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ABSTRACT

The objective in preparing this report is to provide a perspective

on the signal processing problem that must be solved in order to produce

a useful seismic surveillance system. The point-of-view is taken that the

problem is nontrivial, thereby requiring a particularly careful development

of the signal processing algorithms. The surveillance system is faced with

the problem of detecting weak signals in the presence of incoherent and

coherent noise sources. The signals that are sought generally have an

unknown structure except for some important qualitative characteristics.

There qualitative characteristics are identified by considering the propaga-

tion of seismic energy in terms of the possible wave types, propagation

paths, and frequency ra-iges of possible signals.

The presentation is composed of three major sections. In Part I,

basic physical considerations regarding the propagation and sensing of

seismic energy are reviewed. This discussion provides physical motiva-

tion for the development of suitable s'gnal processing algorithms. The

general signal processing problem is defined in Part II. Array process-

ing is reviewed and fundamental concepts are introduced in this section.

General array processing algorithms are presented in Part III. The

presentation in this section is intentionally brief as the algorithms are

motivated and developed in Parts I and II.

The statement of the algorithms in Part III is very general.

It is the contention of this report that the surveillance problem is suf-

ficiently difficult that unnecessary haste must be avoided in developing

specific algorithms of limited scope. It is important that a maximal

amount of information is extracted from the sensor outputs in order to

achieve de,:irable performance goals. Thus, the general structure of

the algorithms is defined to serve as a basis for the evolution of spe-

cific algorithms that can be implemented in the seismi: surveillance

system. By proceeding early in the development to specific algorithms

based upon restrictive assumptions, one can be misled in assessing the

potential performance of the system.

1 . A- ORINCON
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INTRODUCTION AND OVERVIEW

A primary objective of the signal processor is to detect seismic

energy from an unknown source and to estimate the location of the

source. Many sources are typified as introducing an impulse-like signal

into the earth (e.g., an artillery recoil or a shell blast). Thus, the

inpat signal occurs during a relatively short time interval. Because of

the short time duration, the signal will contain a broad range of fre-

quencies. Alternative sources of energy are provided by moving tar-

gets (e.g., tanks, trucks, aircraft). These sources introduce energy

into the earth over longer time intervals and generally can be expected

to define signals having narrowband characteristics. Both types of

sources are considered in the following discussion.

The earth can be regarded as a channel that transmits the

seismic energy generated by a source to sensors that provide infor-

mation for the signal processor. The effect of the earth upon the

input signal is very complex. A single source can generate several

signals that may be observed by the sensors. These signals repre-

sent the different types of waves that can propagate in an elastic

medium or the different propagation paths that are possible for a

specific type of wave. To design the signal processcr, the character-

istics of the wave motion and the possible propagation paths must be

understood and modeled.

The designer of the signal processor must be concerned with

the properties of the signals received by the sensors. Because of the

complex nature of the transmission channel, the signal received by

the sensors is substantially different from the input signal generated

by the source. To reduce the effects of the channel, the "sensor"

typically consists of an array of three-axis geophones whose outputs

are combined in an appropriate manner by the signal processor. The

algorithms that define the processor must consider the following aspects.

2 VORINCON



Signal Bandwidth: The range of frequencies which the

signal is expected to contain must be established. As the

bandwidth increases, the time duration of the signal diminishes.

Signal Power: The difficulty of the detection problem increases

as the signal-to-noise ratio decreases. The signal power dimin-

ishes as the distance between the source and the sensor increases.

Because the surveillance system is intended to operate at rela-

tively long range (i.e., 10 to 20 kin), the signal processor must

be designed to operate at low signal-to-noise ratios (SNR).

Basic Wave Properties: Different types of waves induce different

particle motions and these characteristics may be detected by a

three-axis geophone. Then, the type of wave can be established.

Because different waves propagate with different speeds, this

classifications can be used in the signal processor to enhance

detection and to aid in source localization.

Signals that are received by the sensor can result from

waves that propagate along a variety of paths from the source

to the sensor. Characterization of the propagation path is

useful for several reasons. For example, a multiple reflection

can arrive at a time that is sufficiently later than other arrivals

that it appears to be a new signal. Thus, the detector may

introduce a false alarm that can be otherwise avoided.

Wavefront Characteristics: Arrays of geophones must be used

in order to obtain an increase in the effective SNR relative to

a single geophone. But the geometrical separation of the

elements of an array can introduce the requirement for character-

izing the properties of the wavefront that is sensed by the

geophones. Planar or spherical wavefronts may describe the

propagation of many waves. However, in some circumstances

the waves can exhibit a substantial distortion of the wavefront

t'hat must be considered by the signal processor, particulaily

for inter-array processing.

3 I ORINCON



Error Sources% The analysis of wave propagation in the earth

begins with s..vcraI idealized assumptions. These assumptions

lead to the general descriptions of signal bandwidth, signal

power characteristics, wave properties, and wavefront behavior

mentioned above. Deviations from the basic assumptions will

introduce errors in tjie general models and the designer of the

signal processor must be sensitive to effects of the potential

error sources. These include effects such as dips in the layer-

ing of the earth, the influence of the weathered layer at the

surface of the earth, elevation differences between the source

and the sensor, and the irregularities in the subsurface compo-

sition.

The signal processing concerns that have been mentioned are

addressed by defining idealized properties for the earth, developing

mathematical models from these assumptions, and analyzing the conse-

quences of the models. In Part I the assumptions and their conse-

quences are reviewed to obtain the basic features that must be con-

sidered in the design of the signal processing algorithms. In Section

1.2, the basic assumptions are stated and the models are reviewed.

The types of waves and their general characteristics are discussed in

Section 1. 3. The potential propaga'iun paths are described in Section

1.4. Some basic errors, sources and their effects arc investigated in

Section 1. 5.

Before beginning the discussion of the properties of the trans-

mission channel, a general description of the sensors is provided in

Sectioi 1. 1. This discussion is intended to be qualitative and to

establish a motivation for the subsequent description of the signal

characteristics presented in Sections 1. 2 through I. 5. The comments

of Sections I. 1 through 1.5 are summarized in Section 1.6. In this

concluding section, some basic modeling and signal processing conclusions

are stated and discussed.
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The analysis of the propagation of seismic energy leads to the

identification of several wave types and a variety of propagation paths.

Each wave induces a distinctive particle motion that must be measured

by the sensors of the seismic surveillance system. Each wave travels

with some average velocity and may be attenuated and dispersed along

its path. These and other considerations lead to the conclusion that

the signal received by a geophone from a particular seismic event will

be a composite of different wave types that have traveled along several

propagation paths. Consequently, the signal can be expected to have

a very complicated and, largely, unpredictable character.

While the form of a signal must be regarded as unpredictable,

some general characteristics can be assumed. For an impulsive source

(e.g., an artillery recoil or a shell blast), the wave duration will be

relatively brief, lasting for at most a few seconds so that a broad band

signal is received. Geophysical considerations imply that detectable

power is restricted to frequencies ranging from a few hertz to 100 hertz.

