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PREFACE ’

Increasing complexities and challenges of
modern systems development have set forth equally
new and urgent complexities and challenges relative
to advancements in management of computer software
life cycles.

As an agency of the United States Army
Computer Systems Command, the Army Institute for
Research in Management Information and Computer
Sciences (AIRMICS) was honored to be able to spon-
sor the Second Software Life Cycle Management Work-
shop. This forum brought together some of the most
notable contributors within the field of software
life cycle management. The collective thoughts of
this prestigious group are reflected in these pro-
ceedings and should significantly enhance and in-
fluence the course of future life cycle management
directions.

My sincerest personal appreciation is
extended to all those who participated and made
the Workshop a highly successful venture in tech-
nology exchange.

Clarence Giese
Director, AIRMICS




IN DEDICATION TO THE MEMORY OF OUR COLLEAGUE,
ROBERT McHENRY
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I11. EXECUTIVE SUMMARY

OF THE

SECOND SOFTWARE LIFE CYCLE MANAGEMENT WORKSHOP

By Victor R. Basili, Edward H. Ely and Donovan Young

The Second Software Life Cycle Management
Workshop brought together 40 Software Life Cycle
Management Technology researchers and 90 attendees
to discuss theory, practice and technology in
managing software over its life cycle.

Building on last year's progress in out-
lining, identifying and describing the phenome-
nology of software development, this year's par-
ticipants discussed progress in validating, refin-
ing, extending and exploiting the models and
metrics reported in Software Phenomenology (work-
ing papers of the Software Life Cyvcle Management
Workshop, August 1977). The main concern ex-
pressed by most participants was to foster the
emergence of a viable life cycle management
technology that could eventually allow accurate
estimation and control of time and resources
necessary to develop and support software in the
military environment.

- Topics of interest included (1) description
and understanding of various components of the
life cycle, (2) ways to delineate and analyze
relationships among component activities, (3)
milestones and other tools to help direct, coor-
dinate, understand and control research and
development in software life cycle management,
and (4) development of management tools using
the results of life cycle management research to
help plan and manage software development pro-
jects,

The Workshop was divided into Measurement
and Methodology areas, and each of these areas
was subdivided as follows:

1. Methodology

A. Theory: Identification of life
cycle components and their interre-
lationships, based on a comprehensive
view of the overall software develop-
ment process. Chairman, John H. Manley.

B. Practice: Formal definitions and
managment tools found or expected to
be useful in life cycle management
and control. Chairman, Raymond W.
Wolverton.

2. Measurement

A. Predictive Models: Models derived

*Numbers in brackets refer to page numbers fn this
document,

by analyzing the consequences of a set o>f
assumptions about the development process
calibrated by data. Chairman, Lawrence
H. Putnam.

B. Empirical Models: Models based on
analysis of data from past and ongoing
development projects. Chairman, L. A,
Belady.

Participants submitted papers in advance,
summing up their research and reporting new un-
published results. These papers appear in tL.e
present proceedings.

The two-day workshop began with short pre-
sentations by each of the participants to stim-
ulate ideas and discussions. This was followed
by a formal discussion session addressing a set
of questions (included herein) regarding topics
of interest to the Department of the Army. The
four groups outlined above met concurrently, each
discussing a subset of questions. The results
were orally presented by the four Chairmen to
the Workshop at large. Summarized versions of
workshops findings and recommendations for each
of the four topic areas prepared by Sfession
Chairmen are included at the end of this Execu-
tive Summary.

A very interesting banquet address was de-
livered by Mr. E. lLarry Dreeman, Chairman of the
National Security Team, Federal ADP Reorganiza-
tion Study, the Presidential Reorganization Pro-
ject. Mr. Dreeman's remarks centered on the pre-
liminary findings of the study team's efforts and
clearly outlined the potential sotfware and re-
lated system management challenges facing Depart-
ment of Defense.

This Workshop attracted substantative papers
from several of the most widely-cited investiga-
tors in software management. Taken as a whole
the papers demonstrate rapid progress in software
management science, especially in the field of
software cost modeling and prediction (Boehm and

Wolverton [129],Elshoff {177, Halstead [174],Nauman
and Davis [63],Parr [66], Thibodeau and Dodson[70],
Stone and Coleman{99, Velez [95], Putnam{105], and
Tausworthe [156]1%* less rapid but significant pro-
gress is shown in the field of coftware mainten-
ance and relfability estimation and control (Cur-




tis et al (166§, Goel [133]), Littlewood [146, Musa [153]

Miyamoto [195] and Sukert [209]). Some progress is
evident in formal monitoring proceddres for soft-
ware management (Dickover {52],and Basili and Zel-
kowitz [162]) and in automation of estimation tasks
(Shick and Lin(81)]), both of which were areas in
which many participants expressed intense in-
terest and hopes for further results.

The main conclusion that can be drawn from
the collection of papers is that tools for soft-
ware management and quantitative assessment of
the software process are in a state of rapid
development. Despite severe difficulties with
definitions, taxonomies and data, and despite
the fact that the consensus at the end of the
1977 Workshop was that better measurement and
definition tools were needed before successful
management tools could be developed, the papers
tended to concentrate on management tools and
measurement rather than definitions. Even the
phenomenclogical papers were written and presen-
ted with a clear view toward managerial appli-
cation. Participants agreed that the technical
papers in the Second Workshop were more evalua-
tive and less speculative than those published
last year. This was seen as a sign of real pro-
gress, but it was also agreed that additional
evaluations based on common definitions and real
data are still lacking and badly needed.

Summary of Findings

The findings of the Second Workshop include
the firm conclusions reported by the discussion
sessions and the technical papers, validated by
discussion at large among participants and atten-
dees. These findings may be summarized as fol-
lows:

1. Formal life-cycle management tools are
useful in the development phase (Boehm
and Wolverton [129],Parr [66], Stewart [88],
Velez {95], Putnam [195). Management tech-
niques for the development phase of all
kinds of software are presented by
Dickover [52]and by Naumann and Davis
{63]1. Many limitations of these methods
were discussed; for example, Naumann and
Davis cite experience that formal methods
are more useful for low-uncertainty pro-
jects than for projects involving truly
new software.

2. All classes of software should be managed
according to a common framework, but
different management procedures should be
used for each phase of the life cycle.

A specific set of life cycle phase defi-
nitions was pri.vosed by the Methodology/
Theory session group.

3. Overall life-cycle cost curves are use-
ful and promising, but not yet well vali-
dated by real data from a multiplicity of

environments. Many different sets of

assumptions give rise to different mathe-
matical forms of life-cycle curves, all
having similar goodness of fit to his-
torical data. Parr{66] and Thibodeau and
Dodson{70] offer alternatives to the
Rayleigh curve.

Reliable data for calibration of life-cy-
cle curves may not be available. In the
absence of data-based verification, des-
pite the recommendations of the previous
Workshop, a promising alternative is to
generate life-cycle curves by aggregating
data from PERT analvsis (Boehm and Wol-
verton [129]),Parr [66, Tausworthe [156).
This would allow more detailed estimation,
and would sidestep the difficulty that
empirical data cannot discriminate among
alternative agpregated life-cvcle curves.

Little progress has been made in develop-
ing automated management tools for life
cycle management of software, Real-time
decision-aiding systems would be desir-
able. Velez [95} has reported an auto-
mated way of expressing a target system
as a data base in a special language,
giving a tangible, measurable object

that exists prior to writing any target-
system code (details not revealed).
Schick and Lin[81] ceport automation of

a small but important task--interactive-
ly aiding an expert in the development of
subjective probability distribution for

a random variable. A PERT-type work-
breakdown procedure has been partially
automated (Tausworthe [156]).

Lines of code per man-month is not a sat-
isfactory indicator of productivity and
should be replaced by measures that in-
corporate quality and complexity as well
as length. Reports of successful length-
only productivity measurement (Curtis et
al [166], Halstead [174]seem to contradict
this finding; but their data did not cruss
organizational boundaries, and Halstead's
data came from an organization that en-
forces standardized coding complexity

and corrects line-of-code counts for reuse
of standard code.

Software reliability modeling is rapidly
maturing, so that models such as those of
Littlewood [146)and Musa[l53}can be used
routinely. Elshoff[172]reports success
with an (unspecified) predictive measure
for estimating the time to revise a pro-
gram.

Good life-cycle models should possess
many detailed characteristics such as
those proposed by the Methodology/Theory
session group.

wainl..




9. The key goal regarding management infor-
mation tools Is increased visibility by
the manager at all times. This implies
a local terminal able to report key pro-
ject aggregates on demand.

10. Software life cycle management problems
are people-oriented, not machine-oriented,
according to the almost-unanimous consen-
sus of participants.

11. Little or no progress has been made in
evaluating maintainability. Effective
software life spans have been impossible
to estimate in a good or explicit way.
Software seems to possess finite life
and, thus, must be redone or scrapped

: within a few years. It appears to be
; extremely unusual to pay as much as a 10

per cent premium for maintainability.

—
S

. Changes, modifications and enhancements
should not be classed and treated as
maintenance. Most participants agree,
however, that perceived software flexi-
bility (ease of accomplishing prospec-
tive modifications) should be considered
during design and procurement decisioms,
and there should a”so be a recognition
during the development phase that changes
are inevitable to keep software working
while its environment evolves.

Summary of Recommendations

The recommendations of the Second Workshop
are the firm recommendations reported by the
discussion sessions and the consensus recommenda-
tions expressed by the participants and attendees.
These recommendations are summarized as follows:

1. Researchers and managers should adopt a
standardized set of definitions of terms
in software life cycle management. A
task force or definitions committee should
be organized to work on this problem.

2. Resources should be set aside specifically

to validate, classify and test software
management models. A project should be
initjated to produce an evaluative review
or '"catalog”" of existing descriptive and
predictive life-cycle models, describing
each model and listing its assumptions,
purpose, capabilities and iimitations.

3. Research should be done to provide real-
time automated management tools for each
phase of software life cycle management,
using automated metrics and measures that
incorporate past project histories and
current project information. Automated
tools for programmers are also needed.

4, Large-scale data-based validation pro-
jects should be undertaken to validate
and refine existing and proposed models
and metrics and to help provide a basis
for standardization of data collection
and model parameters.

5. A taxonomy of software environments
should be established, and research
should be done to elucidate distinc-
tions among individualized software
environments. A well-founded taxonomy
would allow objective classifications
that are indispensable in controlling
sources of variance in statistical
studies of life cycle phenomena and
metrics.

6. Better and more detailed milestone def-
initions need to be established to pro-
vide managers with objective project
checkpoints that can be assessed quan-
titatively.

7. More transfer of technology is needed
from project to project and from or-
ganization to organization. Intensi-
fied effort is needed, not only to pro-
vide technology-transfer vehicles such
as these Workshops, but also to provide
training in methodology and tools for
software managers. Effort is also
necessary to encourage life cycle
management research projects to be
carried out in conjunction with ongoing
software development and maintenance
programs. The Measurement/Predictive
discussion group recommends that soft-
ware project managers not be asked to
experiment on their projects, but only
to allow data to be collected in a
neutral manner. Experiments should
make data available to managers to help
them manage.

Recommendat ions that (1) represent minority
opinions within the discussion groups or (1) rep
resent personal opinfons of the discussion wroup
chairmen are omitted from the above summarv hu
are included in the session summarics which 101~
low.




ITI. QUESTIONS FOR
SOFTWARE LIFE CYCLE MANAGEMENT WORKSHOP

The following are a list of questions of interest in the area of
Software Life Cvcle Management. They are meant to generate discussion
and hopefully elicit information of benefit to the community. When con-

sidering these questions, keep in mind both the process and the product.
MILESTONES:

Are there better wavs to characterize and measure progress than the
standard definitions of milestones as points in time? Can we capture the

dvnamics of the process, i.e., the interactiveness, the user's involvement?

Are there different tvpes of definitions of progress with respect to
time und with respect to classes of projects, v.p., first-time efforts,

standard developments, etc.?
BUDGET:

What should the people-loading curve be across the life cvele of a
system? What effect do different methodologies have on the shape of that
curve? How do vou decide how much do to do within a fixed budpet? What is
the effect of size and organization on the budget? What generic factors
are/should be present in software cost-estimating formulas? What arc the

techniques for measuring work accomplished versus budgeted dollars?
PRODUCTIVITY:

Are there better ways to measure group productivity than lines of code
per man month? How can one measure individual productivity or productivity
on small projects? What are the important factors for measuring productivity

during development, during modification?
TOOLS:

Where should we be going in terms of automated tools for managing
the software development process and aiding the development personnel
(Management information vs. product generating tools)? What should tools

encourage?
EMPIRICAL STUDIES:

What do we really need to know to understand the process better?
What information should be collected about the process, the product and
their fnteraction, and for what purpose? What kinds of experiments and
evaluations should be performed? How can we capture'the idea of program
complexity? How can program managers be convinced té conduct experiments

on their programs? What progress, if any, is being made on the transfer of

learning from project to project within and between organizations?




MODELS :

Give a set of criteria for good predictive models of the software
life cycle. How could statistical and analytical models be combined?
Is there a need for a "standard" set of generic models of the software

life cycle process?
METHODOLOGIES :

What are the components of an overall methodology? Where should

" standardizable” methodologies?

sof tware technology be going? Are there
What effect do different software development characteristics have on the
implementation or adaption of methodologies in practice? How do vou

characterize a methodology? How many methodologics exist in practice?
MAINTENANCE/MODIFICATION:

Is there a way to determine and measure the effective life span for
software systems? How do vou know when to redo a system? What are the
design trade-offs for maintainab{lity? At what point in the life cycle
should maintenance considerations be included? What strategy should be

used to transfer software from developer to maintainer?

MANAGEMENT:

What are the major ingredients in the management of software? What
makes it unique? What makes it different from hardware, for example?
How should the organizational structure relate to the problem to be solved
and the different interactive phases of development? To what extent should
managers be technically trained/involved? To what extent should toechnical
personnel be managerially trained/involved?, Ave there different classifica-
tions of software that require different methods of management (e.g.,
embedded vs. non-embedded)? What are thev? Are there predictable crises

in the software life cycle and what are the carly warnings?
ENVIRONMENT :

Is there anything different in the above with respect te future tech-
nological developments, e.g., small computer environments, standardized

modules? What changes need to be made? 1Is there any "scaling" effect?

GENERAL:

What parts of the above questions should be attacked first? What are
solvable in the next five years? What questions would vou like to see
asked next year? What should research efforts concentrate on? What are

the ten top software life cycle management terms that need definition?

What is your source authority for present definitions, e.g., ANSI?




...workshop in progress...

Dr. Giese in progress.

Dr. Clarence Giese (right), Direc-
tor of ATRMICS, gave the Welcoming
Address

Mr. Lawrence Putnam (2d from L.) chairs session on Pre-
dictive Measurement Models

Mr. E. larryv Dreeman (right), Chairman
of the National Securitv Team, chats
with attendees after his banquet speech

Attendees in General Session.
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SOFTWARE LIFE CYCLE MANAGEMENT: DYNAMICS THEORY

Summarized by
Dr. John H. Manley

The Johns Hopkins University
Applied Physics Laboratory
Laurel, Maryland

Abstract

The Dynamics Theory Group discussed
the conceptual relationships of software
to a system life cycle model, and
management to a composite software life
cycle model. A "standard" software life
cycle management model is proposed that is
a  modification of the generally accepted
Department of Defense system life cycle
model. The group agreed that there are at
least five distinet types of Army
management involved in a major system
software management life cycle, and linked
quantitative life cycle milestones to
elementary decision theory. Other
findings are reported that suggest several
profitable areas for Army software

management  Tresearch, A summary of a
separate report being submitted to the
Chairman of the President's  ADP

Reorganization Project National Security
Team is included as a sequel to the highly
stimulating Monday night banquet
presentation. The report recommends that
ADP resource management policymaking for
technical issues be centralized; ADP
resource acquisition management control be
functionally decentralized, and; a systems
management approach similar to that
developed for embedded computer systems be
used for ADP system life cycle management.

Introduction

The Dynamics Theory Group focused on
the theoretical aspects of software life

cycle management (SLCM). We interpreted
our workshop charter quite 1literally and
decided not to get 1involved wit the
details of management practice or tools
since it appeared during the opening
plenary session that the other three
groups would adequately cover those
aspects of SLCM. Therefore, we tried to
answer only a few of the most basic
questions that were central to our
"dynamics theory" view of the world. For
example, we tried to determine whether or
not  traditional ways of modeling the

software life cycle, to include
milestoning, could be improved upon.

We also learned from the plenary
session that the other three groups
intended to concentrate on the Full-Scale
Development phase of the Department of
Defense (DoD) system life cycle which is
primarily involved with the program
management aspects of developing software.
Therefore, the predominant activity
addressed by our group was management of
the complete software 1life cycle, with
emphasis on aspects other than the more
popular area of program management of the
software development process. It was our
feeling that the Army should be concerned
with a wider range of management problems
to include:

a, Developing better ADP and
tactical system requirements that include
software as component parts.,

b. Administering (as the buyer)

the software development technical
management process which in many cases is
carried out Dby outside contractor

organizations.

c. Developing a better under-
standing of how to economically maintain
software contained in operational systems,
both as a user and logistician.

Thus, our deliberations were directed
more from the perspective of Army
managers, be they corporate, field,
technical, program, or logistics. We then
took our firgt step into the arena of
software life cycle management methodology
theory by trying to identify life cycle
components and their relationships based
upon this Army manager perspective of the
software development process.

SLCM Management Differences
ract or Fancy?

The first specific question we
addressed was: Are there different
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classifications of software (for example, We cecommend that our proposed
embedded versus non-embedded or functional software life cycle management model shown
versus non-functional) that require in Figure 1 be used as a strawman baselire
different methods of management and, if for a follow-on research effort by the
this is true, what are they? Army to add conceptual detail to the
individual life cycle subphases. Since the
We reached the unanimous conclusion top levels of life cycle phase terminology
that: used in existing Department of Defense
documentation remain the same, that is,
Appropriate management methods Conceptual, Validation, Full-Scale
that are applicable to different Development, Production, Deployment and i
phases of the life cycle do not vary Support phases, we do not advocate
across different classes of software, replacing any existing documentation but
but, the specific management method would simply modify it as described below.
Used can be and usually 1is different
for different phases of the software Conceptual Phase
life cycle.
A hown in Figure 1, the C 1
This first finding prompted us to Phasesha: been dividig into twg sgggggggg,
closely examine the life cycle management Conceptual Requirements Definition and ]
process using a somewhat different Conceptual Requirements Validation.
perspective than has been customary in the
past. As a first step, we found that we Definition Subphase. Most front end
could use the Department of Defense (DoD) major system  requirements development
system life cycle as it is commonly activity is performed by DoD functional
understood (Reference 1) to generally fit user or field organizations for major
our individual theories of what software systems. In fact, field commands usually
life cycle management means. However, we employ relatively large groups of people
wexe: forced to make what turned outfto be (development planners) who perform this
‘ several conceptually significant type of analysis on a continuing basis.
: modifications to that "system" model in Since they necessarily possess almost a
| order to develop a useful "software" 1life purely functional systems orientation, an
! cycle management working model. ADPE (Automatic Data Processing Equipment
|
I
Defense systein Full-scale
life cycle Conceptual Validation development Production Deployment Support
major phase
.ﬁ?e";ac?e Requirements| Requirements| lidati Full-scale P . Debugai Fi . Mai Modificati
b definition validation alidation development roduction ebugging ine tunipg aintenance odification
Corporate A A A A A A
managemen ¢ (N
! decisions Program Ratification Production  Deployment Turnover Disposal
decision decision decision decision decision decision
Type of
management
F“"‘I:i'r"z"a' or Primary Advisory Advisory Advisory Advisory Advisory Advisory Advisory
Technical . . . .
new technology Primary Advisory Advisory Advisory Advisory
Program Primary Primary Primary Primary Primary Primary
Logistics Advisory Advisory Advisory Advisory Advisory Primary Advisory
Fig. 1 Software life cycle management model.




included in such systems is almost always
embedded in the classic sense of the
original definition, that is:

"...a computer can be considered
to be of the embedded variety when it
is:

1, physically incorporated
into a larger system whose primary
function is not data processing; and

2. integral to such a
system from a design, Procurement and
operations viewpoint.' (Reference 2).

It is important to note that such work
does not usually involve software
requirements analysis at this, the very
front end of the greater system life cycle
subcycle, but nevertheless always
represents the inital activity on first-
time systems,

The term 'greater system" will be
referred to subsequently and requires
clarification. In the context of embedded
computer resources in the tactical or
defense systems world, the greater system
refers to the tank, aircraft or missile
that contains the embedded computers,
computer programs and computer data as
component parts, We will show later that
this same interpretation can also Dbe
conceptually applied to greater (data
processing) systems such as supply,
gersonnel, transportation, payroll and so

orth.

Validation Subphase. The Conceptual
Requlrements Valldation subphase comes
next, It is distinct from the preceeding
subphase in that additional players are
involved during the important paper
feasibility study activities. When deemed
necessary (always for major defense
systems) these feasibility studies are
usually carried out jointly by both the
using (field) and development commands,
The development commands are three of the
Joint Logistic Commands (JLC) consisting
of the Army’s Materfiel Development and
Readiness Command (DARCOM), the Air Force
Systems Command (AFSC) and the Naval
Material Command (NMC or NAVMAT), These
conceptual system feasibility studies

seldom involve outside t tors gnd
usually have high mii ga§§c security

protection, thus being quite invisible to
both the academic and commercial software
comunities,

Thus, we see the conceptual phase as
necessarily consisting of two distinct

subphases, Conceptual Requirements
Definition and Conceptual Requirements
Validation. As will be explained later,
the changes in the participant mix from
the first subphase to the next has a
direct bearing on management of the
software life cycle.

Validation Phase

The Validation Phase 1s essentially
one in which the DoD validates the
solution to the previously validated
%reater system requirement., This 1is the

irst phase where software is generally
acknowledged explicitly as a  system
resource. Specifically, in this phase the
program characteristics of performance,
cost and schedule are validated and
refined through extensive study .and
analysis, actual hardware development, or
possibly prototype testing. The main idea
here is that hardware development and
evaluation may provide corporate
management (Service Staff, Office of the
Secretary of Defense and the Congress)
with a  better definition of program
characteristics, higher confidence that
risks have been resolved or minimized, and
a greater confidence 1in the ultimate
outcome than could the paper studies
%gnerated during the preceeding Conceptual

ase,

In this second major phase, an intial
Program Office cadre is expanded to a full
program office and, if a major system is
involved, software becomes an item of
specific interest as directed by Secretary
of Defense level instructions (for
example, see Reference 3).

Full-Scale Development Phase

During the next major life cycle
phase, the system including all of 1its
support items is designed, fabricated and
tested. The intended output 1is, as a
minimum, a preproduction system that
closely approximates the final product,
the documentation necessary to enter the
Production Phase, and the test results
that meet requirements. Since software
can be replicated precisely, this phase is
the most important with respect to the
development of quality software, and where
most of the emphasis has been placed to
date (as opposed to hardware where
production problems can be severe and very
costly).

Production Phase

When more than one copy of a system
must be produced, this phase becomes




important, especially 1if production of
copies is to be carried out over a period
of years as in the case of major defense
systems. One of the most difficult areas
of management in this phase involves
change control, with its difficulty being
directly proportional to the amount of
change activity. The same methods of
planning, development and testing should
be followed to make system changes during
production runs as were used previously in
the Full-Scale Development phase.

When producing copies of software
systems for multiple users, the same
principles apply and a quite close analogy
to hardware methods can be conceptualized.
Latent defects will emerge during this
phase and the user will continue to
require changes to the system, both in
hardware and software. Each change must
be treated as a mini full-scale
development, both in principle and in
fact, especially with regard to management
methods.

Deployment Phase

This phase has been interpreted and
defined somewhat differently by each of
the three military services and 1is

consequently difficult to describe in

of a "standard" software life cycle

terms
model, In general, this phase. includes
events generated when final copies of new

systems are actually put into operational
use in field organizations. We feel that
additional emphasis should be placed on
the management activities in this phase,
especially with respect to the problems of
transfer of development  management
responsibility to the support management
team. It is an extremely difficult
problem to determine precisely the point

when any system (or copy thereof) becomes
truly "operational." We recommend that
the Army follow up on this point with

further research to develop an effective
system (software) deployment strategy. To

provide a starting point, we offer the
following description of two proper
subphases which we feel must be included

as a minimum.

Debugging Subphase. At the beginning
of the DepJoyment Bﬂase when a new system
is produced and first handed over to the
using organization, the embedded software
will necessarily contain latent defects.
This means that the initial activity in
the phase will involve bug removal, or
simply trying to get the system to run
smoothly in the user's environment, We
call this the Debugging subphase, This
does not mean, however, that when most
bugs are removed, the system will fully
meet current user requirements, even
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to meet the

though it has been proven
specification through

original systems
extensive testing.

Fine Tuning Subphase. Thus, a second
distinct subphase we call Fine Tuning is
necessary. This involves tailoring the
system to meet current user requirements.
When one reflects on the length of time
involved for systems to pass through the
Full-Scale Development and Production
phases, it is small wonder that they
usually do not meet 'current'" user's
requirements that have evolved over a
period of perhaps 2, 5 or 10 years. Only
when this fine tuning is completed
however, should the system be allowed to
enter what we generally understand as the
Support  Phase. But, how does one
determine when this activity 4is truly
finished? Again, we recommend the Army
focus a significant research effort on
this critical problem area.

In any event, the end point of the
Deployment Phase is quite clear, the
system and all of its associated software
has been ''thrown over the wall” to the
logistics or support manager...ready or
not,

Support Phase

As has been reported in this workshop
and elsewhere, the Support Phase 1is now
regarded as the highest cost phase with
respect to the total software life cycle.
It is the one on which we need to focus
most of our attention if we ever hope to
significantly reduce software life cycle
costs. This is also the phase in which
most of the ADP or non-embedded computer
system action resides. In short, the
Support Phase 1is where most of our money
is spent and where the Army should
concentrate its research efforts at
finding ways to reduce software support
costs.,

In view of 1its importance,
Dynamics Theory Group spent most of 1its
time discussing this phase and its
software life cycle mansgement
implications. We began by defining what
activities should be carried out in the
Support Phase. We decided that software
support should include at 1least the
following continuing tasks:

the

a. Continuing correction of
latent bugs and technical deficiencies 1in
software as they are discovered.

b. Making system changes due to
modifications to equipment (hardware) that
fails, wears out or is replaced for other
technical reasons,




c. Any other external impact
forcing a software change that does not
affect user greater system functionms.

These activities are what we consider
to constitute normal software maintenance
in a quite general context.

Modifications, however, will also
occur for other reasons. The main one
being that the user requires a change to
the functional characteristics of  This
greater system, If such a modification
involves changing software (or hardware),
a quite different type of support activity
will be required.

Once the support manager begins to
invoke this last type of change process,
he is changing more than the data
processing components and, unfortunately,
this fact is not always recognized in the
professional community. Whenever the
greater system is impacted, the life cycle
begins a new subcycle that is very similar
to jumping Dback to the Full-Scale
Development phase and possibly to an even
earlier phase. Since this means that we
must reapply project management methods

through the modification development,
debugging and fine tuning processes, we
have defined this continuing cyelical
activity as a separate subphase called
System Modification.
System Disposal

Eventually, whether it be six months

or fifty years, when corporate management
decides that the greater system 1is no
longer needed by the organization, it is
removed from the active system inventory,
thus ending the software management 1life
cycle.

Management Relationships
to the
Modified Software Life Cycle

As shown in Figure 1, five distinct
types of management are involved during
the different phases and subphases of the
life cycle. Their relationships to the
phases and also to each other are briefly
described below.

Conceptual Phase Management

From this very first life cycle phase

through to the ultimate disposal of the
system, the functional manager 1is (or
should be) involved. He is the first one

to organize a team to develop the initial

greater system requirements. He oversees
his system during its development,
= PP
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receives it in the field and operates it
until its disposal. This type of
management is primarily concerned with how
the greater system performs its military
mission. All computer resources are
treated as embedded, that is, as component
parts of the greater system. The
functional manager's continuing bottor
line activity 1is to plan, develop an
employ systems as necessary to achieve hi-
operational objectives,

Whenever a new system or major system
modification concept defined by the
functional manager includes future or even
state-of-the-art technology, scientific
and engineering people are usually
employed in the Requirements Concept
Validation subphase to perform technical
feasibility studies, and later to develop
any required new technology. It is
generally recognized that day-to-day
management of scientists and engineers is
quite different than so called ‘''line
management'" of personnel who operate
greater systems in the field. There are,
in fact, different curricula in most major
universities that address engineering
management/administration separately from
business management/administration. Thus,
it must be recognized that in the early
stages of the software life cycle,
technical management as a subset of
general management is often involved.

Validation Phase Management

Once the system begins the Validation
Phase, planning for system development
begins in anticipation of an approval for
system full-scale development and eventual
production, It 1is here that the type of
program office is defined, the
determination of the type of contracts to
be used, decisions on which components
will be developed in-house and which out-
house, the type and level of expertise the

program nanager should have and so on.
Once _these preliminary matters are
determined by corporate management, a

program manager is hired and a program
office cadre assembled., This is the point
when program management as a separate type
is begun as an addition to the existing
functional area management and technical
management teams already on board.

The distinguishing feature of program

management as a type is that the program
manager must live within three basic
constraints:

a. A '"fixed" budget.

b. An "inflexible" schedule,

c. A  "constantly changing"
specification of the greater system hg %s
chartered to build,




This type of management is the one we
generally talk about at workshops and
conferences such as this, usually to the

exclusion of the other types shown in the
expanded life cycle model. This is not
reant to {mply that the program management
for a new system development or major
modification to an existing system is not
a most critical occupation. However, our
group recognized that this is definitely
not the only type of management involved
in the overall software life cycle.

Full-Scale Development
Phase Management

Sometime during the development phase,
logistics people must get involved to
insure that the greater systems being
developed will be delivered as
“"maintainable"  during the operations
phase. Once the lo%isticians get on board
as shown in Figure 1, they remain involved
with the system until
disposal,

Production/Support
ase Management

When the system has been
developed to the point that the major bugs
have been removed and it has been fine
tuned to satisfy the user, responsibility
for the system is formally transferred
from the program manager to the logistics

its ultimate

manager and the user for the remainder of
the Iife cycle. As mentioned before, the
system can be changed (sometimes quite

drastically) by the logistics manager with
no outward appearance of change to the
user in functional characteristics. When

the user requires a change, however, both
the user and the 1logistician must work
together with a project manager to

eventually develop a new system, that is,
System XYZ-Model 2, -Model 3, -Model &4 or
-Model n.

Notice that we make the distinction
between '"'program"” and 'project' managers.
The program manager is the one involved
with the original development of the
greater system, A succession of project
managers are those responsible for making
modifications to the delivered greater
system during the Support Phase of the
system life cycle. However, both program
and project managers use the same tools
and techniques to perform their important
functions.

Corporate Software Life Cycle Management

Of course, overseeing
management types mentioned

all of the
thus far are

the top-level decision makers involved
with deciding: (a) when the system can
proceed from one major phase to the next

(Defense System Acquisition Review
Council), (b) whether or not the system
will be funded from year to  year
(Congress) , (c) whether a particular
computer will be approved for purchase

(General Services Administration), (d)
whether the system is needed to fulfill
greater National security needs
(President, Secretary of Defense, Service

Secretaries, Joint Chiefs of Staff and the

Service Staffs) and so forth, We
consolidated all of these top-level
managers under the global title of

corporate management,

Army Management Implications

The implications for Army management
that stem from our life cycle model and
the concomitant management relationships
described above are contained in this
section of our report. Our discussions in
developing the modified software
management life cycle model generated many
digressions, some of which resulted in
theoretical conclusions that we felt
warranted reporting, while others did not.
Thus, the following topics are offered as
a selection of those we feel are worth
consideration by the Army as potential
topics for further research.

Life Cycle Cost Implications

Upon close examination of a variety of
Army and other automated systems, we found
that we could easily fit any kind of a
greater system into the modified life
cycle model described above. Clearly,
major defense systems such as missiles,
tanks, aircraft, command and control
systems, ships or the 1like that contain
embedded computer resources pass through
every phase we have described. For
example, one speaker commented in the
opening plenary session that the B-52
bomber's original conceptional requirement
was developed in approximately 1948 and
the system deployed in approximately 1952,
Since that time, it has undergone many
major wodifications., He stated quite
accurately that it is highly unlikely that
anyone at the beginning of that program
could have foreseen that the B-52 would
still be flying today, 30 years after
system concept definition,

The management implication of
long term continuing modifications
major system 1is that their cost over the
life cycle cannot be planned or even
speculated with any degree of reasonable
accuracy. Thus, our group concluded that:

such
to a




The planned cost of software
embedded in a system should terminate

with the 1initial entry of the system

into the System Modification subphase

of the Support Phase of its life
cycle.

From that point on, each new
modification should be treated as a
separate project to be independently
managed over a mini-life cycle.

Another example closer to the

Automatic Data Processing community is the
automated post or base supply system that
is common throughout the Department of
Defense. The Conceptual Phase for the
automated supply system began in the
1950's and the system became fully
operational in the 1960's. Since then,
the system has been in the Support Phase.
This perspective of that greater system,
that is, the automated base supply system,
indicates that it may never reach the
Disposal milestone. Thus, we have had for
the past decade a succession of both
maintenance actions and system
modifications which have been successfully
carried out as they became necessary. In
no case, however, has a totally new supply
system emerged which required starting
back at the beginning of a complete
greater system life cycle.

Embedded Computer Resource
Management Tmplications

Our finding above that the supply
system is conceptually the same as the
B-52 with respect to its embedded computer
resources has another implication. As
some of the original greater system
embedded computers wear out and have to be

replaced, they fall under the Maintenance
subphase. If the original software is
captured through emulation on replacement

machines, we have not really changed the
system in the eyes of the functional user.
However, if we make a modification to
satisfy new or emerging user requirements,
then we go through the project management
and the development life cycle as far back
as the change warrants,

Upon closer examination of the
differences between so-called embedded
computer systems and non-embedded or

general purpose automatic data processing,

we found that the basic distinctions
between these two categories were as
follows:

a. There is a definite

difference in procurement methodology in
the DoD between embedded computers and
commercially available ADPE. In fact,
this area of of such great importance it

e
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will be discussed separately as the next
major management implication titled

"Procurement Management Implications.”

b There

. is another major
difference between

embedded and non-

embedded computer systems with respect to
management, This 1is that the embedded
computer system is normally involved in

the complete life cycle model as developed
by our group. Most ADP management efforts
are only involved with the Support Phase
of the life cycle, since major ADP systems
such as supply, personnel, finance,
inventory control and so forth were
originally developed 10 to 20 years ago.
Current software development programs are
either of the maintenance or modification
variety and do not, in most cases, involve
new functional systems that begin 1in the
Conceptual Phase.

Procurement
Management Implications

We stated above that the methodology
for procuring Automatic Data Processing
Equipment (ADPE) 1is different than that
used for procuring Embedded Computer
Systems (ECS) in the Department of
Defense. Thus, the answers to the
questions of whether or not ECS or ADP
systems require different types of
management practice or different types of
life cycles are simply vyes and no,
respectively,

The distinction that has been made
between these two categories of automated
systems was a direct result of differences
in procurement regulations stemming from
the 1965 ""Brooks Act'" (Reference 4). The
Armed Services Procurement Regulation
(ASPR) 1is used to procure defense systems
and, in most cases, any computers embedded

in such systems, These are excluded from
the ADPE procurement regulations that
implement Brooks Act guidelines, as

administered by the Office of Management
and Budget (OMB) and the General Services
Administration (GSA).

Implementation of instructions
concerning '"GSA-controlled" ADP computers
on one hand, and "excluded" embedded
computers on the other, has resulted in
two separate series of directives and
instructions at the Office of the
Secretary of Defense level., The ADPE or
controlled computer procurements fall
under the purview of the Assistant

Secretary of Defense (Controller) and are

controlled under the "4000 Series"
instructions, The excluded embedded
computers fall under the jurisdiction of
the Office of the Undersecretary of




Defense for Research and Engineering.
They use the ASPR  for most ADPE
procurement actions as governed by '"5000

Series' instructions.

To complicate matters further, each
service has developed its own unique
method for implementing the 4000 and 5000
Series regulations quite independently of
one another. Hence, the answer to the
original question is es, embedded
computer systems (ECS) and ADP systems do
require different types of management, but
not different types of life cycles.

This creates a problem of
qualification for the managers involved in

the 1life cycle of the system, In no way,
however, does this change the model
presented as the procurement method is

only a policy guideline for management tc

follow.

Functional Manager Involvement

Now what did we learn from an
examination of this revised 1life cycle
model? First, we found that functional
managers must stay involved in the
software aspects of their greater systems
throughcut the life cycle which, as we

have scen, can be an extremely long time.
They cannot abrogate this responsibility.
The implication here is that there must be

an office of primary responsibility
established for that system and the
responsibility carefully transferred
between  the inevitable succession of
responsible incumbents. This
responsgibility for the functional
operation of that system must have a
continuous thread throughout the system

1ife cycle.

Software Manapement Interactions

We have shown previously that there
are really five distinct types of Army
management involved in the complete life
cycle of software that is a component part
of any automated system. The implications
of having five types of management we
found to be worth investigating in some
detail,

Our model illustrates that one of the
most difficult problems for a program
manager during the Full-Scale Development
phase of a major system is that he must
respond to the continuous management
oversight of the functional or line manger

and his changing requirements. Program
managers would always recommend, if they
had the choice, ' that the user or

functional manager stay out of their hair
during the development phase.

In addition to the curse of cthe user
and his changing requirements, the program
manager aleo has a problem 1if new
technology 1is involved in that the
technical manager will want to insure that
any innovations developed by his
scientific and engineering people are
correctly incorporated into the new
system.

But that's not all. The program
manager has yet another individual to
answer to, the logistics manager who is

looking for better and more complete

documentation, well defined system
interfaces, modularized architecture, and
evidence of the use of modern programming
practices or structured techniques so that
the system will be easy to maintain.

In spite of the problems these
overseers may impose upon the program
manager from time to time, he must
incorporate their "parochial views' into
his program plans. The fifth set of
managers, corporate, are responsible for
insuring that this is done in such a way
to best serve the interests of the overall

organization, be it the Army, Department
of Defense or the Country.

In short, we feel that this
conceptually explains both the necessity
for five interacting types of software
management and the difficulty program
managers  have in coping with this
situation during the software life cycle.

Qualifications and Exceptions

There are, of course, qualifications
and exceptions to the model presented in

Figure 1, Some of the more important ones
that should be considered are summarized
below.

Degree of Structuredness, The degree
of tIsk or novelty iIn a software
development project or its 'degree of

structuredness’ must be considered when
using the model. Those projects which are
very similar to others that have been done

beforg, or those involving modifications
to major systems generally do not require
sufficient numbers of scientists and

engineers to be employed to warrant the
special aspects of technical management,
On the other hand, a major project such as
SAFEGUARD or APOLLO would obviously
require many technical managers to handle
the large numbers of scientists and
engineers working on the system in their
attempts to advance technology state of
the art,




Project Size. Much time has been
devote n this and many other conferences
to describing differences 1in life cycle
management based upon problems of scale.
For example, a short term, one-man project
to design and develop applications
software to solve an ad hoc engineering
problem may have an entire life cycle as
short as a few months. Clearly, the five
varieties of management described above
would not all be used. However, major
defense systems that must undergo the
Defense System Acquisition Review Council
(DSARC) process normally involve all five
types of management and have life cycles
as long as 20 to 30 years.

It is sufficient to say that there is
a drastic difference between a one-year
development for a small system versus the
30-year life cycle of a major defense
system.

Software
as a

Reliability Requirements.
reliability for systems such
management information system that
operates occasionally using only
historical information is clearly not as
critical as for real time, operational
systems involving  missile guidance,
nuclear safety or life support. In
general, our group feels that, as system
software reliability requirements
increase, the need for more of the five
types of management involvement also
increases, thus 1lengthening the overall
software management life cycle.

Other qualifications
be added to those
However, during the
deliberations we could not
qualification or
negate the life cycle
described 1it.
or more could not be uncovered
more thorough analysis.

can, of course,
described above,
course of our

think of any
exception that would
model as we have
That is not to say that one
through a

SLCM Milestones

Another major topical area discussed

by the Dynamics Theory Group involved the
milestones that delimit  phases and
subphases of the software management life

cycle model described above.

Purpose and Nature of Milestones

The first question we asked ourselves
was: Who are these milestones for? Our
conclusion was that this question can have
only one logical answer. Software life
cycle management milestones should be
designed for the direct use of the five
types of management decision makers
described above.
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led to a further conclusion that
any milestone in a software life cycle
management model must be a point of
measurement at which information on the
state of the life cycle process 1is
collected for the sole purpose of serving
as an input to help solve a specific
management decision problem, It is
significant that this is in concert with
the principles of elementary decision
theory which can be used to great
advantage in improving all levels of
software life cycle management. Thus, we
emphasize that:

This

should represent the
or

Milestones
termination of specific activities

tasks and also provide a measure of
the degree of completeness (or
quality) of those activities. Hence,

they must be quantitative to be useful
to management for judging the progress

of a system through its 1life cycle.
If they are not quantitative in
nature, they simply cannot adequately

support this necessary measurement

function.

Milestone Taxonomies

A secondary question as to whether or
not there are or can be various
classifications or taxonomies of
milestones we found not to be relevant to
our other findings. Even though a manager
who is interested in controlling a budget
might use a different set of milestones
than, say, a technical manager who 1is
interested in keeping track of progress in

the engineering development of a system,
we feel that at some point in the
management hierarchy there exists (or

should exist) a single program manager who
oversees the greater system that would be
interested in all of the milestones
regardless of how they are classified.

Iterative Process Milestones

One interesting conclusion reached by
our group came after a discussion with
respect to the meaning of milestones in an
iterative environment, This environment,
for example, is one in which a computer
program keeps cycling back through 1its
development phases perhaps because it has
not passed an operational test, This
could be a computer program that has been
certified to be bug free and is in fact
running satisfactorily, but has not yet
completed the Fine Tuning subphase of the
Deployment Phase.
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The milestone that indicates 1f the computer program has not passed
termination of the Fine Tuning subphase the <criteria established for that
must have associated with it a set of milestone and is considered bad, the
metrics which are used to Jjudge the program manager can be viewed as sitting
quality of that computer program. This at Node 3, Now he is faced with multiple
quantitative data is used by a management alternatives to decide upon. For example,
decision maker to help him decide when should the program be killed? Should the
that computer program is ready to proceed program be allowed to proceed while that
into the Modification subphase of the life particular computer program is sent back
cycle. for more work and so on?
Implications of Milestones Similarly, if we take the middle case
for Decision Making at Node 2 where a computer program is

determined to be marginal based upon a set

Figure 2 {llustrates a toy model of a of milestone quantitative criteria, there
decision tree which contains three again would be several alternatives from
possible states of nature that might occur which the decision maker must choose.
at a milestone in a software 1life cycle.
Branch A indicates that the software is of When we reflect upon this type of a
good quality, Branch B fair quality, and model, we can see the striking resemblance
Branch C poor quality. to the program progress review briefings

given to corporate managers by program

If the computer program is judged to managers with xrespect to various aspects
be of good quality at that milestone, and of their programs. It is common practice
the decision maker is viewed as sitting at to show categories such as budget,
Node 1, he might be faced with only a software, hardware, organization and
single alternative with respect to what schedule in red, yellow or green colors
the pext direcsive to issue will indicating "in  trouble," ""potential
be..."continue on. problems’ or ''no problems,' respectively,

i Start of next
s;f:cc::v}f;k Path of accomplishment C:H;‘;{?r:gn Management decision taig or
activity

Problems encountered

leading to marginal software

“‘Continue on’’

—(n)

“Get more tests’

Start Over again

““Start over again”’

—(v)

Kill the Program -

Fig. 2 Software management decision tree concept.




in terms of

What this really means
and software

decisions, decision makers,

life cycle management is simply this, a
milestone is meaningless unless it has
associated wmetrics. The metrics must be
such that they provide meaningfull
information to the manager at whatever
level so that he can make appropriate
decisions, that is, choose the best

erceived alternative course of action

ased upon the information presented.

Milestone Metric Research

Now the basic question remains: How
do we measure attributes of software such
as quality or completeness at required
milestones?

Some work 1is being done in this area
but clearly not enough. An extremely
important research direction for the Army
to pursue is to develop a set of common
measurable milestones for SLCM projects.
Each milestone must have associated with
it relatively easily measured attributes
of the products delivered at the end of
the activity it stands for,

Furthermore, we must all realize that
progress of software through 1its 1life
cycle 1is not measured by time, but by
accomplishments. Thus, there must be some
description of measurable criteria with
which to determine physical evidence of
progress. These milestone accomplishment
critera must be complete enough and in
sufficient detail that the resulting
measurements will be sufficient to
generate relevent management decisions.

Postscript
Federal ADP Reorganization Study

The workshop's featured speaker, Mr,
E. Larry Dreeman, reported on the findings
of the Federal ADP Reorganization Study
National Security Team which he chaired.
Mr, Dreeman's team was chartered to
investigate ADP activities in the
Department of Defense, This was a portion
of one of 31 Federal government
reorganization projects initiated by
President Jimmy Carter, The overall
project study ogjective was to investigate
ADP in the Federal government and to
recommend inprovements %n the government's
use of information technology;
specifically, to 1improve delivery of
government service, improve acquisition
management and use of information
technology and eliminate duplication and
overlap,

Mr. evoked a

Dreeman's presentation

very active response from the audience as
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it appeared that many of the findings and,

in particular, the recommendations were
quite controversial, After the
presentation, I had the opportunity to

discuss several aspects of the study with
Mr. Dreeman in more depth that led to his
request for a formal input to the study.
A summary of my personal response to this
request is outlined below for the benefit
of those who attended Mr., Dreeman's
presentation.

Central Problem

My 18 vyears of involvement 1in the
military computer resource management area
has led me to conclude that:

of
ADP
- the
of

The primary cause of many
today's Department of Defense
management problems involves
obsolescence of the centralization
ADP management control policies.

This does not mean that I do not agree
that there should be centralized
policymaking and guidance to prevent chaos
in this 8-10 billion dollar a  year
Department of Defense business area., The
distinction I make is between policymaking
and control.

Recommended Solution

I recommend that policymaking for
technical issues continue to be
centralized in the form of a Department of
Defense ADP '"focal point" to serve as an
interface with other Agencies, the General
Services Administration, the Office of
Management and Budget and the Congress,
In addition to the single interface
function, the focal point will develop
policies and guidance in the areas such as
the following:

a. Standardized methodologies
for the acquisition of automatic data
processing equipment (ADPE).

b. Guidance
standardization
languages for use
Defense,

with respect tc
of computer programming
within the Department of

c. Guidance and standardizatior
of computer and peripheral interfaces
within the Department of Defense.

d. Standardization
elements and codes
environment

of dats
used within the ADF
in the Department of Defense.

The problem with the centralization
scheme as it exists today is that the
authority for purchasing computers and
associated software is retained at




excessively high levels. This hinders
effective equipment and software
replacement programs designed to prevent
the massive hardware obsolescense problem
accurately reported by the National
Security Team in its "Draft  Report”

(Reference 5).

Thus, I strongly recommend that:

The authority to  purchase
computers and software should be
decentralized to the maximum extent
possible subject to centralized

technical standardization policies.

Furthermore, the purchasers of
and commercially-available

in the DoD should use a
"systems approach' similar to that
used for the acquisition of weapon
systems hardware and software using
the Armed Services Procurement
Regulation and as further defined in
Air Force Regulation 800-14 (Reference
6).

ADPE
software

This means that DoD  functional
managers should have more control over the
type and quality of ADPE and software that
is used within their areas of expertise
and jurisdiction,

Relationship of ADP Management
to ECS Management

We must recognize that the reason for
the success of recent (I stress the word
recent) defense system procurements
involving embedded computer hardware and
software 1lies not in the use of the
"excluded" special-purpose, militarized
computers but in the perspective of the
program manager who is developing a system
which is not an ADP system but rather an
aircraft, tank, missile or spacecraft,
This same embedded computer system
philosophy can be profitably applied in
the ADP environment.

For example, any DoD personnel manager
should treat his ADP equipment, computer
programs, supplies, people, computer data,
and all other computer resources as but
component parts of his 'personnel system."

The ADP manager should no longer be
permitted to unilaterally dictate what
specific types of equipment are necessary

and allowable for the personnel manager to
perform his function. A more effective
role for the ADP "single manager' should
consist of providing the personnel manager
and other 1line and staff managers with
technical advice and service as requested,
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Arguments Pro and Con

Critics of the above ""systems
approach" to ADP management state that we
would soon return to chaos in the ADP
environment if we dismantle the current
strict review process which proceeds from
the lowest levels all the way up through
the General Services Administration and,
incidentally, takes nine months to a Yyear
and a half for approvals for equipment
over $50,000.

realistic and well
thought out policies developed by the
centralized ADP opolicy officials can be
enforced by existing Inspector General and
auditor organizations within the
Department of Defense., It is their job to
make sure that all policies dictated from
higher authority are, in fact, carried out
at the lowest levels of all military
organizations, Therefore, the technical
policies, such as the use of specific
higher order languages and standard data
elements and codes can be easily checked
for compliance during the normal visits to
DoD installations by these enforcement
agency representatives,

I contend that

With respect to the argument that the
costs could go out of control 4if this
centralized authority 1is not retained at
the highest levels, 1 contend that the
budgetary process itself will hold downm
costs, probably to & greater degree than
one can achieve with centralized
management control, 7The reason for this
is that the functional 1line or staff
manager receives one slice of the budget
pie as his total share for any given
fiscal year. 1If it can be proven to him
that a new piece of ADPE can recduce costs,

improve organizational efficiency,
increase functional system performance, or
has any other purpose that is worth
spending some of his limited monetary

resources on, he will probably approve it.
However, all functional managers within
that commander's organization are also
trying to get their own pieces of the same
pie slice, This adversary situation with
respect to the budgetary process is normal
in all areas at the present time to the
best of my knowledge, except for ADPE. 1
believe that if  ADPE authority for
purchase is decentralized to the lowest
functional levels possible, the normal
budgetary process will be much more
effective in reducing overall ADP costs
than does the present highly centralized
management control system.

Finally, with respect to the potential
problem of not having expert help if there
is not a strong central technical
organization that retains the authority tc
pass judgment on ADP purchases, I submit
that a very effective organization already




exists to help users with tnis functionm,
the Federal Simulation Center (FEDSIM).
This agency can be called in by any
functional manager in the Department of

Defense as a consultant to help them with
the technical problems of performance
evaluation, monitoring, equipment

tradeoffs, make or buy decisions, source
selection, competitive procurement, and so
forth.

Postscript Summary

the three basic points I
the National Security
Mr, Dreeman, &re as

In summary,
will be making to
Team Chairman,
follows:

a. A serious problem with ADP
management in the Department of Defense is
the obsolescense of Brooks Act
implementation policies.

b. I recommend that  ADPE
technical issue policymaking be
centralized to conform with the intent of
the Congress for single focal point
cognizance and reporting.

c. I recommend decentralizing
the authority to _purchase ADPE and
software such that functional managers are
given the authority to develop their ADP
resources just as they develop all other
resources at the present time.

Thus, I do not believe there are any
compelling reasons for continued
centralization for ADPE control at the

highest levels of DoD management, and
strongly request that the final National
Security Team recommendations to President

Carter be modified to incorporate these
views,
In Conclusion
The Dynamics Theory Group lists the

following conclusions and recommendations

as those deserving further consideration
by the Army in its attempt to improve
software life cycle management:

1. Appropriate management methods

that are applicable to different phases of
the life —cycle do not vary across
different classes of software. However,
the specific management method used can be
and usually is different for different
phases of the software life cycle.

2, We recommend that our proposed
software life cycle management model shown
in Figure 1 be used as a strawman baseline
for a follow-on research effort by the
Army to add conceptual detail to the
individual life cycle subphases.
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feel that additional emphasis
placed on the management
in the Deployment Phase of the
software life cycle, especially with
respect to the problems of transfer of
development management responsibility to
the support management team., We recommend
that the Army follow up on this point with
further research to develop an effective
system (software) deployment strategy.

3. We
should be
activities

4, We recommend that the Army focus a
significant research effort on the
critical problem of trying to determine

the point when software ''fine tuning" is
sufficiently complete to be able to
confidently transfer a system to the
Support Phase of its life cycle.

5. The planned cost of software

embedded in a system should terminate with
the initial entry of the system into the
System Modification subphase of the
Support Phase of its life cycle.

6. The answers to the questions of
whether or not ECS or ADP systems require
different types of management practice or
different types of life cycles are simply
yes and no, respectively.

7. Milestones should represent the
termination of specific activities or
tasks and also provide a measure of the
degree of completeness (or quality) of
those activities. Hence, they must be

uantitative to be useful to management
or judging the progress of a system

through its life cycle, If they are not
quantitative in nature, they simply cannot
adequately support this necessary
measurement function.

8. An extremely important research
direction for the Army to pursue 1is to
develop a set of common measurable
milestones for SLCM projects, Each
milestone must have associated with it

relatively easily measured attributes of
the products delivered at the end of the
activity it stands for.
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SOFTWARE LIFE CYCLE MANAGEMENT - DYNAMICS PRACTICE

Summarized by
R. W. Wolverton

INTRODUCTION

Seven position papers are given here that re-
flect the practice and experience of each partic-
ipant in the dvnamics of software life cycle
management. On the basis of his past contributions
to the field, each participant was invited by the
U.S. Army Institute for Research in Management
Information and Computer Science (AIRMICS). Along
with the position papers, the participants dealt
extemporaneously with a list of questjions offered
bv the ATRMICS technical chairman, Dr., Victor
Basili. Three of the questions were selected for
group discussion as having the most interest at
this time and the greatest potential leverage in
reducing cost and risk for future AIRMICS projects.
The findings in these three areas, management
dynamics, software tools, and life cycle mainte-
nance, are summarized here. The participants for
this session of AIRMICS 78 are:

George J. Schick, University of Southern
California

Barbara C. Stewart, Honevwell Svstems
Harold Stone, University of Macsachusetts

Ivan J. Jaszlics, Martin Marietta, Denver

Gerald Weinber, Ethnotech, Inc.
Ray W. Wolverton, TRW Systems Croup

Kenneth Kolence, Institute for Software
Engineering

In addition, all attendees (approximately 50) par-
ticipated in generating answers to the three
questions chosen bv the group (i.e., participants
plus attendees).

OVERVIEW

R. C. McHenry and J. A. Rand of IBM contrib-
uted a position paper, although circumstances
prevented its oral presentation. They believe that
the very nature of top-down development allows it
to hecome a powerful tool and technique for system
integration, thereby leading to earlier and more
complete system readiness than would otherwise be
possible. Thelr key point i1s that by fncremental
development and testing, a new discipline is

possible (termed transition management} that -
properly implemented - does not require added
development time for testing. This is an extreme-
ly powerful hypothesis for future AIRMICS study.

G. J. Schick and C. Lin of USC show quantita-
tive techniques for determining the manager's
preference for prior distributions that are needed
in software reliability models using Bavesian
probability theory. Predictive reliability models
assist the manager is estimating the number of
errors indigenous to the software system under
development and the amount of time required to
reduce the indigenous error population to an
acceptably low level. Their solution lies in an
automated question and answer dialog with the
practitioner to find his level of indifference to
alternatives that imply statistical fractiles. 1In
this way mathematically tractable estimates of
error-reduction can be made that incorporates the
practitioner's software experience and intuition.

One of the stated assumptions is that soft-
ware development is not a branch of mathematics
but rather a special form of communication, person
to person and person to machine, B. C. Stewart of
Honevwell Systems offers a new discipline for
alleviating the intrinsic difficulties of communi-
cation, particularly earlv in the design process,
that combines an analysis model and analvtical
procedures. Her methodology has the benefits of
assuring that both design goals and organizational
goals are met, providing a means to evaluate the
cost effectiveness of the organization's design
methodology: and establishing a measn by which
differing design methodologies can be quantita-
tively compared.

Harold Stone of the Universitv of Massa-
chusetts and Aaron Coleman of the ULS, Army
(CORADCOM) report on their hardware/software 1ife-
cvele model that measures the cost of stan-
dardizing the computer instruction set together
with the support tools for the military computer
family (MCF). Their results show that the GYK-41
(PDP-11), out of the set of four semifinalists in
the MCF study, ranks as the best choice for the
MCF under their criteria of comparison, Thev use
a 22-vear interval for acquisition and deplovment
of candidate MCF computers and support software -
1980, 1985, anu 1990 - with each lot deploved for
10 vears. Thelr model 1is successful in identi-
fyving the critical cost-drivers and in estimating
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their relative importance, although it is not
intended to predict dollar costs with accuracy. A
crucial factor in the 1life-cycle cost analysis is
that the greater the value of the software tool
base, the lower the cost per line of applications
code. Thelr model estimates the tool value as a
function of time to reach time varying estimates
of productivity. Their analysis shows that the
GYK-41 (PDP-11) offers a cost savings of $1.5
billion over the next lowest contender.

C. E. Valez and Ivan J. Jaszlics of Martin
Marietta, Denver, present a position paper on use-
ful evaluation tools in the design process, Their
hypothesis, supported by initial experience, is
that design languages are emerging for identfying
requirements, design components, and design speci-
fications on the basis of which coding can
commence. They believe that several design
languages apply at different levels of the design
process. One of the main purposes of a given
design language is to provide the human the
capacity for interaction beyond the first available
solution to the best solution for his requirements.
Two often neglected phases in a design language
approach are included in their potential solution:
the definition of the man-machine interface and
computer resource requirements. They believe that
an integrated software design concept is essential
to comprehensive definition of the system devel-
opment interfaces. The importance of program
design languages for the upcoming generations of
software cannot be over-emphasized.

Gerald Weinberg of Ethnotech, Inc., expresses
his views on why the expected gains from program-
ming tools have been slow in arriving, and often
disappointing when they do arrive. He believes
that the problem lies in the failure to understand
the processes by which new technology is intro-
duced. The role of training has been left by
default to computers, under the assumption they are
better or cheaper than human teachers. His
solution is to provide an overall climate for
professional learning in which both the computer
has a role and the human teacher have a role.
Probably all the tools needed to solve the
elaphant's share of the software development pro-
blems have alreadv been created, at the cost of
per'.aps a billion dollars a year, a micro-
organismic sum of money has been spent on training
pecple to use those tools. This means the practi-
tioner does not use the tools accessible to him.
We have spent billions for "tools", but not even
pennies on understanding what is needed to create
the professional technical leaders who will use
them. The answer he advocates is to take computer
training out of the realm of computers and put it
in the brains of people.

R. W. Wolverton and B. W. Boehm summarize the
more important lessons learned in developing a
cost model for TRW, The kev issues are first a
need to develop agreed-upon criteria for the value
of a software cost model, second a need to evaluate
existing and future models with respect to these
criteria, and third a need to emphasize construc-
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tive models that relate their cost estimates to
software phenomenology and project dynamics. A
potential solution to these needs is given by nine
criteria defining the goodness of a software cost
model. With respect to the emphasis on dynamics
of the AIRMICS workshop, the structural form of
the cost model can be used at RFP time (e.g., it
does not ask for input data available only after
design) and at all subsequent development cycle
reviews., As more and more verifiable input data
become available they replace the estimates, un-
known data estimates are made current, and the
manager can see the inception-to-date information
on the estimated cost to complete and time to
complete. Each cost element can be traced to a
work unit in the work breakdown structures (WBS),
and the manager can readily spot the trouble
areas through management by exception techniques.
A tie-in to the WBS is essential to show what is
(and is not) included in the resulting cost
estimate.

Kenneth Kolence, president of the Institute
for Software Engineering, stands by his position
that the field has advanced to the point where we
now have a discipline of-software physics. What
is needed to tap this resource is an understanding
of what this means relative to work performed, the
capacity to take on new work, and the use of the
metrics now observable. One then organizes the
work of software design around a forecast for the
use of facilities. The problem regarding soft-
ware acquisition scheduled for the mid 1980's is
to define in 1978 what data is really needed,
collect {it, analyze it by the laws of software
physics, and incorporate it into an action plan.

MANAGEMENT DYNAMICS

Any person who influences the irreversible
use of resources is in truth a manager whether
his title 1is that or not. Dynamics deals with
forces and their relation primarily to motion
or time behavior but sometimes also to the
equilibrium of the acts of management. The word
also implies patterns of change of growth. There-
fore, management dynamics refers to the forces
inherent in the process of leadership and their
interplay as a function of intensity and fre-
quency.

Startup Conditions

Software management has the same major
components of organization and enactment as the
successful management of any other complex human
endeavor, with two significant observed excep-
tions. First, managers do not generally recog-
nize that the software development process has
more degrees of freedom than another project of
equilivent dollar value. This unique quality
accentuates the recurrent people-oriented
difficulties associated with span of control
through not knowing preciselv what to control, by
what criteria, at what timely milestone events.

Senior managers are now in decision-making




roles by a traditional reward system based on
earlier career successes, where success is defined
by the manager's management. Often, the recog-
nition is based on earlier projects for which the
software component was smaller and the criteria

of success not clearly focused. These early pro-
jects were often managed through intuitive, and
undescribable, methodologies. Inevitably, this
situationr is accompanied by schedule slippage,
cost overrun, and low-quality field software.

To further aggravate this condition, these
(now) older in situ managers are overtaken by
events in the form of accelerating advances in
computer technology and still more degrees of free-
dom, increasingly difficult management decisions
(shifting from, say, two~valued deterministic
choices to multi-valued probabilistic choices),
and the conflict created by the need for "detach-
ment"” for the sake of overall visibility on the
one hand, and the need for "involvement" for the
sake of in-depth understanding on the other hand.
If the top-level manager does not understand the
complexity of the dynamics of the software devel-
opment process he is in difficulty. What a
manager does not understand he cannot manage. His
recourse, often adopted unconsciously, is to move
from active management to reactive administration.
He is now driven by events, and the otherwise
manageable project becomes unmanageable.

Paradoxically, too much 'understanding" of

the problem to be solved gives rise to too many
good ideas for its solution. This can lead to
expensive gold-plating at one exteme or paralysis
and delay at the other. Moreover, always under-
lying the management of software is that software
tends to be invisible unless made visible.

Second, managers do not generally recognize
that a software project is of the same nature as a
comparably sized non-software project. Software
implementation needs a capital base for estab-
lishing an overall professional working climate,
i.e., modern computing facilities, compilers,
operating systems, effective support tools, trained
people, and a support group including configuration
and data management specialists. The work is done
by human beings, not machines. Some managers do
not acknowledge that software is, in fact, manage-
able, and this leads to self-fulfilling prophecy
that it is not. Software is a thing, a product,
an asset, it is as real as hardware and can be
managed.

Ideal Management Circumstances

The ideal ingredients of software management
can be identified unambiguously. However, it
appears that some things are so obvious as to be
overlooked or not applied when they are easily
within the manager's grasp. Management should
accept and define the problem and set team goals.
He should not accept fuzzy or {ll-defined project
requirements; other non-software technical dis-
ciplines would reject many jobs readily accepted
by software managers. The most crucial step is
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for the manager to properly subdivide the problem
into manageable-sized packages of work and assign
clear lines of authority and commensurate respon-
sibility.

He must assign tasks to individuals (e.g.,
sub-project managers) and set individual goals.
One way to do this is to define subordinate
objectives that, in turn, support senior objec-
tives. The manager assigns a measurable task to
an individual for completion by a certain date at
a cost not to exceed so many dollars. Then the
manager can constructively monitor and assist the
work objectives by periodic reviews organized to
compare outputs against objectives, including cost
and schedule predictions versus actuals. A work
breakdown structure is a proven technique for
helping to avoid ambiguity. He has existing tools
to aid him in doing an effective job.

Management Aphorisms

Here is a collection of aphorisms put forth
by this group during the ATIRMICS 78 workshop.

a) Ensure that common standards apply to
all parts of a project. Ensure that
the interfaces between modules are
managed at a high enough level for the
consequences of any change to be
appreciated. No one can enforce an order
that the consequences of a change be
appreciated,

b) Simple projects can be managed by a
traditional 'scalar chain” line-staff
relationship. Complex projects, which
are more the norm, require staffing from
different disciplines. A matrix organ-
ization is required. Then conflicts
ensue between line and project; this is
called divine discontent.

c) Within a matrix organization the emphasis
in technology will shift over the use-
ful 1life of the software. The manager's
management should have a written plan to
change the organization to suit the
demands of the software evolution. If
the plan is not written down it does not
exist.

d) A manager should have a technical back-
ground and explicit training in manage-
ment skills. The manager should be
relieved of the requirement that he is
the most technically competent. He
should have the intrinsic ability to
motivate and develop loyalty. This
circumstance now meets the criteria of
Murphy's Law.

e) The ideal manager has superb management
training, but nobody notices.

f) Everything good happens early. Unmanaged
projects do not, unfortunately, have a
high infant mortality rate. To bring
an unmanaged project under ccntrol




requires changing of the project manager,
revising the project plan, developing a
new schedule and budget, and revising
objectives. Otherwise, there is nothing
to it.

g) If vou are a good leader who talks little,
they will say, when vour work is done and
your alm fulfilled, "We did this our-
selves" (Lao-Tse). This view does not
succeed east of Los Angeles.

h) Few programmers become major officers of
the company. It is probably true that
programmers have a less clearly defined
career path than most professionals.

i) To sell an idea to management, make sure
management thinks of it first, There is
nothing that cannot be accomplished if
one doesn't care who gets the credit. The
fact is that evervbody does care who gets
the credit.

i) No project will succeed if the energy is
directed toward placing blame. One can
find out if a project is beginning to be
in trouble by asking the secretary who in
the project is building a white file.

k) Hardware is built from documentation.
Software is built and then documented.
This documentation is often for an earlier
version than "as built.'" Matching the
documentation to the software as delivered
is a management goal, frequently unreal-
ized,

1) Decisions regarding hardware design and
implementation are nearly irrevocable,
whereas, the software manager can naively
operate from the false premise that he can
correct faulty decisions at a much later
stage in the development process. He gets
to have this attitude for one project
only,

m) Some human behaviorists who think about
"management success' are grounded in the
view of Machiavelianism, especially the
view that politics is amoral and that any
means however unscrupulous is justifiable
in achieving political power. Many
successful managers become politicians and
vice versa.

SOFTWARE TOOLS

A tool is something necessary in the practice
of a vocation or profession, as a scholar's books
are his tools. This section gives an overview
and minimum detail on the wide-ranging concerns of
this group on software tools.

Table T shows a few up to date software tools
for tvpical development cycle stages. Literally
hundreds more exist, If one views maintenance,
especially enhancement maintenance, as a series of
mini-development cvcles, one can apply essentially
the same tools to the sequence of planned enhance-
ments during maintenance. Under these conditions
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a glven tool may have a useful lifetime of 10 or
more years. Although this group did not consider
the quantitive aspects, sav, of the breakeven cost
for tool development, a plausible case will be
made for the cost effectiveness of soundly con-
ceived (and transportable) tools based on group
experience.

sroup Observations About Existing Tools

The key goal regarding the future of manage-
ment information tools is increased visibility bv
the project manager at any time. This goal
implies walking to a local terminal and getting
project actual versus planned expenditures,
estimates of time and cost to complete, and other
statusing indicators especially management by
exception indicators, for example, the cost from
inception to date for a particular module ex-
ceeding a predetermined threshold such as 10
percent, within a certain period.

