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"/This research Goncerns linear ordinary differential equations depending

1

in such a way on a parameter § that the "limit" differential equation

obtained by letting p tend to\ % jin the differential equation is of lower

order than the original one. B
T

Adopting a term custom!;} in physics we used the name boundary layer
problem for the question: What happens to the solution of a boundary value
problem of such a differential equation, if the parameter tends to ® in this
solution?

We gave a general answer to this question for the differential equation

% N{(y) + M(y) = 0, where N(y) and M(y) are linear differential
expressions of order n and m, respectively (n > m), and for non-
homogeneous boundary conditions which consist in prescribing the values of
derivatives (but not of linear combinations of such derivatives) at the end-
points. The question whether the solution of such a boundary value problem
converges to a solution of the limiting differential equations, as p * =,
and what boundary conditions are satisfied by the limit function could be
/C. -
The preparation of the report is sponsored by the United States Army under
Contract No. mm29-80-c50031 .
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decided by an easily applicable rule. This rule showed, among other things
that the solution converges only, if the prescribed n boundary conditions
are not too unevenly distributed between the two endpoints.

If the order m of the limiting differential equation is only one less
than the order n of the original differential equation, then the above
mentioned rule could be extended to more general types of boundary conditions
and also to non-homogeneous differential equations.

Since the most important boundary layer problems in the applications are
concerned with systems of differential equations, we gave a simple example for
the mathematical treatment of a boundary layer problem for a linear system of
two simultaneous differential equations.

The validity of the general rule proved in this research was seen to be
restricted by the assumption that the ocoefficient of the term of highest order
of differentiation in M(y) has no zeros in the interval of integration. 1In a
special example we showed that interesting results can be obtained, if this
assumption is dropped.

The theory of the asymptotic expansion of the solutions of linear
differential equations involving a parameter, developed by G. D. Birkhoff,
Noaillon, Tamarkin, Trjitzinsky and others proved an important and powerful

tool in these investigations,

AMS (MOS) Subject Classification: 34E15
Key Words: Ordinary differential equations, Parameter, Boundary conditions,

Asymptotic approximations, Boundary layers.,

Work Unit Number 1 - Applied Analysis
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COMMENT

In May 1980, the Mathematics Research Center organized a successful
Advanced Saminar on Singular Perturhations and Asymptotics in honor of the
retirement of a colleague, Wolfgang R. Wasow. His fundamental research is
responsible for many other rapid developments in this field since 1940, and
continues to play a vital role in modern theory and current applications.
Wasow's ®h.D. dissertation (N.Y.U., 1941), a small part of which exists in
print (On the asymptotic solution of boundary value problems for ordinary
differential equations containing a parameter, J. of Mathematics and Physics
32 (1944), 173-183), represents the starting point of this important flourish
of modern applicable research.

Following suggestions of several participants MRC is printing his 1941
thesis in its entirety as a TSR in order to make this valuable work more
widely available. Readers will note that the name "singular perturbations”
{which was only coined several years later by K. O. Friedrichs or W. Wasow or

possibly jointly, but neither is now able to recall the details) doas not

appear anywhere explicitly!
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i ON BOUNDARY LAYER PROBLEMS IN THE THEORY OF
ORDINARY DIFPERENTIAL EQUATIONS

Wolfgang R. Wasow
Introduction
Many problems in applied mathematics lead to questions of the following type:
Given is a differential equation involving a parameter
; p. This parameter occurs in such a way that the
"limiting®" differential equation, i.e. the Aaifferential
' equation obtained by letting p tend to infinity in

the differential equation, is of lower order than the

original one. What happens then to the solution of a
boundary value problem of the original differential

equation, i{f p tends to infinity in that solution?

It is by no means obvious - and not even always true, as we shall see - that the

solution of such a boundary value problem tends to a solution of the limiting differential

equation, as p tends to infinity. But even when this is the case the question arisges
LI what are the boundary conditions satisfied by the limiting function. As a solution of a
differential equation of lower order than the original one it cannot, in general, be J
expected to satisfy all the boundary contions prescribed in the original problem.

In those cases in which the solution of the original problem converges - as o tends 3

to infinity - to a solution of the limiting differential equation which does no longer
satisty all the originally prescribed boundary conditions, the solution f the original

problem shows a peculiar behavior for very large values of the parameter p. Some of the

A O

derivatives of the solution will assume very large values in a narrow region near the

boundary. As o tends to infinity, these derivatives will tend to infinity at a certain
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part of the boundary. In the most important applications of phenomena of this type the
first derivative of the solution - and, of course, all the higher derivatives - diverge at
parts of the boundary, as p tends to infinity.

In the physical interpretations this means the occurrence of "Boundary layers” in
which the quantity to be investigated increases or decreases very rapidly with the distance
from the boundary, when some physical constant is large. We shall use the name Boundary
Layer Problems, in a more general sense, for all related mathematical problems.

The most famous problem of this type is the relationship between the theories of
viscous and ideal liquids. An interesting boundary layer problem for a system of two non-
linear ordinary differential equations has been investigated recently by K. Friedrichs and
J. J. Stoker in a paper on the buckling of elastic plates, [9].

The majority of the applications lead to non-linear partial differential equations
whichk are so complicated that a complete mathematical treatment has not yet been attempted.
But even the boundary layer problem for linear ordinary differential equations, a problem
interesting from the mathematical as well as from the physical point of view, has as yet
been hardly investigated. The only paper known to the author of this investigation, on
this problem for ordinary differential equations is the article [7] by Erich Rothe, in
which the problem is solved for a very special linear differential equation of the second
order with constant coefficients.

In Chapter I of the present paper we discuss the boundary layer problem for linear
homogeneous differential equations depending linearly on the parameter, and for non-
homogeneous boundary conditions. The result of this part can be expressed by a simple and
easily applicable rule which determines immediately, for a given problem of this type,
whether the solution converges and what boundary conditions are satisfied by the limiting
function.

In Chapter II we investigate more thoroughly the case where the order of the limiting
Aifferential equation is lower by one than the order of the original differential equation.
In this case the statement of the general rule of the Main Theorem in Chapter I can be

formulated so as to include more general boundary conditions than those assumed in Chapter
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I. The problem is then solved -~ at leact for a drop of one in the order of the
differential equation - for the non-hor jeneocus equation. Finally, the usual method of
treating boundary layer problems, consisting of a transformation of the independent
variable and an appropriate modification of the boundary conditions, is shown to be
justified in this case. The method is sometimes used in more complicated problems without
mathematical justification.

In Chapter III some special examples of other types of boundary layer problems are
discussed.

The methods used in this paper are based on the theory of the asymptotic solution of
ordinary differential equations involving a parameter. This theory has been developed by
G. D. Birkhoff {1], Noaillon [2], Tamarkin i3], {4], Trjitzinsky (6], and others. 1In the
Appendix we give a short outline of the results of this theory as far as they are used in
this investigation.

I am deeply indebted to the Professors R. Courant and K. O. Priedrichs +hose help and
encouragement played a major part in the preparation of this thesis. The original
suggestion for this investigation came from Prof. Friedrichs, and his active interest in

the progress of the work has been of the utmost value.
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Chapter 1

THE BOUNDARY LAYER PROBLEM FOR THE DIFFERENTIAL
[
| EQUATTON %N(y) + My) =0

§1. Statement of the Problem

1. We consider the ordinary linear differential equation

(101)

: L(y,p) = 0 ,

where the linear differential expression L(y,p) is of the form

: Liy,p) = -:;N(y) + My) (102)

. with

]
n {n-v)
Ny) £ J a(x) y(x)
.. \Y]
. V=0

(103) ;

. m (m=yu) .
N My) = § b(x)y () {104) ;
: =0 u

'3
x is a real variable and p a positive parameter. We assume that the coefficients
‘ f av(x) and bu(x) admit at least n bounded derivatives in the interval
- a<x <B .,
If the order n of the differential expression N(y) is greater than the order m

of the differential expression M(y), then the differential equation (103) gives rise to a
i boundary layer problem for the "limiting" Adifferential egquation, i.e, the differential
: equation obtained by letting p tend to infinity in the original differential equation
L{y,p) = 0., For, this limiting differential equation is

My) =0 , (105)
and this differential equation is of lower order than (101), if

(106)

We shall also assume that

(106a)
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' Most of our results remain valid for m = 0. But at some points the incluaion of the
} ) - case m = 0 would make the statement of the result rather involved. It ssemed therefore
! preferable to exclude this case from the Main Theorem.

" Together with the differential equation (101) we prescribe n boundary conditions for

the function y(x). The boundary conditions considered in this chapter are of the form

L, (y) = & (1 = 1,2,00.,n) (107)
. 1 i ’ ’ ’ ’
B vwith constant t, and with
(Xi)
! Yy (B) for i = 1,2,...,r
1 L (y) = (108)
(11)
Ty Y {a) for i = r+1,...,n ,

where x = g and x = 8 are the left and right endpoints, respectively, of the interval
under consideration.'

- We assume that the boundzry conditions are arranged in such a way that
x1>x2) -co)Ar

and
Iy - v Tr*’ > Tr+2 > ces > tn .

: This arrangement is the opposite of the customary one, but it is more practical in our
case. All the numbers Ai and 1, are, of course, assumed to be less than n. r is the
number of boundary conditions prescribed at the right endpoint. The number of boundary
conditions at the left end point is then n - r.

:- One or both of the numbers Xr and T, may be zero, which means that the value of
; the function itself is prescribed at one or both endpoints. But our theory applies also to
e cases in which only derivatives of the function are prescribed at the endpoints. The H

boundary conditions (108) contain as a special case the initial value problem. We have

: only to set r =0, or r =n.

- (3
- . We shall use throughout this paper the notation y(‘)(x) for Q_%_
dx

-5e
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We make further the assumption
ao(x) ¥ 0, forall x in g <x < B8 , (109)
which makes it possible for us to set
ag(x) = 1 , (110)
without loss of generality.

A very essential condition for the validity of the theory that follows is that we must
have also

bo(x) ¥ 0, forall x in a<x < B . (111)
It is easy to see that a theory of boundary layer problems which does not assume (111) must
be expected to be much more complicated. Por by{x) 1is the coefficient of the first term
i1 the limiting differential equation (105). Hence, if bo(x) has zeros in a <x < 8,
these zeros will, in general, be singular points of the solutions of the limiting
differential equation.

To these assumptions we will have to add two more conditions of a rather essential
nature. Since these conditions can be more easily formulated in connection with our Main
Theorem we postpone their statement for a few pages.

In general, the differential equation {101) will have a unique solution U(x,p)
satisfying the boundary conditions (107). U(x,p) depends on the value of the parameter p.
We will be able to give a general rule which allows us to decide, for a given problem,
whether

u{x) = lim U(x,p) (112)

p+o
exists, and which are the boundary conditions satisfied by u(x). We shall sse also that
u{x), when it exists, is a solution of the limiting differential equation M(y) = 0.

The behavior of U(x,p), as p tends to infinity, will be seen to depend, in
general, on three things only:

(a) On the number n - m, i.e. the difference between the orders of the

original and the limiting differential equation. -

-6~
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(b) On r, 4{.e. on the way in which the n boundary conditions are

divided between the two end points.

(c) On the sign of the coefficient bgy(x).

2. There are a great many different possible cases for our boundary layer problem. In
some cases U(x,p) converges, as o + w, in some cases it diverges, and there are some
special occurrences that are not covered by the Main Theorem. This accounts for the fact :
that the Main Theorem, although very simple to apply, is somewhat lengthy to formulate. We

precede its general formulation by a few examples, in order to give, without proof, an idea

of the variety of possible occurrences. In the convergent cases the boundary conditions

satisfied by the limit function u(x) are obtained by canceling n ~ m of the given }

boundary conditions, usually taken among those involving higher orders of differentiation.

Example 1.
Lix,p) = % y''' o+ x3y +2xy" =0 |
. with the boundary conditions
y"(a) = lJ Y ' (w) = 11

Y'(B)"lz .

I1f, e.gs, a=1, g = 2, then bo(x) >0 in a <x < 8 and the solution U(x,p) of the
problem tends to the solution of the differential equation
M{y) = xzy' +2xy=0

satisfying the boundary conditions
Yy (g) = L,
Y8 = &
which are obtained by canceling the boundary condition given at x = q. If a= -2,

8 = =1, then bo(x) ¢ 0 and U(x,p) tends to the solution of M(y) = 0 with the

boundary conditions

BT TR VI B et SO T2 e e e e
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y*(a) = 13 y'(B) = lz
obtained by canceling the first boundary conditions at x = g.
But if a= -1, 8= 1, the condition (111) is no longer satisfied and our Main

Theorem does not apply.

Example 2.

(4) (3))

L(x, p) Elp (""" + cos xey + Xy" + xy =0

with the boundary conditions
y*(a) = 1.2

y'(a) = !.3

y (a) = g‘ y(B) = l1 .

If a= -2, = -1, then bo(x) < 0 and U(x,p) converges to the solution of the
differential equation
y* +y=0
satiafying the boundary conditions
y'(a) = L
y (o) = £,
which are obtained by canceling the first boundary condition at each endpoint. If a > 0,
8> 0 then bo(x) >0 4in a <x < 8 and U(x,p) tends in general, to the solution of
y* + y = 0 with the boundary conditicus
yla) = & vig =g ,
because in this case the general theory requires the canceling of the two boundary
conditions involving the highest order of differentiation.
But if
a= 2% ’ B=4x ,
then we have an exceptional case. Because then there is no solution of y" + y =0
satisfying the boundary conditions y(a) = l4, y(B) = £1, unless £ = ¢ = 0. Again, our

1 4
Main Theorem does not cover these special values of o and 8.

Example 3.

(4)

L{y,p) =~y -xy' -y=0

o |-

ARt |




"6
with the boundary conditions
\‘ Ylll(a)-“ ylll(a)-‘1
L
® b 4 (B) - lz
b4 () = !.3 o
If a<0, <0, then bo(x) >3 and U(x,p) tends to & solution of
, xy' =y=0
1
with the boundary condition y(B) = L , because the Main Theorem requires the canceling of
A : two boundary conditions at the right endpoint and of one boundary condition at the left
) endpoint. But if a> 0, B> 0, i.e. bo(x) < 0, then U(x,p) does not converge at all.
A
§2. Statement of the Main Theorem.
3. Main Theorem:
) Let U(x,p) be a solution of the differential equation
Ex . Liy,p) = 0 (101
. satisfying n boundary conditions
L]
. L(y) =2 , 1=12..n (107)
c (constant "1)' where L(y,p) if of the form
. 1
. L{y,p) = .o N(y) + M(y) (102)
%
s with
*
b .
R n (n=v)
‘ Ny) = ] a(x)y (x) (103)
& 8 wo Y
“
m (m=y)
5 My) = [ b (x)y (x) (104)
. @ wo ¥
’ and

-
-
o
~

b 4 (B8) s for i = 1,2,.0.,!
r a< B . (t08)

-
-
£
-
-
)
~
&

Y (a) ’ for 1 = 1, 42,000 ,N

~ «Qw
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We make the following assumptions:

1°. x is a real variable.

t 2%, p is a real positive parameter.
3°. The real functions a (x) and bu(x) have at least -
n bounded derivatives in the interval
a<x <B .
4. n>m>0.
5% ag(x) = 1.

- 4 6% by(x) ¥ 0, forall x in a <x < 8.

. o oo
i 7% n> A > 4 e a0

n>rt > T

r+1 2 200 [ 20 .

Then the behavior of U(x,p), as p tends to infinity, can be
found by the following procedure:
First Step. Find the remainder s of the divisionof n -m by 4.
Second Step. Find, in the table on the next page, the values of the

_t - numbers q and p for the differential equation under consideration.

@ 1e s=1,by>0

. or then q = n-m+1 o homeid

s-3.b0<0

= @ If s=1,by<0
" n-m=1 n=mt1

or then q=—2—,p-
s = 3, b0>0

@If s =0, b0>0 (113)
n-m n-m
2

or
s=2,b°<0

@ If 8 =0, bo <0
n-m-2 n-m-2
or —

a-2,bo>0




Third Step.

A) 1If the differential equation under consideration belongs to
one of the cases @ - @' of the table above, try to cancel p
of the boundary conditions at the point x = 8 and q of the
boundary conditions at the point x = q going in each group of
boundary conditions from those containing higher derivatives to those
with lower derivatives. This is only possible, if there are enough
boundary conditions on either side to be canceled.

B) If the differential equation under consideration is of the
type 1V, proceed first as under A)., From the remaining boundary
conditions cancel then those two which contain the highest order of
differentiation without regard to the endpoint at which they are
given. It can happen that the boundary conditions to be canceled
in application of this last rule are not uniquely determined, because
one would have to decide between two boundary conditions of the same
order of differentiation. We shall call this last occurrence the "Case
of Indetermination®.

Convergent Case. 1f it is possible to apply the rule of the Third
Step in a uniquely determined fashion, then

u(x) = lim Y(x, p)

p“
exists and is, in a < x ¢ B8, that solution of the differential
equation
M(y) =0
which satisfies the boundary conditions not canceled in the Third Step

of this rule, provided the following two conditions are satisfied:

We use the circles around these numbers, writing @, @. @ ’ @, in order to
distinguish this division into four cases from another diVision into two cases I, II to be
introduced presently.