The upper limit of the frequency band generally diminishes as the dis-

tance from the source to the sensor increases. The short-time duration

of the signals induced by impulse-like sources suggests the need for

time-domain rather than frequency-domain processing.

Other target sources can induce narrowband signals. For example,

truck or tank motion imparts a persistent input to the earth that one

would expect to have a narrowband characterization. For narrowband

signals, frequency-domain processing is appropriate. These observa-

tions indicate that care must be taken in the signal processing to recog-

nize the type of signal that is sought and to apply appropriate processing

algorithms. In subsequent discussion, both wideband and narrowband

processing algorithms shall be discussed.

The basic function of the surveillance system is to detect a

signal, whether it is narrowband or wideband. Because the signal-to-

noise ratio (i.e.. SNR) can be expected to be small, the detection

~0
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problem is difficult. A second important function of the system is to

determine the direction from which the detected signal emanates. The

dctection and direction-finding requirements imply that an array of

se:isors should be deployed. Because of the time-varying character of

the noise, adaptive array processing methods should be employed to

achieve the system objective.-. There may be several sources of coher-

ent energy during any detection interval. Therefore, the directional

noise cancelling capabilities of an adaptive array must be employed and

should be particularly useful. Further, the data from an array can be

used to estimate the average velocity of a detected signal as it passes

the array location. The velocity estimates can be used, for example, as

one feature for establishing the type of wave. The sun'veillance system,

also, should provide information regarding the location of the source of

a detected signal. This requirement implies the utilization of multiple

arrays. By processing the outputs from more than one array, localiza-

tion and tracking information can be deduced.

Mathematical models that are useful for developing signal process-

ing algorithms are introduced in Part II. Basic models and the general

problems are defined in Section II.l. Some fundamental aspects of array

processing are discussed in Section 11.2. In particular, the array pattern

is defined and discussed as it provides a basic tool for evaluating the

performance of a particular array configuration. The array processing

problem is described in Section II.3 and the concept of array directivity

is introduced. The conditions for arrays having maximal directivity are

presented and discussed. Then, a statistical formulation of the optimal

array processing problem is defined and a general solution is described

in Section II.4. Additional aspects of array processing are introduced

in this section also. Adaptive arrays are discussed; optimal detectors

are introduced; and narrowband and broadband signals are considered.

The salient features of the seismic signal processing problem,

discussed in Parts I and II, are summarized in Part III. General algo-

rithms that are suitable for establishing the feasibility of the system

6 ORINCON
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from experimental and/or simulated data are presented in Part III.

One can proceed directly from this Introduction to Part III to avoid

the lengthier discussions ot the physical character of the problem

and the major signal processing concerns. Emphasis in Part III is

placed on the presentation of the general computations that must be

accomplished to obtain the best performance of the signal processor.

In addition, recommendations are provided for directions that should

be taken for the detailed development of the signal processor.

IL
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PART I

BASIC PHYSICAL CONSIDERATIONS

ABSTRACT

Before defining algorithms that can be used in a seismic surveil-

lance system for detection, classification, localiza tion, and tracking of

relevant objects and events, it is necessary to examine the character

of the signals received by the sensors in order to assess the signal

processing requirements. The fundamental properties concerning the

propagation of seismic energy are reviewed in this section. The dis-

cussion shall focus upon those aspects that are most germane to the

development of effective signal processing algorithms. More detailed

expositions are provided, for example, in the b.ooks by Dobrin [I],

Grant and West f2j, Parasnis [31, Telford, et. al. [41, and Aki and

Richards [51. This presentation draws heavily from these references.

8
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1.1 General Description of the Sensors

The seismic energy transmitted within the earth by a specific

source is detected by a geophone. The output of this sensor gener-

ally can be regarded as being proportional to the velocity of the motion

of the earth at the geophone in the direction of its sensitive axis.

The natural frequency of a geophone is typically less than

10 Hz and may be as low as 1 or 2 Hz. The instruments exhibit

a flat amplitude response and linear phase for frequencies between

the natural frequency and, possibly, several hundred Hertz. The

range of possible frequencies in each type of seismic wave is dis-

cussed below. It shall be assumed that the geophones are sensitive

to the range of potential frequencies that may be encountered.

Motions in both horizontal and vertical directions are possible

and can provide useful information. Consequently, three geophones

can be mounted together to form a three-axis geophone. Typically,

the sensitive axes are aligned to be orthogonal to one another. Then,

the three-axis geophone is placed on or near the surface of the

earth with one geophone oriented vertically and with the two

remaining geophones located in the horizontal plane. In the subse-

quent discussion, reference will be made to particle motions in the

horizontal (i.e. , X and Y directions) and vertical (i.e. . Z direction)

directions in implicit reference to this assumed orientation.

The signal received by a geophone generally can be expected

to be small relative to the noise. To enhance the signal, arrays of

geophones are formed whose outputs, when combined in an appro-

priate manner, produce a greater SNR in the composite signal than

in the elementary signal obtained from a single sensor. The array

configuration can be defined in a variety of ways. Questions of this

nature are an integral part of the design of the signal processor

and will be considered later in the discussion.

9 O VV -1- RINCON



It is also natural to consider more than one array. In other

words, it is desirable to consider the placement of arrays at widely

separated locations. The outputs of each array can provide a sig-

nificantly different view of a source to assist not only with detection

but with localization and tracking. Because of the existence of

arrays of sensors, the spatial characteristics -.f the propagation of

seismic energy must be considered. However, the discussion of the

signal processing problem presented in this report is restricted to a

single array. Multi-array processing, while an important topic, is

beyond the scope of the current effort.

10 'AVAVAI.IAvA. ORINCON



1.2 Basic Modeling Assumptions

The mathematical analysis of the propagation of seismic energy

begins by considering an idealized model of the earth that can be used

to obtain fund .. insights. Then, the effect of deviations from

the ideal can be considered to obtain an understanding of the propa-

gation for more realistic models. Fundamental to these analyses is

the assumption that the earth is an elastic medium. Consequently,

one i! concerned primarily with the nature of elastic-wave propa-

gatior. This assumption imposes a linear character upon the channel

characterization that is important from the point-of-view of the

signal processor.

The propagation of seismic energy occurs through particle

deformations that travel through the earth at velocities that are

determined by the elastic properties and densities of material. The

deformations are analyzed in terms of stress and strain (i.e., the

forces that cause the deformations). The analysis leads to the devel-

opment of the wave equation as the descriptor of the particle motion.

The elastic nature of the material provides the conclusion that

there are two basic types of waves that must be considered,

compressional waves and shear waves. Generally referred to as

body waves, the propagation of these waves must be investigated

to establish the manner in which the seismic energy is absorbed

and attenuated by the material.

Wave propagation is studied by assuming an idealized earth

composed of horizontal layers of materials with radically different

elastic properties. The interface between layers is assumed to be

described by a discontinuous change in the elastic properties.

Within a layer, it is commonly assumed that the material is homo-

geneous and isotropic. With this model, the propagation paths for

the body waves can be analyzed in terms of their reflection and

refraction characteristics at the interface boundaries.

