, sev-
*Research -:upported in part by grant NSG-5123 from eral schemes were developed and we now have
NASA/Goddard Space Flight Center to the evolved a semi-automatic process for entering
University of Maryland. data into a data base:

163

i. Forms are turned in and manually scanned for this curve differ from actual resource consumption.
errors. The conclusion seems to be that the Rayleigh curve

2. The forms are entered into a validation pro- is only a crude approximation to reasonable con-
,ram at NASA. If errors are present, the form is sumption. (See [Basili and Zelkowitz 78a] for more
returned for corrections. If correct, it is details.)
written to tape.

3. The tape of correct forms is brought to the In order to test this further, several other
University for data base entry, curves were correlated with the actual data (para-

bola, trapezoid and straight line) [Mapp 78]. All
(ny January 1979, it is expected that the corrected had as good correlations to the data as the Ray-
tape will also be entered into a data base on leigh curve. Thus, the Rayleigh curve was no
NASA's PDP 11. At that time the decision will be better, and in many cases worse, than other
made as to whether to keep the University data estimates.
base or to interface with NASA's.)

In addition, Norden's original assumptions involve

Resource Estimation a linear growth in the rate of understanding a
project [Norden 70]. In reality, this learning

One early research activity was the investigation curve slows as personnel become familiar with a
of resource utilization. The Rayleigh curve has project. Based upon this assumption, [Parr 78]
been studied for larger projects and the applica- has developed a curve based upon the hyperbolic
bility of this theory in the smaller NASA environ- secant that may be more applicable in the NASA
ment was investigated. environment. This and other theories related to

the Rayleigh curve are now being studied.
Cumulative costs for large-scale software develop-
ment has been shown to approximate the curve The evaluation performed in [Basili and Zelkowitz

S - -a t) where K is the total project 78a] has led to a set of procedures that can be
K(1 used to monitor project development in a produc-

cost and t is the elapsed time since project in- tion environment. While the full set of seven
itialization [Putnam 76]. This is usually repre- reporting forms may prove to be too much over-
sented in its differential form called a Rayleigh head, a set of procedures using only three forms

curve: (2 K a t . -a t 2), and represents the can be used to monitor project progress with
rate of consuming resources. This curve looks reasonable accuracy [Basili and Zelkowitz 78b]:
somewhat like a normal distribution with a more ex- the General Project Summary, submitted at each
tended tail (see Figure 2). project milestone; the Resource Summary, giving

hours worked by all project personnel by week; and
In our NASA environment, from the general project the Change Report Form giving all changes to the
summary form, these numbers are obtained: system.

1. Ke, total estimated cost of the project in Error Analysis
hours of effort. Counting overhead items, like
typing support and librarians, total costs (K) are The principal motivations for studying errors and
usually 112% of Ke. changes have been to discover the effects of

2. Yd, the maximal effort per week. From this, various factors on the number and kinds of errors
d a be developed, a = (2 made in system developments, and to find ways to

constant a can edeve= d . evaluate proposed software development methodolo-
3. T, the estimated date of acceptance testing. gies.

Io NASA's environment this usually occurs after
88% of total expenses are consumed. To study this, a number of tasks have been per-

formed. First, to assure that all of the forms
Since the Rayleigh curve has two parameters (K and have been filled out in a consistent manner, a
a) and the general project summary gives three glossary of terms has been defined and made avail-
(ie, Yd and t), the applicability of the Ray- able to the participants of the monitored software
leigh c6rve toa this environment can be checked by development process. Second, a set of questions
using two of these estimates to predict the third, of interest were detined which were used to mo-

ti te both the form content and organize the
Figure I represents this analysis for two projects. kinds of data required In the form of interviews
Figure I.A presents the estimated data from the with the participants. Questions of interest
general project summary. In Figure 1.1, t was include the following:
estimated from K and y and ywas estimated

Fom K and t . Fnally: Figure 1.C presents the What are good ways of characterizing error-
actualedata. a proneness of software development? Measures such

as the total number of errors, errors per line of
Figure 2 plots some of this for these two projects. code, errors per man hour, errors per component
While Figure 1 shows that K and y are accurate type where type refers to the kind of sub-applica-
predictors of t (e.g., an estimare of 60 weeks tion or level of complexitv, number of fixes per
for project A, 'Only a two-week error from the project phase per component are hoing considered.
;;Ctual 62 weeks, and a much better estimate than We are also looking it relationshlps hi'twe.en the
the Initial estimate of 46 weeks), the plots of various types oh error classification.

- - M1111111

164

What are the major sources of errors? One possible
characterization is by analyzing whether errors information to answer the basic questions of Inter-

are traceable back to requirements, specification, terest, and possible 'second order metrics" based

interface definition or intra-component design, or on the intuition gathered from the current studies.

clerical activities or the hardware environment.

hat are appropriate ways of measuring ease of Program Complexity
software change? Data is being collected on effort There is much interest in measures of complexity
per change in terms of time, the number of fixes of the software product, the valid aspects of the
required for the change, and the number of product that effect human understanding. There is
errors generated by the change. an interest in quantitatively measuring these

aspects so that characteristics of programs that
waat is the effect of continual change on a soft- make them more or less error prone, harder to
ware product? Data is gathered on the cost of modify, or more difficult to develop can be better
change as a function of time and cumulative understood and recognized. Measures proposed in
changes. the literature may even be used to characterize

What type of changes cause most of the errors? differences in the development process.

This may be very environment dependent or it may Work has been done at the University of Maryland
give some insights into improved organizations to analyze and compare the development of soft-
and methodologies for software development, ware in an experimental environment to determine

the effects of development methodologies [Basili
What is the effect of personnel organization on 'and Reiter 78]. The experiment involved the use
errors? Data is being collected on correctness of three different types of development: Single
as measured by errors per number of people work- individuals using ad hoc techniques, groups of
ing on a piece of software. Again, this should three using ad hoc techniques, and groups of three
shed some insights on the way to organize tasks using a structured programming methodology. Re-
within a given environment. sults have shown that there is some distinction

in the product using very rough measures of the
What types of changes predominate during software program characteristics, such as number of if
development? Knowing this should aid in design- statements, number of globals, etc. Based on this
ing software to anticipate the possible changes. study, the organized group lies somewhere between

what are the most prevalent error detection and the ad hoc group and the single individual. How-

correction techniques? Knowing what is used ever, with regard to process measures, the

most often and what works and at what cost will organized group has shown less computer runs in
help in determining what should be used for what all phases of development and less errors (using

a measure of errors called program changes which
is algorithmically computable based on different

What is the effect of various constraints, such as versions of the software product [lunsmore 78]).

time and memory on error distributions? Under- It is planned to implement the promising measures
standing this will permit better evaluation of the from this research on programs from the NASA en-
tradeoffs in software management. vironment. Versions of the systems developed at

These are but some of the types of questions the NASA have been saved and will be compared for
Ter analysis bt ses of the tSoftwae quEinseg program changes and checked against the resulterror analysis phases of the Software Engineering from the Error Report in the Change Report Forms.

Laboratory is studying. The data for most of Further work is being done in automating and com-
these questions is gathered from the Change Report paring various complexity measures. These include
Form, with additional information from the other several of our own measures (prime program
forms and follow-up interviews to validate the hierarchy, data bindings, etc.) as well as some
accuracy of the information and gather additional of the measures that have appeared in the litera-
data not easily collected in a form format, ture [Halstead 77; McCabe 76].

Based upon the above questions, several "first References

order metrics" have been defined and
software has

been developed to gather information from the [Basili and Zelkowitz 78a) Basili, V. and
data base. Data is being gathered at a slow pace M. Zelkowitz, Analyzing Medium-Scale Software
partly because of the current backlog of Change Development, Third'International Conference on
Report Forms which have not yet been entered into Software Engineering, Atlanta, Georgia, May 1978,
the data base, and partly because of the refine-
ment of the form as mentioned in the section on pp. 116-123.
Data Collection Activities. Early analyses on a [Basill and Zelkowitz 78hi Basili, V. and
couple of projects, however, do indicate that the M. Zelkowitz, Measuring Software Development
distribution of errors during development appears Characteristics In the local Environment, Journal
to approximate the Rayleigh curve as found by[Scic an Wlvrto 71.of Computers and Structures, 1978. 5 pp.(t
[Schick and Wolverton 78]. appear).

Continued effort will deal with the gathering of

165

[Basili and Zelkowitz 77] Basili, V. and PROJECT PROJECT
M. Zelkowitz, The Software Engineering Labora- A B
tory: Objectives, ACM SIGCPR Annual Conference, A. Initial Estimates from
Washington, D. C., August 1977, pp. 256-269. General Project Summary

[Basili and Reiter 78] Basili, V. and Reiter, R. Ka, Resources needed (hrs) 14,213 12,997
An Experimental Comparison of Software Develop- Ta, Time to completion (wks) 46 41
ment Approaches, University of Maryland, Computer Yd, Maximum resources/wk (hrs) 350 320
Science Technical Report TR-688, August 1978.

B. Completion Estimates Using
[Dunsmore 77] Dunsmore, H. E. and Gannon, J. D., Rayleigh Curve
Experimental Investigation of Programming Com-
plexity, Proceedings of the 16th Annual Tech- K, Resources needed (hrs) 16,151 14,770

nical Symposium: Systems and Software Est. Yd with Ta fixed (hrs) 440 456
Washington, D. C. (June 77) pp. 117-125. Est. Ta with Yd fixed (hrs) 58 58

[Halstead 77] Halstead, M., Elements of Software C. Actual Project Data

Science, Elsevier Computer Science Library 77.
K, Resources needed (hrs) 17,741 16,543

[McCabe 76] McCabe, Thomas J., A Complexity Yd, Maximum resources (hrs) 371 462
Measure, Transactions on Software Engineering, Ta, Completion time (wks) 62 54
Dec. 76, Vol. SE-2, No. 4, pp. 308-320.

Ta, Estimated using actual

[Mapp] Mapp, T., Applicability of the Rayleigh values of K and Yd (wks) 60 43

Curve to the SEL Environment, University of
Maryland, Department of Computer Science, Figure 1: Estimating Ta and Yd from General

Scholarly Paper, May 1978. Project Summary Data

[Norden 70] Norden, P., Use Tools for Project
Management, Management of Production, M. K.
Starr (ed), Penguin Books, Baltimore, Maryland,.""

1970, pp. 71-101.

[Parr 78] Parr, F., An Alternative to the Rayleigh

Curve Model for Software Development Effort • :.

(submitted for publication).

[Putnam 76] Putnam, L., A Macro-estimating
Methodology for Software Development, IEEE
Computer Society Compcon, Washington, D. C.,
September 1976, pp. 138-143. .

[Schick and Wolverton 78] Schick, George J. and
Wolverton, Ray W., An Analysis of Competing .
Software Reliability Models, IEEE Transactions
on Software Engineering, Vol. SE-4, No. 2, ...

March 1978, pp. 104-120. -- --

[Stonebraker 76] Stonebraker, M., E. Wong and
P. Kreps, The Design and Implementation of
INGRES, ACM Transactions on Data Base Systems 1,

No. 3, 1976, pp. 189-222. * - Estimating curve with Yd (maximum resources) fixed

+ - Estimating-curve with Ta (completion date) fixed

- Actual data

Figure 2. Estimated resource expenditures curve

LIFE CYCLE MANAGEMENT MEASUREMENT
METRICS-MEASURES & EMPIRICAL STUDIES

"Some Distinctions Between the Psychological and
Computational Complexity of Software"

Bill Curtis, Sylvia B. Sheppard, M.A. Borst
Phil Milliman, Tom Love

General Electric Company

"Software Science--A Progress Report"
Maurice H. Halstead, Purdue University

"Cost Effectiveness in Software Effor Analysis Systems"
Maryann Herndon, San Diego State University

"Statistical Techniques for Comparison of

Computer Performance"
Sandra A. Mamrak, The Ohio State University

"Software Complexity Measurement"
Thomas J. McCabe, Independent Consultant

"The Utility of Software Quality Metrics in
Large-Scale Software Systems Developments"
James A. McCall, General Electric Company

"Reliability Evaluation and Management for
an Entire Software Life Cycle"

Isao Miyamoto, Nippon Electric Company, LTD/Japan

"Analysis of Software Error Model Predictions and

Questions of Data Availability"
Alan N. Sukert, Rome Air Development Center

166

SOME DISTINCTIONS BETWEEN THE PSYCHOLOGICAL AND COMPUTATIONAL COMPLEXITY OF SOFTWARE

Bill Curtis, Sylvia B. Sheppard, M.A. Borst, Phil Milliman, and Tom Love

Information Systems Programs

General Electric Company
Arlington, Virginia

ABSTRACT classical graph theory cyclomatic number which rep-
resents the number of regions in a graph, or in the

Three software complexity metrics (number of current usage, the number of linearly independent
statements, McCabe's v(G), and Halstead's E) were control paths comprising a program. Simply stated,
compared to performance on two software maintenance McCabe's metric counts the number of basic control
tasks. In an experiment on understanding, length paths. When combined these paths will enerate
and v(G) correlated with the percent of statements every possible path through the program. Since Mc-
correctly recalled. In an experiment on modifica- Cabe attempted to relate his metric to the diffi-
tion, most significant correlations were obtained culty of testing a program, it was presented as a
with metrics computed on modified rather than un- measure of computational complexity. Nevertheless,
modified code. All three metrics correlated with the number of basic control paths indexed by Mc-
time to complete the modification, while only Cabe's metric may also be an important aspect of
length and v(G) correlated with the accuracy of the psychological complexity, since additional control
modification. Relationships in both experiments paths could make a program more difficult to under-
occurred in iistructured rather than structured stand.
code, and ii. the second experiment where no com-
ments appeared in the code. The metrics were also Since the reasons for assessing them are com-
most predictive of performance for inexperienced pletely different, psychological and computational

programmers. Thus, these metrics appeared to assess complexity should be clearly distinguished when in-
psychologial complexity only where programming terpreting software complexity metrics. Computa-
practices did not provide assistance in understand- tional complexity refers to characteristics of al-
ing the code. In both experiments all three metrics gorithms or programs which make their proof of cor-
were highly intercorrelated. rectness difficult, lengthy, or impossible (Rabin,

1977). For example, as the number of distinct con-

trol paths through a program increases, the compu-
INTRODUCTION tational complexity also increases. Psychological

complexity refers to characteristics of software
In 1972, Halstead first published his theory which make it difficult to understand and work

of software physics (renamed software science) with. Thus, computational complexity assesse-s the
stating that algorithms have measurable character- difficulty of verifying an algorithm's correctness,

istics analogous to physical laws. According to while psychological complexity assesses human per-
Halstead (1972a, 1972b, 1975, 1977) the amount of formance on programming tasks. No simple relation-
effort required to generate a program can be cal- ship between computational and psychological com-
culated from simple counts of distinct operators plexity is expected. For example, a program with
and operands and the total frequencies of operators many control paths may no, be psychologically com-
and operands. From these four quantities Halstead plex, since any regularity to the program's branch-
.alelats the number of mental comparisons re- Ing process may simplify its understanding.
quired to generate a program. alstead's metrics
attempt to represent the psychological complexity The research reported here was designed to in-
of software. Correlations often greater than .90 vestigate factors influencing two tasks In s-,ftw-re
(Fitzsimmons & Love, 1978) have been reported he- maintenance: understanding an existing program and
tween Halstead's metrics and such measures of pro- implementing modifications to it. These fators
grammer perfo-mance as the number of bugs in a incluided structured programming techniques, cogni-
program (Cornell & Halstead, 1976; Fitzsimmons, tive programming aids, and program complexity.
1978; Funami & Halstead, 1975), programming time While the first two factors were manipulated exper-

(Gordon & Halstead, 1975; Halstead, 1976), and the imentally, no systematic attempt was made to manip-
quality of programs (Bulut & Halstead, 1974; Els- ulate program complexity. This paper reports data
hoff, 1976; Halstead, 1973). from two experiments which investigated how s, veral

complexity metrics were related to the understand-
More recently McCabe (1976) developed a defin- ing (Experiment 1) and modifying, (Experiment 2) of

ition of complexity based on the decision structure computer programs.
of a program. McCabe's complexity metric is the

EXPERIMENT 1 characters, while the most mnemonic names were cho-

sen from names suggested by a group of programmers
Method not participating in the study.

Participants. Thirty-six programmers were Experimental design. In order to control for
tested in five different General Electric loca- individual differences in performance, a within-
tions. The participants had working knowledge of subject, 34 fractional factorial design was employ-
FORTRAN and averaged 6.8 years of professional pro- ed (Hahn & Shapiro, 1966; Kirk, 1968). Three types
gramming experience (SD = 5.8). Most participants of control flow were defined for each of nine pro-
came from an engineering background, while several grams, and each version was presented in three
were experienced in statistical or non-numerical levels of variable nemonicity for a total of 81
software, experimental programs.

Procedure. Each participant was presented a Halstead's E. Halstead's effort metric (E)
packet of materials with written instruct ons on was computed precisely from a program (based on Ot-
the experimental tasks. As a preliminary ex. rcise, tenstein, 1976) whose input was the source code
all participants were presented the same short r"I._ listings of the 27 programs representing nine dis-
TRAN program and a brief description of its pur- tinct programs at each of three levels of struc-
pose. They studied this program for 10 minutes and ture. The computational formula was:
were then given 5 minutes to reconstruct a func-
tional equivalent from memory. This introductory 1 N (N + N) log2 (n + n2
program diminished learning effects prior to the E = 1 2 , 2 2

experimental phase. 2

where, I = number of unique operators
Following the initial exercise, participants

were presented sequentially with three separ!ie n = number of unique operands
programs comprising their experimental tasks. They 2

were allowed 25 minutes to study each program and N If= total frequency of operators
could make notes or draw flowcharts. At the end of
the study period, the original program and all N = total frequency of operands
scrap paper were collected. Each participant was 2

then given 20 minutes to reconstruct a functionally McCabe's v(G). McCabe's metric is the classi-
equivalent program from memory on a blank sheet of cal graph-theory cyclomatic numbet defined as:
paper, but was not required to reproduce the com-
ment section. A break of 15 minutes occurred be- v(G) = # edges - # nodes + 2 (# connected
fore the last program was presented. components).

Programs. Three general classes of programs McCabe presents two simpler methods of calculating
were used: engineering, statistical, and non-numer- v(G). For structured programs v(G) equals the num-
ical. Three programs were employed from each class bet of predicate nodes plus 1. Values of v(C) can
with lengths varying from 36 to 57 statements, also be computed from a planar graph of the control
These nine programs were selected from among many flow by counting the number of regions.

solicited from programmers at several locations and
were considered representative of programs actually Length. The length of the program was comput-
encountered by practicing programmers. All experi- ed as the total number of FORTRAN statements ex-
mental programs were executed using appropriate cluding comments.
test data.

Dependent variable. The criterion for scoring
Complexity of control flow. Three control programs was the functional correctness of each

flow structures were defined for each program. separately reconstructed statement. Variable names
Structured control flow adhered very strictly to and statement numbers which differed from those in
the tenets of structured programming (Dijkstra, the original program were counted as correct when
1972). When the rules for structured programming used consistently. Control structures could be
are applied rigorously,awkward constructions may different from the original program so long as the
occur in standard FORTRAN, such as DO loops with statement performed the same function. The score
dummy indices (Tenny, 1974). In a second version on each experimental task was the percent of state-
these awkward constructions were largely eliminated ments correctly recalled.
with a more naturally structured control flow.
these conventions included multiple returns, back- Results
ward exits from DO loops, and judiciously used
backward GO TO's. In the unstructured version of Experimental manipulations. A complete report
each program the control flow was not straightfor- of the experimental results is presented in Shep-
ward. Expanded DO loops, arithmetic IF's, and un- pard, Borst, Curtis, and Love (in press). Briefly,
restricted use of GO TO's were allowed, a mean of 50% of the statements were correctly re-

called across all programs and experimental condi-
Variable name mnemonicity. Three levels of tions. Substantial differences in performance

nemonicity for variable names were manipulated in- were observed across the nine programs. Perfor-
dependently of program structure. The least mne- mance on naturally structured programs was superior
monic names consisted of one or two alphanumeric to that on unstructured programs. Differen(us In

168

the mnemonicity of the variable names did not af- Experimental design. In order to control for
fect performance. individual differences in performance, a within-

subject, 34 factorial design was employed. Three
Software complexity metrics. Since different of the nine programs from Experiment 1 were used.

levels of variable mnemonicity neither affected Three types of control flow were defined for each
performance, nor caused any change in the value of of the three programs using the same approach des-
the complexity metrics for a particular program, cribed previously. Each of these nine versions was
the data reported in this section were aggregated presented with one of three types of commenting.
over the three levels of variable mnemonicity on Modifications at three different levels of diffi-
each of the nine programs at each of the three culty were developed for each program generating a
levels of structure. Thus, each of the 27 data total of 81 experimental programs. Participants
points represented the average of at least three were randomly assigned into the experimental de-
performance scores. sign.