-11-
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8°. 1f the boundary conditions not canceled in the Third Step
of this rule are replaced by the corresponding homogeneous .
f boundary conditions, then the problem determined by these
boundary conditions and the differential equation My) = 0 »
has only the solution y(x) = 0.
9%, No two of the boundary conditions canceled in the Third
: Step at x = g have orders of differentiation that are
congruent modulo n - m, and the same is true for the
3 boundary conditions at the right end point.

" bDiverqent Cases. If the rule of the Third Step cannot be applied

because at one of the endpoints there are not enough boundary conditions
to be canceled, then U(x,p) will, in general, not converge, as p + =,
? The proof for the divergence given in this investigation is valid only
under two assumptions analogous to 8° and 9°, which for their formula .
tion require an additional remark: |
Pourth Step. If the rule of the Third Step cannot be applied because <
ot the number of the boundary conditions at one endpoint is smaller than
the boundary conditions that would have to be canceled, then cancel all
the boundary conditions on this side and so many boundary conditions on
the other side (going, as before, from higher to lower order of
differentiation) that m uncanceled boundary conditions remain. Then
we make the assumptions:

8°'. If the boundary conditions not cancelled in the fourth step
of this rule are replaced by the corresponding homogeneous boundary con-
ditions, then the problem determined by these boundary conditions and the
Aifferential equation M(y) = 0 has only the solution y(x) = 0.

9°'. No two of the boundary conditions canceled in the fourth step
at x = g have orders of dAifferentiation that are congruent modulo n - m,

and the same is true for the boundary conditions at the right endpoint.

-12~
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8 Conclusion in the divergent case.

1) If the rule of the third step cannot be applied because at one of
o the endpoints there are not enough boundary conditions to be canceled, and
i€ conditions 8° and 9°' are satisfied, then

lim U(x,p) = ¢t», for all x in a<x <8 .

p-..
, 2) If the rule of the third step cannot be applied because of indeter-
: mination, and if 8° and 9° are satisfied for each of the two possible
‘ ways of applying the cancellation rule, then U(x,p) does not converge, as
1 p + = but remains bounded,
,,
. 4. The reader is advised to check the examples given in §1 in the liqht.of the Main
o Theorem. In example 2, in particular, we discussed a case in which assumption 8° was not
: satisfied. We now give an example where assumption 9° is not satisfied:
’ Example 4. n =5, m= 2, bo > 0.
‘ . y'''(a) = 23 y(4)(s) =t
LN
. y' (a) =2, Y (8 =1,
: y (a)= g
; . Here n~m = 3, hence s = 3. From table (113) we find q= 1, p = 2,
; The two boundary conditions that are to be canceled at x = 8 have the orders of
’;i differentiation 4 and 1. But 4 = 1 (mod n-m), in this case. This means, assumption 9° is ﬁ
l%i not satisfied, and the Main Theorem does not apply. However, if bo ¢ 0, then 9° 1s %
.‘ﬁ satisfied, and we can be sure of the convergence of U(x,p). !
) " It is an open question whether U(x,p) can converge even if 9° is not satisfied. It

seems unlikely to the author that the Main Theorem remains valid in those cases.

- . The next example is of the type which we have called the case of indetermination.

.13~
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Example 5. n=3, m= 1, b0 > 0,
v - -
y'(a) lz y(8) l‘

Yy (a) = 23

Here, n-m = 2 and therefore s = 2. Table (113) shows that this is the case , and
that p = q = 0. The rules of the Main Theorem would require the canceling of the two
boundary conditions involving the highest derivatives. This cannot be done in a uniquely

determined way, since y(B8) = 11 just as well as y(a) = £, might be canceled in addition

3
to y'(a) = 22. Hence, this is the case of indetermination, and U(x,p) does not

converge.

The rest of this chapter is devoted to the proof of the Main Theorem.

§3. Asymptotic Solution of the Differential Equation L(x,p) =0 .

5. As pointed out in the introduction the principal tool of our proof of the Main Theorem
is the theory of asymptotic solution of differential equations involving a parameter. We

begin by defining what we shall understand by asymptotic equality in this investigation.

Definition: The functions f(x,p) and g(x,p) are said to be asymptotically equal in an

interval o < x < B, {f

f(x,p) = g(x,p) + ELEjEl

p

Here a > 0, (but not necessarily an integer), and E(x,p) is a function such that there

is a positive real number R so that |E(x,p)| 1is uniformly bounded for a < x < B, and

p > R.

If a function f(x,p) is asymptotically equal to a function F(x) independent of

p, we shall write

f(x,p) = [F(x)) .




' p— - v —
H
~. - v -~ b Irw
|
4
Note that the symbol [F(x)] does not describe the function £(x,p) uniquely. It is not
correct to conclude from
: £,(x,0) = [F(x)]
and !
£,(x,0) = [F(x)) !
' that
£,(x,0) = £,(x,0) .
3 6. Using Noaillon's method the following theorem can be proved.
"; Theorem 1: If the assumptions 1° - 6° of the Main Theorem are satisfied, then the
L-i differential equation (101) admits a complete set of n linearly independent solutions of
-
! the form
o [5 e (Era8
e [n(x)], (v = 1.2.000,“"-) (114)
’ u,(x,p) =
. fu(x) ) ’ (V= n=m+t, n-m+2,.00,n) (11%)
M v=n+m
L]
’ Here we are using the following abbreviations
. Ve
1N o=]p " (116)
5 2) 6 (x), A, (x)peen, b (x)
Qi n-m values of
X3
/...
3 (=by(x)) "~
“ arranged in such a way that
> deced .
Re(¢1) Ra(oz) R.(On_-) (117)

a,(()bo(ﬁ) - b’(ﬁ)
3) - af
a bo(E)(n--)
Nix) = e (118)
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4) The functions uu(x). (u= 1,2,.0¢,m) are any m solutions of the differential

aquation
M(y) = 0 105)
forming a complete linearly independent system of such solutions. »

; The equations (114) and (115) may be formally differentiated at least n-1 times,

! i.e.,

]

{ L 0 f; AL

’ ce lwv(x)-n(x)] , (v=1,2,.0s,n-m) (119)

' lu(i) ) (v = n-m+1, n-m+2 (120 :
v-nim ¢ {(v= n=m+1, n-m+2,...,n) ) i

. i - s

for i =0,1,cce,n=1,

. 7. Remarks.
A8 roots of one and the same real function, the complex functions wv(x) are of a
’

particularly simple structure, If by{x) < 0, then the vv(x) are obtained by

multiplying the (n-m)-th roots of unity by the factor

n-m

‘ lf-bo(x)|

- A similar relation holds when bo(x) > 0. More precisely: Set
4 "‘j | ‘/H'N‘
- : bo(x) , if bo <o (121)
Y k(x) = \V4 i
o b (n-u‘ nem b 122
-4 o x) e , Af o > 0 ( )
P and let

I 2xi
e=e" " . (123)

' {i Then the wv(x) are, - in different order, - equal to
§ X, ke, Ke2, seee , k"™, (124)
‘k -

-16=
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Furthermore, since the wv(x) are the roots of a real number, the sequence of the wv(x)

consists of pairs of conjugate numbers. Hence, in (117) the ™" and the "=" gigns

alternate.

§4. Outline of the Asymptotic Solution of the
Boundary Value Problem

8. We try to represent the solution of the boundary value problem defined by (101) and

(108) in the form

n
U(x,p) = ¥ c to) U (x,0) . {125)

v=1

If such a solution exists, then the function cv(p) are solutions of the system of linear

equations
n
) c P oL (U ) = £, (L= 1,2.0m) o (126)
v
Using (108) and substituting for the U(x,p) the expreasions (114) we find, for
Ve 1,2,i00,m,
A, o A
ate Vo MBINBI, (1= 120000
Li(u ) = ¢ (= 142,400¢,n-m) (127)
v A LY
[ lwv (a)n(a)]l, (L = r+1, r+2,...,n)
where
v, " f: w\’(E)dﬁ s (ve 1,2,,00,n~m) . (128)
Por v = mmtl,...,n we have, because of (115),
(129)

Ll w v) - [1-1( u v-n+l) 1o

-17-




From the inequalities (117) it follows that similar inequalities hold for the

quantities 'v (v=1,2,.00,n=-m), 1i.e.
Rs(w1) > Re(wz) Deesd Re(vn_.) . (130)
In order to find the cv(p) of (125) from (126) we have to calculate the determinant .

Ly(Ug) Ly(Uy) o o ¢« Ly(U,)
Ly(Uy) Ly(Uy) o o o o Ly(Up)
A(p) = e 8 & & o 8 o 0 & ¢ s s 0 o 0 (131)

® ® o o @ & & 8 o ¢ o s o s ¢

Lo(Uy) L,(Uy) o o o o L (U))

and the determinants Av(p), (v=1,2,...,n), obtained by replacing the y-th column of

A{p) by the column

!
, _
. ln . »

The coefficients cv(p) are then given by

A (p)

= = 1,2,..., 1.
cv(p) 2(p) , f(v= 1,2 n) (1.32)

and, if we substitute (132) in (125) we obtain the form

n Av(p)
U(X'D) = 2
v=1

alp) U ixe0)

for the solution U(x,p) of our boundary value problem.
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9. Our aim is now to calculate, with the help of the asymptotic expressions (114), (115)
and (127), (129) the asymptotic value of the right number of (133). The first and most
important part of that calculation consists in finding the asymptotic value of the
determinant A(p). The asymptotic calculation of the Av(p) does not offer new

difficulties.

§5. The Asymptotic Value of A(p)

10. As a consequence of (127) and (129) all the terms of the expansion of A(p) are
obviously of the form
1
x1o® «”

with real S and real or complex V and k.

Daefinition: Two expressions 3

with

ky#0, k,#0

and real S, and S, will be said to be of equal order of magnitude if

R‘(v1) - RB(Vz)

and
51-52 .
If
Ra(V,) > n.(vz)
or

Re(V,) = Re(V,), but 8, > S,

then K, is said to be of higher order of magnitude than Kz' and vice versa.

1f K, is of higher order of magnitude than K,, then we can obviously write

i TP

81 dV,
X, + xz - [k1) g e .

1
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4 The sum
v -
3
Iy ce (134)
~ M
of all the terms of highest ¢ ler in A(p) is the asymptotic expression of A(p) for *

large p, unless all the vw are alike and

Ix =0 .
w
w
In this latter case (134) reduced to
v
1 o} Seo!

and an asymptotic calculation of A(p) would have to take into account terms of lower
order of magnitude in the expansion of A(p), as well as the later terms in the asymptotic
o solutions of our differential equation. The exclusion of this exceptional case from our

theory will compel us to introduce the conditions 8° and 9° of the Main Theorem.

. 11. If the values (127) and (129), for the Li(uv) are substituted into the expression

(131) and A(p), it is seen that the last m columns of the determinant form the matrix .
' of n rows and m columns ]
. Lyug)]  (Ly(uy)] « o o (Ly(u)]
: (Lylug)l (Lyluy)] o o o (Lylup]
; (135
- §. (Lalug))  [L(uy)] o o o [Ly(up)] . ‘

All the minors of this matrix have an order of magnitude not greater than that of 1.

The elements of the first n-m columns of A(p) are given by (127). In order to

find the asymptotic value of A(p) we expand A(p) in terms of its n-m f£first columns

and investigate the order of magnitude of the minors in this expansion.

=20~
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12. Lemma 1: Let D(p) be that minor of the determinant A(p) which is formed by the

first n-m columns of A(p, and by its

rows, with

i, ¢ 12 € o o o (¢ in-m .
If then the first h of the numbers 1 are less than or equal to r, then the order of

magnitude of D(p) 1is not greater than that of

h i
D) v, ;
T v=1
g e (136)
where
h nem
T I+ F o (137)
vs=1 v y=h+1 u
Proof: Prom (127) and (131) we see that each of the first h rows of D(p) contains the
factor n(B8), while each of the remaining rows contains the factor nla). Hence, we can

factor in D(p) the expression

n-m~h
B nla) .

M

Purthermore, we see, that the first row of D(p) contains the factor o 1, the second
Ai xi

row the factor o 2, etc., and finally the h-th row the factor o h. Similarly, we can

factor in the remaining rows of D(p) the expressions
T Ti :
h+1 h+2 n-m !

o ¢ O ¢ v, 0 '

respectively. Altogether we can factor in D(p) the expression !

‘
h n-m=-h i
n{(g) nia) o , i
21 3
J NI vt s - 5 ¢ Y T e e S AT L . e . SRS 4 N t
i '
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v meve s m e

where T has the value of (137). Then D(p) can be written in the

® o o o & & & & 0 o 2 0+ s 0 s s 0

ow xi ow xi
1 -
e o, M@ o v e e "My Nia
n-m-h
D(p) = n (B)n (a) o
T T
i 1
h+1 h+1
[w1 {(a)) o o o o lwn_m ]

—_
€
-]

)
8
—
e
-~
—
.
.
.
.
—
36
3 3

[
-]
R
-~
—

Now we expand the remaining determinant with respect to the minors of its first h rows.
Each term of this expansion contains an exponential factor, and none of these exponential
factors is of greater order of magnitude than the one originating from the minor formed by
the first n-m rows and columns of the determinant of (138). For the exponential factor

in this term is

h
o § w,
va1
e '
h
and because of (130) no sum of h wv's has a greater real part than z 'v' Hence, the
v=1

order of magnitude of D(p) is not greater than that of

h

o J w
T = i v
g e

It may be less, for we have to take into account the possibility that

-22-
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4 o”"
‘s vl o

P

o 1w,
T v=1{
D(p) = (0] o e .

Remark: If Re(vh+‘) < Re(wy,), then there is only one term of maximal order of magnitude
in the expansion of the determinant of (138) with respect to its first h rows. But if we
have Re(w,,;) = Re(w,) (compare section 7 and the definition of the w , formula (128)),
then

h h-1

Re( 2 '\,) - R.( z '\,+ 'h#‘l) ’

v=1 v=1
and we have therefore a second term of maximal order in the expansion of the determinant of
(140) with respect to its first h rows. But, clearly, these two terms cannot cancel,

since

i ¥ ¥ney -

13. The question of finding among all the minors of the first n-m columns of A(p) the
one of highest order reduces now to the two questions:

(a) which selection of n-m rows in A(p) leads to an expression (136) of highest
order, and,

(b) when does the minor corresponding to this selection actually have the order
indicated by (136).

In answering the first question several cases are to be distinguished. For this

distinction the number of wv(x)'s which have a positive real part plays an essential
role. Let us call this number p. From the definition of the wv'- it is clear that p
depends on the sign of bo(x) and on the remainder of the division of nmm by 4. A
simple calculation, which we omit here shows that p has the values indicated in the table
(113).
We distinguish the following cases:
I. Ra(wv) # 0, for all v = 1,2,,..,n M
A) r-p < O

B) 0 <r-p<m

C) r-p>m

-23=
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II. Rawv) = 0, for some V .
A) r-p <0
B) 0 € r-p €< m+2
C) r-p > m+2 ,
Remarks: Remembering the definition of the ¢v we see immediately that case II of (139)

occurs only when

n-m = 0 (mod 4) and bo <0

or (140)

n-m = 2 (mod 4) and bo >0 .

Case II is thus seen to be equivalent with the case (::) of table (113). In this case
(::) there are always exactly two functions w“ with vanishing real parts. In the
arrangement of (117) these are
p(x) and ,(x) . A
pt+t pt2
Case I of table (139) corresponds to the cases (:) - (:::) of table (113), In these
cases the number q of table (113) is equal to n-m-p. It follows, therefore, that the
condition IC of (139) can be re-written in the form
(n-xr) - gq<0 .
In case (::) of (113), which we have seen to be equivalent to case II of (139), we see from
(113) that
q = nm=p=-2 ,
and therefore IIC is also equivalent to (141). Hence, we can say, that in case I as well
as in case II of (139)
A) is the case in which the canceling rule of the Main Theorem cannot be
followed because there are not enough boundary conditions at x = §,
B) is the case in which the canceling rule can be followed.
C) is the case in which the canceling rule cannot be followed, because there

are not enough boundary conditions at x = a.

-24-
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14. We treat the case I of (139) first. According as to whether we are in the case IA,
IB, or IC, we consider then the minor D.(p), Db(p), Dotp) formed by the n-m first

columns of the determinant A(p) and by the rows

1,2, eessesnsssssssssssssssssssssssess, N-M ¢ (case A),(142a)

1,2, o0eP; T+1, T+2, ceeesecscssscans, IHN-M=P . (case B),(142b)

',3, eesecccessss, INJ r+1, T+2, cescscscccorssovesspoccssccansn, N o (case c),(142c)

respectively. Using lesmma ! we shall show that in each case the minor thus defined is - in
general - of the highest possible order of magnitude among all the minors of the first n-m
columns of A(p).

