AD A 104050 OTTE FILE COPY DEPARTMENT OF PHYSICS 81 9 10 025 | يرفية فكميرا مقلقه وراوي | | |--------------------------|--| | GRALI | -X | | | | | iounced | Ħ | | fication_ | | | | | | • | | | ibution/ | | | lability | Codes | | Avail and | /or | | Special | | | 1 | | | | | | 1 | | | | GRA&I TAB nounced fication ibution/ lability Avail and Special | OFFICE OF NAVAL RESEARCH Contract N00014-80-C-0213 Project NR 092-558 (4) TR-60] Technical Report No. 2 FRACTO-EMISSION ACCOMPANYING ADHESIVE FAILURE. J. T. Dickinson, M. K. Park, E. E. Donaldson, and L. C. Jensen Physics Department Washington State University Pullman, WA 99164 Reproduction in whole or in part is permitted for any purpose of the United States Covernment Approved for Public Release: Distribution Unlimited 1171959 | | Company of the second s | |--|--| | REPORT DOCUMENTATION PAGE | READ INSTRUCTIONS BEFORE COMPLETING FORM | | 1. REPORT NUMBER 2: GOVT ACCESSION NO. | 3. RECIPIENT'S CATALOG NUMBER | | Technical Report 2 AD-A104 050 | <u> </u> | | 4. TITLE (and Subtitle) | 5. TYPE OF REPORT & PERIOD COVERED | | Fracto-Emission Accompanying Adhesive Failure | Technical Report | | , | 6. PERFORMING ORG. REPORT NUMBER | | 7. AUTHOR(s) | 8. CONTRACT OR GRANT NUMBER(s) | | J. T. Dickinson, M. K. Park, E. E. Donaldson, | | | and L. C. Jensen | N00014-80-C-0213 | | 9. PERFORMING ORGANIZATION NAME AND ADDRESS | 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS | | Physics Department | AREA & WORK UNIT NUMBERS | | Washington State University | Į | | Pullman, WA 99164 | NR 092-558 | | 11. CONTROLLING OFFICE NAME AND ADDRESS | 12. REPORT DATE | | Office of Naval Research | August 29, 1981 | | Power Program | 13. NUMBER OF PAGES | | | 13. NUMBER OF PAGES | | Arlington, VA 22217 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) | 15. SECURITY CLASS. (of this report) | | 14. MONITORING AUGUSTENAME BANDURESSON BRITAIN BON CONTESTING CONTESTING | 197 SECONI L. GPUGGi-fas mig salatide | | | Unclassified | | <u>(</u> | 15A. DECLASSIFICATION/DOWNGRADING | | | SCHEDULE | | 16. DISTRIBUTION STATEMENT (of this Report) | And the same of th | | | | | Approved for public release; distribution unlimit | ited | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different iron | m Reports | | TA DISTRIBUTION STATEMENT (AS MIS ASSESSED TO MISSION OF THE MISSI | at traperty | | | : | | i · | | | • | | | 18. SUPPLEMENTARY NOTES | | | 10. SUPPLEMENTARY NOTES | • | | Submitted for publication in: Journal of Vacuum | n Science and Technology | | 4 | i e | 19. KEY WORDS (Continue on reverse side if necessary and identity by block number) Adhesive failure, interfacial failure, fracture, delamination, crack propagation, fracture surfaces, exo-emission, electron emission, tribostimulated exo-emission, chemi-emission, surface charging, fracture of: polymers, filaments, fibers, composites, filled polybutadiene, elastomers. Peeling of adhesive tape. 20. ABSTRACT (Continue on reverse side it necessary and identity by block number) Experimental studies of the emission of electrons (EE), positive ions (PIE), and photons (phE) accompanying fracture are presented for systems involving adhesive failure. The systems studied include interfacial failure between epoxy—brittle materials, polybutadiene—glass, and pressure sensitive adhesives—polymers. Time distributions and energy distributions are shown and for a few systems we compare EE and phE. ## FRACTO-EMISSION ACCOMPANYING ADHESIVE FAILURE J. T. Dickinson, M. K. Park, E. E. Donaldson, and L. C. Jensen Department of Physics Washington State University Pullman, WA 99164 ## **ABSTRACT** For a wide range of materials, emission of electrons (EE), positive ions (PIE), and photons (phE) is observed accompanying fracture. Here we report on work concerning emission from adhesive failure. The systems studied include interfacial failure between epoxy--brittle materials, polybutadiene-glass, and pressure sensitive adhesives--polymers. When interfacial failure occurs, it produces highly excited surfaces with intense charge separation. De-excitation in the presence of surface charge