AD=A103 041

UNCLASSIFIED

ILLINOIS UNIV AT CHICAG0 CIRCLE
JUN 81 J CHANG: S CHANG

F/¢ 5/1
DATABASE ALERTING TECHNIQUES FOR OFFICE ACTIVITIES MANAGEMENT,(U)

NOOOL14=80=C~0651
NL

-

D | 1 .

Z[)atabasc Alerting Techniques for Office Activities ilanagement

A

"\ 'Jo~Hei$ChanQ/\‘ o

2ell Telephorie Lahoratories
Murray Dill, N. J. C7974

and

-

<t

-

m PRy

& smm
=
<
=

University of TITfnois at Chicago Circle . .
: Chicago, IL. 60680 < g :

First Dralt May 10, 1980
Revised June 18, 1981

e . ; / i /I -
' ' i . /‘! | _ ! .

Abstract: In this paper, we approach the problem of office activitics
management from the database viewpoint. Dlatabase alerting techniques
are developed to serve the purposc of office activities wmanagement. A
conceptual framework for office information systemn design is prescnt-
ed. Simple databasce alerters and implementation techniques, existens
tlal alerters and time alerters are discussed. An exanple of journal
editing is described in detail to clarify concepts. Iinally, alerter
system stability is discussed. ..

Keywords: office automation, office information systcas, database

alerting techniques, office activities management, knowledge-based
database systems

XN

te

DISTRIBUTION STA

Approved for public release;
Distribution Unlimited

was supported by Office of Uaval Rescarch
under ONR contractf NOOOL4-80-C-0651 ,
s . e

81 7 22 016
e ——— S i ‘

0 Fie copy

1. Introduction

Office automation can be defined as the replacement of manual office

activities by identical or similar activities which automate means of

doing office work. An office activity refers to any activity in an

office, such as [illing out a form, sending a message, entering infor-

mation into a file, making a decision to route a form, etc. An office
"Erocedure refers to a structured set of office activities (for the

accomplishment of a specific office task, such as scheduling a meect-

ing, processing a mortgage application forw, reviewing a paper, etc.

An office wusually consists of a number of work stations or simply

stations. The work stations are interconnected by a communication

network to serve as a messape exchange system.

The first step in office automation is usually the partial (or total)

replacement (or enhancement) of the office desks by terminals, word-

processors or small computer systems which are interconnected by

an

electronic message exchange system. In other words, initially office

automation aims at the automation of devices and improvement of the

comnunjcation network (message exchange system).

The secound step in office automation is to take advantage of the clec-

tronic desks, and replace some manual office procedures by computer-

ized procedures. At some work stations, manual intervention is still

necessary for data entry and decision-malling. Somwe work stations may
be partially automated, with some activities managed by the eclectronic
desk. Some other work stations may be entirely automated using compu-

terized office procedures.

Since the first and ultimate goal of office automation is to automatc

Accession For

LTIC T°¢® i
T RET :‘}

i cinina [oA

! O T

N
[
1

ST TR TR

- ———— e DT ...*........N._:"“EM

office activities, it is important to undcrstand the problems related

to office activities wmanagement. In this paper, we will approach the

" problem of office activities management from the database viewpoint.

Database alerting techniques are developed to scrve the purpose of
office activities management. A conceptual framework for office in-
formation system desipgn is presented in Section 2. Seetion 3
discusses simple database alerters and Jdmplementation techniques.
Existential alerters and time alerters are discussed in Section 4. 1In
Section 5, an example of journal editing is described in detail to
clarify concepts. In Section 6, alerter system stability is dis-

cussed. Some concluding remarks are given in Scction 7.

2. A Conceptual Framework for Office Information System Design
2.1. Event Monitoring Using Database Alerters

One of the major problems in office automation is the coordination and
integration among various tasks. In the real world, actions are usu-
ally trigpered due to a change of state of a certain event. Some of
these actions are time-related routine operations, for cxample, rout-
ing a weeting notice among a group of people. Such routine opcratiuns
are often periodically scheduled. Some of these actions are predeter-
mined, for exawmple, managing an editorial office which requires the
coordination of a number of predctermined tasks. Such predetermined
actjons are usually hoth cvent-hased aﬂﬁ time-related. When we con-
sider the design of an office information system, the monitoring of
events, and the schéduling of predetermined and time-related routine
activities arc the main functions that an office information system

can perform and thereby Jmprove office efficiency and increasce

i

L—l—_nw?--

productivity.

An office information system requires the support of a databLase
management system for the storage and manipulatfion of office informa-
tion. DMoreover, ﬁhe database management system should also be capable
of responding to external events. Database systems are wusually pas-
sive, in the sense that they only respond to externally generated

information retrieval/manipulation requests, but cannot take other

~ actions spontaneously. The recent development of database alerting

techniques have changed the character of the database system from a
!

passive one to an active one. Database alerters are first lantroduced

by Buneman [BUNEMAN77, 79]. To clarify the concept, consider the fol-

lowing examples:

Exawple 1: "Report the namc and temperature of any station at
which the temperature falls below ten degrees Centigrade.”

Example 2: “"Report the number and owner of any account f{rom which
more than $500 is drawn.”

In each of the above cxample, the user wishes to be informed when cer-

tain exception condition occurs. The exception condition and the

. prescribed message sending action form a <condition, action> pair.

Such rules are called alerter rules.

