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SUMMARY _ _ _ _

This research concerns linear ordinary differential equations depending

in such a way on a parameter P that the "limit" differential equation

obtained by letting p tend to" '' in the differential equation is of lower

order than the original one.

Adopting a term customary in physics we used the name boundary layer

problem for the question: What happens to the solution of a boundary value

problem of such a differential equation, if the parameter tends to " in this

solution?

we gave a general answer to this question for the differential equation
I1
-N(y) + M(y) = 0, where N(y) and M(y) are linear differential
P

expressions of order n and m, respectively (n > m), and for non-

homogeneous boundary conditions which consist in prescribing the values of

derivatives (but not of linear combinations of such derivatives) at the end-

points. The question whether the solution of such a boundary value problem

converges to a solution of the limiting differential equations, as P '

and what boundary conditions are satisfied by the limit function could be

The preparation of the report is sponsored by the United States Army under
Contract No. DAAG29-8O-C-0041
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decided by an easily applicable rule. This rule showed, among other things

that the solution converges only, if the prescribed n boundary conditions

are not too unevenly distributed between the two endpoints.

If the order m of the limiting differential equation is only one less

than the order n of the original differential equation, then the above

mentioned rule could be extended to more general types of boundary conditions

and also to non-homogeneous differential equations.

Since the most important boundary layer problems in the applications are

concerned with systems of differential equations, we gave a simple example for

the mathematical treatment of a boundary layer problem for a linear system of

two simultaneous differential equations.

The validity of the general rule proved in this research was seen to be

restricted by the assumption that the coefficient of the term of highest order

of differentiation in M(y) has no zeros in the interval of integration. In a

special example we showed that interesting results can be obtained, if this

assumption is dropped.

The theory of the asymptotic expansion of the solutions of linear

differential equations involving a parameter, developed by G. D. Birkhoff,

Noaillon, Tamarkin, Trjitzinsky and others proved an important and powerful

tool in these investigations.

AMS (MOS) Subject Classification: 34E15

Key Words: Ordinary differential equations, Parameter, Boundary conditions,

Asymptotic approximations, Boundary layers.

Work Unit Number I - Applied Analysis



COMMENT

In May 1980, the Mathematics Research Center organized a successful

A;vanice Sat, nar on Singular Petaclratlons and Asymptotics in honor of the

retirement of a colleague, Wolfgang R. Wasow. His fundamental research is

responsible for many other rapid developments in this field since 1940, and

continues to play a vital role in modern theory and current applications.

Wasow's Ph.D. dissertation (N.Y.U., 1941), a small part of which exists in

print (On the asymptotic solution of boundary value problems for ordinary

iLFferential equations containing a parameter, J. of Mathematics and Physics

32 (1q44), 173-183), represents the starting point of this important flourish

of modern applicable research.

Following suggestions of several participants MRC is printing his 1941

thesis in its entirety as a TSR in order to make this valuable work more

widely available. Readers will note that the name "singular perturbations"

(which was only coined several years later by K. 0. Friedrichs or W. Wasow or

possibly jointly, but neither is now able to recall the details) does not

appear anywhere explicitlyl

'.9

4 :: I -' :..



TABLE OF CONTEDS

page

Introduction 1

Chapter I: The boundary layer problem for the differential 4

equation - N(y) + M(y) = 0P

§1. Statement of the problem 4

12. Statement of the Main Theorem 9

§3. Asymptotic solution of the differential equation L(y,p) 0 14

J
14. Outline of the asymptotic solution of the boundary value problem 17

§5. The asymptotic value of A(p) 19

§6. The asymptotic value of the solution of the solutlon of the 31

boundary value proble- .In the case In

§7. The proof of the divergence in the cases IA and IC 37

§8. The case I 
41

§9. The case of indetermination 47

Chapter II: Further results in the case n-m 1 1 51

I1. Generalization of the boundary conditions 51

§2. The "stretching" of the boundary layer 55

§3. The non-homogeneous differential equation I N(y) + M(y) = f(x) 60P

Chapter III: Some related problems 73

§ 11. An example For hO)ri,lary layer iroblems in systems of differential 73

equations

§7. An e-ipla for bouqfldry layer problems with singularities in the 81

interior

Appendix: A short report on the asymptotic solution of linear 97

differential equations involving a parameter

Bibliography 107



ON DOUNDARY LAYER PROBLEMB IN THE THEORY OF
ORDINARY DIFFERENTIAL EQUATIONS

Wolfgang R. Wasow

Introduction

Many problems in applied mathematics lead to questions of the following type:

Given is a differential equation involving a parameter

p. This parameter occurs in such a way that the

"limiting" differential equation, i.e. the differential

equation obtained by letting p tend to infinity in

the differential equation, is of lower order than the

original one. What happens then to the solution of a

boundary value problem of the original differential

equation, if p tends to infinity in that solution?

It is by no means obvious - and not even always true, as we shall see - that the

solution of such a boundary value problem tends to a solution of the limiting differential

equation, as p tends to infinity. But even when this is the case the question arises

what are the boundary conditions satisfied by the limiting function. As a solution of a

differential equation of lower order than the original one it cannot, in general, be

expected to satisfy all the boundary contions prescribed in the original problem.

In those cases in which the solution of the original problem converges - as p tends

to infinity - to a solution of the limiting differential equation which does no longer

satisfy all the originally prescribed boundary conditions, the solution f the original

problem shows a peculiar behavior for very large values of the parameter p. Some of the

derivatives of the solution will assume very large values in a narrow region near the

' boundary. As p tends to infinity, these derivatives will tend to infinity at a certain

The preparation of the report is sponsored by the United States Army under Contract No.
DAAG29-80-C-0041.
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part of the boundary. In the most important applications of phenomena of this type the

first derivative of the solution - and, of course, all the higher derivatives - diverge at

parts of the boundary, as 0 tends to infinity.

In the physical interpretations this means the occurrence of "Boundary layers" in

which the quantity to be investigated increases or decreases very rapidly with the distance

from the boundary, when some physical constant is large. We shall use the name Boundary

Layer Problems, in a more qeneral sense, for all related mathematical problems.

The most famous problem of this type is the relationship between the theories of

viscous and ideal liquids. An interesting boundary layer problem for a system of two non-

linear ordinary differential equations has been investigated recently by K. Friedrichs and

J. J. Stoker in a paper on the buckling of elastic plates, [9].

The majority of the applications lead to non-linear partial differential equations

which are so complicated that a complete mathematical treatment has not yet been attempted.

But even the boundary layer problem for linear ordinary differential equations, a problem

interesting from the mathematical as well as from the physical point of view, has as yet

been hardly investigated. The only paper known to the author of this investigation, on

this problem for ordinary differential equations is the article [71 by Erich Rothe, in

which the problem is solved for a very special linear differential equation of the second

order with constant coefficients.

In Chapter I of the present paper we discuss the boundary layer problem for linear

homogeneous differential equations depending linearly on the parameter, and for non-

homogeneous boundary conditions. The result of this part can be expressed by a simple and

easily applicable rule which determines immediately, for a given problem of this type,

whether the solution converges and what boundary conditions are satisfied by the limiting

function.

in Chapter II we investigate more thoroughly the case where the order of the limiting

differential equation is lower by one than the order of the original differential equation.

In this case the statement of the general rule of the Main Theorem in Chapter I can be

formulated so as to include more general boundary conditions than those assumed in Chapter

-2-
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I. The problem is then solved - at leact for a drop of one in the order of the

differential equation - for the non-how leneoua equation. Finally, the usual method of

treating boundary layer problems, consisting of a transformation of the independent

variable and an appropriate modification of the boundary conditions, is shown to be

justified in this case. The method is sometimes used in more complicated problems without

mathematical justification.

in Chapter III some special examples of other types of boundary layer problems are

discussed.

The methods used in this paper are based on the theory of the asymptotic solution of

ordinary differential equations involving a parameter. This theory has been developed by

-i G. D. Birkhoff [I], Noaillon [2], Tamarkin [3], [4], Trjitzinsky [61, and others. In the

Appendix we give a short outline of the results of this theory as far as they are used in

this investigation.

I am deeply indebted to the Professors R. Courant and K. 0. Friedrichs -whose help and

encouragement played a major part in the preparation of this thesis. The original

suggestion for this investigation came from Prof. Friedrichs, and his active interest in

the progress of the work has been of the utmost value.

A

.f'-
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Chapter I

ThE BOUNDARY LAYER PROBLEM FOR THE DIFFERENTIAL

EQUATION _. 1(y) + M(y) - 0
P

J1. Statement of the Problem

i. We consider the ordinary linear differential equation

L(y,p) - 0 * (101)

where the linear differential expression L(y,p) is of the form

L(y,p) - 1(y) + M(y) (102)

with

n (n-v)

N(y) I aV (x) y (x) (103)
Vo

m Cm-0)
4(y) = b (x) y (x) (104)

-OU

x is a real variable and p a positive parameter. We assume that the coefficients

a (x) and b (x) admit at least n bounded derivatives in the interval
V

a(x (B

If the order n of the differential expression N(y) is greater than the order m

of the differential expression 
M
(y), then the differential equation (101) gives rise to a

boundary layer problem for the "limiting" differential equation, i.e. the differential

equation obtained by letting p tend to infinity in the original differential equation

L(y,p) = 0. For, this limiting differential equation is

tM(y) - 0 , (105)

and this differential equation is of lower order than (101), if

n ) m (106)

We shall also assume that

m >0 o (106a)

-4-



most of our results remain valid for a - 0. But at some points the inclusion of the

case a - 0 would make the statement of the result rather involved. It seemed therefore

preferable to exclude this case from the Main Theorem.

Together with the differential equation (101) we prescribe n boundary conditions for

the function y(x). The boundary conditions considered in this chapter are of the form

Li(Y) - i , (i = 1,2,...,n) (107)

with constant Li and with

i

' I~~ Y(X±) (B) for i =12,.r

yi(a) for i - r+1,...,n

where x - g and x - B are the left and right endpoints, respectively, of the interval

under consideration.

We assume that the boundary conditions are arranged in such a way that

A > 
A2 

>  
A r r

and

Tr+1 I Tr+2 
>  

"
> 

Tn

This arrangement is the opposite of the customary one, but it is more practical in our

case. .11 the numbers Ii and T are, of course, assumed to be less than n. r is the

number of boundary conditions prescribed at the right endpoint. The number of boundary

conditions at the left end point is then n - r.

One or both of the numbers A and T may be zero, which means that the value of
r n

the function itself is prescribed at one or both endpoints. But our theory applies also to

cases in which only derivatives of the function are prescribed at the endpoints. The

boundary conditions (108) contain as a special case the initial value problem. We have

only to set r - 0, or r - n.

* K

We shall use throughout this paper the notation y(K)(x) for y

dxC

-5



We make further the assumption

a 0(x) 0 0, for all x in a 4 x 4 B , (109)

which makes it possible for us to set

aO(x) - 1 , (110)

without loss of generality.

. very essential condition for the validity of the theory that follows is that we must

have also

b (x) 0 0, for all x in a 4 x 4 8 • (111)
0

It is easy to see that a theory of boundary layer problems which does not assume (111) must

be expected to be much more complicated. For b0 (x) is the coefficient of the first term

i'i the limiting differential equation (105). Hence, if b0 (x) has zeros in a 4 x 4 5,

these zeros will, in general, be singular points of the solutions of the limiting

differential equation.

To these assumptions we will have to add two more conditions of a rather essential

nature. Since these conditions can be more easily formulated in connection with our Main

Theorem we postpone their statement for a few pages.

In general, the differential equation (101) will have a unique solution U(x,D)

satisfying the boundary conditions (107). U(x,p) depends on the value of the parameter p.

We will be able to give a general rule which allows us to decide, for a given problem,

whether

u(x) = lim U(x,p) (112)
0+-

exists, and which are the boundary conditions satisfied by u(x). We shall see also that

u(x), when it exists, is a solution of the limiting differential equation K(y) - 0.

A The behavior of U(x,p), as p tends to infinity, will be seen to depend, in

general, on three things onlys

(a) On the number n - m, i.e. the difference between the orders of the

original and the limiting differential equation.

-6-
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(b) On r, i.e. on the way in which the n boundary conditions are

divided between the two end points.

(c) On the sign of the coefficient bo(x).

2. There are a great many different possible cases for our boundary layer problem. In

some cases U(x,p) converges, as p + -, in some cases it diverges, and there are some

special occurrences that are not covered by the Main Theorem. This accounts for the fact

that the Main Theorem, although very simple to apply, is somewhat lengthy to formulate. We

precede its general formulation by a few examples, in order to give, without proof, an idea

of the variety of possible occurrences. In the convergent cases the boundary conditions

satisfied by the limit function u(x) are obtained by canceling n - a of the given

boundary conditions, usually taken among those involving higher orders of differentiation.

Example 1.

1 y,,, x3y

L(x,p) y-- + 2 x y" " 0

with the boundary conditions

y" (a) - 13y
3y*(..) = L

If, e.g., a - 1, S = 2, then bo(x) > 0 in a ( x < B and the solution U(x,p) of the

problem tends to the solution of the differential equation

- x3
M(y) S x y" + 2 x y - 0

satisfying the boundary conditions

• I y" (8) = 
-

y'(0l) - £2 ,

which are obtained by canceling the boundary condition given at x a. If a " -2,

= -1, then b0 (x) ( 0 and U(x,P) tends to the solution of M(y) - 0 with the

boundary conditions

-7-

-- 4 q , ,,, S



y ' 3 y'(B ' 2

obtained by canceling the first boundary conditions at x -B

But if ai - -1, B - 1, the condition (111) is no longer satisfied and our Hain

Theorem does not apply. V

Example 2.

L(x,P) 3 1 (Y(4) + coon - (y3~) + xy" + xy 0

with the boundary conditions

y"(0i) ' 2

y, (a) ' 3

"~i-4  y(B
If a -2, B 0 then b,(x) < 0 and U(x,p) converges to the solution of the

differential equation

y+ y -0

satisfying the boundary conditions

Y' (a) - 3

1* y (ci

which are obtained by canceling the first boundary condition at each endpoint. If a > 0,

> 0 then b 0(x) >0 in ai C x < $, and U(x,p) tends in general, to the solution of

y+ y - 0 with the boundary conditiras

Y( a) - '4 Y(B) £

J- because in this case the general theory requires the canceling of the two boundary

conditions involving the highest order of differentiation.

But if

E~~ c- 2w * 4v~

then we have an exceptional case. Because then there is no solution of y" + y -0

satisfying the boundary conditions y((%) - Y4 Y(O) - Yi unless A~ 1 £4 -0. Again, our

Main Theorem does not cover these special values of ai and B

Example 3.

L(y,p) yW -xy, -y 0
P



with the boundary conditions

y - 4 y'"(5) - L1

yr' () " 2

y (5) -AJ
y 13

If a < 0, 5 ( 0. then b (x ) 0 and U(x, p) tends to a solution of

xy- . y - 0

with the boundary condition y( B) L 3 , because the Main Theorem requires the canceling of

two boundary conditions at the right endpoint and of one boundary condition at the left

endpoint. But if a > 0, 5 > 0, i.e. bo(x) < 0, then U(x,p) does not converge at all.

12. Statement of the main Theorem.

3. Main Theorem:

Let U(x,p) be a solution of the differential equation

L(ypJ - 0 (101)

satisfying n boundary conditions

L (y) - -i 0 i - 1,2,...,n (107)

(constant Pi1. where L(y,p) if of the form
1

L(yp) E N(y) + l(y) (102)

with

n (n-v)
N(y) - . aV(xy x) (103)

m Cm- is)
M(y) - b (xly (x) (104)

and

y (B) , for i - 1,2,...,r
L1 (y) *" , a( < 13 (108)

( Ti)
y (a) , for i - r+1, r+2,...,n

-9-
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We make the following assumptions%

10. x is a real variable.

