
AD-AI03 283 CARNEBIE-MELLON UNIV PITTSBURGH PA DEPT OF PSYCHOLOGY F/6 5/10
ACQUISITION OF COGNITIVE SKILL.IU)

AUG 81 .J R ANDERSON NGGO481-C-0335

UNCLASSIFIED TR-81-1 NL

ED~EEEhh

LEE&.

Acquisition of Cognitive Skill,

/ ' John Rind rson
DepartiinTW rV'Cao 3gy

*-t Carnegie-Mellon University
Pittsburgh, PA 152134 1

,. ,3-- - - . .-- .- ., o

// /'

Approved for public release: distribution unlimited.
Reproduction in whole or part is permitted for any purpose of the United States Government.

* This research was sponsored by the Personnel and Training Research Programs, Psychological Sciences
Division, Office of Naval Research, under Contract No. N00014-81-C-0335, Contract Authority Identification
Number, NR 157-465 and grant IST-80-15357 from the National Science Foundation. My ability to put
together this theory has depended critically on input from my collaborators over the past few years--Charles
Beasley, Jim Greeno, Paul Kline, Pat Langley, and David Neves. This is not to suggest that any of the above
would endorse all of the ideas in this paper. I would like to thank those who have provided me with valuable
advice and fcedback on the paper--Renee Elio. Jill Larkin, Clayton Lewis, Miriam Schustack, and especially
Lynne Rcdcr. Correspondence concerning the manu.cript should be sent to John Anderson, Department of
Psychology, Carnegie-Mellon University, Pittsburgh, Pa. 15213.

4.
I"

"*..
-.

_ ..
I

unclassified
SECURITY CLASSIFICATION - - THIS PAGE (When Date Entered)

PAGE READ INSTRUCTIONS
REPOR OCUMENTATION PAGBEFORE COMPLETING FORM

REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

Technical Report 81-1 - /s) g 4 g_; _ _ __

4. TITLE (ad Subtitle) s. TYPE OF REPORT & PERIOD COVERED

Acquisition of Cognitive Skill Technical Report
S. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) S. CONTRACT OR GRANT'NUMBER(6)

John R. Anderson N00014-81-C-0335

9. PERFORMING ORGANIZATION NAME AND ADDRESS IO. PROGRAM ELEMENT, PROJECT, TASK

Department of Psychology AREA & WORK UNIT NUMBERS

Carnegie-Mellon University NR 157-465
Pittsburgh, PA 15213

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Personnel und Training Research Programs August 3, 1981
Office of Naval Research (Code 458) 13. NUMIER OF PAGES
Arlington. VA 22217 96

14. MONI ORIN AGENCY NAME & ADORESS(I1 dillerent from Controlling Office) IS. SECURITY CLASS. (*I this report)

unclassified

IS*. DECLASSIFICATION/DOWNGRADING
IS.. SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

1
=
. DISTRIBUTION STATEMENT (of th. ebstrect entered in Block 20. It different from Report)

IS. SUPPLEMENTARY NOTES

IS, KEY WORDS (Continue on reverse side it necesear and identify by block number)

Geometry Problem solving Automatization
Mathematics education Representation Declarative knowledge
Skill acquisition Proceduralization Procedural knowledge
Learning Analogy Practice effects
Production systems Discrimination Tuning

A framework for skill acquisition is proposed in which there are two major
.20. ADSTRACT (Continue an

rerce side 'I necessary and identify by block number)

stages in the development of a cognitive skill--a declarative stage in which
facts about the skill domain are interpreted and a procedural stage in which the
domain knowledge is embodied directly in procedures for performing the skill.
This general framework has been instantiated in the ACT system in which facts
are encoded in a propositional network and procedures are encoded as productions
Two types of interpretive procedures are described for converting facts in the
declarative stage into behavior--general problem-solving procedures and analogy-

DD I JAN 3 1473 EDITION OF I OV 55,S O"SOLETE unclassified ..

SECURITY CLASSIFICATION OF THIS PAGE (fen Det entered)

unclassified
SiCURITY CLA SIFICATiON OP THIS MAI(WI "' Date £nted)

20. Abstract (Continued)

forming procedures. Knowledge compilation is the process by which the skill
transits from the declarative stage to the procedural stage. It consists of
the subprocesses of composition which collapses sequences of productions into
single productions and proceduralization which embeds factual knowledge into
productions. Once proceduralized, further learning processes operate on the
skill to make the production more selective in their range of applications.
These learning processes include generalization, discrimination, and strengthen-
ing of productions. Comparisons are made to similar concepts from past learning
theories. It is discussed how these learning mechanisms apply to produce the
power law speed-up in processing time with practice. Much of the evidence for
this theory of skill acquisition comes from work on acquisition of proof skills
in geometry but other evidence is drawn from the literature on automatization,
language acquisition, and category formation.

19. Key Words (Continued)

Interpretive procedures Proof skills Category formation
Knowledge compilation Language acquisition Power law
Strengthening

Ac C

D'

TABLE OF CONTENTS

Abstract 1

Introduction 2

The ACT Production System 3

An Example 3

Significant Features of the Performance System 7

Goal Structure 7

Conflict Resolution 8

Variables 9

Learning in ACT 10

The Declarative Stage: Interpretive Procedures 10

Application of General Problem Solving Methods 15

An Example 13

Significant Features of the Example 18

Student Understanding of Implication 18

Use of Analogy 19

Analogy to Examples 19

Analogy to Output of a Prior Procedure 21

Use of Analogy: Summary 23

The Need for an Initial Declarative Encoding 24

Knowledge Compilation 26

The Phenomenon of Compilation 26

The Mechanisms of Compilation 28

Encoding and Application of the SAS Postulate 29

Composition 34

Remarks about the Composition Mechanism 35

Proceduralization 37

Further Composition and Proceduralization 38

Evidence for Knowledge Compilation 39

The Sternberg Paradigm 39

The Scan Task 40

The Einstellung Phenomenon 42

The Adaptive Value of Knowledge Compilation 45

Procedural Learning: Tuning 46

Generalization 47

I II i I ill [I llllll II iij

An Example 47

Another Example 48

Discipline for Forming Generalizations 49

Comparisons to Earlier Conceptions of Generalization 50

Discrimination 50

An Example S1

Feedback and Memory for Past Instances 53

Interaction of Discrimination and Specificity 54

Strengthening 55

Comparisons to Other Discrimination Theories 57

Shift Experiments 57

Stimulus Generalization and Eventual Discrimination 57

Patterning Effects 58

Application to Geometry 59

The Search Problem 59

Generalization 61

Discrimination 62

Credit-Blame Assignment in Geometry 64

Composition 64

Creation of Data-Driven Productions 65

Procedural Learning: The Power Law 66

Strengthening 67

Algorithmic Improvement 69

Algorithmic Improvement and Strengthening Combined 71

An Experimental Test 72

Tracing the Course of Skill Learning: The Classification Task 73

Initial Performance 75

Application of Knowledge Compilation 75

Tuning of the Classification Productions 77

Summary 79

References 82

Distribution List 88

ii

." N LI-RSO N

Abstract

A framework for skill acquisition is proposed in which there arc two major stages in the development of a

cognitive skill--a declarative stage in which facts about the skill domain are interpreted and a procedural stage

in which the domain knowledge is embodied directly in procedures for performing the skill. "l1fis general

framework has been instantiated in the ACT system in which facts are encoded in a propositional network

and procedures are encoded as productions. Two types of interpretive procedures are described for

converting facts in the declarative stage into behavior--general problem-solving procedures and analogy-

forming procedures. Knowledge compilation is the process by which the skill transits from the declarative

stage to the procedural stage. It consists of the subprocesses of composition which collapses sequences of

productions into single productions and proceduralization which embeds factual knowledge into productions.

Once proceduralized, firther learning processes that operate on the skill to make the productions more

selective in their range of applications. These learning processes include generalization, discrimination, and

strengthening of productions. Comparisons are made to similar concepts from past learning theories. It is

discussed how these learning mechanisms apply to produce the power law speed-up in processing time with

practice. Much of the evidence for this theory of skill acquisition comes from work on acquisition of proof

skills in geometry but other evidence is drawn from the literature on automatization, language acquisition,

and category formation.

\N[)LRSUN 2

Introduction

It requires at least a hundred hours of learning and practice to acquire any significant cognitive skill to a

reasonable degree of proficiency. For instance, after 100 hours a student learning to program has achieved

only a very modest facility in the skill. Learning one's primary language takes tens of thousands of hours.

The psychology of human learning has been very thin in ideas about what happens to skills under the impact

of this amount of learning--and for obvious reasons. This paper presents a theory about the changes in the

nature of a skill over such large time scales and about the basic learning processes that are responsible.

Fitts (1964) considered the process of skill acquisition to fall into three stages of development. The first

stage, called the cognitive stage, involves an initial encoding of the skill into a form sufficient to permit the

learner to generate the desired behavior to at least some crude approximation. In this stage it is common to

observe verbal mediation in which the learner rehearses information required for the execution of the skill.

The second stage, called the associative stage, involves the "smoothing out" of the skill performance. Errors

in the initial understanding of the skill are gradually detected and eliminated. Concomitant with this is the

drop out of verbal mediation. The third stage, the autonomous stage, is one of gradual continued

improvement in the performance of the skill. The improvements in this stage often continue indefinitely.

While these general observations about the course of skill development seem true for a wide range of skills,

they have defied systematic theoretical analysis.

The theory to be presented in this paper is in keeping with these general observations of Fitts and provides

an explanation of the phenomena associated with his three stages. In fact, the three major sections of this

paper correspond to these three stages. In the first stage, the learner receives instruction and information

about a skill. The instruction is encoded as a set of facts about the skill. These facts can be used by general

interpretive procedures to generate behavior. This initial stage of skill corresponds to Fitts' cognitive stage. In

the paper this will be referred to as the declarative stage. Verbal mediation is frequently observed because the

facts have to be rehearsed in working memory to keep them available for the interpretive procedures.

According to the theory to be presented here, Fitts' second stage is really a transition between the

declarative stage and a later stage. With practice the knowledge is converted into a procedural form in which

it is directly applied without the intercession of other interpretive procedures. The gradual process by which

the knowledge is converted from declarative to procedural form is called knowledge compilation. Fitts'

associative stage corresponds to the period over which knowledge compilation applies.

According to the theory, Fitts' autonomous stage, involves firther learning that occurs after the knowledge

achieves procedural form. In particular, there is farther tuning of the knowledge so that it it will apply more

iI Itl - . .. " ..

.\NDFRSON 3

apprupriately and there is a gradual process of speed-up. I'his will be called the procedural siage in this paper.

This paper presents a detailed theory about the use and development of knowledge in both the declarative

and procedural form and about the transition between these two forms. The theory is based on the ACT

production system (Anderson. 1976) in which the distinction between procedural and declarative knowledge

is fundamental. Procedural knowledge is represented as productions whereas declarativc knowledge is

represented as a propositional network. Before describing the theory of skill acquisition it will be necessary to

specify some of the basic operating principles of the ACT production system.

The ACT Production System

The ACT production system consists of a set of productions which can operate on facts in the declarative

data base. Each production has the form of a primitive rule that specifies a cognitive contingency--that is to

say, a production specifies when a cognitive act should take place. The production has a condition which

specifies the circumstances under which the production can apply and an action which specifies what should

be done when production applies. The sequence of productions that apply in a task correspond to the

cognitive steps taken in performing the task. In the actual computer simulations these production rules have

often quite technical syntax, but in this paper I will usually give the rules quite English-like renditions. For

current purposes, application of a production can be thought of as a step of cognition. Much of the ACT

performance theory is concerned with specifying how productions are selected to apply and much of the ACT

learning theory is concerned with how these production rules are acquired.

An Example

To explain some of the basic concepts of the ACT production system, it is useful to have an example set of
productions which perform some simple task. Such a set of productions for performing addition is given in
Table 1. Figure 1 illustrates the flow of control in that production set among goals. It is easiest to understand
such a production system by tracing its application to a problem such as the following:

614
438

Production P1 is the first to apply and would set as a subgoal to iterate through the columns. Then
production P2 applies and changes the subgoal to adding the digits of the rightmost column. It also sets the
running total to 0. Then production P6 applies to set the new subgoal to adding the top digit of the row (4) to
the running total. In terms of Figure 1 this sequence of three productions has moved the system down from

the top goal of doing the problem to the bottom goal of performing a basic addition operation. The system
has the four goals in Figure 1 stacked with attention focused on the bottom goal.

At this point production P10 applies which calculates 4 as the new value of the running total and POPs the

goal of adding the digit to the running total. This amounts to removing this goal from the stack and returning

ANDERSON 4

Table 1
A Production System for Performing Addition

PI: IF the goal is to do an addition problem
THEN the subgoal is to iterate through the columns of the problem

P2: IF the goal is to iterate through the columns of an addition problem
and the rightmost column has not been processed

THEN the subgoal is to iterate through the rows of that rightmost column
and set the running total to 0

P3: IF the goal is to iterate through the columns of an addition problem
and a column has just been processed
and another column is to the left of this column

THEN the subgoal is to iterate through the rows of this column to the left
and set the running total to the carry

P4: IF the goal is to iterate through the columns of an addition problem
and the last column has been processed
and there is a carry

THEN write out the carry
and POP the goal

P5: IF the goal is to iterate through the columns of an addition problem
and the last column has been processed
and there is no carry

THEN POP the goal

P6: IF the goal is to iterate through the rows of a column
and the top row has not been processed

THEN the subgoal is to add the digit of the top row into the running total

P7: IF the goal is to iterate through the rows of a column
and a row has just been processed
and another row is below it

THEN the subgoal is to add the digit of the lower row to the running total

PS: IF the goal is to iterate through the rows of a column
and the last row has been processed
and the running total is a digit

THEN write the digit
and delete the carry
and mark the column as processed
and POP the goal

\NDE RSON 5

P9: IF the goal is to iterate through the rows of a column
and the last row has been processed
and the running total is of the form "string + digit"

THEN write the digit
and set carry to the string
and mark the column as processed
and POP the goal

P10: IF the goal is to add a digit to a number
and the number is a digit
and a sum is the sum of the two digits

THEN the result is the sum
and mark the digit as processed
and POP the goal

P1: IF the goal is to add a digit to a number
and the number is of the form string + digit
and a sum is the sum of the two digits
and the sum is less than 10

THEN the result is string + sum
and mark the digit as processed
and POP the goal

P12: IF the goal is to add a digit to a number
and the number is of the form string + digit
and a sum is the sum of the two digits
and the sum is of the form 1 + digit*
and another number sum* is the sum of 1 plus string

THEN the result is sum* + digit*
and mark the digit as processed
and POP the goal

,\N)IRSON 6

DO THE7j ADDITION PROBLEM

P4 P1 PS

CARRY NO CARRY

r2 ITERATE THROUGH THE

COLUMNS

X\

RIGHTMOST P8 P9 NETOLFT
COLUMN

NO CARRY
CARRY

ITERATE THROUGH THE

ROWS OF A COLUMN

TOP ROW XT ROW BELOW

PlO P11 P12

P61 1P7
ADD A DIGIT INTO
THE RUNNING TOTAL

Figure 1

A representation of the flow of control in Table 1 between
various goals. The boxes correspond to goal states and the
arrows to productions that can change these states. Control
starts with the top goal.

\NI)tERSON

aWn tion to the goal ol Iterating L1ough thc io-uws o " thc column. i j). ap ,
of adding 8 into the running total. PLO applies again to change the running ti
create the subgoal of adding 3 into the running total: then 1P11 calculates the ne,'.
point the system is back at the goal of iterating through the rows and has pr; L
column. Then production P9 applies which writes out the '5' in '15', sets the car-
the goal of iterating through the columns. At this point the production system
the problem.

I will not trace out any further the application of this production set to the prr
to carry out the hand simulation. Note that productions P2 - P5 form a subic.
columns, productions P6 - P9 an embedded subroutine for processing a colt:
embedded subroutine for adding a digit to the running total. In Figure L all th.
a subroutine emanate from the same goal box.

Significant Features of the Performance System

There are a number of features of the production system that are impe",,

presented. The productions themselves are de system's procedural comp,,p'.

the clauses specified in its condition must be matched against information

information in working memory is part of the system's declarative conipoe<
1980) I have discussed the network encoding of that declarative knowledg_

activation defined on that network.

Goal Structure. As noted above, the productions in Fable I are organi.

subroutine is associated with a goal state that all the productions in the subro

the system can have only one goal at any moment in time, productions from

apply at any one time. This enforces a considerable seriality into the beh

seeking productions are hierarchically organized. The idea that hierarc!

human cognition has been emphasized by Miller. Galanter. and Pribram (1'

Van Lehn (1980) have recently introduced a similar goal-structuring fo. rc

In the original ACT system (Anderson. 1976) there was a scheme foi ,it-

the setting of control variables. There are several important differences be

older one. First, as noted, the current scheme enforces a strong degre e e

because the goals are not arbitrary nodes but rather meaningful asser!

learning system to acquire new productions that make reference to goals.

be given as the various ACT learning mechanisms are discussed.

In achieving a hierarchical subroutine structure by means of o 0o,-

ANDURSO0N

accepung die claim that the hierarchical control of behavior derives fiom dIe suticture ul prublein-solving.

This amounts to making the assertion that problem-solving and the goal structure it produces is a

fundamental category of cognition. This is an assertion that has been advanced by others (e.g., Newel, 1980).

Thus, this learning discussion contains a rather strong presupposition about the architecture of cognition. I

think the presupposition is too abstract to be defended directly: rather. evidence for it will come from the

fruitfulness of the systems that we can build based on the architectural assumption.

Conflict Resolution. Every production system requires some rules of contlict resolution--that is, principles

for deciding which of those productions that match will be executed. ACT has a set of conflict resolution
principles which can be seen as variants of the 1976 ACT or in the OPS system (Forgy & McDermott, 1977).

One powerful principle is refractoriness--that the same production cannot apply to the same data in working

memory twice in the same way. This prevents the same production from repeating over and over again and
was implicit in the preceding hand simulation of Table 1.

The two other principles of conflict resolution in ACT are specificity and strength. Neither was illustrated
in Table I but both are important to understanding the learning discussion. If two productions can apply and

the condition of one is more specific than the other, then the more specific production takes precedence.

Condition A is more specific than Condition B if the set of situations in which condition A can match is a
proper subset of the set of situations where Condition B can match. The specificity rule allows exceptions to

general rules to apply because these exceptions will have more specific conditions. For instance, suppose we

had the following pair of productions:

PA: IF the goal is to generate the plural of man
THEN say 'MEN'

PB: IF the goal is to generate the plural of a noun
THEN say "noun + s"

The condition of production PA is more specific than the condition of production PB and so will apply over

the general pluralization rule.

Each production has a strength which reflects the frequency with which that production has been
successfully applied (principles for deciding if a production is successful will be given later). I will describe
the rules which determine strength accumulation later in this paper; here I will describe the role of production
strength in conflict resolution. Elsewhere (e.g., Anderson, 1976: Anderson, Kline, & Beasley, 1979) we have
given a version of this role of strength that assumes discrete time intervals. Here I will give a continuous
version. Productions are indexed by the constants in their conditions. For instance, the production PA above
would be indexed by plural and man. If these concepts are active in working memory the production will be
selected for consideration. In this way ACT can focus its attention on just the subset of productions that

might be potentially relevant. Only if a production is selected is a test made to see if its condition is satisfied.

(For future reference if a production is selected, it is said to be on the APPL YLIST.) A production takes a
time Ti to be selected and another time T 2 to be tested and to apply. The selection time T1 varies with the

production's strength while the application time is a constant over productions. It is firther assumed that the

time T1 for the production to be selected will randomly vary from selection to selection. The expected time is

a/s where s is the production strength and a is a constant. Although there are no compelling reasons for

making any assumption about the distribution we have assumed that i1 has an exponential distribution and

AN DERSON

attention to tIe goal of itcrating thrUough the row of tie column. 'I icn P7 appil,
of adding 8 into the running total. P1O applies again to change the running to
create the subgoal of adding 3 into the running total: then PI 1 calculates the ne".
point the system is back at the goal of iterating through the rows and has proc
column. Then production P9 applies which writes out the '5" in '15'. sets the can
the goal of iterating through the columns. At this point the production system
the problem.

I will not trace out any further the arnlication of this production set to the pr,
to carry out the hand simulation. Note that productions P2 - P5 form a subrV
columns, productions P6 - P9 an embedded subroutine for processing a colu:
embedded subroutine for adding a digit to the running total. In Figure I all thc
a subroutine emanate from the same goal box.

Significant Features of the Performance System

There are a number of features of the production system that are imporji

presented. The productions themselves are the system's procedural compon,

the clauses specified in its condition must be matched against information a,

information in working memory is part of the system's declarative componel

1980) 1 have discussed the network encoding of that declarative knowledg

activation defined on that network.

Goal Structure. As noted above, the productions in Table I are organi,

subroutine is associated with a goal state that all the productions in the subro

the system can have only one goal at any moment in time, productions from

apply at any one time. This enforces a considerable seriality into the beh

seeking productions are hierarchically organized. The idea that hierarc!

human cognition has been emphasized by Miller. Galanter, and Pribram (I

Van Lehn (1980) have recently introduced a similar goal-structuring fo, ,ro

In the original ACT system (Anderson. 1976) there was a scheme fui ac0

the setting of control variables. There are several important differences bc

older one. First, as noted, the current scheme enforces a strong degree o

because the goals are not arbitrary nodes but rather meaningful assert

learning system to acquire new productions that make reference to goals.

be given as the various ACT learning mechanisms are discussed.

In achieving a hierarchical subroutine structure by means of a Ro.

A N 1)* SO N 7

atitClition to the goal of iterating thlou h 1te ruiws of the column. 'Ihu 17 applies Inch sets tie nc subgoal
of adding 8 into the running total. PO applies again to change the running total to 12; then P7 applies to
crcatc the subgoal of adding 3 into the running total: then P11 calculates the new running total as 15. At this
point the system is back at the goal of iterating through the rows and has processed the bottom row of the
column. Then production P9 applies which writes out the '5 in '15', sets the carry to the '', and. POP back to
the goal of iterating through the columns. At this point the production system has processed one column of
the problem.

I will not trace out any further the application of this production set to the problem but the reader is invited
to carry out the hand simulation. Note that productions P2 - P5 form a subroutine for iterating through the
columns, productions P6 - P9 an embedded subroutine for processing a column, productions P1O - P12 an
embedded subroutine for adding a digit to the running total. In Figure 1 all the productions corresponding to
a subroutine emanate from the same goal box.

Significant Features of the Performance System

There are a number of features of the production system that are important for the learning theory to be

presented. The productions themselves are the system's procedural component. For a production to apply,

the clauses specified in its condition must be matched against information active in working memory. This

information in working memory is part of the system's declarative component. Elsewhere (Anderson, 1976,

1980) 1 have discussed the network encoding of that declarative knowledge and the process of spreading

activation defined on that network.

Goal Structure. As noted above, the productions in Table I are organized into subroutines where each

subroutine is associated with a goal state that all the productions in the subroutine are trying to achieve. Since

the system can have only one goal at any moment in time, productions from only one of these subroutines can

apply at any one time. This enforces a considerable seriality into the behavior of the system. These goal-

seeking productions are hierarchically organized. The idea that hierarchical structure is fundamental to

human cognition has been emphasized by Miller. Galanter, and Pribram (1960) and many others. Brown and

Van Lehn (1980) have recently introduced a similar goal-structuring for production systems.