11 AORINCON
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In addition to the compressional and shear waves, a Ravleigh

wave travels along the free surface of the earth. As discussed

below, the Rayleigh wave is, generally, the strongest wave gener-

ated by a compressional source. The layering of the earth can

permit the existence of another surface wave, the Love wave. The Love

wave is observed when a low-velocity layer overlays a higher-speed

layer. Information regarding the surface or weathered layer can be

obtained from the Love wave.

Deviations from the idealized model can complicate the

analysis in a significant fashion. Imperfectly elastic, non-isotropic,

or non-homogeneous materials must be considered. Layering generally

will not be perfectly horizontal. In fact, the interface may not be

represented as a discontinuous change in elastic properties of adja-

cent materials. Some of these aspects shall be discussed in Sec-

tion 1.4 as they complicate the models upon which the signal processor

is based.

12 AORINCON



1. 3 Basic Wave C harac teris tics

In the context of the idealized assumptions stated in Section

1.1. characteristics of the basic types of waves shall be stated for

future reference. In particular, the following characteristics shall

be considered:

a) Direction of particle motion: Each wave travels by

deforming the materials in particular ways. The geo-

phones detect the deformations along each of the sensitive

axes of the instruments. Consequently, it is important

to identify the direction of motion induced by a wave as

a potential classification method.

b) Speed of the wave front: Different waves travel with

different velocities. It is useful to establish ordering

relationships among the wave types.

c) Dispersive waves: The speed of a wave can vary with

frequency. As a result, the shape of the wave train

changes as the distance of travel increases thereby add-

ing a significant complication to the correlation of outputs

from different arrays.

d) Energy attenuation with range: The wave energy dimin-

ishes with distances of travel due to a variety of effects.

For example, the earth acts as a low pass filter whose

cutoff frequency diminishes with range. The manner and

magnitude of the attenuation helps to define the required

signal processing gain.

In this section. the four basic characteristics defined above

shall be described for compressional, shear, Rayleigh, and Love

waves. Emphasis is placed oni the characteristics that assist in

discriminating between wave types.

13 YYvAV AY.v ORINCON



1.3.1 Compressional Waves

Compressional waves are also referred to as P-waves, longi-

tudinal waves, or dilatational waves. Impulsive sources generate,

primarily, compressional waves. Shear waves, as discussed below,

are produced at interface boundaries.

a) Direction of particle motion: Particle motion for a com-

pressional wave is always along the direction of travel

of the wave. It consists of alternating condensations

and rarefactions of the material.

b) Speed of wave front: Ideally, the wave propagates

away from the source as an expanding sphere, at least

through the initial layer. The velocity of the wavefront

can be expressed as

VP + 4"/3
Vpp P

where k = bulk modulus

= shear modulus

c = density

The speed of a compressional wave varies, typically,

from 300 to 800 m/sec. in sand to 4,000 to 7,000 m/sec

in granite. One sees that a variation in speed of at

least one order of magnitude is possible depending upon

the type of material. The speed also depends upon the

depth of the material and upon its "lithology." Conse-

quently, the speed can be very different within materials

that are classified as the same. It is important to note

that this variation implies that it is very unlikely that

propagation speed can be regarded as known for a

deployed surveillance system unless circumstances permit

a thorough calibration.

14 -ORINCON



c) Dispersive: Compressional waves are generally regarded

as nondispersive. Thus. the speed of the wave front

does not change significantly with frequency.

d) Energy attenuation with range: As a spherical wave

propagates from a source, the energy of the wave is

distributed over the area of the sphere. As the radius

increases, the energy/unit area must diminish as the

square of the radius. Thus, the amplitude of the wave

(i.e.. the square-root of the energy) is inversely pro-

portional to its distance from the source.

In addition to the attentuation of the wave energy due

to geometrical spreading, losses also result from absorp-

tion of energy by the transmission medium. Absorption

losses are described approximately by an exponential

function

A = A exp(-ar)
0

where A represents the amplitude for a given wavelength,

a is the absorption coefficient, and r is the distance to

the source. The absorption coefficient is roughly pro-

portional to frequency. Thus, the absorption is greater

for higher frequencies and results in a low-pass character-

istic for the earth. A reasonable value might be 0.25

dB /wavelength.

To indicate the relative effects of spreading and absorp-

tion, Telford, et al. [4] provide a table (p. 242) that

indicates energy losses as a function of distance and

frequency for a specific example. This table is repro-

duced on the following page (Table 1.3-1).
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The attenuation with frequency due to absorption is severe.

Also. the absorption loss as distance increases dominates

the spreading loss except at very low frequencies. It

appears that the energy from a compressional wave will

be extremely small at the ranges anticipated for the seismic

surveillance system (i.e., 10 to 20 kin).

There are also energy losses caused by partitioning of

the wave front at interface boundaries. The description

of the partitioning depends upon the elastic properties

of the adjoining materials and upon the angle of incidence

of the wave upon the interface. As indicated in Refer-

ence [41 (e.g., Section 4.2.2m), the description of this

energy loss is very complicated but substantial losses

can result.

1.3.2 Shear Waves

The second major type of body wave is the shear wave. These

waves are also referred to as transverse, rotational, or S-waves.

a) Direction of particle motion: The particle motions for a

shear wave are orthogonal to the direction of travel of

the wave. Whereas particle motion for a compressional

wave is one-dimensional, there are two degrees of free-

dom for the particle motions of a shear wave. The motion

can be polarized to be contained in a plane. The motions

can be resolved into components parallel to and perpendi-

cular to the surface of the earth. The components are

referred to as SH and SV waves.

b) Spced of the wave front: The velocity of a shear wave

front is given by

V
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Comparing this speed with the speed of a compressional

wavefront as given earlier, it follows that

VP .!k 4

Clearly, a shear wave travels more slowly than a com-

pressional wave. For most rock formations, the ratio is

bounded as

1.5 < Vp /VS < 2.0

c) DisDersive: Shear waves are generally regarded as non-

dispersive.

d) Energv attenuation with range: The remarks given for

compressional waves apply as well for shear waves.

1.3.3 Rayleigh Waves

Rayleigh waves travel along the free surface of the earth.

In many situations the Rayleigh wave is the strongest wave gener-

ated by the source. Consequently, this wave should play an important

role for seismic surveillance.

a) Direction of oarticle motion: Particle motion of a Rayleigh

wave is always in the vertical direction. Furthermore,

the motion is elliptical and retrograde (i.e., counterclock-

wise) with respect to the direction of motion. Thus a

Rayleigh wave will be sensed by both a horizontal and

a vertical geophone. Because of the retrograde motion,

a phase difference of 900 will exist between the two geo-

phones. The sign of the difference depends upon the

orientation of the horizontal geophone relative to the

direction of travel of the wave.