20.  p is a real positive parameter.

30. The real functions a V(x) and b (x) have at least
VW

n bounded derivatives in the interval

a1 4x 4

4 ° . n> > 0

50
.  

aO(x) - 1

60. bo(x) 1 0, for all x in rA 4 x -c

70 . n > 1  > .2 > .. > Xr > 0

n > Tr+1 > Tr+2 -r n 0

Then the behavior of U(xp), as p tends to infinity, can be

found by the following procedure:

First Step. Find the remainder s of the division of n - m by 4.

Second Step. Find, in the table on the next page, the values of the

numbers q and p for the differential equation under consideration.

*('If s 1, b > 0

or then q - -, " - ---

s 3, b 0 ( 0

8 If s 1, bo < 0) n-rn-1 n-m+1
orthen q -j-- P =

S - 3, b0 > 0

If s- 0, bO > 0 m n-m (113)
or then q '- "-

s = 2, b0 < 0

If a 0, b0 < On-m-2 n-m-2
or then q - ---- p "

a -2, bo > 0

-10-
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Third Step.

A) If the differential equation under consideration belongs to

one of the cases ( - of the table above, try to cancel p

of the boundary conditions at the point x - B and q of the

boundary conditions at the point x - a, going in each group of

boundary conditions from those containing higher derivatives to those

with lower derivatives. This is only possible, if there are enough

boundary conditions on either side to be canceled.

B) If the differential equation under consideration is of the

type IV, proceed first as under A). From the remaining boundary

conditions cancel then those two which contain the highest order of

differentiation without regard to the endpoint at which they are

given. It can happen that the boundary conditions to be canceled

in application of this last rule are not uniquely determined, because

one would have to decide between two boundary conditions of the same

order of differentiation. We shall call this last occurrence the *Case

of Indetermination".

Convergent Case. If it is possible to apply the rule of the Third

Step in a uniquely determined fashion, then

u(x) - linU(x,p)

exists and is, in a < x C B. that solution of the differential

equation

M(y) - 0

which satisfies the boundary conditions not canceled in the Third Step

of this rule, provided the following two conditions are satisfieds

We use the circles around these numbers, writing . 1 .,in order to
distinguish this division into four cases from another dision Tnto two cases 1. II to be
introduced presently.

-11-
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So. If the boundary conditions not canceled in the Third Step

of this rule are replaced by the corresponding homogeneous

boundary conditions, then the problem determined by these

boundary conditions and the differential equation M(y) - 0

has only the solution y(x) = 0.

9 ° . No two of the boundary conditions canceled in the Third

Step at x - a have orders of differentiation that are

congruent modulo n - m. and the same is true for the

boundary conditions at the right end point.

Divergent Cases. If the rule of the Third Step cannot be applied

because at one of the endpoints there are not enough boundary conditions

to be canceled, then U(x,p) will, in general, not converge, as p -

The proof for the divergence given in this investigation is valid only

under two assumptions analogous to So and 90 , which for their formula

tion require an additional remark:

Fourth Step. If the rule of the Third Step cannot be applied because

the number of the boundary conditions at one endpoint is smaller than

the boundary conditions that would have to be canceled, then cancel all

the boundary conditions on this side and so many boundary conditions on

the other side (going, as before, from hi her to lower order of

differentiation) that m uncanceled boundary conditions remain. Then

we make the assumptions:

80' . If the boundary conditions not cancelled in the fourth step

of this rule are replaced by the corresponding homogeneous boundary con-

ditions, then the problem determined by theme boundary conditions and the

differential equation N(y) - 0 has only the solution y(x) = 0.

90'. Wo two of the boundary conditions canceled in the fourth step

at x - a have orders of differentiation that are congruent modulo n - m,

and the same is true for the boundary conditions at the right endpoint.

-12-
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Conclusion in the divergent case.

1) If the rule of the third step cannot be applied because at one of

the endpoints there are not enough boundary conditions to be canceled, and

if conditions So' and 90o are satisfied, then

lia U(x,p) - i, for all x in a < x < B
p.-

2) If the rule of the third step cannot be applied because of indeter-

mination, and if 8
0 

and 9
0 

are satisfied for each of the two possible

ways of applying the cancellation rule, then U(x,p) does not converge, as

P + - but remains bounded.

4. The reader is advised to check the examples given in ;1 in the light of the Main

Theorem. In example 2, in particular, we discussed a case in which assumption 8
° 
was not

satisfied. We now give an example where assumption 90 is not satisfied:

Example 4. n - 5, m - 2, b0  > O.

y'''(a) = £3 y(4)(B) - 1

y' (a) £4 Y, (B) £2

y (a) - £5

Here n-n - 3, hence a = 3. From table (113) we find q - 1, p - 2.

The two boundary conditions that are to be canceled at x = B have the orders of

differentiation 4 and 1. out 4 - 1 (mod n-m), in this case. This means, assumption 90 is

not satisfied, and the Main Theorem does not apply. However, if b0 < 0, then 90 is

satisfied, and we can be sure of the convergence of U(x,p).

It is an open question whether U(x,p) can converge even if 90 is not satisfied. It

seems unlikely to the author that the Main Theorem remains valid in those cases.

The next example is of the type which we have called the case of indetermination.

-13-

1 -.- , r 1.



Example 5. n - 3, m = 1, b0 > 0,

y'(a) X 2 Y(B) " £1

43
Y (ci) -

Here, n-r 2 and therefore a - 2. Table (113) shows that this is the case ® , and

that p - q - 0. The rules of the Main Theorem would require the canceling of the two

boundary conditions involving the highest derivatives. This cannot be done in a uniquely

determined way, since y(B) - t1 just as well as y(a) - £3 might be canceled in addition

to Y'(a) " £2. Hence, this is the case of indetermination, and U(x,p) does not
W2

converge.

The rest of this chapter is devoted to the proof of the Main Theorem.

§3. Asymptotic Solution of the Differential Equation L(x,p) - 0

5. As pointed out in the introduction the principal tool of our proof of the Main Theorem

is the theory of asymptotic solution of differential equations involving a parameter. We

begin by defining what we shall understand by asymptotic equality in this investigation.

Definition: The functions f(x,p) and g(x,p) are said to be asymptotically equal in an

interval a C x ( B, if

f(xP) = g(xP) + E(x,P)
a
P

Here a > 0, (but not necessarily an integer), and E(x,p) is a function such that there

is a positive real number R so that IE(x,p)I is uniformly bounded for a - x 4 B, and

p > R.

If a function f(x,p) is asymptotically equal to a function F(x) independent of

p, we shall write

f(x,p) - (F(x) •

-14-



Note that the symbol [F(x) does not describe the function f(x,P) uniquely. It is not

correct to conclude from

f 1(x,Pl - DrlxlJ

and

f2 (x,P) - [F(x)

that

fIlx,O) - f2 (X,O)

6. Using Noaillon's method the following theorem can be proved.

Theorem 1: If the assumptions 10 - 60 of the Main Theorem are satisfied, then the

differential equation (101) admits a complete set of n linearly independent solutions of

the form

Se a a [n1(x)], (v - 1,2,...,n-m) (114)

UV(xp) t
[u(x) I , (V n-m+1, n-nt+2,...,n) (115)

V--n+m

Here we are using the following abbreviations

1) a - 1 I/ n-m 1 (116)

2) W1(x), 2 (x),..., W(x)
1 2 n-u

n-m values of

(-bOCx)) n-M

arranged in such a way that

Re(1 Re * 2) Ren)1 1

a I1()b o(; - b IM
3)- b ()n_ )  t

bx 0 1W-u

n(x) - e 119)

-15-



4) The functions u x), (P - 1,2,...,m) are any m solutions of the differential

equation

M(y) - 0 lo5)

forming a complete linearly independent system of such solutions.

The equations (114) and (115) may be formally differentiated at least n-1 times,

i.e.,

vv

. (i)I~ (' x, ~ ) v-12..nm 19

tu vn+, (v - n-m+1, n-m+2,...,n) (120)

for i - 0,1,...,n-1.

7. temarks.
"I

Ka roots of one and the same real function, the complex functions w (x) are of a

particularly simple structure. If bo(x) < 0, then the 0 Cx) are obtained by

multiplying the (n-m)-th roots of unity by the factor

1(-b 0 (W

A similar relation holds when bo(x) > 0. More precisely: Set

lboX W I if b0 < 0 (121)

k(x)-/ /-n ,_

Ibo(x) T a
n- M  

, if b0 > 0 (122)

and let

2wi

n-rnC- a (123)

Then the Cvx) are, - in different order, - equal to

k, k, kc2 k (124)

-- ME

-16-
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Furthermoro, @anc* the ov () are the roots of a real number, the sequence of the V(x)

consists of pairs of conjugate numbers. Hence, in (117) the 0>0 and the 0-0 signs

alternate.

14. Outline of the As-mptotic Solution of the

Boundary Value Problem

6. We try to represent the solution of the boundary value problem defined by (101) and

(108) in the form

ia

U(x. p) - c (0) U (X, ) ( 1125)
V1V V

If such a solution exists, then the function c (p) are solutions of the system of linear

equations

n
I c(P).L1 (U) " it, (iP 1,2....n) (126)

v-1

Using (108) and substituting for the U(x,p) the expressions (114) ve find, for

v - 1,2,...,n-u#

V -

Li(U) r , (v 1,2, ...,n-n) (127)
a
T  1 v irain(a)l, (I - r4, r42,...,n)

vhere

w p (E )dC , v 1.2s-..,n-=) •(128)

For v- n-m+l,...,n ye hae, because of (115),

Li (U i Li(u v-n+u) 1 (129)

-17-



From the inequalities (117) it follows that similar inequalities hold for the

quantities w V (v - 1,2,...,n-m), i.e.

Re 1) Re(w2 ) )...) Re(W) . (130)

In order to find the c (p) of (125) from (126) we have to calculate the determinant
V

LtJ(U1 ) LI(U 2 ) . . . . LI(U n )

L2 (U1 ) L2 (U2 ) .. . . L2 (Un )

A(P) . . . . . .. . . . . . . . . . (131)

Ln(U 1) Ln(U2 ) . . . . Ln(Un)

and the determinants A (p), (v = 1,2,...,n), obtained by replacing the v-th column of
V

A(p) by the column

£1

£2

Inn

The coefficients cV () are then given by

c( p) -v , (v 1,2,...,n) (1.32)

and, if we substitute (132) in (125) we obtain the form

n A (P)

U(x,p) o . UC(xP) (133)

for the solution U(x,p) of our boundary value problem.

-1A-



9. Our aim is now to calculate, with the help of the asymptotic expressions (114), (115)

and (127), (129) the asymptotic value of the right number of (133). The first and most

important part of that calculation consists in finding the asymptotic value of the

determinant A(p). The asymptotic calculation of the A (p) does not offer newV

difficulties.

15. The Asymptotic Value of A(p)

10. As a consequence of (127) and (129) all the terms of the expansion of A(p) are

obviously of the form

S d7
(k]a

with real S and real or complex V and t.

Definition: Two expressions

S1 ov 1K1 " k 1 ] a e

S2 0V2
K[2 "[h 21 a •

with

k 1  0, k2 1 0

and real S 1 and S2 will be said to be of equal order of magnitude if

I e(Vl) - Re(V 2 )

and

S 1I - S 2 •

If

Re(V 1) > Re(V 2)

or

Re(V 1 ) - Re(V 2 ), but S, > S2

then K1 is said to be of higher order of magnitude than K2 , and vice versa.

If K1 is of higher order of maqnitude than K2 , then we can obviously write

K1 + K2 - [k I 1  O e

-19-



The sum

V

t I)I11 0  (134)

of all the tarms of highest c !or in A(p) is the asymptotic expression of A(p) for

large p, unless all the V are alike and

k 

In this latter case (134) reduced to

S v1

(0] a

and an asymptotic calculation of 4(p) would have to take into account terms of lower

order of magnitude in the expansion of AC p), as well as the later terms in the asymptotic

solutions of our differential equation. The exclusion of this exceptional case from our

theory will compel us to introduce the conditions 8 and 90 of the Main Theorem.

11. If the values (127) and (129), for the Li (U V) are substituted into the expression

(131) and A(p), it is seen that the last a columns of the determinant form the matrix
a

of n rows and m columns

[LlUl)] [LllU2)] . . . [LllU,)]

tV2CU0)] CL2 ( u 2 )] . . . L2 (u,)1

.. . . . . . . . . . . . . . . . . (135)

- . . . . . ..........

[LnCul)] [Lnlu 2 )] . . . [L,(U,]

All the minors of this matrix have an order of magnitude not greater than that of 1.

The elements of the first n-a columns of A(p) are given by (127). In order to

find the asymptotic value of A(p) we expand A(p) in terms of its n-m first columns

and investigate the order of magnitude of the minors in this expansion.

-20-
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12. Lema 1: Let D(p) be that minor of the determinant A(p) which is formed by the

first n-m columns of A(p, and by its

th th th
1 ~2 'n-O

rows, with

i I < 1 2 < • < In- m

If then the first h of the numbers i are less than or equal to r, then the order of

magnitude of 0(p) is not greater than that of

h

a e (136)

where

h n-m

T= I Ai + I Ti (137)

%P- I v 6,=h+

Proof: From (127) and (131) we see that each of the first h rows of D(p) contains the

factor n(B), while each of the remaining rows contains the factor n(a). Hence, we can

factor in D(p) the expression

h n-m-h
n(8) n (a)

Xii

Furthermore, we see, that the first row of D(p) contains the factor a , the second

S2 Xih
row the factor a , etc., and finally the h-th row the factor a Similarly, we can

factor in the remaining rows of D(9) the expressions

Ti z Ti
h+1 --h+2 n-m

a , 0 , * , 0

respectively. Altogether we can factor in D(p) the expression

h n-mr-h
h(8) .) T ,

-21-
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where T has the value of (137). Then D(p) can be written in the form

A i OWn X
a 1 1( n-rn 1(

n-rn

. Ii

a 1 Sl n- (B)]
n-r-hD(p) h T11 e 133)

n~+ (Bh (1 (ih+1 , h+ 1

[S (a)) . . . . [Sn-m]

'ii
Ti  Ti

n-rn n-rn,)
SP n-mll

Now we expand the remaining determinant with respect to the minors of its first h rows.

Each term of this expansion contains an exponential factor, and none of these exponential

factors is of greater order of magnitude than the one originating from the minor formed by

the first n-m rows and columns of the determinant of (138). For the exponential factor

in this term is

h

a w

e

h

and because of (130) no sum of h w s has a greater real part than I w . Hence, the
V V1

order of magnitude of D(p) is not greater than that of
h

oa w

a e

It may be less, for we have to take into account the possibility that

-22-



h
Ta V w

D(P) -(1 ae

Remark: If Re(vh+1 ) < Re(wh), then there is only one term of maximal order of magnitude

in the expansion of the determinant of (138) with respect to its first h rows. But if we

have Re(wh+ 1) - Re(wh) (compare section 7 and the definition of the wV, formula (128)),

then

h h-1
Re( I w) Re( I wV+ wh-)

v-1 1

and we have therefore a second term of maximal order in the expansion of the determinant of

(140) with respect to its first h rows. But, clearly, these two tems cannot cancel,

since

wh 0 Wh+1

13. The question of finding among all the minors of the first n-m columns of A(p) the

one of highest order reduces now to the two questions:

(a) which selection of n-m rows in A(p) leads to an expression (136) of highest

order, and,

(b) when does the minor corresponding to this selection actually have the order

indicated by (136).

In answering the first question several cases are to be distinguished. For this

distinction the number of (x)'s which have a positive real part plays an essential

VV- role. Let us call this number p. From the definition of the 0 'a it is clear that p

depends on the sign of b0 (x) and on the remainder of the division of n-m by 4. A

simple calculation, which we omit here shows that p has the values indicated in the table

(113).