Halstead's E and McCabe's v(G) were highly Comments. Three levels of commenting were

correlated (r = .84, p < .001), while length dis- tested in this experiment: global, in-line, and
played only moderate relationships with these two none. Global comments provided an overview of the

metrics. The correlations between performance and function of the program and identified the primary

the complexity metrics were all negative, indicat- variables. In-line comments were interspersed

ing that fewer lines were recalled as the level of throughout the program and described the specific
complexity represented by these three metrics in- functions of small sections of code.

creased. Performance was moderately related to
length (r = -. 53, p < .01) and McCabe's v(G) (r Modifications. Three types of modifications

-.35, p < .05), but not to Halstead's E. were selected for each program as typical changes a

programmer might be expected to implement. The

The complexity of the control flow moderated level of difficulty for seven of the nine modifica-

the relationship between performance and the com- tions increased as more lines had to be added to
plexity metrics. That is, while insignificant cor- the original code, and the hardest modification for

relations were observed when the control flow was each program required the most additional lines.

structured or naturally structured, this was not

the case for unstructured code. Correlations with Dependent variables. The dependent variables

performance of .55 (p < .001) and .45 (p < .01) for were the correctness of the modification and the

v(C) and E were observed on unstructured pro- time taken by the participant to complete the task.
grams. The individual steps necessary for the correct im-

plementation of each requested modification were

A similar moderating effect was observed for delineated in advance and assigned equal weights.
a programmer's extent of professional experience. That is, prototypes of each program with each mod-
For programmers with three or less years of pro- ification correctly implemented were established as

fessional experience, correlations of -. 47 (p < the criteria against which participants' work would

.001) for McCabe's v((;) and -. 35 (p < .05) for Hal- be compared. A percentage score representing the
stead's E were observed. Insignificant correla- functional correctness of each modification was

tions were observed for programmers with more than computed 1y comparing a participant's changes with

three years experience, the prototype version. All values for the complex-

ity metrics computed on the modified programs were
EXPERIMENT 2 computed on the prototypes with correct implementa-

tions rather than from code generated by the parti-
Method cipants. The time to implement a modification was

timed to the nearest minute using an electronic

Participants. As in the previous experiment, timer.

the sample for this experiment consisted of 36 pro-

fessional programmers from three General Electric Results
locations. The participants averaged 5.9 years of
professional programming experience (SD = 4.1), had Experimental manipulations. A complete report

a working knowledge of FORTRAN, and none had parti- of the results for the manipulations in this exper-
cipated in the previous experiment. iment appears in Sheppard, Borst, Curtis, and Love

(in press). Briefly, across all experimental con-

Procedure. Generally, the procedures employed ditions an average accuracy score of 62% was recei-
in this experiment were identical to those used in ved on the modifications (SD = 31%). The 108 accu-

Experiment I. In a preliminary exercise, all par- racy scores ranged from five scores of 0% to 24

ticipants were asked to modify the same short FOR- scores of 100% and were negatively skewed. The av-
TRAN program. Following this initial exercise, crage time to complete the modification was 17.9
participants were presented in turn with the three minutes (SD = 11.4), ranging from 2 to 59 minutes

programs comprising their experimental tasks. One with a positive skew. Accuracy and time were un-

modification was requested for each program and was correlated.

described on a sheet accompanying the program list-

ing. Participants were allowed to work at their On two of the three programs studied, the ac-

own pace, taking as much time as needed to imple- curacy of the modification was found to be modestly

ment the modification. affected by both the difficulty of the modification
and the use of structured programming techniques.

169

More accurate modifications were made to strictly count of operators and operands or basic control
structured rather than unstructured programs. The paths. Many programs have characteristics unasses-
more difficult modifications took longer to imple- sod by these metrics which may heavily influence
ment, although structured programming techniques psychological complexity. For instance, the use of
had no effect on time to completion. Neither time structured coding techniques or comments reduces
nor accuracy was affected by the type of comment- the cognitive load on a programmer in ways unasses-
ing. sad by the complexity metrics. Further, complexity

metrics may not be capturing the most important
Software complexity metrics. Correlations constructs for predicting the performance of exper-

among Halstead's and McCabe's metrics and length ienced programmers who may either be conceptualiz-
were quite high on both the original and modified ing programs at a level other than that of opera-
programs (.88 < r < .97, p < .001). Correlations tots, operands, and basic control paths, or who can
between the three complexity metrics and the two fit the program into a schema similar to one they
dependent variables were larger in the aggregated have had previous experience with.
than in the unaggregated data. Most significant
correlations with performance were ouserved for Even though moderating effects were observed
metrics computed on the modified programs. All in these data, stronger relationships with per-
three metrics were moderately correlated with time formance may have been masked by the effects of
to complete the modification (.38 < r < .46, :S differences between individuals and programs which
.05), while only length and McCabe's v(G) were sig- were enhanced by limitations in the economical mul-
nificantly related to accuracy (-.34 < r <-.36, p < tifactor designs employed. Uniformity in the sizes
.05). of programs studied may also have limited these re-

sults. The range of values assumed by complexity
Similar to results in Experiment 1, the rela- metrics computed on these programs may have been

tionship between time to completion and Halstead's insufficient for correlation,] tests to detect the
E was moderated by the complexity of the control strong relationships reported in other verifies-
flow. The correlations for Halstead's E with per- tions of these theories (Edwards, 19/6). Studies
formance went from .08 in the structured code, to reporting higher correlations for Halstead's F us-
.28 (p < .05) in naturally structured code, to .38 ually involved a broader range of program sizes
(p < .05) in unstructured code. No such moderat- (Fitzsimmons & Love, 1978, Halstead, 1977).

ing effects were observed for McCabe's v(G).
The number of statements in the code proved to

Correlations between the complexity metrics be as good a predictor of performance on the exper-
and performance measures were also moderated by the imental tasks as the metrics developed by halsteal
type of commenting. Significant correlations on and McCabe. These results did not concur with
modified programs were observed when no comments those of Gordon (1977) who, in reanalyzing Love's
were included in the program for both accuracy (1977) data on programmer understanding, found Hal-
(-.34 < r < -. 35, p < .05) and time (.44 < r < .47, stead's metric better thn the nmmber oi statements
< .01). for predicting the percentage of statements recall-

ed. Correlations among the metrics suggested sub-
'Tie amount of professional programming exper- stantial overlap in the constructs they quantified

ience profoundly moderated the relationships obser- on the modular-sized programs studied. Had these
vel between the complexity metrics and time to com- correlations been smaller, the predictive worth of
pletion, although no such effect was observed for the metrics could have been better compared. The
accuracy. Significant correlations (.52 < r < .55, number of statements may not be as hiihily corr.la-
1£ < .001) were observed for programmers with three ted with the Halstead and McCabe metrics for pr-
11 less years of professional experience, while no grams of substantially greater length, for other
correlations above .20 were observed for program- types of applications, or for programs written in
mers with more than three years experience, languages other than FORTRAN.

CONCLUSIONS A characteristic distinguishing psychol,:i '

from computational complexity is that the psy, ho-
The two experiments comprising this study pro- logical complexity of software involves an interi-

duced empirical evidence that software complexity tion between program characteristics and individual
metrics were related to the difficulty programmers differences, such as programming experiencia
esperienced in understanding and modifying pro- Chrysler (1978) demonstrated the value of thles ex-
ygrams. Deeper analysis indicated, however, that perientis l variables in predicting tile time to com-
the Halstead and McCabe metrics predicted program- plete a programming task. Individual differences
mers' performance only on certain programs. Pro- should not be overlooked in predicting human per-
grams on which significant prediction was observed formance, especially when the performance rtio
were characterf !d by the absence of programming comparing good to bad programmers his been reported
practices such as structured coding or commenting as high as 28 to I (grant & Sackman, 1967).
which provide assistance to a programmer attempt-
ing to understand the cn.ode. These complexity met- The complexity metrics provided sim, so ircvs
rtics were more predictive of the performance of of Information about proiram differences, but there
'ess eYperienced programmers, were other fa,'tors within the programs unassessted

hy these metrics which may have influenced psvho-
Assessment of the psychological complexity of logical complexity. Neither halstead's nor Mc-

software appears to require more than a simple Cabe's metrics consider the level of nestinlg within

170

various constructions. The complexity of tnree DO Edwards, A.L. An introduction to linear regression
loops in succession was rated identically to three and correlation. San Francisco: Freeman, 1976.
nested DO loops, although nesting may influence
complexity. If the ability of complexity metrics Elshoff, J.L. Measuring commercial PL/I programs
to predict human performance on programming tasks using Hlastead's criteria. SIGPLAN Notices, 1976,
is to be improved, then metrics must be designed 11, 38-46.
which measure phenomena related by psychological
principles to memory, information processing, and Fitzsimmons, A.B. Relating the presence of soft-
problem solving. Thus, while the number of control ware errors to the theory of software science. In
paths may be critical in computational complexity, A.I. Wasserman & R.H. Sprague (Eds.) Proceedings
variations in the arrangement and connections among of the eleventh Hawaii international conference
these control paths may exert profound influence on of systems sciences (Vol. 1). San Francisco:
the difficulty of understanding the functioning of Western Periodicals, 1978.
the program. Future work in the area of psycholog-
ical complexity should identify a set of cognitive Fitzsimmons, A.B. & Love, L.T. A review and evalu-
psychological principles relevant to programming ation of software science. ACM Computing Sur-
tasks. Metrics could then be developed which as- veys, 1978, 10, 3-18.
sess the qualities of software which are most
closely related to these principles. Such an exer- Funumi, Y., & Halstead, M.H. A software physics
cise might not only lead to improved metrics for analysis of Akiyama's debugging data (Tech. Rep.
assessing psychological complexity, but may also CSD-TR-144). West Lafayette, IN: Purdue Univer-
identify some programming practices which could sity, Computer Science Department, May 1975.
lead to simplified, more easily maintained soft-
ware. Gordon, R.D. A measure of mental effort related to

program clarity. Unpublished doctoral disserta-
tion. Purdue University, 1977.

ACKNOWLEDGEMENTS
Grant, E. E., & Sackman, H. An exploratory inves-

The authors gratefully acknowledge the assist- tigation of programmer performance under on-line
ance of Ann Fitzsimmons in implementing this re- and off-line conditions. IEEE Transactions on
search and of Dr. Gerald Hahn in developing the ex- Human Factors in Electronics, 1967, HFE-8, 33-48.
perimental design. Careful reviews of this report
by Dr. John O'Hare and Thomas McCabe have resulted Hahn, G. J., & Shapiro, S. S. A catalogue and
in substantial improvements. The support and en- computer program for the design and analysis of
couragement of Lawrence Putnam and Gerald Dwyer has orthogonal symmetric and asymmetric fractional
also been greatly appreciated. factorial experiments (Tech. Rep. 66-C-165).

Schenectady, NY: General Electric, May 1966.
This study was supported by the Office of

Naval Research, Engineering Psychology Programs Halstead, M. H. Natural laws controlling algo-
(Contract #NO0014-77-C-0158). The views expressed rithm structure. SIGPLAN Notices, 1972, 7,
in this paper, however, are not necessarily those 2. (a)
of the Office of Naval Research or the Department
of Defense. Halstead, M. H. A theoretical relationship

between mental work and machine language pro-
Expanded reports of each experiment can be ob- gramming. (Tech. Rep. CSD-TR-67). West Lafav-

rained by writing the senior author at: GE/ISP, ette. IN: Purdue University, Computer Science
Suite 200; 1755 Jefferson Davis Hwy.; Arlington, VA Department, May 1972. (b)
22202.

Halstead, M. H. An experimental determination of
REFERENCES the "purity" of a trivial algorithm. (Tech. Rep.

CSD-TR-73). West Lafayette, IN: Purdue Univer-
Bulut, N., & Halstead, M.H. Impurities found in sity, Computer Science Department, 1973.

algorithm implementation (Tech. Rep. CSD-TR-111).
West Lafayette, IN: Purdue University, Computer Halstead, M. H. Software physics: Basic princi-
Science Department, 1974. plea. (Tech. Rep. RJ-1582). Yorktown Heights,

NY: IBM, 1975.
Chrysler, E. Some basic determinants of computer

programming productivity. Communications of the Halstead, M. H. Using the methodology of natural
ACM, 1978, 21, 471-483. science to understand software (Tech. Rep.

CSD-TR-190). West Lafayette, IN: Purdue Univer-
Cornell, L., & Halstead, M.H. Predicting the num- sity, Computer Science Department, 1976.

ber of bugs expected in a program module (CSD-TR-
205). West Lafayette, IN: Purdue University, Com- Halstead, M. H. Elements of software science.
purer Science Department, 1976. New York: Else ler North-Holland, 1977.

Dijkstra, E.W. Notes on structured programming. In Kirk, R. E. Experimental design procedures for

O.J. Dahl, E.W. Dijkstra, & C.A.R. Hoare (Eds.) the behavioral sciences. San Francisco:

Structured programming. New York: Academic Press, Freeman, 1968.

1972.

171

Love, L. T. Relating individual differences in
computer programming performance to human infor-
mation processing abilities. Unpublished doc-
toral dissertation, University of Washington,
1977.

McCabe, T. J. A complexity measure. IEEE Trans-
actions on Software Engineering, 1976, SE-2,
308-320.

Ottenstein, K. J. A program to count operators
and operands for ANSI-FORTRAN modules. (Tech.
Rep. CSD-TR-196). West Lafayette, IN: Purdue
University, Computer Science Department, June
1976.

Rabin, M. 0. Complexity of computations. Commu-
nications of the ACM, 1977, 20, 625-633.

Sheppard, S. B., Borst, M. A., Curtis, B., &
Love, T. Factors influencing the understand-
ability and modifiability of computer programs.
Human Factors, in press.

Tenny, T. Structurea programming in FORTRAN.
Datamation, 1974, 20, 110-115.

Gordon, R.D., & Halstead, M.H. An Experiment
comparing FORTRAN programming times with the
software physics hypothesis (Teach. Rep. CSD-
TR-167). West Lafayette, IN: Purdue Univ.,
Computer Science Dept., 1975.

172

A Review of Software Measurement Studies
at General Motors Research Laboratories

James L. Elshoff

Computer Science Department

General Motors Research Laboratories
Warren, Michigan 48090

The software measurement studies determined to be extremely complex with

began at General Motors Research in 1973 respect to both control flow and data
with the development of a PL/I scanner, flow. The PL/I programming language was

The scanner was written to make one pass used poorly; however, only a limited
over the code to be scanned and to look subset of PL/I was necessary to perform
ahead one token. The scanner was the computing that was required.
modularized so that various counters could
easily be inserted into it to record the A corporate training program was
occurrence of particular constructs in the introduced as a result of the analysis
PL/I programs to be scanned. The recorded that had been performed. Programmers and
data could then be studied by using a analysts were introduced to structured
small interactive query system that design and structured programming
existed on the same computer as the techniques. After some programmers had
scanner. worked with the new techniques for awhile,

a new set of pregrams that had been
In 1974 a large volume of PL/I code developed afte. the training period were

was collected from five representative collected and analyzed. The analysis of
General Motors data processing centers. A the new programs 1 3 showed that their
subset of 120 of the collected programs profiles reflected the training to which

that comprised over 100,000 PL/I source the programmers had been exposed.
statements were used for a controlled Although no specific study was performed
empirical study. The significant data to determine the overall effectiveness of
from this study are published [1) with the new design and programming techniques
only minor interpretation in order that with respect to the software lifc cycle,
anyone may study the data from a project case studies indicated reductions
particular point of view. The data of over 25% in development time could be
indicate how the PL/I language was being achieved. Also, case studies show that
used in the early 1970's. An averge maintenance of a program olce it has been
compilable unit for example was made up of committed to production can be reduced by
a single procedure containing 853 PL/I as much as a factor of eight.
statements. Control structures for those
programs were very complex. Data handling One of the major problems that
and expressions were found to be surfaced during the analysis of the first

relatively simple but voluminous, set of programs and again during the
training program was that modularization

The data that had been collected were seemed foreign to the analysts and
then analyzed [2) with respect to good programmers. In fact, modularization ;'as
programming practices. Most of these viewed as detrimental in all aspects of
practices fall into the class described the software life cycle due to the
generically as structured programming. perceived overhead of CALL/PETURN
The reason for using these practices lies mechanisms and the cost of packaging
in common sense and just a few published programs in small individually compilable
experiences even though the practices are units. A concerted effort was made to
widely touted. The program units were break down this barrier against
observed to be too large since an average modularization in any form. One form of
program of 853 PL/7 statements contained this work was a model of compilation costs
386 identifiers, 1087 constants, 910 14) that indicates that compilation costs
expressions, 319 flow of control are miniimized when programs are packaged
statements (including 100 GO TO in relatively small units.
statements), and 50 statement labels. The
programs were found to be extremely The data that was gathered as part of
difficult to read. The programs were the program analysis phase of our work has

u-m

7 AD-AlGA 212 INTERNATIONAL bUSINES SERVES NC ASHIN TON DC F/B 9/2

SOFTWARE LIFE CYCLE NANAGEMENT WORKSO (2ND) AUGUST 21-22. 197--ETC(U)

AUG 78 V R BASIL). E H EL Y OAAK70-78-D-0030

UNCLASSIFIED 78CH1390GVCN

33EhEhEE

173

also been used in some experiments with The work in measurement and empirical
Halstead's software science [S. The data studies has been temporarily suspended

show that the relationship between during the past year while a new PL/I

measured length and estimated length of scanner has been implemented. The new

programs holds for programs extending over scanner builds an abstract tree

several magnitudes in length [61. On the representation of a program which will
other hand, the conjecture that the second permit much more extensive measurement
set of analyzed programs would be more capability than has been available in the
consistent with respect to the length past. It is hoped that the next set of
relationship than the first set of programs that are collected for study will
programs was not upheld. have some historical data of their

development available to provide a basis

A better understanding of both for comparison as we continue our program
software science and GM's PL/I programs analysis studies.
resulted from applying the theory of
software science to the programs. This
work also resulted in a joint effort with
Halstead and Gordon which led to two
significant extensions of software science
17). A global level of an algorithm which
depends only upon a language and its use . "A numerical profile of commercial
was derived. This development led to a
predictive measure for estimating the time PL/I programs," Software-Practice and

required to write a program. The global Experience, Vol. 6, o. 4, Oct.-Nov,

level developed in this work is of 1976, pp. 505-526.

interest since it ranked an assembler
language, FORTRAN, ALGOL 58, poorly used 2. --, "An analysis of some commercial

PL/I, well written P1/I, and English in PL/I programs," IEEE Trans. Software

the same order with respect to the level Engr., Vol. SE-2, June 1976,

of algorithm expression that one pp.113-120.

intuitively ranks them. 3. --, "The influence of structured

Eventhough software science is based programming on PL/I program profiles,"

on counting operators and operands used to IEEE Trans. Software Engr., Vol. SE-3,

express an algorithm, the exact Sept. 1977, pp.364-368.

classification of a language token as anoperator or an operand is not always 4. --, "On optimal module size with
clear. This classfication problem was respect to compilation cost," COMPSAC

clea. Tis lassfictio prolemwas'77 Proceedings, IEEE Computer
studied in an experiment which applied Society , IEEE Co N
different counting methods to a fixed set Society, IEEE Catalog No. 77CH1291-4C,
of PL/I programs [81. Some properties of Chicago, Illinois, Nov. 1977, pp.

the algorithms were found to vary 547-553.

significantly depending on the countingmehodtha w~ usd; the prperies5. Halstead, M. H., Elements of software
method that was used; other properties sine leirHrhHladremained stable. Although no one counting science, Elsevier North-Holland,

methd wa shwn t bebest th resltsElsevier Computer Science Library, New:

method was shown to be best, the results York, New York, 1977, 127 p.
indicate the importance of the counting
method to the overall measurement of an 6 "Measuring commercial PL/1
algorithm. Moreover, the results provide programs using Halstead's criteria,"
a reminder of how sensitive some of the SIGPLAN Notices, Vol. 11, No. 5, May
measurements are and of how careful 1976, pp. 38-46.

researchers must be when drawing
conclusions from software scienceconcusiens. f7. Halstead, M. H., --, and Gordon, R.
measurements. D., "On software physics and GM's PL/I

in a recent study [9), several models programs," GMR-2175, General Motors
Research Laboratories, Warren,

of operator distributions are compared
with the measured distributions found in Michigan 48090, 26 p.
some PL/I programs. The theory embodies
models of operator distributions that have 8. --, "An investigation into the effects

been proposed by Bayer, Zipf, and Zweben. of the counting method used on

Two of the three models, one by Zipf and software physics measurements,"

one by Zweben, are shown to correlate SIGPLAN Notices, Vol. 13, No. 2, Feb.

highly with the measured distributions. 1978, pp. 30-45.

Two variations of the Zipf model are then 9. -- , "A study of the structural
formulated and tested with good results.
Also, the relationship between the method composition of PL/I programs." SIGPLANNotices, Vol. 13, No. 6, June 1978,

of counting operators and the models is Notices,
investigated. pp. 2937.

...Il II [. ..

174

SOFTWARE SCIENCE -- A PROGRESS REPORT

M. H. Halstead

Computer Science Department, Purdue University

Lafayette, Indiana 47907

Introduction ficant extension "On Lines of Code and Pro-

At the Airlie House Workshop on Soft- grammer Productivity" (WAF77b] to their

ware Life Cycle Management a year ago, a earlier paper on "A Method of Programming

few of us were just becoming aware of the Measurement and Estimation" IWAF77). In

possibility of applying the experimental the extension Walston approximated the

and theoretical results of software software science transcendental equations

science to the real world problems of com- relating programming time to lines of

puter systems management. In this paper, source code by the expression

a year later, I will attempt to review for P = 1.27 T2/3 (1)

this workshop some of the more important where P is in thousands of source state-

new findings which other software scien- ments and T is in man-months. He then
tists have reported, discuss their signif- performed a least-squares fit to the 60

icance, and, if time permits, consider an large systems in their IBM data base and

area in which further work might be quite obtained
profitable. poial .P = 0.925 To* "

(2)
Even though all of the work I will

report on is rather intimately interrelated, While the degree of agreement between

it can conveniently be divided into a the theory (Equation(I)) and experience

number of areas in which important progress (Equation(2)) is, in Walston's words, in-

has been described in sufficient detail terestingly close, it takes a bit of pon-

that I can summarize it for you. Special dering to realize the full significance

attention will be given to the new results of his finding. First, we must realize

in the areas of programming rates, precis- that his data base covers a range of pro-

ion and accuracy of relations, error rates, gramming projects of from less than 12

and operator frequency distributions. For man-months to a maximum of 11,758 man-

anyone unfamiliar with the basic software months. This suggests that the effect of

metrics and equations, either the mono- job size on programming rates, not just

graph (HAL77] or the paper in last year's total programming times, may be well de-

proceedings (HAL77b] provide adequate back- fined by the data, as represented by

ground, and the notation used there will equation (2).

be followed. Consequently, we can use either one

Programming Rates of these equations to obtain the number

of source lines per programmer per month
In the December 1977 issue of the IBM for any given job size, where the job size

Systems Journal Claude Waiston and C. P. can be expressed either in total lines of
Felix presented a terse but highly signif- source code or in total implementation

175

time. Using lines of source code, we have average fraction of total statements which

Joo Size Source Lines per Man-Month are executable (1/2); and 4) the average

(LOSC) Theory Observation language level (X=1.34). Consequently, if

any one of these parameters is changed,
10,000 453 3the effect on programming rates is calcu-

100,000 143 124 lable.