In the original ACT system (Anderson, 1976) there was a scheme for achieving the effect of subroutines by

the setting of control variables. There are several important differences between the current scheme and that

older one. First, as noted, the current scheme enforces a strong degree of seriality into the system. Second,

because the goals are not arbitrary nodes but rather meaningful assertions, it is much easier for ACT's

learning system to acquire new productions that make reference to goals. Evidence for this last assertion will

be given as the various ACT learning mechanisms are discussed.

In achieving a hierarchical subroutine structure by means of a goal-subgoal structure, I am of course

ANDURSON 8

accepting die clain that the hicarchical control of behavior derives fiora the sLICLUCe of problcin-sol hg.

This amounts to making the assertion that problem-solving and the goal structure it produces is a

fundamental category of cognition. This is an assertion that has been advanced by others (e.g., Newell, 1980).

Thus, this learning discussion contains a rather strong presupposition about the architecture of cognition. I

think the presupposition is too abstract to be defended directly: rather, evidence for it will come from the

fruitfulness of the systems that we can build based on the architectural assumption.
Conflict Resolution. Every production system requires some rules of conflict resolution--that is. principles

for deciding which of those productions that match will be executed. ACT has a set of conflict resolution
principles which can be seen as variants of the 1976 ACT or in the OPS system (Forgy & McDermott, 1977).
One powerful principle is refractoriness--that the same production cannot apply to the same data in working
memory twice in the same way. This prevents the same production from repeating over and over again and
was implicit in the preceding hand simulation of Table 1.

The two other principles of conflict resolution in ACT are specificity and strength. Neither was illustrated
in Table 1 but both are important to understanding the leaming discussion. If two productions can apply and
the condition of one is more specific than the other, then the more specific production takes precedence.
Condition A is more specific than Condition B if the set of situations in which condition A can match is a
proper subset of the set of situations where Condition B can match. The specificity rule allows exceptions to
general rules to apply because these exceptions will have more specific conditions. For instance, suppose we
had the following pair of productions:

PA: IF the goal is to generate the plural of man
THEN say 'MEN'

PB: IF the goal is to generate the plural of a noun
THEN say "noun + s"

The condition of production PA is more specific than the condition of production PB and so will apply over
the general pluralization rule.

Each production has a strength which reflects the frequency with which that production has been
successfully applied (principles for deciding if a production is successful will be given later). I will describe
the rules which determine strength accumulation later in this paper: here I will describe the role of production
strength in conflict resolution. Elsewhere (e.g., Anderson, 1976; Anderson, Kline, & Beasley, 1979) we have
given a version of this role of strength that assumes discrete time intervals. Here I will give a continuous
version. Productions are indexed by the constants in their conditions. For instance, the production PA above
would be indexed by plural and man. If these concepts are active in working memory the production will be
selected for consideration. In this way ACT can focus its attention on just the subset of productions that
might be potentially relevant. Only if a production is selected is a test made to see if its condition is satisfied.
(For future reference if a production is selected, it is said to be on the APPL YLIST.) A production takes a
time T1 to be selected and another time T2 to be tested and to apply. The selection time T, varies with the
production's strength while the application time is a constant over productions. It is further assumed that the
time T1 for the production to be selected will randomly vary from selection to selection. The expected time is
a/s where s is the production strength and a is a constant. Although there are no compelling reasons for
making any assumption about the distribution we have assumed that T1 has an exponential distribution and

. i ,i., ' 1" li

AN DIFRSON 9

this is its tbrn in all our simulations.

A production will actually apply if it is selected and it has completed application before a more specific
production is selected. This provides the relationship between strength and specificity in our theory. A more
specific production will take precedence over a more general production only if its selection time is less than
the selection and application time of the more general production. Since strength reflects frequency of
practice, only exceptions that have some criterion frequency will be able to reliably take precedence over
general rules. This corresponds, for instance, to the fact that words with irregular inflections tend to be of
relatively high frequency. It is possible for an exception to be of borderline strength so that it sometimes is
selected in time to beat out the general rule but sometimes not. This corresponds, for instance, to the stage in
language development when an irregular inflection is being used with only partial reliability (Brown, 1973).

Variables. Productions contain variable slots which can take on different values in different situations. The
use of these variables is often implicit, as in Table 1. but sometimes it is important to acknowledge the
variables that are being assumed. As an illustration, let us consider a variabilized form of a production from
Table 1. If production P9 from that table were to be written in a way to expose its variable structure, it would
have the form below where the terms prefixed by 'LV' are local variables:

IF the goal is to iterate through the rows of LVcolumn
and LVrow is the last row of LVcolumn
and LVrow has been processed
and the running total is of the form "LVstring + LVdigit"

THEN write LVdigit
and set carry to LVstring
and mark LVcolumn as processed
and POP the goal

Local variables can be reassigned to new values each time the production applies. Thus, for instance, the
terms LVcolumn, LVrow, LVstring, and LVdigit will match to whatever elements lead to a complete match of
the condition to working memory. Suppose, for instance, that the following elements were in working
memory:

The goal is to iterate through the rows of column-2
Row-x is the last row of column-2
Row-x has been processed
Running total is of the form 2 + 4

The production would match this working-memory information with the following variable binding:

LVcolumn = column-2
LVrow = row-x
LVstring = 2
LVdigit = 4

Local variables assume values within a production for the purposes of matching the condition and executing
the action. After application of the production variables lose their values.

.\NDI)SON 10

Learning in ACT

This paper is concerned with the processes underlying the acquisition of cognitive skill. As is clear from

examples like Table 1 there is a closer connection in ACT between productions and skill performance than

between declarative knowledge and skill performance. This is because the control over cognition and

behav'ior lies directly in the productions. Facts are used by the productions. So. in a real sense facts are

instruments of the productions which are the agents. For instance, we saw that production P10 used the

addition fact that "4 + 8 = 12". Although productions are closer to performance than facts, I will be

claiming that when a person initially learns about a skill he learns only facts about the skill and does not

directly acquire productions. These facts are used interpretively by general-purpose productions. The first

major section of this paper, on the declarative stage, will both discuss the evidence for the claim that initial

learning of a skill involves just acquisition of facts and explain how general-purpose productions can interpret

these facts to generate performance of the skill.

The next major section of the pape; will discuss the evidence for and nature of the knowledge compilation

process which results in the translation' from a declarative base for a skill to a procedural base for the skill.

(For instance, the production set in Table 1 is a procedural base for the addition skill.) After this section, the

remainder of the paper will discuss the continued improvement of a skill after it has achieved a procedural

embodiment. In all of this I will be drawing heavily on the work we have done studying the acquisition of

proof skills in geometry (Anderson, Greeno, Kline, & Neves, 1981; Neves & Anderson, 1981).

The Declarative Stage: Interpretive Procedures

One of the things that becomes apparent in studying the initial stages of skill acquisition in areas of

mathematics like geometry or algebra (e.g., Neves, 1981) is that the instruction seldom if ever directly specifies

a procedure to be applied. Still, the student is able to emerge from this type of instruction with an ability to

generate behavior that reflects knowledge contained in the instruction. Figures 2, 3, and 4 from our work on

geometry illustrate this point. Figure 2 is taken from the text of Jurgensen, Donnelly, Maier, & Rising (1975)

and represents the total of that text's instruction on two-column proofs. Immediately after studying this, two

of our students attempted to give reasons for two-column proof problems. The first such proof problem is the

one illustrated in Figure 3. Both of the students were able to deal with this problem with some success.

AN[DERSON 1-7 Proofs in Two-Column Form 11

You prove a statement in geometry by using deductive reasoning to show
that the statement follows from the hypothesis and other accepted material.
Often the assertions made in a proof are listed in one column, and reasons
which support the assertions are isted in an adjacent column.

EXAMPLE. A proof in two-column form.

Given: AKD; AD = AB

Prove: AK + KD = AB

Proof: A K D

STATEMENTS REASONS

1. AKD 1. Given

2. AK + KD = AD 2. Definition of between
3. AD = AB 3. Giver.
4. AK + KD = AB 4. Transitive property of equality

Some people prefer to support Statement 4, above, with the reason The
Substitution Principle. Both reasons are correct.

The reasons used in the example are of three types: Given (Steps 1 and
3), Definition (Step 2), and Postulate (Step 4). Just one other kind of reason,
Theorem, can be used in a mathematical proof. Postulates and theorems
from both algebra and geometry can be used.

Reasons Used in Proofs

Given (Facts provided for a particular problem)
Definitions
Postulates
Theorems that have already been proved.

Figure 2: The text instruction in two column proof.

Given: RONY; RO = NY

Prove: RN = OY N

Proof:

STATEMENTS REASONS

2. RO.= NY 2.

3. ON= ON 3.

4. RO + WN = ON + NY 4.
5. RONY 5.
6. RO + ON = RN 6.L..

7. ON + NY= OY 7.

8. RN=OY 8..?

Figure 3: A reason-giving task that is the first problem that the
student encounters requiring use of the knowledge about two column proofs.

.%\DIFSO\ 12

Start

a. next line <- of postulate

b . w rite " g iv e n "

given?ye

yes
d. -- - ,no

next r t e

of r, ; le
m--a.tch

m atc h prev ious

ln?
lines?

li n o : !n o >

Figure 4: A flowchart showing the general flow of control in a reason-

Behavior on these reason-giving problems is rather constant across subjects at least at a global level. Figure 4

is a representation at the global level of these constancies. Clearly, there is nowhere in Figure 2 a spccification

of the flow of control that is in Figure 4. However, before reading the instruction of Figure 2 subjects were

not capable of the flow of control in Figure 4 and after reading the instruction they were. So somehow the

instruction in Figure 2 makes the procedure in Figure 4 possible.

Two of the ways that students bridge the gap between inadequate instruction and behavior are:

1. Use of general problem solving skills and prior knowledge to fill in tJ"' missing pieces and resolve
the ambiguities.

.%NDERSON 13

2. Analogy. One variant on die analogy miethod is that students usc worked-out examples of
solutions to problems as models for solving a current problem. Another variant on this method is
that studcnts use a prior procedure that does something analogous to the desired behavior and try
to modify the output of this procedure.

It is characteristic of both the problem-solving possibility and the analogy possibility that the domain

knowledge is being used by domain-independent general procedures. For this reason I say that the

knowledge about the skill is being used interprelively. The term reflects the fact that the knowledge is data for

other procedures in just the way a computer program is data for an interpreter. In the two subsections to

follow I will discuss examples of how behavior can be generated by means of application of general problem

solving methods and by means of analogy. These examples serve three functions. First, they make concrete

how task-appropriate behavior can be generated without task-specific procedures. Second, in relating these

examples to data from our protocols, I will be able to give additional empirical support for the claim that a

skill starts out initially in a declarative state. Third, by explaining the initial character of skill organization, I

will be laying the foundation for explanation of later learning mechanisms.

It is a strong claim that all skill learning starts with the declarative encoding of facts about the skill domain.

The learning in the declarative stage, then, is the same kind of learning that occurs when a student reads a

story or memorizes a paired-associate list. From the point of view of understanding skill acquisition, this is

rather trivial learning. Part of its virtue is that it is trivial--that it does not require elaborate seWf-understanding

on the part of the student.

Application of General Problem Solving Methods

Even though the student coming upon the instruction in Figure 2 has no procedures specific to doing two

column proof problems, he has procedures for solving problems in general, for doing mathematics-like

exercises, and perhaps even for certain types of deductive reasoning. These general problem-solving

procedures can use the instruction such as that in Figure 2 as data for generating task-appropriate behavior

when faced with a problem like that in Figure 3. Below is a review of a simulation of how this can happen.
An Example. Table 2 provides a listing of the productions used in this simulation and Figure 5 illustrates

their flow of control. It is assumed that the student encodes the exercise in Figure 3 as a list of subproblems
where each subproblem is to write a reason for a line of the proof. If so, production P1 applies first and it
focuses attention on the first subproblem--that is, it sets as the subgoal to write a reason for RO !J NY. Next
production P4 applies. P4's condition, "the goal is to write the name of a relation for an argument," matches
the current subgoal "to write the name of the reason forRO NY". P4 creates the subgoal of finding a
reason for the line. P4 is quite general and reflects the existence of a prior procedure for writing statements
that satisfy a constraint.

The student presumably has encoded the boxed information in Figure 2 as indicating a list of methods for
providing a reason for a line. If so production P7 applies next and sets as a subgoal to try givens, the first rule
on the reason list, as a justification for the current line. Note this is one point where a fragment of the

ANDERSON 14

Table 2

Interpretive Productions Evoked in Performing
the Reason-Giving Task

PI: IF the goal is to do a list of problems
THEN set as a subgoal to do the first problem in the list

P2: IF the goal is to do a list of problems
and a problem has just been finished

THEN set as a subgoal to do the next problem

P3: IF the goal is to do a list of problems
and there are no unfinished problems on the list

THEN POP the goal with success

P4: IF the goal is to write the name of a relation for an argument
THEN set as a subgoal to find what the relation is for the argument

P5: IF the goal is to write the name of a relation for an argument
and a name has been found

THEN write the name
and POP the goal with success

P6: IF the goal is to write the name of a relation for an argument
and no name has been found

THEN POP the goal with failure

P 7: IF the goal is to find a relation
and there is a list of methods for achieving the relation

THEN set as a subgoal to try the first method

PS: IF the goal is to find a relation

and there is a list of methods for achieving the relation
and a method has just been unsuccessfully tried

THEN set as a subgoal to try the next method

P9: IF the goal is to find a relation
and there is a list of methods for achieving the relation
and a method has been successfully tried

THEN POP the goal with success

P10: IF the goal is to find a relation
and there is a list of methods for achieving the relation
and they have all proven unsuccessful

THEN POP the goal with failure

ANDE-RSON 15

P11: IF the goal is to try a method
and that method involves establishing a relationship

THEN set as a subgoal to establish the relationship

P12: IF the goal is to try a method
and the subgoal was a success

THEN POP the goal with success

P13: IF the goal is to try a method
and the subgoal was a failure

THEN POP the goal with failure

P14: IF the goal is to establish that a statement is among a list
and the list contains the statement

THEN POP the goal with success

P15: IF the goal is to establish that a statement is among a list
and the list does not contain the statement

THEN POP the goal with failure

P16: IF the goal is to establish that a line is implied by a rule in a set
and the set contains a rule of the form consequent ifaniecedenis
and the consequent matches the line

THEN set as a subgoal to determine if the antecedents correspond to established statements
and tag the rule as tried

P17: IF the goal is to establish that a line is implied by a rule in a set
and the set contains a rule of the form consequent if antecedents
and the consequent matches the line
and the antecedents have been established

THEN POP the goal with success

P18: IF the goal is to establish that a line is implied by a rule in a set
and there is no untried rule in the set which matches the line

THEN POP the goal with failure

P19: IF the goal is to determine if antecedents correspond to established statements
and there is an unestablished antecedent clause
and the clause matches an established statement

THEN tag the clause as established

P20: IF the goal is to determine if antecedents correspond to established statements
and there are no unestablished antecedent clauses

THEN POP the goal with success

P21: IF the goal is to determine if antecedents correspond to established statements
and there is an unestablished antecedent clause
and it matches no established statement

THEN POP the goal with failure

.\NI)IRSON161

PROBLE PROBLEMS

SUCS FAILURER

FAILUSON

SUCCESS P16)FAILURE

Figure ~ ~ ~ IN A:Arpeetto ftefo fcnrli al
betweent EAioSOal. CnrlNtrswt

theS to goal

ANDERSON 17

instruction is used by a general problciti-solk ing procedturC (in dis case, ior searching a list of medtods) to
determine the course of behavior.

The students we studied had extracted from the instruction in Figure 2 that the givens reasons is used when
the line to be justified is among the givens of the problem. Note that this fact is not explicitly stated in the
instruction but is strongly implied. Thus. it is assumed that the student has encoded the fact that "the givens
method involves establishing that the statemen, is among die givens." Production P11 will match this fact in
its condition and so will set as a subgoal to establish that RO = NY is among the givens of the problem.
Production P14 models the successful recognition that RO = NY is among the givens and returns a success
from the subgoal. That is to say, its action "POP the goal with success" tags the goal "to find RO = NY
among the givens" with success and sets as the current goal the higher goal of trying the givens method. Then
P12 and P9 POP success back up to the next-to-top-level-goal of writing a reason for the line. Then
production P5 applies to write "given" as a reason and POPs back to the top-level goal.

At this point production P2 applies to set the subgoal of writing a reason for the second line, RO = NY.
Then productions P4, P7, and P11 apply in that order setting the subgoal of seeing whether RO = NY was
among the givens of the problem. Production P15 recognizes this as a failed goal and then production P13
returns control back to the level of choosing methods to establish a reason. Production P8 selects the
definition reason next to try.

Clearly, the instruction in Figure 2 contains no explanation of how a definition should be applied.
However, the assumption of the text is that the student knows that a definition should imply the statement.
There were some earlier exercises on conditional and bicondicional statements that makes this assumption at
least conceivable. Our two subjects both knew that some inference-like activity was required but they had a
faulty understanding of the nature of the application of inference to this task. In any case, assuming that the
student knows as a fact (in contrast to a procedure) that use of definitions involves inferential reasoning,
production P11 will match in its condition the fact that "definitions involve establishing that the statement is
implied by a definition" and P11 will set the subgoal of proving that RO = NY was implied by a definition.

At this point I have to momentarily leave our students behind and describe the ideal student. The textbook
assumes that the student already has a functioning procedure for finding a rule that implies a statement by
means of a set of established rules. Productions P16 - P21 constitute such a procedure. Neither of our
students had this procedure in its entirety. These productions work as a general inference testing procedure
and apply equally well to postulates and theorems as well as definitions. Production P16 selects a conditional
rule that matches the current line (the exact details of the match are not unpacked in Table 2). It is assumed
that a biconditional definition is encoded as two implications each of the form consequent if antecedent. The
definition relevant to the current line 2 is that two line segments are congruent if and only if they are of equal
measure which is encoded as:

XZ = UV if 77 uv
andXZ UV if XZ = UV

the first implication is the one that is selected and the subgoal is set to establish the antecedent XZ UV (or
RO ! NY. in the current instantiation). The production set P19 - P21 describe a procedure for matching zero
or more clauses in the antecedent of a rule. In this case P19 finds a match to the one condition. XZ = UV,

AN I RSO 18I

With -- M in ie firsL line. 'I i1 L20 pOpS With uI CCeSS loiIO%,d b. suct e ,s'Ul popping oiP17, ien P12,
and then P9 which returns the system to the goal of writing out a reason for the line.

Significant Features of the Example. I will not further trace the application of the production set to the

example. I would like to identify, however, the essential aspects of how this production set allows the student

to bridge the gap between instruction and the problem demands. Figure 5 illustrates the flow of control with

each box being a level in the goal structure and serving as subroutine. Although it is not transparent, the

subgoal organization in Figure 5 results in the same flow of control as the flowchart organization of Figure 4.

However, as the production rendition of Figure 5 establishes, the flow of control in Figure 5 is not something

fixed ahead of time but rather emerges in response to the instruction and the problem statement.

The top level goal in Figure 5 of iterating through a list of problems is provided by the problem statement

and, given the problem statement, it is unpacked into a set of subgoals to write statements indicating the

reasons for each line. This top level procedure reflects a general strategy the student has for decomposing

problems into linearly ordered subproblems. Then another prior routine sets as subgoals to find the reasons.

At this point the instruction about the list of acceptable relationships is called into play (through yet another

prior problem-solving procedure) and is used to set a series of subgoals to try out the various possible

relationships. So the unpacking of subgoals in Figure 5 from "do a list of problems" to "find a reason" is in

response to the problem statement; the further unpacking into the methods of givens, postulates, definitions,

and theorems is in response to the instruction. The instruction is the source of information identifying that

the method of givens involves searching the given list and the other methods involve application of inferential

reasoning. The ability to search a list for a match is assumed by the text, reasonably enough, as a prior

procedure on the part of the student. The ability to apply inferential reasoning is also assumed as a prior

procedure, but in this case the assumption is mistaken,

In summary, then, we see in Figure 5 a set of separate problem-solving procedures which are joined

together in a novel combination in response to the problem statement and instruction. In this sense, the

student's general problem-solving procedures are interpreting the problem statement and instruction. Note

that the problem statement and the instruction are being brought into play by being matched as data in the

conditions of the productions of Table 2.
Student Understanding of Implication. The two students that we studied both had serious

misunderstandings about how one determines if a statement is implied by a rule and we spent some time
correcting each student's misconceptions. One student thought that it was sufficient to determine that the
consequent of the rule matched the to-be-justified statement and did not bother to test the antecedent. For
him, the subroutine call (subgoal setting) of production P16 did not exist.

Our second student had more exotic misunderstandings. This is best illustrated in his efforts to justify the
line 4, RO + ON = ON + NY, in Figure 3. The student thought the transitive property of equality was the
right justification for line 4. The transitive property of equality is stated as "a = b, b = c, implies a = c."

.\.\I)I:RSON 19

The student phsically drew oUL the following correspondence between the antecedets of this postulatC and
the to-be-justified statement:

RO+N = ON +NY

That is, he found that he could put ie variables of the antecedent in order with the terms of the statement.
He noted that he needed to also match to a = c in the consequent of the transitive postulate but noted that a
previous line had RO = NY, which given the earlier variable matches. satisfied his need.

This student had at least two misunderstandings. First, he seemed unable to appreciate the tight
constraints on pattern matching (e.g., one cannot match " =" against "+ "). Second, he failed to appreciate
that the consequent of the postulate should be matched to the statement and the antecedent to earlier
statements. Rather he had it the other way around. However, given the instruction he has had to date this is
not surprising since none of this was specified.

Both students required remedial instruction. Thus, these errors created the opportunity for new learning.
Although I have not analyzed this in detail, I believe that remedial instruction amounted to providing
additional declarative information. This information could be used by other general procedures to provide
interpretive behavior in place of the compiled procedures that Table 2 is assuming in productions P16 - P21.
This is a simple form of debugging: When the instruction assumes pre-compiled procedures which do not
exist, remedial instruction can correct the situation by providing the data for interpretive procedures.

Use of Analogy

In the previous discussion we saw how general problem solving procedures can be used in the absence of

specific procedures. Such procedures generate behavior in response to the specifications of the problem and

the constraints of the instruction. Given the incompleteness of the instruction, this way of solving problems is

often a very difficult and sometimes impossible route to follow. An alternative is to try to generate the

requisite behavior out of analogy to a model of the correct performance. We will consider two sources for

such a model. One is the worked-out examples found in instruction and the other is the product of similar

procedures that one possesses. In both cases the analogy is being carried out by general procedures using the

example as data. In both uses, success of the analogy process depends on how well the analogy process is

informed of the constraints of the domain. That is, success is seldom possible by means of a blind symbol-for-

symbol substitution from the example to the new problem. The analogy process must take advantage of the

instruction in order to perform the mapping intelligently.

