
A03O 041 ILLINOIS UNIV AT CHICAGO CIRCLE F/4 S/I
DATABASE ALERTING TECHIQ~IUES FOR OFFICE ACTIVITIES MANAGENENT,W()
JUIN 81 J1 CHANG, S CHANG N00014-60-C-0651

UNCLASSIFIED N

i EhEl~EE "hhohhEmhEEEE
IhhMMMMMELM

* LEVEIK.
Database Alerting Techniques for Office Activities Hanagement

l Jo-,.ei !Chang/.._~~~~~~Bell Teic-pO-6i6e Laboratories . L .- ,

0MIurray Dill, N. J. 07974

and

0 ~~Shi-Kuoj Chang ,~
University of TI-1lndis at Chicago Circle

Chicago, IL. 60680

Firstl Draft May 10, 1980

Revised June 18, 1981

, !! i _

Abstract: In this paper, we approack the problem of office activitics
management from the database viewpoint. Database alerting techniques
are developed to serve the purpose of office activities managcmenL. A
conceptual framework for office information system design is present-
ed. Simple database alurters and implementation techniques, Cxisten-
tial alerters and time alcriers are discussed. An example of journal

editing is described in detail to clarify concepts. Finally, alerter
system stability is discussed.

Keywords: office autoriation, office information systves, database

alerting techniques, office activities management, knowledge-based
database systems

DISTRIBrriON STATMq A

Approved for public reles;

£1. Distribution Unlinm i .d.

u.J

*This author's res-' h w~a . a-..,, by Office of Naval Research

under ONR contract N0.014-80-C-0651 ,

81 7 22 016

1. Introduction

Office automation can be defined as the replacement of manual office

activities by identical or similar activities which automate means of

doing office work. An office activity refers to any activity in an

office, such as filling out a form, sending a message, entering infor-

mation into a file, making a decision to route a form, etc. An office

procedure refers to a structured set of office activities for the

accomplishment of a specific office task, such as scheduling a meet-

ing, processing a mortgage application form, reviewing a paper, etc.

An office usually consists of a number of work stations or simply

stations. The work stations are interconnected by a communication

network to serve as a message exchange system.

Accession r

The first step in office automation is usually the partial (or total) NTTS ,,.

replacement (or enhancement) of the office desks by terminals, word-

processors or small computer systems which are interconnected by an

electronic message exchange system. In other words, initially office

automation aims at the automation of devices and improvement of the

communication network (message exchange system).

The second step in office automation is to take advantage of the clec- L_

tronic desks, and replace some manual office procedures by computer-

ized procedures. At some work stations, manual intervention is still

necessary for data entry and decision-mal.-tng. Some work stations may

be partially automated, with some activities managed by the electronic

desk. Some other work stations may be entirely automated using compu-

terized office procedures.

Since the first and ultimate goal of office automation is to automiate

office activities, it is important to undcrstand the problems relat ,d

to office activities management. In this paper, we will approach thu

problem of office activities management from the database viewpoint.

Database alerting techniques are developed to serve the purpose of

office activities management. A conceptual framework for office in-

formation system design i -; presented in Section 2. Section 3

discusses simple database alerters and implementation techniques.

Existential alerters and time alerters are discussed in Section 4. In

Section 5, an example of journal editing is described in detail to

clarify concepts. In Section 6,' alerter system stability is dis-

cussed. Some concluding remarks are given in Section 7.

2. A Conceptual Framework for Office Information System Design

2.1. Event Plon. tor n, Usinp Database Alerters

One of the major problems in office autoniation is the coordinatio:, and

integration among various tasks. In the real world, actions are usu-

ally triggered due to a change of state of a certain event. Some of

these actions are time-related routine operations, for example, rout-

ing a meeting notice among a group of people. Such routine opcrations

are often periodically scheduled. Some of these actions are predeter-

mined, for exainple, managing an editorial office which requires the

coordination of a number of predetermined tasks. Such predetermined

actions are usually i1oth event-based and tinm-rlated. hlien we con-

sider the design of an office information system, the monitoring of

events, and the scheduling of predetermined and time-related routine

activities are the main functions that an office informatJion system

can perform and thereby improve office efficiency and increase

-3-

productivity.

An office information system requires the support of a database

management system for the storage and manipulation of office informa-

tion. Moreover, the database management system should also he capable

of responding to external events. Database systems are usually pas-

sive, in the sense that they only respond to externally generaLed

information retrieval/manipulation requests, but cannot take other

actions spontaneously. The recent development of database alerting

techniques have changed the character of the database system from a

passive one to an active one. Database alerters are first introduced

by Buneman [BUNEYAN77, 79]. To clarify the concept, consider the fol-

lowing examples:

Exaiiple 1: "Report the name and temperature of any station at
which the temperature falls below ten degrees Centigrade."

Example 2: "report the number and owner of any account from which
more than $500 is drawn."

In each of the above example, the user wishes to be informed when cer-

tain exception condition occurs. The exception condition and the

prescribed message sending action form a <condition, action> pair.

Such rules are called alerter rules.

Alerter rules can be used to monitor state transitions in a database.

