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1 Variational problems which are invariant under a group
of symmetries often possess multiple solutions, This paper studies
- the effect of perturbations which are not small and which destroy the
symmetry for two classes of such problems and shows how multiple solutions
persist despite the perturbation , l\
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SIGNIFICANCE AND EXPLANATION

Variational problems which are invariant under a symmetry
group often have multiple solutions. If the resulting Euler
equations are changed by adding an inhomogeneous forcing term,
a new functional results which may no longer possesses the
symmetries of the original problem. This paper shows how
multiple solutions persist for the modified problem for a class
of semilinear elliptic equations and a class of forced second

order Hamiltonian systems.
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Multiple critical points of perturbed symmetric
functionals,

Paul Rabinowitz

During the past fifteen years there has been a considerable amount of
research on the role of symmetry in obtaining multiple critical points of
symmetric functionals both in an abstract setting and in applications to
ordinary and pértial differential equations, In particular problems of the
form

n
Lu= -Z -agc-i(aij(x)uxj)+c(x)u=p(x,u) X e

(0.1) 1,j=1
u= 0, X € 9Q

have been studied where L 1is uniformly elliptic with e.g. C'J2 coefficients,
Q c R® is a bounded domain with a smooth boundary, and p is odd

in u. Under appropriate hypotheses on P(x,¢), in particular

more rapid growth than linearas  |¢ | =» », it has been shown that

(0.1) possesses an unbounded sequence of solutions [1-6]. Similar
existence statements have been obtained for periodic solutions of second

order Hamiltonian systems of ordinary differential equations :

(0.2) § +Vi()=0

where  q= (qp++,q ) and Ve C(R%, R)., Indeed it has been
shown that if @V grows at an appropriate superquadratic rate, then for

any T> 0, (0.2) possesses an unbounded sequence of T periodic
solutions [7-8],

Sponsored by the United States Army under Contract No. DAAG29-80-

C-0041 and the Office of Naval Research under Contract No. N000l4-
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Problems (0.1) and (0.2) each possess a natural symmetry.

/

I

Namely (0.1) is the Euler equation obtained from

(0. 3) {z[%( Y aij(x)uxiuxj+ c)u®) - P(x,u)] dx

where P, the primative of p, isevenin u and therefore
the functional is invariant under the zz symmetry u=—>» -u,

Likewise taking e.qg. T=2m , we see (0,2) is the Euler equation
of the functional

. ,..'....‘:f..uu..‘A.h..._.A- emn ko et

2w
(0. 4) [Iz1a vl «

‘J»‘. e E— AT

defined on the class of 2w periodic functions, If q(t)—>» q(t+6)
for any 8¢ R, the functional is unchanged . Thus (0.4) has

anatural R mod [0, 27 ] or S1 symmetry ,

An open question for problems like (0,1), (0.2) has been the effect
of destroying the above symmetries by perturbing the equation, e.g. by
adding an inhomogeneous term f(x) to the right based side of (0,1)
ora 2w periodic n-vector ¢ (t) tothe right hand side of (0,2),
There has been some progress in this direction during the past few months
due to Bahri and Berestycki[9], Struwe [10], Dongand Li [11], and
Bahri [12]. In [9] and [10], the authors independently show that

L E e T g . o s -

Lu = p(x,u) + £f(x), xe Q
(0.5)
u=o0, X € 0

possesses an unbounded sequence of weak solutions provided that

,,,,,,,
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r | and p satisfies more stringent conditions than are required for the
~ existence of solutions of (0.1). In this paper we shall show how some

of the ideas from [5] in conjunction with those of [9] and [10] can

be used to get somewhat better existence results for (0.5). Moreover
closely related arguments allow us to treat perturbations of (0,2) of the

form
(0. 6) a+V(q)= o)
Bahri and Berestycki [183] have also recently announced related results

for (0.6).

In §1, (0.5) will be treated and (0, 6) will be handled in §2.
An appendix contains some topological results required for the study of (0, 6).
We are indebted to Ed Fadell and Sufian Husseini for several helpful

conversations concerning these topological matters,
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§1.  The semilinear elliptic case, i
<]

We begin by studing !

Iu = p(x,u) +£f(x), Xe Q o
(L.1) ]
u= 0, X € R
where L and 2 are in the introduction. We assume p satisfies:

() p € C(GX R, R)

(pz) There are constants a c-x‘2 > 0 such that Ei

[p(x, ¢)| = a;+a,]¢ |°

where 1<s< 2—'1'%— #f n>2 and s is unrestricted

if n=1}2,

(P5) There are constants u > 2 and ¢ > 0 such that

(] <p.P(x,g)Ep._{)e p(x,t)dt = g p(x,¢)

for e | zE s
(Py) P(x,-¢) = -p(x,¢) .