Case A) The expression (136) has the highest possible order, if the rows of the minor

h
are chosen in such a way that Z wv has the greatest possibls real part. In case IA
v=1

this means that we have to choose h = r. For h can, - by definition, - not be greater
than r and, on the other hand, all v, with v < r have positive real parts in
consequence of the condition y-p<0. 1In order to make T in (136) as great as possible we
have then to choose for the rvemaining n-m=-r rows of the minor those for which néﬂi 11
=h+ u

is greatest. Since the ¢, are arranged in order of decreasing size, this is the case, if

i
we choose the rows r+1, r+2, ..., nm. This is exactly what we have done in (142a).

h
Case B) Here, taking h = r would not make the real part of | v, a maximum
v=1

because we have r > p and the sume would therefore jinclude wv's with negative real
part. Instead, we have to take h = p including thus all the vv's with positive real
part and only thosa. (137) shows then that taking the first p rows of A(p) gives the
greatest contribution to the exponent T. For the remaining n-m-p rows we take the rows
r+t, r+2, ..., rtn~m-p in order to make the second sum of the right number of (137) a

maximum. This is posaible because, in consequence of (139), r+n-mep ¢ n, in this case.

-,

R




D an

Case C) Here we reason as in case B. But since rin-m-p > n 1in this case, taking

e e——— i A et s

P the rows r+1, v+2, ..., n in addition to the rows 1,2, ..., p would not be enough to
i have n-m rows altogether. We must therefore choose h = r-m, in order to have n-a
rows, and, as before, we gee that T is greatest, if we take the first r-m rows of
Alp).
Comparing (142b) with the third step of the rule of the Main Theorem we see that the
numbers of (142b) are just the subacripts of the boundary conditions canceled in
; application of the Main Theorem in the cases (:) - (:::), when the canceling is possible.
Similarly, (142a) and (142c) contains the subscripts of the boundry conditions canceled in i
i the fourth step of the Main Theorem in the cases (:) - (:::). The reason for this fact

will appear in the course of our proof.

15. The considerations of section 14 are not sufficient to prove that the minors D‘(p).

Db(p). Dc(o). respectively, really do have higher order than all the others (compare
section 12). To investigate this question let us calculate Da(p). Db(p). Dc(p)
explicitly. Since we are most interested in case IB, which we shall see to be the
convergent case, we discuss Db(p) first.

In order to calculate Db(p) we write Db(p) in the form (138). This means that we

T e interpret the numbers

Lgedgreceerip p

of (138) as being the numbers (142b), in the same order. Hence, the number h of (138) is

in this case equal to p. From the definition of p and the wv it follows that

Re(w ) < Re(wp) .

p+1
The term originating from the minor of the first p columns in the expansion of the
determinant (138) in terms of its first p rows is therefore the only term of maximal
order of magnitude in this expansion. We obtain therefore

n-m-p
D (o) = (nP(B)In (@) <A B0

L e
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with
g r+nin-p
T = A+ T (144)
b =1 v y=prt 1 v
and
Y A
1 1
%, (B) o o -wp (8)
Ab = 4 s o o o & s @ (1‘5)

XP Xp
o P18 o ov Pip)

T T
Yory (@ ¢ oo eew D)

B = 4 s & o 6 & 0 & o & & 0 (1‘6)
T T

TIERa) o o e TP,

wp-H n—m

(134) is valid also for p = n-m and for p = 0, if we define A, =1, for p= 0, and
By = 1, for p = n-m. ni(x) is an exponential function, hence n(g) ¥ 0, n(a) ¥ O.

Db(p) has therefore the order of magnitude of

i
[+ w
Ty wi "
g .8

if Ay ¥ 0 and By ¥ 0.
Lemma 2: A # 0 if and only if

Xi 3 X,, (mod n-m); (ilj - ol‘l"'lp) (147)
and B, # 0 if and only if

T 2 tl' (mod n-m); (k,2 = r+1, .o.,rén-m-p) . (148)

Proof: The statement is trivial, as far as A, 1is concerned, if p = 0. For p > 0 we
remember from §3, section 7, that, with the notations used there, the ¢v(x) are, in

different order, equal to

-27~
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K(x), k(x)e, K(x)E2, o « o o, k()™ . (124)

In the order of (124) the wv are represented in the complex plane by a sequence of
successive points on the circle of radius |k|. It is easy to see that the numbers w‘l(B)’
vz(ﬁh ¢ s ., wp( 8) are then, in different order, equal to the numbers

ke, kw2, o oo, k(P (149)
where t 4is a certain integer which is only determined modulo n-m. Substituting the

expressions (149) into (147) we find

(&1))\1 (t+p) A,
€ e e o g

\§1 "y

L] L] s & & o e o @ (‘50)
Ab = % k(B)
(e+1)) (t+p) A
€ > o e g 4 .
Now we set
x\’
C\’- € sy {(v= 1,2/cee4p) (151)

This allows us to write (150) in the form

t+1 t+
* & c1 p

]
T
v
l\b = £ k(8)
12 I ttp
= Cp

or

)
A
\21"

A, = KB e (ggye -;p)t V(g v g (152)
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where V{( C1 1Bpeeees :P) is the Vandermonde determinant of Geyreoe cp. Since the

Vandermonde determinant vanishes if and only if two of its rows are equal, Ay is zero if
and only if some of the cv are alike. But from (151) we see that

g =5

or, because of the definition of ¢ in formula (123),
xl = xj ' (mod. n-m) .
This proves the part of lemma 2b that is concerned with Ay The proof for B, is exactly
analogous, and is therefore left to the reader.
The reader will readily see that similar results hold for Da(p) and Dc(p). The
only real difference in the reasoning comes from the fact that in these cases there may be
two terms of maximal order in the expansion of (140). But since these terms cannot cancel,

this does not essentially affect our argument. We restrict ourselves to stating the

results in these casges:

x
Ta ov-zi w\’
D.(p) = [Qa]a e ’ (153)
r-m
Tc 0\21 "v
Dc(p) - [Qc]o e ' (154)
vhere
PR
T = A+ T (155)
2 w1V o V¥
DERED
T = A+ T {(156)
S T T

and Q  and Q. are two constants, with respect to which the following two lemmas hold:
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Lemma 2a: Q. ¥ 0o 1if
11 2 xj, mod n-m, (i,3 = 1,2,...,r)
and (157)
L 2 Ty mod n-m, (k,t = r+1,,..,n-m) . .
Lemma 2c: Q. ¥ 0 if
Ai F 3 Xj, mod n=m, (i,§ = 1,2,...,r-m)
(158)
T 2 Ty mod n~-m, (k,L = r+i,...,n) .
Remark: From these lemmas and the remark at the end of section 14 we recognize that the
conditions (147) and (148) are equivalent with the assumptions 9° of the Main Theorem while
(157) and (158) are equivalent with 9°'. Note, however, that our reasoning so far does not
cover the case II of (139), which we have seen to be the same as the case (::) of (113).
16. The cofactor of the minor Dv(p) in A(p) 1is that minor of the matrix (135) which is -
formed by the m rows of A(p) not contained in Dv(p). Let
Lp+1(u1) ..'......"..Lp'#1(um)
LJ L L] L) L] . » L » L] L - . . L] L L [ ] L] !
%-Lr(u1)-;o-ooo-.-oo-oLr(um)
Lr+n—m—p+1(u1> a6 5 s 6 8 & o s @ Lﬁn-m-p#‘l(“n) (159)
. . . L] - . . L] L] L] . L] L] L] L] . . L] L] L]
I"n(“1)'......."""r"n(“m)
then the cofactor of Db(p) is of the form
* (&1 -
We now introduce the assumption
Gb ¥ 0, in case IB . {160)
This condition will be seen later to be equivalent with the assumption 8¢ of the Main .

Theorem in the cases (:) - {III). Then the term % Db(o) lﬁbl is the term of greatest
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order of magnitude in the expansion of A(p) in terms of its first n-m columns. Hence,

(143) gives

)
T, ° X, Yy
Alp) = [g, * 41 0" e v, incase 1B , (161)
where
n-rp
Q= tP(B «n(d <A B ¥O . (162)

Similarly, if we define 6. and Gc as the limits - as p + ® - of the matrix (135)
formed with the rows of D(p) not occurring in D‘(p) and Dc(p), respectively, and if

we introduce the assumptions

6. ¥ 0, in case IA , (163)
Gc ¥ 0, in case IB , (164)
then we have, in analogy with (161)
r
Ta O\Z‘l '\’
Alp) = [Qa . 5.] L + in case 1A , (165)
r~m
r ° 21 Yv
Mp) = [Q, * 8] - e V' , in case1Cc . (166)

This finishes the asymptotic calculation of A(p) in the case I of (139).

§6. The Asymptotic Value of the Solution of the Boundary
Value Problem in the Case IB.

17. The method used in §5 for the calculation of A(p) can also be applied to the
determinants 4 (p). (For the definition of 4 (p), see §4, section 8).

Ffor v > nu, Av( p) 4is distinguished from A(p) only in one of the last m colusns.
In this case all the considerations of §5 remain valid for Av( o), Aif the determinants

éa’ Gb' 6c are replaced by the determinants Gav' &bv' ch obtained by replacing the

-31-
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i= (n~m)th column of 6., %, Gc by the corresponding l.ll i.e0., by

|
"n-m‘l "pH "r-m-‘l
= . . .
L] [ ] * -
L] L] L)
. "r or .
. L .
' T+n-m-p+1
v * [ L]
J‘ . L] *
oo t %
A respectively. Hence, we obtain, in case IB and for v > n-m,
B Ty a\§1 v
- L] L] > -
Av( 0 [Qb %v] c e » (V> n~m; case 1B) {166)

and analogous formulas hold in the two other cases.

LS
. Hence
v
) A (p)
« N . —Gb" (v > nm); case 1IB) , (167)
A (p) &
t‘ and similarly in the two other cases.
.
.
‘4
- 18, For v < nm the colusn of A(p) that must be replaced by the !.1'0 in order to

obtain A“( p) changss the structure of the determinant somewhat. But if we place this
vth column behind all the others (and change the sign of the determinant, if necessary),

then we obtain a determinant very similar to A(p). The only essential difference is

that m has to be replaced by a' = m+! (and therefore n-a by n-m=1) and that w\,

must be omitted from the sequence

WyeWgrese, Mo e




Again we treat the case 1B (the convergent case, as we shall see) first, and since we

A (p)
are more interested in Z!Tp_) than in Av( p) itself, we atate the result in the following
form:

lemma 3: In case IB, i.e., if 0 < r-p < m, we have

- ~olv
o Pe [nv]; v <p
(168)

_Tri-n-m-
] p[nv]1p<v<n-m,

where the constants 1\’ depend on the values of the "i" and are not necessarily

different from zero.
Proof:
1.) v < p. In this case the vv to be omitted has a positive real part. Hence, the
formulas for A(p) can be applied to Av( p) if we replace
p by p' = p?
m by m' = m+i
and the sequence
WqiWareses W

by the sequence

1] ]
LF Y3 FYRRTLTL M

identical with the first one except for the omission of the term w“. Since we have
0 <r-p' <m'" ,

the formula to be used in (161). We obtain

a) w

bv we=1
Av(p) - (va . val v g e

w




. p' ”n-‘z.-p.
o= 1 A+ T .
bV e @ pret ¥

Note that the reasoning used for the proof of % ¥ 0 does no longer hold for va . va
is a determinant depending on the ll' It is defined as the cofactor of the leading minor
in the expansion of Av(p) with respect to its first n-m-! columns. sb“ is a

determinant of m+1 rows.

From the definition of p', m', v; it follows then that

3 w' = E v -
uwe w1 @ v
b - and
p-1 ren-m~p
» . Tbv - 2 ) R I 1'u -

w=1 w [Tl

Comparing these formulas with the expression for A(p) we see that

9 .
Av(o) - {va ‘ 6b\)] c-xp .-wv
. 8 ted %%
2.) p < v < n-m. Here we reason as under 1.), the only difference being that
- p' = p and therefore
3
2 .
* % w' = ? w
B ot @ =t @
“
" and
g rén-m-p-1
' Toy ™ LAt ¥ T .
wr Y e+ ¥
‘ -
" Hence, in this case
- =34~




o T WREEREe o v e T e e memm——™ .- - = -
T T S = -

a,(p) . Qv * 6vv U-Tr+n-m-p
A (p) Q ° 9 .

Q.E.D.

19. Now we are prepared to prove a theorem, which, of course, is a part of the statement
of the Main Theorem.
Theorem 2: If the assumptins 1° - 9° of section 3 are satisfied, if, furthermore,

0 €Cr-p€m
and

n-m # 0 (mod 4), and bo <0
or
n-m # 2 (mod 4), and bo >0 ,
then, as o * ®, the solution of the problem defined by (101) and (108) converges in
@ ¢ x < B to that solution of the "limiting" differential equation
M(y) = 0
which satisfies the m boundary conditions not canceled in application of the rule of the
Main Theorem.
4,0

Proof: We substitute in (133) the values of LT obtained in sections 17 and 18 and

replace U“(x,p) by its values as given by (114) and (115). Then we find

X
f O-Xp eo(Ia v (E1aE - w )}

U(x,p) = [, ° ntx)]
Ve
n-m -7 o [* ¢ (E)at
+ [ o TmER, e (7, * n(x)] (169)
V=p+1

m &
+ z (‘h%:ﬂy-]uu(x)
u=1 b
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: It is easy to see that the first two sums of the right member of (169) tend to zero, in

4
a<x<B, as p, and therefore o, tend to infinity. For, -
‘ Rﬂ(f: PUEEE - w ) <0, in a<x<B for v<p .
and
Re([7 ¢ (E)AE) <0, in a<x <8 for v>p ,
; in consequence of (117), (128) and the definition of p.
Therefore
1
- 2 &%, n-me
e u(x) = 1im Ulx,p) = | —=DHy (x) (170)
. pre =1 6b L4
o
But if we remember the definition of Gb' 6b,n-m+u and uu(x), as given in (159), in
K section 17, and in theorem 1 (section 6), respectively, then we see that the right member .
of (170) is just the solution of M(y) = 0 satisfying the boundary conditions not canceled
i in application of the Main Theorem, and condition (160) is seen to be equivalent with N
bx assunption 8° of the Main Theorem in the convergent cases (:) - (:::) (table (113)).
28 ' Q.E.D.
T
- 20. Remark: Formula (169) is, in fact, a complete asymptotic solution of the boundary
- value problem. It might be used for a more detailed description of the boundary layer
';i phenomenon. It can be written in the following simpler and more symmetric form:
*
AR x
o e ® afa v (E)aE
TN Ulx,p) =ulx) + g ' J e (n,n(x)]
9. V=1
P (171)
N o oft v (oag
+ag" 1 e (x n(x)]
. a8 vep+1

=36~
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where t = T and A = A are the lowest orders of differentiation occurring in the
+n-®-p P

canceled boundary conditions on each side. An easy consequence of (163) is, e.g., the

following interesting

Corollary: Under the assumptions of theorem 2 the derivatives

Crnemep V)
u(a,p), U*(X,P),...,U(a,0) n=m-p

converges to the value of the corresponding derivatives of u(x) at x = a, The next

derivative,
T
( r+n-m-p)
g (a,p)
T
( r+n-m-p)
converges, as P * ®, but in general the limit is not equal to u (a) « All the

higher derivatives of U(x,P) tend to infinity at x = @, An analogous statement can be

(K&

made at x = 8, with U(B,P) as the last convergent derivative,
In less precise language we may express the statement of this corollary by saying that
the last canceled boundary condition at each end point determines the derivative of

U(x,P) in which the boundary layer occurs at that endpoint.

§7. The Proof of the Divergence in the Cases IA and IC.

21. We are now going to show that in the two remaining cases U(x,P) tends to infinity as
P * ®, To that end it is sufficient to prove that one of the terms in the right member of
(133) tends to infinity. FPor each of the first n-m terms of (133) is of the form

Yv -4 wv(x)
qu e

Y oW (x)
If one of these terms, say x1o ' e ! tends to infinity, the whole sum can remain

hounded only {f the sum of all terms of the same order of magnitude as this particular term

vanishes identically. This would require that at least one other term has the same

exponential factor as K'. We would have, e.g.,
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H
3
. 3
)
d Welx) = Wylx)
' Now all the “v(x) are of the form i
<, x
+
W (x) =V f“ v (E)aE )
Av(p) x
where the constant Vv originates from the factor 7?7;7 while Iu ¢v(£)d£ is the
; contribution of Uv(x,p). But an equation like
¥
X X
; Vit [ e0aE=v, + [ g (naE
1
? is impossible, since no two vv(x) are equal.
i i
N 22. Proof of the divergence in the case IA:
ﬁ Let us calculate the determinant Ar+1(p). In this case the formulas for A(p) can
. .
be applied, if we replace
p by p' = p-1 (since r+1 < p) ,
x -, m by m' =m1 |,
; and the sequence '
'_ LLTAZYETTRY) A
! by the sequence
- L] L] L]
B Wy WG eV e
i&i obtained by omitting the term W 4y from the sequence of the v, As we have
22
X r-p' ¢ m'
5
) the formula to be used is (165). We obtain
by '
Ta T+ ou!-‘l )
-~ - . ’
3 B 1P) = 19y iy * 6y, pa! e '

-
.

where

-
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: . ! ATy T — - . g R o
R
E n~m'
T - A+ T .
a,r+ w1 ¢ jerer ¥
It follows that
r
T we= 7 v
' et wt @
and
, § nen-1
d T - A+ z T .
a,r+l w1 et ¥
: A {p)
. For bl we obtain
f A(p)
. 84y (P - Pa,rﬂ sa,rﬂ]o'tn--
) a(p |_ e, 5, J
and the r+1 at term of (133) becomes therefore
&,
X
. LT 6 (kg - [Qa.rﬂ . 6&.”‘ . n(x)]o Tem .ofa el L
. ’ -
A (p) r+! Q. 6.
.
o Since r+! < p, the exponential factor of the right member tends to infinity as p + =

° If we can prove that the expreasion in brackets does not vanish, then the divergence of

*q
2 U(x,p) is assured. n(x) does not vanish in a <x < 8 (see (118)). Por Q.'r*‘ ve
;j: can prove that the following lemma is true.