The current contents of a database determine its "state". If we ag-

gregate the database states into two states, called the IN state (when

an exception condition is met) and the OUT state (when an exception

condition is not met), then an alerter is triggered and an alert

messag~e is generated or actions are invoked, whenever the database

transits to an IN state. Such state changes are affected only by

database updates. Therefore, to install database alerters, we need

only monitor database updates. The alertji,,; subsystem in Ffijure I

illustrates this concept.

Alerter rules therefore can be used to monitor database updates and

trigger actions whenever certain conditions regarding database updates

are satisfied. With alerter rules, database updates will automatical-

ly cause prespecified actions to take place. Thus the database system

can take on an active role in events monitoring.

It should be noted that actions triggered by an alerter are viewed as

side-effects of database updates. The failure of performing these

actions does not necessarily cause the database updates to be rolled

back. This constitutes the basic difference between alerters in an

alerter system and triggers in an integrity system, such as the

trigger mechanism proposed for system R [ESWAR76].

2.2. Activity Management in Office Information Systems

An office information system is a message-driven system. Work sta-

tions exchange messages, which cause certain office activities to be

performed. In FIgure 1, we present the component subsystems of an

office information system.

Figure 1 depicts the relationship among the database system (DBIWS),

the alerting subsystem (AS), the office manager (ON), the activity

agents (AA), and the intelligent coupler (IC). The user agent comMu11-

icates with the user interface, called the intelli.gCnt coupler, by

messages or forms. The intelligent coupler performs the translation

of user queries [CIIANG78b, 79]. It can also interact with the user to

complete an intelligent form [ZISMAN77] (or interactive letter

[ANDER76 J).

-5-

t

The intelligent coupler sends user databo ;e retrieval and update mes-

sages to the database system. The database consists of a user data-

base and an alerter database, both managed by the database system.

The alerter database is used to store the alerter rules. The database

system sends messages to the a.erting subsystem, containing descrip-

tion of every completed update or failed update.

The alerting subsystem screens database updates to detect the oc-

currence of important events. Therefore, the alerting subsystem can

be generally viewed as a screening program or a fi'lter associated with

the database system. 1,!hen an event occurs, the alerting subsystem can

either send an alert message to the intelligent coupler (which in turn

informs the user agent), or send an activity request to the office

manager to initiate office activities.

The office manager manages office activities. It receives activity

request either indirectly from the alerting subsystem, or directly

from the intelligent coupler. The office manager then schedules and

performs office procedures by calling upon one or many activity

agents. Therefore, the office manager is functionally analogous to

the scheduler in an operating system.

An activity agent can he regarded as an office specialist, capable of

performing some well-defined office activity [ZISMAN77]. For example,

the activity agent can be a form generation program, a report genera-

tor, an editing program, etc. When an actLvity agent comp1ete.; its

task, it sends an activity completion message to the office manager,

which may then schedule other activities.

The activity agent can send messages to the intelligent coupler, which

-6-

then presents the information to the user agent. The activity agent

can also perform database reLrieval/update operations, which may lead

to triggering of alerters and scheduling of additional acti.vities.

The alerting subsystem, the office manager, and the activity agents,

together form the actLivity management system (AiIS), which monitors

events and initiates, schedules, and performs office acti.vities

CIIANG80. The activity management system is therefore the most im-

portant part of the office information system.

2.3. Office Procedure Model

To describe the relationships among office activities, databases, and

alerters, we adopt the following formalism: a rectangular box is used

to denote a file Ri, a diamond-shaped box an alerter rule Aj, and a

circle any activity or process Pk. If an activity or process requires

user interaction, it is denoted by a double circle. A triangle is

used to denote a message ui. or a form Fj. An arrow leading to tl;e

base of a triangle indicates message reception, and an arrow emanating

from the vertex of a triangle indicates message transmission. The

possible relationships are summarized as follows:

(1) File access: >>
File Ri is accessed by process Pk.

(2) File update: P -->> I' or i

File Ri is updated by process Pk or alerter rule Aj.
We say that Pk or Aj affects file Ri.

(3) Alerter triggering: I:1,])
Update of file RI. may trigger alerter Aj. The alert condition can
be written beneath the directed arc. We say that Aj monitors file
Ri for triggering.

(4) Activity invocat~on:
Alerter Aj invokes process Pk-.

(5) Activity precedence: I '>'
Process Ilk precedes (and invokes) process Pk.

-7-

(6) Alerter creation: M or
Alerter Aj or process ik creates alerter Am.

(7) Alerter deletion: la< or
Alerter Aj or process Pk deletes alerter Am.

(8) Message input: k
Input message u is stored in a message file.

(9) Form output: G -->>I

Process Pi generates o'tput form Fj.

(10) Form interaction process: >>;

Process Pi sends form Fj to user agent to obtain addit.onal
information. When form Fj is completed by user, process Pi
continues.

(11) Alerter ON: ><a>
ON

Update of file Ri. may enable alerter Aj. The ON condition
can be written beneath the directed arc. We saythat Aj
monitors file Ri for ON condition.

(12) Alerter OFF: E]-->
OF F'

Update of file Ri may destroy alerter Aj. The IF condi.tion
can be written beneath the directed arc. We say that Aj
monitors file Ri for OFF condition.

