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1.0 INTRODUCTION

Many naturally occurring flows as well as those encountered in engineering applications
are time dependent. In such cases the velacity field responds to an imposed pressure gradient
or other external excitation in an extremely complex fashion. To illustrate the posgible
effects of time-varying conditions on fluid response, it is useful to consider a class of internal
flows that are called (equivalently) pulsating, pulsatile, or oscillating. Such flows are
characierized by temporally periodic variations of the imposed pressure, which may result
from (1) unstable combustion processes, (2} acoustic disturbances, (3) vibrations at flow
boundaries, (4) the action of reciprocating pumps, or {5) unstable pressure regulators and
valves. It is known from analysis {Refs. 1 through 4) and has been demonstrated
experimentally (Refs. 5 through 8) that flow pulsations may (1) promote transition to
turbulence, (2) alter the turbulent structure of the flow, (3) cause flow reversals during a
portion of a cycle, and (4) significantly augment or, in some cases, inhibit heat transfer. The
velocity field, moreover, varies in its response to a periodic pressure disturbance with the
peak velocity amplitude lagging the peak pressure amplitude by as much as 90 deg (i.e., one-
fourth the period of the disturbance) on the centerline of a tube. Perhaps the most striking
feature of bounded, pulsating flows is the observation that the maximum fluid velocity
frequently does not occur on the centerline of the duct or pipe so that (1) a greater portion of
the mass flow is carried in the annular region near the wall and (2} the instantaneous wall
shear stress may be significantly greater than in steady flows at the same Reynolds number.

It is obvious that. even in this relatively simple case, transient fluid motions may
introduce effects that cannol be ignored in conducting, or analyzing data from,
experimental studies. The complexity of the phenomena is such, moreover, that attempting
to draw conclusions on the basis of quasi-steady models is not advisable and often is a
serious error. In view of these considerations, it is necessary to develop practical
computational models that will allow the determination of the details of a variety of
transient flows common in AEDC test facilities to serve as a guide for both the establishment
of test procedures and the interpretation of test data.

Undoubtedly, the most general way to obtain reliable models of transient fluid
phenomena will be through the development of finite difference or finite element models
which solve the governing partial differential equations. Pending the development of such
programs and as an aid in their evaluation it is useful to develop mathematically exact
solutions to those specific problems which lend themselves to exact analysis. Various
analytical solutions have been proposed for the velocity field on pulsating flows. Sexl (Ref.
9) obtained a solution for the velocity field in a tube in which only a purely oscillatory flow
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existed. His results were extended by Uchida {Ref. 2) to pulsatile flow superimposed on a
laminar mean fluid motion. Although Uchida’s formulation is valid for pulsations of
arbitrary waveform, his results consider only the case of simple harmonic oscillations.
Romie (Rel. 3) treated the velocity and temperature field in laminar pipe MNows subjecied to
simple harmonic pressure pulsations in a study of heat-transfer mechanisms. The velocity
field in the developing flow near the entrance of a tube was treated by Atabek and Chang
{Ref. 10). Barnett (Ref. 4) obtained the velocity and temperature fields in turbulent
pulsating flows in determining the effect of simple harmonic longitudinal vibrations on heat
transfer in a tube.

It is the purpose of this study to obtain a solution for the velocity field in a fully
developed, turbulent pipe flow subjected to excitation by longitudinal disturbances of
arbitrary waveform. The particular cases to be studied will include (1} simple harmonic
pulsations (sinusoidal variation in time) of the pressure lield or longitudinal vibrations of
the tube, (2) coupled pressure pulsations and vibrations, and (3) pressure pulsations of
arbitrary waveform.

2.0 FLUID RESPONSE TO LONGITUDINAL PULSATIONS

The subject of this study is the motion of a fluid in a pipe when the fluid experiences
pulsations induced either by a time-varving pressure field or by longitudinal vibrations of the
tube. Two candidate cylindrical reference frames for formulating the problem are shown in
Fig. 1. In the inertial reference (rame (r', ', z), the **no-slip’’ condition at the tube wall
(r = R) requires specification of a nonhomogeneous, time-dependent velocity at the
boundary when the tube is vibrating. 1f, on the other hand, a similarly oriented coordinate
system (r, #, z) is chosen lo move at the velocily of the wall, a homogeneous boundary

r
X —— ——
- Y r X T s
o 9 y ‘\,G.J Ay \\
A \
N/ i
z z Ve ez
/
/
7
______ -~

We-Zwsin ut__

Figure 1. Comparison of inertial and tube-fixed
coordinate systems.
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condition will result, and the problem is simpler from a mathematical viewpoint. This latter
system, however, is noninertial, and the momentum equations must be modified to account
for this fact.
2.1 FORMULATION IN NONINERTIAL FRAME

The continuity, momentum, and energy equations for the isothermal flow of an

isotropic, Newtonian fluid in a noninertial coordinate system (Ref. 4) are given below.

Continuity: p (1)

Momentum:

DV ap 4%, 9 g 3 av, av, _l
x2S — =
P D- PR r?:n:1 e dc 2 ax| [(;1 Fb) ] (’}IJ # x ! r:'x.l (2)

Energy: ’I; DHP S = 0 {3)
1
where
av
D = i+ 'v'j 4 A= —L . and ® = dissipution lunction.
m dt 6::] ij

Comparing these equations to those obtained for an inertial coordinate system, one sees
that they differ only by the term g(dVifdt), which appears in the momentum equation. The
vector V. is the velocily of the moving reference relative to a fixed frame. For a simple
harmonic oscillation of frequency, w, and amplitude, Zo, directed along the Z-axis,* the
following relations may be established between the coordinate systems of Fig. 1:

=7 , B =0, z = Z-l-zol:usml 4

*Note that more complex vibrations may be ireated by introducing the appropriate reference motion here.
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Thus, if fJ, V, W are the components of the coordinate system velocity vector, V,, then

o~

Y

0 and R_‘ = —Z.ﬂw vos wl (5)

The relations (1) through (3) and (5) arc adequate ta describe the laminar flow of fluid in
a longitudinally vibrating tube. To obtain a formulation suitable for turbulent fows as well,
it is convenient Lo decompose any dynamic variable, B (such as pressure and velocity), into
the sum of a statistical mean value, B = b, and a fluctuating component, b’{t). Thus:

P =p-p’ \ ©)

It should be noted that if temporal averages are utilized, the period, T, over which the

average
.
|
b = _I f Bl xdi

A

is obtained must be small with respect to the period of the imposed oscillation Lo allow the
mean value to be time dependent. Introducing Eqs. (4) and (6) into Egs. (1) through (3),
assuming the fluid to be incompressible, and taking the average of the resulting equations in
accordance with Reynolds rules {(Ref. 11) leads Lo the following relations with respect {o the
noninertial cylindrical reference system:

Continuity:
-l-r}—lfru)e—iﬂl—‘--f—32 =0 (7
P gh rof Jde

r-Momentum

o du  vin vl du J

—+0— - - —- o — = — =L

dt dr 1 ae r dz £ dr




#-Momentum:

?l dv v dv L av

Ume o= p — W — = - — -

di ! ar t J4 r dz
1 @

2 v N 62\'

2 agr 0 gz

d ,— 1 -7 g
N 19 Hi 2
[ar bt Ve
z-Momentum:
du dw vdedw o 1d L
ot " or r g@ dz Pr?z+ Ta® 0S@
1 7 (raw) 1 Alw +azw
vl -2 owly [ Aw ©Cw
T ar ar rz 692 632

dr

il

T a0

]
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(v w’) 1 E’ (F\.—r-;)] 9)

_ [2 s 2 e 2w 4_0___] (10)

The energy equation, Eq. (3), simply siales that the dissipation, &, is zero.

These equations may be greatly simplified under the following assumptions: (1) the mean
flow is rectilinear, so that u = v = 0; (2) the mean velocity field is axisymmetric; and (3) all
correlations (\.Ti'_\Tj'_} are axisymmetric and invariant in the axial direction. The first and third
assumptions restrict the analysis that follows to the hydrodynamically fully developed region
of a tube. For steady, turbulent flows the condition is usually obtained within 10 tube
diameters from the entrance of the tube for Re = 10,000 (Ref. 12).