1,000,000 46 46
Precision and Accuracy

and using total man-months gives
The question of how closely we should

Job Size Source Lines per Man-Month expect the various equations of software

(Man-Months) Theory Observation science to reflect individual programs has

12 555 439 been, in principle, unanswered. Most of

120 257 220 us working in the field have been sub-

1,200 120 110 scribing to the view that software science

12,000 55 55 is a bit like actuarial statistics. In

Expressed in this way, it is apparent that field, for example, one might find

that we now nave, quantitatively, a the- that men at age 65 have a life expectancy

oretical, experimentally confirmed expla- of 14 years. But this in no way guaran-
tees that any particular 65 year old man

nation for not just average programming

times, but the decrease in hourly pro- will not be killed by a truck in the next

duction rates accompanying increases in hour. In other words, the accuracy of the

project size. actuarial prediction is completely ade-

When one remembers that the effort quate, but its precision is so poor that

relation was originally tested, and act- for any individual case it may be useless.
Now if we examine a recent study of

ually derived, with programming tasks re-

quiring from 5 to 90 minutes, its exten- 34 General Motors PL/I programs by Elshoff

sion to real world projects of this mag- [ELS78] we see that the correlation be-

nitude suggests that the most important tween the observed lengths of programs and

variables have been identified, and their the lengths calculated from the vocabulary

role, on the average or statistically -length equation is a highly significant

speaking, is now understood. 0.988, and the error of the mean is only

From the engineering point of view 6.5%, according to his Table 4. But if

there is little to choose between equation we examine the errors for individual pro-

(1) and equation (2), because they both grams in that table, we see that they

give about the same answers. But from the average 13.1 per cent on an absolute basis.

scientific point of view, the difference For most engineering or management purposes,

is fundamental. This is true because the frequently concerned with differences

theoretical equation was derived from among programs ranging from 500 to 50,000

first principles. Its coefficients depend statements, given a 13 per cent error in

only upon four measurable quantities: 1) an individual program is not too serious.

th-, rate at which the brain can make But from the scientific point of view

elementary mental discriminations, or such errors raise an interesting and per-

Stroud Number (18 e.m.d./sec.); 2) the haps important question. If we considered

average number of operators and operands only one of Elshoff's 34 programs, would

in an executable statement (7.5); 3) the its deviation from the vocabulary-length

relation be attributable merely to the way

176

in which it had been written, or might it Property Original Version

instead depend upon the task it was de- Predicted Observed

signed to perform? If it is the later, nj Unique Operators 9.27 9.89±1.81

then the relation is indeed akin to r2 Unique Operands 8.84 8.72±1.18

actuarial statistics, devoid of causes, n Vocabulary 18.11 18.61±1.69
but if it is the former then it results N Length 57.57 61.83±7.72

only from "experimental error". This V 211 261±39

question could be resolved if each of the L Level .045 .0585±.0146

34 different programs was independently V* Potential Volume 15.51 14.95!3.02

rewritten ten or twenty times. Then, if I 3.84±.76
nl2 I/O Parameters 4 38±7

the mean values for each of the 34 tasks

showed the same average deviation, that Property Extended Version

deviation should be attributed to some un- Predicted Observed

identified characteristic of the task. On n1 Unique Operators 10.59 10.61±1.75

the other hand, if the process of averag- Unique Operands 13.11 12.44±2.83

ing over many independent implementations n Vocabulary 23.70 23.06±2.98

of each task reduced the deviation, then N Length 84.53 95.89±20.95

we would be safe in concluding that the V Volume 386 436±108

length-vocabulary relation is completely L Level .0509 .0481±.0117

independent of the task. If, in addition, V* Potential Volume 19.65 20.77±6.85

it could be shown that such an averaging n I/O Parameters 5 5.21±1.58

procedure yields increasingly close agree-

ment with other software relationships, In considering the agreement between

then the "actuarial statistics" analogy the values predicted by theory and those

would have to be abandoned, observed, Woodfield notes that in no case

While the cost of performing the ex- was the discrepancy as great as six-tenths

periment described above is prohibitive, a of the standard deviation, and that the

smaller but much more comprehensive study average error of the 16 predictions was

recently completed by Woodfield [WO0781 only 1.4 per cent.

appears to settle the question in the In light of these results it seems

affirmative. safe to assume, for small programs at
Woodfield reports upon two small least, that deviations between observation

related programs, each written independ- and theory can be attributed to sampling

ently by 18 Fortran programmers. The first
error, rather than to unidentified charac-

program had four input/output parameters, teristics of the programs themselves.

or n2= 4. The second program merely in-

creased the problem dimensions by one, or Error Rates

ni=5. The remarkable thing about Wood- Linda Ottenstein has recently com-

field's study is that in both cases he was pleted a comprehensive study [0TT781 re-

able to predict not only the observed lating programming error rates to the soft-

length, but seven other characteristics of ware parameters. While she analyzes a

the programs from nothing but the two number of sets of data, including studies

values, language lel 1 2=4,5. The of her own, perhaps the most significant
results taken from his Table 2 are as finding concerns the data of Lipow and

follows. Thayer [LIT77]. She derives the predicted

177

number of "Validation" bugs, iv as 25 functional groupings above, and also in

Bv = V*/LEO = V/3000 (3) terms of some 250 individual procedures

[THA76] making up these 25 functional
where V is the volume, V* is the potential groups, Ottenstein was able to test facet

volume, L is the implementation level and of equation (3). According to its deri-

the constant E0 =3000 is obtained directly vation, while the number of erruLz mlst

from the psychological concept of chunking. increase with the size of a program, the

Applied to the functionally grouped data rate at which they are made must decrease

of [LIT77], this gives, according to her as the programmer gains familiarity with

Table 2.3. the program on which he is working. Con-

Routine Delivered Bugs sequently, if we considered two subproce-

Observed Predicted dures of equal volumes, we should expect

different error rates depending upon the
Bv Bv order in which they were written. For

Al 26 45 the total function, only the total volume

A2 67 63 would be involved, but for a sub-function,

A3 54 62 its implementation order should contribute

A4 41 47 to its variance. The theory therefore

A5 79 121 predicts that the correlation between

Bi 105 66 Bv and Bv for the 250 sub-procedures

B2 95 78 should not be near one, but near the

Cl 239 221 square root of one-half or 0.71. Per-

C2 69 105 forming the analysis, she found a valae of

C3 55 33 r=0.756, rather than the r=0.962 for the

C4 27 20 functionally grouped units.

CS 50 70 This gives further credence to her

C6 48 52 derived expressions for the average time

DI 87 180 required to find and correct one "valid-

D2 13 20 ation bug",

El 144 136

Fl 4 10 Tv LS 0 (4)

F2 8 24
and for tne average number of requiredF3 8 28
runs per day per programmer during valid-F4 30 32
ation

F5 30 58 Rv/day = 48SL (5)

G1 238 241
where L is the implementation level and S

G2 22 29
is the Stroud Number.

H1 1 7

H2 466 406 Operator Frequency Distributions

Coef. of Corr. r 0.962 A number of research workers have

been intrigued by the uniform patternThe agreement between observation and observed whenever the frequency of occur-
theory is such that all but 7 per cent rence of individual operators in a
(1-r2) of the variance is explained by it. program are rank-ordered, and a series of
But because the error or "problem report"

data in [LIT771 were available both in the

i-

178

to derive a mathematical expression for and others, but not for Cobol.

the observed frequency distribution. One

of several motivations for this work lies

in the possibility that the results would References

be useful in resolving ambiguities in the

classification of operators in new JELS78] Elshoff, James L., "An Inves-

languages. tigation into the Effects of

In a recently submitted paper, Counting Methods Used on Soft-

Zweben [ZHE78] has demonstrated that the ware Science Measurements", ACM

relationship obeys the equation SIGPLAN Notices, Vol. 13, No. 2,

i = Xolog 2 (Xo/X i) (6) February 1978, pp. 30-45.

where i is the rank-order, starting from [HAL77] Halstead, M. H., Elements of

zero for the most frequently occurring Software Science, Elsevier North

operator, and Holland, New York, 1977.

Xi = log2 fi (7) [HAL77b] Halstead, M. H., "Potential

where fi is the number of occurrences of Impacts of Software Science on

the i th most frequent operator. Since Software Life Cycle Management",

the total number of operators N, must be in Software Phenomenology, U.S.

given by Army Institute for Research in

Management Information and

ni-I Computer Science, August 1977,

N i = fi (8) pp. 385-400.
i=0

it is possible to solve for the expected [LIT77] Lipow, M., and T. A. Thayer,

number of occurrences fi for any value of "Prediction of Software Failures

i, given >nly n, and N1 . For 34 PL/I Proceedings of the 1977 Annual

programs, they report a mean correlation Reliability and Maintainability

coefficient of 0.989, and a line of re- Symposium, January 18-20, 1977.

gression with a slune of 0.984 and an in- [0TT78] Ottenstein, Linda M., "Predict-

tercept of -0.28. ing Parameters of the Software

Missing Data Validation Effort", Ph.D. Thesis,
Purdue University, August 1978.

There are still more areas in software

science needing study than there are fTHA75] Thayer, T. A., "Understanding

presently being inveztigated. Basic issues, Software through Empirical Re-

such as the role of modularity, application liability Analysis", AFIPS Con-

to top-down design, and to learning thenry ference Proceedings, Vol. 44,

may yet require years of effort. But in 1975, pp 335-341.

considering the specific field of Life

Cycle Management, it is easy to note that 1WAF77] Walston, C. E. and C. P. Felix,

one simple tool is missing. No one has "A Method of Programming Measure-

yet implemented a software parameter ment and Estimation", IBM

analyzer for Cobol. Consequently, we have Systems Journal, Vol. 16, No. 1,

mean values, and variances, of the pp. 54-73.

language levels for Fortran, PL/I, Algol [WAF77b] Walston, C. E. and C.P. Felix,

179

"on Lines of Code and Programm-

Productivity," IBM Systems

Journal, Vol. 16, No. 4, 1977,

pp. 421-423.

iWOO781 Woodfield, Scott, "An Experiment

on Unit Increase in Algorithm

Complexity", Submitted

[ZHE781 Zweben, S. H., M. H. Halstead

and James L. Elshoff, "The Fre-

quency Distribution of Operators

in PL/I Programs" Submitted.

L-I

180

COST EFFECTIVENESS IN SOFTWARE ERROR ANALYSIS SYSTEMS

Mary Anne Herndon

Herndon Science & Software
San Diego, CA

ABSTRACT project. However, the accounting of total expendi-
tures is usually not performed until test comple-

Software error analysis systems must have the tion. A daily or session accounting of expendi-
capability of functioning as both a cost effective tures provides for more effective monitoring of the
and valuable managerial tool. To achieve this capa- progress of validation than a final accounting.
bility, the design of the data collection must re- In designing the types of information for monitor-
flect the individual project's managerial concerns, ing the apportionment of expenditures, the follow-
and the resulting empirical analysis should be ing items are quite useful in current and predic-
available for long term access, tlive measures of expenditure utilization.

1. A cost categorization for errors, such as pro-
INTRODUCTION posed by Herndon and Keenan (4).,

The implementation of software error analysis 2. A tallying of cost types of errors detected
systems has resulted in enormous expenditures for during each test session.
data collection and analysis. Although many re-
searchers have reported empirical analyses of these From this minimal amount of data, managers are
data (1,2,3), few important managerial problems able to obtain intuitive information on the cost
have been addressed and solved. Researchers have effectiveness and error detection effectiveness of
analyzed the data to provide descriptors, such as the validation procedure.
estimates of the mean time between failures, and,
to a limited extent, error classifications. Ef- The second managerial concern centers around
fective project management, however, demands more providing information describing the dynamics of
information than, for example, an estimate of mean the functioning system during validation. Compli-
time between failures, or a tally of the number of cated software systems, such as exemplified by
register misassignments. As yet, neither the ex- real time systems, need to be understood in terms
pense of collecting software error data nor the of module interactions. Although modern program
personnel difficulties encountered have been justi- design philosophy attempts to minimize the extent
fied by the usefulness of the information obtained, such interactions, in the design of actual systems

this is not always achieved. Consequently, errors
There is a variety of ways to collect immense that appear are not always localized to the module

amounts of different types of software error data. of occurrence. This type of information provides
In response to key project managerial demands, how- useful diagnostic information in the event of ser-
ever, relevant data are currently being ignored. ious operational problems. In one empirical study
In order to make software error analysis systems of a real time system (5), a seemingly innocous
both a valuable and cost effective managerial tool, module contained an inordinate number of high im-
attention needs to be focused on the relevant pact errors. The following minimal set of data is
issues in project management, suggested to obtain system interaction profiles.

DATA COLLECTION DESIGN 1. Error impact classification categories, such
as those proposed by Herndon, et al.

The selection of data to be collected during
validation should be tailored to the management 2. Profiles of each system component for each

goals of each project. Key management personnel, categcry.
as well as in-house reliability personnel, should
be consulted in the selection of data items. Al- 3. Calculation of an average impact for each
though each project requires different types of module.
information, still, there are managerial concerns
that are crucial to all types of software projects. Observations from this empirical analysis can
The first concern centers around the utilization of indicate potentially troublesome or unstable area
expenditures allocated for validation. It is a of the system. For example, if one particular
well known fact that a large portion of total pro- module seems to be associated with a large number
ject expenditures go into formal validation, even of high impact failures, redesign of the module
as much as 50% to 75%, depending upon the type of might be advantageous before the product is

181

released. With the proper identification of un-
stable modules, appropriate fault tolerant mea-
sures can be used for compensation.

RECOMMENDATIONS

In surveying the current state of the art of
software error analysis systems, two glaring de-
ficiencies are evident. The first deficiency con-
cerns the choice of data that is selected for col-
lection. Software error analysis systems must
function as a cost effective managerial tool in
order to compensate for the overhead that is as-
sociated with data collection. As of now, there
is a distinct impression of quantity of data items
as opposed to relevancy. Cost effectiveness in
software error analysis systems can only be
achieved by the proper design of a minimal set of
information to answer specific managerial ques-
tions.

The second deficiency concerns the short-
lived usefulness and availability of the data
after the product is released. The empirical
analysis of the reliability data that is obtained
during validation provides an initial system
reliability profile. As the product ages and
requires alterations, the information gained from
validation is crucial for effective field manage-
ment.

REFERENCES

(1) J.D. Musa, A theory of software reliability
and its application," IEEE Trans. on Soft-
ware Engineering, Vol. SE-1, No. 3, September
1975, pp. 312-327.

(2) M. Shooman, "Structural models for software
reliability prediction," in Proc. 2nd Inter-
national Conference on Software Engineering,
San Francisco, Oct. 1976, pp. 268-280.

(3) H. Hecht, "Reliabiiity Measurement During
Software Engineering, San Francisco, Oct.
1976, pp. 268-280.

(4) M.A. Herndon and J.A. Lane, "Analysis of
Software Errors for Cost Factors," Proceed-
ings of 1977 AIAA Computers of Aerospace
Conference, Los Anges, CA, pp. 455-459

(5) M.A. Herndon and A.P. Keenan, "Analysis of
Error Remediation Expenditures During Valid-
ation," Proceedings of the 3rd International
Conference on Software Engineering, Atlanta,
GA, 1978, pp. 202-206.

182

STATISTICAL TECHNIQUES FOR COMPARISON OF COMPUTER PERFORMANCE

Sandra A. Mamrak
The Ohio State University

Columbus, Ohio 43210

Abstract This sequence is composed of three phases. The
application of MN criteria in phase I is easily

The comparison of computer performance requires managed, since each alternative either does or
a methodology designed to lead to the selection does not have the required characteristic.
of the best computer and to provide control of Phase II involves the application of '4 criteria.
the probability of having made a correct choice. Experiments are conducted on the alternatives
Methodologies often used in classical statisical which survived Phase I and the performance of each
designs lead to regression analyses of the data, is documented. In general, for each MM criterion,
employing either analysis of variance or curve- measurements are gathered from every system and a
fitting techniques. The questions that can be decision is made as to whether or not the criteria
answered using such methodologies are of the are satisfied. Failure to satisfy a single MM
type "Is the performance of several alternative criterion results in an alterntiave's elimination.
systems the same (are the distributions of per- At the conclusion of Phase II, the number of
formance measurements identical from a statisi- alternatives is usually reduced from that of Phase
cal point of view)?" or "How does one particular 1.
system performance parameter depend upon the
other system parameters?". In most computer Finally, determination of the best alternative is
comparison efforts, however, these questions are made in Phase I1. This stage is separated into
not appropriate. The question of real interest two parts, Phase IlIA for the application of ON
is: "Which system is the best?" or "How do the criteria and stage IIIB for the application of
systems rank from best to worst?" It is pre- DM criteria. For DM criteria, data are collected
cisely for this type of problem that statisti- from each alternative being evaluated and com-
cal ranking and selection procedures were pared. On the basis of relative performance with
developed. These procedures are applied in the respect to the ON and DM criteria, an alternative
selection methodology outlined below, is selected as the best. In both Phases I and

IIIB, comparison requires collecting and analyz-
ing relevant performance measurements for the

A Computer Selection Model various computer alternatives under consideration:
in Phase I to select those satisfying certain

A model of the way computer selection is typically mandatory performance standards and in Phase IIIB,
done focuses the main components of the computer to select the best remaining one.
selection process and provides a framework for
this paper. The model is presented in Figure I A selection process requires a methodology to lead
and discussed in the next two sections. to the selection of better than standard alterna-

tives and selection of the best alternative and to
Classification of Performance Criteria simultaneously provide control of the probability

of having made correct choices. This work focuses
In choosing the best alternative from several its attention on the specification of a methodology
alternatives, criteria must be defined which for those problems which occur in Phase II and
state what is meant by best. These criteria can IIIB, thereby leading to a more comprehensive,
be categorized in two ways. They are either scientific methodology for computer selection.
measurable or nonmeasurable, and they are either
mandatory or desirable, Thus, the selection A Computer Selection Methodo1oo9y
criteria can be classified as Mandatory Non-
measurable (MN), Mandatory Measurable (MM), A good experimental design is a critical component
Desirable Nonmeasurable (ON), and Desirable of any comparison methodology, since the efficiency
Measurable (DM). Examples of each type of of the data collection process and the validity of
criterion are provided in Table 1. the data analysis depend upon it. Ranking and

selection procedures (see {KIE75I or [GIB77] for a
Appjlication of Performance Criteria survey of these techniques) provide an appropriate

experimental design for computer selection. These
Figure I illustrates a sequence in which the procedures can be roughly characterized as follow-
classes of selection criteria are applied in the ing three lines of development: one set of pro-
process of choosing the best alternative system. cedures ranks systems by comparing sample means,

I83I

Figure 1. Model of the Computer Selection Process

ALL ALTERNATIVE COMPUTER SYSTEMS

GoOO
PHASE I MANDATORY

PHASE IIEASURABLE

ITERIA

Il A N A Y I I

PHASE III MEASURABLE

MEASURABLE MESRALE,:,,_ 0

BEST SYSTEM 6

Table 1. EXAMPLE OF PERFORMANCE CRITERIA

Type Example

Mandatory 1. The system must be fully delivered and operational
Nonmeasurable no later than September 1, 1979.

2. Timesharing service must include FORTRAN, Basic, Lisp,
SNOBOL and editinR facilities.

Iandatory 1. The mean-time-to-failure for a specific one month

Measurable period must be greater than 4 hours.

2. 95% of all trivial command response times must be

less than I second.

Desirable 1. It is desirable that the system include Pascal and

Nonmeasurable COBOL facilities.

2. It is desired that the system cost less than $100000.

Desirable 1. It is desired that the system provide as fast a mean

Measurable turnaround time as possible for the benchmark run.

2. It is desired that response time means as well as
variations be small.- __ _

one by comparing sample percentiles and one by The percentile and proportion approaches to com-
comparing sample proportions. In all three cases, parison are very similar in that they both rely
the procedures specify the number of data points on a single comparison criterion's cumulative
which must be collected from each system in a distribution. The difference lies in whether an
comparison study in order to guarantee that the analyst prespecifies a desired percentage value
probability of a correct selection be greater than or a desired comparison criterion value. In a
or equal to a predetermined minimum value, comparison based on percentiles, a percentage is

predetermined. Results are produced of the form:
The use of a mean, percentile or proportion
statistic for system comparison is an analyst "if computer service A has 90% of its response
choice based on considerations about the objectives times less than 3 seconds, and computer service B
of a comparison experiment, the statistical has 90% of it, response times less than 3.5
properties of the data and the statistical require- seconds, then rank A as being better than B,"
ments of the data analysis techniques. Means are
often used for comparisons when criteria like where "90" is prespecified by the analyst. In a
script turnaround time or script cost are of comparison based on proportions, a value of a
interest. For comparison criteria such as comparison criterion is prespecified. Results
response time, which tend to have exponential-like are produced of the form:
distributions, the mean is not as meaningful a
statistic. Percentagpg or proportions are more "if computer service A has 80% of its response
appropriate, times less than 3 seconds, and computer service B

has 87% of its response times less than 3 seconds,

~J

; 185

then rank B as being better than A," AME78b Amer, P. D. and S. A. Mamrak,
"Statistical Methods in Computer Per-

where "3 seconds" is prespecified by the analyst. formance Evaluation: A Binomial
Approach to the Comparison Problem,"

Selection of Systems Better than a Standard Proceedings Computer Science and
Statistics: Eleventh Annual Symposium on

In the case of selecting those computer systems the Interface, Institute of Statistics,
which are better than a standard (Phase II in North Carolina State University, March
Figure 1), an experimental design is required 1978, pp. 314-319.
which leads to an analysis of the data that
answers the question "Which services are at MAM77 Mamrak, S. A. and P. A. DeRuyter,
least as good as a prespecified standard?". The "Statistical Methods for Comparison of

ranking and selection techniques which have been Computer Services," Computer, Vol. 10,
developed for selection better than a standard No. 11, November 1977, pp. 32-39.

are not appropriate for computer selection when
performance indices are being compared at their MAM78 Mamrak, S. A. and P. D. Amer, "A Method-
mean or percentile values. The procedures ology for the Selection of a Computer
make assumptions about the data that are clearly Service," NBS Special Publication, in
not justified in computer selection experiments preparation, 1978.

(such as equal variance for all systems). But,
in appropriate procedure does exist when pro-
jortions are the basis for a selection (see
IMAM78]).