(13) Time clock: L -->>
TIME file is set to t. Since TIME file is often a conceptual
device (see Section 4), the update of TIME file can be omitted
in an OPI specification.

With these formal notations, we can graphically, depict office pro-

cedures and analyze how they can be executed by an office information

system. Such a formal model is called the office procedure modcI

(OP.). This knowledge model can also be stored in the database. it

is accessed by the alerting subsystem to Aieck for alerter database

consistency. It is also accessed by the office manager to schedule

and control concurrent activities invoked by the office manager, and

to check for alerter system stability (see Section 6).

-8-

3. Simple Alerters and Implementation l.-ues

Simple alerters monitor database updates of simple database objects,

usually records in a file (or tuples in a relational file,- if we use

the relational database terminology). To specify a simple alerter, we

need to specify the following:

(1) Name of alerter: This is a unique symbolic name to identify an

alerter.

(2) Type of update operation to be monitored: For updates of records

in a file, there are three types of updates: insertion of a new

record, deletion of an old record, and modification of an old record.

The three update types are denoted by "i", "d", and "m", respectively.

(3) Name of database object to be monitored: For monitoring of record

updates in a file, this will consist of two parts:

(3.1) file name (or relation name), and

(3.2) field names (or attribute set).

(4) Alert condition: The alert condition is a logical expression in-

volving atomic clauses. Each atomic clause consists of an attribute

name and a literal, or two attribute names, related by a comparison

operator such as "=", '=", "'<, ">", etc. In an alert condition for

type "m" update (record modification), the attributes are prefixed by

"old" or "new", indicating whether an attribute refers to the "old" or

the "new" record. Simi.larly, in an alert condition for type "i" up-

date (record insertion), the attributes are prefixed by tie "new" key-

word. In an alert condition for type "d" update (record deletion),

the attributes are prefixed by the "old" keyword. In these two cases,

however, the prefix can he omitted since there is no possibility for

_q0

confusion.

(5) Action: The action taken by a simple alerter when it is triggered,

is to send messages to various users or to invoke another process, or

to perform database update operations.

(6) Name of creater of the alerter rule.

Alerter rules are stored in the alerter database (ADS), which is also

managed by the database system. Referring again to the examples men-

tioned in Section 2.1, the messages to create the appropriate aleriers

are:

(1) ADDALERT a-name="frostwarning", u-type-"m',

rel-name = "weather",
attribute-name='temp", condition="new.temp<10",
action="ALE£T user-a user-b",
creator="usLr-c"

(The alerter name is "frost-warning", update type is "', rela-

tion name is "weather", attribute is "t emp" , condition is

"new.temp<1O", alert message should be sent to "user-a anv d

"user-b", and alerter is created by "user-c".)

(2) ADDALERT a-nane="withdrawn-warning
'", u-type=m"n,

rel -name= "account",

attribute="balance",
conditIon="old.balance - new.balance > 500",

actLion="ALERT bank-manaer',
creator=" teller-a"

(The alerter name is "withidrawn-warning", update type is "m",

relation name is "accomnt", attr.buto is "balance", condition is

"old.balance-new.balance>500", alert message should be sent to

"bank-manager", and alerter is created by "teller-a".)

An alerter can he removed hy a deletion message:

-10-

DLTALEIRT "frostwarning"

Database retrieval/update requests from the user agent are sent to the

database system. The ADDALI.RT and DLTALERT messages, on the other

hand, are sent to the alerting subsystem, which then uses the database

system to perform the actual updating of the alerter database.

When the alerting subsystem receives an ADDALERT message, it adds the

appropriate alerter rule to the ADD, after checking that the rule is

acceptable (e.g. the database object does exist, and the rule is con-

sistent with other rules). A message

ADDEDALT alerter-name

is sent to the agent creating the alerter rule, where "alerter-namc"

is the symbolic name of the alerter rule. If the alerting subsystemi

finds the alerter rule unacceptable, an appropriate error message is

returned.

Similarly, when the alerting subsystem receives a DLTALERT message, it

deletes the specified alerter rule from the ADB and sends the follow-

ing response to the agent deleting the alerter rule,

DLTEDALT alerter-name

When a database retrieval request is sent to the database system, it

simply retrieves the appropriate information, and the response fron

the datalbase system is forwarded to the user. No message is sent to

the alerting subsystem. This is because we do not monitor retrieval

operations. Retrieval could be monitored, if we intend to analyze

user profile for security or protection reasons.

-MEN

When a database upd(1atLe requtes t i Ss Cn11L to tIeI d ataIba se S ystLem, L

first performs tlu requested update operation. Only after thu upd"at.

has been perforimed, that the database system sends thle following mes-

sage,

UPDiATED) (update- type> (ob - name> <old -record> <new-recjrdI>

to the alerting subsystem. Tile alerting subsystem then checks whether

any alert condition is satisfied. The simplest approach is to scan

through the alerter rules in the alerter database. The alertingij sub-

system can use the datahasc system to retri~eve Olerter rules Irom the

alerter database. To jimprove efficiency, thle alerter rules could be!

indexed by: (a) update type, (b) relation name, and (c) attribute

name(s). With such an index structure, thle lowest-level entries are

pointers to thle alerter rules. Only alerter rules pertinent to anl

update need be checked. Therefore, in practice, the required con-,puta-

tion for checking, ADDg rep~resents a small overhead on each update.