Alerter rules can be used to monjtor state transitions in a database.
The current contents of a database determine its "state". 1f we ag-
grepate thc database states into two states, called the IN state (when

an exception condition is met) and the OUT state (when an exception

condition is not met), then an alerter 1is triggered and an alert

messajge is generated or actions are invoked, whenever the database

transits to an IN state. Such state changes are affected only by

database updates. Therefore, to install database alerters, we need

_4—

only monitor datahase updates. The alertins, subsystem in Figure 1

{llustrates this concept.

Alerter rules therefore can be used to monitor database updates and
trigger actions whenever certain conditions regarding databasec updates
are satisfied. With alerter rﬁlcs, databasec updates will automatical-
ly cause prespecified actions to take place. Thus the database system

can take on an active role in events monitoring.

It should be noted that actions triggered by an alerter are viewed as
side-effects of database updates. The failure of performing these
actions does not necessarily cause the database updates to be rolled
back. This constitutes the basic difference between alerters in an

alerter system and triggers in an integrity system, such as the

trigger mechanism proposed for system R [ESWAR76].
2.2. Activity Management in Office Information Systems

An office information system is a message~driven system. Work sta-
tions exchange messages, which cause certain office activities to be
performed. 1In Fipure 1, we present the component suhsystems of an

office information system.

Figure 1 depicts the relationship among the database system (DBiIS),

the alerting subsystem (AS), the office manager (OM), the activity

agents (AA), and the {intelligent coupler (IC). The user agent comaun~
-

icates with the user interface, called the intellipent coupler, by

messapes or forms. The intelligent coupler performs the translation

of user querdes [CIANG78b, 79]. It can also interact with the user to

complete an intellipgent form [ZISNAN77] (or Iiunteractive letter

[ANDER76]) .

T

The intelligent coupler scnds user database retrieval and update wmes-
sages to the databasc system. The database consists of a user data-

base and an alerter database, both managed by the database system.

" The alerter database is used to store the alerter rules. The datahase

system sends messages to the aierting subsystem, containing descrip-

tion of every completed update or failed update.

The alerting subsystem screens database updates to detect the oc-
currence .of important events. Therefore, the alerting subsystem can
be generally viewed as a screening program or a fiitcr associated with
the database system. When an event occurs, the alerting subsystem can
either send an alert message to the intelligent coupler (which in turn
informs the user agent), or send an activity request to the office

5
manager to initiate office activities.

The office manager manages office activitics. It rececives activity
request either indirectly from the alerting subsystem, or directly
from the intelligent coupler. The office manager then schedules und
performs office procedures by calling upon one or many activity
agents. Therefore, the office manager is functionally analogous to

the scheduler in an operating system.

An activity agent can be regarded as an office specialist, capable of
performing some well-defined office activity [ZISMAN77]. For example,
the activity agent can be a form generation program, a report penera=
tor, an editing program, etc. When an azlivity agent completes its
task, it sends an activity completion message to the office manager,

which may then schedule other activities.

The activity agent can send messages to the jntelligent coupler, which

then presents the information to the user agent. The activity agent
can also perform database retrieval/update operations, which may lcad

to triggering of alerters and scheduling of additional activicies.

The alerting subsystem, the office manager, and the activity agents,

together form the activity management system (At1S), which monitors

events and initiates, schedules, and performs office activities
[CHANG80). The activity management system 1s thercfore the most im-

portant part of the office information system.
2.3. Office Procedure Model

To describe the relationships among office activities, databases, and
alerters, we adopt the following formalism: a rectangular box is used
to denote a file Ri, a diamond-shaped box an alerter rule Aj, and a
circle any activity or process Pk. 1If an activity or process requires
user interaction, it is denoted by a double circle. A triangle is
used to denote a message ul or a form Fj. An arrow leading to the
base of a triangle indicates message reception, and an arrow emanating
from the vertex of a triangle indicates message transmission. The
possible relationships are summarized as follows:

(1) File access: [Rij ==+>>
File Rj is accessed by process Pk.

(2) File update: (EE) == |Hi| or<53>~'>>lRil l
- File R1 is updated by process Pk or alerter rule Aj.
We say that Pk or Aj affects file Ri.

(3) Alerter triggering: [Ri) --><§§:, -
Update of file Ri way trigper-alerter Aj. The alert condition can
be written bencath the directed arc. We say that Aj monitors [ile
Ri for triggering. .

(4) Activicy inVOCatjon:<53>-->
Alerter Aj invokes process PK.

(5) Activity precedence: @ -*>@
Process Pk precedes (and invokes) process Pk.

-7-

o = . o § -

C el M

(6) Alevier creation: ®== @ or ==

Alerter Aj or process Pk creates alerter Am.

4 © (7)) Alcrter deletion: @:: @ or @:-.-(
Alerter Aj or process Pk deletes alerter Am,

(8) Message input: D-v)) MESSAGE
Input message u is stored in a message file.

(9) Form output: @'0)@
Process Pi gencrates oVYtput form Fj.

- (10) Form interaction process: '°>>
b <L~-
¢ Process Pi sends form Fj to user agent t0 obtain additional

information. When form Fj is completed by user, process Pi
continues.

(11) Alerter ON: '“)@
ON ..
r ’ Update of file Ri may enable alerter Aj. The ON condition
! can be written bencath the directed arc. We say that Aj
monitors file Ri for OM condition.