We distinguish the following cases:

I. Re(O ) 0 0, for all v -1,2,...,n-m

A) r-p ( 0

B) 0 (r-p m

C) r-p> m

-23-



Ce . Re(V) O, for some v h

C A) r-p < 0

B) 0 r-p c r+2

C) r-p > m+2.

Remarks: Remembering the definition of the V we see immediately that case 11 of (139)

occurs only when

Sn-m 0 (mod 4) and b 0 < 0

or t140)

n-m 2 (mod 4) and b > 0
?0

Case 11 i thus seen to be equivalent with the se ( of table (113). In this case

Sfolw ad e acse thee ar n ont enV wh vanishing parts. I

the ) isthuan n hcteocncelithrue a beelowed.

arrangement of i117) these are

r o u u and atx) •
p+ - p2-

Case I of table (139) corresponds to the cases -of table (113). in thee

cases the number q of table (113) is equal to n-m-p. it follows, therefore, that the

condition IC of (139) can be re-written in the form

(n-r) - q < a

Incs of (113), which we have seen to be equivalent to case II of (139), we see from

(113) that

q - n-u"Ip-2 ,

and therefore IIC is also equivalent to (141). Hence, we can say, that in case I as well

~as in case 11 of (139)

A) is the case in which the canceling rule of the Kain Theorem cannot be

a . followed because there are not enough boundary conditions at x =B

- B) is the case in which the canceling rule can be followed.

C) is the case in which the canceling rule cannot be followed, because there

are not enough boundary conditions at x - m.

--i -24- I



14. We treat the case I of (139) first. According as to whether we are in the case IA,

IB, or IC, we consider then the minor Da(p), Db(0), D0 (p) formed by the n-m first

columns of the determinant A(p) and by the rows

1,2 .................................., n-m . (case A),(142a)

1,2, ...P; r+l, r+2 ................ , r+n-m-p • (case B),(142b)

1,3 ............. , r-mi r+1, r+2. ................................, n * (case C),(142c)

respectively. Using lemma I we shall show that in each case the minor thus defined is - in

general - of the highest possible order of magnitude among all the minors of the first n-m

columns of A(p).

Case A) The expression (136) has the highest possible order, if the rows of the minor

h

are chosen in such a way that w has the greatest possible real part. In case IA

this means that we have to choose h w r. For h can, - by definition, - not be greater

than r and, on the other hand, all w with v 4 r have positive real parts in
V

consequence of the condition r-p<
0
. In order to make T in (136) as Vreat as possible we

n-m

have then to choose for the reaining n-m-r rows of the minor those for which I Ti
1 ih+i p

is greatest. Since the I are arranged in order of decreasing size, this is the case, if

we choose the rows r+1, r+2, ..., n-m. This is exactly what we have done in (142a).
h

Case B) Here, taking h - r would not make the real part of I w a maximum

WI1

because we have r o p and the sume would therefore include wV's with negative real

part. Instead, we have to take h - p including thus all the wv'a with positive real

a part and only those. (137) shows then that taking the first p rows of A(p) gives the

greatest contribution to the exponent T. For the remaining n-u-p rows we take the rows

r+1, r+2, ... , r+n-m-p in order to make the second sum of the right number of (137) a

maximum. This is possible because, in consequence of (139), r+n-m-p 4 n, in this case.

-15-



Case C) Here we reason as in case B. But since r+n-m-p ) n in this case. takinq

*the rows r+1, r+2, ..., n in addition to the rows 1,2, ..., p would not be enough to

have n-m rows altogether. We must therefore choose h - r-m, in order to have n-m

rows, and, as before, we see that T is greatest, if we take the first r-m roaw of

A(p).

Comparing (142b) with the third step of the rule of the Main Theorem we see that the

numbers of (142b) are just the subscripts of the boundary conditions canceled in

application of the Main Theorem in the cases 0 - S , when the canceling is possible.

Similarly, (142a) and (142c) contains the subscripts of the boundry conditions canceled in

* the fourth step of the Main Theorem in the cases - . The reason for this fact

will appear in the course of our proof.

15. The considerations of section 14 are not sufficient to prove that the minors D (p),

Db(p), Dc(0), respectively, really do have higher order than all the others (compare

section 12). To investigate this question let us calculate De(p), Db(P), DI(P)

explicitly. Since we are most interested in case IB, which we shall see to be the

convergent case, we discuss Db(p) first.

In order to calculate Db(P) we write D (p) in the form (138). This means that we

interpret the numbers

ili 2, .... ,in-m

of (138) as being the numbers (142b), in the same order. Hence, the number h of (138) is

in this case equal to p. From the definition of p and the w it follows thatV

4e(wp+) < Re(wp)

The term originating from the minor of the first p columns in the expansion of the

determinant (138) in terms of its first p rows is therefore the only term of maximal

order of magnitude in this expans:ion. We obtain therefore

p0[w
n-m-p T v

Db(P) - (riP(B)n (a) •Ab •b a o e (143)

-26-
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with

Tb + rf I i p (144)
b o IPA

and

(0 . . (B)

. ... . . (145)

X1,1P( 0) . . .0pP(O3)

B b  . . . . . ...* * * (146)

Tr+n1a'P" . Tr+n'm-P'0P+ (a)* * * *' (ra)-
p41 n-rn

(134) is valid also for p = nr-m and for p - 0, if we define - 1, for p - 0, and

Bb = 1, for p - n-. n(x) is an exponential function, hence 'i(B) 0 0, n(o) 0 0.

Db(p) has therefore the order of maqnitude of

p

Tb ., V,

if Ab 0 0 and Bb 0 0.

Leima 2: Ab 0 if and only if

A X* I (mod n-r), (i,J - 0,1....,p) (147)

and Bb # 
0  if and only if

T TZ, (mod n-m), (k,Z - r+l, ...,r+n-m-p) . (148)

Proof: The statement is trivial, as far as b is concerned, if p - 0. For p ) 0 we

remember from 13, section 7, that, with the notations used there, the 0 V(x) are, in
mV

different order, equal to

-27-
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k(x), k(x)c, k(x) e2. k(x)e nc *1 (124)

In the order of (124) the 0 are represented in the complex plane by a sequence of

successive points on the circle of radius ikl. It is easy to see that the numbers o IM ,

21 " " , v (6) are then, in different order, equal to the numbers

k( ) t+l1 kl )C+2 . • • , k( ) t+ p  (149)

where t is a certain integer which is only determined modulo n-rs. Substituting the

expressions (149) into (147) we find

(t+1). I (t+p) 1

. v=I  * (150)
b= t k(B)

£ p

Now we set

-v C V (v- 1,2,...,p) (151)

This allows us to write (150) in the form

t+I t+p
C, C+

~t. b i k(O)

t~l t+p

'I or

p
Vl

z -i

b- t k(O) • 1 ,c. • .j,)t .V(e,%. (152)

-20-
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where V(cy.....c] is the Vandermonde determinant of 1 Since the

Vandermonde determinant vanishes if and only if two of its rows are equal, Ab  is zero if

and only if some of the CV are alike. But from (151) we see that

mans

or, because of the definition of e in formula (123),

X- (mood. n-m)

This proves the part of lemma 2b that is concerned with Ab. The proof for Bb  is exactly

analogous, and is therefore left to the reader.

The reader will readily see that similar results hold for Da (p) and Dc (p). The

only real difference in the reasoning comes from the fact that in these cases there may be

two terms of maximal order in the expansion of (140). But since these terms cannot cancel,

this does not essentially affect our argument. We restrict ourselves to stating the

results in these cases:

r
T oT [ w vTa V-1I

Da(p) - [Q a e (153)

r-m

T a I w V

D cl ) - [Q cI. c •-1 (154)

where

r n-m

Ta - + I To (155)

r-u n
Tc I A + I P(156)

Val M=r+ I

and Qa and Qc are two constants, with respect to which the following two lemmas hold:

-29-



Lomas 2as , 0 if

A 1. i mod n-rn, (i,j -1,2,...,r)

and ~)(157)

Tk mod n-u, (k,L r+l,...,n-m)

Lemma 2c: Qc 0 if

A Y mod n-m, (i,j = 1,2,... ,r-m)

T
i A -r, mod n-m, (k,A - r+I,...,n) 

(

Remark: From these lemmas and the remark at the end of section 14 we recoqnize that the

conditions (147) and (148) are equivalent with the assumptions 90 of the Main Theorem while

(157) and (15) are equivalent with 90'. Note, however, that our reasoning so far does not

cover the case 1I of (139), which we have seen to be the same as the case 8 of (113).

16. The cofactor of the minor D (p) in 1(0) is that minor of the matrix (135) which in
v

formed by the m rows of A(p) not contained in D (p). Let

L p+ (u I.............. Lp+ (u M )

ab - L (u .) ...... .............. L ()
r r m

Lr+n-m-p+lIu1 ) . . . . . . . . . . Lr+n-m-p+IU m)  (159)

4.

L (u ) .. . . ...... .. L (u )

then the cofactor of Db(p) is of the form

We now introduce the assumption

a' 0 0, in case ID (160)

This condition will be seen later to be equivalent with the assumption 80 of the Main

Theorem in the cases 1 - " Then the term * Db(O) (
6
b] is the term of greatest

-30-



order of magnitude in the expansion of A(p) in terms of its first n-m columns. Ience,

(143) gives

p
Tb avI I

M(0) - [Qb - a:l e 0 in case 1B , (161)

where

n-m-p

Qb . .±rf(B) n(a) .Ab b 0  
* (162)

Similarly, if we define 6 and 6 as the limits - as p + -, - of the matrix (135)

formed with the rows of D(p) not occurring in D (p) and D (p), respectively, and if
a c

we introduce the assumptions

0 0, in case IA , (163)

6 f 0, in case IS , (164)
c

then we have, in analogy with (161)

r

a a V wVa aM(0) - [Qa " Sal • o 0 ,1 in case Ih , (165)

r-m
T a a wVa v.1

M() - [QC 6] e I , in case lC . (166)

This finishes the asymptotic calculation of A(p) in the case I of (139).

16. The Psmtotic Value of the Solution of the Boundary

Value Problem in the Case IS.

17. The method used in 55 for the calculation of A(p) can also be applied to the

determinants AV (p). (For the definition of A p), see 54, section 8).

For v > n-m, A V(p) is distinguished from A(p) only in one of the last m columns.

In this case all the considerations of 15 remain valid for A (p). if the determinants

6 a a , 6 c are replaced by the determinants 6 a, v acv obtained by replacing the

-31-
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i-(n-m)th column of a 8b' ', by the corresponding .i.e., by

I n-10+1 I I r-m+ 1

* N. orr

i , n-u-p+1

a .o•

" , N . £
n n r

respectively. Hence, we obtain, in case IB and for v > n-n,

bb vola(P) - l * , (v > n-m case IB) (166)

and analogous formulas hold in the two other cases.

Hence

v()
V V (v> n-in), case 18) (167)

and similarly in the two other cases.

18. For v 4 n-in the column of A(p) that must be replaced by the Y.'s in order to

obtain A (p) changes the structure of the determinant somewhat. But if we place this.V

v-th column behind all the others (and change the sign of the determinant, if necessary),

then we obtain a determinant very similar to A(p). The only essential difference is

that a has to be replaced by a' & +Il (and therefore n-m by n-a-i) and that w' 'I

must be omitted from the sequence

-32-



Again we treat the case IB (the convergent case, as we shall see) first, and since we

A v (P)
are more interested in - than in A (p) itself, we state the result in the following

A (P) v

foam:

Lemma 3t In case IB, i.e., if 0 4 r-p < m, we have

A(p) a P e (W V '

A-) - '(168)

rP nv • -m

where the constants w depend on the values of the i's and are not necessarily

different from zero.

Proofs

1.) v 4 p. In this case the w to be omitted has a positive real part. Hence, the

formulas for A(p) can be applied to A (p) if we replace

p by p' - p-i

m by m' - m+l

and the sequence

.W.. w2, .... wn.m

by the sequence

. . . .......

identical with the first one except for the omission of the term w • Since we have

0 4 r-p' M',

the formula to be used in (161). We obtain

p
a I W,

'

T Ky
V ( b * a 1 by

where

-33-
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pO r+n-m, Ip
Tb v I A +

W Ur+1

Note that the reasoning used for the proof of 9b 0 0 does no longer hold for Qbv * bv

is a determinant depending on the Y " It is defined as the cofactor of the leading minor

in the expansion of Av (p) with respect to its first n-mr-I columns. v is a

determinant of m+ rows.

From the definition of p', m*, w it follows then that

W (LI w - v

and

p-1 r+n-m-p
Tbv I X .1 T

Comparing these formulas with the expression for A(p) we see that

a d( 0) . fibv 6b v -Xp• -T~~~do)" h° e'

2.) p < v 4 n-n. Here we reason as under 1.). the only difference being that

p- p and therefore

and

r~n-m-p-1

T bv I u I T

Hence, in this case

-34-



V() b V r+n-m-p

Q.R. D.

19. Now we are prepared to prove a theorem, which, of course, in a part of the statement

of the Main Theorem.

Theorem 2: If the assumptins 16 - 90 of section 3 are satisfied, if, furthermore,

0 4 r-p (m

and

n- P 0 (mod 4), and b0 < 0

or

n- 7 2 (mod 4), and b0 > 0

then, as P , the solution of the problem defined by (101) and (108) converges in

a < x <B to that solution of the "limiting' differential equation

M(y) = 0

which satisfies the m boundary conditions not canceled in application of the rule of the

Main Theorem.

6 (p)

Proof: We substitute in (133) the values of - obtained in sections 17 and 18 and

replace Uv(x,P) by its values as given by (114) and (115). Then we find

-x 0(1f %( )d - "vi

U(x,P)= 2 e P IV *

n-m -T ca ( ()dt
+ I * " a(x)} (169)

m 5b n-m+I1  (x
+ 1A

U-I b
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It is easy to see that the first two sums of the right umber of (169) tend to zero, in

a < x < B, as p, and therefore a, tend to infinity. For,

Rs(fx P(E)d-w ) <0, in a(x< 0B, for v (p

and

Re(f1 ;(C)d) < 0, in a( xC C, for v> p

in consequence of (117). (128) and the definition of p.

Therefore

U(X lit ,X n-.+ u (x) .(170)
UP

"iu(x) - urn u(x,p) - J~u x

+(170)

But if we remember the definition of 'b' %n-m+u and u (x), as given in (159), in

section 17, and in theorem 1 (section 6), respectively, then we see that the right member

of (170) is just the solution of M(y) - 0 satisfying the boundary conditions not canceled

in application of the Main Theorem, and condition (160) is seen to be equivalent with

a assumption 80 of the Main Theorem in the convergent cases T (table (113)).

Q.E.D.

20. Remark: Formula (169) is, in fact, a complete asymptotic solution of the boundary

value problem. It might be used for a more detailed description of the boundary layer

phenomenon. It can be written in the following simpler and more symmetric form:

p af x
U(x,P) u(x) + Ta V ( n(x)]

(171)
-~n-in afx sP d C

+ 7 n e a a V [C
) d

V-p+V
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where T - T and X - X. are the lowest orders of differentiation occurring in thern-m-p p

canceled boundary conditions on each side. An easy consequence of (169) is, e.g., the

following interesting

Corollary: Under the assumptions of theorem 2 the derivatives

O(Q,9), U'lO,P),...,Ua,P) (Tr+n-m-p

converges to the valu, of the corresponding derivatives of u(x) at x a a. The next

derivative,

r+n-m-p
U (ap)

r+n-m-p

converges, as P - but in general the limit is not equal to u (8) All the

higher derivatives of U(x,P) tend to infinity at x - a. An analogous statement can be

made at x - 0, with U(I,P) as the last convergent derivative.