Four steps are involved in reaching thig
goal:

a) Clearly define the management infor-
mation process in an organization.

b) State requirements for tools.

c¢) Tmplement tools starting with the areas
with the highest pavoffs.

d) Audit existing tools for current effec-
tiveness. Identify candidates for
replacements.

One premisc {s that the managment process
is driven by the product structure. Management
tools must be unified with product description
tools. The tools must be interactive in the sense
that task networks can be readily modified as the
design developes. The task partitioning problem
is drfven by the design partitioning problem and
the dvnamics of circumstances over time.

Project aggregates (i.e,, man loading versus
time and modules complete versus time) should be
made accessible on a periodic or demand time
basis. To meet this goal the actual progress
must be compared against the planned progress.
The ability to estimate needed resources from a
skeleton design {s implied.

Product design tools mav be categorized as
existing tools or advanced. Existing or avail-
able tools customarily include assemblers,
linkers, program preparation alds (editors, etc.)
debug assist tools (path tracers, etc.) and high
level language manipulators (compilers, etc.).
Advanced tools are defined to cover very high
level languages (automatic-program generators,
etc.), products to assit In creating and debupging
executive and real-time programs, products to
assist to performance analysis, and products to
assist in verifying distributed data processing
configuration,
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Table I. Existing Software Tools

Language and

Too) Name Function Life Cycle Phase _ Computer _Where

Software Cost Estimates effort for development Proposal and major Fortran

Estimating cycle in man-months, by phase milestones CDC 66XX TRW

Program

Software Analyzes requirements by Conceptual Pascal TRW

Reguirements relational data base €DC 7600

Engineering

Program

Manuscript Text is entered to a computer Conceptual and as Compass TRW

Preparation file by remote terminal and needed CDPC CYBER 74

System edited CDC 6000 Series

Program Design Oesign is written in structured Definition Fortran Caine,

Language English by six contrul constructs 360/370, 1108, farber
6XXX, DEC-10, and
SEL 932, Gordon,
PDP 10/20/11 Inc.

High-Powered Provides graphic display of Definition fortran TRW

Accounting scheduling and resource 6XXX, Calcomp

Resources information

Program

Performance and Represents systems by event Definition and Fortran TRW

Configuration logic tree's before any code development CDC 6X00, 7xC0

Analysis Model exists

Software Design Supparts design, code, test Development Jovial J73, TRW

and Verification and maintenance of DAIS (simulation tool) Cobol, Assy,

System mission software fortran
DEC 10

[ proPgsat L CONCEPTUAL DEFINITION | OEVELOPMENT | INTEGRATION

Go-Ahead Typical Development Cycle Phases Operational Demenstration




Why People Do Not Use Tools

This group believes that the topmost issues
is the need to invest time to educate and train
the practitioner. As viewed by the manager, the
payoff for investment of time is not clear and not
presently well documen*ed or understood.

Some existing tools work poorly and bias
managers (and programmers) against future use of
any new tools. Programmers do not willingly learn
about the existence of new tools accessible to
them, Progressive change is difficult to instill.
Standardized abstracts and ascession lists would be
helpful here, especially in taking away the unknown
amount of research into the structure of the tool
and its utility from questionable sources, Tools
are not easily transported; what worked well for
one project may be commercially impossible for
another project because the computer and configura-
tion or language is significantly different.

In sum, people do not use tools because:

a) They do not see a direct benefit to them,

b) They do not understand the specific tool
and perceive a high risk of failure, low
chance of success, or poor initial tool
behavior that could be blamed on them,

¢) Management has coerced the project as a
whole into using a specific tool, despite
inadequate training and planning for its
introduction. People wait for somebody
else to be first.

d) They are pressed to meet a difficult
schedule and have no time to experiment
with a new tool or the accompanying new
techniques.,

e) They perceive that the proposed tool does
not work at all in their particular
environment. On the other hand, they may
not know the tool exists,

In contrast, people do use tools because they
see a direct benefit to them, management encourages
them in various ways, they see a good chance of
success (and no alternative without it), it is new
and exciting, there is good introduction and
training strategy, they have slack time in which to
experiment, they are rewarded by management
measures for its use, and the tool is a part of a
package they use anyway.

Intrinsic Advantage of Tools

In the sense used here, tools should encourage
a standard approach to solving a recurrent problem.
The form of the output should be such that it
directly meets the informational requirements of
immediate and successive activities. For example,
a project management tool should generate reports
that directly compare the actual completion status
with the planned status without the inconvenience
of working among multiple reports.

Tools can and should encourage improved human
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performance by putting off tedious or repetitive
actions that can be done by an algorthm into a
computer. The person is then free to look for
patterns, trends, and relationships, analyze
results, and bring to bear his own creativity.

Tools can and should encourage a professional
attitude toward work. The individual can more
easily experiment and do creative tasks. He is
producing openness and visibility into an other-
wise invisible process. He can improve product
quality by systematically reducing indigenous
errors and know that he has done so. In turn, the
manager sees an effective allocation of tasks
between humans and machines according to quality
and then efficiency if quality has been assured.
More consistent results means more manageable
results,

Tool Selection Criteria

The proposed tool should automate any
repetitive part of the programming or design
task, increase productivity, accuracy, and improve
morale.

The proposed tool should automate the ex-~
traction and correlation of various data files
containing management or technical information
about the program.

The proposed tool should assist in formal-
izing software development procedures to assure
a consistent management approach and development
methodology. A tool should enable people to
operate at a higher level of competence. Some
things only a tool can do and do well, e.g.,
indicate which branches of logic have and have not
been exercised for a given level of testing and a
selected data state vector.

The proposed tool should:

a) Meet all known requirements, have
capacity for growth, accommodate a
reasonably wide application of use,
and have a long expected lifetime.

b) Be maintainable, transferable (within
technical limits of the intended
environment), and adaptable for training.

¢) Fit well with other tools already in use
or planned. 1t should compare favorably
with the capability of the tools it will
become a part of.

d) Compensate for a deficiency in resources
or organizational layout. Tt should
meet cost/benefit criteria established
by group standards.

e) Deal fairly with human factors, for
instance, by converting from arbitrary
internal units to external engineering
units understandable by a person.




LIFE CYCLE MAINTENANCE

By commonly accepted practice, the software
life cycle consists of the development phase and
the maintenance phase taken collectively.

Contract developers have been known to talk about
the "life cycle” when they really mean the 'devel-
opment cycle." This clarification must be made

at once. A typical distribution of resources for
a large-scale software project might be 10C

people for two years in the development phase and
35 people for eight years in the maintenance phase.

Basic Maintenance Circumstances

In this hypothetical case, the development
phase exists from contract go-ahead to opera-
tional demonstration and government acceptance by
DD Form 250. The maintenance phase, by definition,
is then the interval when everything that is not
development happens to the software package. Of
the 480 man-years hypothesized, 200 man-years is
expended in development and 280 man-years in main-~
tanance. Thus about 40 percent of the life cycle
resources are given over to the building (i.e.,
development) and about 60 percent to keeping the
software package in the existing state of readi-
ness, efficiency, or validity (i.e., maintenance).

With the majority of the out-of-pocket
expense to the government going into something
we all call maintenance (60 percent versus 40
percent), unquestionably the most important
factors in maintenance need to be examined
closely. Unfortunately, although maintenace is
the most visible and costly phase it is the least
documented and understood. 1In some areas of
specialization (GTE-AEL), they have a defined
life cycle of about twenty years (i.e., the life
of a telephone switch). Probably in this example,
good records of reliability and cost are avail-
able but the ability to generalize from the
specific is not productive for, say, a command
and control application.

One reason the industry does not have good
answers to strategic-planning issues in mainte~
nance is that the government writes a contract for
development and thea writes a different (annual)
contract for maintenance, often under a level of
effort (LOE). All the thinking goes into devel-
opment because the LOE type of maintenance is
managed by a policy of sequence and priority.

The maintenance contractor, who may or may not be
the developer, accepts any and all work required,
provided that each task is listed (sequenced) by
the customer's priority needs. Not a great deal
of strategic planning is needed in this case,
since the manager is reacting to his customer's
needs on a day to day plan. Usually any task
appearing on the lower 80 percent of the list is
never completed (Pareto's Law).

However, there are some things that can be
said and some intelligent steps the contract
developer and the government can itake to deal
with this circumstance.

The group considered

four key concerns with varving levels of detail:
enhancement maintenance, introduction of a new
svstem or repair of an old system, design trade-
offs for maintainability, and e¢ffects of maint-
enance of development.

Enhancement Maintenance

One way to deal with the question of pre-
dicting and measuring the effective life span
for a software system i{s to adopt the point of
view that a software system will be around for-
ever. Let us define "forever” as 20 vears.
After the original package is delivered to the
operational user, the new point of view is that
the original version will continuously evolve
under a mini-development cycle concept. Then,
everything the contractor does in development is
just repeated in the enhancement maintenance
circumstance.

Feasibility studies, tools, management pro-
gress monitoring, test and acceptance are carried
out just as in the original development. Except
now it is harder. Less core space is available
and more skill is required to shoe-horn in the
add-ons. Arbitrary style of programming may have
been replaced by structured programming or by a
program design language so the interface with
existing software is more difficult. Regression
testing requires more skill, perhaps more soph-
isticated tools, and a test rationale (perhaps
with analytic models) must be available for
judging how far back to go with the test pro-
cedures to verify mission readiness given that
changes were made to the previsously accepted
code.

Two computers may be required, one to use
online to keep the operational program going and
another to develop the product improvement in
consideration of debugging, system testing, and
operational readiness demonstration. The main
thrust of the discussion is that enhancement
maintenance can be thought of an extension of the
development process. The release of product en-
hancements is usually by block release, i.e.,
work can go on continuously but new software is
introduced incrementally.

Introduction of a New System (When to Redo an 0ld
System

If we try to deal directly with the question
of effective life span, we are faced with a
dilemma. We believe the problem cannot be solved
in a good or explicit wav. The question of tech-
nological obsolescence is not independent of
economic considerations such as life time owner-
ship, variable (and unknown) user requirements,
rapid new technology advances, and other prac-
tical considerations. Here, for example, a
contract developer could not rationally allow a
budget percentage to cover maintenance problems
of all kinds. He would not be cost competitive
in his initial proposal. Experience shows that
if an equally qualified builder is more than




10 percent higher in cost than the lowest bidder
he will most likely lose. He cannot realistically
support an argument that in the long run his
higher bid cost will prove to be lower when con-
sidered over the entire useful life time of 10 or
20 vears.

After a certain point of growth, even with
modern virtual memory machines, the svstem will
have to be redone. Or, more easily argued is that
the software has to be redone because the user
wants to put an existing program (with some en-
hancements) into a completely new computer con-
figuration: new language, new compiler, new data
storage and transfer method., aund revised proto-
cols for real-time interrupts. The question,
however, is why put an existing and mission ready
software package into a new computer configuration?
In a more general sense, why are the perceived
attributes of the existing software package not
equal to the job at hand?

There are no inherent properties that can be
used to measure (predict) the life span of a svs-
tem. Given that we can all agree that the efiec-
tive lifespan in finite, the life span can be
observed to be over when:

a) The unit cost/transaction exceeds the
projected unit cost of a new svstem by
a sufficient margin. This estimated
cost should include re-run costs due
to low reliability.

b) The function that the syvstem serves bhe-
comes obsolete within the sponsoring
organization. For example, a plant mav
be closed and a software svstem (e.¢.,
process control) designed to serve it
no longer serves anv purpose.

c) Defense measures require that a hereto-
fore benign ground svstem must be trans-
portable and the computer hardware able
to survive a particular nuclear exposure.

In short, it is time to redo the old svstem
when it is judged incrementally cost-effective to
recreate the svstem than to enhance it further.
This can oceur because radical changes in the fun-
ctional capability are required, or because the
introduction of new hardware makes possible such
a radicat change. 1t can also occur when the ef-
fort required to maintain and to enhance the ex-
isting svstem begins to grow so rapidly that {t is
cheaper to redesign ft. If a suitable measure of
complexity can be found, a plot of this measure
against svstem age is a valuable ind{cator of when
the system is approaching a state in which main-
tenance or enhancement is no longer practical.
Some evidence suggests that there is an upper
limit to the size of a change which may be made to
a system at one time, and that the original struc-
ture of the system is a severe constraint on the
nature of the functional changes which can be ac-
commodated without initiating a complete redesign.

Desipn Tradeoffs for Maintainability

Too many factors are involved in designing
for maintainabilityv to consider the issue thor-
oughly. However, some isolated findings offer
promise for future ATRMICS studies:

a) CGreater effort in the beginning (defini-
tion and design) by stressing ease of
understanding, modularity, and ease of
use (human engineering). This will be
a commercially impossible goal unless
some reward system is built into the
government procurement policy (i.e., an
incentive for doing more costlv work).

b) Fmphasis on software quality assurance
and use of all available techniques to
ensure correctness early in the software
life cvcle. The more promising relia-~
bilitv models should begin to be intro-
duced into development test and bevond.

¢} Use of machine assists to detect pro-
frammer errors.

d) Use of library maintenance and other
tools to assist in correct changes to a
provram,

¢)  dreater emphasis on adaptability.,  Fxper-
fence shows that large systems suffer
continual change in the first 12 months
and that after 2 to 5 vears tvpicallyv
verv little of the original code is left
in the svstem.
Urects of Maintenance on Development
Maintenance constiderations plav a role in all
phases of development. At each stage the product
of that stapge is examined (at everv design review,
code walk=through, unit/string testing etc.).
The results cre reviewed and a decision made as to
whether the stace should be reiterated, realizing
that deficiencies occepted at an carlier phase
will result in maintenance difficulties later.

Perhaps the onlv workable approach to reduc-
ing the cost of maintenance is for the government
to adopt a procurement policv in which the govern-
ment explicitly acknowledges maintenance as part
of the life cycle by the kind of preocurement con-
tract applied in the first place. CGood procedures
now exist for orderlv change procedures to be
built into the contract. However, the implication
usuallv is that the sponsor and the contract de-
veloper are in adversary roles. Constraint will
be needed by the povernment program office in
keeping their requirement stable, which in turn
keeps the design and test activitv stable and
matched to {ts necessary and sufficient mission
demands, no more and no less.

MODTFIED DELPHI_METHOPOLOGY

In this group we used an each-to-all Pelphi




method in working toward group analvsis of a
common problem. A position was given orally by
cach participant, and these appear as a written
paper in the next scction. Where clarification
was needed, questions were asked about a given
puosition. Basically, more information was being
transferred than there was time to dig into all
of it. Questions were posed and the group nar-
rowed them down to a somewhat manageahle list.
There were many more questions than answers,

and a fact probably worthy of notice. Research
is being applied to many problem areas, but the
more problems that are solved the more questions
are asked. Man's reach shall alwavs exceed his
grasp.

One small facet of the interesting group
dynamics that occurs when many competent people
are in the same room grappling with the same
questions is given in the next two worksheets:

a) Pre-discussicn self-rating sheet that
is concerned with the participant’'s
image of himself with respect to his
peer group before getting into substan-
tive issues. In this case the results
include this session, and John Manley's
Session I. The mean (x) and variance (s)

b) Post-discussion evaluation sheet that is
concerned with the participant's evalu-
ation of the results of two days of
group endeavor to answer questions of
interest to the administration of the
AIRMICS 78 workshop. As shown almost un-~
animously the participants see the major
problems as people-oriented and hardly
at all machine-oriented. Such a con-
clusion is probably not very surprising.
However, the worksheets may help the
reader to understand some of the comments
rising from this session. Every state-
ment made cannot help but reflect the
cultural attitude, subjective bias, and
knowledge of each participant.

is indicated graphically on each question.
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SOFTWARE LIFE CYCLE MANAGEMENT WORKSHOP
Atlanta — 21 - 22 August 1978

Code Number
1. Pre-Discussion Seif-Rating Sheet
1. As an SLCM participant, my skills in Very highly No skill
software life cycle management would skilled at all

put me about here, relative to others.

1 2 3 4 5 6 7 8

2. | think my ideas are in basic ayreement Yes, Absolutely No, not at all
with the rest of the participants.

1 2 3 4 5 6 7 8

3. | know most of the people in the SLCM Yes, No, none
workshop very well. pretty well at all

4. | have some definite ideas about what the Yes, a lot No, none

goals of the AIRMICS SLCM workshop are
and should be. 1 2 3 4 5 6 7 8
5. | have been in software life cycle management Yes No
for longer than most of the other people here. *
1 2 3 4 5 [} 7 8

6. | have a lot of experience in SLCM practice Yes No
outside of a university environment. L

7. ) am anticipating that the SLCM conference is Yes, | think No, | think it
going to be a good thing for goal-setting. it will be may be a
waste of time

1 2 3 4 5 [] 7 8

8. My approach to problem solving for this con- Yes, absolutely No, not at all
ference is best described as “‘people oriented.”

1 2 3 4 5 6 7 8

9. My approach to probiem solving for this con- Yes, absolutely No. not at all
ference is best described as “‘machine oriented.” *
1 2 3 4 5 6 7 8




| would be pleased to
attend the next AIRMICS e again.
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SOFTWARE LIFE CYC..E MANAGEMENT WORKSHOP
Atlanta — 21 - 22 August 1978

Code Number

Post-Discussion Evaluation Sheet

| feel satisfied with the __._*7

results in general. 1 2 3 4 5 6 7 the results at ali.
| got some ideas from . A

1 2 3 4 5§ 6 7 the feedback.
In general, | agreed with Vv
the ideas in the feedback. 1 2 3 4 5 6 7 in the feedback.
| could express my ideas *

1 2 3 4 3 6 7 | wanted to say.
| feel as if | really ¥
wantecd to talk to people. 1 2 3 4 S5 6 7 at all.
| think people understood
my reasons pretty well. _— A

1 2 3 4 5 6 7 reasons.
{ think the SLCM con-
ference structure could
be operational in goal t operational at all.
setting more generally. 1 2 3 4 5 6 7

i think it went too fast. 1 2 3 4 5 6 7 | think it went too slowly.

I’'m not really happy with

| didn’t learn a thing from

| disagreed with everything

| couldn’t really express what

| didn’t fee! the need to talk

| have a feeling people didn't
understand or think about my

{ don’t think this SLCM con-
ference structure could be

1 would not wish to attend
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LIFE-CYCLE MANAGEMENT MEASUREMENT MODELS: PREDICTIVE

SUMMARIZED BY

Lawrence H. Putnam

Quantitative Software 4anagement, Inc.

Current life cycle models have been inade- Plan Control Evaluate
quate to predict cost, schedule, quality and re- r
liability. Group III examined the problem from Function .. .

three perspectives: management issues, pheno-

menological behavior and reliability measurement Cost
and prediction. Time ..
f i
Central to the thinking of all was the notion - Be adaptive to actual project data and
that models were needed that provided adequate
requirements changes (i.e., must be
accuracy, faithfulness to the process, simplicity ¢ ime— i d mic)
of use, timliness, and addressed investment and e-varylng or dynamic).
management questions directly in management para- - Provide engineering accuracy (and uncer-
meters -- time, cost, manpower, cash flow, rate tainty measures until it is safe to
of progress, effectiveness and reliability. ignore them because of standards conven-
tions (e.g., building codes, electrical
The fundamental issues identified are: codes, etc.) in cost, schedule and qual-
e Lack of standard definitions and ity
metrics for the life cycle - Provide sensitivity profiles.
~ activities - Be phenomenologically based.
~ phases - Relate produce to resource comsumption

- (both statically and dynamically) and

milestones the technology being applied.

e A detailed process model is needed - Be capable of future growth.

® A catalog of existing descriptive
and predictive models is needed.

The catalog should contain:

- Be able to adequately treat known and
future system types and development i
environments.

— Description of model
- A i
ssumptlions This group was composed of: Lawrence H.
- Purpose Putnam, oi Quantitative Software Management, Inc.,
Chairman; Barry W. Boehm of TRW Defense and Space

- Capabiliti iti d tive
apa es (pos ve and negative) Systems Group; Amrit L. Goel, Syracuse University,

® A careful evaluation of existing Meir M. Lehman, Imperial College of Science & Tech-
models is needed (This should be done nology/England; Bev Littlewood, City University/
interatively with the creator to be London, England; John D. Musa, Bell Telephone Lab-
sure that important characteristics oratories; Leon G. Stucki, Boeing Computer Ser-
and nuances are not omitted in sum- vices, Inc.; Robert C. Tausworthe , Jet Propulsion
marization). Laboratory; Claude Walston, IBM Federal Systems

e A good life cycle model should Division; and Marvin V. Zelkowitz, University of

Maryland.

possess these characteristics:

- Consider all activities and phases

The Group III people found it worthwhile to
gub-divide themselves into three sub-work groups,
and to devote their attention to the special areas
of expertise in which they could deal with the
subject matter in greater depth and address a
smaller sub-set of the questions posed by the
Army in a more comprehensive manner. Three sub-
ject areas were to be explored. (1) Reliability

- Relate management parameters to
management responsibilities




Models. The people who worked on this sub-task
were John Musa, Bev Littlewood, and Amrit Goel.
(2) Life Cycle Models. The people concerned with
this sub-task were M. Lehman, Claude Walston,
Marvin V. Zelkowitz. (3) Management Issues and
the Resource Control aspects that fit within

the managerial framework. Barry Boehm, Bob
Tauseworthe and Leon Stuckl addressed these
topics.

We will consider these in the order of
Management Issues, Reliability Models and,
finally, the Life Cycle Models.

MANAGEMENT ISSUES

"he Management Issues sub-task group con-

.ed itself with the following questions:
What are the major ingredients in the management
of software? What makes it unique? What makes
it different from hardware? How should the
organizational structure relate to the problem
to be solved in the different phases of develop-
ment? To what extent should managers be tech-
nically trained? To what extent should techni-
cal personnel be managerially trained? Are there
different classifications of software that re-
quire different methods of management (For exam-
ple, embedded computers and software vs. non-em-
bedded computers and software)? Are there pre-
dictable crises in the software life cycle, and
if there are, what are the early indicators
associated with these crises?

Embedded within these broader questions then
is the overall set of fundamental questions
which we hope will be answered. They relate to
what needs to be done to improve the process.

We might define these related actions under the
broader heading of impirical studies--basically,
what we need to know to understand the process
better. What information should be collected
about the process, the product, and their inter-
action and for what purpose? What kind of
experiments should be performed? How can we cap-
ture and express the idea of program complexity?
How can program managers be convinced to conduct
esperiments on their programs? What progress is
being made on the transfer of learning from one
project to another project within an organiza-
tion and between organizations?

An integral part of management, of course,
is resource planning and control. Within this
framework are those things having to do with
performance measures that will measure the actual
progress of a project against some time base
which we commonly called the milestones and in
terms of rate of expenditure of the resources
allocated to the project (which typically are:
manpower, dollars, computer time). The ability
to relate performance measures to the consumption
of resources has been especially difficult in
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managing software products. Attempts have been
made in terms of productivity. Productivity has
been defined as total number of delivered source
lines of code divided by the effort required to
produce the code. Basically, people are unhappy
with this definition in that it doesn't really
relate to the rate of progress on the project.
It is a difficult measure and in some sense may be
counterintuitive to the common industrial inter-
pretation of rate of production used in the con-
text of the industrial production line.

The management sub-task group wrote these
managerial concerns into a group of problems in
which they identified the key factors, recommended
an approach, and gave a prognosis with respect to
rossibilities for success and the time frame in
which it might be possible to achieve the solu-
tion to the problem. The first problem identified
by this group was problem: The inadequate accur-
acy of current models. This has resulted in fre~
quent overruns. Parameters are often difficult
to estimate, and the non-standard terms and
metrics that are used in these various models
complicate interpretation.

KEY FACTORS:

There are no standard metrics and terminology
within the industry, or within major subdivisions
of the government. There are inadequate empirical
applications of the models (i.e., there is no
practical application and subsequent feed back so
that the models are selt-improving).

RECOMMENDED APPROACH:

Establish standard definitions; establish
refined data collection procedures; collect addi-
tional empirical feedback leading to refinements
and tuning of models to make them better.

TIMING:

Reasonably near term (2-3 years).

® PROBLEM: Models need to be evaluated with
respect to a set of management-ori-
ented criteria.

KEY FACTORS:

Timeliness, updatability, definition, objec-
tivity, detail, parsimony. The models should be
extensible, contractible, tailorable. These
should be a pragmatically understandable corres~
pondence between criteria. The models should
support sensitivity analyses. And the models
should be adaptive, that is, they should respond
to the project dynamics; what is actually happen-
ing should be fed in as it occurs and the model
should adapt to that in terms of the future pro-




jection it makes for the next few time intervals.

RECOMMENDED APPROACH:

There is a need to extract meaningful manage-

ment criteria from these Key Factors. Evalua-

tions should be performed to establish a standard

accepted set of terminology to develop new
classes of models that will handle a broader
range of phases and activities within the soft
ware development and maintenance process.

TIMING:

Reasonably near term (2-3 years), leading to
longer term pay-offs in the medium range
(5-7 years) period.

® PROBLEM: Current models are not well related
to the project status indicators.

KEY FACTORS:

The definition of status indicators, (for
example, CDR, or Critical Design Review).
Obsolute software standards (e.g. MS-1521 and
MS-881). Inadequate detail (e.g. work break-
down -structure, and lower level milestones).

RECOMMENDED APPROACH:

Define a more detailed life-cycle process
model (include a greater number of lower mile-
stones within the work breakdown structure).
Relate global status indicators to the detailed
process model. Update the relevant software
standards. Relate the predictive models to the
detailed process model.

TIMING:

Reasonably near term (2-3 years).

® PROBLEM: Current models are inadequate in
relating productivity and relia-
bility.
KEY FACTORS:
The terms are difficult to define. There

are no standard definitions.

RECOMMENDED APPROACH:

Develop new models relating productivity
with rellability; establish standard accepted
definitions that adequately describe in a
meaningful way productivity and relfabilfty fea-
tures that we want to see within the models.

TIMING:

Reasonably near term (2-3 years).

® PROBLEM: The current models do not adequately
cover some key issues:

- maintenance, conversion, block
updates

- the impact of new technology

KEY ISSUES:

- Understanding the underlying phenomenology of
the software building process and how to use
it in the model.

- the unknown domains of applicability of the
models.

RECOMMENDED APPROACH:

- determination of areas of applicability for
existing models (include underlying assump-
tions).

- develop additional models to cover the poorly
developed issues and areas; this implies
more detalled definitions and a greater data
collection effort.

TIMING:

Reasonably near term (2-3 years). Some areas
will require better data for significant pay offs
and this will necessitate longer periods of time
within the mid-range period (5-7 years).

® PROBLEM:

A lack of models for other areas of manage-
ment purview

- other resources (e.g. core requirements),
other situations (e.g. distributed net-
works, micro-computers)

- personnel career progression

- 1ife cycle dynamics of software as a
"Business Game" model similar to what is
now done in the large business schools
in which a complete business scenario can
be played out and development outcomes
determined depending on the input and the
actions of the players.

KEY_FACTORS

- Complete absence of models of this type

- Non-standard situations and organizational
structures within various business enti-
ties and various government organizations.




-

- subjective versus objective decision
making

- requirements for such models are not
recognized

RECOMMENDED APPROACH:

- create awareness for the value of such
models

- develop model goals, requirements,
criteria, etc.

- develop adequate models

- train management to use the models in the
decision making process

- sell management on the utility of using
such models

TIMING:

Reasonably near term (3-5 years). Prospect
for success is good in modeling quantitative
measures (e.g., life cycle dynamics, core).

RELTABILITY

The reliability subtask group address the
general set of questions concerned with models
but specifically directed their responses toward
reliability-oriented models to put together an
ordered set of criteria for good predictive
models in the reliability area.

Accordingly, the problems addressed in this
section are ordered in terms of their priority
of need.

@ PROBLTM: Need for data.

KEY FACTORS:
- A need for execution time data rather
than calendar time data.

- better planning of data collection efforts
(this should be done in conjuction with
reliability researchers)

- need cost impact data

- need data on resources used in identify-
ing and collecting the data.

RECOMMENDED APPROACH:

Detailed studies should be undertaken to:

- specify what data should be collected
and how.

- study should be reviewed by the principal
regearchers in the field.

TIMING:
Near future (2-3 years). Prospects for

success are good.

® PROBLEM: Need a comparative study of existing
reliability models.

KEY FACTORS:

- an analytical/anatomical comparison
- predictively comparison

- a physical interpretation of the para-
meters of the models

- simplicity and ease of understanding and
communicating in each of the models.

- range of applicability.

RECOMMENDED APPROACH:

A serious analytical and empirical compara-
tive study to ensure a correct interpretation of
the models and the assumptions that have used
been used in creating the models.

TIMING:

Such a comparative study should start in the
near future and possibly could be completed by
1980.

® PROBLEM: The need to validate the assumptions
used in existing models.

KEY_FACTORS:

- the independence assumption of failure
time

- assumption of an exponential distribution
being the underlying relevant statistical
distribution,

RECOMMENDED APPROACH:

A study should be carried out.

TIMING:

Near future (2-3 years). The success in this
endeavor would depend considerably on the availa-
bility of data.

® PROBLEM: Relationship between test and opera-

tional environments.




KEY_FACTORS:

- the effect on the reliability measures.

- how to construct an appropriate test
environment.

RECOMMENDED APPROACH:

Research in the fundamental areas.

TIMING/PROSPECTS:

Time of conclusion 1s not clear. This
appears to be a difficult problem.

® PROBLEM: Relationship between program struc-
ture and reliability (including
combinatoric relationships).

KEY FACTORS:

- modern programming practices

- module switching (N-th order Markov pro-
cesses)

- information-theoretic approach

RECOMMENDED APPROACH:

Further research

TIMING/PROSPECTS

Medium term (3-5 years).

® PROBLEM: What quality performance measures
are meaningful and useful? What
decisions would be supported? How
might management decisions affect
selected performance measures?

KEY FACTORS:

avallability

cost impact measure

- predict project completion

1

tradeoffs between quality measures and
time/cost.

RECOMMENDED APPROACH:

Manager survey study.

TIMING/PROSPECTS:

Near term (1-2 years). Propects for success
are good.
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® PROBLEM: Getting software reliability concepts
accepted and used.

KEY FACTORS:
~ selling--convincing managers that these
concepts and techniques are useful.
~ integration and simplification of concepts.

~ adapting reliability as a system require-
ment. One possible approach is that
reliability should be considered as one of
the elements in an evaluation of a proposal.

Other recommendations are included under the
other problem areas.
TIMING/PROSPECTS:

(2-5 years). Contingent upon success in
other problem areas.

® PROBLEM: What sort of error taxonomy is useful?

KEY FACTORS:
- need an end-use orientation classification
scheme
- need to collect data

- Is a multi-variate model needed to handle
error severity classes?

RECOMMENDED APPROACH:

Conduct a study on planned uses of error
data to develop an appropriate classification
scheme.

TIMING/PROSPECTS:
Medium term (2~5 years). Prospects reason-

ably good.

® PROBLEM: How is changing technology going
to affect software reliability
measurement?

KEY FACTORS:

- microprocessors

- networking

RECOMMENDED APPROACH:

- Augment Rome Air Development Center micro-
processor study

- initiate networking study




TIMING/PROSPECTS:

Near term (2-5 years). Start now. Prospects
are good.

The Group dealing with LIFE CYCLE SOFTWARE
MODELS AND METHODOLOGIES FOCUSED ON THREE
MAIN AREAS:

e Initial answers to the questions posed
by AIRMICS.

® Some tentative early definitionms.

® Some recommendations for further work.

Question No. 1. What needs to be known to
understand the development process better?

e activities - the relationship between the
the activities, the flow between the acti-
vities, and the products coming out of the
activities, for example design for main-
tainability.

® Measurement quantities. We need all the
classes of the measurement quantities ~-
resource consumption measures, rates of
accomplishment, or progress, and quality
metrics i.e., a capability to measure
these actual quantities and relate them to
the accomplishment that is being made,
measures of progress, quality, product-
ivity, as well as just resource consump-
tion in accomplishment of time-related
milestones.

® We need real data for each of these acti-
vities and measurable quantities.

e A full analysis is possible now. It
requires a concerted effort by a team of
experts spanning the disciplines involved
in the total 1life cycle.

Question No. 2. What information should be
collected about the process, product and their
interactions?

e The answer to this question is in part an
answer to question 1, above. But we also
need to know for what purpose ? The
answer to this would appear to be to model
and use for:

Management, control and evaluation.
e Improvement of the process.
Neither can be done adequately in order to

achieve full 1ife cycle effectiveness without an
adequate understanding.
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Qﬁestion No. 3. What experiments and evalu-
ations need to be performed?

e controlled experiments should not be used
because:
~ We cannot isolate the problem.

- Extrapolation is not possible for small
projects.

- It is too expensive.

The recommended approach should be to conduct
studies, gather data and tie back to analysis
based on common definitions and standard measure-
ments, techniques and models.

Question No. 4.
complexity?

How can we capture program

e There are a number of existing investi-
gations now ongoing.

e We should monitor these carefully.

Question No. 5. How can we convince managers
to experiment on thier software projects?

e A straight answer is —- Don't attempt to
convince them to experiment. The real
question is how to persuade managers to
collect data for others to use. (There
is a real problem here because of fear
that collecting the data will be used
against managers to show that they wasted
resources, that they didn't manage effect-
ively.)

e A partial answer to this question is:

(1) feedback. It should be a two-way
flow. Data is captured from the
managers to measure progress and to
help improve the process, then they
should get the benefit of the feed-
back to help them manage better.

e A second partial answer is:

(2) automate the collection effort; make
it painless to do so that it doesn't
interfere or take away from the effort
that is devoted to the project.

Question No. 6. What progress is being made
on the transfer of learning from project to pro-
ject and within organizations?

e Not much. But workshops, such as the
Software Life Cycle Management Workshop
and conferences on the subject of soft-
ware engineering help. At least they
bring to the forefront an awareness of a
lack of transfer of learning from project
to project, within and between organiza-
tions.




In order to leave an effective transfer of

learning, definitions and common terminology are
essential.

Question No. 7.

What are the criteria for a

good predictive model?

Parameters of the model should be:

(1) based on a standard set of defini-~
tions. For example, time, effort,
manpower, end product (quality of
source)

2
3)

parameters should be measurable.

parameters should reflect the environ-
mental needs, not product attributes.

Each model should adequately cover factors
causing variation in model output.

The set should be adequate to cover the
entire life cycle.

A clear understanding of the domain of
applicability.

Should support management activity i.e.,
management activities of planning, control
and evaluation should be able to be dis-
played against each function together with
the associated function time and cost of
the activity. The table below shows this
concept.

Plan Control Evaluate

Function

Cost . .
Time

Question No. 8,

How can statistical and ana-

lystical models be combined?

Question No. 9.

We should not concern ourselves with this.
We consider it non-issue and it would more
appropriately be left to individual re-
searchers to apply the appropriate academ-
ic tool in a solution to the problem at
hand .

Is there a need for a stan-

dard set of models?

Yes.
(@Y
(2)
(3)

to cover the life cycle.
for different environments.

to handle factors involved in the
process, e.g., resources, relifability,
growth., There would be all kinds of
time phases {n order to take care of
overlapped activities, for example.
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Question No.

10. Do we need a new set of

models, or are there already models that adequate-
ly satisfy the need?

Question No. 11.

The answer to this seems to be that there
already exist adequate models flow which
to build upon, but we need to have a cat-
aloging of these models to define their
capabilities, the underlying assumptions
and the validity of the results that they
will yield. We need an extension in the
terms of the agreed upon definitions and
we need an extension of these models to
satisfy the criteria in response to ques-
tion No. 7, that is, it should satisfy the
management activities matrix -- the plan-
ning, control, and evaluation, and should
identify the functions, the time and the
cost of each of those activities.

What are the components of

an overall software engineering methodology?

Question No. 12.

there should be a statement of objectives
how to do it

a means for quantitative evaluation (What
is being done and achieved)

manageable

executable by normal people in a normal
environment

a definition of the range of applicability

Where should software tech-~

nology be going?

Question No. 13.

In terms of products, which would include
microprocessors and their support soft-
ware, the technological thrust should be
to provide complete functional specifir .-
tions and to be able to tally a defined
set of standard interfaces.

A continuous Life Cycle in which each
activity fully supports all those that
follow.

There should be high level environmental
objectives and parameters.

"Are there standardizable

methodologies?" supposes that there is a need
within the Army and within the Department of

Defense for standardization.
taxonomy .
volved in the answer.

This implies a
There would be three dimensions in-~
The three dimensions are:
Environment

Activity (phases)

What is being addressed (for example,
cost, reliability, performance).
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Question No. 14. The effect of software
engineering requirements and environmental factors
are fundamental to this. The answer to this is
adequately covered in the responses to the earlier
questions.

Question No. 15. How can we characterize the
methodology? The answer to this is again the
answer to 13.

Question No. 16. Is there a way to measure
the effective life cycle.

. The answer appears to be yes and, as an
example, the evolution dynamics of Belady
and Lehman is an approach that provides
considerable insight.

Question No. 17. When should a system be

redone? We need both static and dynamic indicators.

e Study is needed in this area to classifyv
and catalog what these indicators should
be.

e Current practices in industry may be help-
ful in this classification action.

With respect ot the general questions, what
are the priorities? We should go after solving
those issues relating to life cycle management of
software. It appears that the number one priority
is to establish a common set of definitions. All
of the others are important but they are hindered
by a lack of required definitions. All these pro-
blems that have been identified solvable in the
next five years. Most of the ones that have been
identified and commented upon are solvable in the
next five years if the effort, direction and re-
sources are focussed on their solution.

What should next year's questions be focussed

on?
e Agreement on a common set of life cycle
components, or phases.
® Status of the current research now on/
going.
TENTATIVE DEFINITIONS
1. large: A software project is large if it

involves at last two separately managed
groups.

2. Life cycle: The life cycle of a software
project encompasses all the activities from
first formal conception until final abandon-
ment. When we refer to "life cycle" of an
activity/phase, it must always be qualified
to some extent, (for example, we should refer
to the development cycle protion of the soft-
ware life cycle).
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RECOMMENDATIONS :

e Data collection and definitions. Recommend
setting up a standing committee for soft-
ware life cycle management data collection,
involving identification and definition.
This might be done by some organization
such as AIRMICS.

e Establish a catalog of methodologies and
models. There should bhe a group to ident-
ify, to improve and to recommend adoption
of appropriate mechodologies and models.

LIST OF NEEDED DEFINITIONS:

Productivity
Life cycle phases

1
2
3. Lines of code
4 Complexity
5

Software maintenance (modification, enhance-

ment, debugging, error fixing)
Error
Reliability (quality metrics)

Man month (effort measurement)

O 0 NN

Software (system)

10. Verification, validation.

CONCLUSION:

Good progress has been made in this software
lifecycle management workshop. It is felt that
the life cycle management workship is an important
forum focussing ideas for improvement in future
action. The results observed in this workship
appear to be fruitful and encouraging with respect
te what was identified and pointed out in the
first software life cycle workshop a year ago.
Centinuation appears to be clearly indicated.




APPENDIX TO REPORT GROUP 1I1

(Submitted by Leon G. Stucki)

I. PROGRAMMING ENVIRONMENT

Background

e Paradoxically, the software community
has automated everyone's work except their own.
e Isolated tools and techniques have been
developed.
e Software is still extremely labor inten
sive.
e Productivity improvements in software
construction has not kept pace with hardware.
e Software is rapidly becoming the limit-
ing factor in large systems.
® An automated programming environment
with an integrated set of tools for the manage-
ment, control, testing, and documentation of
each stage the evolving software offers a means
for greatly reducing software costs and improv-
ing software quality.
® Tools within an automated programming
environment should include:
-~ Source language level interpreters, for
statement-at-a-time execution and tracing
- Compilers, for both program debugging
(e.g., extended syntax checking and user feedback)
and optimizing
- Cross—compilers
- Text editors, CRT terminals
- Configuration management aids
- Automated verification and testing aids
- Interactive debugging aids
® Functions provided by a programming
environment should include:
- Mechanisms for controlling and document-

ing the communication process between users-ana-

lysts~programmer s-managers.

- A central repository, with supporting
data bases, for configuration management and con-
trol of all documentation and evolving program
representations (design and code).

- Quality assurance mechanisms for check-
ing adherence to project standards.

- Automated error collection and reporting
in support of both quality assurance and config-
uration management.

- A respository of test data and test re-

sults traceable to user acceptance/test criteria.

Current State

e Exaggerated claims have been and continue
to be made for isolated tools and techniques.
e Most program development is done with

severely inadequate tools.

® A compiler is frequently equated with a
programming enviromment. (In reality, a compiler
constitutes only one small, albeit important, com-
ponent of an automated programming environment).

® Much manual drudgery still prevails in
most current programming environments,

e Errors once discovered and removed may
reappear due to the manual processes currently
employed in building today's systems.

e Management visibility into the progress
of software development is woefully inadequate.

e Experimental use is being made of selec-
tive "proven" tool and technique concepts not yet
widely available (e.g., static and dynamic ana-
lysis aids).

Future Trends

e Programming environments will be designed




Question No. 14. The effect of software
engineering requirements and environmental factors
are fundamental to this. The answer to this s
adequately covered in the responses to the earlier
quest ions.

Question No. 15, How can we characterize the
methodology?  The answer to this is again the
answer to 13.

Question No. 16. Is there a way to measure
the effective life cvele.

. The answer appears to be ves and, as an
example, the evolution dvnamics of Belady
and Lehman is an approach that provides
considerable insight.

Question No. 17. When should a system be

redone?  We need both static and dvnamic indicators.

e Study is needed in this area to classify
and catalog what these indicators should
be.

e Current practices in industry mav be help-
tul in this classification action.

With respect ot the general questions, what
are the priorities? We should go after solving
those issues relating to life ecycle management of
software. It appears that the number one priority
is to establish a common set of definitions. All
of the others are important but they are hindered
by a lack of required definitions. All these pro-
blems that have been identified solvable in the
next tive years. Most of the ones that have been
identified and commented upon are solvable in the
next five ycars if the effort, direction and re-
sources are focussed on their solution.

What should next year's questions be focussed

on?
® Agreement on a common set of life cvele
components, or phases.
® Status of the current research now on/
poing.
TENTATIVE DEFINITIONS
1. Large: A software project is large it it

involves at last two separately managed
groups.

2. Life cycle: The life cvoele of a software
project encompasses all the activities trom
first formal conception until tinal abandon-
ment. When we refer to "life cyele” of an
activity/phase, it must always be qualified
to some extent, (for example, we should refer
to the development cycle protion of the soft-
ware life cycle).
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RECOMMENDATIONS ©

e DNata collection and definitions. Recommend
setting up a standing committee for soft-
ware life cycle management data collection,
involving identification and definition.
This might be done by some organization
such as AIRMICS.

e Establish a catalog of methodologies and
models.  There should be a group to ident-
ifv, to improve and to recommend adoption
of appropriate methodologies and models.

1LIST OF NEEDED DEFINITIONS:

1. Productivity

2. L.ife eycle phases

3. Lines of code

4. Complexity

5. Software maintenance (modification, enhance-

ment, debugging, error fixing)
6. Error
7. Reliability (quality metrics)
8. Man month (effort measurement)
9. Software (system)

10. Verification, validation.

CONCLUSTON:

Good progress has been made in this software
lifecycle management workshop., It is felt that
the life cycle management workship is an important
forum focussing ideas for improvement in future
action. The results obscerved in this workship
appear to be fruitful and encouraging with respect
to what was identified and pointed out in the
first software life cvele workshop a vear apo.
Cont inuation appears to be clearly indicated.
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and selectively implemented.

e Hardware manufacturers will provide
machine/language dependent environments.

e Techniques will developed to isolate lan-
guage and operating system dependencies as much
as possible (e.g., attempts will be standardize
the interfaces).

® HOL standardization within DOD will make
it possible, for the first time, to achieve a rich
program development environment accessible to
larger numbers of people. ‘

e The "National Software Works" concept will
provide valuable knowledge on the success and
failure of many of these concepts in a distribut-
ed enviromment.

e Additional textual and graphical tech-
niques and automated tools will be developed for
representing, documenting, and controlling the
iterative nature of early phases of program de-
velopment (i.e., requirements and design).

® An integrated framework will be develop-
ed for applying numerous analytical techniques
(e.g., consistency and completeness of testing,
formal proof techniques for selected system
components, static/dynamic/symbolic analysis of
subsystems) .

e The theory of testing will receive more
academic attention than in the past.

e Improved techniques will facilitate the
certification and recertification process of

future systems.

II. LANGUAGES AND ARCHITECTURE

Background

e Testing has historically been and cont-
inues to be very costly.

® The concept of built-in test circuitry in
hardware is widely acceptable and increasing in
application. Similar approaches can and should
be applied to software.

e Top down elaboration and refinement of
acceptance/test criteria can be generated in par-

allel with system development.

e Acceptance/test criteria when incremen-
tally developed and included in source code via
special comments (or test assertions) have been
shown in experiment to Improve software quality
and reduce testing time.

o This concept can be used in conjunction
with both dynamic run-time analysis systems and

formal verification systems.

Current State

e Several prototype systems have been built
or designed; however, none are currently opera-
tionally used.

Examples:

- Stucki's experiments with a PL/1l proto-
type system at UCLA.

- University of Texas Gypsy programming
system.

e Current language work on DOD-1 has pro-
vided "an opening" through a very fuzzy assertion
concept.

- An assertion statement has been pro-
vided in the language, but its syntax and seman-

tics and use are unspecified at this time.

Future Trends

e Further procedures will be developed for:
- specifying acceptance/test criteria
during the system requirements phase, and
- refining the acceptance/test criteria
throughout the subsequent design and construction
phases.

e Language work will provide new and more
powerful constructs for expressing self-test and
monitoring concepts.

e Automated tools employing these concepts
will be able to greatly improve the testing and

maintenance processes.

ITI. FRAMEWORK FOR MODELLING AND STMULATION

Background

e Modelling and simulation have been used

widely by various analytical disciplines.

e The models of the various disciplines




have generally been incompatible.

@ There is a need to provide a framework and
data base mechanism for controlling and accumulat-
ing knowledge of a given system gained through
various modelling and simulation activities.

¢ Executive and utility functions include:

- Model/Data input preparation and storage

- Assistance in the creation and mainten-
ance of interfaces between models

-~ Assistance with output report prepara-

tion

Current State

o The Air Force is currently studying the
requirements for at least one such system (i.e.,
General Modelling System project under ICAM).

e Other industry efforts in CAD/CAM (com-
puter aided design/computer aided manufacturing)
are exploring this area.

e Interfaces to hardware are increasing as

digital computers replace analog devices.

Future Trends

e Prototype systems will be built and
studied. (Application specific systems will be
available.)

e Systems will support hierarchies of models
as well as interdisciplinary interfaces.

e Increased interaction will also be involv-

ed with actual sensor systems.
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MEASURES AND EMPIRICAL STUDIES

Summarized by
L. A. Belady

1IBM Research

Following are the panel’s observations and
recommendations on the use of metrics to improve
the understanding and management of the software
development and maintenance process.

We see it encouraging that, compared to last
year's workshop, the present papers are more
evaluative than speculative. This trend should
continue, moreover, emphasis should be on
solleceting facts. During its short history,
software sciences have been characterized by a
large number of ideas, techniques and tools pro-
posed, with the result that there are now more
ideas available than necessary or possible to
apply. Yet there is a definite shortage of
tes'al ideas. Institutions and universities
have been developing new techniques and approach-
es to improve the process. At the same time
builders of large systems, and those who are in
charge of maintaining these extremely complex
man-made objects, are still forced to use anti-
quated methods. Neither party is at fault: the
problem is that there is no way to demonstrate
whether an idea is viable and whether it will
beneficially influence the development process.
Thus gathering facts about the software, and about
the process developing it, is the most important
next step, without which there is no hope for
successful transfer of technology.

But merely gathering facts is not enough.
Facts should be structured and appear in a format
that permits the comparison of systems, situa-
tions, processes. We are convinced that there
already exist proposed and quite promising
metrics which, although applied so far only to
limited samples, showed interesting results.
Consequently, instead of invencing additional
metrics and thus increase unnecessarily the
variety of available approaches, we must broaden
the basis on which existing metrics are applied.
Coming to mind are proposals by Halstead, McCabe,
the Belady-Lehman measures performed on large
systems, and others found in the literature. We
should concentrate on a handful of the most
promising approaches, align them with each other
and standardize.

We may gain confidence in these metrics by
examining their usefulness in three roles. One
role is to extract generally valid laws about
the behavior of large systems, large projects and
that of programmers. The second is to predict
the evolution of the very project or system being
measured. The third factor is psychological,
namely the feeding back of the observations, and
predictors based on them, to the people who
created or caused the process to happen. For
example Elshoff of CGM Research found it often
useful to make visible the otherwise invisible
object, the program itself.

In fact, we are talking about the existing
and sufficiently validated metrics, many of them
already applied, successfully and independently
of hardware characteristics, to monitor the
development of new projects and the maintenance
of older systems. Clearly, if we want to thor-
oughly and carefully evaluate the usefullness of
an approach, we cannot rely exclusively on com-
puter scientists and software engineers: other
experts must also participate. Psychologists
for example are trained to evaluate complex situ-
ations using the rigorous and well established
methods of experimental design and statistics.,
What we, therefore, propose is a multi-disici-
plinary approach toward the evaluation of the
already existing but sparsely used ideas in
order to weed out bad approaches, and to gradual-
1y improve and refine the ones, whose potential
use for anv or all of the above mentioned three
roles 1s immediate. 1t is also important that
we restrict measurements to a handful of observ-
ables, such as Halstecad's operators and operands,
and then deduce the other attributes such as
portability, modifiability, maintainability from
primitive metrics.

This leads us to the most difficult attri-
bute of the process productivity. While we
believe in its importance, we cannot accept fta
current unit of measure, namelv lines of code
per unit time or man-month. The reason for this
disbelief 1s twofold. First, most programmers
will be fust modifving and maintaining already
existing programs. Secondlv, in the future more
and more new programs will be constructed out of




of f-the-shelf components. Whether in modification
and maintenance, or svstem composition from larger
components, the line of code measure of producti-
vity immediately fails.

We measure productivity for perhaps two rea-
sons. One is to monitor costs and the second is
to predict the resources necessarv for the devel-
opment of new products. But the lines of code
generated 1s just one of the many components of
the total cost. Clearly, the qualitv of develop-
ment influences the cost of maintenance and modi-
fication, to be performed over a long period of
time. Thus, if we want to measure productivity
at all, then it has to be combined witi a metric
capturing quality. Only then can we have a solld
measure for prediction, as well as for comparison
of different systems and projects.

As already indicated before, the major ob-
stacle to progress and improvement is the d- . ffi-
culty to transfer technology, i.e., ideas irto
real-life production situations. Take, for ox~
ample, a methodology, which in a small environ-
ment, and mostly by the inventors of the method,
is believed to significantly better than the
currently used methods. First, the new idea must
fall on fertile ground. This means that not
only do the receivers of the idea have first to
be cducated on the novelty being proposed but
their mind has to be open and well informed about
the large variety of other alternatives. Only
then can a dialogue develop and factual evalua-
tion take place before commitments to the new
method. Second, the dominant factor in success-
fully transferring technology is that a new pro-
posal must demonstrate its viability by facts.
Otherwise there is no change to transfer method-
ology.

Project management is right in refusing
untested methods, untested ideas and techniques.
Proposals must be demonstrated to be beneficial
to the project. The major problem now is that we
do not have any place, any forwn or any organiza-
tional entity wherec at a reasonable scale, methods
can be tested and their viability dJdemonstrated.
Thus the creators of ideas remain frustrated.
They never see the utility of the ideas on which
they work so hard. Yet they should know which
ideas make sense and which not. It is better to
know that an idea does not make sense in real
life than to remain with the uncertainty about
its value and then blame the developers for not
implying something which is supported only by
speculation.

This leads us to the problem of where to
generate facts about new proposed methods, tech-
niques, tools and other novelty. Why does the
Army not set aside resources for the sole purpose
of validating the ideas created inside and out-
side its own organization? Unusable novelty

would rapidly disappear while usable ones find
thelr way into development, thus i{mproving the
overall quality of the software life cycle. But
even without such an ideal, separate orgartization,
systematic gathering of facts on real projects
would still tremendously improve the learning
process and encourage the flow of information
about techniques and tools because measuring with
agreed upon and aligned metrics facilitates
comparison of methods applied, projects managed
and software produced. Again, emphasis must be
on facts, and on measured and comparable facts.

At the workshop it became also clear that
our universe of discourse is not homogeneous any
more. There is no such thing as a typical pro-
gram, typical project, or typical situition.
What is, indeed, badly needed is the taxonomy,
the classifTeation of may aspects of the life
cycle, Before we even start measuring, we must
know precisely what we measure and what we com-
pare against. We must set up the metrics and
the measurements according to whether they are
about a small, medium or large size project,
whether we measure an on-line, interactive or
batch system or its development, and so forth.

The other important aspect of taxonomy is
that we have to recognize the [imits of valulity
of all the metrics and models which we apply.
Similar to physics, life cycle management must
also have scaling or model rule effects. FEvery
metric, every measurement method has its domain
of validity. Beyond this domain of validity, one
may have to live with false results or else must
adjust the metric with some suitable parameters.
Moreover, classification in the software develop-
ment and maintenance must be along many dimen-
sions: development, specification -nd standard-
izatlon of error classes, categories o1 programs,
processes and so forth, Brieflv: taxonomv i
one of the most important prerequisites to good
measurement and then to good and valid comparison
of the measured objects.

A specifically {mportant casc¢ for precise
Jefinitions and standardization {s the case of
milestones. In general, it {s desirable to sub-
divide a project in two dimensions. Time is
one of the dimensions: one would like to see
the precise transition point from one phase of
the 1ife cycle to another; for example the point
defined by the end of design and the bepinning
of implementation. The other dimension is the
product itself, namely {ts decomposition into
major components. It {s also necessarv to de-
compose the cost estimates and then the actual
cost items along both dimensions. Thus we must
find ways to precisely specifv and mutually
agree upon this two dimensional grid which is
applied over the total project in the time and
the product domains. Without agreed upon
definitions, such as the events which specifv




the transftion from one phase of the life cycle
to another, milestones have absolutely no
meaning and the{r use probably causes more
confusion than allow for sound monitoring and
comparison.

A few words about tools. We mean here tech-
niques and instruments which are necessary to
extract the facts and then form metrics: the
tools of Jdata wollestion, Interestingly enough
we all agree that there already exist built-in
methods, and techniques, which continuously
collect data which in turn are never interpreted
or used. In fact we believe that one could start
immediately at practically zero cost to gather
data without the additional building of new
tools. Compilers are an example. During compi-
iation large amounts of significant data are
collected, but after having produced the code,
the contents of internal tables become discarded.
Intelligent use of already generated data as a
basis for metrics and meaningful comparisons
within and between the different systems and
projects would be an almost zero cost activity.
We invite the Army to first look around for
already existing tools and data already being
gathered before a vast and expensive tooling up
of projects starts.

We consider the order of importance of
things to be done as implied in the order above.
Almost all proposals are doable within the next
five years, An exception is perhaps the error
taxonomy which should be a research effort. We
see also quite dark with respect to a good com-~
preheasive and sensible productivity measure.
The Workshop Chairman wanted some questions for
next year's workshop. Well, Barry Boehm pro-
posed, the best such question: '"What happened
to the recommendations of the previous year?"
We hope for the best.

We do not propose here specific recearch
activities now. Rather, we call attention agair
to the multi-diseiplinary approach. The role
or psychological research, particularly its role
fn evsluating proposed methods and techniques,
should be significantly increased. Experts from
soclology and management sciences should also
play an increasing role in life cycle related
research. Also, the use of time serles analysis
must be introduced. But in any case, future
research should be based on actual data, more-
over, orn allgned data. As long as scattered
research grcups all define and interpret their
own data, or use other people's unaligned data,
we cannot expect that transfer of knowledge from
one place to another be possible. In fart, we
propose that a central data baae und oloaring
houge for data be established within DoD in

46

order to provide badly needed factual information
as a basis for coordinated research. We under-
stand that the Rome Air Development Center will
soon be ready to play this extremely important
role. Alsv along centralization, we propose the
rigorous definition of the following ten most
important terms: the six or seven phases of the
life cycle: requirement, specification, design,
etc: complexity, quality, productivity (and
probably all the "abilities" which are so heavily
used, yet never defined). Some cfforts already
exist within the Alr Force, the Army and GTE
Corp. Without such definitions technical people
in large organizations are forced to use local
definitions or take as source the trade magazines
and professional literature.

In summary, we believe that a Jrastic and
masgive shift to Jact finding wul to orgoizing
the knowlede we already have, must characterize
the next years to come.




V.

POSITION PAPERS

LIFE CYCLE MANAGEMENT METHODOLOGY
DYNAMICS - THEORY

"Modeling, Measuring & Managing Software Cost"
John R. Brown, Boeing Computer Services Company

Improving the Signal/Noise Ratio of the System Development Process
Melvin E. Dickover, SofTech, Inc.

"A Step Towards the Obsolescence of Programming"
Harvey S. Koch, University of Rochester

"A Contingency Theory to Select An Information Requirements
Determination Methodology"
J. David Naumann & Gordon B. Davis
University of Minnesota

"A Life-Cycle Model Based on System Structure'
Francis N. Parr, Imperial College of Science
and Technology/England

""ae Implications of Life-Cycle Phase Interrelationships for
Software Cost Estimating"
Robert Thibodeau and E. N. Dodson
General Research Corporation
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SOFTWARE COST
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Abstract

An appraisal of past experiences relevant to
achieving awareness of the cost of software is
provided in terms of personal recollections about
the "good old days". The difference between what
we plan to do and what we really do in developing
software is discussed and identified as a signi-
ficant source of the cost problem. A striking
similarity between the properties of computer pro-
grans and the characteristics of the software de-
velopment process is suggested. Application of
computer program analysis tools to support de-
tailed evaluation of the development process is
proposed. Some potential benefits regarding im-
proved understanding of software production costs
are discussed and related to possible modification
of current software procurement practices.

Introduction

A few years ago a good friend of mine wrote a
very interesting letter entitled, "Random Thoughts
on Software Integrity, or, Nostalgia for the Good
01d Days". Among other things, the lTetter served
to refresh my recollection of the good old days
while stimulating something akin to at least a
recugh comparison of then and now.

In order to get my thoughts straight I found
I had to determine approximately when "“then" stop-
ped and "now" started. Having worked continuously
in one way or another with the production of com-
puter programs since sometime in 1960, it is per-
haps meaningful to identify some point in time
which separates the good old days from whatever
one might call more recent times. For me such a
delineation comes at approximately the midway
point, that is in late 1967 or early 1968. As I
pursued this train of thought, I became aware (or

finally admitted to an awareness) of certain facts.

1 believe that my findings are relevant to any
discussion on the claimed cost and difficulty of
developing software, and 1 hope to demonstrate
relevance in the following paragraphs.

In Retrospect

At some point early in my rambling thought
process on the subject, I found myself hard put to
answer the question, "When did things start to go
wrong?”. After considerable soul searching, I was
able to settle upon a fafrly specific time period

during which I had begun to understand that there
were certain problems associated with software
development. [t is especially important to note
that I have not intimated that softwarc develop-
ment was problem free prior to 1968 and plaqued
with problems thereafter. [ have simply concluded
that in late 1967 and early 1968 something
happened which prompted (in me) a rather keen (but
previously non-existent) awareness of some woft-
ware development problems. [ found it instructive
for my purposes to attempt to identify whatever it
was that was special or different about that point
in time and have related memorable characteristics
below in no particular order.

e | had recently been given my first real
fiscal responsibility within a major
(Targe scale) software development activ-
ity.

o I was, prior to that time, only remotely
aware of the fact that software is devel-
oped for a customer. At this point I be-
gan to be exposed to the needc, hopes,
fears, and frustrations of a customer ur
a regular (almost daily) basis.

o I was asked for the first time to deliver
a large program to a customer. [n parti-
cular, it was a program which containel 3
number of large, integral elements aboit
which I personally knew little or nothing

¢ I become aware of the existence of the
incomplete requirement specification.
More importantly, 1 became convinced that
it nplayed a critical part in a supposeuly
"formal" software development process.

o I was asked (albeit very indirectly) -d
not in so many words to compromise “i:-
tangible" quality in favor of tangible,
timely (on schedule) delivery. [ was sub
sequently required to "explain away" pro-
blems or relate them to known errors and
lack of specificity in the requiremen:
specification.

1 am not at all sure which of the above was
most instrumental in changing my view of what - oft
ware development is all about. Perhaps more i
portant than any of the individual items was u..i-
mately the frame of mind which came from living
through and coping with these new (for me) experi
ences. The most striking characteristics of my




new frame of mind was a strong realization that
software development costs a lot of money.
Coupled with this was the growing feeling that
there were some customers who were hard to con-
vince that they had gotten their money's worth,
especially if the software did not work exactly
as expected or better. Unfortunately, speci-
fying exactly what is expected of software has
proven to be at least as difficult, if not more-
so, than specifying things in general [1,2,3].
In fact, a great deal of the thinking that has
been given to the cost and quality of software
has concerned the difficulties inherent in
specifying intent (i.e., requirements), test-
ing and demonstrating satisfaction of those
requircments, and providing for full and time-
1y communication between software developers and
users [4,5,6,7,8].

About Software Life Cycle Cost

So far, 1 have simply related some of the
details and subsequent conclusions derivable
from a conversation with myself about the good
old days. It is perhaps apparent that I have
rore or less dispelled the notion that there
really were any good old days, but rather that
there was a time when, for a number of reasons,
programming was fun and my worries were few.

As is often the case with my rambling
thoughts about scftware development, however,
1 eventually found myself taking a hard look at
the development process from a different but
potentially useful point of view.

Most, perhaps all, people who claim to know
how software gets developed roughly view the dev-
elopment process as a serial one which includes
the following (or eguivalent) events:

1) Concept (Requirements) Definition
2) Detailed Requirements Specification
3) Preliminary Design

4) Detailed Design

5) Code and Debug

6) Checkout

7) Test Planning

8) Test [xecution

9) Test Evaluation

10) Acceptance and Use

11) Maintenance (modification) and Re-Test
(as required)

There are many variations which are more or
less equivalent to the above and apparently many
different impressions about the proper ordering
of the events [9,10,11,12,13]. For purposes of
this discussion we can assume that some major
software development activities proceed through
phases leading to the above sequence of events
with the usual iterative occurrence of events 4
through 9.
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It appears that we can be comfortable with
{and readily accept) a not-quite-accurate picture
of the development process to which we attritute
serial orderliness and implicit continuity. Fur-
ther, and more important, we are hard preised to
learn very much about the real costs of software
development until we can shed the notion of a
fixed sequence of events and come to grips with
the complex and highly dynamic interaction of
these events which is characteristic of much soft-
ware development activity. Fcr instance, if we
were to draw a flow diagram of the developrent
process {both "before" and "after"), we could well
ses ;he kind of contrast illustrated in Figures 1
and 2.

Figure 1. A "Before" View of Software Production




Figure 2.

An "After" View of Software Productfion

Towards Understanding Production Cost

It is probably not through sheer coincidence
alone that we use the word “program" for very
large software development projects. If put to
the test, we can find many similarities betvipen
the properties of the end item (i.e., the compu-
ter program) and the "program" or process through
which it was produced. We have labored long and
hard to develop technigues and tools [14,15,16,17,
18,19,20] which provide valuable insight
into the intricate and hLighly complex interactions
of the components of computer programs. lle have
rigorously applied such tools in the study of com-
puter program efficiency and have saved ccuntless
thousands of seconds of computer time. Unfortura-
tely, we have not done nearly so well in shaving
seconds off the time required for develcpment of
complex software systems. Perhaps it is time
that we seriously considered application of such
tools in investigation of the other kind cf pro-
grams. Maybe then we could begin to develop a
better understanding of how software really gets
put together and where, in the process, the high
cost of software truly lies and where efforts to
reduce excessive cost can and should be concentrat-
ed [21,2Z]

A Proposal

I am particularly intrigued with the poten-
tial application of program path analysis and
usage monitoring tools E23,24.25] to help achieve
a more thorough understanding of what really takes
place deep within the development process. 1
suggest, for example, that something alorg the
following lines could be done. First, we devise a
project (program) plan which possesses all the
conditional branching (go back and redo, etc.)
characteristics which are illustrated in the pre-
viously defined schematic labelled AFTER. Then,
as we think of the programmatic events much like
the segments or units of code within a program,
we may define a convenient notation and procedure
for developing path-1ike sequences which alone or
in combination represent potential modes of tra-
versing the network [25,26,27]. Now if we also
took steps to assign time-to-complete (17C) and
cost-to-complete {CTC) values to each of the ele-
ven previously identified events, it is possible
to estimate significant project cost and schedule




variations as a function of our "best guesses"
at the way project work will actually proceed.
We must be careful however to consider the
following:

1) TTC and CTC values are probably varia-
ble and are functions of many factors
including 1) state-of-the-art of the
specific technological area, 2) level
of experience and expertise of availa-
ble personnel, 3) event count (i.e.,
it may or may not be cheaper to write
detailed requirements for the third
time than for the second time), and
4) event predecessor relationships
(i.e., it may cost more (or less) to
revise or redevelop a preliminary de-
sign after extensive testing has been
completed than before).

2) Where appropriate perhaps in
accordance with existing procurement
regulations or customer-contractor
agreements) those branching character-
istics which are to be disallowed must
be taken into consideration. For exam-
ple, there is at least a common sense
requirement that test evaluation is not
followed by preliminary design more
than n times..

3) It may be important to avoid the prema-
ture conclusion that the path 1-2-3-4-
5-6-7-8-9-10-11 obviously presents the
most appealing cost picture, because it
may well be the most unrealistic path
in terms of potential development activ-
ity.

Finally, we might look briefly at one possi-
ble derivative of the approach briefly outlined
above. For example, consider the possibility of
a customer somewhere who:

1) has a problem to solve which requires
procured services for the production of a
software system, and

2) is willing and able to establish con-
straints of the type mentioned above in 2

We can then conceive of competitive contrac-
tors who submit proposals consisting of the usual
technical volume (i.e., background information,
statement of work, technical approach, related
experience, facilities, etc.). Consider, however,
a very different kind of management and cost vol-
ume which presents a predetermined number of cost
and schedule proposals corresponding to at least
the high likelihood paths through the network.
The availability of tools to support this kind of
effort is assumed, since I personally know of a
large number of computer program analysis tools
which would require only minor modification to
provide network analysis, path generation and dis-
play capabilities. These tools are described at

Tength in the literature primarily addressing
subjects of automating software testing, monitor-
ing and measuring the thoroughness of testing,
and static analysis of program structure [6,7,10,
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14,18,19,23,24,25,26,27]. One might expect then
that we could readily acquire a capability to mon-
itor project-program operation and subsequently
compare expected-versus-actual operationul experi-
ence with life cycle costs.

Perhaps then if we:

1) develop and experiment with an approach
to procurement, program planning, cost es-
timation and performance assessment some-
thing like that described here,

2) use tools to maximum advantage to support
more objective yet precise consideration
of pertinent cost factors, and

3) try to be as honest as possible with each
other about what all this means,

then I expect we will begin to gain the kind
of insight needed in order to get a handle on and
do something about the real problems relevant to
the high cost of software development [28,29,30].
It is possible that, with practice, using the cost
modeling technique, we could get pretty good at
estimating at least upper and lower bounds on pro-
ject cost. It's possible also that in our quest
for truly improved software engineering practice
[29] the modeling technique can help us give more
careful attention to the real cost payoffs from
modern techniques and tools and further promote
their judicious and cost effective application to
future development activities. We might even be
able to stop talking about the good old days as if
they were some time in the past.
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IMPROVING THE SIGNAL/NOISE RATIO OF THE SYSTEM DEVELOPMENT PROCESS

Melyin L. Dickover

SofTech,
ABSTRACT

Some of the problems of major system develop-
ments can be traced to the lack of a rigorously
linked chain of documents connecting the operational
needs and context to the design given to the imple-
menters. A method of constructing such a rigorous
linkage using SADT® models is outlined in this
paper.