L (12) Alerter OFF: ---)@

g ore

Update of file Ri may destroy alerter Aj. The CFI condition !
can be written beneath the directed arc. We say that Aj
monitors file Ri for OFF condition.

(13) Time clock: = I'l‘IMl". l
TIME file is set to t. Since TIME file is often a conceptual
device (see Section 4), the update of TIME file can be omitted
' Jn an OPM specification.

‘ " With these formal notations, we can graphically, depict office pro-
cedures and analyze how they can be executed by an office information

system. Such a formal model is called the office procedure modcl

(orv). This knowledge model can .also be stored in the database. 1t
Is accessed by the alerting subsystem to eheck for alcerter databasc
consistency. It is also accessed by the office manager to schedule
)

and control concurrent activities invoked by the offjice manager, and

to check for alerter system stability (see Section 6).

{

|

3. Simple Alerters and Implementation Issues

Simple alerters monjtor database updates of simple databasc objects,

usually records in a flle (or tuples in a relational file, if we use
the relational database tcrminology). 7To specify a simple alerter, we

need to specify the following:

(1) Name of alerter: This is a unique symbolic name to identify an

alerter.

(2) Type of update operation to be wmonitored: For updates of records
in a file, there are three types of updates: insertion of a new
record, deletion of an old record, and modification of an old record.

The three update types are denoted by "i", "d", and "m", respectively.

(3) Name of databasc object to be monitored: For monitoring of record
updates in a file, this will consist of two parts:
(3.1) file name (or relation name), and

(3.2) field names (or attribute set).

(4) Alert condition: The alert condition is a logical expresslon in-
volving atomic clauses. Each atomic.clause consists of an attribute
name and a literal, or two attribute names, related by a comparison
operator such as "=", "1=" "<"] ">" ete. In an alert conditioa for

type "m” update (record modification), the attributes arce prefixed Ly

"0ld” or "new”, Indicating whether an attribute refers to the "old" or

.
[

the “new"” record. Similarly, in an alert condition for type "i" up-
date (record Jnsertion), the attributes are prefixed by the "new” key-
word. In an alert condition for type "d" update (record deletion),

the attributes are prefixed by the "0ld" keyword. In these two cascs,

however, the prefix can be omitted since there s no possibility for

A

IS

confusion.

(5) Action: The action taken by a simple alerter when it is triggered,
is to send messages to varlous users or to invoke another process, or

to perform database update operations.
(6) Name of creater of the alerter rule.

Alerter rules are stored in the alerter database (ADB), which is also

- managed by the database system. Referring again to the examples men-

tioned in Section 2.1, the messages to create the appropriate alerters

are:
(1) ADDALERT a-name="frostwarning”, u~type="m",
rel-name="weather",
{ attribute-name="temp", condition="new.temp<l0",
action="ALERT user-a user-b",
: ereator="user-c"”
i
)
% (The alerter name is “frost-warning”, update type is “m", vrela-
o tion name 3§ “weather", attribute is “temp”, condition is
] :
“new.temp<l0”, alert message should be sent to "user~-a” and
"user-b", and alerter is created by "user-c¢”.)
(2) ADDALERT a-name="withdrawn-warning”, u-type="m",
rel-name="account”,
; attribute="balance”,
i condition="0ld.balance - new.balance > 500",
! action="ALERT bank-manager"”,
creator="teller-a"
(The alerter name is "withdrawn-warning”, update type is Ta",
relation name is "account”, attributes is "balance”, condition is
; "old.balance-new.balunced>500", alert message should be sent to
| "bank-manager”, and alerter is created by "teller-a”™.)

An alerter can be removed by a deletion message:

D o

DLTALERT "frostwarning”

Database retrieval/update requests from the user agent are sent to the
database system. The ADDALERT and DLTALERT messages, on the other
hand, are sent to the alerting subsystem, which then uses the databasc

system to perform the actual updating of the alerter databasc.

When the alerting subsystem receives an ADDALERT message, it adds the
appropriate alerter rule to the ADB, after checking that the rule is
acceptable (e.g. the database object does exist, and the rule is con-

sistent with other rules). A message
ADDEDALT alertcer~name

{s sent to the agent creating the alerter rule, where "alerter-namc”
is the symbolic name of the alerter rule. If the alerting subsysten
finds the alerter rule unacceptable, an appropriate error wessage is

returned.

Similarly, when the alerting subsystem receives a DLTALERT message, it
deletes the specified alerter rule from the ADB and scnds the follow-

ing response to the agent deleting the alerter rule,
DLTEDALT alerter-name

When a databasc retrieval request jis sent to the database system, it

simply retrieves the appropriate information, and the response ({row
. -

the database system is forwarded to the user. No message is sent to

the alerting subsystem. This is Lecause we do not monitor retrieval

operatijons. Retrieval could be monitored, if we intend to analyze

user profile for security or protection reasons.

SR

When a database update request is sent to the database system, it

first performs the requested update operation. Only after the wupdate

has been performed, that the database system sends the {ollowing mes-

sage,
UPDATED <update-type> <obj-name> <old-rccord> <new-record>

to the alerting subsystem. The alerting subsystem then checks whether
. any alert condition is satisfied.. The simplest approach is to scan
through the alerter rules in the alerter database. The alerting sub-
system can use the databuase system to retrieve alerter rules [rom the
alerter database. To ilmprove efficiency, the alerter rules could be
indexed by: (a) wupdate type, (b) relation name, and (c) altribute
name(s). With such an index structure, the lowest~level entries are
peinters to the alerter rules., Only alerter rules pertinent to an
update need be checked. Therefore, in practice, the required computa-

tion for checking ADL represents a small overhead on each update.