For these assumptions, the continuity equation reduces to the statement that w = w (r,

t). The momentum equations reduce to:

r-Momentum:

#-Momentum:

(1)

(12)
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z-Momentum:

dw 1dp 2 voa dw 1 d .-
El__——P—a-:l_'.uw COS“’L_?E("E)_:E {ruw” (13

The formulation of the problem is completed upon specification of the boundary
conditions. For a no-slip condition at the tube wall it is required that

wiR,t) = 0 (14)

Several other restrictions must also be imposed: (1} any solution must be symmetric about
r = 0; (2) any solution must be finite; and (3) all iransient effects must vanish as the
amplitude or freguency of pulsation becomes zero. Since flow near the tube boundary is
known to be laminar, all correlations must vanish at the wall. No initial condition will be
imposed upon the problem. Any solution to be obtained will, therefore, be quasi-steady and
correspond to conditions existing after the initial transients have been damped.

-

2.2 DIMENSIONAL ANALYSIS

It is convenient and instructive to obtain a dimensionless system of equations equivalent
to those obtained above. To this end the following dimensionless independent variables are
introduced:

r F4
r-—ml.ﬂ=ﬁ g-ﬁ (15)
The dependent variables are taken to be
Q. ¢ 0 = E2B v o 2 (16)
pl = 2 C
where the friction velocity is
Ur o g (17)
P

(Angle brackets, < >, denote the average over a cycle of the pulsation.) The reference
pressure, p*, is taken to be the pressure at the entrance to the tube. The correlations are
defined by

R, , - —— (18)

10
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Substitution of Egs. (15) through (18) into Eqgs. (11) through (13) leads to the following:

n-Momentum:

) o n-. n H|||| - va
R 4 =0
ap  dn K
4-Momentum:
] R, R,
P 2 — =10
dy i
f-Momentum:
J¥ a0 A “'-'a'i 1 av Re= d
Re, — = —HRet — wns Tk — — n— )= = = (nﬂuw)
v ar ac It n dy an n on
where
w R*
ﬂe\ = =

is the dimensionless frequency or vibrational Reynolds number,

U=R
i

Re* =

is the friction Reynolds number, and

is the dimensionless amplitude.

(19

(20)

(21)

(22)

(23)

(24)

The amplitude of a pressure pulse will be determined later (see Section 2.3), but is of the

form

Q.] {1, =)
A = e
r n“ll.m)

11

(25}
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where ) {1, o) is the amplitude of the time-dependent component of the wall pressure
coefficient far from the entrance of the tube and 1}, (1, o) is the amplitude of the steady
flow component.

In view of these equations, it is clear that the velocity field in a fully developed, pulsating
flow is given by a relation of the form

V. Vi n Red, Re,, A A (26)

The friction Reynolds number is related to the conventional Reynolds number, Re =
2<UU>R/p, where U is the spatially averaged velocity in the tube, by
of
Ret = Re [—
8
where C; is the Fanning friction factor (Ref. 12). When the mean velocity <0U> = 0, the
friction Reynolds number vanishes and must be replaced in the {-momentum equation by
the harmonic Reynolds number (Ref. 7):
w R 5".“
Re, —_— A Re

v v

The velocity, pressure coefficient, and correlations for no mean through flow are thus
nondimensionalized with respect to the harmonic velocity, Uy = wZ,,.

2.3 SPECIFICATION OF THE PRESSURE FIELD

Consideration must first be given to determining the form of the pressure coefficient for
various types of pulsations. Although an exact formulation will not be obtained, the
functional behavior of the pressure field will provide sufficient information to allow a

solution of the momentum equations.

The 6-momentum eguation, Eq. (20), may be integraied immediately to cbtain
B, - 5 (2N

For the correlation to vanish at the tube wall (» = 1), it follows that C = Qand Ry, = 0
everywhere in the tube,

12
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Direct integration of the n-momentum equation, Eq. (19), is also possible, and one
obtains

Q. & = Q0,4 Fg g r) (28)

r? I‘Il'll - Il‘ ny
g, 0 = R, (g.7) - —— dy
) 7

Note that while the pressure varies across the tube in a turbulent flow, this variation is
independent of the axial coordinate provided the flow is fully developed. For this case,
moreover, it is reasonable (o assume that at any given axial station the wall pressure
coefficient will exhibit a temporal behavior similar to the excitation applied at the entrance
to the tube. Consequently, for a simple harmonic pressure oscillation,

where

QUG = C ¢, e)-Q (1 e)ensr | =Chlr) (29)
| 0 | 2

where €, (i, @) is the mean value over a cycle of the wall pressure coefficient in the fully
developed region and @ (1,0) is the amplitude of the variation about the mean. At { = 0, it
follows that

Cols) = Q{1LO, ) = Q“U,O)—.-Q]“.O)cnsr (30)

if the waveform is undistorted. From Egs. (29) and (30) it follows that

QUL &) = €, =) (I ;\P cos )y @ (1,00 (1 4 A], cos 1) 31N

From Egs. (28) and (31), the {-momentum cquation becomes

2
ay AR o

r

Re

= -—f.?- Re* Qn“, wa) (1 :\p cos T) -

Re=

bod av .1 4a (32
Lo = —)-Re*= —{gR )
7 dn (q ) ° 7 0 T

13
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Mow the dimensionless mass tlow through the tube is

- |
Gr o= =2 2#! <¥> pdy (33)
puUIt? 0 .

IF this value is to remain constant over a cycle of the pulsation, it follows that <V > /97 =
0. Accordingly, averaging Eq. {32) over a cycle leads 10

. 1 A d<V> 1 4 .
Rat (42 Q“ (1, ) = H a n _'_r:'i'_;,‘— — He#* 1—? _(';; (q "‘“u\\-)} [34)
Multiplying Eq. (34) by » and integrating gives
, 2
2 Y _Rev g <n, > - RerCn, T, (35)

an 2

Evaluating Eq. (35) on the centerline of the tube shows that C; = 0. Furthermore, at the
wall <R,y > = 0; thus

C, = . 2 V> (36)
Re Qﬂil.m! &q p=1
From Newton’s law of viscosily it follows directly that
g<vV> — _He
on | n=1
So that
b
C, = ———— 7
2 Q (1,0} B9
The pressure coefficient variation in the fully developed region is, thus,
Qn.i ) = 2L A" cosr) + Q_(I, 0)(] + Ap“ cos r) (38)

14
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From Eq. (38), the {-momentum equation becomes

av 1 & ¢ dv Re* g
he, 20 = F(y+l LHAVY B2 0 (oh
" T o "aq) 7 odm T uw (39)

where, for simple harmonic pulsations, the forcing function, $(7), is
F(r) = 2Re* (1 - @ cos 7) (40)
with a generalized amplitude defined by

A Re?
@=A - — (41)
2 Re*?

It is noted, moreover, that while Eq. (39) was obtained for the case where pressure
pulsations and vibrations of a common frequency were the forcing function for the transient
fluid motion, the case of tube vibration alone {Ap = 0) or pressure pulsations alone (A = 0)
are also obtained. In lact, any pulsation for which 3Q/8¢ = F(r) can be treated by simply
expanding F(r) in a complex Fourier series, as will be shown in Section 2.5.

