AD-A103 850 WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER MULTIPLE CRITICAL POINTS OF PERTURBED SYMMETRIC FUNCTIONALS.(U) JUL 81 P RABINOWITZ MRC-TSR-2233 END PRIME PR MRC Technical Summary Report #2233 MULTIPLE CRITICAL POINTS OF PERTURBED SYMMETRIC FUNCTIONALS Paul Rabinowitz Mathematics Research Center University of Wisconsin—Madison 610 Walnut Street Madison, Wisconsin 53706 July 1981 Received May 27, 1981 Approved for public release Distribution unlimited Sponsored by U. S. Army Research Office P. O. Box 12211 Research Triangle Park North Carolina 27709 Office of Naval Research Arlington, Virginia 22217 81 9 08 034 # UNIVERSITY OF WISCONSIN - MADISON MATHEMATICS RESEARCH CENTER ## MULTIPLE CRITICAL POINTS OF PERTURBED SYMMETRIC FUNCTIONALS Paul Rabinowitz Technical Summary Report #2233 July 1981 ### **ABSTRACT** Variational problems which are invariant under a group of symmetries often possess multiple solutions. This paper studies the effect of perturbations which are not small and which destroy the symmetry for two classes of such problems and shows how multiple solutions persist despite the perturbation. AMS subject classification: Primary 35J20, 35J60, 34C25, Secondary 47H15. Key Words: critical point, critical value, symmetry, minimax methods, Hamiltonian systems. Work Unit No. 1 - Applied Analysis 1- Sponsored by the United States Army under Contract No DAAG29-80-C-0041 and the Office of Naval Research under Contract No. N00014-76-C-0300. The same of sa ### SIGNIFICANCE AND EXPLANATION Variational problems which are invariant under a symmetry group often have multiple solutions. If the resulting Euler equations are changed by adding an inhomogeneous forcing term, a new functional results which may no longer possesses the symmetries of the original problem. This paper shows how multiple solutions persist for the modified problem for a class of semilinear elliptic equations and a class of forced second order Hamiltonian systems. and the same of th The responsibility for the wording and views expressed in this descriptive summary lies with MRC, and not with the author of this report. # Multiple critical points of perturbed symmetric functionals. ### Paul Rabinowitz During the past fifteen years there has been a considerable amount of research on the role of symmetry in obtaining multiple critical points of symmetric functionals both in an abstract setting and in applications to ordinary and partial differential equations. In particular problems of the form (0.1) $$\begin{cases} Lu = -\sum_{j=1}^{n} \frac{\partial}{\partial x_{j}} (a_{jj}(x)u_{x_{j}}) + c(x)u = p(x,u) & x \in \Omega \\ i, j = 1 & x \in \partial\Omega \end{cases}$$ have been studied where L is uniformly elliptic with e.g. C^2 coefficients, $\Omega \subset \mathbb{R}^n$ is a bounded domain with a smooth boundary, and p is odd in u. Under appropriate hypotheses on $p(x,\xi)$, in particular more rapid growth than linear as $|\xi| \to \infty$, it has been shown that (0.1) possesses an unbounded sequence of solutions [1-6]. Similar existence statements have been obtained for periodic solutions of second order Hamiltonian systems of ordinary differential equations: where $q = (q_1, \dots, q_n)$ and $V \in C^1(\mathbb{R}^n, \mathbb{R})$. Indeed it has been shown that if V grows at an appropriate superquadratic rate, then for any T > 0, (0,2) possesses an unbounded sequence of T periodic solutions [7-8] Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and the Office of Naval Research under Contract No. N00014-76-C-0300. Problems (0.1) and (0.2) each possess a natural symmetry. Namely (0.1) is the Euler equation obtained from (0.3) $$\int_{\Omega} \left[\frac{1}{2} \left(\sum_{i,j=1}^{n} a_{ij}(x) u_{x_{i}} u_{x_{j}} + c(x) u^{2} \right) - P(x,u) \right] dx$$ where P, the primative of p, is even in u and therefore the functional is invariant under the \mathbb{Z}^2 symmetry $u \longrightarrow -u$. Likewise taking e.g. $T=2\pi$, we see (0.2) is the Euler equation of the functional defined on the class of 2π periodic functions. If $q(t) \longrightarrow q(t+\theta)$ for any $\theta \in \mathbb{R}$, the functional is unchanged. Thus (0.4) has a natural $\mathbb{R} \mod [0, 2\pi]$ or S^1 symmetry. An open question for problems like (0,1), (0,2) has been the effect of destroying the above symmetries by perturbing the equation, e.g. by adding an inhomogeneous term f(x) to the right based side of (0,1) or a 2π periodic n-vector $\phi(t)$ to the right hand side of (0,2). There has been some progress in this direction during the past few months due to Bahri and Berestycki[9], Struwe [10], Dong and Li [11], and Bahri [12]. In [9] and [10], the authors independently show that (0.5) $$\begin{cases} Lu = p(x,u) + f(x), & x \in \Omega \\ u = 0, & x \in \partial\Omega \end{cases}$$ possesses an unbounded sequence of weak solutions provided that $f \in L^2(\Omega)$ and p satisfies more stringent conditions than are required for the existence of solutions of (0.1). In this paper we shall show how some of the ideas from [5] in conjunction with those of [9] and [10] can be used to get somewhat better existence results for (0.5). Moreover closely related arguments allow us to treat perturbations of (0.2) of the form $$(0.6) q + V'(q) \approx \varphi(t)$$ Bahri and Berestycki [13] have also recently announced related results for (0.6). In §1, (0.5) will be treated and (0.6) will be handled in §2. An appendix contains some topological results required for the study of (0.6). We are indebted to Ed Fadell and Sufian Husseini for several helpful conversations concerning these topological matters. A CONTRACT OF THE PARTY §1. The semilinear elliptic case. We begin by studing (1.1) $$\begin{cases} Lu = p(x, u) + f(x), & x \in \Omega \\ u = 0, & x \in \partial\Omega \end{cases}$$ where L and Ω are in the introduction. We assume p satisfies: - (p_1) $p \in