Selection of the Best System

In the case of selecting the best computer
service (Phase III in Figure 1), an experimental
design is required which leads to an analysis of
the data that answers the question "Which system
is the best one?". In this case ranking and
selection techniques exist for choosing systems
based on mean or percentile values (see [AME78b]
and IMAM77]), and also based on proportions (see
[AME78a) and [MAM78]).

A Feasibility Study

A large scale feasibility case study is underway
to evaluate the time and cost required to apply
the computer service comparison methodology in an
actual procurement environment. Four heterogeneous,
remote-access, time sharing services are being
compared. The specifications for the case study
and the experimental results are presented in
[MAM78].

References

AME78a Amer, P. D., "Experimental Design in Com-
puter Comparison and Selection," Ph.D.
Dissertation, Dept. of Computer and Infor-
mation Science, The Ohio State University,
December 1978.

186

SOFTWARE COMPLEXITY MEASUREMENT

Thomas J. McCabe

Independent Consultant
5380 Mad River Lane

Columbia, Maryland 21044

This paper describes a graph-theoretic G within n vertices, e edges and p con-
software complexity measure, and describes nected components is v(G)=e-n+p.
how it can be applied to limit the logic in
a module during the design stage so it is Theorem I
testable and maintainable during later
stages. In a strongly connected graph G, the

cyclomatic number is equal to the maximum
number of linearly independent circuits.The process of software construction

relies in a fundamental sense on the siz- The application to computer programs
ing of subsystems and modules that are will be made as follows. Given a program
separately designed, coded and tested. One associate with it a graph that has unique
concept very sorely needed is a way to mea- entry and exit nodes. Each node in the
sure and control software complexity at che graph corresponds to a block of statementsdesign stage in such a fashion that the where the flow is sequential and the arcs

modules are subsequently manageable, i.e., represent the program's branches taken
comprehensible, and also testable. The between blocks. This graph is classically
approach of this research is to develop a known as the control graph (see Ledyard
concrete, applicable, but yet mathematically (12]) and it is assumed that each node can
based measurement of software complexity. be reached by the entry node and each node
The measure presented in this paper has a can reach the exit.
mathematical basis in the sense that it is
not dependent on the application a module For e:dmple the control graph shown
is used for, the language used, or the pro- below has seven blocks (a) through (g),
gramming style--it measures purely the com- entry and exit nodes (a) and (g), and ten
plexity of internal logic of a module. The arcs.
measure presented is also immediately ap-
plicable because it is readily understood
by the programming community and it direc- a
tly mapps into a rigorous testing method-
ology and makes maintenance feasible.

The complexity measure decided upon
will limit the number of independent pathsb
in a program at the design stage so the
testing will be manageable during later
stages. One of the reasons for limiting
independent paths instead of limiting all
potential paths is the following dilemma:
"A relatively simple program can have an
arbitrary high number of paths." The ap-
proach taken here is to limit the number of
basic (or independent) paths that when taken
in combination will generate all paths.

Definition

One definition and one theorem from
graph theory will be needed to develop
these concepts. See Berge (1] for a refe- In order to apply Theorem 1 the graph
rence. must be strongly connected which means

that given two nodes (a) and (b) there
Definition 1 exists a path from (a) to (b) and a path

The cyclomatic number v(G) of a graph from (b) to (a). To satisfy this we ass-

187

ociate an additional edge with the graph Basis
which branches from the exit node (g) to
the entry node (a) as shown below. 1 2 3 4 5 6 7 8 9 10

bl 1 0 0 1 0 0 0 0 1 0

b2 1 0 1 2 0 0 0 0 1 0

G6\ b3 1 0 0 0 1 0 0 1 0 1

b b4 0 1 0 0 0 1 0 1 0 1

b5 0 1 0 0 0 0 1 0 0 1

e abcdefg 1 0 1 1 1 0 0 1 0 1

f / a(bc)g 1 0 2 3 0 0 0 0 1 0

/ The path abcbefg is represented as the
edge vector shown above and it is equal to

O b2 b3-bl where the addition is done com-
ponen -wise. In similar fashion the path

g -a(bc) g shown above is equal to 2*b2-bl.

It is important to notice that Theorem
I states that G has a basis set of size 5

Theorem 1 now applies and it states but it does not tell us which particular
that the maximal number of independent set of 5 paths to choose. For example,
circuits in G1 is 11-7+1 (G has only one the following set will also form a basis.
connected component so we set p equal to
1. The generalized case where p>l is used adfh
for design complexity, see McCabe 1111). abefg
The implication therefore is that there is adefg
a basis set of 5 independent paths that a(bc)3 befg
when taken in combination will generate all a(bc)4 g
paths. For example, the set of 5 paths
shown below form a basis. When this is applied to testing the

actual set of 5 paths used will be dictated
bl: abcg by the data conditions at the various de-
b2: a(bc)2 g cisions in the program but the theorem
b3: abefg guarantees that we will always be able to
b4: adefg find a set of 5.
b5: adfg

It should be emphasized that the
If one chooses any arbitrary path it process of adding the extra edge to G

should be equal to a linear combination of was only to make the graph strongly con-
the basis paths bl-b5. For example, the nected so Theorem 1 would apply. When
path jbcbefg is equal to b2+b3-bl, and path calculating the complexity of a program
a(bc) g equals 2*b2-bl. To see this it is or testing the program the extra edge is
necessary to number the edges in G and show not an issue but rather it is reflected
the basis as edqe ve ors. in the expression used for complexity.

The complexity v, therefore, is defined as
,f Z ve-n+2p since an extra edge is added for

each component. In each of the examples
discussed in this paper there is only one

b component so the complexity expression
simplifies to ve-n+2.

3 7 Examples

C Several actual control graphs and
their complexity will be presented in
order to illustrate these concepts. These
graphs came from FORTRAN programs on a
PDP-10. The programs were analyzed by an

fE. automated system FLOW that recognizes the
blocks and transitions in a FORTRAN

188

program, computes the complexity, and draws
the control graphs on a DATA DISC CRT. The
straight edges represent downward flow
(e.g. in the second graph below the line
between (2) and (3) means that (2) branches
to (3). The curved arcs represent backward
branches (e.g. in the second graph (5)
branches back to (2)).

v=5

v=3

v-5

V-.4

v-5

v-4

189

v-5 V'-9

v312V.6

The graphs above were presented in
order of increasing complexity in order to
suggest the relationship between the com-
plexity numbers and our intuitive notion
of the complexity of the graphs. One es-
sential ingredient in any testing method-
ology is to limit the program logic during
development in order that, first, the pro-
gram can be understood, and second, the
amount of testing required to verify the
logic is not overwhelming. These tech-

v- niques are being presented in The Institute
for Advanced Technology's Structured
Testing seminars and experience has consis-
tently shown that programs with high cyclo-
matic complexity are difficult to understand
and are rarely tested adequately. For
example, according to its author the pro-
gram below is 'one of my better programs'
and it required only 'about four or five
tests to verify'.

I

190

4. J.B. Goodenough and S.L. Gerhart,
"Toward a Theory of Test Data Selection",
Proc, 1975 International Conf. on Reli-
able Software, Los Angeles, California,

5. W.C. Hetzel, "Program Test Methods:
Prentice Hall, Inc.", Englewood Cliffs,

- New Jersey, 1973.

6. W.E. Howden, "Symbolic Testing
and the Dissect Symbolic Evaluation Sys-
tem", IEEE Trans. on Software Engineering
Vol. SE-3 No. 4, pp. 266-278, July 1977.

I7. J.C.King, "A New Approach to
Program Testing", Proc., 1975 Interna-
tional Conf. on Reliable Software, Los

v-47 Angeles, California, pp. 228-233.

8. D.E.Knuth, "Structured Program-
The physical size of the program this ming with GOTO Statements", Computing

graph is derived from is only 70 lines of Surveys, vol. 6, pp. 261-301, Dec. 1974.
source code. The physical size of several
of the twelve previous graphs exceeded 70 9. R. Kosaraju, "Analysis of
lines, and, in fact, only a weak correla- Structured Programs", J. Comput. Syst.
tion between physical size and complexity Scil, vol. 9, pp. 232-255, Dec 1974;
has been found. Because of this, the com- also Dep. Elec Eng., The Johns Hopkins
mon practice of attempting to limit com- Univ., Daltimore, Md., Tech. Rep. 72:11,
plexity by only controlling how many pages 1972.
a routine will occupy is entirely inade-
quate. This complexity measure has been 10. H. Legard and M. Marcotty, "A
used in production environments by limit- Generalogy of Control Structures"
ing the complexity of every module to 10. Commun. Assoc. Comput. Mach., Vol. 18,
Programmers have been required to calcul- pp. 629-639, Nov. 1975.
ate the complexity as they develop rou--
tines, and if it exceeds 10 they are 11. T.J. McCabe, "A Complexity
required to recognize and modularize sub- Measure", IEEE Trans. on Software Engi-
functions or re-design the software. The neering, Vol. SE-2 No. 4, pp. 308-320,
only situation where the limit of 10 seemd Dec 1976.
unreasonable and an exception was allowed
is in a large CASE statement where a num- 12. E.F. Miller, "Program Testing:
ber of independent blocks followed a sel- Art Meets Theory", Computer, Vol. 10,
ection function. No. 7, rnp. 42-51, July 1977.

See McCabe [i] for further simpli- 13. H.D. Mills, "Mathematical Founda-
fication of this research. In particular, tions for Structured Programming", Fed-
reference [ll contains results that eral System Division, IBM Corp, Gaithers-
allow a simplification of the computation burg, Md., FSC 72-6012, 1972.
of e-n+2p into more intuitive programming
terms. Reference [11] also comments on 14. J.F. Sullivan, "Measuring the
the induced testing methodology and it Complexity of Computer Software", MITRE
deals with the measurement of structured- Corporation Report, 1973.
ness of programming logic.

References

1. C. Berg, Graphs and Hypergraphs.
Amsterdam, The Netherlands: North Holland
1973.

2. B.W. Boehm, "Software and its
impact: A Quantitative Assessment",
Datamation, vol. 19, pp. 48-59, May 1973.

3. W.B. Cammack and H.J. Rogers,
"Improving the Programming Process", IBM
Tech. Rep, TR 00.2483, Oct. 1973.

191

THE UTILITY OF SOFTWARE QUALITY METRICS IN LARGE-SCALE
SOFTWARE SYSTEM DEVELOPMENTS

JAMES A. McCALL

GENERAL ELECTRIC COMPANY
SUNNYVALE, CALIFORNIA

ABSTRACT These factors are used by the program manager
to identify which qualities are important to the

This paper describes the utility of the pro- particular development effort. The desired level
gressive application of software quality metrics of quality can be quantitatively specified based
during large-scale software developments. The on the formal definitions established for these
concept of the software quality metrics was factors.
derived and validated during a study supported by
the Air Force Systems Command Electronic Systems Associated with each quality factor is a set
Command and Rome Air Development Center. Fur- of criteria. These criteria are attributes of the
ther extensions to the concepts are currently software and related documentation and their presence
being supported by Rome Air Development Center provides the quality or characteristics implied
and the U.S. Army Computer Systems Comand, by the factor. Software metrics have been estab-
AIRMICS. The metrics provide a disciplined, lished which provide quantitative measures of
engineering approach and life cycle management those attributes represented by the criteria. The
viewpoint to software quality assurance, metrics allow measurement of the progress toward

achieving desired levels of quality by their appli-
cation to intermediate products produced during a
large-scale software development.

INTRODUCTION
These concepts are extensions of some signif-

In a study for the Air Force, a program icant efforts by others in this field (Refs 2, 3,
management-oriented view of software quality was 4, 5, 6). We have added a program manager's ori-
established (Ref 1). The concept of quality entation, automated the collection of many of the
derived was based on three viewpoints with which metrics, and added quantification to measures
a program manager interacts with the end product: applied during the early phases of a development.
Its operation, revision, and transition. These The concept is based on the following facts
viewpoints correspond to the life cycle activities about quality:
of the product. The factors of software quality
associated with these three viewpoints are shown * Relative to the application
in figure 1. * Impacts the cost to develop

MAINTAINABILITY- PORTABILITY - WILL I BE ABLE TO USE IT

CAN I FIX IT? ON ANOTHER MACHINE?

FLEXIBILITY - REUSABILITY - WILL I BE ABLE TO REUSE
CAN I CHANGE IT? .. \ SOME OF THE SOFTWARE?

TESTABILITY - INTEROPERABILITY - WILL I BE ABLE TO
CAN I TEST IT? INTERFACE IT WITH

ANOTHER SYSTEM?

PRODUCT OPERATIONS

CORRECTNESS - DOES IT DO WHAT I WANT? EFFECIENCY - WILL IT RUN ON MY HARDWARE AS

RELIABILITY - DOES IT DO IT ACCURATELY ALL THE TIME? WELL AS IT CAN?

USABILITY - CAN I RUN IT? INTEGRITY - IS IT SECURE?

Figure 1. Factors in Software Quality

192

a Impacts the life cycle costs To evaluate the current degree or level of a
9 Should be customer-defined particular quality factor, i, for a module, j, the
* Has an associated cost to measure and particular column in the measurement matrix is

control. multiplied by the row in the coefficient matrix.
* Its measurement will change as the tech- The resultant value:

nologies of producing software change.
ci~ mi~ i 2 m, i n m~ r..

The fact that there is a trend toward more il mi, + ci1 2 m,,j ci,n nj ,j
structured disciplined programming techniques and is the current predicted rating of that module, j,
environments reinforces the concept of software for the quality factor, i.
quality metrics.

The purpose of this paper is to expand upon The coefficient matrix should be relatively sparce

the utility of the periodic application (measure- (many c,j = 0). Only subsets of the entire set

ment) of software quality metrics during large- of metrics applicable at any one time relate to

scale software developments, the criteria of any particular quality factor.

Multiplying the complete measurement matrix
AMEASUREMENT VEHICLE by the coefficient matrix results in a ratings

At appropriate times during a large-scale matrix. This matrix contains the current pre-
development, the application of the metrics dicted ratings of each module for each quality

results in a matrix of measurements. The metrics factor.

that have been established to date are at two
levels - system level and module level. The r11 r12
approach to be described is applicable to both m
levels and will be described in relationship to CM = Rd =
the module level metrics.

A n by k matrix of measurements results from rll'l r ll'k

the application of the metrics to the existing
products of the development (e.g., at design, the This approach represents the most formal
products might include review material, design approach to evaluating the quality of a product
specifications, test plans, etc.) where there are utilizing the software quality metrics. Because
k modules and n module level measurements appli- the coefficient matrix has been developed only
cable at this particular time. for a limited sample in a particular environment,

it is neither generally applicable nor has sta-
mll ml2 mlk tistical confidence in its values been achieved.

on Other valuable information is available fromm21 the measurement matrix with the current state of
the technique.

mnl mnk For example, the development of a particular

module can be assessed by examining the measures
For that particular time there is an associ- in the appropriate column of the measurement ma-

ated matrix of coefficients which represent the trix. How all the modules are doing with respect
results of linear multivariate regression analyses to any particular attribute can be assessed by
agains empirical data (past software develop- examining the appropriate row. Those particular
ments). These coefficients, when multiplied by modules with excessively low scores should be
the measurement matrix results in an evaluation investigated further. This form of sensitivity
(prediFtion) of the quality of the product based analysis is facilitated by the collection of the
on theidevelopment to date. This coefficient metric data in the form of the measurement matrix.
matrix, shown below, has n columns for the coeffi-
cients of the various metrics and 11 rows for the In examining a particular measure across all
11 quality factors. modules, consistently low scores may exist. This

situation identifies the need for a new standard
e 1, c12 .cln or stricter enforcement of existing standards to

m .improve the overall development effort.

d As experience is gained with the metrics and
data is accumulated, threshold values or industry

C lil' Cll,n acceptable limits may be established. In addition,

193

comparisons of metric values with trends in the We are currently assessing the value of these
occurrence of Design Problem Reports and Software concepts to the development and modification of
Problem Reports may prove to provide important support software. Also, we have just begun an
quality assurance insight, effort with Air Force and Army sponsorship (Ref 9)

to evaluate the metrics with respect to an Army
QUALITY CONTROL MECHANISM management information systems environment. The

experience gained from these efforts will provide
The periodic application of the metrics dur- an excellent basis for discerning the extent to

ing a large-scale software development can be which these concepts can provide additional quality
viewed as a control system. Snapshot assessments assurance discipline in large-scale software
are generated, feedback to program management is developments.
provided with respect to their specified require-
ments for quality, thereby allowing corrective In effect, these concepts are an attempt to
action, calibration, redirection, or the identifi- provide a mechanism for the specification of life
cation of areas to be emphasized later in the cycle-related quality goals and assessment of the
development (e.g., testing) to be enacted, progress toward those goals during the early

development phases. The quantification provided
These concepts are illustrated in figure 2. by the metrics affords more consistent evaluation

It is important to note, the metrics were estab- of the software quality. The overall goal in
lished with a goal of not requiring additional these efforts is to introduce a more disciplined,
products to be generated during the development engineering approach and a life cycle management
efforts. Thus, the metrics take advantage of viewpoint to software quality assurance.
current control mechanisms (delivered products
and reviews) normally utilized in a large soft- REFERENCES
ware development.

1. J. McCall, P. Richards, G. Walters,
EXPERIENCES "Factors in Software Quality, " three volumes,

NTIS AD-A049-014, AD-A049-015, AD-A049-055, Nov.
These concepts have been applied to software 1977. (Provided under contract F30602-76-C-0417
developed in a command and control system with the Air Force Systems Command Electronic
environment. This application resulted in the Systems Division and Rome Air Development Center.)
current coefficient matrices and sets of metrics
to be applied during a software development 2. B. Boehm, et al, Characteristics of Soft-
(Ref 7, 8). ware Quality, North Holland Publishing Co., NY, 1978.

SOFTWARE DEVELOPMENT PROCESS

ITERATION DUE TO IDENTIFICATION OF PROBLEMS

I iI !

REQUIREMENTS DEINPROGRAMMING OPRTIN
ANLSS DEIN& CHECKOUT TEST OPERATIONS

QUALITY METRICS APPLIED VIA CURRENT CONTROL MECHANISMS

RED. POR CDR V&ATS
REVIEW REVIEW ACPAC

PROJECT MANAGEMENT TEST

ONLY A SUBSET OF THE REVIEWS,
STATUS REPORTS, AND DOCUMENTS
PROVIDED DURING A SOFTWARE

LEGEND DEVELOPMENT ARE SHOWN.

REQ REVIEW REQUIREMENTS REVIEW

PDR PRELIMINARY DESIGN

REVIEW

CDR CRITICAL DESIGN REVIEW

V&ATS REVIEW VALIDATION AND ACCEP-
TANCE TEST SPECIFICA-
TION REVIEW

Figure 2. Progressive Application of Software Metrics

194

3. M. Fagan, "Design and Code Inspections Annual Reliability and Maintainability Conference,
and Process Control in the Development of Pro- January 1978.
grams," IBM TR 00.2763, June 1976.

8. J. McCall, P. Richards, G. Walters,
4. M. Halstead, Elements of Software "Metrics for Software Quality Evaluation and Pre-

Science, Elsevier Comput-erScience-Library, NY, diction," Proceedings of NASA/Goddard Second Sum-
1977. mer Engineering Worksh , September 1977.

9. Contract F30602-78-C-0216 with the Air
5. G. Myers, Reliable Software Through Force Systems Command Rome Air Development Center

Composite Design, Petro~e7iC-harter,1975. and U.S. Army Computer Systems Command, AIRMICS.

6. P. Richards, P. Chang, "Localization ADDRESS
of Variables: A measure of Complexity," GE
Technical Information Series, 76CIS07, Decem- James A. McCall
ber 1976. General Electric Company

450 Persian Drive
7. G. Walters, J. McCall, "The Development Sunnyvale, California 94086

of Metrics for Software R&M," 1978 Proceedings, (408) 734-4980

195

RELIABILITY EVALUATION AND MANAGEMENT FOR AN ENTIRE SOFTWARE LIFE CYCLE *

ISAO MIYAMOTO

NIPPON ELECTRIC COMPANY, LTD
Tokyo, JAPAN

Effective software reliability evalu- problems, and tries to give them some solu-
ation requires theories of software relia- tions or improvements. Proposed ideas are
bility which define and deal with software integrated as a reliability management-aid
reliability quantitatively, technologies system for an entire software life cycle.
for reliability data measurement and data Before we start a discussion, we must
analysis, techniques to estimate or predict note some basic terms in order to avoid
software reliability, and practical relia- confusion. Software error is a defect that
bility evaluation methodologies which causes a software failure. Software failure
effectively reflect characteristics of is an unacceptable departure of software
software nature. operation from software requirements.

This paper assesses the extents to Software reliability is defined as a proba-
which these requirements are currently met, bility of failure-free operation in a
and introduces some approaches toward an specified environment for a specified time.
effective software reliability evaluation. (This definition will be changed later.)
Introduced are the methodologies for soft- Reliability growth is defined as the incre-
ware reliability evaluation and the soft- asing probability of software to perform
ware reliability management-aid tools, required functions under stated conditions

during stated time interval. Software
1. INTRODUCTION reliability model mainly refers to a mathe-

matical model constructed for a purpose of
Since a software reliability became assessing the reliability of software from

the most serious and important problem in specified parameters which are either
software industries, we have already spent assumed known or are measured from observa-
more than 15 years. During this period, tions or experiments on software.
many people tried to overcome this problem
vigorously and various kinds of approaches 2. SOME BASES FOR SOFTWARE RELIABILITY
were taken from all angles. Now, it is
broadly recognized that a software reliab- Firstly, let us review previous works
ility problem is clearly an integral port- in software reliability evaluation.
ion of software engineering. However, as We can easily find out two major dire-
known well, inspite of all our efforts, ctions in studies done by predecessors.
the software reliability problem still Namely, they are 1) a direction to study
remains as the knottiest subject. This may reliability characteristics of software
call for next severe question. What have itself, and 2) a direction to study
we done for a long time, how on earth? software reliability evaluation technique.
Clearly, some portion of the reliability Let us look into them in turn.
problem might be due to evaluation techni-
ques for software reliability. 2.1 Nature of Software Reliability

Practically, an effective software
reliability evaluation requires theoretical The first direction of studies aims to
basis. Theories of reliability should find out fundamental elements of software
define software reliability and its metric which affect software reliability, and to
quantitatively. Also needed are measurement make clear causal relationships between
and analysis techniques for reliability these reliability elements and software
data represented in terms of the metric, development technologies. In other words,
techniques to estimate or predict future this is to analyze the elements of software
software reliability growth in testing quality and data on when, where, how, and
stages, practical evaluation methodologies why people make software errors. Also
reflecting software characteristics effec- intended as a final object of this directi-
tively, and evaluation-aid tools, on is to establish a set of effective and
From these points of view, this paper reliable software development techniques
assesses previous works in software relia- and methodologies.
bility evaluation briefly, extracts major

THIS PAPER IS PARTIALLY PUBLISHED AT THE THIRD INTERNATIONAL CONFERENCE ON SOFTWARE
ENGINEERINGP MAY 1978.