18 ORINCON
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b) Speed of wave front: The speed of a Rayleigh wave is

less than for either type of body wave. It is approxi-

mately equal to nine-tenths of the speed of a shear

wave.

c) DisD ) Generally, the Rayleigh-wave velocity varies

with frt -ic y (i.e., it is dispersive). For wavelengths

that are small compared with the thickness of the surface

layer, the speed is approximately nine-tenths of the

shear velocity in the surface layer. For long wave-

lengths, the speed is nine-tenths of ths shear velocity

in the substratum. The velocity for medium wavelengths

is intermediate to the velocities at short and long

wavelengths.

d) Energy attenuation with range: The Rayleigh wave is

the strongest wave generated by a compressional source

and its energy attenuates much less rapidly than for

compressional or shear waves. Because of its essentially

two-dimensional nature, the geometrical attenuation of the

amplitude is proportional to the square-root of the dis-

tance, r , rather than r as for P- and S-waves. The

Rayleigh wave experiences absorption losses, particularly

at higher frequencies. Generally, the Rayleigh wave

is observed at a distance from the source as a low fre-

quency motion (e.g., less than 10 Hz). The time duration

of this dispersive wave is long relative to compressional

and shear waves. Note, also, that a Rayleigh wave can

suffer no partitioning losses since it is a surface wave.

The Rayleigh wave may be the principal energy source

for a seismic surveillance system. However, it is the

most slowly moving wave so its arrival should be pre-

saged by earlier arrivals of other types of waves. The

characteristic motion of the Ravleich wave should oermit

19 / - 1 V ORINCON
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its classification by the signal processor. The dis-

persive nature of the wav- may hinder the use of corre-

lation techniques for measurements obtained from differ-

arrays.

1.3.4 Love Waves

The layering of the earth can induce a wave-guide effect

when a low-speed material overlays a higher-speed substratum. A

surface wave called a Love wave is generated.

a) Direction of oarticle motion: Particle motion for a Love

wave is contained entirely in the horizontal plane and

is orthogonal to the direction of travel of the wave.

Thus, a vertical geophone will not sense the passage of

a Love wave.

b) SpDeed of wave front: The speed of a Love wave is

intermediate between the shear wave velocity at the sur-

face and the shear wave velocity in the substrata. Gen-

erally, the Love wave will have a greater velocity than

a Rayleigh wave so the Love wave will arrive at a geo-

phone before the Rayleigh wave. However, the energy

of the Love wave is usually substantially less than for

a Rayleigh wave.

c) Dispersive: Love waves are dispersive with greater

velocity at longer wavelengths.

d) Energy attenuation with rance: The Love wave can be

regarded as an SH wave (i.e., a shear wave polarized

to the horizontal plane) and suffers attenuation in the

manner described in Section 1.3.2.
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1.4 PrOPagation Paths

Seismic energy can be propagated from a source to a sensor

along a number of different paths. Three basic propagation paths

(i.e., direct, reflections, and refractions) are considered in this

section. Single and multiple reflections are discussed as are the

refractions that generate head waves.

1.4.1 Direct Waves

A primary propagation path for seismic energy is the direct

wave. Direct waves are transmitted in the surface laver of the

earth and do not interact with any interface boundaries between

layers. The Rayleigh and Love waves described in Section 1.3 exist

only as direct waves. However, compressional and shear waves

can also travel directly from the source to the sensor. Among the

four direct waves, the compressional wave will arrive at the sensor

first with the shear and Love waves arriving next. The Rayleigh

wave should be the last to arrive. Since it has the greatest energy.

it generally is the easiest to detect.

The direct compressional and the Love waves are sensed

only by the horizontal geophones whereas the direct shear, if it

exists, and the Rayleigh waves can also be detected by the vertical

geophone. With two horizontal geophones, the direction of arrival of

a wave can be determined, conceptually at least. For example, a com-

pressional wave detected on one horizontal geophone but not the other

obviously defines the direction of arrival. Arrival at a 450 angle is her-

alded by the simultaneous arrival of the same signal at each geophone.

For a direct wave traveling with velocity V, the travel time

tD from source to sensor is

x
tD V

where x represents the distance from the source to the sensor.
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The time-of-arrival of the same wave at different sensors is seen

to be a linear function of the distance x. As is discussed below

in Section 1.4.2. this linear characteristic across array elements can

provide a mechanism for discriminating between direct and indirect

WA ves.

1.4.2 Reflected Waves

Consider the following diagram and suppose that the seismic

source is located at S and that geophones are located at R 1 and R 2 .

R 2 S R I

x k EARTH' S
ISURFACE

h

12 1i 3 LAYER
INTERFACE

The arrows define a ray path for the wave which encounters a

layer interface boundary at 1 and 12. Some of the energy is

reflected back into the surface layer. Although not indicated, some

of the energy is refracted into the second layer. The energy par-

titioning depends upon the angle of incidence and upon the proper-

ties of the layers.

The angle of reflection for the wave equals the angle of

incidence. If the wave velocity is V, the layer thickness is h,

and the source-sensor separation distance is x, the travel time

tR must satisfy

xt+ (2h)
tR V
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or

V 2tR~ 2
R - 1.

4h 4h 2

Thus. the travel time is described by a hyperbola and the difference

in arrival times at different sensors is obtained from this quadratic

relationship.

The arrival times across an array for reflected waves exhibit

a markedly different characteristic than do the arrivals of direct

waves. Furthermore, a direct wave of a particular type must arrive

at the sensor sooner than for this reflected (i.e., they are equal

only for h = 0). The partitioning of energy at the interface boundary

causes the reflected wave to contain less energy than the direct

wave. This reduction is accentuated by the fact that the reflected

wave travels a greater distance in the same layer than the direct

wave.

Because of the reflection angle, a compressional wave gener-

ally will be detected on the vertical as well as the horizontal geo-

phones. In addition, a compressional wave is partitioned at a

boundary into both reflected compressional and shear waves. The

reflected shear wave will arrive later than the compressional wave

and, if it has sufficient energy, be detected by both horizontal

and vertical geophones.

The reflection phenomena can be repeated at the boundaries

of lower layers with the refracted waves that enter each subsequent

layer. Thus, the signals arriving at the sensor may be the result

of one or several reflections. The difference in travel times may

cause an overlapping of two signals leading to the apparent length-

ening of a single signal or may lead to the appearance of two dis-

joint signals. The time separation of different reflections of the

same signal depends upon the width and character of the layers.
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These characteristics generall, must be unknown for a seismic sur-

veillance system. The energy contained in multiply reflected waves

often will be considerably less than for direct or singly reflected

waves because of the partitioning and travel distances.

1.4. 3 Rtfracted Waves

Seismic energv can be either reflected or refracted at the

boundary between layers having different elastic properties. Let-

ting V1 and V2 represent the wave velocity in two adjacent layers,

the angle of refraction e 2 is determined using Snell's law. In

particular, it is known that

sine I  sin 2

V 1  V 2

When the underlying layer permits a greater wave velocity

(i.e., V2 > V1 ), the refracted wave can travel along the interface

at the velocity V This occurs when the angle of incidence

satisfies

sin c = 1

thereby causing sine2 = 1 (or e2 = 900). The refracted wave that

is generated at this critical angle e c is referred to as a head wave.1
From Huygen's principle, the head wave causes energy to be propa-

gated in the overlying layer and to return to the surface. This

situation is depicted in the following figure.
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INTERFACE

The head wave is significant since the higher velocity V
2

can permit this energy to arrive at the geophone earlier than any

direct wave. From the diagram, it should be apparent that head

waves are not possible in the interval SN. For seismic surveillance,

the separation distance x between the source and the sensor should

be sufficiently large that SR > SN and head waves may be a signifi-

cant carrier of energy for the geophones.