Under hypotheses (pl) - (p 4) R if f

o, it is known that

(1,1) possesses an unbounded sequence of weak solutions which can

be obtained as critical points of a corresponding functional by means of minimax
methods, We shall show that the same is true for (l.1) for arbitrary

2

fel provided that s satisfies the more stringent condition

=
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(n+2) - (n-2)s >
n(s-1) p-1

(1. 2)

For p=s+1, (1.2) reduces to the assumption made in [9] and [10].
In [9] and [10] somewhat stronger versions of [pl] and [p3] also
are needed as well as the requirement that p behave like a positive function
of x times a pure powerof ¢  atinfinity,

For future reference we note that (p 3) implies there are constants

as, a4, z-x5 such that

(L 3) LEP(xE)+ay) = P(x £)+a =agelt

forall ¢ e R, Corresponding to (l,.) we have the functional

(1. 4) I(u)

n
JIF0 Y ayx)u v +cmu?) - Prxu) - fx)ul dx
2 " 4,4m b

Letting E 2 () where the nomm in E is
n

fluf = (f Y, 2y ()8 U ax )2
? 4,421 }

hypotheses (pl) - (pz) and standard results imply I e CI(E R)

(provided f e L (RQ)) .

The main result in this section is:

2
Theorem 1, 5: Suppose p satisfies (pl) - (p4), fe L%(Q),

and s satisfies (1.2). Then I has an unbounded sequence of

critical values,
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The corresponding critical points form an unbounded sequence of
weak solutions of (l.1) . Under additional regularity assumptions on p
and f (e.g. p and { HYlder continuous in their arguments),
standard regularity results imply these weak solutions are classical solutions
of (1,1), After proving Theorem 1.5, a mild generalization of recent
work of Dongand Li [11] inwhich f is allowed to depend alsoon u

will be mentioned .,

In the course of the proof of Theorem 1,5, we will obtain a
minimax characterization of critical values of 1 albeit not a completely
satisfactory one. In [9] and [l0], the fact that any solution of

(1.1) lesonthe setof w in E such that

n
(L. 6) J UL a0 wy wy +c@wdrdx = [ w(p(x,w) + £(x)) dx
245=1 11 2
is exploited. On this set 1 becomes
1 1
Ln I(u) = fg (zuP(xu) - P(x,u) - 3 f(x)u)dx

which is bounded from below, (See also [1] and [2]). We will
work with an indefinite functional,  However for technical reasons 1 will
be replaced by a modified functional 7T, By way of motivation for
the modification, the following lemma provides some a prior bounds for a
critical point of I in terms of the corresponding critical value, In

what follows ai , @ ] repeatedly denote positive constants ,




Lemma 1,8: Suppose u is acritical point of I, Then thereis a

constant a depending on || f}| such that
6 12

(L. 9) é(P(x,u) +a)dx = -&fn(up(x,u) +a,)dx < a  ((1(u))? sV,

Proof: Let I'(u) denote the Frechet derivative of u. At a critical

point of I  we have
(L10)  I(u) = Iu) - 3 I'(wu = (z-4) fsz (up (x, u) +a;)dx -%ufuLz Iul 2 - a7

via (1, 3), Using the fact that p > 2 and the H8lder and Young

inequalities we see for any e>0,
> - - L v
(L) I = ag fg(up(x,u) tag)dx - ag eﬂuuw B(e)ufuLZ

where v'l+p'l =1 and B(g) = = as eE~> 0, Choosing

€ so that 2e= agag, (1,3), (1.11) and the Schwarz inequality

yield (1.9).

Remark 1,12 , The inequality (l.11) combined with I'(u)u = 0

leads to a bound for full intermsof I(u). However such an

estimate will not be needed later,

To define the modified functional J, let X € C“(R, R) such

that X (t) =1 for t=1, x(t)y= 0 for t>2 and

2<x' <0 for te (L,2). For ueE, set
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st = 2a, (P +1)Y/2 and  y() = x (J(u)'lfﬂ(P(x,u) tagd).

Let suppy denote the supportof ¢,

Iemma 1,13: If ue supp y, then

W
(1. 14) |fn fudk| = e([I(w] +1)

where  a, depends on | £ HLZ .

Proof: By the Schwarz and H8lder inequalities and (1,3), forall ue E
1/u |
(1. 15) fudx| = ||f u < a,||ul]l . = ay(] (P(x,u)+a,)dx) . ;
I fwax] = Ul o dul = eplv |, < ey f s
If further u € supp y§,
(1. 16) [ (P(x,u)+ a,)dx s 4a6(12(u)+1)1/zs as (T +1)
Q

so (L14) follows from (1.15) - (L16) .

Now set

n
I T e [I500 a6 e +otn®) - Plyu) -yt u] o .
1,)=1
The main reason for introducing | 1is the following estimate which

holdsfor J butnotfor I,

Lemma 1,18: There is a constant Bl, depending on |f|| , such
L
that for all ue B: - §




1/p
(1. 19) [Tu) - T(-w)| = B (|T(w)] +1) .