C(\overline{\Omega} \times \mathbb{R}, \mathbb{R})$ - There are constants $a_1, a_2 > 0$ such that $|p(x, \xi)| \le a_1 + a_2 |\xi|^S$ where $1 < s < \frac{n+2}{n-2}$ if n > 2 and s is unrestricted if n = 1, 2, - There are constants $\mu > 2$ and $\overline{\xi} > 0$ such that $0 < \mu P(x, \xi) \equiv \mu \int_0^{\xi} p(x, t) dt \le \xi p(x, \xi)$ for $|\xi| \ge \overline{\xi}$, - (p_A) $p(x, -\xi) = -p(x, \xi)$. Under hypotheses (p_1) - (p_4) , if $f\equiv 0$, it is known that (1.1) possesses an unbounded sequence of weak solutions which can be obtained as critical points of a corresponding functional by means of minimax methods. We shall show that the same is true for (1.1) for arbitrary $f\in L^2$ provided that s satisfies the more stringent condition (1.2) $$\frac{(n+2)-(n-2)s}{n(s-1)} > \frac{\mu}{\mu-1}$$ For $\mu = s + 1$, (1.2) reduces to the assumption made in [9] and [10]. In [9] and [10] somewhat stronger versions of $[p_1]$ and $[p_3]$ also are needed as well as the requirement that p behave like a positive function of x times a pure power of e at infinity. For future reference we note that (p_3) implies there are constants a_3 , a_4 , a_5 such that (1.3) $$\frac{1}{\mu} (\xi p(x, \xi) + a_3) \ge P(x, \xi) + a_4 \ge a_5 |\xi|^{\mu}$$ for all $\xi \in \mathbb{R}$. Corresponding to (1.1) we have the functional (1.4) $$I(u) = \int_{\Omega} \left[\frac{1}{2} \left(\sum_{i,j=1}^{n} a_{ij}(x) u_{x_i} u_{x_j} + c(x) u^2 \right) - P(x,u) - f(x) u \right] dx$$ Letting $$E = W_0^{1,2}(\Omega)$$ where the norm in E is $$\|u\| = \left(\int_{\Omega} \sum_{i,j=1}^{n} a_{ij}(x) u_{x_i} u_{x_j} dx\right)^{1/2}$$ hypotheses $(p_1) - (p_2)$ and standard results imply $I \in C^1(E, \mathbb{R})$ (provided $f \in L^2(\Omega)$). The main result in this section is: Theorem 1.5: Suppose p satisfies $(p_1) - (p_4)$, $f \in L^2(\Omega)$, and s satisfies (1.2). Then I has an unbounded sequence of critical values. The corresponding critical points form an unbounded sequence of weak solutions of (1.1). Under additional regularity assumptions on p and f (e.g. p and f Hölder continuous in their arguments), standard regularity results imply these weak solutions are classical solutions of (1.1). After proving Theorem 1.5, a mild generalization of recent work of Dong and Li [11] in which f is allowed to depend also on u will be mentioned. In the course of the proof of Theorem 1.5, we will obtain a minimax characterization of critical values of I albeit not a completely satisfactory one. In [9] and [10], the fact that any solution of (1.1) lies on the set of w in E such that (1.6) $$\int_{\Omega} \left(\sum_{i,j=1}^{n} a_{ij}(x) w_{x_i} w_{x_j} + c(x) w^2 \right) dx = \int_{\Omega} w(p(x,w) + f(x)) dx$$ is exploited. On this set I becomes (1.7) $$I(u) = \int_{\Omega} \left(\frac{1}{2} u p(x, u) - P(x, u) - \frac{1}{2} f(x) u\right) dx$$ which is bounded from below. (See also [1] and [2]). We will work with an indefinite functional. However for technical reasons I will be replaced by a modified functional J. By way of motivation for the modification, the following lemma provides some a prior bounds for a critical point of I in terms of the corresponding critical value. In what follows a_i , α_i repeatedly denote positive constants. Lemma 1.8: Suppose u is a critical point of I. Then there is a constant a_6 depending on $\|f\|_{L^2}$ such that (1.9) $$\int_{\Omega} (P(x, u) + a_4) dx \leq \frac{1}{\mu} \int_{\Omega} (u p(x, u) + a_3) dx \leq a_6 ((I(u))^2 + 1)^{1/2}.$$ Proof: Let I'(u) denote the Frechet derivative of u. At a critical point of I we have (1.10) $$I(u) = I(u) - \frac{1}{2} I'(u) u \ge (\frac{1}{2} - \frac{1}{\mu}) \int_{\Omega} (u p(x, u) + a_3) dx - \frac{1}{2} ||f||_{L^2} ||u||_{L^2} - a_7$$ via (l. 3). Using the fact that $~\mu$ > 2 ~ and the Hölder and Young inequalities we see for any $~\epsilon$ > 0 , (1.11) $$I(u) \ge a_8 \int_{\Omega} (up(x, u) + a_3) dx - a_9 - \varepsilon \|u\|_{L^2}^{\mu} - \beta(\varepsilon) \|f\|_{L^2}^{\nu}$$ where $\nu^{-1} + \mu^{-1} = 1$ and $\beta(\epsilon) \to \infty$ as $\epsilon \to 0$. Choosing ϵ so that $2\epsilon = \mu a_5 a_8$, (1.3), (1.11) and the Schwarz inequality yield (1.9). Remark 1.12. The inequality (1.11) combined with I'(u)u = 0 leads to a bound for ||u|| in terms of I(u). However such an estimate will not be needed later. To define the modified functional J, let $\chi \in C^{\infty}(\mathbf{R},\mathbf{R})$ such that $\chi(t)=1$ for $t\leq 1$, $\chi(t)\equiv 0$ for t>2 and $-2<\chi'<0$ for $t\in(1,2)$. For $u\in E$, set $$\mathfrak{J}(u) = 2a_{6}(I^{2}(u) + 1)^{1/2}$$ and $\psi(u) = \chi(\mathfrak{J}(u)^{-1}\int_{\Omega}(P(x, u) + a_{4})dx)$. Let supp ψ denote the support of ψ . Lemma 1.13: If $u \in \text{supp } \psi$, then (1.14) $$\left| \int_{\Omega} fu \, dx \right| \leq \alpha_{1}(\left| I(u) \right|^{1/\mu} + 1)$$ where α_1 depends on $\|f\|_{_{T}2}$. Proof: By the Schwarz and Hölder inequalities and (1.3), for all $u \in E$ $$(1.15) \qquad \left| \int_{\Omega} f u \, dx \right| \leq \|f\|_{L^{2}} \|u\|_{L^{2}} \leq \alpha_{2} \|u\|_{L^{2}} \leq \alpha_{3} \left(\int_{\Omega} (P(x, u) + a_{4}) \, dx \right)^{1/\mu}.$$ If further $u \in \text{supp } \psi$, (1.16) $$\int_{\Omega} (P(x, u) + a_4) dx \le 4a_6 (I^2(u) + 1)^{1/2} \le \alpha_3 (|I(u)| + 1)$$ so (1.14) follows from (1.15) - (1.16). Now set (1.17) $$J(u) = \int_{\Omega} \left[\frac{1}{2} \left(\sum_{i,j=1}^{n} a_{ij}(x) u_{x_{i}} u_{x_{j}} + c(x)u^{2} \right) - P(x,u) - \psi(u) f(x) u \right] dx.$$ The main reason for introducing $\ J$ is the following estimate which holds for $\ J$ but not for $\ I$. Lemma 1.18: There is a constant β_1 , depending on $\|f\|_{L^2}$ such that for all $u \in E$: (1.19) $$|J(u) - J(-u)| \le \beta_1(|J(u)|^{1/\mu} + 1)$$. Proof: By (1.17) and (p_4) , (1.20) $$|J(u) - J(-u)| = (\psi(u) + \psi(-u)) |\int_{\Omega} fu dx|$$. Thus by Lemma 1.13, (1.21) $$\psi(-u) \Big| \int_{\Omega} fu \, dx \Big| \leq \alpha_1 \psi(-u) \left(|I(u)|^{1/\mu} + 1 \right).