In less precise language we may express the statement of this corollary by saying that

the last canceled boundary condition at each end point determines the derivative of

U(xP) in which the boundary layer occurs at that endpoint.

17. The Proof of the Divergence in the Cases IA and IC.

21. We are now going to show that in the two remaining cases U(xP) tends to infinity as

P . To that end it is sufficient to prove that one of the terms in the right member of

(133) tends to infinity. For each of the first n-m terms of (133) is of the form

KYv 
a WV(X)

YI o w(x)

If one of these terms, say KI a e tends to infinity, the whole sum can remain

hounded only if the sum of all terms of the same order of magnitude as this particular term

vanishes identically. This would require that at least one other term has the same

exponential factor an K. We would have, e.g.,
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W1(x) - W2(x)

Now all the W x) are of the form

W (x) - v + fx 1(C)dE

A (p)

where the constant V originates from the factor (p) while fa 0 V ()d is the

contribution of U V(x,p). But an equation like

I f~ a 0 1 v2 + 0 2 (&)d&

is impossible, since no two C(x) are equal.
V

22. Proof of the divergence in the case IA:

Let us calculate the determinant Ar+ 1 (p). In this case the formulas for A(p) can

be applied, if we replace

p by p - p-1 (since r+l ( p)

m by m -m+l

and the sequence

wlw 2 , .... Wn-m

by the sequence

.w... ".... ...... w--I

obtained by omitting the term wr+1 from the sequence of the w A As we have
V

r-p ( ml

the formula to be used is (165). We obtain

'r

Ta,r+l W1-

A -+iP) [Qa,r+1 " Aa,r+1C e ,

where

-38-

ir



r n-al'T - I ), W+ I ,
T UPI , X- P

It follows that

r r

I W w~- :W-1 W tP t

and
r n-r-I

T a'r+1 I1 A 0 'Z+ I T U

For A() we obtain
A () Q -

"r+l'1 - a,r+I 'a,r+I ai n-rn"') L Q,

and the r+l at term of (133) becomes therefore

- rQ a Ix) i- fx 41Ed

r+I[ U ) a %5aim• ~ ~A 0 l')"L Q, "a*

Since r+l 4 p, the exponential factor of the right member tends to infinity as p *

If we can prove that the expression in brackets does not vanish, then the divergence of

U(x,p) is assured. n(x) does not vanish in a e x r B (see (116)). For Qa,r+i we

can prove that the following lema is true.

Lemma 4 Qa,r+I V O, if assumption 901 of th' Main Theorem is satisfied.

Proof: An almost literal repetition of the arguments of 15, applied to Ar+1(p) instead

of to A(p), which we shall omit, shows that Qa,1 is different from sero, if the

following determinants do not vanishs
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r

0 1 (e) "t IB)

and

Tr+1 7r+1

Sn-

I r+ "

.... .. .. ... ._.
. +1 . . 1

r+2 n-aI

To thee determinants the reasoning of leamm 2b can be applied, leading exactly to leia 4.

6 is a determinant one column of which in formed of m+1 of the n numbers

" 6'r+1 will be zero for certain exceptional vlues of theme Y But even the

assumption that the t have these exceptional values would not be sufficient to guarantee

the convergence of U(x,p), for the r+1 at term of (133) will, in general, not be the

only one that has an exponential factor tending to infinity. We shall omit the not

difficult problem of finding sufficient conditions for the convergence. We will assume

instead, without mentioning it each time, that the L do not have these exceptional

values.

From the preceding considerations it follows that U(x,p) is in fact divergent in

case IA, provided that the assumptions of the Main Theorem are satisfied.

23. The proof for the divergence of U(x,p) in the case IC is analogous to the proof for

the case IA, if the (r-m)-th ter of the sum in (133) is considered, instead of the

(r+l)st, on which the proof in the case IA was based. One obtains the expression
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Ar-m(P [cr- "cr- A1 a'r-m wr.mAL ..... -( L d

from which the divergence of U(x,O) follows as in the case IA, since Re(r-m ) < 0.

98. The Case II.

24. The case I, i.e. the case when Re(CVp+) = Re(Vp+2 ) - 0, requires a special

7 discussion, because in our reasoning in case I we assumed repeatedly - notably in section

14 - that every L i(U ), with i 4 r, is either of greater or of lower order of magnitude

than all Li(uv) with i > r. But this is no longer true in case I, for the LI(Up+l)

ow, Ow
and LI(Up+2 ),  because the exponentials e p + 1 and e p +2  have always the absolute

value 1. We must therefore modify our considerations for case II, from section 13 onward.

We remind the reader of the remark made in section 13, to the effect that case II of

(139) is equivalent with case of (113).

25. The case IIh.

Re-reading sections 14-22 one sees that no modification of the proofs for came IA is

necessary to obtain the proofs for case IIA. All arguments remain literally the same. The

reason is that, for r < p, e and e p+2 do not appear at all in the asymptotic

expressions for A(p) or A (p).r+ 1

26. The case IIB.

This is no longer true for case uiB, defined by the inequalities 0 ( r-p 4 m+2. In

order to find the minor of maximal order of magnitude among the minors of the first n-m

columns of A(P) we ge back to lemas 1, section 12. Whether the number h in (136) is
b

chosen equal to p, p+1, p+2, does not have any influence on the real pert of IwV
h V-1

but any other value of h leads to a I wv with a smaller real part. Which of these
V-1

three values has to be chosen for h in order to make the order of (136) a maximum depends

therefore on (137). h must be that one of the three numbers p. p+1, p+2 for which the
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X. and the T can be chosen so as to make T a maximum. tAt us call this maximum

T An in section 14 it is clear that Nit '''" must belong to as well

b  '

an Tr+l. ' r 2,.., Tr+n-=.p.2 '

With respect to the two remaining terms to be chosen we can only say that they must be

the two largest of the remaining I's and T'e. This proves that the minor of greatest

order of magnitude among all minors of the first n-a columns of A(p) is in this case

formed by the rows

frd ,2 ..... p ,r.2. r+n-m-p-2 (172)

and two more rows, which must be those corresponding to the boundary conditions containing

the highest order of differentiation excluding those rows already contained in the Sequence

(172). A comparison with part B of the third step of the Main Theorem shows that these are

just the rows of A(p) belonging to boundary conditions that must be canceled in

application of that rule. Ve know from the proof in case I why this is so: the rows of

4(p) appearing in the minor of maximal order ot the first n-m columns of A() are

just those that do not occur in the cofactor of this minor, and this cofactor determined

the boundary conditions satisfied by the limit of U(xp), if it exists.

The exceptional case of indetermination occus, when the two additional rows after the

rows (172) have been chosen, are not uniquely determined. We shall assume, for the

present, that we have to do with the regular case. The case of indetermination will be

treated in 19.

Our rule is so formulated that it takes also care of the case that X 11 or XV 2  do

not exist because r - p or r - p+1.

27. The minor D C(p)(p) of maximal order or magnitude among the minors of the first

n-m columns of A() can now be written

H

Db() M) Ia b (173)
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1

where
(11 r n- nk-Hl

T() = V + I - (174)

V- 1 IPr+lI

and H is equal to p, p+I, or p+2, as the case may be.

As in case I we can then prove that i 0, provided assumption 90 is satisfiedl Th cofctorof (II)

The cof actor of (p) will again be of the form

where (iI) is defined in analogy with 6b. Assumption 8 of the Main Theorem assures us

again that

Finally, we find for A(p), similar to (161)

H

() (II) V

SII) in case I (175)

28. As in case I, we could now calculate the determinants A (p) by the method used for
V

A(p). But since we are only interested in proving that

A (p)
V

U V(x'P)

tends to zero, for v 4 n-m, we shall not calculate the analogue of (169) for this case.

As in proof of lemma 3 we consider first the A (p) for v 4 p. For these v the
V

determinant A (p) does not contain the column with e of A (p). It follows from

lemas 1, that then the minor of maximal order amonq the minors of the first n--I columns

of A (p) cannot contain as factor an exponential of higher order than
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H
I W w bpi

This is therefore also the exponential of maximal order that can occur in the asymptotic

expression for A V
(
x). Hence,

A (p)
A (p)

!V

has the exponential factor e (and possibly exponential factors of order 1), and

- P)U N, P) IC (p)
A(P) v

has an exponential factor whose exponent is

a(j C( )d - w )
a (~d V

an expression which tends to sero as a a +t A Cp)

If v > po2, we prove similarly that does not contain any exponential factors

(except possibly exponentials of the order or magnitude of 1). Hence the asymptotic

expression for

- (xp) (v > p+2)

contains an exponential factor whose exponent is

a E)dt, Cv> p4-2)

and this expression tends to zero as a +e

-44-
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29. The two remaining terms of (133) require a more careful analysis. We treat only the

case v p4I. the case v - p2 being almost identical. Similar as in section 26 we ask

which choice of n-m-1 rows of A 41 (p) leads to the minor of highest order among the

minors of the first n-m-1 columns of Ap 1(p). This minor will have either

a1 w aX w +w

e or e

as exponential factor. In both cases the asymptotic expression for

A (p) P+ x

will contain an exponential factor of the order of 1. But the asymptotic expression for

TI
( p) has also a factor of the form a , and similarly as in section 26 we conclude

that T' is a sum which contains the terms ,',..,' and the terms

r+2,...Tr+n-m-p2 . To these terms one more term has to be added (not two terms as in

the case of A(p), because Ap 1 (p) must be expanded in terms of its first n-m-i, not

n-m, columns). This term must be the largest of the remaining X4s and xrs. Finally,

.t :, TI-Tb(I
0+1(p b

in the asymptotic calculation of A (P) I we have to form a , and this will be

the power of a occurring in the asymptotic expression for Ap+ (p) O1(xp). This
A (p) p41

proves that the order of magnitude of j (x,p) is not greater than that of
A (0) p+1

-mt"- a

where a is the smaller of the two terms chosen for T after X and

Tr+1,Tr+2,...,rr~n-m-.2 have been selected. a may be any of the numbers

Xp . 4 pIA2# Tr+n-m-p-10 Tr+n-m-p " (176)

In order to prove that the p+l st term of (133) tends to zero it remains only to show

that none of the numbers (176) can be zero:
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a) a - I1 * n this case the other one of the two last numbers chosen forTp4'1 b

must be T r+n-.-p., because. if it were X p+2#a would not be the smaller of the two,

and it cannot be T r+n-m p  since

T r+n-m-p < Tr+n-m-p- I

and the two chosen numbers must be the larqest of the numbers (176). Since a must be the

smaller of these two numbers, we conclude that

) p+1 < r+n-m-p-
1

On the other hand,

X~ > (177)p+1 r+n-m-p

If X. -0. A must be the last of the numbers A hence
p+1 p+1

p+l - r • (178)

It then follows from (177) that Tr cannot exist, in other words
r+n-m-p

Sr+n--p-1 n
-I or

r+n-m-p-1 - n • (179)

(178) and (179) imply

m-O ,

a case excluded from our considerations. Hence, XP+1 > 0.

b) a = A p+2 . Similarly as in a) it follows that

p+2 >  r+n-m-p-1

A p+2 - 0 would imply p+2 - r and r+n-m-p-2 - n, hence

c) and d) a Tn or s - T We leave the proofs in these cases to

r+n-m-p- 1 r+n-mt-p'

the reader, since they follow exactly the pattern of the proofs in a) and b) with the same

I, result.
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30. Thus we have finished the proof of the following theorem.

Theorem 3: If the assumptions 10 - 90 of section 3 are satisfied, if

0 r r-p 4 m+2

and if

n-m E-0 (mod 4), and bo < 0

or

n-m - 2 (mod 4), and b > 0

then, as p + m the solution U(x,p) of the problem defined by (101) and (108) converges

in a < x < B to that solution of the limiting differential equation K(y) - 0 which

satisfies the m boundary conditions not canceled in application of the rule of the main

Theorem for the case unless we have to do with the case of indetermination.

31. The case TIC. In case XIC (i.e., if r-p > m+2) one can again, as in section 23,

consider the (r-m)th term of the right member cf (133) and prove that its asymptotic

expression contains the exponential factor

This is sufficient to show that this term must tend to infinity, since this exponential

tends to infinity more strongly than any power of o may tend to zero.

19. The Case of Indetermination.

32. lAt us assume that we cannot decide in a uniquely determined way, which is the last

row of AMp) to be chosen in order to obtain the minor of greatest order of magnitude

among the minors of the first n-m columns of h1p). This is the case which we have left

aside in section 26. We have seen there that this occurrence means that we have to do with

the case of indetermination of the Main Theorem.

In this case we must have

where L is one of the numbers p+1, p+2 and k one of the numbers r+n-m-p-1, r+n-m-p.
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F Furthermore, At and Tk  must be the second and third in size of the numbers )1 and

. excluding the numbers 1 A2,.... and r1 ° Tr 2 ..... qrn-m.P.2 " For simplicity

let us assume that X - pl. (The reasoning is the sas for L - pi2.) Denote by DI(p)

and 02(0) the minors of the first n-m columns of the determinant AW(), with the rows

1,2,...,p, p'+ r+t, r+2,...,k-1

r+1, r+2,...,k-1, k

respectively. Then D (p) and D2(p) are both minors of the same maximal order, and we

cannot reason as in section 16. But, using formula (138) we can vrite

D (P) - F(p) e P+ E1 d 1 I

D2 1p) - F(P) E [d21

where

a F() "a 0

d and d2 are certain constants, which can easily be proved to be different from zero by

the method of section 15, provided assumption 90 is satisfied for each of the two ways of

canceling corresponding to DI(p) and to D 2 (p), respectively.

The cofactors of the minors D (p) and 02(p) in A(p) can be written in the form

CI I and C6 2, where 81 and 62 are certain constants. If assumption 8* is

satisfied for both ways of applying the cancellation rule of the Main Theorem, then we can

be sure that

of 6 2 # 0

Zxpandinq A(p) in terms of its first n-m columns we find then

A(P) - 1(p)(6II t 02(P)C1 2] 1(p)( 6'1 [d S11

- 8-d 2 621} . (180)
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33. While in all cases so far the last a terms of the sum (133) were convergent, so that

the convergence or non-convergence of U(x,p) depended entirely upon the first n-m terms

of (133), in this case the last m terms of (133) will, in general, be divergent.

In fact, let n-m ( j 4 n. Then we find immediately in analogy with (180),

a p) I F( p)( [Wp+1d 1  jI + [d 2 521 ]} , (181)

where [51j] and [6 2] are the determinants obtained instead of [6 1] and 2 1, if the

J-th column of A(p) is replaced by

L 1

£2

L t L

n

(180), (181) and (115) show that the j-th (j n-m) term of (133) is equal to

P) e P+[dl6j] + [d262j1
U U(x, p) -- (u (x) ( (182)A () U 1 ,,...,.4*

e [d1 61] + [d 26 21 -n-u

and that
Ow n n

e p+1 d16 u (x) I + Ed2  u (x) I
n 5A()n- I (d1  J-~ _ -+ m 2 C2x)]-s----- U 1 (x, P) n1 [- 2 12n- (183)

A (P) jo
e 1+

Because of the oscillating factor e p+1 this expression can converge only if the

determinant

n n
1 d1 61 u UCx) I d 2 62 ju (x)
n-m  J1n-m J..n-M J-n+m

d 11 d 2 62

vanishes, i.e. if
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J. II U (x ) =0 .

Since the u (x) 1 iu - 1,2,...,m) are, by assumption, linearly independent, this

leads to the m conditions

626 j - 61 0 (j - n-m+l,...,n ) .(184 )
2 ij 1 2j

The left sides of (184) depend on the numbers L1 , L2 #...., n . (184) represents therefore a

set of conditions on the prescribed boundary values. As in the previous cases we assume

that the As do not have the very special values required by (184). Then, the value of

(183) oscillates, as a + -, but remains bounded.