When an alerter is triggered, the alertin8 subsystem niay send alert

messages to the User agent, i~f the specified actioni is the ALEKT coin-

mand. The alert message contains the name of alerter, type)L Of update,

database object monitors, and value of database obj2ct before and

after thle update. The user agfent is responsible for processini tIw'

ALERT mie ssa ge. On Ltue other hand, tile alorting- subsystem rnay send

activity reqjuest to tile office manager for activity schedulingj,. Thc

aCti.VJ ty- reqJuest conlsists of aict.on n~ameIS and(other parameters, aS

speciflcd i~n thle alerter rules.

4. ExisLential Alerters and Time Alerters

Existential alerters are alerters with well-defined duration. To

define duration of an alerter, we extend the concept of simple alert-

ers as follows. Each alerter is associated with three conditions: an

alert condition, an ON condition, and an OFF ConditLion. o When the (ON;

condition is met, the alerter is enabled. When the OFF condition is

met, the alerter is destroyed. The alert condition, as defined previ-

ously, determines when the alerter rule is triggered. Each alerter

thus monitors three database objects, one for each of the three condi-

tions. These three monitored objects can be identical or different.

The set of alerters that are currently ON is called the ON-set.

A customized alerter is an alerter of the form Ak(cl, c2, ... , cm)

where the ci's are parameters that may appear in the alert condition.

A customized existential al rer is all Lxistential alerter of the form

Ak(cl, c2,..., cm), where the ci-s are parameters that may appear in

the alert condition or the duration (i.e, the ON conclition and the OFF

condition). All customized alerters of an alerter Ak have the saa.e

format as Ak, except the ci's may have different values in each ciis-

tomized rule.

A time alerter is a special type of alerter for monitoring time-

related events. In order to specify time aleriers, we can assume

there is a special relational file, ca~led TIME, which has only one

attribute -- time. The system may update the TIME relaLional file

periodically, the update frequency being dependent on applications.

The TIME relational file may also he the system clock itself, and the

update frequency is the same as the clock rate. With thi.s conceptual

-13-

time relational file, the system can treat time as an ordinary attri-

bute, and the alerter rule can mention the time attribute in its ON

condition, trigger condition, as well as OFF condition.

As an example, suppose we want to monitor incoming telephone calls.

The alerter is in effect between 8 a.m. and II a.m., and t he trigger

condition is "caller = Smith". The existential alerter is as fol-

lows:

(1) ON condition: time = 8 a.m.
(2) Alert condition: caller = 'Smith'
(3) OFF condition: time = 11 a.m.

For this application, the TIME file might be updated once every five

minutes.

The above alerter rule can he modified to be a customized alerter rule

as follows. The customized alerter A(tl, t2, caller-name) has the

following conditions:

(1) ON condition: time = ti
(2) Alert condition: caller = caller-name
(3) OFF condition: time = t2

Other system parameters can be monitored similarly, by creating

special-purpose system relational files containing such parameters.

-The system overhead is proportional to the frequency of updates for

such system files, because every update of a system file will result

in the evaluation of alerter rules monitoring this file. Therefore,

we must exercise care in determi.ni.ng hot often to update the syste.n

parameters, such as time, toggle switch, etc.

5. Journal Editi.ng Example

-14-

As an example of office automation, we wJ.1 I. describe the journal edit-

ing activities in an editorial office. Basically, there are three

activities to be considered: (a) occurrence of real-world events, (b)

database update activities, and (c) generation of forms.

The occurrence of real-world events causes input messages to be sent

to the office information system. As illustrated in Figure 2, each

input message is considered a record insertion into a MESSACE rela-

tional file in the user database UDB, which triggers alerters Al or A6

to invoke user-defined processes. In actual implementation, the mes-

sage file may be nonexistent, or it may serve as a log file to record

all incoming messages. The message file may contain the following

attributes: message-type, message-id, message-text.

One type of input message is the submission of a paper from an author.

This message, with message-type "s , represents an event which arises

from outside the system. It triggers Al to invoke a (manual or au-

tomatic) data entry process P1 to enter the relevant information into

the user database. In this case, a new record is inserted into the

PAPERS relational file. Th PAPERS file has the followl.ng attributes:

paper#, title, author, author-address, submission-date, paper-status.

The insertion of a new record in PAPERS relational file triggers

alerter A2 to invoke two concurrent processes: (1) a form gencrati.on

process P2 to send an acknowledgement letter (form V2) to the author;

and (2) a reviewer selection process P3 to prompt the editor to select

three reviewers. The form generation process P2 is automatic. The

process P3 requires manual Interaction. The interaction is accom-

plished using a form F3.

-15-

After the editor has selected three reviewers using form F3, process

P3 causes the insertion of a new record into the REVIEW relational

file. The REVIEW file has the following attributes: paper#, re-

viewerl, datel, stl, reviewer2, date2, st2, reviewer3, date3, st3.