When an alerter is triggered, the alerting subsystem may send alert
messages to the user agent, if the specified action is the ALERT com~
mand. 7The alert messape contajins the name of alerter, type of update,
databasc object nmonitors, and value of database object before and
after the update. The user agent is responsible for processing the
ALERT message. On the other hand, the alerting subsystem way send
activity request to the office manager for activity scheduling. The
activity request consists of action na;;s and other parameters, as

speciffed in the alerter rules.

-12-

o+

4. Existential Alerters and Time Alertcers

- Existential alerters are alerters with well~defined duratjon. To

define duration of an alerter, we extend the concept of simple alert-

ers as follows. Fach alerter is associated with three conditjons: an

alert condition, an ON condition, and an OFF condition. When the 0N

condition is wmet, the alerter is cnabled. When the OFF condition s
-met, the alerter is destroyed. The alert conditjion, as defined previ-
ously, determines when the alerter rule is triggered. Each alerter
thus monitors three database objects, one for each of the three condi-
tions. Thesc three monitored objects can be identical or different.

The set of alerters that are currently Ol is called the ON-sct.

A customized alerter ds an alerter of the form Ak(cl, c2, ..., cm)

where the ci”s are parameters that may appear in the alert cowndition.

A customized existential alerter is an coxistential alerter of the form

Ak(cl, c2,..., cm), where the ¢i”s are parameters that may appear in

the alert condition or the duration (i.e, the ON condition and the OFF
' condition). All customized alerters of an alerter Ak have the saae
format as Ak, except the ci”s may have different values in each cus-

tomized rule.

" A time alerter is a special type of alerter for monjtoring time-

related events. In order to specify time alerters, we can assume

there 3ds a special relational file, cakled TIME, which has only onec
attribute -~ time. The system may update the TIME relational (f{ile
i' periodically, the wupdate (frequency being dependent on applications.
f The TIMI relational file may also he the system clock ftselfl, and the

update frequency is the same as the clock rate. With this conceptual

-13-

M—— -

time relational file, the system can treat time as an ordinary attri-
bute, and the alerter rulc can mention the time attribute in its ON

condition, trigger condition, as well as OFF condition.

As an example, suppose we want to wmonitor incowing telephone calls.
The alerter is in effect between 8 a.m. and 11 a.m., and the trigger ?
] - condition Js “caller = “Smith””. The existential alerter is as fol-
lows:

(1) ON condition: time = 8 a.m.

(2) Alert condition: caller = “Smith”

(3) OFF condition: time = 11 a.m.
For this application, the TIME file might be updated once every five

. minutes.

The above alerter rule can be modified to be a customized alerter rule
as follows. The customized alerter A(tl, t2, caller-name) has the
following conditions:

(1) ON condition: time = tl

(2) Alert coundition: caller = caller-nane

(3) OFF condition: time = t2
] Other system parameters can be monitored similarly, by creating
special-purpose system relational .files containing such parameters.
~The system overhead is proportional to the frequency of updates for

such system files, because cvery update of a system [ile will result

o

in the evaluation of alerter rules monjtoring this [ile. Therefore,
we must exercise care in determining how often to update the system

parameters, such as time, toggle switch, etc.

5. Journal Fditing Example

-14-

As an example of office automation, we will describe the journal edit-
ing activities in an editorial office. Dasically, there are threce
activities to be considered: (a) occurrence of real-world eveats, (b)

- database update activities, and (c) generatfon of forms.'

The occurrence of real-world events causes input messages to be sent

to the office information system. As illustrated in Figure 2, each
input message is considered a record insertion into a MESSACE rela-
" tional file in fhe user database UDB, which triggers alerters Al or Ad
.to invoke user-defined processes. In actual jmplementation, the mes-
sage file may be nonexistent, or it may serve as a log file to record
~all incoming messages. The message file may contain the following

attributes: message-type, message-id, message-text.

One type of input message is the submission of a paper from an author.
This message, with message-type “s”, represents an event which ariscs
from outside the system. 1t triggers Al to invoké a (manual or au-
tomatic) data entry process Pl to enter the relevant information into
the user database. 1In this case, a new record is inserted into the
PAPERS relatjonal file. Th PAPFRS file has the following attributes:

paper#, title, author, author-address, submissjon-date, paper-status.

The insertion of a new rtecord in PAPERS relational [ile trigpers

alerter A2 to invoke two concurrent processes: (1) a form gencration

process P2 to send an acknowledgement letter (form I'2) to the author;
-~

and (2) a reviewer sclection process P3 to prompt the editor to sclect

three reviewers. The form generation process P2 is automatic. The

process P3 requires manual interaction. The dnteraction is accon-

plished using a form F3.

After the editor has selected three revivwers using form F3, process
P3 causes the insertion of a new record into the REVIEW relational
file. The REVIEW file has the following attributes: paper#, re-
viewerl, datel, stl, reviewer2, date2, st2, reviewer3, date3, st3.
The status of a reviewer is jnitially 0. It is set to 1 when the
reviewer sends back the review, and -1 when he declines to review the
paper. The insertion of a new rccord in the REVIFW relational file
triggers alerter A3 to invoke a form generation process P4, to send
letters (form F4) and copies of the submitted paper to the reviewers.
The reviewer s name and address can be found in another relational
file REVIEWER, which contains the following attributes: revieweri,

name, address, review-area.