PROBLEM

Various problems have plagued the development
of 'irge military systems. Among these problems
is that the delivered system is not what the user
expected and is, in fact, nut very useful, even
though, in some sense, it works. Another problem
is that requirements seem to change rapidly during
development, either increasing cost and slipping
the schedule or decreasing the usability of the
product. The Department of Defense has been trying
to address these problems with new regulations
(CA-109, 5000.1, 5000.2, 5000.3, etc.); these regula-
tions will improve things. Some important holes
in the management process remain, however.

The approach to technical program management
taken in this paper assumes some of the troubles in
major system acquisitions are due to the following
causes:

V. Something gets lost in the t inslation from
stage to stage in the development process. "Noise"
accumulates until the product differs appreciably
from the user's original version of it. Current
military documentation regulations do not prevent
this, because they specify form rather than sub-
stance.

2. Many of what are called requirements changes
are in fact only requirements document changes
made necessary by the continual uncovering of old,
unchanged requirements not in the document because
the requirements definition process was inadequate.
1) 12)

QDSAOT is a trademark of SofTech, Inc.

Inc.
APPROACH

The two causes of the problem are addressed
by producing a chain of documents that link the
system user's conception of the system to an
abstract, implementation-free specification of the
system to be given to the implementer. The docu-
ments constrain the implementer to produce just
what the user needs, but leave him free to trade
off the alternative ways of realizing the system.

For this approach to succeed, the following
must be met:

1. The documents must be formally, rigorously
linked one to the next.

2. for each document in the chain, one must be
able to decide what information is or is not
supposed to be in it.

3. These documents must relate to the things
controlled in the major system acquisition process
that the DoD uses.

The documents proposed here are a linked set
of SADT models. (3} Before these documents are
described, it is necessary to provide a semiformal
definition of the terms used in the rest of the
paper.

DEFINITION FRAMEWORK

A snpcon is 3 set of interacting “phenomena”
of “actual reality." (Quotes indicate primitive
terms.)

St ' are predicates about "phenomena.™

Avencr are propositions about "phenomena.

A micl is a relation between a set of ;. ar”

and a set of .wwwere.
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A mode! of a systen is a relation between a set
of questlons about 'phenomena" of the mode. and
answers about "phenomena" of the system to some
tolerance.

The ;urposc of a = dof is its set of e i,

In the definitions that follow, by model it is
meant a model produced using SADT. [3]

The o7 of a =i is the choice of parti-
tioning at the first level of the hierarchy. The
»fewr is constrained to be consistent with the

D,

The vanzae pofne of a mode! is a set of con-
straints placed on the »7.w so that it embodies
the abstractions and perceptions of a certain kind
of person. (Not only must the vicw satisfy the
rurrose, 1t must be formed of pieces a person
recognizes.)

A ey is a parn
interacts with the .
reality."”

« polne of a person who
ceas it exists in "actual

A functional model is a mode! of a systom
from the »/cw of a wuser of that syster,

An aerfvarion mde (of an SADT diagram) is a
Jogical expression stating the relation among
input, control, and output arrows.[4] The activa-
tiom rule states the conditions (presence or
absence of data) on the input, control, and output
arrows such that presence of data on the output
arrows will occur. Actipvation ruies transform
SADT diagrams into finite-state machine descriptions.

An cotipatioor is a path traced through a mode’
from its external input and control arrows to its
external output arrows, according to the ..eripqrion
e controlling each diagram of the »ocl.

A seenarico is a set of values applied to the
external arrows of a roJde! before tracing an
actinetion of the mode!.

A concept o cperation of a system is a mode!
conta1n1ng a functioned model of that system along
with Socetional modele of eystems it interacts
with. A coneept of cperations specifies the set of

all valid uctivations of a spater.

An cawple of @ concept of cperations s an
actioation of a coneept of operations for some
e .I’l ‘e

A dealgner is a vooitage point of a person who

choses at each hierarchical level of detail of a
model @ partitioning that results in the least
coupled pieces.

A design model of a custem is a fwictional
mode! of that system repartitioned from the vicw
of a desi:per. The functional model maps into, not

onto the dvuign mode’, since additional information
about the s.:tem may be incorporated in the . .~
mode S

Aopo il is a set of ot loaeloon e
applied to the ‘s’ m.J-! to constrain its set
of possible Jfffﬂd «x to be in the bounds descri-
bed in the “owetlon:’ mod-/, Some of these con-
straints are necessary to control the effects of
the additional information the i .’ »
contains.

THE CHAIN OF DOCUMENTS

The chain consists of the following documents:

Concept of operations, functional model,
design model, specification, as defined in the
previous section.

The coneept of operat’ons describes how a new
system will be used, together with the existing
resources and weapons, to get a net increase in
the overall effectiveness of the entire set of
resources. (Considered by itself, only system
performance can be measured. Considered in its con-
text, system effectiveness can be measured. The
concept of operations provides a purpose, view,
and context for a functional model. It binds
the document chain to the operational context.

The owstional model describes how the sys-
tem must behave and what it must be able to do
for its user. The user's requirements for speed,
accuracy, size, etc. are documented in the
functional model. Later this document will be
used by the implementer to understand the user's
"utility function" so implementation trade-offs
can be made to satisfy the user (rather than
vague ideas of efficiency). The functional model
binds the problem description to the operational
context.

The design redel describes the modular struc-
ture (logical structure) of the system to be built.
As defined above, it is the "simplest" description
of the system in terms of constantines "structured
design." [51,[6],[7] The functions in this model
are allocated to hardware or software according
to the trades made by the system engineers. The
structure constrains, but does not specify, the
algorithms to be used. This model binds problem
structure to solution structure.

The specification chooses the logic or algor-
ithms of the system to get the behavior required
by the functional model. The specification binds
solution behavior to problem behavior.

The design model and specification do not
include any properties of the hardware or soft-
ware used to implement the system. They do con-
strain the implementer to produce a system of a
certain structure and behavior, and guide trade-
offs among alternatives with a utility function
from the functional model.




PROBLEM SOLUTION IMPLEMENTATION

DESCRI- DESCRI- DESCRIPTION
PTION  PTION

Required Capability why
Concept of Operation what why

Functional Model how what why
Design Model how what
Specification how

LINKS IN THE CHAIN

For the documents to form a chain, they must
be linked. These links are made in the SADT
models forming the chain. The SADT syntax pro-
vides a way of formally linking the models.

The concept of operations contains the
functional model embedded within it. The func-
tional model is, in a sense, a named subset of
the concept of operations, drawn from another
view. The design model is Tinked to the functional
model using the SADT mechanism syntax. Each func-
tion in the functional model contains a mechanism
"call" reference to the portion of the design
model that realizes that function. The design
model can, if desired, be annotated with SADT
support arrows which relate portions of the
design back to the functions in the functional
model. Thus, requirements traceability back
and forth from functional model to design is
maintained.

The specification is an annotation of the
design model. Thus no cracks between the models
that accumulate "noise" are permitted.

The argument to this point has relied some-
what on the properties of SADT models. However,
the concept is more general than that. It should
work for a modeling technique with the following
properties:

1.  Describes modular structure, hierarchically.

2. Provides for traceability from model to
model.

3. Contains a way of specifying activations
in terms of output value "events" under some
input value "conditions."

SADCT has been used because it is a natural lan-
guage for describing system structure hierarchi-
cally. At each level, the pieces and their rela-
tions (dependencies) are expressed. The mechan-
ism syntax allows traceability between models.
Activation rules directly transform SADT models
into finite-state machine descriptions. And,

the language is a simple, graphic one.

As an illustration of how the mechanism nota-
tion can connect one model to the next, consider
the two SADT diagrams "communicate" and "handle
medium." Each diagram is the first level decom-~
position of a different model.

Box 3 on “"communicate" has a downward point-
ing mechanism arrow that calls the AO diagram of
model CHM. Thus the "Handle Medium" diagram
realizes a box in another model.
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ADEQUACY OF THE MODELS

To evaluate the adequacy of a model in the
chain, each model is associated with a deveiopment
test, as follows:

MODEL TEST MEANING
concept of exercise Is it useful?
operations
functional acceptance Does it work?
design integration Do the pieces

go together?
specification verification Are the pieces
correct?

A model is adequate if it can be used to
develop a plan for its corresponding test. For
users, the concept of operations is sufficient if
it can be used to outline an exercise that uses
the new system. More requirements are forced out
early in the process by consideration of details
of the test.

This criterion also suggests what should be
excluded from models. Information beyond that
necessary to construct the test should be viewed
with suspicion; it may be merely extraneous, it
may belong in a different model, and its inclusion
at this level may overconstrain the next level's
model. Not everything you know about a system
needs to be in the next document you write about
the system.

A MODEL OF THE CHAIN OF MODELS

The SADT diagrams of this section present a
model of a Naval system development from the view-
point of a Program manager. The diagrams are
annotated to show where the documents of the chain
can be used to help satisfy the requirements of
DSARC reviews that lead to formal milestone
decisions.

Each document of the chain appears at a dif-
ferent level of detail in the model. The concept
of operations appears at the first level on the
A0 diagram. The functional model appears at the
second level on the A3 diagram, and so on. All
of these diagrams (AQ, A3, A33) that describe a
document in the chain have the same form; each is
related to its corresponding test. Diagram A)
corresponds to the concept formulation stage in a
major system acquisition.

There are three reasons for including this
model: it gives a sample of an SADT model for
those unfamiliar with the method, it provides a
scheme for delegation of design authority, and it
provides a framework to discuss the order in which
the documents are produced in a rea® development.

The method of delegation of design authority

embodied in the model was inspired by Cowen [8].

At the operational level, "Build," Box 3, is uelega-~
ted, while authority for the other functions is
retained. Box 3 on A3 and A33 is similarly delega-
ted. Each level is responsible for a model in the
chain. Each delegation is accompanied by a con-
straint to similiarly delegate and constrain.




56
Responsibilities work out 1ike this: repeated, depending on how feasibilities work
out. Opportunities for subtle activation paths
abound. On Diagram Al, Box 3 has a mechanism
£ . support.arrow that indicates Diagram A3_(Bu11d)
concept of operations < may be invoked in the course of evaluating costs
functional model o and effectiveness. This could arise if it becomes
. necessary to buiid a feasibility demonstration
design model & v e of some risky part of the system to fully evaluate
specification « - ] analyst an alternative.
s N l
implementation fcode‘ y Program  system The model allows many alternate activation
unit test ¢ designer engineer | operators, paths and dynamic behavior patterns in system
verification < - i users development; however the documents produced at the
| end are constrained to relate to each other in a
integration test&———————— particular way.
acceptance test €—— . . ) .
. in practice, an activation of this model may
exercise < begin with a functional model rather than a concept
of operations. Technologists may propose a functiona!
model of a new kind of system to find a use for a
The model shows the dependencies of a set of new technology. A concept of operations would be
activities and the documents they produce. It created for it, along with concepts of operations for
constrains, but does not specify, the exact order competing alternatives. A revision of the external
in which the development activities are carried details of the functional model would likely result,
out. For example, there are feedback loops on and a new functional model would then be created in
diagram AD that may cause activities to be depth.
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CONCLUSIONS

By establishing a rigorously linked chain of
documents connecting requirements in their opera-
tional context to a specification of what the
implementer must build, the accumulation of noise
in the process is prevented.

By introducing a test for the adequacy of
each model, more requirements are forced out
early in the process, and attention is focused
earlier on feasibility issues.

Tnis method has not been tried. However,
SADT has been used to construct a Concept of
Operations. A functional mode) has been built
and transformed into a design model [9]. As yet,
no design model has been completely turned into
a specification using activation rules; for
various reasons other specification languages
(e.g. programming languages), have been used.
The author intends to try the technique on a
software development in the near future.
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Abstract The systems analyst usually specifies the

operations to be performed on each data field.

One of the most difficult aspects of An example of the specifications are:

software development 1is transforming the systems
analyst's specifications into process specifi- 1

Date
cations that can be understood and carried out i
by a computer. We describe a method in this a. check whether date is current
paper that can be used to reduce the complexity b. calculate interest if not already

of the programmer's task and to ensure a higher
degree of correlation between the systems

analyst's specifications and the program 2. Bank Office
produced for the application.

done for previous period(s)

a. check whether valid
3, Teller

a. check whether teller number is

Currently, the programmer has the task of valid for that office

interpreting and translating the user's require-
ments into specifications that can be understood 4, Type of Transaction
by the computer, As a result, a common
phenomenon associated with each implementation
of a system is that the user's requirements have b. withdrawal from accountl - check
not been satisfied. To begin to solve this whether balance > 0

problem, we propose that the complexity of the
programming should be reduced. This will reduce
the number of errors committed by programmers
and will allow what the systems analyst 5. Accountl
specifies to be more accurate,

a., deposit into accountl

¢. transfer from accountl tu account2
if balance in accountl > 0

a, check whether still active

Ideally, we are striving towards the 6. Account2
elimination of programming in the form that it
currently exists, In this paper, we describe
one method that we are trying to apply as a
means to this end. The basic ideas of our
methodology have been taken from [l], More
research is needed to assess its potential,

a., check whether still active,

An important characteristic of the systems
analyst's specifications is that they are usually
non-procedural and are centered arouynd the data,
The programmer, however, has the duty of taking
these non-procedural statements and transforming
them into a program - i,e,, something that is
proced iral and process-oriented. There is much
decislon making that the programmer must do tv
create a process for the computer. Specifically,
he must decide:

We will describe our methodology in terms
of an example, Then, we will summarize the
characteristics of our approach,

Our example is a bank transaction applica-
tion. Specifically, the processing of a
universal form for deposit, withdrawal and
transfer of funds between .ccouats, The Llnput
fields are:

1. In what order the fields should
be processed.

2. What are the controls of instruction
execution,

1. date
2, bank office

3. teller

4, type of transaction
5. account number(s)




3. What must be synchronized and what are
the conditions for synchronization if
parallel processing 1is used,

Our methodology allows the programmer to
create independent portions of a program and usc<s
a translator to produce a program which inter-
relates these independent program protions. For
each field of the input data, using the systems
analyst's specifications, we have a graphic
representation:

020,
OnO

FIGURE 1

Independent Program Portions

A node with a number represents the fact
that the succeeding instructions should be.execu-
ted to process that field. A node with a letter
means that the instruction(s) associated with
that node should be executed, For instance, the
left-most graph represents the fact that two
operations ("a" - check whether date is current
and "b" - calculate interest if not already done
for previous period(s)) should be executed to
process the '"date" field, First, the instruc-
tion(s) for "a" should be executed and then the
instruction(s) for "b". Since only one of "a",
"b", or "c¢" is executed for field 4, these three
nodes are not represented in sequential fashion.

What we have represented in Figure 1 are
data flow graphs for each input data field, Each
node of the graph represents an instruction or a
sequence of instructions, All instructions
that operate on the same field are chained
together,

At this point, the specification step has
been completed, We still have not specified,
though, what fields can be processed in parallel
and what synchronization events are needed, In
existing design and implementation methodologies
these are defined in the design stage or as late
as the time of coding,

The graph below represents, in terms of data
flow, the operations necessary to check data
integrity, to process the data plus which
instructions can be processed in parallel and
which operations must be synchronized,

FIGURE 2

Relationship Between the Program Portions

The operations in fields 1, 2, >, and 6 can
begin to be executed in parallel since the opera-
tions on these fields begin with intra-field
relationships. Field 3 begins with an integrity
check that involves an inter-field relationship, }
Hence, 2a must be completed before 3a begins, ’
Operations 4a, 4b, and 4c must wait for all other
processing and integrity checks to have been
completed,

A translator can produce a program equivalent
to the graph in Figure 2 given the instructions
represented in Figure 1, Instructions for each
data field can be executed in parallel until
another data field is referenced. When an instruc-
tion references another data field, all previous
instructions that reference that data field must
have finished execution.

In summary, we need to bridge the gup between
systems analysis and programming. We must look
for methods that foster (semi) automatic trans-
lation between the systems analyst's specifica-
tions and the program code,

Our methodology assumes that the modules of
the system have been identified in the design stage
and that the data items to be operated on in each
module are known, For each data item, the o s
analyst then specifies what are the on~. io
be performed, The programmer then wri. KO
dent program portions for each data . A L s~
lator is then used to produce the program whirh
interrelates the program portions., The ¢nd result
is:

1. closer interaction between the systcms
analyst and the programmer since the
systems analyst writes his specifica-
tions after the design phase

2, reduction of decision-making responsi-
bilities for programmers; specifically
he does not decide on the sequencing of
instructions on different data items nor
on any synchronization conditions,




3. the design of each module is based
upon its data items,

Our methodology can alleviate some of the
inconsistencies between the user's requirements
and the programmer’s end product., Programming
is still necessary but it has been reduced in its
complexity. We anticipate future research by us
and others to further reduce the complexity of
programming and to change it from a process-~
oriented activity, We hope that in the near
future, the process-oriented method of programming
will become obsolete.
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A CONTINGENCY THEORY TO SELECT AN INFORMATION REQUIREMENTS DETERMINATION METHODOLOGY

J. David Naumann
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The system development life cycle is the central
concept i{n currently-used methods of managing and
controlling the determination of information re-
quirements and designing and implementing process-
ing systems to meet those requirements. When or-
ganizations specify the use of formal life-cycle-
based methods for all application developments, the
results are mixed. The method may be helpful, but
in many cases, it may be detrimental.

A single life-cycle method is not appropriate
for all cases because applications differ in the
certainty with which requirements can be estab-
lished. This paper describes the contingencies
which define the uncertainties in the determina-
tion of information requirements and describes al-
ternative strategies for information requirements
determination given different levels of uncertain-
ty about information requirements. The methods
are no cycle, linear life cycle, recursive life
cycle, and prototype.

Introduction

Formal life cycle development methodologies are
not consistently reflected in practice; concepts
such as throw-away code, prototype systems, and
recursive life cycles are receiving increasing
attention in industry. The profession has de-
veloped a paradox: the life cycle procedures when
carefully followed provide a high degree of assur-
ance of project success for many systems, but they
may be prohibitively expensive and unwieldly for
many others. This suggests that there may be dif-
ferent methods for different projects.

A contingency theory is a theory which identi-
fies alternative actions and presents factors to
use in selecting the optimal alternative. For

example, McFarlanl proposes acontingency theory
for development project management. He identifies
project size, degree of structuredness, and degree
of company-relative technology as factors which
determine the best planning and control tool for

a project.

Uncertainty has been identified by Galbraith2
as a major factor in determining the optimal or-
ganization structure. The difference between the
amount of information necessary to perform a task
and the amount of information possessed is ameasure

of task uncertainty; organizations respond by
choosing from a set of four organizational strate-
gies to deal with the level of uncesrtainty.

The information requirements determination por-
tion of information systems development can be
viewed as a problem in uncertainty; the formal life
cycle methodology is a response to this uncertain-
ty. Its intent is to make sure that the organiza-
tion does enough information processing (with re-
gard to requirements) that uncertainty is reduced
to acceptable levels. However, since the informa-
tion requirements uncertainty differs widely for
different applications, a single formal 1ife cycle
approach is incapable of addressing the full range
of informatjon systems development projects.

Contingencies

In the determination of information require-
ments for an information system application uncer-
tainty refers to knowledge of the "real' informa-
tion needs. Development contingencies which de-
termine information requirements uncertainty are
project size, degree of structuredness, user-task
comprehension, and developer-task proficiency. A
systems development project has some combination
of these attributes (and perhaps other as yet
unspecified contingencies). The combination of
contingencies determines the choice of development
methodology.

Project Size

The project size contingency has three key
characteristics: duration, number of people in-
volved, and total dollar amount. These character-
istics are usually, but not necessarily, collinear.
That is, a high cost project usually requires many
people over an extended time period. Project size
is not a good measure of the value of a systems
development project, but it is correlated with the
degree of uncertainty of the results of the devel-
opment process.

Degrec of Structuredness

One dimension of the Gorry and Scott Morton
(1971) framework for information systems is that
of the relative structuredness of the decisions to

be supported by an information system.1 For in-
formation systems information requirements deter-
mination, a high degree of structuredness means
that a general wodel exists which needs onlv to be




applied to the given organizational setting. A low
degree of structuredness means that there is no rou-
tine procedure for dealing with the problem, there
is ambiguity in the problem definition and uncer-
tainty as to the criterion for evaluating solutions.
Uncertainty about the decision to be supported is
an important factor in uncertainty about the out-
come of the systems development process.

User Task Comprehension

structuredness is
or users have of

Related to but distinct from
the comprehension that the user
the task to be performed by the information system.
User task comprehension affects the strategy and
development project success in much the same way as
degree of structuredness. If the users have a low
degree of understanding of the task for which the
system is intended, whether or not a general model
of a problem exists, less is certain about the in-
formation requirements (and the users' acceptance
of the results of the development process).

Developer Task Proficiency

Developer task proficiency is a measure of the
specific training and experience brought to the
project by the development staff: project manager,
liaison staff, systems analysts, systems designers,
programmers, etc. It is not a measure of ability
or potential: rather it is a measure of directly
applicable experience. This contingency indicates
the degree ot certainty with which the developer
will be able to obtain and document the require-
ments (and also proceed with the remainder of the
development process).

Uncertainty-Reducing Strategies

The response to uncertainty produced by charac-
teristics of a systems development task, the using
organization, and the developer organization (i.e.,
the contingencies) has frequently been unidimen-
tional. Under the traditional life cycle approach,
formal procedures, reviews, committees. check

points, etc. are used for all projects.b There has
been 1o recognition of the degree of uncertainty
from the contingencies. An alternative approach

is to:

1. Identify the contingencies and determine the
uncertainty,

2. Select an information requirements determi-
nation method suitable for the level of uncertainty.
Figure 1 shows the relationship of uncertainty-
reducing strategies to level of uncertainty, and
suggests methodologies which are actualizations of
these strategies. The strategies are: accept infor-
mation requirements as specified, linear discovery,
recursive discovery, or experimental discovery of
information requirements. Each has an associated
method.

Accept as Sp-cified

1f information requirements are known and
agreed upon, then the proper strategy is to accept
the user's statement of need as adequate specifica-
tion for implementation. The method is therefore
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to have no information requirements cycle. Exam-
ples are file conversions, reports from existing
files or databases and small single-user models.
These examples have in common: small size, high
degree of structure, users who understand what
the systems are to do and how the implementation
will function, and developers who are experienced
in this kind of task. Explicit recognition of the
need for the "accept as specified' strategy will
lead to greater responsiveness and an increase in
development organization efficiency.

Linear Discovery

be determined
of interviewing,
the proper stra-

If information requirements can
through a straight-forward process
fact gathering, and documentation,
tegy is to proceed step-by-step to system specifi-
cation. The method is therefore a linear applica-
tion of the life cycle. Examples are transaction
level systems, single function accounting syvstems
such as accounts receivable or payable, and minor
modifications to existing information systems.

The information requirements for large svstems
which are highly structured and where user-task
comprehension and developer-task proficiency are
high may be effectively determined by the linear
discovery process. However, information require-
ments for a relatively small system may not be
determinable by this method if the decisions to be
supported are relatively unstructured, or if the
user does not comprehend the task, or if the de-
velopers have not previously produced such a svs-
tem. Linear application of the life-cycle model is
an effective strategy under the appropriate combi-
nation of contingencies.

Recursive Discovery

The linear discovery strategy mav not produce
correct or complete or acceptable specifications
of information system requirements. The tradition-
al life~-cvele approach extends to recursion for
such systems. One or more discovery tasks are it-
erated until a complete, consistent specification
is determined and accepted. Examples are large,
multiple-user systems, systems which are new to
the user or developer organization, and systems
which support the relatively unstructured decisions
of tactical and strategic management. This ap-
proach assumes that a correct specification of re-
quirements can be made given sufficient time and
effort. Where the contingencies indicate that is
a valid assumption, the recursive discoverv strat-
egy is appropriate and effective.

Experimental Discovery

A high level of uncertainty may be indicated by
a combination of the contingencies. Repeated it-
erations of discovery may not successfully produce
adequate specifications of information require-
ments in such cases. The life cycle method,
whether linear or recursive, is inappropriate when
uncertainty is high. The stratepgy of experimental
discovery as realized in the prototype design
method, reduces uncertainty by producing successive
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approximations. Users and developers can easily
see what is wrong with an implementation even
though they are unable to completely specify its

information requirements. Examples of appropri-
ate applications of the experimental discovery ap-
proach are decision support systems for upper man-
agement, interactive forecasting models, and small
(or large) systems to be implemented for many dif-
ferent users. Conscious selection of the experi-
mental discovery strategy may be the only effective
approach to information requirements determ.uation
when the level of uncertainty is high.

Conclusion

A range of information requirements determina-
tion strategies is needed. Such strategies match
the level of uncertainty about the system specifi-
cation which is to result. The appropriate strat-
egy is determined by the extant contingencies.

Research is needed in two major areas of the
contingency theory: more precise operational def-
initions of the contingencies, and identification
and definition of other factors which effec* the
level of uncertainty, should be demonstrated. The
range of discovery strategies and corresponding
information requirements Jdetermianation methods may
be extended. The results of such research will
lead to improved selection of methodologv, and
more effective svstems development.
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Abstract daw
---~ = p'(t) . (1 - W(t))
A new model for the software dt (2)

development process is presented in which
the rate of progress is determined by the
extent to which the cystem under
development can be decomposed into modules
which permit independent development. The
pattern of resource consumption of a
project over its life-cycle can be derived
from this model. The results are compared

with previous predictions of a Rayleigh
curve pattern.
Introduction

PUTNAM and NORDEN (1), (2) have
proposed a life cycle model for software

development effort which predicts that the
rate of resource consumption on a project
should have a Weibull distribution in
time. In other words if W(t) is the
proportion of the total project completed

by time t then the rate of progress 1is
give by

dw -p(t)

---- = p'(L) . e

dt

t
¢ dWw - fp(u)du
~ ---.dt = 1 - e
ie (1).

.2+ behird this prediction
vs f]1lows. The objective
rresponds to  some larc

roblems to be solved
teegign  decisions to
¢ making these
ther actually
‘*ware¢, The rate
. ~a i 15 assumed
. ca. to the
~LoLs el oAt time
1varilable
~'ich we

from which equation (1) can be derived.

The function p'(t) defined by this
expression 1is taken to be a "learning
curve" which describes how the development
team becomes increasingly skillful in
making decisions or solving problems
associated with this particular project.
Any function p'(t) can be plugged into the
model and will generate a predicted
life-cycle pattern belonging to the
Weibull family. However a reasonable fit
with empirical data from actual software
development projects can be obtained by
choosing a linear learning function
p'{t) = a.t . The 1life-cycle pattern
resulting from this choice is the Rayleigh
function

2

dw -at /2

-——— = a.t.e

dt

The general shape of the Rayleigh
curve matches a very simple intuitive
picture of the life-~cycle of software.
There is an initial design phase during
which the rate of resource consumption
increases steadily, a central peak of
effort corresponding to principal
implementation activity and a maintenance
phase during which the work rate decays
back to zero. These phases of development
may be identified with the different
assumptions which made up the model of the
development process. The gradual decay of
work rate during maintenance is basically
the result of the problem space becoming
exhausted. Since it was assumed that the
goal of the software project was some task
which could be characterised by a fixed
finite pool of problems to be solved, then

as the work progresses this pool must
eventually empty. This must cause some
form of exponential slowing down of

maintenance effort. However, the Rayleigl
model 's explanation of the initially
growing work rate in terms of increasing

skill level being available is open to

several criticisms.




Firstly, a skill level which just
grows linearly may be rather unrealistic.
Often the staff joining a development
project will have worked on closely
related projects before. There is little
reason to suppose that the skill of these
people improves. It is also the case that
programmers remain with a system only for
a portion of its life-cycle. In that case
there is no reason for those who join late
on to be more skillful than those who
started. Taken to extremes, when a system
is in the final maintenance stage of its
life and probably has low priority it
would be most unlikely to attract the most
expert programmers as the theory suggests.

Now it can be argued that linearity
is only a first approximation and that
these objections can be answered by
choosing a more realistic form for the
learning curve p'(t). However, the model
as presented gives little guidance as to
what functions for p'(t) would be
acceptable. The actual property being
measured by p'(t) is not sufficiently
precisely defined to allow an empirical
approach. Ideally one would 1like to
measure the skill level on some actual
projects and fit a curve to it. 1In some
sense the Rayleigh function model merely
transforms the problem rather than solving
it; the difficulty of predicting the
pattern of resource consumption of a
project is exchanged for the difficulty of
estimating how the skill level changes.

A final objection is that the
Rayleigh model fails to distinguish
between innate constraints on the process
of writing sof tware and management's
economically constrained hiring and
methodology decisions. The trouble is that
the level of skill available on a project
depends jointly on how long skilled
personnel have been assigned to it and
also on the tools and design methods
which they use. A model based only on
skill level therefore presents a picture
of software development as being an
unalterable process. A more powerful
theory would show how the pattern of
development may be altered as a result of
the introduction of new sof tware
ergineering methods.

This paper presents an alternative
life-cycle model for software development
which is based much more closely on the
nature of the development process. The
notion of skill level is replaced with the
idea that strong modularity in a program
is what governs the rate of progress since
it allows work by several teams to proceed
in parallel. This concept clarifies the

role of project management's apparently
free choice to hire staff while at the
suggesting how more precise

same time

measurements and predictions of life-cycle
behaviour could be made.

The Programming Process

As in the Rayleigh curve theory, the
new model will explain the decay in
workrate on an old system in terms of the
problem space becoming exhausted. For this
to happen the software must be intended to

provide some identifiable service. The
following principle formalises that
concept.

Al. A software development project has

assocjated with it some large but finite
set of subtasks to be completed - each of
which is either a decision to be made or a
problem to be solved.

Now this assumption is not intended
to imply that the size of the pool can be
accurately predicted in practice before
development work begins. It may even be
the case that the actual design chosen for
the system may affect the size of the
subtask pool. We avoid all these
difficulties by treating the subtasks as
infinitesimally small and normalising the
total amount of work on each project to be
one. This has the effect of focusing
attention on the pattern of resource
consumption rather than trying to estimate
its total amount. For the latter task one
would need to be able to judge the quality
of acutal system designs.

To explain the increasing workrate in
the initial stages of a project something
more detailed than a prediction of
increasing "skill" 1level is required. We
claim that the essential mechanism has to
do with how much work may be carried out
in parallel. At the very beginning of the
project only a small team of analysts can
be used since they must identify the basic
functions which will be realised by the
software. The initial requirements of
design team has only 1limited use for
computing or programmer resources. It is
only after the major functions and their
interfaces have been identified that these
can be grouped into components and passed
out for further design and implementation.
The key fact is that if the initial
decomposition was done well, each of the
components identified can be developed by
separate programmers or teams of
programmers working in parallel. Hence
more development resources can be
effectively applied and a faster rate of
progress achieved as a result. Thus
although management is free to follow any
hiring policy, if the system is to be
developed as fast as possible for a gyiven
cost, the rate of progress will be
increasing during development,




In the above paragraph design of a

component (specification of its
input/output behaviour) was taken to
always precede implementation. On a

large-scale project it may not be easy to
classify activities in that way. It has
already been convenient to formalize the
entire development task as a homogeneous
space of subtasks. At this level of
abstraction the natural way to indicate
which problems may be tackled in parallel
is to introduce a dependency relation R on
the pool of subtasks.

A2. There is some partial order relation R
defined on the subtasks of the project
such that

X RS y
means that subtask x must be completed
before work on subtask y can begin.

Relation R has to be a partial order
because if there were some circular chain
of subtasks

x1 R¢ x2 R x3 ... R x1
then the project could never be
completed.

Progress on the project is achieved
by successively solving the subtasks
defined in A1l. As in the opening section
let W(t) denote the proportion of the
project completed at time t - this being
the ratio of the number of problems
solved at that time to the total number of
problems on the project. Then it is
immediate that W should have value zero
when the project starts, one when it ends
and increase monotonically in between. The
rate of progress on the project is dw/dt.
Since the mechanism for achieving rapid
progress is to work in parallel, it is
reasonable to assume that more development
resources are needed.

A3. The rate at which a software project
consumes programming and computing
resources is proportional to the rate of
progress being made namely dW/dt.

Now at time t the amount of the
project still unsolved and therefore
needing work is 1 - W(t). But in general
many of these tasks cannot be started at
time t because the R-relation requires
that other work be done first. Let us say
that a problem is visible at time t if
all its R-predecessors have been solved at
that time. The following axiom formalises
paralielism as the mechanism of rapid
progress.

A4, The rate at which a software
development can usefully consume resources
is proportional to the number of subtasks
which are visible and unsolved at that
time.

Let V(t) denote the proportion of the
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total project which is both visible and
unsolved at time t. Then comiining axioms
A3 and AY4 gives

aw
---= = a. V(t)
dt (3)

where a is some arbitrary constant.

The most interesting part of this
model is concerned with characterising the
rate of change of V(t). Now the only
mechanism for altering V is to complete a
subtask. This will certainly have the
effect of removing one problem from the
visible-unsolved set; it may also make
some undetermined number of other unsolved
subtasks visible. Clearly V depends on the
rate at which problems are buing solved:

av dw average change
==~ = ==== X } in V for each
dt dt problem solved

The actual change in the number of
visible unsolved subtasks when
sone problem is solved depends on the
particular problem, the dependency
relation R and which other problems have
been solved at that time. If the
particular subtask completed has no
R-descendents then V is merely decreasedby
one or, more correctly since we are
working in continuous time, dv/dt=-dw/dt.
But if there are unsolved R-descendants
whose other R-ancestors have all been
solved then these become visible and V may
be increased. Clearly it 1is impracticalto
handle each case explicitly so some
averaging is needed.

But the average change for each
problem solved AV (t) cannot be constant
over the life-cycle of the project. To
explain this we introduce the notion of
terminal - a subtask of the project Wwith
no R-descendants. Then terminals must be
more dense towards the end of the
life-cycle than at the beginning. For a
terminal corresponds to a problem which
when solved opens up no further work. If
all the early subtasks in a project were
terminal then the project would quickly
come to an end with no further work to be
done. Conversely a project with few
terminal subtasks in its later phases
would never reach a proper maintenance
mode. So one must expect that the density
of terminals will increase as the project
progresses. Consequently AV (t) should
initially be positive (most problems have
several R-descendants which become
visible) ard gradually turn negative as
the project develops. In lact at the very
end of the project one can be certain that
the work being done is terminal so as W(t)
% 41 then Vit)p-1.




A simple but powerful 1law with these

properties is

b
A{t) = ¢c - &.W(t)

where b,c,d are arbitrary constants. 1In
order to meet the 1limiting requirement
above d=c-1. This leads to

dav daw b

—_—= .i? ~ (c+1).W(t) }

dt dt (u)

which together with equation (3) defines
the 1life-cycle pattern predicted by the
new model for the development process.

Analysis of the Model

Combining equations (3) and (4) gives

2
d w aw b.
-— = a. ‘ - (1+c).W(t) ]
2 dt
dt
which may be integrated as it stands to
give
aw 1+C b+1
————= a{c.w - JW(L) }
dt 1+b

This can be seen to have the solution

9

WW(t) = c+1 —ac(b+1)t | 1/ (1+b)
----- + e
(b+1)c (5)
The function defined by equation (5) has
the desired property that as t becomes
large and regative W(t) - 0. We also
require that the total amount of work on

the project is 1. This will occur if
1+c=(1+b)c which is solved by c=1/b. Hence
one obtains the simpler formula for
progress in development

1

Wwit) =

~a{b+1)t/b | 1/ (b+1)
1 + e

and the corresponding pattern of resource

consumption or workrate is found by
ditferentiating:
(2+b
dw a -pt -pt 1+b
—e=- = -2 L1 + e
dat b
where p = a(b+1)/b
Comments and Conclusions
The general form of the workrate
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derived above is a Jsmooth bell-shaped
curve, If parameter b is chosen with a
value between one and zero then the curve

is skewed to the right and becomes quite

similar in appearance to the Rayleigh
function. It can be argued that this
parameter is a measure of the extent to

which a structured programming methodology
was used. For large b values give
dependency relations R with the terminals
particularly strongly clustered toward the
end. But the main tenet of improved
development methodology 1is exactly to
force the early decisions to be structural
ones which define modules for subsequent
implementation; details of low ievel
implementation should be considered only
later in the project; these correspond to
terminal decisions. Hence the model could
be used to measure whether a project
succeeded in using its intended
methodology.

The fact that this new model predicts
life-cycle patterns approximating the
Rayleigh function as a special case is an
advantage since empirical evidence has
been published (2) supporting the use of
that function. Tihe most obvious difference
between this and the Rayleigh curve theory
is that the life-cycle obtained here is
defined over all time rather than just
positive time. This 1is no great defect
since for many systems it i1s impossible to
define an exact date when the first
developmerit work relevant to that system
was done.

Finally
analysing an

it may be possible when
actual project to obtain a
much more detailed picture of the
dependency relation involved by
constructing some form of PERT chart. This
would enable a much tighter relationship
milestones in development than has
hitherto been possible. The accuracy of
estimates of completion dates should be
improved in consequence.
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ABSTRACT

Past attempts to establish mathematical ex-
pressions that can predict the life cycle cost
couponents for software systems have achieved
only qualified success. The mathematical models
for these relationships included only variables
that describe the software characteristics and
related environmental factors. This paper pre-
sents the hypothesis that software cost estimat-
ing relationships must include the effects of re-
sources consumed in one life cycle phase on
other phases. Such a model is difficult to vali-
date. This is primarily due to the need for
greater quantities of data of greater precision
than i{s usually available. However, a prelimi~
nary result detained from existing data is
positive. Therefore, additional research is
justified.

INTRODUCTION

Our objective is to obtain reliable esti-
mates of software life cycle costs suitable for
initial planning. This requires the establish-~
ment of empirical relationships between life
cycle cost and certain variables. We call these
relationships Cost Estimating Relationships
(CERs).

Our approach to establishing CERs for soft-
ware life cycle costsl:2 has been similar to
other researchers. We have postulated the im—
portant relationships between the products and
the amounts of resources needed to develop and
operate them. We have collected project data de-
scribing resources expended and program character~
istics and tried to substantiate the mathematical
expressions., We have achieved relatively limited
success. The CERs developed to date have relat-
ively low precision and are applicable only to en-
vironments where resource reporting and defini-
tions are comparable to that in which the data
were obtained. Our experience is not unique. The
literature shows that literally hundres of soft-
ware and environmental parameters occurring sing-
ly and in almost endless combinations have been
tested in efforts to predict life cycle cost.

Our failure to obtain quantitative relation-
ships of a precision comparable to those available
for estimating the costs of hardware systems has
let us to question the assumption that was

implicit in our previous analyses. That assumpt-
ion was that life cycle cost is predictable using
variables that simply describe the product and the
development environment (i.e., the type of con-
tract, program management technique, etc.). We
have formed the opinion that while all these fact-
ors are relevant, a large contribution to the re-
source requirements for any one phase derives

from the ways in which the other phases are com-
pleted.

The way the project is executed in terms of
its relationship to the planned development and
other outside pressures determines how the re-
sources are consumed. It also affects the quality
of the delivered product.

We believe these relationships are intuitive
for persons experienced in project management. We
would like to develop the hypothesis of phase in-
terrelationships by walking through two project
histories that illustrate the concept. In the
succeeding sections of the paper we will propose a
model and show the results of applying it to actual
data.

THE CASE FOR PHASE INTERRELATIONSHIPS

An important factor affecting the utilization
of resources 1is the need to conform to a develop-
ment plan. The plan is an essential management
tool for ensuring that needed resources are avail-
able to the project at the proper time and in the
correct amountS, We would like to see how changes
in the plan, caused either by changes in require-
ments or by failure to meet commitments, affect
cost-driving parameters. Particularly, we would
like to see how management actions influence the
measureable project descriptors.* Understanding
this relationship should permit a more accurate
analysls of the cost-driving variables.

A Project With Significant Interrelationships

Figure 1 shows the time spans and levels of
effort for the different phases of a software
development project. This project and the other
one in this section are business data processing

*Project descriptors include man-hours for analy-
sis, coding, testing, etc. (planned and actual),
time span for the activities, numbers of per-
sonnel, application classification, etc.




systems deveioped by a military agency for world-
wide use. Both gystems were written in COBOL.
Planned values are shown by solid lines and actual
values by dashed lines.

Notice that there is considerable scheduled
overlapping of the Design and Coding activities.
This overlapping is a common practice, but it in-
creases the likelihood that changes in the design
will require parts of the system to be recoded.
Such a schedule might have been adopted because
time was short or because people were available
only at certain times. In either case, over-
lapping causes any problems or delays to have in-
creased impact on the work.

The Analysis activity of the project was
carried out at about the pianned level of effort.*
The long delay in its completion was accompanied
by some delay in the start of the Design activity.
This latter delay was probably beneficial since
failure to delay the start of an overlapped
activity can increase scheduling problems. How-
ever, completion of Analysis lagged until three
months after its scheduled date, and in the mean-
while both the Design and Coding activities were
started.

The delay in the completion of Analysis in-
dicates that some needed information was missing,
some procedures were not defined, or unexpected
problems occurred. Going ahead with the Design and
Coding activities would almost assure an increase
in the time required to code and test the system.
This is a good example of one type of interaction
between activities. The increased coding and test-
ing hours would not be predicted by any method that
relied solely on parameters related to those
activities.

The delays, along with the substantial over-
lapping, were associated with a significant in-
crease in the resources required to complete the
preject:

Estimated Actual Percent

Activicy Man-Months Man-Months Increase
Analysis 4.5 6.6 47
Design 9,1 9.9 9
Coding 4.5 19.6 336
Test &

Integration 4.2 10.6 152
Qualification

Testing 2.2 6.0 173

24.5 52.7 115

The figures indicate that, for this project,
delays and overlapped activities were associated
with large increases in the consumption of re-
sources over what was expected. The combination

n

We divided total man-hours by time span to de-
termine average staffing. Therefore, any gaps in
the work would reduce the calculated staffing.
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of delays and parallel activities has a compound-
ing detrimental effect on a project schedule.*

For example, when coding 1s begun before the com-
pletion of design, the designers are required to
communicate their results to the programmers in a
raw, unqualified state (hence significantly in-
creasing) the chance of design errors). Overlapping
also ra;ﬁes the possibility that the designer may
not charge a voor procedure when he discovers it,
becau§e he has already committed himself to the
programmer. Many times the programmer may fill in
missing information by himself. By doing this he
may introduce errors into the system that will not
be discovered until late in the testing program
when repairs will be time-consuming and expensive.

We are not yet trying to build a case for
cause-and-effect relationships between increased
consumption of resources and delays and over-
lapping activities. We are simply using an ex-
isting project history to illustrate how inter-
actions among activities may be seen to influence
the expected resource requirements. On the basis
of a single project one could simply conclude that
the project was poorly planned and executed.

A Project With Few Interrelationships

Figure 2 shows a project that was completed
in a better fashion. The Analysis and Design
activities overlapped but, significantly, the de-
sign was completed before coding started. Less
ef fort was put into the analysis than had been
planned, but there was an increase in the hours
required for the design:**

*

This is not to suggest that systems cannot be de-
veloped with overlapping activities. Many sys-
tems have distinct parts that can be coded before
the entire design is completed. In a top-down de-
sign where coding is by tiers, the coding can
often begin before the design is complete. These
are planned developments that would permit the
overlapping of these functions. We are concerned
here with the situation where the press of the
development schedule or the slippage of preceding
activities results in overlapping activities that
would have been accomplished better sequentially.
Even in a planned implementation of parallel
activities, however (and this includes top-down
design), whenever the coding begins before the de-
sign is completed there is an increased risk of
changes to the design or of mismatches in sub-
system interfaces. The project management must
weigh these risks in relation to the need for work-
load balancing and project scheduling.

KX
Many software development activities are difficult
to define. The line between analysis and design
becomes blurred in practice. In some instances
both functions are performed by the same individ-
ual, who may also do some or all of the coding.

I't may be that in this instance some of the analy-
sis hours were reported as design.




Percent

Estimated Actual Increase

Activity Man-Months Man-Months (Decrease)
Analysis 43 24 (44)
Design 12 16 33
Coding 28 37 32
Test &

Integration 12 9 (25)
Qualification

Testing 3 _6 100

98 92 (6)

The project was completed on schedule.

Notice that the project described in Figure 2
was scheduled to have the Analysis phase continue
until after the completion of the design activi-
ties. This occurs most often when the system
specifications are not fully developed at the
start of the project. Functional requirements are
allowed to change during the Design phase much more
than a pragmatic approach would dictate. This is
the case with many information-system developments
where management participation in defining func-
tional requirements 1s not sufficient. As details
of the design become established, the impacts of
the specifications become more apparent to members
of management, and their reactions require changes
in the specifications. Many project managers,
therefore, do not attempt to finalize the system
specifications. Instead, they schedule the
Analysis and Design phases concurrently. The
period of analysis after the completion of the de-
sign 1s used to complete the documentation of the
specifications.

Another consequence of allowing the complet-
ion of specifications to wait until the design is
completed is that the effort required to make the
specification changes tends to be reported as part
of the coding and subsequent activities. Analysis
of project data from this point of view suggests
that the practice may be quite common. Similar
problems of distinguishing product and resource
consumption occur in other life cycle phases.

This complicates the analysis of phase inter-
relationships.

The preceding discussion has been presented
in support of the contention that the relation-
ships among the software development phases may be
extensive and very important to the consumption of
resources., As will be shown later, these relation-
ships extend into the Operation phase.

JUSTIFICATION OF THE SELECTED MODEL

Tradeoffs Between Phases

Considering the above discussion, we are in-
terested in proving a methematical relationship
that in addition to some measure of the product
resulting from the expenditure of resources con-
tains a number of significant interrelationships
among phases of the software life cycle. We want
to show, for example, that a significant element

in explaining the cost of testing i{s the effort
given to the earlier activity of design.* We be-
lieve there exists--in effect-- the following type
of relationship.

REQUIRED MAN-MONTHS
OF TESTING

MAN-MONTHS OF DESIGN

This curve indicates that--over some range--if
the effort given to design 1s reduced, there will
will be added effort required during the testing
(as well as coding) phases because of errors and
difficulties with the program. Conversely,
additional time spent in design of the software
will reduce subsequent effort required for test-
ing (and for coding).

Similar arguments can be made about rela-
tionships between resources expended in coding or
testing and the subsequent effect upon required
resources after the software is installed. In
these cases, man-months of coding or man-months
of testing would be the abscissa and man-months
of maintenance would define the ordinate,

These interrelationships pose a number of
distinct analytical problems. First, the trade-
off indicated above 1is shown for a given program
size. A simplistic attempt to correlate actual
design and testing resources without including
program size will almost invariably result in a
positive correlation. This 1is because total re-
source requirements tend to increase with program
size (and/or complexity) in a typical data base,
A data base is required that is large enough to
identify the variations in design and testing for
a constant program size; in effect, to determine
the relationships illustrated below:**

*

The importance of adequate design effort is
streesed throughout the literature. For ex-
ample, Boehm, et.al.,” in an analysis of soft-
ware errors found that design errors outweighed
coding errors 647 to 36%Z. Moreover, design
errours took far longer to detect and correct.

*h
Mathematically, these relationships can be ex-

1 7d
Xd = design resources, Xt = test resources, and

c -b b c
d - -
pressed as Xt a, PXx (or P aoxd Xt) where

P = program size (or complexity), i.e., a measure
of output.




REQUIRED MAN-MONTHS
OF TESTING

MAN-MONTHS OF DESIGN

Where P

1 Pz, P3 are successively larger program
sizes.

The Proposed Model

These relationships are comparable to those
discussed in basic economic tests on production
theory. However, the interrelationships among the
phases are actually more complex. Design, coding,
testing, and maintenance are all interrelated. A
limitation on design resources may be passed
through all the way to maintenance. When the
system is installed, the logic and coding in-
adequacies stemming from insufficient design be-
come apparent as added costs for program revision.
Graphically, the result is a multi-dimension
tradeoff surface. Arithmetically, the relation-
ships are of the following form:

a X0 x¢ xd xK
d ¢t m

We believe that a few relationships should
dominate in this multi-dimensional set of pro-
spective interrelationships. The most important
is hypothesized to be between design and the sub-
sequent testing period. If the results of the
testing period were reasonably uniform in terms of
remaining errors, then the hypothesis could be
left simply between the Design and Testing phases.
However, the number of errors found during the
Operations phase varies widely among reported
project histories. Thus, we broaden the hypothe-
sis to state that reduced resources--relative to
some norm--given to the design phase will result
in greater resource requirements for testing and/
or in higher error rates during the Operations
phase.

Similarly, if insufficient resources are
committed to the coding phase, one can expect
(1) a requirement for more extensive resources
during Test, and/or (2) higher error rates during
the Operations phase.

Figure 3 illustrates some other departures
from the ideal which may occur, and how they may
be reflected in the error rate of the delivered
software, which is indicative of the reliability
of the software.
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MM ANALYSIS AND DESIGN > = @ < & > u
MM CODING AND CHECKOUT = < < = = 3> < «

MM TESTING - = > = - < > =
MM/MO MAINTENANCE e = = = = = > >
CHANGES NO NO NO NO YES YES NO NO

REPORTED ERROR RATE
= EQUAL TO IDEAL < > e > > e > >
> GREATER THAN IDEAL
< LESS THAN IDEAL

Figure 3. Postulated Trade-~Offs Among

Life-Cycle Man~Hour Parameters

For example, the second column indicates
that, with all other activities corresponding to
the ideal and with no changes, less than ideal
effort spend on coding and checkout would be ex-
pected to cause a higher error rate of the de-
livered software than the ideal.*

In conclusion: the development of low-risk,
practical life~cycle cost estimating relation-
ships requires the consideration of the inter-
actions among the activities or phases. Further-
more, we postulate that any analysis that does not
include these interactions will not succeed in
reducing the scatter that makes existing software
cost estimating schemes unsuitable for effective
project planning and control,

Data Collection Problems
A}

The interactions among life cycle phases de-
scribed by the above model pose some practical
problems in data collection and interpretation
that must be solved before valid data will be ob-
tained. To firmly establish the determinants of
software costs, we believe that actual cost data
must be recorded in keeping with a refined process
model that describes the interactions that occur
during system development.1 In particular, man-
hours expended for, say, recoding during the
nominal testing phase should be recorded as such.

*one might argue that the "ideal" error rate would
be zero; but a practical solution would be to
avoid spending large amounts of resources to
achieve zero errors. Therefore, it would be ex-
pected that proper planning would allow for some
small acceptable error rate. Obviously, this

tolerance of errors does not apply to defense
systems or man-rated systems, but it would be
acceptable for most information systems.




An adequate cost-reporting system also re-
quires a corresponding record of the output (e.g.,
lines of code) that is associated with the cost.
This is one of the major problems in cost~control
of software programs--it is comparatively easy to
establish what costs have been incurred; the
missing element is the amount of progress that has
been made.

APPLICATION TO AVAILABLE DATA

There is no shortage of mathematical rela-
tionships describing software phenomena. What is
in pitifully short supply is reliable data with
which to prove them. Our selection of a hypo-
thesis has increased the quantity and precision of
the data required to prove it. However, we be-
lieve that no existing approach to modeling life
cycle costs has been successful. Therefore, ex-
tending the complexity of the model and conse-
quently the data requirement may be justified if
they produce a better prediction of resource
requirements.

It is especially difficult to obtain data de-
scribing the individual phases of the software
life cyle.

Life cycle phases are not defined consist-
ently or even accurately for most software
development projects. The activities that com-
prise analysis as opposed to design are not clear-
ly stated or understood by most project managers.
Furthermore, most of them don't care because they
have more important problems to deal with.

If a milestone concept is used in the project
management, the project goes from, say, design to
coding at a specified point in time. If there are
changes to the design, the required effort will be
reported as coding.

Even when projects are reported by activity,
it 1s difficult to distinguish consistently among
coding, unit testing, and system testing. These
activities may be conducted at several levels
simultaneously. Changes or detected errors can
require reiterations among the activities.

As a preliminary test of the phase interre-
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was fit to the data. The result is shown in

Figure 4.

The curves show a definite tradeoff between
design effort and coding and testing. Further-
more, there is a diminishing return in reducing
coding and test time obtained by increasing the
design effort beyond a certain point. This point
increases markedly with increasing program size.
There is an indication of a very heavy penalty for
failing to perform some minimum amount of design.

CONCLUSIONS

The phase interrelationships hypothesis is an
intuitively satisfying model for explaining soft-
ware life cycle resource requirements. Looking
along this line is justified by the failure of
simplier approaches.

A preliminary empirical test of the hypothe-
sis with an extremely small data set is positive.
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lationships model, we attempted to use some available

data to describe the tradeoff between Design and
Coding and Testing. Coding and Testing were com-
bined in order to avoid the problem of distin-
guishing between these two phases.

Data was available from fourteen defense
system projects. An equation of the form:
- b _C
Io aHHD H“CT

Where I = Size of delivered program in

10008 of object instructions
HHD = Manmonths of system deaign
HMCT ~ Manmonths of coding and testing

a, b, ¢ = Constants
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SUMMARY

SOFTWARE TECHNOLOGY AND SYSTEM INTEGRATION

R. C. McHenry and J. A. Rand

IBM Corporation

Gaithersburg, Maryland

ABSTRACT

Perhaps the least appreciated area of modern
software technology is top-down development. Top-
down development is far more than a programming
technique suitable for application to an
individual work assignment. Top-down development
is a8 rich and powerful technique for project
implementation and for system integration. The
characteristics of the top-down process
(executable as a system and self-integrating)
suggest that the process may be a foundation of
integration engineering.

INTRODUCTION

This paper provides key exerpts from a recent 1BM
technical report (FSD 78-0034) by the authors. In
addition, the workshop presentation summarizes the
example system employed in the full report.

A number of trends in data processing appear to
justify establishing a discipline of integration
engineering. These trends include:

a. Aggregating larger systems

b.  Requiring higher availability

c. Distributing systems

d. Developing systems concurrently.

Mills has defined software as logical doctrine for
the harmonious cooperation of people and machines
(1). When a system is defined to be a coherent
assemblage of people and hardware with specific
capabilities, the system engineering and related
operating rules are, in fact, implemented in the
operational software. From this perspective, we
speculate that system integration and integration
engineering technology can be approached from
software technology.

Our speculation can be illustrated, and perhaps
substantiated, by a single approach, top-down
development. Top-down development is one of the
least appreciated facets of software technology.
Top-down development is more than a individual
work assignment technique; it is a profound
technical and managerial strategy as well (2).

The key characteristics of top-down development
suggest that:

a. The evolving software is always
executable as a system

b. The process is self-integrating.

An adaptation of the top-down approach was
conceived by O'Neill ia 1972 and demonstrated 1n
the overlapped development and integration of the
TRIDENT Command and Control System (3). The
concept is that software, unlike hardware, can be
implemented in a system sense to be always
executable and that system integration can proceed
from the software (i.e., the computer) to the non-
programmable hardware.

In their previous report (3), which introduced the
term "integration engincering”, the authors
generalized the top-down adaptation by defining a
top for any system and by relating the system top
to an integration strategy. The top of any system
is the logic for transitioning the system from
state to state. This definition is general since
even the simplist system must be turned on and
off. In more complex systems there are many
states including:

a. Initialization
b. Maintenance

¢.  Development

d. Training

[ Reduced function

f. Full function
g. Termination.

A key integration engineering hypothesis is that
transitioning logic is a candidate integration
strategy.

The need for integration cngineering technology is
greater than the need for systems, hardware, or
software engineering technology. Far more tools
exist to support design and development. In tact,
implementational technology has progressed beyond
our ability to effectively employ it. The
continuing improvements in data processing

——
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hardware have led to the introduction of
programmable hardware into many traditional non-
programmable subsystems. While the resulting
systems may be thought of as distributed, they
often result from subsystem rather than system
decisions.

OBJECTIVES

The objectives of integration engineering will be
realized by an approach that places state
transitioning at the top of the system. Component
boundaries for integration are not drawn between
hardware and software. The boundaries are drawn
around analyses that define the system states and
the state transitioning. Maintenance, training,
and reduced function states thereby become an
integral part of the design and development
process, and appear as early milestones on the
integration schedule.

Early deliveries are aimed at integrating the
lowest operating level (i.e., the maintenance
state): the configuration with the minimum
available hardware. Each successive delivery (and
integration) can be viewed as a transition from
one operating state to the next higher one. After
integration of the final deliveries (full up
state), the preceding deliveries are retained
rather than discarded.

Delivery of a maintenance state allows for
integration of hardware/software from a component
level through the subsystem to the system level
with continuous availability of system test
elements. This allows for verification of
performance at each level of integration without
dependence on higher levels performing correctly.

APPROACH

Some underlying concepts of integration
engineering are presented in the following
paragraphs.

Top-Down I[mplementation

The top-down approach is patterned after the
natural approach to system design and requires
that programming proceed from developing the
control architecture (interface) statements aand
data definitions downward to developing and
integrating the function units. Top-down
programming is an ordering of system development
which allows for continual integration of the
parts as they are developed and provides for
interfaces prior to the parts being developed.

Operating Modes

Operating stiates or modes describe the various
configuratioas of system resources (people,
programs and equipment) which operate the system.
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Preoccupation with the full operational function
state can lead to an unsatisfactory system since
the early work must also specity the procedures
required to transition the system from state to
state. The requirements determination process
which precedes system development must specify the
functional availability (e.g., tolerable outage)
requirements to guide the eventual development of
procedure configurations for each state.

Each state has instrinsic procedures and exists in
a broader procedural environment which enables
transition from state to state. A system top is
the transitioning procedure and this perspective
helps drive the entire process (function,
development, test, operation).

Prototypes

Prototype systems are developed for concept
validation, feasibility determination, or
benchmark calibration purposes. The sussessful
prototype generally represents an early step in a
major system acquisition. While the successful
prctotype overcomes the certainty of specific
failures, the typical prototype does not guarantee
full scale success. Serious problems or
disappointing performance may arisf in scaling up
to an operational system. Consid:ration must be
given to scaling problems throughout the prototype
planning.

One approach to prototyping is to scale down from
the system design to the prototype design. In an
evolutionary development approach, the prototype
is a subset of the intended system. The prototype
mav, in fact, be an operational state of the
intended system.

Integration

Since software, unlike hardware, can be
implemented i1n a system sense to be always
executable, the system integration should proceed
from software (i.e., the computer) to the
nonprogrammable hardware. Phased deliveries of
software to software/hardware integration ensure
intermediate evaluations where managers can
determine progress and acceptability of
concurrently developed components. Phased
deliveries provide the means of integrating
hardware and software incrementally rather than as
one enormous task late in the project. The
problems are found and corrected earlier while
more schedule is available for retesting.

The test system should also be built incrementally
by phasing its development to match the system
test and integtation phasing.

Earlier, operating states were described and the
state transitioning procedures were considered to
be a top of any system. A process is postulated
to exploit the transitioning procedures as a
strategy for implementing and integrating the
larger than software system. The process
considerations are:
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a. The number of states and transitions
required for integrating the system may
exceed the number required for operating
the system.

b. The Lestiné of reduced function states is
progressive and is an integration process
by-product rather than an afterthought to
full function state testing. The more
critical functions (i.e., those functions
occurring in more states) receive more
testing.

C. Where development funding is spread over
many years (or under design-to-cost
limits)} the evolving system can be
executed as a reduced system for testing
or limited operation.

Incremental Development

The top-down approach is applied in discrete
stages (initial, intermediate, final) to improve
manageability. Each stage is carried to readiness
for system integration.

The initial stage begins early in the schedule,
after the design specifications are developed, to
exercise and validate the interface between
executive and functional software and to obtain an
early validation of computer utilization
allocations.

The intermediate stages are developed to exercise
and vaildate the functional software interfaces
and selected critical system functions.
Simulation software provides inputs to the
functional software in lieu of actual hardware
inputs. Intermediate stage software is used for
interface validation and early system hardware
integration.

The scheduling of initial and intermediate stages
must provide time for appraisal and redirection of
development. The final stage is developed to
provide all functions the software is required to
perform.

Software integration and verification is a
controlled process by which intermediate and final
deliveries are integrated in simulation
environments which at successive tests more fully
approximate actual use. The objectives are to
verify that the integrated software will perform
its specified functions in the simulated
environment and to reduce the number of problems
encountered during system test and evaluation.

System Readiness Functions

In complex systems, the various assessment and
hardware maintenance support functions must be
integrated into the operational system. These
functions include:
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a. Interface tests to assess hardware
integration during operation and testing

b. Operability tests to assess functional
availability

C. Equipment tests to assess availability
and to support corrective or preventive
maintenance

d. Component status determination to support
reconfiguration

e. Data extraction for presentation or

subsequent analysis.

In addition, the personnel readiness functions
(training and exercise) can be integrated into the
operational system.

Applicability to Subsystems

The analytical process by which a system is
partitioned into states can be applied to
subsystems and lower level subdivisions. A result
of the process is the transitioning procedure
which employs system parameters in its conditional
logic. While we may consider any conditional
expression as choosing among states, at some point
we cease to distinguish states unless a
software/hardware/people reconfiguration or major
component state change is involved. At the system
level we may wish to consider intra-subsystem
states as sub-states. (Sub-states have the
property of being nested within states)

Now if we consider testing and more particularly
integration to be conditional in nature, we may
consider test and integration as transitioning
procedures. Similarly, incremeuntal development
may be considered in a transitional context.

TRANSITION MANAGEMENT

A key hypothesis of integration engineering is
that the state and transition management is a
natural part (i.e., the top) of the system and
should not require schedule extensions for
testing. Transition management is the
implementation of the integration engineering
apprcach stated under APPROACH. Some work remains
to be done in order to generalize transition
implementation. The issues include the degree tLo

which:
a. Transition management is dependent on the
operating system
b. The transition management function is
distributed in a distributed system
c. The actual configuration/state is

transparent to the application functions
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d. System readiness functions are
implemented.

Transition management, like integration
engineering, exposes most system design issues
from the basic system architecture to component
reliability requirements. However, every system
is in some way unique in the parameters that
define transition management.

Operating System

Transition management can be viewed as part of, a
superset of, or a subset of the operating system.
In practice transition management is all three.
If, however, the operating system interface to the
functions required by transition management (e.g.,
system loader, fault recovery, interrupt
processing) is well defined and documented, then
the degree of dependence would be minimized.

Distributed Management

The transition management function is completely
dependent on the system architecture. For
example, in a distributed system the transition
management function itself could be distributed.
The issues raised here are the same as those
raised in connection with a distributed data
management system (e.g., master/slave versus peer
to peer, dead-lock avoidance, functional
integrity). The resolution of these issues leads
directly to questions about global status data,
information hiding, and the connectivity between
aodes .

Application Functions

Obviously, the application functions must be
designed to be independent of the system
configuration. This is, however, achievable in
any system and made easier by functional bus
addressing (4).

System Readiness

The system readiness functions are the single most
important element to transition management, and
one of the critical tvols for integration
engineering. If the system has the flexibility
and redundancy to totally (or partially) recover
from a single failure, but cannot detect the
failure when it occurs, then the system
flexibility is wasted.

The system readiness functions must provide fully
integrated, online system tests and equipment
diagnostics that operate in realtime. The
function should continually assess system
readiness to meet the defined mission while
causing minimum degradation to the operational
system. The readiness functions should include
the following tests:

a. Operability tests assess the capability
of the entire system to perform as
required. The test should address the
system as a whole and verify that the
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various complete functions can be
performed.

b. Interface tests assess the capability of
all hardware units to intercommunicate
properly and to perform their electrical
functions correctly. This test should
address each individual hardware unit and
all of its signal interfaces. Detected
hardware unit failures should be
immediately displayed.

c. Alignment tests assist in the assessment
of sensor and/or system alignment
parameters.

d. Performance monitoring tests check each
equipment unit and iaterface for proper
operation.

e. Fault location tests exercise the unit to

make a detailed determination of the
exact nature and location of the failure
for repair. They require that the
subject equipment be dedicated to testing
and repair.

These tests are required to operate "online" in
that they will run concurrently with the
operational program without any system
degradation, as opposed to an "offline" test which
is conducted independently of the operational
program and prohibits that program from meeting
its designated operational requirements.
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ABSTRACT

In the development of large scale computer soft-

ware and in the management of the development pro-
cess it is often useful to model the reliability
and/or the cost of development of these software
packages. The literature has many references that
assume a model and show its usefulness as a manage-
ment tool. The reader is referred to references

[29 through 41]. Several of these publications use
Bayesian methodology. There are divided opinions

as to the application of some of these models, e.qg.
some authors feel the exponential distribution found
so useful in the reliability field for hardware
should not be applied to software. Others vehement-
ly disagree. In fact some even show data that seem
to substantiate their belief. The papers relating
to Bayesian methodology also assume a prior distri-
bution [34,35,36,37]. These assumptions in turn

can also be challenged. In order to get an idea of
what type of a probability distribution might be
applicable and what mathematical form might be ap-
propriate we offer here a structured approach in
assessing the probability distribution subjectively.
It is possible to base the analysis on either (1)the
subjective nrior distribution when no test data are
available, or on (2) a posterior distribution which
with the use of Bayes' Theorem, combines the prior
distribution with the 1ikelihood function (the sam-
pling evidence).

It is probably true that the engineering prac-
titioners by and large are not familar with Bayesian
statistical concepts. Of course, there are excep-
tions. This paper offers a methodology of assessing
a prior distribution subjectively. Once this has
been done the general shape of the distribution can
be ascertained, then the search for the mathematical
form is greatly simpliified. For instance, the pro-
bability distribution may be skewed, not exist for
negative values of the random variable. This would
eliminate a whole series of probability models like
e.g., the normal distribution and give rise to a
host of others. While it is still possible to se-
lect a model from many available basic nocdels, the
selection process is at least based upon some cyi-
dence, namely the opinion of the experts in charge
of developing the software package. Two computer
programs were written.

a. Assessing a subjective prior distribution by
elicitating answers to questions on a CRT
(Cathods Ray Tube). The answers to these
questions are used to plot the distribution
function as well as the density function.

b. From the general shape of these functions a
family of probability functions are sugges-
ted. For instance an inverted gamma distri-
bution, a beta distribution, or say a log
normal distribution might be hypothesized.
Some of the summary output of the first
program become inputs for finding the para-
meters of the assumed distributions

An example,of alognormal distribution is used
but other families of distributions could have been
selected as well.

This paper does not explicitly deal with the
derivation of the posterior distribution which is
found via Bayes' Theorem in conjunction with in-
coming data. The prior distribution, however, is
an essential part of finding the posterior dis-
tribution. [f the prior distribution found is in-
tegrated with test information as data become
available, then obviously this is more complete
information than just test information alone.

INTRODUCTION

The importance of consistent prior distribu-
tions is two-fold. First, these distributions re-
flect consistent initial predictions because they
are developed by a structured process. Second,
these distributions are the starting point for
applying Bayes' Theorem to develop the posterior
distribution by modifying the prior distribution
with actual data available later.

This paper will show how a prior distribution
can be found subjectively, even though no collater-
al data are available. Then, once this has been
achieved, a family of known probability functions
is used to ascertain if the found prior distribu-
tion belongs to the given family. This paper does
not address the subject of determining the poster-
jor distribution.