Analogy to Examples. Figure 6 illustrates a case of successful use of analogy in our protocol, but is

somewhat exceptional in that it is a case where an almost pure symbol-for-symbol mapping seems to work. It

does serve to illustrate, however, the basic features of analogy to example. The first problem is presented in

the text as a proof for which reasons have to be given. I have given the problem in Figure 6a with the reasons

,ilmlma aa -

ANDF-RSON 20

(a) Z

Given: XZ 7? 7W, ,Z IV YW
Prove: sXYZ '2 .iXYWX Y:

Statements Reasons

XZ 1 XW Given
"Y X" Reflexive Property of Congruence

Y Given
AXYZ =' AXYW SSS

(b)

Given: FT t' RK, J K "
Prove: ARSJ V' ARSK

K
Figure 6: Problemn (b) is easily solved by analogy

to Problem (a).

provided. The second problem was presented as the first proof-generation problem of the section. Our

subject immediately noticed the analogy to the prior example problem and went about copying over the proof

with the appropriate modifications made. This example represents the essential two-stage process involved in

using analogy to prior examples. There is first a process of detecting a similarity between two problem

situations. Second, there is the process of deciding if and how the correspondence is to be used. The

similarity is detected by the partial match between the two problem descriptions. The model of this partial-

matching process (described in Kline, 1981) basically counts up the commonalities between the two problem

descriptions and can be quite influenced by superficial similarities such as orientation of the diagrams--as

human students are. Once the similarity is detected an attempt is made to map the analogy from one problem

to the next. The mapping is very easy in this case: X -> R, Z -> J, Y ->S, W > K.

ANDiRSON 21

(o) N (b) AC D

0
R A

Given: RO NY, WM Given: AB CD, ABCD
Prove: RNaOY Prove: AC 1S D

RO NY AS>CD
ON a ON 8C > BC

RO+ONa ON+NY

ROON *RN

ON+ NY "OY
RN 0 OY

Figure 7: One student ran into difficulty trying to use the
proof in (a) as an analogy for generating a proof for (b).
See text for discussion.

In other cases, the correspondence is not so easy. Figure 7 illustrates another attempt on our subject's part

to use analogy. Part a of the Figure illustrates the same reason-giving problem that we have already seen as

part of Figure 3. Part b illustrates our student's start at generating a proof to a later problem in the section.

He noted the obvious similarity between the two problem statements and proceeded to draw the analogy.

Apparently, he inferred that he could simply substitute elements for elements and tried the following

mapping: R -> 0, 0 -> B, N -> C, Y -> D, and equal -> inequality. This allows for a complete mapping of one

problem statement onto the other. With these mappings he then tried to copy over the proof. He got the first

line correct: Analogous to RO = NY he wrote AB > CD. Then he had to write something analogous to ON

= ON. He wrote BC > BC! Almost immediately his semantic sensitivities perceived the absurdity of this

statement and he simply gave up the attempt to use the analogy and turned to trying to solve the problem

anew.

In such attempts at analogy, a declarative knowledge structure (the representation of the prior example) is

being used interpretively. It is first used by some similarity-detecting procedure and then by the procedure

that does the analogy-mapping. The analogy mapper tries to transform the steps of one problem into the

steps of another. It is possible to have more sophisticated procedures for analogy mapping than those

displayed by our subject for the problem in Figure 7 and occasionally our subjects displayed such

sophistication in use of analogy.
Analogy to Output of a Prior Procedure. Yet another way to get successful behavior in initial situations is to

select some established procedure for a domain similar to the current one and try to extend the procedure to
the current domain. This use of analogy can be modelled as applying the established procedure directly to the
new domain and then taking the output of this procedure as a declarative structure to be modified according

..\NIWFRSON 22

to the current domain constraitnts. All examnple u" tlis occulrred ill tie prutocols of anuther ubjcct on the
problem illustrated in Part b of Figure 7. Before discussing his problem attempt, it is worth first noting that
this problem is %ery similar to problems that a student might face in contexts other than geometry. Although
we did not get his protocol on such a problem, imagine how one would deal with a problem such as:

On Labor Day both Willie Stargell and Dave Parker were hitting .300. However. Parker had
more at bats. During the stretch drive after Labor Day, Stargell had 8 home runs. 8 doubles, and
12 singles. During the stretch drive, Parker had 5 home runs, 2 triples, 10 doubles, and 11 singles.
Who had the most hits for the season?

The following is the protocol of a Ph.D.--presumably, we should not expect better from an eighth grader:

Well, Stargell had 8 + 8 + 12 = 28 hits in the stretch drive and Parker had 5 + 2 + 10 + 11
= 28 hits too. Therefore, they had as many hits in the stretch drive. They both hit .300 before

Labor Day but Parker had more at-bats. Therefore, Parker had more hits before Labor Day.
Therefore, he had more hits for the whole season.

The basic plan for this argument can be seen to derive from a production of the sort:

IF the goal is to argue that X1 > X2
and X, = aI + b1
and X2 = a2 + b2
and a1 > a2
and b 1 = b2

THEN set as subgoals to argue that a1 > a2
and to argue that b, = b2

The major line of the argument in the above protocol was directed to achieving these subgoals. What if we
presented a degenerate problem on the order of Figure 7b?

Dave Parker had more hits than Stargell before Labor Day and they both had the same number
of hits after Labor Day. Who had the most hits for the whole season?

Presumably, the student would have given a simple argument for this problem of the form:

Parker had more hits before Labor Day.
They had the same number of hits in the stretch drive.
Therefore, Parker had more hits for the whole season.

The two subarguments are simply stated and then the conclusion stated. While this structure for an argument
is quite acceptable when applied to this informal domain, it results in problems when the student tries to map
it onto a geometry proof.

We believe that our subject tried to apply this established style of argumentation, as embodied in the above

production, to the problem in Figure 7b. In his initial analysis of the problem he did note that segments AB
and BC formed AC and that segments BC and CD formed BD. He also observed that he was given the
requisite inequality and equality. So, he had available all the information required for the above production
to match. If he were to translate the goals and subgoals of the argument structure into lines, he would come
up with something like:

AB>CD

AN DFRSON 23

13C = i1C
.AC > CD

We speculate that he tried to map the output of this argument to the current problem by making these lines of
the argument statements of the problem. He knew that an additional constraint in he geometry domain was
that he had to give reasons for each of his lines. For the first two lines he quickly saw the reasons--"given"
and "rctlcxi% e rule of equality"--presumabl. matching against his ncagcr knowled.ge of geometry and past
postulates. So, what we saw from him was a quick writing down of the first two lines of the proof along with
the correct justifications. At this point if he were trying to map his argument structure into a proof structure
with acceptable reasons, he should come to an impasse in that there was no geometry justification that he

could give for the next line of his argument, namely AC > CD. It was at this point he turned to the earlier
problem worked out in the text--namely, problem (a) in Figure 7. He determined the analogous statement
and the analogous reason for this problem. Therefore, he wrote for his third line:

Statement Reason
3) AB + BC > BC + CD Addition Property of Inequality

He then wrote for his fourth line:

4) AC > BD Subtraction Property of Inequality

We speculate that in this fourth line he was writing out the final line of his argument structure because he
thought he saw a reason of geometry that would justify it. When we asked him why he wrote subtraction
property of inequality, he pointed out that he was "subtracting out" the B from the left hand side in the
inequality in (3) to get the left hand side of the inequality in (4) and similarly obtained the right-hand side of
(4) by "subtracting out" the C from the right-hand side of(3).

We have been intrigued by this protocol because on one hand, the subject gave clear evidence in his
preanalysis of the problem and in his choice of steps that he did have some understanding of the problem.
On the other hand. his error reflects such a gross misunderstanding of the domain. Our speculation is that his

understanding derives from applying this past argument structure to the problem and that his
misunderstanding derives from trying to map this argument structure into geometry. The problem is that the
constraints on an acceptable proof are much stronger than those on an acceptable verbal argument.
Specifically, it is necessary to make explicit and justify the assumptions that AB + BC = AC and BC + CD
= BD. Note in our Ph.D.'s protocol that there was no attempt to explicitly state or justify the analogous
assumptions that number of hits for the whole year are the sum of the number of hits before Labor Day and
the number of hits in the stretch drive. This is tested for in the condition of the argument production, it is just
not made an explicit part of the argument by the action of this production.

Use of Analogy: Summary. By way of summary Figure 8 illustrates the two paths we have considered for

application of analogy. Both start from the statement of the problem. The first detects some similarity

between the problem-statement and the statement of another problem. The solution to this previous problem

is retrieved (often by looking it up) and an attempt is made to map this solution onto a solution to the current

problem. This mapping is very much like solving the classic analogy syllogism--i.e., the student solves "The

prior problem statement is to the current problem statement as the prior solution is to ?" The other possibijity

\N DFRsO N 24

is that the problem statement will evoke some oder procedure. l he application of this procedure's

production will result in a solution. Again the student must map this solution onto a solution For the current

problem but now he cannot treat this as an analogy syllogism and there is less to guide his attempt to map the

solution.

PROBLEM
STATEMENT

SIMI LARITY1 MATCH TO
PROCEDURE'S

CONDITION

PRIOR" PRIOR

PROBLEM PROCEDURE

RETRIEVE]RETRIEVE
SOLUTION 4SOLUTION

SOLUTION DOMAIN S OLUTION

CONSTRAINTS

TO CURRENT
PROBLEM

Figure 8: Illustration of the steps of processing in the two types ofana ogy use.

In either case the mapping process will get into trouble if the student does not observe the constraints of the

geometry proof domain. We saw evidence for such problems in our subject protocols. The teacher in

instructing the student can use these failures as opportunities to reinforce the domain constraints through

remedial instruction. On can imagine that the subjects would develop serious misunderstandings without

such teacher feedback. Brown and Van Lehn (1980) speculate that many subtraction bugs that children

possess derive from self attempts to repair problems in their procedures.

We have placed our discussion of analogy under the heading of interpretive use of declarative knowledge.

The declarative knowledge that is being used in analogy is the solution to be mapped and domain constraints

on the mapping. The procedures that do the mapping are the interpretive procedures.

The Need for an Initial Declarative Encoding

This section has been concerned with showing how students can generate behavior in a new domain when

they do not have specific procedures for acting in that domain. Their knowledge of the domain is declarative

.\ nHRSON 25

and is intepretcd by gencral procedures. One cani argue diat it is adaptive for a le.rning)strm Lo Lvart out

this way. New productions have to be integrated with the general flow of control in the system. Clearly we

are not in possession of an adequate understanding of our flow of control to form such productions directly.

One of the reasons why instruction is so inadequate is that the teacher likewise has a poor conception of flow

of control in the student. Attempts to directly encode new procedures, as in the Instructible Production

System (Rychener, 1981; Rychener & Newell, 1978), have run into trouble because of this problem of

integrating new elements into a complex existing flow of control.

As an example of the problem with creating new procedures out of whole cloth, consider the use of the

definition of congruence by the production set in Table 2 to provide a reason for the second line in Figure 3.
One could build a production that would directly recognize the application of the definition to this situation

rather than going through the interpretive rigamarole of Figure 5 (Table 2). This production would have the

form:

IF the goal is to give a reason for XY = UV
and a previous line has. XY t!V

THEN POP with success
and the reason is definition of segment congruence

However, it is very implausible that the subject could know that this knowledge was needed in this procedural

form before he stumbled on its use to solve line 2 in Figure 3. Thus, ACT should not be expected to encode

its knowledge into procedures until it has seen examples of how the knowledge is to be used.

While new productions have to be created sometimes, forming new productions is potentially a dangerous

thing. Because productions have direct control over behavior there is the ever present danger that a new

production may wreak great havoc in a system. Anyone who incrementally augments computer programs will

be aware of this problem. A single erroneous statement can destroy the behavior of a previously fine

program. In computer programming the cost is slight--one simply has to edit out the bugs the new procedure

brought in. For an evolving creature the cost of such a failure might well be death. In the next section we will

describe a highly conservative and adaptive way of entering new procedures.

As the examples reviewed in this section illustrate, declarative knowledge can have impact on behavior but

that impact is filtered through an interpretive system which is well-oiled in achieving the goals of the system.

This does not guarantee that new learning will not result in disaster but it does significantly lower the

probability. If a new piece of knowledge proves to be faulty it can be tagged as such and so disregarded. It is

much more difficult to correct a faulty procedure.

As a gross example, suppose I told a gullible child, "If you want something then you can assume it has

ANDIRSON 26

happened." Translated into a production it would take on Lhe lollowing fonn

IF the goal is to achieve X
THEN POP with X achieved

This would lead to a perhaps blissful hut deluded chid who never bothered to try to achieve anything because

he believed it was already achieved. As a useful cognitive system he would come to an immediate halt.

However, even if the child were gullible enough to encode this in declarative form at face value and perhaps

even act upon it, he would quickly identify it as a lie (by contradiction procedures he has), tag it as such, and

so prevent it from having further impact on behavior, and continue on a normal life of goal achievement.

New information should enter in declarative form because one can encode information declaratively without

committing control to it and because one can be circumspect about the behavioral implications of declarative
knowledge.1

Knowledge Compilation

Interpreting knowledge in declarative form has the advantage of flexibility but it also has serious costs in

terms of time and working memory space. The process is slow because the process of interpretation requires

retrievals from long-term memory of declarative information and because the individual production steps of

an interpreter are small in order to achieve generality. (For instance, the steps of problem refinement in

Table 2 and Figure 5 were painfully small.) The interpretive productions require that the declarative

information be represented in working memory and this can place a heavy burden on working memory

capacity. Many subject errors and much of their slowness seem attributable to working memory errors.

Students can be seen to repeat themselves over and over again as they lose critical intermediate results and

have to recompute them.

The Phenomenon of Compilation

One of the processes in geometry that we have focussed on is how students match postulates against

problem statements. Consider the side-angle-sidc (SAS) postulate whose presentation in the text is given in

Figure 9. We followed a student through the exercises in the text that followed the section that contained this

postulate and the side-side-side (SSS) postulate. The first problem that required use of SAS is illustrated in

Figure 10. The following is the portion of his protocol where he actually called up this postulate and

1As a side remark, I should acknowledge here that I am contradicting some of my earlier publications (e.g.. Anderson, Kline, &
Beasley, 1979. 1980) where I proposed a designation process that allowed productions to be directly created. This was rightfully criticized
(e.g.. Norman, 1980) as far too powerful computationally to be human. We were certainly always aware of the problems of designation--
for instance in my discussion of induction in the 1976 ACt book (section 12.3), 1 was slubbornly avoiding such a process. However, a
few years ago there seemcd no way to construct a learning theory without such a mechanism. Now thanks to the devclopmcnt of ideas
about knowledge compilation, the designation mechanism is no longer necessary.

ANDERSON 27

managed to put it in corresponldel ce to the problem:

If you looked at the side-angle-side postulate--long pause--wcll RK and RI could almost be--
long pause--what the missing--long pause--the missing side. I think somehow the side-angle-side
postulate works its way into here---long pause--Let's see what it says: "two sides and the included
angle." What would I have to have to have two sides. JS and KS are one of them. Then you
could go back to RS = RS. So that would bring up the side-angle-side postulate--long pause--But
where would LI and L2 are right anglc. fit in--long pause--wait I see how they work--long pause--
JS is congruent to KS--long pause--and with angle I and angle 2 are right angles that's a little
problem--long pause--OK. what does it say--check it one more time: "If two sides and the
included angle of one triangle are congruent to the corresponding parts"--So I have got to find the
two sides and the included angle. With the included angle you get angle I and angle 2. 1 suppose-

* -long pause--they are both right angles which means they are congruent to each other. My first
side is JS is to KS. And the next one is RS to RS. So these are the two sides. Ycs, I think it is the
side-angle-side postulate.

After reaching this point there was still a long process by which the student actually went through writing out

the proof--but this is the relevant portion in terms of assessing what goes into recognizing the relevance of

SAS.

POSTULATE 14 If two sides and the included angle of one

(SAS POSTULATE) triangle are congruent to the corresponding
parts of another triangle, the triangles are con-
gruent.

C F

A E
According to Postulate 1 4:

If A = DE, AC= 5, and _A = /D,
then &xABC = L DEF.

Eipure 9: Statement in the text of the side-angle-side postulate.

Given: /1 and Z2 are right angles
JS = KS

Prove: aRSJ a 4RSK

K
Figure 10: The first proof generation problem that a student

encounters which requires application of the SAS postulate.

ANL :RSO\ 28

Given:.Z LVZ2

BK = CK
Prove: ,ABK V ADCK

D
Figure 11: The fourth proof generation problem that a student en-

counters which requires application of the SAS postulate.

After a series of four more problems (two were solved by SAS and two by SSS), we came to the student's

last application of the SAS postulate--for the problem illustrated in Figure 11. The method recognition

portion of the protocol follows:

Right off the top of my head I am going to take a guess at what I am supposed to do--/DCK ,0
LABK. There is only one of two and the side-angle-side postulate is what they are getting to.

A number of things seem striking about the contrast between these two protocols. One is, of course, there has

been a clear speed-up in the application of the postulate. A second is that there is no verbal rehearsal of the

statement of the postulate in the second case. We take this as evidence that the student is no longer calling a

declarative representation of the problem into working memory. Note also in the first protocol that there are

a number of failures of working memory--points where the student recomputed information that he has

forgotten. The third feature of difference is that in the first protocol there is a clear piecemeal application of

the postulate by which the student is separately identifying every element of the postulate. This is absent in

the second protocol. It gives the appearance of the postulate being matched in a single step. These three

features--speed-up, drop-out of verbal rehearsal, and elimination of piecemeal application--are among the

features that we want to associate with the processes of knowledge compilation.

The Mechanisms of Compilation

The knowledge compilation processes in ACT can be divided into two subprocesses. One, which we call

composition, takes sequences of productions that follow each other in solving a particular problem and

collapses them into a single production that has the effect of the sequence. This produces considerable speed-

up by creating new operators which embody the sequences of steps that are used in a particular problem

domain. The second process, proceduralization, builds versions of the productions that no longer require the

domain-spccific declarative information to be retrieved into working memory. Rather the essential products

ANDLRSON 29

of thce reuieval operations arc built into dhe new productions.

Most of this section is devoted to giving a rather detailed and technical analysis of compilation, but it is

useful to have a less formal illustration first--and the reader can wade into the subsequent technical detail only

if desired and, if so, with a better sense of its point. Consider the following two productions that might serve

to dial a telephone number.

IF the goal is to dial a telephone number
and digiti is the first digit of the number

THEN dial digitl

IF the goal is to dial a telephone number
and digiti has just been dialed
and digit2 is after digitl in the number

THEN dial digit2

Composition can create "macro-production" which does the operation of this sequence of two productions.

So from this pair we might create

IF the goal is to dial a telephone number
and digitl is the first digit of the number
and digit2 is after digitl

THEN dial digitl and then digit2

Compositions like this will reduce the number of production applications to perform the task. Such a

production still requires that the phone number be held in working memory. It is possible to eliminate this

requirement by building special productions for special numbers. This is the function of proceduralization.

So. proceduralization applied to Mary's number (432-2815) and the above production, would produce:

IF the goal is to dial Mary's number
THEN dial 4 and then 3

By continued composition and proceduralization a production can be built that dials the full number:

IF the goal is to dial Mary's number
THEN dial "432-2815"

This, by the way, corresponds to the experience of some, including myself (Anderson, 1976, 1980), of knowing

certain phone numbers in terms of procedure for dialing them rather than in terms of a declarative fact.

Encoding and Application of the SAS Postulate

The details of these mechanisms of knowledge compilation are best explained in the context of an example.
The example traces the evolution of the SAS postulate from a declarative state to a procedural state.

\NI)IRSON 30

Table 3
Encoding of the SAS Postulate

SAS-Background
SI is a side ofAXYZ
S2 is a side of AXYZ
Al is an angle of aXYZ
Al is included by SI and S2
S3 is a side ofUVW
S4 is a side of iUVW
A2 is an angle of aUVW
A2 is included by S3 and S4

SAS-Hypotheses
S1 is congruent to S3
S2 is congruent to S4
Al is congruent to A2

SAS-Conclusion
,LXYZ is congruent to AUVW

Table 3 provides a schema-like encoding of the SAS postulate. this schema is just a set or facts tuat
encodes the critical information in the side-angle-side postulate. It is segmented into a set of propositions
about the background, a set of propositions which provide the hypotheses of the postulate, and a conclusion.
The background serves to provide a description of the relevant aspects of the diagram, particularly identifying
the relevant elements like S, S2, Al which serve as the variables of the representation. Subjects spend more
time trying to relate the postulate to the diagram than anything else--consistent with the number of
propositions in the background. This is a highly structured encoding of the postulate and the structure is
critical to correct use of the postulate. We have examples of student failure attributable to incorrect
structuring of postulate encoding (e.g., getting antecedent and consequent confused).

Table 4 provides some of the first productions that might apply in an interpretive attempt to use this
postulate in reasoning backwards. Figure 12 illustrates their flow of control. In order to be able to trace out
the application of knowledge compilation I have had to make explicit their variable structure in Table 4.
Suppose the system has the goal to prove aABC = %DEF. I want to go very carefully through the first three
productions to apply in this case because I will be using them to explain composition and proceduralization.
Production P1 is evoked with the following assignment of clauses:

The goal is to prove that LVobjectl has LVrelation to LVobject2
--> The goal is to prove that AABC is congruent to %DEF.

LVschema has as conclusion that LVobject3 has LVrelation to LVobject4
--> SAS-schema has as conclusion that %XYZ is congruent to iUVW

LVschema has LVbackground as background
--> SAS-schema has SAS-background as background

ANDERSON' 31

Table 4
Some Productions Used in the Backward Application

of the Schema in Table 3

P1: IF the goal is to prove that LVohjcctl has LVrelation to LVobject2
and LVschcma. has as conclusion that LVohjcct3 has LVrclation to L-Vobject4
and LVschcma has LVhackgroUnd as background
and LVschcma has LVhypochcses as hypotheses

THEN LVobjcctl corresponds to LVobject3
and LVobject2 corresponds to LVobject4
and set as subgoals to match LVbackground

and to prove LVhypotheses,

P2: IF the goal is to match L-Vbackground
and L-Vbackground begins with LVstatement

THEN set as a subgoal to match L-Vstatement

P3: IF the goal is to match L-Vbackground
and LVstatementl has just been matched
and LVstatement2 follows LVstatementl

THEN set as a subgoal to match L-Vstatemenc

P4: IF the goal is to match that LVobjectl has LUrelation to LVobject2
and LVobject3 corresponds to LVobject2
and the problem has given that LVobject4 has LVrelation to LVobject3

THEN L-Vobject4 corresponds to L-Vobjectl
and POP the goal

P5: IF the goal is to match that L.Vobjectl has LV relation to LVobject2 and L~object3
and LVobject4 corresponds to L-Vobjectl
and LVobject5 corresponds to LVobject2
and LVobject6 corresponds to LVobjecE3
and the problem has given that LVobject4 had L.Vrelation to LVobject5 and LVobject6

THEN POP the goal

P6: IF the goal is to match the LVbackground
and the last statement has been matched

THEN POP the goal

ANDE[RSON 32

PROVE
GEOMETRIC
RELATION

RELEVANT SCHEMA

MTHNO MORE P6 PROVE

BACKROUD STTEMNTSHYPOTHES IS

FIRSTLATER

STATMENTSTATEMENTS

P2 P3

MATCH
STATEMENT

Figure 12: A representation of the flow of control
in Table 4 between the various goals.