produces intense, long lasting (several minutes) emission. Energy distribution curves for both EE and PIE decrease monotonically with a tail extending out to several hundred eV. For a few systems we compare EE and phE which show different decay characteristics. ## INTRODUCTION During and following the fracture of materials, the emission of charged particles, 1-6 neutral particles, 7 and photons 3,8,9 have been observed. Studies of electron emission (EE) during the tensile elongation of oxide-coated aluminum, sometimes referred to as tribo-stimulated exoemission, have shown that fracture of the oxide coating is the initial cause of the ejected electrons. 4-6 Similarly, positive ion emission (PIE) neutral emission and photon emission have been observed on the same oxide-aluminum systems, and were shown to be due to oxide fracture. (Photon emission is most frequently referred to as tribo-luminescence. 8,9) These various types of emission have some shared characteristics suggesting common mechanisms in their production. We refer to all forms of such emission accompanying fracture as "fracto-emission" (FE). In Ref. 10 we reviewed the factors which appear to contribute to FE and presented a survey of charged particle measurements we made on a wide range of materials undergoing fracture. Briefly, when a crack propagates through a material the crack walks are left in a highly excited, nonequilibrium state. For nonmetals this departure from equilibrium involves broken bonds, liberated fragments (e.g. free radicals, atoms, charged species) defects (e.g. point defects), charge separation often involving the filling of localized surface states and intense electric fields) and a localized rise in temperature. All of these factors represent high concentrations of energy in a small volume and may contribute to fundamental processes such as Auger transitions, 11 ESD-like transitions, 12 and dipole-transitions that lead to FE. An example of this is chemi-emission 13 where during a chemical reaction at a surface an excited intermediate state is produced capable of producing either photons or electrons, the latter by an Auger process (and in our case would involve trapped electrons closest to the vacuum level). During fracture at interfaces, often called adhesive failure or interfacial failure, the bonds broken and degree of charge separation may be quite different from cohesive failure in a homogeneous material. For example, Jonath 14 discusses the fact that as one approaches the adherend, there is a gradient in chemical and mechanical structure due to an influence of the bonding surface. Thus, upon failure, depending upon the locus of fracture, unique excitations and species can be produced. Also, in polymers, it is known that fracture can produce high concentrations of free radicals, as determined by e.s.r. measurements. 15 In this paper we present additional work on FE accompanying and following the fracture of materials where interfacial failure occurs for systems involving a polymeric component (e.g. matrix, adhesive, or adherend). ### EXPERIMENTAL Details of our experimental procedures are given in Ref. 10. The samples are fractured by applying tensile stress. The typical cross-sections of bulk samples were 0.1 to 20 mm². We fractured bare filaments, typically 10 µm in diameter, of such materials as glass and Kevlar. These were mounted so that single filaments could be broken sequentially. Epoxy-strands of these materials consisted of about 250 filaments in DOW DER 332 Epoxy. Filled elastomers consisted of untreated small glass beads 30-95 µm in diameter in a polybutadiene matrix. These samples had cross-sections of 15 mm² and contained amounts of glass beads varying from 0 to 34% by volume. Another type of interfacial failure studied involved the delamination of 3M Filament Tape; i.e., the separation of the polyester backing from the glass filaments which adhere by means of a natural rubber-based adhesive. For such studies, typically 1 cm² of surface was created in a time of 10 s. Similar studies were made from the peeling of 3M MAGIC TRANSPARENT