Lemma 4: Q"r*1 ¥ 0, if assumption 9°' of tha Main Theorem is satisfied.

1 Proof: An almost literal repetition of the argumants of §5, applied to Ar+1(°) instead
of to A(p), which we shall omit, shows that Qa,r+1 is different from gero, if the
following determinants do not vanish:

14
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& W , " ';“' A A

- -
- Al

and

B =

a,r+1
. *® o & o o e o e o o &
Them-1 Th-m-1

¢« & s & v 0 cv
re2l®@ nen'®

To these determinants the reasoning of lemma 2b can be applied, leading exactly to lemma 4.
6. +1 is a determinant one column of which is formed of m+! of the n numbers
’

11. 6.' +1 will be zero for certain exceptional vliues of these 9.*. But even the
assumption that the !.1 have these exceptional values would not be sufficient to guarantee
the convergence of U(x,p), for the r+1 st term of (133) will, in general, not be the
only one that has an exponential factor tending to infinity. We shall omit the not

difficult problem of finding sufficient conditions for the convergence. We will assume

instead, without mentioning it each time, that the ¢

’\ do not have these exceptional

values.
From the preceding considerations it follows that U(x,p) 1is in fact divergent in

case IA, provided that the assumptions of the Main Theorem are satisfied.
23. The proof for the divergence of U(x,p) in the case IC is analogous to the proof for

the case IA, if the (r-m)}-th term of the sum in (133) is considered, instead of the

(r¢1)st, on which the proof in the case IA was based. One obtains the expression

-40~
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¥
T -~ - SR ——
I
"4 8,0 [QCL:_“ "8 m” n(».-)] <A olfy e (E)dE ~w )
‘ Ter e Tt o e
c c
~ ) from which the divergence of U(x,P) follows as in the case IA, since Re(wr_m) < 0,
§8. The Case II.
. 24. The case I, i.e. the case when Re(¢p+1) = R°(¢p&2) = 0, requires a special
a - discussion, because in our reasoning in case I we assumed repeatedly - notably in section
; 14 - that every Li(Uv), with 1 € r, is either of greater or of lower order of magnitude
A 5 than all LI(“V) with 1 > r. But this is no longer true in case II, for the L‘(Up+1)
. Ow ow
- ? and Li‘up+2)' because the exponentials e pt1 and e pt2 have always the absolute
.: value 1. We must therefore modify our considerations for case 1II, from section 13 onward.
- We remind the reader of the remark made in section 13, to the effect that case II of
~-f (139) is equivalent with case (::) of (113).
4
:: . 25. The case IIA.
s -, Re-reading sections 14~22 one sees that no modification of the proofs for case IA is
’ necessary to obtain the proofs for case IIA. All arguments remain literally the same. The
- Ow Ow
- reason is that, for r < p, e pH and e pr2 do not appear at all in the asymptotic
z expressions for A(p) or Ar+1(9).
';§ 26. The case IIB.
?: This is no longer true for case IIB, defined by the inequalities 0 € r-p € m+2, 1In
p order to find the minor of maximal order of magnitude among the minors of the first n-m
‘ o columns of A(P) we go back to lemma 1, section 12. Whether the number h in (136) is
‘ chosen equal to p, p+tt1, pt2, does not have any influence on the real part of % Ve
J ) but any other value of h leads to a E v, with a smaller real part. which :;1theso
. three values has to be chosen for h 1:-;rdor to make the order of (136) a maximum depends
ff therefore on (137). h wmust be that one of the three numbers p, p+!, p+t2 for which the

-d1=

\
& . .
‘ >

- -




Let us call this maxirum

xl and the T, can be chosen so as to make T a maximum.
v v
(11) -

T(!I). As in section 14 it is clear that 11,A2,...,Ap must belong to Tb , as well

b
% Tre1 o2 Trenemepe2°
With respect to the two remaining terms to be chosen we can only say that they must be )
the two largest of the remaining Xil and Til- This proves that the minor of greatest

order of magnitude among all minors of the first n-m columns of A(p) is in this case

formed by the rows

1,2'-o¢pp, ﬂ‘,”z,..-.,ﬁn‘.‘p’z P (172)

and two more rows, which must be those corresponding to the boundary conditions containing
the highest order of differentiation excluding those rows already contained in the sequence

(172). A comparison with part B of the third step of the Main Theorem shows that these are

just the rows of A(p) belonging to boundary conditions that must be canceled in
application of that rule. We know from the proof in case I why this is so: the rows of

Alp) appearing in the minor of maximal order ot the first n-m columns of A(p) are

just those that do not occur in the cofactor of this minor, and this cofactor determined

the boundary conditions satisfied by the limit of U(x,p), if it exists.

The exceptional case of indetermination occus, when the two additional rows after the

rows {172) have been chosan, are not uniquely determined. We shall assume, for the

present, that we have to do with the regular case. The case of indetermination will be

treated in §9.

Our rule is so formulated that it takes also care of the case that xp'1 or xp+2 do

not exist because r = p or r = p+i,

(11)

27. The minor Db (p) of maximal order or magnitude among the minors of the first

n~m columns of A(p) can now be written

H
(1) o} v,

it (o) = ™) o® oV (173) ﬁ




*

-

P

where
H ren-m-H
U R (174)
ve1 ynr+1 u

and H is equal to p, p+t1, or p+2, as the case may be.

As in cagse I we can then prove that Q‘(,n) # 0, provided assumption 9° is satisfied

(11)

b (p) will again be of the form

The cofactor of D

(I1)

(&

1

where (11) is defined in analogy with Gb. Assumption 8° of the Main Theorem assures us

again that

ﬂ(’ll) 4o
Finally, we find for A(p), similar to (161)
H
fID o] v
Alp) = [Q:)H)Sén)l o b e v in case IIB . (175)

28. As in case I, we could now calculate the determinants Av(p) by the method used for
A(p). But since we are only interested in proving that
———Av( a U (x,p)
A(p) P
tends to zero, for Vv < n-m, we shall not calculate the analogue of (169) for this case.

As in proof of lemma 3 we consider first the Av( p) for v < p. For these v the

My

determinant Av(p) does not contain the column with e of A\a( p)e It follows from
lemma 1, that then the minor of maximal order among the minors of the first n-m=1 columns

of Av(p) cannot contain as factor an exponential of higher order than

-43=
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This is therefore also the exponential of maximal order that can occur in the asymptotic

expression for Av(x). Hence,

Av(p)
A (p)

-ow
has the exponential factor e v (and possibly exponential factors of order 1), and

Av(p)
muv(x'p) , (v <p)

has an exponential factor whose exponent is
off tpag-w)

an expression which tends to zero as o + =

Av(p)
A (p)
{except possibly exponentials of the order or magnitude of 1). Hence the asymptotic

If v > p+2, we prove similarly that does not contain any exponential factors

expression for

A (o)

A—(—D)-Uv(x.o) ¢ (V> pr2)

contains an exponential factor whose exponent is

oj‘;¢v(e)ae ., (v> pr2)

and this expression tends to zero as o + »

R . 1
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29. The two remaining terms of (133) require a more careful analysis. We treat only the

PR SR PR PTG

case v = pt1, the case v = pt2 being almost identical. Similar as in section 26 we ask

~ which choice of n-m-1 rows of A p”(p) leads to the minor of highest order among the
minors of the first n~m-1 columns of Apo-l(p)' This minor will have either
% 3: w t+tw
eowﬁ "o or eaum w o P2

as exponential factor. In both cases the asymptotic expression for

.

: A 1(9)
1 s Uprr (X0
- ' will contain an exponential factor of the order of 1. But the asymptotic expression for ;
l A P”(D) has also a factor of the form uT', and similarly as in section 26 we conclude ‘
. that T' 1is a sum which contains the terms x1, xz,...,xp and the terms T ) ’

1”2....,11_'“_“_?_2. To these terms one more term has to be added (not two terms as in

the case of A(p), because A  _{(p) must be expanded in terms of its first n-m-1, not

. pt1 :
n-m, columns). This term must be the largest of the remaining Xls and tis. Finally, ; J
R LI 'r'-'rl"n’ 3
f in the asymptotic calculation of Ao’ we have to form ¢ , and this will be i
A {(p) !
.‘ the power of ¢ occurring in the asymptotic expression for A :p) Up-ﬂ(x' p)e This
. A (p)
proves that the order of magnitude of A :p) u pM(x, p) 1s not greater than that of A
: |
. -8 !
(4]
-3
L. (Ir)
P where 8 is the smaller of the two terms chosen for 'l‘b , after A1,A2,...,)‘p and
v ‘4
Al have been selected. s may be any of the numbers

o412 e nemep-2

a4 po'xpkz' rr*n-m-pﬂ' Trén-m-p (176)

In order to prove that the p+1 st term of (133) tends to zero it remains only to show

that none of the numbers (176) can be zero:




R

(
JE
a) s =) o1 In this case the other one of the two last numbers chosen for ‘rén)
X
must be tﬂn-.—p-\' because, if it were XP*z' 8 would not be the smaller of the two, i
and it cannot be 1 rén-mep since
' Tr#n—n-p < 'r+n-n-p—1
and the two chosen numbars must be the largest of the numbers (176). Since s must be the
smaller of these two numbers, we conclude that
! Aot1 ¢ Trenemep-1 °
|
. On the other hand,
i ‘bt > Trenemp (177)
. 1f xpﬂ = 0. ApH must be the last of the numbers xi hence
;' prti= ¢ . (178)
i It then follows from (177) that <t cannot exist, in other words
Lt r+n-m-p
. Trﬁ-n—m—p—‘l " T i B
| or .
f
rtp-m-p-1 = n ., (179)
(178) and (179) imply .
L 38 m=0 ,
7', a case excluded from our considerations. Hence, Xp+1 > 0.
: ¥
- b) s = Ap+2. Similarly as in a) it follows that %
- A > 1
. pt+2 r+n-m-p=-1
% Y = 0 would imply p+2 = r and r+n-m-p-2 = n, hence
- j P2
L - .
33 m 0
¢ - -
.‘ c) and d) s 1t+n-u-p-1 or s 1r+n_m.p. We leave the proofs in these cases to
Lo the reader, since they follow exactly the pattern of the proofs in a) and b) with the same
o]

result.

e v

A

-

-
-
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4 30. Thus we have finished the proof of the following theorem.
Theorem 3: If the assumptions 1° - 9¢ of gection 3 are satisfied, if

LN 0‘!‘-p‘l"2 .

and if
nm 20 (mod 4), and bo <0

orxr

% n-a =2 (wod 4), and bo>o.
then, as p +» =, the solution U(x,p) of the problem defined by (101) and (108) converges
d in a< x < 8 to that solution of the limiting differential equation M(y) = 0 which
satisfies the m boundary conditions not canceled in application of the rule of the Main

! Theorem for the cage @, unless we have to do with the case of indetermination.

31. The case 1IC. In case IIC (i.e., if r-p > m+2) one can again, as in section 23,
consider the (r-m)th term of the right member cf (133) and prove that its asymptotic

" expression contains the axponential factor

LI T PR -L L
e

B
. Thia is sufficient to show that this term must tend to infinity, since this exponential

tends to infinity more strongly than any power of ¢ may tend to zero.

§9. The Case of Indetermination.

3y

.

‘ 32. Let us assume that we cannot decide in a uniquely determined way, which is the last
»

row of Alp) to be chosen in order to obtain the minor of greatest order of magnitude

among the minors of the first n-m columns of A(p). This is the case which we have left

aside in section 26. We have seen there that this occurrence means that we have to do with

' d the case of indetermination of the Main Theorem.
’ - In this case we must have
¥ , X” - H&

where £ is one of the numbers p+1, pt2 and k one of the numbers r¢n~a~p-1, rén-m-p.
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e Furthermore, Al and T must be the second and third in size of the numbers Ai and
‘l’i, excluding the numbers 11, xz,...,xp and rr+1' r"z.-.., rr‘_“_._p_z. Por simplicity .
s let us assume that &L = pt1. (The reasoning is the same for & = pt2.) Denote by D1(p)
and Dz(o) the ainors of the first n-m columns of the determinant A(p), with the rows
1,2,-..,9' P"" !‘+1, t'.'z,.no,k-l
1,2,.00,p1 1, r+2,¢00,k=1, k ,
: respectively. Then D1(o) and Dz(p) are both minors of the same maximal order, and we
cannot reason as in section 16. But, using formula (138) we can write
1
, oo
; D,(p) = F(p) o P! (4
) Dz(p) = F(p) . [dzl ‘
1
where
’ $ 01 o)
v N 2‘l K ov-‘l "
‘ F(p) = ¢ = e
L S -
. 4y and 4, are certain constants, which can easily be proved to be different from zero by
! the method of section 15, provided assumption 9° is satisfied for each of the two ways of ’
. canceling corresponding to Di(p) and to Dz(p), respectively.
The cofactors of the minors D1(p) and Dz(p) in A(p) can be written in the form
sy [6'] and [62] + where 61 and 62 are certain constants. If assumption 8° is
2
e satisfied for both ways of applying the cancellation rule of the Main Theorem, then we can
N L)
=y be sure that
“ 61 £ 0, 62 ro .
Expanding A(p) in terms of its first n-m columns we find then
13 Mo) = D,(p) 18, £ D (5] = Plo) (o P'1a 61 # (a,6,1) (180) :
> P 110709 2P % p 1% 2% .
*
)
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33. while in all cases so far the last m terms of the sum (133) were convergent, so that
the convergence or aon-convergence of Ulx,p) depended entirely upon the first n-m terms
! of (133), in this case the last m terms of (133) will, in general, be divergent.

- In fact, let n-m < j < n. Then we find immediately in analogy with (180),

ow
A(0) = Fo (e P'(a s, 1y, (181)

5 1+ (4,8,

3 3

where [6”] and [6231 are the determinants obtained instead of [61] and 62], if the

' j=th column of A(p) 1is replaced by

d
. ,’1
. "2
o .
2 .
n
(180), (181) and (115) show that the j-th (j n-m) term of (133) is equal to
&,
] o
) a,(p) e a5 ¢ 146,
. U, (x,p) = {u (x) ] (182)
A(p) 73 o1 jon-m
o e [d161] + [d262]
‘ and that
- o n n
p+1 )
. e (s, uixd]+ ¥ (46 u (x) )
. PR e - poom 1 potm gemtm 2 %) yenca (183)
* - Alp) 4P L
o J=n-m e P 1461 + (a,s,1
: - 1T 22
i a'pH
" Because of the oscillating factor e this expression can converge only if the
: determinant
v - n ri
‘ 1 4,6 u(x 4,8, .u (x)
X jen-m 1 '3 japem jmrrm 2 23 junem
,_k’ d’ 51 d262
vanishes, i.e. if
-~ -49~
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61j 6Zj

6 &

. n
. ) uix) =0 .,
j-n+m

j=n-m

Since the uu(x), (= 1,2,...,m) are, by assumption, linearly independent, this

leads to the m conditions

626‘j - 6162j =0 , (= n-mttf,e..,n) . (184)

s The left sides of (184) depend on the numbers 11, lz,....ln. (184) represents therefore a

set of conditions on the prescribed boundary values. As in the previous cases we assume

i that the lil do not have the very special values required by (184). Then, the value of

1
i (183) oscillates, as ¢ + o, but remains bounded.
: As to the first n-m terms of the sum in (133), it can be proved exactly as in the
2 regular case IIB (section 27-29) that they all tend to zero.
This completes the proof of the non-convergence of U(x,p) in the case of
: indetermination and also the proof of the whole Main Theorem.
34. Remark: Going over our whole proof we see that the assumption m > 0 was not used at
L all in the proof for case I, i.e., for the cases (:) - (:::) of (113). Hence, all our
. results in these cases remain valid for m = 0 also.
N In case II, i.e. (::), the hypothesis m > 0 was used only to exclude a rather
i special occurrence in section 29. It would not be difficult to formulate a general theorem
B for the case m = 0 also.
-3
2
;
h
k]
]
]
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Chapter II
PURTHER RESULTS IN THE CASE n-m = 1

§1. Generalization of the Boundary Conditions.