As to the first n-m terms of the sum in (133), it can be proved exactly as in the

regular case IIB (section 27-29) that they all tend to zero.

This completes the proof of the non-converqence of U(x,p) in the case of

indetermination and also the proof of the whole Main Theorem.

34. Remark: Going over our whole proof we see that the assumption m > 0 was not used at

all in the proof for case I, i.e., for the cases S- II) of (113). Hence, all our

results in these cases remain valid for m = 0 also.

In case II, i.e. S the hypothesis m > 0 was used only to exclude a rather

special occurrence in section 29. It would not be difficult to formulate a general theorem

for the case m - 0 also.
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Chapter I

FURTHER RESULTS IN THE CASE n-m - 1

11. Generalization of the Boundary Conditions.

35. In the special case n-m - I it is not difficult to replace the boundary conditions

(108) by the more general ones

n (v-1i) n (-I)
L (y) I a 

Vy 
fa) + I O

uY 
(0) - ,P (i - 1,2,...,n) , (201)

VI-1 t-i

where the constants I, ,BI and Ii are only restricted by the condition that the n

boundary conditions are independent and compatible.

i We note first: If, in (201), the Li(y) and the AI are subjected to the same

linear transformation with constant coefficients and non-vanishing determinant, then the

resulting equations

n (v1) n (-1)
L;(y) 1 0 y (a) + 1 y (8) - (202)

constituLe a set of boundary conditions equivalent to (201) in the sense that a function

satisfying (201) satisfies also (202) and vice versa.

From this remark we see that we can assume without loss of generality that not all the

a or all the i are zero, because in that case the boundary conditions (201) would

be equivalent to ordinary initial conditions, which are a special case of boundary

conditions of the type (108).

36. Denote by a the greatest value of v for which at least one of the *iv is not

zero, and by t the greatest value cf p for which at least one of the B is not zero.

There exists a non-degenerate linear transformation with constant coefficients transforming

(201) into the system of equivalent boundary conditions

~-51-
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n (v-I) n (-Il)

L1 = -
1  y(a) + B1 a y0 () LL (203)

having the property that

C Olt ) sO, of t . *- - 0 

Such a transformation can be chosen in many ways. SimLlarly, there is a transformation

changing (201) into

n (v-I) n (t-i)
1 L = 1 0 a IV y (a) + ( 00LI Y  (204)

having the property that

0 Olt 0, B'2t . Bnt 0

For n-m- I equation (114) and (115) reduce to

-p b (t)d
U (x,p) - e (n(x)]

U I+j(X,P) -(u U(x)] , (j 1,2,...,n-I)

Let us assume first that bo(x) > 0. Then we use (203) instead of (201) and see

immediately that

3L (U) t p (bo(M) (at 1

is of greater order of magnitude than all the other Li(Ui), (i - 2,3,...,#n). Solving

equations (125) asymptotically in this case, by the method used in the first chapter, we

see that we can reason exactly as there. Of the assumptions of the Main Theorem we need

only 1, 2, 30, 5% 60 and an assumption corresponding to 80 which states that
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L 1 . , 2(Un
)

-0 (205)

a n (u I C ft

We see then easily that the solution of (101) and (201) tends, for n-m - 1, and b0 > 0,

to that solution of M(y) - 0 which satisfies the boundary conditions

Li(y) i , (i - 2,3,...,n) (206)

but not the boundary condition Li(y) - X except for special values of the t s. Using

a. I i

a siallar reasoning in the case bo(x) < 0 we find that in that case u(x) = li U(x,p)
P+"

satisfies M(y) - 0 and the boundary conditions

iCY) 81i i -2,3,...,n) (207)

provided

0 2 ) L 2 .u I '2 (u n)

B 0 (208)
.n( . ., . . . . . .(Un

This result can be formulated in a somewhat more symmetrical form. To that end note

that the boundary conditions (206) do not involve any more the highest derivative at x - a

occurring in (201). Any linear combination of the equations (201) which does not contain
.

Cs-i)

y (a) must be linearly dependent on equations (206) and no linear combination of

(8-1) (t-1)

equations (206) contains y (a) . Similarly for (207) with respect to y (B) • Hence, we

can state the following theorem.
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Theorem 4. If n-m .1 and if the conditions 1, 20, 30, 59, 60 of the Main

Theorem of chapter I as well as (205) and (208) are satisfied, then the function

U(xp) satisfying (101) and the boundary conditions (201) tend* with increasing

p to a solution u(x) of (y) - 0. According as b0 > 0 or b0 < 0

the function u(x) satisfies all boundary conditions that depend linearly on (201)

and do not contain the highest derivative at x - a or x - 0, respectively,

occurring in (201).

Remarks The conditions (205) and (208) can be formulated in a way independent of the

4 particular choice of the fundamental system u (x), (j- 1,2,...,n-1), by saying that we

assume that only the function u(x) - 0 satisfies the differential equation M(y) - 0 and

the homogeneous boundary conditions corresponding to (206) or (207), respectively.

"Eample: n 3, m 2,

ya) - y,(a) + y'IB) " £I

y(Ca) + y'(a) + y() - y'(0) £2

y, (a) - 2y''(VB) - '3

If b0 > 0, then lim U(x,p) satisfies the boundary conditions

2y(a) + y( ) -y' ( ) + y''(B) " £. + i2

y(a) + y(S) - y'(B) + 2y''(B) - £2 - '3

But if b0 < 0, then i. U(x,P) satisfies the boundary conditions

y(a) + y'(a) + Y( 0) - y'(B) 2

2y(a) - y'(a) - 2Jt + £3
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12. The "Stretching" of the Boundary Laver

37. For the relatively simple types of boundary layer problem. with which this

investigation is concerned we have been able to develop a method that allows us to

calculate asymptotic expressions for the solution of the boundary value problem (compare,

e.g., formula (171)). From these asymptotic expressions one can easily obtain all desired

information about the behavior of the solution of the boundary value problem near the

endpoints for large values of p. (Compare, e.g., the corollary in section 20).

In the more complicated boundary layer problems occurring in physics such complete

asymptotic solutions are often not available. In those cases it is customary to transform

the given boundary value problem, by a change of the independent variable, into a new

boundary value problem which does not tend to a problem of lower order when p tends to

infinity.

As an example for such a transformation we take the differential equation (101), for

the special case

b (x) > 0

The case b0 (x) < 0 can be treated analogously. Without lose of generality we may further

assume that

- 0* (209)

We shall refer to this boundary value problem as the problem (L).

We now introduce the new independent variable

z - Ox (210)

and transform the boundary value problem (L) into an equivalent problem in z, to which we

shall refer as the problem (L). Let U(x,p) be the solution of the problem (L). U(xp)

or some of its derivatives will have a boundary layer at x - a - 0. The function U(x,p)

is changed, by the transformation (210) into

S) - U(,P) (211)

f (z,p) is the solution of the problem (C). Since

U (zP) p U ((x,p) , (212)

-55-



the problem L) can be written

P n
(n)) ..- v (n-m-)

(n) +b()y +a) V ' b (!)- y- - 0 , (2.13)

O'p( )p n-)i

y (PO) " lip , 0 < 1 4 r

L= { ((214)

(0) L Lp , r+ IC 1 4 n

If we let p tend to infinity in the coefficients of (213) we obtain the simple

"limiting" differential equation

y(n) + bo(O) y(m) - 0 (215)

It may be expected that the function U(xp) tends with increasing p to a function

U(Z) - lim U(z,P) (216)
p 4 .

which satisfies the differential equation (215). Since (215) in of the same order as (213)

we expect that the function 6(x,p) will not have a boundary layer for large p.

The transformation (210) may be described as a stretching of the function U(x,p). If

U(z.p) does not have a boundary layer, we have, in a way, "stretched out" the boundary

layer.

The problem arises then what boundary conditions are satisfied by the limiting

function u(z). If the boundary layer of the function U(x,p) at x - 0 occurs in

U(x,p) itself and not in a derivative of U(x,p), the interpretation of (210) as a

stretching which becomes infinite when p + -, suggests that we have

u(-) - u(0)

where u(O) is the value assumed by the function

u(x) - lhm U(xP) (217)

at x - 0. u(O) will, in general, be different from the boundary value prescribed for

U(x,p) at x - 0.
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The transformation (210) is frequently used for the solution of more complicated

boundary layer problems. The following points are then usually taken for granted without

proof:

(a) That lin U(z,p) exists.

p+W

(b) That the limit u() satisfies the limiting differential equation

(c) That u(") = u(O).

In our investigation we have been able to find an asymptotic approximation for

U(x,p) directly, so that we did not need the transformation (210). But we are now able

to prove the statements (a),(b), (c), for our problem (L). This is what we are going to do

in this I.

38. In chapter I we have derived for U(x,p) the following asymptotic representation

(compare (171)):

x
U(x,p) - [n(x)]p e + [u(x)j • (218)

In this formula we are using the following abbreviations:

= (b 0 0)) Tr + 1  (219)

where

L Cu) L I (u * mu

r+l L r(u L..... r(u m) (220)

Lr+2lu I L r+2 u m

Ln(u ) ....... L uI
Jn 1

(Compare formula (159)),
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Li Lllu 1 ) * * * * Ll(u)

A 2 L2 U2 ) . .. L2 (u*)

* * (221)

In L .n .. .. Ln (u

(compare section 18),

o(x) -- b0 (x) (222)

and

u(x)- u W(x) (223)

• (Compare section 17 for the 61+ U, - ve have dropped the index b, used there, as

unnecessary here -; and compare section 6, theorem 1 for the u (x)).

Zn consequence of theorem 1, formulas (119) and (120), we may differentiate (218)

formally at least n-I times, i.e.

i)iI-rr+ 1  o 0()d

U M (xp) - (w (x)n(x)lp p + [u )(x) , (i - 0,1,...,n-1) . (224)

39. Knowing U(x,p) and its derivatives we can nov easily calculate the function a(z,p)

and its derivatives with respect to z. For, considering that

a o" p(C)d& fo0 ,(A)dC
a .- (225)

we find, upon substitution of (212) into (224), that

I4i zu - r+I -iz
U (Z.p) + O-)], (i - 0,,...,n-1) (226)

0 P P

Thus we have solved the problem (Wi.
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The result of the passage to the limit in (226) can be .soot easily expressed by one

formula comprising all cases that can arise, if we introduce the following symbol:

O, if t 0
St) 1, if t 0 (227)

Then we can write

(s] - limU(a,p) [ TlP(O)1s2(O) C(tr 1 ) + u(O) • (228)

Formula (228) is valid for 0 4 z < a%

We can now confirm the three unproved statements (a), (b), (c) of section 37. u(z)

does exist, and it satisfies the limiting differential equation (215), as we may readily

verify by substitution. In fact, i(z) reduces to a constant, unless 0 +1 - o. Finally

we see from (228) that il(-) - u(O). This proves the statements (a), (b), (c).

For the limit of the i-th derivative of U(z,p) we find, from (226),

L-C) i SO(0)
lim U (,P) - [w% ) () ) c(Tr+) , (i - 1,2...,n-1) , (229)

which is also the i-th derivative of u(s). we conclude from (228) and (229) that 6(0,p)

and U (o,0) remain finite as p + -, in other words, U(zap) does not have a boundary

layer at x - 0, the boundary layer has been "stretched out".

40. We have seen that the limiting differential equation (215) is satisfied by the

function u(s) obtained by passing to the limit in the solution i(z,p) of the problem

WL). How can we find a complete set of n boundary conditions satisfied by u(s)?

If we formally let p tend to infinity in the boundary conditions (214), we obtain

boundary conditions

o( )
Yi ( - A ( (i - 1,2,...,r) (230)
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(0) -X C(i) (i - r+, r+2,....n) (231)

From the remark made at the and of the last section it follows immediately that u(s)

satisfies the boundary conditions (231). If X. = a, the last boundary conditions (230)Y

can only be satisfied if, by coincidence, £i - u(O). We therefore replace the last

boundary condition of (230) by the condition

- u(0)

which we have proved to be satisfied. The other boundary conditions (230) are certainly

satisfied, since all the derivatives of ;;(z) vanish at z - *.

13. The Non-RomOqeneous Differential 9quation - N(y) + 1(y) - f(x).P

41. Introduction: It is an open question whether the Main Theorem remains valid in full

generality for the non-homogeneous differential equation

N(y) + M(y) - f(x) . (232)

But we will be able to answer this question in the affirmative when

n-m1 , (233)

provided none of the boundary conditions not canceled in application of the rule of the

Main Theorem involves an order of differentiation greater than a-1. The meaning of this

latter condition is easily understandable: If one of the uncanceled boundary conditions is

of the order n-1, then the boundary value problem formed by the limiting differential

equation

4M(y) - f(x)

and the uncanceled boundary conditions is of a type to which the usual method of solution

by means of the Green's Function cannot be applied, since this method presupposes that the

boundary conditions are of lower order of differentiation than the differential equation.

In our treatment of the homogeneous differential equation the relative order of

differentiation of the limiting differential equation and of the remaining boundary
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conditions did not play any important role, and it is by no means certain that the

condition above is really necessary in the non-homogeneous case. But it simplifies our

proof greatly.

42. The problem defined by (232) and (233) and the boundary conditions (108) viii be

called the problem (N). If, instead of (108), we prescribe the corresponding homoqeneous

boundary conditions, we shall speak of the problem (N'). We assume that 0 < r < n, i.e.

we consider only actual boundary conditions leaving aside the initial value problem. (The

initial value problem can be treatod by the same method.) It is easy to extend the proof

below to the more general boundary conditions (201).

Let Z(x,p) be the solution of (N), z(x,p) the solution of (N') and U(x,0) the

solution of the homogeneous differential equation (101) satisfying the non-homogeneous

boundary conditions (108). Then

Z(x,p) = z(x,p) + U(x,p) . (234)

Since the asymptotic behavior of U(x,p) for large has already been investigated in

chapter I it is sufficient to discuss the problem (N').

43. The Green's Function:

It is known that the function z(x,p) can be written in the form

Z(X,p) - feG(x,t,p) 0 f(t) dt . (235)

The "Green's Function" G(x,t,p) can be constructed in the following manner:

Let Y1 (x'p), Y2(xp) . . . Yn(x,0) be a fundamental system of solutions of

N(y) + M(y) 0, and set
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(n-)2y (n-1) y(n-1) P

h(t~p) - (n2(t,p) y( 2 ) (t.0) . . . (n2 (t,p)

yl(x,p) Y2 (X,P) . . . y nxp

(n-2) (n-2) (n-2)
k(x~t~p) s qf(-t) Yl (t,p) Y2 (t,p) . . . n (t,p) (236)

y1 (t,p) y2 (t'p) . . . yn(t,p)

and

g(x,t,p) - (X,t P)(27
2 h(t,p)(27

Then

G(x,t.9) -I n~f R(x~t,p) (238)
A(p)

where

N(x,t~p) -(239)

L n(y I L n(y 2  L n * n( L n(q)

and
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L I(yI) LI(Y 2) L * L(y)

A(P) 2 ( 1) L2(y2) L2 ( (240)

L(y L n(y 2) L nCy)

Li(g), i 1,2,...,n, means that the operator Li is applied to g~x,t,p) considered a

function of x.

44. The asymptotic value of the Green's Punction:

*We take as the fundamental system y (x,p) the functions (114), (115) specialized for

n-rn-1 i.e.

y1 (X,P) - V(X,p) - e (X)1

(241)

U (x,p) EQ Ii) (Xi I-()

where

P(x) b (X)

(Note that our notations differ somewhat from those of chapter I and of chapter II, 11.)