$$ Since by (l.4) and (l.17), $$|I(u)| \leq |J(u)| + 2 |\int_{\Omega} fu dx|,$$ (1.21) implies that $$(1.23) \quad \psi(-u) \Big| \int_{\Omega} fu \, dx \Big| \leq \alpha_2 \psi(-u) \left(|J(u)|^{1/\mu} + |\int_{\Omega} fu \, dx |^{1/\mu} + 1 \right).$$ Thus by Young's inequality as in (1.11), the fu term on the right hand side of (1.23) can be absorbed by the left hand side. A corresponding estimate for the $\psi(u)$ term in (1.20) then yields (1.19). Remark 1.24: Although I (u) does not satisfy (1.19) for all $u \in E$, it does for all solutions of (1.1). However we are unable to exploit this fact directly. We shall show that large critical values of J are critical values of I. First another technical lemma is needed. Lemma 1.25: There are constants M_0 , $\alpha_0 > 0$ and depending on $\|f\|_{L^2} \quad \text{such that whenever} \quad M \geq M_0 \,, \quad J(u) \geq M \quad \text{and} \quad u \in \text{supp} \, \psi \,,$ then $I(u) \geq \alpha_0 M$. Proof: Since by (1.4) and (1.17) $$(l_{\bullet} 26) I(u) \geq J(u) - \left| \int_{\Omega} fu \, dx \right|,$$ if $u \in \text{supp } \psi$, by (1.26) and (1.14) (1.27) $$I(u) + \alpha_1 |I(u)|^{1/\mu} \ge |I(u) - \alpha_1| \ge \frac{M}{2}$$ for M_0 large enough. If $I(u) \le 0$, (1.28) $$\frac{\alpha_1^{\nu}}{\nu} + \frac{1}{\mu} |I(u)| \ge \alpha_1 |I(u)|^{1/\mu} > \frac{M}{2} + |I(u)|$$ which is impossible if $M_0 > 2\alpha \frac{\nu}{l} \nu^{-1}$ which we can assume to be the case. Therefore I(u) > 0 and $$I(u) > \frac{M}{4}$$ or $I(u) \ge (M(4\alpha_1)^{-1})^{\mu}$ which implies the Lemma since $\mu > 2$. Now we can prove Lemma 1.29: There is a constant $M_1 > 0$ such that $J(u) \ge M_1$ and J'(u) = 0 implies that J(u) = I(u) and I'(u) = 0. Proof: It suffices to show that $\psi(u) = 1$ and $\psi'(u) = 0$. By the definition of ψ , this will be the case if (1.30) $$\Im(u)^{-1} \int_{\Omega} (P(x, u) + a_4) dx \le 1$$ which we will verify. Note that $$J'(u)u = \int_{\Omega} \left[\sum_{i,j=1}^{n} a_{ij}(x)u_{x_{i}} u_{x_{j}} + c(x)u^{2} - up(x,u) \right]$$ $$- (\psi(u) + \psi'(u)u) \text{ fu } dx$$ where $$\psi'(u)u = \chi'(\Im(u)^{-1} \int_{\Omega} (P(x, u) + a_4) dx) \Im(u)^{-2} [\Im(u) \int_{\Omega} up(x, u) dx$$ $$-(2a_6)^2 (\int_{\Omega} (P(x, u) + a_4) dx) \Im(u)^{-1} I(u) I'(u) u].$$ Regrouping terms shows that $$J'(u)u = (1+T_1(u)) \int_{\Omega} (\sum_{i,j=1}^{n} a_{ij}(x) u_{x_i} u_{x_j} + c(x) u^2) dx$$ $$- (1+T_2(u)) \int_{\Omega} u p(x,u) dx - (\psi(u) + T_1(u)) \int_{\Omega} fu dx$$ where $$\begin{cases} T_{1}(u) = \chi'(\dots)(2a_{6})^{2} \Im(u)^{-3} I(u) \int_{\Omega} (P(x, u) + a_{4}) dx \int_{\Omega} fu dx \\ T_{2}(u) = \chi'(\dots)[\Im(u)^{-1} \int_{\Omega} fu dx] + T_{1}(u) \end{cases}$$ Form $$J(u) - \frac{1}{2(1+T_1(u))} J^*(u)u$$. If $T_1(u) = T_2(u) = 0$ and $\psi(u) = 1$ we are precisely in the situation of (1.10) so (1.30) reduces to (1.9). If $T_1(u)$ and $T_2(u)$ are sufficiently small, the estimates of Lemma 1.8 carry over to this case at the expense of the factor a_6 in (1.9) being replaced by $2a_6$. But that gives (1.30). Hence the Lemma follows once we show $T_1(u)$, $T_2(u) \rightarrow 0$ as $M_1 \rightarrow \infty$. Simple estimates show (1, 32) $$|T_1(u)| \le |X^1(\cdots)| 4a_6 \Im(u)^{-1} |\int_{\Omega} fu dx|$$. If $u \not\in \text{supp } \psi$, $T_1(u) = 0$. Otherwise, by Lemmas 1.13 and 1.25, (1.33) $$|T_1(u)| \le \alpha_2 \cdot s(u)^{\mu-1} \le \alpha_3 (M_1 + 1)^{\frac{1}{\mu} - 1}$$ which goes to 0 as $M_1 \longrightarrow \infty$. The form of T_2 shows $T_2(u)$ also $\longrightarrow 0$ as $M_1 \longrightarrow \infty$. By Lemma 1.29 to prove Theorem 1.5, it suffices to show J has an unbounded sequence of critical values. To begin that program, another technical result is required. Let $A_C = \{u \in E \mid J(u) \le c\}$. We say J satisfies the Palais-Smale condition (PS) if whenever a sequence (u_m) satisfies $J(u_m)$ is uniformly bounded and $J^I(u_m) \to 0$, then (u_m) is precompact. <u>Lemma 1.34</u>: $J \in C^1(E, \mathbb{R})$ and there is a constant $M_2 > 0$ such that J satisfies (PS) on A_{M_2} . Proof: Since p satisfies (p_1) , (p_2) , $I \in C^1(E,R)$. (See e.g. [14]) Since $X \in C^\infty$, (p_1) , (p_2) further imply ψ and therefore $J \in C^1(E,R)$. To verify (PS), we argue somewhat as in Lemma 1.29. Suppose $(u_m) \subset E$ with $M_2 \leq J(u_m) \leq K$ and $J'(u_m) \rightarrow 0$. Then for all large m, $$\begin{cases} \rho \| u_{m} \| + K \ge J(u_{m}) - \rho J'(u_{m}) u_{m} \\ = (\frac{1}{2} - \rho(1 + T_{1}(u_{m})) \int_{\Omega} (\sum_{i, j=1}^{n} a_{ij}(x) u_{mx_{1}} u_{mx_{j}} + cu_{m}^{2}) dx \\ + \rho(1 + T_{2}(u_{m})) \int_{\Omega} u_{m} p(x, u_{m}) dx - \int_{\Omega} P(x, u_{m}) dx \\ + [\rho(\psi(u_{m}) + T_{1}(u_{m})) - \psi(u_{m})] \int_{\Omega} f u_{m} dx \end{cases}$$ where ρ is free for the moment . Thus by (p_3) , $$\begin{cases} \rho \| u_{m} \| + K \ge (\frac{1}{2} - \rho(1 + T_{1}(u_{m}))) \| u_{m} \|^{2} + (\rho(1 + T_{2}(u_{m})) \mu - 1) \int_{\Omega} (P(x, u_{m}) + a_{4}) dx \\ - \alpha_{2} - (\rho(1 + T_{1}(u_{m})) + 1) \| f \|_{L^{2}} \| u_{m} \|_{L^{2}} \\ - \alpha_{3} \| u_{m} \|_{L^{2}}^{2} \end{cases} .$$ For M_2 sufficiently large and therefore T_1 , T_2 sufficiently small, by (p_3) we can choose $\rho \in (\mu^{-1}, 2^{-1})$ and $\epsilon > 0$ such that (1. 37) $$\frac{1}{2(1+T_1(u_m))} > \rho + \varepsilon > \rho - \varepsilon > \frac{1}{\mu(1+T_2(u_m))}$$ uniformly in m. Hence (1.36) and (1.3) show (1.38) $$\rho \| \mathbf{u}_{\mathbf{m}} \| + \mathbf{K} \ge \varepsilon \| \mathbf{u}_{\mathbf{m}} \|^{2} + \frac{\varepsilon}{2} \mu a_{5} \| \mathbf{u}_{\mathbf{m}} \|_{\mathbf{L}^{2}}^{\mu} - \alpha_{2} - \alpha_{4} \| \mathbf{u}_{\mathbf{m}} \| - \alpha_{3} \| \mathbf{u}_{\mathbf{m}} \|_{\mathbf{L}^{2}}^{2} .