Proof : By (L17) and (p,),

(1. 20) [T(u) - T(-u)| = (@ )+ ¢ (-u)) 1£zfudx| .

Thus by Lemma .13,

(L. 21) \p(-u)l{z fudx| = o ¢ (-u) (T +1y .
i Since by (lL.4) and (L17),

(1. 22) [T(u)] = [T(u)] +2|{2 fudx | ,

(1. 21) implies that
(1. 23) Lp(-u)l{z fudx| s azq;(-u)(”(u)ll/“ + ]{zfu dx[l/** +1) .,

Thus by Young's inequality as in (l,11), the fu term on the right hand
. side of (l.23) can be absorbed by the left hand side . A corresponding

P Lo

estimate for the y(u) termin (1,20) thenyields (1.19).

e

,_uigh W I P

Remark 1,24: Although I(u) does not satisfy (1.19) forall ue E,

it does for all solutions of (l.1). However we are unable to exploit this

fact directly,

-,

We shall show that large critical values of J are critical values of

P
-

I. First another technical lemma is needed.

s
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Lemma 1,25 There are constants Mo » Qg > 0 and depending on

Ifl 2 such that whenever M = MO’ Juy=zM and wue suppy,
L

then I(u) = aoM .

Proof : Since by (1.4) and (L17)
(L. 26) I) = J(u - |[ fudx|,
Q

if ue suppy, by (1,26) and (L 14)

M
(1, 27) I(u)+a1|I(u)|1/“' = ](u)-alz-?:
for M0 large enough . If I(u)=0,
, e
(1. 28) + +-}17|I(u)| ao‘z-llz.(u)ll/u>g-+ | T () |
which is impossible if M0 > 2a i' u'1 which we can assume to be the

case, Therefore I(uy> 0 and
1) > ¥ or 1wy = (M(aphHt

which implies the Lemma since p > 2,

Now we can prove

Lemma 1,29 : There is a constant Ml >0 suchthat J(u)= Ml

and J'(u)=0 implies that J(u) = I(u) and 1I'(u)=0,

Proof : It suffices to show that y(u)=1 and ¢'(u)

0. By

the definition of 1, this will be the case if
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(L. 30) s(u) [ (P(xu)+a,)dx = 1
a

which we will verify ., Note that
1 a 2
J (Wu = a.(x)u_ u, +c(x)u” -up(x,u)
fn [1§=1 S R

(1, 31) '
- (Y (u) +¢' (uu) fu] dx

where

¢'(u)u=x'(J(u)'lfQ(P(X.U)+a4)dX) S Lo [ up (x,u) ax

.(zalé)z({2 (P(x,u)+a,)dx) g T I'wu].

Regrouping terms shows that

n
I'(wu = (1+T;(u)) {2 () a3y

u, +c(x)u2)dx
1,1=1 ]

X

- (14T50) [lup(x,u) dx - () + Tyw)) [ fuax

where
Ty = X (+++ ) (2a,)? .»(u)“°’1(u){zmx.u)+a4)dx{2 fu dx
Tz(u)=x'(...)[.3(u)“1{2 fudx] +T,(u) .
Form
1 "
I(u)-m J'(wu,

If Tl(u) = Tz(u) =0 and y(u) =1 we are precisely in the situation

of (1.10) so (L 30) reduces to (1.9). If Tl(u) and Tz(u) are




v

- e

sufficiently small, the estimates of Lemma 1,8 carry over to this case at
the expense of the factor a, in (1.9) being replaced by 236 « But
that gives (1. 30). Hence the Lemma follows once we show

Tl(u), Tz(u) -> 0 as M1 - o,

Simple estimates show

' -
(L 32) 1Ty s [X(eee)] 42, s | [ fuax] .
If uf suppy, Ty(u) = 0. Otherwise, by lemmas 1,13 and 1,25,
L, L,
(1. 33) |70 Sa, s saz(M+DF

which gees to 0 -as Ml —_— o, The form of Tz shows

Tz(u) also —» 0 as Ml-—) ®

By Lemma 1,29 to prove Theorem 1,5, it sufficestoshow J has
an unbounded sequence of critical values, To begin that program, another
technical result is required. Let Ac ={ueE|J(u) sc}. Wesay ]
satisfies the Palais-Smale condition (PS) if whenever a sequence ( um)
satisfies J(u m) is uniformly bounded and I'( um) -» 0, then

(um) is precompact.