A N ILRSO N 33

lVschcma has LVhypotheses as hypotheses
--> SAS-schema has SAS-hypotheses as hypotheses

The first clause matches against the goal in working memory and the remaining three against elements of the
postulate schema in long term memory. The term SAS-background and SAS-hypotheses in the above refer to
nodcs that organize tihe background and hypthCscs clauses. The critical l'Caurc Ahich enabes PI to
appropriately select the SAS postulate is that it tests that the conclusion of the schema establishes the same
relation as the relation in the goal. It tests for this by the use of the same local variable, LVrelation, in both
the first and second condition clauses. P1 in its action adds the following information to working memory.

aABC corresponds to %XYZ

aDEF corresponds to alUVW

These correspondences are put in working memory to aid subsequent productions in matching the schema
background to the problem. A constraint in performing this match is that these correspondences be kept. P1
also sets subgoals to match the background of the SAS-schema and then to prove the hypotheses.

P2 is then evoked. Its conditions are matched as follows:

The goal is to match LVbackground
--> The goal is to match SAS-background

LVbackground begins with LVstatement
-> SAS-background begins with "SI is aside of %XYZ"

Note in matching the second clause, P2 retrieves from memory the first statement in the SAS background. In
its action it sets as its goal to match this statement.

Next to apply is P4. Its conditions are matched as follows:

The goal is to match that LVobjectl has LVrelation to LVobject2
--> The goal is to match that S1 is side of aXYZ

LVobject3 corresponds to LVobject2
--> aABC corresponds to aXYZ

The problem has given that LVobect4 has LVrelation to LVobjcctl
--> The problem has given that AB is a side of aABC.

This production thus determines that "AB is a side ofaABC" in the problem can be matched to "S1 is a side
of.iXYZ" in the schema and POPs. It also puts into working memory the correspondence:

AB corresponds to S1

After this point productions P3 and P4 or P5 will repeat in cycle matching all the statements in the
background. Then production P6 will apply and POP the goal of matching the background. This will turn the

\.I DRSON 34

S.tem to the goal of u'Ning to prove die hYpoUCses. A general matchiMg System %uLud niced inore than 1-4

and P5 and in Neves and Anderson (1981) we offer a more general solution for interpretive pattern-matching,
but the above will do for current purposes.

It should be clear that this is quite a gencral set of productions--indeed only production PI is specific to
inference schemata or their backgrounds and it still has a very broad range of applicability. It applies to the
side-angle-side postulate only as a very special case.

Composition

Composition works by building productions that capitalize on the regularities in the sequence of

production application in a particular domain. The basic idea is to build single productions which have the

effect of sequences of productions. The idea of collapsing multiple cognitive steps into a single step can at

least be traced back to Book's (1908) analysis of the acquisition of typewriting skills. A modern-day rendition

of it in terms of production systems is provided by Lewis (1979). The process of knowledge compilation can

be particularly well exploited in theACT production system architecture.
Composition takes two productions IF A THEN B and IF C THEN D that have applied in sequence and

builds a new production IFI A&(C-B) TiHEN B&D. A&(C-B) denotes the union of those conditions in A and
those in C not provided by action B. B&D just denotes the union of actions B and D. Let us illustrate this
with respect to the composition of P1 and P2 in this example. Their composition is:

PI&P2: IF the goal is to prove that LVobjectl has LVrelation to LVobject2
and LVschema has as conclusion that LVobject3 has LVrelation to LVobject4
and LVschema has LVbackground as background
and LVschema has LVhypotheses as hypotheses
and LVbackground begins with LVstatement

THEN LVobjectl correresponds to LVobject3
andLVobject2 corresponds to LVobject4
and set as subgoals to match LVstatement

and to match LVbackground
and to prove LVhypotheses

All the conditions of P1 are used and all the conditions of P2 except "the goal is to match LVbackground"
which was provided in the action of P1. The action of P1&P2 includes all the actions of PI and P2. This
production now can do in a single step what P1 and P2 did in two.

Suppose this production PI&P2 is composed with P4 that follows. The result is:

PI&P2&P4: IF the goal is to prove LVobjectl has LVrelation to LVobject2
and LVschema has as conclusion that LVobject3 has LVrelation to LVobject4
and LVschema has LVbackground as background
and LVschema has LVhypothescs as hypotheses
and LVbackground begins with "LVobject5 has LVrelationl to LVobjectY
and the problem has given that [Vobjecct6 has LVrelationl to lVobjectl

AN)F.RSON 35

IHEN 1 Vobject I corresponds to LVobject3
and LVobjcct2 corresponds to LVobject4
and LVobjcct6 corresponds to LVobjccti
and set as subgoals to match LVbackground

and to prove LVhypotheses

The condition of this production contains all the clauses from the condition of Pl&P2 plus the third clause
from P4. rhe first and second clauses of P4 are omitted because they were provided in the action of prior

PI&P2.

There are some additional interesting complications here. Statement LlVbackground begins with
L Vstatement in PI&P2 has been expanded into L Vbackground begins with "L Vobject5 has L Vrelationl to

L Vobjectl ". This unpacking of LVstatement was used in P4 and composition always uses the more specific

designation of a structure in the two productions it is composing. Also note that composition determines that
the l.Vobjectl in PI&P2 is the same as LVobject3 in P4 and it uses the common LVobjectl for both in
PI&P2&P4. Similarly it uses the common LVobjcct3 for LVobject3 from PI&P2 and LVobject2 from P4.

Thus, composition encodes correspondences in variable bindings that the two productions had in this
sequence. Thus, the composed production is more specific in its constraints than the original P1, P2, and P4.

Also note that in its action PI&P2 sets the goal to match the statement and in its action P4 popped this goal.
The setting and popping of this goal is simply omitted in PI&P2&P4. This is one example where a general
learning mechanism can take advantage of this semantics of goal structures to simplify the productions it
produces.

To review, the basic function of composition is to collapse into single steps productions which in general
may apply independently (i.e., they do not always follow one upon the other). Composition capitalizes on the
fact that they do follow each other on a specific knowledge application. It also capitalizes on features of that
application to reduce number of clauses and variables. So while the original three productions involve 16
clauses (conditions and actions) and 15 variables P1&P2&P4 involves 11 clauses and 11 variables.

Remarks about the Composition Mechanism. In the above discussion and in the computer implementation

the assumption has been that a pair of productions will be composed if they follow each other. This means

that upon repeated applications of the same problem, the number of productions should be halved each time.

More generally, however, one might assume that the number of productions in each application is reduced to

a proportion a of the previous application that involved composition. If a > 1/2 this might reflect that

compositions are formed with probability less than 1. If a < 1/2 this might reflect the fact that composition

involved more than a pair of productions. Thus after n compositions the expected number of productions

would be Na n where N was the initial number. As will be argued later, the rate of composition (n) may not be

linear in number of applications of the production set to problems.

There is a limitation on how large production conditions can get and so a limitation on composition. A

production will only match if there is in working memory propositions that correspond to each clause in the

production's condition. If a production is created whose condition exceeds the size of working memory it will

\ND[-RSON 36

not apply and so cannot enter into further compositiuon. I owever, as we will discuss later, it may be posbible

to increase the capacity of working memory with practice.

There is the opportunity for spurious pairs of productions to accidently follow each other and so be

composed together. If we allowed spurious pairs of productions to be composed together there would not be

disastrous consequences but it would be quite wasteful. Also, spurious productions might intervene between

the application of productions that really belong together. So, for instance, suppose the following three

productions had happened to apply in sequence:

PI: IF the subgoal is to add in a digit
THEN set as a subgoal to add the digit and the running total

P2: IF I hear footsteps in the aisle
THEN the teacher is coming my way

P3: IF the goal is to add two digits
and a sum is the sum of the two digits

THEN the result is the sum
and POP

This sequence of productions might apply, for instance, as a child is performing arithmetic exercises in a class.

The first and third are set to process subgoals in the solving of the problem. The first sets up the subgoal that

is met by the third. The second production is not related to the other two and is merely an inference

production that interprets sounds of the teacher approaching. It just happens to intervene between the other

two. Composition as described would produce the following pairs:

P1&P2: IF the subgoal is to add in a digit
and I hear footsteps in the aisle

THEN set as a subgoal to add the digit and the running total
and the teacher is coming my way

P2&P3: IF I hear footsteps in the aisle
and the goal is to add two digits
and a sum is the sum of the two digits

THEN the teacher is coming my way
and the result is the sum
and POP

These productions are harmless but basically useless. They have also prevented formation of the following,

useful composition:

PI&P3: IF the subgoal is to add in a digit
and the sum is the sum of the digit and the running total

ANDI-RSON 37

THEN die result is die sum

rhercfore, it seems reasonable to advance a sophistication over the composition mechanism proposed in

Neves and Anderson. In this new scheme productions are composed only if they are linked by goal setting (as

in the case of P1 & P3) and productions that are linked by goal setting will be composed even if intervening

there are productions which make no goal rcfcrcnce (as in the case of P2). This is ainother example where the

learning mechanisms can profitably exploit the goal-structuring of production systems.

Procedu ralization

As noted above, one factor limiting the formation of composition is that productions with larger conditions

require more information to be held in working memory. Proceduralization has as one of its motivations that

it reduces the demand on working memory for production execution. Specifically, proceduralization

eliminates the need for long-term memory information to be retrieved into working memory for matching by

a production's condition. Rather, the products of the long-term memory retrieval are directly built into the

production.
Let us consider how the proceduralization would apply to the composed production PI&P2&P4. Note that

the second, third, fourth, and fifth clauses of this production's conditions all match to information in long-
term memory encoding the SAS postulate. The effect of matching these four clauses to long-term memory is
to constrain the values of certain local variables and hence to constrain the matching of other condition
clauses and to determine in part what the action clauses achieve. In the example where P1&P2&P4 matches
to the SAS schema we get the following bindings of variables:

LVschema = SAS-schema
LVobject3 = %XYZ
LVrelation = is congruent to
LVobject4 = a UVW
LVbackground = SAS-background
LVhypotheses = SAS-hypotheses
LVobject5 = S!
LVrelationl = is side of

The long-term memory propositions matched to the clauses are always true and so the only reason for
matching them in the condition of PI&P2&P4 is to achieve these variable bindings. We can get the effect of
matching these long-term memory facts simply by constraining these variables to have these values elsewhere
in the production. This can be done by replacing these variables by their values. If we do this, we can then
delete matches to these long-term memory propositions from the condition. The following production
results:

PI&P2&P4': IF the goal is to prove LVobjectl is congruent to LVobject2
and the problem has given that "l-Vobject6 is a side of LVobjectl"

THEN LVobjctl corresponds to aXYZ
and LVobject2 corresponds to iUVW
and LVobject6 corresponds to SI

AND E)RSON 38

and tie subgols ie to match SAS-backgruund
and to prove SAS-hypotheses

The above production has reduced the condition side to 2/6 of the original production and greatly reduced
the number of variables. Moreover, memory for the second condition is supported by the external diagram.
So it is possible that productions composed from this will be able to apply whereas productions composed
from the original PI&P2&P4 could not because of excess demands for the maintenance of information in
working memory. As with composition, our implementation of proceduralization has it applying all the time,
but again it might be more reasonable to propose that proceduralization was a probabilistic affair. In this case
proceduralization and composition would be closely interlocked such that the probability of a composition
increased when a satisfactory proceduralization occurs.

Further Composition and Proceduralization. It is interesting to inquire what would happen if composition
and proceduralization continued in the productions P1 through P6 until there was a single, proceduralized
production to match the total background of the schema. The final product would be:

IF the goal is to prove LVobjectl is congruent to LVobject2
and LVobject3 is a side of I.Vobjectl
and LVobject4 is a side of LVobjectl
and LVobject5 is an angle of LVobjectl
and LVobject5 is included by LVobject3 and LVobject4
and LVobject6 is a side of LVobject2
and LVobjcct7 is a side of LVobject2
and lVobject8 is an angle of LVobject2
and LVobject8 is included by LVobject6 and LVobject7

THEN LVobjectl corresponds to AXYZ
and LVobject2 corresponds to aUVW
and LVobject3 corresponds to S1
and LVobject4 corresponds to S2
and LVobject5 corresponds to Al
and LVobject6 corresponds to S3
and LVobject7 coreesponds to S4
and LVobject8 corresponds to A2
and the subgoal is to prove SAS-hypotheses

This production matches in one step the whole background of the postulate and in its action sets the goal to
prove the hypotheses. It also records all the correspondences between parts of the schema and elements of
the diagram. This information will be used in deciding what to prove congruent to what. Often in later
portions of this paper, we will refer to such a production as

IF the goal is to prove AXYZ " AUVW
THEN set as subgoals to prove

. XY UV
2. 77 VW
3. LXYZ e /UVW

for shorthand. However, in actual implementation the shorthand would need an expansion more like the first

.\\) FRSON 39

reudnuoon of this production. I his expanded rendition also makcs the point that, while the efficiencies in
composition and proceduralization do much to reduce the size of productions. there is an inevitable increase
in both condition size and action size with composition. Thus, limits on the capacity of working memory will
still put limits on the scope of composition.

The impact of composition and proceduralization is to create domain-specific procedures. Thus. in
combination they transform the performance of the skill from interpretative application of declarative
knowledge to direct application of procedural knowledge.

Evidence for Knowledge Compilation

It is worth reviewing the kind of evidence that indicates knowledge compilation goes on. We have already

emphasized the rapid initial speed-up and this need not be mentioned further--but we will return to the issue

of the form of the speed-up later. We have also noted that there is a loss of verbal mediation with practice.

This is produced by a diminishing need to rehearse the material as the knowledge becomes more

proceduralized. I would like to consider in detail here two other phenomena--the disappearance of effects of

memory size and display size in the scan task and the Einstellung effect in problem-solving.
The Steinberg Paradigm. In the Sternberg paradigm (e.g. Sternberg, 1969) subjects are asked to indicate if

a probe comes from a small set of items. The classic result is that decision time increases with set size. It has
been shown that effects of size of memory set can diminish with repeated practice (Briggs & Blaha, 1969). A
sufficient condition for this to occur is that the same memory set be used repeatedly. The following are two
productions that a subject might use for performing the scan task at the beginning of the experiment:

PA: IF the goal is to recognize LVprobe
and LVprobe is a LVtype
and the memory set contains a LVitem of LVtype

THEN say YES
and P)P the goal

PB: IF the goal is to recognize LVprobe
and LVprobe is a LVtype
and the memory set does not contain a LVitem of LVtype

THEN say NO
and POP the goal

In the above, LVprobe and LVitem will match to tokens of letters and LVtype match to a particular letter type
(e.g., the letter A). This production set is basically the same as the production system for the Sternberg task
given in Anderson (1976) except in a somewhat more readable form that will expose the essential character of
the processing. These productions require that the contents of the memory set be held active in working
memory. As discussed in Anderson (1976), the more items required to be held active in working memory the
lower the activation of each and the slower the recognition judgment--which produces the typical set size
effect.

Consider what happens when these productions apply repeatedly in the same list--say a list consisting of A,
1, and N with foils coming from a list of L, B, K. Then through proceduralization we would get the following
productions from PA:

ANDERSON 40

P1: IF the goal is to recognize LVprobe
and LVprobe is an A

THEN say YES
and POP the goal

P2: IF the goal is to recognize LVprobe
and LVprobe is a J

THEN say YES
and POP the goal

P3: IF the goal is to recognize LVprobe
and LVprobe is a N

THEN say YES
and POP the goal

The preceding are productions for recognizing the positive set. Specific productions would also be produced
by proceduralization from PB to reject the foils:

P4: IF the goal is to recognize. LVprove
and LVprobe is a L

THEN say NO
and POP the goal

P5: IF the goal is to recognize LVprobe
and LVprobe is a B

THEN say NO
and POP the goal

P6: IF the goal is to recognize LVprobe
and LVprobe is a K

THEN say NO
and POP the goal

It is interesting to note here that Shiffrin and Dumais (1981) report that the automatization effect they observe
in such tasks is as much due to subjects' ability to reject specific foils as it is their ability to accept specific
targets. These productions no longer require the memory set to be held in working memory and will apply in
a time independent of memory set size. However, there still may be some effect of set size in the subject's
behavior. These productions do not replace PA and PB; rather, they coexist and it is possible for a
classification to proceed by the original PA and PB. Thus, we have two parallel bases for classification racing,
with the judgment being determined by the fastest. This will produce a set size effect which will diminish as
P1 - P6 become strengthened.

The Scan Task. Shiffrin and Schneider (1977) report an experiment in which they gave subjects a set of
items to remember. Then subjects were shown in rapid succession a series of displays where each display
contained a set of items. Subjects' task was to decide if any of the displays contained an item in the memory
set. When Shiffrin and Schneider kept the members of the study set constant and the distractors constant,
they found considerable improvement with practice in subjects' performance on the task. They interpreted

\N DIRSON 41

thcir resut as indicating bod a diminishing effect of memory set size and of the number of altcrinati es in the
display. Consider what a production set might be like that scanned an array to see if any member of the array
matched a memory set item:

PC* IF the goal is to see if LVarray contains a memory item
and LVprobe is in POSITION*

THEN the subgoal is to recognize LVprobe

PD: IF the goal is to recognize LVprobe
and LVprobe is a LVtype
and the memory set contains LVitern of LVtype

THEN tag the goal as successful
and POP the goal

PE: IF the goal is to recognize LVprobe
and LVprobe is a LVtype
and the memory set does not contain a LVitem of LVtype

THEN tag the goal as failed
and POP the goal

PF: IF the goal is to see if LVarray contains a memory item
and there is a successful subgoal

THEN say YES
and POP the goal

PG: IF the goal is to see if LVarray contains a memory item
THEN say NO

and POP the goal

Production PC* is a schema for a set of productions such that each one would recognize an item in a
particular position. An example might be

IF the goal is to see if LVarray contains a memory item
and LVprobe is in the upper-right comer

THEN set as a subgoal to recognize LVprobe

PD and PE are similar to PA and PB given earlier--they check whether each position focused by a PC'
contains a match. PF will apply if one of the probes lead to a successful match and the default production PG
will apply if none of the positions leads to success. The behavior of this production set is one in which
individual versions of the PC* apply serially, focusing attention on individual positions. PD and PE are
responsible for the judgment of individual probes. This continues until a positive probe is hit and PF applies
or until there are no more probe positions and PG applies. (PG will only be selected when there are no more
positions because specificity will prefer PC* and PF over it.) Because of the need to keep the memory set
active, an effect of set size is expected. The serial examination of positions produces an effect of display size.
These two factors should be multiplicative which is what Schneider and Shiffrin (1977) report.

Consider what will happen with knowledge compilation. Composing a PC* production with PD and with
PF and proceduralizing, we will get positive productions of the form:

ANDERSON 42

P7: IF the goal is to see if LVarray contains a memory item
and the upper right hand position contains a LVprobe
and the LVprobe is an A

THEN say YES
and POP the goal

The negative production would be formed by composing together a sequence of PC* productions paired with
PE and a final application of PG. All the subgoal setting and popping would be composed out. The strict
composition of this sequence would be productions like:

P6: IF the goal is to see if LVarray contains a memory item
and the upper left hand position contains a LVprobel
and lVprobel is a K
and the upper right hand position contains a LVprobe2
and LVprobe2 is a B
and the lower left hand position contains a LVprobe3
and LVprobe3 is a L
and the lower right hand position contains a LVprobe4
and LVprobe is a K

THEN say NO
and POP the goal

where a separate such production would have to be formed for each possible foil combination. These
productions predict no effect of set size or probe size which is consistent with the Schneider and Shiffrin
findings.

The Einstellung Phenomenon. Another phenomena attributable to knowledge compilation is the
Einstellung effect (Luchins, 1942; Luchins & Luchins, 1959) in problem-solving. One of the types of
examples used by Luchins to demonstrate this phenomena is illustrated in Figure 13. Luchins presented his
subjects with a sequence of geometry problems like the one in Part (a). For each problem in the sequence the
student had to prove two triangles congruent in order to prove two angles congruent. Then subjects were
given a problem like the one in Part (b). Subjects proved this by means of congruent triangles even though it
has a much simpler proof by means of vertical angles. Subjects not given the initial experience with problems
like the one in Part (a) show a much greater tendency to use the vertical angle proof. Their experimental
experience caused subjects to solve the problem in a non-optimal way.

Lewis (1978) has examined the Einstellung effect and its relation to the composition process. He defines as
perfect composites compositions that do not change the behavior of the system but just speed it up. Such
compositions cannot produce Einstellung, of course. However, he notes that there are a number of natural
ways to produce non-perfect composites that produce Einstellung. The ACT theory provides an example of
such a non-perfect composition process. Composites are non-perfect in ACT because of its conflict resolution
principles.

Production P1 through P4 provide a model of part of the initial state of the student's production system.

N iD[RSO 43
Earlier Examples Like:

(a)

p Given: OM = P N
WP V NO

Prove: LMON -LNPM

M N

(b)
Given: AC = CD

AW-DE
Prove: LBCA 2 LDCE

A
Figure 13: After solving a series of problems like (a) students are
more likely to choose the non-optimal solution for (b).

Pl: IF the goal is to prove LXYZ =' .UVW
and the points are ordered X, Y, and W on a line
and the points are ordered Z. Y. and U on a line

THEN this can be achieved by vertical angles
and POP the goal

P2: IF the goal is to prove £XYZ /LUVW
THEN set a subgoals

1. To find a triangle that contains LXYZ
2. To find a triangle that contains LUVW
3. To prove the two triangles congruent
4. To use corresponding parts of congruent triangles

P3: IF the goal is to find a figure that has a relation to an object
and Figure X has the relation to the object

Lll A t.,i n= 1" , . .i ,-

ANILRSON 44

THEN tie result is Figure X
and POP the goal

P4: IF the o2 is tokove %XYZ U . UVW
and XY UV

andY-Z VW
and ZX- U

THEN this can be achieved by SSS
and POP the goal

Production P1 is responsible for immediately recognizing the applicability of the vertical angle postulate.

Productions P2 - P4 are part of the production set that is responsible for proof through the route of

corresponding parts of congruent triangles. Production P2 decomposes the main goal into the subgoals of

finding the containing triangles, of proving they are congruent, and then of using the corresponding parts

principle. P3 finds the containing triangles, and P4 encodes one production that would recognize triangle

congruence. This production set, applied to a problem like that in Part (b) of Figure 13, would lead to a

solution by vertical angles. This is because production P1, for vertical angles, is more specific in its condition

than production P2 which starts off the corresponding angles proof. As explained earlier, ACT's conflict

resolution prefers specific productions.

Consider, however, what would happen after productions P2 - P4 had been exercised on a number of

problems and composition had taken place. Production P2&P3&P3&P4 represents a composition of the

sequence P2, then P3, then P3, and then P4. Its condition is not less specific than PI and, in fact, contains

more clauses. However, because these clauses are not a superset of Pl's clauses, it is not the case that either

production is technically more specific than the other. They are both in potential conflict and, because both

change the goal state, application of one will block the application of the other. In this case, strength serves as

the basis for resolving the conflict. Production P2&P3&P3&P4, because of its recent practice, may be stronger

and therefore would be selected.

P2&P3&P3&P4:
IF the goal is to prove LXYZ 2_v UVW

and /XYZ is part of,%XYZ
and /UVW ispart of aUVW
and XY = UV
and Z VW
and ZX Wu

THEN set aXYZ _ AUVW
and set as a subgoal to use corresponding part of congruent triangles

This example illustrates how practice through composition can change the specificity ordering of

productions and how it can directly change the strength. These two factors, change of specificity and change

of strength, can cause ACT's conflict resolution mechanism to change the behavior of the system, producing

Einstellung. Under this analysis it can be seen that Einstcllung is an aberrant phenomenon reflecting what is

basically an adaptive adjustment on the system's part. Through strength and composition ACT is unitizing

and favoring sequences of problem-solving behaviors that have been successful recently. It is a good bet that

such sequences will prove useful again. It is to the credit of the cleverness of Luchins' design that it exposed

the potential cost of these usually beneficial adaptations.