$$ Using the Hölder and Young inequalities again as in (l. ll) we get (1.39) $$\rho \| \mathbf{u}_{\mathbf{m}} \| + \mathbf{K} \geq \varepsilon \| \mathbf{u}_{\mathbf{m}} \|^{2} + \alpha_{5} \| \mathbf{u}_{\mathbf{m}} \|_{\mathbf{L}^{\mu}}^{\mu} - \alpha_{4} \| \mathbf{u}_{\mathbf{m}} \| - \alpha_{6}$$ which implies $\{u_m\}$ is bounded in E. Since $$(1.40)$$ $J'(u_m) = (1+T_1(u_m))u_m - \rho(u_m)$ where ρ is compact — see e.g. [5] — for M_2 large enough $|T_1(u_m)| \leq \frac{1}{2}$ and therefore (u_m) bounded and $J'(u_m) \longrightarrow 0$ implies $(1+T_1(u_m))^{-1} \, \rho(u_m)$ converges along a subsequence. Hence (1.40) shows (u_m) does also and (PS) is verified. Now we can show $\mbox{ J}$ has an unbounded sequence of critical values. Let $0<\lambda_1<\lambda_2\leq\cdots\leq\lambda_k\leq\cdots$ denote the eigenvalues of (1.41) $$\begin{cases} (L-c)v = \lambda v, & x \in \Omega \\ v = 0, & x \in \partial \Omega \end{cases}$$ and v_1, v_2, \cdots denote corresponding eigenfunctions normalized such that $\|v_k\| = 1$. Let $E_k \equiv \operatorname{span}\{v_1, \cdots, v_k\}$ and E_k^{\perp} its orthogonal complement. By (1, 3) there is an $R_k > 0$ such that $J|_{E_k} \leq 0$ if $\|u\| \geq R_k$. Let B_k denote the closed ball of radius R in E, $D_k \equiv B_{R_k} \cap E_k$, and (1.42) $$\Gamma_k = \{h \in C(D_k, E) \mid h \text{ is odd and } h(u) = u \text{ if } ||u|| = R_k \}$$. Define (1.43) $$b_{k} = \inf_{h \in \Gamma_{k}} \max_{u \in D_{k}} J(h(u)), \qquad k \in \mathbb{N}.$$ If $f\equiv 0$ and J is even, it was essentially shown in [5] that the numbers b_k are critical values of J. If $f\not\equiv 0$, that need not be the case. However we will use these numbers as the basis for a comparison argument to prove Theorem 1.5. First it will be shown that $b_k\longrightarrow\infty$ as $k\longrightarrow\infty$. Lemma 1.44: For all $k \in \mathbb{N}$, $\rho < R_k$, and $h \in \Gamma_k$, (1.45) $h(D_k) \cap \partial B_{\rho} \cap E_{k-1}^{\perp} \neq \emptyset$. Proof: Let $h \in \Gamma_k$. Consider $h^{-1}(B_\rho)$. Since h is continuous, this is a neighborhood of 0 in E_k . Let $\mathfrak G$ denote the component of $h^{-1}(B_\rho)$ which contains 0. Then $\mathfrak G \subset D_k$, is symmetric with respect to the origin, i.e. $u \in \mathfrak G$ implies $-u \in \mathfrak G$, and $\|h(u)\| = \rho$ on $\partial \mathfrak G$. Let P_{k-1} , P_{k-1}^{\perp} denote respectively the orthogonal projectors of E onto E_{k-1} , E_{k-1}^{\perp} so $h(u) = P_{k-1}h(u) + P_{k-1}^{\perp}h(u)$ for $u \in E$. Since $P_{k-1}h \in C(\partial \mathfrak G, E_{k-1})$ and is an odd function, by one of the versions of the Borsuk-Ulam Theorem [16], $P_{k-1}h$ has a zero \widehat{u} on $\partial \mathfrak G$. Hence $h(\widehat{u}) = P_{k-1}h(\widehat{u}) \in \partial B_\rho \cap E_{k-1}^{\perp}$ and the proof is complete. Lemma 1.46: There are constants $\beta_2 > 0$ and $k_0 \in \mathbb{N}$ depending on $\|f\|_{L^2}$ such that for all $k \ge k_0$, $\frac{(n+2)-(n-2)s}{n(s-1)}$ (1.47) $b_k \ge \beta_2 k$ The second secon Proof: Let $h \in \Gamma_k$ and $\rho < R_k$. By Lemma 1.44, there is a $w \in h(D_k) \cap \partial B_\rho \cap E_{k-1}^\perp$. Therefore (1.48) $$\max_{u \in D_{k}} J(h(u)) \ge J(w) \ge \inf_{u \in \partial B_{\rho}} J(u).$$ Let $u \in \partial B_{\rho} \cap E_{k-1}^{\perp}$. Then by (p_2) and some simple estimates: $$|| J(u) \ge \frac{1}{2} \rho^2 - \alpha_2 || u ||_{L^2}^2 - \alpha_3 || u ||_{L^{s+1}}^{s+1} - \alpha_4 - || f ||_{L^2} || u ||_{L^2}.$$ By the Gagliardo-Nirenberg inequality [17], (1.50) $$\|u\|_{L^{s+1}} \le a_7 \|u\|^a \|u\|_{L^2}^{1-a}$$ for all $u \in E$ where $2a = n(s-1)(s+1)^{-1}$. Moreover if $u \in E_{k-1}^{\perp}$, (1.51) $$\|u\|_{L^2} \leq \lambda_{k-1}^{-\frac{1}{2}} \|u\|.$$ Substituting (1.50) - (1.51) into (1.49) yields (1.52) $$J(u) \ge \frac{1}{2} \rho^2 - \frac{\alpha_2}{\lambda_k} \rho^2 - \alpha_3 \lambda_k \frac{(1-a)(s+1)}{2} \rho^{s+1} - \alpha_4$$ $$-\|f\|_{L^2}\lambda_k^{-\frac{1}{2}}\rho.$$ Choose k_0 so large that $4\alpha_2 \le \lambda_k$ and $\rho = \rho_k$ so that (1.53) $$\rho_{k} = \frac{1}{8} \lambda_{k}^{(\frac{1-a}{2})(\frac{s+1}{s-1})}$$ Therefore (1.54) $$J(u) \ge \frac{1}{8} \rho_k^2 - \|f\|_{\tau^2} \lambda_k^{-\frac{1}{2}} \rho_k - \alpha_4.$$ The asymptotic distribution of the eigenvalues of (l, 4l) is such that for large k, $$(1.55) \lambda_k \ge \alpha_5 k^{2/n}$$ for α_5 independent of k [18]. Combining (1.54) - (1.55) then gives the lemma. To construct a sequence of critical values of J, another set of comparison values first must be defined. Let $$U_{k} = \{u = tv_{k+1} + w \mid t \in [0, R_{k+1}], w \in B_{R_{k+1}} \cap E_{k}, \|u\| \le R_{k+1}\}$$ and $$\Lambda_k = \{ H \in C(U_k, E) \mid H \mid_{D_k} \in \Gamma_k \text{ and } H(u) = u \text{ if } \|u\| = R_{k+1} \text{ or } u \in (B_{R_{k+1}} \setminus B_{R_k}) \cap E_k \}.$$ Now define (1.56) $$c_{k} = \inf_{H \in \Lambda_{k}} \max_{u \in U_{k}} J(H(u)), \qquad k \in \mathbb{N}.$$ Lemma 1.57: Suppose $c_k > b_k \ge M_2$. Let $\delta \in (0, c_k - b_k)$ and $$\Lambda_k(\delta) = \{ H \in \Lambda_k | J(H) \le b_k + \delta \quad \text{on} \quad D_k \}$$ Let (1.58) $$c_{k}(\delta) = \inf_{H \in \Lambda_{k}(\delta)} \max_{u \in U_{k}} J(H(u)), \quad k \in \mathbb{N}.$$ Then $c_k(\delta)$ is a critical value of J. Remark 1.59: Since by (1.58), (1.56), and (1.43), $c_k(\delta) \ge c_k \ge b_k$ and $b_k \to \infty$ as $k \to \infty$ by Lemma 1.46, the existence of a subsequence of c_k 's which satisfy $c_k > b_k$ then guarantees an unbounded sequence of critical values of J and hence Theorem 1.5. As will be seen shortly, (1.2) implies that such a sequence of c_k 's exists. For the proof of Lemma 1.57 we require the following standard "Deformation Theorem" [14, 19]. Lemma 1.60: Let $J \in C^1(E, \mathbb{R})$ and satisfy (PS) on A_M . Then if c > M, $\overline{\epsilon} > 0$, and c is not a critical value of J, there exists $\epsilon \in (0, \overline{\epsilon})$ and $\eta \in C([0, 1] \times E, E)$ such that $$1^{\circ}$$ $\eta(t,u) = u$ if $u \not\in J^{-1}(c-\overline{\epsilon}, c+\overline{\epsilon})$ 2° $\eta(1, A_{c+\epsilon}) \subset A_{c-\epsilon}$. Proof of Lemma 1.57: Note first that by the definition of b_k and Λ_k , $\Lambda_k(\delta) \neq \emptyset$. Choose $\overline{\epsilon} = \frac{1}{2}(c_k - b_k - \delta) > 0$. If $c_k(\delta)$ is not a critical value of J, there exists an ϵ and η as in Lemma 1.60. Choose $H \in \Lambda_k(\delta)$ such that (1.61) $$\max_{\mathbf{U}_{k}} J(\mathbf{H}(\mathbf{u})) \leq c_{k}(\delta) + \varepsilon.