2.4 SIMPLE HARMONIC PULSATIONS

It has been shown that for simple harmonic vibrations of a tube and/or pressure
pulsations, the velocily field in axisymmetric, fully developed flow of a constant property
fluid must satisfy a differential equation of the form of Eq. (39). Since this relation is linear,
a solution is sought which will consist of a periodic motion superimposed on the mean flow.
Thus, let

Vi, 7)) = V (g) - ¥V (g 1) 42)

Similarly, in analogy with the Boussinesq exchange hypothesis (Ref. 11),

. , dv_ av]]
B = e [, (D w1 52 (43)

Substitution of Eqs. (41) through (43) into Eq. (39) allows one to separate the {-momentum
® equation into

15
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“in d¥
14 [(I 4 ——i)q—n t 2Re* = O (44)
n dg v /7 g

for the mean velocity component, and
av € av
| o . - L 6 LN} ) |
HP‘_ ':_;r— = U UN& 7T - n “"—t_jq [(] - v T]' 67? ] (45)

for the transient component of velocity. The boundary conditions corresponding to Eq. (14)
are V (1) = 0and V,{1,7) = Q.

2.4.1 The Mean Velocily Compoenent

Equation (44) and its boundary conditions are identical (o the Reynolds equation and
boundary conditions for fully developed, “*steady’’ turbulent flow in a tube. Since turbulent
flow solutions rely on agreement with experimental data as well as with the governing
€quations, many semi-empirical solutions Lo that problem have been proposed. Due to its
inherent simplicity, the solution proposed by Pai (Ref. 13) will be usecd.

The velocity variation across the tube is given by

\-‘”(rﬂ \'((li. ~on r}zl 1=~ r;E:") {46}

where V. = V(0). This rclation is an exact solution ol the Reynolds equation if the eddy
diffusivity is

w~im— 1) sl — 1]

f
m, m — 5 mis — . y =1
oL [ 1 I 1 1) ]rgm.__g] (47)

The cmpirical coefficients must be chosen so that the velocity profile accurately represents
the experimental data.

16
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If one differentiates Eq. (46) and evaluates the result at y = 1, it follows that

o - Re= (48)
2Vc

The parameters ‘‘s’’ may be interpreted as the ratio of the wall shear stress in & turbulent
flow to that in a laminar flow with the same centerline velocity (Ref. 13). Fors = 1, Eq. (46)
reduces to the fully developed laminar flow profile, and the eddy diffusivity vanishes. To
evaluate ““m”’ it is only necessary to require that the mean velocity predicted by the profile
should match those velocities experimentally observed. Thus (Ref. 4),

-~

¥
s — 2 —

v

[

m = —_— (49)

2__\’ -1
¥
c

From these relations, it is readily shown that for any specified mean velocity, i?, both
empirical constants can be determined if the wall shear stress, < ow>, and the centerline
velocity, V., are known. Figure 2, based on the data of Haberstroh and Baldwin (Ref. 14),
presents the values of the empirical constants for 4,000 < Re =< 200,000. For Reynolds
numbers in excess of 10,000, both parameters are accurately described by the power law
relations shown in the figure.

Figure 3 compares Pai’s relation (Eq. 46) to data obtained by Nikuradse for Re =
23,000. The agreement is good over the entire tube radius although Pai's result
underpredicts the experimental data by about 10 percent near the wall. Figure 4 shows the
velocity profile and eddy diffusivity variation across the tube for several Reynolds numbers.
It is noted that for high Reynolds numbers €m,/ v approaches a constant value across the
tube. This observation will be of some importance in the following section.

2.4.2 The Transient Velocilty Componeni

Noting that cosT = Re (e"”) suggests a solution to Eq. (45) of the form

Vi) = Rc[l’(q)cir] (50)
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Making this substitution in Eq. (45), one obtains
( (I‘:I 1 f"ll 7} (l:I:I —
1+ —p_ [ - T_] |+ y_ i —;— f-i Rf‘\_ r- -a (5])

where primes denote differentiation with respect 10 n. The boundary condition
corresponding to a no-slip requircment a1 the wall is simple f(1) = 0.

Equation (51) can be solved by numerical technigues for any arbitrary eddy viscosity
distribution. One procedure for obtaining such a solution is presented in Appendix A. The
main objection to such solutions, however, is a lack of definilive experimental data on the
nature of the turbulent exchange process in pulsating flows, BogdonofT (Ref. 6) concluded

100

Parameters m and s for Steady Velocity Component

Ll 1 L 1 Ll ]

L
4 6 810 20 0 60 80100 200
Reynolds Number, Rex 1073

Figure 2. Variation of velocity profile parameters with
Reynolds number.
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on the basis of hot-wire studies thal the exchange process was altered but presented no
quantitative information. Mickelson and Lawrence (Ref. 15), on the other hand, showed
that acoustic excitations affect the spectrum of turbulence only in the immediate vicinity of
the exciting frequency. Recent experiments by Clamen and Menton (Ref. 7) show that
pulsating Mows with no mean motion begin to exhibit intermittent turbulent behavior when
the harmonic Reynolds number (Re;, = A Re,} exceeds 1,000 and are fully turbulent for Re,
> 3,000. None of these studies permits the exchange process to be modeled in detail
although it is probable that turbulent exchange is increased in the presence of pulsations. In
the absence of the required information, some insight into the influence of pulsation-
induced turbulence can be obiained by assuming that the eddy diffusivity associated with the
transient velocity field is spatially invariant. By analogy to the eddy viscosily distribution in
steady Mows (Fig. 4), this assumption should approximate the physical behavior if the
vibrational and harmonic Reynolds numbers are large.

For eq,/v¥ = constant, Eq. {51) becomes

£ rl; =i Rei - —G" (52)
where
Ht:‘_
L S
"0‘. - (rn (53)
1
L+ ——
ll
and
VL (-f
s — (54)
|+ —
1

A particul'ar solution to Eq. (52) is

(35)

The homogeneous form of Eq. (52) is a modified Bessel equation of order zero. Its solution
is

f, = C, l”(i!az a* 'q)i (:zl\'u(i"“a’ q) (56)
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where a* = /Re; is commonly termed the frequency factor. The general solution Lo Eq.
(52), then, is the sum of Egs. (55) and (56). For the boundary condition f(1) = 0 and the
constraint that f(n) must be finite for all values of 5, 0 < =< 1, the general solution may be
written as

" " ‘
f(g} = l—q—gLﬂ —I:, (57)

]{ev ( lc(i}; at)

It is convenient to express this result in an alternative form. First, it is noted that a
modified Bessel function, 1, {i¥/2x) may be expressed in terms of the Kelvin functions ber,x
and bei,x by (Ref. 16)

[ (i%a) = ber,x + i bei x (38)

| 2
An equivalent form ol Eq. {58) is the polar representation
IV (il'f’l x) = MV {x} exp I: i 9V (x) — L;—”:I {59)
where the modulus is

Mu {x} = [berf (x) bui:‘i (x} ] 4

and the phase is

hei_ x
6:.' (x) = tan~! Y

buer
¥

Substituting Eq. (57) into Eq. (50) along with the definition given by Eq. (59) gives

M_ (8% 7)

& sin 7 — —— sin[r—-ﬂn{a*q)—ﬂo(a')]} (60)

ke

¥ W T) =
l(rl‘ ) M" (a*)

v

e g—

Detailed discussion of this result will be deferred until Section 3.0, but two effects are readily
apparent from the equation. First, the magnitude of the transient velocity is directly
proportional to an attenuvated value of the generalized amplitude. For a fixed value of &,
high frequencies tend to diminish the effect of pulsations. Secondly, the fluid velocity is out
of phase with the excitation, @ cos 7, by an amount which varies with location in the tube.
On the centerline of the tube, it is readily apparent that the phase lag approaches 90 deg.
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2.5 PULSATIONS OF ARBITRARY WAYEFORM

In many cases of engineering significance, the forcing function, ¥(7), of Eq. {39} is a
periodic function of greater complexity than the simplc harmonic pulsation discussed above.
If, however, the function is bounded and has a finite number of discontinuities in the
interval P = 27/w, it is known that a Fourier trigonometric series will converge to the value
of the forcing function in the interval. Consequently, many practical waveforms can be
represented by a Fourier series in the various harmonics of the basic frequency, w.
(Turbulent fluctuations, however, are aperiodic and require a Fourier integral approach.)