.\N DURSON 45

It has been suggested that one could produce the Einstcllung effect by simply suCngtheniog particular
productions. So one might suppose that production P2 is strengthecned over Pi. The problem with this
explanation is that subjects can be shown to have a preference for a particular sequence of productions not
single productions in isolation. Thus. in the waterjug problems, described by Luchins, subjects will fixate on a
specific sequence of operators implementing a subtraction method and will not notice other simpler
subtraction methods. The composition mechanism explains how the subject encodes this operator sequence.

It is interesting to compare the time scale for producing Finstellung with the time scale for producing the
automatization effects in the Sternberg paradigm and the scan paradigm. Strong Einstcllung effects can be
produced after a half dozen trials whereas de automatization results will require hundreds of trials. This
suggests that composition which underlies Einstellung can proceed more rapidly than the proceduralization
which underlies the automatization effects. Proceduralization is really more responsible for creating domain-
specific procedures than is composition. Composition creates productions that encode the sequence of
general productions for a task but the composed productions are still general. In contrast, by replacing
variables with domain constants, proceduralization creates productions that are committed to a particular task.
Apparently, the learning system is reluctant to create this degree of specialization unless there is ample
evidence that the task will be repeated frequently.

The Adaptive Value of Knowledge Compilation

In the previous section on initial encoding it was argued that it was dangerous for a system to directly create

productions to embody knowledge. For this reason and for a number of others it was argued that knowledge

should first be encoded declaratively and then interpreted. This declarative knowledge could affect behavior

but only indirectly via the intercession of existing procedures for correctly interpreting that knowledge. We

have in the processes of composition and proceduralization a means of converting declarative facts into

production form.

It is important to note that productions created from compilation really do not change the behavior of the

system, except in terms of possible reorderings of specificity relations as noted in our discussion of

Einstellung. Thus, knowledge compiled in this way has much of the same safeguards built into it that

interpretative application of the knowledge does. The safety in interpretative applications is that a particular

piece of knowledge does not impact upon behavior until it has undergone the scrutiny of all the system's

procedures (which can. for instance, detect contradiction of facts or of goals). Because compilation only

operates on successful sequences of productions that pass this scrutiny, it tends to only produce production

embodiments of knowledge that pass that scrutiny. This is the advantage of learning from doing. Another

advantage with interpretive application is that the use of the knowledge is forced to be consistent with existing

conventions for passing control among goals. By compiling from actual use of this knowledge, the compiled

productions are guaranteed to be likewise consistent with the system's goal structure.

We can understand why human compilation is gradual (in contrast to computer compilation) and occurs as

ANDIRSON 46

a result of practice it' we consider the difference beteen tLe hnumn situation and the typical compuLer

situation. For one thing, the human does not know what is going to be procedural in an instruction until he

tries to use the knowledge in the instruction. In contrast, the computer has this built in. in the difference

between program and data. Another reason for gradual compilation is to provide some protection against the

errors that enter into a compiled procedure because of the omission of conditional tests. For instance, if the

system is interpreting a series of steps that include pulling a lever, it can first reflect on the lever-pulling step

to see if it involves any unwanted consequences in the current situation. These tests will be in the form of

productions checking for error conditions. (These error-checking productions can be made more specific so

that they would take precedence over the normal course of action.) When that procedure is totally compiled,

the lever-pulling will be part of a pre-packaged sequence of actions with many conditional tests eliminated

(see the discussion of Einstellung). If the procedure transits gradually between the interpretive and compiled

stages, it is possible to detect the erroneous compiling out of a test at a stage where the behavior is still being

partially monitored interpretively and can be corrected. It is interesting to note here the folk wisdom that

most errors in acquisition of a skill, like airplane flying, occur neither with the novices nor with experts.

Rather, they occur at intermediate stages of development. This is presumably where the conversion from

procedural to declarative is occurring and the point where unmonitored mistakes might slip into the

performance. So by making compilation gradual one does not eliminate the possibility of error, but one does

reduce the probability.

Procedural Learning: Tuning

There is much learning that goes on after the skill has been compiled into a task-specific procedure and this

learning cannot be just attributed to further speed-up due to more composition. One type of learning

involves an improvement in the choice of method by which the task is performed. All tasks can be

characterized as having a search associated with them athough in some cases the search is trivial. By search I

mean that there are alternate paths of steps by which the problem can be tackled and the subject must choose

between them. Some of these paths lead to no solution and some lead to more complex solutions than

necessary. A clear implication of much of the novice-expert research (e.g., Larkin, McDermott, Simon, &

Simon, 1980) is that what happens with high levels of expertise in a task domain is that the problem-solver

becomes much more judicious in his choice of paths and may fundamentally alter his method of search. In

terms of the traditional learning terminology, the issue is similar to, though by no means identical to, the issue

of trial and error versus insight in problem solving. A novice's search of a problem space is largely a matter of

trial and error exploration. With experience the search becomes more selective and more likely to lead to

rapid success. I refer to the learning underlying this selectivity as tuning. My use of the term is quite close to

that of Rumelhart and Norman (1976).

ANL:RSON 47

In 1977 we (Anderson, Klinc, & Beslcy, 1977) proposed a set of three learning mcclanisnis %ihich still

serve as the basis for much of our work on the tuning of search. There was a generalization process by which

production rules became broader in their range of applicability, a discrimination process by which the rules

became narrower, and a strengthening process by which better rules were strengthened and poorer rules

weakened. These ideas have not-accidental relationships to concepts in the traditional learning literature, but

as we will see they have been somewhat modified to be compurationally more adequate. One can think of

production rules as implementing a search where individual rules correspond to individual operators for

expanding the search space. Generalization and discrimination serve to produce a "reta-search" over the

production rules looking for the right features to constrain the application of these productions. Strength

serves as an evaluation for the various constraints produced by the other two processes.

This section will consider tuning from two different perspectives. First, I will illustrate how these three

central learning constructs operate in the ACT system with language acquisition examples. These learning

mechanisms were originally conceived with respect to language processing and later extended to other

problem-solving domains. It is a major claim of the theory that these learning mechanisms will apply equally

well to domains as diverse as language processing and geometry proof generation. Second, after having

described the mechanisms I show how they can produce tuning in a problem-solving domain like geometry.

As part of this consideration of problem-solving, I will discuss also how we have applied composition (already

discussed with respect to knowledge compilation) to produce tuning. We have not systematically developed

the application of composition to language processing, although I think it can be done profitably.

Generalization

The ability to perform successfully in novel situations is the hallmark of human cognition. For example,

productivity has often been identified as the most important feature of natural languages, where this refers to

the speaker's ability to generate and comprehend utterances never before encountered. Traditional learning

theories have been criticized because of their inability to account for this productivity (e.g., McNeill, 1968),

and it was one of our goals in designing ACT to avoid this sort of criticism.

An Example. ACT's generalization algorithm looks for commonalities between a pair of productions and

creates a new production rule which captures what these individual production rules have in common. As an

example, consider the following pair of rules for language generation which might arise as the consequence of

compiling productions to encode specific instances of phrases:

PI: IF the goal is to indicate that a coat belongs to me
THEN say "My coat"

.\\IN RSON 48

P2: IF de goal is to indicatc that a ball belongs to me
THEN say "My ball"

From these two production rules ACT can form the following generalization:

P3: IF ie goal is to indicate that LVobject belongs to me

THEN say "My LVobject"

in which the variable LVobject has replaced the particular object.2 The rule now formed is productive in the

sense that it will fill in the LVobject slot with any object. Of course, it is just this productivity in child speech

which has been commented upon at least since Braine (1963). It is important to note that the general

production does not replace the original two and that the original two will continue to apply in their special

circumstances.

The basic function of the ACT generalization process is to extract out of different special productions what

they have in common. These common aspects are embodied in a production that will apply to new situations

where original special procedures do not apply. Thus, the claim of the ACT generalization mechanism is that

transfer is facilitated if the same components are taught in two procedures so generalization can occur. So, for

instance, transfer to a new text editor will be more facilitated if one has studied two other text editors than if

one has studied only one.
Another Example. The example above does not illustrate the full complexity at issue in forming

generalizations. The following is a fuller illustration of the complexity:

P4: IF the goal is to indicate the relation in (LVobjectl chase LVobject2)
and LVobjectl is dog
and LVobjectl is singular
and LVobject2 is cat
and LVobject2 is plural

THEN say CHASES

P5: IF the goal is to indicate the relation in (LVobject3 scratch LVobject4)
and LVobject3 is cat
and LVobject3 is singular
and LVobject4 is dog
and LVobject4 is plural

THEN say SCRATCHES

P6: IF the goal is to indicate the relation in (LVobjectl LVrelation LVobject2)
and LVobjectl is singular
and LVobject2 is plural

2Throughout this section the language acquisition examples are only meant to illustrate the application of these learning mechanism.
There are many major language acquisition phenomena and issues that are being ignored in this discussion. Anderson (1981) should be
consulted for a fuller discussion of how these mechanisms might give a plausible account of some of the phenomena and issues.

AND[:RSON 49

IIEN say "LVrclation + s"

P6 is the generalization that would be formed from P4 and PS. It illustrates that clauses can be deleted in a
generalization as well as variables introduced (in this case LVrclation). In this example, the generalization has
been made that the verb inflection does not depend on the category of the subject or of the object and does
not depend on the verb. This generalization remains overly specific in that the rule still tests that the object is
plural--this is something the two examples have in common. Further gencralization would be required to
delete this unnecessary test. On the other hand, the generalized rule does not test for present tense and so is
overly general. This is because this information was not represented in the original productions. The
discrimination process, to be described, can bring this missing information in.

The technical work defining generalization in ACT is given in Anderson. Kline, and Beasley (1980) and
similar definitions are to be found in Hayes-Roth and McDermott (1976) and Vere (1977). 1 will skip these
technical definitions here for brevity's sake. The basic generalization process is clear without them.

Discipline for Forming Generalizations. In our implementation and in the ACT theory we propose that
generalizations are formed whenever two generalizable productions are found in the APPLYLIST. Recall
from our earlier discussion (p. xxx) that the APPLYLIST is a probabilistically constituted subset of the
system's productions that are potentially relevant to the current situation.

In some situations there are potential generalizations that are technically legal but that seem too risky
because they involve too much deletion of constraint from the production condition. For instance, consider
the following two productions P7 and P8 and their potential generalization P9:

P7: IF the goal is to indicate LVobject
and LVobject is a farmer
and agricol is the word-for farner
and LVobject is plural
and LVobject is in an agentive role

THEN say "agricol + ae"

P8: IF the goal is to indicate LVobject
and LVobject is a girl
and puell is word-for girl
and LVobject is singular
and LVobject possesses another object

THEN say "puell + ae"

P9: IF the goal is to indicate LVobject
and LVobject is a LVclass
and LVword is the word-for LVclass

THEN say "LVword + ae"

This is a gross overgeneralization but more serious, it violates reasonable constraints on what could possibly
be a safe generalization. Basically, the two productions leading to the generalization are too dissimilar. Too
much is deleted in going from the specific productions to the generalized production. Currently, we place a
limit that no more than 50% of the constants may be lost in the condition by forming a generalization. In the

\.N DI-RSON 50

above two productions the constants are underlined. ,As can be seen only two of the original six constants (6
types, 7 tokens) are preserved in generalization. This is lbwer than is acceptable under the 50% rule.

Comparisons to Farlier Conceptions of Generalization. The process of production generalization clearly has

similarities to the process of stimulus generalization in earlier learning theories (for a review see Heinemann

& Chase. 1975) but there are clear differences also. Past theories frequently proposed that a response

conditioned to one stimulus would generalize to stimuli similar on various dimensions. So, for instance, a bar

press conditioned to one tone would tend to be evoked by other tones of similar pitch and loudness. An

important feature of this earlier conception is that generalization was an automatic outcome of a single

learned connection and did not require any further learning. Learning in these theories was all a matter of

discrimination--restricting the range of the learned response. In contrast, in the ACT theory generalization is

an outcome of comparing two or more learned rules and extracting what they have in common. Thus, it

requires additional learning over and above the learning of the initial rules and it depends critically on the

relationship between the rules learned. As I will discuss, when we get to the application of these ideas to

classification learning, there is evidence for ACT's stronger assumption that generalization depends on the

inter-item similarity among the learning experiences as well as the similarity of the test situation to the

learning experiences.

Another clear difference between generalization as presented here and many earlier generalization theories

is that the current generalization proposed is structural and involves clause deletion and variable creation

rather than the creation of ranges on continuous dimensions. We have focused on structural generalizations

because of the symbolic domains that have been our concern. However, these generalization mechanisms can

be extended to apply to generalization over intervals on continuous dimensions (Brown, 1977; Larson &

Michalski, 1977). ACT's generalization ideas are much closer to what happens in stimulus-sampling theory

(Burke & Estes, 1957; Estes, 1950) where responses conditioned to one set of stimulus elements can generalize

to overlapping sets. This is the same as the notion in ACT of generalization on the basis of clause overlap.

However, there is nothing in stimulus-sampling theory that corresponds to AC'"s generalization by replacing

constants in clauses with variables. This is because stimulus-sampling theory does not have the

representational construct of propositions with arguments.

Discrimination

Just as it is necessary to generalize overly specific procedures, so it is necessary to restrict the range of

application of overly general procedures. It is possible for productions to become overly general either

because of the generalization process or because the critical information was not attended to in the first place.

It is for this reason that the discrimination process plays a critical role in the ACT theory. This discrimination

process tries to restrict the range of application of productions to just the appropriate circumstances. The

discrimination process requires that ACT have examples both of correct and incorrect application of the

ANDLRSON 51

production. 'lie discrinination algorithm remembers and comparcs he values of the ariables in the correct

and incorrect applications. It randomly chooses a variable for discrimination from among those that have

different values in the two applications. Having selected a variable, it looks for some attribute which the

variable has in only one of the situations. A test is added to the condition of the production for the presence

of this attribute.

An Example. An example would serve to illustrate these ideas. Suppose ACT starts out with the following

production:

Pl: IF the goal is to indicate the relation in (LVsubject LVrelacion LVobject)
THEN say "LVrelation + s"

This rule, for generating the present tense singular of a verb is, of course, overly general in the above form.

For instance, this rule would apply when the sentence subject was plural, generating "LVrelation + s", when

what is wanted is "LVrelation". By comparing circumstances where the above rule applied correctly with the

current incorrect situation. ACT could notice that the variable LVsubject was bound to different values and

that the value in the correct situation had singular number but the value in the incorrect situation had plural

number. ACT can formulate a rule fZir the current situation that recommends the correct action:

P2: IF the goai is to indicate the relation in (LVsubject LVrelation LVobject)
and LVsubject is plural

THEN say "LVrelation"

ACT can also form a modification of the previous rule for the past situation:

P3: IF the goal is to indicate the relation in (LVsubject LVrelation LVobject)
and LVsubject is singular

THEN say "IVrelation + s"

The first discrimination. P2, is called an action discrimination because it involves learning a new action while

the second discrimination, P3, is called a condition discrimination because it involves restricting the condition

for the old action. Because of specificity ordering, the action discrimination will block misapplication of the

overly general P1. The condition discrimination, P3, is an attempt to reformulate PI to make it more

restrictive. It is important to note that these discriminations do not replace the original production; rather,

they coexist with it. ACT can only form an action discrimination when feedback is obtained about the correct

action for the situation. If ACT only receives feedback that the old action is incorrect, it only can form a

condition discrimination. However, ACT will only form a condition discrimination if the old rule (i.e., P1 in

the above example) has achieved a level of strength to indicate that it has some history of success. The reason

for this restriction on condition discriminations is that a rule can be formulated that is simply wrong and we

do not want to have it perserverate by a process of endlessly proposing new discriminations. Note that

M .i il[.. .. . it n 'l[

. N DIIRSON 52

productions P2 and P3 are impruvcenints over III but are still aot sutinciently rctincd. Tle discriminaxtion

algorithm can apply to these, however. comparing where they applicd succcssfuilly and unsuccessfully. If

discriminations of these were formed on the basis of tense and if both response and condition discriminations

were formed, we would have the following set of productions:

P4: IF tie goal is to indicate the relation in (LVsubjcct l-Vrelation LVobject)
and LVsubject is plural
and LVrelation has past tense

THEN say "LVrelation + ed"

P5: IF the goal is to indicate the relation in (Vsubject LVrelation LVobject)
and LVsubject is plural
and LVrelation has present tense

THEN say "LVrelation"

P6: IF the goal is to indicate the relation in (LVsubject LVrelation LVobject)
and LVsubject is singular
and LVrelation has past tense

THEN say "LVrelation + ed"

P7: IF the goal is to indicate the relation in (LVsubject LVrelation LVobject)
and LVsubject is singular
and LVrelation has present tense

THEN say "LVrelation + s"

A more thorough consideration of how these mechanisms would apply to. acquisition ot" the verb auxiliary

system of English is given in Anderson (1981). The current example is only an illustration of the basic

discrimination mechanism.

Recall that the feature selected for discrimination is determined by comparing the variable bindings in the

successful and unsuccessful production applications. A variable is selected on which they differ and features

are selected to restrict the bindings. It is possible for this discrimination mechanism to choose the wrong

variables or wrong features to discriminate on. So, for instance, it may turn out that LVobject has a different

number in two circumstances and the system may set out to produce a discrimination on that basis (rather

than discriminating on the correct variable, LVsubject). In the case of condition discriminations, such

mistakes have no negative impact on the behavior of the system. The discriminated production produces the

same behavior as the original in the restricted situation. So it cannot lead to worse behavior. (And recall that

the original production still exists to produce the same behavior in other situations.) If an incorrect action

discrimination is produced it may block by specificity the correct application of the original production in

other situations. However, even here the system can recover by producing the correct discrimination and then

giving the correct discrimination a specificity or strength advantage over the incorrect discrimination.

AN DFRSON 53

The current discrimination mechanism also attempts to speed up de process of finding useful

discriminations by its method of selecting propositions from the data base. Though still using a random

process to guarantee that any appropriate propositions in the data will eventually be found, this random

choice is biased in certain ways to increase the likelihood of a correct discrimination. The discrimination

mechanism chooses propositions with probabilities that vary with their activation levels. The greater the

amount of activation that has spread to a proposition, the more likely it is that proposition will be relevant to

the current situation.

Feedback and Memory for Past Instances. The previous example illustrated two critical prerequisites for

discrimination to work. First the system must receive feedback indicating that a particular production has

misapplied and, in the case of an action discrimination, it must receive feedback as to what the correct action

should have been. Second, it must remember information about the context of past successful applications of

the production. Both assumptions require some further discussion.

In principle, a production application could be characterized as being in one of three states--known to be

incorrect, known to be correct, or correctness unknown. However, the mechanisms we have implemented for

ACT do not use the distinction between the second and third states. If a production applies and there is no

comment on its success, it is treated as if it were a successful application. So the real issue is how ACT

identifies that a production application is in error. A production is considered to be in error if it put into

working memory a fact that is later tagged as incorrect. There are two basic ways for this error tagging to

occur--one is through external feedback and the other is through internal computation. In the external

feedback situation the learner may be directly told his behavior is in error or he may infer this by comparing

his behavior to an external referent (e.g., the behavior of a model or a textbook answer). In the internal

computation case the learner must identify that a fact is contradictory that a goal has failed, or that there is

some other failure to meet internal norms. We will discuss later the example of how the learner can use the

goal structure in geometry to identify goal-settings that were in error.

The exact details of how feedback is brought to bear on production actions will vary from dvmain to

domain. The issue of negative feedback has been particularly controversial in the domain of language

acquisition (e.g., Braine, 1971; Brown, Cazden, & Bellugi, 1969). Given the relative arbitrariness of natural

language structures, it is unlikely that internal consistency criteria provide much of a source for detection of

production misapplication. The information must come from external sources but it has been argued, with

respect to first language acquisition, that negative feedback is rare and not really used when given. However,

it is a logical necessity that negative feedback somehow must be brought to bear if the child is to improve his

or her generation. Sometimes, this negative feedback may take the form of direct correction of the child's

generation. However, in other circumstances it can be more indirect as when a child compares his utterance

\\DI-RSON 54

against that of a present or rcmembered model utterance. Mc\hinney (1980) discusses some possibilities for

indirect feedback. Whatever the source the child must be capable of identifying a particular piece of

utterance as an error and of identifying what the correct utterance should have been (for an action

discrimination).

The second issue concerns memory for the context of past utterances. In the actual computer

implementations we have stored with each production the context of its last successful application. It seems

plausible to suppose that contexts are stored only with certain probabilities, that multiple contexts can be

stored, and that contexts are forgotten with increasing delay. This would mean that zero, one, or more

contexts might be available to facilitate a discrimination. However. we have not yet developed the empirical

base to guide such performance assumptions about memory for past contexts. Rather, we have focused on

how a past context should be used if it can be remembered.
Interaction of)iscrimination and Specificity. When a discrimination is formed of an overly general rule,

the discriminated production does not replace the overly general production; rather, it coexists along with the
overly-general production. For many reasons, it is adaptive that the general rule is not thrown out when the
discrimination is formed. First. the piece of information that led to the discrimination may have been the
wrong one--some other feature was required for discrimination or perhaps no discrimination was required at
all. Also, as I will now explain, an overly-general production can participate in a correctly functioning set of
productions.

Suppose the system starts out with the following overly general production for generating the 'ed'
inflection:

P1: IF the goal is to indicate the relation in (LVsubject LVrelation LVobject)
THEN say "LVrelation + ed"

If this production misapplied in a present, plural context a discrimination would be formed to produce a
production adequate to deal with the current context (we will consider for the present example that only
action discriminations are formed.) If the discrimination was based on tense the following production would
be produced:

P2: IF the goal is to indicate the relation in (LVsubject LVrelation LVobject)
and LVrelation has present tense

THEN say "LVrelation"

This production would misapply in the singular present context. The following production would be
generated by discrimination to produce the right behavior here:

P3: IF the goal is to indicate the relation in (LVsubject LVrelation LVobject)
and LVrelation has present tense
and LVsubject is singular

THEN say "LVrelation + s"

AND E-RSON 55

Although only this third production is adequately discriminated, a production system consisting of these three
productions would gencrate correct behavior. Production P3 would of course generate the right verb
inflection in the present singular context (it would apply rather than P1 or P2 because of specificity). In the
context of a present plural, P3 would not match and P2 would take precedence over P1 and correctly generate
the null inflection. Finally. in past context P1 would he the only one to apply and correctly generate the 'ed'
inflection. Of course. as discussed in Anderson (1981) a richer set of productions would he required to deal
with the full verb auxiliary structure of English, but the same interaction between discrimination and

specificity can be exploited.

Another case where specificity is exploited has to do with the exceptions to rules. Production P1 would

generate the wrong inflection for irregular verbs like shoot. A series of discriminations could create a
production specific to shoot and the past tense--i.e.:

P4: IF the goal is to indicate the rclation in (LVsubject shoot LVobject)
and LVrelation has past tense

THEN say "SHOT"

This production would take precedence over PI and generate the right form. The presence of this production
P4 will not, however, prevent PI from applying to regular verbs. Note that specific exceptions to gencral

rules, like the production above, will only reliably take precedence over the general rule if they have adequate

strength. This may explain why irregular inflectional rules tend to be associated with frequent words.