The alerter A3 also generates an existential time-alerter A4(X,Y,tl),
for reviewer X, paper Y, at time tl. When a reviewer has not respond-
ed after a given time interval (say, three months), A4 is trigpered
by the alerting subsystem. A4 invokes a form generation process P5, to
send a letter (form F5) to that revijewer asking for response. The
alerter A4 generates another existential time alerter AS(X,Y,t2) and
then self-destructs. It should be noted that A4 is an existential
alerter whiclk is automatically destroyed when the reviewer seand back

his review.

If the reviewer still does not respond after a given time interval, A5
is triggered, which again invokes process P3. The process P3 prompts
the editor to select another review, and again updates the REVIEW
relational ffile. After firing, the alerter A5 also self-destructs.

A5 1s also an existential alerter which is automatically destroyed

when the reviewer sends back his review.

Another type of input message occurs when a reviewer sends back his

-

review. Again, this message, with message-type “r”, is considered as
an insertion into MESSAGE relational file, which triggers alerter A6
to invoke a (manual or automatic) updating process PO, to update the
REVIEW relational file. The update of REVIEW may cause the destruc-
tion of existential alerters A4 and A5. 1If all three reviews of same
paper have come back, (stl=st2=st3=1), this will trigger alerter A7,
which jinvokes an evaluation process P7. P7 will require manual in-

teraction with the editor to determine status of paper. The interac~

tion agaln is accomplished using a form F7. A form F8 is generated,

to inform the author that his paper is (a) accepted, (b) required to
be revised, or (c) rejected. If paper is accepted or rejected, that
record in PAPERS relational file may be moved to a backup file, and
the corresponding record in REVIEW relational file may also be moved
to a backup file. If paper is to be revised, it stays in PAPERS rela-
tional file, and the corresponding record in REVIEW relational file is

updated.

If a reviewer sends back a letter, saying he does not want to review
the paper, then this reviewer”s status is changed to "-1", and the
update of the REVIEW relational file triggers alerter A9, which again

invokes process P3 to prompt the editor to select anotlicr reviewer,

and the whole procedure repeats.

From the above description, we can sec tlat messages can be created by
the user to represent outslde events, or by the system because of

updating of relational files, user time interrupts, etc. FKach messape

may trigger one or more alerters, which usually invoke processes to

perform some of the following: (a) request additional information from

the uscr, (b) update the database, and (c¢) generate forms.

Figure 2 depicts a set of alerters to perform the journal editing
. task. There are two relational files: PAPERS and REVIEW. The MESSACE
file could be a nonexistent file, or a log file. Alerters A2 and Af
monitor the PAPERS relationla file, and A3, A7, and A9 monitor the

. REVIEW relational file. A4 and A5 are customized time alerters, and

- A5 1s generated only when A4 has been triggered. A4 and A5 are both

customized for a particular revicwer X of a particular paper Y, and
they either self-destruct after firing, or are destroyed when OFF con-
ditions are met, i.e. when the reviewer sends back his review. Figure
2 also depicts the relationship among various alerters. The notation
jntroduced in the previous section is used, but duplicated relational

files are drawn for the sake of clarity.

The above journal editing example illustrates the combination of manu-
al and interactive activities (Pl, P3, P6 and P7) with automated ac-
tivities (P2, P4, P5 and P8). It also illustrates the usapge of forus
for office communications. Forms F2, F4, F5, and F8 arec output forms.

F3 and F7 are interactive forms, or so-called intelligent forms, which

requires manual Jnteraction. Pl and P6H are also interactive
processes, because if the input messages are paper messages (such is
the case in a conventional editorial office), thcp these input mes-
sages must be encoded and entered into the system. llowever, if we
<
have an electronic mail system, then the paper submission message is a
form [F1, and the review update message is either the returned form F4
or F5, and in all these cases Pl and P6 are automatfic processces.
Notice also in Figure 2, Al, A4, A5, A6, A7 aud A9 are conditional

alerters. The other alerters do not have alert condltions.

~18-

Figure 3 illustrates the update of the alerter database (Figure 3(a)),
the update of the PAPERS relational file (Figure 3(b)), the genecrated
form F2 which is sent te the author (Figure 3(c)), and the interactive
form F3 which is sent to the editor to be completed and returned to

editorial office system (Figure 3(d)).

-19-

6. Alerter Systewm Stability

. We distinguish an alerting subsystem, which is the physical implemen-

- tatlon of databasc alerting technique, from an alerter system, which

is the abstract systuem of alerter rules driven by {input updates. In

this section, wc discuss the problem of alerter system stability.

When alerters trigger each other in endless successions, infinite

message loops occur. Such infinite message loops are 'obviously un-

desirable, because the alerter system is unstable. Therefore, infin-
ite loop detection technique must he devised to prevent such infinite

_message loops from happening.

To illustrate the concept of infinite loop detection, let us consider
the following example. Suppose the uscr data basc has two relational
files, RI(D11l, D12) and R2(D21,D22). 1In the alerter data basc, there

are two alerter rules:

Alerter Rule Al: If a record (1, d12) in file Rl is modified to (1,1),

then modify record (1, d22) in R2 to (1,2).

Alerter Rule A2: If a record (1, d22) in file R2 is modified to (1,2),

then modify record (1, d12) in Rl to (1,1).