Two interactive computer programs were writ-
ten.

a. Subjective assessment of fractiles.
b. Using some of the fractiles found in (a),

the parameters of the log normal distribu-
tion are found. A log normal distribution

has been selected as an example but any
other pertinent distribution could have
been used.
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PREVIOUS WORK
T

More recently, decision theory has been considered as a general
framework for logical analysis of a decision problem under
uncertainty. As such, coasiderable attention has been given to
problem formulation and methods for the assessment of a prior
distribution. For example, Schiaifer’s recent book (22] is largely
devoted to the formulation and prior analysis of decision problems;
posterior analysis is discussed only in the last part of the text. Howard
and his associates (see, for example, {11) and |25)) have emphasized
the application of decision theory to complex, dynamic. and uncertain
decision probiems. In dealing with these problems, they have
explicitly included the problem formulation phase in the decision
analysis cycle.

Decision theory, either concerned with specific models or general
frameworks, treats uncertainty through subjective probability and
treats attitude toward risk through utility theory. Regardless of
whether the decision maker is concerned with prior or posterior
analysis, the prior probability distribution, reflecting his quantified
judgments about uncertainty, is an indispensable input to the analysis.

One difficuity associated with probability assessment is the
assessor's inconsistencies which often occur in formulating a pnor
distribution. The question of how to discover and remove
inconsistencies is of general interest to decision analysts. Another
question of interest is how to fit a probability distribution using the
asscc.ed fractile in order to make the subsequent analysis more
tractable. Both of these questions are addressed in this paper. The
paper offers two computer programs. The first program allows a
person to interact with the computer via a graphical device (Cathode
Ray Tube [CRT]) duning tis course of establishing a subjective
distribution. The second program fits a lognormal distribution to the
subjective distribution.

Duting recent years. subjective probability has been studied by
researchers in various disciptines such as psychology. mathemativs,
statistics, engineering, and business administration (as evidenced by
the references at the end of the paper). While some of these studies are
mainly theoretical or philosophical, others are experimenta!.

In their text {17}, Pratt, Raiffa, and Schlaifer present the
method of equally likely subintervals. Subsequently, Raiffa {18)
illustrates this method in detail by providing a dialogue between a
decision analyst and his client. Schlaifer {22) advocates this method
and offers a computer program for fitting a cumulative function
through assessed fractiles.

For his experimental study, Winkler [26) developed a
questionnaire using four assessment techniques: (a) Cumulative
Distribution Function — assessment of fractifes by means of equally
likely subintervals or direct questions regarding fractiles,
(b) Hypothetical Future Samples, (c) Equivalent Prior Sample
Information, and (d) Probability Density Function. He used this
questionnaire to elicit prior distributi from 38 selected subjects
involved in his study.

The use of penaity functions, or scoring methods, has been
d '] h as means of encouraging honest
assessments. Specifically, de Finetti {3] presents the quadratic scoring
rule. Savage [21] derives the general class of strictly proper scoring
rules by considering probabilities as special cases of rates of
substitutions. Winkler discusses the use of scoring rules and other
payofl schemes [27) and reports his experimental results (28] .

~m

Staé) von Holstein and his (124] and [25]) focus on
the subject of eliciting the opinions of experts in practical situations

rather than laboratory experiments. They discuss probability encoding
in the context of decision analysis and propose the use .of a
probability wheel to facilitate the encoding process.

At the Reliability Conference in 1970, Lin and Schick {13)
presented the use of an on-line computer system to assist a person in
developing a prior distribution to represent his beliefs. Although the
console-aided procedure is illustrated by a problem in the reliability
field, this procedure is applicable 1o assessment of any pnor
distribution. Since then, considerable expenence with th;s procedure
has been gained from experiments involving students n several
statistics and decision theory classes at the University of Southem
California.

The present paper results from the authors’ continued effort in
making the probability assessment more practical by using modemn
electronic computers. This paper offers a newly designed computer
program which has incorporated the expenence gained from the use of
the previous program. To simplify the assessment procedure, the new
program: (a) reduces the number of questions significantly {from 12
to 6), (b) is highly conversational and interactive, (c) checks for
consistency as the user answers question by question, (d) uses
graphical display sather than the typewnter terminal to help the user
visualize the assessment process as well as to greatly increase the speed
of drawing the assessed probability curves, and (e) plots not only the
cumulative function but also the density function. Once a subjective
distribution has been determined, a second computer program wifl fit
a lognormal distribution to the suhjective distribution to make the
subsequent analysis of debugging  problems more tractable
mathematically.

METHOD OF ASSESSMENT

Several mcthods have been suggested for estimating prior
distributions (sce, for example, [9]. 117], and [26]). Our computer
program makes use of the method of equally likely subintervals, which
perhaps is the most commonly used approach. The basic idea of this
method is to ask the decision maker, at any stage. to divide a given
interval into two judgmentally equally likely subintervals.

To begin with, the interval covering all possible values of an
uncertain quantity (usually called a random variable) is spht into two
subintervals and the decision maker s asked to choose which
subinterval to bet on. The dividing point is then changed until he feels
indifferent between betting on one or the other subinterva’. When the
indifference point is reached, the decision maker (eels that it is equally
likely that the actual value of the uncertain quantity will fall above (to
the right of) or below (to the left of) this point. The indifference
point, which divides the entire interval into two subintervals with
equal probabilities, is the median. Next, the decision maker is asked to
specify a point which will further divide the subinterval to the left of
the median into two equally likely parts. This new point is the first
quartile. Similarly, the subinterval to the right of the medisn may be
further divided into two equally likely parts. The decision maker may
proceed in this manner to divide any given interval (generated
previously) into two equally likely subintervals.

Suppose we let xy designate the k™ fractile of the uncertain
quantity X, i.c.,

P(R&xgd =k , 0<Kk< ]

Then, using the method of equaily likely subintervals, the decision
maker is asked to respond to a series of questions which will lead to a
determination of xy values for such k a3 0.5, 0.25,0.75, etc.

st
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COMPUTER PROGRAM
—————

The program stores a set of questions for the method of equally
hke  submtervals The - questions are displayed successively on a
CRT, the user responds 10 the questions by typing his answers on a
teletype. The response to each of the questions s processed
immediately and checked for logical consistency.

Assuming you are the user of the program, the first guestion calls
for the lower limit of the probabihity distribution by asking you to:

“Speaity  the largest value such that you feel wvirtually
certain that the actual value of the uncertain quantity will
fall above thes value ™

The second question. on the other hand, calls for the upper limit of
the distribution by asking you to

“Specity  the smallest value such that you feel virtualty
certam that the actual value of the uncertain quantity will
fall betow this value.™

In terms of the fracule notation descnibed carfier, the fint question
asks for xg and the second question asks for Xy The program will
check to see if xg is less than xy and if you feel virtually certain that
the actual value of the uncertam quantity will lie in between xg and
Xy

The third question asks you to divide the interval defined by the limits
Xg and ¥y mto two equalty likely submtervals. The question says:

“Specify the value such that you feel 1t is equally likely that
the actual value of the uncertam quantity will fall above or
below this value ™

The amwer to this question yields xqg . which should he in between
xg and x|

The fourth question, which calls for xg 1. is

“Suppose you were told that actual value 1s fess than XQ.$-
Specify the value such that it is equally likely that the
actual value of the uncertain quantity is either above or
below this value ™

The program will check to see if this answer lies in between xq and
s

The filth question. which calls for xq 74. is:

“Suppose you were told the actual value is greater than
xg §- Specify the value such that it is equally likely that the
actual value of the uncertain quantity is either above or
below this value ™

This answer is checked to sce if it hies in between xg ¢ and x ;.

At this point. the program further checks for consistency
Specifically, it asks

“Now, do you feel 1t 1s equally likely that the actual value
of the uncertam guantity will he within the interval
between xg 15 and xg 75 or outside of this interval””

If the check 1 not met. the program will direct you to review and
revise cach of your previous answers. Otherwise, the program will
proceed to ask you to specify the most likely value (the mode)

The nts thus ob d are ized on the CRT. The
program then 6its 2 smooth cumulative distribution function through
the assessed fractiles. At your request, it will plot the cumulative curve
and the corresponding density cusve. If these graphs do not seem to
reflect your judgments about the uncertain quantity, you will be
guided by the program to revise yous previous responses. Whenever
you are satisfied with the assessed distribution, the mean and the
standard deviation are computed. In addition, you may ask for 0.005.
0.015,0.025, .. ., 0.995 fractiles of the distribution.

COMPUTER OUTPUT

To illustrate the computerized method of probability assessment
discussed above, the computer output of an example is presented. In
this example. the expert is asked to quantify his judgments concerning
the debugging hours for a particular job. As we can see from this
output, the expert violates some of the probability axioms and is
asked to revise his responses several times.

THIS PROGRAM IS DESIGNED TO ASSIST YOU IN (A) QUANTIFYING YOUR
PROBABILITY JUDGMENTS CONCERNING AN UNCERTAIN QUANTITY,
1) CALCULATING THE MEAN AND STANDARD DEVIATION OF THE PROBABILITY
DISTRIBUTION OBTAINED FROM THIS QUANTIFICATION, AND (C) FITTING THE
ASSESSED DISTRIBUTION TO A THEORETICAL DISTRIBUTION

WHAT IS THE UNCERTAIN QUANTITY OF YOUR CONCERN NOW?
NUMBER OF DE BUGGING HOURS

PLEASE RESPOND TO THE FOLLOWING QUESTIONS WITH YOUR CAREFUL
JUDGMENTS

{1} SPECIFY THE LARGEST VALUE SUCH THAT YOU FEEL VIRTUALLY
CERTAIN THAT THE ACTUAL VALUE OF THE UNCERTAIN QUANTITY
WILL FALL ABOVE THIS VALUE
850

12

SPECIFY THE SMALLESY VALUE SUCH THAT YOU FEEL VIRTUALLY
CEATAIN THAT THE ACTUAL VALUE OF THE UNCERTAIN QUANTITY
WILL FALL BELOW THIS VALUE.

100

SORRY, YOU HAVE MISINTERPRETED THESE TWO QUESTIONS QUESTION (1}
ASKS FOR THE LOWER LIMIT OF THE UNCERTAIN QUANTITY PLEASE GIVE YOUR
NEW ANSWER TO {1}

100

QUESTION (21 ASKS FOR THE UPPER LIMIT OF TME UNCERTAIN QUANTITY
PLEASE GIVE YOUR NEW ANSWER TO (2.

&so
YOUR ANSWERS TO THESE TWO QUESTIONS IMPLY THAT YOU FEEL VIRTUALLY
CERTAIN THAT THE ACTUAL VALUE OF THE UNCERTAIN QUANTITY WILL LIEIN
BETWEEN 100 AND 650 OO YOU AGREE?

NO
THEN YOU MUST REVISE YOUR ANSWERIS)
PLEASE TYPE YOUR NEW ANSWER TO (1)

50
PLEASE TYPE YOUR NEW ANSWER TO (2

850

[k}

SPECIFY THE VALUE SUCH THAT YOU FEEL IT IS EQUALLY LIKELY
THAT THE ACTUAL VALUE OF THE UNCERTAIN QUANTITY WILL FALL
ABOVE OR SELOW THiS VALUE

%0

14) SUPPOSE YOU WERE TOLD THAT THE ACTUAL VALUE 15 LESS THAN 280
SPECIFY THE VALUE SUCH THAT IT 1S EQUALLY LIKELY THAT THE
ACTUAL VALUE OF THE UNCEATAIN QUANTITY iS EITHER ABOVE OR
BELOW THIS VALUE

10
*USER'S AESPONSE APPEARS IN ITALICS




| SELIEVE YOU DIDN'T ANSWER TS QUESTION CARESULLY. PLEASE GIVE IT
SOME THOUGHT.

00 YOU NOW REALIZE WHAT YOU OID WRONG?

YOUR ANSWER TO (4) SHOULD WMAVE BEEN IN BETWEEN S0 AND 250 PLEASE
TYPE YOUR NEW ANSWER.

7o

SUPPOSE YOU WERE TOLD THAT THE ACTUAL VALUE IS GREATER THAN
260. SPECIFY THE VALUE SUCH THAT 1T IS EQUALLY LIKELY THAT THE
ACTUAL VALUY OF THE UNCERTAIN QUANTITY IS EITHER ABOVE OR
BELOW THIS VALUE.

«0

NOW, DO YOU FEEL 1T 18 EQUALLY LIKELY THAT THE ACTUAL VALUE
OF THE UNCERTAIN QUANTITY WILL LIE WITHIN THE INTERVAL
BETWEEN 130 ANO 400 OR OUTSIDE OF THIS INTERVAL?

NO

SORRY, YOUR NO ANSWER INDICATES THAT YOUR ANSWERS TO QUESTIONS {3}
THHOUGH {5) MAY NOT REFLECT YOUR PROSABILITY JUDGMENTS. SO, LET'S
AEVIEW EACH OF THESE ANSWERS.

(3A) ACCORDING TO YOUR ANSWER TO OQUESTION (3), YOU FEEL IT (S

EQUALLY LIKELY THAT THE ACTUAL VALUE OF THE UNCERTAIN
QUANTITY WILL FALL ABOVE OR BELOW 280. DO YOU AGREE?

YES

MAIWE NOW LOOK AT YOUR ANSWER TO QUESTION (4]. IF TNE ACTUAL

VALUE OF THE UNCERTAIN QUANTITY WERE LESS THAN 250 WOULD
YOU FEEL EQUALLY LIKELY TMAT THE ACTUAL VALUE 1S EITHER
ABOVE OA BELOW 1307

~NO

PLEASE TYPE YOUR NEW VALUE FOR WHICH YOU WOULD FEEL EQUALLY

{SA) FINALLY, YOUR ANSWER TO QUESTION (5) IMPLIED THAT IF THE

ACTUAL VALUE OF THE UNCERTAIN QUANTITY WERE GREATER THAN
250 YOU WOULD FEEL EQUALLY LIKELY THAT THE ACTUAL VALUE IS
EITHER ABOVE OR BELOW 400. DO YOU STILL AGREE?

vES

(BA) NOW, LET'S CHECK THE CONSISTENCY OF YOUR REVISED ANSWERS. THE

n

m

LOGICAL CONSISTENCY REQUIAES YOU TO FEEL EQUALLY LIKELY
THAT THE ACTUAL VALUE OF THE UNCERTAIN QUANTITY WILL LIE
WATHIN THE INTERVAL BETWEEN 180 AND 400 OR OUTSIDE OF THIS
INTEAVAL. DO YOU FEEL THAT WAY?

YES
SPECIFY THE MOST LIKELY VALUE (THE MODE)
200

GREAT. YOU NOW HAVE DONE YOUR ASSESSMENTS AS SUMMARIZED

cum. CORRESP
PACS. VALUE QUESTION
0.00 80 1
0% 190 .
080 %0 3
o 400 L]
1.00 [ H
MOOE 200 ]

DO YOU WiSH TO AEVISE YOUR ANSWERS)

~O

FROM THESE ASSESSED POINTS. A SMOOTHED CUMULATIVE DISTRIGUTION WiLL
08 OBTAINED, WOULD YOU LIKE TO SEE THE GRAPHS FOR THE DISTRIBUTION
FUNCTIONM AND THE DENS!TY FUNCTION?

ves
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Figure 2. Cumulative Distribution

{9) WOULD YOU ACCEPT THESE GRAPHS AS REASONABLY ACCURATE
EXPRESSIONS OF YOUR JUDGMENTS CONCERNING THE UNCERTAIN
QUANTITY?

YES
110) SUMMARY MEASURAES OF THIS DISTRIBUTION ARE

MEAN 284 9094
STANDARD DEVIATION 156 4427

111) DO YOU WANT TO SEE THE VARIOUS FRACTILES?

YES
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1120 DO YOU WANT YO FIT THE ASSESSED DISTRIBUTION YO A THEORETICAL
DISTRIBUTION?

NO

1131 DO YOU WISH TO QUANTIFY YOUR JUDGMENTS CONCERNING ANY
OTHER UNCERATAIN QUANTITY?

NO

THANK YOU FOK YOUR COOPERATION GOODBYE
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AN APPLICATION FROM PROGRAM VERIFICATION

From the assessment procedure given carier, several fractile
points, the mean, and the standard deviation are ilable in the
summary output of the computer program. Any two fractile points, or
a fractile point and the mean, or a fractile point and the standard
deviation etc., can be used to determine the parameters of the
lognormal distnbution. A new program was developed that allows
some 20 different input combination pairs in the procedure for
determining the parameters of the lognormal distribution. The density
function of the lognormal distribution is given by:

5
N [ ! (ln x-a ) “
fix) = =—=x""exp| - —_— ., x>0 o
N [ T 8 >0
where a and § are the parameters of the lognormal distribution.

1t is well known that the mean E(x) and the variance V(x) are given
by:

expla + [1/2) 83

E(x)= u

V(x)= o?

uz [(ew gh-1 I
The mode of this distribution is at
MODE = exp (a - 8)
while the median or 50th percentile, Pgg, is at
Pso = .

By letting y = '—"—‘?J—‘z-in (1) and using standard normal tables, the

90th percentile was found to be

Pgg = exp (! 2828+ a).

Other fractile points can be found in a similar fashion.

As we have seen the lognormal distribution has two parameters a
and 8. Thus to fit a lognormal distribution to the subjectively derived
distnbution we only have to specify two values such as Pgg and Pyg.
or the mean and the standard deviation. For the following example
the mode = 200 and the median = 250 are used. The program

output includes a distribution function and a density function. The
latter 1s given in Figure 3.

LOG NORMAL DISTRIBUTION

DO YOU NEED THE COMBINATION PRINTOUT? YES-1, NO-0 20

WHAT IS THE INPUT COMBINATION NUMBER 713

MEDIAN - 750
MODE - 7200
9OTH
ALPHA BETA  MEDIAN  MEAN STD DEV  MODE PCTLE TIME

5.5215 0.474 250.0000 279.506 13M.7582 200.0000 458 0842

* DO YOU WISH T0 INTEGRATE-NO-0, YES*]1, RETURN-2 70

DO YOU WISH TO PRINT X AND Y-NO<0, YES+), RETURN-2 71
WHAT IS XMIN, XMAX, DELX

7100,650,20
X-VALUES Y-VAWES X-VALUES Y-VALUES
100 1. 28704 -8 400 1. 28704€-03
120 2.104766-03 420 1. 10016€-33
10 2.840116-03 40 9. 3193704
160 3.37814-03 460 7. 98064¢ -04
180 3.6340% -03 480 6. 79084 -08
200 3.7768% -0 500 5. TS580E-04
20 3.701%-03 520 4, 8R2766-04
240 3.5067%-0 540 4, 14090¢-04
260 3.23104 -3 560 3.5115%-04
280 2. 93064€ - 03 580 2. 97842 -04
300 2.613066-03 600 2.52107¢-04
320 2.3003% -0 620 2. MS)I6E-Db
360 1. T4150¢-03 640 1. 8220%-04
380 1. 50047 -03
DO YOU WISH TO PLOT X AND Y: NO-0, YES*1 ?1
O.er
]
i : e

50100 200 300 40 500 600 700 800
Figura X Lognormal Density Function with Medisn 256 and Mods = 200

Now the distnbution function or density function can be visually
compared with the subjectively derived prior distnbution using the
questionnaire  invalving the debugging hours. 1If ‘“reasonable™
agreement has been achieved the mathematical form of the density has
been found. Several combinations of input values might have to be
examined in order to achieve the “best” fit. This form i1s important in
order to establish the posterior distnbution using incoming data and the
liketihood function according to Bayes' Theorem. On the other hand, if
*“reasonable” agreement between the two distribution functions has not
been achieved, a new family of distributions may be tried and/or the
empirical distribution might be questioned. Ultimately, agreement will
be found unless the lognormal distribution is not a vahd model
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DESIGN PROCESS ANALYSIS MODELING - AN APPROACH
for IMPROVING the SYSTEM DESIGN PROCESS

Barbara C. Stewart
*Honeywell Systems and Research Center

2. TOWARD A DESIGN PROCESS ANALYSIS DISCIPLINE

ABSTRACT

A new discipline for improving the design process
of large complex systems has been proposed. The dis-
cipline consists of a modeling technique (Design Pro-
cess Analysis Modeling) combined with a set of ana-
lytical procedures. The Design Process Analysis Mo-
del and procedures are described, and some appli-
cations to such areas as computer logic design and
software chief programmer teams, are discussed. A
number of potential benefits of use of the discipline
are identified, including: 1) Verifying that both
technical design goals and organizational objectives
are being met by the design process; 2) Providing a
common approach for evaluating the cost-effectiveness
of an existing organizational design process; 3) Es-
tablishing a framework within which different organ-
izations can evaluate and compare design method-
ologies, tools, and design automation techniques.
Additional areas for research are suggested.

1. INTRODUCTION

As all types of systems become larger, more com-
plex, and more dependent on the use of sophisticated,
rapidly changing computing technology, the design
processes for such systems become more complex, cost-
1y, and higher risk. Today new computers must be
designed and built using other computers, and new
software for one computer is designed using a larger
computer containing yet more complex software. With
labor costs increasing and digital technology costs
decreasing, increased automation of the design pro-
cess for large, complex systems is becoming a ne-
cessity rather than an option. The problem in design
process automation, however, is that design processes
within any given organization are extremely complex,
unique, and not well understood; also there are no
commonly accepted analysis disciplines to determine
the cost/benefits of automating a design process.
Thus in most cases the results of design process auto-
mation are less than optimal. (Example: the soft-
ware design process, which always involves use of
computers, is one of the least understood, high risk,
and high cost, types of system design.) A commonly
accepted design analysis discipline is needed. It
should be capable of wide application in different
organizational and technology environments and should
improve the success of any design process automation
project.

*This work was jointly supported by: U. S. Office of
Naval Research (Contract NO0O014-75-C-065Q), U. S.
Naval Air Development Center, and Design Analysis
Associates, Inc.

During an initial attempt to develop a design pro-
cess analysis discipline [1],astudy of the design
processes of various organizations and technology
environments resulted in the following observations:

Observation 1: The most unique and constraining
factor in each industrial design
process appeared to be the organ-
zation, structure, and management
of that process.*

Observation 2; In the industrial organization and
management of each design process,
a number of critical information
flow factors existed which are
also critical in the management
of other types of industrial pro-
cesses.

Observation 3: The most "successful" (where
"success" is defined differently
by different organizations) large
system designs were those where
the organization and management
of the design process itself were
evaluated in terms of their impact
on the system to be designed, and
where necessary changes in the de-
sign process were made prior to the
start of the design.

These three observations pointed toward potential
applicability of traditional information systems
analysis disciplines and industrial dynamics models
to sort out the organizational from the technical
elements of the design process.

In terms of the traditional systems analyst's
input-process-output model, the design process is
the "black box" (Fig. 1) which transforms inputs
(the system requirements**) jnto outputs (the final
system blueprints**), given a set of limited re-
sources, external constraints, available technology,
and within the boundary of a particular organization.
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Figure 1. Design Process Modeled as
Input-Process-Qutput
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The problem can be stated as follows:

Design Process
Analysis Problem: How to analyze and specify the
design process "black box"
(Fig. 1) in such a way that the
final system blueprints accur-
ately and completely implement
the system requirements, given
technology, resources, exter-
nal constraints, and within the
the organizational environment.

Given Observations 1, 2, and 3 and the above pro-
blem statement,and given the results of several case
studies [1] , we were led to the following assumption
It underlies the development of our design process
analysis discipline:

Assumption: De facto design processes already
exist and are firmly enmeshed within
the organizational structure, busi-
ness goals, resource and technology
limitations, and management style

of particular organizations. New
theoretical design methodologies
and/or cost evaluation and prediction
tools which require changes in the
existing process will not achieve
desired results, unless we first
analyze the existing design process,
its raison d'etre and its information
requirements.

3. REQUIREMENTS FOR THE DISCIPLINE

Our concept of a design process analysis disci-
pline involves a set of rules or procedures that can
govern the analysis of any design process, and a top-
level conceptual model of the process in which all of
the key elements and their interrelationships can be
identified. The intent of such analysis is "obser-
vation of the real world as it is . development of
best-fit models that describe but do not explain be-
havior, interpretation of the models, and the for-
mulation and experimental confirmation, modification,
or rejection of theories ..." [5]

The design process analysis discipline should
provide a cnmmon framework for: a) explicit defi-
nition and study of the key parameters in a specific
organization's design process, b) evaluation and com-
parison of the cost/benefits of various design method-
ologies and tools, ¢} comparison of design processes
of different organizations and for differing tech-
nologies, and d) a starting point for more formal
modeling, analysis, and prediction of design cost and
risks.

Based on our initial work in this area[l] , a
preliminary design process analysis model! which meets
these requirements has been developed.
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4.  THE DESIGN PROCESS ANALYSIS MODEL

The Design Process Analysis Model is an adapt-
ation of Forrester's single-loop feedback system
model [6]. This model provides a framework which
captures all the critical elements of the design pro-
cess and their interrelationships. The elemental
single Toop model (Fig. 2) consists of two processes,
the Decision Process (a), as modeled by Gorry and
Morton [7] , and the Design Change Process (b), where-
in the most current system blueprint is modified by
the set of design actions (c) initiated as output of

the most recent decision. Design changes are embod-
ied in design information (d) which is fed back as
input into the decision process (a). Decision infor-
mation (e) is also fed back for input to subsequent
decisions. The entire single-loop design process is
initiated externally by the set of anals, resources,
requirements, and constraints (f).analysis represent-
ing the output of a higher level decision which
initialize the decision process, and which are used
to determine loop termination. (Termination occurs
at the point when the design and design information
indicates that the requirements and goals for that
loap have been met. Each iteration of the loop takes
a measurable amount of time and consumes a measurable
amount of resources.)
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Figure 2. Single-loop Design Process
Analysis Model Characterizes
Critical Elements of Design
Process and their Inter-

relationships

The model distinguishes among three different
types of design process information: 1) Design (or
"blueprint") information (d) which embodies the state
of the system design at a particular time. Examples
are engineering drawings, program listings, flow
charts, HIPQ diagrams, etc. 2% Decision information
(e,f) which embodies all of the management and con-
trol information, requirements and constraints, cri-
teria for acceptance of the design, and decision his-
tory. Examples are project cost data, design speci-

fications, design goals, organizational objectives,
project plans, progress reports, etc. 3) Actions (c)
implemented by action languages and media which effect
changes to the design (b).




i Design processes for large, complex systems in-

; volving multiple organizational elements can be model-
i ed as a multiple-loop design process where individual

loops are interconnected by actions or information as
shown in Fig. 3 (Detailed discussions of interconnec-
tion and modeling of multi-loop design processes will

be found in L1
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Figure 3. Example Multi-Loop Design Process
Model Uses Decision Information Paths
to Differentiate Among Levels of
Design Detail and to Manage Design
Process

5.  SOME BENEFICIAL APPLICATIONS OF THE MODEL

The Design Process Analysis Medeling technique
(Figs. 2 and 3) has proved useful in illustrating to
non-technical managers the differences among various
methodologies and design approaches. The following
are some simple examples: a) In structured program-
ming the limitation to three basic logic elements
(sequence, if-then-else, and do-while) can be des-
cribed in terms of the model as 1imiting the set of
design actions (Fig. 2c); b) The differences between
"top-down design" and "bottom-up design" can be ex-
pressed in terms of changes in the arrangement and
connectivity of the design feedback loops; in terms
of differences in the goals, constraints, and require-
ments at each design level; and in terms of changes in
the design and decision information paths; c) Use of
HIPO or SADT diagrams would apply to the format of the
design information (Fig. 2d):;d) Chief programmer teams
can be expressed as a particular method of intercon-
necting the team members’' decision and design change
processes via the decision and design information and
action paths; e) A design walkthrough is a method for
closing certain design loops.

The model has also proved ugeful in providing in-
sights concerning improvements 1n the design process~
es of specific organizations.
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Fig. 4, for example, illustrates a highly oversim-
plified model of a hypothetical design process

for a computer logic design group. Fig. 5 shows the
same hypothetical process as modified by automation
of key elements (which were identified through use
of design process modeling and analysis )*. In the
fogic design example, major benefits resulted from
c¢losing the individual design loops earlier (by add-
ing the logic simulation and synthesis system within
the organizational boundary (Fig. 5). This, in the
real worid case, resulted in reducing the logic de-
signers' turnaround time and the number of logic
errars introduced into the equation file, which in
turn reduced design cost.

Finally, the Design Process Analysis Model has
proved useful in developing more detailed models and
guidelines for certain types of design processes in
systems which are reasonably alike and in organi-
zational environments wh ich are also reasonably alike
For example, a model and guidelines have been develop-
ed for the software development process of embedded
computer systems, via analysis of the design pro-
cesses of forty-five separate product types in eight
different industrial organizations.

6. DESIGN PROCESS ANALYSIS PROCEDURES

As the model has evolved through its application
in various environments, a number of procedures have
been developed to systematize the design analyst's
approach. These procedures are similar to those used
in traditional systems analysis for automation of
information processing systems, except that the De-
sign Process Analysis Model is used as a framework.

The analysis procedures to be followed by the de-
sign process analyst include:

4. Analysis of the existing and/or future de-
sign process environment.

b. Understanding and documentation of present
design process and its requirements: cost,
time, and information flow, expressed in
both English and in graphical form (c.f.
Figs. 4 and 5).

c¢. Determination of current design process in-
adequacies and problem areas.

d. Analysis of overall design process infor-
mation flow, timing, content, format, as
well as the desired acceptable error rate
in proposed modifications or automation
of the design process.

e. Analysis of computerized end products and
human end products desired for the improved
or automated design process.

f. Analysis of similar or interfacing processes
and systems within the organization.

g. Determination of organizational implications
and special problem considerations involved
in any new or revised design process.

e —
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h. Identification and evaluation of all alterna-
tives for modifying the existing design pro~

cess, (design methodologies and approaches,
automated design tools, languages, etc.) in-
cluding requirements for all the elements of
the design process model (decision process,
actions, design process, design information,
and decision information).

Consistent application of these procedures with-
in the framework of the Design Process Analysis Model,
creates an analysis discipline which is useful in im-
proving the effectiveness of design processes for any
environment.

7. PRELIMINARY CONCLUSIONS CONCERNING THE DESIGN
PROCESS

Preliminary application of the model .nd analysis
procedures to several design processes has led to the
following conclusions which are currently being veri-
fied:

a. Technology and technical skill requirements
aside, information is the critical element
in the design process, in relation to both
the eventual quality and cost of the system
being designed. As the number of people and
organizational elements involved in the
design process increases, the criticality
of the information also increases (c.f.

F. Brooks observations in [8)), and there-
fore the usefulness of design process analy-
sis disciplines also increases.

b. Many existing design processes operate vi-
tually open-loop; that is, there is no veri-
fiable Tink (until late in the process) be-
tween either the system design goals and
their embodiment in the design blueprint, or
the organizational management goals and their
embodiment in the de facto design process.
{i.e. the design feedback loop duration is
very long)}. As the number of people and
organizational elements involved in the
design process increases, the payoffs for
establishing shorter design feedback loops
also increase (reference TRW's experience
{9]). Application of design process analy-
sis techniques prior to the start of the
design can be used to identify potential
problems associated with lengthy design
feedback loops, and to indicate where and
how these loops might be shortened. (cf.
differences between Figs. 4 and 5)

c. Each organization and design environment has
an extensive and specific set of design and
decision information processing requirements
which are unique to that organization and
its particular design process. Methodolo-
gies, technigues, and tools aimed at improv-
ing the design process should be evaluated
in terms of the specific organizatioral de-
sign environment, in order to be applied
effectively. Design analysis techniques
provide a framework within which to compare
design methodologies and tools, and to




establish requirements for a particular design
context.

d. Evaluation, analysis, and prediction of cri-
tical factors (such as design cost) become
increasingly difficult as the number of people
and organizational elements involved in the
design process increases. Use of design pro-
cess analysis provides a means for effectiveiy
sorting out the management, organizational,
technical, and human factors and their contri-
butions to overall design costs.

8.  RECOMMENDATIONS FOR FURTHER STUDY

Based on our experience we have identified three
major areas for further study in Design Process Analy
sis:

8.1 Refinement and Formalization of the Design
Process Modeling Techniques and Analysis
Procedures.

To date, the Design Process Model and Analysis
Procedures have been used informally to help capture
information concerning limited real-world design en-
vironments. In order to facilitate more widespread
general use of these techniques, work needs to be
done to make the models and procedures more formal,
and to develop automated tools to aid in analysis
and modeling.

8.2 Extension of the Verification Base

The model and procedures have heen used to ana:-
ze only two classes of design processes, computer
hardware design and embedded computer software de-
sign. We need to extend our application of the De-
sign Process Analysis Model and procedures to addi-
tionai classes of design processes in order to fur-
ther verify our preliminary observations and conclu-
sions.

8.3 Model Development as Framework for Evaluating and
Comparing Design Methodologies and Cost Esti-
mation Techniques.

A number of design methodologies and design cost
estimation technigues are being developed. Using the
Design Process Model as a framework, it would be use-
ful to develop a standard approach (applicable to
various organization and design environments) for
determining the requirements for design methodologies
and cost estimating techniques, and for comparing
them.

9. SUMMARY

In this paper we have summarized some recent work
in the development of a Design Process Analysis dis-
cipline, and have described a few of the benefits ob-
served in our preliminary application of the disci-
pline. We have also discussed some of our observa-
tions and conclusions drawn from experience with a
Design Process Analysis Model. A number of recom-
mendations for further research have been made.
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Abstract

This is a report of a life-cycle cost model
to measure the effects of standardization of compu-
ter instruction-set architectures on military com-
puter-based systems. The study considers six dif-
ferent scenarios, one of which assumes that stand-
ardization is not done, but only four different
computer architectures are used. The remaining
five scenarios consider the effects of standardiz-
ing on each of the architectures UYK-7, UYK-19,
UYK-20, GYK-12, and UYK-41 (PDP-11).

Standardization impacts life-cycle costs in
several ways. There is an inherent difference in
the value and utility of the existing support soft-
ware bases for the several architectures. The com-
mercially supported architectures will augment and
maintain a substantial portion of the softwar se
free of government expenditure. Finally, some ur-
chitectures are more efficient than others, and re-
sult in Tower hardware costs if used as a standard.

The cost model attempts to incorporate these
factors in a meaningful way to judge the relative
importance of these factors and other factors on
total life-cycle cost. The results of the model
show that the GYK-41 results in the least life-
cycle cost of any scenario over a broad range of
annual rates of investment in support software.
These conclusions are attributed to the fact that
the GYK-41 ranks best or near best in each aspect
that impacts total life-cycle cost.

Introduction

The objective of the study reported here is
to measure the economic effects of standardization
of computer instruction-set architectures on mili-
tary computer-based systems. For the purposes of
this study, the term architecture refers to the
characteristics of a computer defined by its in-
struction repertoire. Two computers are said to
have the same architecture if every assembly lan-
guage program for one computer runs on the other
and conversely. Two such computers may be vastly
different in implementation and have radically dif-
ferent costs and performances. The commercial
computer world has demonstrated that a family of
implementations of a single architecture is
feasible and desirable.

Aaron Coleman
U.S. Army
CORADCOM
Ft. Monmouth, New Jersey 07703

Military computer systems are starting to
take on characteristics of commercial families in
that prior-generation computers are being reimple-
mented with new hardware to take advantage of the
technological improvements in cost and performance.
At issue is the question of whether to standardize
on a family of implementations of single architec-
ture or to use a mix of many architectures, each
used in an environment best suited to it. If
standardization appears to be attractive, than a
further question is which computer architecture
should be used as a standard. Standardization can
realize potential savings by eliminating duplicate
efforts, but on the other hand it can incur addi-
tional costs if a standard is used in an environment
for which it is not well-suited. The guestion then
becomes one of determining which standard is the
best overall standard.

The method used in this study to recommend a
course of action is to compute the relative life-
cycle cost for 78 representative Army/Navy computer-
based systems which are acquired and deployed over
a 22-year interval. The systems are acquired in
lots of 26 for three different time periods--1980,
1985, and 1990--with each lot deployed for 10
years. R&D costs prior to each acquisition are in-
cluded in the cost model. Thus the cost model
serves to identify how a standard computer archi-
tecture can impact life-cycle costs, and gives some
indication of the potential benefits and costs of
the possible decisions. Any model of this type is
subject to errors in estimates, so that the abso-
lute dollar figures computed must be viewed as in-
dicative of possible results rather than as pre-
dictions of the future. The model is successful
in identifying the important factors, and in es-
timating their relative importance if in fact the
model cannot be expected to predict dollar costs
with absolute accuracy.

To isolate the key variable, computer ar-
chitecture,from different hardware implementations,
all computer systems are presumed to use the same
family of modules and chassis in their implementa-
tion. These modules are presumed to be Military
Computer Family (MCF) modules as specified by ITEK
Corporation under contract to the U.S. Army. The
modules use a common collection of memory modules,
input/output modules and bus interfaces, with dif-
ferent CPU modules available to implement different
instruction-set architectures. We presume that
these modules can implement any of the instruction
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sets for the UYK-7, UYK-19, UYK-20, GYK-12, and
UYK-41 (POP-11) computers. The most likely method-
ology for realizing the collection of instruction
sets from a common set of modules is to use CPU
modules specific to each architecture that inter-
face to the memory and input/output modules over a
general bus.

The cost model identifies costs arising from
principle sources (a) common costs, which are costs
such as product planning, R&D, and support software
required to mount an architecture in the field
apart from costs for specific systems; (b) hardware
Yife-cycle costs, which include acquisition, logis-
tics, and maintenance costs; and (c) software life-
cycle costs, which include initial acquisition op-
erations, and maintenance costs.

A crszial problem in making the study is to
assess the effects of the existing support software
tools and the effects of continued commercial in-
vestment in architectures for which there are com-
mercial counterparts. To this end we modeled the
effects as folilows:

1. A fixed annual government expenditure for sup-
port software is assumed to occur over the life-
cycle. The study treats costs as a function of
this level of investment.

2. Part of the investment is used to maintain the
existing software base that is owned by the govern-
ment. What remains after maintenance is used to
procure additional support software.

3. Commercial tools incur no charges against
government funds for maintenance.

4, Although it is likely that commercial invest-
ment may augment the support software base for com-
mercial architectures, this model takes the con-
servative view that the present commercial base re-
mains fixed at its initial value for the entire
1ife-cycle.

This model assumes that

5. the greater the value of the software tool
base, the lower the cost per line of code of appli-
cations software. An equation derived from actual
cost data is used to predict this cost, and the mo-
del estimates the value of the tool base as a func-
tion of time to come up with time varying estimates
of productivity.

The results of the model show that at all
levels of software investment, the GYK-41 leads to
the lowest life cost. The savings is $1.5 billion
of the cost of a standard family of UYK-19 compu-
ters (22%), and about $5.3 billion (49%) of the
cost of standard UYK-7 and GYK-12 families for an
annual software investment of $2 million. Regard-
less how the specific effects of crucial variables
are on total life-cycle cost, the GYK-41 will show
up most favorably in comparison to the other ar-
chitectures because it is at least as good or bet-
ter than the other architectures in each of three
key variables that impact life-cycle cost.
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USEFUL EVALUATION TOOLS IN THE DESIGN PROCESS

C. E.

Velez
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Abstract

An overview of our research activities in the
area of software design tools is presented. Keyed
on the concepts of discipline, formalism and
practicality of computer aided design proresses,
and the need for quality assessments at all stages
in the life cycle, a concept of an integrated set
of development and management tools is presented.
Fundamental to this concept is the availability of
a "static" quality measure applicable to a spect-
rum of specification levels of abstraction and the
use of simulation as an integral part of the
design process for dynamic analysis and validation.

Introduction

In considering the life cycle of a software
system, various stages or milestones have been
defined (e.g., AFR-800-14), ranging from require-
ments definition and analysis to installation
maintenance., An awareness of total life cycle
costs associated with software has surfaced a
need for improvements in the techniques governing
the earlier software development stages:
requirements identification, analysis, and design
development and validation applied through a
continuum of abstraction levels leading to coding
specifications. Key objectives of such techni-
ques include identification of "optimal" modular-
ization strategies, the surfacing of inconsistent,
incomplete, or ill-defined requirements, and the
validation of early products in the life cycle.
An emerging vehicle for the accomplishment of
these objectives are languages for identifying
requirements, design components, or design
specifications, These are collectively referred
to here as design languages. Embedded around
supporting software for language processing,
design data base creation, maintenance, and
assessment, such schemes become a design system
which can serve as powerful tools for:

e A disciplined way of expressing designs,

e A distinct phase-to-phase staging of each
design task with subsequent traceability of
requirements,

e Computer-assisted documentation production as
an automatic by-product,

@ Management control facilities due to the high
degree of visibility available through design
data bases.
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Several design languages that apply at
different levels of the design process, result in
different, concrete expressions of a design
product, It is these expressions of the design
product, stored as computerized data bases, which
provide the key to a maximally controlled software
development activity. 1Indeed the state-of-the-art
in software engineering in general focuses on
design data bases for some level of software
expression,

The availability of a machine readable data
base containing design information opens a whole
field of possibilities for learning more about
the design product. Going far beyond code
analyzers (which use source code statements as
the design level data base), we now have the means
for a broad range of feedback generators to aid
the human in iterative refinement activities.

Martin Marietta's expertise in this area is
strengthened by a vigorous software engineering
research program which continues to expand the
state-of-the-art. Specific recent accomplish-
ments have been achieved in the areas of design
quality assessment as well as very high level
languages for requirements and design (14), (16).
Very high level languages allow an expression of
a target system, i.e., a description at some
level, which can be used to form a database. This
database then provides us with a tangible,
measureable object., (The major related work is
with static/dynamic code analyzers to determine
aspects such as program structuredness cr
complexity, This, however, is after-the-fact:
design measures are more cost effective if they
can be used before code is produced). Therefore,
our current software engineering research program
looks specifically at languages and features
tailored to the measurement goal.

In order to use measurement as a mechanism
for design assessment, some criterion is needed.
That is, while we have the raw data for measure-
ment, we still need to know what characteristic
our "measure' will be informative of. One
criterion that can be used is one of structural
quality where 'quality" can be associated with
aspects of maintainability, reliability,
testability, or modularity. The assessment scheme

then produces a "static" design quality metric
or index,




Before going further, we emphasize the
distinction between software design as a process,
and the design as an end-result or product, Of the
many techniques proposed to positively influence
the design process, they all are motivated by the
common goals of producing a system that is struct-
urally simple, maintainable, and testable, i.e.,

modules. If indeed, such characteristics can be
induced into a design, the question arises as to
how they would then be embodied. Our hypothesis
is that the essence of such quality character-
istics - and others as well - is representable by
the structural aspect of the design. Furthermore,
we believe that the structure which supports or
"carries" these characteristics can be examined
as to the extent that one or more design goals

is met.

Another complimentary criterion is
erformance, which generally is measured by some
level of simulation attacking aspects such as man-
machine interaction, adequacy of computer hardware,
etc. In the remainder of this paper, tools useful
to support both these aspects of measurement will
be briefly outlined,

Static Metrics and Decomposition

Design quality metrics have been addressed in
the past from various viewpoints. Andreu (1) uses
a strength and coupling measure applied to a graph
representation of requirements and their inter-
relationships for preliminary design. Myers (9)
has developed a model in terms of probability
measures applied to discrete strength and coupling
factors of program modules which is used to assess
the ramifications of making program changes.
Schutt, et al (15) have applied an information
entropy measure to hypergraph representations of
computer processes and data structures. And
McCabe (7) shows a method for determining quality
as a function of module "structured-ness''. Each of
these approaches relates in some way to a system
decomposition measure, However, only Andreu
directly addresses the problem of forming the
decomposition itself. Parnas (11) also gives a
strategy for decomposition (applied to the design
process, vather than the product) but does not
attempt a design metric even though considerable
attention is given to resulting design quality.

Each of these approaches assumes its own
specific starting point located somewhere in the
software development spectrum., One can think of
all the points along such a spectrum as various
levels of expression of the design. And express-
ion, as a commnication medium, will assume some
linguistic form. These forms progress from
natural language at the early councept/requirements
stage to high order programming languages at the
implementation stage. Rather than limit ourselves
to a specific form or level of expression, we would
like it to be arbitrary., In order to apply a

design strategy and measurement scheme to a given
expression, a transformation must produce an
encoded form of expression to which methods for
the analysis of structure and, eventually, quality
can be applied. The transformation process

establishes a graph by identifying and converting
appropriate linguistic objects to nodes (vurtices)
and relationships to link (edges). Graph links
between nodes must also be qualifiable as to
strength, type, or importance; i.e,, weighted,

The design process is equated to the decom-
position of this graph into a collection of system
"elements" (modules, programs, subsystems, etc.),
i.e., a clustering activity, which can be sub-
jected to standard metric analysis, Measures such
as "strength" or "coupling'" or "complexity" of a
structure are generalized in this framework and
used at varying levels of abstraction.

For a fixed class of problems we have
determined how the choice of a metric will
influence the quality measure produced - an
adjacency matrix produces decomposition based on
the number of interfaces between and within
clusters. A distance matrix produces a similar
result but is a more comprehensive criterion
applicable to highly complex graphs. Other metrics
which represent links as probability values,
information channel quanta, or component control
lines, would need further research to determine
the characteristics of structure that quality
indexes based on such metrics would reflect.

Simulition Tools

Our design approach includes a dynamic design
validation at key stages in the design process,
Two such stages are the definition of the man-
machine interface (MM1) and ADP resource require-
ments (timing, memory, 1/0 parallelism, etc.) for
the system., Key tools here include "virtual”

1/0 device simulation, functional simulation
languages, emulations, etc. Research in this
area has been directed at the interface definit-
ions which allow such simulations to become a
natural, cost-effective element of the design
process. For example a top level clustering
analysis might support a delineation between
human operator and computer functions for an
interactive application, In addition to design
validation from the human factors point of view,
a simulation driven by a requirements/design data
base could surface key data/process structure
implications and drive the test scenario develop-
ment, Likewise, tools such a= functional siml-
ation of hardware and software can surface key
resource allocation problems associated with the
chosen hardware environment, if driven directly
from the problem data base. Such interfaces form
the basis for an integrated software design
facility concept described in the attached
tigure,
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PROGRAMMERS ARE TOO VALUABLE TO BE TRUSTED TO COMPUTERS

Gerald M.

C) Ethnotech, Inc. RFD 4

ABSTRACT

Most of the anticipated gains from program-
ming tools have been slow in arriving, and often
disappointing when they arrive. A major cause
of this condition is the failure to understand
the processes by which new technology is intro-
duced. The role of training has been left by
default to computers, under the assumption that
thev are cheaper or better than human teachers.
Methods of learning without using either comput-
ers or teachers are not even considered, though
they are far more economical and effective. The
computer can have a role; the teacher can have
a role; but unless the overall climate for pro-
fessional learning is established, the computer
and the teacher are hopelessly inadequate to the
full job of creating a corps of professional
programmers.

Choosing a Teaching Language

Every four years, along with county elec-
tions,the local computer science professors raise
the question of the correct teaching language
for programming. There's a lot of brave talk
about throwing the rascals out, many lunches
devoted to campaigning, a wave of confidence
just before the election, and then the ultimate
defeat of the upstart., 1In the end, both FORTRAN
and the gheriff are reelected. They may be cor-
rupt; they may be incompetent; they may be creak-
ing with age; but they're at least familiar.

Like the county voters, professors are quite
ready to rationalize the result. As the years
since 1956 have accumulated, the points in these
arguments have, one by one, withered away. And yet
one remains, year after year, the backbone of
conservatism everywhere. To quote a genuine
professor:

"My decision to base this course on the
WATFIV programming language was founded
not only on a recognition of real-world
applications but also on the raw econo-
mics of computer costs at our installa-
tion."

"Real-world" and "raw economics' are no-
nonsense words-~none of your ivory-tower fol-de-~
rol. Let's look, therefore, at some of the "raw
economics" of computer costs for training in the
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"real world".

Twenty years ago, computers were really ex-—
pensive--so expensive that FORTRAN had to be
ruled out of consideration for the language used
in a programming course. In fact, even the rich-
est of the rich thought using a computer in a
programming course was a frivolous extravagance.

Twenty years is a long time in a sheriff's
iife, and even longer in the 1life of the program-
ming profession. Few remember those days, or
even believe that it was possible to teach pro-
gramming without a computer. Soon, at the rate
personal computers are spreading, few will remem-
ber what it was like to learn computing with a
teacher. 1In the four vears since that WATFIV
decision was rationalized, the "raw economics"
have changed so sharply that we could almost
afford to give each student a personal computer.

In this vear of 1978, it sounds archaic to say
"our installation' in the singular. What univer-
sitv worth acereditation basn't got a dozen or
more minis and micros scatterved around the campus

Tike Homecoming handbills?

Still, the FORTRAN argument has survived the
latest reduction in hardware costs. Now it is
the micros that can't afford to run anything
else--except, heaven forbid, BASIC. Where does
this conservatism originate? Where will it end?
How far will 1t spread? Why does 1t resist the
repeated efforts of language designers and fmple-
mentors to break it down?

Using Software Tools

The programming language is merely the oldest
and most familiar software tool, and universities
are merely the oldest and most familiar tools for
social change. The same conservatism in the
adoption of new tools is found for all other
tools in all other {nstitutions. If we can an-
swer our questions, the payoff could be stagger-
ing.

Of the many reasons for non-use of new tools,
perhaps the most obvious {s the lack of attention
given to training. An elephantine sum of money
has been spent on the development of software
tools- the current rate probably exceeds a bil-
l1i{on dollars a year. In contrast, a micro-
organismic sum of money has been spent on train-
ing people to use those tools.




Most of the tools--perhaps as a consequence
of this disparity between development and train-
ing--are never or hardly ever used. Not only
do people continue to use FORTRAN, but they con-
tinue to use it without, for instance, even get-
ting cross-reference listings of their program
variables. Even when their FORTRAN compiler
provides such a cross-reference, the installa-
tion disables it, usually as a 'standard",
because "it costs too much'". And, even where
it is routinely produced, 90% of the programmers
never look at it--yet the cross-reference list-
ing is one of the simplest software tools, one
of the most direct in its use, one ¢f the most
convenient, and one of the most ancient.

The situation is little better in the major-
ity of installations that have abandoned FORTRAN
for "higher" languages. As an exercise in for-
mal review techniques, our clients and students
study published programs, which presumably are
held up as examples for novices to follow. Im
a typical review, of a program by two PhD Pro-
fegssors of Computer Science, we studied the use
of PL/I. Although the specifications offered
ideal situations for employing each of them,
none of the following PL/I facilities were used:

dynamic allocation of storage
cross~section notation

array expressions

factoring of attributes
subscript expressions

control of type conversions

~N N W N

. bit strings

One could almost have removed the semicolons
and, in effect, compiled the program on a
FORTRAN compiler.

Further examination of the program revealed,
as is typical, »no impact of the years of dis-
cussion of programming style. Among the more
pitiful stylistic practices we found:

1. intricate branching, including into and
out of loops

2. superfluous statements based on incom—
plete understanding of the action of earlier
statements

3. 1initialization of variables upon exit
from loops that used them

4, wuse of single-character names such as
K and R

5. use and reuse of scalar variables in a
program not pressed for storage

6., use of a name with a different meaning
in the program and in a comment explaining its
meaning

7. use of the keyword, PTR, as a data name
in a most confusing context

8. general inconsistency in the naming of
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variables

9. computations inefficiently placed within
loops, yet rendered inaccessible to an optimizer,
in a program that heavily used pointers '"for
efficiency"

At the level of design, the program again showed
no influence of recent discussion in the industry,
let alone design tools and concepts. We found:

1. no checking whatsoever for valid input,
either bounds or values

2. unchecked input used to control calcula-
tions, as in computed branches

3. a completely undesigned and error-prone
input format

4, an algorithm which was inefficient for
all but small cases of input

5. no monitoring of performance of the al-
gorithm, which might have indicated loss of per-
formance to the user

6. incomprehensible error messages

7. comprehensible error messages that were
wrong or misleading

In our work, we have reviewed hundreds of
programs from dozens of installations. The pro-
grams display approximately the same range of
problems, and the installations displav approx-
imately the same non~use of tools. At least 75%
of the installations routinely debug using unfor-
matted hexadecimal dumps. At least 90% have
never used a preprocessor. Program libraries are
coming into use, but not in more than 507 of
installations. Test data generation is rare;
archiving of test data even more rare; and even
a rudimentary data set comparison is hardly ever
usad.

We're not speaking of the number of these
tools that sit on the shelf, accumulating dust
and rent. We are counting the tool as "used"
if someone uses it, even if for a minor part of
its capabilities, so these figures overestimate
real professional use. Since we are spending
some money on training, what can it possibly be
teaching them?

The Computer as Instructor

In view of the inadequate use of our expen-
sive tools, it is obvious that we are not teach-
ing programmers to use the computer adequately
in their programming work. The conclusion seems
obvious--we must spend more on computers in our
classes, not less.

Obvioug? 1t would seem so, until we look at
the way the computer i{s being used in classes.
Indeed, we are not teaching them at all--the
computer is carrying the burden for us. As a
result, we find ourselves standing on both sides
of the same fence. It is the double thesis of
this essay that




1. The computer 1s insufficiently used in
programmer education.

2. The computer is far overused in program-
mer education.

Let's examine how the computer is used in a
typical university course in programming. The
nature of this use may best be understood in
terms of an analogy. Suppose we have succeeded
in d=veloping a '"paper-grader” program for high-
school English courses, and that we have succeed-
ed in getting *he program used within the high-
schools in the following way:

1. The teacher lectures on one topic or
another to 50-500 studerts.

2. The teacher gives an assignment to write
an essay.

3. The students write an essay, under
strict orders not to help anyone else or to
receive help from anyone else.

4. The essay is graded by our computer
program on the basis of
a. spelling errors
b. grammatical errors

5. The paper is returned to the students
with the grade.

wWhat do you suppose the students will learn?

The reason this analogy is good is that we
don't have to guess what the students will learn.
We already know. Even without the computer,
this is the way many high school English class-
es teach composition, and the results are noto-
riously bad. Many of the students learn to
spell; some learn to avoid incorrect grammar;
essentially none learn to commmicate.

In programming education, the "paper grader”
is already built into the compiler. Because pro-
gramming assignments must be recycled through
the grader until all "spelling and grammar"
errors are eliminated, the emphasis on these
aspects is all the stronger. In many classes,
the professor has no time or stomach for reading
the actual programs. In some, not even the
outyuts are read. In such classes, students
turning in wrong outputs never find out from
the instructor. Students turning in fake

outputs are never found out by the instructor.

To solve the problem uf unread output,
sophisticated schools have developed "grader"
programs which c¢xercise the student programs
using test inputs and scoring the resultant
outputs. Graders definitely raise the level of
computer assistance-~but mostly to the harried
instructor, not to the student. After all, for
classes with hundreds of neophytes, how else
can the legions of warm bodies be handled econ~
omically, or handled at all.

Grader programs, to give them their due,
actuallv can represent an advance over the simple
compiler checking that most schools still use.
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But, again, what is 1t they teach? By reviewing
programs produced by these students, in class
and years later, you can learn what the computer
teaches about programming:

1. accurate card punching, in abatch envi-
roment

2. use of a text editor to overcome inaccu-
rate keying, in an on-line environment

3. spelling of keywords

4, consistent spelling of programmer-chosen
words

S. a subset of the syntax of a programming
language

But beyond these important lessons, the computer--
used in these ways--teaches a much deeper lesson,

one that will remain long after the WATFIV syntax

is forgotten. That lesson is:

Programs are shown to be correct by testing them.

This i1s a curious lesson. To quote the ori-
ginal sermon on structured programming by Edsger
Dijkstra:

"...the extent to which the program
correctness can be established is not
purely a function of the program's
external specifications and behaviour
but depends critically on its internal
structure."

In short, what the computer is teaching is pre-
cisely antithetical to the principal lesson of
the strongest movement for improved programming
since the invention of the assembler. It is
teaching this lesson every day, in every school
in the country, to thousands and thousands of
present and potential programmers.

But there is a second high-level lesson--a
meta-lesson, actually--a lesson about learning
itself:

We learm to program by throwing garbage
irto a computer and seeing what comes out.

This lesson 1s like the prejudices of our youth--
deeply set and hard to change. What's more, it's
being taught earlier and deeper, now that person-
al computers are so readily available. What are
we going to do with the next generation of pro-
grammers?

Render unto the computer...

Computers are excellent at teaching--about
computers. For instance, no amount of lecturing
about syntax errors seems to make the slightest
impression on the majority of students--unless
it is a slightly negative one. A compiler,
though, patiently and mercilessly teaches syntax
to one recalcitrant student after another.
Cleverly used, it can even motivate some students
to learn prinsiples of syntax, though they have
to obtain those principles elsewhere.
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Some toolmakers say that syntax and spelling
are unimportant lessons, because tools can be
built to correct any errors. I can agree with
them only partly, for no system will ever be able
to correct all errors of any type. Consequently,
even the most brilliant programmer must, at some
time, learn the hard lessons of syntax and spell-
ing--or else waste hundreds of frustrating hours.

Furthermore, even when the most sophisticated
and careful proof techniques are applied to the
most magnificently structured program, the comput-
er may reveal two kinds of error that can slip
through. First, there are the simple proof-
reading errors—-errors that plague the most advan-
ced mathematics journals as well as the most
humble programs. Second, there is the complete
misunderstanding of the problem.

Though a programmer may prove that the pro-
gram does what she things it does, she can never
prove that what she thinks it should do is what
the user or users wanted it to do. In one sense,
there are ne wrong programs, only Jifferent
programs. The only hope we have of discovering
if we've solved the right problem is by giving
the proposed solution back to the originator(s}.

Consider the following utterly typical
example. A professor of archaeology was teach-
ing a large introductory course, assisted by the
computer to the extent of its printing individ-
ualized examinations drawn at random from a pool
of questions. An advanced student in the com-
puter science department had been given the job
of writing the program to print the exams, but
the program had one slight flaw, Rather fre-
quently, one exam contained the same question
twice, or even three times. Rather than sampl-
ing the question pool "without replacement"”, the
program was sampling "with replacement".

The professor noticed this defect and con-
fronted the student. He was told that the pro-
gram could sample without replacement, but that
the process was 'very inefficient". He knew
that the professor certainly would not want to
pay the extra cost, so it would be better to
print, say 14 questions to be sure of getting 10
unique ones. The students just had to be told
to answer 'the first 10 unique questions".

The reader may want to speculate just which
of the many poor algorithms this student program-
mer had chosen. In fact, the technique was
conceptually very simple. When sampling "without
replacement” was specified, the program would
produce a tentative exam and then test to see {f
it contained any repeated questions. During
program test, 10 questions were being drawn from
a pool of 20, which meant that about 30 exams had
to be drawn to get one without duplicates!

We must be careful to draw the correct moral
from this tale. Most professors of computer
science would lament this miserable student's
ignorance of algorithms. Although that kind of

ignorance is sad, we could learn to live with it
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in the "real world'". What we can't live with is
this student's ignorance of the programmer's role
in life.

It was not for the programmer to decide how
much the professor wanted to spend on exams. His
guess about what the professor wanted led him to
authorize printing of several thousand exams that
had to be discarded. The deadline was missed,
and the old system of a typed exam had to be
used. Unless one is programming for one's own
amusement, the final decision about whether or
not a program is correct rests not with the com-
puter, nct with the programmer, but with the
party with the problem. And woe unto us as the
hordes of computer hobbyists hit the professional
ranks--for them, al! programming is strictly for
personal amusement.

Another relevant point, of course, is that
the programmer had not the sllightest idea that
his program was wrong. He didn't even know it
was wrong from an "efficiency” point of view.
This lesson, neither the computer nor the pro-
fessor could teach.

There are, in the end, a multitude of lessons
one must learn to become truly a professional pro-
grammer. Each such lesson has its own character-
istic ways of being learned. 1In designing pro-
gramming courses, we must see that each lesson
is taught in the most effective way, and not
merely that a certain number of students can be
"processed" for a whole semester without demand-
ing a tuition refund.

How to Teach a Programming Course

With or Without a Computer

How do we design such a programming course?
The general pattern should now be clear:

1. Use the computer to teach what only the
computer can teach.

2. Use people to teach what only people
can teach.

3. Make the "economic" choice between com-
puter and people only in those cases where either
can do the job with equal effectiveness.

No doubt an introductory course ought to
begin with one or two encounters with the machine,
to teach

1. the overall process by which programs
get created

2. the finicky nature of computiug machines

3. the mismatch between such machines and

our abilities to be precise

After these lessons are taught, at least on
an introductory level, the class should turn to
its human resources to learn more difficult
lessons. A typical assignment might involve:
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1. a problem posed by the instructor acting

as "user" but with certain lessons in mind

o

. each student making a trial solution, on
paper

3. each student evaluating the trial solu-
tion of another student

4. small groups of students, sometimes with
instructor supervision, arriving at a composite
solution

5. sometimes trying the composite on the
machine

6. groups exchanging solutions for more
formal review, sometimes guided by the instructor
in front of the entire class

In such a class, the students ingest a much
richer and more meaningful diet of programming
information. They avoid time wasted on syntax
and spelling, which are corrected as a byproduct
of the informal evaluations--and which in any
case could be taught by machine cexcept for the
fact that it's actually cheaper and more effect-
ive to do it through reviews! From student to
student, from teacher to student, passes know-
ledge about style, about !amgyie, about alger-
Ithms, about Jdvsign, about toc?s, about hundreds
of little pieces of programming "widsom' that
collectively set apart the professional from the,
amateur. And were it not too presumptuocus, we
might have mentioned that once in a while know-
ledge even passes from student to teacher.

But what of the "raw economics"? We've
speculated about this. We've experimented with
it. Our experiments surpass even our wildest
speculations. Of course, the first saving comes
because teams of 5 students run only one~fifth
the number of assignments through the computer.
Yet the lessons for each student are far greater
than the old secretive method, for each student
sees many approaches, not just one.

Secondly, the number of runs to produce a
correct program (and not just a "working" pro-
gram) is drastically reduced. The magnitude of
reduction depends somewhat on the size of the
problem, but a typical figure for student batch
problems is from an average of 20 runs to an
average of 2. Actually, =og? programs run cor-
rectly the first time on the machine--wui the
students can demonstrate it. They had better be
able to; If not, the other teams cut {t to pieces.

Thirdly, the programs themselves tvpically
will run more efficltently--once attention is on
design, rather than grammar and spelling. The
factor of 30 lost by the archacologist's program-
mer would not be untypical, but suppose we modest-
ly put this factor as 2. TPutting the three fac-
tors together we reduce machine costs by a factor
of about 100 (5 x 10 x 2). Certainly that's
enough "'raw economics' to permit us to choose
our programming tools on the basis of what they
will teach, not what thev will cost.

But the henefits to educaticn do not stop
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with machine economics, We can use this method
quite successfully when there is no compiler for
the language we want to teach, when there is no
compiler at all, and cven when there Ta one olaes,
When the probability of a program working the
first time is so high, in many circumstances there
is not much to be gained from actually running

the program. Getting rid of the computer, or at
the very least controlling the incredible variance
it usually introduces, permits us to plan with
more confidence, and to stick with the plan as

the semester unfolds. Indeed, once freed of the
constraints of the machine, the course economics
depend mostly on the availability of teacher and
classroom, but once bevond the barest introduc-
tion, .1 group of programmers can teach “iom-
ac’ves in this wav, ou the job or off.

Actually, the economics of the on-the-job
training reverses the usual college assumptions.
The students are likely to be making higher sal-
aries than the instructor, and certainly are when
considered as a class. It simply doesn't pav ta
transport professional programmers to a cross-
town campus for programming lectures when they
can learn much more in less time by inspecting
each others' work.

There 1s an implicit challenge here, to the
professional teacher who wants to stay out of
the unemployment lines. With the » ht leader,
a small group of programmers can multiply their
learning through review techniques. The leader
has to help them invest the money saved on lec-
tures and machine time in fruitful alternatives,
such as instrumented runs that permit them to
make design and algorithm comparisons that would
be difficult to perform analytically.

The leader can give them more problems to do
in the same time, or gulde them in exploring
more alternatives on the same problems. In this
way, the students can be nudged along the path to
design, rather than to even more obscure bit-
twiddling. Tcls can b» evaluated in actual usce,
perhaps giving some return for the billions we've
invested in them. But it will take a lot of
running for an instructor to stay ahead in such
an environment,

This new envircnment may not suit the old-
fashioned teacher wha sees the instructoer job as
a kind of Olivier plaving Hamlet to packed houses
of sleeping students. Neither mav it suit the
tvpical computer jockey whose narrow mind and
dogged persistence have served to get so many A's
from the usual programming c¢lasses. If such
people are thus encouraged to leave the program-
ming profession, it can be counted as another
plus for this system of professional education.

Sowme Future History

1f we study the development of other high
technology fields, such as, clectrical engineer-
ing, machine tools, telephonics steam power,
and printing, we see that cuputing {s not unique.
We mav be going through the stages faster, but
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we're going through them all the same. Our first
quarter century has been fast-paced, and driven
almost entirely by the "technological imperative".
Hardware sales have been the alpha and omega of
our narrow world. Anything that didn't promote
the sale of more hardware was left behind in the
rush for survival in the rechnology jungle.

For the past few years, since IBM "unbundled",
the sales managers have come to understand that
software is a product, just like hardware--but
with an even greater potential market. The soft-
wiare rush is now in its adolescent stage, and
repeating the entire hardware historv at an
even faster pace.

Yet, today, after an investment of perhaps
200 billion dollars in hardware and software,
the achievements are relatively small. Relative
to what? Relative to what the future--if history
is anv guide--holds in store. One measure of
our immaturity is the lack of any true program-
ming profession. The career path of choice for
programmers today is "up and out". For most,
there is nothing to learn after mastery of
grammar and spelling, so there is little economic
incentive to retain a higher-paid "experienced"
programmer where a freshly trained beginner is
available.

And, when an individual does surpass this
narrow training, there is nobody in management
to recognize how valuable such a professional
really i{s. The managers, after all, once took
a "programming" course. They know that program-
ming is unprofessional, shallow, and unmanageable.
They know that money spent on training is wasted,
and would be better invested in some new hard-
ware, or a software tool that promises to replace
a few programmers.

All of have been hypnotized by a running
sales pitch consisting of fallacicus "raw econo-
mics" and 1llusory "'real worlds". We have spent
billions for "tools'", but not pennies on under-
standing what is needed to create the professional
technical leaders who will actually use them.
We've spent millions on "schocling", but skimped
on real learning. As a result, our tools lie on
the shelf, misunderstood and little used. Our
systems seem to cost too much, but conference
after conference merely repeats the sales pitch
of its predecessor--buy more things! Our systems
fatl to satisfy, but all we hear is that people
don't understand the finicky nature of computers—-
the next generation will solve all that!

The next ''generation' will come when we out-
grow our adolescent fascination with toys and
develop an adult interest in people. Then we
will begin, as other technologies have done, to
master the social and psychological forces that
are the real power behind successful technology--
and the real reason for technology in the first
place. An excellent starting point would be to
take computer training out of the hands of com~
puters. And perhaps put it in the brains of
people.
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Abstract

This paper reports on the progress made in
dynamic phenomenalaogical modeling of the software
life cycle. An uverview rationale is presented to
demonstrate the need for a dynamic life cycle
model. The software life cycle behaves 1ike a nar-
row band gaussian process. The linkage to informa-
tion theory is suggested and the concept that soft-
ware systems have a characteristic bandwidth and
behave like bandpass filters is used to quantify
Brooks' Law and show why managers have little flex-
ibility in specifying the development time of a
system. Productivity varies inversely as the
square root of the average applied manpower, hence
managerial efforts to speed up projects, increase
productivity and cut costs are non-productive be-
cause these measures are functionally related in a
counterintuitive way. An example is presented to
show how the Norden/Rayleigh model is used to gen-
erate guantitative answers to the management
guestions: Can I do it? How much will it cost?
How long? How many people? What's the risk?