Strengthening

The generalization and discrimination mechanisms are the inductive components to the learning system in

that they are trying to extract from examples of success and failure the features that characterize when a

particular production rule is applicable. The generalization and discrimination processes produce multiple

variants on the conditions controlling the same action. It is important to realize that at any point in time the

system is entertaining as its hypothesis a set of different productions with different conditions to control the

action--not just a single production (condition-action rule). There are advantages to be gained in expressive

power by means of multiple productions for the same action. differing in condition. Since the features in a

production condition are treated conjunctively but separate productions are treated disjunctively, one can

express the condition for an action as a disjunction of conjunctions of conditions. Many real world categories

have the need for this rather powerful expressive logic. Also, because of specificity ordering, productions can

enter into more complex logical relations as we noted.

However, because they are inductive processes sometimes generalization and discrimination will err and

produce incorrect productions. There are possibilities for overgeneralizations and useless discriminations.

The phenomenon of overgencralization is well documented in the language acquisition literature occurring

both in the learning of syntactic rules and in the learning of natural language concepts. The phenomena of

pseudo-discriminations are less well documented in language because a pseudo-discrimination does not lead

ANDIIRSON 56

to incorrect behavior, just unnecessarily rcbticu\c bkehauiur. However, there are some documented cases in

the careful analyses of language development (c.g., \laratius & Chaikley, 1981). One reason that a strength

mechanism is needed is because of these inductive failures. It is also the case that the system may simply

create productions that are incorrect--either because of misinformation or because of mistakes in its

computations. ACT uses its strength mechanism to eliminate wrong productions. whatever their source.

The strength of a production affects the probability that it will be placed on the APPLYLIST and is also

used in resolving ties among competing productions of equal specificity on the APPLYLIST. These factors

were discussed earlier with respect to the full set of conflict resolution principles in ACT (see p. xxx). ACT

has a number of ways of adjusting the strength of a production in order to improve performance. Productions

have a strength of .1 when first created. Each time it applies, a production's strength increases by an additive
factor of .025. However, when a production applies and receives negative feedback, its strength is reduced by

a multiplicative factor of .25. Because a multiplicative adjustment produces a greater change in strength than

an additive adjustment, this "punishment" has much more impact than a reinforcement.

Although these two mechanisms are sufficient to adjust the behavior of any fixed set of productions,

additional strengthening mechanisms are required to integrate new productions into the behavior of the

system. Because these new productions are introduced with low strength, they would seem to be victims of a

vicious cycle: They cannot apply unless they are strong, and they are not strong unless they have applied.

What is required to break out of this cycle is a means of strengthening productions that does not rely on their

actual application. This is achieved by taking all of the strength adjustments that are made to a production

that applies and making these adjustments to all of its generalizations as well. Since a general production will

be strengthened every time any one of its possibly numerous specializations applies, new generalizations can

amass enough strength to extend the range of situations in which ACT performs successfully. Also, because a

general production applies more widely, a successful general production will come to gather more strength

than its specific variants.

For purposes of strengthening, re-creation of a production that is already in the system, whether by

proceduralization, composition, generalization, or discrimination, is treated as equivalent to a successful

application. That is, the re-created production receives a .025 strength increment, and so do all of its

generalizations.

The exact strengthening values encoded into the ACT system are somewhat arbitrary. The general

relationships among the values are certainly important, but the exact relationships are probably not. If all the

strength values were multiplied by some scaling factor one would get the same performance from the system.

They were selected to give satisfactory performance in a set of language learning examples described by

AN!DRSON 57

Anderson, Kline, & llcasley (1980). It is not immediately obvious that they should work to promote the

desired productions and suppress the undesirable. However, these parameter settings have worked in a broad

range of applications. For instance, we (Anderson, Kline, & Beasley, 1979) were successful in simulating a

range of schema abstraction studies (as will be discussed later). I doubt that this is evidence for the exact set

of parameters we propose, but this is evidence that these parameter settings are from the right family.

Comparison to Other Discrimination Theories

As in the case of generalization, ACT's mechanisms for discrimination have clear similarities to earlier ideas

about discrimination. As in the case with generalization, ACT's discrimination mechanisms focus on

structural relations whereas traditional efforts were more focused on continuous dimensions. Brown (1977)

has sketched out ways for extending ACT-like discrimination mechanisms to continuous dimensions although

we have not developed them in ACl'. Also it is the case that ACT discrimination mechanisms are really

specified for an operant conditioning paradigm (in that the action of productions are evaluated according to

whether they achieve desired behavior and goals) and do not really address the classical conditioning

paradigm in which a good deal of research has been done on discrimination. However, despite these major

differences in character, a number of interesting connections can be drawn between ACT and the older

conceptions of discrimination. In making these comparisons I will be drawing on strengthening and other

conflict resolution principles in ACT as well as the discrimination mechanism.
Shift Experiments.

One of the supposedly critical issues in choosing between the discontinuity and continuity theories of
discrimination were the shift experiments (Spence, 1940). The paradigm involved taking subjects that were
still responding at a chance level with respect to some discrimination (e.g., white-black) and shifting the
reinforcement contingencies so that the appropriate response was changed. According to the discontinuity
theory the subject's chance performance indicated failure to be entertaining the right hypothesis and the shift
should not hurt, while according to the continuity theory the subject could still be building up "habit
strength" for the correct response and a shift would hurt. Continuity theory tended to be supported on this
issue for infrahuman subjects (e.g., see Kendler & Kendler, 1975). ACT is like the discontinuity theory in that

its various productions represent alternative hypotheses about how to solve a problem; however, its

predictions are in accord with the continuity theory because it can be accruing strength for a hypothesis
before the production is strong enough to apply and produce behavior. Of course, ACT's discrimination
mechanisms cannot account for the shift data with adults (e.g., Trabasso & Bower, 1968) but we have argued
elsewhere (Anderson, Kline, & Beasley, 1979) that such data should be ascribed to a conscious hypothesis
testing process that produces declarative learning rather than an automatic procedural learning process.

Stimulus Generalization and Eventual Discrimination. As noted earlier, the clauses in a production

condition are like the elements of stimulus sampling theory. A problem for stimulus sampling theory (see
Medin. 1976 for a recent discussion) is how to accomodate both the fact of stimulus generalization and the
fact of eventual perfect discrimination. The fact of stimulus generalization can easily be explained in
stimulus-sampling theory by assuming that two stimulus conditions overlap in their elements. However, if so,

I

.\ NDIRSON 58

the problem becomes how perfect discrimination behavior can be achieved when the common elements can
be associated to the wrong response.

In the ACT theory one can think of the original productions for behavior as basically testing for the null set
of elements:

PI: IF the goal is X
THEN do Y

With discrimination, elements can be brought in to discriminate between successful and unsuccessful
situations, e.g.:

P2: IF the goal is X
and B is present

THEN do Y

P3: IF the goal is X
and B is present
and C is present

THEN do Z

P4: IF the goal is X
and D is present

THEN do Y

etc.

This is like the conditioning of features to responses in stimulus-sampling theory.

If some features occur sometimes in situations for response Y and sometimes in situations for response Z,
discrimination can cause them to become parts of productions recommending one of the actions. For
instance, suppose B is such a feature that really does not discriminate between the actions. Suppose B is
present in the current situation where response Z is executed but that the system receives feedback indicating
that Y is correct. Further, suppose B was not present in the past prior situation where response Z had proved
successful. Production P2 would be formed as an action discrimination. The B test is useless because B is just
as likely to occur in a Z situation. This corresponds to the conditioning of common elements. However, in
ACT the strengthening, discrimination, and specificity processes can eventually repress productions that are
responding just to common elements. For instance, further discriminative features can be added as in P3 that
will serve to block out the incorrect application of P2. Also it is possible to simply weaken P2 and add a new
production like P4 which perhaps contains the correct discrimination.

Patterning Effects. The ACT discrimination theory also explains how subjects are trained to give a response
in the presence of the stimuli A and B together, but neither A nor B alone. This simply requires that two
discriminative clauses be added to the production. Responding to such configural cues was a problem for
some of the earlier discrimination theories (see Rudy & Wagner, 1975 for a review). The power of the ACT
theory over these early theories is that productions can respond to pattern of elements rather than to each
element separately.

\NDERSON 59

ACT also predicts the fact that in the presence of correlated stimuli, one sUmulus may partially or
completely overshadow a second (see MacKintosh. 1975 for a review). Thus, if* both A and B are trained as a
correlated pair to response R. one may find that A has less ability to evoke R alone than if it was the only cue
associated with R. Sometimes if B is much more salient, A may have no control over R at all. In ACT, the
discrimination mechanism will choose among the available features (A, B and other irrelevant stimuli) with
probabilities reflecting their salience. Thus, it is possible that a satisfactory discrimination involving B will be
found, that this production will be strengthened to where it is dominating behavior and producing satisfactory
results, and the A discrimination will never be made. It is also possible that even after a production is formed
with the B discrimination, it is too weak to apply, an error occurs, and an A discrimination occurs. In that case
both A and B might develop as alternate and equally strong bases for responding. Thus. the ACT theory does
not predict that overshadowing will always occur but allows it to occur, and predicts it to be related to the
differential salience of the competing stimuli.

Application to Geometry

I assumed that the information in geometry postulates is initially encoded declaratively and intepreted by

general productions. In the knowledge compilation section I explained how this declarative representation

could be converted into a procedural representation that directly applied the knowledge in the postulate. This

produces a rough postulate-to-production correspondence. I will be assuming such a correspondence in my

discussion of tuning in geometry. The basic claim will be that production embodiments of postulates become

better tuned through practice in their range of application.

The Search Problem. We have developed in some detail how these processes of generalization,

discrimination, and strengthening apply in the geometry domain (e.g., Anderson, Greeno, Kline, & Neves,

1981; Anderson, 1981). We feel that it is the tuning provided by these processes which is a major component

in the development of expertise in such mathematical-technical domains as geometry. Generating a proof in

geometry involves searching a space of possible backward and forward inferences. A striking difference

between novices and experts is their better judgment about the right inferences to make.

Given: AS and CO bisect each other
Prove: &AXC V- ABXD

A D.

Figure 14: A problem to which a novice student tried to apply
SSS but which experienced students immediately see
as involving SAS.

ANDE)LRSON 60

This difference in search judgmcnt can be nicely illustrated by a couple of examples from our geometry

protocols. Figure 14 illustrates one of the early triangle-congruence problems that occurs in the text by

Jurgensen, Donnelly, Maicr, and Rising (1975). One of our students proceeded to try to prove this by means

of the SSS (side-side-side) postulate which led him to the subgoal of trying to prove that AC = BD. In

contrast, we as instructors have the experience of immediately seeing this as a SAS (side-angle-side) problem.

It is not obvious what features we are using to select this method when we see the problem, although it is easy

in retrospect to speculate on what features we might have been using. The interesting question, of course, is

why the proof method is more available to us than to our student subject.

Given: LGBKis a right Z
!H is complementary to LK
AK BK
GK HK

3Prove: aGBK ' &HAK

Figure 15: A problem where both novice and experienced students are
laid astray as to the optimal proof method.

The problem in Figure 15, which comes from a later section in the chapter on triangle congruence, serves to

establish that there is nothing magical about our better judgment in proof direction. It should be noted that

this problem came in the section that had introduced the hypotenuse-leg theorem. We and our subject solved

it in basically the same way. We used the fact that /H is complementary to ZK (i.e.. they sum to 900) and the

fact that a triangle has 1800 to establish that /HAK was 900 and that 1HAK was a right angle triangle. Then

we could use the two pieces of information given about segment congruence to establish the hypotenuse-leg

theorem. However, this problem has a much simpler solution and one that is provided in the teacher's edition

of this textbook. Note that one can use the fact that the two triangles share /GKH and the two segment

congruences to directly permit the SAS postulate. So here is a case where our trained sense about how to

proceed in a proof led us astray. This problem violated a number of fairly good heuristics--i.e., always use

your givens, use right-angle postulates if right-angle triangles are given, and use the postulates from the

current section of the textbook.

A central thesis in our work on geometry is that there are certain features of a problem that are predictive

I
AN DIERSON 61

of the success of a particular inference path and that tie student learns these correlations betwecn problem

features and inference paths through proving problems. Some correlations between problem features and

inference rules are logically determined. So, for instance, a student will learn that if he is trying to prove two

triangles congruent and they both involve right angles, it is likely that he should try a right angle postulate.

Other correlations between problem features and inference rules reflect more about biases in problem

construction than any logical necessity. So, for instance, a student learns that if he sees a triangle that looks as

if it is isosceles, it is likely that he will want to prove that it is isosceles. Whatever the reason for the

correlation between features and inference methods, the student can use these feature-method correlations as

heuristics to guide search. An important task for our tuning mechanisms is to discover and exploit these

correlations. It is clear that students become more judicious in choice of proof paths because they learn more

and more features that are predictive of the correct paths.
Generalization. We have worked out some simulations of the application of generalization and

discrimination to form improved rules. Figure 16 illustrates a fairly powerful example of generalization at
work. Although these two problems seem quite different they do allow a generalization. From working on
individual problems like these, subjects can compile productions that recommend the successful method for
solving the problem. So, for these two problems, subjects might create:

Given: EA - CE
LBEA '- LBEC

'Prove: &ABD =' ,C8D

(b) Given: 16N FR
LONQ='/NOR

Prove: aQOM =?.,%RNP

II f
~N o 0

Figure 16: By generalizing specific operacors for (a)
and bU the student can form a more powerful operator.

A.)-RSON 62

P1: IF the goal is to prove .ABI) = .CBD
and they contain .ABE and .sCBE
andV2- EC
and /BEA 2-/BEC

THEN set as a subgoal to prove ,ABE 2 iCBE

P2: IF the goal is to prove AQOM ,-= .IRNP
and they contain %QON and ARNO
and NQ = OR
and LONQ '

J LNOR
THEN set as a subgoal to prove iQON ,aRNO

It should be clear that these two productions are distinct and not just notational variants of one another. The
first describes two triangles that share a side and there are lines meeting at a common point (E) on that side to
define two contained triangles. The two triangles in P2 only partially overlap on one side and two other
triangles share that overlap. Despite these differences these two productions can be generalized to create the
following production:

P3: IF the goal is to prove aXYZ = AUVW
and .Lhe contain iXYS and aUVT
and SX =- Tu
and ZYSX =N ZVTR

THEN set as a subgoal to prove ,AXYS a UVT

where we have the following variable equivalences:

P3 Pi *P2
X A Q
Y B 0
Z D M
U C R
V B N
W D P
S E N
T E 0

This generalized production embodies the rule that if the goal is to prove a pair of triangles congruent, and
they share sides with a second pair of triangles, and the second pair has a congruent side and angle, then set as
a subgoal to prove the second pair congruent. The generalization has the same basic character of the language
acquisition examples given earlier, viz., it creates a general production whose condition preserves what the
original productions have in common.

Discrimination. Figure 17 illustrates an example of discrimination where we can compare our subject's
performance with the simulation. In Part (a) we have one problem our subject solved and in Part (b) we have
the next problem. The first problem was solved by SSS and this experience apparently primed SSS in our
subject because in the next problem he tried the method of SSS which fails and only then did he try SAS
which succeeded. In ACT the failure of SSS is the stimulus for the discrimination process. The production

ANDERSON 63

that had applied in this case might be a general encoding of the SSS postulate which we can represent:

(a) 3"

Given: RJ FK

Prove: aRSJ ' &RSK

K ,K

(b)
Given: /JRS /KRS

S Prove: &RSJ -' &RSK

Figure 17: By comparing (a) where SSS works with (b) where it
es not and SAS does, the student can create more discriminate

productions for the application of SSS and SAS.

P1: IF the goal is to prove AXYZ =- aUVW
THEN try to prove this by means of SSS

The system would compare the failure on this problem (b) to an earlier success on the earlier similar problem
in part (a). As in our earlier discussion of discrimination there are two discriminations that ACT can create. It

can form a condition discrimination to restrict SSS to the type of situation in Figure 17a. For instance, that
problem mentioned two side congruences whereas Figure 17b does not. This would lead to the following
production.

P2: IF the goal is torove aXYZ -' !iUVW
and XY "= UV
and YZN VW

THEN try to prove this by means of SSS

or ACT can form an action discrimination that will recommend SSS for the current situation. One distinctive
feature is that an angle congruence is mentioned:

ANDERSON 64

P3: IF the goal is t grove sXYZ .iUVW
andZXYZ =/UVW

THEN try to prove this by means of SAS

Both of these discriminations appear to be steps in the direction of more adcquate heuristics. In fact, our
subject remarked after this example that he thought he should not try SSS as a proof method when angles
were mentioned. This is evidence for the comparison process assumed by tie discrimination mechanism.

By continued generalizations and discriminations and by adjusting their strengths according to their
success, the system can develop a very rich characterization of the problem types that appear and of the
appropriate response to each problem type. Basically, we propose that what happens in geometry is like the
pattern learning that is purported to occur in the acquisition of chess skill (Chase & Simon, 1973; Simon &
Gilmartin, 1975) where it is claimed that chess masters have acquired on the order of 50.000 critical patterns
and have associated an appropriate line of response with each pattern. I would like to suggest that the tuning
process discussed here for geometry underlay the acquisition of these chess rules. The patterns are formed
from direct encodings of chess positions and from discriminations and generalizations derived from these.

Credit-Blame Assignment in Geometry. There is an interesting issue of credit-blame assignment in any
interesting problem-solving situation--be it geometry or chess. After ACT has completed a proof it has a goal
structure reflecting the process that led to the proof. It can identify which goals in that goal structure were
successful and which were failures. Productions that led to the creation of failed portions of the search net are
regarded as having misapplied in that they led the system away from its goal. These are the ones that are
subjects for discrimination. A little care is required to properly identify the erroneous productions. As an
example, suppose a goal is set to prove two angles congruent by showing that they are corresponding parts of
congruent triangles. Suppose all methods tried for proving congruent triangles fail and angle congruence is
eventually proven by resorting to the supplementary angle postulate. The mistake is not in the methods
attempted for proving triangles congruent: rather, the mistake was in setting the subgoal of triangle
congruence. ACT's credit-blame assignment procedure would correctly identify the point of error. This is an
example where the hierarchical goal structure of behavior is used critically to aid the learning process.

Composition. The composition idea that we developed as part of our model of knowledge compilation can

also be used to package sequences of inference steps into single macro-operators. A somewhat similar idea in

the domain of logic proofs has been advanced by Smith (in press). Figure 18 illustrates one of the problems

where we applied this mechanism. The first pass of this system over the problem was accomplished by a

sequence of three productions.

PI: IF the goal is to prove %.XYZ %' aUVW
and XY 1 UV and YZ - VW

THEN set as a subgoal to prove ZXYZ /UVW

P2: IF the goal is to prove /XYZ LUYW
and XYW and UYZ

THEN this can be concluded by vertical angles

P3: IF the goal is to prove aXYZ AUVW

AN DERSON 65

A G Give n:~ A)

Prove: aAXC ' ?.BXD

c ' B

Figure 18: The pattern represented in this example occurs with
S~ogue s cy that some students have compiled a production to

and X ' UYZ VW and LXYZ C /UVW
THEN this can be concluded by SAS

Production PI recognizes that there are two pairs of congruent sides and sets the goal to prove the included
angles congruent. Production P2 recognizes the vertical angles pattern and that the two angles are therefore
congruent. Production P3 recognizes that all the components are now available for the SAS postulate to
apply. Composing these three productions together we get:

P4: IF the goal is to prove %XYZ 1 aUYW
andYZ UV-and7 -- YW
and XYW and UYZ

THEN conclude /XYZ 2_'/UYW by vertical angles
and conclude aiXYZ 2' AUYW by SAS

Creation of Data-Driven Productions. It is a feature of the composed production P4 that it summarizes
what had been a multi-level goal tree. The system had started with the goal of proving two triangles
congruent, set a subgoal of proving two angles congruent, and then proceeded to pop the goal. Production P4
will only apply if the goal is explicitly set to prove the two triangles congruent. However, the situation
described in the condition of P4 is so special that even if the goal had not been explicitly set, it would be
useful to make the inference to embellish the problem. Certainly subjects can be observed to make such
"forward inferences" independent of current goals. ACT can create a forward-inference or data-driven
production by dropping the goal specification from P4 (a similar idea was proposed by Larkin, 1981). The
resulting production would be:

PS: IF there are %XYZ and AUYW
7-2UYand7Z Y W
and XYW and UYZ

THEN conclude /XYZ ' /UYW by vertical angles
and aXYZ % ,UYW by SAS

Forward inferences can be made when composition creates a macro-operator which achieves a stated goal
by a sequence of inferences that previously had involved the embedding of subgoals. The forward inference
can be created from the composition by deleting the goal clause. It is useful to understand why one would
only want to drop goal clauses from the macro-operators rather than the original working-backwards
productions. The original productions are so little constrained that the goal clauses provide important
additional tests of applicability. After a macro-operator is composed there are enough tests in the non-goal

ANDERSON 66

aspects of its condition to make it quite likely that thc infcrcnccs will be useful. That is, it is unlikely to bc an
accident that the conjunction of tests are satisfied. There is clear evidence for such a forward inference rule
like P5 in the protocols of some of the more advanced students. For them, the pattern in Figure 18 is
something that will trigger the set of inferences even when it appears embedded in a larger problem.

Procedural Learning: The Power Law

One aspect of skill acquisition is distinguished both by its ubiquity and its surface contradiction to ACT's

multiple-stage, multiple-mechanism view of skill development. This is the log-linear or power law for

practice: A plot of the logarithm of time to perform a task against the logarithm of amount of practice is a

straight line, more or less. It has been widely discussed with respect to human performance (Fits & Posner,
1967; Welford, 1968) and has been the subject of a number of recent theoretical analyses (Lewis, 1979;

Newell & Rosenbloom. 1981). It is found in phenomena as diverse as motor skills (Snoddy, 1926), pattern

recognition (Neiser, Novich, & Losar, 1963), problem-solving (Neves & Anderson, 1981), memory retrieval

(Anderson, in preparation), and suspiciously, in machine-building by industrial plants (an example of

institutional learning not human learning--Hirsch, 1952). Figure 19 illustrates one example--the effect of
practice on the speed with which inverted text can be read (Kolers, 1975). This ubiquitous phenomenon

would seem to contradict the ACT theory of skill acquisition because at first it seems that a theory which
proposes changing mechanisms of skill acquisition would not predict the apparent uniformity of the speed up.

Also it is not clear immediately why ACT would predict a power function rather than, say, an exponential

function. Because of the ubiquity of the power law, it is important to show the ACT learning theory is

consistent with this phenomenon.

. -- T 141SN'"

a

I "

log0 1000
Pa"S read

Figure 19: The effect of practice on the speed with which subjects
can read inverted text--from Kolers, 197S.

ANDERSON 67

The general forn of the equation relating tine (l) to perform a task to amount Of practice (P) is

T= X + pb (1)

where X is the asymptotic speed, X + A is the speed on trial 1 and b is the slope of the function on a log-log

plot (where time is plotted as In(T-X)). The asymptotic X is usually very small rclative to X + A and the rate

of approach to asymptote is slow in a power function. This means that it is possible to get very good fits in

plots like Figure 19 assuming a zero asymptote. However, careful analysis of data with enough practice does

indicate evidence for non-zero asymptotes.