The status of a reviewer is initially 0. It is set to 1 when the

reviewer sends back the review, and -i when he declines to review the

paper. The insertion of a new record in the REVIEW relational file

triggers alerter A3 to invoke a form generation process P4, to send

letters (form i'4) and copies of the submitted paper to the reviewers.

The reviewer's name and address can be found in another relational

file REVIEWER, which contains the following attributes: reviewerit,

name, address, review-area.

The alerter A3 also generates an existential time-alerter A4(X,Y,tl),

for reviewer X, paper Y, at time tl. When a reviewer has not respond-

ed after a given time interval (say, three months), A4 is triggered

by the alerting subsystem. A4 invokes a form generation process P5, to

send a letter (form F5) to that reviewer asking for response. The

alerter A4 generates another existential time alerter A5(X,Y,t2) and

then self-destructs. It should be noted that A4 is an existential

alerter which is automatically destroyed when the reviewer send back

his review.

If the reviewer still does not respond after a given time interval, A5

is triggered, which again invokes proces 1P3. The process P3 prompts

the editor to select another review, and again updates the REVIEW

relational file. After firing, the alerter A5 also self-destructs.

A5 i s also an existential alerter which is automratically destroyed

when the reviewer sends hack his review.

-16-

Another type of input message occurs when a reviewer sends back h.is

review. Again, this message, with message-type 'r', is considered as

an insertion into MSSACE relational file, which triggers alerter A6

to invoke a (manual or automatic) updating process P6, to update the

REVIEW relational file. The update of REVIEW may cause the destruc-

tion of existential alerters A4 and A5. If all three reviews of same

paper have come hack, (stl=st2=st3=1), this will trigger alerter A7,

which invokes an evaluation process P7. P7 will require manual in-

teraction with the editor to determine status of paper. The interac-

tion again is accomplished using a form F7. A form FS is generated,

to inform the author thit his paper is (a) accepted, (b) required to

be revised, or (c) rejected. If paper is accepted or rejected, that

record in PAPERS relational file may be moved to a backup file, and

the corresponding record in REVIEW relational file nay also be moved

to a backup file. If paper is to be revised, it stays in PAPEIRS rela-

tional file, and the corresponding record in REVIEW relational file is

updated.

If a reviewer sends back a letter, saying he does not want to review

the paper, then this reviewer's status is changed to "-I", and the

update of the REVIEW relational file triggers alerter A9, which again

invokes process 1'3 to prompt the editor to select another reviewer,

and the whole procedure repeats.

From the above description, we can see teat messages can be created by

the user to represent outside events, or by the system because of

updating of relational files, user time interrupts, etc. Each message

may trigger one or more alerters, which usually invoke processes to

perform some of the following: (a) request additional information from

-17-

the user, (b) updatc the database, and (c) gencrate forms.

Figure 2 depicts a set of alerters to perform the journal editing

task. There are two relational files: PAPERS and REVIEW. The MESSACE

file could be a nonexistent file, or a log file. Alerters A2 and Al

monitor the PAPERS relationla file, and A3, A7, and A9 monitor the

REVIEW relational file. A4 and A5 are customized time alerters, and

A5 is generated only when A4 has been triggered. A4 and A5 are both

customized for a particular reviewer X of a particular paper Y, and

they either self-destruct after firing, or are destroyed when OFF con-

ditions are met, i.e. when the reviewer sends back his review. Figure

2 also depicts the relationship among various alerters. The notation

introduced in the previous section is used, but duplicated relational

files are drawn for the sake of clarity.

The above journal editing example illustrates the coabination of manu-

al and interactive activities (PI, P3, P6 and P7) with automated ac-

tivities (P2, P4, P5 and 1'8). It also illustrates the usage of forms

for office communications. Forms F2, F4, F5, and F8 are output forms.

F3 and F7 are interactive forms, or so-called intelligent forms, which

requires manual interaction. P1 and P6 are also interactive

processes, because if the input messages are paper messages (such i

the case in a conventional editorial office), then these input mes-

sages must be encoded and entered into the system. However, if we

have an electronic mail system, then the paper submission message is a

form Fl, and the review update message is either the returned form F4

or FS, and in all these cases P1 and 116 are automatic processes.

Notice also in Fijgure 2, Al, A4, A5, A6, A7 and A9 are conditional

alerters. The other aleriers do not have alert conditions.

-18-

Figure 3 illustrates the update of the alerter database (Figure 3(a)),

the update of the PAPERS relational file (Figure 3(b)), the generated

form F2 which is sent te the author (Figure 3(c)), and the interactive

form F3 which is sent to the editor to be completed and returned to

editorial office system (Figure 3(d)).

-19-

6. Alerter System Stability

We distinguish an alerting subsystem, which is the physical implemen-

tation of database alerting technique, from an alerter system, which

is the abstract system of alerter rules driven by input updates. In

this section, we discuss the problem of alerter system stability.

When alerters trigger each other in endless successions, infinite

message loops occur. Such infinite message loops are 'obviously un-

desirable, because the alerter system is unstable. Therefore, infin-

ite loop detection technique must be devised to prevent such infinite

message loops from happening.