TAPE from a PMMA surface. The charged particle experiments were carried out at $1-4 \times 10^{-6}$ Torr and the residual gases consisted primarily of CO, $\rm H_2$, and $\rm CO_2$. Some samples were tested in an ion-pumped system at 10^{-8} Torr--no differences in the FE were observed in the two environments. Charged particles were detected with channel electron multipliers (CEM), Galileo Electro-Optics (4039), positioned 1 cm from the sample. Photons were detected using a Bendix BX 754A Photon Countertube, with an S-20 photo-sensitive surface. Data were handled with standard pulse counting methods and stored in a multichannel analyzer. #### RESULTS The fracture of filaments of graphite and Kevlar gave rapidly decaying EE with time constants on the order of 10 µs for graphite and 100 µs for Kevlar. The graphite decay is very similar to that observed for E-Glass and S-Glass filaments. We also fractured pure DER 332 epoxy and obtained the 25 µs decay time as shown in Fig. 1. PIE time distributions for these materials are indistinguishable from these electron curves. When we fracture the corresponding fiber-reinforced epoxy strands made from the same filaments and epoxy, we find emission curves that differ from those for pure materials. Figure 2 shows EE and PIE curves for the Kevlar-Epoxy and Graphite-Epoxy systems. On the scale shown, the time required for is usually less than one channel. The decay is seen to last for many seconds--some of the more intense emitters will give detectable emission an hour after fracture. Although intensities differ, we have simultaneously measured PIE and EE from the same fracture event and found the decay curves to be of the same shape. This suggests a common rate-limiting step for the two types of emission. SEM photographs of the samples show delamination and separation of the filaments from the epoxy. This interfacial or adhesive failure is most likely responsible for these major FE components with the slow decay and may serve as an indicator of the extent of interfacial failure that has occurred. Figure 3 shows on a log scale the normalized energy distribution of the EE and PIE produced by differentiation of retarding potential curves. Both curves are very similar showing a peak near 0 eV with a significant quantity of higher energy particles in the tail. The presence of these higher energy particles suggests that the charging of the fracture surface (due to separation of charges) plays an important role in producing the observed charged FE. Again, the similarities in the EE and PIE energy distributions provides further support that they share a common mechanistic step. Similar results are seen for polybutadiene with and without glass beads as seen in Fig. 4. The peak intensity created during fracture and the after-emission are considerably more intense when the glass beads are present. Gent has shown that the beads become detached during straining of the matrix. This adhesive failure is considered the cause of the enhanced FE. Figure 5 shows the dependence of the total emission (in 200 s) as a function of the quantity of glass beads in the polybutadiene, for both EE and PIE increasing with increasing bead concentration. The peeling of tape from a surface also produces charged particle emission as well as visible photons. Figure 6 shows the EE and phF, from peeling 3M MAGIC TRANSPARENT TAPE from Plexiglas. The EE is high during peeling and decays slowly afterwards. The phE is above the noise only during peelings. Although these FE components may share a common excitation step, the photon mechanism decays away much quicker. Similar results are seen for the delamination of the filaments from the polyester backing of 3M FILAMENT TAPE, as seen in Fig. 7. Retween a and b we have delaminated the surfaces, and reattached the surfaces at c (which causes the EE to disappear), then repeated the process, showing that EE and phE is produced by the second and third detachment (i.e., virgin bonds are not necessary). ### CONCLUSIONS We have shown that fracture involving adhesive failure leads to intense, long-lasting EE