196

(1) Elements of software reliability Repairs of a software configuration
tend to alter the configuration, unlike

There are several works in analysis most hardware component replacement
of software reliability elements, and most repairs.
of them are by-products of general study a6) A comprehensive failure mode and
for software quality which aims to evaluate effect analysis is impractical for
software quality qualitatively or quantita- large software, because of the large
tively. Organized software quality evalua- number of distinct logic paths.
tion was firstly done by Rubey and Hartwick a7) The information provided by detected
[1]. Brown and Lipow (2] formulated some errors has not yet been accurately
number of quality metrics, and Wulf [3] characterized, limiting its usefulness
identified and provided concise definitions in predicting the remaining number of
on seven software quality attributes, errors.
Abernathy, et al, [4] defined a number of a8) There is no standardized approach for
characteristics of operating systems and exhaustively testing software in order
analyzed some tradeoffs between them. to assure that it meets all operational
Recently, a framework for software quality requirements.
characteristics was established by Boehm,
Brown and Lipow [5]. They clearly identi- These affect severely to the software
fied the software reliability elements, in reliability evaluation techniques, especia-
addition to a maintainability and a porta- lly to the modelling, and lead us to be
bility: namely, self-containedness, accur- caieful in applying hardware reliability
acy, completeness, robustness/integrity, theory to software.
and consistency. A large number of software
quality-evaluation metrics were defined, (3) Software error data collection and
classified, and evaluated with respect to analysis
their potential benefits, quantifiability,
and ease of automation. A main portion of the software relia-

However, for an effective and quanti- bility nature analysis might be a study for
tative evaluation, we need more amount of software error data collection and statis-
further work in this field. tical analysis. Namely, that is to collect

and analyze information on when, where, how
(2) Software reliability versus Hardware and why people make software errors.

reliability For several years past, many people
have made much efforts to collect software

As a typical study of software reli- error data during software development
ability nature, there are some analyses and maintenance processes. We find some
discriminating natures between hardware published reports on software error data
reliability and software reliability [6,7, collections. Such data are, of course,
8]. Some of fundamantal differences bet- necessary to evaluate a reliability of a
ween the natures of software and hardware software product itself, and also useful to
that affect reliability evaluation are: derive and validate software reliability

models. However, strictly speaking, very
al) Software systems never run and softwa- few data have been collected firmly through

re errors cannot be met without any an entire software development and mainte-
input. nance phases. Let us look all around and

a2) Software is the transformation of give some example studies on software error
designer's idea into a symbolic langu- data.
age for computer processing and soft- Endres (9] collected error data disco-
ware reliability is only dependent on vered in testing stage of operating systems
correct design and the expression of development, and analyzed them in terms of
this design. Hardware, in addition to a distribution of error occurrence rate and
having the reliability problems in frequency of software modification for each
correct design and expression of the module. The report contains classified
design, is physical in nature and error statistics by error types and causes.
subject to component failure patterns Shooman and Bolsky [10] introduced statis-
that are statistically measurable. tical data on frequencies of error occurr-

a3) Software components do not degrade ence rate for each error type, computer
with time as a result of environmental time and working time used to test, compu-
stress or fatigue effect (i.e. wear- ter time and working time to correct errors,
out). changes for software, and some other with

a4) No imperfections or variations are trouble and correction report forms.
introduced in making additional copies Thayer, Lipow and Nelson [11,12] analyzed
of a piece of software (except possi- error data collected by some projects in
bly for a class of easy-to-check TRW precisely. Besides these, there are
copying errors), many interesting works that report various

a5) A correction of software fault alters kinds of error data from various points of
configuration of software and eliminates view: studies done by Boehm, et al [13],
any possibilities of its reoccurrence. Bell and Thayer [14], Fagan [15], Akiyama

197

[16], Gannon and Horning (171, McGeachie[181, projects, the software, and the relia-
Musa (19], Litecky and Davis (201, Baker bility data vary considerably and not
121], Miyamoto (221, and Weinberg (231, for describable in common terminology. It
instance. However, most of the previous is extremely difficult to compare
studies collected and analyzad only errors error data from different sources.
discovered within testing stages. Few exce- b2) Some projects produce data that are
ptions are an analysis of software require- classified as they like.
ments errors by Bell and Thayer (14], and a b3) Analysis techniques and questions to
design error analysis by Fagan [15]. ask of the data are not well known.
Software error information should be collec- b4) Data accuracy is a chronic question.
ted and analyzed through entire software b5) Analysis is often incomplete or
validations and operations of whole software inaccurate if proper communication with
life cycle. project performers is not established.

Most of the previous works collected b6) Project organizational structure and
error information manually by using document resources vary, making consistent,
forms. See references [10,[1I] and [15] multi-project data collection questi-
for instance. There is no systematic onable.
approach to collect error information auto- b7) Definition of which parameters are
matically by using an automated data collec- needed and meaningful to collect is in
tion technique. Though SIMON [24,25] and its infancy.
Software Factory [26] are aiming to automate b8) Analysis of relationships between
a collection of project management data, error information and the system
they only can collect software error data operations (i.e. test domain, user
to be detected in testing, not for whole domain) is often left unnoticed.
life cycle of software. b9) Definitions of measures to represent

When we analyze software error data in program complexity and scale are
testing and operational stages, we have to needed. Analysis of correlations bet-
take into account following thing. Since ween program complexity or scale, and
software systems never run and software the error information (e.g. frequency)
failures cannot be detected without any is needed.
inputs, we can not find new errors without bl0) Manual data collection is a lot of
changing a test domain or a user domain[22]. work.
Then, if we collected information on change bll) Certain data items are perishable and
of test domain or user domain in addition must be collected and analyzed timely
to error information at same time, we would when they become available, not after
be able to analyze more detailed insights the fact.
on software reliability. This point of b12) There is no guarantee that data will
consideration is often omitted in most of be collected (i.e. no requirement for
previous works. projects to collect data).

On the other hand, it is extremely b13) The fervor of data collection inspires
difficult to compare error data from diffe- data gathering that is non-supportive
rent sources. It is a big problem that the of software development processes.
results of previous error data collection b14) Presently implemented data collection
and analysis efforts are not compatible for schemes often fail to gather data in
each other. This might be mainly caused by sufficient detail, making results of
a lack of standards and unified approaches analysis questionable.
on definitions of terminologies used in b15) Software error data collection is
projects, error categorization, data commonly done for testing stages, not
collection procedures, data analysis, soft- for entire software life cycle.
ware error database, and etc. Though it is b16) Software reliability data collection
reported that some efforts are now under can represent cost, schedule, and
way at USAF Rome Air Development Center, manpower impediments to software
and within IEEE Technical Committee on development projects. The impact or
Software Engineering [7], formal outputs cost considerations of data collection,
are not available by now. Because it requi- although real, are not fully appreci-
res much time and money to build a common ated.
error database, we have to collect asid b17) Performers, project management, and
analyze error data in a compatible fashion even the customers of software are
as far as we can. sensitive about providing data that

might be used to adversely evaluate
(4) Problems in error data collection and project by external agencies.

analysis b18) Contractor and customer representative
of project management are not aware of

Based on the review and some references the benefits of data nalysis and
(9,10,11], we can summarize major problems therefore tend not to support it.
in error data collection and analysis as b19) Project structure is generally not
follows: tailored to use available data (i.e.

the mechanism for analyzing data and.
bl) Software development and maintenance folding results back into the project

is not provided), software reliability models, they assumed
b20) Some data elements require protection an error detection rate was proportional

to preserve the privacy of the to a number of remaining errors. Shooman
contributor (e.g. cost data). related an error detection rate also to a

b21) Data collection is commonly thought program size and an instruction processing
to be "not necessary" to a properly rate. He investigated some other types of
managed project. models for error correction, and proposed

a two-point parameter estimation approach.
Some of these problems are due to the policy Schneidewind [32] suggested an empirical
of software project management, reliability prediction model by fitting

failure intervals with an appropriate
2.2 Software Reliability Evaluation reliability function. He applied a maximum

likelihood estimation to determine parame-
The second direction of studies is to ters of error detection and correction

study a phenomenological aspect of software processes. Littlewood and Verrall [33]
reliability. This is to study how often a proposed a Bayesian reliability growth model
aoftware is deficient while it operates, in by assuming that error corrections make
other words. Also, this direction aims at smaller a failure rate in a probabilistic
gaining high quality of software as a final rather than deterministic fashion. Trivedi
object. However, a greater emphasis is and Shooman [34] developed a many-state
placed on to establish an effective software Markov model for an estimation of reliabi-
re]iability evaluation technique itself. lity function R(t) and availability A(t)

during testing stages. They assumed that
(1) Metrics for software reliability error and correction occur alternately and

sequentially, only one type of error occurs,
At a standpoint of phenomenological and error discovery rate is constant, in

aspect, a software reliability and metrics addition to basic Markov assumptions.
to represent a degree of software reliabi- Musa [6] developed a set of execution time
lity are often defined probabilistically as model and calendar time model. He assumes
defined before. Metrics are defined some- that tests are representative of the envir-
times time-dependently and sometimes onment in which a program will be used and
time-independently. Most metrics were are continuously global, failures are
developed originally for hardware reliabi- independent of each other and distributed
lity: for instance, availability A(t), at any time with a constant average execu-
reliability function R(t), mean time tu tion time occurrence rate that is proport-
failure MTTF, mean time between failures ional to a number of errors remaining, all
MTBF, and mean time to repair MTTR. In failures are observed, and an error correc-
addition to these, there are some other tion rate is proportional to a failure
metrics, such like mean time between soft- detection rate at all time, for the
ware errors MTBSE [22], some rates to execution time model. Also, in order to
represent reliabilities of input domain, relate a calendar time with testing activi-
test domain, and user domain [22,271. ties, he made some assumptions for utiliza-
However, these work at times, but often are tion of resources (i.e. failure identifica-
unable to explain actual experienced soft- tion personnel, failure correction person-
ware reliability phenomena. This is prima- nel, computer time). The model parameters
rily because of fundamental differences are calculated by using a maximum likelihood
between software phenomenology and the estimation. The effectiveness of models has
assumptions of hardware reliability been validated at several real projects [35].
theories, and secondly because of a lack of This is one of few models which have a
practical methodologies for application to practical methodology and a tool for
software. There is, therefore, no single application. In addition to these models,
metric which reflects the software natures there were some other models developed by
and can give a universally useful rating Schick and Wolverton [36], Weiss, Corcoran,
of software reliability. This might be and Nelson [37]. These are well reviewed
thought as one of reasons for a traditional by [111 and [48]. Also, Littlewood [38,39],
criticism insisting that it is impossible and Shooman [40,41] have proposed some
to apply hardware reliability theories to revised versions of their reliability
software reliability problem, models vigorously. The models proposed by

Littlewood are based on Markov processes.
(2) Software reliability models Shooman has developed structural model in

which logical paths of program structure,
Now let us review a software reliabi- execution time and failure rate of each

lity modelling which is the most theoretic- path are related with.
al portion of software reliability evalua- Besides, there are some other simple
tion techniques. models to estimate a number of initial

Shooman [28,29], Jelinski and Moranda latent errors in programs. Such models do
130,31] proposed similar type of probabili- not assume much, and some models are based
stic models for a removal rate of software on the statistics of historical data [43].
errors during test. For these earliest For instance, Mills [42] developed an errcr

199

seeding model. These models are useful some- As a whole, we can conclude that we
times. have very poor software reliability evalua-

tion techniques and error database, for
(3) Problems in reliability models the present.

During the review, we found many prob- 3. SOFTWARE RELIABILITY MANAGEMENT SYSTEM
lems in software reliability models for
practical applications. Most of them are After considerable study of previous
derived from assumptions applied in the mod- works and experiences of actual projects,
elling [81. Typical worrisome (?) assur.pticns we have decided to improve the effectiveness
are summarized as follows: of current software reliability evaluation

by developing the application methodologies
cl) The errors remaining in program de- of currently existing techniques and models,

crease monotonically. and supporting tools. (We have not make
c2) The discovery rate is proportional to plans to develop new models and techniques,

the number of remaining errors, although we have no powerful ones.)
c3) New errors are not introduced during For the problems of reliability

debugging. evaluation, we shall deal with mainly by
c4) The software failure rate (and associ- using multiple reliability metrics at the

ated hazard rate) is constant, or same time, preparing specific reliability
increases, or decreases during failure data measurement method, relating with
intervals, operational profiles, categorizing failures

c5) The hazard rate increases or decreases according to their effects on system opera-
at each time when error is detected. tions, and limiting the objects of reliabi-

c6) Software errors have the same likeli- lity estimation. The effectiveness of error
hood of detection, data analysis can be basically improved by

c7) All failures are observed, developing automated tools and methodology
c8) Data inputs to software system are for data collection and analysis, and by

randomly selected, integrating them with an automated system
c9) Software failures are independent, which supports entire software development
c10) Software errors have the same effects and maintenance processes. By using such a

on system operations. system, as we continue to collect and
cdl) Test and users operations cover the analyze more and more data on how, when,

entire input domain of software and how often, where, and why people make
do not change. software errors, and how people detect and

c12) Error correction rate is proportional correct software errors, we will be able to
to failure detection rate. get clear insights on how to evaluate

software reliability, how to develop
Some of the reliability estimation problems practical models for prediction, how to
are originated from assumptions of failure avoid making software errors, and how to
distribution, and some others are originated organize the validation strategies.
from assumptions of software operational Along this baseline, we are designing
profiles in testing stage and operational an automated software reliability management
stage at users. In most models, it is as- tool, and a highly ambitious software
sumed that a test domain and a user domain development and maintenance support system.
are fixed and do not change. We should note This section will introduce a brief
that a software reliability is a function of, description for a concept of this system.
not only a number of remaining errors, but
also their effects on system operation, 3.1 Software Development and Maintenance
software operational profiles (which are Support System
changeable according to the test space
growth and the usage patterns of software In order to support various activities

functions), and locations of remaining for large scale software development and
errors. In other words, the operational maintenance, SDMSS (Software Development
reliability is a probability that users don't and Maintenance Support System) is designed
enter specific inputs which inevitably to have several basic subsystems as shown
encounter the latent errors. in Fig. 1. Requirements Engineering Sub-
Surprisingly very few practical model system consists of a language processor for
application methodologies for the reliabil- a requirements definition language RDL, and
ity test data measurement (which should be analysis tools which examine correctness,
separated from testing and debugging) and consistency, completeness, and feasibility
compilation are prepared in the existing of software requirements described in terms
software reliability models, of RDL. Requirements descriptions are stored
In a theoretical sense, there is no single into a development database and maintained
model which can give a universally useful as an abstract system model. Design Sub-
estimation of software reliability. And system consists of a processor for software
still, we are a long off from having truely design language SDL and tools to examine
reliable software reliability estimation correctness, consistency, completeness and
models. efficiency of designed software.

200

Design descriptions are stored into database different reliability models. The Reporting
and maintained as a logical system model. Tools output statistical reports on catego-
Programming Subsystem consists of program- rized errors, and status reports on error
minq language processors and source code correcting activities periodically and at
analysis tools. Static code analysis is any time when needed. SEMS is extensible to
done by program structure checker, module add new tools. Error Database is made up of
interface checker, events sequence checker events file, relation file, and statistic
and diagnostic functions of language proce- file as shown in Fig. 2. Events file
ssors. Test Subsystem is made up of test maintains error information in chronological
description language processor, and tools order of occurrence. Each error occurrence
to support test case selection, test data uses one record. Example error record format
generation, test execution, test result for dynamic testing stage is also shown in
reporting, maintenance of test database for Fig. 2. An error record contains four parts:
dynamic tests. A test description language the first part keeps, in main, initial
TDL is useful to describe test drivers and information on a situation of failure detec-
stubs. Maintenance Subsystem supports tion, the second part maintains status inf-
maintenance activities originated from ormation for correction activities, the
software problem reports or maintenance third part keeps formal results of error
orders. History of software modifications cause analysis, and the last part is for
is reco'ded in maintenance database. This comments. Relation file maintains relations
subsystem internally uses functions of between error records. Relations indicate
Requirements Engineering Subsystem, Design sets of categorized errors in terms of, for
Subsystem, Programming Subsystem and Test example, requirements errors, design errors,
Subsystem to redefine software requirements, coding errors, or for each version of soft-
redesign, recode, and retest. A tool to ware, module, and many others. Reporting
find out modules, specifications and test tools can make reports very easily by refe-
cases associated with a requested correct- ring to this file. Statistic file contains
ion or modification is provided. In various kinds of statistics on error data,
addition to these, SDMSS has Product Mana- such as, accumulated number of error occur-
gement Subsystem, rocument Subsystem, rences, accumulated number of co-rected
Project Management Subsystem, and Software errors, current number of errors remained
Error Management Subsystem (SEMS). uncorrected, and reliability estimation
Project Management Subsystem collects data results.
on cost and project progress, and monitors Totally, SEMS has 6 basic types of
software development and maintenance procedures to interact with these components.
activities for project management. They are defined for a manual registration

Except Requirements Engineering Sub- of error information, an automatic registr-
system, SDMSS is now in design stage. ation of error information, a status regis-

tration of error correction activities, an
3.2 Software Error Management Subsystem inquiry for statistical error information

or status information of each error, an
Associating with software validation authorization of error, and a reliability

activities and maintenance activities for estimation.
an entire software life cycle, with a help
by SDMSS, SEMS provides a set of methodo- (2) Sources of error information
logies and tools which mainly support a
collection of software error data produced, Since, in general, software projects
a statistical error data analysis, a repo- have a potential for creating a tremendous
rting error information to managers (e.g. amount of various kinds of data, and error
QA manager) for swift feedbacking or feed- data are largely a by-product of software
forwarding to software activities, a development and maintenance processes, we
management of error correction activities, need to collect meaningful data items
and a prediction of software reliability efficiently and timely for an entire soft-
during testing stages. SEMS intends to give ware life cycle. Fi illustrates a
solutions or improvements to some problems typical software ife cycle by phase and
in software reliability evaluation and several types of software error data. These
stimulate the rest. software error data form a continuum of

requirements errors, design errors, and
(1) Components coding errors starting as early as the

software requirements definition phase and
SEMS consists of four major components. extending into the operational phase.

Error Management Program manages and maint- Software validations as error information
ains error information registered and sources by SDMSS are as follows. In requi-
status information of correcting activities, rements definition phase, some of software
and controls interfaces to other subsystems requirements errors can be detected by RDL
in order to collect error data automatica- processor and associated static analyzers
lly. Reliability Estimation Program automatically, and some others can be
calculates a future software reliability at detected by an inspection review of require-
testing stages. This program contains two ments specification manually. In design

201

phase, some of software design errors can <test definition- n.
be detected by SDL processor and associated END
tools automatically, and some others can be
detected by an inspection review of design Each test defined in the test procedure
specifications manually. Errors on software description causes a partial execution of
efficiency can also be detected by using a target modules. Tests are performed one at
simulation tool. In coding stage, some types a time in the order in which they appear in
of software errors are detected by diagnos- test definitions. In the test description,
tic functions of language processors and what a set of tests will examine is written
static source code analyzers automatically, with information on testing environment.
and some others are detected by an inspec- A complete form is as follows.
tion review manually. In testing stage, the
rests of software errors should be detected <test description>=
by dynamic tests. Since results of tests <test case identification>
described by using TDL are self-checkable, <error category identification>
failures are detected by automated tool. <hardware configuration identification>
In other cases, failures are detected by <software configuration identification>
manual analysis and reported in terms of <test system identification>
software problem reports. In operational
phase, users find software failures and These information specified in test descrip-
report them manually by using software tion are sent to SEMS at time when a failure
problem report. All of these activities is met. Each test execution of target
generate error information. moduies is described in a test definition.

There are three types of information A test definition has four items as shown
sources. The first one is a static test in next.
result of specifications or source codes.
This kind of error information can be sent <test definition- i>=
to SEMS automatically by static analysis <initialization codes>
tools. The second type is a dynamic test <assertions>
result. In this case, Test Management Prog- <execution directive>
ram in Test Subsystem sends error informa- <error category identification detail>
tion to SEMS automatically. The third type
is a result of manual inspections. This Immediately before a test execution, the
kind of error information must be registe- variables specified in ti e initialization
red to SEMS manually. Generally, a manual code statements are initialized. A form
technique is easy to implement, but it for initialization is
requires manpower committed to a collection
task. Automated techniques ease a pain of <target module name/variable,initial value>
collection task, and can collect error data
effectively and timely when it is generated. The most test definitions contain assertions
However, automated techniques tend to be about the performance of the target modules.
less flexible in response to changes in They are specified in VERIFY statements.
software project demands and may cause cost A form is
problems of implementation. And yet, it is
often needed to judge manually in order to VERIFY [at Ll,L2,..,Li,..,Ln] (assertions)
collect meaningful data. Then, SEMS has
employed both of manual and automatic data Li is a label reference to target modules,
collection techniques so that meaningful where the assertions are to be verified,
error data can be collected effectively, and is written in a form [module name:label].