Lemma 1,34: J e CYE,R) and there is a constant M,> 0 such

that J satisfies (PS) on AM .
2

Proof: Since p satisfies (pl), (DZ), Ie Cl(F, R). (See e.g. [14])

Since Xe C%, (pl), (pz) further imply 4 and therefore ]eCl(E,R) « To verify
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(PS), we argue somewhat as in Lemma 1,29 , Suppose (um JCE
. with M, =J(u )sSK and r'(um) —> 0. Then for all large m,
( '
puumﬂﬂc = J(ug) - pT (ug)uy
n
_ () 2

: = (3 -p(1+Ty(u ))fa ) 3y "‘)“mxi“mxj*c“m) dx
‘. (1. 35) 4 1,3=1
¥ + p(14T,u ) fnump(x.um)dX- {2 P(x,u_ ) dx
+p(Wu )+ Ty(u ) - $(u )] {zfumdx

-

where p is free for the moment | Thus by (p3) ’

R (ol + %= - p(1+rl(um)))||umuz+(p(1+T2(um))p-1){2(P(x.um)
+a4)dx

(1. 36) - ay - (P(L+T () +1) ||fuLz uuanz

- o 4flu uZLz :

L

2
by (p;) wecanchoose pe¢ (p’l, 2'1) and € > 0 such that

For M sufficiently large and therefore '1‘1, 'I'2 sufficiently small,

1 1
(.37 T, )y ~ PHe> P - e Ty

uniformly in m, Hence (1.36) and (1,3) show

T R T

W38 plugl +K= elugl® 50 o luglty, - @ aglugl - aslugdZs

Using the Hdlder and Young inequalities again as in (1.1]) we get




2
(1. 39) Pllupl +K = fu |®+ asuumﬂ:p -agfu |l - e

4 which implies {um} is bounded in E,

o Since

i (L 40) F(u )= (14T (u Nu_ - P(u)

o i d ma o

where P is compact — see e.g. [5] — for M, large enough

j |T1(um)| = % and therefore (um) bounded and I'(um) -y 0

implies (1 +T1( U ))'1 o um) converges along a subsequence, Hence

(1.40) shows (um) does also and (PS) is verified.

Now we can show ] has an unbounded sequence of critical values,

o Let 0< )\1<)l~ s---shks--- denote the eigenvalues of

. 2
i | (Lac)v = Av, X e Q
E (1, 41)

o v=20 |, Xe 9Q

| and Vi, Vp, oo denote corresponding eigenfunctions normalized such
“ that "Vk" =1, Let Ep= span{vl,-n, k} and E‘i its
’i orthogonal complement, By (L3) thereisan R >0 such that

b2
3 I]Ek =0 if fulf = Ry. Let Bp denote the closed ball
% of radius R in E, Dk = BRk n Ek ’ and

3 (1, 42) Iy = {h € C(Dk,E)l h isoddand h(u)=u if [uf = Rk} .
X Define

%

i (1, 43) bk= inf max J(h(u)), ke N,

he [y ue Dk
~lq=- 1

T
r

{] L A g "{“’:""él&iwﬁﬁ"ﬁ_‘-“-;‘ﬁ»lo“iw"&'-"ﬁ#'l'tﬁ‘m :
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If f= 0 and J iseven, it was essentially shownin [5] that
the numbers b, arecriticalvaluesof J. I f # 0, that need
not be the case . However we will use these numbers as the basis for

a comparison argument to prove Theorem 1,5, First it will be shown

that bk—)eo as k= a ,

lemma 1,44: For all ke N, p < Rk’ and he Ty

(L. 45) h(D )N, NE £ 6 .

Proof: et heIy. Consider h'l(Bp). Since h is

continuous, this is a neighbothood of 0 in lE:k . Let )

denote the component of h'l (Bp) which contains 0, Then ¢C Dk’ 6

is symmetric with respect to the origin, i.e. Ue ¢ implies -ue @,
and  ||h(u)j =p on de. Let P _;, Pg,  denote
respectively the orthogonal projectors of E onto Bk-l’ F.]'(L_l SO

h(u) = Pk-l h(u) + Pljc--l h (u) for ue E, Since Pk-lh e C(96, Ek-l)

and is an odd function, by one of the versions of the Borsuk-Ulam Theorem

~
[16] , Pk-lh has a zero 1 on 9 G. Hence h(u)=
/N
P h(u) e 8B, N i and the proof is complete ,
lemma 1, 46; There are constants BZ >0 and koe IN depending

on |f|| , suchthatforall k =Xkg,
L {n+2) - (n-2)s

n(s - 1)
(L 47) by = B,k :

-]15=-

»:v»a.“

AV e e SRR NN s S N e R <Nl



Proof : Let he Tk and p < Rk . By lemma ], 44, thereisa

wehDy)noB N Er ;. Therefore

(1. 48) max J(h(u)) = J(w) = inf J(u) .
ueD, ue 8B, NEyx_,

Let u € 9B P n EkL-l . Then by (pz) and some simple estimates:

1 2 2 s+l
(1. 49) T =5 p" - ay Jull®y - egfull”cy -a - LEl 5 full 5.
L L L L
By the Gagliardo- Nirenberg inequality [17] ,
a l-a
(L 50) ||“||Ls+1 = a, | uf IIUIle

forall uecE where 2a = n(s-1)(s +1)'l . Moreover if u € Et-l ,
1
(1. 51) "u"LZ s )‘k-l Jul.