To illustrate the concept of infinite loop detection, let us consider

the following example. Suppose the user data base has two relational

files, RI(DI, D12) and R2(021,D22). In the alerter data base, there

are two alerter rules:

Alerter Rule Al: If a record (1, d12) in file RI is modified to (1,i),

then modify record (1, d22) in R2 to (1,2).

Alerter Rule A2: If a record (1, d22) in file R2 is modified to (1,2),

then modify record (I, d12) in RI to (1,I).

With these two alerter rules, when a record (1, d12) in RI .s modified

to (1,I), the two alerter rules will be triggered successively, caus-

ing an infinite message loop. "

Using the notation introduced in Section 2.3, in the example described

above, we have Ill -> Al ->> R2 -> A2 ->> lIl, thus forming a message

loop. Therefore, we say that alerter rules A(l), A(2), ... , A(n) form

a messace loop, if there are relational files R(1), R(2), ... ,R(n),

-20-

such that R(1) -> A(l) ->> R(2) -> A(2) ->> . ->> R(n) -> A(n) ->>

R ().

The existence of a message loop is a necessary condition for the oc-

currence of infinite message loops. flowever, whether an infinite mes-

sage loop will occur is data dependent. As iln the above example, if

we insert record (0, 0) into relational file 1l1, no infinite messagc

loop will occur.

Therefore, to prevent infinite message loops from occuring, it is

necessary to (1) detect the presence of message loops, (2) keep a his-

tory of update messages and alerter rule firings for every relational

file and alerter rule in the message loop, and (3) break up an infin-

ite message loop when the update message histories indicate such loops

are present.

The office procedure model (OPM) described in Section 2.3 is a graphic

representation of the relationships among office activities, data-

bases, and alerters. For each specific database update, we call the

description of its relationship with the alerter rule triggered and

activities performed a run-time OPM instance. The history of the

alerting system actually consists of a collection of such run-time O1"

instances. In the above infinite message loop detection scheme, Part

(1) requires a static analysis of the OPMI model to detect the mnessage

loop. Part (2) and Part (3) requires dynamic monitoring of OPM run-

time instances within the nessage loop.

The detection of message loops can be achieved as follows. Each rela-

tionil file can be represented as a node in a directed graph derivable

from the OPfl model. If there are Ri, Ai and Rj such that RJ.->Ai->>Rj,

-21-

an arc will be drawn from Ri to Rj, with the arc labelled as Al. The

existence of a loop in the graph indicates the existence of a ,,.essaic

loop among the alerter rules. Whenever a new alerter rule is added to

the alerter database or an old alerter rule is updated, the system

modify the OPM model, constructs the directed graph, and checks wheth-

er a message loop exists.

We now demonstrate that under certain conditions, infinite message

loops can be detected. Let u, v denote records (or tuples) in a rela-

tional file R. An update operation is denoted by (u, v), where u is

the record to be deleted, and v is the record to be inScrted. If u is

not in R, or v is already in R, the update operation (u, v) is unde-

fined. An insertion operation is denoted by (0, v), and a deletion

operation is denoted by (u, 0), where 0 denotes the empty set.

Suppose Ai monitors Ri.. The trigger region Bi of Ai is defined to be,

Bi = t (u,v): u, v in Ri and (u,v) triggers Ai)

where Ri. is the underlying domain of Ri.

Suppose Ai monitors Ri and Ai affects Rj. The notation, (ui, vi) ->

Ai ->> (uj, vj) indicates that an update operation (ui, vi) on Ri will

trigger Ai (i.e. (ui, vi) is in Bi), and Ai causes an update operation

(uA, vj) on Rj.

If we denote (ui, vi) by wi and (uj, vj) b wj, we can simply write wi

-> Ai ->> wj. In other words, we have a mapping f such that f(wi) =

wj. Each component of the mapping is denoted by fk, and fk(wi) = wjk,

where wjk is the k-th component of wj.

The alerter Ai is information reducing, if for every pair of (wi, wj)

-22-

such that wi -> Ai ->> wj, each component Ik of the mapping f is e..-

ther a generalized identi.ty function (i.e. wjk = fk(wi) = wix for ,;o8Ic

x), or a finite classifier (i.e. the range of fk is finite).

If wi -> Ai ->> wj and Ai is information reducing, then wj has a fn-

ite range.

If there ib an Infinite message loop, then for some Ri -> Ai ->> Rj in

a message loop, there are infinite sequences of update operations

1 2 3 n 1 2 3 n
w , w , w , w ; and w , w , w , w , such that

i i i i j j j j

k k
w -> A ->> w

i i j

'N N

for all k. Since wi has finite range, we must have w = w for

some numbers H and N.

Therefore, we may wish to restrict the alerters to information reduc-

ing alerters. Under such constraints, we can dynamically determine

whether an infinite message occurs by observing whether some wi re-

curs, for some Ri within a message loop.