Considering the approach of the preceding section, it is desirable (o express the forcing
function by the complex scries

Fi) = .H” + 2 nz H einr (61)

where

cLP .
Hn = —:;f lrye inr g (62)

[n Appendix B it is shown that this expansion is a special case of the more general complex
Fourier expansion. It applies for any F(7) which is real and satisfies the Dirichlet conditions.
The limits of integration in Eq. (62) extend from an arbitrary point C of a cycle to the initial
point of the succeeding cvcle while the summation indices are harmonics of the basic
frequency of the oscillation, w = 2%/P.

A Torm of the velocity field is sought which is consistent with Eq. (61). Accordingly, let

Vi = Ve BV (et (63)

n=1

Similarly, the correlation function may be written as

I av, I ~
Rpw = = v Re* 'Em( (n) dn {ml () In 2 \“er (64)
H ) 7 ik -
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Substitution of Eqs. (61), (63), and (64) into the axial momentum Equation, Eq. (39},
leads to a separation of variables in which the following relations must be satisfied:

" dy
1 o °
bl )] w (65

‘l d \ F_'"_I)f_‘_:}_ ; }\eim':O (66)
E]E Iq[(l - P ln}{cv\rniﬁ}(ng

Equation (65) governs the mean fluid motion and is identical (0 Eq. (44) for Re* =
H /2. Since the boundary conditions to be satisfied are V(1) = ¢ and V. {1) = 0, the
solutions propesed in Section 2.4.1 for Lthe mean motion arc applicable here as well. For Eq.
(66) to be valid at all times, it follows that each harmonic must obey a relation of the ferm

I t'm:l rl\-'n
;?' E i —u— (I-q —II'IR(!\.\."IIl = —2Hn

or

{IHI I cl'lll n ([:'ll
b — J¥o e sl — ” \"I’I—inﬂe\_\fnz—2}(n {67)

The similarity of Eqgs. (67) and (51) is readily apparent, as is the observation that again a lack
of information exists on the eddy diffusivity associated with the transient fluid motion. As
before, the heuristic assumption will be made that the eddy viscosity, €m,,is spatially
invariant. The solution to Eq. (67} is then

M (a7} l[gofa:-ql—ﬁolﬂf.!]
e -

1 a‘ (68)
n n Re ’ M.:.(a:)

L
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where

(69

Introducing Eqs. (68) and (46) into {(63) completely specifies the velocity field in the tube
at any time. For computational purposes it is expedient to compute the elements of Eq. (63)
individually and sum the results. Additional savings in computational time are obtained if
the various coefficients can be related to the coefficients of a Fourier trigonometric series
(see Appendix B) so that a Fast Fourier Transform (FFT) algorithm (Ref. 17) may be used.
With this in mind, note that Eq. (62) may be rewritten as

2H =4, -iB

1 (?0)

where

I}
2 Py
_ =z ,',' T '-‘ r' = ..’ 2..-
A, pf Fiar vos nr'd ne )
H
F'
B, = () sin nrdr” - 1.2
W=7 (Y sin nr ds n = l.z... (72)
. .

From Eq. (70) and DeMoivre’s relation

and

e = cosx + isinx

it can be shown by a straightforward substitution that the real part of the nt* harmonic of the
velocity may be expressed as

M (a*n)
ae[\r (7 ei"r] R « Tn 7 [An (s)cos AO, - A, {r)sinA an] (73)
" n Re M {ar) 1 2
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where

,'\nl(r) = B, cosnr — A sinnr (74)
A (:) = A_cosnur+ B sinns (75)
ﬂan = aofa:\r“_—ﬁofa:‘l] ('}‘6)

An equivalent result to Eq. (73) is

A M {a 7! i
Re [\"“(q]cmr] - . sin nr — ———————  sin [nr- 8,(an) —On(an)]

n R M (a*)
sl n
B I'\-In(la1 n)
- B COS N7 — ——— (o8 [nr+ Bo{ﬂ:rﬂ -Gu(a;]] ("
n R M Bt

As in the case of simple harmonic oscillations the amplitude of the transient component is
attenuated at high frequencies, and phase lags exist that depend on radial location and
frequency. A more detailed discussion of these results and, in particular, the effect of
waveform on the solution, is presented in Section 4.0,

3.0 THE VELOCITY FIELD FOR SIMPLE HARMONIC PULSATIONS

The response of the fluid 1o a pulsation of the form described by Eq. (40) is simply the
sum of Eqs. (46) and (60). Although this sum is a closed form analytic solution of the
transient Reynolds equation for fully developed flow, the complexity of the equations and
the number of auxiliary relations to be solved make its evaluation practical only by use of a
computer. A program identified as PULSAT has been written for an IBM 370/165 digital
computer to evaluaie the velocity field in fully developed, laminar or turbulent, steady or
pulsating flows of simple harmonic waveform.

3.1 THEORETICAL RESULTS

The radial distribution of velocities in a flow with a mean Reynolds number of 10,000 is
shown in Fig. 5 lor scveral times during a cycle of pulsation. Ai 7 = 0, the velecily profile is
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seen to correspond to steady flow in a tube at this Reynolds number except for a thin layer of
fluid near the tube boundary where the velocity increases rapidly to a value in excess of that
observed on the centerline before decaying to zero at the wall. It should be recalled that, due
to the quasi-steady nature of Lhe solution, r = 0 corresponds to the start of a cycle but not to
the initial time at which pulsations are induced. With increasing values of 7 the magnitude of
the velocity increases until the maximum value is obtained at 7 = 90 deg. The magnitude and
extent of the velocity increases near the wall are also seen 1o vary with time during a cycle.
After the maximum velocity is obtained, the velocity is seen to decrease until the minimum
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> L g 30
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J 7 m
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3 Re- 10,000 X Vi)
° Rey = 20, 200
“Z 7= 13.5x 10°
* 2k sp-4.13
£ g
:; Oy 10
E
2
3
& 0
=
g 8 T = 210 deg
_.1 -
_2 :
-
_3 -
_4 -
il ] 1 1 J

0 0.2 0.4 0.6 0.8 1.0
Radial Location, n

Figure b. Temporal variation of local velocity
for harmonic forcing function,
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values are obtained at 7 = 270 deg. It is apparent and will be seen in later results that during
a cycle there are times at which the core velocities are positive while near the wall the velocity
is negative,

Since the forcing function is a maximum at 7 = 0 and a minimum at = = 180 deg, the
centerline velocity lags the forcing function by 90 deg. This behavior was anticipated on the
basis of Eq. {60}, which shows that the phase lag depends on both the frequency parameter,
a* = +fRe,, and the radial location, 3. In Fig. 6, the phase lag is plotted as a function of 3
for two vibrational Reynolds numbers. The fluid phase behavior is of significance in any
application in which a secondary response to the forcing lunction (such as particie dynamic
effects, flow-induced vibrations, etc.) are of importance. A striking example is that some
techniques proposed for sizing particles contained in a flow (Ref. 18) relate the particle drag
10 pressure pulsations imposed upon the flow. Failure to properly account for the fluid
behavior could lead to serious errors in such determinations.
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0.70 0.80 0,90 1.00
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Figure 6. Phase lag of the velocity for a
simple harmonic pulsation,

The effect of the mean throughflow Reynolds number on the velocity observed at
various times during a cycle in which pulsations are vibration-induced is illustrated in Fig. 7.
As would be expected, the gross effect of increasing Reynolds number is to diminish the
overall influence of the pulsation. Indecd, for a fixed value of A and Re,, the transient
component of velocity, Eq. (60), is independent of Reynolds number provided the turbulent
structure is unaltered or varies independently of Reynolds number.
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Specifying the amplitude of the vibration at the tube boundary, A, is not, however,
equivalent to specifying a consiant generalized amplitude, as may be seen from Eq. (41).
Since the transient velocity component profiles normalized with respect to the centerline
values V(0,7) are identical for all Reynolds numbers and vibrational Reynolds numbers, the
effect of amplitude may be studied by simply considering the magnitude of the centerline
velocity. This evaluation is facilitated if the radial distribution fucntion of Eq. (50) is

written as

A

Normalized Velocity, Vin, )V,
=

T =90deg, Re=5zx 10°

Re = E,Um\q

- — — — Re= 20,000
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- S sy,

h—

T = 270 deg, Re =5 x 10°
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Figure 7. Temporal variation of velocity for

several Reynolds numbers.
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() = T+ if,(p) (78)
where, from Eq. (57),
Q@ JM. (e m

flp) = —-——2 siu[ﬂo(a’] —eor,a'm] (79)
R M ()

and

@ M, {a*p)
1——

Yy M (a')