What's the trade-off?

1. Introduction

To do meaningful tasks in the functional areas
of modern government and business entities, most
large scale software takes 2-3 years to develop, and
has an operational life of 6 to 10 years before being
replaced. This is a life cycle. A model of this
Tife cycle has been develaped and can be used to
forecast and manage the costs, schedules and man-
loading requirements of large software projects.
Time is the independent variable whether explicitly
treated or not (careful attention to management
thinking, gquidance, etc., will show that time is
always implicitly recognized and is central to their
planning and thinking--all budgets, plans, and con-
tracts have a time base).

Managers ask these questions of software pro-
jects just as they do of any other process that
consumes resources:

How much will it cost?
How long will it take?

Because the answers to these questions will go
into a resource allocation plan, or budget. a tiie

base is implied and the manager is really asking for
much more. Typically, he really wants these answers:

Can I do it?

How much will it cost?

How long will it take?

How many people at any time?
What kind of skills?

What are the risks?

Are there trade-offs? What are they?

How do the constraints affect these answers?

These are the questions we can now answer.
In Section I a broad overview of the software
cycle is provided. Section 11l shows how to apply
this model to a real world software project.
Answers to the management questions are determined
quantitatively and presented in a form directly
usable by financial and project managers. To pro-
vide a framework for this work, the fundamental
aspects of software systems development and its
interrelationship with physics and information
theory is presented in Section IV. Finally, sum-
mary tables are presented in the last section for
quick reference to the techniques necessary for
forecasting costs and schedules.

[I. Overview of the Software Life Cycle

Many industrial processes are linear or nearly
linear. This means that

Quantity = rate x time

where rate is a constant. '
In a people-intensive activity it means

Effort = manpower x time

Cost = Cost/unit effort x effort

where manpower (a rate) is assumed constant and




cost/unit effort is a standard cost, or a time
averaqge.

A further assumption is that the production
rate (number of "widgets™/day) is directly propor-
tional to manpower (eftort/day}, or since the time
base 1is the same,

Effort  Product (no. of items)
This doesn’'t work for software because software
production rates are not linear with time and the
effort is not directly (linearly) proportional to
product.

Sometimes mildly non-linear rates can be re-
placed by averages over time (standard labor cost-
ing is an example).

[f the rates are continuously varying then the
solution Ties in the use of the calculus. This is
a scary word because many people have not studied
it and have heard that it is vaque, abstract, hard
to apply and only long hairs use it to prove obscure
scientific points of no practical consequence.

We have to accept that built-in bias, solve
the probles using calculus and then present the re-
sults in a tabular and graphical form which can re-
late the curvilinear relationships in a form pala-
table to most planners and decision makers.

Now, if vur problem is not only curvilinear in
its fundamental relationships but alse possesses a
random character, this means the probability and
statistical laws come into nlay. [t means we cannot
measure rates, effort, time, and product with great
precision because these quantities are always fluc-
tuating about some average {and that average may be
changing over time), so what we have to do is work
with averages of the quantities and a measure of
the variability of the . :antities (standard devia-
tion). This is an important philosophical point
because it means that only a certain level of accu-
racy and precision is possible and all efforts to
do better are futile. [t further means that the
statistics improve precision with higher and higher
levels of aggregation and get worse with increasing
levels of disaggregation. The implication of this
is that precise, detailed, work breakdown struc-
tures are highly unlikely to be accurate or mean-
ingful in a quantitative way.

Given this background, the software estimating
and control problem is really a different problem
depending on where one is in the software life
cycle.

During the feasibility and functional design
phases, it is a pure estimation probiem using
phenomenology and past experience (data) to fore-
cast a time varying future event. A model of the
observed behavior is appropriate. This model should
be a time varying model and should have parameters
that relate directly to the management questions.
The Rayleigh/Norden medel Putnam has chosen meets
these criteria,

A life cycle forecast is an intelligent "guess"
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of how a process will behave over an 8 or 10 year
period based on the infarmation we have now. But
our input information about the system we plan to
build, or are building, is continually changina for
a variety of reasons. Requirements change because
of external factors (requlatory; the way we do busi-
ness, etc.).

This reqgitirements change process means thdt
estimate done a short time ago becomes obsalete
needs revision to reflect today's reality.

our
and

This can be done by just re-estimating using
new input information if the development has
yet started.  However, if development is under-
way the problem is different. We have to adapt on
the fly. We have to assess what an incremental
change applied at a specific time will have an the
process at all future times. Clearly, this is a
dynamic modeling requirement. Again we want the
answers expressed in the form of answers to the
management questions so that managers can reprogram
resource dllocation and assess risks in terms of
contractual obligations.

the
not

Now & static model that does not adapt to the
real data coming from the actual project can only
do this in a very imperfect and superficial way.
All the current models {Doty, PRICE-S, IBM, GRC,
TRW) except one (Putnam) are static - they do not
treat time explicitly and they do not have the ca-
pability to adapt to the actual behavior of the
system at any instant of time in that 2-10 vear
1ife cycle period.

The best data you will ever have i< that com-
ing from the project vou v sovhbing . a. A care-
ful fitting of that data to a node® that is faith-
ful to the phenomenoloqy involved will qive the
best possible answer and, mareover., will continual -
ly adapt to the dynamics of the change process.
This means that it is alwavs converasing toward the
true answer which, alas, is alwavs unknown {(exdctly)
until the process is over. But the converaent pro-
perty is highly useful because it means we are al-
ways getting closer and closer to the true behavior
even though we can only determine the average be-
havior and the statistical uncertainty (due to the
random character) at any instant.

But the statistical uncertainty i< useful.
lets us control the process. If we can estimate
that one year from now a system should reauire 2%
people with a statistical uncertainty (* {1 of &
people, and we find when we get to that point that
40 people are working on the system, then higher
management will know that somethina significant nas
happened due to a real cause because there is less
than 1 chance in 100 that such a large excursion
from the predicted would occur because of pure
chance (random fluctuatian).

it

This is academic for the 1lst line project
manager; he knew when he had to add people, or
shift resources. It may not be apparent to finan-
cial and budgetary officials well removed frou
daily contact who review the project only periodi-
cally from records and reports.
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On the other hand an excursion of * 3 or 4
people would be normal - inherent in the random
character of the process - no cause for concern.

So an adaptive mode! is necessary for dynamic
update to tell us where we are and where we appear
to be heading based on all information available now.
The Rayleigh/Norden model does this by continually
fitting each piece of new information to revise the
nost recent estimate. The technical term for this
is "adaptive filtering". It is really a real time
process controller that gives the optimal future
resource allocation {consumption) pattern at any
instant in time. The Box (13,15) fitting technique
is the implementation af the adaptive filtering con-
cept.

The requirements change process is modelled
using the second order Rayleigh differential equa-
tion. This céa be made to respond in real time be-
cause it can be solved step-wise in discrete fashion
using the very general Runge-Kutta numerical solu-
tion to differential equations. The theory is a
little deep, but the implementation is verystraight
forward on a calculator or computer because all one
has to know is:

- the actual elapsed time, t

- the actual manpower on board, ¥

- the cumulative effort expended so
far, y

- the best estimate of the difficulty
. . S, 2
from previous experience, K/td R

where K is the life cycle effort and
td is the development tine,

- and an estimate of how much the diffi-
culty is likely to change a< a result of a require-
ments change. Linear thinking is reasonably valid
here. If about 25 of the application programs
are affected by a requirements change then there
will be about a +25 change in the difficulty.

So,

"

D (1+ .25)

2
d

is the form we used to study the impact of the re-
quirements change process. We just project ahead
at t + t, t + 2at, t + 3At, etc., and see how 7,
y compare with the earlier estimates made prior to
the impact of the requirements change process. The
difference will be the incremental manpower and
effort required to accommodate the change.

. 2 . 2
y tut oy ey

= K/t (1 0+ .25)

Tracking and fitting throughout the Tife cycle
is important because 60 of the life cycle effort
goes on in the operations and maintenance phase.

If this is treated as a level-of-effort task, then
far more resources than are necessary are used.
This inhibits future development capability given
budget constraints. Moreover, some 70-80" of total

software work is in the operations and maintenance
phase so unless this work is optimally controlled,
then the projection of Harlan Mills™ will become

true and there will be no capability to do new de-
velopment work if the software house has to work
with a fixed manpower or budget constraint (very
common in government}.

Given this background, let's examine how we
use the Rayleigh/Norden equation to obtain engineer-
ing quality answers during the early specification
and functional development phases of a software pro-
Ject. The following example will illustrate simple
applications of several powerful techniques.

IT1. [xample of an Early $izing, Cost_and Schedule

Estimate for an Application Software System

Software development has been characterized by
severe cost overruns, schedule slippages and an in-
ability to size, cost and determine the development
time early in the feasibility and functional design
phases when investment decision must be made. Mana-
gers want answers to the following questions: Can
I do it? How much will it cost? How long will it
take? How many people? What's the risk? What's
the trade-off?  This portion of the paper shows
how to size the project in source statements (Ss)'

how to relate the size to the management parameters
[1ife cycle effort (K} and development time (td”

and the state-of-technology (Ck) being applied to
the problem through the software eauation,

_ /3, 4/3
SS = Ck K ty T

solved using a constraint relationshipK -

The software equation is then
:'uftdj,
where VD! is the magnitude of the difficulty gra-
dient empirically found to be related to systenr
development characteristics measuring the degree

of concurrency of major task accomplishment. Monte
Carlo simulation is used to generate statistics on
variability of the effort and development time. The
standard deviations are used to make risk prafiles
Finally, having the effort and development time
parameters, the Rayleigh/Norden ecuation is used to
generate the manpower and cash flow rate at any
point in the life cycle. The results obtained de-
monstrate that engineering guality auantitative
answers to the management questions can be obtained
in time for effective management decision making.

Background and Approach

Over the past four years the author has studied
the manpower vs time pattern of several hundred
medium to large scale software development projects
of different classes. These projects all exhibit a
similar Tife cycle pattern of behavior - a rise in
manpwer, a peaking and a tailina off. Many of these

*

Mills projected saturation with maintenance work

a few years ahead leaving no capability to do new
work unless there was an ever expanding software
work force. Mills implicit assumption was level-of-
effort on existing systems and no death process.

The Rayleigh equation automatically accounts for ob-
selescence axddeath and hence provides for new de-
velopment capability. This is what actually happens
and is demonstrated by the data.
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projects (and all the large ones) follow a time pat-
tern described by the life cycle curves of Norden
(7,8) which are of the general Weibull class and
more specifically the Rayleigh form,

y:
at any time ti K is the area under the curve and is
the nominal life cycle effort in manyears; td is

K/tdz Lt e —t2/2td2, where y is the manpower

the time of peak manpower in years and corresponds
very closely to the development time for the system.

Even though large systems seem to follow this
general pattern, some small systems do not. They
seem to have a more rectangular manpower pattern.
The reason for this is that the applied manpower
pattern is determined by management and by contrac-
tual agreements. Many small projects are estab-
lished as level-of-effort contracts - hence rec-
tangular manloading. Ffor targe projects this is
generally inadequate because managers have a poor
intuitive feel for the resources to do the job. Ac-
cordingly, they tend to respond to the needs of the
system reactively, This results in time lags and
underapplication of effort at some instant in time,
but the effect is a reasonably close approximation
to Rayleigh manloading.

The author has shown in ear)ier works (9-14)
that there is a Rayleigh law at work. It is the
Ist subcycle of the overall development curve
called the design and coding curve (detailed logic
design and coding). This is also a manpower curve
that is proportional to the analyst and programmer
manpower - the direct productive manpower. This

curve is denoted yl. Its form is

2
gy = e te 30 e F (MY/YR) when related to the

original definition of K and td for the overall

burdened life cycle curve. When this curve is
multiplied by the average productivity (PR) for the
project it yields the rate of code production.

dSS

. §S = 2.49 FR |, where the 2.49 is
dt

necessary to account for the definition of produc-
tivity as a burdened number (i.e., includes over-
head and support activities). Now the time inte-
gral of the rate of code production yields the to-
tal number of source statements,

By

S = ds - .
s 08 a R 2.49 7, dt

S. = PR.

s 2.49.X/6.

The authar has found that tne PR is related to
the Rayleigh parameters K and td in the following

manner (14):

PR = ¢, (K/tdZ)'z/3 where the term K/td2 has

been defined as the system difficulty in terms of

effort (K) and time (td) to produce it and Ch is a

quantized constant defining a family of such curves.

Cn is a channel capacity measure in the information

theory sense, but in a more practical sense, it seems
to be a measure of the state-of-technology being
applied to a particular class of system,

Substituting for PR, we obtain the software
equation:

- 2, -2/3
SS = 2.49 Cn(K/td ) K/6
. 2.49 -2/3 , 4/3
SS =% Cn K K ty
- /3, 4/3
Ss = CK K t , where CK has now

d
subsumed géﬂg Cn'

Having this expression which now relates the
product in source statements to the Rayleigh man-
power parameters (which are also the management
parameters), we turn to a practical way in which to
estimate the size (SS). effort {(K) and development

time (td)

quirements and specification phase of the project.
This will let us answer the management questions
necessary for effective investment decisions for the
software project.

of a software project early in the re-

We will do this in the form of a case history
for a project we will cal) SAVE. First, we will
show @ way to obtain a good estimate of the number
of source starements. We'll plot the software equa-
tion and establish a feasible region for our develop-
ment time parameters, we will impose a constraint
relation involving K and ty. We will do a Monte

Carlo simulation to generate variances for K and
ty. With these numbers fn hand, we can then do a

trade-off analysis, pick a reasonable effort (cost)
time combination and complete our translation into
quantitative answers to the management questions.
The answers we obtained will be close to optimal
for the given constraint and, moreover, we will
automatically have a sensitivity and risk profile.

Initial Sizing

Given the broad, preliminary design of SAVE
consisting of the processing flow of the major
functions and the estimates by the designers of the
size range of the major functions, we can make a
preliminary estimate of the development time, devel-
opment effort and development cost to build the sys-
tem. (See figure 1.)

The input data from the project team are in the
form of size ranges for each major function. Three
or four team members estimated the size of each
function as follows:

~ Smallest possible size (in source statements) - a

- Most likely size - m
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Figure 1. THE SOFTWARE LIFE IYCLE




- Largest possible size - b

These were averaged for each function and resulted
in the first 3 columns of Table 1. This was in ef-
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fect a Delphi polling of experts and their consensus.

(Having done this with several groups of systems en-
gineers, it is interesting to note that they are
very comfortable with this procedure.)

Note that this results in a broad range of
possible sizes for each function and that the dis-
tribution is skewed on the high side in most cases.
This is typical of the Beta distribution, the char-
acteristics of which are used in PERT estimating.
We adopt the PERT technique to get an overall sys-
tem size range and distribution.

1. An estimate of the expected value of a
Beta distribution is:

g, =2 +4m + b

i 6
The overall expected value is just the sum of the
individual expected values.

i=1

This is the sum of the fourth column of Table 1
(98475 Ss).

2. An estimate of the standard deviation of
any distribution (including Beta) is the rangewith-
in which 99. of the values are likely to occur di-
vided by 6, i.e.,

o [b-a} /6.

The overall standard deviation is the square root
of the sum of the squares of the individual stan-
dard deviations, i.e.,

i=1

This results in a much smaller standard deviation
than one would "guess" by just looking at the in-
dividual ranges: the reason i< that some actuals
will be lower than expected (Ei); others will be

higher. The effects of these variations tend to
cancel each other to some extent. This cancelling
effect is best represented by the root of the sum
of squares criterion.

The result is

E = 98475 source statements

Rl = + 7081 source statements

and the 99 range is 77,000 - 120,000 SS. or we are

945 sure that the ultimate size will be in this
range if the input estimates do not change. Of

course, if the input estimates change, we shouldre-
do our calculations and revise the results accord-
ingly.

Development Time-Effort Determination

Table 2 is a result of using the software equa-
tion which relates the product in source statements
to the effort, development time and state-of-tech-
noloYy being applied to the project. The equation
is derived partly from theory and partly from an
empirical fit of a substantial body of productivity
data. The form of the equation is:

4/3
d
where SS is the number of end product delivered
source lines of code, an information measure.

Ck is a state-of-technology constant. For the

environment anticipated for SAVE this constant is
10040. Ck can be determined by calibration against

the software equation using data from projects de-
veloped by the same software house using similar
technology and methods.

K is the life cycle effort in man years. This

is directly proportional to development effort
(Dev Effort = .4K) and cost ($/MY . K = SLC cost;
/My . (.4K) = $ Dev).

td This
corresponds very closely to customer turnover.

is the development time in years.

Figure 2 shows a parametric graph of this equa-
tion.

Table 2 presents three scenarios for 5 differ-
ent points in the size distribution curve. The ex-
pected case is given in the row labelled £. The
column under td = 2 years gives a nominal develop-

ment effort of 23.59 man years, $1.18M cost
(@ <50,000/MY) to do 98475 source statements.

The fastest (or minimum) possible time for
98475 source statements is 1.81 years. The corres-
ponding development effort is 35.4 MY, and cost of
$1.77 million. The assumption here is that the
system is a stand alone and the gradient condition
of |vD| = 15 cannot be exceeded.

The risk biased column is based on deliberately
adding time (.4 of a year} to the minimum time to
increase the probability of being able to deliver
the product at the contract specified date. This
biasing is to allow for external factors such as
Tate delivery of a computer, an average number of
requirements changes during development, etc. In
the case of 98,475 source statements, this would be
1.81 + .4 = 2.2]1 years. The corresponding expected
development effort is 15.91 My; $.8 million cost.
Note that development effort and cost gn down as
time to do the job is increased. This is Brooks'
law at play.

Conversely, there is no free lunch--
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Table 1.
T - T
Standard
S S S Expected Deviation
Least Most Likely Most 55 55
Major Function a m b
— S —— S G S S —_—-
Maintain 8675 13375 18625 13467 1658
Search 5577 8988 13125 9109 1258
Route 3160 3892 3800 4588 940
Status 350 1425 2925 1579 346
Browse 1875 4052 8250 4389 1063
Print 1437 2455 6125 2897 781
User Aids 6875 10625 16250 10938 1563
Incoming Msg 5830 8962 17750 9905 1987
Sys Monitor 9375 14625 23300 15979 3104
Sys Mgt 6300 13700 36250 16225 43992
Comm Proc. 5375 8975 14625 9400 1458
98475 ] 7081 1
L~ ._—l_._ _—
Table 2. SAVE
Assumption: On-line, interactive development,
Top down structured programming,
HOL, Contemporary development
environment. No machine constraints.
Ck = 10040; Standalone System -~ | I'] =15
— ey
1 |
ty = 2yrs Fastest Risk Biased 1
P e
Dev Effort Dev Effort t. + .4 yr | Dev Effort
S| (my) ta (MY} d Y RGN
-3 77000 11.28 1.63 25.80 2.03 10.71 |
($,564M) ($1.29M) ($.55M) 0
|
-1 91394 18.86 1.75 32.16 2.15 14.12
($.943) ($1.61) ($.71M)
£ 98475 23.59 1.81 35.40 2.2t 5.9
($1.180M) ($1.77M) ($.796M)
+1o 105556 29.05 1.86 38.71 2.26 17.77
($1.45M) ($1.84M) ($.89M)
+35 120000 42.69 1.97 45,65 2.37 21.77
($2.135M) ($2.28M) ($1.09M)




if time is shortened the cost goes up, dramaticaily.

This can be illustrated by obtaining the trade-
off law from the software equation. Solve the soft-

ware equation for K:

1/3
. /3, 4/3 _ 4
5o =€ K77ty = € (Kt
t,* (i 3
C
k |/
S 3
S 4
K= (=} /t
( Cy ) d

This is the trade-off law.
effort, £ = .4K so

< 3
_ ”s 4
E = .4(~C;~) / td MY

In terms of development

In our specific case

e -

and we can trade-off between 2 years (contract con-
straint, say) and 1.81 years--the minimum time for
our gradient constraint.

\

98475 |

34
10080, ’ta

Parameter Determination By Simulation

While Table 2 gives a fairly broad range of
solutions that answer many “what if” questions, it
is an essentially deterministic solution; that is,
it assumes we know the input information exactly.
0f course, we don't.

A better solution, then, is one in which we
treat the uncertainties in our input information
in obtaining our solution. This is generally not
feasible analytically, but is nicely handled by
Monte Carlo simulation. In our case we do this by
Tetting the input number of SS vary randomly about

the expected value (98,475) according to our com-
puted standard deviation, vg o ® 7081, and letting

s
the stand-alone gradient (YD} = 15) vary within
the statistical uncertainty of its measured {com-
puted) value (”VD = 2).

We then run the probiem on the computer
several thousand times with these random varia-
tions in parameters and generate the statistics
of the variation in our answer. This is a much
better measure of what is likely to happen as a
result of the uncertainties in the problem.
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The results of th2 simulation are given in the
next table. Notice that the simulated estimated
development effort is the same as the expected de-
terministic value and the development time is also
the same. This is as it should be. The simulation
produces the right expected values. The real value
in the simulation is that it produces a measure of
the variation in effort and in development time
which we can used to construct risk profiles.

Major Milestone Determination

The results of the simulation determination of
the development time are used to generate the major
milestones of the project.

These milestones relate to the coupling of sub-
cycles of the life cycle to the overall project
curve (9-14). Examination of several hundred sys-
tems shows this coupling is very stable and predict-
able. The empirical milestones resulting from these
earlier studies shows the following scaling.

Milestone fraction of

Event Development Time, t
Critical Design Review .43
Systems Integration Test .67
Prototype Test .80
Start Installation .93
Full Operation Capability 1.0

Table 4 converts this to the appropriate des-
criptors and actual time schedule for this project.

Risk Analysis

The results of the SAVE simulation for develop-
ment time, development effort and development cost
can be shown in the form of probability plots. As-
suming a normal (gaussian) distribution, all that is
necessary is an estimate of the expected value
(plotted at 50 level) and the standard deviation
(plotted offset from the expected value at the 16
probability level) to generate the line. Then one
can determine the probability of any value of the
quantity in question. For ease of presentation, the
plots are summarized in Table 5. For example, there
is a 90% probability that the software development
will not take more than 40 MY of effort. There is
a 997 probability it will not take more than 45 MY
of Development effort. There is only a 10 praba-
bility it will take Vess than 30 MY of Development
effort.

The result for the development time is extreme-
ly important from a conceptual point of view. The
small standard deviation is both a curse and a
blessing. It says we can determine the development
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Table 3.

SAVE SIMULATION

U g

INPUT TO SIMULATION

s 98475, b Ss

= 7081

¥
'
§
"
+
'
)
'
|
i
i
i

70 =15, 2

. Fup
1 Technology Constant = 10040

RESULTS QF SIMULATION

i
i
'
'

Number of iterations = 2170

Expected Development Time - 1.81 years

Standard Deviation, Development Time = .063 years
Expected Development Effort = 35.1 Manyears

2 Standard Deviation, Development Effort = 3.77 Manyears |

|

Table 4.

SAVE MILESTONES

td = 1.81 years

L EvenT 5 t/t ; time from start  time from start
’ % d ' (years) L {months) i
e 7\_741 ToomrmTT T T T _7_-7"‘
L Cor | .43 } .79 ! 9 |
| ‘ : i !
| Software 1 .67 i 1.21 | 15 1
ST, ' : ' ‘
. Hardware | .80 ; 1.44 : 17 i
! § { } :
T O | i {

Start .93 i 1.68 , 20 |
| Instatlation { ! ‘ f
b Start i { ‘ |
? Acceptance : 1.0 I 1.81 ; 22 !
| Test | § I {
! Complete ' | | }

Acceptance [ 1.14 : 2.06 | 25 !

Test J ‘

4__J--H-I--h-i-..-..........-.-..........l...I-....IIl..IIﬂI-Ihu-.hi..lll.lh-i-_ﬁu-hnnmm“a



time very accurately (ﬂt /td ~ 3.5°) but at the
d

same time it tells us we have little latitute in
adjusting the development time to meet contractual
requirements.

For examp]e,«‘t = .063 years is .063 (52} =
d

+3.28 weeks; 3o, = 3 (3.28) = 1 v.53 weeks;
d
=+ 9.83 + 10 weeks

So, if we add 37 to td we will be 99 sure
that td will not exceed the actual vatue from ran-

dom causes. This does not mean that reguirements
changes or late delivery of a computer will sti))
permit the soffware to come in at + 10 weeks of the

expected time. These are external factors that will
change td and must be specifically accounted for.

This is the curse. The system is verysensitive
to external perturbations and the<e will generally
cause development time increments groater than 2 or
3 % {a 90 day delay in test bed computer delivery,

d
say).

But, knowirg this great time sensitivity., man-
agement can use it effectively in planning and con-
tracting so that risk is always acceptable. The
major point is: time_is not a free good. Oevelop-
ment time cannot be specified by management. The
system determines that (i.e., software systems are
inherently narrow band processes with sharp cutoff
characteristics, a point that will be elaborated on
later).

Manpower and tash Flow Pattern

Now that we have the parameters for develop-
ment effort and development time we can generate the
manloading and cash flow pattern for the Software
development period (and even the life cycle, if we
choose). The Rayleigh/Norden equation gives the
instantaneous manpower.

2 422
yorweyS Lt e Th oS My/R

K=6/.8 = 35.1/.4 = 87.75 MY
ty " 1.81 years

so

87.75 2 2
g - ('17%‘1')2 .t . oexp {-t9/72(1.81)%) MY/YR

for the software development effort (Phase 11). The
cash flow is just the average dollar cost/MY times

v.
Cash Flow Phase 11 = §/MY .y $/YR

Table 6 combines the software development ef-
fort {Phase Il} with the initial design and system
specification (Phase 11) overlap and the hardware
integration and test effort. The column labelled
total adds the separate efforts together at each
time period to show the total people on board. The
cash flow rate is the annualized spending rate at
that instant in time (assuming an average burdened
cost/MY of $50,000). The last column gives the
cumulative cost at each two month interval. Hote
that the total cumulative cost is greater than the
predicted software development cost. This is be-
cause we have included the phase-out cost of Phase 1
effart plus the hardware planning in.egration ef-
fort.

Figure 3 shows the time-phased manloading of
the Phase Il part of the project as laid out in
Table 6. Note that the overall curve is slightly
distorted from the nominal software development
effort because of Phase I phase-out and hardware
planning efforts. Milestones are also shown on this
figure to graphically portray where these should
occur.

Linear Pronramming Alternative

An alternative method for the Rayleigh para-
meter determination is linear programming. Since
we arc dea'ing with only two unknowns, K and tye

and have a number of constraint conditions involving
these parameters, we can easily turn it into a two
dimensional linear programming problem which can be
solved graphically. The nice feature of this ap-
proach is that a number of the constraints can be
expressed directly in management terms. Design to
cost and design to contract time is possible within
the constrained optimization procedure. This pro-
cedure is outlined below. The following constroint
conditions apply:

S, = CK k1/3 tda/3 Software equation

K/td e ymax HMaximum peak manpower

K/td > Vo ymax Minimum peak manpower

K/ti 1D Maximum difficulty

K/tz —vol Maximum difficulty gradient
td < contract delivery time

SIMY (.4K) - Total budgeted amount for develop-
ment
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Table 5.

SUMMARY OF SAVE PROBABILITY PLOTS

Probability that DEV TIME DEV EFFORT DEV COST (PH II) |
value will not be (t,) (E) ($)
greater than yedrs Manyears Millions |
1 1.55 25 1.25 ’j
10 1.73 30 1.50 |
20 1.76 32 1.60 ‘
50 1.81 35.1 1.76 .
80 1.86 38.5 1.93
90 1.90 40 2.04
99 1.97 45 2.25
4 |
Table 6.
EXPECTED SAVE MANLOADING & CASH FLOW RATE
t PH 11 PH 1 Hdwre Total Cash Flow Cum. Cost
{Mos.) {People) (People) _| {People) (People) Rate ($ Million)
0 0 10 0 10 $ .5 Myr
2 5 8 0 13 $ .65 M/yr .096
4 9 6 0 15 $ .80 M/yr 217
6 13 4 1 18 .90 .358
8 17 0 2 19 .95 513
10 21 0 2 23 1.15 .688
12 24 0 3 27 1.35 .896
14 26 0 3 29 1.45 1.129
16 28 0 4 32 1.60 1,383
18 29 0 4 33 1.65 1.654
20 30 0 4 34 1.70 1.933
22 30 0 6 36 1.80 2,225
24 20 0 4 24 1.20 M/yr 2.405
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SAVE MANLOADING PLAN

MANPOWER CRITICAL DESIGN REVIEW
(MY/YR)

SOFTWARE SYSTEMS INTEGRATION TEST

HARDWARE SYSTEMS INTEGRATION
TEST

START INSTALLATION

50 4 I r— START ACCEPTANCE TEST
A4

40 4

COMPLETE ACCEPTANCE
TEST

SOFTWARE N
* '~ 99% PROBABILITY LEVEL

30 q( HARDWARE f

T —57% PROBABILITY LEVEL

20 4

10 |
/ ~ PH I EFFORT
\‘_/
~
0 — ‘ » + + >
0 6 12 18 24 30  (MONTHS) TIME
.5 1.0 1.5 2.0 2.5 (YEARS)

Figure 3




These constraint conditions can be linearized
by taking logarithms and using the simplex method
of solving the linear programming problem. The
simplest objective functions are cost and time. One
generally wants to minimize one or the other of
these. Typically we do both and then trade-off in
the region in between.

Assume these constraints applied to SAVE:
Number of SS = 98475
Maximum development cost - $2 million
Maximum time (contract delivery) ~ 2 years

Maximum manpower available at peak manning
(hiring constraint, say) 28 people

Minimum manpower you desire to employ at

peak manning 15 people
Maximwa difficulty gradient < 15
Maximum difficulty - 50
Minimum productivity > 2000 Ss/ MY

These translate into:
1/3 log K + 4/3 log ty = log 98475 - 1og 10040
Jog K = Tog (2 x 105/5 x 10%(.4))

log ty = log 2

log K - log ty = log (ve 28)
log K - log t, = log (ve 15)
log K - 3 log ty = log 15

log K - 2 Tog td = log 50
Tog K = log {98475/ .4(2000))

The intersection of these lines bound the
feasible region. An optimal solution will be at
some intersection point. Further, because of the
equality constraint it must be along the SS = 98475

tine. The limiting conditions in this case are:
ty = is 2 years, maximum peak manpower < 28 people

and SS = 98475 source statements. Figure 4 shows

the solution.

Reading off the solutions we see that:

t K PR
(yrs) (MY) (MY) (S ,/MY)
Minimum -
Time 1.83 84 | 33.6 [98475/33.6 = 29271
Minimum i
Cost 2.0 61 | 24.4 ([98475/24.4 = 4036
$1.22M

Trade-off is possiblealong the ._line between
td = 1.83 years, K = 84 MY and td = 2 years,
K = 61 MY without violating constraints,

Here it is easy to see the counterintuitive
nature of productivity. lote that productivity in-
creases with development time because the requir. d
effort (£) goes down as time is increased.

One other point is important. [f the techno-
logy constant is smaller, the SS = 98475 line would

shift parallel to the right (direction of increas-
ing time). 1If the constraints remained numerically
the same, the feasible region would change because
of the relocation of the S_ line. The time c(un-
Sstraint could probably notbe met and a relaxation
of that constraint would have to be sought.

This i5 a deterministic solution. However, by
extending tne idea of simulation, the linear pro-
gramming concept can be embedded within a simulation
and the uncertain constraints can be allowed tovary
randomly about their mean values and the statistical
uncertainty for the minimum time and minimum cost
solutions can be obtained by running the problem a
few thousand times.

Results of the Example

We have shown that the management questions
posed at the beginning can be answered quantita-
tively to acceptable engineering accuracy for a
software project during the specification prepara-
tion phase. We need only know the state-of-tech-
nology we are going to apply to the devel. ment,
estimate the number of lines of code usiny the PERT
techniques, and use the software equation with a
constraint relationship to solve for the manage-
ment parameters (K,td) of the Rayleigh/Norden equa-

tion. Simulation provides suitable statistics for
risk estimation.

IV. A Look at Fundamentals

Having shown some of the consequences of tne
Rayleigh equation and its application to the soft-
ware process let's examine why we have selected this
model rather than a number of other density functions
that could be fitted to the data. We return to
Norden's initial formulation to obtain the differen-
tial equation.

Norden's (8) description of the process is:

The rate of accomplishment is proportional to
the pace of the work times the amount of work re-
maining to be done.
differential equation

This leads to the first order
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L.INEAR PROGRAMMING SOLUTION
FOR SAVE
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¥ = 2 at (Kvy)

where y is the rate of accomplishment, 2at is the
"pace" and (K-y) is the work remaining to be done.

Making the explicit substitution for a = 1/2 tg

we have y = t/,2 (K-y). t/. 2 is Norden's linear
t4 tq

learning law.

This is also the form of a generalized diffu-
sion process related to Fick's equation of diffusion
of mass transfer, Newton's equation of viscosity in
momentum transfer and Fourier's equation of heat
conduction (21,22).

The development by Mahajan and Schoeman {21)
of the time pattern of the diffusion process is
sketched below in the context of the spread of an
innovation:

f(t) is the proportion of adopters at time, t

F(t) is the cumulative proportion of adopters
at time t

F is the limit of the cumulative fraction of
adopters

_dF(t)
f(t) = it
Now the rate of diffusion at any time is pro-
portional to the potential adopters available at
that time, or, in other words, as the cumulative
number of adopters approaches its ceiling, F, the
rate of diffusion decreases proportionately. Thus

£(t) = & F(t) ~ (F-F(1))

There is a “"constant" of proportionality which will
be labelled g{(t) to indicate it may be a function
having a time dependence. Then

(F-F(t)).

f(t) = g(t) .

This is the rate equation of the diffusion pro-
cess. One initial condition is required to solve
it. "The rate of diffusion...is controlled by g{t),
the value of which depends on the specific innova-
tion, the social system in which it is diffi.ed and
the channel and change agents used to diffus it:
g(t) = f (innovation, social system, channels,
change agents). For a given innovation in a speci-
fic social system, the use of effective channels
and change agents may be catalytic, affecting g(t)
and, hence, the rate of diffusion --- g(t) may also
be interpreted as the probability of an adoption at
time t. Since §-F(t) is the proportion...not adopt-

ed, the product g(t) . (F-F(t)) gives the expected
proportion of adopters at time t" (21).

We translate this into software terms and the
Rayleigh parameters.
f(t) is y the rate of accomplishment, or
manloading.

F(t) is y the cumulative fraction complete,
or the cumulative effort.

T is K the ceiling, or the life cycle effort.

g(t) is Norden's "pace" (2at) and a function of
the system (innovation), the software organization
(social system}, tools, constraints, state-of-tech-
nology being applied (channels), and the customer
providing requirements, specifications and changes
thereto (change agent).

Writing the diffusion equation in these Ray-
leigh/Norden terms we have

¥y = 9(t) (K-y) )

9= 9(t)  K-K(1-e?%)
2

y = glt) ket

If g(t) is equal to Norden's linear learning law
then g(t) = 2at = t/tZ where g(t) may be interpre-
' d

ted as the probability density for system develop-
ment being completed at ty- g{t) may alsobe thought

of as the innovation frequency or the group problem
solving frequency.

Substituting 2at for g(t)
el
we have ¥ = 2 K ate™®% |
the derivative form of the Rayleigh equation.

Writing the equation in the diffusion form, we
have y = t/tg (K-y). We differentiate once more

with respect to time and obtain

133

y =K/ 2 -yl 2+ t(-y)/,2, or
tq ty ty

= K/ 2 =z
ty

been obtained in a somewhat different development
by Fix (23;. This is a form of what we shall call
the dynamic softwarc equation. The Rayleich inte-
gral is its solution which can be verified by direct
substitution. Note that this equation is similar to
the non-homogeneous 2d order differential equations
frequently encountered in mechanical and electrical
systems. There are two important differences. The
forcing function, D = K/t2, is a constant rather

d

y + t/tg y o+ y/tZ D which has also
d
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than the more usual sinusoid and the y term has a
variable coefficient, t/t2, proportional to the lst
d

power of time. The differential equation immediately
suggests the electrical and mechanical analogs. The
electrical circuit is that for charging acapacitor
with a constant voltage applied through a variable
resistor whose resistance increases linearly with

J R(t)

4

We may also think of this as simple low pass

filter.
:R(t) I
V. T v
1 o
o— —0

This comparison will become important later after we
relate the differential equation more clesely to the
software process.

R(t)
t

'
1

Systems Have a Bandwidth

It was stated earlier that the fundamental
Rayleigh equation is the design and coding rate
curve which is proportional to the rate of code pro-
duction. The second order differential equation for
this process expressed in manpower terms is

ve 6t 6 _,Eé,
yp ot t‘s ¥y +t§ BTy

The sketch below shows the relstion of the yl
curve to the overall manloading curve, ¥.

[
-

1) tosigrarion o
oveer

e !
wor ¥ ot m il trrewe

NI AT o o Ty
LA L RTURT T 1

The software differential equation

Yy ¥ Bt/ 2§, + 6/ 2y, =K/ 2
1 ty 1 td 1 td

is really a powerful narrow band filter. One can

see this by perturbing the right hand side with a

large magnitude but fast sinusoid. Very little rip-

ple shows up on the yl curve and 2 is very smooth.

A large random perturbation on the right hand side
responds similarly, i.e., the system filters out

all but the narrow band of frequencies the system is
sensitive to.

This means that managers have to input work
patterns that have frequencies that will be seen by
the system, i.e., low freguency step functions vs.
high frequency pulse functions (this may imply that
short duration crash catch-up efforts are largely
ineffective; in any event they have no long term
cost and time increases).

Armed with these hints, one can take the Fourier
transform of yl curve and obtain the spectrum of

frequencies the system will respond to. The Fourier
transform of a Rayleigh equation in time is itself
Rayleigh in frequency (radians/year). The transform
is given in tables of Fourier Sine Transforms. Plot-
ting the spectrum shows that it is indeed narrow and
responds significantly only to signals having periods
from 2 to 8 years, i.e., step-like functions, again
far systems in the range of interest (1 itd‘;4 years).

In general, the pulse width of a management action
has to be on the order of twice the development time
to have long term consequences on the system.

This leads naturally to the idea that software
systems have a characteristic system band width

(BS W'.G/td). Then one can look at th: groblem in

in terms of the signal to noise ratio and use the
results given in texts on random signals and noise
(17,18,19,20).

Uses of the Software Equation

The differential equation y + t/tg g+ l/tg Y

= K/tg is very useful because it can be solved step-

by-step using the Runge-Kutta solution. The solu-
tion can be perturbed at any point by changing

K/ts = D, the difficulty. This is just what happens

in the real world when the customer changes the re-
quirements or specifications while development is 1n
process. If we have an estimator for D (which wedo)

that relates K/tg to the system characteristics, say

the number of files, number of reports and number of
application programs, then we can calculate the
change in D and add it to our original D, continue
our Range-Kutta solution from that point in time and
thus study the time slippage and cost growth conse-
quences of such requirements changes. Several typi
cal examples are given in reference 13.
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When we convert this differential gquagion to
the design and coding curve yl by substituting

ty / G, we obtain

Vit 6t/ 2 Jp B2 vy - t"Kl/tg,

multiplying this by the PR and conversjon factor as
before, we obtain an expression that gives us.the
coding rate and cumulative code produced at time t.

. t S S
S s
S+ 2+ 2 _ o 2
s (g, /5) (ty 5)" =249 . PR . K/ty
- 2,1/3
= 2.49 Cn (K/td)
N 6t :, 6 _ 1/3
S + AEE?_ S + EE?— S = 2.49 Cn (D)

Since D is explicit, this equation can also be
perturbed at any time t in the Runge-Kutta solution
and changes in requirements studied relative to
their impact on code production. Of course the

earlier expressions for SS and SS could do the same.

An example of code production for SIDPERS using
the Range-Kutta solution is given below.

V. Summary of Estimating Techniques
at Various Stages of
the Life Cycle

The following tables summarize the techniques
that have been outlined and illustrated earlier in
the paper. The adaptive filtering technique of Box
(13,15) has not been repeated herein. It is impor-
tant. Since it is adequately covered in the refer-
ences, it is sufficient to say that the Rayleigh/
Norden manpower curve is linearized by taking loga-
rithms. Then the actuil manpower (or coding rate)

data can be fit by least squares, or plotted, to de-
termine the paramneters K and td‘ This technique has

been applied to several hundred systems and works
well, providing there is sufficient time history.

So, even though we have to use some sophisti-
cated techniques to solve the problem conceptually,
the actual implementation and obtaining of answers
is mostly grocery store arithmetic with a little
graphing (except for the Runge-Kutta solution which
should be done by computer or programmable calcula-
tor; simulation should be done on a machine; Box
method can be done graphically very nicely with good
accuracy.)

We have shown that the management questions can
be answered before software development starts and,
perhaps more importantly, we can continually up-
date and converge to the true behavior by adaptively
using the real data stream in a dynamic way through-
out the life cycle of the system, Thus, both pre-
diction and control are possible to obtain and use
in an engineering context.

Finally, we sum up with a few observations im-
portant to software managers.

Software Lessons for Executives

® SOFTWARE DEVELOPMENT IS DYNAMIC
-- NOT STATIC
® PRODUCTIVITY RATES ARE CONTINUQUSLY

VARYING -- NOT CONSTANT
® PRODUCTIVITY RATES ARE A FUNCTION OF

THE SYSTEM DIFFICULTY --
MANAGEMENT CANNOT ARBITRARILY

INCREASE PRODUCTIVITY

® BROOKS' LAW GOVERNS -- TIME AND MAN-
POWER ARE NOT FREELY INTERCHANGE-
ABLE. (SHORTENING THE "NATURAL"
DEVELOPMENT TIME OF A SYSTEM IS
VERY COSTLY -- AND MAY BE

IMPOSSIBLE)



Table 7.

Runge-Kutta Solution to the Coding Rate Differential Equation for SIDPERS

Coding Rate

Cunulative Code

111785

(Sg/year) (s,)
t {years) (000) (000)
0 0 0
.5 52.8 13.6
1.0 89.2 50.0
1.5 101.0 98.6
2.0 90.8 147.0
2.5 68.4 187.0
3.0 44 .2 215.0
3.5 24.9 223.0
——  3.65 20.33 236.0 <«——— - Actual size
at extension
4.0 12.3 241.0 was close to
4.5 5.36 246.0 this
5. 2.09 247.0
SIOPERS parameters
K = 700 MY
td = 3.65 years
D = 52.54 MY/yr
PR = N4 SS/MY {burdened)
DIFFERENTIAL EQUATION
. _ 55 = -2/3
t S + 1 S = 2.49. PR . D = 2.49.(120090 ).D
3.65 )2 (3.65)2 = 2.49 . (12009) . (0)'/3
/e N3 = 29902 . (52.58)1/3

etadA ameas -
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Table 8.

SUMMARY OF ESTIMATING EQUATIONS

Phase Technique Equation
Feasibility Rayleigh parameter (1 s, =¢, Kl/3 td4/3 \
Functional estimation by: |
Design (a) Simslation (2) wtd= 170 '
(b) Linear 'rogramming )
' (3) K/ty" = Ip]
(4) Kity = /E‘ymax
Solve (1) with (2}, (3) or (4)
(a) & (b) are conceptually the
same.
‘e . _ 2 2
Development Initially, use result In(y/t) = (W/t,") - _1__t
above: th
Box_Technique:
then fit actual overall
manpower using Box tech- Input y, t, t2; solve for td’ K.
nique. Fit code produc-
tion rate using same Input SS, t, tz; solve for td//F'. SS
technique. This will up-
date parameters. Generate
manloading curve.
Operations & Box method as above:
Maintenance i =
correlate with K E/.d’ . Total Ss
ty actual, since these T £
data are available from
development.
Development, Requirements change. Use }. + t/tdz y+ 1/td2 y = K/td2 + 4D
Operations & Range-Kutta method to
Maintenance access fi i . ;
uture impact AD is usually positive; exception is
when a portion of system is killed
or taken away

[ Y
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Another table will help to specify the solution in terms of the management questions.

Table 9.

SUMMARY OF ESTIMATING TECHNIQUES FOR USE BY MANAGERS

1

Question Answer )
Can I do it? Is calculated t, < contract time? (Yes - OK)

d
Is calculated cost=$/MY(.4K) < contract cost?
(Yes - OK)

Is difficulty and difficulty gradient reasonable
for class of work?
|D| X50 unless there is a good precedent and’
lots of parallelism can occur.

|90} 27 new
15 standalone
27 rebuild
55 composite

Is Ck consistent with past experience, type
system, language, tools, machine enviranment?

{Yes - OK) - 4

How much will it cost?

Dev. Cost = $/MYV(.4K)

How long will it take?

Dev. time = t

where K, t cgme from S_ = C K]/3 t
*d S k d

and simultaneous solution of

4/3

k/t,? = (o]
K/t = o]
K/tg = /& Jpax

Max cost = $/MY(.4K)
ty < contract time

How many people at any time?

L.
Cash flow?

N
K/,2.t. et/

JORE'S

(MY/YR)

$(t) = /MY .y (t) ($/'R)

what kind of skills?

Subjective by manager

what are the risks?

Standard deviations for K, td’ y, §, E. E, td

are plotted on probability paper to assess risk. [




What are the trade-offs?

126

E =
t,"
3
W [ Ss ) .4
%
$ DEV =
4
t4

How do constraints affect the answers?

If constraints cannot be met, trade-off law has
to be invoked to get K, td in a reasonable
range. Lengthening ty will usually do this. If
can't meet time, gradient constraint, project is
not do-able as is. Size of system (SS) nas to

be reduced.

What is the cost and schedule impact of a
requirements change {during development)?

—

At the time of impact, solve
g+ t/tf g+ ey =0 +AD for g, y. Plot
for all t, compare with previous y, y curves.

Ynew! ) = Ko

new W

Yorat *) = Koyg

me'KMdzAK

AE = AK (.4).

A LC Cost = S/MY . AK; ADEV cost = $/MY . AE
v new (peak) gives new td. (Lagrangian 3
point interpolation can give this precisely.)
then Atd = slippage

=t -t
dnew dold.




ymax

2
K/ty

3
K/t

127
Glossary of Notation S¢ -
Rayleigh/Nordon 1ife cycle effort
parameter; work units, man years, man ck -
months, etc.
Rayleigh/Norden time parameter. Time
which peak manpower normally occurs for
large software projects. Mathematically
the peak of the curve,
2 2
R TSR LT
/MY -
Development effort. Area under
Rayleigh manpower curve up to t eak).
yleig P p to t, (peak) § DEV -
Nominally, E = ,4K.
Peak manpower. Normally occurs at td.
¥y -
Ymax ~ k.
/et
d ¥ -
System Difficulty, a force-like term. ¥y .
Ratio of effort to development time
squared.

Proportional to magnitude of difficulty
gradient, VD = i (-~2K/, 3) + j(1/, 2)
ty t4

2 ) 2
lVle-/(;dLg) + (l/td)

= 2K/t 3 since 1/t 2 is always a small
d d

number in the systems context.

Productivity. Defined as the total
number of source statements (Ss) divided

by the development effort (E).

PR = Eg = Eg source statements/MY.
E .4K

This is generally a burdened number

which includes overhead (non-

programming) effort.

No. of delivered lines of executable
source code. Does not include
comments. What the programmer writes
as opposed to machine language in-

structions.

A state of technology censtant. Re-
lates to the software equation

SS = Ck K]/3 td4/3. A channel capacity

constraint in the information theory
(May be thought of as the
diameter of the "pipe" regulating the
"flow" of source code).

sense.

Average dollar cost per man year of
effort.

Development cost in dollars.

$ DEV = $/MY . E.

Cumulative effort at time t.
(man years).

Manpower at time t. (MY/YR).

Rate of change of manpower at time
t. A force-like term. (man years per
yearz).
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SOFTWARE COST MODELING: SOME LESSONS LEARNED

B.W. Bochm and R.W. Wolverton
TRW Defense and Space Systems Group
Redonde Beach, CA 90278
August 1978

ABSTRACT

This paper sumarize: some ot the lessons we learned recently
in developing a software cost estimation model for TRW. With
respect to the AIRMICS Workshop, we will concentrate on three
issues which we found particularly important and useful to ad-
dress in an industry-wide context at the Workshop. Thesc issues
are:

1. There is a need to develop a set of well-defined, agreed-on

criteria for the “goodness™ of a software cost model.

2. There is a need to evaluate existing and future models with
respect to these criteria.

3. There is a need to emphasize “*constructive™ models which
relate their cost estimates to actual software phenomenology
and project dynamics.

1. CRITERIA FOR THE GOODNESS OF A SOFTWARE
COST MODEL

Our initial criterja  reflected our primary objective in
developing the new TRW Software Cost Estimating Program
(SCEP): to serve as an aid in developing cost estimates for
competitive proposals on large Government software projects.
One may have other objectives for developing a cost model  e.g.
to evaluate the impact of using new techniques  which may
require a somewhat different set of criteria.

Here is a list of the criteria we found important in our context:

. Definition.  Has the model clearly defined which costs it is
estimating, and which costs it is excluding?

[ ]

. Fidelity. Are the estimates close to the actual costs ex-
pended on the projects?

3. Objectivity. Does the model avoid allocating most of the
software cost variance to poorly-calibrated subjective
factors (e.g. complexity)? That is, is it hard to juggle the
model to get any result you want?

4. Constructiveness. Can a user tell why the model gives the
estimates it does? Does it help him understand the software
job to be done?

wn

. Detail. Does the model easily accommodate the estimation
of a software system consisting of a number of subsystems
ang units? Does it give (accurate) phase and activity break-
downs?

. Stability. Do small differences in inputs produce small
differences in output cost estimates?

o

7. Scope. Does the model cover the class of software projects
whose costs you need to estimate?

8. Ease of Use. Are the model inputs and options easy to
understand and specify?

9. Prospectiveness. Does the model avoid the use of informa-
tion which will aot be well known untid the prowect s
complute’*

In the process of developing the TRW SCEP mode!l and
evaluating existing models (Refs. 1100 we tound cach ot these
criterig important in terms of lessons we were learming about
software vost modeling. Below dre some of the results of our
evaluation and model development with respect to the first tour
cntc_r_i_u.

1.1 Definition.

Where we ran a software cost model 1o support a cost proposal
one of the ftirst questions we would get from the proposal
manager was. “Does this estimate include the cost of management?
requirements analysis? training? computer operators?™ ete. We
were somewhat surprised to find that the documentation for
most existing cost models doesn’t satistuctorily answer this ques-
tion. For the TRW SCEP model, we found that the best solution
was to detine a standard-form Work Breakdown Structure (Fig.
1) and usc it to define which costs were included in our estimates
and which were excluded.
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{~ s 312
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Fig. 1. Work Breakd
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*Clearly, this criterion is specific to the objective of cost predic-
tion. Forother objectives, such as technology impact assessment,
a retrospective model could be appropriate.




1.2 idehity.

We tound that some existing niodels seemed to work well for
sone clas of software and not very well for others.  For
example, Fig, 2 presents the results of our analysis of the Bocingq
aid Putnam 'O estimation models when applied to their own
(Bovinig and US Army Computer Systems Command) data. It is
seen that the Bocing model appears 1o estimate small projects
reasonably well. but gives extreme overestimates on large pro-
jects. while the Putnam model does just the reverse. It would be
highly vatuable for the field if similar information were available
with respect to other models and other software project
attributes.

1
© BOEING RESULTS ON BOEING PROJECTS
& PUTNAM RESULTS ON USA-CSC PROJECTS O
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Fig. 2. Estimator Fidelity versus Project Size: Boeing and Putnam Models

For compariscr. Fig. 3 shows the performance of the TRW
SCEP model on 20 completed TRW projects.

PROJECT SIZE: MEDIUM TO VERY LARGE
PROJECT TYPE: C3, AVIONICS, SENSOR, ANALYTIC, SUPPORT
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Fig. 3. Example of TRW Software Cost Model Performance

The sequence of acnvities in developing, calibrating and
evaluating the model was as follows:
4. Survey the current state of the art in cost estimation. Fig. 4
shows one of the results of the survey, a summary of the
factors used in the major current cost estimation models.

b. Develop a baseline model. The phase-sensitive nature of the
model is based on a model developed carlier by the authors
to cvaluate the cost impact of new software tcchnologics:' !
it is functionally similar to the Boeing modet? in this regard.

<. Retine the model parameters via a two-round Delphi exercise
involving 10 experienced TRW line and project managers.
d. Calibrate the model parameters using an initial sample of
seven conipleted projects.
. Evatuate the modet using a sample of 20 completed projects,
including the initial seven. This evaluation was done by an
independent ehicd party.

“

GROUP FACTOR S0¢ | TRW | putnam| pory | Rea | iem | BoE | TRW
MZE SOURCE iNsT, X x ] x x
OBJECT INST, X X x x X
NO. ROUTINES x x x
NO. DATA ITEMS x x x
NO. REPORTS x
DOCUMENTATION x x N
NO. PERSONNEL x x x
PROGRAM | TYPE x x x x x x x X
ATTRIB, COMPLEXITY x x x X
LANGUAGE x x x
RE -USE X X x X
HARDWARE | TIME CONSTRA(NT x x x xi] x x x
ATTRIB. | 47CAGE CONSTRAINT x XX x
H/W CONFIGURETION x x
CONCURRENY H/W DEV. | X x x x
PROJECT | PERSONNEL QUALITY |, X | X
ATTRIB. | prRs, continuity X x
H/W EXPERIENCE x x x X
APPLIC. EXPER. x x x x x
LANGUAGE EXPER. x
TOOLS 8 TECHNIOUES x x | x x l
ENVIR. CUSTOMER I-F X x |
AYTRIB. | pors. oermvTioN x x x !
ROTS. VOLATILITY x x x x
SCHEDULE x x
SECURITY x x
COMPUTER ACCESS x x x x x
TRAVEL/REHOSTING x X x
REQUIRED QUALITY x r x

Fig. 4. Factors Used in Various Cost Models

The high value of R2, the square of the correlation coefficient.
should be interpreted with considerable care. For example, the
sample consists of only medium-to-very large TRW government
contract software cfforts: we are not sure how it performs on
other types of software effort. Further, the calibration is on past
projects. We have included a factor to cover the impact of soft-
ware technology improvements: however, until we get more
experience in comparing SCEP estimates with the resulting
project actuals, we must consider the model stiil in an experi-
mental state.

1.3 Objectivity.

Figure S shows one of the results of our analysis of the RCA
PRICE S model in September 1977, (It i possible that the
model may have been subsequently changed). It shows the
extreme sensitivity of the model to the subjective complexity
{SDCPLX) factor. If you describe a project as “HARD™, the
model will produce a cost estimate that is 6-7 times higher than
if you describe the project as “EASY™. This is a huge source of
variation for a parameter that is entirely subjective.  As we
have found from experience. it means that a user can make the
mode] produce any cost estimate he wants, simply by modifying
the subjective complexity factor. (In fact. PRICE S has a mode
called ECIRP which will do this for you automatically). Doing
this may solve a user's short-term pricing problem, but it hardly
leaves you with the feeling that you have performed any objec-
tive and meaningful cost estimation function for the user.

in developing the TRW SCEP model, we found that we were
unable to avoid including a complexity factor. However, we have
made the complexity rating an attribute of each individual unit
in the software, and provide users with a sct of scales for cali-
brating the complexity of different types of units. Figure 6




e

shows the complexity scale tor computational/numerical analysis
type units as an example. Having such a scale makes the complex-
ity rating a much more objective, veritiable attribute.
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L4 Constructiveness

We use the TRW SCEP model as o means of cross-checking
separate cost estimates developed by project personnel i ditfer-
ent ways.  Inevitably, this leads to differences between the
various estimates, and a need to understand why one was higher
or Jower than the other. Sumilarly, project personnel want to
Kknow in project terims why ditferent factor ratings give them
ditterent cost estimates.

In order to help answer these questions, and inorder to
promote accurate factor ratings by users, we have provided a table
tor cach of the factors in the TRW SCEP maodel that shows the
mpact on project activities ot the various tuctors and  their
For example, the table for the “Reqguired Quality™
Factor is shown as Figure When o user rates his svstem us
having a “Very High™ Required Quality, the SCEP model will
nicrease the cost of performing the vartous phases of system
Jevelopment by a certain tactor, which may vary by phase. [he
table in Figure 7 thus tells the user why his costs Iive mereased.

ratings.

EXAMPLE RATINGS FOR COMPUTATIONAL -TYPE UNIT

VERY LOW . COMPUTATIONS TO EVALUATE 5IMPLE

EXPRESSIONS: Ax B+ C * (D-E

USE OF STANDARD MATH AND STATISTICAL
ROUTINES AND BASIC MATREX.VECTOR
OPERATIONS

AVERAGE . USE OF BASIC NUMERICAL ANALYSIS SKILLS
E.G., MULTIVARIATE INTERPOLATION

ORDINARY DIFFERENTIAL EQUATIONS

DIFFICULT BUT STRUCTURF D NUMERICAL
ANALYSIS E.G., NEAR-SINGULAR MATRIX
EQUATIONS. PARTIAL DIFFERENTIAL EQUATIONS

DIFFICULT, UNSTRUCTURED KUM{RICAL
ANALYSIS E.G.. FAST, HIGHL Y ACCURATE
ANALYSIS OF NOISY, STOCHASTIC DATA

VERY HIGH .

Fig. 6. Exampie of Complexity Scale: TRW Cost Model

in terms of the impact of a very high Required Quality on his
project activities., In general, we have found that such tables do
help the users of the cost model better understand the software
job they are preparing for. Similarly, we feel they provide o ik
between the “Predictive Model™ and “Life Cycle Dynamicy™
portions of the Workshop which deserve discussion and explani-
tion during the Workshop.

1.3 Other Factors.

We have encountered similar lessons learned with respect to
other factors i the above Disto detwll stability. ete. The length
constraints ot this paper precltude our discussing them in detai!
here: however, we hope they can serve as topics tor discussion
at the Workshop,

20 SUGGESTED ISSUES FOR WORKSHOP
Based on the
questions which would be usetul to discuss at the Workshop

discussion above, here are some suggested

a. What critenia are important tor the utility of a software cost
estimation nmodel?

I generadl how do current predictive models stuck up with
respect to these criterta? - Are there general detiviencies in
current models (e.g, uniform or comparabie definitions)
which need attention?
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¢. To what extent do current predictive models explain soft-
ware life-cycle dynamics? CAre there ways to help close the
pap between models and project dynamics?
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A SOFTWARE ERROR DETECTION MODEL WITH APPLICATIONS
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Abstract 2. Time Dependent Model and

This paper deals with the modelling
of software errors encountered in a small
and a large software system. A determin-
istic analysis of software failure process
is presented to obtain an appropriate mean
value function for a non-homogeneous
Poisson process. Several quantitative
measures for software quality assessment
are also proposed. Statistical techniques
of inference about unknown parameters are
discussed and detailed analyses of software
error data from two systems are presented.

1. Introduction

The importance of modelling and
analysis of software error phenomena has
been well recognized during the last few
years and many studies have addressed this
problem, see for example (1,4,5,6,7,8,9,
10,12,13,14,15,16,17}. An important
objective of most of these investigations
has been to develop analytical models for
the error phenomenon in order to compute
guantities of interest such as the number
of errors detected by some time t, the
number of remaining errors at time t, the
software reliability function, and the
mean time to software failure. Such
quantities are useful for planning purposes,
both in the development and the operational
phases of software systems.

In this paper we develop a time de-
pendent model for software errors and
illustrate its applicability via analyses
of error data from two software projects.
The model considered here is a non-homo-
genious Poisson process whose mean value
function is derived by a deterministic
analysis of the software failure process
in Section 2. Several quantities of inter-
est are then given to establish quantitative
measures for software performance. A de-
scription of the first project (a large
scale software project) and error analyses
are given in Section 3. Software error data
based on CPU time from a small project is
given in Section 4.

Quantities of Interest

2.1 Model Development

Before analyzing the stochastic
behavior of the software failures, it is
useful to make a simpler analysis ignoring
statistical fluctuations in the number of
software failures. Suppose n(t) is the
cumulative number of software errors
detected by time t and n(t) is so large
that it can be treated as a continuous
function of t. We assume that the number
of undetected errors at any time is finite
and hence n(t) is a bounded, non-decreasing
function of t. We further assume that the
total number of errors to be eventually
detected, n(~)=a. Then, we have

9 when t=0

nit) =9 4 when t=« ° (1}

Now let the number of errors detected
in (t,t+At) be proportional to the number
of undetected errors, i.e.

n(t+At)-n(t) = b{a-n(t) st (2)

where b is a constant of proportionality.
From (2) we get the differential equation

n'(t) = ab-bn(t). (3)
Solving this for n(t), we get
n(t) = a(l-e P%), (4)

A stochastic analysis of this phenomenon
using a time dependent Poisson process (a
non-homogeneous Poisson process) and the
role of n(t) in such analysis is presented
next.

Let [N(t),t>0] be a counting process
(number of errors in (0,t]). The differ-
ence between n(t} and N(t)} is that the
former is a deterministic number while the
latter is a random variable. The N(t) pro-
cess is a NHPP with intensity function ) (t)
if

(i) N(0) =0
(ii) {N(t),t>0} has independent incre-
ments
(iii) P{2 or more events in (t,t+h)}=o(h)

(iv) Plexactly 1 event in (t,t+h)} =
A(t)h+o(h).
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If we let

m(t) = /g \(s)ds (5)
then it can be shown that
n
PiN(t)=n! = (RLELL ommlt) n-0.  (6)
In other words, N(t) has a Poisson distri-
bution with expected value E(N(t)]=m(t)
for t>0 and m(t) is called the mean value
function of the NHPP.

The deterministic model (4) derived
above has been found to be a good descrip-
tor of the software failure process when
applied to actual data sets. For this
reason we choose the mean value function
to be

m(t) = a(l-e Pt (1)
Note that
EN(») = m({»} = a. (8)

In other words, the parameter 'a' can be
interpreted as the expected total number

of software errors to be detected until
complete debugging, assuming such debugging
to be perfect whenever an error occurs.

2.2 Quantities of Interest

We obtain expressions for the follow-
ing quantities to establish the performance
measures for software reliability assess-
ment. For

Cumulative number of software errors.
For given a and b the distribution of N(t),
the cumulative number of software errors
detected by time t, is given by

{a(l-e Pty e—a(l—e-bt)

P{N(t)=n} = a7

n=3¢,1,2,... (9]

i.e. N(t) has a Poisson distribution with
mean

EN(t) = a(l-e D%, (10)
Note that

a

n
P(N{»)=n} = %T e"®, n=0,1,2,... (11)

i.e. the distribution of N(~), the total

number of errors to be detected if debug-
ging is carried out indefinitely, is also
a Poisson distribution with mean ‘'a’.

Remaining number of software errors
and related results. Let fj(t) be the num-
ber of errors remaining in the system at

time t. Then
N(t) = N(=)-N(t), (12)
EN(t) = ae-bt, (13)

and
var (N(t)})=Var(N(~))+Var(N(t))-
- 2CovV(N(t),N(~))

b bt

ty-2a(1-e7PY

or vVar(N(t)) = ae—bt. (14)

Now suppose Yy is the number of errors

= ata{l-e

found in a testing period thr i.e. N(tn)=yn.

‘‘hen the conditional distribution of N(tn)
is

N =y! = Vo= w)=
P(N(tn) x,N(tn) Y, ! P{N (=) yn+x}
or
ayn+x a
— o o = -
P(N(tn)—xlN(tn)—yn) 7§;¢§TT e
x=0,1,2,... (15)
Also
ElN(tn)lN(tn)=ynl = a-yp- (16)

This conditional distribution is important
for deciding whether the software system
under development can be released or not.
The decision should be made based on the
number of errors remaining in the software
because it plays an important role in soft-
ware reliability.

Reliability function. It can be
shown that the reliability function, R(t),
after the last failure occurs at time s is
given by

ae~PS_o b(s¥t)

R(t) = e (17)

This is the conditional reliability func-
tion.

2.3 Estimation of Parameters

For the case under consideration the
data is given in pairs (yi,ti), i=1,2,...,n

where ¥; is the number of software failure

by time ti. To obtain the estimates of

parameters & and b of the model derived in
Section 2.1, we proceed as follows.

Property (ii), along with properties
(i), (iii) and (iv) of a NHPP, provides a
complete statistical characterization for
the NHPP so that the joint counting prob-
ability can be determined for any collection
of times 0<tl<t2<...<tn. That 1is,

P{N(t1)=y1,N(t2)=y2,...,N(tn)=yn)

n
= 0N PINCE )N ) =yymyy )
i=1
Sy
n o m(t)-mit, )1 Y L e
_ i i-1 n
=1 e .
i=1 (y.,-y._ )1
i 7i-1 (18)

The likelihood function for given
data (yi’ti)' i=1,2,...,n, is
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-bt,_, ~bt, Yi™¥i-1
| n {a(e -e )}
L{a,bly,t)= 1 _ \
’ i=1 (yi yi—l)‘
-bt
omall-e ™) (19)

Taking logarithm of (19), we get
t(a,bly,t)  inL(a,bly,t)

n n ~bti
(yi-yi_l)1na+iil(yi'yi_1)2n(e -

=

1

-bt, | -bt_
-e ) - a(l-e ). (20)
Then, MLE's 4 and b must satisfy
3L _ 28 _
FESR 35 = O
or
-bt
a(l-e ™) =y (21)
n
and
-bt -bt,
ar e i WiTYs) (Bge oty e )
n -bt., -bt °
i -1
e -e
(22)

Equations (21) and (22) can be solved
numerically to obtain_the maximum likeli-
hood estimates a and b.

3. Software Error Data Analysis for
a Large Scale Project

3.1 A Large Scale Software Project

The data under study has been taken
from a large scale project reported in
Thayer et al [16]. This project represents
an initial delivery of a large command and
control software package written in
JOVIAL/J4. It consists of 115,346 total
source statements and 249 routines. Some
other characteristics of this project are
summarized in Table 1. The error data
used for this study is taken from the
Software Problem Reports (SPR's) generated
during the formal testing phase of this
project. The majority of software errors
were detected during Validation (Jun 1-
Aug 12), Acceptance (Aug 13-Aug 24), and
Integration phases (Aug 25-Oct 26). How=~
ever, the operational data spanning a
period of approximately one year (Oct 27-
Nov 12) was also analyzed. The only time
frame readily available from the data was
the calendar day. The data also contain
the mistakes by the operators and the
"explanatory" errors, i.e. the fix is a
change to a comment statement or the fix
is not to a routine. These explanatory
errors do or do not indicate the type of
change. Therefore, the original data have
to be restructured into four sets of data

denoted by DS1 to DS4. The description and
the total number of errors detected during

the formal testing phase for each data set

are given in Table 2.

In this paper the number of software
errors detected during the formal testing is
counted on a weekly basis. Also, for each data
set the software errors detected during the first
nine weeks are eliminated due to the fact that
this represents the period of increasing number
of software errors and we are interested in aral-
yzing the software failures over the period when
they are decreasing. Data about the SPR's fcr
the 15 week period for the four cases (DSl to
DS4) can be obtained from references

3.2 Software Error Data Analysis

In this section we analyze the data
sets DS1 to DS4 to develop time dependent
models described above.