$$ Consider $\eta(l, H(u)) \in C(U_k, E)$. Note that if $\|u\| = R_{k+l}$ or $u \in (B_{R_{k+l}} \setminus B_{R_k}) \cap E_k$, $J(H(u)) = J(u) \le 0$ so $\eta(l, H(u)) = u$ by l^0 of Lemma 1.60 (since we can assume $b_k > 0$). Therefore $\eta\left(1,H\right)\in\Lambda_{k}$. Moreover on D_{k} , $J\left(H\left(u\right)\right)\leq b_{k}+\delta\leq c_{k}-\overline{\epsilon}\leq c_{k}(\delta)-\overline{\epsilon}$ via our choice of δ and $\overline{\epsilon}$. Therefore $\eta\left(1,H\right)=H\leq b_{k}+\delta$ on D_{k} , again by 1^{O} of Lemma 1.60. Thus $\eta\left(1,H\right)\in\Lambda_{k}(\delta)$ and by (1,61) and 2^{O} of Lemma 1.60, (1.62) $$\max_{\mathbf{U}_{k}} J(\eta(1, \mathbf{H}(\mathbf{u}))) \leq c_{k}(\delta) - \varepsilon$$ contrary to the definition of $\ c_k(\delta)$. Hence $\ c_k(\delta)$ is a critical value of $\ J$. Remark 1.63: Note that $c_k(\delta_1) \ge c_k(\delta_2)$ if $\delta_1 \le \delta_2$. Now to complete the proof of Theorem 1.5, by Remark 1.59, it suffices to show that if s satisfies (1.2) and p satisfies $(p_1) - (p_4)$, $c_k = b_k$ is not possible for all large k. Indeed we have <u>Lemma 1.64</u>: If $c_k = b_k$ for all $k \ge k_1$, there is a constant $\gamma = \gamma(k_1)$ such that (1.65) $$b_k \leq \gamma k^{\mu/\mu - 1}$$. Thus comparing (1.65) to (1.47), we see the inequalities are incompatible if $$\frac{\mu}{\mu-1} < \frac{(n+2)-s(n-2)}{n(s-1)}$$. But this is precisely condition (1.2) on s. Thus Theorem 1.5 is proved. Proof of Lemma 1.64: Let $k \ge k_1$ and $\epsilon > 0$. Choose $H \in \Lambda_k$ such that (1.66) $$\max_{u \in U_k} J(H(u)) \leq b_k + \epsilon.$$ Let $\widehat{H}(u) = H(u)$ if $u \in U_k$ and $\widehat{H}(u) = -H(-u)$ if $-u \in U_k$. Since $H|_{B_{k+1}} \cap E_k$ is odd and continuous, \widehat{H} is well defined and $\widehat{H} \in \Gamma_{k+1}$. Therefore $$b_{k+1} \leq \max_{D_{k+1}} J(\widehat{H}(u)).$$ But $D_{k+1} = U_k \cup (-U_k)$ and by Lemma 1.18 and (1.66), (1.68) $$\max_{-U_k} J(\widehat{H}(u)) = b_k + \varepsilon + \beta_1 (|b_k + \varepsilon|^{1/\mu} + 1).$$ Thus (1.67) - (1.68) imply (1.69) $$b_{k+1} \leq b_k + \varepsilon + \beta_1(|b_k + \varepsilon|^{\frac{1}{\mu}} + 1).$$ Since $\epsilon > 0$ is arbitrary, (1.70) $$b_{k+1} \leq b_k + \beta_1(|b_k|^{\frac{1}{\mu}} + 1)$$ for all $k \ge k_1$. An easy induction argument — see e.g. [9] - [10] — then yields (1.65). Remark 1.71: An analysis of Theorem 1.5 shows that by slightly modifying several of the lemmas, the following result holds: Theorem 1.72: Suppose p satisfies $(p_1) - (p_4)$, $f(x, \xi)$ satisfies (p_1) , $$|f(x,\xi)| \le \alpha_3 + \alpha_4 |\xi|^{\sigma}$$, $0 \le \sigma < \mu$ and (1.73) $$\frac{(n+2) - (n-2)s}{n(s-1)} > \frac{\mu}{\mu - \sigma}$$ Then the equation (1.74) $$\begin{cases} Lu = p(x,u) + f(x,u), & x \in \Omega \\ u = 0, & x \in \partial\Omega \end{cases}$$ possesses an unbounded sequence of weak solutions. Theorem 1.72 generalizes a result of Dong and Li [11]. We will not carry out the details. Remark 1.75: The question of whether or not the growth restrictions on s (1.2) and (1.73) are essential for these results remains open. In a very interesting recent work [12], Bahri has given a partial answer. He proved for (1.76) $$\begin{cases} -\Delta u = |u|^{s-1} u + f(x), & x \in \Omega \\ u = 0, & x \in \partial \Omega \end{cases}$$ for the full range of $s:1 < s < (n+2)(n-2)^{-1}$ that there is an open dense set of $f \in L^2(\Omega)$ for which (1.76) possesses an infinite number of distinct solutions. One knows from an identity of Pohozaev [20] that that even if $f \equiv 0$, the result is false in general if $s \ge (n+2)(n-2)^{-1}$. ### § 2. The second order Hamiltonian system case . A result analogous to Theorem 1.5 holds for second order Hamiltonian systems. Consider such a system: $$(2.1) \qquad \ddot{q} + V'(q) = \varphi(t)$$ where $q \in \mathbb{R}^n$ and V satisfies $$(V_1)$$ $V \in C^1(\mathbb{R}^n, \mathbb{R}),$ - (V₂) These are constants $a_1, a_2 > 0$ and $\nu > 2$ such that $|V(q)| \le a_1 + a_2 |q|^{\nu} \quad \text{for all} \quad q \in \mathbb{R}^n,$ - (V₃) There are constants $\mu > 2$ and $\overline{q} > 0$ such that $0 < \mu \, V(q) \leq q \cdot V'(q) \quad \text{for all} \quad |q| \geq \overline{q} \ .$ In (V_3) and elsewhere $p \cdot q$ denotes the usual inner product of two elements of \mathbb{R}^n . As in §1, (V_3) implies the existence of constants $a_3, a_4, a_5 > 0$ such that $$(2.2) \qquad \frac{1}{\mu}(q \cdot V'(q) + a_3) \geq V(q) + a_4 \geq a_5 |q|^{\mu} \quad \text{for all } q \in \mathbb{R}^n$$ We assume ϕ (t) is periodic in t. Without loss of generality we can take the period to be π . The functional corresponding to (2.1) is (2.3) $$I(q) = \int_{0}^{2\pi} \left[\frac{1}{2} |\dot{q}|^{2} - V(q) - \varphi \cdot q \right] dt .