) = - con[6, (8% - 608" n)] (80)

The transient velocity component is then, simply,
Vl(q, i) = f cosr—1 sinr (81)

Various authors (Refs. 3 and 6) definc the strength of pulsation as the ratio of the
maximum velocily amplitude on the centerline of the tube to the mean throughflow velocity.
In the present notation, this may be writlen as

\'1(0, )

§ - 2 —
: 82)

n

where 7* is the time at which the maximum value of the transient occurs. From Eq. (81),
Vi(y,7) attains a maximum value for

I r)
g}

-1

rt = tan

The corresponding maximum centerline value can be obtained as (Ref. 4)
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- * 2
fl" a CO~w ﬂn I: a’ ] 1

Re M1a') M2 (a%) ®)

For all but extremely low frequencies, the modulus My(a*) is extremely large, and the
bracketed term in Eq. (83) approaches unity. From the definition of the friction Reynolds
number and the mean throughflow Reynolds number the strength of pulsation is then

Gs 2 {T Rex
T 84

From Eq. (41) it is readily apparent thal a constant pulsation strength is obtained in a
vibrating tube (A, = 0) for

Al
v

g .
It R (85)

Similarly, the strength of pulsation for pressure-induced oscillations (A = 0) is
e (86)

Since the friction Reynolds number is related 10 the mean Reynolds number through the
Fanning friction factor (see Section 2.2), one of the parameters can be eliminated from these
equations. For example, for turbulent flow in a pipe (Ref. 12},

_l. -
¢ = 0.046 Re "° (Re < 10%)

Thus

A Re
S - 13.19 ‘ (87)

Re!?

for vibrations, and
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A
S - 01517 ——— (88)
Re, Re®!

for pressure pulsations. [t loliows, therefore, that the effect of pulsations is dimished at
large Reynolds numbers for either pressure-induced or vibration-induced oscillations
although this trend is much more pronounced in the latter case. On the other hand, high
frequencies increase the pulsation strength for vibrations but attenuvate the effeci of pressure
pulsations.

The effect of frequency on the velocity profile in the vicinity of the tube wall is shown for
several vibrational Reynolds numbers in Fig. 8. Since these profiles, as well as the centerline
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Figure 8. Influence of vibrational Reynolds number
on transient velacity component.
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velocity (Fig. 9) are, ostensibly, independent of the mean flow characteristics, the trends are
applicable for all Reynolds numbers. It is seen that as the frequency is increased the local
maximumn ‘‘moves’’ nearer the wall. This phenomenon has been termed the “‘annular’’

R
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I

a=(, 88 Note: V‘ito,ﬂ for other amplitudes,
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Vi1~ Vit0,t) afn

]
I

Centerline Velocity Transient, V4(0, T}
(=]

-8 e 1 ] ] L ] l | L | | |

0 a0 120 180 240 300 360
Dimensionless Time (T}, deg

Figure 9. Temporal and amplitude dependence of transient
centerline velocity.

effect and has long been of interest to fluid dvnamicists (Refs. 1 and 9). The actual location
and magnitude of the maximum during a cycle is, however, a function of time, as could be
inferred from Figs. 5 and 6. To illustrate the frequency dependence of the maximum velocity
location, it is useful to consider the root-mean-square (rms) value of the transient velocity.
From Eq. (81), this is simply

2 ¢
Y !
< V?> _ v (89)
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The variation of the rms velocity is shown in Fig. 10 for a range of vibrational Reynolds
numbers at a mean flow of Re = 10¥. It is seen that, for this vibration-induced example, the
rms velocities increase by nearly three orders of magnitude when the frequency is varied by a
factor of 20. (Note that for water in a 1-in.-radius tube, the corresponding circular
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l
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107 I | | ’\ |
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Figure 10. Effect of vibrational Reynolds number on
RMSE velocity component,

frequencies are 0.1 Hz at Re, = 100 and 20 Hz at Re, = 20,000. For air, Re, = 100 implies
that { = 0.4 Hz.) The annular effec is clearly seen, and the maximum velocity location, »*,
is very near Lhe wall at large values of Re, (Fig. 11). It can be shown, moreover (Ref. 19),that
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1.23 (90)

This result is of importance in calculations of pulsating flow characteristics since (1)
important details of the flow may be lost if the compurational grid is not varied as the wall is
approached, and (2) alterations of the turbulent exchange process may be related to the
location of these maxima (Ref. 4).
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Vibrational Reynalds Number, Re,,

Figure 11. Variation of transient component maximum
value location with frequency.

Both the analysis and the PULSAT program allow the determination ol the velocity
profile for the case where a constant eddy viscosity is associated with the velocity transient.
While decidedly heuristic, the assumption leads to some interesting results, as may be seen in
Fig. 12. The velocity profiles shown during the first half-cycle of a pulsation have been
computed on the basis that (1} only molecular diffusion occurs (e, = 0) and (2) the
turbulent diffusivity is equal to the spatial average of the eddy viscosity associated with the
mean low, ¢n, =é;::;. A decided effect of ¢, # 0is observed at all times. In general, since

the governing parameter for the altered case is

. Re,
Ret - ———
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the solution behaves as though il corresponds to an ey, = 0 flow at lower frequencies. The
phase shift, moreover, depends on Rey!’2, and thus events occur at different times in the
cycle than would be expecled if alieration of the diffusion mechanisms were not presenl.
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Figure 12. Near-wall velocity profiles for turbulent
exchange modification.

3.2 COMPARISONS WITH EXPERIMENT

Data on the detailed variation of the velocity ficld in pulsating flows are extremely
limited although considerable experimenial information on the effect of pulsations on heat
transfler exists (Ref. 8). Richardson (Refs. 1 and 20) measured the rms velocity field in a
circular tube in the absence of a mean flow component and identified the annular effect
discussed earlier. Additional hot-wire studies were made by Bogdonofl {Ref. é) and
Mohajery (Rel. 21} for air flows at mean Reynolds numbers in the range from 50,000 10
100,000. Both investigations showed that pressure pulsations altered the eddy viscosity
distribution in the flow, bul whercas Mohajcry concluded the effect was not appreciable a1
any radial location in the 1ube, Bogdonoff obscrved significant increases in eddy viscosity
near the tube wall. In the latter study, however, the author observed that this was a tentative
result since it was difficull 1o compensaie for probe blockage and compressibility effects.
Recently, Clamen and Menton {Ref. 7) used a hydrogen bubble technique 10 study water
flows in a vibrating tube from Re = 0 10 Re = 2,900 for a range of amplitudes and

35



AEDC.-TR-30-31

frequencies. Since these data conform better (o the incompressible assumption of the present
analysis, the comparisons that follow will be based ¢n their data.

Figure 13a compares the velocily distribution measured in a purely oscillatory flow (Re
= () to the present theory for several times during a cycle. Clearly the theory and experiment
are in good agreement at the times shown with the exception of the small amplitude
oscillation for r = 30 deg. Since the hydrogen bubble technique requires svnchronization of
a flash photograph with a particular cycle time, it is possible that the discrepancy is due 10 a
timing error. (For w = 1.2 Hz, a 0.1-sec error would readily account for the difference.) In
Fig. 13b, theory and experiment are again compared fer a mean flow Reynolds number in
the laminar flow regime (Re = 1,535). For both cases the agreement is excellent.