Mean value function. The simultaneous
non-linear equations (21) and (22) are
solved numerically for each_data set to
obtain the estimates a and b. Thus, for
data set DS1, the solution is a=1348,
b=0.124 and the fitted mean value function

is 1348 (1~e”0-124%)  1pig is also an

estimate of the expected number of software
errors detected by time t. A plot of the
actual and the fitted values of the number
of error detected during formal testing for
this case is given in Figure 1. Also shown
in this figure are the 90% upper and lower
bounds for the N(t) process which can be
computed from equation (9). Inspection of
this figure indicates that the fit is very
good. Estimates for other data sets are
obtained similarly and are summarized in
Table 3.

1200

Upper boand e ]
Fitted ——————p,
Actual .

Lower bound -

:

NO OF ERRORS
3
O
i

a:=1348 n
b:0124
aool- 4
200}~ -1
H |
°o 5 10 [-)
TIME (WEEK)
Fig. 1. Actual and fitted software errors

and 90% bounds for the N(t)
process for Data Set DS1



TABLE 1
Project Characteristics (TRW)

Size (Total source statement) 115,346

Number of routines 249

Language JOVIAL/J4

Formal Requirements To function level

Co-contractor Yes

Subcontractor No

Operating Mode Batch

Formal Testinrg Validation (6/1/73-8/12/73)
Acceptance (8/13/73-8/24/73)
Integration (8/25/73-10/26/73)
Operational Demonstration (10/27/73-11/12/73})

TABLE 2
Description of the Data Set

Total Number of Errors

6/1/73~10/26/73 10/27/73-11/12/73
Data Set Description (24 weeks) (22 weeks)
DS1 Original Data - TT - EX1 - EX2 2191 198
DS2 Original Data - TT -~ EX1 2621 263
DS3 Original Data - TT 4367 540
DS4 Original Data - TT ~ EX2 3937 475

TT represents the mistakes by the operators.

EX1l represents the @xplanatory errors which do not indicate what type of change (module,
documentation, compool, data base) was involved.

EX2 represents the explanatory errors which indicate type of change.

TABLE 3
A Summary of Data Analyses

Data Set

Quantity DS1 DS2 psS3 DS4 F-11D
a 1348 1823 3958 3466 107
b 0.124 0.112 0.0768 0.0771 0.0367
var (a) 48.7 62.2 147.3 136.6 10.3
Var (b) 0.00745 0.00643 0.00460 0.00492 0.00365
P -0.571 -0.648 -0.856 -0.855 -0.002
a,b
Estimated Number of Remaining
Errors at the end of Integration 210 340 1251 1084 0
Testing
Number of Errors Detected During __
Operational Demonstration Period 198 263 540 475
Joint confidence region. To obtain From (23) and (20) we get
a (1-1)100% joint confidence region for a n n —bt
b i i ion: . . i-
and Ye_use the following agprgxxmatxon b {y;-y;_,)loga+ (y,=¥;_y)og (e i-1_
z(a,b]x,g)—l(a,blx,g) =7 G (23) i=1 bt i=1 bt
e Y -aflme ™ =c¢ (24)




= A

o e s T e

where

s 1 2
c = Q(a,blx) - f le.a
Confidence regions for desired values of «
can be obtained by solving equation (24).
For dats set DS1, the joint confidence
regions for a, b for a=,10, .25 and .50
are drawn in Figure 2.
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ma%‘ ol 012 013 0i4 015

PARAMETER b

Fig. 2. Joint confidence regions for a
and b for Data Set DS1

Asymptotic properties. For large n,
the mle's (a,b) follow a bivariate normal
distribution (BVN):

() =am((2) ) e

where the variance-covariance matrix I is

given by
-1
r r
_ aa ab
L -[rba rbb] (26)
and
2
_ . 372
Lop = E 3336 - (27)

For data set DSl the estimated variance-
covariance matrix is

;- |2368 -0.2071 ]' (28)
~0.2071 5.554x10°
From (28) the standard deviations of a and

b are Var(a)=48.7, Var(b)=0.00745 and the
estimated correlation coefficient is
®a b=0.571.

’

values of Var(a), Var(b) and 53 b

for data sets DS1 to DS4 are given in
Table 3. Also given is the number of
errors detected during the Operational

Phase. By comparing the entries in the last
two rows, we see that the predicted values
are quite close to actual ones.

Expected number of remaining errors
and confidence bounds. The expected number
of remaining errors is computed from equa-
tion (13) for estimated values of a and b.
Also, we can show that 100(1-a)% confidence
bounds for EN(t) are given by

{f(a,b)itn_z;c‘/2 vif(a,b)}} (29)
where .
f(a,b) = ae”Pt
E
SR of of I 3a
vif(a,b)} = (== =) L
Ja b of ) ) (30)
3b =a, b=b

90% confidence bounds for EN(t) for data

set DS1 are computed from the above equa-
tions and are shown in Figure 3. Also shown
is a plot of the actual number of remaining
errors during the 15 week period. From the
figure we see that the actual errors fall
within the 90% bounds.

1500 T T T T
[72]
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& 1200 LI
ypper bound
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=]

Fig. 3. 90% confidence bounds for the
expected number of remaining soft-
ware errors at time t for Data
Set DS1

4, Software Error Data Analysis
Based on CPU Time

In this section we discuss the anal-
ysis of software error data collected from
a small project. The errors in this case
are considered as a function of CPU times
rather than the calendar time, as was the
cage for the data analyzed in Section 3.
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4.1 Software Error Data
The error data, as reported by
Wagoner {17), were collected from the

computer program F-11D which obtains fil-
tered navigation solutions from data taken
by receiving equipment carried on an air-
craft. This program is a data reduction
program consisting of approximately 3000
4000 FORTRAN statements and required one
month for development and checkout. The
number of errors were counted with CPU
(running) time. Wagoner [17] analyzed the
data by a Weibull distribution with CPU
time as the independent variable.

4.2 Data Analysis
The analysis procedure for this data
set is similar to that of Section 3.2.

For the F-~11D data given in (17}, the
estimates of a and b from (21) and (22) are
a=107 and b=0.0367. The fitted mean value
function is

~0.0367t

m(t) = 107 (l-e ).

This is an estimate of the expected
number of software errors detected by
time t, where t is in CPU seconds. A plot
of the actual and the fitted values of the
number of errors detected during the devel-
opment and checkout phases of F-11D pro-
gram in CPU time is given in Figure 4.
Also shown are the 90% upper and lower
confidence bounds for the N(t) process.
Inspection of this figure indicates that
the fitted model satisfactory explains the
actual error occurrence phenomenon.
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Fig. 4. Plots of the actual and fitted

number of errors and confidence
bounds versus CPU time
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The joint confidence regions for a
and b for «=0.10, 0.25 and 0.50 are drawn
in Figure 5.
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Fig. 5. Joint confidence regions for b

and a for F-11D Data Set

The estimated variance-covariance

matrix is
107
-8.0%107° 1.329-10"

and the estimated correlation coefficient
is " a b=-0.002.
’

The 90% confidence bounds for the
expected number of remaining errors, EN(t},
are shown in Figure 6. Also shown is a
plot of the actual number of remaining
errors during 250 CPU seconds period.
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5. Concluding Remarks {9 Musa, J. D., (1975), "A Theory of
Software Reliability and its Applica-
In this paper we have used a non- tion," IEEE Trans. on Software
homogeneous Poisson process to model the Engineering, Vol. SE-1, No. 3, pp-
software error phenomenon in a two soft- 312-327.
ware systems, one large and one small.
Based on a deterministic analysis of the {10} Okumoto, K. and Goel, A. L., (1978),
failure process, we have derived the mean "Availability Analysis of Software
value function of this process. Various Systems under Imperfect Maintenance,”
quantities of interest are derived to pro- Technical Report No. 78-3, Department
vide guantitative measures for software of IE & OR, Syracuse University.
quality assessment. Estimation of para-
meters has been discussed and the results {11} Roussas, G. G., (1973), A First Course
used to get fitted models for several data in Mathematical Statistics, Addison-
sets. Also, joint confidence bounds for Wesley.
the parameters are obtained. These can be
used to obtain confidence bounds for the 112) Schick, G. J. and Wolverton, R. W.,
performance measures of the software sys- (1972), "Assessment of Software
tem being analyzed. Reliability," McDonnell~Douglas
Astronautics Company Paper WD1872.
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LAWS AND CONSERVATION IN LARGE-PROGRAM EVOLUTION
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ABSTRACT

The paper analyzes the nature of the laws
that have been identified by the work of BRelady,
Lehman and others. Progra) maintenance and evolu-
tion is planned, managed and implemented by people,
yet the laws that govern the process are more akin
to those of biology and even modern physics, then,
as had been previously supposed, even more fuzzy
than those that apply to economics and sociology.

After a brief discussion of the first four
laws, highlighting the underlying phenomena and
natural attributes, the paper concentrates on the
fifth law. It shows what, how, and why it repre-
sents a conservation phenomenon, the conservation
of familiarity.

INTRODUCTINN

A recent paper [LEH78] discussed five laws
of ZaAga-pnognam evolution dynamics; laws that have
emerged ¢. '. the studies of Belady, Lehman and
others o.»r -he last seven years as summarized in
the bibliography of the above referenced paper.
The main objective of the present contribution is
to discuss one specific aspect of these laws, con-
servation. Some general introductory remarks are,
however, desirable.

In the first place we should stress that the
discussion here is limited to farge programs de-
fined by; "a farge-program {4 one that has been im-
plemented on maintained by at Least twe independe-
ntly managed groups”. Such a program will be the
responsibility of an organization having two or
more levels of management, will have the property
of "variety" [BEL78) and will be outside the intel-
lectual grasp of the individual. A program not
satisfying the definition may possess one or
inother of the other properties and may display
some or all of the characteristics of "fargencss”
[BEL78], but we do not consider them here.

PROGRAM EVOLUTION LAWS WITHIN
THE_SPECTRUM OF SYSTEMS OF LAWS

The evolution of software systems is clearly
not a natural process governed by immutable laws
of nature. Changes to a program are neither {nit-
ated nor occur spontaneously. People do the work;

amend or emend the requirement, the specification,
the code, the documentation; repair the system;
improve and enhance it. They do this in response
to fault reports, user requests, business require-
ments, managerial directives or their own inspir-
ation. Human thought and judgement plays a de-
cisive role in the process that results from this
continuing sequence of exogenous, seemingly stoch-
astic, inputs.

Thus, we should not expect to discover laws
of program evolution that yield the precision and
predictability of the laws of physics [LEH77].
Any laws that emerge could reasonably have been
expected to be even weaker than biological laws
since the latter arise from observation (f the
collective behaviour of cellular systems which,
whilst living, are, at least at the level of
human understanding, non-intelligent. We should
not even expect to observe behaviour that displayvs
the regularity that has been abstracted into laws
in the social and economic sciences, for example,
the so-called "Law of Supply and Demand". After
all the programming process is planned and con-
trolled by an organizational and management struc-
ture that is sencitive and reactive to the de-
mands, pressures, circumstances and contingencies
of each moment. Thus, no regularity should be
expected. Each action and event is surely deter-
mined by the needs of the moment. The process
must surely be completely stochastic.

One of the first and most surprising, yet
most fundamental, results of our observation and
analysis of the dynamics of evolution of some
eight programs, ranging over a wide spectrum o’
implementation and usage environments, has been
that this {s not so. Regularities, trends and
patterns appear and dominate large program evol-
ution. The common features and patterns of
behaviour reflect common characteristics (BEL78]
from which laws can be deduced; laws which, within
the spectrum outlined, lie unexpectedly somewhere
between the laws applying to biological organisms
and those that emerge from the study of socio-
economic systems. And these laws in turn can be
used to create powerful, reliable and cost-
effective life-cycle management tools.

THE UNDERLYING CAUSE FOR REGULARITY

Once the phenomenon has been recognized,
the mechanisms underlying it are not difficult
to understand. In the first instance, the program




and its documentation in all their versions - the
system - has a damping effect analogous to an ever-
increasing inertial mass. As a totally unintelli-
gent mechanism, the computer executes, and there-
tore impacts, its operating environment, precisely
and only as the code in association with anv input
data, instructs. Cood intentions, hopes of cor-
rectness, wishful thinking, even managerial edict
cannot change the semantics of the code as written
or its effect when executed. Nor can they affect
the relationship between a specification and its
implementation, or that between both of these and
operational circumstances., That is the freedom of
the designer, the implementor and the user to make
changes or additions and to obtain the desired pro-
gram behavior is increasinglv constrained by exist-
ing code, documentation and past program applica-
tion and behaviour. The code is unforgiving; there
is no room for imprecision or logical error. Thus,
any deviation leads to a need for corrective
actions. The resultant feedback over the entire
system process and organization increasingly causes
the observed regularity,

These facts alone suffice to explain the con-
sistency of the observations. Other factors merely
strengthen the phenomenon. In particular large
programs are, in general, created within large
organizations and for large numbers of users;
otherwise thev could not be economically justified
or maintained. Moreover, their very size and the
complexity of both the program and the application
for which it is intended means that decisions take
time, sometimes considerable time, and large
numbers of people to implement. The resultant de-
lavs provide exogenous pressures and endogenous
opportunities for change. Thus the overall circum-
stance and environment acts like a filter to smooth
out the global consequences of individual decis-
ions, whilst also, paradoxically, adding the occas-
ional stochastic disturbance. It also acts as a
brake - economic and social - that inhibits or
softens decisions that would have too drastic an
impact. For example, large budgets can, in
general, be neither suddenly terminated nor drasti-
cally increased. In practice they can only be
changed by a fractional amount. Similarly a work
force cannot be instantaneously retrained, relocat-
ed or dismissed; at best a task force can be sent
in, and can cause a local perturbation.

In summary, large program creation and main-
tenance occurs in an environment with many levels
of arbitration, smoothing and feedback correction
that, in general, act to eliminate perturbations
at the output. The existence of regularity and of
laws abstracting that regularity becomes reasonable
and understandable.

THE GROSS NATURE OF THE LAWS

The detailed instantaneous behaviour of the
programming process and of the system that 1is the
object of 1its activity, 1s the consequence of
human decision and action. Specific individual
eventy cannot therefore be predicted more precisely

than can the specific acts of an individual. Any
laws can thus only relate to the gross, statisti-
cal dynamics of a large program svstem over a
perfod of time, But as such they find application
in svstem prognosis, planning and project control.
Equally (or even more importantly) they vield
understanding that should permit improvement of
the programming process and advance the develop-
ment of software engineering science and practice.

FEEDBACK CONSEQUENCES OF INCREASING
UNDERSTANDING OF THE PROCESS

Increasing understanding in turn raises
another problem. To what extent can knowledge and
understanding of the laws that regulate the pro-
gramming process in an environment unaware or in-
sensitive to their existence, be used to invalid-
ate them, or for that matter, to perpetuate them
by appropriate (or inappropriate) managerial res-
ponses? Space does not permit us to address this
question in detail. We merely assert that the
present laws reflect deeply rooted aspects of
human and organizational behaviour. Associated
with the mechanistic forces that define and con-
trol the automatic computational process, thev are
sufficiently fundamental to be treated as absol-
ute, at least in our generation. As knowledge of
them is permitted to impact the programming |ro-
cess, as programming technology advances, thev
mav require restatement or revision, thev may be-
come irrelevant or obsolete., But for the time
being, we must accept and learn to use, not to
ignore, them.

THE LAWS
The First Law

We now comment brieflv on the laws summarized
in figure 1, so as to expose some of the more fun-
damental truths that they reflect. The laws have
been fully discussed in earlier publications
[LEH78 and bibliography].

The Llaw ¢4 Continuding Change arises from the
fact that the world, in this case the computing
environment, undergoes continuing change; all pro-
grams are models of some part, aspect or process
of the world. They must therefore be changed to
keep pace with the needs of a changing enviren-
ment, or become progressively less relevant, less
useful and less cost effective,

The Second Law

The Law 04 Tncreasina Complex{tu (an analogue
or instance of the second law of thermodvnamics)
is a consequence of the fact that a system is
changed to improve its capabilities and to do so
in a cost-effective manner. Thus change objec-
tives are expressed in terms of performance
targets, system resources that will be required
during execution, implementation resources, com-
pletion dates and so on. With multiple objectives
it is impossible to optimize all simultaneously.




I. THE LAW OF CONTINUING CHANGE

A LARGE-PROGRAM THAT IS USED UNDERGOES
CONTINUING CHANGE OR BECOMES PROGRESS-
IVELY LESS USEFUL, THE CHANGE OR DECAY
PROCESS CONTINUES UNTIL IT IS JUDGED

MORE COST-EFFECTIVE TO REPLACE THE SYSTEM
WITH A RE-CREATED VERSION.

I1. THE LAW OF INCREASING COMPLEXITY

AS A LARGE-PROGRAM IS CONTINUOUSLY
CHANGED ITS COMPLEXITY, REFLECTING
DETERIORATING STRUCTURE, INCREASES
UNLESS WORK IS DONE TO MAINTAIN OR
REDUCE IT.

IIT. THE FUNDAMENTAL LAW OF LARGE-
PROGRAM EVOLUTION

THERE EXISTS A DYNAMICS OF LARGE-PROGRAM
EVOLUTION WHICH CAUSES MEASURES OF GLOBAL
PROJECT AND SYSTEM ATTRIBUTES TO BE CYC-
LICALLY SELF~REGULATING WITH STATISTIC-
ALLY DETERMINABLE TRENDS AND INVARIANCES.

IV, THE LAW OF INVARIANT WORK RATE

THE GLOBAL ACTIVITY RATE IN A LARGE PRO-
GRAMMING PROJECT IS STATISTICALLY IN-
VARIANT. {FOR EXAMPLE: NORMALLY DTS-
TRIBUTED IN TIME WITH CONSTANT MEAN AND
VARIANCE).

V. THE LAW OF CONSERVATION OF
FAMILIARITY (PERCEIVED COMPLEXITY)

FOR RELIABLE, PLANNED, EVOLUTION, A
LARGE-PROGRAM UNDERGOING CHANGE MUST BE
MADE AVAILABLE FOR REGULAR USER EXECU-
TION (RELEASED) AT INTERVALS DETERMINED
BY A SAFE MAXIMUM RELEASE CONTENT
(CHANGED OR NEW) WHICH, IF EXCEEDED,
CAUSES INTEGRATION, QUALITY AND USAGE
PROBLEMS WITH TIME AND COST OVER-RUNS
WHOSE CONSEQUENCES MAINTAIN THE AVERAGE
INCREMENT OF GROWTH INVARIANT.

FIGURE 1: THE FIVE LAWS OF LARGE-PROGRAM

EVOLUTION
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Hence the completed project and system must repre-
sent a compromise that results from judgements angd
decisions taken during the implementation process,
often on the basis of time, group or management
local optimization. Structural maintenance, which
is not often mentioned in project objectives since
it yields no immediate or visible benefit, will
inevitably suffer. Each change will thus degrade
system structure a little more. The resultant
continuing accumulation of gradual degradation,
ultimately leads to the point where the system can
no longer be cost-effectively maintained and en-
hanced unless and until a clean-up is undertaken.

The Third Law

The Fundamental law of lLarge-Program evolu-
tion was previously called the Law of Statistically
Smooth Growth [LEH78]). It expresses the observa-
tion we have already made above that large-program
evolution is not a purely stochastic process that,
at each instance, reflects the decisions and
actions of the people in the environment in which
it is maintained and in which it is used. The Law
states that, at least in the current state of the
art, there exists a dynamics whose characteristics
are determined during conception’'and the early
life of the system, the process and the organiza-
tion that maintains them. The characteristics of
this dynamics increasingly determines the gross
trends of the maintenance and enhancement process.
Feedback effects are an inherent factor in the
self-stabilizing control process that evolves.
Hence cyclic effects, not necessarily with a pure
period, emerge.

The Fourth Law

The Law 0f Tnvarniant Work Rate is assumed to
reflect a conservation property. The quantity or
quality being conserved has however nct been
clearly identified. The Law is believed to be a
congsequence of the fact that, in general, human
organizations seek, and seek to maintain, stabil-
ity or, more accurately, stable growth. As sug-
gested above, sudden changes in, for example,
staffing, budget allocations, manufacturing levels,
product types are avoided, are, in general, not
possible. A variety of managerial, union and
governmental checks, balances and controls ensure
overall progress to the ever changing, ever dis-
tant objective of the organization; or its col-
lapse. The Law also, in a sense, reflects the
organizational response to the limitation which,
we shall show, underlies the fifth law,

Thus with hindsight it becomes clear thut
the discovery of some derivative of an activity
measure that is invariant, or better, statisti-
cally invariant (for example, normally distributed
in time with constant mean and variance) could
have been anticipated. What is not really under-
stood (except vaguely as reflecting the limita-
tions of absorbtive capacity) is why in large-
rrogram maintenance projects, measures of work
{nput rate should be the quantity to display such
invariance. But the fact remains that for all the
systems observed, the count of modules changed




(handled) or changes made per unit of time, as
averaged over each release interval, has been
statistically invariant over the period of
observation.

The Fifth Law

The Law 0§ Conservation of Familiarnity
(Pencedved Complexity) was previously referred to
[LEH78) as the law of Incremental Growth Limits.
Its discovery was based on data from three of the
systems observed, each of which was made avail-
able to users on a release basis. In each case
the incremental growth of the program varied
widely from release to release. But the average
over a relatively large number of releases re-
mained remarkably constant. That is a high-growth
release would tend to be followed by one with
little or no growth, or even by a system shrink-
age. Or two releases, each of about average
growth, would be followed by one with only slight
growth. Moreover releases for which the net
growth exceeded about twice the average, proved
to be minor, or major, disasters (depending on
the degree of excess) with poor performance, poor
reliability, high fault rates, cost and time
over-runs. This evidence suggests that initial
release quality is a non-linear function of the
release incremental growth. From a more complete
phenomenological analysis, along the lines out-
lined below, and for which a mathematical model
needs to be constructed, we hypothesise that the
quality is exponentially related to the magnitude
of the changes implemented in the release,

The phenomenon was detected at a very
early stage of our evolution dynamics studies,
was featured in our earliest models [BEL71], and
has been applied as a planning and control para-
meter for a number of years. The full explana-
tion, however, has only recently become apparent.

The release process was originally iden-
tified as a stabilization mechanism [BEL71].
Once a large-program is in general use its code
and documentation are normally in a state of flux.
A fault is fixed locally, perhaps fixed differ~
ently or not at all i{n other installations. Minor
or major changes, local adaptations, are made.
Code is changed without a corresponding change to
documentation. Documentation is changed to cor-
respond to observed behaviour without a full and
detailed analysis of the precise semantics of the
code within the context of the total system and
under all possible envirommental conditions.
Only at the moment of release does there exist an
authoritative version of the program, the code
and its documentation. Even this may include
multiple versions of modules say, for clearly de-
fined alternative situations.

For an old release each implementor, each
tester, each salesman, each user will be familiar
with the version of the program with which he
has been asgsociated. This familiarity will have
bred, not contempt, but a certain degree of re-
laxation, of ability to work with the program in
order to accompligh specific objectives. The
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program will be manipulated or used without
(apparent) need for concentrated thought. External
perception of its intrinsic complexity will be at

a minimum. Iu the limit the program may be said to
be approaching zero perceived complexity for people
working consistently on or with it.

As changes are introduced, as the new release
is gradually created and as it becomes available,
new and unfamiliar code appears. The program
behaves differently in execution, in its inter-
action with and impact on the operational environ-
ment. Even the pagination in the previously fam-
iliar documentation has changed and any need for
reference entails a major search. The system has
become uncomfortably unfamiliar, the degree of un-
familiarity depending on the extent and inaptitude
of the change (See below.).

A major intellectual effort is now required
by each person involvea before any completely suc-
cessful and cost-effective interaction with the
new system can occur. The system has suddenly
become complex. Its perceived complexity is high.

Even those who participated in the prepara-
tion of the new release will normally have been
involved directly with only a small part of the
change, a small portion of the system. They too
can only learn to understand the new system in its
totality from the moment of its completion. More-
over until the complete system is available ail
acquisition of knowledge and understanding of the
changes and of the new system, must be based on
neading of code and documentation text, or on
partial execution of system components on test
cases or system models. Only with final integra-
tion does the full executable program become avail-
able. We shall suggest that when the release
content exceeds some critical amount only opera-
Lional experience with the compfete system can
bring or restore the degree of knowledge and fam—
iliarity, the global viewpoint, that is essential
for the cost-effective maintenance, enhancement
and exploitation of the large program.

Thus, in general, at the moment of release
or shortly befdre that time a major learning
effort will begin and this will involve all those
associated with the system, not just the users.
All changes and additions must be identified,
understood and experienced, their significance
within the operational context of the total system,
appreciated. Once this has been done the old
degree of comfort with the system will return, its
perceived complexity is once again zero, the level
of familiarity has been restored.

Clearly the amount of hard work that must be
involved to achieve this, the intellectual effort
required, depends amongst other factors, on the
attitudes of people, on the organization, on the
number and magnitude of changes introduced. More-
over, as already observed, this dependence must be
at least quadratic, probably exponential. For
changes to the system interact with one another.
Changes implemented in the same release, that is
in the same time interval, must each be understood




not only in themselves, but also in the context of
all the others, of the unchanged parts of the sys-
tem and of past and future applications. The
source of the drastic growth in difficulty in re-
storing the familiarity required of and with the
program if it is to be once again correctly and
efficiently maintained and exploited, is cleasr.
Figure 2 is intended to suggest '"difficulty”
versus magnitude of release content' relationship.
The axis of the curve are not calibrated since at
present neither concept nor suitable measures are
well defined. But their relevance to the Fifth
Law requires us to analyze the nature and conse-
quence of these concepts. Incidentally, the con-
cept of "difficulty" introduced here clearly
relates to that of Norden and Putnam [SLC77]. But
the precise relationship has not yet been estab-
lished,

Before proceeding with the analysis one
brief remark should be made. The Fifth Law as now
formulated talks about release content and its
magnitude (previously incremental growth)., The
content certainly includes new or changed code, but
must also involve deleted code, new or changed
function and new or changed documentation. For
example, the observations that inspired the law
were measured in terms of modular growth and we
have in fact consistently found module-based mea-
sures in terms of modular growth and we have in
fact consistently found module-based measures to be
more accurate and useful than those based on in-
struction counts. But there is at present no clear
or agreed measure of release content, the magnitude
of a change. 1t is not even clear that the concept
possesses a metric. It must be left to the future
to identify or define measures and to provide an
improved formulation of the Fifth Lav. Meanwhile
we must clarify the concepts and increase under-
standing of, at least, the phenomenology, thereby
we will provide a basis for ultimate formalization,

With this clarification we mav now proceed
with the analvsis. Everyone's ability to master a
new or changed object is limited, though people
clearly differ in their capability to absorb the
new knowledge, to achieve full understanding of the
changed program. Thus the impact of changes will
undoubtedly vary from person to person according
to many factors that will include, but are not
limited to, their learning ability and absorptive
capacitv. But for a given large-program in its
given environment and where many people are inevit-
ably involved, the delays that are incurred, the
mistakes that are made, the destructuring that
occurs before full familiarity is restored, the
direct and indirect cost of familiarfzation,
depends on the average abilitv of all the people
involved. After all, while the above-average
person will regain masterv more quickly, make
fewer mistakes, achieve a temporary advantage
(which will probably cause him to be promoted
moved out of the project fairly quickly), the
below-average person will fall behind, will per-
haps lose contact, make more mistakes, do more
damage. He may well be re-assigned to a less
demanding role with less impact on the project or
even fired. But the damage will have been done

or

and with hiring policies

vstablished make up of the project, the average
level will remain at best, unchanged; more probably
decline [LEH64].

For different organizations, different sys-
tems, different structures, different methodolo-
gies, different processes, the average level will,
of course, be different. This implies that any
models will contain exogenous variables. Thus it
establishes a potential for improving the level in
any given circumstance once the phenomenot., the
organization and the programming process are under-
stood.

Difficulty

" ‘Threshold regicn

1
1
'
] Release
J,\i Content

Average absorptive capacity

iP

FIGURE 2: DIFFICULTY - RELEASE CONTENT RELAY

Given the above insight irto the growth of
difficulty in understanding and working with ‘a
svstem as the release content increases, and its
consequences, as a result of feedback that slows
down both utilization and further evolution as svs-
tem structure deteriorates, that the number of
faults increases, documentation lags and perfor-
mance declines, we are now in a position to appre-
ciate the Fifth Law.

If the release content, the magnitude of the
change and/or the incremental growth, is less than
some threshold region (Figure 2) the integration
and operationa’ installation of the new system
should be fairly straightforward. No major pro-
blems should be experienc~d in mastering the new
release; it mav well be that the change mav be
absorbed, familiarity restored without actual sys-
tem operation exposure,

When the release content lies in a threshold
region which mav not be preciselyv delineable, qual-
itv, performance, completion and installation pro-
blems are to be expected. Slippage and cost over-

run mav occur, A subsequent, low growth, release

will be required to clean up the svstem and restore
it to a state that permits further cost-effective
evolution.




Finally if a release whose content exceeds
the threshold region is attempted serious problems
will be encountered. Slippage and cost over-run
will occur unless the plans take account of the
greatly increased difficulties that will be exper-
ienced. If not properly plunned it may lead to
the effective collapse of the system or, as we have
observed in at least two instances, to an effect
that we have termed svstem {(ssion. Since only
release of the system to end users and to the
developers provides full exposure, even when ade-~
quate resources and time has been provided, such
a release will still require to be followed by 2
restoration or clean up release.

The Fifth Law abstracts these observations,
adding an additional factor, that of the emergence
of invariant average incremental growth or content.
The latter is also a consequence of the additional
exogenous pressure for accelerated functional
growth or content. The latter is also a conse-
quence that is a characteristic feature of large-
program applications and, in general, of organi-
zational vavironments.

FINAL WORD

One last word should be added. The first
recognition of the laws discussed was based en-
tirely on an examination and analysis of data
from some very large programs. However, once they
are formulated the laws must be examined in their
own right to achieve the transition from phenomen-
ology to science. These laws of large-program
development and evolution are now beginning to be
understood in this way. They are seen to express
very basic attributes of computing, of the pro-
gramming development, maintenance and usage pro-
cesses, of programs themselves, and of the organi-
zations and environments in which these activities
are carried out.

Once this irterpretation of the laws in
terms of more fundamental phenomena has been
achicved we must re-examine the old data and
examine new information in the light of the laws
as undenstood. Deviations must be explained and
interpreted. Contradictions may require re-formu-
lation and re-interpretation of a law or even its
rejection. There is, of course, nothing new in
these comments. They form the very basis of the
scientific method. They are added here to assert
the belief that the laws as formulated have been
substantiated by experience and by experimental
data to the point where they can stand in their
own right until evidence and developing insight
and understanding demands their change.
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Summary
———t

The paper reports some preliminary results
from an attempt to use real data to validate the
software reliability model proposed by Littlewood
and Verrall [1]. A goodness-of-fit test is
employed to compare actual times-to-lailure with
the distributions of times-to-tfailure predicted
by the model. The test shows the model to fit
with remarkable fidelity. It is suggested that
this is evidence in support of the author's
earlier comments 27, 3]

1. Introduction

In recent papers il, 3. I have criticised some
of the assurptions underlying much work or software
reliability measurement. in particular, I have
suggested that some authors [3, 4, [, o, 7. mike
assumptions about the relationship between dynamic
performance measures (failure rate, .Jistribution of
tuture time-to-iailure, ctc., and static measures
(number of remaining bugs) which are extremely
implausible. 1 have argued, also, that some of the
peculiar properties of software (e.g. lack of
natural Jegradation, uniqueness cf cach item) might
result in much of the comventional reliability
theory, created frr hardware systems, being
inappropriate. [u is ry contention that the model
developed jointly iy John Verrall and myself avoids
some of these pitfulls - ulbeit at the expense of
other disadvantages. The results reported here are
the beginning of an attempt to validate this model
using real-life data. It is intended to examine
more closely in furture work the points raised in
(2] and L 3], but these preliminary results appear
to lend encouraging support.

2. Description of the calculations

Qur model is described in refercnces (1], &}
and (9], vhere details of the parameter estimation
proccdures can be found. Briefly, we assume (in
common with most workers in this field) that the
time between (i-1)th and ith failures of the
program has (conditionally) the cxponential pdf:

(e 0) = et (n

In order to model the reliability growth which takes
place as a result of the bug-fixing attempts, we
treat {Ai} as a sequence of random variables with

pdfs:
WEO s, )

‘¢(i)(v(i)ki}a-lexp{-v(i)xi)

T'(a)
for Mo 0, (2)

n

0, othemwise.

It is casy to sece that the unconditional Jdistribut-
ion of 'l'.l is not exponential.

The unknown quantities in the model are a and
(1), It is via the second of these that the model
reflects past and future changes in reliability,
so this growth function will be of particular
px'acticai Importance. We suggest [ 11 that a choice
of parametric family be made tor this function,
then the estimation problem concerns the parameters
of the function together with a.

Our original hope, when first worhing on the
model, was that the growth function parametric
family might be known a priori. ihis now scems
unlikely, so we propose that several fam. 1es be
tried and that which hest fits the data be used.
It is fortunate that the inference procedure
adopted allows a comparison to be made between the
families (maximum likelihood techniques, for
exarple, do net enable a choice to be made between
models in this wayv).

when the parameters of the model have heen
estimated, Jdistributions of tuture times-to-
failure can be calculated. lProm these it is
possible to calculate any reliability measures of
interest, such as failure rate, rveliability
function. Since the purpose of this study is
validation of the model, I have concentrated on the
percentage points of the predicted time-to-failure
distributions.

lable 1 1ists the 130 observations: these are
the successive execution times (in secords), owh
terminating with a software tailure. Notice the
great variability: a feature of software reliability
data which nust be reflected by any good model.

Figure 1 is an example of part of the output
from the program which performs the calculations.
In this case, the first 35 observiations were uscd
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in the calculation, and the growth function being
used was linear: y(i) =8, *+ 3,i. ‘lhere are thus
three unknown parameters: «, 87, 8,, which are
estimated using the 35 data points? f[he routine
which estimates theseg's (o is taken care of via a
Bayesian analysis) operates by searching in the 2-
dimensional 3-space to find those values which
best fit the 35 data points observed so far. The
program allows this search to be started at two
different points: the two results should be quite
close as a check on convergence. An objective
measure of the quality of the fit of the growth
function is given by the value of the goodness-of-
fit statistic, WSTAT: this should be small. Based
on estimates of the parameters utilising the 35
failure times so far observed, the program then
calculates and displays percentage points of the
next 20 predicted times-to-failure. |hus 19.05 is
the 10% point, 57.11 the 25% point, 158.94 the 50%
point (median), ctc., of the next (36th) time-to-
tailure. ‘the number in parentheses gives the
position on the predicted distribution of the
actual observation: i1t 1s these numbers which are
used to validate the model. Thus in this case, the
actual 36th observation (65 seconds) lies at the

-276 (27.6%) point of the distribution predicted
from 35 failure times.

) The calculations have been performed success-
ively upon the first 30, 35, 40, ... , 120, 125
obseyvaglons in the series. since there is no
a priori reason for choosing a particular growth
Tunction, the calculations have all been carried
out on both

w(i) =g i
and 1 z

v(i) =8+ 8yic.
The measure of goodness-of-fit (WSTAT in Fig. 1)
is used to choose between these for each ca%culation.
Table 2 shows that the linear growth function is
superior except for 40, 45, 1G5 nh-ervations.

]

+ B8

3. The results

It should be emphasised that the objective of
these calculations was to measure the quality of the
predicted time-to-lailure distributions. This is
a more stringent test than procedures such as
comparing predicted mttf's with average times-to-
failure. In fact, a secondary objective was to see
whether my suspicion of the non-existence of mttf
for software could be tested [Z, 3],

It can easily be seen that if the model is a
good one, the numbers in parentheses in the output
(see Fig. 1) can be regarded as a random sample
from a uniform distribution on (0,”1J. This
observation underlies the results shown in Figures
2, 3, 4.

Fig. 2 shows the quality of predictions 1 to §
steps ahead using the linear growth fumction. llere
100 actual observations are compared with the 100
predicted distributions based on calculations using
successively 30, 35, ... 125 observations. As can
be seen from the Kolmogorov-Smirnov test, the fit is
extraordinarily good.

Lven the quadratic growth function, which

Table 2 shows to be inferior to the linear one,

gives an excellent fit (see Fig. 3).

In Figure 4 a test is carried out of longer
term prediction. llere projections are made relating
to the distributions 16 to 20 failures in the
future, using the linear growth function. The
quality of these results is, again, remarkably
good.

It is particularly noticeable, in Figures 2 and
4, that the fit is at its best in the right hand
tail of the distribution. since it is precisely
here that our model differs from the simpler
exponential models, by having long right~hand tails
in the predicted time-to-failure distributions
(causing infinite mttf), this seems evidence in
favour of the controversial allegations of my
earlier papers .2, 37.

4. Conclusion

Although the results shown here relate to only
one set of data, they are encouraging in the support
they give to our model. In fact the quality of fit
between predictions and observations is better than
I expected when I embarked upon this validation
exercise. lhis work will continue, and it is hoped
to analyse more data shortly, but already there is
the beginnings of a case in support of the arguments
given in references (2] and L 3],

lhe program which performs these calculations
is still being developed, and it is hoped to
publish a version of it eventually. in the meantime,
if anyone would like a listing of the current
version, please let me know. Alternatively, [
would be very happy to have the opportunity of
analysing any software failure data which readers
may have.
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3. 30, 113, R1, 115, Table 2. Comparison of the two growth functions

for the series of calculations. It

can be seen that the linear function
provides a better fit except in the

cases of calculations based upon 40,
45, and 105 observations.

o, 2, 91, 112, 15,

V3R, S0, 77, 24, V0K, .
KE, &0, 120, 26, 114,

375, S5, 242. 6B, a22,

10, 10, 1146, 600, 15,

36, 4, O, R, 227,

AW, 176, SR, an7, 300,

97, 263, 452, HS, 197,
193, A, 79, Bi1e, 1351,

148, 21, 2733, 134, 357,
13, 236, 31, 369, J4A,

0, 232. 330, 365, 1222,
sa3., 10, 16, 529, 379,

aa. 429, R0, 290, 10O,
9, ZRY, 160, PPR. 400,
445, 296, 1755, Tuea, 17R3,
A60, 9H3, 207, 33, H6RA,
724, 2323, 2930, 1461, HAZ,
12, 2kY, YRUD, HASY, 1435,
30, 143, 109, 0, 110,
1247, 943, 7200, KI5, 245,
729, 1R97, 447, 3H6, 46,
122, 4990, QaR, nR2, 22,
75, 4H2, 5509, 100, 10,
71, 371, 790, 6150, 3321,
104%, 6€AR, S$4R%, 1160, 1R64,
n116,

Table 1. The 136 successive failure times upon
which the calculations are based. Notice
the great variability of the data, and
the obvious improvement in reliability
as time passes.
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NUMHER OF FAILURES = 35

described in the text of the paper.

PAGE 1
RESULTS FROM FITTING PARAMETERS TO TIME DATA,
FIAST SECOND
RESULT HESULT
ALPHA 1.5197 1.5186
BETAY -1.n029 -0 ,98R6K
BETA2 7 .R4R9 7.8378
WSTAT 0.0714 n.0714
PAGE 3
TIMES TQ NEXT FAILURE
®ILES T 34 19,65 S7.11 158,94 ats3,75 1007,37  (0,006)
%ILES T 37 20,20 ~8,20 163,37 425 ,2R 1035.45  (0.521)
BILES T 2R 20,75 607,29 167 .80 436, R 1063.53  (0,242)
wWILES T 39 21.29 61,89 172,23 448,135 1091.,61  (Nn,754)
WILES T a0 21.R4 61,4R 176 .66 459 AR 1119,A9 (0 ,A4Y)
WILES T a1 22,139 65,07 181,09 471,41 11472.77 (0.3317)
®WILES T a2 22.94 66 .66 185,652 anr2 a5 1175 .A%  (0,597)
BILES T a3 23,84 68,25 189 95 494 4R 1203,93 (0,729)
%RILES T aa 24,03 69 A% 194 .38 S06.01 1232.,.01 (0,575}
KILES T 4% 24 .,5R 71.44 19R8 Rt 517,5% 1260,09  (0.497)
%ILES T 46 25.13 73,03 2n3,24 529,0A 12RA,17 (0,486)
BILES T 47 25 .68 74 .67 207 .67 540 .61 1316.26 (0,025)
®ILES T 48 26,22 76,21 212,10 592,15 1344.34 (0.25%7)
%ILES T a9 26,77 77.81 216,53 563.6R 1372.42 (0,R24)
®ILES T SO0 27.32 79.40 220,96 575.21 1400,%0 (0,B96)
®ILES T 51 27.87 80,99 225.39 586,75 1428 .58 (0.3R7)
®ILES T 52 28 .41 A2 .58 229 R3 598,28 1456,.66 (0,.076)
%ILES T 53 28,96 R4 ,17 234,26 609,81 14R4 .74 (0.499)
BILES T 54 29,51 85,77 238,69 621,35 1612,A2 (0,348)
®RILES T 85 30,06 87.36 243,12 632,88 15940.,90 (0,.606)
Figure 1. Example of output from the program which performs the calculations

WSTAT is the value of the

goodness-of-fit statistic, used in the optimisation routine, at
its minimm: i.e. at the point in B-space which will be used as

the estimate in the predictions.

It i1s the value of this statistic

which enables a comparison to be made between different growth
functions: the best growth function is that which has smallest

WSTAT.

The percentiles given here are, from left to right, 10%, 25%,
The last colum shows the position of
each actual observation on the distribution which is predicted

50% (median), 75%, 90%.

for it based, here, on the first 35 observations.
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1.0

Kolmogorov-Smirnov test:

. D /A = W75y = .75
P(D,./R > .75) = .0872

Figure 2. ‘lest of fit between actual observations and predicted distributions,
using a linear growth function. There are 100 dbservations used; the
prediction is 1 to 5 steps ahead.

The fit is extremely good, as may be seen from the K-S value of .6872.
Notice particularly the closeness of the points in the right-hand
portion of the plot to the line.
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Figure 3. Quadratic growth function, prediction 1 to 5 steps ahead.

Although the quadratic does not fit as well as the linear
fimction (see Table 2), the predictions are again very good.
The K-S value is much smaller than for the linear case,

but is still pot significant at the 10% level.
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Kolmorov-Smirnov test:
Dn.,/ﬁ =.,79 for n = 90
P(Dn./ﬁ > ,79) = .6605

0. .1

Figure 4.

Linear growth function, longer range prediction: 16 to 20 steps
ahead. This time only 90 observations could be used because of the
length of the data vector. Again the fit is extremely good, as seen
from the K-S statistic. Good fit in right-hand tail of distributicns
again,

1.0
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PROGRESS IN SOFTWARE RELIABILITY MEASUREMENT

John D. Musa

Bell Telephone Laboratories

Whippany, N.
ABSTRACT

This paper summarizes progress made
in the past year in the application of
the execution time theory [1] of software
reliability. It also discusses a con-
tinuing mutual critical examination of
the Littlewood model (2] and the author’'s
execution time theory.

Introduction

Work associated with the execution
time theory of software reliability in
the last year falls into four principal
areas:

(a) collection of data for model
verification,

(b) accumulation of experience in appli-
cation of the theory to project
development, with resultant
refinements,

(¢) application of the theory to
measurement of computation center
software, involving service monitor-
ing and change control, and

(d) 1investlpation of execution time
model simulation as an 2id to
management decisions.

In addition to the foregolng work,
substantial effort was expended in mutual
critical examinatlion of the Littlewood
model and the author's execution time
theory, resulting in disposition of some
of the issues that had been ralsed at the
first SLCM Workshop and sharpening others.

Data Collection

Failure interval data has now been
collected for ten software development
projects and four operational software
systems. Resource expendliture data has
been collected “or four developmant pro-~
Jects. This data 1s being analyzed with
regard to the execution time model of soft-
ware rellability and its assumptions to
determine how well or poorly the model fits

reallty.

07981

Project Develorment Mxperience
roJ 1 Rper

The execution time theory has Leen
and is currently beiny applied to variocus
development projects. ronsiderable exper-
ience has been accrued in handling parti-
cular circumstances related to cach project
[3]. The accumulation and orranization of
this experience is continuinr-. Scme of the
particular problems that have been

addressed are:
(a) handling desisn chanpes,

(b) specifics of parameter estima*inn,
and

(e) details of program parameter
reestimation.

Current work includes investirpation ¢
methode for improvine predictions made Ior
projects that employ sequential Inteprration
and testing.

Measurement of Computation
enter Software

The execution time theory was recently
applied to operatirge system software in a
large general purpose computation center
over a period of 15 months [#7]. Mean-
time-to-failure (MTTF) trends of software
components were shown to corrclate very
well with periods of system depradation
or Improvement. The trends can be moni-
fored as a basis for controlling ayvastern
modification (modifications are susyended
when the MTTF is below an acceptable
level), reacssipning maintenance personned
among software components, and deteorminiine
when to make cutovers to new releases or
regresstons to 0old releases,

Slmulation as an Ald to
Manapement Declsions
Some ecxperimentat fon win conducted

with simulation of the execention 1 1me modid
as an aid in making managperement deecfsions

{57, Parameters of the model that were
asaociated with different manaeerinl
nptions wore selected, and si-wlat ton was

used to determine Lhe offect s on sceheduies
and conts,

PUS. C e st et -




for one
date was
imulations

For
dicted
be too

example,
complerion
late and =

project, the pre-
cons idered to
Wore run Lo

determine the offects of adding various
rescurcees to the protect and of reducing
the MTTY objective. Fopr this particular
profect at the particular point in time
studled, addingy people or workiny overtime
wore found to have no ettfect,  Providine

more computerr rescurces dld permit the

vamp letion date to be advanced.  Reduceliny
the MTUY objective had only a moderate
impact on hw conp letlon date up vo a
reint; after thut point, the impact was
1vpveu11ble.

Dittlewood and Mxecutlion Time Models

B8, Littlewood and the author have

vecn erraved In oo continuingeg eritical
dlalosue concernins cach other's software

re models.,  This was fnitially

Tiability

stinulated by o more rerneral critique of
softwiare reliavility models published by
Littiewssd [el. This eritique was updated

of the discussions took place
vilowinsg 12 the aurhor's under-~
the current status or this
Many iosues have boeen resolved or have
v shied a3 5 result of clearer unrmx"t'md—
i Crhis does not menn that these same
soues may not exist for other :.w!f.mro
hility medels) . Both models are

sriented toward fallures
wliability. We arree thot
Lo be able Lo estimate
beeause this quantity is related to the
air offort that will be required and
henee, proifect schedules.,  We are both in
L ement that execution fime rather than
calendar time is the key metric related to
sorftware reliabilivy. Bath models assume
an exponentinl disvricuticon of failure
intervala,

and operational
it mportant
numbier ot erroprs

is |

the
ey

e

n th‘ Pittlewond medel, the failure
parameter of the ox;ononrAaJ distribu-
tion 1s 1;‘wwvd to have a yamma distribu-
tlon, one of whose parameters accounts for
relintility vrowth., The yrowth parameter
is some Tunction (usunlly 1n two subparame-
ters) of the sejuential failure number.

In the author's model, the exponentlal
distribution tatlure rate parameter 1o 2
fixed (escentially two asubparameter) func-
tion ol the sequentlal fatlure number., The
two subparameters, initial MTTF and total
fallures expected, have readily understood
physical interpretations

rate

Both models view the prepair procesg
as beine stetistical In nature. In the
Littlewood model, this uncertalnty ic
exhiblted in the exponentlal distribution
fallure rate parameter !tself havin a
distributlon. This distributlion can boe
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distreibution

ref'lected in the Cotine b
n-th tailure Trom the whoge
centiles oun be cstimated, * he
model, the uncertuinty o retflectea in
confidence Intervals cotimeted for the

subparametera.  Littlewood's subparameter:s

Ui
present poer—

ot

n authios

are estimatred in thenselves but o coontiaene.
intervala are not determined for Lhoem.
Littlewood's appraonch reguires that
the form of the repair funeticn be oeleeted
from all the many various poscibilities
the subparameter valaes be determined that
minimice a1 poodnesy of £it statistic
(search over a surface ts required).  The

mum Likelinood
subparameterp
intervaj

Author's approach uses maxi
watimation ro determine the
vilues and their confidence
Littlewood's approach is somewhit more

rencral, at a4 cost o one or two orders of
maynitude prenter computing reaquirenents.

The nuthor questions whether the added
venerality ia worth the costy the autnor's
approach may well be sufficiently acoirat e

for most vracricial purpeses.

The renerslity of Littlewend's
apg roach aquickly leads to analyticul dir-
ficulties; it 1s not computationnally
prractical to predict the execution time

e ired
interval
posaible
drite, which
naAna s,

vield vhese

to reseh a speci{led failure
biv-tive. It therefore fa not
to predict project completiarn

fo ol vital importance to
The nathoer's apgreach

predict fona

do

author differ
perhars Is ba
af o omathematd
pnrinm rinm
., Pocusine on rirorv
versus focusinge on outilire). Littlewood
roints out that the author's model i
Adependent (due to the implicit assumption
that the MTTEF exists) on the pestulate
Itois certain that a proeram ic
or will evenrually fail.  Based on
enes as o woftware manarer and on writinge
many proesrams, the authoer belioven 1 hat
this 15 an excellent model of reality.
The rare cases when this pestuliate may
te true do not Justify the added compd
nd the added computation that the
Littlewood model {nvolve,

Littlewsod and the
fundament sl point, which
o the charaecteristices
statistieal versus an
to the rroblem (3.p

v
el

N ‘
14 ﬂ’

aprraneh

tht
Impertect

sYper

- vk
1 e

exity

authoy hie

PRy

Althourh the proefers ot
cxecution time model beecanuse he Oocdn
is a more anderstandable, usetil, and
ceanomic engincerine aud manayertal toen,
the ' rtlewoed model's somewhat yreater
ceonerality and riper are gtirs ot ive, e
Sequently, stndies are In oprosre
atlempt to relate the two models, ey
Tully, the Littlowood el [STRN
on o data from prolects where uthor!

model was applied.  Attem oo be s
Pttt lewed nnd aut hor

me Cin

the
are

thee

voted

T

nldd(? by both 1.




speed up the mintmlzation process the
Littlewood model uses.  Perhaps these
studies will result in retfinements to
both models. At any rate, thelir similar-
Ities and difrerences and advantages and
disadvantages should come into sharper
tocus.
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THE WORK BREAKDOWN STRUCTURE IN SOFTWARE PROJECT MANAGEMENT

Robert C. Tausworthe

Jet Propulsion Laboratory
4800 Oak Grove Drive

Pasadena, California

The Work Breakdown Structure (WBS) is a
vehicle for breaking an engineering project down
into subproject, tasks, subtasks, work packages,
etc. It is an important planning tool which links
objectives with resources and activities in a
logical framework. It becomes an important status
monitor during the actual implementation as the
completions of subtasks are measured against the
project plan. Whereas the WBS has been widely
used in many other engineering applications, it
has seemingly only rarely been formally applied
to software projects for various reasons. Recent
successes with software project WBSs, however,
have clearly indicated that the technique can be
applied, and have shown the benefits of such a
tool in management of these projects.

This paper advocates and summarizes the use
of the WBS in software implementation projects.
The paper also identifies some of the problems
people have had generating software WBSs, and the
need for standard checklists of items to be
included.

Introduction

If one were to be given the *as! of writing a
program in which the target language instruction
set was not entended to be executed by some dumb
computer, but, instead, by intelligent human be-
ings, then that programmer might be thought to
have an easier job than his colleagues who write
their programs for machines. However, a little
reflection will show that his job is much more dif-
ficult for a number of reasons, among which are
ambiguities in the English language and a multitud2
of human factors.l However, such a program, often
named the PLAN, is an essential part of almost
every industrial project slated for success.

One of the difficulties in writing this pro-
gram is the supplying of enough detail so as to be
executable without ambiguity by those programmad.
Another is getting the right controls into the
program so that the programees perform as statzd
in the PLAN. Still another is making the plan
complete, having all contingencies covered and a
preper response to each supplied. And one final
prcblem of note here is making the plan bug-free,
or reliable, so that once execution starts, if

#The work reported in this pager was carried out
at the Jet Bropulsion Laboratory of the California

Institute of Technology under contract NAS 7-100,
sponsored by the National Aeronautics and Space

Administration.

91103

everything proceeds according to the PLAN, there
is no need to deviate.

Programmers well-schooled in modern tech-

m'ques2 would approach the writing of this PLAN in
a structured way, using top-down design methodol-
ology modular development, stepwise refinement,
hierarchic layering of detail, structurally sound
constructions, and semantically definite document-
ation. Such an approach would tend to bring a
measure of organization to the PLAN, understand-
ability to its documentation, and reliability to
its execution. If created in this way, the result-
ing format of the PLAN work tasks would have the
attributes of what is known in the engineering

industry as a "Work Breakdown Structure".3

The Work Breakdown Structure (WBS) is an
enumeration of all work activities in hierarchic
refinements of detail, which orgainzes work to be
done into short, manageable tasks with quantifiable
inputs, outputs, schedules, and assigned responsi-
bilities. It may be used for project budgeting of
time and resources down to the individual task level,
and, later, as a basis for progress reporting
relative to meaningful management milestones. A
software management plan based on a WBS contains
the necessary tools to estimate cests and sched-
ules accurately and to provide visibility and
control during production.

Such a plan may be structured to evaluate
technical accomplishments on the basis of task and

activity progress. Schedules and PERT/CPM4 net-
works may be built upon technical activities in
terms of task milestones (i.e., accomplishments,
outputs, and other quantifiable work elements).
Projected versus actual task progress can be re-
viewed by technical audit and by progress reviews
on a regular (say monthly or bi-weekly) basis.
Formal Project Design Reviews are major check
points in this measurement system.

But knowing modern programming theory does
little good if one does not also have the pro-
gramming experience to apply it to. Similarly,
the knowledge of what a WBS is, what its goals are,
what its benefits are, and what its structure is
supposed to be like, does not necessarily instruct
one in how to apply that knowiedge toward develop-
ing a WBS for his or her own project.

In the coming sections of this paper, I shall
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review some of the characteristics and benefits of
the WBS, and then discuss how these can b. develop-
ed and applied in software implementation projects.
I will orient this material principally toward
new-software production tasks, although many of the
concepts will be applicable also to continuing
maintenance and operations tasks, as well.

The Work Breakdown Structure

The goals assumed here for generating the WBS
are to identify work tasks, needed resources, im-
plementation constraints, etc. to that level of de-
tail which yields a sought-for accuracy in the orig-
inal PLAN, and to provide the means for early cal-
ibration of this accuracy and corrective replan-
ning, if required, during the actual implement-
ation.

How refined should this WBS be? Let me answer
this question by showing how the WBS and schedule
projection accuracy are interrelated.

If a project has identified a certain number
of equi-effort milestones to be achieved during
the course of implementation, then the mere number
of milestones achieved by a certain date is an
indicator of the progress toward that goal. A
graph of accumulated milestones as a function of
time, sometimes called a “"rate chart", permits
certain predictions to be made about the future
completion date rather handily and with quanti-
fiable accuracy, especially if the milestones are
chosen properly.

Let it be supposed that it is known a priori,
as a result of generating the WBS, that a project
will be completed after M milestones have been met.
These milestones correspond to all the tasks which
have to be accomplished, and once accomplished, are
accomplished forever {i.e., some later activity
does not re-open an already completed task; if
such is the case, it can be accommodated by making
M larger to include all such milestones as separate
events). The number M, of course, may not be pre-
cisely known from the first, and any uncertainty
in M is certainly going to affect the estimated
compietion date accuracy. Such uncertainties can
be factored in as secondary effects later, as
needed for refinement of accuracy.

Now, let it be further supposed that it has
been possible to refine the overal] task into
these M milestones in such a way that each task is
believed to require about the same amount of effort
and duration to accomplish. Viewed at regular
intervals (e.g., bi-weekly or monthly), a plot of
the cumulative numbers of milestones reported as

having been completed should rise 1inear1y5 until
project completion.

More quantitatively, Tet m be the average
number of tasks actually completed during each
reporting period, and let o be the standard de-
viation of the actual number of milestones com-
pleted each reporting period about the mean vaiue
(the values of m and ¢ are presumed to be constant

The value of m is a.

over the project duration).
reflection of the team average productivity and ¢
is a measure of the ability estimate their pro-

ductior rate. Both are attestations to team ef-
fectiveness -- first, in their ability to produce,
and second, in the ability to create a work plan
which adequately accounts for their time.

The project should require M/m reporting pe-
riods to complete, which time, of course, should
not depend on whether a WBS was made or not (I am
discounting, in this discussion, whether WBS
generation increases or decreases productivity).
Thus, M/m should be a constant value, relatively
speaking. If M is made large, tasks are smaller
and shorter, so proportionately more of them are
completed each reporting period. The project
schedule will, in fact, assume some productivity,
or mean accomplishment rate, but an actual per-
farmance value will generally be unknown until
progress can be monitored for some period of time.

But while the numbers M and ¢ may not affect
the team productivity, they do directly influence
the effectiveness with which a project can monitor
its progress and predict its future accomplish-
ments. Generation of a WBS, of course, gives (or
estimates) the parameter M. Monitoring the com-
pletion of milestones provides estimates for m and
o. From these, projections of the end date and
calculations for the accuracy of this prediction
can be made. Based on such information, the pro-
ject can then divert or reallocate resources to
take corrective action, should progress not be
deemed suitable.

In this simplified model, a best straight-
line fit through the cumulative milestone progress
over the first r reports (of an expected R=M/m
reports) at regular AT intervals will predict the
time required to reach the final milestone. It
will also provide an estimate of m and 0. The
normalized predicted completion date may be ex-
pected to deviate from the projected value (as a

one-sigma event) by no more than®
1
oy S 1.48 cq (R/rM)=2
within first-order effects. The value o1 = o/m'z
represents the normalized variance of an individual
task milestone (it is limited to values of less
than unity in the underlying model).

The bound permits the specification of WBS
characteristics which enable accurate early pre-
dictions of future progress. High overall accuracy
depends on a combination of low o and large M.

One may compensate for inaccurate appraisals of
productivity only by generating a very detailed
WBS!

As an example, suppose that a 10% end-date
prediction accuracy is required by the end of the
first quarter (r/R = .25) of a project. Then the
tradeoff figure is M/olz = 876. Hence, if the
WBS is highly uncertain (v=1), that WBS should
contain 876 equi-duration milestones! I[f the




project is confident that it can hold more closely
to its average productivity (and has most contin-

gencies provided for), with a 01=0.5, then it needs

only about 220 milestones. A one-man-year project
with bi-weekly reporting, one milestone per report
(26 milestones in all) must demonstrate a ¢1=0.17
level of task prediction accuracy!

It is therefore both necessary and important
to generate a detailed WBS rather carefully, and
to monitor milestone achievements relative to this
WBS very faithfully, if accuracy in predicting the
future progress of a project is of great impor-
tance.

Reasonable Schedule Accuracy

A project engineer on a 2-year, 10-man task
may perhaps be able to manage as many as 876 sub-
tasks, each formally assigned and reported on.
That amounts to about one subtask completion per
week from each of the 9 workers. But the genera-
tion of the descriptions for the 876 tasks will
require considerable effort. Moreover, it is un-
likely that such a detailed plan would have a o
also as large as one week; if the project engineer
has the ability to break the work accurately into
876 week-long subtasks, he or she can probably
also estimate the task deviations well within a
week.

The ability of the project engineer (or plan-
ning staff) to generate a clear and accurate WBS
will determine the level to which the W8S must be
taken. Greater accuracy of the work breakdown
definition produces greater understanding and
clarity of the actions necessary to complete task
objectives. If the work is understood, readily
identified, and achievieble as discerned, the con-
fidence of reaching the objectives is high. Thus,
the further the subtask descriptions become re-
fined, the better the estimator is able to assess

the individual subtask durations and uncertainties.

Refinement ceases when the sought-for M/oM2 is
reached.

Practically speaking, a work-plan witn tasks
shorter than one week in duration will usually
require too much planning and management overhead
to be worthwhile. On the other hand, a work plan
with tasks longer than one or two weeks will prob-
ably suffer from a large oj. Thus, a brexkdown
into one- or two-week subtasks is probably the
most reasonable target for planning purposes.

A work-year consists of about 47 actual weeks
of work (excluding vacation, holidays, sick-leave,
etc). Therefore, a project of w workers can rea-
sonably accommodate only about 47w/d tasks per
year (including management tasks) of duration d
weeks each; spread over y years, the total number
of mijestones can reach M=47wy/d, so that the
practical accuracy limit one may reasonably ex-
pect at the one-quarter point in a project
(r/R=.25) is about

op s 0.432 o (d/wy)*

Note that accuracyis related to the total man-
year effort in a project, other things being equal.
A 3-man-year project completing 1 task per manweek

can expect to have oy £ 0.216 oy With a 01=0.4

(+2 days per weekly task) The end-date estimation
accuracy is within 10%.

Generating The WBS

There is no mystery about making a WBS.
People do it all the time, although they seldom
call the result a WBS. Most of the things we do,
in fact, are probably first organized in our heads,
and for small undertakings, most of the time that
works out well. For more complex undertakings,
especially those involving other people, it be-
comes necessary to plan, organize, document, and
review more formally.

The general algorithm for generating a WBS is
even fairly simple to state. It goes something
Tike this:

1. Start with the project statement of work,
and put this TASK on top of the "working
stack”.

2. Consider the TASK at the top of the work-
ing stack. Define technical performance
objectives, end-item objectives, reli-
ability and quality objectives, schedule
constraints, and other factors, as ap-
propriate; inputs and materials required
for starting the task; accomplishments
and outputs which signal the completion of
the task; known precedent tasks or mile-
stones; known interfacing tasks; and re-
sources required, if known. Determine
whether this task can be accomplished
within the duration (or cost) accuracy
goal.

3. If the goal is achieved, skip to the next
step; otherwise, partition the current
TASK into a small number of comprehensive
component subtasks. Include interfacing
tasks and tasks whose output is a decision
regarding substructuring of other sub-
tasks. Mark the current TASK as a "mile-
stone", pull its description off the work-
ing stack, push it onto the “finished
stack", and push each of the subtask des-
criptions onto the working stack.

4. Repeat from step 2 until the working stack
is empty.

5. Sequence through all items from the "“fin-
ished" stack and accumulate durations
(costs) into the proper milestones.

~ _The steps in this algorithm are not always
simple to perform, nor can they always be done cor-
rectly the first time, nor without sometimes refer-




ring to items already put into the "finished" 1ist.
The process is one of creation, and thus it re-
quires judgement, experience, identification of
alternatives, tradeoffs, decisions, and iteration.
For as the project statement of work is refined,
eventually the implementaltion of the program it-
self appears as one of the subtasks to be refined.
When this subtask is detailed into component parts,
the work descriptions begin to follow the influ-
ences of the program architecture, organizational
matters, chronological constraints, work locations,
and "whatever makes sense”.

Therefore, the formation of the WBS, the
detailed planning, and the architectural design
activity are all mutually supportive. The archi-
recture indicates how to structure the tasks, and
the WBS goals tell when the architectural phase
of activity has proceeded far enough. Scheduling
makes use of the WBS as a tool and in turn influ-
ences the WBS generation by resolving resource
conflicts.

But there are many subtasks in a software
project which are not connected with the architec-
ture directly, such as requirements analysis, pro-
ject administration and management, and prepara-
tions for demonstration and delivery. The struc-
ture of these subtasks, being independent of the
program architecture, can be made fairly standard
within a given organization for all software pro-
ductions. However, since there is no automatic or
closed-Toop means to guarantee whether all the
planning factors that need to be put into the WBS
actually get put into it, a standard WBS checklist
can be a significant boon to proper software pro-
ject planning, to decrease the likelihood of some-
thing “dropping through the cracks".

A Standard WBS Checklist

Previous DSN experience® at The Jet Propul-
sion Laboratory with WBS methodology has permitted
moderately large software implementation projects
to detect schedule maladies and to control project
completions within about 6% of originally scheduled
dates and costs. The WBSs were formed by indi-
viduals with extensive software experience, over-
seen by an expert manager. None of the software
individuals had ever made a WBS before, and the
manager had never tried one on a software project.
Together, with much travail, they assembled ad hoc
jtems into a workable system.

A candidate standard WBS outline and checklist
is currently being assembled and evaluated within
The Deep Space Network (DSN) at The Jet Propulsion
Laboratory. This Standard WBS checklist includes
many factors gained from previous successes and
contains items to avert some of the identified
shortcomings. Table I shows the upper-level struc-
ture of this WBS checklist. Detailed task descrip-
tions are also in process of documentation and
evaluation. A short application guidebook is plan-
ned, to instruct cognizant individuals in the meth-
od, approach, and practice.

Such a checklist and guidebook, together with
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useful automated WBS entry, update, processing,
and report generation aids impose standards on
software projects that are intended to facilitate
the project management activity and make it more
effective. Initial scheduling and downstream re-
scheduling of subtasks are aided by a WBS database
that contains precedence relationships, durations,
costs, resource requirements, resource availabili-
ty and similar constraints on each subtask. PERT
and critical-path methods (CPM) are appiied direct-
ly to the WBS database, resulting in a preliminary
schedule. Alterations of this schedule are then
effected by editing the WBS via additional con-
straints recorded into the database. Actual pro-
duction progress is measured by marking milestone
completions, which are then plotted into a rate
chart and all significant milestones are pro-
jected to a best-estimate completion date.

Problems

The Work Breakdown Structure is a well known,
effective project engineering tool. It has not
been applied to software projects as often as it
has to hardware and construction, probably because
the planning and architectural design tasks in
software have not always been sufficiently inte-
grated as to be mutually supportive, because all
of the management, support, and miscellaneous
tasks were seldom fully identifiable and detail-
able during the planning phase, because separation
of work into manageable packets quite often re-
quires design decisions properly a part of the
detailed design phase, because a basis for esti-
mating subtask durations, costs, and other con-
straints has not existed or been known; and be-
cause software managers have not been trained in
WBS methodology. Modern software engineering
studies of phenomenology and methodology are be-
ginning to close the gaps, however.

The existence of useful tools and methods
does not assure their acceptance, nor does their
acceptance insure project success. Plans and
controls are essential project aids, but unfor-
tunately, they also do not guarantee success.

The WBS is a planning, monitor, and control too)
whose potential for successful application within
a software project has been demonstrated. How-
ever, further researches and demonstrations are
necessary before a WBS-oriented software plan-
ning and control methodology and system are as
well integrated into the software industry as
structured programming has only recently become.
Fortunately, many organizations and individuals
are sensitive enough to the software management
crisis of past years that inroads are being worked

on7

Happily, the solutions will almost certainiy
not be unique, but will range over limits which
accommodate management and programming styles,
organizational structures, levels of skill, areas
of expertise, cost and need-date constraints, and
human and technical factors.