35. In the special case n-m = t it is not difficult to replace the boundary conditions

(108) by the more general ones

n (v=1) n (u=1)
Liy) = § o yim + ] B (B =1, (1=12..m) , (201)
v=1 =1

where the constants a 8

v’ and li are only restricted by the condition that the n

iu
boundary conditions are independent and compatible.

We note first: If, in (201), the Li(y, ,nq tne %, are subjected to the same

linear transformation with constant coefficients and non-vanishing determinant, then the
resulting equations

n (v=1) n (u=1)

] - . [} - g

L} (y) I g, vt + ] B, ¥ (B £ (202)
v=1 =1

constituie a set of boundary conditions equivalent to (201) in the sense that a function
satisfying (201) satisfies also (202) and vice versa.
From this remark we see that we can assume without loss of generality that not all the

a or all the 8 are zero, because in that case the boundary conditions (201) would

iv iy
be equivalent to ordinary initial conditions, which are a special case of boundary

conditions of the type (108).

36. Denote by s the greatest value of v for which at least one of the o, is not

zero, and by t the greatest value of u for which at least one of the Blu is not zero.

There exists a non-degenerate linear transformation with constant coefficients transforming

(201) into the system of equivalent boundary conditions
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3 (v=1) E (u=1)
E a, y{a + B, y (B8 = ¢ (203)
ai v O iv 1t aiy ai

having the property that

g°1t"°' u%t-.'..-qan.-o .

Such a transformation can be chosen in many ways. Similarly, there is a transformation

changing (201) into

E (1) 3 (u=1)
L, = a y (a + g, y (B = & (204)
1 7 oy BV 1 B iu g1

having the property that

Ba1t"o' BﬂZt-oo.onBBnc-o .

For n-m = 1 equation (114) and (115) reduce to

-p f;bo(E)dE
U1(x.p) = e [n(x)]

U1+u(x,p) =- [uu(x)] r (u=1,2,00e,n=1) .

Let us assume first that bo(x) > 0. Then we use (203) instead of (201) and see

immediately that
L) =t ¢ b (%! . n(a)]
at 1 0
is of greater order of magnitude than all the other Li(ui)' (i =2,3,¢ee,n)s Solving

equations (125) asymptotically in this case, by the method used in the first chapter, we

see that we can reason exactly as there. Of the assumptions of the Main Theorem we need

only 1°, 2¢, 3°, 5°, 6° and an assumption corresponding to 8° which states that

v

B Y o




uLZ(“1)' L) anz(un)

§ = $0 (205)

Q e & & & o o 0 » & o

CLn(“1)' ¢ s s, aLn(“n) .

We see then easily that the solution of (101) and (201) tends, for n-m = 1, and bo > 0,
to that solution of M(y) = 0 which satisfies the boundary conditions

qni(Y) - 011 y (1= 2,3,s004n) (206)

but not the boundary condition aLi(Y) - ali except for spescial values of the Lis. Using
a similar reasoning in the case bo(x) ¢ 0 we find that in that case u(x) = lim U(x,p)
pre

satisfies M(y) = 0 and the boundary conditions

BLI(Y) = B!i , (1= 2,3,000,m) (207)

provided

This result can be formulated in a somewhat more symmetrical form. To that end note
that the boundary conditions (206) do not involve any more the highest derivative at x = a
occurring in (201). Any linear combination of the equations (201) which does not contain

(8~1)
y (a) must be linearly dependent on equations (206) and no linear combination of

(s=1) (t~1)
equations (206) contains y (a) . Similarly for (207) with respect to y (8) « Hence, we

can state the following theorem.
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Theorem 4: 1If n-m = 1 and if the conditions t°, 2¢, 3¢, 5°, 6° of the Main
Theorem of chapter I as well as (203) and (208) are satisfied, then the function
U({x,p) satisfying (101) and the boundary conditions (201) tends with increasing
p to a solution u(x) of My) = 0. According as b; > 0 or by <0

the function u({x) satisfies all boundary conditions that depend linearly on (201)

and do not contain the highest derivative at x = g or x = 8, respectively,

occurring in (201).

Remark: The conditions (205) and (208) can be formulated in a way independent of the
particular choice of the fundamental system uu(x), (u= 1,2,...,n=1), by saying that we
assume that only the function u(x) = 0 satisfies the differential equation M(y) = 0 and
the homogeneous boundary conditions corresponding to (206) or (207), respectively.

Example: n = 3, m = 2,

y(a) = y'(a) + y''(B) = z1
y(a) + y'(a) + y(B) = y'(B) = %,

y'la) = 2¢y*'(B) = 1.3

.

If by > 0, then 1lim U(x,p) satisfies the boundary conditions
pre

2y(a) + y(B) -y'(8) + y''(B) = 2,0+ 4,

y(a) + y(B) -~ y'(B) + 2y'"(B) = L, =8 .

But if b, < 0, then 1lim U(x,p) satisfies the boundary conditions
p-’-

y(a) + y'(a) + y(B) = y'(B) = L,

2y(a) -y'(a)-21.1+ ls .
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' §2. The "Stretching” of the Boundary Layer
] i 37. Por the relatively simple types of boundary layer problems with which this )
t investigation is concerned we have been able to develop a method that allows us to |
calculate asymptotic expressions for the solution of the boundary value problem (compare,
e.g., formula (171)). From these asymptotic expressions one can easily obtain all desired
1 information about the behavior of the solution of the boundary value problem near the
) endpoints for large values of p. (Compare, e.g., the corollary in section 20).
{ In the more complicated boundary layer problems occurring in physics such complete :
! H
L‘ 1 asymptotic solutions are often not available. In those cases it is customary to transform 3
- ' the given boundary value problem, by a change of the independent variable, into a new
K boundary value problem which does not tend to a problem of lower order when p tends to
o infinity.
As an example for such a transformation we take the differential equation (101), for 1
. the special case
) byi(x) >0 .
fa - ) The case bo(x) < 0 can be treated analogously. Without loss of generality we may further
: assume that
| y a=0 . (209)
We shall refer to this boundary value problem as the problem (L). ‘
. We now introduce the new independent variable ;
; 2= px , (210) '
‘ and transform the boundary value problem (L) into an equivalent problem in z, to which we
‘ N shall refer as the problem (t:'). Let U(x,p) be the solution of the problem (L). U(x,p)
" or some of its derivatives will have a boundary layer at x = q = 0. The function U(x,p)
' is changed, by the transformation (210) into
' . Gz, p) = U(%, p) . (211)
; . U(z,p) is the solution of the problem (L). Since
-
! #z,0 = st v e (212)
~ . . =55~

(43

*ay
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|
4
! the problem (L) can be written
o ~ (n) g, (m) a s, =v (n=v) R g, =y (m=y) :
» Liy) =y +bololy ¢+ Ja Sy + T (= "y =0 , (2.13) i
[+ v p ue
ve=1 Tl
f () -2
f. 1!1(@!3)-!‘..:1 s 0<ic<ry
f £ = (214)
i
(ti) =1
1 Y ) =10 , ™1 <i<n .
: If we let p tend to infinity in the coefficients of (213) we obtain the simple
f "limiting®™ differential equation ;
y v+ o) y™ a0 (215) :
It may be expected that the function i(x,p) tends with increasing p to a function
K ulz) = lm Glz,p) (216)
' e
e which satisfies the differential equation (215). Since (215) ia of the same order as (213)
% - we expect that the function E(x,p) will not have a boundary layer for large p. i
The transformation (210} may be described as a stretching of the function U(x,p). If !
L ] T
: 0(z,p) does not have a boundary layer, we have, in a way, “"stretched out” the boundary
. layer. .
; The problem arises then what boundary conditions are satisfied by the limiting
?“5 function u(z). If the boundary layer of the function U(x,p) at x = 0 occurs in
2
%,
*fi U{x,p) itself and not in a derivative of U(x,p), the interpretation of (210) as a
 # stretching which becomes infinite when p + ®, suggests that we have
£ Ww) = wo) ,
; where u(0) 1is the value assumed by the function
K . u{x) = lim U(x,p) (217)

Do

i

at x = 0., u(0) will, in general, be different from the boundary value prescribed for

P

-

Ui{x,p) at x = 0,

»
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4
The transformation (210) is frequently used for the solution of more complicated
~, boundary layer problems. The following points are then usually taken for granted without
proof:
(a) That 1im UG(z,p) exists.
p“

. {b) That the limit u(z) satisfies the limiting differential equation

: (c) That u(=) = u(0).

, In our investigation we have been able to find an asymptotic approximation for

1

: U(x,p) directly, so that we did not need the tranaformation (210). But we are now able
' ': to prove the statements (a),(b), (c), for our problem (L). This is what we are going to do

. in this §.

-

S 38. In chapter 1 we have derived for U(x,p) the following asymptotic representation

{(compare (171)):
"ty © [5 etorae

_ S U(x,p) = [nnl(x)]p e + [u(x)] . (218)

' In this formula we are using the following abbreviations:

¢

' -1 [
- n= (b (o)} 21 (219)

0 §

,_i where
# .
‘;‘ Li(“i) LRI L,(nﬂ)

_‘ L] . . L] L L] . . L]
i ﬁ 5= (_1)r+1 Lr(“1) A Lr(um) (220)

Lr#z(u1) DI an(“m)
L] L) . L] L] L] L] . . L] *

y Ln(ui)oo-oo-oL&u& .

* §

k . (Compare formula (159)),

- -
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(221)

(compare section 18);
v(x) = -bo(x) (222)

and

m 5,
ux) = J —Hu o . (223)
u

u=1
{Compare section 17 for the 6‘+u, - we have dropped the index b, used there, as
unnecessary here -; and compare section 6, theorem 1 for the uu(x)).

In consequence of theorem 1, formulas (119) and (120), we may differentiate (218)

formally at least n~1 times, i.e.

1~1 o [ etpag
o' x.00 = (% Yxantxdlp e O + w001, (1= 0,1,000,n=1) . (228)

39, Knowing U(x,p) and its derivatives we can now easily calculate the function ﬁ(z,p)

and its derivatives with respect to z. For, considering that

o &0 wprae  [5 oS

e -~ a {225)
we find, upon substitution of (212) into (224), that
s (&
-, [ etMag
'V (e,0) = (wl(%)-n(!p)lp AL *(-:-,n, (L= 0,1 eeusn=1) . (226)

Thus we have solved the problem (.




The result of the passage to the limit in (226) can be most 2asily expressed by one

formula comprising all cases that can arise, if we introduce the following symbol:
! 0, if t ¥ 0
¢ eft) = { (227)
! 1, 4if ¢t =0 .
N Then we can write
. () = lm Tta, 00 = (2000162 P err )+ uwoy . (228)
1 oo
, Formula (228) is valid for 0 <5 < = :
! :
: We can now confiram the three unproved statements (a), (b), (c) of section 37. ol £
- does exist, and it satisfies the limiting differential equation (215), as we may readily
. verify by substitution. 1In fact, \I( g) reduces to a constant, unless T .y 0. Pinally
we gee from (228) that u(=) = u(0). This proves the statements (a), (b), (c).
- For the limit of the i-th derivative of G(z,p) we find, from (226),
. , 1m0V (2,00 = (et 0016 e, sz (229)
. pre
which is also the i-th derivative of u(z). We conclude from (228) and (229) that tT(O,p)
and ﬁ'(“ (0,p) remain finite as p + =, in other words, U(z,p) does not have a boundary
6% layer at x = 0, the boundary layer has been "stretched out”.
%
X

40. We have seen that the limiting differential equation (215) is satisfied by the

function ulz) obtained by passing to the limit in the solution ﬁ'(z,p) of the problem

2 (L). How can we find a complete set of n boundary conditions satisfied by ulz)?

If we formally let p tend to infinity in the boundary conditions (214), we obtain

boundary conditions

) A2
Fole =y eh) U= L20000) (230)




(11)

Y (0 =2 elr) . (4=rl, w42,000m) . (231)
From the remark made at the and of the last section it follows immediately that ulz)
satisfies the boundary conditions (231). 1If XY = g, the last boundary conditions (230)
can only be satisfied if, by coincidence, li = u(0). We therefore replace the last
boundary condition of (230) by the condition
a(=) = u(0) ,
which we have proved to be satisfled. The other boundary conditions (230) are certainly

satisfied, since all the derivatives of ;(z) vanish at z = «,

§3. The Non-Homogeneous Differential Equation % N(y) + M(y) = f(x).

41. Introduction: It is an open question whether the Main Theorem remains vaiid in full
generality for the non-homogenecus differential equation
LNy + My = £x) (232)

But we will be able to anawer this question in the affirmative when

n-m=1, (233)
provided none of the boundary conditions not canceled in application of the rule of the
Main Theorem involves an order of differentiation greater than m=-=1. The meaning of this
latter condition is easily understandable: If one of the uncanceled boundary conditions is
of the order n-1, then the boundary value problem formed by the limiting differential
equation

M(y) = f(x)
and the uncanceled boundary conditions is of a type to which the usual method of solution
by means of the Green's Function cannot be applied, since this method presupposes that the
boundary conditions are of lower order of differentiation than the differential equation.

In our treatment of the homogeneous differential equation the relative order of

differentiation of the limiting differential equation and of the remaining boundary




b

conditions d4id not play any important role, and it is by no means certain that the

condition above is really necessary in the non-homogeneous case. But it simplifies our

proof greatly.

42. The problem defined by (232) and (233) and the boundary conditions (108) will be

called the problem (N). 1If, instead of (108), we prescribe the corresponding homogeneous

boundary conditions, we shall speak of the problem (N'). We agsume that 0 < r < n, {.e.

we consider only actual boundary conditions leaving aside the initial value problem. (The

initial value problem can be treatcd by the same method.) It is easy to extend the proof

below to the more general boundary conditions (201).

Let Z(x,p) be the solution of (N), z(x,p) the solution of (N') and U(x,p) the

solution of the homogeneous differential equation (101) satisfying the non-homogeneous
boundary conditions (108). Then
z(x,p) = 2(x,p) + U(x,p) . (234)

Since the asymptotic behavior of U(x,p) for large has already been investigated in

chapter I it is sufficient to discuss the problem (N').

43. The Green's Punction:

It is known that the function z(x,p) can be written in the form

z(x,p) = Ig Gix,t,p) p £(t) dat . (235)

The "Green's Punction™ G(x,t,p) can be constructed in the following manner:

Let y1(x.p), yz(x.o) LI yn(x,p) be a fundamental system of solutions of

% N(y) + M(y) = 0, and set

R e TR T S




(n-1) (n=1) . o (0=
Y1 (t,p) Yz (t,p) Yn (t,p)

N LT SRR U

y:h-Z) (t,p)

v,(t.p) yz(t:p) LI yn(t.p)

y,(x,p) yz(x,p) yn(x.p)

(n-2)

(t,p) Y2 (t,p) (t,p)

(n=-2) R (n=-2)
k(x,t,p) = sgn(x-t) Yy Yn

y1(t,p) yz(t,p)

- _1_ k(x'tle)
gi(x,t,p) 2 Thit,p) .