With these two alerter rules, when a record (1, dl2) in Rl is modificd
to (1,1), the two alerter rules will be trippered successively, caus-

ing an infinite message loop.

Using the notation introduced in Section 2.3, in the example described
above, we have Rl -> Al ->> R2 => A2 ->> Rl, thus forming a wmessage
loop. Therefore, we say that alerter rules A(l), A(2), ..., A(n) form

a message loop, if there are relatfonal files R(1), R(2), ..., R@),

R Sy - 5

such that R(1) => A(Ll) <>> R(2Z) -> A(2) ->> ... =>> R(n) => A(n) =>>

R(C1).

The existence of a mess#ge loop is a necessary condition for the oc-
currence of infinite message loops. llowever, whether an infinitc mes-
sage loop will occur is data dependent. As in the above example, if
we insert record (0, O0) into relational file Rl, no infinite nwmessagc

loop will occur.

Therefore, to prevent infinite message loops from occuring, it is
necessary to (1) detect the presence of messapge loops, (2) keep a his-
tory of update messages and alerter rule firings for cvery relational
file and alerter rule in the message loop, and (3) break up an infin-
ite message loop when the update message histories indicate such loops

are present.

The office procedure model (OPM) described in Section 2.3 is a graphic
representation of the relationships among office activities, data-
bases, and alerters. For each specific database update, we call the
description of its relationship with the alerter rule triggered and

activities performed a run-time OPM instance. The history of the

alerting system actually consists of a collection of such run-time QP
jinstances. In the above infinite wessage loop detection scheme, Part

(1) requires a static analysis of the OPM model bto detect the messape

loop. Part (2) and Part (3) rcquires dynamic monitoring of OPM run-
-~

time instances within the message loop.

The detection of message loops can be achieved as follows. Fach rela-
tional file can be represented as a node in a dirccted graph derivable

from the OPYM model. 1If therc are Ri, Ai and Rj such that RI-DAi-DIRJ,

-21~

'-',_r.._,__,.T....===========z===txb.,v*«;::a+ m

— e T——

an arc will be drawn from Ri to Rj, with the arc labelled as AL, The
existence of a loop in the graph indicates the existence of a message
loop among the alerter rules. Whenever a new alerter rule is added to
the alerter database or an old alerter rule is wupdated, the systcm
modify the OPM model, constructs the directed graph, and clieccks wheth-

er a message loop exists.

We now demonstrate that under certain conditions, infinite message
loops can be detected. Let u, v denote records (or tuples) in a rela~
tional file R. An update opecration is denoted by (u, v), where u is
the record to be deleted, and v is the record to be inserted. If u is
not in R, or v is already in R, the update operation (u, v) is unde-
fined. An insertion operation is denoted by (0, v), and a deletion

operation is denoted by (u, 0), where 0 denctes the empty set.

Suppose Al monitors Ri. The trigger region Di of Ai is defined to be,

BL = { (u,v): u, v in Ri and (u,v) triggers Ai}
where Ri is the underlying domain of Ri.

Suppose Ai monitors Ry and Ai affects Rj. The notation, (ui, vi) ->
Al ->> (uj, vj) indicates that an update operation (ui, vi) on Ri will
trigger Aji (i.e. (ui, vi) is in Bi), and Al causes an update operatlion

(uj, vj) on Rj.

If we denote (ui, vi) by wi and (uj, vj) bs wj, we can simply write wi
<> Al ->> wj. In other words, we have a mapping f such that f(wi) =
wj. FEach component of the mapping is denoted by fk, and fk(wi) = wik,

where wjk is the k-th component of wj.

The alerter Aj is iuformation reducing, if for every pair of (wi, wj)

-22-

such that wi -> Ai ->> wj, each component (k of the mapping f is eci-

ther a gencralized fdentity [unction (d.c. wjk = {k(wi) = wix [or soumc

x), or a finite classifier (i.c. the range of fk is finite).

"If wi -> Al D> wj and Ai is information reducing, then wj has a fin-

ite range.

If there 15 an infinite message loop, then for some Ri -> Al ->> Rj in

a message loop, there are infinite sequences of update operations

1 2 3 n 1 2 3 n
W, W , W, «oeese Wijpand w,w , W, eco.. W, such that
i i i i] h| j j
k k
w "> A D> w
i i. hi
M N
for all k. Since wi has finite range, we must have w = w for

i i
some numbers M and N.

Therefore, we may wish to restrict the alerters to information reduc-
ing alerters. Under such constraints, we can dynamically deternmine
whether an infinite message occurs by observing whether some wi re-

curs, for some Ri within a message loop.

We now describe a method to record the run-gime opPi instance for mes~
sage loop detection. whenever the alerter database is updated, the
activity management system checks whether a messapge loop has been
formed. If a message loop is detected, Aadditional alerter rules can
be added automatically by the activity management system, onc rule Al
for cach relational file Ri in the message loop. Subscquently, when-
ever Ri is updated, Ai is always triggercd to record the update mwos-

sage into a log file. The log file is a protected special relational

-23-

r R

file in the UDB. The log file is indexed by (a) file name, and (bh)
user process-id. In other words, a history of update messages is kept

for each (file name, user process-id) pair. The ‘user process~id 1is

the original user process-id which initjates the first update to a

relational file in a message loop. In thc above, we have shown that

if the alerter rules are information reducing, then by observing

whether there is a recurrence of update message in an update history,

the occurrence of infinite message loops can be dynamically detected.