We now describe a method to record the run-time OPM instance for mes-

sage loop detection. ;,;henever the alerter database is updated, the

activity management system checks whether a message loop has been

formed. If a message loop is detected,. :dditional alerter rules can

be added automatically by the activity management system, one rule Ai

for each relational file Ri. in the message loop. Subsequently, when-

ever Ri is updated, Ai is always triggered to record the update mes-

sage Into a log file. The log file is a protected special relational

-23-

file in the UDB. The log file is indexed by (a) file name, and (b)

user process-id. In other words, a history of update messages is kept

for each (file name, user process-id) pair. The user process-.d is

the original user process-id which initiates the first update to a

relational file in a message loop. In the above, we have shown that

if the alerter rules are information reducing, then by observingq

whether there is a recurrence of update message in an update history,

the occurrence of infinite message loops can be dynamically detected.

In practice, instead of keeping update message hi.stories in the log

file, we can keep a conunter for each (file name, user process-id)

pair. Each file update will increment the counter by one. When a

counter reaches a perdetermined threshold, the loop is broken by (a)

blocking the update message having the same file aame and o riginal

process-id, and (b) sending a report to the user.

Instead of keeping a log file or even a simplified log file as sug-

gested above, we can include a frequency stamp in each message to

store a count of how many times this message has looped through the

activity management system. The activity management system is respon-

sible for assigning proper values to the frequency stamp. The fre-

quency stamp is usually inherited from the input message. When the

input message does not have its frequency stamp specificd, the activi-

ty management system will then assign an appropriate value to the fre-

quency stamp, as to be described below. W4hen the alert condition of

an alerter rule is satisfied, the frequency stamp of the input message

is incremented by one. If this value exceeds a preset threshold, the

acti.vity management system will break th.s loop by not triggering the

alerter, and the user is notified. Otherwise the activity management

-2/4-

system will assign this frequency st.ji..p to all output messages gen-

crated by this alcrter rule.

If the messages are fcdback directly to the activity management sys-

tem, then the frequency stamps will be transmitted and incremented as

described above. When the message is to activate an external process,

we cannot expect the external process to transmit the frequency stamp.

Therefore, whenever an alerter invoked an external process, the fre-

quency stamp associated with this process is stored in a frequency

stamp table, which contains the name of the process, and its frequcicy

stamp. W\henever the activity management system receives an update

message with an unspecified frequency stamp, it will consult the fre-

quency stamp table to determine whether this message is caused by some

alerter rule previously. If this is the case, then the process name

associated with the current message will be a descendent process of

some process recorded in the frequency stamp table. The current pro-

cess should then inherit the frequency stamp of the ancestor process,

and the unspecified frequency stamp is thus specified. Otherwise, the

frequency stamp field of this message is set to the initial value 0.

Proper garbage collection work need to be performed to inaintain the

frequency stamp table. A process can he removed fromn the frefuency

stamp table when it ceased to be active. In practice, wc can simply

implement the frequency stamp table as a ring structure with some rea-

sonable number of entries. For examplc, the number of enLries may be

equal to twice the maximum number of active processes allowed by the

operating system. Vhen a new entry is inserted into the frequency

stamp table, this will eliminate the oldest entry from the table.

-25-

7. Discussions

In this paper, we propose to use database alerting techniques fur

office activities management. The role of an activity management sys-

tem in an office information system is clarified, and techniques for

mainitaining alerter systemi stability are discussed. A unified for-

realism to describe an office procedure model has been presented in

Section 2.3. A diagram such as Figure 2 then represents the office

activities at one work station. Similar diagrams can be constructed

for other work stations, and together they can be used to represent a

distributed officu Informa tion system (IUOIS). Such a model can. be

called a distributed office procedures model (DOPe:).

An example distributed office procedure model for a three-node (or

three-station) distributed office information system is illustratcd i.ii

Figure 4. It can he seen that a distributed database managenient sys-

tem (DI)BIS) is needed to support a distributed office iLnformation sys-

tem. Problems of infinite message loops, deadlocks, concurrency con-

trol, data consistency, and process conflicts wust be analyzed care-

fully. Because of the complexity of distributed office inforaation

systems and the evolutionary nature of such systems, it is cx1ectcd

that more and more emphasis will be placed on the incorporation of

knowledge (such as alerter rules, database skelctons [CUPAC78a], and

office procedure models) into such systems, so that it can function

properly and provide adequate support for both rouLine activitics

management and decision-making.

-26-

References:

lANDER76I R. A. Anderson and J. J. Gillogly, "Rand Intelligent Terimi-
nal Agent (RITA): Design Philosophy", Rand Report R-1809-ARPA, Rand
Corporation, Santa Nonica, CA, 1976.

[BUNEH77] 0. P. Buneman and i1. L. Morgan, "Implemcenti.ng Alerting Tech-
niques in Database Systems", Proc. of IEEE CO,]IPSAC Conference, No-
vember 8-11, 1977, 463-469.

[flUNEM79] 0. P. Iuneman and E. K. Clemons, "Efficiently Nonitoriig
Relational Databases", ACM Trans. on Database Systems, Voi. 4, No. 3,
September 1979, 368-382.

[CHANG78a] S. K. Chang and W. II. Cheng, "Database Skeleton and its
Application to Logical Database Synthesis", I"EE Transactions on
Software Engineering, Vol. SE-4, No.1, January 1978, 18-30.

[CHAN(78b] S. K. Chang and J. S. Ke, "Database Skeleton and its Appli-
cation to Fuzzy Query Translation", IEIEE Transactions on Software
Engineering, Vol. SE-4, No. 1, January 1978, 31-44.