and PIE. This has been shown for fiber-reinforced epoxy, polybutadiene filled with glass beads, and pressure sensitive adhesives. The detachment of adhesives from adherends is frequently accompanied by intense charge separation ¹⁴ as well as the creation of excited and reactive species, e.g., free radicals. As previously argued, ¹⁰ we do not attribute the observed charged particle emission to field emission, but we do feel that the electric field from surface charge patches (of both signs) is responsible for the particle kinetic energies observed and may also affect the emission intensity. The latter could be due to an influence on the mobility of active species near or at the fracture surface as well as a possible E-field dependence of transition probabilities in excited species. The enhanced effects we see when interfaces are involved is likely due to a) the different types of chemical species produced by adhesive failure (as compared to cohesive failure) and b) the degree of charging that occurs with interfacial failure. ### ACKNOWLEDGEMENTS This work was supported by the Office of Naval Research, Contract N0014-80-C-0213. We wish to thank R. L. Moore, Lawrence Livermore Laboratory, for providing samples of filaments and fiber/epoxy strands, and Dr. A. N. Gent, University of Akron Institute of Polymer Science for supplying the polybutadiene samples. We are also grateful for their interest and advice. ## Figure Captions - Fig. 1. Time distributions of EE due to fracture of 10 µm graphite and Kevlar filaments and bulk epoxy (Dow DER 332). - Fig. 2. EE and PIE from fracture of filament/epoxy strands: Kevlar and graphite. - Fig. 3. Energy distributions, on a log scale, for EE and PIE from Kevlar/Epoxy. - Fig. 4. EE and PIE from fracture of polybutadiene with and without glass beads. - Fig. 5. The total emission (counts accumulated over 200 s) as a function of the volume percent of glass beads in polybutadiene. - Fig. 6. EE and Photons from peeling 3M-MAGIC TRANSPARENT TAPE from PMMA. - Fig. 7. EE and Photons from Delamination of 3M FILAMENT TAPE. ## References - 1. J. T. Dickinson, P. F. Bräunlich, L. Larson, and A. Marceau, Appl. Surf. Sci. 1, 515 (1978). - D. L. Doering, T. Oda, J. T. Dickinson, and P. F. Bräunlich, Appl. Surf. Sci. 3, 196 (1979). - 3. B. Z. Rosenblum, P. F. Bräunlich, and L. Mimmel, J. Appl. Phys. 48, 5262 (1977). - 4. J. T. Dickinson, D. B. Snyder, and E. E. Donaldson, J. Vac. Sci. Technol. 17, 429 (1980). - 5. J. T. Dickinson, D. B. Snyder, and E. E. Donaldson, Thin Solid Films 72, 223, (1980). - J. T. Dickinson, E. E. Donaldson, and D. B. Snyder, J. Vac. Sci. Technol. 18, 238 (1981). - 7. L. A. Larson, J. T. Dickinson, P. F. Bräunlich, and D. B. Snyder, J. Vac. Sci. Technol. 16, 590 (1979). - 8. A. J. Walton, Adv. Phys. 26, 887 (1977). - 9. J. I. Zink, Acc. Chem. Res. 11, 289 (1978). - 10. J. T. Dickinson, E. E. Donaldson, and M. K. Park, J. Mat. Sci., to be published. - 11. H. Hagstrum in Experimental Methods in Catalytic Research Vol. III, R. B. Anderson and P. T. Dawson, ed. (New York, Academic Press, 1976), pp. 42-81. - 12. M. L. Knotek and P. J. Feibelman, Phys. Rev. Letters 40, 964 (1978). - 13. B. Kesemo, E. Tornqvist, J. K. N. Ørskov, and B. I. Lundqvist, Surf. Sci. 89, 554 (1979). - 14. A. D. Jonath in Adhesion and Adsorption of Polymers, Part A, L. H. Lee, ed. (New York, Plenum Press), pp. 175-193. - 15. E. H. Andrews, in <u>The Physics of Glassy Polymers</u>, R. N. Haward, ed. (New York, John Wiley), pp. 447-451. - 16. A. N. Gent, private communication. - 17. B. V. Deryagin, N. A. Krotova, and V. P. Smilga, Adhesion of Solids (English Translation) Consultants Bureau, New York, 1978. Fig 1 # EE AND PIE ENERGY DISTRIBUTIONS FROM KEVLAR-EPOXY STRANDS # EE AND PHOTON EMISSION FROM PEELING 3M-MAGIC TAPE FROM PMMA THE PROPERTY OF THE PARTY TH # EE AND PHOTON EMISSION FROM PEELING 3M-MAGIC TAPE FROM PMMA | <u>No</u> | . Copies | • | No. Copies | |---|----------|---|------------| | Dr. S. Sheffield Sandia Laboratories Division 2513 P.O. Box 5800 Albuquerque, NM 87185 | 1 | | | | Dr. M. Farber
Space Sciences, Inc.