A final comparison is madc in Fig. 14 for a turbulent mean flow at Re = 2,900, At 7 =
0, the present theory represcnts the flow accurately and represents a decided improvement
over a laminar flow theory used in Ref. 7. For laier times in the cycle, however, the turbulent
theory grossly overpredicts the measured velocily. While this may be due (o a deficiency of
the theory, it is more likely due to one or more cxperimental Tactors. Clamen and Menton
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Figure 13. Comparison of experiment and theory in
laminar pulsating flow.
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note that at turbulent Reynolds numbers the flow was “‘highly disturbed® so that the
photographic representation of the velocity profile was smeared. Under those conditions the
hydrogen bubble technique shows a range of velocities so (hat the values obtained are highly
dependent upon the fashion in which the data were reduced. The possibility of timing errors
also exists, as was noted in the discussion of Fig. 13a. For w = 1.12 rad/sec, the
displacement in centerline velocity from the theory could be accounted for by a time delay of
0.4 and 0.2 sec for r = 90 and 210 deg, respectively. While such shifts seem excessive, some
credence is lent to the possibility by comparing the theoretical results for r = 60 deg to the
data for 7 = 90 deg. The agreement is excellent for < 0.80.
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Figure 14, Comparison of experiment and theory
in turbulent pulsating flow.
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Since the model developed in Section 2.4 allows the investigation of a uniform alteration
of the turbulent structure of the flow, such a comparison is made in Fig. 14. Clearly the
assumption that ey, = 0is adequate at 7 = 0. At 7 = 90 deg (or 60 deg), however, ¢, = 0
leads to an overprediction of the data obtained near the wall. By letting ¢, = Se;;:;, the
velocity profile is damped relative to the undisturbed (ey, = 0) profile for the wall region.
The results are in error at intermediate locations 6.4 = n < 0.85, however, so that an
assumption of ¢, = constant fails to predict the velogity distribution across the tube. From
these limited data it appears that an accurate model of the alteration of turbulence structure
must take into account the radial variation of the exchange coefficient.

4.0 THE VELOCITY FIELD FOR ARBITRARY WAVEFORMS

The analysis of Section 2.5 shows that the response of the fluid velocity to a forcing
function of arbitrary waveform can be obtained by expanding the function in a complex
Fourier series. Each harmonic of the transient velogity can then be obtained in terms of the
various harmonics of the pressure disturbance. The amplitude of the velocity harmonics is
determined by the Fourier coefficients required 1o describe the lorcing function. A computer
program (ARBPULSAT) for evaluating the velocity response has been written for
performing such calculations. The results of computations performed via ARBPULSAT for
several waveforms are described in the remainder of this section. No attempt has been made
to comprehensively study the effect of waveform on the velocity distribution in a tube, but
such studies are within the capabilities of the program.

4.1 EFFECT OF WAVEFORM

To study the possible influence of waveform upon the velocity distribution in pulsating
flows, four different types of symmetric waves were considered. In each case, the initial and
final third of a cycle were considered to be at a constant pressure while the pressure varied in
the central portion of a cycle to produce (1) an instantaneous pressure change followed by a
later instantaneous decay, (2) a linear rise followed by later linear decay, (3) a linear risetc a
maximum value foliowed immediately by a linear decrease, and (4) a half-cycle sinusoidal
variation from the initial pressure. These pressure variations will be called, respectively, (1} a
square wave, {2) a trapezoidal wave, (3) a triangular wave, and (4) a sinusoidal wave in the
following discussion.

Figure 15 shows the four waves which have been chosen so that in every case the mean
pressure coeflicient over a cycle corresponds to a time-averaged Reynolds number of 104,
Three amplitudes are shown in each figure, corresponding to peak-to-undisiurbed pressure
amplitudes of £,/Q, = 100, 10, and 1.5. Also shown in 1he figures are the Fourier series
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representations of the maximum amplitude wave for 2,048 (2!1) sine and cosine transforms,
Egs. (71) and (72). Ln all cases except the square wave the greatest departure of the computed
value, Qf, from the input function, @, is |{, — Qf| < 1.0. Since the minimum value of
Q| = 28, the error in representing the function at any point of the cycle is less than 4 percent
and is typically better than 1 percent. Even better accuracy was obtained for lower values of
the amplitude. The square wave is discontinuous at + = 120 and 240 deg and converges to
172 (2 + 1,). Since the computed limit differs from this value by approximately 1/3 it is
clear that more coefficients are necessary to accurately describe the square wave in the
immediate vicinity of the discontinuity. Since this is a localized error, it was not deemed of
sufficient importance for the present study to warrant the additional computation time.
(Since an FFT routine compules 2" coefficients, the next possible choice was to double the
number of coefficients used.)

The centerline transient velocities, V(0,7} = -é. V.(0,7), corresponding to the various
wavelorms are shown in Fig. 16. It is seen that regardless of waveform the centerline velocity
histories are strikingly similar in both shape and amplitude. The observed '‘sawtooth’
history was ‘‘somewhat unexpected and immediately raised a question as to whether the
velocity field converges as rapidly as the series representation of the pressure (ransient, To
explore this question it is useful to rewrite the forcing function as

Fiar = .r'!:u+f‘f|tr| (9D

From Egs. (61) and (70), then, one can write

Dhi

'{fl 7)) = 2 (An Cos NP - B" Sin nr)

n=1

or

Tlfrl - 2 (:n(.os (nr-—r_";n\ (92)

where

(93)
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On the centerline of the tube a similar result can be obtained if it is noted that
M, (a,*) > > > | for all but extremely low frequencies, Thus for Re, > 1, Eq. (77) reduces

to
N c,
E —n ‘-.-'-'. n IIT - én) (94)

where C, and ¢,, are again given by Eq. (93). Clearly this result converges more rapidly than
F1(7) so that for any identical number of terms the series for V,(0,7) will provide a better
representation of the result than does that for F,(r). The expected rapid convergence of
Vi(n.1) is substantiated by Fig. 17 where the transicnt velocity corresponding to the partial
sums, E V(n,7} is compared to the result obtained for N = 2!l Convergence was leasl
rapid at r = 120 deg, which is where the pressure pulse representation was least accurate,
Ewven in this ““worst”’ case, the error for as few as 50 terms of the series was less than 0.65
percent and was virtually unaffected by radial location. It is concluded, therefore, that the
velocity response observed on the centerline of the (ube is an analytically valid result and is
not due to any computational deficiency of the serics representation.
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Figure 17. Convergence of transient velocity series
for square wave excitation.
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Some insight into the nature of the behavior of the centerline velocity is gained if the
following integral represcmation is considered. Left f(v) be an arbitrary function
representing the variation of the pressure around the mean and consider the integral
transform

;
glr) = g, - 'a_fu flrYds (95)

If f(1) = a cos 7, a simple harmonic forcing function, Eq. {95) becomes
glr) = aavosr (96)

From Egq. (60), the fluid response on the centerline of the tube is then

a~mnr

A 97

$0 that the two results are identical if « = Re,~! and g, = 0. For the square wave, Fig. 15,
f(7) = 1/3(Q% — Q) for the initial and final portions of the cycle while for 2x/3 < 7 < 4n/3,
f(r) is equal 10 2/3 {fy — Q). The transform thus is of the form

glr) = g, 1+ aKz (98}

so that the centerline velocity varies linearly in each region of the pulse. The slope aK is,
however, negative in the inilial and final stages since €, is less than 2, and is positive in the
central region. The initial and final regions of the other waveforms also lead 1o a linearly
decreasing function, but the response to the trapezoidal wave is parabolic during the linear
rise and decay at the beginning and end of the pressure pulse. The triangular and sinusoidal
waves, moreover, vary in a parabolic and cosinusoidal fashion, respectively, throughout the
central region of the pressure pulse. The centerline transient velocity in a pulsating flow is
accordingly given by a simple integral transform of the excitation for all waveforms. This
behavior is observed al most radial locations in the tube so that molecular or turbulent
diffusion is significant only in the vicinity of the tube wall. This is borne out by Fig. I8,
where the fluid response to a square wave is shown at several radial locations in the tube. For
1 < 0.90, the velocity history is nearly independent of location, but near the wall significant
departures both in the magnitude and waveform are observed. It is concluded, thercfore,
that viscous interactions become important near the boundary.