$$ Hypotheses $(V_1) - (V_2)$ imply $I \in C^1(E, R)$ where now $E = (W^1, {}^2(S^1))^n$ with the norm in E given by $$\|q\|^2 = \int_0^{2\pi} (|\dot{q}|^2 + |q|^2) dt$$. Our main result is: Theorem 2, 4: Suppose V satisfies $(V_1) - (V_3)$, $\varphi \in (L^2(S^1))^n$, and $$(2.5)$$ $v < 4\mu - 2$. Then I(q) has an unbounded sequence of critical values. As in §1, corresponding critical points are weak solutions of (2.1) and it is easy to show they satisfy (2.1) a.e. Moreover if $\varphi \in (C(S^1))^n$, then these weak solutions in fact belong to $(C^2(S^1))^n$. When $\phi\equiv 0$, it is known that Theorem 2.4 is true solely under hypotheses (V_1) and (V_3) [8]. A result like Theorem 2.4 has recently been announced by Bahri and Berestycki [13] who further require $V\in C^2$ and in place of (2.5) have the more stringent condition $\nu<2\mu$. Our proof of Theorem 2.4 closely parallels that of Theorem 1.5. Therefore we will be somewhat sketchy in our exposition here. Lemma 2.6: If q is a critical value of I, there is a constant a_6 depending on $\|\phi\|_{T^2}$ such that (2.7) $$\int_0^{2\pi} (V(q) + a_4) dt \le \frac{1}{\mu} \int_0^{2\pi} (q \cdot V'(q) + a_3) dt \le a_6 (I^2(q) + 1)^{1/2}.$$ Proof: As in Lemma 1.8. Now we set up a modified problem for (2.1). Let χ , J be as in §1 (with I(u) replaced by I(q) given by (2.3)). Let $\psi(q) = \chi \left(J(q)^{-1} \int_{0}^{2\pi} (V(q) + a_{4}) dt\right)$ and set (2.8) $$J(q) = \int_0^{2\pi} \left[\frac{1}{2} |\dot{q}|^2 - V(q) - \psi(q) \phi \cdot q \right] dt.$$ Lemma 2.9: If $q \in \text{supp } \psi$, then $|\int_{0}^{2\pi} \varphi \cdot q \, dt| \leq \alpha_{1}(|I(q)|^{\mu} + 1)$ where α_{1} depends on $||\varphi||_{T^{2}}$. Proof: As in Lemma 1.13. For $\Theta \in [0, 2\pi)$, let $(T_{\Theta} q)(t) = q(t+\Theta)$. Lemma 2.11: There is a constant β_1 depending on $\|\phi\|_{L^2}$ such that for all $q \in E$ and $\theta \in [0, 2\pi)$, (2.12) $|J(q) - J(T_{\Theta}q)| \leq \beta_1(|J(q)|^{\mu} + 1).$ Proof: Observing that $\|q\|_{L^2} = \|T_{\Theta}q\|_{L^2}$, the proof is essentially as in Lemma 1.18. The second second second Lemma 2.13: There are constants M_0 , $\alpha_0 > 0$ and depending on $\|\phi\|_{L^2} \quad \text{such that whenever} \quad M \geq M_0 \;, \quad J(q) \geq M \;, \quad \text{and} \quad q \; \epsilon \; \text{supp} \; \psi, \quad \text{then} \quad J(q) \; \geq \; \alpha_0 M \;.$ Proof: As in Lemma 1, 25. <u>Lemma 2.14</u>: There is a constant $M_1 > 0$ such that $J(q) \ge M_1$ and J'(q) = 0 implies J(q) = I(q) and J'(q) = 0. Proof: As in Lemma 1.29. Let $$A_{C} = \{q \in E \mid J(q) \ge c\}$$. <u>Lemma 2.15</u>: $J \in C^1(E, \mathbb{R})$ and there exists a constant $M_2 > 0$ such that J satisfies (PS) on A_{M_2} . Proof: $J \in C^1(E,R)$ follows from (V_1) , (V_2) and the smoothness and form of ψ . To verify (PS), we argue in a similar fashion to Lemma 1.34. As in (1.36) with ρ chosen to satisfy (1.37), we get $$\rho \| q_{m} \| + K \ge \varepsilon \int_{0}^{2\pi} |q_{m}|^{2} dt + \frac{\mu \varepsilon}{2} a_{5} \| q_{m} \|_{L^{\mu}}^{\mu} - a_{7} \| q_{m} \|_{L^{2}}^{2}$$ $$= \varepsilon \| q_{m} \|^{2} + \frac{\mu \varepsilon a_{5}}{2} \| q_{m} \|_{L^{\mu}}^{\mu} - \varepsilon \| q_{m} \|_{L^{2}}^{2} - a_{7} \| q_{m} \|_{L^{2}}^{2} - a_{8}.$$ Hence using the Hölder and Young inequalities as in (1.38), we conclude $\{q_m\}$ is uniformly bounded in E. Writing $$J^{f}(q_{m})Q = (1+T_{1}(q_{m})) \int_{0}^{2\pi} (\dot{q}_{m} \cdot \dot{Q} + q_{m} \cdot Q) dt$$ $$(2.17) - (1+T_{1}(q_{m})) \int_{0}^{2\pi} q_{m} \cdot Q dt + lower order terms$$ we see $$J'(q_m) = (1+T_1(q_m))q_m + \rho(q_m)$$ where ρ is compact. Thus the argument of Lemma 1.34 shows ($q_{\rm m}$) has a convergent subsequence and (PS) is satisfied. As a consequence of Lemma 2.14, in order to prove Theorem 2.4, it suffices to show J has an unbounded sequence of critical values. This will be accomplished as in $\S 1$ by a comparison argument. Let e_1, \dots, e_n denote the usual orthonormal basis in \mathbb{R}^n . Define $v_{jk} = (\sin jt)e_k$ and $w_{jk} = (\cos jt)e_k$ for $j \in \mathbb{N} \cup \{0\}$ and $1 \le k \le n$. These functions form an orthogonal basis for E. Let $$E_{mi} = span\{v_{ik}, w_{ik} \mid 0 \le j \le m, 1 \le k \le i\}$$ where $1 \le i \le n$. By (2.2) there exists $R_{mi} > 0$ such that $\begin{aligned} J \big|_{E_{mi}} &\le 0 & \text{if} \quad \|q\| \ge R_{mi} \,. \end{aligned} \quad \text{Let} \quad D_{mi} = B_{R_{mi}} \cap E_{mi} \,. \qquad \text{We say} \\ h \in C(D_{mi}, E) \quad \text{is equivariant if} \quad h(T_{\Theta}q) = T_{\Theta}h(q) \quad \text{for all} \quad \Theta \in [0, 2\pi] \,. \end{aligned}$ Let (2.18) $$\Gamma_{ki} = \{ h \in C(D_{ki}, E) \mid h \text{ is equivariant and } h(q) = q$$ $$\text{whenever} \quad \|q\| = R_{ki} \quad \text{or} \quad q \in E_{0n} \}.$$ Define The same of sa (2.19) $$b_{ki} = \inf_{h \in \Gamma_{ki}} \max_{q \in D_{ki}} J(h(q)).$$ Let $E_{k,i-1}^{\perp}$ denote the orthogonal complement of $E_{k,i-1}$ if $i \neq 1$ and $E_{k,0}^{\perp} \equiv E_{k-1,n}^{\perp}$. Lemma 2.20: For all $k \in \mathbb{N}$, $1 \le i \le n$, $\rho < R_{ki}$, and $h \in \Gamma_{ki}$, (2.21) $$h(D_{ki}) \cap \partial B_{\rho} \cap E_{k,i-1}^{\perp} \neq \emptyset.$$ Proof: The proof of this lemma will be carried out in the Appendix. Lemma 2,22: There are constants $\beta_2 > 0$ and $k_0 \in \mathbb{N}$ such that for $k \ge k_0$ and $1 \le i \le n$, $\frac{\nu+2}{\nu-2}$ (2,23) $b_{ki} \ge \beta_2 k^{\nu-2}$. Proof: If $k \ge 1$ and $q \in \partial B_{\rho} \cap E_{k,i-1}^{\perp}$, $$\|q\|_{L^{2}} \leq \|\dot{q}\|_{L^{2}},$$ and therefore $$||q|| \le 2 ||\dot{q}||_{L^2}.$$ Arguing as in (1.48) - (1.49) using (V_2) and (2.25) lead to (2.26) $$J(q) \ge \frac{1}{4} \rho^2 - a_2 \|q\|_{L^{\nu}}^{\nu} - \alpha_2 - \alpha_3 \|q\|_{L^2}.$$ The analogues here of (1,50) - (1,51) are (2.27) $$\|q\|_{L^{\nu}} \le a_7 \|q\|^{\frac{\nu-2}{2\nu}} \|q\|_{L^2}^{\frac{\nu+2}{2\nu}}$$ for all $q \in E$ and (2.28) $$\|q\|_{L^2} \le k^{-1} \|\dot{q}\|_{L^2}$$ for $q \in E_{k, i-1}^{\perp}$ (unless i = 1 in which case k is replaced by k-1). Continuing as in Lemma 1.46 then yields (2.23). Next to construct critical values of J, let $$\mathbf{U}_{ki} = \{\mathbf{q} = \tau \mathbf{v}_{k,\; i+1} + \mathbf{Q} \mid \tau \in [\; 0\,, \mathbf{R}_{k,\; i+1}] \;,\;\; \mathbf{Q} \in \mathbf{B}_{\mathbf{R}_{k,\; i+1}} \cap \mathbf{E}_{k,\; i}\,,\;\; \|\mathbf{q}\| \leq \mathbf{R}_{k,\; i+1} \}$$ where if i = n, $v_{k, i+1} \equiv v_{k+1, 1}$ and $R_{k, i+1} \equiv R_{k+1, 1}$. Let $$\Lambda_{ki} = \{ H \in C(U_{ki}, E) | H|_{D_{ki}} \in \Gamma_{ki} \quad \text{and} \quad H(q) = q \quad \text{when} \quad \|q\| = R_{k,i+1},$$ or $$q \in (B_{R_{k,i+1}} \setminus B_{R_{k,i}}) \cap E_{ki}$$ and define $$c_{ki} = \inf_{H \in \Lambda_{ki}} \max_{q \in U_{ki}} J(H(q)).