These facts about skill speed-up have appeared contradictory to ACT-like learning mechanisms because

ACT mechanisms would seem to imply speed-up faster than a power law. For instance, it was noted (p. xxx)

that composition seemed to predict a speed-up on the order of BaP--which is to say an exponential function of

practice, P (a is less than 1). An exponential law, as noted by Newell and Rosenbloom (1981). is in some sense

the natural prediction about speed-up. It assumes that with each practice trial the subject can improve a

constant fraction (a) of his current time or that he has a constant probability each trial of a constant fraction of

improvement. When we look at ACT's tuning mechanisms of discrimination and generalization, it is harder

to make general claims about the speed-up they will produce because their speed-up will depend on the

characteristics of the problem space. However, it is at least plausible to propose that each discrimination or

generalization has a constant expected factor of improvement. Composition, generalization, and

discrimination improve performance by reducing the expected number of productions applied in performing

a task. I will refer to improvement due to reduction in number of productions as algorithmic improvement.

In contrast to algorithmic improvement, strengthening reduces the time for individual productions of the

procedure to apply. I will show that the strengthening process in ACT does result in a power law. However,

even if strengthening obeys a power law it is not immediately obvious why the total processing, which is a

product of both algorithmic improvement and strengthening, should obey a power law. Nonetheless, I will

set forth a set of assumptions under which this is just what is predicted by ACT and in so doing will resolve

the problem.

Strengthening

While complex processes like editing or proof generation appear to obey a power law it is also the case that

simple processes like simple choice-reaction time (Mowbray & Rhoades. 1954) or memory retrieval

(Anderson, in preparation) appear to obey a power law. In these cases the speed-up cannot be modelled as an

algorithmic improvement in number of production steps. There cannot be more than a small number of

productions (e.g.. 10) applying in the less than 500 mscc required for these tasks. A process reducing that

ANDERSON 68

number would not produce the continuous improvements observed. Morcover, subjects may well start out

with optimal or near optimal procedures in terms of minimum number of productions. So there often is little

or no room for algorithmic improvement. Here we have to assume that the speed-up observed is due to a

basic increase in the rate of production application as would be produced by ACT's strengthening process.

Recall from our earlier discussions (p. xxx) that time to apply a production is c + a/s where s is the

production strength, c reflects processes in production application, and a is the time for a unit-strength

production to be selected. Strength increases one unit (a unit is arbitrarily .025 in our theory) with each trial

of practice. Therefore, we can simply replace s in the above by P, the number of trials of practice. Then, the

form of the practice function for production execution in ACT would seem to be:

T = c + aP " (2)

which is a hyperbolic function, one form of the power law. This assumes that on the first measured trial

(P= 1), the production already has 1 unit of strength from an earlier encoding opportunity. The time for N

such productions to apply would be:

T = cN + aNP "1 (3)

or T = C + AP "1 (4)

This is a power law where the exponent is 1 and the asymptote C. The problem is. that, unless peculiar

assumptions are made about prior practice (see Newell & Rosenbloom, 1981), the exponent obtained is

typically much less than 1 (usually in the range .1 to .6).

However, the smaller exponents are to be predicted when one takes into account that there is forgetting or

loss of strength from prior practice. Thus, a better form of Equation (4) would be:
P-1

T = C + si,P) (5)
i=0

where s(i,P) denotes the strength remaining from the ith strengthening when the Pth trial comes about. In the

above S(O,P) denotes the strength on trial P of the initial encoding trial. To understand the behavior of this

function we have to understand the behavior of the critical sum
P-1

S = s (iP) (6)
i=O

Wickelgren (1976) has shown that the strength of the memory trace decays as a power law. Assuming that

•A ,\11 tRSO N 69
tine is linear in number of practice trials we have:

s(i,P) = D (P-i) "d (7)

where D is the initial strength and d < 1. Combining (6) and (7) we get:
P

S - Did (8)

This function is bounded below and above as follows:

((p+ 1)1-d - 1) < S < P (pl-d. d)

S is closely approximated by the average of these upper and lower bounds and since the difference between
(P + 1)1-d and pl-d becomes increasingly small with large P we may write

S (pl-d- X)

where X = (1 + d)/2. So, the important observation is that, to a close approximation, total strength will grow

as a power law. Substituting back into equation (5) we get

T = C' + A'P 5 (10)

where A' = A(1-d)/D, g = 1-d, and C' = C - DX/(1-d). Thus, the ACT model predicts that time for a

fixed sequence of productions should decrease as a power law with the exponent deviating from 1 (and a

hyperbolic function) to the degree that there is forgetting. The basic prediction of a power function is

confirmed in simple tasks: the further prediction relating the exponent to forgetting is a difficult issue

requiring further research. However, it is known that forgetting does reduce the effect of practice (e.g.,

Kolers, 1975). Given that forgetting must be an important factor in the long-term development of a skill, the

ACT analysis of the power law is at a distinct advantage over other analyses which do not accomodate

forgetting effects.

Algorithmic Improvement

There is an interesting relationship between this power law for simple tasks, based just on strength

accumulation, and the power law for complex tasks where there is also the potential for reduction in number

of production steps. We noted in the case of composition that a limit on this process was that all the

information to be matched by the composed production must be active in working memory. Because the size

of production conditions (despite the optimization produced by proceduralization) tends to increase

exponentially with compositions, the requirements on working memory for the next composition tend to

increase exponentially with the number of compositions. It is also the case that, as successful discriminations

and generalizations proceed, there will be an increase. in the amount of information that needs to be held in

...LI I I I I I I I i .. .!. .. . in
I

.LI. . _

ANDERSON 70

working memory so that anodicr uscful feature can be idcntificd. In this case, it is not possiblc to make

precise statements concerning the factor of increase but it is not unreasonable to Suppose that this increase is

also exponcntial with number of improvements. This then implies that the following relationship should

define the size (W) of working memory needed for the ith algorithmic improvement.

W = GH I (11)

where G and H are the parameters of the exponential function.

The ACT theory predicts that there should be a power law describing the amount of activation of a

knowledge structure as a function of practice (in the concepts or links that define that structure). By the same

analysis as the one just given for production strength, ACT predicts that the strength of memory structures

should increase as a power function of practice. The strength of a memory structure directly determines the

amount of activation it will receive. Thus, we have the following equation describing total memory activation

(A) as a function of practice:

A = Qpr (12)

where Q and r are the parameters of the power function. (Note that P is raised to a positive exponent- r, less

than one.) This equation is more than just theoretical speculation; unpublished work in our laboratory on

effects of practice on memory retrieval has confirmed this relationship.

There is a strong relationship in the ACT theory between the working memory requirements described by

Equation (11) and the total activation described by Equation (12). For an amount IV of information to be

available in working memory the information must reach a threshold level of activation L which means that

the total amount of activation of the information structure will be described by:

A = WL (13)

Equations (11), (12), and (13) may be combined to derive a relationship between the number of

improvements (i) and amount of practice:

= rIn + in(Q). Ln - LnL (14)
in(H) In(H) n(H) In(H)

or more simply

i = r no + X (15)
In(H)

Thus. because of working memory limitations, the rate of algorithmic improvement is a logarithmic rather

than a linear function of practice. Continuing with the assumption that the number of steps (N) should be

reduced by a constant fraction f with each improvement we get:

A.DLRSON 71

N N(16)

or

N -NI P" (17)

where

S lnf) and N= Nf (18)
ln(H)

Thus, the number of productions to be applied should decrease as a power function of practice. Equation

(17) assumes that in the limit, 0 steps are required to perform the task but there must be some minimum N*

which is the optimal procedure. Exactly, how to introduce this minimum into Equation (16) will depend on

one's analysis of the improvements, but if we simply add it, we will get the standard power function for

improvement to an asymptote:

=N* + N0 P" (19)

So let us review the analysis of the power law to date. We started with the observation that, assuming that

the rate of algorithmic improvement is linear with practice and that each improvement has a proportional

decrease in number of productions, an exponential practice function is predicted, not a power practice

function. We noted that the mechanisms of strength accumulation predict that individual productions should

speed up as a power function. Similar strength dynamics governing the growth of working memory size

imply that the rate of algorithmic improvement was actually logarithmic and therefore the decrease in number

of productions would be a power function.

It should be noted that the relationship between working memory capacity and improvements in the

production algorithm corresponds to a common subject experience on complex tasks. Initially, subjects

report feeling swamped trying to just keep up with the task and have no sense of the overall organization of

the task. With practice subjects report beginning to perceive the structure of the task and claim to be able to

see how to make improvements. It is certainly the case that we observe subjects better able to maintain

current state and goal and better able to retrieve past goals and states of the task. Thus, it seems that their

working memory for the problem improves with practice and subjects claim that being able to apprehend at

once a substantial portion of the problem is what is critical to making improvements.

Algorithmic Improvement and Strengthening Combined

The total time to perform a task is determined by the number of productions and the time per production.

Therefore, the simplest prediction about total time (T17) would be to combine multiplicatively Equation (10)

describing time per production and Equation (19) describing number of productions:

ANDFRSON 72

TT = [N* + NO P"] [C' + A' Pg] (20)

Because of the asymptotic components, N* and A', the above will not be a pure power law but it will look like

a power function to a good approximation (as good an approximation as is typically observed empirically). If

N* and C were 0, then we would have a pure power law of the form:

TT = N0AIP "(U'+) (21)

This has a zero asymptote. Because the initial time is so large relative to final time, most data are fit very well

assuming a 0 asymptote. This is the form of the equation we will use for further discussion.

One complication ignored in the foregoing discussion is that algorithmic improvements in the number of

productions typically mean creation of new productions. According to the theory, new productions start off

with low strength. Thus, productions at later points in the experiment will not have been practiced since the

beginning of the experiment and will have lower strength than assumed in equations (20) and (21). Another

complication on top of this is that a completely new set of productions will not be instituted with each

improvement, only a subset will change. Suppose that at any point in time the productions in use were

introduced an average ofj improvements ago. This means (by equation 15) that after the ith improvement the

average production has been practiced from trial KL i-j to trial KL' and therefore has had KL'(1-L i) trials of

practice where K = H "X/ and L = H1/ from equation (15). Thus, the number of trials of practice (P*) for a

production is expected to be a constant fraction of the total number of trials (P) on the task:
P* = qP (22)

where q = (1 - L'). This implies that the correct form of equation 20 is

Tr = No A' q-g P'g) (23)

Thus, this does not at all affect the expectation of a power function.

An Experimental Test

The basic prediction of this analysis is that both number of productions and time per production should

decrease as a power function or practice. As a result total time will decrease as a power function. Neves and

Anderson (1981) have tested this prediction in an experiment that studied subjects' ability to give reasons for

the lines of an abstract logic proof. This reason-giving task is modelled after a frequent kind of exercise found

in high school geometry texts (see Fig. 3). However, we wanted to use the task with college students and

wanted to see the effects of practice starting from the beginning. Therefore, we invented a novel artificial

proof system. Each proof consisted of 10 lines. Each line could be justified as a given or derived from earlier

lines by application of one of nine postulates. Subjects only could see the current line of the proof and had to

AN DERSON 73

request of a computer that particular prior lines, givens, or postulates be displayed. The method of requesting

this information was very easy and so we hoped to be able to trace, by subjects' request behavior, the steps of

the algorithm that they were following. The relationship between requests and production application is

almost certainly one-to-many, but we believe that we can use these requests as an index of the number of

productions that are applying. The basic assumption is that the ratio of productions to requests will not

change over tne. This assumption certainly could be challenged but I think it is not implausible and is

strongly supported by the orderliness of the results. Under this assumption, if we plot number of requests as a

function of practice we are looking at the reduction in the number of productions or algorithmic

improvement. If we plot time per request we are looking at the improvement in the speed of indiidual

productions.

Figure 20 presents the analysis of this data averaged over three subjects (individual subjects show the same

pattern). Subjects took about 25 minutes to do the first problem. After 90 problems they were often taking

under 2 minutes to do the proofs. This reflects the impact of approximately 10 hours of practice. As can be

seen from Figure 20 both number of steps (information requests) and time per step (interval between

requests) go down as power functions of practice. Hence, total time also obeys a power function. The

exponents for the number of steps is -.346 (varies from -.315 to -.373 for individual subjects) while the

exponent for the time per step is -.198 (range -.144 to -.226).

The Neves and Anderson experiment does provide evidence that underlying a power law in complex tasks

are power laws both in number of steps applied and in time per step. I have shown how a power law in

strength accumulation may underlie both of these phenomena. While it is true that algorithmic improvement

would tend to produce exponential speed-up, the underlying strength dynamics determine working memory

capacity and produce a power function in algorithmic improvement. It is natural to think of these strength

dynamics as describing a process at the neural level of the system. Therefore, it is interesting to note Eccles'

(1972) review of the evidence that individual neurons increase with practice in their rate of transmitter release

and pickup across synapses and that they decrease with disuse.

Tracing the Course of Skill Learning: The Classification Task

We have given separate analyses to the declarative and procedural stages of skill performance and we have

given separate analyses to the learning mechanisms that produce the transition between stages and to the

learning mechanisms applying in the procedural stage. To indicate the combined effect of these many

mechanisms, I would like to consider the development of a rather simple skill from beginning to end. This is

the ability to classify objects as belonging to a particular category. There is a fairly active experimental

literature (e.g., Brooks, 1978: Franks & Bransford, 1971; Hayes-Roth & Hayes-Roth, 1977; Medin &

Schaeffer, 1978; Newman, 1974; Posner & Keele, 1970: Reed, 1972, Reitman & Bower, 1973: Rosch &

..
3162.3

3162.3 74

1000.0 100
o =

0 q

1,.0 100.0

31.8 31.6
31.8 o total time 3.

+ total steps
* time per step

10.0
10.0

3.2 3.2

1.0 1.6 2.5 4.0 6.3 10.0 :5.8 25.1 39.8 63.1 100.0
iOg(drials)

Figure 20: The effect of practice on a reason giving task.

Plotted separately are the effects on number of steps, time

per step, and total time--from Neves and Anderson, 1981.

Mervis, 1975) concerned with this phenomena which is typically called prototype formation or schema

abstraction. The experimental task is very simple: subjects are presented with stimuli that vary on a number

of dimensions and they must learn to categorize them into a number of categories. The categories tend to be

formed according to complex rules or tend only to statistically approximate a rule. Subjects' efforts to identify

the categories by deliberate rule induction tend not to be very successful (Brooks, 1978; Reber, 1967);

however, subjects do manage to extract some of the regularities from the set. Subjects often report that they

make their classification on some general sense of similarity to other stimuli. The typical experime'nI involves

a training stage in which subjects are trained to classify some set of exemplars until they reach a fairly high

level of performance. They then go to a transfer task in which they are asked to classify new instances.

ANDERSON 75

Evidence for the fact that they have extracted regularities from the initial set come from the reliable manner

in which they can assign new instances to categories.

Initial Performance

Subjects can do this task after instruction as simple as:

"You will see a sequence of descriptions of individuals. Your task is to learn to assign them to
category 1 or category 2.'

Since such instruction does no more than specify the goal, it seems clear that subjects must call on an already
existing subroutine to perform the task. The hypothesis of a prior subroutine is certainly plausible in that this
is not the first time that students would be asked to assign instances to categories.

Table 5 provides a model of what the initial procedure might be (I have identified, for later use, the
variables in these productions.) The procedure in Table 5 assigns a new instance to a category by trying to
retrieve a known instance that is similar to the new instance. P1 starts the processing by selecting an instance
for consideration. Since highly similar instances will overlap in features, a spreading activation mechanism
for selecting past instances would tend to select a similar instance. That is, presentation of a test instance
would activate its features and highly similar instances in memory would be selected at the intersection of
activation from these features. However as we will see, even if a similar instance is not selected first it can be
selected later. The production P1 sets the goal of comparing the similarity of the presented and remembered
item. It sets to 0 a counter which will provide a measure of similarity. Production P5 increments the counter
when one of the presented item's features is shared by the remembered item; P6 leaves the counter
unchanged if no value can be remembered on one of the dimensions of the presented item; P7 decrements the
counter when a contradiction in features is found; P8 notes when all the features of the current stimulus have
been checked and returns control to the higher routine. If the counter exceeds some criterion C, production
P2 will classify the new item as being ir_ the same category as the old item; if not P3 will select a new item for
testing; if there are no more items that can be recalled for testing P4 will randomly choose a category to assign

the item to.

The production set in Table 5 can be thought of as implementing a procedure of classifying new examples

by analogy to past examples. This scheme for pattern classification is very much like that of Medin and
Schaffer (1978). Medin and Schaffer showed how such an instance-based categorization system can account
for many of the results in the schema abstraction literature. I consider the production system in Table 4 to be
an adequate model for performance in early stages of the classification task.

Application of Knowledge Compilation

It is useful to consider how proceduralization and composition would apply to the production set in Table 5
for classification. Suppose a subject is in a setting where he must classify person descriptions as members of
Club 1 or Club 2 and he is presented with the following instance--married, Catholic, plays tennis, and has
gone to trade school. Suppose (via Production P1 in Table 5) the subject recalls a Club I member who is
married, Catholic, bowls, and went to trade school. If all the attributes of item 3 were remembered the
sequence of productions to apply from Table 3 would be PI to create the subgoal of feature comparison: then
P2 would apply three times matching marital status, religion, and education. and production P4 would apply
to note that tennis and bowling do not match. Following this P5 would pop the comparison goal and P6

ANDERSON 76

Table 5
An Initial Set of Productions

for Performing Classifications

PI: IF the goal is to classify LViteml
and l-Vitem2 is a past instance

THEN set as a subgoal to compare LVitem 1 and LVitem2
and set the similarity counter to 0

P2: IF the goal is to classify LViteml
and LViteml has been compared to LVitem2
and the similarity counter has value greater than C
and LVitem2 belonged to LVcategory

THEN assign LViteml to LVcategory
and POP the goal

P3: IF the goal is to classify LViteml
and LViteml has been compared to LVitem2
and the counter is less than C
and LVitem3 is a past instance

THEN set as a subgoal to compare LViteml to LVitem3
and set the counter to 0

P4: IF the goal is to classify LViceml
and there are no more past instances
and LVcategory is a category of the experiment

THEN assign LViteml to LVcategory
and POP the goal

P5: IF the goal is to compare LViteml and LVitem2
and LViteml has LVvalue on LVdimension
and LVitem2 has LVvalue on LVdimension

THEN increment the similarity counter

P6: IF the goal is to compare LViteml and LVitem2
and LViteml has LVvalue on LVdimension
and there is no value remembered for LVitem2 on LVdimension

THEN continue

P7: IF the goal is to compare LViteml and LVitem2
and LViteml has LVvaluel on LVdimension
and LVitem2 has LVvalue2 in LVdimension
and LVvaluel* LVvalue2

THEN decrement the similarity counter

P: IF the goal is to compare LViteml and LVitem2
and there are no more dimensions to compare for LViteml

THEN POP the goal

ANDERSON 77

would assign the item to Club 1 on the basis of thc overlapping features. If this sequence were repeated often
enough and each time resulted in a successful classification, the eventual product of composition and
proceduralization would be:

IF the goal is to classify LVitcml
and LViteml is married
and LViteinl is Catholic
and LViteml has gone to trade school
and LViteml bowls

THEN assign LViteml to Club I

(In this composition we have dropped the use of the match counter as something only needed by the
subroutine.) Thus, the impact of composition and proceduralization is to create productions that basically
contain complete descriptions of the instances or nearly complete descriptions (if only some features are
remembered). Replacing the productions in Table 5 by productions like the above may not change the
behavior of the system in terms of its classification choices. However, it certainly speeds up the classification
process. Putting the instance information into production form is also critical in that it puts the knowledge
into a form in which the tuning processes (to be described next) of generalization, discrimination, and
strengthening can apply.

Tuning of the Classification Productions

Our efforts to model classification behavior are particularly relevant to evaluating the learning mechanisms
of generalization, discrimination, and strengthening. Anderson, Kline, and Beasley (1979) present an account
of the application of these ACT learning mechanisms to the schema abstraction domain. Here I will
summarize that application and indicate the essential features about the ACT tuning mechanisms that are
responsible for the success of the theory in accounting for the data. As just discussed, the output of the
knowledge compilation process will be a set of productions which produce categorization of the specific
stimuli on which training has occurred. So, for instance, we might have a pair of productions such as

PI: IF the goal is to classify LViteml
and LViteml is married
and LViteml is Catholic
and LViteml has gone to trade school
and LViteml plays tennis

THEN assign LViteml to Club I

P2: IF the goal is to classify LViteml
and LViteml is married
and LViteml is Catholic
and LViteml has gzrne to trade school
and LViteml play', golf

THEN assign LViteml tc Club 1

Generalizing these two productions we get

P3: IF the goal is to classify LViteml

ANDERSON 78

and l.Viternl is married
and LVitemI is Catholic
and LViteml had gone to trade school

THEN assign LViteml to Club I

This is a production which "predicts" that this is a Club 1 item on the basis of three features.

The above illustrates the application of generalization to this domain: now consider the application of
discrimination. Suppose by generalization or partial compilation we had the following production:

P4: IF the goal is to classify LViteml
and LViteml is Baptist
and LViteml plays chess

THEN assign the item to Club 1

Suppose that this rule correctly assigns a married Baptist with college education who plays chess to Club 1 but
incorrectly assigns to Club 1 a married Baptist with high school education who plays chess (which is identified
as a Club 2 item). This would lead to the following pair of discriminations:

PS: IF the goal is to classify LViteml
and LViteml is Baptist
and LViteml plays chess
and LViteml has college education

THEN assign LViteml to Club 1

P6: IF the goal is to classify LViteml
and LViteml is Baptist
and LViteml plays chess
and LViteml is high school educated

THEN assign LViteml to Club 2

In Anderson, Kline, and Beasley we let these generalizations and discriminations occur in response to
experience with the examples. A strength mechanism served to weight the various currently competing rules.
We used these basic three mechanisms (generalization, discrimination, and strengthening) to simulate the
schema abstraction results of Franks and Bransford (1971), Hayes-Roth and Hayes-Roth (1977), and Medin
and Schaffer (1978). The simulations were quite good--they fit the data at least as well as did the theories
proposed in the original papers that reported the data. (ACT's success at predicting these results depended
heavily on its generalization and strengthening mechanism but not on its discrimination processes.)

I would like to note here three essential aspects of the data and how ACT accounted for each aspect. First,
there is often a tendency for subjects to most accurately and confidently classify instances closest to the overall
central tendency of the category. Sometimes subjects will classify non-studied central instances more
accurately than studied, non-central instances. This is predicted by ACT. Since there tend to be more similar
instances around the central tendency, ACT will usually form more generalizations that can classify central
instances. However, there are a couple of important exceptions to this central tendency effect. Sometimes
subjects will perform better on non-central frcqucnt items than on less frequent central items. This is because

ANDERSON 79

frequent presentations of non-ccntral items increase the strength of productions that will classify them.
Finally. subjects sometimes rate non-central items more highly than central items if there are some study
items highly similar to the non-central items but no study items highly similar to the central item. (An item
can be at the center of a category but not particularly close to any studied item.) This result is predicted by
ACT because generalizations will be formed from the similar study instances to classify the non-central item
but this will not happen for the central item. I think it is to ACT's credit that it accomodates the balance of
the central tendency effect with the other factors.