Travel time tH for a head wave traveling a horizontal dis-

tance x can be expressed as

X

t H  = -- + tl
H V 2 1

where

= 2h cos e1 c

The parameter h represents the thickness of the layer and e c,
1

V 2 have been defined above. The travel time is seen to be a linear

function of the separation distance x with slope 1/V 2 and intercept

time t1I

To illustrate the relation between arrival times for different

propagation paths of the same wave, consider the following diagram.
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DIRECT WAVE

SLOPE = 1/V1

REFLECTED WAVE SLOPE i/V2

2h
V 1 HEDWV

x I

X ' X C

For separation distances less than x', no head waves are possible.

Thus, the direct wave provides the initial energy received by the

sensors at distances x < x' and the signal is augmented at a later

time by the arrival of the reflected energy. For sensors with sepa-

ration distances between x' and x , the direct wave continues toc
be the first arrival with the head and reflected waves arriving

subsequently. The head wave always precedes the reflected wave.

For sensors beyond the crossover distance x , the head wave

arrives first and is followed by the direct and the reflected waves.

At the greater distances, the reflected wave assumes a linear char-

acteristic (i.e., asymptotically) and must also arrive after the

direct wave.

The discussion can be extended to consider the effects of

multiple layers. At each interface, the incident wave is partitioned

into reflections and refractions. Head waves are possible at every

boundary at which a lower velocity layer overlays a higher velocity

laver. The refracted waves generated at the first laver are parti-

tioned at the next layer. Thus, the mechanism can reneat as lonc

as energy remains or until the layering ceases.
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1.5 Error Sources

The conclusions described above are obtained through the

analysis of an idealized model of the earth. Realistically, many devi-

ations from the modeling assumptions are possible and their effects

must be considered in any signal processing design. In this section,

some major error sources are reviewed to provide an indication of

their significance and of possible compensation mechanisms.

1.5.1 The Low Velocity Layer (LVL)

Generally, the surface layer of the earth exhibits propaga-

tion velocities that are comparable or less than the velocities in

water (i.e., 250 m/sec to 1000 m/sec). Within this low velocity

layer, the propagation of seismic energy is characterized by several

troublesome properties. First, the velocity is highly variable in

this layer and this variability can affect the travel times. Also,

the width of the layer can change substantially between the source

and the sensor (e.g., elevation changes). In addition, absorption

of seismic energy can be quite high thereby greatly reducing the

effective propagation range. The absorption can effectively limit

the reflected energy to be restricted to nearly vertical paths.

Since the layer below the LVL often has radically different elastic

properties, the interface will act as a strong reflector. Then,

the refracted energy is less than at other interfaces thereby

reducing the energy in the head wave or in multiple reflections.

The energy source for seismic surveillance generally is

located on the earth's surface (or flying above it). Thus, the

effects of the LVL must be considered and often will be the pri-

mary physical factor limiting the effective range of the system.

Whenever possible, it will be desirable to comnensate or to correct

for the influences of the LVL.
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D .2 Dipin g Lay, ers

The assumptions that the layers of the earth are horizontal is

an idealization often violated in the field. Travel time characteristics

for reflections from a dipping subsurface are similar to but different

from the result stated in Section 1.4.2. In particular, the travel time

is still a hyperbolic (i.e., quadratic) function of the separation

distance x, but the axis of symmetry is no longer given by the

time axis. That is, the travel time is different for geophones

located symmetrically about the source. This effect must be recog-

nized if reflected or refracted waves are used in a localization

scheme.

1. 5. , Diffractions

Whenever a wave encounters an irregularity whose radius of

curvature is less than the wave length, the energy is diffracted

accordinga to Huygen's principle. Thus, energy is propagated in

all directions from the irregularity. A diffracted wave will first

reach the surface at a point directly above the irregularity. The

travel times increase with the distance from this point in a manner

that makes it indistinguishable from a reflection.

Consider the following diagram:

S I  Ri - 52  R 2b~R,

X I k EARTH' S
SURFACE

LAYER i___ _ DIFFRACTION

INTERFACE SOURCE
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The travel time for the reflected wave, as indicated earlier, is

2
1 2 4h 2 )  2h x

t R  = - V + 4Vh

For the diffracted wave with S 2 directly above the irregularity,

the travel time is

t_ hF F 1 2 )2 2 h +

DIFF V [h+(x2h 2Vh

Thus, the diffracted wave appears the same as the reflected wave

but the apparent depth of the reflector differs by a factor of two.

The LVL, dipping layers, and diffraction irregularities

represent three major sources of potential errors for the signal

processor but many others are possible. Certainly, inelasticities,

nonhomogeneities, and/or anisotropies will introduce changes in the

propagation characteristics that have been described. However,

even the consideration of these three error sources serves to

emphasize the difficulties inherent in detecting events and deter-

mining source locations from the highly complex signals that arrive

at the sensors. Fundamentally, the signal processor is concerned

with detecting events characterized by low signal-to-noise ratios

and with distinguishing between direct waves, reflected waves,

refracted waves, diffracted waves, and multiples.

1.5.4 Noise Sources

The noise background against which a source signal must

be detected is itself complex. One can regard the noise as being

either incoherent or coherent. Coherent noise is defined to repre-

sent energy that has characteristics that will be recognizably
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similar in several elements of the sensor array. In many instances,

this energy may be generated by a specific source much as the

energy for the signal source. But in focusing upon a particular

source, energy from other potential sources becomes interference

and is a nuisance that must be eliminated. Noise which appears

dissimilar in different sensors is defined as incoherent and conforms

with the more standard description of random noise.

The effects of incoherent noise in different sensors can be

reduced simply by' adding sensor outputs. The cancellation effect

is proportional to the square-root of the number N of sensors, q_11N.

The attenuation of coherent noise can be accomplished by methods

which depend either upon knowledge of its characteristics (i.e. ,

filtering) or upon the directivity of the source (i.e. , beam forming) .

Suppression of both coherent and incoherent noise is a basic objec-

tive of the signal processing and shall be discussed later as the

signal processing algorithmns are defined.
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1.6 Some Basic Modeling Considerations

Based on the preceding discussion, it is useful to attempt to

formulate modeling concepts that can serve to provide direction to

the development of appropriate signal processing algorithms. These

general, qualitative remarks are appropriate before introducing any

detailed mathematical considerations.

Suppose the source is basically impulsive (e.g., a shell blast

or an artillery recoil). Then, the signal introduced into the earth

should have a short duration with the largest amplitudes appearing

at the start of the signal and decaying rapidly to zero thereafter.

Thus, the frequency content of the input signal is rich, and a rela-

tivelv broadband signal should be expected. From the preceding

discussion, it is unreasonable to expect that the signal received at

the sensor will have the same shape or character as the original

signal. The signal distortion results for a variety of reasons.