Substituting (L 50) - (1.51) into (1,49) vyields

. (1-a£¥s+l) o4l

: a
(1. 52) T(u)= 5 p? -x-:—pz A ot .o,
-3
- £ A P .
i ﬂLz "

Choose k so large that 4 a, = xk and p = pk so that

(l-a)(s-l-l)
(1.53) oy = %)‘kT s-1 .
Therefore
1
(1.54) I(u)z-lé-pi -||f||szk7 b, - a, .
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The asymptotic distribution of the eigenvalues of (1, 41) is such that for
large k,
(1.55) A= @ 5kz/ n

for a, independent of k [18] . Combining (1, 54) - (1, 55) then gives the lemma.

To construct a sequence of critical values of J, another set of

comparison values first must be defined, Let

Up ={u=stv  +w|te [O'Rk+1]' we BRk+1n Ee, llull=R )
and

A, ={He C(Uk,E)lHlee Ny and Hu) =u if [fuf = Ry, or
ue B \B, JNE,}.
Resiw Ry k
Now define

(1, 56) ¢y = inf max J(H(u)), ke N.
. HeAk ueUk

Lemma 1,57: Suppose o > bk = M2 . Let 6e (O,Ck-bk)

and
Ak(S) = {He¢ Akl J(H) s bk + 6§ on Dk} .
Let

(1, 58) ck(6)= inf max J(H(u)), ke N,
He Ak(6) UGUk

Then ck( 5) is a critical value of 7T,

-17=
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Remark 1,59 Since by (1.58), (l.56), and (l.43), ck(a) zcp zby
and bk-) ® as k=% o by Lemma 1,46, the existence of a

[

. ’

subsequence of cy's  which satisfy Sy > by then guarantees an o j
unbounded sequence of critical values of J and hence Theoreml.5. As

will be seen shortly, (L.2) implies that such a sequence of ck's exists., ‘

PRI S U

For the proof of Lemma 1.57 we require the following standard

"Deformation Theorem" [14, 19].
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Lemma 1.60: let J e CYE,R) andsatisfy (PS) on Ay . Then
l 1 if c> M, e>0, and ¢ is not a critical value of J, there
exists ec¢€¢ (0,g) and Tne C([0,1]XE,E) suchthat

! (o]

1° n(tu)=u i ufTlc-T, c+T)

2O

n(l, A

cte) € Ao -

Proof of Lemma 1,57: Note first that by the definition of bk and Ay s

1
: 1

4 A (8)£ 8. Choose €= 3(c -b -6)>0, I ¢ (§) H1snota

% critical value of J, thereexistsan € and 71 asin Lemma L 60,

| Choose He Ay(6) such that

(1, 61) max J(H(u)) = ck(a) + € .
Uy
Consider N(1,H(u)) e C (Uk,E) . Note that if Ju] = Rk+1 or

)NE J(H(u))=J(u)=0 so MN(L,H@u))=u by

ue (B \B ,
o kel kX .
1 of Lemma ], 60 (since we can assume bk >0). Therefore
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'~.‘“’-"  ‘ < i

o Sl

1L v A

M(LH)e Ay . Moreoveron D, J(H(u))=b +86§Sc -ESc(6)-¢
viaourchoiceof & and . Therefore  N(LH)=Hsb, +8§
1©

on Dk , again by of Lemma 1,60, Thus 1N(,H)e Ak(é) and

by (L6]) and 2° of Lemmal.60,

(L 62) max J(n(LH(u))) Sc,(5) - e
Uy
contrary to the definition of ck(é) . Hence ck(a) is a critical

valueof 7J.

Remark 1,63: Note that ck(sl) = ck(az) if 5

Now to complete the proof of Theorem 1.5, by Remark 1,59, it
suffices to show that if ] satisfies (l.2) and p satisfies
(pl) - (p 4), c, = bk is not possible for all large k. Indeed we

k
have

Lemma 1, 64: If Cy = bk forall k = k.l.’ there is a constant
Y = y(kl) such that

(L. 65) b, = yk*/H -l

Thus comparing (1,65) to (lL.47), we see the inequalities

are incompatible if

b o (nt2)-s(n-2)
[V | n(s-1) *

But this is precisely condition (1,2) on s, Thus Theorem 1.5 1is

proved,




& e e ARy

— -y

e R T TERTE I REE e e TR e Rain a8

Proof of Lemma 1l,64: Iet k = kl and e>0, Choose HeAk

such that

(1, 66) max J(H(u)) = bk+ €.
ue Uk

Let fi(u)=H(u) i ue U, and f(u)=-H(-u) if -ue U, .
Since Hlg nE, is odd and continuous, H 1s well defined and
Ryl

?—I €N +1° Therefore

(L 67) by = max TR (u)).
k+1

But Dk+l = Uk U (-Uk) and by Lemma 1,18 and (L 66),

(L. 68) max T(B(w) = by +e+B (b +efM 1),
.Uk
Thus (1, 67) - (1. 68) imply
1
(1. 69) | by =b e+ Bl(lbk+s|”+1).
Since e >0 is arbitrary,
1
< v
(1.70) by = b + By(|b |7+ 1)

forall k = k;, An easy induction argument — see e.g, [9] -~ [10]
~— then yields (1,65).