135 Maple Avenue
Monrovia, CA 91016 | 1 | | ٠ | | Dr. Y. M. Gupta
SRI International
333 Ravenswood AVenue
Menlo Park, CA 94025 | 1 | | | | Mr. M. Hill
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025 | 1 | | | | Professor Richard A. Schapery
Texas A&M Univ.
Dept of Civil Engineering
College Station, TX 77843 | 1 | | | | Dr. Stephen Swanson Univ. of Utah Dept. of Mech. & Industrial Engineering MEB 3008 Salt Lake City, UT 84112 | 1 | | | | Mr. J. D. Byrd
Thiokol Corp. Huntsville
Huntsville Div.
Huntsville, AL 35807 | 1 | | | | Professor G. D. Duvall
Washington State University
Dept. of Physics
Pullman, WA 99163 | 1 | | | | Prof. T. Dickinson
Washington State University
Deot. of Physics
Pullman, WA 99163 | 1 | | | # DISTRIBUTION LIST ## No. Copies No. Copies | Dr. Ingo W. May
Army Ballistic Research Labs
ARRADCOM
Code DRDAR-BLI
Aberdeen Proving Ground, MD 21005 | 1 | Dr. J. P. Marshall Dept. 52-35, Bldg. 204/2 Lockheed Missile & Space Co. 3251 Hanover Street Palo Alto, CA 94304 | 1 | |--|-----|--|-----------| | Professor N.W. Tschoegl
California Institute of Tech
Dept. of Chemical Engineering
Pasadena, CA 91125 | 1 | Ms. Joan L. Janney
Los Alamos National Lab
Mail Stop 920
Los Alamos, NM 87545 | 1 | | Professor M.D. Nicol
University of California
Dept. of Chemistry | 1 | Los Alamos, NM 87545 | 1 | | 405 Hilgard Avenue
Los Angeles, CA 90024 | 1 | Univ. of Maryland Department of Mechanical Eng. | | | Professor A. G. Evans
University of California
Berkeley, CA 94720 | | Froi. Michard M. Meriman | 1 | | Professor T. Litovitz
Catholic Univ. of America
Physics Department | 1 . | Naval Postgraduate School
Physics & Chemistry Dept.
Monterey, CA 93940 | | | 520 Michigan Ave., N.E.
Washington, D.C. 20017 | | Dr. R. Bernecker
Naval Surface Weapons Center
Code R13 | 1 | | Professor W. G. Knauss
Graduate Aeronautical Lab
California Institute of Tech. | 1 | White Oak, Silver Spring, MD Dr. M. J. Kamlet | 1 | | Pasadena, CA 91125 Professor Edward Price | 1 | Naval Surface Weapons Center
Code Rll
White Oak, Silver Spring, MD | | | Georgia Institute of Tech.
School of Aerospace Engin.
Atlanta, Georgia 30332 | | Professor J. D. Achenbach
Northwestern University
Dept. of Civil Engineering | ì | | Dr. Kenneth O. Hartman
Hercules Aerospace Division | 1 | Evanston, IL 60201 | • | | Hercules Incorporated P.O. Box 210 Cumberland, MD 21502 | 1 | Or. N. L. Basdekas
Office of Naval Research
Mechanics Program, Code 432
Arlington, VA 22217 | 1 | | Dr. Thor L. Smith
IBM Research Lab
D42.282
San Jose, CA 35193 | 1 | Professor Kenneth Kuo
Pennsylvania State Univ.