It is clear also that phase shifts are characteristic of the fluid response for the various

waveforms studied. If one defines the phase shift as the time delay between the artainment
of maximum pressure and velocity, a comparison of Figs. |5 and 16 shows that the
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centerline phase lag varies from 40 deg for (he sinusoidal variation to 120 deg for the square
wave. It is apparent from Figure 18, moreaver, that the phase lag is a function of radial
location, as was shown for simple harmoenic oscillations.

0.4 r
0.3
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Figure 18. Comparison of velocity response to square wave
at several radial locations.

The radial distribution of the iransient velocity component for square and triangular
waves is shown in Fig. 19. The annular flow phenomenon noted for harmonic oscillations is
retained in both cases, and the magnitude of the maximum velocity is relatively insensitive Lo
waveform for al! excitations studied. A slight variation in the location of the maximum
velocily point docs resull, however, for different torcing funciions, Figure 20 illustrates the
effect of vibrational Reynolds number on the velocity distribution obtained in response to a
trapezoidal wavctform. Clearly, increasing frequencics move the maximum velocity point
nearer the wall and also decrease the amplitude ol the velocity transient. Both effects were
also observed in Section 3.0 for a simple harmonic oscitlation. The lowest Irequency case
(Re, = 800) compares the square and triangulai wave results 1o those obtained lor the
trapezoid and emphasizes that for comparable amplitudes (2,7%,) the results are very
insensilive 1o waveform.
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Figure 19. Velocity distribution for various times
during a cycle,

[t was noted in Secction 3.1 thar a convenient measure of the gross cffect of a pulsation
was afforded by the strength of pulsation, Eq. (82). The complex waveforms used in this
section do not lend themselves to a simple evaluation of pulsalion strength since
each term of Eqg. (94) achieves its maximum independently of the others when
7* = 1/n [[(2m -1)/2] ® + ¢n}. For the higher harmonics, then, r* is approximately equal 10
zero, but the phase lag of the lower frequencies must be cvaluated individually to determine
the time at which V;{0,r) is a maximum. This result is obviously dependent upon the
waveform considered. For the waves considered in this section, however, the centerline
velocities achieve a maximum at nearly the same {ime in the cycle and have nearly the same
amplitude. Since, as can be seen in Eq. (94), only thc lower harmonics contribute
significantly to V;(0,7), it seems apparent that the fluid response is dictated only by the lower
frequency components of the series.
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4.2 Fluid Response to a Fluttering Valve

A final illustration of the utility of the computer program developed in Lhis siudy is
afforded by considering a basically steady flow that is perturbed at regular intervals. Such a
situation could conceivably be caused by a Muttering valve or a faully pressure regulator
located in a flow system. Three illustrative cascs arc shown in Fig. 21 where a 0.1-sec
pressure excursion occurs asymmetrically one, two, or three times per second. As in the
preceding section, the mean flow Reynolds number is maintained ar Re = 10%; thus the
relative amplitude of the pulse decreases as the repetition rate rises.
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Figure 21. Asymmetric wave forms.

The fluid response on Lhe centerline of the tube is shown in Fig. 22. For a single
repelition the velocity history is similar to the square wave studied earlier, but as the
repetitions are increased, the velocity history increases in complexity. For cach additiona!
repetition an additional local maximum (corresponding 10 the trailing edge of the added
pulse) is obtained. Although the maximum value of the pressure coelficient has decreased
with additional cycles, the absolute maximum centerline velocity increases, with the three-
cycle resuli showing a 50-percent increase over that observed lor a single cycle. This result
implics that waveform can be influential in determining the Muid response to a pulsation.

The radial velocity distribution For the three cases is shown in Fig. 23 for a single time of
the cycle (r = 90 deg). While all the velocity profiles exhibit a characteristic annular shape,
significant variations in amplitude are obtained for differing repetition rales. It is noted,
moreover, that as the repetition rate increases, the local velocity maximum occurs nearer Lthe
wall, indicating that the vibrational Reynolds number is effectively higher than ithe basic
value for the case,
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Figure 22, Centerline velocity response to asymmetric waves.

5.0 CONCLUSIONS AND RECOMMENDATIONS

An analysis was performed and computer programs were written to allow assessment of
the velocity field in the fully developed region of a pipe for laminar or turbulent, steady or
pulsating flows. For pulsating flows no restriction on waveform or the origin of the
disturbance is imposed except that it be applied longitudinally.

For any waveform investigated, it was shown that, in the core of the pipe, the fluid
velocity at any time during a cycle is an integral transform of the imposed pulsation. Near
the tube wall, viscous effects become important, and the velocity may exceed that observed
on the centerline. The extent of this annular flow region is dictated solely by the vibrational
Reynolds number, the effect being confined nearer the tube wall as Re, increases. The value
of the maximum velocily relative to the core value varies in a complex fashion, initially
increasing with frequency but decreasing for high frequencies. The overall level of the
transient velocity, however, varies directly with a generalized amplitude and decreases with
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Figure 23. Distribution of transient velocity with
radial location.

vibrational Reynolds number. Limited comparisons of the analysis with published data
obtained for a vibrating tube show good agreement for no mean flow and laminar mean
flow cases. In turbulent mean flows, however, the analysis agreed with the data at some
times during a cycle but overpredicted the effect of pulsations at others. A crude estimate of
the eflect of alteration of the turbulent exchange mechanisims was found unsatisfactory for
explaining the discrepancy.

A limited study of the effect ol wavelorm on fluid response showed that the above
general observations were valid for any waveform. For symmetrical waves it was found that
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the magnitude and radial or temporal variations in velocity were, in a practical sense,
virtually independent of waveform. Asymmetric waves, however, were shown to exhibit
significantly different behavior.

The computer programs developed for the study were found to be satisfaciory although
several improvements arc warranted. First, a test of the convergence of the Fourier serics
and velocity series would be of benefit in reducing the arbitrary waveform execution time.
Secondly, several fealures of the harmonic oscillation code, such as strength of pulsation,
rms velocity, and a vibrational Reynolds number calculation, should be included in the
arbitrary waveform code. Finally, both programs should be extended 1o provide computer
plotting of the results. [t should be noted, morcover, that the steady flow routine
incorporated in either program affords a simple, fast, and accuraie methed for compuring
the velocity distribution in fully developed laminar and turbulent lows.

The present study bhas clearly shown that the complexity of time-dependent flows for
even a relatively simple case precludes the extrapolation of steady flow results into the
transient domain. It is recommended, therefore, that work be continued at AEDC on
transient flow phenomena. Two (idcally, parallel} approaches are suggested: (1) the present
*‘exact’’ analysis should be extendcd to (a) treat the developing pulsating flow in a tube and
(b) account for turbulent exchange mechanisms by the method ol Appendix A; (2) {ime-
dependent numerical solutions of the governing equations should be developed since they
offer the only practical long range, general solutions. In addition, consideration should be
given to longer range projects which (1) treat compressibility phenomena in transient flows
and (2) obtain basic data on the effect of flow oscillations of various waveforms on the
velocity field, turbulent siructure, and skin friction. The first study is of imporlance since
compressibility effects can have a significant elfect on the velocity field development
because wave propagation characieristics can be altered and secondary flows induced. An
experimental program is required, morcover, 10 scrve as a guide for modeling the effect of
pulsations on turbulent structure, In particular, little or no data exist on the effect of
waveform on the wurbulent structure in pulsating flows,

Finally, it has been shown that flow pulsations can have a profound effect on heal
transfer. Although myriad experiments have becn performed and anaiyses presented, no
definitive conclusions can yet be offered on the effect of pulsations on heal transfer {Refs. 4
and 8). An understanding of the mechanisms involved could possibiy lead to revisions in the
design of heat exchange devices.
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APPENDIX A
FORMULATION FOR ARBITRARY EDDY VISCOSITY MODEL

The radial distribution function for the transient velocity component, f(y), is given by an
equation of the form

af 1 B = iyf = -@ {A-1)

where primes denote differentiation with respect to  and

-

dp = 142 (A-2)
%4
€m”
B = Zalp) + -1 _ (A-3)
)f = RCV (A'4)

In general, f(n) is a complex function and may be written
g = 1.0p) +il(x) (A-5)
where F.{n) and fi(») are the real and imaginary parts, respectively, of the function.