Remark 1, 71: An analysis of Theorem 1,5 shows that by slightly

modifying several of the lemmas, the following result holds :

=20~
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Theorem 1, 72: Suppose p satisfies (pl) - (p4), f(x,¢) satisfies

(pl)’
(f) [£(x,¢ )] sa3+a4|g|°, 0=<o0< i
and

n+2) - (n-2)s
(1. 73) -L_n'()s_-{)——)_ > —p_-Ej .

Then the equation

Lu
u=20 , X e 902

p(x,u) +f(x,u), Xe Q

(1.74)

possesses an unbounded sequence of weak solutions .

Theorem 1, 72 generalizes a result of Dongand Li [1l] . We will

not carry out the details,

Remark 1, 75: The question of whether or not the growth restrictions on s

(1.2) and (1.73) are essential for these results remains open. In a very

interesting recent work [12], Bahri has given a partial answer . He

proved for
s-1
-au= ju|” Tu+f(x), X e Q
(1. 76)
u=20, X € aQ
for the full range of s:1<s< (n+2)(n-2)"1 that there is an open dense
set of fe Lz(ﬂ) for which (1,76) possesses an infinite number of

distinct solutions . One knows from an identity of Pohozaev [20] that

-21~-




o that even if f=0, the result is false in general if

. s = (n+2)n-2)".
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§2. The second order Hamiltonian system case ,

A result analogous to Theorem 1,5 holds for second order

Hamiltonian systems., Consider such a system:

(2.1) §+Via)=o()

where q e R" and v satisfies

vy ve cH(R?, R),

(VZ) These are constants a, aZ >0 and v >2 such that

V@] sa;+a,|q|” forall geR",
(V3) There are constants L >2 and Q>0 such that

0<uV(q) sq-V(q) forall |q =7 .

In (V3) and elsewhere Peq denotes the usual inner product
of two elements of R". As in §1, (V3) implies the existence

of constants aj, a4, 3 >0 such that
(2.2) -l-(q-\f(q)+a) = V(@) +a >a|q|pL forall q € R"
* v 3 = 4 = 55

We assume ¢ (t) is periodicin t., Without loss of generality we
can take the period tobe 1w, The functional corresponding to (2,1) is

2T

(2.3) I(q)=f0 [%Iélz

-V(g)-9-.q] dt .

1 W" 2,10
Hypotheses (Vl) - (Vz) imply I1e¢ C(ER) where now E = ( (S7))

with the nom in E given by




ar
uqu"={) (a2 +|a®yat.

Our main result is:

Theorem 2, 4: Suppose V satisfles (V) - (Vy), o ¢ (L3(s')?,
and

(2.5) v < 4p - 2,

Then I(q) has an unbounded sequence of critical values.

Asin §)], corresponding critical points are weak solutions of (2.1)

n
and it is easy to show they satisfy (2,1) a.e. Moreover if ¢e¢ (C (Sl)) ’

then these weak solutions in fact belong to (Cz(Sl))n R

When =0, it is known that Theorem 2,4 is true solely
under hypotheses (V;) and (V,) [8]. A result like Theorem 2,4 has recently
been announced by Bahri and Berestycki [13] who further require Ve C2

and in place of (2,5) have the more stringent condition v < 2u ,

Our proof of Theorem 2,4 closely parallels that of Theorem 1.5 .

Therefore we will be somewhat sketchy in our exposition here .

Lemma 2,66: If q 1is acritical value of 1, there is a constant a,

dependingon  [|¢|| ,  such that
L

21 2w
2.7 _{) (V(@) +a,)dt s-}-lL {) (g V'(a) +a,)dt = a6(IZ(Q) +1)1/z .
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Proof : As in Lemma 1.8,

Now we set up a modified problem for (2,1) . Ilet X, o
be as in §1 (with I(u) replacedby 1I(q) givenby (2.3)). Let

-1 2w
¢(q)=x<.xq){) (V(@) +a,) dt)

and set
2n 1 2
(2.8) I(q)={) [314]°-V(a)-y(a)p -+ q]at.
Lemma 2,93 If d € supp ¢, then
1

2 -
(2, 10) ]{) 9 adt| s ay(|I(a)* +1)
where‘ o depends on lo “Lz .
Proof : As in Lemma 1,13,

For ©¢[0,2w), let (Teq)(t)=q(t+9).