Dept. of Mecnanical Enginee
University Park, PA 16802 | l
ring | # Distrieurion (187 | No. 4G | <u>opies</u> | No. Co | <u>nies</u> | |--|--------------|---|----------------------| | Tor. J.F. Kincaid
Strategic Systems Erojest
Office
Department of the Navy | 1. | Dr. C.W. Vriesen
Thiokel Elkton Division
P.O. Box 241
Elkton, ND 21921 | 1 | | Room 901
Mashington, D.C. 20376
Stratagic Systems Project Office | Å | Dr. J.C. Hinshaw
Thiokol Masatch Division
P.O. Box 524
Brigham City, Utah 83402 | 1. | | Propulsion Unit Code SP2751 Dopartment of the Navy Washington, D.C. 20376 Mr. E.L. Throckmorton Strategic Systems Project Office | 1 . | U.S. Army Resmarch Office
Chemical & Biological Scient
Division
PRO. Box 12211
Research Triangle Park
NC 27709 | je
ces: | | Department of the Havy
Room 1048
Hashington, D.C. 20376
De. D.A. Flantgen | 1. | Dr. R.F. Walker
WSA ARRADOM:
DRDAR-LOE
Dover, NJ O7801 | 1 | | Thickel Huntsville Division Huntsville Division 35807 Mr. GVE. Manguah Thickel Componation Huntsville Division Huntsville, Alabama 35807 | †· | Dr. T. Sinden
Munitions Directorate
Propellants and Explanives
Defence Equipment Staff
British Embassy
3100 Massachusetts Ave.
Washington, D.C. 20008 | († | | tha. E.S. Sutton
Thickol Corporation
Elkton Division
P.O. Box 241 | 1 | ETC B. Lóving
AFRÓL/LK
Edwards AFB, CA 93523 | Ĩ | | Élktón, MD 21921
Dr. G. Thompson
Thiokol | 1 | Professor Alan N. Gent
Institute of Polymer Science
University of Akron
Akron, OH: 44325 | i)
cė | | Našatoh Division
MS 240 P.O. Box 524
Prigham City, UT 84302 | • | Mr. J. M. Frankle
Army Ballistic Research Lat
ARRADCOM: | ी ^र
bs | | Dr. TrF. Davidson
Technical Director
Thiokal Corporation
Government Systems Group
P.O. Box 9259
Odgen, Usah 84409 | · • | Code DRDAR-BLÍ
Aberdeen Proving Ground, M | D- 21005- | # ŊŢŖŢŔŢĔŲŦŢŎŃĊĿĹŜŤ | <u>No.</u> | Copies | No. Copies | |--|-------------|---| | Mr. J. Murrin
Naval Sea Systems Command
Code 62R2
Washington, D.C. 20362 | j. | Dr. A. Nielsen
Naval Weapons Center
Code 385
China Lake, CA 93555 | | Dr. D.J. Pastine
Naval Surface Weapons Cneter
Code RO4
White Oak
Silver Spring, MD 20910 | 1 ;∙ | Dr. R. Reed, Jr. 1
Naval Weapons Center
Code: 388
China Lake, CA 93555 | | Mr. L. Roslund
Naval Surface Weapons Center
Code R122
White Oak, Silver Spring | 1 | Dr. L. Śmith
Naval Weapons Genter
Code 3205
China Lake, CA 93555 | | MD 20910
Mr. M. Stosz
Naval: Sunface Weapons Center
Code R121 | î· | Dr. B. Douda
Naval Weapons Support Center
Code 5042
Crane, Indiana 47522 | | White Oak
Silver Spring, MD 20910
Dr. E. Zimmet | ·
1: | Dr. A. Faulstich
Chief of Naval Technology
MAT Code 0716
Washington, D.C. 20360 | | Naval Surface Weapons Center
Code R13
White Oak
Silver Spring, MD 20910 | | LCOR J. Walker
Chief of Naval Material
Office of Naval Technology
MAT, Code 07:12 | | Dr. D. R. Derr
Naval Weapons Center
Code 388
China Lake, CA 93555 | 1 | Māshington, D.C. 20360
Mr. Joe McCartney
Naval Ocean Systems Center | | Mr. Lee N. Gilbert
Naval Weapons Center
Code 3205
China Bake, CA 93555 | Ĩ | San Diego, CA 92152 Dr. S. Yamamoto 1 Marine Sciences Division Naval Ocean Systems Center San Diego, CA 91232 | | Dr. E. Mantin
Naval Weapons Center
Code 3858
China Lake, CA 93555 | .1 | Dr. G. Bosmajian 1
Applied Chemistry Division
Naval Ship Research & Development
Center | | Mr. Ř. McGarten
Navál Weapons Center
Code 3272
China Lake, CA 93555 | ì | Annapolis, MD: 21401: On. H. Shuey: Röhn and Haas Company Huntsville, Alabama 35801 | | | No. Copies | No. Copies | |---|------------|---| | Mr. R. Brown
Naval Air Systems Command
Code 330
Washington, D.C.: 20361 | 1 . | Dr. J. Schnur 1.