The apparent time duration of a received signal can be rela-

tively long because of the variety of propagation modes and paths

that are possible. The concatenation of direct, reflected, and

refracted waves of different types induces a total signal duration

greatly in excess of the primary signal. Further, the time dura-

tion of the low-frequency Rayleigh wave is itself lengthy. Thus,

the observed signal can appear as a persistent signal that is not

consistent with the assumed impulsive character of the source.

For the remainder of the discussion, the following notation is

introduced. Consider the signal received by a single geophone and

denote this signal as s..(t). The subscript i (i=1,2,3) is used to1]

denote the specific component of the three-dimensional geophone.

For convention, we shall assume that i = 3 denotes the vertical geo-

phone. The subscript j (j = ,2 . N) denotes the th element in an

array composed of N three-dimensional geophones. The symbol s (t)th-]
shall be used to denote the three-dimensional signal at the jth element.
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The primary signal will be regarded as the signal arriving at the
geophone as a result of a single propagation mode and associated

with a single propagation path. For example, the primary signal
R

for a Rayleigh wave could be denoted as s.. (t) and is characterized
R th i thby its arrival time t.. at the j array element and the i geophone.• 11

Every primary signal is assumed to be identically zero prior to

arrival time.

The sianal that is observed through the output of a specific

sensor reflects the arrival of several primarv signals. Because of

the basic assumptions regarding the elasticity of the earth, the pri-

mary sianals can be assumed to combine linearly (i.e., they are

additive). Moreover, a primary signal s (t) is obtained as a linearii
convolution of the original source signal with the impulse response

(i.e. , a Green's function) of the earth. The impulse response will

depend upon the propagation path, propagation mode, and distance

for the reasons given above. For example, the energy in the signal

is attenuated due to spreading, absorption, and partitioning effects.

Secondly, the earth has a low pass filtering effect. Consequently,

the broadband nature of the original signal is reduced with the filter-

ing effect increasing as the source/sensor separation increases. Even

with the reduction in the frequency bandwidth of the signal, the effec-

tive time duration of the primary signal remains relatively brief (i.e.

a few seconds). Finally, the dispersive nature of some waves can

cause fundamental changes in the character of the wave form.

The signal received along each axis of a three-dimensional

geophone represents the projection of the direction of the particle

motion upon the geophone axis. The signal s t) can be defined in-J
terms of the direction of arrival of the signal. One is concerned,

principally, with the direction of arrival as defined in the horizontal

plane (i.e. , the x-y plane as defined by the horizontal geophones).

It is this angle that defines the direction from the geophone to the

source and provides the basic mechanism for localization. The
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deflection of the arrival direction below the horizontal (i.e., the signal

measured by the vertical geophone) provides information that is use-

ful for classifying the type of wave that is received at a particular

time t...
13

To conclude the discussion, it is useful to consider the basic

information to be produced by the signal processor. In essence. the

processing must provide the type of information that is typically

displayed in a space-time plot. For example, the analysis of seismic

records is aided by the simultaneous plotting of the outputs of

several geophones as a function of elapsed time and distance from

the sensor to the source. The amplitude of the output can be

reflected by the darkness of the plot at each point. The following

figure is taken from Grant and West [2] and provides a graphical

illustration of some of the ideas that have been introduced. Note

that the origin of the plot represents the location of an impulsive

source (i.e., a shot).

The linear characteristic of the direct wave and other more

slowly moving surface waves is seen clearly. The appearance of

a head wave with its linear characteristic and crossover point can

be seen. Also, the hyperbolic characteristic of a reflected wave is

shown in this figure. In addition, a continuously refracted wave

is observed.

Consideration of this figure should serve to re-emphasize the

complexity of the seismic signals that are obtained from an array of

geophones. The arrival times provide the information of basic

interest for the analysis although the shortness of the signal appears

to permit the separation of different propagation modes and paths.

The availability of spatial measurements (i.e.. the existence of arrays)

obviously is mandatory for any localization. We note also that the

data presented in this figure have beu, subjected to considerable

processing and do not represent the "raw" data obtained from

A" A
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the sensors. Ill Concept. the signal processor must be capable of

producing the type of information implicit in this diagram. Clearly.

the existence of a Source signal is apparent and the location of

the source has been identified.
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PART II

GENERAL SIGNAL PROCESSING CONSIDERATIONS

ABSTRACT

The definition of signal processing algorithms must be motivated

through appropriate assumptions regarding the signal and the output

noise processes. Fundamental properties of the signals have been dis-

cussed in Part 1. As indicated there, the signals must be expected

to have an unknown form that results from the many and complicated

propagation paths of the energy produced by the target source. Thus,

the signal processing algorithms must be developed using minimal assump-

tions regarding the character of the signals and of the output noise.

Reasonable modeling assumptions are introduced in this section. These

assumptions are used to develop detection and estimation algorithms that

are compatible and consistent with the environment in which a seismic

surveillance system must operate. In developing these algorithms,

attention is directed to many concerns that are fundamentally important

to achieve the most rapidly convergent adaptive array processing algo-

rithms.

0"*
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ii. 1 Mathematical Models and Problem Definitions

II. 1. 1 The General Problem

To provide a framework for the discussion, assume that a rec-

tangular coordinate system is defined with prescribed origin and axes

x-east, y-north, and z-vertical to form a right-handed system. The

location of each sensor is defined in terms of this system. That is,

the position ri of the ith sensor in the array (i = 1,2.... N) is given
as

r. x.i + yiiy + zii . (2.1)

Throughout, it is assumed that there are N geophones, possibly 3-axis,

located essentially on the surface of the earth. The origin is defined

to be located on the earth's surface with the consequence that z. - 0

for all i. The components x i, yi are defined by a distance ri and an

azimuth angle 6., as discussed below.1

For the array dimensions and propagation distances that are

reasonable for the seismic surveillance system, the signals measured

at each sensor can be assumed to be generated by a plane wave

propagating with speed c across the array in a direction B, where

i + yi + 6 i 2 + 82 + a2 1. (2.2)
_ x -y z-z x y z

The vector a_ represents the normal to the wavefront as it passes the

array. The form of the signal received by the array elements cannot

be assumed to be known. In comparable elements (e.g., the vertical

seismometcrs), it is reasonable to assume that the basic character of

the signal is similar, differences being caused primarily by propagation

delays caused by geometric effects. The form of the signal may be

different along the sensitive axes of a 3-axis geophone for the reasons

discussed in Part I of this report and reconsidered below.
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To simplify the notation, consider an array composed entirely

of vertical seismometers. Because of the common orientation of the

sensors, the signal, denoted by s(t), that would be received at the

origin of the coordinate system is also received at each seismometer

at a suitably delayed time. Specifically, the received signal at the
.th
1 sensor located at r can be represented as

s.(t) s t - i = 1,2,...,N. (2.3)

By referring to (2.3), essential aspects of the problem can be identi-

fied. From the received signal one wants to determine the direction

3 and the wave speed c. Both are unknown and only the sensor loca-

tion r is known. Note that in a practical system there generally will

be uncertainty regarding the exact location of the sensor.