- (= n H(x,t,p)
G(x,t,p) (-1) a(p)

v,(x,o) yz(x.o) yn(x,p) g(x,t,p)

L, (y,) L. (y,) L (y ) ()
H(x,t,p) = v 12 1n ¥

Ln(y‘) Ln(yz) . Ln(yn) Ln(q)

v B Oy PmipAm



L‘(y1) L‘(yz)

-
-
.
[
-
[
-

Ly(yy) Lz(yz) RO Lz(yn)

~ Ap) = (240)
' L] . L] L] L] . . * L] L] L ] L]
; . . L ] L] . L] . L] . . . L2
Ln(v1) Ln(yz) L) Ln(yn) .
Li(g), i=12,...,n, means that the operator Ly is applied to g(x,t,p) considered a
function of x.
1
44. The asymptotic value of the Green's Punction:
4 We take as the fundamental system yl(x,p) the functions (114), (115) specialized for
Tt n-m = 1, i.e.
= o [2ecorag
Y,(x,p) = V(x,p) = o [n(x)]
(241)
) y1+u(x,p) - Uu(x,p) = [uu(x)] (u=1,2,...,n~1),
T 3
3 where
P(x) = = bo(X) .
) (Note that our notations differ somewhat from those of chapter I and of chapter II, §1.)
We have then
‘»ﬁ L (a =1 Ll(k) i
:. ' T 2 hem P
¥ f
vy where :
V;V ) N , L] L] - ] :
g Li(V), Li(U1), Li(un-l)
. 7
; (n-2) (n-2) . . . ginm2)
B L (k) = v (t,p) U, (t,p) U1 (te0) (242)
t ® @ ® 6 s o 0 o 5 o s s o o s s e s
" A L] L) - L] » L ] . * * . * . Ll . . L L] L]
é‘ v(t,p) 01(t19) LS Un(t,o)
.
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with
' =
L1 L1 , tor § <r )
-

Li - -Ll , tor 1i>r . ,
Let us assume that %
bo(x) <0 . ‘3
i Then é
. 1
¥
A by ;
o tte L) n(ee™ , ftor 1<k 2,
Li(V) - (243) 4
ri Tt }
“p v "(a) nla)] , for i>r .i

where

A A

AR

“i - (8
ve= - wbag .

id

~3

If we expand (242) in terms of its first column, we see that in a < t < 8 the 3rd, 4th,

etc. terms of the expansion are of lower order than the second term. Hence

L, 0 = L) - vV w0 wdn (244)

where

(n=2) (n=2) oy . . . (n=2)
u, (t) u, (t) i (t)

= (n-3) (n=3) (n-3)
CIC R M O B S O BEI R b £ (245)

® @« ® & & & 4 & s 0 8 0 s o 0 b

-y u, (t) u, () sevu L (8)

- and H
'. u_(x) u « s o q
ﬁ 1 2

u(n-3)

- u(n—:)
k(x,t) = sgn(x-t) 1

N {t) o o o

() (246)

e o @ o & o * & 8 & & s 0 0 o

4
Ih -
N u,(t) u,(t) soeoen (b) .

.
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,.’.‘
i Expanding h(t,p) in terms of its first column we obtain similarly
C .
: ne,0) = v Ve, 0) (B(e)), for act < . (247)
k-
h h(t) ¥ 0, because otherwise uz(t), u3(t),...,un_1(t) would be linearly dependent.
From (237), (243), (244) and (247) we find
{ Li(V) 1
L (g(x,t,p)) = = {1 - (248)
i 2v(n 1)(t,p) pwt)
' }
' ‘ where é
. !
1 ;
- x !
F(x,t) = MxE) (249) 5
2h(t) ?
o Furthermore, expansion of (236) in terms of its first column yields f
K(x,t,0) = sgn(x-t) V(x,p) [h(£)) - v* 2 (e, 0) [R(en :
and therefore, because of (237) and (247) :
i
T g(x,t,p) = sgn(x-t) (Y:‘L;Q) alirs :t) fa(x,0)] . (250)
2v (t,p)
v
. Now we substitute (250) and (248) into (239) and see that
Hi{x,t,p) = H1(x.t.9) + Hz(x,t,p) {(251)
where
o Vix,p) fuy(x)] & e o lu_ (x)], sga(x-t) V(x,p)
e
b L,(V) [L(u)) s e (L (u_)) LY (V)
% Hy(x,t,0) = ——1 ! v tonet ! (252)
. 2V (t,p) @ 0 o ° 6 4 8 8 % e 6 6 6 6 6 0 e 0 8 v s 0 @
]
." L] L4 . . . - L] . . * Ll * . L] L] L] » » . . * - .
y e o s 11
. Ln(V) [Ln(u1)] [Ln(un_1)) L;(v) E
’ ‘ . and
Ly
»
~ -65-
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13(x,t))

as a sum of two

(253)

(254)

(255)

(256)

(257)

(258)

(259)

‘ Vix,p) [uy(x)] o o« fu _ (x)]
4§
oA L m (mu)) e e (L (u ] (L, (9]
Rz(x.t,o) o () 1 11 1" "n-1 1
L) [z (u)) L (w1 (L ()]
]
: The asymptotic expression for A(p) is (compare chapter I)
V ~. 11 - _pw
A(p) = L1(V)[Al - b1 (8) n(B) Ale
¢ where
1
: Lpfug) = v s Lyluy )
-.‘: A B L] L] L] . L] * . L] L]
1 . - L]
! Ln(u1) Ln(“n-1) .
i As in chapter I we make the assumption
} B0 .
{3 4 (Z is identical with Gb of formula (159) for this particular case.)
1
L]
L] 45. Corresponding to the representation of H(x,t,p) as a sum of two terms in (251) we
. f find, upon substitution of (251) into (238),
; G(x,tp) = G,(x.t.p) + Gz(x.t.p)
& with
b4
W
3"} H,(x,tp)
aj G1(x,t,p) = (=1) o
H (xltlp)
n 2
: Gz(x,t,p) (-1) (o) .
“} Using (235) this leads to a representation of the solution =z(x,p)
[]
integrals:

B i eyt




z(x.p) = z,(x,p) + zz(x,p) (260)

with
z,x,0) = [ G xt0) p £(eIGE (259)
zx,0) = [ 6,0nt,00 0 f(rIaE . (260)

i We shall prove that, as p tends to infinity, z‘(x.o) tends to zero, while zz(x,p)

tends to a solution of M(y) = f(x). :

3

T 46. 1In this section we are going to show that

- lin 2 (x,0) = in [2 6 (x,t,0) p £(t)OE =0 . (261)

preo pr® e
To this end we write (259) in the form

; 2,(x,0) = [% G (x,t,0) o £(t)dt + I8 6, xt,00 o flt1aL (262)

& -,
. and prove that each of the two integrals in (262) tends to zero.

e a) In the first integral of (262) we have t < x. Hence, G1(x,t,p) has to be

" determined with + V(x,p) as the last term of the first row of the determinant in (252).

: In order to find an asymptotic expression for H‘(x,t,p) we expand the determinant in
| ; (252) in terms of the minors formed by its first and last columns. These minors are either
3. zero or of the form
b4
) £2L.(V) L (V)

M & y<r

. or > r (263)

] 2 v(x,p)nc(v)

i.e. they are of the form
AY+78 o0

+ § o e {q
' . or (264)
v T, o o weag

. p e (q']
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where q and q' are certain numbers different from zero. Since ) and are

1 Te+1
greater than all the other Ais and Til; it follows from (264) that, in o < x < B, the

expression of highest order of magnitude among all the minor (263) is % 2 L1(V) Lr#i(v)'

and no other minor has the same order. Hence, (252) can be written, - in a < x < t -, as

follows:
n-xr 1r+1-n+' “e Iz el8rdg ¢1r+1(u) (a)
Ry (x,t,0) = (=1)""p L,(V)e =L o 268
¢ (t) nlt)
where

[u,(x)] ® o % ¢ s o 0 8 2 s o & o[un_‘(x)]

[Lz(“‘) e o 8 o s o e 2 0 s e o[Lz(“n-1]

L ® 8 8 & o & o ° 0 s & @ (266)
v(x) [Lt(“")] [Lr(“n-‘])]

(L (U,) o o ¢ o o o s ¢ ¢ o o [L _(

r+2 1 r+2 un—1)]

® & % 0 8 6 & 5 5 6 & 0 o * & 8 9 0 o

(u
[Ln(ui)]oontoucooo-o[[,nn'

1

is the cofactor of the minor 12 L1(V) Lt*1(v) in (252). (265), (258) and (254) show

that for t <€ x,

t T
1,0t -p [~ w(E)AE r+1
Gix,t,p) = (=0T p T o 0 2 __to) nle) vix)
¥ (t) n(t) A

(267)

and therefore

[ Gxit,oip t(trat = (-1) T g n(o LX)
a

A

fz P(£)AE F(t,p) (268)




£(¢)
w™ V) ne)l

F(tl p) =

The integral in the right hand member of (268) tends to zero as p + », since its
integrand tends to zero in the interior of the interval and remains bounded at the

T, ,~n+2
endpoints. § o+ remains bounded, because we have assumed that

. Tr+1 <n-2 .

i Consequently, the left member of (268) tends to zero, as p * %

b) In the second integral of (262) we have t > x. Hlence, in the determinant in

! (252) the last term of the first row is +~V(x,p). Expanding this determinant in terms of
the minors formed by its first and last columns we see that this time the minor of highest
order is formed by the two first rows of the determinant. The value of thias minor is

12 V(x,p) L,(V) .

- A calculation analogous to that used in part a) of this section leads to

b ]

. . [Bo,xiti0rp £irrae = o2 (XL, (269)
3

where the constant Q 1is the limit of the cofactor of the minor above. Since t > x in
ot the integral in the right member of (269), the integrand of that integral tends to zero in

- N the interior of the interval of integration, x ¢ t < B, as p approaches infinity.

Ay

Furthermore, the integrand is bounded at the endpoints of the interval of integration.

o p

Consequently, the integral tends to zero. On the other hand, our assumption m > 0

implies n-2 > 0, and the power of p in (269) is therefore not positive. Hence, the

3 A

left member of (269) tends to zero, as p + =

This completes the proof of (261).

= Ga

o

-
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47. We now turn to the asymptotic calculation of zz(xao). (see (260)). We note first,

on expanding the determinant in (253) with respect to its first column, that Hz(x.t,p)

can be written, in a < x < 8, 1in the form

LW _
H,(x,t,p) = Yl (H(x,t)] (270)
vhere
u1(x) ® s 0 6 % ¢ o s 0 un-‘(x) ;(x't)
Lz(u1) ® o 0 0 0 o o o Lz‘“n-ﬂ’ Lz(g)
i(x,t)- © o 6 6 5 ¢ & 2 5 0 8 0 0 0 0 0 0 0 e

(271)

Ln(“1) e o s o ® a o 0 Ln(nn-1) Ln(q)

is the limit of the cofactor of the element L,(V) in (253). Substituting (270) in (259)

it follows that

G,(x,t,p) = (-1)" -:; Bix,t)
p(t) <A

and this formula, together with (260) gives

[
z,(x,0) = (-1)" B XL pphae
vit)A
In this expression we may pass to the Limit under the integral sign, since the asymptotic
expression for the integrand is valid in the whole interval a < t < B. Thus we obtain,
replacing at the same time ¢(t) by its value =b,(t),

B .01 Hix,t) £(t)
lim Z,(x,p) = ]a( 1) 5 byt

pre A

at . (272)
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Now we combime (272) with (261) and (260), and conclude that the right member of (272) is

the value of 1lim z(x,t,p). But the definition of H(x,t) and A 1in (271) and (255),
- P

respectively, show us that

n-1 H(x,t)

A

-n

is exactly the Green's Punction helonging to the differential expression

1 1
By ey MY
! and to the boundary conditions Ly = 0, (1= 2,3,...,n).
g Since these boundary conditions do not involve derivatives of higher than (n-2)nd
. order, this proves that 2z(x,p) tends to a solution of the limiting differential equation,
satisfying all boundary conditions, except the first one.
L 3
L]
L]
%
"
b A
b4
A
b4

LY
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48.

We summarize the results of this § in the following theorem.

Theorem 5:

We consider the problem (N) defined by the differential equation
lpu(y) + M(y) = £(x) 232)

and the boundary conditions (108). N(y) and M(y) are differential
expressions of the form (103) and (104) with
n-m=1 .
We make the following assumptions:
(a) Conditions 1® - 5°, 7° and 8* of the Main Theorem (section 4)
are satisfied.
(b) by(x) < 0 in a € x < 8.

(c) < n=-1.

Tret
(d) 0 < r < n.
(e) f(x) 4is integrable in a < x < 8.
Then the solution Z(x,p) of the problem (N) tends - as p approaches
infinity - to a solution of the differential equation
M(y) = £(x)
satisfying all the boundary conditions (108) except, in general, the first

one, L1(y).

A strictly analogous theorem holds for bo(x) > 0.
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‘ Chapter III
SOME RELATED PROBLEMS
- §1. An Example for Boundary Layer Problems in Systems of
Differential Equatins.
49. A great number of unsolved boundary layer problems with important applications can be
! formulated for systems of ordinary differential equations. We are going to discuss in this
' section a very elementary example in order to give an idea of the boundary layer phenomena
'

L 3 that can arise for systems:

We shall discuss the system

" plu"mau+bv

(301)
. vi=cu+dyv
with constant a, b, ¢, 4, assuming that
ado . {302)
As boundary conditions we prescribe
s ul{a) = u via) = va, u{g) = “B’ v(g) = vB (303)

where u v u v are constants.
. al G' B . B

The "limiting problem®, obtained by setting p-1 =0 in (301) is equivalent to the

a e,

differential equation of second order

1.

- ]
» v - a’" 0 (304)
¢
]
3 B where
ql
| T
{ 5-‘:: . (305)
‘B and to the relation
o b
¢ . Uus =y , (306)
b3 a
.
1]
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The following questions arise:

(a) Do the solutions U{x,p), V(x,p) of (301) and (303) converge as p + <@

(b) What boundary conditions do the limit functions U(x) and ;(x) satisfy if they
exist, and are they solutions of the limiting differential equation (304)?

The functions U(x) and V(x) cannot be expected to satisfy all four boundary

’ conditions (303) and also the condition (306), for the prescribed boundary values (303)

will, in general, not satisfy the condition (306). The answer to these questions is

\ supplied by the following Theorem:
1
" Theorem 6:
Let u = U(x,p), v = V(x,p) be solutions of the system of
- differential equations
| p-1u' = au+bvw
} (301)
R vi=cu+dv .
t (a, b, ¢, @ constants) satisfying the boundary conditions
. u(a) = u via) = v u(p) = U v(g) = A (303) -
L ]
; where ua, “B' va, vB are constants. Let us further assume:
Assumption 1: a ¢y 0 .
< Assumption 2: a, b, ¢, d, a and B8 are given in such a way
ey
3 that the differential equation
‘.
¢ §
] y -5y =0 (307)
2 with
i a b
4 s- |2 % (305)
4
i} and the boundary conditions
. -
! y(a) =0 , y(B) =0
‘ can be satisfied by the function y{x) = 0 only.
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Then we can make the following statements:

(A) The function V(x,p) converges, as p + =, to a
function V(x), satisfying the differential equation (307)
and having the boundary values

V(a) = v, e V(g) = v (308)

(B) If a > 0, then the function U(x,p) converges in

a<x<fB as p + o to the function
- b -
U(x) = - 2 V(x) (309)

{(which, of course, satisfies the differential equation (307)).

(C) If a < 0, then the function U(x,p) does not converge
but remains bounded, as p + =, except when the prescribed boundary
values satisfy the condition

au +bv =0
[\ a

(310)
au, +bv =20 ,

8 8

in which case statement (B) remains true for a < 0 also.

50. To prove this theorem we start from the observation that U(x,p) and V(x,p) are

both solutions of the differential equation

p"{y(4) -dy"'}-ay" +8§y=0 . (311)

In fact, if we multiply the second differential equation of (301) by b and substitute

into it the expressicns

-1u‘4) - au"

bvs= p.1u" -au , bv*'= 3§
ohtained from the first differential equation, we find the following differential equation

in u alone,

.75~
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u(4) ~-(pa+d)uw +psu=o0 ,

which is equivalent with (311). Similarly, it can be shown that (311) is satisfied by
V(x,p), by eliminating u from the differential equations (301). It is also ceasily seen
that the boundary conditions satisfied by U(x,p) and V(x,p), considered as solutions of

(311), are, respectively,

for U(x,p) for V(x,p)
yl{a) = u; yla) = va
¥Y(8) = ug (312a) y(8) = vg (312b)
y*(a) = (a u +Db va)p y*(a) = ¢ v, + 4 A
y"(8) = (a up +b vB)p y*(B) = ¢ u8 + 4 vg -

The boundary conditions for V(x,p) are of the type considered in our Main Theorem
(chapter 1, section 3). Applying the Main Theorem for these boundry conditions and for
n-m = 2, bb(x) = ~a, we gee that for a > 0 as well as for a < 0 the function V(x,p)
converges to that solution of the limiting differential equation (307) which satisfles the

boundary conditions y(a) = A y(B) = v This completes the proof for statement (A).

g
51. For U(x,p) a special calculation is necessary, since the boundary conditions for
U{x,p) contain p, a case not considered in our Main Theorem. Our principal tool in
chapter I, the asymptotic representation of a fundamental system of solutions of the given
differential equation, can be applied to the differential equation (311) and yields then

(see theorem 1, section 6)

U,(x,p) - eo/;(x-a) ("

e-o/:(x-a)

Uz(x,o) = [1] (313)

03(*'9) = [A(x)]

U‘(x,p) = (B(x)}] .

OIS N
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Here the functions A(x), B(x) form a fundamental system of solutions of the limiting
differential equation (307) and

o= Vp
With these functions we repeat the general reasoning of chapter I for this special case.

We first re~write the boundary conditions {(312a) in a form somewhat more convenient for our

purpose:
p-’y"(ﬂ)-z-au +bv p-iy"(u)-!.-au +bv
1 8 g 3 a a
l' {314)
)((B)-!Lz--uB ’ y(a)-!.4-uu .
Let us further introduce the abbreviations
§
i - '
oAlBa) W o.e fate-a) _ “ . (315) %
. H
: First case: a > 0. ;
. Defining A(p) as in (134) we find g
;
. taiw, lalw, o lava) o 'sna) :
. Mp) = [1]W1 !1)W2 [A(8)) [B( 8)] (316)
. -1 -1
(a) [a) p (A"(a)) p [B"(a)]
. (11 {1 A(a)) [B({a)] .
3
&
.f‘ We expand this determinant in terms of its last two rows:
a: "‘;
id 2 A(B) B(8) 2
" Alp) = -(a"] W1 = ~-[a”]D W1 (317)
. Ala B{a)
' with
B4
. A(B) B( 8}
, D= . (318)
. Aal{a Bla)
In consequence of assumption 2 of the theorem to be proved we have
3
.
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D¥ O . (319)
Similarly, we find
-1 -1
2, [a]w2 p [A*(B)] p [B"(8)]
ao =[ B2 19 ee) LA ) = o(a 1, D) (320)
8, la) o lamian o' e (e
' 8, 1 ()] (B(a)]
and
1 1 1
[alW1 11 p (A:(B)] p [B"(8)]
(1w L (A(8)] B(B)]
1 2 (321)
(p) = = ~-[a ¢, D] .
y 4 1 ‘ 3
{a] 2, 0 (@] o (B"(a))
(11 !.4 A a)] [B{a)l
In the determinant
(alw, (alW, &, o (B"(B)]
. AJ(") - [11W1 [1]W2 22 [B(B)]
) (a) (a) 25 0" (B ()}
Y [1] ()] !,4 [B(a)}
2
b .
i we subtract the a" fold of the firast row from the second row and the a"' fold of the
: third row from the fourth, thus obtaining
| (alw, (alw, 2, o' te"(8))
b
[0]“1 [omz = av [B(B)] (321)
A3(O) = -1
[a] (a}] 13 p [B"(a))
b -
[0} (0] “ava [3(a)]} .