Substituting Eq. (A-5) into Eq. (A-1) and requiring a, o, 8, and + tc be real functions
leads to the following simultaneous equations:

1
fa
il

= al+ B+ yfi' (A-6)
- 2 ':'_.E - -
rr_yi".}}ll (A-7)

The real part of the distribution is thus determined once f; and its derivatives are known.

Differentiating Eq. (A-7) and substituting in Eq. (A-6) leads to the following fourth-
order differential equation:

()

A 4 B £ s et £, S D P L EE = —F (A-8)
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where

2

Alp) = @
B(n) =2ala’+ B)
Clp) = ale”+28) + Bla’+ A (A-9)
Dip) = ™+ BB°
E = ]12

" -6,

Thus, if &y, can be described by any analytic function with continuous second derivatives,
the coefficients are uniquely determined. Equation (A-8), moreover, may be solved by any
of several numerical methods for ordinary differential equations (Ref. 22}. The solution,
however, will require initial estimates of f, and its derivatives at one or more points in the
flow and satisfaction of the boundary condition f;{1) = 0. These estimates may readily be
obtained from the e, = constant solution of Eq. (80).

One solution procedure which has been programmed in Fortran 1V involves reducing the
arder of Eq. (A-B) by introducing the relations

E;_ ] (l’l > 1)

Ba

with , (A-10)
g = I

Equation {A-8) is thus reduced to a series of first-order simultaneous equations:

1 -
gé = —; [Bga-i- Cg2+ Dgl-l- Efi t l'] (A-11)
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By = By

8 =&, {A-11)
Conel.

i" =g

Integration of each equation was accomplished using a fourth-order Runge-Kutta method in
conjunction with the secant method for simulianeous nonlinear equations (Ref. 23). The
real part of the distribution function is then

Pt FE R E (A-12)
The transient velocity at each point of the flow field is
\"](qlr) = I'r(n) cos r—f () sio (A-13)
and the instantaneous velocity profile is
Vign =V (n) -V {g.r) (A-14)

with V(n) given by Eq. (46).
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APPENDIX B
A NOTE ON COMPLEX FOURIER EXPANSIONS

The Fourier trigonometric expansion of an arbitrary periodic function, f(1), which
satisfies the Dirichlet conditions (Ref. 24) may be written

A o0 o
1
2

'+ z_l!\“ cos nal + z B, sin nwt (B-1)

f(ty =

where the Fourier coefficients are given by the transforms

c+P
-'\rI = lg’ j. 1Y eos {nat Y dLsn=0.1.2,... (B-2)
[H
and
C+P
Bn = I;—":J. f07) sin nwt*¥dtsn = 1,2,... (B-3)
C

The basic period of the function is P = 2x/w, and gw represent the various harmonics of
0.

It is often convenient Lo cxpress Eq. (B-1) in its equivalent complex form,

(= Y ]{"cm‘”' (B-4)

NS ane

which is readily obtained by a direct substitution of the complex definitions of the sine and
cosine into the trigonometric series. When that is deone, the coefficients are defined by

C+P . B-5
K- lf f(t) e " 4t (5
i} P P
or
o= _;_{An -”3,,} (B-6)
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The functions f(t) considered in this report are always real; thus it is possible to rewrite
Eq. (B-4) in a form that is more amenable (0 computation. For this purpose, the complex
expansion is rewritlen as

(0 = Ho _ z aninml N z ¥ e—-ilnlml (B-7)

n=1 ]n||=1 "l“l

where H,, is still given by Eq. (B-5) or (B-6) but
) C-P L
1 - 1 it A
H-—-‘nl = -l_:'.[: f(l T e! dt (B-S)

and

1 .
H—|n| - 5 {An - Bn} (B—9)

Comparing Egs. (B-6) and (B-9), one sees that H, and H_ |, are complex conjugaies. The
terms to be summed in Eg. (B-7) are, likewise, complex conjugates. Thus, for any real
function {1}, Eq. {B-7) becomes

) = H a2 5 K o (B-10)
R R

where it is understood that n is a positive integer and the coefficients are defined by Eq.
(B-6).
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NOMENCLATURE
A Dimensionless vibration amplitude, Z,/R
An Fourier Cosine Transform, Eq. (71)
Ap Dimensionless pressurc amplitude, /0
a* Frequency parameter, (Re, )!¥2
ad Generalized amplitude, Eq. (40)
G* Modified amplitude, Eq. (59)
B, Fourier Sine Transform, Eq. (72)
b Mean value of arbitrary parameter
C Constant
Ci Fanning friction factor, ¢,/pU?
Fa{n,t1) Arbitrary funclion, Eq. (28)
Fit) Arbitrary forcing function, Eq. (40)
f{n) Radial distribution funclion, Eq. (37)
fi(m Imaginary part of distribution Tunction, Eq. (80)
£, (5} Real part of distribution function, Eq. (79)
G* Dimensionless mass flow rate, Eq. (33)
Hnq Complex Fourier Coefficient, Eq. (62)
1(i'"2x) Modified Bessel function of first kind
K, {(i'"2x) Modified Bessel function of second kind
M.(x) Modulus of polar representation of 1,(i!"2x)
m Empirical coefficient, Eq. (49)
m Mass flow rate (M/t)
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Re
Re*
Re,
Re,
Ref
Rup,
(r,0,z)

(r',8".2")

{u,v,w)

{u',v',w')

nth harmonic or term

Instantaneous pressure (m/Lt2) or period (t)
Mean pressure (M/Lt2)

Fluctuating pressure (M/Lt?)

Reference pressure (M/Lt2)

Tube radius {L)

Mean throughflow Reynolds number, 2<U>R/v
Friction Reynolds number, U*R/»
Harmonic Reynolds number, wZ,R/p
Vibrational Reynolds number, wR2/v
Modified vibrational Reynolds number, Re/[l + (eq,/»)]
Correlation coefficient, u,uj7U*?
Noninertial cylindrical coordinate system
Inertial cylindrical coordinate system
Pulsation strength, Eq. (82)

Empirical coefficient, Eq. (48)

Time interval (1)

Time (t)

Reference frame velocity (L/t)

Harmonic velocity, wZ, (L/1)

Friction velocity, <oy >70

Mean velocity components (L/t)

Fluctuating velocity components (L/t)
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<

Dimensionless transient velocity
Centerline velocity, W(o,t)/U*

Instantaneous velocity, w(r,t)/U*

Reference frame velocity component (L/1)

Dimensionless mean velocily

Mean velocity component (L/t}
Fluctuating velocity component (L/t)
Reynolds stress component

Body force (ML/t2)

Cartesian coordinates

Time mean value, 1/T j: xdt

Mean value over a cycle, 1/2% I;rxdl
Spatial mean value, S(: xy dy
Vibration amplitude (L)

Cubical dilitation,

Boundary-layer thickness (L)

Eddy viscosity of mean flow (L2/1)
Eddy viscosity of transient flow (L2/t)
Dimensionless axial coordinate, Z/R

Dimensionless radial coordinate, r/R

Fourier coefficient relations, Eqs. (74) and (75)

Absolute viscosity, (M/ Lo

Bulk viscosity, (M/Lt)
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Kinematic viscosity (L2/t) or order of Bessel function
Phase of polar representation of 1, {i'2x)

Density (M/L3)

Wall shear stress, (M/Lt2)

Dimensionless time, wt

Pressure coefficient, P — P*/pU*?

Mean flow pressure coefficient

Transient component of pressure coefficient

Frequency (1/t)
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