$$ <u>Lemma 2.29</u>: Suppose $c_{ki} > b_{ki} \ge M_2$. Let $\delta \in (0, c_{ki} - b_{ki})$ and $$\Lambda_{ki}(\delta) = \{ H \in \Lambda_{ki} \mid J(H) \leq b_{ki} + \delta \quad \text{on} \quad D_{ki} \}$$ Set (2.30) $$c_{ki}(\delta) = \inf_{H \in \Lambda_{ki}(\delta)} \max_{q \in U_{ki}} J(H(q)).$$ Then $c_{ki}(\delta)$ is a critical value of J. Proof: Essentially as in Lemma 1.57. Lemma 2.31: If $c_{ki} = b_{ki}$ for all $k \ge k_l$ and $l \le i \le n$, then there exists $\gamma = \gamma(k_l)$ such that (2.32) $$b_{ki} \leq \gamma k^{\mu/\mu-1}$$. Proof: Let $k \ge k_1$, $1 \le i \le n$, $\epsilon > 0$, and $H \in \Lambda_{ki}$ such that (2.33) $$\max_{\mathbf{U}_{k}} J(H(q)) \leq b_{ki} + \varepsilon.$$ Let $\widehat{H}(q) = H(q)$ for $q \in U_{ki}$ and $\widehat{H}(T_{\Theta}q) = T_{\Theta}H(q)$ for $q \in U_{ki}$. Note that $\{T_{\Theta}U_{ki} \mid \Theta \in [0,2\pi]\} = D_{k,\,i+1}$ and by construction \widehat{H} is equivariant. Moreover since $H \in C(D_{ki},E)$, $\widehat{H} \in C(D_{k,\,i+1},E)$ and $\widehat{H}(q) = q$ if $\|q\| = R_{k,\,i+1}$. Therefore $\widehat{H} \in \Gamma_{k,\,i+1}$. Now arguing as in Lemma 1.64 with Lemma 1.18 replaced by Lemma 2.11, we find (2.34) $$b_{k, i+1} \leq b_{ki} + \beta_1 (|b_{ki}|^{\frac{1}{\mu}} + 1)$$ where $b_{k, i+1} = b_{k+1, i}$ if i = n. A slight extension of the argument of [9] or [10] then yields (2.32). The proof of Theorem 2.4 is now immediate on comparing (2.32) to (2.13) and recalling (2.5). Remark 2.35: As in §1, a more general perturbation than ϕ may be permitted using the above arguments. Indeed we have Theorem 2.36: If V satisfies $(V_1) - (V_3)$, $\phi(t,q) \in C([0,2\pi] \times \mathbb{R}^n, \mathbb{R}^n)$ is 2π periodic in t and $$|\varphi(t,q)| \leq \alpha_3 + \alpha_4 |q|^{\sigma}$$ where $0 \le \sigma < \mu$ and $\nu < 4\mu \sigma^{-1} - 2$, then the system $$\ddot{q} + V^{t}(q) \approx \varphi(t)$$ has an unbounded sequence of (classical) solutions. We omit the details. ## Appendix Our goal here is to prove Lemma 2.20: For all $k \in \mathbb{N}$, $k \ge 1$, $1 \le i \le n$, $\rho < R_{ki}$, and $h \in \Gamma_{ki}$, (2.21) $$h(D_{ki}) \cap \partial B_{\rho} \cap E_{k,i-1}^{\perp} \neq \emptyset.$$ The analogous result in §1, Lemma 1.44, was proved with the aid of the Borsuk-Ulam Theorem. The proof of Lemma 2.20 in turn depends on an S^1 version of the Borsuk-Ulam Theorem. In [21], the following situation was studied: Let S^1 act on $\mathbb{R}^\ell \times \mathbb{R}^{2k}$ via a family of orthogonal transformations such that Fix $S^1 = \mathbb{R}^f \times \{0\}$. For j < k we consider \mathbb{R}^{2j} to be a subspace of \mathbb{R}^{2k} via $\mathbb{R}^{2k} = \mathbb{R}^{2j} \times \mathbb{R}^{2(k-j)} \supset \mathbb{R}^{2j} \times \{0\}$. It was shown in [21] that Lemma A-1: Let Ω be a bounded invariant neighborhood of 0 in $\mathbb{R}^{\ell} \times \mathbb{R}^{2k}$ and let $f \in C(\partial \Omega, \mathbb{R}^{\ell} \times \mathbb{R}^{2j})$ where j < k and f is equivariant. Suppose further that $f = \{x \in \partial \Omega \mid f(x) = 0\}$ is the identity. Then $\{x \in \partial \Omega \mid f(x) = 0\}$ is nonempty. Remark: If l = 0 and Fix $S^{l} = \{0\}$, it is easy to use e.g. the index theory of [15] to prove Lemma A-1. We will show how to use Lemma A-1 to prove Lemma 2.20. First the special case: Lemma A-2: Let $\mathbb{P} = \{ \Phi \in \Gamma_{ki} \mid \Phi(D_{ki}) \subset E_{mj} \text{ for some } m \text{ and } j \}$. Then (2.21) holds for all $\Phi \in \mathbb{N}$. Proof: Let $h \in \mathbb{N}$. Then $h^{-1}(B_{\rho})$ is a neighborhood of 0 in E_{ki} . Let Ω be the component of $h^{-1}(\partial B_{\rho})$ containing 0. Then $\Omega \subset D_{ki}$ is an invariant neighborhood of 0 in E_{ki} (i.e. $x \in \Omega$ implies $T_{\Theta}x \in \Omega \ \forall \theta \in [0,2\pi)$). Let $P_{k,i-1}, P_{k,i-1}^{\perp}$ denote respectively the orthogonal projection of E onto $E_{k,i-1}, E_{k,i-1}^{\perp}$ respectively. Then $P_{k,i-1}h \equiv f \in C(\partial \Omega, E_{k,i-1})$. Since $E_{k,i-1}$ is an invariant subspace of E, E is an equivariant map. Note that $$E_{0n} = \{q \in E | T_{\Theta}q = q \text{ for all } \Theta \in [0, 2\pi)\} = Fix S^{1}$$. Since $h \in \mathbb{N}$, h(q) = q = f(q) on $E_{0n} \cap D_{ki}$. With some obvious identifications we have satisfied the hypotheses of Lemma A-1. Hence f has a zero Q on $\partial \Omega$. Consequently $h(Q) = P_{k,i-1}^{\perp} h(Q) \in \partial B_{\rho} \cap E_{k,i-1}^{\perp}$. Thus (2.21) is satisfied. Now we can give the <u>Proof of Lemma 2.20:</u> Let $h \in \Gamma_{ki}$ and m > k. Then $P_{mi}h \in \mathbb{R}$. By Lemma A-1, $P_{mi}h(D_{ki}) \cap \partial B_{p} \cap E_{k,i-1}^{\perp} \neq \emptyset$. Therefore there is a sequence of m's \longrightarrow and corresponding to $\mathbf{q_m} \in \mathbf{D_{ki}}$ such that (A-2) $$P_{mi} h(q_m) \in \partial B_{\rho} \cap E_{k,i-1}^{\perp}.$$ Passing to a subsequence if necessary, the compactness of D_{ki} implies $q_m \longrightarrow q \in D_{ki}$. Since $$\|h(q) - P_{mi}h(q_m)\| \le \|h(q) - P_{mi}h(q)\| + \|P_{mi}(h(q) - h(q_m))\| \longrightarrow 0$$ as $m \to \infty$, by (A-2) $$h (q) \in \partial B_{\rho} \cap E_{k, i-1}^{\perp}$$ and (2.21) is satisfied. ### References - [1] Coffman, C.V., A minimum-maximum principle for a class of nonlinear integral equations, J. Analyse Math., 22, (1969), 391-419. - [2] Hemple, J., Superlinear variational boundary value problems and nonuniqueness, Thesis, Univ. of New England, Australia. 