Here we have used the fact that, in congequence of (313)

A s A et g

2 L
1 b 3 b
lz-‘ -avB P 24-r--ava . (322)
Expanding (321) we find ?
b !
-=v B( 8} ;
a B 2 i
Aa(o) - (a ]w‘ . (323) i
b i
-=v B( a)
a « |
i
Similarly, we prove that i
]
b
A(B) “avs .
{a ]w1 . (324)
b
Aa) - a Va

52. From (313), (317), (320) and (321) it follows that

A1(p)

im 205

poo

01(x,p) =0

in g<x<pBg .

8,(p)
lim -M—DT Uz(x,p) =0

p”

(323) and (324) show then that

U(x) = lim U(x,p)
Do

is that solution of (307) which assumes the boundary values
= b = b
U(a) a%a u(g) - 2 VB .

This proves statement (B) of theorem 6.

Second cagse: a < 0 .

If a < 0, then the absolute values of W, and W, osciliate with increasing »p

without tending to a limit. 1In this case we obtain from (316) the asympotic expression
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2
o A% (W, - w,) (325)

instead of (317). For A1(p) and Az(p) we have

By(p) = =[O &l (£ = 2 W) (326)
Az(p) - -(D a) (23 W1 - l‘) (327)
and for A3(p) and A4(p)
-2¢  am
2 a 8
A3(°) = -[a"] (W1 - "2) (328)
b
-;va B(a) ‘v
A(B) ~l:-v8 :
2
8y(p) = -1a%) W, - W) . (329) !

53. From these expressions it follows immediately that

4 A (p)

i
u(x,p) = J u,(x,p)
1my A0 4

does not convarge in this case. Vor :
A(p) (As(p) U (x,p) + A (p) U (x,0) )

converges to the same solution of (307) as in the case a < 0, while the expression

3 (B, + 80 = L4 i faoew |, BTTh o-to'Talix=a)
11 2 a(w1-w2) a(w1_'2)
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does not converge unless 11 - 13 = 0, 1in which case it is identically zero.

This completes the proof of theorem 6.

If assumption 2 of theorem 6 is not satisfied, then our reasoning does not hold any
mora. In that case it would be necessary to take into consideration also the second terms
of the aaymptotic series used, in order to find the order of magnitude of A(p).

Agsumption 2 is easily seen to be equivalent, in this case, with

§4 0

V- g (8-a) ¥ Nn when

where N is any positive or negative integer.

and

® o
PN
o

The cage a = 0 could be easily treated by the same method.

The boundary layers in this § occur only for the function U(x,p), which with
increasing p tends to a function which does not have the prescribed boundary values,
except, when these boundary values satisfy the condition (310).

A more adequate and general treatment of boundary layer problems in syatems of
ordinary linear differential equations could probably he based on the asymptotic solution
of linear systems as developed by Langer and G. D. Birkhoff {5]. The assumptions of that

theory would, however, have to be generalized for this purpose.

§2. An Example for Boundary layer Problems with

Sinqularities in the Interior.

54. Introduction: If the assumption 6°* of the Main Theorem in chapter I is dropped, i.e.
if we admit zeros of bo(x) in a € x < B, then our whole theory becomes invalid. For
the zeros of Dby(x) are usually gingularities of the limiting differential equation

M(y) = 0, and the theory of the asymptotic solution of differential equations, which was

our malin tool, fails in this case.




The general treatment of boundary layer problems in this case would probably require
an entirely new approach. But it is already interesting to investigate a very simple
special problem of this type in which the differential equation can be solved explicitly.

We shall discuss the boundary layer problem of the differential equation

% y" + b(x)y' = £(x) (330)
with the boundary conditions
y(a) = lz ¢+ y(B) = l1 . (331)

We make the following assumptions:
t. b(x) is regular analytic in a < x < B .
2. f(x) is regular analytic in a<x < 8 .
3. b(x) has a zero at the interior point x = r of the interval a« < x < 8. But
b'(r) ¥ 0, and b(x) does not have any other roots in a < x < 8. (This number r has,
of course, nothing to do with the number r used in the first two chapters.)
Assumptions 1 and 2 are by no means essential. We introduce them only in order to

aimplify our reasoning.

55. The solution of the boundary value problem for the differential equation (330): To
simplify the calculations it shall be assumed that the boundary values are
y(a) = y(B8) = 0 .
The case of non-homogeneous boundary conditions, which does not add any new features to the
problem, is dAiscussed in section 59.
The general solution of (330), as obtained by elementary methods can be written in the

form

“p(A{E)~A(n)) x _=pA(E)
PMEMMgn 4 o) [F 6P Yagrc, . (a2

U(x,p) = f: ag fﬁ p f(n)e
where
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A(x) = f‘\‘, b(x) dax (333)

and X, u, v, °1' c2 are arbitrary constants, which are restricted by the prescribed
boundary conditions. The five constants are, of course, not essential. In reality (332)
depends only on two essential parameters, so that three of the five constants can be chosen
arbitrarily. 1In order to obtain a foram of the solution suitable for the boundary layer
problem, it is convenient to set u = A, while the choice of A and v shall be left

undecided for the moment. Por typographical reasons it is useful to introduce the

abbreviations

5 = [T ag [} o reme R AEITAN,, (334)

t _ ~pA(E)
of f:e a . (335)

Then (332) can be written

Qe (336)

Ulx,p) = P} + c
and substitution of the values x = a and x = B into (336) leads to the two linear

algebraic equations

- o8 8
0 =P +cQ +c,

(l+c

a
0 Px + c,QX 2

for ¢4 and cye Calculating <, from these equations and using the fact that

[ a _ B
QA - QA Qa' one finds that

B .a 8
P2, - P
Q

a

. (337)

-83=




[ S A T R IRt b 2 L Sl g v A

]
1
1
};_, investigation can be obtained immediately from (337) by the following considerations:
; Substitution of A for x in (336) shows that c, = u(A)s As ) was arbitrary, this is -
. true for any value of A, so that (337) can be regarded as the desired solution of (330)
with )\ instead of x as independent variable. writing x for 1, the solution of the i
boundary value problem is therefore obtained in the form
a QB
Uix,p) = = p8 - Xp2 | (338)
gf * g8 '¥
a a
§ S6. The asymptotic value of f: rixe®? M ax tor large pi
) The solution of (336) is composed of integrals of the form
£ rx1eP A% ax (339)
S It is therefore important to have asymptotic expressions for such integrals for large
X values of p. The following theorem, a proof of which can e.g. be found in a paper by
. O. Perron [8], will be the chief tool of the subsequent investigations.
Theorem: If F(x) and ¥(x) are regular analytic in ® < x < t, if
B a0, for x= R, s CR<C ¢t
'y ¢ (x)
'3 €0, for x¥ R, 8 <x <t
LY and if

v(x) = (x-R)P(go + gy (x=R) + .00)

is the Taylor series of (x) around x=R, then

t PHAX) 2 1 1 -1/p
[ ®(x)e ax = [Z F(R)T(-) 1o . (340)
s P P Igol‘l/P

whers the brackets "( ]" have the meaning defined in section 5. (The number p here has
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where the brackets "[ ]" have the meaning defined in section 3. (The number p here has
nothing to do with the number p of chapter I.) If R=s or R=¢t, the same is true,
but with the factor 2 in (340) missing.

This theorem can easily be generalized so as to include also the case ¢(x) > 0:
Theorem: If P(x) and ¢(x) are regular analytic in s < x < t, if ¢(R) is the

maximum of ¥(x) in 8 < x < t, where s < R< t, and if
o(x) = ¢(R) + (x-RIP(gy + (x-R)gy + ..0)

is the Taylor series of y¢(x) around x = R, then

t po(x), 2 1 1 =1/p 00 (R) .
f. P(x)e dx [p FRITED . |1/plp e . (341)
0

If R=8 or R=t, the same is true with the factor 2 in (341) missing.
Proof: The integral

f: F(x)ep(‘p (x)-ﬁP(R))dx

satisfies the assumptions of Perron's theorem with ¢ (x) - ¢ (R) instead of ¢ (x). Since
e(x) - ¢(R) = (x-R)P(gy + (x-R)gy + ...)

(341) follows immediately, if (340), applied for the exponent ¢ (x) -v¢ (R) is multiplied

on both sides by e’ (R).

S7. Passage to the limit in (338), if
<0 for a<x<r

b(x) =0 for x=r

50 for r <x<B .
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The asymptotic calculation of the integrals in (338) is easiest when the constant
in the definition of A(x), formula (333), is chosen equal to r. 1If this is done, the

function A(x) satisfies the following conditions:

A(x) >0, x ¥ ¢
A(x) =0, x= ¢

(342)
A(x) 1is monotonic increasing for x > r

A(x) {s monotonic decreasing for x < r

A(x) has therefore the shape indicated by the figure below.

A(x)
~
a r 4,/’/ x B

v

The passage to the limit, as p + «, in (338) leads to different results, according as

x 1is less, equal or greater than r.

Cage a). x > r.

8

a show that for x > r both integrals

Application of formula (341) to Q: and Q

have the same asymptotic value, hence

a QX
n-—’;- - lim —‘;- -1 . (343)
pre Qa pre Qa

To the inner integral of Pf formula (340) can bhe applied. Por, in this case,

r<x <n<£ and, in this range, =-(A(f) - A(n)) as function of n assumes its maximum

value 0 for n= E, on sccount of (342). As
4 {(-A(E) + A(n) = -b(n)
dn

is, by assumption, not zero, the numher p of (340) is here equal to 1, hence

v

RO

.
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' IE o ”n).-o(k(?.)-l\(n))dn_ (eeE) ﬁe_)]
‘ ‘ -
b and therefore
B (B L£LE)
ti: L }‘ () ac . (344)

The expressions in brackets in (340) and (341) can be sure to be different from zero,
if F(x) 0 in a < x < B. In order to avoid too lengthy formulas, this additional
assumption shall temporarily be made. It is, however, by no means essential, and it will

; be shown later how to proceed without it.

The letter ¥ in the subsequent formulas shall be used to indicate non-vanishing
'_} constants. WNote that the same letter E will be used for different constants.

! One finds immediately, by application of (341),

8 1 _=pA(x)
8 Qx = [E] o e . (345)
In

LI B _ (B ~PALE)

‘ Q. =[,e ag

.i

: the exponent reaches its maximum 0 for £ = r. As, by assumption, b(r) = 0, but

.

, b'(r) ¥ 0, p is equal to 2 1in thisg case and

. [ 1
f-% Qa ~ (B] 7 (346)
L.
L In order to find the order of magnitude of P:, congider that a < £ € n<x and r < x
hy o
o in the exponent ~(A(E) - A(n)) occurring in P:. Hence, the maximum of ~(A(f) - A(n))

“ as function of n for fixed £ |is

s,

=(A(E) - A(E)) =0, for A(E) > A(x)

=(A(E) = AMx)) > 0, for A(E) < A(x) .

-
-

&

The asymptotic value of the inner integral of P: is

»
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. (B} « for A(E) > A(x)
fi 0 ,(n).-p(a(t)-h(n))d“ - -plA(EY-A(x)) .
“ [Ble , for A(E) < A(x) .
The contribution to P: of that part of the interval a € £ < x for which A(E) > A(x), .
(1f it exists), can be neglected in comparison with the part where A(E) < A(x). As
1 a _=p(ALE)=R(x)) ,. 1 PA(X)
. fx . AE = [B] e
L one has therefore
k4 (
: a 1 pA(x)
' Px (] 7; e (347)
! From (345), (346) and (347) it follows, finally, that
A
8
& p% = (2] )
Qb x P
a
and therefore, using (344),
| S 2
§ 1m U(x,p) » - [BEE qp gor x> . (348) »
x b(E)
(2 aad
-
. Case b)., x < r.
R A consideration analogous to that used for case a) leads to
A . um Ux,0) = 8 ap, for x<cr . (349)
2 a b(&)
4 | pre
“'
; 3 See also case c) and 4), section 58,
" case c). X = r.

£(x)

It Bix) is reqular analytic at x = r, then one shows immediately, by a similar

consideration, that

-

1 ,r £(E) r £() . ]
i' 2 {fa 50E) atc + !8 5E) dE}, for x=7r .

Py 3 2 A D ey W BTV



i (The factor % is due to the 0Q's in (338).) 1In other words, U(x,p) tends in this case

. to the arithmetic mean of the two limits at x = r,

58. Passage to the limit in (338), if
4 >0, for a<x<r

b(x) = 0, for X=r

€0, for r<x<B .
, In order to operate as much as possible with positive quantities it is convenient to

set now
A(x) - f: b(x) dx . (350)

Then A(x) satisfies the conditions (342). If in the definition of P: and Q: the sign
of the exponents is changed, U(x,p) can again be written in the form (338).

In addition to the distinction between the cases x > r and x < r, the relative
size of A(a) and A(B8) plays now a part in the proof.

&, Case a}. x > r, A{(8) > A(a) .

et s >r be the value for x for which

. A(S) = A(q) .

Then

[B] % e , X > 8 '

|, ol = (351)
) 1

(B ~ e , X <8 ]
P

o A.‘_‘. ';,

and

2

(352)

.

0% = (m) 1 PMB
@ )

L

The relative positions of x, £ and n in 92 are indicated in the figure below.

‘u
Al

.-1f
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- -
a B .
Cd
! One sees that max(A(£) - A(n)) = A(E) - A(x) for fixed E£. Therefore
; f: 0 f(n).p(A(E)-Mn))dn - (B ‘p(A(E)-A(x))
o I: SPALEI-RUXN) g gy %eo(l( B)-A(x))
i
and
PB = [E] Al eD(A(B)-A(x)) . (353)
x p .
Furthermore
of
3 3 = [B] . {354) -
. For P: conglder again the relative position of x, £ and n. If £> r, the inner
* integral in P: remains finite, as p + », hence only the case E <r has to be

considered. In that case

max(A(E) = A(n)) = A(E) - A(r) = A(E)

-y
ég and
“
5 £ o etm @PMERMIgy gy g @M
3
A
' As
' 4 m%e"“"’ , x>s
A
Ny f: &P (E)dg -
N 1 _pA(a) :
B] = ’
?‘ (E] 5 e x €8
’
v one has
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Substituting formulas (351) - (338) one obtains

ey - - 3

1 p{A(a)=A(x)) 1 _pA(a)
(e} i [E] 7 e

lim U(x,p) = b L

proe

Case b). x > r, A(B8) < A(a) .

The reasoning is of the same type as in case a), only the orders of magnitude of the
terms change. Let 8 < r be the value of x for which
A(s) = A(B) .

One finds
= [E}] .

Por P: the asymptotic formula (353) holds unchanged. Furthermore

8

- 1 _on(8)
Q, = [E] b ©

8

pA(a)
Q. e

1
(E) >

(359)

The relative positions of x, £ and n in the inner integral of 9: can be seen in the
figure below. Only the case [ < r has to be considered, as for £ >r the integral

tends to zero.
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Alx)
T -
3 \~. T
+ s ~Nx -~ je _ m 8 S
7
]
Por E<r
3 -
IE o £(n) GD(A(E) A(n))dn - (8] ¥p ‘pl(t)
:
f and
) a pA(E) .- 1 _oA(a)
]x e a = (8] S e
hence
a_ 1 pA(a)
) Px (€.]] 7; e o (360) .
5 - The expressions (353) and (357) - (360), inserted in (338) lead to
‘ 1 _p(A(B)~A(x)) 1 _pA(8) i
. U(x,a) = [E] ~ e - (Bl = e
N Therefore
N lim U(x,p) = st . (361)
. e
:-4 Cage ¢) and 4). x < r.
F 3
. One might repeat the preceding arguments in analogous form and with the same final
.
y ruesult for x < r. Inatead, one can also proceed as follows: The transformation
’ﬁ : zZ=r-x
B changes the differential equation (330) into
LY 1 dz ~ & g
: -~ 2X 4 B(z) X = F(2) (362)
3 2 4z
) dz
po. where

Blz) = =b(r-2)

f(z) = £(r-z) .
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The boundary conditions y(a) = y(8) = 0 are transformed into
y(r=-B) = y(r-a) = 0 .