Lemma 2,11: There is a constant Bl dependingon [¢o ILZ

such thatforall qe¢ E and © € [O,27),
1

(2.12) [T@) - TTga)| = By(|T(a)|*+ 1),

Proof: Observing that  |lqf , = 1]'1‘equL2 »  the proof is essentially
L :

asin Iemma 1,18,
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1 4
X
! lemma 2,13: There are constants MO’ ay> 0 and depending on |
~ ol , suchthat whenever M=M,, J@=M, and o
* L
: q € supp ¢, then J(q) = oM,
~: Proof : As in Lemma 1,25 . )
1 .
Ji Lemma 2,14 : There is a constant M;>0 suchthat J(@)=M; and ;
2 T(a)=0 implles J(@)=1@ and I'(@=0 .
:
1 Proof : As in lemma 1,29,
-
] et A ={q ¢E[J@=c}.
i
3 lemma 2,15: J e Cl( E,R) and there exists a constant MZ >0 such
_ | that J satisfiles (PS) on AM .
- >
! Proof : Je Cl( E,R) follows from (V;), (Vz) and the smoothness .
1 :
" and foomof ¢, To verify (PS), we argue in a similar fashion to S
% Lemma 1.34., Asin (L36) with p chosen to satisfy (L 37),
# we get
. ‘d 2" 2 £ - )
, p“qmu +K = sfo Iqml dt +'E2' ag uqmuLP - a,(.||qm||L2
} (2.16)
: 2 P'eaS " 2
3 = ellanl”™ + == lanl, - elanl 2 -27lapl 2 -3 -
ki | Hence using the H8lder and Young inequalities as in (1, 38), we conclude
: {qm} is uniformly bounded in E, Writing
-26=
1
'y O e T R
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ar
I'(a,)Q = (1+T1(qmnfo (§,*Q+q - Q)at
(2.17)

2
-( 1+T1( qm))'{) A * Q dt + lower order terms

weé see

Baimaks s o o

' =
F(ay) = (1+T(a N a,, + elay)
where ® 1is compact, Thus the argument of Lemma 1, 34 shows (qm)

has a convergent subsequence and (PS) is satisfied,

As a consequence of Lemma 2.14, in order to prove Theorem 2,4,
it suffices to show J has an unbounded sequence of critical values,

This will be accomplished as in §1 by a comparison argument, Ilet

’ _,‘ ———
itk M3 it Bt sl Statattonsththaiin

epcr,e, denote the usual orthonormal basis in R" « Define

Vi = (sin jt) e, and Wik = (cos jt)ek for je Ny{o} and

it 20?25,

l=k=n, These functions form an orthogonal basis for E. Let

Ey= span{vjk,wjkl 0sj=sm, lsksi}

where l=i=n. By (2.2) there exists R mi > 0 such that

mi = We say

he C(Dmi’E) is equivariant if h(Tgq) = Tgh(@) forall ©ce fo,2n].

T =0 if aff =z R .. Tet D
lEmi flal =R

Let

R FEE 2L U

(2.18) rki ={he C(D,,, E)|h 1isequivarantand h(q) = q

ki’

whenever |lq|| =R; o a«cEy}.




f (2.19) bki = Inf max J(h(q)).
: he rki qge Dki

Let Ei. j.]  denote the orthogonal complement of  Ey ; ;

if 1#1 and Bi’osz‘;_l’n.

Lemma 2,20 Forall ke N, 1 =isn, p<Rk1, and h e Ry »

(2. 21) h(Dy,) n %B_n E"(L’i_l o

P

;_‘;i Proof : The proof of this lemma will be carried out in the Appendix,

Lemma_2,22: There are constants f32> 0 and koe N such that

for kako and l=i=n,

v+ 2
(2. 23) by = sz"‘z .

] 1
Proof : If k=1 and qe SBP n Ek,i-l’ d
(2, 24) q = |4
lal 2 = 1&l, -

and therefore
(2. 25) laf = zuc’;uLz .

Arguing as in (1,48) - (1. 49) using (Vz) and (2,25) lead to
l 2 v

The analogues here of (1,50) - (1,51) are

-28=
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(2.27) q = a,|qa] “¥ fa| 5"
|l uLv 7" u " “LZ
for all qeE and
lue
(2. 28) all , = x4
el = 4l

(unless i =1 in which case

for q e B‘,'(’ i-1
k=-1), Continuing as in Lemma ], 46 then yields

Next to construct critical values of J, let
Uy, = {qa= Tvk,1+1+Ql TE [o’Rk,Hl] , Qe BRk
»

where if

Ay = {He C(U,E) H|Dk1e Tyy

or qe (BRk 1+\BRki)an1}

1
and define
Cpp = Anf  max  J(H(q)).
Lemma 2, 29: Suppose Cki > bki = M2 . Let

Apq(8)={He Ayl T(H) sb  +5 on
Set

(2, 30) cki(é) = inf max

H eAki(G) qe Uki

-29-

i+l

and H(q) = q when

J(H(q)) .

k is replaced by

(2.23) ,

NEy 4» Ball=Ry 4y}

=10, V1= Va1 @ R = Ry g Let

Hall = R 44y

8 ¢ (0,c,, -by ;) and

Dy}




.
- y
RS S

A .

Then cki( 6) isacriticalvalueof J.