In practice, instead of keeping update message histories in the log
file, we can keep a conunter for each (file name, user process-id)
pair. Each file update will increment the counter by one. When a
counter reaches a perdetermined threshold, the loop is broken by (a)
blocking the update messapge having the same file aame and original

process~id, and (b) sending a report to the user.

Instead of keeping a log file or even a simplified log file as sug-

gested above, we «can idinclude a [requency stamp in each message to

store a count of how many times this message has loopcd‘ through the
activity management system. The activity management system is respon-
sible for assigning proper values to the frequency stamp. The fre-
quency stamp 1is wusually inherited from the input message. When the
input message does not have its frequency stamp specificd, the activi-
ty management system will then assign an appropriate value to the fre-
quency stamp, as to be described below. ;&hen the alert condition of
an alerter rule 1is satisfied, the frequency.stamp of the input message
is incremented by one. If this value exceceds a preset threshold, the

activity management system will break this loop by not triggering the

alerter, and the uscer is notified. Otherwise the activity wmanagement

-2~

system will assign this frequency stunp to all output messapes pgen=

erated by this alerter rule.

If the messages are fedback directly to the activity management sys-

tem, then the frequency stamps will be transmitted and incremented as
described above. When the messapge is to activate an external process,
we cannot expect the external process ;o_transmit the frequency stamp.
Therefore, whenever an alerter invoked an external process, the fre-

quency stamp associlated with this process is stored in a frequency

stamp table, which contains the name of the process, and its frequuncy

stamp. VWhenever the activity management system receives an update
message with an unspecified frequency stamp, it will consult the fre-
quency stamp table to determine whether this messape is caused by some
qlerter rule previously. If this is the case, then the process name
assocfated with the current message will be a descendent process of
some process recorded in the frequency stamp table. The current pro-
cess should then inherit the frequency stamp of the ancestor process,
and the unspecified frequency stamp is thus specified. Otherwise, the

frequency stamp field of this message is set to the initial value O.

Proper garbage collection work need to be performwmed to maintain the
frequency stamp table. A process can be removed frowm the frequency
stamp table when it ceascd to be active. In practice, we can simply
implement the frequency stamp table as a ring structure with some rea-
sonable unumber of entries. For exampley the number of entries may be
equal to twice the waximum number of active processes allowed by the
operating system. When a new entry is inserted into the frequency

stamp table, this will eliminate the oldest entry from the table.

-25-

7. Discussions

In this paper, we proposc to use database alerting techniques for
office activities management. The role of an activity management sys~
tem in an office information system is clarified, and techniques for
mainitaining alerter system stability are discussed. A unificed for-
malism to describe an office procedure model has been presented in
Section 2.3. A diagram such as Figure 2 then represents the office
activities at one work station. Similar djiagrams can be constructed
for other work stations, and together they can be used to represent a

distributed office informaticn system (D0OIS). Such a model can be

called a distributed office procedures model (DOPYM).

An example distributed office procedure model for a threc-node (or
three-station) distributed office information system‘is illustrated in
Figure 4. 1t can he scen that a distributed database managcement sys-
tem (DDBMS) is needed to support a distributed office fuformation sys-
tem. Problems of infinite message loops, deadlocks, concurrency con-
trol, data consistency, and process conflicts must be analyzed care-
fully. Decause of the complexity of distributed office inforaation
systems and the evolutionary.nature of such systems, it is cxpected
that wmore and more emphasis will be placed on the incorporation of
knowledpge (such as alerter rules, database skeletons [CUARG78al, and
office procedure models) into such systems, so that it can [function

properly and provide adequate support for both roulinc activities

management and declsion-making.

References:

[ANDER76] R. A. Anderson and J. J. Gillogly, "Rand Intelligent Termi-
nal Agent (RITA): Design Philosophy”, Rand Report R-1809-ARPA, Rand
Corporation, Santa Moanica, CA, 1976.

[BUNEM77] O. P. Buneman and H. L. Morgan, “"Implementing Alerting Tech-
niques in Database Systems™, Proc. of IEEE COMPSAC Conference, No-
vember 8-11, 1977, 463-469.

_[BUNEM79] O. P. puncman and E. K. Clemons, "Efficiently llonitoring
Relational Databases”, ACM Trans. on Database Systems, Vol. 4, No. 3,
September 1979, 368-382.

" [CHANG78a] S. K. Chang and W. It. Cheng, “Database Skelecton and its
Application to Logical Database Synthesis”, ILEE Transactions on
Software Engineering, Vol. SE-4, No.l, January 1978, 18-30.

[CHANG78bB] S. K. Chang and J. S. Ke, "Database Skeleton and its Appli-
cation to Fuzzy Query Translation", IEEE Transactions on Software
~ Engineering, Vol. SE-4, No. 1, January 1978, 31-44.

[CHANG79] S. K. Chang and J. S. Ke, "Translation of Fuzzy Queries for
Relational Database System”, IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. PAMI-l, No. 3, July 1979, 281-294,

[CHANG8BO] J. M. Chang and S. K. Chang, "Database Alerting Techniques
for an Activity Management System™, Proceedings of 1980 International
Computer Symposfum, Taipei, Taiwan, Republic of China, December 1980.

[CONWA74] R. Conway, W. Maxwell and H, Morgan, "A Technique for Tile
Surveillance"”, Proceedings of IFIP Congress 74, North-liolland Publish-
ing Company.