[CHANC79] S. K. Chang and J. S. Ke, "Translation of Fuzzy Queries for
Relational Database Systcm", IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. PAI-l, No. 3, July 1979, 281-294.

[CIIANC80] J. M. Chang and S. K. Chang, "Database Alerting Techniques
for an Act vity Management System", Proccedings of 1980 International
Computer Symposium, Taipei, Taiwan, Republic of China, December 1980.

[CONWA74] R. Conway, W. taxwell and II, Morgan, "A Technique for File
Surveillance", Proceedings of IFIP Congress 74, North-Holland Publish-
ing Company.

[ELLIS79] C. A. Ellis, "Information Control Nets: A Mathematical Model
of Office Information Flow", 1979 Conference on Simulation, Measure-
ment and Modeling of Computer Systems, 225-239.

[ESWAR76] K. P. Eswaran, "Specifications, Implementations and Interac-
tions of a Trigger Subsystcm in an Integrated Database System", Techn-
ical Report RJ1820, IBM Research Laboratory, San Jose, California,
August 1976.

[IIA1*1E76] M. Hammer, "Error Detection .n Data Base Systems", Technical
Report, M.I.T. Laboratory for Computer Science, 1976.

[HCDON75] C. cDonald, 1". Bhargava, D. Jeris, "A Clinical Information
System for Ambulatory Care", Proc. of National Computer Conference,
May 1975, Anaheim, California.

[TSICH80Oa] D. Tsichritzi.s, "Form Flow Models", Technical Report,
University of Toronto, 1980.

[TSIC1I8Oh] I). Tsi.chri Izis, "A Form Manipulation System", Technical
Report, University of Toronto, l.,O.

-27-

[Z ISMAIN77 N * I). Z ,sm ',n e peprsen tit tion , Spec ification a nd AULO ili L on 1
of Office Procedures, Plh.D. Dissertation, University of Ileinsylvani. a,
1977.

-28-

Da tabase Dat a hase

User Database Management - ()

Retrieval System-
&(DBMpuS) User

Database

Agen Coupler (IC) Database UPDATERR Alertcr

fomAIDALFRT Retrieval Database

or essgeDLTALERT & Update

ALER message SUbsystcm
ADDEVALT (S

actvity activity acti.vjtY

activity request request inanageircnt

request acknowledgement system k'AdiS)

message
activi.ty activity

completion invocation

ALi viJt y User D~atabase

AV~ent(AA) etrieval & Urdate

Figure 1 Component Subsystems of an office Information System

F1.

i 11PILu t
m e SS' Ls3L ----- *-*-* El e I- LIy pj1rC)C e S;

d al t E . form generzitioii pro1CeCLSS;- F2
entry > FA' ~
process > reviewer selecti on pruoc.;s <-X>;

r'e vi ewe r
sel-e:ction proce-ss ee~ o po ~~V

iLYv UC fo0r M e IeIiiti01 1 CLS 'F4

-~x 1
t->> hLINU- 4(X,Y,tl ->~ f ar m gene io z rcs,- F

t=ti I;

t- > -tL(,Y,-7)" re)Lvie wer Se:-'0taO'; '-oOCc(2S <:- F

ini~ pat-.- - -

review LupdJZte-

st1

stl=-1 vPAPERS
st2=-l v

prc)c e s s -- x FS

A9\-:*, reviewer selection process F3-::

Fig.ure 2 Office procedl.res model forl the editorioil of Facu

F2

ADDALERT a-name="A 2",uotype="i" ,rel -1tie="PAPES ' ,condition="",
action="sendforin F2 %author %author-address %title;

select-reviewer F3 %author %title",
creator="Editor"

ADDALERT a-name="A3" ,u-type="im",rel-name-"REVIEW",condition-"",

action="sendforn F4 %new.reviewerl %new.paper#;
sendiform F4 %new.reviewer2 %new.paper";
sendforn F4 %new.reviewer3 %new.papery#;
crcate-alerter A4 %new.rcviewerl %new.paper#;
create-alerter A4 %new.reviewer2 %new.paper#;
create-alerter A4 %new.reviewer3 %new.paper#',

creator-"Editor"

Figure 3 (a) Updates of alerter database ADB

INSERT (paper#=12,tj.tle="Ilashing Technique",author="John Doe",
author-address="12 M'ain St., Middletown, IL.",
submission-date-"7/17/1980", paper-status="new") TO PAPERS

Figure 3(b) Update of PAPERS relational file

To: John Doe
12 Main St., Middletown, IL.

From: Editor
Subject: Paper submission

This is to acknowledge the receipt of your paper entitled,
"Hashing Technique".
Thank you for your interest in our Journal.

Figure 3(c) Form F2

To: Editor
From: Editorial Office System
Subject: Reviewer Selection

Please select three reviewers for paper entitled,
"Hashing Technique" by John Doe.

revlewerl:

reviewer2:

reviewer3:

Figure 3(d) Form F3

F3

,r-

I- -,-.-.--"-."-IF-i "- .. I

Figure 4: Distributed Office Procedure Model

F4