Naval Rèsearch Lab.
Code 6510
Washington, D.C. 20375 | | Dr. H. Rosenwasser
Naval Air Systems Command
AIR-310C
Washington, D.C. 20360 | 1 | Mr. R. Beauregard 1
Naval Sea Systems Command
SEA 64E
Washington, D.C. 20362 | | Mr. B. Sobers
Naval Air Systems Command
Code 03P25
Washington, D.C. 20360 | 1 | Mr. G. Edwards 1
Naval Sea Systems Command
Code 62R3
Washington, D.C. 20362 | | Dr. L.R. Rothstein
Assistant Director
Naval Explosives Dev.
Engineering Dept.
Naval Weapons Station | 1. | Mr. John Boyle 1
Materials Branch
Naval Ship Engineering Center
Philadelphia, PA 19112 | | Yorktown, VA 23691 Dr. Lionel Dickinson Naval Explosive Ordnance Disposal Tech. Center | 1 | Dr. H.G. Adolph Naval Surface Weapons Center Code R11 White Oak Silver Spring, MD 20910 | | Code D
Indian Head, MD 20640
Mr. C.L. Adams
Naval Ordnance Station
Code PM4 | 1 | Dr. T.D. Austin 1
Naval Surface Weapons Center
Code R16
Indian Head, MD 20640 | | Indian Head, MD 20640 Mr. S. Mitchell Naval Ordnance Station Code 5253 | 1 | Dr. T. Hall 1 Code R-11 Naval Surface Weapons Center White Oak Laboratory Silver Spring, MD 20910 | | Indian Head, MD 20640 Dr. William Tolles Dean of Research Naval Postgraduate School Monterey, CA 93940 | 1 . | Mr. G.L. Mackenzie 1
Naval Surface Weapons Center
Code R101
Indian Head, MD 20640 | | Naval Research Lab.
Code 6100
Washington, D.C. 20375 | 1 | Or. K.F. Mueller 1 Naval Surface Weapons Center Code Rll White Oak Silver Spring, MD 20910 | | | No. Copies | No. Copies | |--|------------|---| | Dr. R.G. Rhoades
Commander
Army Missile Command
DRSMI-R
Redstone Arsenal, AL 35898 | 1 | Dr. E.H. Debutts 1 Hercules Inc. Baccus Works P.O. Box 98 Mágna, UT 84044 | | Dr. W.D. Stephens
Atlantic Research Corp.
Pine Ridge Plant
7511 Wellington Rd.
Gainesville, VA 22065 | 1 . | Dr. James H. Thacher 1. Hercules Inc. Magna Baccus Works P.O. Box 98 Magna, UT 84044 | | Dr. A.W. Barrows Ballistic Research Laboratory USA ARRADCOM DRDAR-BLP Aberdeen Proving Ground, MD 210 | 1 | Mr. Theordore M. Gilliland 1
Johns Hopkins University APL
Chemical Propulsion Info. Agency
Johns Hopkins Road
Laurel, MD 20810 | | Or. C.M. Frey Chemical Systems Division P.O. Box 358 Sunnyvale, CA 94086 | 1 | Dr. R. McGuire 1
Lawrence Livermore Laboratory
University of California
Code L-324
Livermore, CA 94550 | | Professor F. Rodriguez
Cornell University
School of Chemical Engineering
Olin Hall, Ithaca, N.Y. 14853 | 1 | Dr. Jack Linsk 1
Lockheed Missiles & Space Co.