—
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Table I

SOFTWARE IMPLEMENTATION PROJECT
Detailed Work Breakdown Structure

Outline

ANALYZE SOFTWARE REQUIREMENTS

Understand functional and software requirements

Identify missing vague, ambiguous, and conflicting requirements

Clarify stated requirements

Verify that stated requirements fulfill requestor's goals

Assess technology for supplying required software

Propose alternate requirements or capability

Document revised requirements
VELOP SOFTWARE ARCHITECTURE

Determine architectural approach

Develop external furctional architecturec

Develop software internal architecture

Assess architected solutior vs. requirements

Revise architecture and/or renegotiate requirements

Document architecture and/or changed requirements
DEVELOP EXTERNAL FUNCTIONAL SPECIFICATION
.1 Define functional sperification standards and conventions
.2 Formalize external er.ironment and interface specifications
.3 Refine, formalize, and document the architected external operational view of t'e software
.4 Define functional acceptance tests

.5 Verify compliance of the external view with requirements
PRODUCE AND DELIVER SOFTWARE ITEMS

Define programming, test and verification, QA, and documentation standards and conventions
Formalize internal environment and interface specifications
Obtain support tools

Refine and formalize the internal design

Define testing specifications to demonstrate required performance
Define QA specifications

Code and check the program

Demonstrate acceptability and deliver software
EPARE FOR SOFTWARE SUSTAINING ANG OPERATIONS

Train cognizant sustaining and maintenance personnel

Train cognizant operations personne!

Deliver sustaining tools ana materials

Deliver all software and data deliverables tc operations

Install the software and data into its operational envirunment

Prepare consulting agreement between implementation and uperations
RFORM PROJECT MANAGEMENT FUNCTIONS

Define project goals and objectives
Scope and plan the project
Administrate the implementation
Evaluate performance ai roduct
Terminate the project

P =~ L
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Abstract

The paper discusses the current status of the
Software Engineering Laboratory. Data is being
collected and processed during the development of
several NASA/Goddard Space Flight Center ground
support projects. The data is used to evaluate
software development disciplines and various
models and measures of the software development
process. Emphasis is placed upon models of re-
source estimation, the analysis of error and
change data, and program complexity measures.

The Software Engineering Laboratory is a research
prcject between NASA/Goddard Space Flight Center
and the Department of Computer Science of the
University of Maryland. Ground support software,
in the six to twelve man-year range, developed for
the Systems Development Section of NASA, is studied
in detail for determining the dynamics of software
development and the effects of various features

and methodologies on this development [Basili and
Zelkowitz 77]. Most data is collected in a set of
reporting forms that are either filled out period-
ically by all project personnel (e.g., a weekly
Component Status report) or whenever certain events
occur (e.g., a Change Report Form when an error is
corrected). This report describes the activities
of the laboratory for the last twelve months.

The initial goal of the Software Engineering Lab-
oratory was the collection of valid data and the
entering of this data into a computerized data
base. During the last twelve months, this process
has been implemented and the analysis of the data
has begun., This report will be divided into four
sections briefly outlining each of the major ac-
tivities undertaken by the laboratory: (1) Data
Collection Activities, (2) Resource Estimation,
(3) Ercor Analysis, and (4) Program Complexity.

Data Collection Activities

The first task of the laboratory was to implement

a data base that accurately reflected software de-
velopment. The INGRES data base system operating

under the UNIX operating system on a PDP 11/45

*Research -upported in part by grant NSG-5123 from
NASA/Goddard Space Flight Center to the
niversity of Maryland.

computer at the University of Maryland was chosen
as the basic data base system [Stonebraker 76].
This activity resulted in the following steps:

A generalized table-driven program was implemented
that converted the raw typed-in forms to a format
acceptable to INGRES. However, it soon became
apparent that the major problems were not program
oriented, but were in the human communication
necessary to carry out this activity.

Forms were frequently filled out containing names
not yet recognized by the data base. Other fields
were sometimes missing or unclear. Constant inter-
action between the University personnel and the
programmers filling out the forms became necessary
in order to solve this problem.

Thus, the first change in procedure was to rewrite
the data validation program for the PDP 11/70 at
NASA. Forms are turned in to a single individual
assigned to the Laboratory, The form is scanned
manually and any errors are bruught to the atten-
tion of the programmers. The validation program
finds additional errors that can be quickly cor-
rected. Correct forms are written to tape for
transmittal to the University.

This activity led to a second task--a revision of
the forms. We observed that the programmers pre-
ferred a "checklist' format rather than a set of
“£i11 in the blanks," even if more checks were
needed than blanks. Many of the early forms were
studied for typical responses and the forms were
modified appropriately. In addition, some seem-
ingly useful information, but based upon data that
was generally not being given by the programmers,
has been deleted in order to lessen the apparent
overhead perceived by the programmers partici-
pating in the laboratory.

Another activity now under way is the movement of
the data base to the PDP 11/70 at NASA. Due to
the smaller size of the PDP 11/45 at the Univer-
sity and the relative inefficiency of INGRES for
large-scale applications, operation of the Uni-
versity setup is starting to become cumbersome.
The PDP 11/70 should eliminate that problem.

Summarizing the activities of the past year, sev-
eral schemes were developed and we now have
evolved a semi-automatic process for entering
data into a data base:




1. Forms are turned in and manually scanned for

errors.
2. The forms are entered into a validation pro-
,ram at NASA. If errors are present, the form is
returned for corrections. If correct, it is
written to tape.
3. The tape of correct forms 1s brought to the
University for data base entry.

By January 1979, it is expected that the corrected
tape will also be entered into a data base on
NASA's PDP 11. At that time the decision will be
made as to whether to keep the University data
base or to interface with NASA's.)

Resource Estimation

One early research activity was the investigation
of resource utilization. The Rayleigh curve has
been studied for larger projects and the applica-
bility of this theory in the smaller NASA environ-
ment was investigated.

Cumulative costs for large-scale software develop-
ment has been shown to approximate the curve

K(l -e Tat ) where K is the total project
cost and t is the elapsed time since project in-
itialization [Putnam 76]. This is usually repre-
sented in its differential form called a Rayleigh

curve: (2 Kate“™2 t 2), and represents the

rate of consuming resources. This curve looks
somewhat like a normal distribution with a more ex-
tended tail (see Figure 2).

In our NASA environment, from the general project
summary form, these numbers are obtained:

1. Ke, total estimated cost of the project in
hours of effort. Counting overhead items, like
typing support and librarians, total costs (K) are
usually 1127 of Ke,

2. Yd the maximal effort per week. From this,

constant a can be developed, a = (1/2yd2).

3. Ty, the estimated date of acceptance testing.
1o NASA'S environment this usually occurs after
887 of total expenses are consumed.

Since the Rayleigh curve has two parameters (K and
a) and the general project summary gives three
(ie, Y4 and t ), the applicability of the Ray-
leigh cbrve to this environment can be checked by
using two of these estimates to predict the third.

U'igure 1 represents this analysis for two projects.
Figure L.A presents the estimated data from the
peneral project summary. In Figure 1.B, t_ was
estimated from K and 4 and y, was estimated

fiom K and t . “Finally] Figure 1.C presents the
actual®data.

Pigure 2 plots some of this for these two projects.
While Figure 1 shows that K and y, are accurate
predictors of t (e.g., an éstimare of 60 weeks

for project A, 3nly a two-week error from the
sctual 62 weeks, and a much better estimate than
the initial estimate of 46 weeks), the plots of

this curve differ from actual resource consumption.
The conclusion seems to be that the Rayleigh curve
is only a crude approximation to reasonable con-
sumption. (See [Basili and Zelkowitz 78al for more
details.)

In order to test this further, several other
curves were correlated with the actual data (para-
bola, trapezoid and straight line) [Mapp 78]. All
had as good correlations to the data as the Ray-
leigh curve, Thus, the Rayleigh curve was no
better, and in many cases worse, than other
estimates.

In addition, Norden's original assumptions involve
a linear growth in the rate of understanding a
project [Norden 70]. 1n reality, this learning
curve slows as personnel become familiar with a
project. Based upon this assumption, [Parr 78]
has developed a curve based upon the hyperbolic
secant that may be more applicable in the NASA
environment., This and other theories related to
the Rayleigh curve are now being studied.

The evaluation performed in [Basili and Zelkowitz
78a] has led to a set of procedures that can be
used to monitor project development in a produc-
tion environment. While the full set of seven
reporting forms may prove to be too much over-
head, a set of procedures using only three forms
can be used to monitor project progress with
reasonable accuracy [Basili and Zelkowitz 78bl:
the General Project Summary, submitted at each
project milestone; the Resource Summary, giving
hours worked by all project personnel by week; and
the Change Report Form giving all changes to the
system.

Error Analysis

The principal motivations for studying errors and
changes have been to discover the effects of
various factors on the number and kinds of errors
made in system developments, and to find ways to
evaluate proposed software development methodolo-
gies.

To study this, a number of tasks have been per-
formed. First, to assure that all of the forms
have been filled out in a consistent manner, a
glossary of terms has been defined and made avail-
able to the participants of the monitored software
development process. Second, a set of questions
of interest were detined which were used to mo-

ti -te both the form content and organize the
kinds of data required in the form of interviews
with the participants. Questions of intcrest
include the following:

What are good ways of characterizing crror-
proneness of software development? Measures such
as the total number of errors, errors per line of
code, errors per man hour, errors per componcent
type where type refers to the kind of sub-applica-
tion or level of complexity, number of fixes per
project phase per component are being considered.
We are also looking at relationships botween the
various types of error classification,




What are the major sources of errors? One possible
characterization is by analyzing whether errors

are traceable back to requirements, specification,

interface definition or intra-component design, or

clerical activities or the hardware environment.

What are appropriate ways of measuring ease of
software change? Data is being collected on effort
per change in terms of time, the number of fixes
required for the change, and the number of

2rrors generated by the change.

wnat is the effect of continual change on a soft-
ware product? Data is gathered on the cost of
change as a function of time and cumulative
changes.

What type of changes cause most of the errors?
This may be very environment dependent or it may
sive some insights into improved organizations
and methodologies for software development.

What is the effect of personnel organization on
errors? Data is being collected on correctness
as measured by errors per number of people work-
ing on a piece of software. Again, this should
shed some insights on the way to organize tasks
within a given enviromment.

What types of changes predominate during software
development? Knowing this should aid in design-
ing software to anticipate the possible changes.

Yhat_are the most prevalent error detection and
correction techniques? Knowing what is used
most often and what works and at what cost will
help in determining what should be used for what
classes of errors in what environment.

What is the effect of various constraints, such as
time and memory on error distributions? Under-
standing this will permit better evaluation of the
tradeoffs in software management.

These are but some of the types of questions the
error analysis phases of the Software Engineering
Laboratory is studying. The data for most of
these questions is gathered from the Change Report
Form, with additional information from the other
forms and follow-up interviews to validate the
accuracy of the information and gather additional
data not easily collected in a form format.

Based upon the above questions, several "first
order metrics' have been defined and software has
been developed to gather information from the
data base. Data is being gathered at a slow pace
partly because of the current backlog of Change
Peport Forms which have not yet been entered into
the data base, and partly because of the refine-
ment of the form as mentioned in the section on
Data Collection Activities. FEarly analyses on a
couple of projects, however, do indicate that the
distribution of errors during development appears
to approximate the Rayleigh curve as found by
[Schick and Wolverton 78].

Continued effort will deal with the gathering of

information to answer the basic questions of inter-
est, further development of new questions of in-

terest, and possible '"second order metrics' based
on the intuition gathered from the current studies.

Program Complexity

There is much interest in measures of complexity
of the software product, the valid aspects of the
product that effect human understanding. There is
an interest in quantitatively measuring these
aspects so that characteristics of programs that
make them more or less error prone, harder to
modify, or more difficult to develop can be better
understood and recognized. Measures proposed in
the literature may even be used to characterize
differences in the development process.

Work has been done at the University of Maryland
to analyze and compare the development of soft-
ware in an experimental enviromment to determine

 the effects of development methodologies [Basili
and Reiter 78]. The experiment involved the use

of three different types of development: Single
individuals using ad hoc techniques, groups of
three using ad hoc techniques, and groups of three
using a structured programming methodology. Re-
sults have shown that there is some distinction

in the product using very rough measures of the
progrum characteristics, such as number of if
statements, number of globals, etc. Based on this
study, the organized group lies somewhere between
the ad hoc group and the single individual. How-
ever, with regard to process measures, the
organized group has shown less computer runs in
all phases of development and less errors (using

a measure of errors called program changes which
is algorithmically computable based on different
versions of the software product [Dunsmore 78]).

It is planned to implement the promising measures
from this research on programs from the NASA en-
vironment. Versions of the systems developed at
NASA have been saved and will be compared for
program changes and checked against the result
from the Error Report in the Change Report Forms.
Further work is being done in automating and com-
paring various complexity measures. These include
several of our own measures (prime program
hierarchy, data bindings, etc.) as well as some
of the measures that have appeared in the litera-
ture [Halstead 77; McCabe 76].
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ABSTRACT

Three software complexity metrics (number of
statements, McCabe's v(G), and Halstead's E) were
compared to performance on two software maintenance
tasks. In an experiment on understanding, length
and v(G) correlated with the percent of statements
correctly recalled. In an experiment on modifica-
tion, most significant correlations were obtained
with metrics computed on modified rather than un-
modified code. All three metrics correlated with
time to complete the modification, while only
length and v(G) correlated with the accuracy of the
modification. Relationships in both experiments
occurred in .istructured rather than structured
code, and in the second experiment where no com-
ments appeared in the code. The metrics were also
most predictive of performance for inexperienced
programmers. Thus, these metrics appeared to assess
psychologi<al complexity only where programming
practices did not provide assistance in understand-
ing the code. In both experiments all three metrics
were highly intercorrelated.

INTRODUCTION

In 1972, Halstead first published his theory
of software physics (renamed software science)
stating that algorithms have measurable character-
istics analogous to physical laws. According to
Halgtead (1972a, 1972b, 1975, 1977) the amount of
effort required to generate a program can be cal-
culated from simple counts of distinct operators
and operands and the total frequenciles of operators
and operands. From these four quantities Halstead
calcealates  the number of mental comparisons re-
quired to generate a program. Halstead's metrics
attempt to represent the psychological complexity
of software. Correlations often greater than .90
(Fitzsimmons & Love, 1978) have been reported be-
tween Halstead's metrics and such measures of pro-
grammer performance as the number of bugs in a
program (Cornell & Halstead, 1976; Fitzsimmons,
1978; Funami & Halstead, 1975), programming time
(Gordon & Halstead, 1975; Halstead, 1976), and the
quality of programs (Bulut & Halstead, 1974; Els-
hoff, 1976; Halstead, 1973).

More recently McCabe (1976) developed a defin-
ition of complexity based on the decision structure
of a program. McCabe's complexity metric is the

classical graph theory cyclomatic number which rep-
resents the number of regions in a graph, or in the
current usage, the number of linearly independent
control paths comprising a program. Simply stated,
McCabe's metric counts the number of basic control
paths, When combined these paths will yrenerate
every possible path through the program. Since Mc-
Cabe attempted to relate his metric to the diffi-
culty of testing a program, it was presented as a
measure of computational complexity. Nevertheless,
the number of basic control paths indexed by Mc-
Cabe's metric may also be an important aspect of
psychological complexity, since additional control
paths could make a program more difficult to under-
stand.

Since the reasons for assersing them are com-
pletely different, psychological and computational
complexity should be clearly distinguished when in-
terpreting software complexity metrics. Computa-
tional complexity refers to characteristics of al-
gorithms or programs which make their proof of cor-
rectness difficult, lengthy, or impossible (Rabin,
1977). For example, as the number of distinct con-
trol paths through a program increases, the compu-
tational complexity also increases. Psychological
complexity refers to characteristics of software
which make it difficult to understand and work
with., Thus, computational complexity asscsscs the
difficulty of verifying an algorithm's correctncss,
while psychological complexity assesses human per-
formance on programming tasks. No simple relation-
ship between computational and psychological com-
plexity is expected. For example, a program with
many control paths may noc be psychologically com-
plex, since any regularity to the program's branch-
ing process may simplify its understanding.

The research reported here was designed to in-
vestigate factors influencing two tasks in softw.re
maintenance: understanding an existinyg program and
implementing modifications to it. These factors
included structured programming techniques, cogni-
tive programming aids, and program complexity.
While the first two factors were manipulated exper-
imentally, no systematic attempt was made to manip-
ulate program complexity. This paper repnrts data
from two experiments which fnvestigated how scveral
complexity metrics were related to the understand-
ing (Experiment 1) and modifyiny (Experiment 2) of

computer programs.




EXPERIMENT 1
Method

Participants. Thirty-six programmers were
tested in five different General Electric loca-
tions. The participants had working knowledge of
FORTRAN and averaged 6.8 years of professional pro-
gramming experience (SD = 5,8). Most participants
came from an engineering background, while several
were experienced in statistical or non-numerical
software,

Procedure., Each participant was presented a
packet of materials with written instruct’ons on
the experimental tasks. As a preliminary ex.rcise,
all participants were presented the same short If-
TRAN program and a brief description of its pur-
pose. They studied this program for 10 minutes and
were then given 5 minutes to reconstruct a func-
tional equivalent from memory. This introductory
program diminished learning effects prior to the
experimental phase.

Following the initial exercise, participants
were presented sequentially with three separ=aie
programs comprising their experimental tasks, They
were allowed 25 minutes to stuly each program and
could make notes or draw flowcharts. At the end of
the study period, the original program and all
scrap paper were collected. Each participant was
then given 20 minutes to reconstruct a functionally
equivalent program from memory on a blank sheet of
paper, but was not required to reproduce the com-
ment section. A break of 15 minutes occurred be-~
fore the last program was presented.

Programs. Three general classes of programs
were used: engineering, statistical, and non-numer-
ical. Three programs were employed from each class
with lengths varying from 36 to 57 statements.
These nine programs were selected from among many
solicited from programmers at several locations and
were considered representative of programs actually
encountered by practicing programmers. All experi-
mental programs were executed using appropriate
test data.

Complexity of control flow. Three control
flow structures were defined for each program.
Structured control flow adhered very strictly to
the tenets of structured programming (Dijkstra,
1972). Wwhen the rules for structured programming
are applied rigorously,awkward constructions may
occur in standard FORTRAN, such as DO loops with
dummy indices (Tenny, 1974). In a second version
these awkward congtructions were largely eliminated
with a more naturally structured control flow.
These conventions included multiple returns, back-
ward exits from DO loops, and judiciously used
backward GO TO's. In the unstructured version of
each program the control flow was not straightfor-
ward. Expanded DO loops, arithmetic IF's, and un-
restricted use of GO TO's were allowed.

Variable name mmemonicity. Three levels of
mnemonicity for variable names were manipulated in-
dependently of program structure. The least mne-
monic names consisted of one or two alphanumeric
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characters, while the most mnemonic names were cho-
sen from names suggested by a group of programmers
not participating in the study.

Experimental design. In order to control for
individual differences in performance, a within-
subject, 1" fractional factorial design was employ-
ed (Hahn & Shapiro, 1966; Kirk, 1968). Three types
of control flow were defined for each of nine pro-
grams, and each version was presented in three
levels of variable mnemonicity for a total of 81
experimental programs.

Halstead's E. Halstead's effort metric (E)
was computed precisely from a program (based on Ot-
tenstein, 1976) whose input was the source code
listings of the 27 programs representing nine dis-
tinct programs at each of three levels of struc-
ture, The computational formula was:

n N (N + N)log (n +n)
12 1l 2 2 1 2

E:

Zn2
where, n‘ = number of unique operators
n_ = number »f unique operands

N = total frequency of operators
N = total frequency of operands

McCabe's v(G). McCabe's metric is the classi-
cal graph-theory cyclomatic number defined as:

v(G) = # edges - # nodes + 2 (# connected
components).

McCabe presents two simpler methods of calculating
v(G). For structured programs v(G) equals the num-
ber of predicate nodes plus 1. Values of v(G) can
also be computed from a planar graph of the control
flow by counting the number of regions.

Length. The length of the program was comput-
ed as the total number of FORTRAN statements ex-
cluding comments.

Dependent variable. The criterion for scoring
programs was the functional correctness of each
separately reconstructed statement. Variable names
and statement numbers which differed from those in
the original program were counted as correct when
used consistently, Control structures could be
different from the original program so long as the
statement performed the same function. The score
on each experimental task was the percent of state-
ments correctly recalled.

Results

Experimental manipulations. A complete report
of the experimental results is presented in Shep-
pard, Borst, Curtis, and Love (in press). Briefly,
a mean of 50% of the statements were correctly re-
called across all programs and experimental condi-
tions. Substantial differences in performance
were observed across the nine programs. FPerfor-
mance on naturally structured programs was superior
to that on unstructured programs. Differences (n




the mnemonicity of the variable names did not af-
fect performance.

Software complexity metrics. Since different
levels of variable mnemonicity neither affected
performance, nor caused any change in the value of
the complexity metrics for a particular program,
the data reported in this section were aggregated
over the three levels of variable mnemonicity on
each of the nine programs at each of the three
levels of structure. Thus, each of the 27 data
points represented the average of at least three
performance scores.

Halstead's E and McCabe's v(G) were highly
correlated (r = .84, p < .001), while length dis-
played only moderate relationships with these two
metrics. The correlations between performance and
the complexity metrics were all negative, indicat-
ing that fewer lines were recalled as the level of
complexity represented by these three metrics in-
creased. Performance was moderately related to
length (r = -.53, p < .01) and McCabe's v(G) (r =
~.35, p £ .05), but not to Halstead's E.

The complexity of the control flow moderated
the relationship between performance and the com-
plexity metrics. That is, while insignificant cor-
relations were observed when the control flow was
structured or naturally structured, this was not
the case for unstructured code. Correlations with
performance of .55 (p < .001) and .45 (p < .01) for
v(G) and E were observed on unstructured pro-

grams.

A similar moderating effect was observed for
a programmer's extent of professional experience.
For programmers with three or less years of pro-
fessional experience, correlations of -.47 (p <
.001) for McCabe's v(G) and -.35 (p < .05) for Hal-
stead’'s E were observed. Insignificant correla-
tions were observed for programmers with more than
three years experience,

EXPERIMENT 2
Method

Participants. As in the previous experiment,
the sample for this experiment consisted of 36 pro-
fessional programmers from three General Electric
locations, The participants averaged 5.9 years of
professional programming experience (SD = 4,1}, had
a working knowledge of FORTRAN, and none had parti-
cipated in the previous experiment.

Procedure. Generally, the procedures employed
in this experiment were identical to those used in
Experiment 1. In a preliminary exercise, all par-
ticipants were asked to modify the same short FOR-
TRAN program., Following this initial exercise,
participants were presented in turn with the three
programs comprising their experimental tasks. One
modification was requested for each program and was
described on a sheet accompanying the program list-
ing. Participants were allowed to work at their
own pace, taking as much time as needed to imple-
ment the modification.
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Experimental design. In order to control for
individual differences in performance, a within-
subject, 3" Factorlal design was employed. Three
of the nine programs from Experiment 1 were used,
Three types of control flow were defined for cach
of the three programs using the same approach des-
cribed previously, Each of these nine versions was
presented with one of three types of commenting.
Modifications at three different levels of diffi-
culty were developed for each program generating a
total of 81 experimental programs., Participants
were randomly assigned into the experimental de-
sign.

Comments. Three levels of commenting were
tested in this experiment: global, in-line, and
none. Global comments provided an overview of the
function of the program and identified the primary
variables. 1In-line comments were interspersed
throughout the program and described the specific
functions of small sections of code.

Modifications. Three types of modifications
were selected for each program as typical changes a
programmer might be expected to implement, The
level of difficulty for seven of the nine modifica-
tions increased as more lines had to be added to
the original code, and the hardest modification for
each program required the most additional lines.

Dependent variables. The dependent variables
were the correctness of the modification and the
time taken by the participant to complete the task.
The individual steps necessary for the correct im-
plementation of each requested modification were
delineated in advance and assigned equal weights.
That is, prototypes of each program with each mod-
ification correctly implementvd were established as
the criteria against which participants® work would
be compared. A percentage score representing the
functional correctness of each modification was
computed by compariag a participant's changes with
the prototype version. All values for the complex~
ity metrics computed on the modified programs were
computed on the prototypes with correct implementa-
tions rather than from code generated by the parti-
cipants, The time to implement a modification was
timed to the nearest minute using an electronic
timer.

Results

Experimental manipulations. A complete report
of the results for the manipulations in this exper-
iment appears in Sheppard, Borst, Curtis, and Love
(in press). Briefly, across all experimental con-
ditions an average accuracy score of 62% was recei-
ved on the modifications (SP = 31%). The 108 accu-
racy scores ranged from five scores of 07 to 24
scores of 100% and were negatively skewed, The av-
crage time to complete the modification was 17.9
minutes (SD = 11.4), ranging from 2 to 59 minutes
with a positive skew. Accuracy and time were un-
correlated.

On two of the three programs studied, the ac-
curacy of the modification was found to be modestly
affected by both the difficulty of the modification
and the use of structured programming techniques.




More accurate modificarions were made to strictly
structured rather than unstructured programs, The
more difficult modifications took longer to imple-
ment, although structured programming techniques
had no effect on time to completion. Neither time
nor accuracy was affected by the type of comment-
ing.

Software complexity metrics. Correlations
among Halstead's and McCabe's metrics and length
were quite high on both the original and modified
programs (.88 < r < .97, p < .001). Correlations
between the three complexity metrics and the two
dependent variables were larger in the aggregated
than in the unaggregated data. Most significant
correlations with performance were ovserved for
metrics computed on the modified programs. All
three metrics were moderately correlated with time
to complete the modification (.38 < r < .46, p <
.05), while only length and McCabe's v(G) were sig-
nificantly related to accuracy &34 < r <-.36, p <
.05).

Similar to results in Experiment 1, the rela-
tionship between time to completion and Halstead's
E was moderated by the complexity of the control
flow. The correlations for Halstead's E with per-
formance went from .08 in the structured code, to
.28 (p € .05) in naturally structured code, to .38
(p £ .05) in unstructured code. No such moderat-
ing effects were observed for McCabe's v(G).

Correlations between the complexity metrics
and performance measures were also moderated by the
type of commenting. Significant correlations on
modified programs were observed when no comments
were included in the program for both accuracy
(-.34 < r<-.35, p <.05) and time (.44 < 1 < .47,
p < .00,

The amount of professional programming exper-
ience profoundlv moderated the relationships obser-
ved between the complexity metrics and time to com—
pletion, although no such effect was observed for
accuracy,  Significant correlations (.52 < r < .55,
p < .001) were observed for programmers with three
1 less years of professional experience, while no
correlations above .20 were observed for program-
mers with more than three years experience.

CONCLUSIONS

The two experiments comprising this study pro-
duced empirvical evidence that software complexity
metrics were related to the difficulty programmers
experienced {n understanding and modifying pro-
vrams. Deeper analysis indicated, however, that
the Halstead and McCabe metrics predicted program-
mers’' performance only on certain programs. Pro-
grams on which significant prediction was observed
were characterf! «d by the absence of programming
practices such as structured coding or commenting
which provide assistance to a programmer attempt-
ing to understand the code. These complexity met-
rics were more predictive of the performance of
'ess experienced programmers.

Assessment of the psychological complexity of
goftware appears to require more than a simpie

count of operators and operands or basic control
paths, Many programs have characteristics unasses-
sed by these metrics which may heavily influence
psychological complexity. For instance, the use of
structured coding techniques or comments reduces
the cognitive load on a programmer in ways unasses-
sed by the complexity metrics. Further, complexity
metrics may not be capturing the most important
constructs for predicting the performance of exper=-
ienced programmers who may either be conceptualiz-
ing programs at a level other than that of opera-
tors, operands, and basic control paths, or who can
fit the program into a schema similar to one they
have had previous experilence with.

Even though moderating effects were observed
in these data, stronger relationships with per-
formance may have been masked by the effects of
differences between individuals and programs which
were enhanced by limitations in the economical mul-~
tifactor designs employed. Uniformity in the sizes
of programs studied may also have limited these re-~
sults. The range of values assumed by complexity
metrics computed on these programs may have been
insufficient for correlationasl tests to detect the
strong relationships reported in other verifica-
tions of these theories (Edwards, 19/6). Studies
reporting higher correlations for Halstead's E us-
ually involved a broader range of program sizes
(Fitzsimmons & Love, 1978, Halstead, 1977).

The number of statements in the code preved to
be as good a predictor of performance on the exper-
imental tasks as the metrics developed by Halstead
and McCabe. These results did not concur with
those of Gordon (1977) who, in reanalyzing Love's
(1977) data on programmer understanding, found Hal-
stead’s metric better than the number of statements
for predicting the percentage of statements vecall-
ed, Correlations among the metrics supgested sub-
stantial overlap in the constructs thev quantificd
on the modular-sized programs studied., Had these
correlations been smaller, the predictive worth of
the metrics could have been better compared.  The
number of statements may not be as highly correla-
ted with the Halstead and McCabe metrics for pro-
prams of substantially greater length, for other
types of applications, or for proprams written in
languages other than FORTRAN,

A characteristic distinguishing psychological
from computational complexity is that the psyeho-
logical complexity of software involves an interac-
tion between program characteristics and individual
differences, such as programming experiences
Chrysler (1978) demonstrated the value of these ex-
perientinl variables in predicting the time to com=
plete a programming task. TIndividual differences
should not bhe overloocked in predicting human per-
formance, especially when the performance ratic
comparing good to bad proyrammers has been reported
as high as 28 to 1 (Grant & Sackmian, 1967),

The complexity metrics provided some sources
of information about program differences, but there
were other factors within the programs unassessced
by these metrics which may have influenced psveho~
logical complexity. Neither Halstead's nor Mc-
Cabe'’s metrics consider the level of nesting within




various constructions. The complexity of rnree DO
loops in succession was rated identically to three
nested DO loops, although nesting may influence
complexity. 1If the ability of complexity metrics
to predict human performance on programming tasks
is to be improved, then metrics must be designed
which measure phenomena related by psychological
principles to memory, information processing, and
problem solving. Thus, while the number of control
paths may be critical in computational complexity,
variations in the arrangement and connections among
these control paths may exert profound influence on
the difficulty of understanding the functioning of
the program. Future work in the area of psycholog-
ical complexity should identify a set of cognitive
psychological principles relevant to programming
tasks. Metrics could then be developed which as-
sess the qualities of software which are most
closely related to these principles. Such an exer-
cise might not only lead to improved metrics for
assessing psychological complexity, but may also
identify some programming practices which could
lead to simplified, more easily maintained soft-
ware.
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A Revieuw of Software Measurement Studies
at General Motors Research Laboratories

James L.

Elshoff

Computer Science Department
General Motors Research Laboratories

Warxren,

The softwuare measurement studies
began at General Motors Research in 1973
with the development of a PL/I scanner.
The scanner was uwritten to make one pass
over the code to be scanned and to look
ahead one token. The scanner was
modularized so that various counters could
easily be inserted into it to record the
occurrence of particular constructs in the
PL/I programs to be scanned. The recorded
data could then be studied by using a
small interactive query system that
existed on the same computer as the
scannerx.

In 1974 a large volume of PL/I code
was collected from five representative
General Motors data processing centers. R
subset of 120 of the collected programs
that comprised ovexr 100,000 PL/I source
statements were used for a controlled
empirical study. The significant data
from this study are published [1] with
only minor 1interpretation in order that
anyone may study the data from a
particular point of view. The data
indicate how the PL/I language uwas being
used in the early 1970's. An averge
compilable unit for example was made up of
a single procedure containing 853 PL/I
statements. Control structures for those
programs were very complex. Data handling
and expressions were found to be
relatively simple but voluminous.

The data that had been collected were
then analyzed [2) with respect to good
programming practices. Most of these
practices fall into the class described
generically as structured programming.

The reason for using these practices lies
in common sense and just a few published
experiences even though tiie practices are
widely touted. The program units uwere
observed to be too large since an average
program of 853 PL/T statements contained
386 identifiers, 1087 constants, 910
expressions, 319 flow of control
statements (including 100 GO TO
statements), and 50 statement labels. The
programs were found to be extremely
difficult to read. The programs uere
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determined to be extremely complex with
respect to both control flow and data
flow. The PL/I programming language uas
used poorly; however, only a limited
subset of PL/I was necessary to pexform
the computing that was required.

A corporate training program was
introduced as a result of the analysais
that had been performed. Programmexrs and
aralysts were introduced to structured
design and structured programming
techniques. After some programmers had
worked with the new techniques for awhile,
a new set of pregrams that had been
develored afte. the training period were
collected and analyzed. The analysis of
the naw programs [{3] showed that their
profiles reflected the training to which
the programmers had been exposed.
Although no specific study was performed
to determine the overall effectiveness of
the new design and programming techniques
with respect to the software lific cycle,
project case studies indicated reductions
of over 25% in development time could be
achieved. Rlso, case studies show that
maintenance of a program once 1t has been
committed to production can be reduced by
as much as a factor of eight.

One of the major problems that
surfaced during the analysis of the first
set of programs and again during the
training program was that modulariczation
seemed foreign to the analysts and
programmexrs. In fact, modularaization uas
viewed as detrimental in all aspects of
the softuare life cycle due to the
perceived overhead of CALL/RETURN
mechanisms and the cost of packaging
programs in small individually compilable
units. A concerted effort was made to
break down this barrier against
modularization in any form. One form of
this work was a model of compilation costs
f4] that indicates that compilation costs
are miniimized when programs are packaged
in relatively small units.

The data that was gathered as part of
the program analysis phase of our work has
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also been used in some experiments with
Halstead's software science [S5]. The data
show that the relationship betuween
measured length and estimated length of
programs holds for programs extending over
several magnitudes in length [6]. On the
other hand, the conjecture that the second
set of analyced programs would be more
consistent with respect to the length
relationship than the first set of
programs was not upheld.

A better understanding of both
softuare science and GM's PL/I programs
resulted from applying the theory of
softuare science to the programs. This
work also resulted in a joint effort with
Halstead and Gordon which led to tuwo
significant extensions of software science
[7). A global level of an algorithm which
depends only upon a language and its use
was derxrived. This development led to a
predictive measurxe for estimating the time
required to write a program. The global
level developed in this work is of
interest since it ranked an assembler
language, FORTRAN, ALGOL 58, poorly used
PL/I., well written PLs/I, and English in
the same order with respect to the level
of algorithm expression that one
intuitively ranks them.

Even. though software science is based
on counting operators and operands used to
express an algorithm, the exact
classification of a language token as an
operator or an operand is not aluways
clear. This classification problem was
studied in an experiment which applied
different counting methods to a fixed set
of PL/I programs (8], Some properties of
the algorithms were found to vary
significantly depending on the counting
method that uwas used:; othexr properties
remained stable. Although no one counting
method was shoun to be best, the results
indicate the importance of the counting
method to the overalil measurement of an
algorithm. Moreover, the results provide
a reminder of how sensitive some of the
measurements are and of how careful
researchers must be when drauing
conclusions from software science
measurements.

In a recent study [9), several models
of opérator distributions are compared
with the measured distributions found in
some PL/I programs. The theory embodies
models of operator distridbutions that have
been proposed by Bayer, 2ipf, and Zweben.
Tuo of the three models, one by Zipf and
one by Zueben, are shown to correlate
highly with the measured distributions.
Two variations of the Zipf model are then
formulated and tested with good results.
Also, the relationship between the method
of counting operators and the models 1is
investigated.
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The work in measurement and empirical
studies has been temporarily suspended
during the past year while a new PL/I
scanner has been implemented. The new
scanner builds an abhstract tree
representation of a program which will
permit much more extensive measurement
capability than has been available in the
past. It is hoped that the next set of
programs that are collected for study will
have some hilistorical data of their
development available to provide a basis
for comparison as we continue our program
analysis studies.
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SOFTWARE SCIENCE -- A PROGRESS REPORT

M. H. Halstead

Computer Science Department, Purdue University
Lafayette, Indiana 47907

Introduction ficant extension "“On Lines of Code and Pro-

At the Airlie House Workshop on Soft- grammer Productivity" (WAF77b] to their

ware Life Cycle Management a year ago, a earlier paper on "A Method of Programming

s s "
few of us were just becoming aware of the Measurement and Estimation" [WAF77}. 1In

possibility of applying the experimental the extension Walston approximated the

and theoretical results of software software science transcendental equations
science to the real world problems of com- relating programming time to lines of
puter systems management. In this paper, source code by the expression

a year later, I will attempt to review for P =1,27 Tz/3 (1)

chis vor&shop s?me of the more 1mporFant where P is in thousands of source state-
néw findings which oth?r softwar? scien- ments and T is in man-months. He then

Flsts have re?ortéd, dlsc?ss their signif- performed a least-squares fit to the 60
icance, and, if time permits, consider an large systems in their IBM data base and

area in which further work might be quite

obtained
profitable.

Even though all of the work I will P =0.925 T°°7° (2)
report on is rather intimately interrelated, While the degree of agreement between
it can conveniently be divided into a the theory (Egquation{(1)) and experience
number of areas in which important progress (Equation(2)) is, in Walston's words, in-
has been described in sufficient detail terestingly close, it takes a bit of pon-
that I can summarize it for you. Special dering to realize the full significance
attention will be given to the new results of his finding. First, we must realize
in the areas of programming rates, precis- that his data base covers a range of pro-
ion and accuracy of relations, error rates, gramming projects of from less than 12
and operator frequency distributions. For man-months to a maximum of 11,758 man-
anyone unfamiliar with the basic software months., This suggests that the effect of
metrics and equations, either the mono- job size on programming rates, not just
graph [HAL77] or the paper in last year's total programming times, may be well de-
proceedings (HAL77b] provide adequate back- fined by the data, as represented by
ground, and the notation used there will equation (2).
be followed. Consequently, we can use either one

Programming Rates of these equations to obtain the number

of source lines per programmer per month
In the December 1977 issue of the IBM

Systems Journal Claude Walston and C. P.

for any given job size, where the job size

can be expressed either in total lines of
Felix presented a terse but highly signif-

source code or in total implementation




time. Using lines of source code, we have

Joo Size Source Lines per Man-Month

(LOSC) Theory Observation

10,000 453 333

100,000 143 124
1,000,000 46 46

and using total man-months gives

Job Size Source Lines per Man-Month

{(Man-Months) Theory Observation
12 555 439
120 257 220
1,200 120 110
12,000 55 55

Expressed in this way, it is apparent
that we now nave, quantitatively, a the-
oretical, experimentally confirmed expla-
nation for not just average programming
times, but the decrease in hourly pro-
duction rates accompanying increases in
project size.

When one remembers that the effort
relation was originally tested, and act-
ually derived, with programming tasks re-
quiring from 5 to 90 minutes, its exten-
sion to real world projects of this mag-
nitude suggests that the most important
variables have been identified, and their
role, on the average or statistically
speaking, is now understood.

From the engineering point of view
there is little to choose between equation
(1) and equation (2), because they both
give about the same answers. But from the
scientific point of view, the difference
is fundamental. This is true because the
theoretical equation was derived from
first principles. 1Its coefficients depend
only upon four measurable quantities: 1)
the rate at which the brain can make
elementary mental discriminations, or
Stroud Number (18 e.m.d./sec.); 2) the
average number of operators and operands
in an executable statement (7.5); 3) the

average fraction of total statements which
are executable (1/2); and 4) the average
language level (A=1.34). Consequently, if
any one of these parameters is changed,
the effect on programming rates is calcu-
lable.

Precision and Accuracy

The question of how closely we should
expect the various equations of software
science to reflect individual programs has
been, in principle, unanswered. Most of
us working in the field have been sub-
scribing to the view that software science
is a bit like actuarial statistics. 1In
that field, for example, one might find
that men at age 65 have a life expectancy
of 14 years. But this in no way guaran-
tees that any particular 65 year old man
will not be killed by a truck in the next
hour. In other words, the accuracy of the
actuarial prediction is completely ade-
quate, but its precision is so poor that
for any individual case it may be useless.

Now if we examine a recent study of
34 General Motors PL/I programs by Elshoff
[ELS78], we see that the correlation be-
tween the observed lengths of programs and
the lengths calculated from the vocabulary
~length equation is a highly significant
0.988, and the error of the mean is only
6.5%, according to his Table 4., But if
we examine the errors for individual pro-
grams in that table, we see that they
average 13.1 per cent on an absolute basis.

For most engineering or management purposes,

frequently concerned with differences
among programs ranging from 500 to 50,000
statements, given a 13 per cent error in
an individual program is not too serious.
But from the scientific point of view
such errors raise an interesting and per-
haps important question. If we considered
only one of Elshoff's 34 programs, would
its deviation from the vocabulary-length

relation be attributable merely to the way




in which it had been written, or might it

instead depend upon the task it was de-
If it is the later,
then the relation is indeed akin to

signed to perform?

actuarial statistics, devoid of causes,
but if it is the former then it results
This
question could be resolved if each of the

only from "experimental error".

34 different programs was independently
Then, if
the mean values for each of the 34 tasks

rewritten ten or twenty times.

showed the same average deviation, that
deviation should be attributed to some un-
identified characteristic of the task. On
the other hand, if the process of averag-
ing over many independent implementations
of each task reduced the deviation, then
we would be safe in concluding that the
length~vocabulary relation is completely
independent of the task. If, in addition,
it could be shown that such an averaging
procedure yields increasingly close agree-
ment with other software relationships,
then the "actuarial statistics" analogy
would have to be abandoned.

While the cost of performing the ex-
periment described above is prohibitive, a
smaller but much more comprehensive study
recently completed by Woodfield [WO078]
appears to settle the question 1in the
affirmative.

Woodfield reports upon two small
related programs, each written independ-
ently by 18 Fortran programmers. The first
program had four input/output parameters,
or n;=u. The second program merely in-
creased the problem dimensions by one, or
n:=5. The remarkable thing about Wood-~
field's study is that in both cases he was
able to predict not only the observed
length, but seven other characteristics of
the programs from nothing but the two
values, language level i=1, n:=u,5. The
results taken from his Table 2 are as
follows.

Property Original Version
Predicted Observed

nsy Unique Operators 9.27 9,89+1.81
nz Unique Operands 8.84 8.72+¢1.18

n Vocabulary 18.11 18.61+1.69

N Length 57.57 61.83+7.72

vV  Volume 2 261439

L Level L0645 .0585+.0146

V* Potential Volume 15.51 14.95+3.02

n; I1/0 Parameters 4 3.84+.76
Property Extended Version

Predicted Observed

Ny Unique Operators 10.59 10.61+1.75
nz Unique Operands 13.11 12.44+2.83
n Vocabulary 23.70 23.06+2.98
N Lengtn 84.53 95.89120.95
V  Volume 386 436+108
L Level .0509 .0481+.0117
V¥ Potential Volume 19.65 20.77+6.85
n; I/0 Parameters 5 5.21%+1.58

In considering the agreement between
the values predicted by theory and those
observed, Woodfield notes that in no case
was the discrepancy as great as six-tenths
of the standard deviation, and that the
average error of the 16 predictions was
only 1.4 per cent.

In light of these results it seems
safe to assume, for small programs at
least, that deviations between observation
and theory can be attributed to sampling
error, rather than to unidentified charac-

teristics of the programs themselves.

Error Rates

Linda Ottenstein has recently com-
pleted a comprehensive study [OTT78] re-
lating programming error rates to the soft-
ware parameters. While she analyzes a
number of sets of data, including studies

of her own, perhaps the most significant

finding concerns the data of Lipow and
Thayer [LIT77].

She derives the predicted
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number of "Validation" bugs, B

vy as

B, = V*/LEo = V/3000 (3)

where V is the volume, V* is the potential
volume, L is the implementation level and
the constant Eo=3000 is obtained directly
from the psychological concept of chunking.
Applied to the functionally grouped data
of [LIT77), this gives, according to her
Table 2.3.

Routine Delivered Bugs

Observed Predicted

v By
a1 26 45
A2 67 63
a3 54 62
Al 41 47
as 79 121
B1 105 66
B2 95 78
c 239 221
c2 69 105
c3 55 33
cy 27 20
cs 50 70
cs 48 52
D1 87 180
D2 13 20
E1l 144 136
F1 4 10
F2 8 24
F3 8 28
Fu 30 32
F5 30 58
G1 238 241
G2 22 29
H1 1 7
H2 466 406

Coef. of Corr. r = 0.962

The agreement between observation and
theory is such that all but 7% per cent
(1-r3) of the variance is explained by it.
But because the error or "problem report"
data in {LIT77] were available both in the

25 functional groupings above, and also in
terms of some 250 individual procedures
[THA76] making up these 25 functional
groups, Ottenstein was able to test facet
of equation (3). According to its deri-
vation, while the number of erruis mnst
increase with the size of a program, the
rate at which they are made must decrease
as the programmer gains familiarity with
the program on which he is working. Con-
sequently, if we considered two subproce-
dures of equal volumes, we should expect
different error rates depending upon the
order in which they were written. For

the total function, only the total volume
would be involved, but for a sub-function,
its implementation order should contribute
to its variance. The theory therefore
predicts that the correlation between

B, and ﬁv for the 250 sub-procedures
should not be near one, but near the
square root of one-half or 0.71. Per-
forming the analysis, she found a value of
r=0.756, rather than the r=0.962 for the
functionally grouped units.

This gives further credence to her
derived expressions for the average time
required to find and correct one "valid-
ation bug",

3000

.
1 = 2y
T T * TS

(4)

and for the average number of required
runs per day per programmer during valid-
ation

Rv/day = 48SL (5)
where L is the implementation level and S
is the Stroud Number.

Operator Frequency Distributions

A number of research workers have
been intrigued by the uniform pattern
observed whenever the frequency of occur-
rence of individual operators in a
program are rank-ordered, and a series of
papers have resulted from their attempts




to derive a mathematical expression for

the observed frequency distribution. One
of several motivations for this work lies
in the possibility that the results would
be useful in resolving ambiguities in the
classification of operators in new
languages.

In a recently submitted paper,
Zweben [ZHE78] has demonstrated that the
relationship obeys the equation

i = Xologz{Xo/Xj) (6)

where i is the rank-order, starting from
zero for the most frequently occurring
operator, and

Xy = loggfi (7)

where fi is the number of occurrences of
the i th most frequent operator. Since
the total number of operators N, must be

given by

n

N1 =1 fl (8)
i=0

it is possible to solve for the expected

number of occurrences fi for any value of

For 34 PL/I

programs, they report a mean correlation

i, given mly ns, and N,,.

coefficient of 0.989, and a line of re-
gression with a slcpe of 0.984 and an in-
tercept of -0.28.

Missing Data

There are still more areas in software
science needing study than there are
presently being inveztigated. Basic issues,
such as the role of modularity, application
to top-down design, and to learning therrvry
may yet require years of effort, But 1in
considering the specific field of Life
Cycle Management, it is easy to note that
one simple tool is missing. No one has
yet implemented a software parameter
analyzer for Cobol. Consequently, we have
mean values, and variances, of the

language levels for Fortran, PL/I, Algol

and others, but not for Cobol.

{ELS78)

[HAL77)

[HAL77b]

[LIT77]

[OTT78]

[{THA75]

{WAF77]

[WAF77b]
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COST EFFECTIVENESS IN SOFTWARE ERROR ANALYSIS SYSTEMS

Mary Anne Herndon

Herndon Science & Software
San Diego, CA

ABSTRACT

Software error analysis systems must have the
capability of functioning as both a cost effective
and valuable managerial tool. To achieve this capa-
bility, the design of the data collection must re-
flect the individual project's managerial concerns,
and the resulting empirical analysis should be
available for long term access.

INTRODUCTION

The implementation of software error analysis
systems has resulted in enormous expenditures for
data collection and analysis. Although many re-
searchers have reported empirical analyses of these
data (1,2,3), few important managerial problems
have been addressed and solved. Researchers have
analyzed the data to provide descriptors, such as
estimates of the mean time between failures, and,
to a limited extent, error classifications. Ef-
fective project management, however, demands more
information than, for example, an estimate of mean
time between failures, or a tally of the number of
register misassignments, As yet, neither the ex-
pense of collecting software error data nor the
personnel difficulties encountered have been justi-
fied by the usefulness of the information obtained.

There is a variety of ways to collect immense
amounts of different types of software error data.
In response to key project managerial demands, how-
ever, relevant data are currently being ignored.

In order to make software error analysis systems
both a valuable and cost effective managerial tool,
attention needs to be focused on the relevant
issues in project management.

DATA COLLECTION DESIGN

The selection of data to be collected during
validation should be tailored to the management
goals of each project. Kev management personnel,
as well as in-house reliability personnel, should
be consulted in the selection of data items. Al-
though each project requires different types of
information, still, there are managerial concerns
that are crucial to all types of software projects.
The first concern centers around the utilization of
expenditures allocated for validation. It is a
well known fact that a large portion of total pro-
ject expenditures go into formal validation, even
as much as 50% to 75%, depending upon the type of

project. However, the accounting of total expendi-
tures is usually not performed until test comple-
tion. A daily or session accounting of expendi-
tures provides for more effective monitoring of the
progress of validation than a final accounting.

In designing the types of information for monitor-
ing the apportionment of expenditures, the follow-
ing items are quite useful in current and predic-
tive measures of expenditure utilization.

1. A cost categorization for errors, such as pro-
posed by Herndon and Keenan (4),

2. A tallying of cost types of errors detected
during each test session.

From this minimal amount of data, managers are
able to obtain intuitive information on the cost
effectiveness and error detection effectiveness of
the validation procedure.

The second managerial concern centers around
providing information describing the dynamics of
the functioning system during validation. Compli-
cated software systems, such as exemplified by
real time systems, need to be understood in terms
of module interactions. Although modern program
design philosophy attempts to minimize the extent
such interactions, in the design of actual systems
this is not always achieved. Consequently, errors
that appear are not always localized to the module
of occurrence. This type of information provides
useful diagnostic information in the event of ser-
ious operational problems. In one empirical study
of a real time system (5), a seemingly innocous
module contained an inordinate number of high im-
pact errors. The following minimal set of data is
suggested to obtain system interaction profiles.

1. Error impact classification categories, such
as those proposed by Herndon, ct al.

2. Profiles of each system component for each
categery.

3. Calculation of an average impact for each
module.

Observations from this empirical analysis can
indicate potentially troublesome or unstable area
of the system. For example, if one particular
module seems to be associated with a large number
of high impact failures, redesign of the module
might be advantageous before the product is




released. With the proper identification of un-
stable modules, appropriate fault tolerant mea-
sures can be used for compensation,.

RECOMMENDAT IONS

In surveying the current state of the art of
software error analysis systems, two glaring de-
ficiencies are evident. The first deficiency con-
cerns the choice of data that is selected for col-
lection. Software error analysis systems must
function as a cost effective managerial tool in
order to compensate for the overhead that is as-
sociated with data collection. As of now, there
is a distinct impression of quantity of data items
as opposed to relevancy. Cost effectiveness in
software error analysis systems can only be
achieved by the proper design of a minimal set of
information to answer specific managerial ques-
tions. '

The second deficiency concerns the short-
lived usefulness and availability of the data
after the product is released. The empirical
analysis of the reliability data that is obtained
during validation provides an initial system
reliability profile. As the product ages and
requires alterations, the information gained from
validation is crucial for effective field manage-
ment .
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STATISTICAL TECHNIQUES FOR COMPARISON OF COMPUTER PERFORMANCE

Sandra A. Mamrak
The Ohio State University
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Abstract

The comparison of computer performance requires
a methodolcgy designed to lead to the selection
of the best computer and to provide control of
the probability of having made a correct choice.
Methodologies often used in classical statisical
designs lead to regression analyses of the data,
employing either analysis of variance or curve-
fitting techniques. The questions that can be
answered using such methodologies are of the
type "ls the performance of several alternative
systems the same (are the distributions of per-
formance measurements identical from a statisi-
cal point of view)?" or "How does one particular
system performance parameter depend upon the
other system parameters?”". In most computer
comparison efforts, however, these questions are
not appropriate. The question of real interest
is: "Which system is the best?" or "How do the
systems rank from best to worst?" It is pre-
cisely for this type of problem that statisti-
cal ranking and selection procedures were
developed. These procedures are applied in the
selection methodology outlined below.

A Computer Selection Model

A model of the way computer selection is typically
done focuses the main components of the computer
selection process and provides a framework for
this paper. The model is presented in Figure 1
and discussed in the next two sections,

Classification of Performance Criteria

In choosing the best alternative from several
alternatives, criteria must be defined which
state what is meant by best. These criteria can
be categorized in two ways. They are either
measurable or nonmeasurable, and they are either
mandatory or desirable. Thus, the selection
criteria can be classified as Mandatory Non-
measurable (MN), Mandatory Measurable (MM),
Desirable Nonmeasurable (DN}, and Desirable
Measurable (DM). Examples of each type of
criterion are provided in Table 1.

Application of Performance Criteria

Figure 1 illustrates a sequence in which the
classes of selection criteria are applied in the
process of choosing the best alternative system.

This sequence is composed of three phases. The
application of MN criteria in phase I is easily
managed, since each alternative either does or
does not have the required characteristic.

Phase II involves the application of MM criteria.
Experiments are conducted on the alternatives
which survived Phase I and the performance of each
is documented. In general, for each MM criterion,
measurements are gathered from every system and a
decision is made as to whether or not the criteria
are satisfied. Failure to satisfy a single MM
criterion results in an atterntiave's elimination.
At the conclusion of Phase II, the number of
alternatives is usually reduced from that of Phase
I.

Finally, determination of the best alternative is
made in Phase IlI. This stage is separated into
two parts, Phase IIIA for the application of DN
criteria and stage IIIB for the application of

DM criteria. For DM criteria, data are collected
from each alternative being evaluated and com-
pared. On the basis of relative performance with
respect to the DN and DM criteria, an alternative
is selected as the best. 1In both Phases Il and
111IB, comparison requires collecting and analyz-
ing relevant performance measurements for the
various computer alternatives under consideration:
in Phase 11 to select those satisfying certain
mandatory performance standards and in Phase IIIB,
to select the best remaining one.

A selection process requires a methodology to lead
to the selection of better than standard alterna-
tives and selection of the best alternative and to
simuitaneously provide control of the probability
of having made correct choices. This work focuses
its attention on the specification of a methodology
for those problems which occur in Phase II and
I1IB, thereby leading to a more comprehensive,
scientific methodology for computer selection.

A Computer Selection Methodology

A good experimental design is a critical component
of any comparison methodology, since the efficiency
of the data collection process and the validity of
the data analysis depend upon it. Ranking and
selection procedures (see [KLE75] or {GI1B77] for a
survey of these techniques) provide an appropriate
experimental design for computer selection. These
procedures can be roughly characterized as follow-
ing three lines of development: one set of pro-
cedures ranks systems by comparing sampie means,




Figure 1. Model of the Computer Selection Process
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Table 1. EXAMPLE OF PERFORMANCE CRITERIA

The system must be fully delivered and operational

Timesharing service must include FORTRAN, Basic, Lisp,

——ee———

The mean-time-to-failure for a specific one month

95% of all trivial command response times must be

It is desirable that the system include Pascal and

It is desired that the system cost less than $100,000.

It is desired that the system provide as fast a wean
turnaround time as possible for the benchmark run.

Type Example

Mandatory 1.

Nonmeasurable no later than September 1, 1979.
2.

_ B SNOBOL and editing facilities.

Mandatory 1.

Measurabie period must be greater than 4 hours.
2.

. e less than 1 second.

Desirable 1.

Nonmeasurable COBOL facilities.

—— 2

Desirable 1.

Measurable
2.

one by comparing sample percentiles and one by

In all three cases,
the procedures specify the number of data points
which must be collected from each system in a
comparison study in order to guarantee that the

comparing sample proportions.

probability of a correct selection

or equal to a predetermined minimum value,

It is desired that response time means as well as
variations be small.

The percentile and proportion approaches to com-
parison are very similar in that they both rely
on a single comparison criterion’s cumulative
distribution. The difference lies in whether an
analyst prespecifies a desired percentage value
or a desired comparison criterion value. In a
comparison based on percentiles, a percentage is
predetermined. Results are produced of the form:

be greater than

The use of a mean, percentile or proportion

statistic for system comparison is an analyst
choice based on considerations about the objectives
of a comparison experiment, the statistical
properties of the data and the statistical require-
ments of the data analysis techniques, Means are
often used for comparisons when criteria like
script turnaround time or script cost are of
interest. For comparison criteria such as

response time, which tend to have exponential-like
distributions, the mean is not as meaningful a
statistic. Percentages or proportions are more
appropriate,

"if computer service A has 90% of its response
times less than 3 seconds, and computer service B
has 90% of its response times less than 3.5
seconds, then rank A as being better than B,"

where "90%." is prespecified by the analyst.
comparison based on proportions, a value of a
comparison criterion iS prespecified. Results
are produced of the form:

In a

"if computer Service A has 80% of its response
times less than 3 seconds, and computer service 8
has 87% of its response times less than 3 seconds,




then rank B as being better than A,"
where "3 seconds” is prespecified by the analyst.

Selection of Systems Better than a Standard

In the case of selecting those computer systems
which are better than a standard (Phase Il in
Figure 1), an experimental design is required
which leads to an analysis of the data that
answers the question "Which services are at
least as good as a prespecified standard?”, The
ranking and selection techniques which have been
developed for selection better than a standard
are not appropriate for computer selection when
performance indices are being compared at their
mean or percentile values. The procedures

make assumptions about the data that are clearly
not justified in computer selection experiments
(such as equal variance for all systems). But,
an appropriate procedure does exist when pro-
Jortions are the basis for a selection (see
{MAMT78])).

Selection of the Best System

In the case of selecting the best computer
service (Phase III in Figure 1), an experimental
design is required which leads to an analysis of
the data that answers the question "Which system
is the best one?", In this case ranking and
selection techniques exist for choosing systems
based on mean or percentile values (see [AME78b]
and {MAM77]), and also based on proportions {see
[AME78a] and [MAM78]).

A Feasibility Study

A large scale feasibility case study is underway

to evaluate the time and cost required to apply

the computer service comparison methodology in an
actual procurement environment. Four heterogeneous,
remote-access, time sharing services are being
compared. The specifications for the case study
and the experimental results are presented in
[MAM78] .
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SOFTWARE COMPLEXITY MEASUREMENT

Thomas J. McCabe
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This paper describes a graph-theoretic
software complexity measure, and describes
how it can be applied to limit the logic in
a module during the design stage so it is
testable and maintainable during later
stages.

The process of software construction
relies in a fundamental sense on the siz-
ing of subsystems and modules that are
separately designed, coded and tested. One
concept very sorely needed is a way to mea-

sure and control software complexity at che
design stage in such a fashion that the
modules are subsequently manageable, i.e.,

comprehensible, and also testable. The
approach of this research is to develop a
concrete, applicable, but yet mathematically
based measurement of software complexity.
The measure presented in this paper has a
mathematical basis in the sense that it is
not dependent on the application a module
is used for, the language used, or the pro-
gramming style-~-it measures purely the com-
plexity of internal logic of a module. The
measure presented is also immediately ap-
plicable because it is readily understood
by the programming community and it direc-
tly mapps into a rigorous testing method-
ology and makes maintenance feasible.

The complexity measure decided upon
will limit the number of independent paths
in a program at the design stage so the
testing will be manageable during later
stages. One of the reasons for limiting
independent paths instead of limiting all
potential paths is the following dilemma:
"A relatively simple program can have an
arbitrary high number of paths." The ap-
proach taken here is to limit the number of
basic (or independent) paths that when taken
in combination will generate all paths.

Definition
One definition and one theorem from
graph theory will be needed to develop
these concepts., See Berge [l] for a refe-
rence.
Definition 1

The cyclomatic number v(G) of a graph

21044

G within n vertices, e edges and p con~
nected components is v(G)=e-n+p.

Theorem 1

In a strongly connected graph G, the
cyclomatic number is equal to the maximum
number of linearly independent circuits.

The application to computer programs
will be made as follows. Given a program
associate with it a graph that has unique
entry and exit nodes. Each node in the
graph corresponds to a block of statements
where the flow is sequential and the arcs
represent the program's branches taken
between blocks. This graph is classically
known as the control graph (see Ledyard
[12]) and it is assumed that each node can
be reached by the entry node and each node
can reach the exit.

For e:xample the control graph shown
below has seven blocks (a) through (g),
entry and exit nodes {g), and ten
arcs.

(a) and

In order to apply Theorem 1 the graph
must be strongly connected which means
that given two nodes (a) and (b) there
exists a path from (a) to (b) and a path
from (b) to (a). To satisfy this we ass-

e bt e



ociate an additional edge with the graph
which branches from the exit node (g) to
the entry node (a) as shown below.

Theorem 1 now applies and it states
that the maximal number of independent
circuits in Gl is 11-7+1 (G has only one
connected component so we set p equal to
1. The generalized case where p>l is used
for design complexity, see McCabe [11}).
The implication therefore is that there is
a basis set of 5 independent paths that
when taken in combination will generate all
paths. For example, the set of 5 paths
shown below form a basis.

bl: abcg
b2: al(bc)ig
b3: abefg
b4: adefg
b5: adfg

If one chooses any arbitrary path it
should be equal to a linear combination of
the basis paths bl-b5. For example, the
path gbcbefg is equal to b2+b3-bl, and path
a(bc)”?g equals 2*b2-bl. To see this it is
necessary to number the edges in G and show
the basis as edge vegtors.

Basis

bl 1001000010
b21 012000010
b31 0006100101
b 0100010101

b5 01 00001001

abcdefg 1011100101
albc)g 1023000010

The path abcbefg is represented as the
edge vector shown above and it is equal to
b2+b3-bl where the addition is done com-
ponent-wise., In similar fashion the path
a{(bc)“g shown above is equal to 2*b2-bl.

It is important to notice that Theorem
1 states that G has a basis set of size §
but it does not tell us which particular
set of 5 paths to choose. For example,
the following set will also form a basis.

adfh

abefg
adefg
a(bc) Jbefg
a(bel4g

When this is applied to testing the
actual set of 5 paths used will be dictated
by the data conditions at the various de-
cisions in the program but the theorem
guarantees that we will always be able to
find a set of 5.

It should be emphasized that the
process of adding the extra edge to G
was only to make the graph strongly con-
nected so Theorem 1 would apply. When
calculating the complexity of a program
or testing the program the extra edge is
not an issue but rather it is reflected
in the expression used for complexity.
The complexity v, therefore, is defined as
v=e-n+2p since an extra edge is added for
each component. In each of the examples
discussed in this paper there is only one
component so the complexity expression
simplifies to v=e-n+2.

Examples

Several actual control graphs and
their complexity will be presented in
order to illustrate these concepts. These
graphs came from FORTRAN programs on a
PDP-10. The programs were analyzed by an
automated system FLOW that recognizes the
blocks and transitions in a FORTRAN

—_—
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program, computes the complexity, and draws
the control graphs on a DATA DISC CRT. The
straight edges represent downward flow
(e.g. in the second graph below the line
between (2) and (3) means that (2) branches
to (3). The curved arcs represent backward
branches (e.g. in the second graph (5)
branches back to (2) ).

1O)
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The graphs above were presented in
order of increasing complexity in order to
suggest the relationship between the com-
plexity numbers and our intuitive notion
of the complexity of the graphs. One es-
sential ingredient in any testing method-
ology is to limit the program logic during
development in order that, first, the pro-
gram can be understood, and second, the
amount of testing required to verify the
logic is not overwhelming. These tech-
nigues are being presented in The Institute
for Advanced Technology's Structured
Testing seminars and experience has consis-
tently shown that programs with high cyclo-
matic complexity are difficult to understand
and are rarely tested adequately. For
example, according to its author the pro-
gram below is 'one of my better programs'
and it required only 'about four or five
tests to verify'.




The physical size of the program this
graph is derived from is only 70 lines of
source code. The physical size of several
of the twelve previous graphs exceeded 70
lines, and, in fact, only a weak correla-
tion between physical size and complexity
has been found. Because of this, the com-
mon practice of attempting to limit com-
plexity by only controlling how many pages
a routine will occupy is entirely inade-
quate. This complexity measure has been
used in production environments by limit~
ing the complexity of every module to 10.
Programmers have been required to calcul-
ate the complexity as they develop rou--
tines, and if it exceeds 10 they are
required to recognize and modularize sub-~
functions or re-design the software. The
only situation where the limit of 10 seaved
unreasonable and an exception was allowed
is in a large CASE statement where a num-
ber of independent blocks followed a sel-
ection function.

See McCabe [11]) for further simpli-
fication of this research. {u particular,
reference [11] contains results that
allow a simplification of the computation
of e-n+2p into more intuitive programming
terms. Reference [11] also comments on
the induced testing methodology and it
deals with the measurement of structured-
ness of programming logic.
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THE UTILITY OF SOFTWARE QUALITY METRICS IN LARGE-SCALE
SOFTWARE SYSTEM DEVELOPMENTS
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ABSTRACT

This paper describes the utility of the pro-
gressive application of software quality metrics
during large-scale software developments. The
concept of the software quality metrics was
derived and validated during a study supported by
the Air Force Systems Command Electronic Systems
Command and Rome Air Development Center. Fur-
ther extensions to the concepts are currently
being supported by Rome Air Development Center
and the U.S. Army Computer Systems Command,
AIRMICS. The metrics provide a disciplined,
engineering approach and 1ife cycle management
viewpoint to software quality assurance.

INTRODUCTION

In a study for the Air Force, a program
management-oriented view of software quality was
established (Ref 1). The concept of quality
derived was based an three viewpoints with which
a program manager interacts with the end product:
Its operation, revision, and transition. These
viewpoints correspond to the life cycle activities
of the product. The factors of software quality
associated with these three viewpoints are shown
in figure 1.

MAINTAINABILITY -
CAN T FIX IT?

FLEXIBILITY -
CAN I CHANGE IT?

TESTABILITY -
CAN I TEST IT?

PRODUCT OPERATIONS

These factors are used by the program manager
to identify which qualities are important to the
particular development effort. The desired level
of quality can be quantitatively specified based
on the formal definitions established for these
factors.

Associated with each quality factor is a set
of criteria. These criteria are attributes of the
software and related documentation and their presence
provides the quality or characteristics implied
by the factor. Software metrics have been estab-
lished which provide quantitative measures of
those attributes represented by the criteria. The
metrics allow measurement of the progress toward
achieving desired levels of quality by their appli-
cation to intermediate products produced during a
large-scale software development.

These concepts are extensions of some signif-
icant efforts by others in this field (Refs 2, 3,
4, 5, 6). We have added a program manager's ori-
entation, automated the collection of many of the
metrics, and added quantification to measures
applied during the early phases of a development.

The concept is based on the following facts
about quality:

® Relative to the application
e Impacts the cost to develop

PORTABILITY - WILL I BE ABLE TO USE IT
ON ANOTHER MACHINE?

REUSABILITY - WILL I BE ABLE TO REUSE
SOME OF THE SOFTWARE?

INTEROPERABILITY - WILL I BE ABLE TO
INTERFACE IT WITH
ANOTHER SYSTEM?

CORRECTNESS - DOES IT DO WHAT I WANT?

RELIABILITY - DOES IT DO IT ACCURATELY ALL THE TIME?

USABILITY - CAN I RUN IT?

Figure 1.

EFFECIENCY - WILL IT RUN ON MY HARDWARE AS
WELL AS IT CAN?

INTEGRITY - IS IT SECURE?

Factors in Software Quality
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® Impacts the life cycle costs To evaluate the current degree or level of a
o Should be customer-defined particular quality factor, i, for a module, j, the
e Has an associated cost to measure and particular column in the measurement matrix is
control. multiplied by the row in the coefficient matrix.
e Its measurement will change as the tech- The resultant value:

notogies of producing software change.
Cs m: : + C. o m. .= Tr. .
The fact that there is a trend toward more 1,1 M,5 7 G2 T, AELERLEN RN
structured disciplined programming techniques and
environments reinforces the concept of software
quality metrics.

is the current predicted rating of that module, j,
for the quality factor, 1.

The coefficient matrix should be relatively sparce
{many cj j = 0). Only subsets of the entire set
of metrics applicable at any one time relate to
the criteria of any particular quality factor.

The purpose of this paper is to expand upon
the utility of the periodic application (measure-
ment) of software quality metrics during large-
scale software developments.