When no labels are specified, the assertions
(3) supporting functions for automated are verified immediately after the test

data collection execution terminates. An assertion can be
specified in any way of next three types:

Now, taking a case of a test descrip-
tion language TDL, we would like to intro- (module name: logical expression)
duce supporting functions for an automatic (PATH-IS: regular expression)
data collection. Since a complete descrip- (TIME-IS-LESS-THAN: value)
tion of TDL is beyond the scope of this
paper, we introduce only some features of Logical expressions are test predicates usi-
TDL and TDL processor for a test driver ng variables and values. An argument to a
description. (TDL is partly based on [46].) PATH-IS assertion is a regular expression

A TDL description for a test driver made up from operation names. Regular expr-
has a following general form. essions permits use of four operators. The

operator ; is a sequencing operator, speci-
'test description > fying an order in which the modules are
-test definition- 1> supposed to be executed. The operator + is
<test definition- 2> an alteration operator specifying either one

of the modules can be executed. The operand
* is used to denote repetition. The operand

202

& can be used to denote concurrent process- (1) Software reliability models
ing of modules. The assertion for TIME-IS-
LESS-THAN is used to check a execution time Reliability Estimation Program contains
of target modules. Every test definition is two different software reliability models:
executed by an EXECUTE statement of the they are a model developed by Musa (6] (The
following form. calculation modules for this model in Relia-

bility Estimation Program is originally
EXECUTE [FROM Ll][TO L2,...,Li,..Ln] developed by Musa [47].) and a simple model

developed by the author [22]. As reviewed
where Li is a label reference to target before, Musa's model is based on several
modules. This statement specifies the first assumptions, and the author's model is also
and last statements to be executed. A STOP based on some basic assumptions. These are
or RETURN in target modules terminates only not exceptions. However, we should like to
the current test execution. The error cate- bring up basic questions here. (In this
gory identification is a detailed category section, we discuss reliability models from
identification for an error which is expec- a viewpoint of practical use, not a theoret-
ted to be detected by this test definition, ical aspect described before.)
and should be consistent with senior cate- Are these assumptions (e.g. assumptions c2,
gory identification specified in the part c4, c7, c8, c9, cll, and c12) realy quite
of test description, inappropriate?

Internal procedures for an automatic We are sure that they are not the ideal
collection of error information is roughly models. By satisfying some conditions in
shown in Fig. 4. Firstly, immediately some ways, can't we use them for a restric-
after a test execution, a result is checked ted environment specifically?
whether it agrees with a specified assert- Answers might be probably proved by
ion. In the case that it does not agree our experience and intui-tion. If we could
with, an event indicating a failure occurr- have some specific methodologies for a
ence is informed to SEMS, and the informa- measurement and compilation of reliability
tion written in a part of test description test data, restrict objects of application,
and error category information are entered and modify debugging and testing processes
into Error Data Queue by test management in order to satisfy the assumptions, we
program. At this time, test management pro- would be able to decrease their bad effects
gram adds a calendar time when failure was on the validity of estimation. As a matter of
detected, name of inspector for current fact, the effectiveness of Musa's model has
test execution (Test Subsystem knows a name been validated by several real projects(35].
of current user), and error identification The author's model is developed only for a
number which is serial through the current highly dedicated online real time system and
validation activity. On the other hand, has specific reliability test data measure-
SEMS takes out an entry of error informat- ment and compilation methods [22]. We may
ion from the error data queue and stores say that we would be able to apply them for
it into error database one by one. At this practical use if only we had taken some
time, a serial number which is counted points into account. In spite of this poss-
through whole software life cycle is added ibility, some theorists might say that, in
to the second part of an error identifica- any case, it is still difficult to estimate
tion number. At a time when a failure event universally by a single model.
is registered in error database, since an There is a good answer to this. In order to
error has not been judged formally as a obtain more effectiveness, it is better to
true software error, this is recognized as apply multiple models to software reliabili-
a quasi error temporarily. A true cause and ty estimation jointly. This is a main reason
a location of the error can not be made why SEMS has two different models. The
clear until all failure analyses complete, author's model is now under way for the
ordinarily. Formal analysis results often revision. Revised model is going to reflect
do not agree with an initial judgement for the changes in system operational profiles
a quasi error. The formal error information during testing and operational stages.
are stored in the third part of error reco-
rd by QA manager in manual. Besides, as (2) Methodology for application
correction activities progress step by step,
each status is registered and updated with A procedure to estimate software reli-
information on committed working hours, ability in SEMS environment is shown in Fig.
computer time used, and some others in the 5. Input data to reliability estimation
second part of error record. These inform- program consists of a number of parameters
ation are useful to manage error correction which are grouped into 5 categories:
activities. failure, planned, debug environment, test

environment, and program. The failure data
3.3 Software reliability estimation consists of a set of execution time intervals

between failures, along with a number of days
SEMS provides a software reliability from the start of testing on which failures

estimation capability and prepares a metho- occurred. In a category of planned data,
dology for an estimation models application, there are available computer time (measured

in terms of prescribed work periods),

203

number of available failure correction categorized class of failures. A priority
personnel, number of available failure iden- of failure analysis and correction activity,
tification personn-l, computer time utiliza- and an allotment of resources for each
tion factor, failure correction personnel category of failures must be determined
utilization factor, and objective mean time prior to the estimation.
to failure. In a category of debug environ- The software systems as the best
ment, there are average computer time expen- objects of reliability estimation by SEMS
ded per unit execution time, average compu- should have following characteristics.
ter time required per failure, average Namely, their input spaces must be large
failure identification work expended enough, and used randomly and independently
per unit execution time, average failure by many number of users simultaneously (for
correction work required per failure, and random input). A unit of system services
the average failure identification work (e.g. an interaction or a connection) must
required per failure. A testing compression be small, and system operational profiles
factor is a parameter of test environment, at users should be predictable and station-
As parameters of category of program, there ary at any time while tley operate. System
are a number of failures required to expose operations can be classified into some
and remove all errors Mo, and initial MTTF states clearly in order to ease an effect
at start of testing. The parameter Mo must analysis of software errors on system
initially be estimated from a number of operation.
inherent errors and an error reduction From these points of view, SEMS recommends
factor by using previous statistics [9,11, to apply its estimation technique to online
16,22] or by using simple models [43]. real time transaction-driven systems with
However, once data are available on inter- a number of user terminals, in main, such
vals between failures during test or opera- like large bank systems, reservation systems,
tion, these parameters may be reestimated. inventory systems, information retrieval
These data can be provided by reliability system, electronic switching system, and
test data measurement, error database, and etc. Typical example system is shown in
project database. Ways to handle these [221. In the case of other type of systems
parameters are well described in [351. (e.g. batch processing systems), effective-

Reliability test data measurements ness of estimation might be decreased more
are different from ordinary testing activi- than above cases.
ties and are done periodically or at any Finally, we should note that estimated
time needed in order to collect data on results do not show an absolute certainty
current reliability. (Test cases are gene- in the future reliability growth. They are
rally chosen to quickly detect errors and only useful to fix our aim. Because soft-
are not representative of operational use.) ware reliability growth rates are often
During reliability test data measurement, changed by a project management policy,
execution time intervals between failures ways of testing and debugging, individual
are measured for each categorized class of abilities, positivisms and morals of
failures. Failures are catemorized accord- project performers, and by many other
ing to their effects on system operations. factors greatly.
Example categorization gives four classes
of failures: catastrophic failure which 4. CONCLUDING REMARKS
leads to system down, serious failure
which causes malfunctions on all current We have reviewed the software relia-
users, moderate failure which causes mal- bility evaluation techniques, and described
function on one of current users, and some approaches to improve some of the
trivial failure which is typographical major problems, briefly. Finally, let us
error in output messages. Since an error assess the effectiveness of SEMS on the
correction may alter a software configura- software reliability evaluation, especially
tion and decreases statistical meaning, on what will be improved by SEMS.
detected errors are not corrected for the
currently used system during current data (1) On error data collection and analysis
measurement. Input data in test space are
selected through a prediction of user space Basically, the automatic data collec-
initially, and are not changed through the ting function of SEMS which operates with
measurement. Test space must be reflecting SDMSS as one system may improve the problems
possible combinations of basic users opera- of blO, bll, b12, b13, b14, and b15. For
tional patterns. (Recall that software the rest, we may classify them into three
reliability is affected by system operation categories: 1) the problems on standardi-
strongly.) Sample reliability test data zation or unification (i.e. bl, b2, b3, b4,
measurement methods are introduced in [22] bS, b6, b7, b8, and b9), 2) the problems
and [28]. associated with the project management

Using collected data, two models policies (i.e. b17, blS, b19, b20, and
estimate the software reliability growth. b21), and 3) the cost problem (i.e. b16).
Estimation might be plotted as shown in
Fig. 6 with measured reliability, for The first kind of problems may be
instance. It is strongly recommended to improved by piling up the use experiences

evaluate software reliability for each of SDMSS. Since SDMSS and SEMS provide the

204

standardized methodology, terminology and experience by using automated tool such like
techniques for the software, software deve- SEMS. (c.f. b7)
lopment and maintenance project, and soft-
ware reliability evaluation, the pile of Most of the second class of problems
collected and analyzed error information are beyond the scope of SEMS. For instance,
would be compatible for each information the problems b18 and b21 can not be solved
source. In order to solve this kind of without changing the consciousness of
problems in the broad sense, we may need project managers. However, SEMS provides
some theoretical works and the joint efforts the protection function for error database.
with public organizations. The poor compa- (c.f. b17, b20)
tibility of error data is caused partially
by the lack of the valid measures to Finally, to implement and use SEMS do
represent program complexity and scale. cost more than manual evaluation. Compared
The statistical error data analysis must be with the SDMSS, SEMS spends little amount
done in terms of such measures independent- of computer time and u'.er resources. The
ly with the kind of programs and programmi- cost problem is very common to every auto-
ng languages or design languages. The mated tool. Since the software reliability
theoretical work is needed to get the valid is the most important problem in software
and common measures for software. Currently industries, we must do something for it.
there are some statistical approaches to SEMS can collect and analyze error data
this. For instance, Akiyama [16], Thayer, more efficiently than other existing methods.
Lipow and Nelson (11], Halstead [44], and
Green [45] have reported some results on Totally, SEMS can improve some of the
the correlations between error data and major problems on software error data
this kind of measures. In SEMS, since the collection and analysis.
relations between error database and the
development database are maintained, it is (2) On software reliability evaluation
rather easy to analyze the correlations
between program complexity and scale, and After the review of existing techniques,
error data statistics. (c.f. bl, and b9) we have concluded that there is no single
Besides, SEMS provides a set of error metric or reliability model which can give
categorizations. They may categorize errors a universally useful reliability evaluation
according to their causes, their effects on or an estimation, from the theoretical point
the system operations, their locations, of view. However, by taking into account
the phases in which they are introduced, the application methodologies which cover
their hardness for correction, the phases the measurement and compilation of reliabi-
in which they are detected, the detection lity test data, restrict the object of
methods, and other characteristics, application, and modify the debugging and
In the environment where SEMS is used, testing processes to meet with assumptions
since the multiple categorizations are made, made, this conclusion may be changed. In
the more amount of information is provided some specific environment, we can obtain
than the cases that single categorization useful estimation to fix our aim, by using
is employed. (c.f. bl, b2, and b6) multiple reliability models. Though we are

Most of statistical works and reporting developing new models vigorously, we should
works are done by SEMS. Thus, users are not place greater emphasis on the development
needed to do troublesome work. SfMS is of application methodologies and the
extensible to add new tools by users in estimation-aid tools. In this sense, SEMS
order of extraction and analysis of error may stimulatethe studies.
information. (c.f. b3)
The data accuracy may be improved and bal- Finally, we would like to claim again.
anced more than before, because SEMS By using such a system we proposed, as we
collects error data in standardized manner, continue to collect and analyze more and
(c.f. b4) more data on how, how often, when, where,
On the other hand, since SEMS is jointly and why people make software errors, and
used with SDMSS in general, the analysis how people detect and correct software
works can be done on intimate relations errors, we will be able to get clear insig-
with the development and maintenance acti- hts on how to evaluate software reliability,
vities. (c.f. b5) However, QA manager how to develop practical models for
must take more responsibilities than predicting software reliability, how to
before. SEMS can refer the information of avoid making software errors, and, how to
system operations related with the error organize validation strategies.
information in testing and operational
stages. (c.f. b8) 5. ACKNOWLEDGEMENT
Generally, it is not well known that what
kind of data items are meaningful and how Especial thanks go to John Musa of
much we need for software reliability Bell Labo. for his valuable information and
evaluation during the development. Thus, it estimation-aid program for his model. Also,
is important and meaningful to accumulate the author would like to thank Eldred Nelson
the error information and to gain the of TRW for his helpful information.

- - - - - - - -

205

[I] R.J. Rubey and R.D. Hartwick,"Quanti- [23) G.M. Weinberg,"The psychology of comp-
tative measurement of program quality*, uter programming",Van Nostrand Reinhold,
Proc. ACM National Conference,1968,pp671- New York,1971
677 [24] R.J. Fleischer and R.W. Spitler,"SIMON

[2] J.R. Brown and M. Lipow,"The quantitat- -A project management system for soft-
ive measurement of software safety and ware development",MITRE MTP-169,Apr 1976
reliability",TRW Report SDP-1776,1973 (25] J.A. Clapp and J.E. Sullivan,"Automa-

[3] W.A. Wulf,"Programming methodology", ted monitoring of software quality",Proc.
Proc. Symp.on High Cost of Software, NCC 197 4 ,pp33 7 -3 4 1
Sept. 1973 [26] H. Bratman and T. Court,"Software Fa-

(4] D.H. Abernathy,et al,"Survey of design ctory",Computer,May 1975,pp28-37
goals for operating systems",GIT Report, [27] W.H. MacWilliams,"Reliability of large
GTIS-72-04 real-time control software systems",Proc

[5] B.W. Boehm,et al,"Quantitative evalua- Symp.Soft.Reliability,1973,ppl-6
tion of software quality",Proc.2nd ICSE, [28] M.L. Shooman,"Operational testing and
Oct. 1976, pp59 2-6 05 software reliability estimation during

(6] J.D. Musa,"A theory ot software relia- program development",IEEE Symp.Comp.Soft.
bility and its application",IEEE Tr.SE, Reliability,1973,pp5l-57
Vol.SE-I,No.3,1975,pp312-327 [29] M.L. Shooman,"Probabilistic models for

[7] B.W. Boehm,"Software Engineering",IEEE software reliability prediction",Statis-
Tr.Computers,Vol.C-25,No.12,Dec.1976, tical Computer Performance Evaluation,
ppl226-1241 W.Freiberger,ed.,N.Y. Academic Press,

[8] R.A. Pikul and R.T.Wojcik,"Software 1972, pp485-502
effectiveness:A reliability growth appr- (30] Z.Jelinski and P.B. Moranda,"Software
oach",Proc.MRI Symp.Comp.Soft.Eng.,Apr. reliability research",same source as 29
1976,pp531-546 [31] Z.Jelinski and P.B.Moranda,"Applica-

[9] A. Endres,"An analysis of errors and tions of a probability-based model to a
their causes in system programs",Proc. code reading experiment",Proc.Symp.Comp.
ICRS, April 1975, pp327-336 Soft. Reliability,19 7 3,pp78

[10] M.L. Shooman and M.I. Bolsky,"Types, [32] N.F.Schneidewind,"An approach to soft-
distribution and test and correction ware reliability prediction and quality
times for programming errors",Proc.ICRS, control,"Proc.FJCC 197 2,pp8 3 7 -8 4 7

April 1975, pp347-357 [33] B.Littlewood and J.L.Verrall,"A Baye-
[11] T.A. Thayer,et al,"Software reliabili- sian reliability growth model for comp-

ty study", TRW System Rep. ;-76-03,1976 uter software",IEEE Symp.Comp.Soft.Rel.
[12] T.A. Thayer,"Understanding software April 1973, pp7 0-7 7

through analysis of empirical data",Proc. [34] A.K.Trivedi and M.L.Shooman,"A many-
NCC 1975, pp335-341 state Markov model for the estimation

[13] B.W. Boehm,et al,"Structured programm- and prediction of computer software
ing:A quantitative assessment",IEEE Comp. performance parameters",Proc. ICRS,Apr.
June 1975, pp38-54 1975,pp208-220

[14] T.E. Bell and T.A. Thayer,"Software [35] J.D.Musa,"Measuring software reliabi-
requirements:Are they really a problem?", lity",Proc.National Meeting,ORSA/TIMS,
Proc.2nd ICSE,Oct.1976, pp6l-68 May 1977

[15] M.E. Fagan,"Design and code inspections [36] G.J.Schick and R.W.Wolverton,"Assess-
to reduce errors in program development", ment of software reliability, llth Ann.
IBM Sys.J. No.3,1976,pp182-211 Meeting, GermanOR Society,Sept. 1972

[16] F.Akiyama,"An example of software sys- [37] E.C.Nelson,"A statistical basis for
tem debugging", Proc.IFIP 1971,pp3 5 9 software reliability assessment",TRW

[17] J.D. Gannon and J.J. Horning,"The imp- Systems Report,March 1973
act of language design on the production [38] B.Littlewood,"A reliability model for
of reliable software", Proc.ICRS,Apr.1975 Markov structured software",Proc.ICRS,
pp10-22 Apr. 1975,pp 2O4 -2 07

[18] J.S. McGeachie,"Reliability of the [39] B.Littlewood,"A Semi-Markov model for
Dartmouth Time Sharing System",IEEE Sym. software reliability with failure costs",
Soft.Reliability,1973,ppll7-123 MRI Symp.Comp.Soft.Eng. 1976,pp2 81-30 0

[19] J.D. Musa,"An exploratory experiment (40] M.L.Shooman,et al,"Effect of manpower
with 'foreign' debugging of programs", deployment and bug generation of soft-
MRI Symp.Comp.Soft.Eng.,Apr.1976, ware error models",ibid, ppl55-170
pp499-512 [41] M.L.Shooman,"Structural models for

[20] C.R. Litecky and G.B. Davis,"A study software reliability prediction",Proc.
of errors, error-proneness, and error 2nd ICSE,Oct.1976,pp268-280
diagnosis in COBOL",CACM Jan.1976,Vol.19, [42] H.D.Mills,"On the statistical valida-
No.1, pp33-37 tion of computer programs", FSC-72-6015,

(21] F.T. Baker,"System quality through IBM FSD, 1972
structured programming",Proc.FJCC 1972 [43] G.J.Myers,"Software reliability:
pp339-343 Principles and practices",John Wiley &

[22] I.Miyamoto,"Software reliability in on Sons, 1976
line real time environment",Proc.ICRS, [44] M.H.Halstead,"Elements of software
April 1975, ppl94-203 science",Elsevier Comp.Sci.Lib.,1977

206

[45] T.F.Green, et al,"Program structures,
complexity and error characteristics",
MRI Symp.Comp.Soft.Eng., Apr.1976
ppl39-154

[46] D.J.Panzl,"Test procedures: A new
approach to software verification",Proc.
2nd Int.Conf.Soft.Eng.,Oct.1976,pp477-485

(47] J.D.Musa,"Program for software relia-
bility and system test schedule estiina-
tion--User's Guide",IEEE Computer Society
Repository, No.R77-244

J.D.Musa and P.A.Hamilton,"Program for
software reliability and system test
schedule estimation--Program Documenta-
tion",IEEE Computer Sciety Repository,
No.R77-243

(48] G.J.Schick and R.W.Wolverton,"An
analysis of competing software reliabili-
ty models",IEEE Tr.SW.Eng., Vol.SE-4,No.2
March 1978, pp10 4 -120

Fig. 1. Software Error Management System
FQA MANAGERI

REQUIREMENTS
1

LPROGRAMIER7 L NITAINER 7-
ANALYST

' DESIGNER IFINPECTOR1I I I I I
SDMSS (Software Development and Maintenance Support System) EXECUTIVE

PROJECT MANAGEMENT SUBSYSTEM

V
iSEMS

M ... -PROJE-
R E Q U I R E . D E S I G N P R O G R A M M - j ! T E S T M A I N T E . i .-. ..-- V ; C T
ENGINEER. ING ERRR ESTIM-ING DB
SUB- SUB- SUB- MNGT. I TING
SYSTEM SYSTEM SYSTEM SYSTEM SYSTEM PROG. iPROG. TOOLSj.

ATIO I

PRODUCT MANAGEMENT SUBSYSTEM !DB ACCESS

JLJ

TEST MAINT. ERROR

ASM LSM SYSTEM.DB DB DB TRACEABILITY

DEVELOPMENT DB

207

Basic Record Format
ERROR DATABASE

I.Error Id Number #xxxxxx-xxxxxx
Part (1) .Category Id (tentative)

-classification #1,#2,#3,#4
Statistic File .Detected by (name)

_.Date & Time detected
.Systeml nfornmation

Relation File -Hardware Configuration Id
-Software Configuration Id
-Database Id

* / / -Test System Id
.Failure Location (tentative)

Events File -Module(name,version & rev. #,author)!
,/ / -Spec. (name,version & rev.#, page)

.Associated Test Cases
-Validation Id
-Test Case and Data Id

.Associated Trouble Report or
Maintenance Order Id.

.Status Information
Part (2) -Nothing done (date)

-Error analysis (date/working hours)
.Correction Started (date)

-Redefinition of requirements
validation
-Redesign data
validation computer time

-Recoding working hours
validation E

.Correction completed (date/work hour)

.Demonstrative Test (date/work hour)

.Find-and-fix cycle of error

.Approved date

.Formal Judgement
Part (3) -hardware error

-operation error
-testing error
-unknown (reoccurable?)

.Software error
-formal category Ids #1,#2,#3,.. .#n

Fig.2 Error Database -formal location
module,page,line,author
spec.,page,line,author

-error produced by erroneous debug
original error id

.Associated Errors (ids)

.Accountable or not

Part (4) .comments on this error

208

.Req. Insp. Review Results ERROR
REQ. Static Test Results INFORMATION SOFTWARE
ANALY- ERROR ERROO
SIS .Static Test Results MANAGEMNT DATA

.-Design Insp. Review Results SYSTEM I BASE

DESIGN I.Simulation Result
.Code Insp. Review Results
.Static Test Results

COING

S'__ • Dynamic Test Results
I .Soft. Problem ReportsLTEST

AINT. Software Problem

Reports

FEEDBACK & FEEDFORWARD
F"g.3 INFORMATION SOURCES

(TEST MANAGEMENT PROGRAM)

ESTDRIVER TARGET MODULESTEST DIE

Test - .
Data

next test R A>

Result

N ERR

RROR DF]
REP.