[ELLIS79} C. A. Ellis, "Information Control Nets: A Mathematical Model
of Office Information Flow”, 1979 Conference on Simulation, Mecasure-
ment and Modeling of Computer Systems, 225-239.

[ESWAR76] K. P. Eswaran, "Specifications, Implementations and Interace
tions of a Trigger Subsystem in an Integrated Database System"™, Techn-
jcal Report RJ1820, IBM Rescarch Laboratory, San Jose, California,
August 1976,

[UAMNET76] M. Hammer, "Error Detection in NData Base Systems”, Technical
Report, M.I.T. Laboratory for Computer Science, 1970.

™
[MCDON75] C. Mchownald, B. Bhargava, D. Jeris, "A Clinical 1nformation
System for Ambulatory Care”, Proc. of National Computer Confecrence,
May 1975, Anabeim, California.

(TSICit80a] D. Tsichritzis, "Form Flow Models", Teclinical Report,
Unjversity of Toronto, 1980.

{TSICHBOb] D. Tsichritzis, "A Form Manipulation System"”, Technical
Report, University of Toronto, 1%00.

[ZISMANTT] M. D. Zisman, Representation, Specification and Automation
of Office Procedures, Ph.D. Dissertation, Unjversity of VPennsylvaunia,
1 1977.

-
-

-28-

o

Database Datubasc
Uscer Database Management '<:————f> o)
Retrieval System N . —
& Upda (DBMS) User
. . : Database
User 4| Intelligent Alerter UPRATED N
Agent “lcoupler (IC)~_ Database UPDATERR Alerter

& Update

Retrieval

form ADDALEKT
or message DLTALERT\\\\\\\\\[:;
ALERT mc;;;EE\\\\\\J\\

ADDEDALT '

Z
Alerting
Subsystem
(AS)

|

. . DLTEDALT |
| |
activity activity activity
activity request request mwanagement
request acknowledgement l system {(ANS)
I Office ‘
Manager
(oM)
message \ l
activity activity
completion invocation

!

Figure 1

User Database
fetrieval & Update

Activity
Agent (AA)

| Ep——

Component Subsystems of an Office Information System

e -

input e
messmqe -i> IMEISHSAGE

-'"'*-'--'-—'-}-@--}-:l'c‘nta entry process

mn-type=’s

data = e i==2 'f‘orn qeneration process ~--3> F2

entry {P1) ->» &APERSI—}<§}> .
process - :——><::>Peviewer selection process <K<—->>» F3

reviewver
selgction process _

@_\w-—--—l"-i !I\L‘th——] ‘(’)/ . form generation process --sx 4
v)

-
t=s2 lTIHEJ---} -Ii'f.form gqeneration process -=->> F3
t=%1

/

-))
ITIﬂg—--} X,Y,E\\>~ (::>Pev1ewe. selection process g b

input

- message =r¥ ﬁEEBAGE o by Aafadedala bkt <§}> KE;)rev1ew update process

review Updut”

pPOCDSS’{/)‘: ’R UILUE -------- <j\\ (;?;w¢@r evaluation process wa--> K7

FOY fors nenevaltion
s 5
process —--x» FJ

i st1=1 X e e m

: st2=1 A --;;.hLUIEh‘

: st3=1 [f”‘fﬁﬂ .
sti==1 v ! ——-pu PAFERS] -2 <ad
stz==1 v . —
st3=-1 |

N\ o=y A .
A9\-}(E@ reviewer selection process <<--xx FJ

[

Figqure

Office procedures model for the editorial office

b, P

ADDALERT a-name="A2",u-type="i" ,rel-name="PAPERS" ,condition=""
action="sendform F2 Zauthor Zauthor-address #title;
sclect-reviewer I3 Zauthor Ztitle",
creator="Editor"

ADDALERT a-name="A3",u-type="im",rel-name="REVIEW",condition=""
action="sendform F4 Znew.reviewerl Znew.paper#;

sendform F4 Znew.reviewer2 Znew.paperi;
scndform F4 Znew.revicwer3 Zncw.paperi; ¢
create-alerter A4 Znew.revicwerl Znew.paperi;
create-alerter A4 Znew.revicwer2 Zncw.paper;
create-alerter A4 Znew.reviewer3 Znew.paper#”,

3 : ‘ creator="Editor™ :

y

. Figure 3(a) Updates of alerter database ADD

INSFRT (paper#=12,title="Hashing Technique",author="John Doe",
r auvthor-address="12 Main St.,Middletown, IL.",
' submission-date="7/17/1980" ,paper-status="new") TO PAPERS

Figure 3(b) Update of PAPERS relational file

To: John Doe

12 Main St., Middletown, 1L.
From: FEditor
Subject: Paper submission

This is to acknowledge the receipt of your paper entitled,
"lashing Technique”.
Thank you for your interest in our Journal.

Figure 3(ec) Form F2

To: Editor
From: Editorial Office System
Subject: Reviewer Selection

Please select threc reviewers for paper entitled,
“"Hashing Technique” by John Doe.

reviewerl:

LR Y

reviewer?: ' -

wwwvowe»

reviewer3d:

woewveves

Figure 3(d) Form F3

F3

e =t e o o i e+

=<

~0

\
1

1

N
|

p)

—

s

7

G

-

- et i e s e e
!
).,._ i

toe

-

->

<

—_— - -
oy
A
A

Distributed Office Procedure Model

Figure 4:

F4