As

>0, for r—-p <z <0
blz) =0, for z=0

€0, for 0 <z <r-a .

The results of the preceding section can be applied to (362) and lead to

lim ﬁkz,p) = to , for 0 <z <r-a .
pre

But this is equivalent with

lim U(x,p) = t» , for a<x<r .
prw

This method might also have been used to prove formula (349).

59. Some minor generalizations:
1) If f£(x) 4is allowed to have roots in a < x < B, the asymptotic values used for
P: and P: are not correct for these values of x which are roots of f(x). 1If, in
particular, f£{(r) = 0, some of the expressions would even be incorrect for all x. The
reason is that f{(x) or ¢f£(r) appear in the constant factors occurring in these
expressions. But in that case the calculation could be carried through with a slightly
more general form of formula (340) also contained in Perron's general formula in the paper
{8] quoted above. The result is again the same.
2) Non-homogeneous boundary conditions: If to (338) is added a solution of the
homogeneous differential equation
%y- + b(x)y* =0 (363)
satisfying the non-homogeneous boundary conditions
y(a = &, y(B = ¢, (364)

one obtains the solution of (330) satisfying the boundary conditions (364).
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As the transformation
[ ]
y =y- 22

changes (330) into a differential equation of the same type and transforms the non~
homogeneous left hand boundary condition into a homogeneous one, it is no loss of
generality to assume that
2-0 .
The general solution of (363) can be written in the form

U(x,p) = ¢ * . c

P 'QC 2 .

The given boundary conditions lead then to

Yy
c1 - -i ’ c2 =0 ,
Qa
hence
X
Uix,p) = —: L, . (365)
QB

To (365) the methods of sections 57 and 58 can be immediately applied with the tollowing

result:
<0, x<r
a). b(x)
>0, x>r ,
then
11 for x> r
lim U(x,p) =
pow O for x<r
>0, for x<r
b). b(x)
<0, for x>r ,
then

Qe) A(B) > Ala) ]

[X] o

p(A(x)-A(B))' x> s

U(x,p) = +0 .
[!1 .D(MG)-MB))'

x <8




8.) A(B) < Al(a} ,

- 1im U(x,p) = £1 .

pee
i 60. Theorea 7:
4 Given the differential equation
lpy" + b(x)y' = £(x) (330)
3 vhere b(x) and f(x) are ragular analytic functions in the
interval a < x < 8§ and b(x) has exactly one root x = r
in the interior of the interval, while b'(r) ¥ 0. Then the

| behavior for great values of p of the solution of (330) which
satisfies the boundary conditions
y(a) = lz. y(B) = £1 (331)

depends essentially on the shape of b(x): ;

+ <0 for a <x<r
1)e If Db(x)

>0 for r <x < B ,

then the solution U(x,p) converges with increasing p in

. the whole interval a < x €< 8, except possibly at x = r, the
5_& limiting function being composed of the two solutions of the 3
;A limiting differential equation of the first order

5. 8.

b(x)y' = £(x)

satisfying one of the two prescribed boundary conditions. If
these functions are bounded at x = r, then the solution of

(330) converges at x = r to the arithmetic mean of the two

limits at this point.

Ko B2 . IR
B e T T S S

RS
'

>0 for a<x<r
2). If b(x)

€0 for r<x<pg ,




Mm’w;a O

" then U(x,p) diverges with increasing p at all points of the

interval.
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R Appendix ‘

A SHORT REPORT ON THE ASYMPTOTIC SOLUTION OF
ORDINARY DIFFERENTIAL EQUATIONS INVOLVING A PARAMRTER

61. The main mathematical tool used in this paper is the theory of the asymptotic solution
of differential equatins involving a parameter ¢ for large values of this parameter. The
‘ most important results of this theory are contained in papers by G. D, Birkhoff (1],
! Noaillon [2), Tamarkin (3), ([4), Langer (S), and Trjitzinsky (6]. The asymptotic
developmenta used by Birkhoff and Tamarkin, although of a very general character, do not
: apply to the particular differential equations of thia investigation, because they assume

that a certain “"characteristic" algebraic equation formed with the coefficients of the

differential equation has no multiple roots, an agssumption not satisfied in our case.
It would probably not be difficult to modify the methods used by Birkhoff and Tamarkin
) in such a way that they cover our case. But this is not necessary, since the type of

differential equations congidered by Noaillon and Trjitzinsky includes the differential

B equation (101).

A complete proof of the main theorem of Noaillon and Trjitzinsky would be beyond the
scope of this investigation, even if we restricted ourselves to the special case in which
e we are interested. We intend here only to give a summarized report on the methods of this

" theory and to show how, asguming the theorewms proved, the asymptotic expressions of theorem

AN

1 can be obtained in our case.

o ot
e

The theory consists of two parts. In the first part, vhich may be called the "formal

.. 0

ﬁj part”, the "exact" differential equation

L(y,p) = 0 (401)

which is essentially equivalent to the differential equation

I—‘-‘{-‘-"—’- -0 (402)

TS, o R 2

is replaced by the "asymptotic"™ differential equation

Eﬂl"—’;o . (403)

y
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Here the symbol ';' has the following meaning:
£(x,0) ; gix,p) ,

where j 1is a real number, stands for

£0x,0) - gix,p) = BEEL )
[+

As previously, E(x,P) 1s a function such that there is a positive real number R s0 that
{B(x,p)| is uniformly bounded for & € x € 8 and |P| > R. Usually, f£(x,0) will be

regarded as asymtotically equal to g(x,P) only if J is positive. But sometimes, e.g.

in the case of the differential equation (101), a solution of (403) with a negative j

will be an asymtotic approximation in the ordinary sense of the exact diferential equation

(401).

It is then shown that under very general assumptions a function Y(x,P) can be
constructed which satisfies the condition (403), provided the number j is not too large.

If certain differentiability conditions are satisfied, j may have an arbitrarily
large value. This is the case treated in detail by Noaillon and Trjitzinsky. The case in
which there is an upper lipit for j 1is only mentioned occasionally by these authors. But
since we are only interested in the first terms of the resulting asymptotic expansions, it
is unnecessary to assume indefinite dQifferentiability of the coefficients of the
differential equation. This assumption is required only, if we are interested in the
unlimited asymptotic expansion. Going over Noaillon's proof it is easlily seen that
assumption 4¢ of Noaillon's theorem in section 62 below is gsufficient to guarantee the
existence of the first term of the asymptotic solution.

In the second, the "functional®™ part it is shown that the solutions of the asymptotic
differential equation (403) are asymptotically equal to the solutions of the exact
differential equation (401).

Essential for our application is furthermore the result that the derivatives of these
asymptotic solutions of (401) are asymptotically equal to the derivatives of the

corresponding exact solutions.
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The complete statement of the results of Noaillon's paper, as far as they are

important for our purpose, follows:

62. Noaillon's Theorem.

Part I: Given is the Aifferential equation
n
L(y,p) = Z Pl(x:D)Y
i=0
gatisfying the following conditions:
1*. p 1is a real positive parameter.
2°., x is a real variable
3°. In the domain a<x < B8, p> R (a, B, R constants)
be expanded in convergent series of the form
H -«
Pxi0) =0t ] B, (007"
s=0

(The H; are positive integers.)

(n-1) _

0 (404)

the coefficients Pi(x,p) can

. (405)

4°, The functions Big have at least n continuous derivatives in a < x < 8.

5°, The coefficients Boo(x) in (405) does not vanish in

a<x < 8

any point of the interval

To these conditions 1° -~ 5¢ a sixth assumption has to be added, which can be most

easily defined in the course of the construction of the asymptotic solution.

If these conditions are satisfied, then there can be constructed solutions Y(x,p) of

(403), each of which can be written in the form
Y(x,p) = Teu
where the "principal factor®™ T 1is a function of the form
W
f:o W €, p)AE
T=a

with

%

Wx,p) = § A (x)p
i=1

(406)

(407)

(409)

.4
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the a, being non-negative decreasing rational numbers and p being a positive integer

1
independent of 3. u stands for the "secondary factor"
' P/
ulx,p) = | E (x)p ne (409)
w0

Here M is a positive integer independent of j. The positive integer 3j' depends on
jJ and increases with 3. (In the application to differential equation (101) the first
term of (409) is obtained if j = = EEE' as we shall see.)

As we have sald before, the wmaximal value of j for which a solution Y(x,p) of
(403) can be constructed depends on the number of times the coefficients By, c©an be
Aifferentiated. It can be only determined in the course of the successive construction of
the terms of (409). If the B, can be differentiated indefinitely, then j and j' can
have arbitrarily large values.

Remark: The theory remains valid if the series (405) are not convergent but only
asymptotic axpansiona, ®%ut we do not need this case for our application.
Functional Part: Let Y(x,p) = Teu bhe a solution of (403). Then there is a solution
y{x,p) of the exact Aifferential equation (401) such that
-3

yix,p) =TMu+p ™ (on (410)

and this equation can be formally differentiated at least n-1 times, i.e. it can be

differentiated treating the symbol [0} as if it were a constant.

63. The construction of the asymptotic solution of the differential equation:

A) The principal factor.

The first step: In E%Zl substitute an expression of the form

Y = Teu
(compare (407), (408), (409)). The result of this substitution is an expression of the

form
k Y Y,
PRGN O (a11)
imy
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the first term A1(x)P ! in (408) in such a way that the coefficients f,(x) of the term

of highest order in (41f) vanishes.
Noaillon gives a general method that allows us to determine the exponent 01 and the
function A,(x) systematically in the general case. But our application being of such a

simple type, 01 and A1(x) can be found, in our case, more directly.

a
Second step: Having chosen the first term A’D ! of ¥ we set
q
1
p = 91
%
X A 6)p 'aE
x 1
¥ 2

where q, is the denominator of the rational number 01. This subatitution trangforms the

expression &£1l into an expression

L2(Y2)
Y2
Lz(yz) y
We now repeat the reasoning of the first step with " instead of ﬁ52l, in order to
a 2
find the term Azp 2, considering, of coursge, for 02 only values that are smaller than

01. We continue in this manner until we arrive at the last term App P gor which ap is

still positive. That there is such a term, i.e. that we always attain an exponent

ap+, € 0 after a finite number of steps, is proved in Noaillon's paper.

B) The secondary factor.

Pirat step: In L(Y) substitute Y = T°u where T is the function calculated in A)
and u as yet undetermined. The result of the substitution is an expression of the form

T K(u,P), where K(u,P) is a linear differential expression in u whose coefficients are

power series in O = 01/", M being the common denominator of all the exponents “i in

¥. In K(u,p) collect the terms of highest order in O. Then K(u,P) can be written in

the form

et

1
&
]




X(u,p) = 8 G(u) + H(u,p) . (412)

Here S 1is the highest power of O occurring in X(u,p) and G(u) and H(u,p) are
differential expressions, G(u) being independent of p. It can be proved that the
highest order of differentiation occurring in G(u) is greater than zero.

Second step: Find a solution of the differential equation

Gl(u) = 0 . (413)

We take this solution as the first term Eo(x) of the series (409). Since we want Bo(x)
to be bounded in the whole interval of x in which we consider the asymptotic expansion,
we have tc add to the assumptions 1* - 5° in section 62 the condition 6°: The coefficient
of the highest derivative in (413) does not vanish in any part of the interval a < x < B,

Third step: 1In order to find the function Eu(x), ¥ >0 of (409), Noaillon proceeds
as follows: He determines by recursion a sequence of functions w1(x, ) wz(x, Ysese from

the formula

Glwy) = 1

S Hlwy_,,0) . (414)

It is easily seen that the wv(x,p) are of the form

a
-1
w,= L s gy () - (415)
i=0
The functions Eu(x) are then given by
N
gx) = g0 . (416)

Var 1
It is not difficult to prove that the function (406), if determined by the
construction which we have just outlined here, does in fact satisfy the relation (403).
The construction of the asymptotic solution ¥Y(x,p) is by no means uniquely
determined, and it can be proved that the construction yields asymptotic expansions which

are asymptotic approximations to a fundamental system of solutions of (401).
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64. Asymptotic Solution of L(y) = % N(y) + M(y) = 0,
A) The principal factor.

First step: We now apply the construction described in section 63 to the particular

type of differential equation under consideration. Substituting

Y=Y ="Tea
in Ei§491, where L(y,p) is now the differential expression (101), and T and u are
expressions of the form described by (407), (408), (409), we see that, unless ¢ = 0, the
a, s
term of highest order of xigl is (A,(x)p 1) « The condition that the highest terms of
% §§XL as function of o, and of !ixl cancel out is therefore
n a1n-1 o u1n
A,(x)p H -bo(x) A1(x)p ’
or
an - 1= a,m (417)
and
n m
A1 = -h°A1 R (418)

provided ¢ # 0. From (417) and (418) we conclude

1
%Y = o (419)
and
¢ 2 (-m 1/n-m
A, (=by) . (420)
Second step: Now we write
o [T (p)ag
y=e 0 Yy (421)
where o is defined by o = cn-m and (x) 1is one of the functions v(x) defined in

theorem 1, gsection 6. Y, is the function

[f wipaE
xo 2
y, = cu . (422)
Here u 1is again the series (409) and
Y

]
vy (x) = ) A (x)p . (423)
=2
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We find

(v o‘Hw‘H

(x)y?
A ¥-—-y = g' Vx) + v 2

+ o s o @ ° (‘24)
Y2

The term of higheat order in the second term of the right member, if Yé is replaced by

its value according to (422) and (423) has the value

v % w1
P v . !

VA, ©

2

PRSP

This term is of lower order in p than the term uvvv. sinos

3
: %G w1 ‘»(n-.)a)
s ; '] o = g -1
N and
- (n-n)02 -1<0 ,
N in consequence of the assumption
' P I
92 °*% " nm .
- The omitted terms in (424), which are indicated by dots, are similarly seen to be of still
Lty 2) 1 nn m m :
) lower order. The terms of highest order in " v .0 -5 oy and boa ¥ cancel out, .
k-, 2 ]
. since v(x) and ¢ have been chosen such as to achieve just this. The next terms are
- N(y,)
: 1. 1 % n-y 1 Y
. n P Azc p v ., for ° yz (425)
- and
. My,)
ks m bo Azo-"p%vr‘ » for 2 ’ (426)
- A Y,
-y
2. provided o > 0. (For, if a = 0, there are more terms of the same order as (425) and
&
N (426) .)

Following Noaillon'’s construction we try to determine 02 and Az in such a way that
i these two terms cancel out. But setting the sum of (425) and (426) egual to zero, and

inserting for ¢(x) 1its value (-bg(x) VBB ) gads to

na=0 , -

-
e

&

which was excluded.

' Hence, @ >0 1is impossible and therefore Y = oo(x). .
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B) The secondary term.

We follow the construction of Noalllon in order to find the differential expression

K(u,p) of (412). Since

(v)

1
Yy = 'r(avwvu + w\"‘w"-

“'1—0..-)

where the dots indicate terms of lower order, we find by an easy calculation

-1 1

L(Tu) = T K{u,p) = '!'{o“"(a,w" -1

u+ ™ e b,v"' u+ nbdp“'1u') + H(u,p)} .

Hence, the function !o(x) in this case ia a solution of the differential equation

obtained by setting the factor of J“-1 equal to zero. This differential equation can dbe

written
n-m n-m '
(a‘v + b1)u = (ny + mbo)u' :
or i
(a1 bo - b,)u - bo(n - m)u' . i
1

Therefore
a ()b _(E) = b {E)
g v a
X, bo(E)(n-n)
Bo(x) = ni{x) = e . (427)

We are not interested in the other terms Bv(x). v>0 of (409).
Conditions 1®* - 6° of Noaillon's theory are satisfied in our application for the whole
interval a < x < 8. Condition 5°, in particular, is equivalent to condition 6* of the

Main Theorem of chapter I. Hence, we conclude that there are n-m solutions of (101) of

2y

the form 4

o [* v (prat

Y (x,0) = o @ v (), s(v = 1,2,000,n-m) . (428)

Note that the function n(x) 1is the same for all Y\fx, ) and that it Aoes not vanish in

a <x < f,




N i i N

But we can find more asymptotic solutions of the differential equation (101) by
dropping the assumption that the y(x,p) of (408) is not zero. 1In fact, if the principal .
factor T of (407) is aqual to 1, the method used for the construction of the secondary
factor in section 63, B) leads to asymptotic solutions given by series of the form (409).
The first term of each of these series is a solution of the differential equation
M(y) = 0. Taking a fundamental system uv(x) of n 1independent solutions of this
differential equation as first terms of m asymptotic solutions of (101) we can add to the
n-m sgolutions of (101) given by (428) m more solutions of the form

Y(x,p) = (uv(x)l sy (ve 1,2,.0.,m) (429)
n=m+vy
linerly independent, for sufficiently large p, can be given by calculating the asymptotic

value of the Wronskian of these n functions. It does not offer any difficulties.

This finishes the proof of theorem 1 of section 6.

»
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