___ tfERROR DATA QUEUE
rror

Informa-

Error Record

ERROR Part(l

MANAGEMENT -ERROR

SDATA

Fig.4 Data Collection SUBSYSTEM Quasi BASE
Error

208

RELIABILITY
DATA

MEASUREMENT

.Failure Intervals PROJ.

.DATA Test tnv ironment Planned DATA
BASE

* ___ESMA .Program
TION .Debug Environment

QA MANAGER SDMSS PROG.

ERROR DB

Estimated .Results

Reuts

(statistic file)

Fig. 5. Reliability Estimation Procedure

Category: Serious Failures ,: Musa's Model
Confidence Range: 90%-75%

Miyamoto's
HOUR Estimated Model

MTTF m u/ - : measured

75% ,' ," 90%

- -b Calendar Time (Date)

Fig. 6. Comparable Estimation of MTTF

bomb&% kw

209

ANALYSIS OF SOFTWARE ERROR VODEL PREDICTIONS
AND QUESTIONS OF DATA AVAILABILITY

Alan N. Sukert

Rome Air Development Center (AFSC)

Criffiss AFB NY 13441

Abstract of the PADC study and discuss the problems of data
availability in performing this study. First, the

During the period Aug 1974 to May 1978 a study to models used will briefly be described. Next will
evaluate the accuracy of predictions of several follow brief descriptions of the four software
models for predicting tie error content and development projects used in the study. "odel
reliability of a software package against error predictions will be presented and analyzed with
data extracted from four large Department of some conclusions offered as to model
Defense software development projects was applicability. Finally, the problems of data
undertaken by Rome Air Development Center (RADC). availability will be addressed.
This paper will briefly describe the results of
this empirical study for three such models, the ,odel Discussion
Jelinski-Zlioranda, Schick-Wolverton and a modified
Schick-Wolverton. Model predictions will he The initial goal of this in-house study was to
analyzed and general conclusions will be drawn as analyze as many software reliability models as
to model applicability. The data requirements for possible, using as many software error data sets
performance of such analysis will be discussed in as possible. As the study evolved, it became very
lieu of the data RADC had available for this study apparent that the limiting factor was data
and the data needed for such a study, availability. 'any nodels that would have been

desirable to consider, such as the Shooman's
Introduction exponential and Ilusa's models, were eliminated

because the data available to RAC, which
The past several years have seen the formulation consisted of data extracted from Software Problem
of numerous mathematical models for predicting the Reports (SPRs) that were filled out by the various
reliability and error content of a software contractors during the formal test phases whenever
system. These predictive tools were needed to a software error was detected, was lacking in some
permit better tracking of software developments by of the needed categories such as CPU data. The
providing a software manager with nore detailed models finally examined were the Jelinski-Moranda
information regarding the status of his De-Eutrophication, Schick-lWolve rton, "odified
development. Models formulated have ranged from Schick-Wolverton, Jelinski-,oranda Geometric
the earliest ones that assumed an exponential De-Eutrophication, and a "odified Ceometric
distribution of time to detect errors, such as De-Eutrophication.
Shooman's, to more complicated ones such as Musa's
execution-time model. These models have been Predictions from these five models were first
experimentally tested against available software analyzed against data from a large DOD comrand and
error data by the model developers and, whenever control project on a total project basis using
possible, comparisons of various models have beer Vaximum Likelihood (LF.) estimates for model
performed by model developers in order to parameters.

1
Next, software error data from three

demonstrate the applicability of each nodel.
6
'
9

additional DOD projects were analyzed against the
However, criticism of this initial model testing three non-geometric models, since the three
has arisen due to the limited quantity and nature non-geometric models predicted the nurber of
of the software error data available to model initial errors. Both NLF and Least Squares
developers. This is especially true with respect estimates for model parameters were used, and
to DOD software development projects, with their model predictions were obtained on a total project
complex and unique, one-time applications in such basis and also on an error criticality basis.

2

areas as command and control and avionics. !'ore recently, model predictions on a functional
subsystem basis were obtained and analyzed.

To help develop a better knowledge about the
applicability of these software reliability The assumptions of the three non-geometric models
models, and to obtain better confidence in their used are given In Table 1, while the mathematical
predictions, RADC has been analyzing the equations for the hazard function describing each
predictions of several software reliability models of the three models are given in Table 2. For a
against error data obtained during the formalized more detailed description of the models the reader
testing of several large DOD and NASA software should consult Reference I.
developments. This paper will present the results

210

Table I. Mlodel Assumptions obtained, is given. To maintain ac(My:,lity tIe
projects are referred to as Prjuct s I , 2, 3 and

Podel Assumptions 4.

Jelinski- 1. The amount of delgging time between Project I
'oranda error occurrences has an exponential

distribution with an error occurrence This project was a real-time control systen for a
rate proportional to the niriher of land-based radar system written :mostlv in

remaining errors. JOVIAL/J3, with the Executive and a 't. of the

2. Each error discovered is immediately application modules written in Assembly.)
4

The
removed, thus decreasing the total data obtained for this project was froic the frormal

number of errors by one. testing of all tlie project software, includinp tie

3. Tile failure rate between errors is Executive. Formal testing bean witi til I id
constant. Integration, where the modules were tested with

Sch ick- I. The amount of debugging time between the system executive and systen data baise. Upon
.ulv'rton error occurrences has a Rayleigpc successful completion of thiis testiny a build was

distribution, formed, which then was passed on to Acceptance

2. The error rate is proportional to tile testing. After completion of Acceptance testing

number of recainin g errors and the the build entered Operational Demonstration, where
time spent in debugging. a series of increasingly demand, i ng mission

3. Fach error is imediately removed, profiles desip.ned to exerci se tie system and

thus reducin, the number of errors evaluate Its rvsponse were run. It is i.-portant to
by one. note that this system was a delonstration model,

"oklifi ed Same a Schick-Wlolverton except for: i.e. it was only designed to denonstrate that a
Schick- 2. The error discovery rate is a system neeting the user requirecents could be
,.olverton constant during a time interval and designed and built. It was never intended to

is proportional to the nuoher of become operational.

errors remaining, tice total time

previously spent in debugging, and an Project I software was developed using both

"averaged" error search time durinp top-down and bottom-up techniques and in a modular

the current debug interval. fashion. For example, module specifications were

derived from the top-down starting wi th tIe
system-level requirements. System integration was

Table 2. Podel Equations performed in incremental builds to check the

interrelationships among the software modules and
Yodel Hazard Function with the hardware. Dummy modules ana drivers were

used for testing those modules not part of a given
Jelinski- z(t) = O[N - n I build.

:1oranda
Schick- z(t) = OIN - n It Project 2

Volverton i P
i1odified z(t.) = 0[N - nIT i ti/21 Project 2 was a command and control system written

Scicick- il l 1in JOVIAL/J4.1 2
Tile software was developed in a

'.'olverton series of modifications with each modification

governed by a separate set of requirements and
where: is the failure rate developed independently. The software was

N is the number of initial errors developed functionally, i.e. the project was
n is the cumulative number of errors found divided into work units responsible for different

through the i-th debugging interval functions. Testing of each modification was

T is the cumulative time spent debugging conducted in five phases starting with Development

i through the i-tb error testing by the development personnel tco

demonstrate specific functional capabilities, test
Notes: Hazard Function is the probability of an data extremes, etc. Formal testing began after

erro ,ccuring in a given infinitesimal time Development testing with Validation and Acceptance

interval given that no error has occurred testing. Validation testing was performed by an

Freviously to that interval. The hazard function independent test group at the subsystem level and
is related to the reliability R(t) and mean time demonstrated tile approved software performance and
t, failure "TTF by the following: requirements. Acceptance testing ran a subset of

the Validation tests to demonstrate specific

R(t) = exp-'rtz(s)ds) (I) requirements. After this testing tile software

underwent final Integration testing by an

-TTF - J i(t)dt (2) independent group. This Integration testing
I) demonstrated that the applications software

correctly interfaced with the operating system and
Project Discussion system support software. Data used in this study

was from the formal testing of the Project 2
In this section a description of each of tile four applications software only.
projects, from which tie error data analyzed was

211

Project 3 Table 3. Project Characteristics

'roJec t 3 wits a large eonand and control project Project
writrtenl in .ItV I AI./.4 .2 Structural ly and 1 2 34
procedural Iy , Project 3 wa s deve loped s imi larl y to
Projec t 2. f lo teev vtr, thle Project 3 software Language JPV IAL/j3 J)VLAI./j4 JOVIAI.1J4 JoiIAL/J31
underwent an ext ra Operat ional Dlemonstrat ion test Used As semiblIy Assenbly
phase in addi tion to the five test phases thle
Priject I sof twa re underwent. Thie ipe ra t innalI S ite 8b7SOl(J 96931(J1) 115346(j) 4064(J
Tleno ittra t ion i t est i nop , wh ich heIgan a fter (Li ties 499o1(A) fl4(i6 5 A)
In tegra tinn testing, was designed to demost rate of Code
tlie software ii anl operational envi ron,'at uts imp) or N.
ani operational timteli ne and operational data. The of 1lach.
da ta obtained from this project wats fromn th~e four lnst.)
fo r iL t est phases (Validation, Acceptance,
ntoeprat ion, O peratioal Denonstrat ton) of t Ihit No. of 1 lo9 173 249

applications Software. !1odul es

Project 4 Oiperate Real-Tine Batch Ita tc 1, q c al-7, F.
"Ode

Th is pr,)j evr wos a large avionics sof tware
atppl i ca t inon prolran written in JOy IAL/J3B and Fo rma 1 o hui In- Integ ra- Tnteg ri- Inter-

Assetbly .15Tie" software cons is ted of five major Testing t egra t ion t ion t ion ill
futnct ional areas in the operational software and Accept- \'a 1 ida- Va 1ii da- Cor pat.a-
two in thle simnulat ion softLware. Test ing, of this ance t ion t ion hilite
software beg~an with liodul e Veri fication tes ting Opera- Accept- Accept- 8StiLeMs
pe rformied by the developer of each module. on~ce t mona "1ce Cnc V l)a %, i (L-
th is testing was finished, tile nodule was released Demon- 1

'pt ri- t loll

for formal test ing. Fouria I test ing began wi th s t ra- t tonalI
I n ter-11odul e Conpa tab il i ty test ing where t le t i(0i T'll, :I-

.snftware was checkedl airainst i ts functional strat-
requirements as at total unit, and which was done ion
by tile software development eru. fe
compiletion of this test ing the software system was date that al subsystem l112,1ai te'st in,: aS tw o d~lieS
given to atn independent system test group for for mnodel anal ys is tO see if tile star-t d It t
Systemsq Val ioa t i on t es t inp , where acceptance model prediction affected model pred ictahilitv.
test ing for quality control purposes was All results will he giveii tor hot.. t date,.
performed . The data obtained for this project wats Finally, opera t iiioil data wa s ova i I a 1le Ifor
from the two formal test phases and is from both Project 3 only. Thus allI rena rks made coilcerto i1
t le operational and simulation software for the model predictability for Projects I , 2 a nd 4, ire
first two versiiins (cal led blocks) of the software based on conve rsa tions with project develIor'ers an(!
system. onl relative comparisons.

Table 3 contains a sunmary of tile fiiur projects. All results will he presented in ter-.s of tI c
pred ic ted number of r cma in ing errors, i- .e t ite

hiodel Results number of predicted i nitijil errors ri is the
niunber of errors found to da te. , o t lo t a t on

The data used in this study wats from SPRs and was purposes, t lie mode Is i I I he deot ed is 1t, oI low
restricted to thonse errors that resulted in ai
change to thle software itself. The reaison for t his Je Ii ski-lIoranha ("aximum Likel1 i osl I: J"
was that althloughi unquestionably docunentat ion Jel inski--or,, inla (least S'Iiires) : W".
errors are important and should be considered Schick-l'lolverton (Ilaxiin like 1il hood): SI,
along with the other types nf software errors, a Schick-Wolverton (toeast Squares): 15.t
(onfusion in thle interpretation of thle Project 2 Ind if ied el, i ck-.'olvu rton : ,8

and 3 non-snftware errors forced the arbitrarv
decision to eliminate all non-software errors, ru-ble 4 presents a summary of thle total p r " jctL
inc ludinog documenita tiiin errors, to avoid confusion ani SUM~iL'C criticality and suhSVS ten- prod (i ciions
in interpret imp model pred ict ions. Opening dates for thle five models for Prtoject s 1-4.* Notie thlat
were used instead nf closing dates on the SPRs inidicates noliconverguliice of the cst i.1ite
because of biases introduced in closing SP~Ts idue etuiat 1005 fot that part icul at iodei 1 . i so,, Ithe
to prioritizing anti schedule demands. ntoimlie rs ill "I] " atev the iiuimber of errors I ioin1 up

through the end of formal test ing, annt thle nu;ibet
The data was organi zedi nto e rrors pe r da y and inl "()" for Project 3 is tile act iia1 nuimber tii
errors per week to see how the use of different re-maining errors.
time frames for the data affected model
predictions. Si ne the da ta wats subdivided
tunrtlonally for all four projects, it was derided
to use the date of the first SPR and the latest

212

raIlv 4. Total vs. strf,iled Prvd ictions i rror Irvdlict ions for t I,. ' h; -idleI w.hen 8-27-74
is used, as opposed to -22-71, is tht. lstart date.
The same is trtii for the !'(tS-' r eia In I ny t- rrr

ot pred ict ions for Pro ject 2, aIt liou' i here there is

SVst'I, (rit ical i tv ibsvster, onIy Yi fact,,r of 1I di t ference. however , t here are

Start Pr,1 Pred Pred instances, pjr! icularly for the LIA: and l.S).

Pj Date 'oe I lIv I.eek lay W r Ue v ode I ., when there is no significant ditierenct
be tween the rera Ii in, error pred i ct ions us i ng t lie

I1-02-73 Y! 724 690u 902 754 two different start dates. Thus it woul d appear

1IGS3] Si , 2h m 1 37 11 f ron t he total pro ject prelict ions t h.t t hie

:00SL 14 13 1 12 43 38 di f terence ii start dates affects the !axl tun

1..1-! 54 9 627 380 1326 h7S l.ike Ii hood pa ramt ter est imat ins more than t lie

LSW; 812 I 11 ' lf,477 4h14 26 9q 51 1741 Lenst Sqoares parameter eCti'ations.

3-m-73 I Y1 499 48(0 539 06

[1769 5 14 l 'lq 4 1 73 Tie daily versus weekly rmodel predictions do nit
:'O.;\ 8 7 8 i 23 2 of ter as conv inc ini, a pat tern. In most cases tlvre.

LI- 5 1 g7 832 397 1524 t,20 does not appear to he a sienifirant ditterenci

L S %,81 984 1979 4924 28028 I 1828 betweevn using tli day and wee as t he t i-e
interval, ailthougih the 1.1 and LS'. models do in

2 1,-14-71 JI - ------------- --- --- some cases show some nontrivial differences. For

12121 St- --- --------- --- --- example, f-r Pr'ject 2 usi' , the 10l-4-71 start

:10DSW 82 75 297 169 date tlie remaining error predictions for the I.Y'

LJ:1 140 37 372 188 633 373 model were 1410 usi g the day and 97 usIn), tIe

LSW 1993 75U 3891 1677 5321 2594 week. The LSIW model predicted 1319 usinp the div

1-17-72 J 72 66 ------ --- --- - and 330 usin, the week for Projert 2 with a

I 1.qI SW; 39 56 --------- --- 1-17-72 start date. I owever , in some ises thi,
"Ol)S 5 3 15 9 "weekly" prediction was g:reater thar the "dai lIv"

Li'! 99 46 211 14(483 271 prediction. 'or example, the LI model predicted

LSW 1315 330 2217 560 4224 1O r) 51 remainin)' errors using the dav iii! 87 err,r,
%s ii the week for Project I with a 3-14-73 start

3 6-01-73 J 12, A 1179 ------ --- --- date.

[21911 ft. 955 128) -

(198) "ODSI. 42 29 504 415 €5 43 on a project versus project hasis, cl. irly tli. SI'

LI) PS 23 39(I 143 R14 419 nrodel predicts m.ch higher values t01in tht. itle r

LSW 2155 685 2q83 21)23 1 1140 35 59, models, wh.il e t he l .:; model .enral Iy predicts

7-28-73 J:I 233 198 --------- --- lower values that the other iolel s. Iron the

[13071 SW Iq3 22 --------- actual rena ini n error count for 1'r,,jcct 3 it is
'OiSI: f) 1 95 39 92 92 clear that those using 7-2S-73 are rinc more

1.30 81 27 338 139 645 340) accurate than t hose usion. 6-0il-73, wi thI some

I'SiOl 1322 505 2006 1166 5966 2355 predictions being al:iost "too .od". Since, irliject
2 and 3 art. bot c,nand and contirol projects, OlI

4 5-22-73 J- would expect that the sac i, pat tern iif model

[18771 S! predictability holds for loth prij,cts. grog Tanle

.0"I)S; 7430 6328 -- 4 it does alpear that using 1-17-72 as tht start

LX! 176 74 2710 1213 'laet ,ives realistic predict ions ,,r I 1 -oIc I

LSW 9682 2202 28629 12379 exccpt the IS., noilel, whilile for tl~c 1f)-1-71 start

8-27-74 J:O 650 591 ldate only the ,>005SW and II> models give reason,0-le

115091 SW 185 625 predictions. One would hope that tie actual nunher

:0I)SW 27 22 153 473 of remaining errors was closer to the "1-17-72"

LJ:I 116 63 739 48, predictions than the "10-14-71" predictions.

LSW 234 1103 10682 3250 Project 1, being a variation of a com-iand an(
control project, would also hopeful v give the

Total Project Comparison same pattern of odel predictability, and from
Table 4 it appears that this is so. For Project

As can he seen from Table 4, there is a 4, since it is an avionic:; devlopment and thus

considerable difference In predictability when the significantly different from the other three

different start dates for model prediction a re projects, one woilId 'Ie interest ed in any

used, and this difference shows tip for all four differences in nodel predictahility. From 'able 4,

projects. For example, for Projects 2 and 4 the J! one call note that the sane general pattern appears

and SW models fall to converge using tbe dat" with respect to tie difference between tie two

testing started as the start date for model start day predictions. Hiowver, it is interestin'

predictions, while these two models did conver ,e* to note that the Project 4 predict ions seem to be

when the date all models were ready for testing liher overall than those fur the otler three

was used as the start date. Notice tie projects. Te notahie exception is the LS.; nodel

signi ficant drop ii remaining error predictions in predictlions for the 14-27-74 start date. This does

many instances between tLe use. of the two su gest (at least for the linited dati available)

different start dates. For instance, for Project 4 that the :'aximuri likelihood para:.eter estimates

there is a factor of I00i drop in the reiiaming might not be as accurate for avionics software

I

213

predict ions ,, te Leajst Shiuairvs estimates, while (:(inclIusilon.-;
just t %v reverse tio115 for t lie i'rojcct 1-
preu i ct Iins (whell thle mode ls coive r;,.d) . 1in preselltinl' the'se results,* attem;pts livt- licO
obviously inorv test iii, is needed to verify this nalie to d raw gllenrlal ronclIus Ions ahout -lod"' I
i'y pthes i s. ;red ic t ions, . jmce no to~till ly conlsjis t en t pa t tvrn~s

ave evulI ved i n most case., * general coneclusions
fri ticalijty and Subsystein Predlct ions a r,- dii f f i c il t . 'oweve r , s i nee i n most C is es

P ro ie t I a ppea rs to lev inte fror, patte'rns that
Note fm Tahble 4 t hit no cri tical ity datai was tre Ilolfi ant for the other projlect s, ana si fie
availab~le En cr P'roject 4i. In order to unde rs tanfd I-riajt I uas never lliteniild to hec,e lge rational
thle c r it icra1ity piredicet ions, i t is% i'lportant t i wit iIt- tile othe r threi were, one coo C01 Vcii'i Oattc
note th~at the(cat,it izaitcin of each urror was Project I anu ralke conclusions oin tjh' ha s is o f
fade (by tile developer) on the basis off tile degree iiiodul Preic t ions tor tile Other tiaee ipro)j-cts. Inl
it was felt that e-rror wo)ulA impedle tile excutlion torou,.itini tile fol nwia:- coIutils io, I love done
of at te.st case, fir prahi1b i t del- os t ra t i f ll of a tis o rlIy wi t 1. resfee t ti, L N- sub'ssten a dil

r elifi remelt t As canl be seen f romp Table 4, just ats criticality prlinejetionls, sinlce tie patte rn wal, so1
fo r the total project basis tile model predlet ions dol11iant for the ir,)ject 2-4 ;lredictiluls.
are general Iv. lowe'r for th~e case when tihe. date all
m~odu~les are ready for te~st ing is uisedl as tile start lie fo re stat in,, a n c onec I Ifis ionshwvr u
date thian ivhell t ile start of testingi was used ats words are nee ded about thle nonconve rellce o If tihe
tI - stLar t late. T! Te ia in e-xcept ion is tile LSV J - and SW nodelIs (and in some eases tiel l!DS

model preuict ions for Project 1. There is no mnodel), It had been hlypotihesized in I II t Iat thle
tllrvv project pattern between the "day" and 'week" reason for tis Ilonconvergellee was tilt' Size Of tihe
predict ions. Vuor exampl o, f or Project I vi ti, a data tile lnodels were applied against. Tie sizes of
1-2-73 start date, tiev criticality Piredict ions for some Of the data, palrt icularly Prolject 2, solnewilat
hie X1i, :tlilS',, LX' and LSIL tiode Is to r tie "week' nega te s ti is hlypothets is . !:,l'Eve r, thiere dile s

.ire less thlan or eqolI to Lte "ay" predlet ions. appear to lbe at pat tern of nonconvergence fllr thlose
i'uwever, tile SI, riodel Predict ions art, higher fur data sets whlere tile errolr lensity, i.e. tile numnber
tie "week" tifan iur tie "day". Nolte, however, tilat of errors found per un it t ime, is sparse and
exceplt for tile Plroject - i SWi predict ions tile Ilneven. This is especially true for Project. 4.
"week" predijetions for P'rojec ts 2 andl 3 were lower Thus it doe's appear thatli t s5ignIif icant fac tor in
thlan tile "day" predictionls. determning t ie c onve rgc nc c of tile :'a xinuil1

L ikelIi ho od estimates, since0 tile L e astL Squares
F rom Tab~le 4 it al Is o aippears thla t for tie e's L ima tes always coilvergedl, is tile rate of error
soilsysten plredictilols, as wa s ti-e cise fllr tile detect ion. This Woldc seen reasonable, since all
cr1itical ity andl total plroject p'reic t ions, (is i rig t hree basic nifiels !ni'l ic itl1y assurle a constanlt
tie da te wiht'n all noule's arc' ready for testing level of testing. A sparse uneven error detect in
tye s lgenerally non'r real istic plredict iofns t han density wuld certainly t enil to ueg'ate tihli s
iti nflg tile date testing' actually starts. Also, for assumption. Ilowever, more researcih is nfeededl to
tile subsystem predict ions tie "day" verstls "week" verify this.
predijetions sihowedi a iiciri y conbs s'.it pattern for

Projects 1-4 of tile "Week" predict inns bve log lower F rom tilt above analysis, L t n, tile f ol Io w-ing
tI.ii tile "da~y" pred ict ions , as was tlie case for gene'ral conclusions can he draiwli:

tie "roject I-i criticality predictions1, witi. tLhe
exilt l l io of P'rojet 4 ulsing tile ",-27-74 str 1. Clearly it is better to Ilse tie la teal
dote. modilles are revad y for testing tol begin model

pred ictiolls than tie dlate testing aic tual ly beg ins.
suoarizi.i)' Table 4 we see thlat in mlost cases Ltie This pattern was alImos t lilfi versal IlIy consistent
"suliv'd plredict ions ire greater tihan thle'Ilti' anonp all tile predictions.

predilct illns. N.ote., holwever , tlat for Project I thIi
Si, criticality predict ionls total less tial tit 2. For "command and cllnt rol" pro'jects sulch as
".total" predict ions flir ibothl start dates. Note projects 2 and 3. it appears tihat thle '"a \iMltin
also that theC difference between tile "Sumiicu" anll li keIi hood e'st imates, whlen tihey converge, ,,iv'
".total" predict ions is less for Project I thanlf fur more reasonable andi accurate estimates than tLhe
tne othor projects. OverallI, tieo -(),S,, rncle I Least qquares estimates.
appeared to) have tile nost coilsistent predictions,5
w1itih the Ig: and L n odills ailpearing, to have tile 3. For "avionics" projects .5siteif as Projecct 4, it
least consistent predictions. It appears thalt Aplpears thalt tile Least Squares estimates are more
gleieral ly te ilcr itical ity pred ict ions are closer ri'.sonable andi acellrate than t Ie Va ximun
to tile "total" predilct ions tin lire tile subsystem Like lihlood estiaintes. Holwever, this clonc lusion i s
pred ic t i ons. However, tils is lilt totally somewhiat suspec t d!Ice to t ill' nonellnvi.erl('nce

consistent, -ince for Project 3 tice subsystem' problems for tile P'rojtet 4 data.

predictions are closer to the total thlan tile
criticality predictions for the ?fifiSW model. Thus 4. fur tile criticality and suiisystem predictions,
one can not draw lily domi1nant patternls froo tis it appears thlat uls ifg tilt week ats tile t ile
"tiotal" versus "su'me'd" anlalysis. interval gives mofre reasonable predict io~ns than

usini- tile day as tilt time interval.