We have then

= L (k)

1 2h(t,p)

where

L k (n-2 ) (tp (n-2) (-2) . . t (42
L (k) (tP U I (,P) Un-I(2 )

W~t, P) U I(t, P) . .* U n(t, P)
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with

L' - Li  , for i( r

Li .-Li, for i > r

Let us assume that

bo(x) < 0 .

Then

f i ~i Ow

0 t v ( ) n ( o ) e , f o r 1 4 rL;IV) - (243)

I 'i 'i
-P tS (C) n(a)] I for i > r

where 
K

If we expand (242) in terms of its first column, we see that in a ( t 4 B the 3rd, 4th,

etc. terms of the expansion are of lower order than the second term. Hence

(k) - LI(V)[h(t)] - Vn (t,p) ILi(k)] , (244)

where

u (n-2) (t) u(n-2)(t) . . . Un 1  (t)
* (t) u2  nt-** 1  (t

t (n-3) () u (n-3),t) . (n-3) t (245)
1 2 n-I

+ u(t) u2(t) • . • UnCt)
uIM u2 ()Un-i

and

uI(x) u2  • '.n-I (x)

(n-3) (n-3) u(n-3l(t)
sq(x,t) sqn(x-t) u u2  t) n-1 (246)

Ul~t) u2(t) * " "u U-(t)

1 2 M ... Un- M
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Expanding h(t,p) in terms of its first column we obtain similarly

h(t,p) - V (n') (t,O) [h(t)], for a ( t ( (247)

h(t) 0 0, because otherwise u2 (t), u3(t),...,Un.1(t) would be linearly dependent.

From (237), (243), (244) and (247) we find

,L[(V) ___

L ((xtp)) 11(248)
) 2n-(t,p) p;(t)

where

d(x,t) (249)

2h(t)

Furthermore, expansion of (236) in terms of its first column yields

k(x,t,o) - sgn(x-t) v(x,p) [hi(t)] - (n-2)(t,p) (k(t)]

and therefore, because of (237) and (247)

v(x,P) I [~~) 20
g(x,t,p) - sgn(x-t) (n-1) -M [(xt)] (250)

Now we substitute (250) and (248) into (239) and see that

•(x,t,0 ) - H1 (xtp) + 112 (xt,0 ) (251)

where

J- V(x,P) l(I )] . . . (un- (x)] , agn(x-t) V(x, p)

" L (V) [L1 (Ul)] ••[L 1 (u )] L;(V)

H (xt,p) 1 1 -I (252)1 2V (n-i) (t,p) . .. .. ................ ..

L (V) [Ln(U )] [L (U )] L'(V)
n n In n-i n

and
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V(xP) [u1 (xl] • • W [Unlx)] [g(x,t)]

R2(x'tP) - - I M MLI (U I [ I (u n-I- ] (253)

Ln(V) ELn(u 1 ) ILn(un 1 )] (Ln(g)]

The asymptotic expression for A(p) is (compare chapter I)

A11- L11I[A]- 1 1) n(B) l1e pV (254)
11

where

~L 2 1u 1 ) * * * L2 1u 1 1

-1 ~(255)

L CuN L Cu

n I n n-1I

As in chapter I we make the assumption

0 o(256)

(A is identical with 6b of formula (159) for this particular case.)

45. Corresponding to the representation of H(x,t,p) as a sum of two terms in (251) we

find, upon substitution of (251) into (238),

G(x,tp) - Gl(X,t p) + G2(xt,0) (257)

with

H (lX~tp)

G (x't'P) - (-)n H I (1258)

G2(x,t,p) - ( 1 n H2 (x't'p)8(O 1xtP (I 259)
2 A(P

Using (235) this leads to a representation of the solution z(x,p) as a sum of two

integrals:
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z(x'P) z zI(XP) + 2 (X,P) (260)

with

z (x'P) -fo G (x,tp) P f(t)dt (259)

z (x,P) - fe G (x,t,p) p f(t)dt (260)

We shall prove that, an p tends to infinity, z (x,p) tend, to zero, while z (x'p)

tends to a solution of 14(y) - f(x).

46. In this section we are going to show that

lrn z I(x,P) - a fG(x,t~p) p f(t)dt =0*(261)
P+WP+

To this end we write (259) in the torm

z (x,P) f f1 G (x't'P) P f(t)dt + fo G (x,t,p) P f(t)dt (262)

1 a

and prove that each of the two integrals in (262) tends to zero.

a) In the first integral of (262) we have t 4 x. Hence, G I(x,t,p) has to be

determined with + V(x,p) as the last tern of the first row of the determinant in (25).

in order to find an asymptotic expression for H (x,t,p) we expand the determinant in

(252) in terms of the minors formed by its first and last columns. These minors are either

zero or of the form

±2 L (V) L S(V)

or 4r (263)

I±2 V(X,p))L C(V) j > r

i.e. they are of the form

AI +T "

or (264)

T af' 'P(E)dE('
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where q and q' are certain numbers different from zero. Since A and T + ar

greater than all the other X as and T a, it follows from (264) that, in a 4 x < 0, the

expression of highest order of magnitude among all the minor (263) is 1 2 L I V) L C+ V)*

and no other minor has the same order. Hence, (252) can be written, - in a <x 4 t -, as

follows:

T -n+ -f t V(&)d r+1
1X,t,p) L Me)n r1 1 ' I v(x) (265'

where

Eu Cx)] .. ............. u W1)
I n-I

1L2(UI( 2 (Un-I

v~x)= [ Cu)J...............[L~ 1 )](266)

v C L u )... .. .. .. ... . . (L u - ]

Lr+2 (UI( r+2 nu -i

. ... ..(4-

is the cofactor of the minor t2 LIMV ~t ,Iv) in (252). (265), (258) and (254) show

that for t 4 ,

X ~r r+1 P () ~)v4; ~G(x,t,p) a n-)(-I ~.c~ ~)vx (267)

SP(t) n(t) t

and therefore

T -n+2 T~
f: G~x,t,lp)p f~t)dt r C-p r+ Ca) MCI) !A(i. ft P(&)d& P~t,p) (268)

with
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t Pf(t)

(P (t) n)t)-

The integral in the right hand member of (268) tends to zero as p + % since its

integrand tends to zero in the interior of the interval and remains bounded at the

Tr -n+ 2

endpoints. 6 remains bounded, because we have assumed that

T Cn-2

Consequently, the left member of (268) tends to zero, as P +

b) In the second integral of (262) we have t ).x. Hence, in the determinant in

(252) the last term of the first row is -V(x,p). Expanding this determinant in terms of

the minors formed by its first and last columns we see that this time the minor of highest

order is formed by the two first rows of the determinant. The value of this minor is

+2 V(x,p) L I(v)

A calculation analogous to that used in part a) of this section leads to

B G1(x,t,plp fltldt - p-n+2 In(x) Q. (269)
G~~ ~ ~ ~ I x ,p t t-P=

4 A

where the constant Q is the limit of the cofactor of the minor above. Since t ) x in

the integral in the right member of (269), the integrand of that integral tends to zero in

the interior of the interval of integration, x < t ( B. as p approaches infinity.

Furthermore, the integrand is bounded at the endpoints of the interval of integration.

Consequently, the integral tends to zero. On the other hand, our assumption m > 0

implies n-2 ; 0, and the power of p in (269) is therefore not positive. Hence, the

left member of (269) tends to zero, as p + a%

This completes the proof of (261).
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47. We now turn to the asymptotic calculation of z2(xp), (see (260)). We note first,

on expanding the determinant in (253) with respect to its first column, that 2(xtp)

can be written, in a C x < 8 in the form

L1 (V)

H2 (x't'P) -[(xt)] (270)

where

u1 (x) . . . ...... U n1 x) g(xt)

L2 (u1 ) .. .. . . . . L2 luT. 1 ) L2 lg)

(271)

L nu) .. .. . . . . Ln (n 1 Ln (g)

is the limit of the cofactor of the element LICV) in (253). Substituting (270) in (259)

it follows that

G2 (xt,p) = (_)n 
I (x,t)
0 P(t),t

and this formula, together with (260) gives

z2 (x,p) = (.f 1 ) fI (!lx't)lflt)dt
2a

In this expression we may pass to tine limit under the integral sign, since the asymptotic

expression for the inteqrand is valid in the whole interval a ( t 1 B. Thus we obtain,

replacing at the same time 0(t) by its value -bO(t),

lim zllX, ) -f 1-11
n
-
l 
Hlx,t) fit) dt ( (272)

2 aa be(t)
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Now we combime (272) with (261) and (260), and conclude that the right member of (272) is

the value of Jim z(x,tp). But the definition of i(x,t) and A in (271) and (255),

respectively, show us that

n-1 H(x,t)

is exactly the Green's Function belonging to the differential expression

O ( -T )

and to the boundary conditions L2 - 0, (U - 2,3,...,n).

Since these boundary conditions do not involve derivatives of higher than (n-2)nd

order, this proves that z(x,p) tends to a solution of the limiting differential equation,

satisfying all boundary conditions, except the first one.

A
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48. We sumarise the results of this I in the following theorem.

Theorem 5:

We consider the problem (N) defined by the differential equation

I N(y) + M(y) - f(x) 232)

and the boundary conditions (108). 1(y) and M(y) are differential

expressions of the form (103) and (104) with

n-mu1

We make the following assumptionss

(a) Conditions 10 - 50, 70 and 8 of the Kain Theorem (section 4)

are satisfied.

(b) bo(x) < 0 in a € x 4 5.

(c) Tr+ T < n-1.

(d) 0 < r ( n.

(e) f(x) is integrable in a 4 x C B.

Then the solution Z(x,p) of the problem (M) tends - as p approaches

infinity - to a solution of the differential equation

M(y) - f(x)

satisfying all the boundary conditions (108) except, in general, the first

one, L1 (y).

A strictly analogous theorem holds for bo(x) > 0.
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Chapter III

80ME RELATED PROBLEMS

11. An Example for Boundary Layer Problems in Systems of

Differential Zquatins.

49. A great number of unsolved boundary layer problems with important applications can be

formulated for systems of ordinary differential equations. We are going to discuss in this

section a very elementary example in order to give an idea of the boundary layer phenomena

that can arise for systems.

We shall discuss the system

"-i p-lu" a u + b v(01

p u~u~bv(301)

v" c u + d v

with constant a, b, c, d, assuming that

a 0 . (302)

As boundary conditions we prescribe

uv00 =) u, vu() - v u(S) u, vCB) =
v B (303)

where uo, v.f ut' v aare constants.

-1
The "limiting problem, obtained by setting p = 0 in (301) is equivalent to the

differential equation of second order

6
vt- - v =0 (304)

a

where

lab6 c dl (305)

and to the relation

• b
U V (306)

a
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The following questions arise:

(a) Do the solutions U(xtp)t V(xjp) of (301) and (303) converge as p 
+

(b) What boundary conditions do the limit functions U(x) and V(x) satisfy if they

exist, and are they solutions of the limiting differential equation (304)?

The functions U(x) and V(x) cannot be expected to satisfy all four boundary

conditions (303) and also the condition (306), for the prescribed boundary values (303)

will, in general, not satisfy the condition (306). The answer to these questions is

supplied by the following Theorem:

Theorem 6:

Let u - U(xp), v - V(x,p) be solutions of the system of

differential equations

P u" 
a u 

+ 
b v  

(301)

v" c u + dv)

(a, b, c, d constants) satisfying the boundary conditions

u(Q) - u, v(Q) - vW u(B) u0 v(B) v 8  (303)

where u , u v, v are constants. Let us further assume:

Assumption 1: a 0 0

Assumption 2: a, b, c, d, a and B are given in such a way

that the differential equation

6y- .- y - 0 (307)
a

with

S a: b (305)

and the boundary conditions

y( ) 0 , Y(B) 0

can be satisfied by the function y(x) 2 0 only.
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Then we can make the following statements:

(A) The function V(x,p) converges, as p + -, to a

function V(x), satisfying the differential equation (307)

and having the boundary values

vCa - Va B WO) V 8  (308)

(B) If a > 0, then the function U(x,p) converges in

a < x < B, as P * -, to the function

U(x) - - V(x) (309)a

(which, of course, satisfies the differential equation (307)).

(C) If a < 0, then the function U(x,p) does not converge

but remains bounded, as p + -, except when the prescribed boundary

values satisfy the condition

a u + b v a 0

(310)
a u B + b v 0

in which case statement (B) remains true for a < 0 also.

50. To prove this theorem we start from the observation that U(x,p) and V(x,p) are

both solutions of the differential equation

4 -1 y(4)
p {y - d y") - a y + 6 y - 0 . (311)

In fact, if we multiply the second differential equation of (301) by b and substitute

into it the expressions

b v - p - u - a u , b v* - 6u (4 ) 
- a u"

obtained from the first differential equation, we find the following differential equation

in u alone,
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u( 4 ) -(p a + d) u" + p 6 u -0

which is equivalent with (311). Similarly, it can be shown that (311) is satisfied by

V(x,p), by eliminating u from the differential equations (301). It is also easily seen

that the boundary conditions satisfied by U(x,p) and V(x,g)), considered as solutions of

(311), are, respuctively,

for U(x,p) for V(x,p)

Sy(a) - u y(a) - Va

Y(S) - u 0 (312s) y(O) - V80 (312b)

y*(a) - (a ua + b v )p y*(a) - c u + d vUt U n o

Y"(8) - (a u + b v) 0  y"(B) c u + dv

The boundary conditions for V(x,p) are of the type considered in our Main Theorem

(chapter 1, section 3). Applying the Main Theorem for these boundry conditions and for

n-m - 2, b0(x) - -a, we see that for a > 0 as well as for a < 0 the function V(x,p)

converges to that solution of the limiting differential equation (307) which satisfies the

boundary conditions y(a) y(O) - v. This completes the proof for statement (4).

51. ?or U(x,p) a special calculation is necessary, since the boundary conditions for

U(x,p) contain p, a case not considered in our Main Theorem. Our principal tool in

chapter I, the asymptotic representation of a fundamental system of solutions of the given

differential equation, can be applied to the differential equation (311) and yields then

(see theorem 1, section 6)

U I(x,p) - e

U 2(xp) = -o ( x -a) (1] (313)

U 3(xP)- [A(x)]

U 4(x,p) -18(X)
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Here the functions A(x), B(x) form a fundamental system of solutions of the limiting

differential equation (307) and

a - Vp

With these functions we repeat the general reasoning of chapter I for this special case.

We first re-write the boundary conditions (312a) in a form somewhat more convenient for our

purpose:

1 B + bP "(O 1 3 a a

(314)
Y(B 2 uB Y( a)-L 4 -ua

* Let us further introduce the abbreviations

e -(Wi ,e a 1-a) W 2 (315)

First case: a > 0.