1970. - [3] Ambrosetti, A., On the existence of multiple solutions for a class of nonlinear boundary value problems, Rend. Sem. Mat. Univ. Padova, 49, (1973), 195-204. - [4] Rabinowitz, P. H., Variational methods for nonlinear elliptic eigenvalue problems, Indiana Univ. Math. J., 23, (1974), 729-754. - [5] Ambrosetti, A. and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14, (1973), 349-381. - [6] Benci, V., Some critical point theorems and applications, Comm. Pure Appl. Math., 33, (1980), 147-172. - [7] Rabinowitz, P. H., Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math., 31, (1978), 157-184. - [8] Rabinowitz, P. H., On large norm periodic solutions of some differential equations, Ergodic Theory and Dynamical Systems, Proc. Sp Yi-Maryland 79-80, A. Katok, ed., to appear. - [9] Bahri, A. and H. Berestycki, A perturbation method in critical point theory and applications, to appear Trans. Amer. Math. Soc. - [10] Struwe, M., Infinitely many critical points for functionals which are not even and applications to superlinear boundary value problems, Manus. Math., 32, (1980), 335-364. Contract the Asset Tolking Contract of the Con - [11] Dong, G.-C. and S. Li, On the existence of infinitely many solutions of the Dirichlet problem for some nonlinear elliptic equations, Univ. of Wisconsin Math. Research Center Tech. Rep. #2161, Dec., 1980. - [12] Bahri, A., Topological results on a certain class of functionals and applications, Preprint. - [13] Bahri, A. and H. Berestycki, Existence d'une infinité de solutions periodiques pour certains systèmes hamiltoniens en présence d'un terme de contrainte, Comp. Rend. A.S. 292, Ser. I., 315-318. - [14] Rabinowitz, P. H., Variational methods for nonlinear eigenvalue problems, Proc. Sym. on Eigenvalues of Nonlinear Problems, Edizioni Cremonese, Rome, (1974), 141-195. - [15] Fadell, E. R. and P. H. Rabinowitz, Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Inv. Math., 45, (1978), 139-174. - [16] Schwartz, J. T., Nonlinear Functional Analysis, lecture notes, Courant Inst. of Math. Sc., New York Univ., 1965. - [17] Nirenberg, L., On elliptic partial differential equations, Ann. Sc. Norm. Sup. Pisa 13 (3), (1959), 1-48. - [18] Courant, R. and D. Hilbert, Methods of Mathematical Physics, V. I., Interscience, New York, (1953). - [19] Clark, D.C., A variant of the Ljusternick-Schnirelman theory, Ind. Univ. Math. J., 22, (1972), 65-74. - [20] Pohozaev, S. I., Eigenfunctions of the equation $-\Delta u + \lambda f(u) = 0$, Soviet Math. 5, (1965), 1408-1411. - [21] Fadell, E.R., S. Husseini, and P. H. Rabinowitz, On S¹ versions of the Borsuk-Ulam Theorem, Univ. of Wisconsin Math. Res. Center Tech. Rep. to appear 1981. Same of the same | SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) | | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------| | REPORT DOCUMENTATION PAGE | BEFORE COMPLETING FORM | | 1. REPORT NUMBER 2233 AD- A10385 | 9 Technical | | 4. TITLE (and Subtitle) | S TYPE OF REPORTA PERIOD COVER | | MULTIPLE CRITICAL POINTS OF PERTURBED SYMMETRIC FUNCTIONALS, | Summary Report , to spec reporting period 6. PERFORMING ORG. REPORT NUMBE | | 7. AUTHOR(a) | B. CONTRACT OR GRANT NUMBER(s) | | Paul Rabinowitz | DAAG29-80-C-0041,
N00014-76-C-0300 | | 9. PERFORMING ORGANIZATION NAME AND ADDRESS | 10. PROGRAM ELEMENT, PROJECT, TA | | Mathematics Research Center, University of 610 Walnut Street Wisconsin Madison, Wisconsin 53706 | 1 - Applied Analysis | | 11. CONTROLLING OFFICE NAME AND ADDRESS | 12. SEPORT DATE | | See Item 18 | Jul , 10 81 | | | 19. NUMBER OF PAGES | | 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) | 15. SECURITY CLASS. (of this report) | | 1 | UNCLASSIFIED | | 14/MRC-75R-5233 | 15a. DECLASSIFICATION/DOWNGRADIN | | Approved for public release; distribution unlimited. | L | | 16. DISTRIBUTION STATEMENT (of this Report) | L., ., ., ., ., ., ., ., ., ., ., ., ., . | | 16. DISTRIBUTION STATEMENT (of this Report) | m Report) | | Approved for public release; distribution unlimited. | m Report) | | Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, If different from the Supplementary note; U. S. Army Research Office Office of N. P. O. Box 12211 Arlington, | aval Research
Virginia 22217 | | Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from the Supplementary notes U. S. Army Research Office Office of N | aval Research | | Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from the supplementary note; U. S. Army Research Office Office of N. P. O. Box 12211 Arlington, Research Triangle Park North Carolina 27709 19. ::EY WORDS (Continue on reverse side if necessary and identify by block number) | aval Research
Virginia 22217 | | Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the ebetract entered in Block 20, 11 different from the supplementary note: U. S. Army Research Office Office of N. P. O. Box 12211 Arlington, Research Triangle Park North Carolina 27709 | aval Research
Virginia 22217 | | Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different from the supplementary note: U. S. Army Research Office Office of N. P. O. Box 12211 Arlington, Research Triangle Park North Carolina 27709 19. ::EY WORDS (Continue on reverse side if necessary and identify by block number) critical point, critical value, symmetry, Hamiltonian systems | aval Research
Virginia 22217
minimax methods, | | Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the ebetract entered in Block 20, if different from the supplementary note; U. S. Army Research Office Office of N. P. O. Box 12211 Arlington, Research Triangle Park North Carolina 27709 19. Hey words (Continue on reverse side if necessary and identify by block number) critical point, critical value, symmetry, | aval Research Virginia 22217 minimax methods, t under a group of sym- This paper studies the and which destroy the | DD 1 JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE UNCLASSIFIED 221200 SECURITY CLASSIFICATION OF THIS PAGE (When Date Universe)