The sensor output will differ from the signal s.(t) because of
1

noise effects n. (t). The noise can be regarded as the composite of

two disparate processes. There can be coherent or directional noise

n Ct) that emanates from some point source of seismic energy. Because
1of its directional character, it is similar to the signal itself and can be

regarded as being generated by a plane wave having some speed and

direction. Secondly, there will be incoherent (i.e., omnidirectional)

noise nR t) that exists due to ambient conditions or sensor electronics.
This noise component generally will be described as a stationary random

process with zero mean. The sensor noise shall be assumed to be

statistically independent between sensors of the array unlike the

coherent noise. The mathematical assumptions imposed on the signal

and the coherent and incoherent noise will be discussed in the subse-

quent sections.
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To summarize, the i t h sensor output shall be denoted as z. (t)

and it is assumed to be the sum of the signal and poise.

z.(t) = s.(t) + n.(t) (2.4)
1 1 1

where

n(t) nC(t) + nR (t). (2.5)

c RImplicitly, any term s., n. , n. can be absent in the output signal.1 1 1

This realization provides the basis for defining the problems that must

be addressed in developing the signal processor.

Detection Problem

The signal si(t) might not be present in the sensor output zi(t)

during any time interval T 0 < t < T I . When the signal is impulse-like

(broadband), this will generally be the case. Thus, a time interval

(TI-T 0 ) must be considered in formulating the broadband detection

problem.

Estimation Problem

The signal is characterized by a direction 0 and a speed c that

is assumed to be common to the N sensor outputs when the signal is

present. By estimating 3, the direction of the source is established

within the accuracy of the estimate. The estimate of the wave speed

c provides a basis for identifying the type of wave that has passed the

array. Further, an estimate of the signal itself or of its spectral char-

acteristics provides some indication of the nature of the source.
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Signal Modeling Problem

For the mathematical analysis of the detection and estimation prob-

lems, mathematical models for the signal and coherent noise signals must

be defined. But it is unreasonable to define very precise models for the

signal because of the complicated nature of the propagation medium. Con-

sequently, it is desirable to impose the least rigid assumptions possible

about the signal model. Initially, we shall assume only that s. and n.C have
Fourier transforms and that n is a stationary random process with mean

zero and correlation function R ( ). Other structural assumptions aren

introduced below in establishing some specific results.

11.1.2 Signals Generated by Seismic Waves

Consider the relation between the signals received at a sensor and

the physical wave front that passes the sensor. Suppose that we consider

a three-axis seismometer with the seismometers mounted orthogonally with

a vertical seismometer oriented along the z-axis and two horizontal seismom-

eters aligned with the x and the y-axes of the rectangular coordinate system

defined earlier. The geometry is depicted below.

N

4 1/x
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The vector ii denotes the unit vector (i.e., b 1) defining

the normal to the incoming wave front. The angle defines the cone

angle measured from the z-axis. The angle is limited to the range

00 to 903 since waves approach the sensor through the earth. A surface

wave occurs for = 900 and a completely vertical wave occurs for

= 0' . The azimuth angle 0 is measured as positive counter clockwise

from the x-axis and 00 < 0 < 3600.

For this discussion, suppose that the sensors are aligned with

the x, y, and z axes, respectively. Any other orientation could be

considered but it only complicates the notation. Each sensor is omni-

directional relative to particle motions that project onto the direction

of the sensitive axis. For example, particle motions can be sensed by

the vertical seismometer regardless of the azimuth angle 0 as long as

there is some verticle particle motion induced by the passage of the

wave front.

Let us now consider the signals induced by the passage of P-waves,

S-waves, Rayleigh waves, and Love waves, respectively.

P-Waves

A compressional wave induces particle motions along the direction

of travel of the wave front. Suppose that a direct P-wave travels hori-

,y between the source and the sensor along the x-axis. Then, the

passage of the wave front is sensed only by the x-seismometer and not

by either the y-seismometer or by the vertical seismometer. Let the

particle motion be denoted by the signal s(t). In the absence of noise,

the output of the seismometer triad would be the vector signal s (t) =

(s(t), 0, 0). For an arbitrary P-wave, the direction of travel induces

output signals that represent the projection of B onto the coordinate

axes. In terms of q and ,, the noise-free output signal is given by

i4 ,
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/cos 0) sin

sp(t) = Sp(t) sin ') sin

Cos

= S (t) ,. (2. 6-P)

From (2. -P) it is apPLarent that th, outp1uts of a three-axis

seismometer can be regarded as providing a direct measurement of

the wave direction . There actually will be an ambiguity in the

azimuth angle of 180'. If the system is composed only of vertical

seismometers, then the output is s(t) cos P. Direct P-waves (i.e.,
= 90") are not sensed by the vertical seismometer.

S-Waves

The particle motions for a shear wave are orthogonal to the

direction of travel of the wave. Whereas particle motions for a com-

pressional wave correspond with the direction of travel, there are two

degrees of freedom for the motions induced by a shear wave. These

motions can be polarized to be contained in a plane. Then, the

motions can be resolved into motions parallel to and perpendicular to

the surface of the earth (i.e., the x-y plane).

In general, the motions induced by the passage of a shear

wave can be regarded as more complicated than the P-wave motions.

Often, the motions can be assumed to be polarized to the vertical

plane (or to the horizontal plane). Then, the direction of the particle

motions can be characterized by the unit vector y where the noise-free

output is

s 5 (t) = s (t) Y (2. 6-S)
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where y is orthogonal to _3

T
Y T = 0.

In addition, the assumption that the waves are polarized to the vertical

plane ensures that the normal to the plane defined by _ and y is ortho-

gonal to the z-axis. Using vector cross-product notation, we have the

condition that

(Y×S)T I = 0-- - -z

where 1 is the unit vector defining the z-axis.
-z

The two orthogonality conditions imply that 0 and 4 can be deter-

mined from y except for a 1800 ambiguity in 0. Consequently, the out-

puts of the seismometers provide a measurement of the wave direction $.

Note that a vertical seismometer will be sensitive to the passage of any

shear wave other than a vertical wave. The existence of a vertical

shear wave of interest for a seismic surveillance system is unlikely.

Thus, an array of vertical seismometers is sufficient if the major source

of energy is a shear wave. As indicated above, this type of an array

is insensitive to direct P-wavus. In many instances, the latter is more

likely to contain sufficient energy to be detected than a shear wave.

Rayleigh Waves

Particle motion of a Rayleigh wave is always contained in the

vertical plane. Furthermore, the motion is elliptical and retrograde

(i.e., counterclockwise) with respect to the direction of motion of the

wave. Thus, a Rayleigh wave will always be sensed by the horizontal

and by the vertical geophones. Because of the retrograde motion, a

phase difference of 90 '  will exist between the horizontal and the vertical

geophones. The sign of the phase difference determines the direction

of travel of the wave.
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Because of the two dimensional nature of the Rayleigh wave,

detection of a Rayleigh wave provides a direct measurement of the

direction of the source. The existence of a Rayleigh wave can be

established by observing a 900 phase difference in the outputs of the

horizontal and vertical geophones. The direction of the source is

determined from the sign of the phase difference.