P.O. Box 504 | | Defense Technical Information
Center
DTIC-DDA-2
Cameron Station
Alexandria, VA 22314 | 12 | Code Org. 83-10, Bldg. 154 Sunnyvale, CA 94088 Dr. B.G. Craig 1 Los Alamos National Lab P.O. Box 1663 NSP/DOD, MS-245 Los Alamos, NM 87545 | | Dr. Rocco C. Musso Hercules Aerospace Division Hercules Incorporated Alleghany Ballistic Lab P.O. Box 210 Washington, D.C. 21502 | 1 | Dr. R.L. Rabie WX-2, MS-952 Los Alamos National Lab. P.O. Box 1663 Los Alamos NM 37545 | | Dr. Ronald L. Simmons
Hercules Inc. Eglin
AFATL/DLDL
Eglin AFB, FL 32542 | 1 | Pros Alamos Scientific Lab. P.O. Box 1663 Los Alamos, NA 87545 | | <u>No</u> | o. Copies | No. Copies | |---|-----------|---| | Dr. L.V. Schmidt
Assistant Secretary of the Navy
(R.E. and S) Room 5E 731 | 1 | Dr. F. Roberto 1
Code AFRPL MKPA
Edwards AFB, CA 93523 | | Pentagon Washington, D.C. 20350 Dr. A.L. Slafkosky Scientific Advisor Commandant of the Marine Corps Code RD-1 | 1 | Dr. L.H. Caveny 1 Air Force Office of Scientific Research Directorate of Aerospace Sciences Bolling Air Force Base Washington, D.C. 20332 | | Washington, D.C. 20380 Dr. Richard S. Miller Office of Naval Research Code 413 Arlington, VA 22217 | 10 | Mr. Donald L. Ball 1 Air Force Office of Scientific Research Directorate of Chemical Sciences Bolling Air Force Base Washington, D.C. 20332 | | Mr. David Siegel
Office of Naval Research
Code 260
Arlington, VA 22217 | 1 | Dr. John S. Wilkes, Jr. 1 FJSRL/NC USAF Academy, CO 80840 | | Or. R.J. Marcus
Office of Naval Research
Western Office
1030 East Green Street
Pasadena, CA 91106 | 1 | Dr. R.L. Lou Aerojet Strategic Propulsion Co. P.O. Box 15699C Sacramento, CA 95813 | | Dr. Larry Peebles
Office of Naval Research
East Central Regional Office | 1 | Dr. V.J. Keenan 1
Anal-Syn Lab Inc.
P.O. Box 547
Paoli, PA 19301 | | 666 Summer Street, Bldg. 114-D Boston, MA 02210 Dr. Phillip A. Miller Office of Naval Research San Francisco Area Office One Hallidie Plaza, Suite 601 | 1 | Dr. Philip Howe 1 Army Ballistic Research Labs ARRADCOM Code DRDAR-BLT Aberdeen Proving Ground, MD 21005 Mr. L.A. Watermeier 1 | | San Francisco, CA 94102
Mr. Otto K. Heiney
AFATL - DLDL
Elgin AFB, FL 32542 | 1 | Army Ballistic Research Labs
ARRADCOM
Code DRDAR-BLI
Aberdeen Proving Ground, MD 21005 | | Mr. R. Geisler
ATTN: MKP/MS24
AFRPL
Edwards AFB, CA 93523 | 1 | Dr. W.W. Wharton 1 Attn: DRSMI-RKL Commander U.S. Army Missile Command Redstone Arsenal, AL 35898 |