214

Data Availaibility formalized statistical manner.

At this point thle probl em of da t.i ava iahi I I ty La st , aind tiost iriport;1nt frii an 1!A;)C vi r-w non t
needs to be t relsed. All ot tile conicluisins tTll thiere Is t he needc for ;i ct-nt r.aI i zed da ,t,; i.
have heeni based opo i work oin data available to 61ierc researchers can ribtal 0 software data oft v
RAIXg; Tb is da ta !as some n ice features , such as, f orm ieces sa ry lii r 1, 1 pa rt I cIli r rv,'!airc I Thi s
thIe avai11labili1ty i n ms t case s of criticality data bastn ost permit the specification of variclus
dlesignations and tile ahili ty to restructure the categories and formats oif softw;iri. data on i-ither
data based upon various c lassi ficati oi.ls such; as it s i ole project or cross project bas is.* The most
func tiona1 sohs ystems. l oi'eve r, tilie ilar tovns have d if ficuilt problem t hat Wit faced i n t he,
sonle se ri1ous I imi tat ions.* Fi ret , the d itta is lie rfornance of this RADC study wats tile larlge ti-t.
historical in nlature. Thus much of tilie inforlaat ion reqired to tike thle da ta froin its, orIi inal c. r0
t ha t one needs to pe rform it con pi ete analysis of iriage tape fo rm, and extract t lie nvc ts -a ry
di fferent sof twitre erronr fired ict ion nodelIs, informaitioi iii the requi red forli, fohr I iput lrTitoi
pa rt i cula rlv CPITL time iot 3, was ei tier totaly L toe various models. A conputeri zed dlata base fur
lackin or of such a ciiiila tive nature as to he th is type of infurmat loll wonil! have mrvai: Iy

*unuqAble. Second , thle defjoiniions among. di fferent expiedi ted modelI anal ye i s. Also, a conihiter izl
prohec ts viar ied . For exam pIe , what one project data base would facilitate storage of more daitta

*cal led integration testing wats not what another sets, andi would help in sped fyin. uciniqiue and
project meant by integration testing. liow the consistent descriptors of t le va r 1ous data
va r ious error ca tego ries were defined, as eleI metts so th-at the "apples and orang~es" problem
aeint imuned earlier for the Project 2 and 3 data, can lie eliminmated. Finally, this data base will
d iffe1,red anolg thle four projects. Also, the four fociIi tate the use of software diata for pulrpolses
projects were not consistent fin what infomat ion other than research, most notably in tracking and
culdl he provided . For exampIlle, no criticality managing large software development projects. PADC

data wats available for Project 4. onl another is currently developing a pilot Data Analvsi s
project from whichi error data wats obitainedi but not Center fur Software (DACS) that will service all
used in this study, no infornation wats available k it]ds of software data and which will address tile
as to time clpeninim date of the SPRS; only the probhlemns desrcribed above. Clearly suich a center
closing dote was available, is needed for both research 'n softwajre errori

prediction, and in provifing 'letter method4 s fu r
ti tlIT thle obv Ious sio rt c ooIngs of thle data moni tiring software developmenuts.
available to lhAiC, it is riore than likely t hat as
miore data does becoiie availiable thle conclusions Peferences
driwii in tii anal y'sis mow htave to he S11:1blIy or
totally altered. In addition, several Patterns 1. 1 ukert , Capt Alan N.,'"A Software Reliability
wcre noticed in analysis of the RADC data, such as ;odel1iny, StuLd y" , In-hlouse Technical Report,
tile problem of -nodelI nonconvergence andi t le RADC-TP-76-247, Aug; 1976.
greater accuracy of thle '1F or Leas t Squares 2. Sukert, Alan 1%, "A Moult i-llrject Compari son of
estimates luncher certain conditions anti for certain Software Beliability !'odel1s" , 'roc . of AIAA
1t ypes oif projects, that need more research. "Computers in Aeroispace" Conference, Oct 31 - Nov
Ilowever, to performi this additional research 2, 1977, pp. 413-421.
requires bothI additional and more complete data. 3. Mloranda, P. and Jelinski, ., "Software
t o re da ta is ;alIso needed to perform more Reliability Research", M1cDonnel I lDouglas
stat ist ical ly valIi (tests for interpreting model Astr,,nautics Coi., !IDAC Paper WDIR08, 'ov 1971.

accuracy. 4. ioranda, 11. and Jelinski, Z., 'Final Report onl
Software Reliability Study", Icltonnell Douglas

Thus it becomes very clear that the limitations of Astronautics Co., MIDC Report No. 63921, Dec 1972.
*thle da,'ta available to RADC, ,and to most attempts 5. !1oranda, P., "Probabillty-Based M1odels for the

to validate software error prediction models, Failures During Burn-In Phase", Joint National !tgp
requires more compihlete, and simply more, data, CTRSA/TIS, Las Vegas N'V, Nov 1975.
This impl ies several issues, thougb. First, 6. Toranda , P., "A Comparison of Software
prec ise definitions need to be made of tile d ata Error-Pate Miodels", VcDonnell Douglas Astronattics
elements that should be collected on soitware Co.
projects so that thle maximutn benefit call be 7. Stucki, L. , !loranda, P. et al , "Final Report -
ubtimeil in terms of software error model A "ethodology for producing Reliable Software,
anAlysis. In the case of DOD, this translates Intol Vol. 1", OIcflonnell Dou~glas Astronaotics Co. , MC
the need for developsment of appropriate hlatal Item Report No. C6210, M1ar 1976.
Descript ions (DIDs) that can be used in software B. Volverton, R. V'. and Schick, r. J., "Assessment
pirocureaments to require ai contractor to) collect of Software Reliability", TRW Systems rrotup, TRW
the desired software error data in tile desired Software Series No. TihW-SS-72-D0u, Sep 1972.
formats. Second, data collection on on-going 1). Wolverton, Ray W. and Schick, Georpe J., "An
software developments must be initiatedh to pruovide Analysis of Competing Software Reliability
coriplete and accurate data of the type necessary ModelIs",0 IF. .F Transactions Oil Software
for moide~l analysis. This datai collection Is al so Enilneering, Vol. SE-4, far 0978, pp. 014-120.
necessary to analyze projects that use, for 10. Lipow, ". , "ilaxisim-LikelI I ood Vl inatlon of
example, miidern programming practices to perform Parameter,: of "I Software Time-To-FiluItre
analysis of thte benefits of stuch practices In a hDistribution", TRIJ Systems Group, Report No,

215

2260.1.9-73D-15(Rev 1), Jun 1973.
II. Lipow, tI., "Some Variations of a Nodel for
Software Time-To-Failure", TRW Systems Group,
Correspondence MIL-74-2260.1.9-21, Aug 1974.
12. Tal, Jacob, "Development and Evaluation of
Software Reliability Estimators", University of
Utah, Technical Report for Contract
F42600-76-C-0315, Report No. SRL-76-3, Dec 1976.
13. Thayer, T. A. et al, "Software Reliability
Study", TRW Systems Croup, Final Technical Report,
RADC-TR-76-238, Aug 1976.
14. Willman, H. E. Jr. et al, "Software Systems
Reliability: A Raytheon Project History", Raytheon
Co., Bedford Laboratories, Final Technical Report,
RADC-TR-77-IR8, Jun 1977.
15. Fries, !. J., "Software Error Data
Acquisition", Boeing Aerospace Co., Final
Technical Report, RADC-TR-77-15, Apr 1977.

216

US ARMY COMPUTER SYSTEMS COIMAND

SECOND SOFTWARE LIFE CYCLE MANAGEMENT WORKSHOP

VI. ATTENDEE LIST

Paul R. ALLISON James COURTNEY
U.S. Civil Service Coemission Industrial Management
4685 Log Cabin Drive Georgia Institute of Technology
Macon, Georgia 31204 Atlanta, Georgia 30329

M.A. ALLSHOUSE Bill CURTIS
USACSC GE/ISP
STOP C-70 Suite 200
Ft. Belvoir, Virginia 22060 1755 Jefferson Davis Highway

Arlington, Virginia 22202
W.A. (Gus) BAIRD

EES/RAIL Allan H. CURRY
Electronics Rch. Building AIRMICS
Georgia Institute of Technology 313 Calculator Building
Atlanta, Georgia 30332 Georgia Institute of Technology

Atlanta, Georgia 30332Victor R. BASILI

Department of Computer Science K. Roscoe DAVIS
University of Maryland OBA Dept. of College of Business Administration
College Park, Maryland 20742 University of Georgia

Athens, Georgia 30602
Mert BATCHELDER
US Army Computer Systems Command Thomas G. DeLUTIS
CSCS-POP OSU
Ft. Belvoir, Virginia 22060 8700 Duvall Street

Fairfax, Virginia 22031
L. A. BELADY
IBM Richard DeMILLO
P. 0. Box 218 Computer Science
Yorktown Heights, New York 00598 Georgia Institute of Technology

Atlanta, Georgia 30332
G. BENYON-TINKER
Dept. of Computing & Control Melvin DICKOVER
Imperial College SofTech, Inc.
180 Queens Gate 218 N. Lee, Suite 324
London SWI, England Alexandria, Virginia 23314

Barry W. BOEHM Dr. James ELSHOFF
TRW Space Systems & Energy Corp. General Motors Research Laboratorv
One Space Park Colaputer Science Department
Redondo Beach, California 90278 Twelve Mile Road

Warren, Michigan 48090
James E. BURNS
School of ICS Eduard H. ELY
Georgia Institute of Technology AIRMICS
Atlanta, Georgia 30332 313 Calculator Building

Georgia Institute of Technology
L.G. CALLAHAN Atlanta, Georgia 30332
School of Ind. & Sy. Engineering

Georgia Institute of Technology Philip ENSLOW
Atlanta, Georgia 30332 School of ICS

Georgia Institute of Technology
Randall CARRIER Atlanta, Georgia 30332Engineering Experiment St.

ERDA/TDA Kurt FISCHER
Atlanta, Georgia 30332 Computer Sciences Corporation

6565 Arlington Blvd.
Dr. Robert L. COOPER Falls Church, Virginia 22046
Office of the Secretary of Defense
Room A-658 Pentagon John T. FITCH
Washington, D.C. 20301 AMCEE/Georgia Institute of Technology

Atlanta, Georgia 30332

217

Ross A. GAGLIANO Pei HSIA
OR Group-EES University of Alabama
Georgia Institute of Technology 3300 O'Hara Drive
Atlanta, Georgia 30332 Huntsville, AL 35807

L. J. GALLAHER Doug HUEBNER
EES (GTE)
Georgia Ins'Aitute of Technology 323 Marion St.
Atlanta, Georgia 30332 Glen Ellyn, IL 60137

J. GEHL Frank S. HUNTER
Georgia State University AIRMICS
1290 Oxforl Rd., N.E. Georgia Institute of Technology
Atlanta, Georgia 30306 Atlanta, Georgia 30337

Clarence (IESE, Directo. James IRWIN
AIRMICS AIRMICS
313 Calculator Building 313 Calculator BJtlding
Georgia Institute of Technology Georgia Institute of Technology

Atlanta, Georgia 30332 Atlanta, Georgia 30332

Amrit L. GOEL Dr. Larry A. JOHNSON
427 Link Hall (LOCICON, Inc.)
Syracuse University 18 Hartwell Avenue
Syracuse, N.Y. 13210 Lexington, MA 02173

Maurice HALSTEAD Hary S. KOCH
(Purdue University) University of Rochester
228 Pawnee Dewey Hall
Lafayette, Indiana 47906 Rochester, N.Y. 14607

Max HARRIS Ken KOLENCE
(Naval Data Automation Command) Institute on Software Engineering
404 Tulip Court P.O. Box 637
Fredericksburg, '.A 22401 299 California St. 0203

Palo Alto, CA 94303
L.T. HERRMANN
SHELL OIL Klaus-Peter KOSCHEWA
P.O. Box 2012,7 AIRMICS-GIT

Houston, Texas 77025 313 Calculator Building
Atlanta, Georgia 30332

Mary Anne HERNDON
Department of Mathematic Sciences Janet M. LATTYAK
San Diego State University IBM/ASTT
San Diego, CA 92182 2401 Research Blvd.

Rockville, MD 20850

Larry C. HITCH
5949 Tyree Road Richard LEBLANC
Winston, GA 30187 School of ICS

Georgia Institute of Technology
Dan HOCKING Atlanta, CA 30318
AIRMICS
313 Calculator Building M.M. LEHMAN
Georgia Institute of Technology Department of Computing and Control
Atlanta, GA 30332 Imperial College of Science & Technology

180 Queen's Gate

John T. HOLLAND London SW72BZ England
(USAF)
54 Robinson Rd. Nate LIGOLS
Lexington, MA 02173 (D)D)

12736 Rolling Brook Dr.
George B. HOSLER Woodbridge, VA 22192
(USAC9C)

1304 Crisfield Drive M.A. LIPSCOMB

Oxon Hill, MD 20021 EES/SED
Georgia Institute of Technology
Atlanta, Georgia 30332

218

Bev LITTLEWOOD Barbara M. MOCK

City University Pentagon BD1033
St. John Street USAMSSA
London ECIV4PB England Washington, D.C.

LTC(P) James E. LOVE Jerry MOHER

USACSC (USACSC)
ATT: CSCS-VP 1210 Priscilla Lane
Fort Belvoir, VA 22060 Alexandria, VA 22308

Tom LOVE John D. MUSA
GE/ISBD Bell Telephone Laboratories
401 N. Washington Street 39 Hamilton Road

Rockville, MD 20850 Morristown, N.J. 07960

Thomas J. McCABE J. David NAUMANN

5380 Mad River Lane 761 BA
Columbia, MD 21049 University of Minnesota

271 19th Avenue, South

J.A. McCALL Minneapolis, MN 55455

(General Electric Company)
979 Bucknam Avenue F.N. PARR
Campbell, CA 95008 Department of Computing & Control

Imperial College

William McFADYEN 180 Queen's Gate
(GTE) London SW7 England
336 Drake

Bolingbrook, ILL G.L. PECKHAM
EES

Sandra A. MAMRAX Georgia Institute of Technology
Department of Computer 6 Information Atlanta, Georgia 30332
Sciences

2036 Neil Avenue Giora FELLED
The Ohio State University AIRMICS
Columbus, Ohio 43202 313 Calculator Building

Atlanta, Georgia 30332
John H. MANLEY
Applied Physics Laboratory D. Jason PENNEY

Johns Hopkins University P.O. Box 35892
Johns Hopkins Road Atlanta, Georgia 30332
Laurel, MD 20810

Ralph A. PETERSON, Jr.
Cecil E. MARTIN (Georgia State University)
Building 888 118 W. Paces Ferry Road, N.W.

AFDSDC Atlanta, Georgia 30305
Gunter AFS, Alabama 36114

John N. POSTAl(

Edith MARTIN Doty Assoc., Inc.
Computer Science & Technology 416 Hungerford Drive
EES Rockville, MD 20850
Georgia Institute of Technology
Atlanta, GA 30332 Lawrence H. PUTNAM

Quantitative Software Management, Inc.

Clair R. MILLER 1057 Waverley Way

Honeywell McLean, VA 22101
7900 West Park Drive
McLean, VA 22301 Morris W. ROBERTS

Department of Information Systems

Isao MIYAMOTO Georgia State University

c/o Computer Systems Research Labs Atlanta, Georgia 30303
Room A-307, I-I Miyazaki Yonchome
Takatsu-ku, Kawasaki City James E. RUSH

Kanagawa 213, OCLC, Inc.

Japan 2223 Carriage Road
Powell, Ohio 43065

219

P.R. SANDER Harold S. STONE
P.O. Box 35622 Electrical & Computer Energy Department
Atlanta, GA 30332 University of Massachusetts

Amherst, Massachusetts 01002

George J. SCHICK
School of Business JSFW 403 Leon STUCKI
University of Southern California Boeing Computer Services, Inc.
Los Angeles, California 90007 Mail Stop 3W-52

P.O. Box 24346
Louis SERNOVITZ Seattle, Washington 98124
USACSC AIRMICS
Georgia Institute of Technology Alan N. SUKERT
313 Calculator Building RADC/IRIS
Atlanta, Georgia 30332 Griffiss AFG, New York 13440

Alan D. SHERER Dr. Robert TAUSWORTHE
Computer Science Corporation Jet Propulsion Laboratory
6022 Technology Drive 4800 Oak Grove Drive
Huntsville, Alabama 35805 238-640

Pasadena, California 91103

LTC. Joseph T. SHINE
AIRMICS Robert THIBODEAU
313 Calculator Building General Research Corporation
Atlanta, Georgia 30332 307 Wynn Drive

Huntsville, Alabama 35805
James H. SHRAKE

Sperry Univac Corporation Rick THOMAS
1826 Summit Avenue (Georgia Institute of Technology)
St. Paul, Minnesota 55105 1172 Kendrick Road

Atlanta, Georgia 30319
P.J. SIEGMANN
School of ICS W.M. UNDERWOOD
Georgia Institute of Technology School of Information & Computer Science
Atlanta, Georgia 30332 Georgia Institute of Technology

Atlanta, Georgia 30307
Bobby B. SIMMONS
(USACSC) Dr. Joseph E. URBAN
5209 Light Street Program Management Division
Springfield, VA 22151 ATZ HTD-P

Directorate of Training Development

LuAnn SIMS Army Signal Center
785 Ashland Avenue Fort Gordon, Georgia 30905
(Georgia Institute of Technology)
Atlanta, Georgia 30307 Cyprian VICARS

AIRMICS

Robert W. SMART 313 Calculator Building
USACSC Support Group Atlanta, Georgia 30332
Fort Lee, VA 23801

Harrison M. WADSWORTH
Shelly SMITH School of ISYE
Georgia Institute of Technology Georgia Institute of Technology
Box 37064 Atlanta, Georgia 30332
Atlanta, Georgia 30332

Maj. Alfred W. WALEA
John STAUDHANMER U.S. Army, Hessa
USARO Building 200
P.O. Box 1221 Fort Sam Houston, Texas 78234
RTP, North'Carolina 27709

Dr. Claude WALSTON
Barb STEWART IBM Federal Systems Division
Honeywell, Inc. 10215 Fernwood Road
MN17-2375 Bethesda, Maryland 20034
2600 Ridgway Parkway, N.E.
Minneapolis, Minnesota 55413 Thomas E. WATKINS

AFDSDC/DMT
Gunter AFS, Alabama 36114

220

Gerald H. WEINBERG
Ethnotech, Inc.
RFD $2
Lincoln, Nebraska 68505

F.E. WILLIAMS
Industrial Management
Georgia Institute of Technology
Atlanta, Georgia 30329

Dr. Ray W. WOLVERTON
TRW Defense & Space Systems - DSSG
Office of Software Research & Technology
R2-1086
One Space Park
Redondo Beach, California 90278

Donovan YOUNG
ISYE
Georgia Institute of Technology
Atlanta, Georgia 30332

Marvin ZELKOWITZ
University of Maryland
Computer Science Department
College Park, Maryland 20742

I,I I "I.. - ----1 .. .