Defining A(p) as in (134) we find

falw W2 -1 [" ) p-1[B 8)

A (P) tW1 11W2 [(0]B ))(316)

(a] [a] P - (A 4(a)] P [ 4()

We expand this determinant in terms of its last two rows%

A~)--a2 W,$ -[a) 2 IW,(317)

A(a) B(a)

with

D (318)
Mo) B(a)I

in consequence of assumption 2 of the theorem to be proved we have
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D 0 • (319)

Slimilarly, we find

I [alW2  p"1 (A*($)) I p [B" (0)( 1

A1 p) , 2 2 [B( -[a Li D] (320)

£ 3 [a] 0"1 (A (al)l p- 1 [8"(9)]

£4 (1 [A( a) [B( a))
14 1

and

[alW1  Li p 1 [A.() "1 [B"($1

[11W1 I2 [A( $)I [B( I) (111

A2 (p) 1 - -[a £3 Dl (321)

(a) i£3 p (A"(L)] p- [B"(a))

(1] Z4 [A( a)l (( a))

In the determinant

[aJWI (a]W 2  L I p" (B")]

A3 1p) ,, I [llW 2 £2 (B(0]

[a) (a] £3 o (B"(a)]

'1 [1) [1] "4 (B()

we subtract the a- 1  fold of the first row from the second row and the a"I fold of the

third row from the fourth, thus obtaining

(aJW I a]W2 tI p WM]

101W (01W - k (l)] (321)
1 2 ana

IA31o) = -(a] (a) £3 p-1 (3"(a))

(01 (0) (3(a))
a n

-79-



Here we have used the fact that, in consequence of (313)

b 1 31 (322)2 a a a

Expanding (321) we find

b

A3lp)" [a 21W1 (323)

Similarly, we prove that ~ C)-Da

b

A( - -v Ba

2
[a 2 I (324)

b
A(B a a Voa

a

52. From (313), (317), (320) and (321) it follows that

lim 1 U1(x,p) -0
p.-

in a< x <
t 2 () 2lim 2 -2o~)

(323) and (324) show then that

U(x) " lim U(x,)

is that solution of (307) which assumes the boundary values

- b
u'a -a a a 8()- v

This proves statement (8) of theorem 6.

Second case: a < 0

If a < 0, then the absolute values of W, and W2  oscillate with increasing p

without tending to a limit. In this case we obtain from (316) the asympotic expression
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tD A2 ] (W1 - W2) (325)

instead of (317). For AI(p) and 42(p) we have

S1(p) - -[D a] (i1 - 3 W2 ) (326) j

A 2 (P) - -to a] (1 3 V - L£ ) (327)

and for A(p) and 44(p) A1

-3 (a) -
2 ]  - W2) (328)

a a

r I A( 8I b

b4p ) -- [a(
2 

WI - W 2  (329)

A(*) - v a

53. Prom these expressions it follows immediately that

4 A (p)
U(x,p) = U UlxP)

i-I

does not converge in this case. For

V- ( 3 (p) U3 (x,p) + A4 (p) U4 (xp)

converges to the same solution of (307) as in the case a < 0, while the expression

2U2) '3w2 iIal(x-,) YI-' -iOV'a( x- a)
( 1 U1  + A2 U2 1 - a(W -W2 ) + alWlIw
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does not converge unless I - 3 = 0, in which case it is identically zero.

This completes the proof of theorem 6.

If assumption 2 of theorem 6 is not satisfied, then our reasoning does not hold any

more. In that case it would be necessary to take into consideration also the second terms

of the asymptotic series used, in order to find the order of magnitude of A(p).

Assumption 2 is easily seen to be equivalent, in this case, with

6 5 0

and

-'-- (s-u) N when - < 0
a a

where N is any positive or negative integer.

The case a = 0 could be easily treated by the same method.

The boundary layers in this § occur only for the function U(x,p), which with

increasing p tends to a function which does not have the prescribed boundary values,

except, when these boundary values satisfy the condition (310).

A more adequate and general treatment of boundary layer problems in systems of

ordinary linear differential equations could probably be based on the asymptotic solution

of linear systems as developed by Langer and G. D. Birkhoff (51. The assumptions of that

theory would, however, have to be generalized for this purpose.

S2. An Example for Boundary Layer Problems with

Singularities in the Interior.

54. Introduction: If the assumption 60 of the Main Theorem in chapter I is dropped, i.e.

if we admit zeros of b0 (x) in a ( x ( B, then our whole theory becomes invalid. For

the zeros of b0 (x) are usually singularities of the limiting differential equation

M(y) - 0, and the theory of the asymptotic solution of differential equations, which was

our main tool, fails in this case.
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The general treatment of boundary layer problems in this case would probably require

an entirely new approach. But it is already interesting to investigate a very simple

special problem of this type in which the differential equation can be solved explicitly.

We shall discuss the boundary layer problem of the differential equation

Sy" + b(x)y' - f(x) (330)

P

with the boundary conditions

y(a) - £2 , y(0) " £1  (331)

We make the following assumptions:

1. b(x) is regular analytic in a < x 4 0

2. f(x) is regular analytic in a < x < 8

3. b(x) has a zero at the interior point x - r of the interval a ( x -C. But

b'(r) 0 0, and b(x) does not have any other roots in a < x C S. (This number r has,

of course, nothing to do with the number r used in the first two chapters.)

Assumptions 1 and 2 are by no means essential. We introduce them only in order to

simplify our reasoning.

55. The solution of the boundary value problem for the differential equation (330): To

simplify the calculations it shall be assumed that the boundary values are

Y( 0) -Y(1 0) 0•

The case of non-homogeneous boundary conditions, which does not add any new features to the

problem, is discussed in section 59.

The general solution of (330), as obtained by elementary methods can be written in the

form

2C,) xd fi P f~n0-(A()A( n))dn + rc x - d+c(32Up:,. - A , . -  ,
+ c,~ : .- " . , (332)

where
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A(x) f W, b(x) dx (333)

c~ 2

boundary conditions. The five constants are, of course, not essential. In reality (332)

depends only on two essential parameters. so that three of the five constants can be chosen

arbitrarily. In order to obtain a form of the solution suitable for the boundary layer

problem, it is convenient to set p - A, while the choice of A and v shall be left

undecided for the moment. ror typographical reasons it iu useful to introduce the

abbreviations

pt t f d& f0 f(n)e-(A()A(n)) d (334)

t t ~Cdt (335)

Then (332) can be written

U(X'P) x +~ c Q~ x c+ C (336)

and substitution of the values x =a and x -Binto (336) leads to the two linear

algebraic equations

0-p + C QA + a2

0- px + c 1 QX + Ca2

Ear c, and a. Calculating a2 from these equations and using the fact that

B a B
QA QA QG one finds that

pOBQ - PcIQO
AA 2 A (337)
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investtgation can be obtained immediately from (337) by the following considerations:

Substitution of A for x in (336) shows that c2 - u(C). As X was arbitrary, this is

true for any value of A, so that (337) can be regarded as the desired solution of (330)

with X instead of x as independent variable. riting x for A, the solution of the

boundary value problem is therefore obtained in the form

a Q
U(x, P) Q x(38

56. The asymptotic value of r(x)e dx for large ps

The solution of (336) is composed of integrals of the form

It W(x) p-X) dx • (339)

r" It is therefore important to have asymptotic expressions for such integrals for large

values of p. The following theorem, a proof of which can e.g. be found in a paper by

0. Perron (8), will be the chief tool of the subsequent investigations.

Theorems If F(x) and O(x) are regular analytic in s 4 x 4 t, if

0, : for x - R, s C R < t
*. ,p(x)

C 0, for x 0 R, a 4 x 4 t

and if

sp(x) -(x-R)p (9( + gjCx-R) + ..

is the Taylor series of (x) around x-R, then

t 'AX) -2 1 1 -I/p
f 7(x).0  dx -[- ,(R)r(-) . (340)

p 101 I 
/p

where the brackets @ ( ]" have the meaning defined in section 5. (The number p here has
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whore the brackets "[ 3" have the meaning defined in section 5. (The number p here has

nothing to do with the number p of chapter 1.) If R w s or R - t, the same is true,

but with the factor 2 in (340) missing.

This theorem can easily be generalized so as to include also the case O(x) > 0:

Theorem: If F(x) and s(x) are regular analytic in a 4 x 4 t, if O(R) in the

maximum of V(x) in s C x - t, where a < R < t, and if

P(x) - (R) + (x-R)P(g 0 + (x-R)g1 +•.)

is the Taylor series of p(x) around x - R, then

2 1VX I 1/p p(R)
F (X) dx - t"/r(!) . (341)fP Io11/p•

If R - s or R = t, the same is true with the factor 2 in (341) missing.

Proof: The integral

ft F(x)e dx

satisfies the assumptions of Perron's theorem with W(x) -s (R) instead of p(x). Since

sP(x) - O(R) - (x-R)P(g0 + (x-R)gl + ... )

" (341) follows immediately, if (340), applied for the exponent P(x) -v(R) is multiplied

on both sides by e (R)

S7. Passage to the limit in (338), if

< 0 for a ( x < r

b(x) = 0 for x - r

3 0 for r < x ( .
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The asymptotic calculation of the integrals in (338) is easiest when the constant v

in the definition of Ax), formula (333), in chosen equal to r. If this is done, the

function A(x) satisfies the following conditions:

A(x) >0, x 0 r

A(x)- 0, x - r
(342)

A(x) is monotonic increasing for x > r

Mx) is monotonic decreasing for x < r

A(x) has therefore the shape indicated by the figure below.

r

The passage to the limit, as p * *, in (338) leads to different results, according as

x is less, equal or greater than r.

Case a). x > r.

Application of formula (341) to Q and Q show that for x > r both integrals

have the same asymptotic value, hence

SQx
li- - - lim - -1 • (343)

To the inner integral of P formula (340) can he applied. ror, in this case,
x

r < x ( n 4 C and, in this range, -(A(&) - A(n)) as function of n assumes its maximum

value 0 for n - , on account of (342). hs

{(-A( C) + a(n) = -b(n)

is, by assumption, not zero, the number p of (340) is here equal to 1, hence

-86-

!%



xPf(n)e p(d n I fM~ NCO

and therefore

Lin f bC ) (344)

The expressions in brackets in (340) and (341) can be sure to be different from zero,

if F(x) 0 0 in a C x f 0. In order to avoid too lengthy formulas, this additional

assumption shall temporarily be made. It is, however, by no means essential, and it will

be shown later how to proceed without it.

The letter 9 in the subsequent formulas shall be used to indicate non-vanishing

constants. Note that the same letter 9 will be used for different constants.

One finds immediately, by application of (341),

B I e2-PA(x) (345)Qx - [z] P

In

QB = B .-Pl d

the exponent reaches its maximum 0 for C = r. As, by assumption, b(r) - 0, but

b'(r) 0 0, p is equal to 2 in this case and

8 1RQ " T (346)

a
In order to fnd the order of manitude of P, consider that a~ P ( n ( x and r < x

in the exponent -(A(t) - A(W)) occurring in Pa. Hence, the maximum of -(A($) -A())

as function of n for fixed & is

-(A( ) - A(E)) = 0, for A(&) - A(x)

-(A(.) - (x)) 0, for hi ) < A(x)

The asymptotic value of the inner integral of P* is
- x
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rE(l , for A(C) ) A(x)J'C p f(flo* p(MI) A(,i)) 4 r -. ~ ~-l)
. (-ie p  A

, for A(E) < A(x)

The contribution to p of that part of the interval a 4 4 < x for which A(&) ) A(x),
x

(if it exists), can be neglected in comparison with the part where A(&) < A(x). As

a op(A(F)-A(x))d " [ I apA(x)

one has therefore

pa . in] 1 0•pA ( x )  (347)

From (345), (346) and (347) it follows, finally, that

-_pa [El

gux p

and therefore, using (344),

lim U(x,p) - - d& for x > r (348)
x b(C)

Came b). x < r.

A consideration analogous to that used for case a) leads to

lim U(x,p) " K f ( d&, for x < r • (349)
a b(C)

See also case c) and 4), section 58.

Case c). x - r.

if f ! in regular analytic at x - r, then one shows iuediately, by a similar
b(x)

consideration, that

I(fr r ~ f E o
i f (r.") dE. +r !L .)_, for x-r•

a( b(4C) f b(t)
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(The factor - is due to the Q's in (338).) In other words, U(x,p) tendi in this case
2

to the arithmetic mean of the two limits at x - r.

58. Passage to the limit in (338), if

> 0, for a 4 x < r

b(x) - 0, for x r

< 0, for r < x 0 B

In order to operate as much as possible with positive quantities it is convenient to

set now

A(x) - f b(x) dx (350)

Then A(x) satisfies the conditions (342). If in the definition of Pt and Q t he sign
s t

of the exponents is changed, U(x,p) can again be written in the form (339).

In addition to the distinction between the cases x > r and x < r, the relative

size of A(a) and A($) plays now a part in the proof.

- Case s]. x > r, A($) > A(a)

Let S > r be the value for x for which

A(s) M P(a)

Then

e pA(x) x

a5 (351)QX ] 1 pA('a)• <
. 0

and

Q= [Ej . ePA(S) (352)

The relative positions of x, and q in P are indicated in the figure below.
x
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ANx)

r x n s

One sees that max(A(&) - A(n)) 
I 
A(&) - (X) for fixed &. Therefore

& P(A( &)-A( n)) p(-• ( )-A(x))
P f(rn)e dn 1[1 e

f: *p(A(E)'A(x))d I Pe(A()-A(x))

and

1p(ACB)-A(X))
p El el) (353)x P

Furthermore

E-- ) . (354)
QP

For P a consider again the relative position of x, E and n. If r, the inner
x

integral in Pa remains finite, as p * - hence only the case F < r has to be
x

considered. In that case

max(A(&) - A( n)) A(M) - A(r) E)

and

&)-A(n)) A( 0)
f& P f(n) ell(A l dn - [EN /p a

As

( E e I x) , x s

fx I PA( a)

[NJ- , x s 8

one has
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I PA(xa)
7p) 6 , x 4

Substituting formulas (351) -(338) one obtains

e (3 P A(2C)

U X'p) P =

I g(A(a)-A(X)) PA [a) ~ x

or

i. U(xa 0) - . (356)
P-

Case b). xC r, A(B) ( A(a)

The reasoning is of the same type as in case a), only the orders of magnitude of the

terms change. Let s < r be the value of x for which

A(S) -A($)

r- One finds

a,--[E] (357)

Qa
Par P 8 the asymptotic formula (353) holds unchanged. Furthermore

x

[E I pA( B) (358)

j Q E 1 epA(a) (359)

The relative positions of x, & and n in the inner integral of POcan be seen in the
x

figure below. Only the case & < r has to be considered, as for r the integral

tends to zero.
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A x)

_ . - in

Fot <r

f' P f(n) ePW 8-A( ) dy- t (91 •4 a )

"and

f~~~ ~ C1eW )dEaP( 0)

hence

p- am (360)

The expressions (353) and (357) - (360), inserted in (338) lead to

(x,a) - t2 I pA(0)-&(X)) I 1 B)

Therefore

lm U(x,p) - *- (361)

Case c) and d). x < r.

One nqiht repeat the preceding arguments in analogous form and with the same final

result for x < r. rnstead, one can also proceed as followst The transformation

S' z r -x

changes the differential equation (330) into

X - fs) (362)
0 z dz

where

i(s) - -b(r-z)

f(W) - f(r-z)
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The boundary conditions y(a) - y(B) " 0 are transformed into

y(r-B) - y(r- 0) - 0

As

>O, for r-O (z C 0

b(z) - 0, for z - 0

( 0, for 0 4 z C r- a

The results of the preceding section can be applied to (362) and lead to

lia U(z,p) = ± , for 0 < z 4 r-ci

But this is equivalent with

limU(x,p)=t- , for acix<r
p+"

This method might also have been used to prove formula (349).

k 59. Some minor generalizations:

1) If f(x) is allowed to have roots in o• x C 0, the asymptotic values used for

pca and PO are not correct for these values of x which are roots of f(x). If, in

x x

particular, f(r) = 0, some of the expressions would even be incorrect for all x. The

reason is that f(x) or f(r) appear in the constant factors occurring in these

expressions. But in that case the calculation could be carried through with a slightly

more general form of formula (340) also contained in Perron's general formula in the paper

(81 quoted above. The result is again the same.