4

. ,

Proof : Essentially as in Lemma 1,57,

and 1l=si=sn,

Lemma 2, 31: It Cyy = bki forall k = k1

then there exists Y=Y (kl) such that

PP B T S

p/k-1
(2.32) by = YK .

EESYTOEINY VU

Proof : Let kakl, l1=i=n, € >0, and H“\k.l such that

" (2.33) max J(H(q)) s b, + €.
‘.I U
ki
Let ﬁ(q): H(q) for qe Uki and ’I\I(Teq) = '.l‘eH(Q) for
qeUy. Noethat ({T Uy |0c[0,2v]} =Dy ,, andby
! construction 'I:I is equjvariant, Moreover since He C (Dki sE),

N
flec(D y,),B) and H(a)=a i faf =R, . Therefore

1

"l He Ty 141° Now arguing as in Lemma 1, 64 with Lemma 1,18 replaced
; by Iemma 2,11, we find

% 1

%, =

4 (2.34) By, 141 S Byy + Pyllb P+ 1)

where bk, Th bk 1,1 if i=n. A slight extension of the

argument of [9] or [10] thenyields (2,32),.

v eTa—

The proof of Theorem 2,4 is now immediate on comparing (2. 32)

to (2.13) and recalling (2.5).

[N -
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Remark 2, 35: As in §l, a more general perturbation than ¢ may

be permitted using the above arguments. Indeed we have

i Theorem 2,36: If V satisfles (V))- (V;), @(tq)e C([0,2n]x R%, R%)

is 2w periodicin t and

|o(t, )] sa; + e ]|’

1

where 0so0<yp and v < 4p0 -2, then the system

g+ V'(q) = p(t)

‘has an unbounded sequence of (classical) solutions,

. _ We omit the details.
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Appendix

Our goal here is to prove

Lemma 2,20: Forall ke N, k=1, 1sisn, p<R.k1, and

herl,,
(2.21) h(Dyy) 2B NE 1 # 8 -

The analogous result in §l1, Lemma 1, 44, was proved with the
aid of the Borsuk-Ulam Theorem , The proof of Lemma 2,20 in turn
depends on an s!  version of the Borsuk-Ulam Theorem. In [21], the
following situation was studied: Let S1 acton R!X RZk
via a family of orthogonal transformations such

that Fix S1 = Rl x {o0}. For J<k we consider RZj

a subspace of RF via R = R x RZK-1 5 R x (0} . It was

to be

shown in [21] that

lemma A-1; let Q Dbe abounded invariant neighborhood of 0 in

R x R%¢ andlet fecC(oa,REXRY) where j<k and f

is equivariant, Suppose further that

f] (-1 is the identity. Then {x ¢dQ|f(x)=0}
("7 *x{o})n @

is nonempty.

Remark : If ¢ =0 and Fix S1 = {0}, it is easy to use e. g, the

index theory of [15] to prove Lemma A-1,
We will show how to use lemma A-1 to prove Lemma 2, 20. First the

special case:

-32-




d
' ; Llemma A-2: Let = {pe€ l"kilcp(Dki)CEmj forsome m and j}.
~ Then (2.21) holds forall o€ h.

Proof: Let he . Then h'l(Bp) is a neighborhood of 0 in
Eki . let Q be the component of h'l( aBp) containing 0, Then
QC Dki is an invariant neighborhood of 0 in Eki (i, e, X e Q

T 9 e ] » -L
implies & € VOe [0,27)) Let Pk, 1-1 Pk, i-1 denote

respectively the orthogonal projection of E onto Ey q-1° E]’(" i1
- ’ -

ctively, 'h h= fe C(8Q,E . C
respectively Then Pk, i-1 e C( X, 1_1) Since Ek,i-l
is an invariant subspace of E, { is an equivariant map. Note that

Egp = (€ E|Tgq =q forall ©c [0,2m)} = Fix s',

Since heh, h(@=qgq=1£f{qd) on E nDki'

On
With some obvious identifications we have
satisfied the hypotheses of Lemma A-1, Hence f§

has a zero Q on aQ, Consequently h(Q) = Pﬁ'i_lh(Q) €

aBp n Et,i-l . Thus (2.2l1) 1is satisfied,

Now we can give the

"o

Proof of Lemma 2, 20: let he Tki and m > k. Then Pmihe me
By Lemma A-1,

%
ii\

.
Poih(Dyy) N8B, NEC, £ 8.
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b Therefore there is a sequence of m's —» « and corresponding to

S qp € Dy; such that

‘ 1

; (A-2) Pm:lh(qm)e aBp n Ek,i-l'

; Passing to a subsequence if necessary, the compactness of Dk:l implies

qm—‘>quk1- Since

Ih) - P ;h(@ )| = [h@) - P ;h@] + P (h@-h(@ Nf —> 0

as m-—-wo, by (A-2)

1
h(@) e 8B, N B, |

and (2.21) is satisfied,
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