ACT is one of the feature-set theories of schema abstraction (others include Hayes-Roth & Hayes-Roth,
1977; Reitman & Bower, 1973). These models assume that subjects learn information about sets of features
that occur in the stimulus set. ACT is to be distinguished from these other models because of the special role
it gives to generalization as a basis for identifying feature sets. Recently, Elio and Anderson (in press)
performed a series of experiments to see what evidence there might be for this special role for generalizations.
We had some subjects study pairs of instances of a category such as

(1) Baptist, plays golf, works for government, college-educated, and single
(2) Baptist, plays golf, works for private firm, college-educated, and married

which support a generalization (Baptist, plays golf, and college- educated). Other subjects studied pairs of
instances like

(3) Baptist, plays golf, unemployed, high-school educated, and single
(4) Baptist, plays tennis, works for private firm, college-educated and divorced

which do not support much of a generalization. Regardless of which group they were in subjects were tested
on transfer pairs such as:

(5) Baptist, plays golf, unemployed, college-educated, divorced

It is important to note that (5) overlaps with (1) and (2) on three features each and it similarly overlaps with
(3) and (4) on three features each. Thus, according to other feature set theories there should be identical
transfer from both stimulus sets. However, according to the ACT theory there will be better transfer from the
condition where subjects are trained on (1) and (2). In fact, the ACT predictions were confirmed.

Summary

We have now reviewed the basic progression of skill acquisition according to the ACT learning theory--it

starts out as the interpretive application of declarative knowledge; this becomes compiled into a procedural

form, and this procedural form undergoes a process of continual refinement of conditions and raw increase in

speed. In a sense this is a stage analysis of human learning. Much as other stage analyses of human behavior,

this stage analysis of ACT is being offered as an approximation to characterize a rather complex system of

interactions. Any interesting behavior is produced by a set of elementary components and different

components can be at different stages. For instance, part of a task can be performed intcrpretively while

another part is performed compiled.

ANDERSON 80

The claim is that this configf:ation of learning mechanisms described is involved in the full range of skill

acquisition from language acquisition to problem solving to schema abstraction. Another strong claim is that

the basic control architecture across these situations is hierarchical, goal-structured, and basically organized

for problem solving. This echoes the claim made elsewhere (Newell, 1980) that problem solving is the basic

mode of cognition. The claim is that the mechanisms of skill acquisition basically function within the mold

provided by the basic problem-solving character of skills. As skills evolve they become more tuned and

compiled and the original search of the problem space may drop out as a significant aspect. I presented a

variety of theoretical analyses and special experimental tests that provide positive evidence for this broad view

of skill acquisition. Clearly, many more analyses and experimental tests can be done. However, I think the

available evidence at least conveys a modest degree of credibility to the theory presented.

In conclusion, I would like to point out that the learning theory proposed here has achieved a unique

accomplishment. Unlike past learning theories it has cogently addressed the issue of how symbolic or

cognitive skills are acquired. (Indeed, I have been so focused on this, I have ignored some of the phenomena

that traditional learning addressed such as classical conditioning.) The inadequacies of past learning theories

to account for symbolic behavior have been a major source of criticism. On the other hand, unlike many of

the current cognitive theories, ACT not only provides an analysis of the performance of a cognitive skill but

also an analysis of its acquisition. Many researchers (e.g., Estes, 1975; Langley & Simon, 1981; Rumelhart &

Norman, 1978) have lamented how the strides in task analysis within cognitive psychology have not been

accompanied by strides in development of learning theory.

If I were to select the conceptual developments most essential to this theory of the acquisition of cognitive

skills, I would point to two. First, there is the clear separation made in ACT between declarative knowledge

(propositional network of facts) and procedural knowledge (production system). The declarative system has

the capacity to represent abstract facts. The production system through its use of variables can process the

propositional character of this data base. Also, productions through their reference to goal structures have the

capacity to shift attention and control in a symbolic way. These basic symbolic capacities are what are

essential to the success of the learning mechanisms. Knowledge is integrated into the system by first being

encoded declaratively and being interpreted. We argued that the successful integration of knowledge into

behavior requires that it first go through such an interpretive stage. The various learning mechanisms all are

structured around variable use and reference to goal structures. Moreover, the learning processes impact on

the course of the symbolic processing making it both faster and more judicious in choice. In ACT we see how

learning and symbolic processing could be synergetic. These two aspects of cognition surely are synergetic in

man and this fact commends the theory for consideration at least as much as any specific issue that we

considered.

ANDERSON 81

The second essential dcvclopment is the ACT production system architecture itself. Productions are

relatively simple and well-defined objects and this is essential if one is to produce general learning

mechanisms. The general learning mechanisms must be constituted so that they will correctly operate on the

full range of structures (productions) that they might encounter. It is possible to construct such learning

mechanisms for ACT productions; it would not be possible if" the procedural formalism were something as

diverse and unconstrained as LISP functions. ACT productions have the virtue of S-R bonds with respect to

their simplicity, but also have considerable computational power. A problem with many production system

formalisms with respect to learning is that it is hard for the learning mechanism to appreciate the function of

the production in the overall flow of control. This is why the use of goal structures is such a significant

augmentation to the ACT architecture. By inspecting the goal structure in which a production application

participates, it is possible to understand the role of the production. This is essential to a system that learns by

doing.

ANDI-RSON 82

References

Anderson, J.R. Language, Memory and Thought. Hillsdale, N.J.:
Lawrence Erlbaum Associates, 1976.

Anderson, J.R. Cognitive Psychology and its Inplications. San Francisco, CA:
W.H. Freeman and Company, 1980.

Anderson, J.R. A theory of language acquisition based on general learning mechanisms.
Proceedings of the Seventh International Joint Conference on
Artificial Intelligence, 1981.

Anderson, J.R. Tuning of search of the problem space for geometry proofs.
Proceedings of the Seventh International Joint Conference on

Artificial Intelligence, 1981.

Anderson, J.R. Effects of Practice on Memory Retrieval, in preparation.

Anderson. J.R., Greeno, J.G., Kline, P.J., & Neves, D.M. Acquisition of problem-solving
skill. In J.R. Anderson (Ed.). Cognitive Skills and their Acquisition,
Hillsdale, N.J.: Lawrence Erlbaum Associates, 1981.

Anderson, J.R., Kline, P.J., & Beasley, C.M. A theory of the acquisition of
cognitive skills. ONR Technical Report 77-1, Yale University, 1977.

Anderson, J.R., Kline, P.J., & Beasley, C.M. A general learning theory and its
application to schema abstraction. In G.H. Bower (Ed.), The Psychology
of Learning and Motivation, Vol. 13, New York, NY: Academic Press, 1979, 277-318.

Anderson, J.R., Kline, P.J., & Beasley, C.M. Complex learning processes.
In R.E. Snow, P.A. Federico. & W.E. Montague (Eds.), Aptitude

Learning, and Instruction: Vol. 2, Hillsdale, NJ: Lawrence Erlbaum
Associates, 1980.

Book, W.F. The psychology of skill with special reference to its acquisition in typewriting.
Missoula, Montana: University of Montana, 1908. Facsimile in
The Psychology of Skill, New York: Armo Press, 1973.

Braine, M.D.S. On learning grammatical order of words. Psychological

Review, 1963, 70, 323-348.

Braine, M.D.S. On two types of models of the internalization of grammars. In
D.I. Slobin (Ed.), The Ontogenesis of Grammar. New York: Academic

Press, 1971.

\NDERSON 83

Briggs, G.E. & Blaha. J. Memory retrieval and central comparison times in information-processing.
Journal of flxperimental Psychology, 1969, 79, 395-402.

Brooks, L. Nonanalytic concept formation and memory for instances. In E. Rosch
& B.B. Lloyd (Eds.), Cognition and Categorization. Hillsdale, NJ:
Lawrence Erlbaum Associates, 1978.

Brown, D.J.H. Concept learning by feature value interval abstraction.
In the Proceedings of the Workshop on Pattern-Directed Inference
Systems, 1977.

Brown, J.S. & Van Lehn, K. Repair theory: A generative theory of bugs in procedural skills.
Cognitive Science, 1980, 4, 379-426.

Brown, R. A first language. Cambridge, Mass.: Harvard University Press, 1973.

Brown, R., Cazden, C.G., & Bellugi, V. The child's grammar from I to III. In R. Brown
(Ed.), Psycholinguistics. New York: The Free Press, 1970, 100-154.

Burke, C.J. & Estes, W.K. A component model for stimulus variables in discrimination learning.
Psychometrika, 1957, 22, 133-145.

Chase, W.G. & Simon, H.A. The mind's eye in chess. In W.G. Chase (Ed.),
Visual Information Processing, New York, NY: Academic Press, 1973.

Eccles. J.C. Possible synaptic mechanisms subserving learning. In A.G. Karyman
and J.C. Eccles (Eds.), Brain and Human Behavior, New York:
Springer-Verlag, 1972.

Elio, R. & Anderson, J.R. Effects of category generalizations and instance
similarity on schema abstraction. Journal of Experimental Psychology:
Human Learning and Memory. In press.

Estes, W.K. Toward a statistical theory of learning. Psychological Review,
1950, 57, 94-107.

Estes. W.K. The state of the field: General problems and issues of theory and metatheory.
In W.K. Estes (Ed.), Handbook of Learning and Cognitive Processes,
VoL 1, 1975.

Fitts, P.M. Perceptual-motor skill learning. In A.W. Melton (Ed.),
Categories of human learning, New York: Academic Press.

Fitts, P.M. & Posner, M.I. Human Performance. Belmont, CA: Brooks Cole, 1967.

Forgy, C. & McDermott, J. OPS, a domain-independent production system.

ANDERSON 84

Proceedings of the Fifth International Joint Conference on
Artificial Intelligence, 1977, 933-939.

Franks, J.J. & Bransford, J.D. Abstraction of visual patterns. Journal of
Experimental Psychology 1971, 90, 65-74.

Hayes-Roth, B. & Hayes-Roth, F. Concept learning and the recognition and
classification of exemplars. Journal of Verbal Learning and Verbal
Behavior, 1977, 16, 321-338.

Hayes-Roth, F. & McDermott, J. Learning structured patterns from examples.
Proceedings of the Third International Joint Conference on Pattern

Recognition, 1976, 419-423.

Heinemann, E.C. & Chase, S. Stimulus generalization. In W.K. Estes (Ed.),
Handbook of Learning and Cognitive Processes Vol. 2, Hillsdale,
N.J.: Lawrence Erlbaum Associates, 1975.

Hirsch. W.Z. Manufacturing progress functions. Review of Economics and
Statistics, 1952, 34, 143-155.

Jurgensen, R.C., Donnelly, A.J., Maier, I.E., & Rising, G.R. Geometry.
Boston, MA: Houghton Mifflin, 1975.

Kendler. H.H. & Kendler, T.S. From discrimination learning to cognitive
development: A ncobehavioristic odyssey. In W.K. Estes (Ed.),
Handbook of Learning and Cognitive Processes, Vol. 1,
Hillsdale, N.J.: Lawrence Erlbaum Associates, 1975.

Kline, P.J. The superiority of relative criteria in partial matching and
generalization. Proceedings of the Seventh International Joint
Conference on Artificial Intelligence, 1981.

Kolers. P.A. Reading a year later. Journal of Experimental Psychology:
Human Learning and Memory, 1975, 1, 689-701.

Langley, P. & Simon, H.A. The central role of learning in cognition.
In J.R. Anderson (Ed.), Cognitive Skills and their Acquisition.
Hillsdale, N.J.: Lawrence Erlbaum Associates, 1981.

Larkin, J.H. Enriching formal knowledge: A model for learning to solve textbook
physics problems. In J.R. Anderson (Ed.), Cognitive Skills and their
Acquisition, Hillsdale, NJ: Lawrence Eribaum Associates, 1981.

Larkin. J.H., McDermott. J., Simon, D.P.. & Simon, H.A. Expert and novice performance
in solving physics problems. Science, 1980, 208. 1335-1342.

AND EIRSON 85

Larson, J. & Michalski. R.S. Inductive inference of VL decision rules.
In the Proceedings of the Workship on Pattern-Directed Inference
Systems, 1977.

Lewis, C.H. Production system models of practice effects. Unpublished
dissertation. University of Michigan, Ann Arbor, MI, 1978.

Lewis, C.H. Speed and practice. Unpublished manuscript, 1979.

Luchins, A.S. Mechanization in problem solving. Psychological Monographs,

1942, 54, No. 248.

Luchins, A.S. & Luchins, E.H. Rigidity of behavior: a variational approach to
the effect ofEinstellung. Eugene, OR: University of Oregon Books, 1959.

MacKintosh, N.J. From classical conditioning to discrimination learning.
In W.K. Estes (Ed.), Handbook of Learning and Cognitive Processes,
Vol. 1, Hillsdale, N.J.: Lawrence Erlbaum Associates, 1975.

MacWhinney, B. Basic syntactic processes. In S. Kuczaj (Ed.),
Language development: Syntax and Semantics.

Hillsdale, N.J.: Lawrence Erlbaum Associates, 1980.

Maratsos, M.P. & Chalkley, M.A. The internal language of children's syntax:
The ontogenesis and representation of syntactic categories. In K. Nelson (Ed.),
Children's Language Vol. L New York, NY: Gardner Press, 1981.

McNeill, D. On theories of language acquisition. In T.R. Dixon & D.L. Horton (Eds.),
Verbal Behavior and General Behavior Theory. Englewood Cliffs, NJ:
Prentice-Hall, 1968.

Medin, D.L. Theories of discrimination learning and learning set.
In W.K. Estes (Ed.), Handbook of Learning and Cognitive Processes,
VoL 3. Hillsdale, N.J.: Lawrence Erlbaum Associates, 1976.

Medin. D.L. & Schaffer, M.M. A context theory of classification learning.
Psychological Review, 1978, 85, 207-238.

Miller, G.A., Galanter. E.. & Pribram, K.H. Plans and the Structure of Behavior.
New York, NY: Holt, Rinehard, and Winston, Inc., 1960.

Mowbray, G.H. & Rhoades, M.V. On the reduction of choice reaction times
with practice. Quarterly Journal of Experimental Psychology,

1959, 11, 16-23.

.\NDERSON 86

Neisscr, U.. Novick, R.., & Lazar, R. Searching for ten targets simultaneously.
Perceptual and A/ath Skills. 1963, 17, 955-961.

Neumann, P.G. An attribute frequency model for the abstraction of prototypes.
Memory and Cognition, 1974, 2, 241-248.

Neves. D.M. Learning procedures from examples. Unpublished doctoral dissertation.

Carnegie-Mellon University, 1981.

Neves, D.M. & Anderson, J.R. Knowledge compilation: Mechanisms for the automatization

of cognitive skills. In J.R. Anderson (Ed.), Cognitive Skills and their
Acquisition, Hillsdale, NJ: Lawrence Erlbaum Associates, 1981.

Newell, A. Reasoning, problem-solving, and decision processes: The problem
space as a fundamental category. In R. Nickerson (Ed.), Attention and
Performance PIl. Hillsdale, NJ: Lawrence Erlbaum Associates, 1980.

Newell, A. & Rosenbloom, P. Mechanisms of skill acquisition and the law of practice.

In J.R. Anderson (Ed.), Cognitive Skills and their Acquisition,
Hillsdale, NJ: Lawrence Erlbaum Associates, 1981.

Norman. D.A. Discussion: Teaching, learning, and the representation of knowledge.
'n R.E. Snow, P.A. Federico, and W.E. Montague (Eds.), Aptitude,
Learning, and Instruction, Vol. 2, Hillsdale. N.J.: Lawrence
Erlbaum Associates, 1980.

Posner, M.I. & Keele, S.W. Retention of abstract ideas. Journal of Experimental
Psychology, 1970, 83, 304-308.

Reber, A.S. Implicit learning of artificial grammars. Journal of Verbal Learning

and Verbal Behavior, 1967, 6, 855-863.

Reed, S., Pattern recognition and categorization. Cognitive Psychology,

1972, 3, 382-407.

Reitman. J.S. & Bower, G.H. Structure and later recognition of exemplars of concepts.
Cognitive Psychology, 1973, 4, 194-206.

Rosch, E. & Mervis, C.B. Family resemblances: Studies in the internal structure

of categories. Cognitive Psychology, 1975, 7, 573-605.

Rudy, J.W. & Wagner. A.R. Stimulus selection on associative learning.
In W.K. Estes (Ed.), Handbook of Learning and Cognitive Processes,
Vol. 2, Hillsdale, N.J.: Lawrence Erlbaum Associates, 1975.

RumelhartO.F. & Norman, D.A. Accretion. tuning, and restructuring: Three modes

ANDERSON 87

of tearning. In J.W. Cotton & R. Klatzsky (Eds.). Semanticfictors in
cognition. Hillsdale, NJ: Lawrence Erlbaum Associates, 1978.

Rychcncr, M.D. Approaches to knowledge acquisition: The instructable
production system project, 1981.

Rychener, M.D. & Newell, A. An instructible production system: Basic design issues.
In D.A. Waterman & F. Hayes-Roth (Eds.), Pattern-Directed Inference
Systems, New York, NY: Academic Press, 1978.

Schneider, W. & Shiffrin, R.M. Controlled and automatic human information processing:
I. Detection. search, and attention. Psychological Review, 1977,
84, 1-66.

Shiffrin, R.M. & Dumais, S.T. The development of automatism. In J.R. Anderson (Ed.),
Cognitive Skills and their Acquisition, Hillsdale, N.J.: Lawrence
Erlbaum Associates, 1981.

Shiffrin, R.M. & Schneider, W. Controlled and automatic human information processing:
II. Perceptual learning, automatic attending, and a general theory.
Psychological Review, 1977, 84, 127-190.

Simon, H.A. & Gilmartin, K. A simulation of memory for chess positions.
Cognitive Psychology, 1973, 5, 29-46.

Sternberg, S. Memory scanning: Mental processes revealed by reaction time experiments.
American Scientist, 1969, 57, 421-457.

Trabasso, T.R. & Bower, G.H. Attention in Learning. New York, NY:
John Wiley, 1968.

Vere, S.A. Inductive learning of relational productions. Proceedings

of the Workshop on Pattern- Directed Inference, Hawaii, 1977.

Welford, A.T. Fundamentals of skill. London: Melhuen, 1968.

Wickelgren, W.A. Memory storage dynamics. In W.K. Estes (Ed.), Handbook
of Learning and Cognitive Processes, Vol. 4. Hillsdale, NJ: Lawrence
Erlbaum Associates, 1976.

Ch IV

r 4U

30 a

4fl4 U C .1

*j Z96 -c M uz A=0 ac I af- ''n oQX,:

C.C

X 0 z W3 0-

-- 20. <t a4 UN 0 1@ 4

a ~ Go N ~ N 0. w 4. M4

-0 0 , W. " 0 . N

-0C4 t 0' CL 0l C.1 .. 1 .4 0
ift Cww 04. 00 . E.. 'R 6 0 4 K

1 t 4 4'2 4. 0 CP. - @4 * .0. .~ v - . ~ ~
u 4.4 lux 0 04 .0 0 W*- 0. h.P. a cWC -C. J-6 0

004.4.... .00.04.. *N ~ ~ A 4.0 40 .4 4 4. .0 4 .. 4.

0-'4 0 k..U44 Goo4 U 0. . 4 ~ ~ 0 U S 04
0 - . "4 U 40. 04 0 4'.C - ~

a m4 r0 Cc 0 - 444. ~C 44

0

a 4 m

,a -i - .

010 -0 .U4-

O z 0 4 4- Z, V.

*- -4 - -. 0 j0 a 0, 0
.4~ 0 M.0 ~ 4 4 . 4 N - 4 4 4' 4 ."

4.' 4. . .4. 24 e.C a - .C t.4.2~~ Nu 0 0.4 -4 v. " C 44. .P.

4. @ .0 0.. 44 4.N 4, r 4' on .U@ 4
U..l~ 9 1. 4 U 4. - 4 U - 01-.~ 0 . N

C Ui rM t. S; I4 a a 0 a
P.U A f..4 P. w . f44 z.4 a r-. 04 z I0.- I-4a

ACQUISITION OF COGNITIVE SKILL.(U)
AUG 81 .J R ANDERSON N0001-81-C-0335

UNCLASSIFIED TR-81-1 NL

a a
a 3, .0

Z. m a c A on a
1 8 AV

;- . - - -- . - a - - 0 0 ;. ?
1 5 a .01 na, i

-C 2. 0 w c 2-0 -C r-4 c a a A w 0 .1 10
cc W!a.

10CA - n

th 20 61 uzM
06

I=Ar Im, -44 .04 :ing=
-1 n 4 8 CA:' 4 ft

0 a w OW 21.1
.04

0 oe 04 Oc 0 OW 'A G=3-0 a."
-C cc 0 0 In -

Pd
C6
C06

0.z w a -,r - -
01 0 2 CA - W Z

0 0
0
.0 no

to
Oft 1-0 On o- W L .0

-0-3 2.3
0

m z :0 Z;7 , ,2.

U 0 a" 0 0, C06
30 Ic

01400 3.
i-) c 4 1 ;z 2. c. Z" a a

m A c c t L 0 mm 4

MD 0. 6% V 4 0
t, z no eon 1 0

10 On as n

16 m .2
. 0 0 2 3.IS Co. q -a 0 0 0 l 0 2 02 Ln Lan no 2

low w -2 1 Ol-
? t -0 CL

.Q a 0 z - 9ntme 9- eel w 0 a "I o- z
A 0 V. n 0 h : : cc

o 4 4c 00
0 oc a

%A
An .

W .2 C 0 0 ICA 16

IL

10

.0

00 0- 11. 0 £ '0U m a. ;z %~ Q . a

U) ma a 0 0

b. 2 i - -3 ! j , ,.2 N ~ -(a
-u 141 11 0 C , Zc ; - UN r cI a ".. 0 6" =£ -0 Uu Z;

* ~~6..~ mm. a . .0 F 4 w w aC w 1a. 01 ua.0
-o r ca . = " . m aa *

~~~~~r 46uag~ O~

Mij a El a~I* . S.. W Cm .

w z 0 *O . 0. .a-' C * Ea

0~ A
0 I..C

I.C

..
00£

1.U * , *.

X-N 0 so.-a -

~ .. 0-. On
I- No CC aO .1 w Ol C-

16 00 c

161-a V) a Cb, 00
n 12 0.3 so.: a

0 -W : aI -

0 16 a. (n V)

ACE -18A ! 2 - 3 . 8--" km - i1 §'

U-

%.S X, 0 O U .UO
wo *

a ao, Z. Ta
£-...e am... a



jF
A R PS .6, o-

ow 0 0

r. .3. 
3. ca

ca -00 30 -0

0 nIA
0

z 
cm aI

on. 
0 0

008 ev 
C

Al 
2

v .WC
20 

n

c -. 00

0" am 00 el z

.0 0 m 

CA
a 0 0 on 3-N

0, 2, c --. a
Co.5 on -a ce

.0 w 0 
a 0 0 C 

a MIS

"o-
904 r

(A c
a

0

40

, WCO 
U)

a S 9 
is F

9=9 
Ln q

am 
R

F

0, 0
-5 W z p IM "I Ce,

na 9 0 * 0 C.

r to 
-%O

H "O 'O'k n CL C,
r w

Zt 00 
0

30

Of '41 0 'A fA 7 .7

go

w 965 on

or 
rr 06

1-4 f - v m a

(A W
IL 

Q 0 to

am 
M"

fit
19

ar 
'S
4

Ir



n<+ r .- ..
.1 ,+ , cU 0+ . - 0. < +. . ", " +,..

0 +on ,
0+ ++

iU