2) Non-homogeneous boundary conditions, If to (338) is added a solution of the

homogeneous differential equation

- y" + b(x)yl 0 (363)

satisfying the non-homogeneous boundary conditions

y(-) - ' - E (364)

one obtains the solution of (330) satisfying the boundary conditions (364).
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As the transformation

= changes (330) into a differential equation of the same type and transforms the non-

homogeneous left hand boundary condition into a homogeneous one, it is no loss of

generality to assume that

2 - 0

The general solution of (363) can be written in the form

U(x.P) - C1 Q: + a2

The given boundary conditions lead then to

u1

Q*

hence

U(x,p) - - , 1  . (365)

-a

To (365) the methods of sections 57 and 58 can be immediately applied with the following

result:

S< 0, x < r

a). b(x)
> 0, x > r

then

A for x > r
lim U(x,9) ,

P+' 0 Eor x <r

()0, for x < r
b). b(x)

0 0, for x > r

then

a.) A(B) ) A)

,(xUP) - .0 •

Gp(A(a)-A()) < a

-94-

- 4



lie U(xP) A

0+.

60. Theorem 71

Given the differential equation

;" + b(x)y' - f(x) (330)

where b(x) and f(x) are regular analytic functions in the

interval a C x 4 B and b(x) has exactly one root x - r

in the interior of the interval, while b'(r) -# 0. Then the

behavior for great values of p of the solution of (330) which

satisfies the boundary conditions

y(Q) - 2 Y(O) - 1  (331)

depends essentially on the shape of b(x):

(< 0 for a 4 x < r
1). If b(x)

) 0 for r < x 4 B ,
I

then the solution U(xp) converges with increasing 0 in

the whole interval a 4 x 4 B, except possibly at x - r, the

limiting function being composed of the two solutions of the

limiting differential equation of the first order

b(x)y' - f(x)

satisfying one of the two prescribed boundary conditions. If

these functions are bounded at x - r, then the solution of

(330) converges at x - r to the arithmetic mean of the two

limits at this point.

()0 for mCx~r
2). If b(x)

(0 for r < x B
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* then Ulx,o) diverges with increasing p at all points of the

interval.

9

.4
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Appendix

A SHORT REPORT ON THE ASYMPTOTIC SOLUTION OF

ORDINARY DIFFERENTIAL IQUATIONS INVOLVING A PARAMETER

61. The main mathematical tool used in this paper Is the theory of the asymptotic solution

of differential equatins involving a parameter P for large values of this parameter. The

most important results of this theory are contained in papers by G. D. Sirkhoff (1).

Noaillon [2), Tamarkin 131, [4], Langer [5), and Trjitzinsky [61. The asymptotic

developments used by Birkhoff and Tamarkin, although of a very general character, do not

apply to the particular differential equations of this investigation, because they assume

that a certain "characteristic" algebraic equation formed with the coefficients of the

differential equation has no multipl4 roots, an assumption not satisfied in our case.

It would probably not be difficult to modify the methods used by Birkhoff and Tamarkin

in such a way that they cover our case. But this is not necessary, since the type of

differential equations considered by Noaillon and Trjitzinsky includes the differential

equation (01).

A complete proof of the main theorem of Noaillon and Trjitzinsky would be beyond the

scope of this investigation, even if we restricted ourselves to the special case in which

we are interested. We intend here only to give a summarized report on the methods of this

theory and to show how, assuming the theorems proved, the asymptotic expressions of theorem

I can be obtained in our case.

The theory consists of two parts. In the first part, which may be called the "formal

part", the "exact" differential equation

L(y,P) - 0 (401)

which is essentially equivalent to the differential equation

Sy, - 0 (402)ty

is replaced by the "asymptotic" differential equation

' y i 0 * (403)
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Here the symbol "j" has the following meanings

f(xP) i g(x#P)

where j is a real number, stands for

f(x) - g(x,P = (x.p)

As previously, E(x,P) is a function such that there is a positive real number R so that

1X(x*P)I is uniformly bounded for a 4 x 4 6 and JPI > R. Usually, f(x,P) will be

regarded as asymtotically equal to g(xP) only if j is positive. But sometimes, e.g.

in the case of the differential equation (101), a solution of (403) with a negative j

will be an asymtotic approximation in the ordinary sense of the exact diferential equation

(401).

It is then shown that under very general assumptions a function Y(x,p) can be

constructed which satisfies the condition (403), provided the number J is not too large.

If certain differentiability conditions are satisfied, j may have an arbitrarily

large value. This is the case treated in detail by Roaillon and Trjitzinsky. The case in

which there is an upper limit for j is only mentioned occasionally by these authors. But

since we are only interested in the first terms of the resulting asymptotic expansions, it

* is unnecessary to assume indefinite differentiability of the coefficients of the

differential equation. This assumption is required only, if we are interested in the

unlimited asymptotic expansion. Going over Noaillon's proof it in easily seen that

assumption 40 of Noaillongs theorem in section 62 below is sufficient to guarantee the

existence of the first term of the asymptotic solution.

In the second, the "functional" part it is shown that the solutions of the asymptotic

differential equation (403) are asymptotically equal to the solutions of the exact

differential equation (401).

Kssential for our application is furthermore the result that the derivatives of these

asymptotic solutions of (401) are asymptotically equal to the derivatives of the

corresponding exact solutions.
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The complete statement of the results of Uoaillon's paper, as far as they are

important for our purpose, follows,

62. Roaillon's Theorem.

Part Is Given is the differential equation

n

L(y,p) I P (xP)y 0 (404)
1-0

satisfying the following conditions:

10. p is a real positive parameter.

2". x is a real variable

30. In the domain a 1 x C B, p ) R (a, , R constants) the coefficients Pt(xi ) can

be expanded in convergent series of the form

Pilx,0) - P I BiglxI . (405)
8-0

(The H i are positive integers.)

4*. The functions Bis have at least n continuous derivatives in a C x C B.

5*. The coefficients BOOcI) in (405) does not vanish in any point of the interval

* a~xC B.
/x

To these conditions 1" - 50 a sixth assumption has to be added, which can be most

easily defined in the course of the construction of the asymptotic solution.

if these conditions are satisfied, then there can be constructed solutions Y(x,p) of

(403), each of which can be written in the form

Y(x,p) - T-u (406)

where the "principal factor" T is a function of the form

T 
(407)

with

-x,P) - (x)p (408)

-99-

S ** .~ *~ -- -',: *~* ,**.-~ * -**.I



the ut being non-negative decreasing rational numbers and p being a positive integer

independent of J. u stands for the "secondary factor"

u(xP) Wo(x) (409)
v"O

Here 14 is a positive integer independent of J. The positive integer J1 depends on

j and increases with J. (In the application to differential equation (101) the first

m-2
term of (409) is obtained if j - - -, as we shall see.)

As we have said before, the maximal value of j for which a solution Y(x,o) of

(403) can be constructed depends on the number of times the coefficients Bis can be

differentiated. It can be only determined in the course of the successive construction of

the terms of (409). If the 8is can be differentiated indefinitely, then j and J' can

have arbitrarily large values.

Remarks The theory remains valid if the series (405) are not convergent but only

asymptotic expansions. 'Rut we do not need this case for our application.

Functional Pert: Let Y(x,o) - T.u be a solution of (403). Then there is a solution

y(x,p) of the exact differential equation (401) such that

y(x,p) - T(u + p (01) (410)

and this equation can be formally differentiated at least n-1 times, i.e. it can be

differentiated treating the symbol (0] as if it were a constant.

63. The construction of the asymptotic solution of the differential equation:

A) The principal factor.

The first steps In ") substitute an expression of the form
y

Y - To.

(compare (407), (408), (409)). The result of this substitution is an expression of the

form
-- YL Y_fi x)p + [ (411)

i-10
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the first term A (X)P in (408) in such a way that the coefficients fI(x) of the term

of highest order in (411) vanishes.

Noaillon gives a general method that allows us to determine the exponent a1  and the

function Al(X) systematically in the general case. But our application being of such a

simple type, a1 and Al(x) can be found, in our case, more directly.

a

Second step: Having chosen the first term A p I of 4 we set

ql

0

y -e Y2

where q is the denominator of the rational number a I This substitution transforms the

expression bly) into an expressionY

L2 (y2)

a y2

2

We now repeat the reasoning of the first stop with 22 instead of (!, in order to

a Y2 Y
. 2

find the term A20 • considering, of course, for "2 only values that are smaller than
a

a1  We continue in this manner until we arrive at the last term A P p for which a ispp !

still positive. That there is such a term, i.e. that we always attain an exponent

a p+1 4 0 after a finite number of steps, is proved in Noaillon's paper.

.f" B) The secondary factor.

-4 Pirst step: In L(Y) substitute Y - Tlu where T is the function calculated in A)

and u as yet undetermined. The result of the substitution is an expression of the form

T K(uP), where K(u,0) is a linear differential expression in u whose coefficients are

power series in a = P M being the common denominator of all the exponents ai in

.In K(u,P) collect the terms of highest order in 0. Then K(u,0) can be written in

the fors
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X(uP) = S G(u) + H(uP) (412)

Here S is the highest power of 0 occurring in K(u,P) and G(u) and H(U,P) are

differential expressions, G(u) being independent of P. It can be proved that the

highest order of differentiation occurring in G(u) is greater than zero.

Second step: Find a solution of the differential equation

G(u) = 0 . (413)

We take this solution as the first term E0 (x) of the series (409). Since we want 0(x)

to be bounded in the whole interval of x in which we consider the asymptotic expansion,

we have to add to the assumptions 1i - 50 in section 62 the condition 6*: The coefficient

of the highest derivative in (413) does not vanish in any part of the interval a 4 x 4 B.

Third steps In order to find the function E (x), 0 > 0 of (409), Noaillon proceeds

as follows: He determines by recursion a sequence of functions wI(X, ) w2 (x, ),... from

the formula

G(wV) - H(Wv_,O) (414)

It is easily seen that the wv (x,P) are of the form

m .i

w, = S
"I 

gVi(x) (415)
i=0

The functions P(x) are then given by

P

"(x) I P (x) ( (416)
V-1

It is not difficult to prove that the function (406), if determined by the

construction which we have just outlined here, does in fact satisfy the relation (403).

The construction of the asymptotic solution Y(x,P) is by no means uniquely

determined, and it can be proved that the construction yields asymptotic expansions which

are asymptotic approximations to a fundamental system of solutions of (401).
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64. Asymptotic Solution of L(y) - N (y) + M(y) - 0.
P

A) The principal factor.

First step: We now apply the construction described in section 63 to the particular

type of differential equation under consideration. Substituting

y - Y -Tu

in L(yp), where L(y,P) is now the differential expression (101), and T and u areY

expressions of the form described by (407), (408), (409), we see that, unless 0 = 0, the

term of highest order of y(s) is (AI(x)p a ). The condition that the highest terms of

1 N(y) as function of p, and of M(Y) cancel out is therefore
Py y

a n-1 alm
n I I
A 11x~p -b (x) AmX) p

0 1

*1 or

aln- I, am (417)

I I

and

n -bA , (418)

provided 0 $ 0. From (417) and (418) we conclude

a1  n-a 
(419)

and

A1  (-b0 )l/n-m (420)

Second step: Now we write

;,+cfC 1 )d(
0

y = e Y2  (421)
n-rn

where a is defined by o a , and (x) is one of the functions V(x) defined in

theorem 1, section 6. Y2 is the function

• [f *21)d0

Y2 
= 
e *u (422)

Here u is again the series (409) and

p ai

21x) 7 2 Ailx)p • (423)
i-12
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We find

SOv +v + . . . (424)

The term of highest order in the second term of the right member, if Y; is replaced by

its value according to (422) and (423) has the value

oV-1 GV 2 v-1

This term is of lower order in p than the term * I sin=IP

02 v1 -m3)102

and

(n-m)0 - 1 (0

in consequence of the assumption
I

02 < n-

The omitted terms in (424), which are indicated by dots, are similarly seen to be of still
L'(Y2) 1 n n a, p

m
cnelot

lower order. The terms of highest order in Y i.e. and b0 a cancel out,
Y2

since s(x) and a have been chosen such as to achieve just this. The next terms are
I n-I n-i for 2n(y 2- (4

n -A o (42)0 20 Y2

and
1- *2 m- 1 1(21

m b0 A2o 0 i for y2  (426)
y2

provided e2 > 0. (For, if - 0, there are more terms of the same order as (425) and

(426).)

Following Noaillon's construction we try to determine 02 and A2 in such a way that

these two terms cancel out. But setting the sum of (425) and (426) equal to zero, and

inserting for s(x) its value (-b(x) )/n-m leads to

n-m - 0

which was excluded.

Bence, a2 > 0 is impossible and therefore '- op(x).
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*A"

B) The secondary term.

We follow the construction of Noaillon in order to find the differential expression

KVu,p) of (412). Since

y(V) . (VOY V . V-1 U-i

where the dots indicate terms of lower order, we find by an easy calculation

:!L(Tu) - T K(U,p) - T{om-1(a f n'lu + nPnl + bl 1 S lu + mb0 m'u') + H(u,p)}

Hence, the function %(x) in this case is a solution of the differential equation

obtained by setting the factor of a M -  equal to zero. This differential equation can be

written

(a 1 0n + b I) u - (IWni - + mb 0 )us

or

(a I b0 - b1 )u - bo(n - m)u'

Therefore

- aI ( t)bO () - b I f

x0  b0 ( )(n-) d
S0 (x) n(x) - e (427)

We are not interested in the other terms Z (x), v > 0 of (409).
V

Conditions 10 - 6' of Noaillon's theory are satisfied in our application for the whole

interval n c L4 B. Condition 50, in particular, is equivalent to condition 60 of the

Main Theorem of chapter 1. Hence, we conclude that there are n-m solutions of (101) of

:the form

x

Y lxD 0l e a [Vln(xl],ol(v 1,2,...,n-u) (428)
V

Note that the function n(x) is the same for all Y (x, ) and that it does not vanish in
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1

But we can find more asymptotic solutions of the differential equation (101) by

dropping the assumption that the *(xg) of (408) is not zero. in fact, if the principal

factor T of (407) is equal to 1, the method used for the construction of the secondary

factor in section 63, 5) leads to asymptotic solutions given by series of the form (409).

The first term of each of these series is a solution of the differential equation

M(y) - 0. Taking a fundamental system u (x) of a independent solutions of this

differential equation as first terms of a asymptotic solutions of (101) we can ad4 to the

n-m solutions of (101) given by (428) a more solutions of the form

* 'fY(x,p) - lu (x)] Cvm 1,2,...,m) . (429)

n-mg +V

-* linerly independent, for sufficiently large P, can be given by calculating the asymptotic

value of the Wronsklan of these n functions. It does not offer any difficulties.

This finishes the proof of theorem I of section 6.
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ABSTRACT (continued)

We gave a general answer to this question for the differential equation

N(y) + M(y) - 0, where N(y) and M(y) are linear differential expressions
P
of order n and m, respectively (n > m), and for non-homogeneous boundary
conditions which consist in prescribing the values of derivatives (but not of
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the solution of such a boundary value problem converges to a solution of the
limiting differential equations, as p - -, and what boundary conditions are
satisfied by the limit function could be decided by an easily applicable rule.
This rule showed, among other things that the solution converges only, if the
prescribed n boundary conditions are not too unevenly distributed between the
two endpoints.

If the order m of the limiting differential equation is only one less than
the order n of the original differential equation, then the above mentioned
rule could be extended to more general types of boundary conditions and also to

jnon-homogeneous differential equations.
Since the most important boundary layer problems in the applications are

concerned with systems of differential equations, we gave a simple example for
the mathematical treatment of a boundary layer problem for a linear system of
two simultaneous differential equations.

The validity of the general rule proved in this research was seen to be
restricted by the assumption that the coefficient of the term of highest order
of differentiation in M(y) has no zeros in the interval of integration. In a
special example we showed that interesting results can be obtained, if this
assumption is dropped.

The theory of the asymptotic expansion of the solutions of linear differen-
tial equations involving a parameter, developed by G. D. Birkhoff, Noaillon,

- -Tamarkin, Trjitzinsky and others proved an important and powerful tool in these
investigations.
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