Multiplying the complete measurement matrix
A_MEASUREMENT VEHICLE by the coefficient matrix results in a ratings
matrix. This matrix contains the current pre-
dicted ratings of each module for each quality
factor.

At appropriate times during a large-scale
development, the application of the metrics
results in a matrix of measurements. The metrics
that have been established to date are at two
levels - system level and module level. The ™M M2z o0 s Mk

approach to be described is applicable to both M=r =
levels and will be described in relationship to d
the module level metrics.
A n by k matrix of measurements results from r]],l rl?,k
the application of the metrics to the existing
products of the development (e.g., at design, the This approach represents the most formal
products might include review material, design approach to evaluating the quality of a product
specifications, test plans, etc.) where there are utilizing the software quality metrics. Because
k modules and n module level measurements appli- the coefficient matrix has been developed only
cable at this particular time. for a limited sample in a particular environment,
it is neither generally applicable nor has sta-
My M - -« Wy tistical confidence in its values been achieved.
ﬁg = Mgy Other valuable information is available from
the measurement matrix with the current state of
the technique.
M Mk For example, the development of a particular
module can be assessed by examining the measures
For that particular time there is an associ- in the appropriate column of the measurement ma-
ated matrix of coefficients which represent the trix. How all the modules are doing with respect
results of linear multivariate regression analyses to any particular attribute can be assessed by
against empirical data (past software develop- examining the appropriate row. Those particular
ments). These coefficients, when multiplied by modules with excessively low scores should be
the measurement matrix results in an evaluation investigated further. This form of sensitivity
{predigtion) of the gquality of the product based analysis is facilitated by the collection of the
on thejdevelopment to date. This coefficient metric data in the form of the measurement matrix.
matrix, shown below, has n columns for the coeffi-
cients of the various metrics and 11 rows for the In examining a particular measure across all
11 quality factors. modules, consistently low scores may exist. This
situation identifies the need for a new standard
&y G20 - - Ty or stricter enforcement of existing standards to
™ improve the overall development effort.
d

As experience is gained with the metrics and
é data is accumulated, threshold values or industry
1,1 “N,n acceptable limits may be established. In addition,
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comparisons of metric values with trends in the
occurrence of Design Problem Reports and Software
Problem Reports may prove to provide important
quality assurance insight.

QUALITY CONTROL MECHANISM

The periodic application of the metrics dur-
ing a large-scale software development can be
viewed as a control system. Snapshot assessments
are generated, feedback to program management is
provided with respect to their specified require-
ments for quality, thereby allowing corrective
action, calibration, redirection, or the identifi-
cation of areas to be emphasized later in the
development (e.g., testing) to be enacted.

These concepts are illustrated in figure 2.
It is important to note, the metrics were estab-
lished with a goal of not requiring additional
products to be generated during the development
efforts. Thus, the metrics take advantage of
current control mechanisms (delivered products
and reviews) normally utilized in a large soft-
ware development.

EXPERTENCES

These concepts have been applied to software
developed in a command and control system
environment. This application resulted in the
current coefficient matrices and sets of metrics
to be applied during a software development

(Ref 7, 8).

SOFTWARE DEVELOPMENT PROCESS

We are currently assessing the value of these
concepts to the development and modification of
support software. Also, we have just begun an
effort with Air Force and Army sponsorship (Ref 9)
to evaluate the metrics with respect to an Army
management information systems environment. The
experience gained from these efforts will provide
an excellent basis for discerning the extent to
which these concepts can provide additional quality
assurance discipline in large-scale software
developments.

In effect, these concepts are an attempt to
provide a mechanism for the specification of life
cycle-related quality goals and assessment of the
progress toward those goals during the early
development phases. The quantification provided
by the metrics affords more consistent evaluation
of the software quality. The overall goal in
these efforts is to introduce a more disciplined,
engineering approach and a 1ife cycle management
viewpoint to software quality assurance.
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RELIABILITY EVALUATION AND MANAGEMENT FOR AN ENTIRE SOFTWARE LIFE CYCLE *
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Effective software reliability evalu-
ation requires theories of software relia-
bility which define and deal with software
reliability quantitatively, technologies
for reliability data measurement and data
analysis, technigques to estimate or predict
software reliability, and practical relia-
bility evaluation methodologies which
effectively reflect characteristics of
software nature.

This paper assesses the extents to
which these requirements are currently met,
and introduces some approaches toward an
effective software reliability evaluation.
Introduced are the methodologies for soft-
ware reliability evaluation and the soft-
ware reliability management-aid tools.

1. INTRODUCTION

Since a software reliability became
the most serious and important problem in
software industries, we have already spent
more than 15 years. During this period,
many people tried to overcome this problem
vigorously and various kinds of approaches
were taken from all angles. Now, it is
broadly recognized that a software reliab-
ility problem is clearly an integral port-
ion of software engineering. However, as
known well, inspite of all our efforts,
the software reliability problem still
remains as the knottiest subject. This may
call for next severe question. What have
we done for a long time, how on earth?
Clearly, some portion of the reliability
problem might be due to evaluation techni-
ques for software reliability.

Practically, an effective software
reliability evaluation requires theoretical
basis. Theories of reliability should
define software reliability and its metric
quantitatively. Also needed are measurement
and analysis techniques for reliability
data represented in terms of the metric,
techniques to estimate or predict future
software reliability growth in testing
stages, practical evaluation methodologies
reflecting software characteristics effec-
tively, and evaluation-aid tools.

From these points of view, this paper
agssesses previous works in software relia-
bility evaluation briefly, extracts major
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problems, and tries to give them some solu-
tions or improvements. Proposed ideas are
integrated as a reliability management-aid
system for an entire software life cycle.

Before we start a discussion, we must
note some basic terms in order to avoid
confusion. Software error is a defect that
causes a software failure. Software failure
is an unacceptable departure of software
operation from software requirements.
Software reliability is defined as a proba-
bility of failure-free operation in a
specified environment for a specified time.
(This definition will be changed later.)
Reliability growth is defined as the incre-
asing probability of software to perform
required functions under stated conditions
during stated time interval. Software
reliability model mainly refers to a mathe-
matical model constructed for a purpose of
assessing the reliability of software from
specified parameters which are either
assumed known or are measured from observa-
tions or experiments on software.

2. SOME BASES FOR SOFTWARE RELIABILITY

Firstly, let us review previous works
in software reliability evaluation.

We can easily find out two major dire-
ctions in studies done by predecessors.
Namely, they are 1) a direction to study
reliability characteristics of software
itself, and 2) a direction to study
software reliability evaluation technique.
Let us look into them in turn.

2.1 Nature of Software Reliability

The first direction of studies aims to
find out fundamental elements of software
which affect software reliability, and to
make clear causal relationships between
these reliability elements and software
development technologies. In other words,
this is to analyze the elements of software
quality and data on when, where, how, and
why people make software errors. Also
intended as a final object of this directi-
on is to establish a set of effective and
reliable software development techniques
and methodologies.

THIRD INTERNATIONAL CONFERENCE ON SOFTWARE




(1) Elements of software reliability

There are several works in analysis
of software reliability elements, and most
of them are by-products of general study
for software gquality which aims to evaluate
software quality qualitatively or gquantita-
tively. Organized software quality evalua-
tion was firstly done by Rubey and Hartwick
[1}). Brown and Lipow (2] formulated some
number of quality metrics, and Wulf [3]
identified and provided concise definitions
on seven software guality attributes.
Abernathy, et al, [4] defined a number of
characteristics of operatinjy systems and
analyzed some tradeoffs between them.
Recently, a framework for software quality
characteristics was established by Boehm,
Brown and Lipow [5]. They clearly identi-
fied the software reliability elements, in
addition to a maintainability and a porta-
bility: namely, self-containedness, accur-
acy, completeness, robustness/integrity,
and consistency. A large number of software
quality-evaluation metrics were defined,
classified, and evaluated with respect to
their potential benefits, quantifiability,
and ease of automation.

However, for an effective and quanti-
tative evaluation, we need more amount of
further work in this field.

(2) Software reliability versus Hardware

reliability

As a typical study of software reli-
ability nature, there are some analyses
discriminating natures between hardware
reliability and software reliability (6,7,
8]. Some of fundamantal differences bet-
ween the natures of software and hardware
that affect reliability evaluation are:

al) Software systems never run and softwa-
re errors cannot be met without any
input.

a2) Software is the transformation of
designer's idea into a symbolic langu-
age for computer processing and soft-
ware reliability is only dependent on
correct design and the expression of
this design. Hardware, in addition to
having the reliability problems in
correct design and expression of the
design, is physical in nature and
subject to component failure patterns
that are statistically measurable.

al) Software components do not degrade
with time as a result of environmental
stress or fatigue effect (i.e. wear-
out).

a4) No imperfections or variations are
introduced in making additional copies
of a piece of software (except possi-
bly for a class of easy-to-check
copying errors).

a5) A correction of software fault alters

configuration of software and eliminates

any possibilities of its reoccurrence.

Repairs of a software configuration
tend to alter the configuration, unlike
most hardware component replacement
repairs.

a6) A comprehensive failure mode and
effect analysis is impractical for
large software, because of the large
number of distinct logic paths.

a7) The information provided by detected
errors has not yet been accurately
characterized, limiting its usefulness
in predicting the remaining number of
errors.

a8) There is no standardized approach for
exhaustively testing software in order
to assure that it meets all operational
requirements.

These affect severely to the software
reliability evaluation techniques, especia-
1ly to the modelling, and lead us to be
careful in applying hardware reliability
theory to software.

(3) software error data collection and

analysis

A main portion of the software relia-
bility nature analysis might be a study for
software error data collection and statis~
tical analysis. Namely, that is to collect
and analyze information on when, where, how
and why people make software errors.

For several years past, many people
have made much efforts to collect software
error data during software development
and maintenance processes. We find some
published reports on software error data
collections. Such data are, of course,
necessary to evaluate a reliability of a
software product itself, and also useful to
derive and validate software reliability
models. However, strictly speaking, very
few data have been collected firmly through
an entire software development and mainte-
nance phases. Let us look all around and
give some example studies on software error
data.

Endres (9] collected error data disco-
vered in testing stage of operating systems
development, and analyzed them in terms of
a distribution of error occurrence rate and
frequency of software modification for each
module. The report contains classified
error statistics by error types and causes.
Shooman and Bolsky [10] introduced statis-
tical data on frequencies of error occurr-
ence rate for each error type, computer
time and working time used to test, compu-

ter time and working time to correct errors,

changes for software, and some other with
trouble and correction report forms.
Thayer, Lipow and Nelson [11,12] analyzed
error data collected by some projects in
TRW precisely. Besides these, there are
many interesting works that report various
kinds of error data from various points of
view: studies done by Boehm, et al [13],
Bell and Thayer [14]}, Fagan [15), Akiyama
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{16), Gannon and Horning (17], McGeachie[l1l8],

Musa (19}, Litecky and Davis (20], Baker
(21}, Miyamoto (22], and Weinberg (23], for
instance. However, most of the previous
studies collected and analyz2d only errors
discovered within testing stages. Few exce-
ptions are an analysis of software require-
ments errors by Bell and Thayer ({14], and a
design error analysis by Fagan ([15].
Software error information should be collec-
ted and analyzed through entire software
validations and operations of whole software
life cycle.

Most of the previous works collected
error information manually by using document
forms. See references (10],{11l]) and [15]
for instance. There is no systematic
approach to collect error information auto-~
matically by using an automated data collec-
tion technique. Though SIMON [24,25] and
Software Factory [26] are aiming to automate
a collection of project management data,
they only can collect software error data
to be detected in testing, not for whole
life cycle of software.

When we analyze software error data in
testing and operational stages, we have to
take into account following thing. Since
software systems never run and software
failures cannot be detected without any
inputs, we can not find new errors without
changing a test domain or a user domain[22].
Then, if we collected information on change
of test domain or user domain in addition
to error information at same time, we would
be able to analyze more detailed insights
on software reliability. This point of
consideration is often omitted in most of
previous works.

On the other hand, it is extremely
difficult to compare error data from diffe-
rent sources. It is a big problem that the
results of previous error data collection
and analysis efforts are not compatible for
each other. This might be mainly caused by
a lack of standards and unified approaches
on definitions of terminologies used in
projects, error categorization, data
collection procedures, data analysis, soft-
ware error database, and etc. Though it is
reported that some efforts are now under
way at USAF Rome Air Development Center,
and within IEEE Technical Committee on
Software Engineering {7}, formal outputs
are not available by now. Because it requi-
res much time and money to build a common
error database, we have to collect and
analyze error data in a compatible fashion
as far as we can.

(4) Problems in error data collection and

analysis

Based on the review and some references
{9,10,11]}, we can summarize major problems
in error data coilection and analysis as
follows:

bl) Software development and maintenance

b2)
b3)
b4)
b5)
bé)

b7)

bg)

b9)

bl0)

bll)

bl2)

bl3)

bl4)

bl5)

blé)

bl7)

b18)

bl19)

projects, the software, and the relia-
bility data vary considerably and not
describable in common terminology. It
is extremely difficult to compare
error data from different sources.
Some projects produce data that are
classified as they like.

Apalysis technigues and guestions to
ask of the data are not well known.
Data accuracy is a chronic question.
Analysis is often incomplete or
inaccurate if proper communication with
project performers is not established.
Project organizational structure and
resources vary, making consistent,
multi-project data collection guesti-
onable.

Definition of which parameters are
needed and meaningful to collect is in
its infancy.

Analysis of relationships between
error information and the system
operations (i.e. test domain, user
domain) is often left unnoticed.
Definitions of measures to represent
program complexity and scale are
needed. Analysis of correlations bet-
ween program complexity or scale, and
the error information (e.g. frequency)
is needed.

Manual data collection is a lot of
work,

Certain data items are perishable and
must be collected and analyzed timely
when they become available, not after
the fact.

There is no guarantee that data will
be collected (i.e. no requirement for
projects to collect data).

The fervor of data collection inspires
data gathering that is non-supportive
of software development processes.
Presently implemented data collection
schemes often fail to gather data in
sufficient detail, making results of
analysis questionable.

Software error data collection is
commonly done for testing stages, not
for entire software life cycle.
Software reliability data collection
can represent cost, schedule, and
manpower impediments to software
development projects. The impact or
cost considerations of data collection,
although real, are not fully appreci-
ated.

Per formers, project management, and
even the customers of software are
sensitive about providing data that
might be used to adversely evaluate
project by external agencies.
Contractor and customer representative
of project management are not aware of
the benefits of data nalysis and
therefore tend not to support it.
Project structure is generally not
tailored to use available data (i.e.
the mechanism for analyzing data and .
folding results back into the project

PR




is not provided).

b20) Some data elements require protection
to preserve the privacy of the
contributor (e.g. cost data).

b21l) Data collection is commonly thought
to be "not necessary" to a properly
managed project.

Some of these problems are due to the policy
of software project management.

2.2 Software Reliability Evaluation

The second direction of studies is to
study a phenomenological aspect of software
reliability. This is to study how often a
software is deficient while it operates, in
other words. Also, this direction aims at
gaining high quality of software as a final
object. However, a greater emphasis is
placed on to establish an effective software
reliability evaluation technique itself.

(1) Metrics for software reliability

At a standpoint of phenomenological
aspect, a software reliability and metrics
to represent a degree of software reliabi-
lity are often defined probabilistically as
defined before. Metrics are defined some-
times time-dependently and sometimes
time-independently. Most metrics were
developed originally for hardware reliabi-
lity: for instance, availability A(t),
reliability function R(t), mean time to
failure MTTF, mean time between failures
MTBF, and mean time to repair MTTR. In
addition to these, there are some other
metrics, such like mean time between soft=-
ware errors MTBSE {22], some rates to
represent reliabilities of input domain,
test domain, and user domain [22,27].
However, these work at times, but often are
unable to explain actual experienced soft-
ware reliability phenomena. This is prima-
rily because of fundamental differences
between software phenomenology and the
assumptions of hardware reliability
theories, and secondly because of a lack of
practical methodologies for application to
software. There is, therefore, no single
metric which reflects the software natures
and can give a universally useful rating
of software reliability. This might be
thought as one of reasons for a traditional
criticism insisting that it is impossible
to apply hardware reliability theories to
software reliability problem.

(2) software reliability models

Now let us review a software reliabi-
lity modelling which is the most theoretic-
al portion of software reliability evalua-
tion techniques.

Shooman [28,29), Jelinski and Moranda
{30,31) proposed similar type of probabili-
stic models for a removal rate of software
errors during test. For these earliest

1ys

software reliability models, they assumed
an error detection rate was proportional

to a number of remaining errors. Shooman
related an error detection rate also to a
program size and an instruction processing
rate. He investigated some other types of
models for error correction, and proposed

a two-point parameter estimation approach.
Schneidewind (32] suggested an empirical
reliability prediction model by fitting
failure intervals with an appropriate
reliability function. He applied a maximum
likelihood estimation to determine parame-
ters of error detection and correction
processes. Littlewood and Verrall [33)
proposed a Bayesian reliability growth model
by assuming that error corrections make
smaller a failure rate in a probabilistic
rather than deterministic fashion. Trivedi
and Shooman [34] developed a many-state
Markov model for an estimation of reliabi-
lity function R(t) and availability A(t)
during testing stages. They assumed that
error and correction occur alternately and
sequentially, only one type of error occurs,
and error discovery rate 1is constant, in
addition to basic Markov assumptions.

Musa [6] developed a set of execution time
model and calendar time model. He assumes
that tests are representative of the envir-
onment in which a program will be used and
are continuously global, faillures are
independent of each other and distributed
at any time with a constant average execu-
tion time occurrence rate that is proport-
ional to a number of errors remaining, all
failures are observed, and an error correc-
tion rate is proportional to a failure
detection rate at all time, for the
execution time model. Also, in order to
relate a calendar time with testing activi-
ties, he made some assumptions for utiliza-
tion of resources (i.e. failure identifica-
tion personnel, failure ccrfection person-
nel, computer time). The model parameters
are calculated by using a maximum likelihood
estimation. The effectiveness of models has
been validated at several real projects [35].
This is one of few models which have a
practical methodology and a tool for
application. In addition to these models,
there were some other models developed by
Schick and Wolverton [36], Weiss, Corcoran,
and Nelson [37]. These are well reviewed

by (11] and [48]. Also, Littlewood [38,39],
and Shooman [40,41] have proposed some
revised versions of their reliability
models vigorously. The models proposed by
Littlewood are based on Markov processes.
Shooman has developed structural model in
which logical paths of program structure,
execution time and failure rate of each
path are related with.

Besides, there are some other simple
models to estimate a number of initial
latent errors in programs. Such models do
not assume much, and some models are based
on the statistics of historical data [43].
For instance, Mills [42] developed an errcr
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seeding model. These models are useful some-
times.

(3) Problems in reliability models

During the review, we fourd many prob-
lems in software reliability models for
practical applications. Most of them are
derived from assumptions applied in the mod-
elling [8]. Typical worrisome (?) assumpticns
are summarized as follows:

cl) The errors remaining in program de-
crease monotonically.

c2) The discovery rate is proportional to
the number of remaining errors.

c3) New errors are rot introduced during
debugging.

c4) The software failure rate (and associ-~

ated hazard rate) is constant, or
increases, or decreases during failure

intervals.
c5) The hazard rate increases or decreases
at each time when error is detected.
cb) Software errors have the same likeli-

hood of detection.
c?) All failures are observed.

c8) Data inputs to software system are
randomly selected.
c9) Software failures are independent.

cl0) software errors have the same effects
on system operations.

cll) Test and users operations cover the
entire input domain of software and
do not change.

cl2) Error correction rate is proportional
to failure detection rate.

Some of the reliability estimation problems
are originated from assumptions of failure
distribution, and some others are originated
from assumptions of software operational
profiles in testing stage and operational
stage at users. In most models, it is as-
sumed that a test domain and a user domain
are fixed and do not change. We should note
that a software reliability is a function of,
not only a number of remaining errors, but
also their effects on system operation,
software operational profiles (which are
changeable according to the test space
growth and the usage patterns of software
functions), and locations of remaining
errors. In other words, the operational
reliability is a probability that users don't
enter specific inputs which inevitably
encounter the latent errors.

Surprisingly very few practical model
application methodologies for the reliabil-
ity test data measurement (which should be
separated from testing and debugging) and
compilation are prepared in the existing
software reliability models.

In a theoretical sense, there is no single
model which can give a universally useful
estimation of software reliability. And
still, we are a long off from having truely
reliable software reliability estimation
models.

As a whole, we can conclude that we
have very poor software reliability evalua-
tion techniques and error database, for
the present.

3. SOFTWARE RELIABILITY MANAGEMENT SYSTEM

After considerable study of previous
works and experiences of actual projects,
we have decided to improve the effectiveness
of current software reliability evaluation
by developing the application methodologies
of currently existing techniques and models,
and supporting tools. (We have not make
plans to develop new models and technigues,
although we have no powerful ones.)

For the problems of reliability
evaluation, we shall deal with mainly by
using multiple reliability metrics at the
same time, preparing specific reliability
data measurement method, relating with
operational profiles, categorizing failures
according to their effects on system opera-
tions, and limiting the objects of reliabi-
lity estimation. The effectiveness of error
data analysis can be basically improved by
developing automated tools and methodology
for data collection and analysis, and by
integrating them with an automated system
which supports entire software development
and maintenance processes. By using such a
system, as we continue to collect and
analyze more and more data on how, when,
how often, where, and why people make
software errors, and how people detect and
correct software errors, we will be able to
get clear insights on how to evaluate
software reliability, how to develop
practical models for prediction, how to
avoid making software errors, and how to
organize the validation strategies.

Along this baseline, we are designing
an automated software reliability management
tool, and a highly ambitious software
development and maintenance support system.
This section will introduce a brief
description for a corncept of this system.

3.1 Software Development and Maintenance

Support System

In order to support various activities
for large scale software development and
maintenance, SDMSS (Software Development
and Maintenance Support System) is designed
to have several basic subsystems as shown
in Fig. 1. Requirements Engineering Sub-
system consists of a language processor for
a requirements definition language RDL, and
analysis tools which examine correctness,
consistency, completeness, and feasibility
of software requirements described in terms
of RDL. Requirements descriptions are stored
into a development database and maintained
as an abstract system model. Design Sub-
system consists of a processor for software
design language SDL and tools to examine
correctness, consistency, completeness and
efficiency of designed software.
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Design descriptions are stored into database
and maintained as a logical system model.
Programming Subsystem consists of program-
ming language processors and source code
analysis tools. Static code analysis is
done by program structure checker, module
interface checker, events sequence checker
and diagnostic functions of language proce-
ssors. Test Subsystem is made up of test
description language processor, and tools
to support test case selection, test data
generation, test execution, test result
reporting, maintenance of test database for
dynamic tests., A test description language
TDL 1is useful to describe test drivers and
stubs. Maintenance Subsystem supports
maintenance activities originated from
software problem reports or maintenance
orders. History of software modifications
is recorrded in maintenance database. This
subsystem internally uses functions of
Requirements Engineering Subsystem, Design
Subsystem, Programming Subsystem and Test
Subsystem to redefine software reguirements,
redesign, recode, and retest. A tool to
find out modules, specifications and test
cases associated with a requested correct-
ion or modification is provided. In
addition to these, SDMSS has Product Mana-
gement Subsystem, Cocument Subsystem,
Project Management Subsystem, and Software
Error Management Subsystem (SEMS).
Project Management Subsystem collects data
on cost and project progress, and monitors
software development and maintenance
activities for project management.

Except Requirements Engineering Sub-
system, SDMSS is now in design stage.

3.2 software Error Management Subsystem

Associating with software validation
activities and maintenance activities for
an entire software life cycle, with a help
by SDMSS, SEMS provides a set of methodo-
logies and tools which mainly support a
collection of software error data produced,
a statistical error data analysis, a repo-
rting error information to managers (e.g.
QA manager) for swift feedbacking or feed-
forwarding to software activities, a
management of error correction activities,
and a prediction of software reliability
during testing stages. SEMS intends to give
solutions or improvements to some problems
in software reliability evaluation and
stimulate the rest.

(1) Components

SEMS consists of four major components.
Error Management Program manages and maint-
ains error information registered and
status information of correcting activities,
and controls interfaces to other subsystems
in order to collect error data automatica-
lly. Reliability Estimation Program
calculates a future software reliability at
testing stages. This program contains two

different reliability models. The Reporting
Tools output statistical reports on catego-
rized errors, and status reports onr error
correcting activities periodically and at
any time when needed. SEMS is extensible to
add new tools. Error Database is made up of
events file, relation file, and statistic
file as shown in Fig. 2. Events file
maintains error information in chronological
order of occurrence. Each error occurrence
uses one record. Example error record format
for dynamic testing stage is also shown in
Fig. 2. An error record contains four parts:
the first part keeps, in main, initial
information on a situation of failure detec-
tion, the second part maintains status inf-
ormation for correction activities, the
third part keeps formal results of error
cause analysis, and the last part is for
comments. Relation file maintains relations
between error records. Relations indicate
sets of categorized errors in terms of, for
example, requirements errors, design errors,
coding errors, or for each version of soft-
ware, module, and many others. Reporting
tools can make reports very easily by refe-
ring to this file. Statistic file contains
various kinds of statistics on error data,
such as, accumulated number of error occur-
rences, accumulated number of co-rected
errors, current number of errors remained
uncorrected, and reliability estimation
results.

Totally, SEMS has 6 basic types of
procedures to interact with these ccomponents.
They are defined for a manual registration
of error information, an automatic registr-
ation of error information, a status regis-
tration of error correction activities, an
inquiry for statistical error information
or status information of each error, an
authorization of error, and a reliability
estimation.

Sources of error information

(2)

Since, in general, software projects
have a potential for creating a tremendous
amount of various kinds of data, and error
data are largely a by-product of software
development and maintenance processes, we
need to collect meaningful data items
efficiently and timely for an entire soft-
ware life cycle. Fig. 3 illustrates a
typical software ll%e cycle by phase and
several types of software error data. These
software error data form a continuum of
requirements errors, design errors, and
coding errors starting as early as the
software requirements definition phase and
extending into the operational phase.
Software validations as error information
sources by SDMSS are as follows. In requi-
rements definition phase, some of software
requirements errors can be detected by RDL
processor and associated static analyzers
automatically, and some others can be
detected by an inspection review of require~
ments specification manually. In design
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phase, some of software design errors can
be detected by SDL processor and associated
tools automatically, and some others can be
detected by an inspection review of design
specifications manually. Errors on software
efficiency can also be detected by using a
simulation tool. In coding stage, some types
of software errors are detected by diagnos~
tic functions of language processors and
static source code analyzers automatically,
and some others are detected by an inspec-
tion review manually. In testing stage, the
rests of software errors should be detected
by dynamic tests. Since results of tests
described by using TDL are self-checkable,
failures are detected by automated tool.

In other cases, failures are detected by
manual analysis and reported in terms of
software problem reports. In operational
phase, users find software failures and
report them manually by using software
problem report. All of these activities
generate error information.

There are three types of information
sources. The first one is a static test
result of specifications or source codes.
This kind of error information can be sent
to SEMS automatically by static analysis
tools. The second type is a dynamic test
result. In this case, Test Management Prog-
ram in Test Subsystem sends error informa-
tion to SEMS automatically. The third type
is a result of manual inspections. This
kind of error information must be registe=-
red to SEMS manually. Generally, a manual
technique is easy to implement, but it
requires manpower committed to a collection
task. Automated techniques ease a pain of
collection task, and can collect error data
effectively and timely when it is generated.
However, automated techniques tend to be
less flexible in response to changes in
software project demands and may cause cost
problems of implementation. And yet, it is
often needed to judge manually in order to
collect meaningful data. Then, SEMS has
employed both of manual and automatic data
collection techniques so that meaningful
error data can be collected effectively.

(3) Supporting functions for automated
data collection

Now, taking a case of a test descrip~-
language TDL, we would like to intro-
supporting functions for an automatic
data collection. Since a complete descrip-
tion of TDL is beyond the scope of this
paper, we introduce only some features of
TDL and TDL processor for a test driver
description. (TDL is partly based on [46]).)

A TDL description for a test driver
has a following general form.

tion
duce

“test description >
“test definition- 1>
“test definition- 2>

-

<{test definition~- n>
END

Each test defined in the test procedure
description causes a partial execution of
target modules. Tests are performed one at
a time in the order in which they appear in
test definitions. In the test description,
what a set of tests will examine is written
with information on testing environment.

A complete form is as follows.

{test description> =
<test case identification>
<{error category identification>
<hardware configuration identification>
<software configuration identification>
<{test system identification)>

These information specified in test descrip-
tion are sent to SEMS at time when a failure
is met., Each test execution of target
modules is described in a test definition.

A test definition has four items as shown

in next.

<{test definition- i>=
<initialization codes>
<assertions >
<execution directive>
<error category identification detail>

Immediately before a test execution, the
variables specified in ti.e initialization
code statements are initialized. A form
for initialization is

<target module name/variable,initial value>

The most test definitions contain assertions
about the performance of the target modules.
They are specified in VERIFY statements.

A form is

VERIFY [(at L1,L2,..,Li,..,Ln] (assertions)

Li is a label reference to target modules,
where the assertions are to be verified,

and is written in a form [module name:label].
When no labels are specified, the assertions
are verified immediately after the test
execution terminates. An assertion can be
specified in any way of next three types:

(module name: logical expression)
(PATH-1S: regular expression)
(TIME~IS~-LESS~-THAN: value)

Logical expressions are test predicates usi-
ng variables and values. An argument to a
PATH-IS assertion is a regular expression
made up from operation names. Regular expr-
essions permits use of four operators. The
operator ; is a sequencing operator, speci-
fying an order in which the modules are
supposed to be executed. The operator + is
an alteration operator specifying either one
of the modules can be executed. The operand
* ig used to denote repetition. The operand




& can be used to denote concurrent process-
ing of modules. The assertion for TIME-IS-
LESS-THAN is used to check a execution time
of target modules. Every test definition is
executed by an EXECUTE statement of the
following form.

EXECUTE [FROM L1} [TO L2,...,Li,..Ln]

where Li is a label reference to target
modules. This statement specifies the first
and last statements to be executed. A STOP
or RETURN in target modules terminates only
the current test execution. The error cate-
gory identification is a detailed category
identification for an error which is expec-
ted to be detected by this test definition,
and should be consistent with senior cate-
gory identification specified in the part
of test description.

Internal procedures for an automatic
collection of error information is roughly
shown in Fig. 4. Firstly, immediately
after a test execution, a result is checked
whether it agrees with a specified assert-
ion. In the case that it does not agree
with, an event indicating a failure occurr-
ence is informed to SEMS, and the informa-
tion written in a part of test description
and error category information are entered
into Error Data Queue by test management
program. At this time, test management pro-
gram adds a calendar time when failure was
detected, name of inspector for current
test execution (Test Subsystem knows a name
of current user), and error identification
number which is serial through the current
validation activity. On the other hand,
SEMS takes out an entry of error informat-
ion from the error Jata queue and stores
it into error database one by one. At this
time, a serial number which is counted
through whole software life cycle is added
to the second part of an error identifica-
tion number. At a time when a failure event
is registered in error database, since an
error has not been judged formally as a
true software error, this is recognized as
a guasi error temporarily. A true cause and
a location of the error can not be made
clear until all failure analyses complete,
ordinarily. Formal analysis results often
do nct agree with an initial judgement for
a quasi error. The formal error information
are stored in the third part of error reco-
rd by QA manager in manual. Besides, as
correction activities progress step by step
each status is registered and updated with
information on committed working hours,
computer time used, and some others in the
second part of error record. These inform-
ation are useful to manage error correction
activities.

-

3.3 Software reliability estimation

SEMS provides a software reliability
estimation capability and prepares a metho-
dology for an estimation models application.

(1) Software reliability models

Reliability Estimation Program contains
two different software reliability models:
they are a model developed by Musa {6]) (The
calculation modules for this model in Relia-
bility Estimation Program is originally
developed by Musa [47].) and a simple model
developed by the author [22]. As reviewed
before, Musa's model is based on several
assumptions, and the author's model is also
based on some basic assumptions. These are
not exceptions. However, we should like to
bring up basic questions here. (In this
section, we discuss reliability models from
a viewpoint of practical use, not a theoret-
ical aspect described before.)

Are these assumptions (e.g. assumptions c2,
c4, c7, c8, ¢9, cll, and cl2) realy quite
inappropriate?

We are sure that they are not the ideal
models. By satisfying some conditions in
some ways, can't we use them for a restric-
ted environment specifically?

Answers might be probably proved by
our experience and intuition. If we could
have some specific methodologies for a
measurement and compilation of reliability
test data, restrict objects of application,
and modify debugging and testing processes
in order to satisfy the assumptions, we
would be able to decrease their bad effects
on the validity of estimation. As a matter of
fact, the effectiveness of Musa's model has
been validated by several real projects[35].
The author's model is developed only for a
highly dedicated online real time system and
has specific reliability test data measure~
ment and compilation methods [22). We may
say that we would be able to apply them for
practical use if only we had taken some
points into account. In spite of this poss-
ibility, some theorists might say that, in
any case, it is still difficult to estimate
universally by a single model.

There is a good answer to this. In order to
obtain more effectiveness, it is better to
apply multiple models to software reliabili-
ty estimation jointly. This is a main reason
why SEMS has two different models. The
author's model is now under way for the
revision. Revised model is going to reflect
the changes in system operational profiles
during testing and operational stages.

(2) Methodology for application

A procedure to estimate software reli-
ability in SEMS environment is shown in Fig.
5. Input data to reliability estimation
program consists of a number of parameters
which are grouped into 5 categories:
failure, planned, debug environment, test
environment, and program. The failure data
consists of a set of execution time intervals
between failures, along with a number of days
from the start of testing on which failures
occurred. In a category of planned data,
there are available computer time (measured

in terms of prescribed work periods),
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number of available failure correction
personnel, number of available failure iden-
tification personn~l, computer time utiliza-
tion factor, failure correction personnel
utilization factor, and objective mean time
to failure. In a category of debug environ-
ment, there are average computer time expen-
ded per unit execution time, average compu-
ter time required per failure, average
failure identification work expended
per unit execution time, average failure
correction work required per failure, and
the average failure identification work
required per failure. A testing compression
factor is a parameter of test environment.
As parameters of category of program, there
are a number of failures required to expose
and remove all errors Mo, and initial MTTF
at start of testing. The parameter Mo must
initially be estimated from a number of
inherent errors and an error reduction
factor by using previous statistics [9,11,
16,22] or by using simple models [43].
However, once data are available on inter-
vals between failures during test or opera-~
tion, thes~ parameters may be reestimated.
These data can be provided by reliability
test data measurement, error database, and
project database. Ways to handle these
parameters are well described in [35].

Reliability test data measurements
are different from ordinary testing activi-
ties and are done periodically or at any
time needed in ordzr to collect data on
current reliability. {(Test cases are gene-
rally chosen to quickly detect errors and
are not representative of operational use.)
During reliability test data measurement,
execution time intervals between failures
are measured for each categorized class of
failures. Failures are cateaorized accord-
ing to their effects on system operations.
Example categorization gives four classes
of failures: catastrophic failure which
leads to system down, serious failure
which causes malfunctions on all current
users, moderate failure which causes mal-
function on one of current users, and
trivial failure which is typographical
error in output messages. Since an error
correction may alter a software configura-
tion and decreases statistical meaning,
detected errors are not corrected for the
currently used system during current data
measurement. Input data in test space are
selected through a prediction of user space
initially, and are not changed through the
measurement. Test space must be reflecting
possible combinations of basic users opera-
tional patterns. (Recall that software
reliability is affected by system operation
strongly.) Sample reliability test data
measurement methods are introduced in [22]
and [28]).

Using collected data, two models
estimate the software reliability growth.
Estimation might be plotted as shown in
Fig. 6 with measured reliability, for
instance. 1t is strongly recommended to
evaluate software reliability for each

categorized class of failures. A priority
of failure analysis and correction activity,
and an allotment of resources for each
category of failures must be determined
prior to the estimation.

The software systems as the best
objects of reliability estimation by SEMS
should have following characteristics.,
Namely, their input spaces must be large
enough, and used randomly and independently
by many number of users simultaneously ({for
random input). A unit of system services
(e.g. an interaction or a connection) must
be small, and system operational profiles
at users should be predictable and station-
ary at any time while they operate. System
operations can be classified into some
states clearly in order to ease an effect
analysis of software errors on system
operation.

From these points of view, SEMS recommends
to apply its estimation technique to online
real time transaction-driven systems with

a number of user terminals, in main, such
like large bank systems, reservation systems,
inventory systems, information retrieval
system, electronic switching system, and
etc. Typical example system is shown in
[22). In the case of other type of systems
{e.g. batch processing systems), effective-
ness of estimation might be decreased more
than above cases.

Finally, we should note that estimated
results do not show an absolute certainty
in the future reliability growth. They are
only useful to fix our aim. Because soft-
ware reliability growth rates are often
changed by a project management policy,
ways of testing and debugging, individual
abilities, positivisms and morals of
project performers, and by many other
factors greatly.

4. CONCLUDING REMARKS

We have reviewed the software relia-
bility evaluation techniques, and described
some approaches to improve some of the
major problems, briefly. Finally, let us
assess the effectiveness of SEMS on the
software reliability evaluation, especially
on what will be improved by SEMS.

(1) On error data collection and analysis

Basically, the automatic data collec~
ting function of SEMS which operates with
SDMSS as one system may improve the problems
of bl0, bll, bl2, bl3, bl4, and blS. For
the rest, we may classify them into three
categories: 1) the problems on standardi-
zation or unification (i.e. bl, b2, b3, b4,
b5, b6, b7, b8, and b9%), 2) the problems
associated with the project management
policies (i.e. bl7, bl8, bl9, b20, and
b2l), and 3) the cost problem (i.e. bl6).

The first kind of problems may be
improved by piling up the use experiences
of SDMSS. Since SDMSS and SEMS provide the
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standardized methodology, terminology and
techniques for the software, software deve-
lopment and maintenance project, and soft~
ware reliability evaluation, the pile of
collected and analyzed error information
would be compatible for each information
source. In order to solve this kind of
problems in the broad sense, we may need
some theoretical works and the joint efforts
with public erganizations. The poor compa-
tibility of error data is caused partially
by the lack of the valid measures to
represent program complexity and scale.

The statistical error data analysis must be
done in terms of such measures independent-
ly with the kind of programs and programmi-
ng languages or design languages. The
theoretical work is needed to get the valid
and common measures for software. Currently
there are some statistical approaches to
this. For instance, Akiyama [16], Thayer,
Lipow and Nelson [11], Halstead {44], and
Green [45]} have reported some results on
the correlations between error data and
this kind of measures. In SEMS, since the
relations between error database and the
development database are maintained, it is
rather easy to analyze the correlations
between program complexity and scale, and
error data statistics. (c.f. bl, and b9)
Besides, SEMS provides a set of error
categorizations. They may categorize errors
according to their causes, their effects on
the system operations, their locations,

the phases in which they are introduced,
their hardness for correction, the phases
in which they are detected, the detection
methods, and other characteristics.

In the environment where SEMS is used,
since the multiple categorizations are made,
the more amount of information is provided
than the cases that single categorization
is employed. (c.f. bl, b2, and b6}

Most of statistical works and reporting
works are done by SEMS. Thus, users are not
needed to do troublesome work. SiIMS is
extensible to add new tools by users in
order of extraction and analysis of error
information. (c.f. b3)

The data accuracy may be improved and bal-
anced more than before, because SEMS
collects error data in standardized manner.
(c.f. b4)

On the other hand, since SEMS is jointly
used with SDMSS in general, the analysis
works can be done on intimate relations
with the development and maintenance acti-
vities. (c.f. b5) However, QA manager
must take more responsibilities than
before. SEMS can refer the information of
system operations related with the error
information in testing and operational
stages. (c.f. b8)

Generally, it is not well known that what
kind of data items are meaningful and how
much we need for software reliability
evaluation during the development. Thus, it
is important and meaningful to accumulate
the error information and to gain the

experience by using automated tool such like
SEMS. (c.f. b7}

Most of the second class of problems
are beyond the scope of SEMS. For instance,
the problems bl8 and b2l can not be solved
without changing *he consciousness of
project managers. However, SEMS provides
the protection function for error database.
(c.f. bl7, b20)

Finally, to implement and use SEMS do
cost more than manual evaluation. Compared
with the SDMSS, SEMS spends little amount
of computer time and o’ .er resources. The
cost problem is very common to every auto-
mated tool. Since the software reliability
is the most important problem in software
industries, we must do something for it.

SEMS can collect and analyze error data
more efficiently than other existing methods.

Totally, SEMS can improve some of the
major problems on software error data
collection and analysis.

(2) On software reliability evaluation

After the review of existing techniqgues,
we have concluded that there is no single
metric or reliability model which can give
a universally useful reliability evaluation
or an estimation, from the theoretical point
of view. However, by taking into account
the application methodologies which cover
the measurement and compilation of reliabi-
lity test data, restrict the object of
application, and modify the debugging and
testing processes to meet with assumptions
made, this conclusion may be changed. In
some specific environment, we can obtain
useful estimation to fix our aim, by using
multiple reliability models. Though we are
developing new models vigorously, we should
place greater emphasis on the development
of application methodologies and the
estimation-aid tools. In this sense, SEMS
may stimulate the studies.

Finally, we would like to claim again.
By using such a system we proposed, as we
continue to collect and analyze more and
more data on how, how often, when, where,
and why people make software errxors, and
how people detect and correct software
errors, we will be able to get clear insig-
hts on how to evaluate software reliability,
how to develop practical models for
predicting software reliability, how to
avoid making software errors, and, how to
organize validation strategies.
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Basic Record Format

ERROR DATABASE

Part (1)

Statistic File

Relation File

3 -
./ 7 /
Events File
(L

Part (2)
Part (3)

Fig.2 Error Database

Part (4)

[jError Id Number EXXXXAKX~XXXKXXX
.Category 1d (tentative)

-classification #1,#2,#3,84...... !
.Detected by (name) :
.Date & Time detected !
.System Information :

-Hardware Configuration 14

-Software Configuration Id

-Database Id

-Test System Id
.Failure Location (tentative)

-Module (name,version & rev. #,author)|

-Spec. (name,version & rev.#, page)
.Associated Test Cases

~vValidation Id

~Test Case and Data Id
.Associated Trouble Report or

Maintenance Order 14.

.Status Information

~-Nothing done (date)

-Error analysis (date/working hours)
.Correction Started (date)

-Redefinition of requirements

validation

-Redesign data ;
validation computer time :
-Recoding working hours
validation ¢

.Correction completed (date/work hour)
.Demonstrative Test (date/work hour)
.Find-and-fix cycle of error
.Approved date

.Formal Judgement
-hardware error :
-operation error i
-testing error
-unknown (reoccurable?)

.Software error
-formal category Ids #1,%#2,#%#3,...#n
-formal location .

module, page,line,author
spec.,page,line,author
-error produced by erronecus debug
original error id
.Associated Errors (ids)
<Accountable or not

.comments on this error
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ANALYSIS OF SOFTWARE ERROR MODFL PREDICTIONS
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Abstract

During the period Aug 1974 to May 1978 a study to
evaluate the accuracy of predictions of several
models for predicting the error coatent and
reliability of a software package against error
data extracted from four large Department of
Defense software development projects was
undertaken by Rome Air Development Center (RADC).
This paper will briefly describe the results of
this empirical study for three such models, the
Jelinski-lloranda, Schick-Wolverton and a modified
Schick-Wolverton. ‘todel predictions will be
analyzed and general conclusions will be drawn as
to model applicability. The data requirements for
performance of such analysis will be discussed in
lieu of the data RADC had available for this study
and the data needed for such a study.

Introduction

The past several years have seen the formulation
of numerous mathematical models for predicting the
reliability and error content of a software
system. These predictive tools were needed to
permit better tracking of software developments by
providing a software manager with nore detailed
information regarding the status of his
developnent. Models formulated have ranged from
the ecarliest ones that assumed an exponential
distribution of time to detect errors, such as
Shooman’s, to more complicated ones such as Musa’s
execution-time mnoudel. These models have been
experimentally tested against available software
error data by the model developers and, whenever
possible, comparisons of various models have beer
pecrformed by model developers in order to
demonstrate the applicability of each model,0s
However, criticism of this initial model testing
has arisen due to the limited quantity and nature
of the software error data avalflable to model
developers. This is especially true with respect
to DOD software development projects, with their
complex and unique, one-time applications in such
areas as conmand and control and avionics.

To help develop a better knowledge about the
applicability of these software relfability
models, and to obtain better confidence in their
predictions, RADC has been analyzing the

predictions of several software reliability models
against error data obtained during the formalized
testing of several large DOD and NASA software
developments, This paper will present the results

of the RADC study and discuss the problems of data
availability in performing this study. First, the
models used will briefly be described. Next will
follow brief descriptions of the four software
development projects used in the study. Model
predictions will be presented and analyzed with
some conclusions offered as to model
applicability. Finally, the problems of data
availability will be addressed.

Model Discussion

The initial goal of this in-house study was to
analyze as many software reliability models as
possible, using as many software error data sets
as possible. As the study evolved, it became very
apparent that the limiting factor was data
availability. Many wmodels that would have been
desirable to consider, such as the Shooman’s
exponential and Iusa’s models, were eliminated
because the data available to RADC, which
consisted of data extracted from Software Problem
Reports (SPRs) that were filled out by the various
contractors during the formal test phases whenever
a softwiare errur was detected, was lacking in some
of the needed categories such as CPU data. The
nodels finally examined were the Jelinski-loranda

De=Eutrophication, Schick-VWolverton, odified
Schick=Wolverton, Jelinski-loranda Geometric
De-Eutrophication, and a lodified Ceometric
De-Futrophication.

Predictions from these five models were first
analyzed against data from a large DOD comnand and
control project on a taotal project basis using
Maximum Likelihood (I.F) estimates for nmodel
parameters.1 Next, software error data from three
additional DOD projects were analyzed apainst the
three non-geometric mndels, since the three
non~geometric models predicted the nunber of
initial errvors., Roth !ILF and Least Squares
egtimates for model parameters were used, and
model predictions were ohtained on a total projoc}
basis and also on an error criticality basis,”
Yore recently, model predictions on a functional
subsystem basis were obtained and analyzed.

The assumptions of the three non-geometric models
used are piven in Table 1, while the mathenatical
cquations for the hazard function describing each
of the three models are given in Table 2, For a
more detailed description of the models the reader
should consult keference 1.




Table 1. Model Assumptions
Model Assumptions

Jelinski=- 1.
Toranda

The amount of debugping time hetween
error occurrences has an exponential
distribution with an error occurrence
rate proportional to the nuaber of
remaining errors.

2. Fach c¢rror discovered is imnediately
removed, thus decreasing the total
number of errors by one.

3. The failure rate between errors is

constant.

The amount of debugping time between

error vccurrences has a Rayleigh

distribution,

2. The error rate is proportional to the
nunber of remaining errors and the
time spent in debupyping,

3. Fach ervor is immediately removed,
thus reducing the number of ervrors
by one.

Same as Schick-Wolverton except for:

2. The error discovery rate is a

constant during a time interval and

is proportional to the nunber of
errors remaining, the total time
previously spent in debugging, and an

"averared" error search time during

the current debup interval.

Schick~- 1.
wolverton

Modified
Schick-
wolverton

Table 2. Model Fquations

Yodel Hazard Function
Jelinski~ z2(t ) = g[XN - n ]
- i i-1
loranda
Schick- zZ(t ) =g{N=-n, ]t
Volverton i =174
todified zZ(t ) =gN - [(T,_ - t./2]
Schick- 1 LRt B
wolverton

where: @ is the failure rate
% is the number of initial errors
n, is the cunulative number of errors found
through the i-th debugging interval
T, is the cumulative time spent debugging
through the i-th error

Notes: lHazard Function is the probability of an
error occuring in a given infinitesimal time
interval given that no error has occurred

rreviously to  that interval. The hazard function
is related to the reliabhility R(t) and mean time
to failure 'TTF hy the following:

1

(2)

R(t) = EXPl'ﬁftz(s)ds]

£
CTTF = ﬁf R(t)dt

Project Discussion

In this section a description of each of the four
projects, from which the error data

analyzed was
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obtained, is given,
projects are
4,

To maintain  anonyaity the
referred to as Projects 1, 2, 3 and

Project 1

This project was a real-time conlrulysystum for a
land-based radar  system written mostly  in
JOVIAL/J3, with the Executive and a ‘ew  of the
application modules written in Assemhly.] The
data obtained for this project was fron the formal
testing of all the project software, includinp the

Executive. Formal testing bepan with Build
Inteprdation, where the modules were tested with
the system executive and system data base. Upon

successful  completion of this testing a build was
formed, which then was passed on tn Acceptance
testing, After conmpletion of Acceptance testing
the huild entered Operational bDemonstration, where
a series of increasinply demanding mission
profiles designed to ecxercise the system and
evaluate 1ts response were run. It is important to
note that this system was a denonstration model,

i.e. it was only desipgned to demonstrate that a
system neeting the wuser requirements could be
designed and built. It was never intended to
become operational.

Project 1 software was developed using both

top~down and bottom-up techniques and in a modular

fashion, For cxample, module specifications were
derived from the top-down starting with the
systen~level requirements. System integration was
performed in incremental builds to check the
interrelationships anong the softwire wodules and

with the hardware. Dummy modules and drivers were
used for testing those modules not part of a given
build.

Project 2

Project 2 was a command and control system written

in JOVIAL/J4.2 The software was developed in a
series of modifications with each nodification
governed by a separate set of requirements and
developed independently. The sof tware was
developed functionally, 1i.e. the project was
divided into work units responsible for different
functions, Testing of each modification was

conducted in five phases startinpg with Development
testing by the development rersonnel to
demonstrate specific functional capabilities, test
data extremes, etc. Formal testing bepan after
bevelopment testing with Validation and Acceptance
testing. vValidation testing was performed by an
independent test group at the subsystem level and
demonstrated the approved software performance and
requirements. Acceptance testing ran a subset of

the Validation tests tu demonstrate specific
requirements., After this testing the software
underwent final Integration testing by an
independent group. This Integration testing
demonstrated that the applications software

correctly interfaced with the operating system and
systen support software. Data used in this study
was from the formal testing of the Project 2
applications software only.




Project 3

Pruoject 3 was a large comnand and control project
written in JOVv1AL/Ja 12 Structurally  and
procedurally, Project 3 was developed similarly to
Project 2. HPowever, the Project 3 software
underwent an extra Operational Demonstration test
phase in addition to the five test phases the
Project 2 software underwent, The Operational
Nemoustration testing, which beyan after
Integration testing, was desipned to demonstrate
the software in an operational environment wusiny
an operational tineliae and operational data, The
data obtained from this project was from the four
foraal test phases (Validation, Acceptance,
Intepration, Operational Demonstration) of the
applications software,

Project 4

This prujecr was a  large avionics software
application program written in JUVIAL/J3B and
Assenbly., Thae software consisted of five nmajor

functional areas in the operational software aund
two in  the sinulation software. Testiny of this
suottware bepan with llodule Verification testing
perforned by the developer of each module. Once
this testing was finished, the module was released
for formal testing. Formal testing began with
Inter-llodule Compatability testing where the
software was checked against its functional
requirements as a total unit, and which was done
by the sof tware development proup., After
completion of this testing the software system was
piven to an  independent svstem test proup for
Systems Validation tresting, where acceptance
testing for quality control purposes was
performed. The data obtained for this project was
from the two formal test phases and is from loth
the operational and simulation software for the
first two versions (called blocks) of the software
systen.

Table 3 contains a sunmary of the four projects.

lodel Results

The data used in this study was from SPRs and was
restricted to those errors that resulted in a
change to the software itself. The reason for this
was that although unquestionably Jocunmentation
errors are important and should be considered
along with the other types of software errors, a
confusion in the interpretation of the Project 2
and 3 non-software errors forced the arbitrary
decision to eliminate all non-software errors,
including documentation errors, to aveid confusion
in interpreting model predictions, Opening dates
were used instead of closiny dates on the SPRs
because of biases introduced in closing SPRs due
to prioritizing and schedule demands.

The data was orpanized into errors per day and
errors per weck to see how the use of different
time frames for the data affected model
predictions. Since the data was subdivided
tunctionally for all four projects, it was decided
to use the date of the first SPR and the latest

Table 3. Project Characteristics

Praject
1 2 ] 4

Language JOVIAL/J3 JOVIAL/J4 JUVIAL/JG JUVIAL/J3R

Used Assenbly Assenbly
Size 86780(J)  Y6931(D)  115346(J) 40640())
(Lines 49900(A) 2L4065(A)
of Code

or No.

of Hach,

Inst.)

No. of 109 173 249

Modules

Uperate  Real-Time Batch Ratch Real-Tirme
ode
Formal Build In- Intepra- Inteyra- Inter-
Testing tegpration tion tion Codule
Accept- Valida- Valida= Compata—
ance tion tion hility
Opera- Accept~ Accept- Systens
tional ance ance Validu-
Denon- Opera- tion
stra— tional
tion Dere a=
strat-
ion

date that a subsystem bepan testing as  two  dales
for model analysis to sce if the start date ot
model prediction affected wmodel predictability,
All results  will bhe given fYor both dates.
Finally, operational data was available tor
Project 3 only. Thus all remarks made concerning
model predictability for Projects 1, 2 and 4 are
based on conversations with project developers and
on relative comparisons.

All results will be presented in terms of tie
predicted number of remaining errors, i.c. the
number of predicted initial errors nmiiws  the
number of errors found to date. For notation
purposes, the nmodels will be denoted as follows:

Jelinski-Yoranda (“aximum Likelihood): I
Jelinski=Yorunda (lLeast Squares): LJ°
Schick=Wolverton (HMaximum Likelihood): Sk
Schick-Wolverton (lLeast Squares): LS\
Modified Schick=Uolverton: "0bsy

Table 4 prescats a summary of  the total project
and  summed  criticality and subsysten predictions

tor the five models for Projects l=4. Note  that
"~--" jndicates nonconvergence of  the estinate
cyuations lor that particular model. Vso,  the

numbers in "[]" are the nunber of errors found up
through the end of formal testing, ana the nunber
in "()" for Project 3 is the actual number of
remaining errors,
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Table 4. Total vs, Sumved Predictions

fotal

Svstem Criticality  Subsysten

Start Prod Pred Pred
Pj Date Yodel  Day teek  Day  Week hay  VWeuk
Io1=-n2-73 J 724 6Yb RO2 754 --~ -——
[1853] Sh 26 156 37 116 -~ -
HODSY 14 13 13 12 ) IR
Lt 54 ]9 627 3RO 1326 YA
Lsw 8R21 111N 16477 4K04 26995 (1793
3=-06=73  JU 499 480 535 S06  --~ -
11769] Su 14 108 4l 73 --- -—--
HODSK R 7 8 6 23 20
Lo 51 s7 832 397 1524 Hh20)
LSw 8814 984 16979 4824 28028 |1H2R
2 lu=14=71 Ji s—= =mm ==s e=e - -—
1212]) SW ~=— mmm mmm e - -

HoDsSv 82 75 297 169 ---
LJi 140 37 372 188 633
LSW 1993 750 3891 1677 5321 2594

1-17-72  Jit 72 Bh mmm mom mee —eo
{189] s\ 39 56 === =-= o= -—o
oSk 5 3 15 9 =~ -
L 99 46 201 140 4R3I 271

LSW 1315 330 2237 S60 4224 {an2

3 6=01-73 I 1288 1179 === —-e  —em aee

[2191] s 955 1289 === —m= === oo
(198) BODSW 42 25 SD4 415 A5 43
LIt 88 23 390 143 Rl4 419
LSk 2155 685 2983 2023 11140 3550
7-28-73 g 2% 198 —esm —me oo oo
[1307]  sW 193 220 === mmm eem oo
opst 10 1 55 3% 52 52
L 81 27 3318 139 K45 340
LSY 1322 505 2006 1166 5966 2355
4 5-22-73 I ——— e —— -
(1877]  su _— - -— -
1ONSW 7930 A323 —— e
Lt 176 74 2710 1213
LSW 9682 2202 28629 12379
8-27-74 Jil 650 591 -— -
(1509]  sw 185 625 — e
nopsw 27 22 153 473
L 116 63 739 488
LSW 234 1103 10682 3250

Total Pruject Comparison

As can he seen from Table 4, there is o«
considerable difference in predictability when the
different start dates for model prediction are
used, and this difference shows up for all four
projects. For example, for Projects 2 and 4 the JU
and S¥W models fail to converpe using the date
testing started as the start date for model
predictions, while these two models did converye
when the date all models were ready for testing
was used as the start date. Notice the
significant drop in remaining error predictions in
many instances between the use of the two
different start dates, For instance, for Project 4
there is a factor of 100 drop in the renaining

(]

error predictions for the “0DSE model when 8=27-74%
is used, as opposed to 5=22-71, a5 the start date,
The same is true for the 'ObSW  remaining  crror
predictions  for Project 2, althouph here there s
only a factor of 10 ditference. However, there are
instances, particularly for the LI and 1.8\
models, when there is no significant difierence
between the reraining error predictions using  the
two dJdifferent start dates. Thus it would appear
from the total project predictions  that the
difterence in start dates affects the taxioun
Likelitood parameter estimations more than  the
Least Squares parameter estinations.

The daily versus weekly nodel predictions do not
ufter as convincing a pattern., In most cases there
does not appear to  be  a significant difterence
between  using  the day dand weed as  the ti-e
interval, although the LI and LS. models do  in
sone cases show some nontrivial differences. tor
exanple, for Project 2 usi-» the 10=14-71 start
date the vremaining error predictions for the LIJ"
model were 140 using the day and 957 using the
week, The LSW model predicted 1315 using the dav
and 330 usinz the week for Projecrt 2 with a
1-17-72 start date. lowever, 1in sone ases the
“weekly” prediction was preater than  the "datlv”
prediction. {or example, the L1'' model predicted
5! remaining errors using the dav  awd R errors
using  the week for Project 1 with a 3=0h=~73 start
date.

On a project versus project basis, clearly the L&W
model predicts much higher values than  the other
nodels, while the 'OLsW nodel penerally predicts
lower values (hat the aother rmodels, trom  the
actual remaining  error count for Project 3 it is
clear that those wusing 7=28-73 are auch more
accurate than those wusinr 6-01-73, with sone
predictions being almost "two jood”. Since Project
2 and 3 arce botth command and control projects, onc
would  expect  that the sane  pattern  of model
predictability holds for both projects. From Tanle
4 it does appear that using 1-17-72 as the start
date pives realistic predictions for all ~edels
except the LSL model, vhile for the 10-14~71 start
date only the 1ODSW and LI models nive reasonntle
predictions. One would hope that the actual nunber
of remaininpg errors was closer to the “I-17-72"
predictions than the  “10=14-71"  predictions.
Project 1, beinp a wvariation of a comnand and
control proiect, would also hopefullv aive the
same pattern of nodel predictability, and from
Table 4 it appears that this is so. For Project
4, since it 1is an avionics development and thus
sipnificantly different from the other three
projects, one would he interested in  any
difterences in nodel predictability. From Table 4,
one can note that the sane penerdl pattern appears
with respect to tiw difference between the two
start  day predictions. Wowever, it is interesting
to note that the Project 4 predictions seen to  be
hisher overall than those for the other three
projectse The notable exception is the LSG nodel
predictfons  for the 8=27-74 start date. This does
suppest (at least for the limited data  available)
that the raximum ILikelfhood parawecter estimates
micht not be as accurate for avionics software




predictions  as the Least Squactes estimates, while
Just  the reverse holds  for the Project -3
predictions (when the models coaveryed),
uvbviously wore testing is needed to verify this
hypothesis,

Criticality and Subsysten Predictions

Note  frun Table 4 that no criticality data was
available for Project 4. In order to understand
the criticaltity predictions, it is iaportant to
note that the categorization of  each error  was
made (by the developer) on the hasis of the depree
it was felt that error would impede the exeention
of a test case or prohibit deronstration of a
requirenent.  As can be seen from Table 4, just as
for the total project basis the nmodel predictions
are pencerally lower for the case when the date all
modules dare ready for testing is used as the start
date than when the start of testing was used as
the  start  date.  The main  exception is the LSW
model preadictions for Pruject 1. There is no
three project pattern hetween the "day" and "week"
predictions. For wexample, for Project 1 with a
1-2-73 start date, the criticality predictions for
the Ji, TODSV, LI ang LSW models tor the "week"
are  less  than or equal to the "day" predictions,
Powever, the SW nodel predictions are higher for
the “week” than tor the "day". Note, however, that
except for the Project  iSW predictions the
"week!" predictions for Projects 2 and 3 were lowver
than the "day" predictions.

From Table 4 it alsc appears that for the
subsysten predictions, as was the case for the
criticality and total project predictions, wusing
the date when all nodules are ready for testing
gives penerally nore realistic predictions than
using the date testing actually starts. Also, for
the suhsystem predictions the "day” versus "weck"
predictions showed a fairly consisreat pattern for
Projects I=4 of the "weck" predictions being lower
thian  the "day" predictions, as was the case for
tihe Project 1-3 criticality predictions, witl, tihe
exception of Project 4 using the £=-27-74 start
date,

Surmariziay Table 4 we sce that in most casuvs  the
"sumned”  predictions are sreater than the "total™
predictions, ote, however, that for Project 1 the
Shoceriticality predictions total less than  the
"total" predictions for both start dates. Note
also that the difference between the "sumed"  and
"total" predictions is less for Project 1 than for
tue  other projects. Overall, the YOOSF mrodel
appeared to have the nost consistent predictions,
with the LI and LSW nodels appearing to have the
least consistent predictions. It appears that
renerally the criticality predictions are closer
to the "total™ predictions than are the subsysten
predictions. However, this is uwot totally
consistent, since for Project 3 the subsysterm
predictions are closer to the total than the
criticality predictions for the 'NODSW model. Thus
one can not draw any dominant patterns from this
“total” versus "summed” analysis.

Conclusions

1a presenting these results, atteapts bave  heen
nade  to draw pencral  conclusions  about  nodel
predictions. Since no totally constistent  patterns
bave  evolved in most cases, sencral conclusions
are  difficult. Pvowever, since in nost cases
Project 1 appears to deviate from patterns that
are aoniyant for the other  projects, ana  since
Project | was never intended to becore operational
winile the other three were, one could climinate
Froject 1 dand rake conclusions on  the basis  of
nodel predictions tor the other three projects, In
tormulating the f9llowinr conclusions, 1 Lave Jone
this orly with respect to the  subsysten and
criticality predictions, since the pattern was  so
domniirant for the Project 2-4 predictions,

Before starineg  any  conclusions, however, a fow
words dare necded about the nonconvergence of  the
1 and SW nodels  (and  in some cases the NODSY
model). It had becn hiypothwesized in [1] that the
reasoun for this nonconvergence was the size of the
data the nodels were applied against. The sizes of
some of the data, particularly Project 2, somewhat
nepates this hypothesis, Vowever, there does
appear to he a pattern of nonconverpence for those
data sets where the error density, i.e. the number
of errors found per wunit time, is sparse and
uneven, This 1is especially true for Project 4.
Thus it does appear that a significant factor in
determining the convergence of the Maximun
Likelihood ecstimates, since the Least Squares
estimates always converped, is the rate of error
detection. This would scen reasonahle, since all
three basic nodels iaplicitly assune a constant
level of testing. A sparse uneven error detection
deusity would certainly tend cto mnepate this
assunption, Houwever, more rescarch is needed to
verify this.

From the above analysis, then, the following
general conclusions can be drawn:

1. Clearly it 1is better to use the date all
modules are ready for testing to  bepin model
predictions than the date testing actually bepins,
This pattern was almost universally consistent
anong all the predictions,

2. For "conmand and control" projects such as
projects 2 and 3, it appcars that the *aximun
Likelihood estimates, when they converpe, sive
more rcasonable and accurate estimates than the
l.east Squares estimates,

3. For "avienics" projects such as Project 4, it
appears that the Least Squares estimates are more
reasonable and accurate than the Maximum
Likelihood estimates, However, this conclusion iy
sormewhat suspect due to  tae nonconverygoence
problems for the Project 4 data.

4. For the criticality and subsystem predictions,
it appears that wusing the week as the time
interval gsives more reasonable predictions than
using the day as the time interval.



Nata Availability

At this  point  the
needs to be stressed.,
have  been  based upon
RADC. This data has some nice
the availability in most cases of criticality
designations and the ability to restructure the
data  based wupon various classifications such as
functional subsystems. Pawvever, the data does have
sone  serious  limitations, First, the data is
historical in nature. Thus much of the information
that one needs to perform a conplete analysis of
different software errar prediction nodels,
particularly CPU tine data, was either totally
lackine or of such a cuwnulative nature as to bhe
unusahle, Sccond, the definitions among different
projects varied. Tor example, what one project
called intepration testing was not what another
project meant by intepration testing. How the
various error categories were  defined, as
mentioned earlier for the Project 2 and 3 data,
differed anonp the four projects. Also, the four
projects were not consistent in wbat information
could be provided. For example, no criticality
data available for Project 4. On another
project from wvhich error data wus obtained but not
used in this study, no information was available
as to the opening date of the SPRE; only the
closing date was available,

problem of data availability
All of the conclusions aade
work on Jata available to
features, such as

was

with the
available

obvious shortcomings of the data
to RADC, it is nore than likely that as
more data does hecome available the conclusions
drawn  in this analysis nay bave to be sliahtly or
totally altered. In addition, several patterns
were noticed in analysis of the RADC data, such as
the problem of model nonconverpgence and the
preater accuracy of the MLFE or least Squares
estimates under certain conditions and for certain
"types" of projects, that need more research.
Powever, to rperform this additional research
requires both additional and more complete data.
More data is also needed to perform more
statistically wvalid tests for interpreting model
accuracy.

Thus it becomes very clear that the limitations of
the data available to RADC, and to most attempts

to validate software crror prediction models,
requires more complete, and simply nore, data.
This implies several issues, though. First,
precise definitions need to be made of the data
elements  that  should be collected on software
projects so that the maximun benefit can be
obtafned in terms of software error model

analysis. In the case of DOD, this translates into
the need for develnpment of appropriate Data Item
Descriptions (DINs) that can be used in software
procurements to require a contractor to collect
the desired software error data in the desired
formats., Second, data collection on on-going
software developments must be {nitiated to provide
conplete and accurate data of the type necessary

for model analysis. This data collection is also
necessary to analyze projects that use, for
exanple, modern programming practices to perform

analysis of the

benef{ts of such practices in a
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formalized statistical manner.

Last, and most irmportant from an  2ADC viewnoint,
there s the need for a centralized data base
where researchers can ohtain software data of  the
form necessary for his particular rescarch. This
data basc must permit the specification of various
catesories and forats of softwire data on  either
a sinple project or cross project basis, The most

difficult problem that Wils faced in the
performance of this RADC study was the large time
required to take the data from {ts original card
inage tape form and extract the necessary
information in the required form, for input into
the various mwodels. A conputerized data base for
this type of information would have areatly

expoedited model analysis. Also, a computerized
data base would facilitate storage of nmore data

sets, and would help in specifying unique and
consistent descriptors of the varjous data
clements  so that the "apples and oranges' problem

can be eliminated. Finally, this data base will
facilitate the wuse of software data for purposes
other than rescarch, most notably in tracking and
manaping large software development projeccts. RADC
is currently developing a pilot Data Analvsis
Center for Software (DACS) that will service all
kinds of softwarc data and which will address the
problems described above. Clearly such a ceonter
is nceded for both research in software error
prediction, and in providing bhetter nethods  for
monitoring software developments,
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