Love Waves

Particle motion for a Love wave is contained entirely in the

horizontal plane and, being a shear wave, is orthogonal to the direc-

tion of wave motion. Thus, a vertical geophone will not sense the

passage of a Love wave. As discussed above for shear waves, detec-

tion of a Love wave implicitly provides a measurement of the direction

of the wave front except for the ambiguity of 1800. The wave motion

is characterized by the unit vector :L where

T
-IL 3 0

and

T S  0.

Clearly, 9 90" and 0 = 0 y 90 . Yr
The noise-free outputs of a three-axis seismometer are described

essentially by the time-varying scalar signal s(t) as modulated by func-

tions of the direction of the motion of the wave front. One could con-

sider the array processing problem in the context of a vector output

(i.e., the three-dimensional representation of the outputs of the three

orthogonally oriented seismometers) from each array element. This

formulation complicates the analysis and shall not be pursued here.

Instead, we shall restrict attention to an array of scalar elements

which, for the purpose of this discussion, are assumed to be vertical
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seismometers. The discussion can be extended to 3-axis geophones

without great difficulty by incorporating the considerations mentioned

above. Potentially, the amount of data is increased by a factor of

three for a 3-axis geophone system. As this is an important considera-

tion, it is desirable to consider in detail the performance gains that

may be obtained.

IA
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11.2 Some Array Processing Fundcamentals

A planar array processing problem shall be considered which has

the following general description. The N sensors of the array are
.thassumed to be located in the horizontal (i.e., x-y) plane with the i

T Tsensor located at the distance r. A r. (cos 0., sin 6., 0) from the-1 - 1 1 I

origin. The magnitude of the distance is r. and the angle 0. is meas-

ured counterclockwise from the x-axis. The unit vector 3 defines the

direction of motion of the incoming wave front that represents the

signal. As indicated above, this vector can be defined in terms of the

cone angle 0, 0 < p < 900, and the azimuth angle , 0 < 0 < 3600.

cos ) sin \

= sin 0 sinoj ; 8 T 3 = 1.

cos ' /

The speed of the wavefront is represented by c.

For the purposes of discussion, it is useful to reference the

output of each sensor to the time at which the wave passes the origin

of the coordinate frame. The signal that appears at the ith sensor

shall be regarded as the replica of the signal that would have been

sensed at the origin except for a time shift T. given by

B3 r.

T. = - - (2.7)
1 c

th
Thus, the noise-free output of the i sensor can be written as

s.(t) = s(t + Ti)' i 1,2,... ,N (2.8)

where s(t) represents the time history of the signal appearing at

the origin.
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By introducing the time shifts T. for each i, i = 1,2. N the
signals obtained from each sensor can be time-aligned since

s.(t-r.) = s(t), i = 1, 2.....N.
1 1

Then, by adding the time-delayed versions of the output, the signal

is enhanced

N N

s . (t- i) = s(t) = Ns(t).

i=1 i=1

This simple observation forms the basis for array processing.

For seismic surveillance, the direction and speed of the incoming

wave are unknown. Then, one can select a value for 3 and for c

in order to define the time-delay -i , i = 1,2,... N. By delaying and

summing the sensor outputs, a "beam" is formed in the selected direc-

tion and tests can be defined to detect the existence or absence of a

signal emanating from the direction i. This concept forms the basis,

either implicitly or explicitly, for any array processing scheme that is

used for seismic surveillance. In the following paragraphs, the implica-

tions of this simple model are explored further in an effort to motivate

the algorithmic approach stated in Part III.

The output zi(t) of the i t h sensor is described by (2.4).

Suppose that estimates , c of the signal direction and the wave

speed are selected and used to define delays T.. Summing the delayed

outputs, one obtains an estimate of the signal wave from

N
s(t) A z t-T i

N N
= Z sit i Z ni(t- d

)  (2.9)

i=l iIl

" 47 , ORINCON



Clearly, if T. = i. the estimator assumes the form

N

s(t) s(t) + ni(t-)r.
Nr 1i=l

The coherent component of n. t) is assumed to emanate from a different1

direction than s(t) with the result that the n.(t) add with different phases1

and tend to cancel. The summation of the N sensor outputs tends to

reduce the influence of the incoherent noise. Thus, the signal s(t)

should be enhanced relative td the noise. On the other hand, when

T. T. the signals also tend to cancel with the result that the signalI

estimate should indicate an absence of signal power relative to the noise.

II.2.1 Response of a Beam-formed Array

The preceding discussion has shown that the signal is enhanced

when its direction of arrival and wave speed correspond to the estimates

of B and c. Consider the response of the beam-formed array to signals

that arrive from an arbitrary direction 5 with a speed c. To simplify this

analysis, only directional signals shall be considered and the response of

the array to these signals shall be investigated.

Suppose that the sensor outputs s.(t) are delayed by T. but a
Si

wave comes from a direction 1_ with speed c. Thus, for signal alignment,

the outputs would have to be delayed by Ti" In this case

N

s(t) = si(t-T

i=l1

N

s(t + T. - 1.) (2. 10)I I

i=l

where
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r. T r.+-1 - -1T. - T. --- r
1 1 C

T
A-vJ r..
.... -1

To facilitate the analysis, suppose that the signal has a Fourier

transform so that

sMt) f ~- S(,) ej t d,

where S(w) represents the Fourier transform of s(t). For a time-delayed

signal, this is written as

oo j J( t _A.)

s(t -A.) S() e ( d'

Consequently, it follows that

N
s (t) s s(t r.)

-1
i= I

1 J S( ) A( .,v,) ej t d.,, (2. 11)

where

N T-J .'. r.
Ac -) . (2.12)

J~v r
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The quantity A(, .. \ ) is called the array pattern and is seen to depend

upon the frequency and the wave characteristics as described by %v.

A more general definition of the array pattern will be introduced subse-

quently. The quantity

k A -

is called the wave number vector and has the units of inverse distance.

Note also that the wave length is defined as

A = 2. c
27

Examination of (2.11) indicates that A(..,\)') serves as a filter oper-

ating on the signal spectrum S((,)). That is, S(t) is represented as the

Fourier transform of the product of S(,)) and A(w,v). Consequently, the

influence of the incoming signal on the array response is established by

investigating the properties of the array pattern.

If the signal is narrowband with center frequency ic, the behavior

of A( ,,) as a function of v determines the array response. Obviously,

if 5/c = B/c, then , 0 and it follows that for any frequency

A(: ,0) = N.

This observation reconfirms the signal enhancement property of the

array when the sensor outputs are aligned. Nonzero values of V indi-

cate the frequency-dependent response of the array.

11.2.2 Linear Array Response

Much of the published literature [e.g., see References 6, 7 or

8] dealing with arrays is based on specific array configurations whose

geometry is chosen to simplify the analysis and to gain useful insights

into the array response. To illustrate the frequency response determina-

tion in a closed form, it is useful to consider a linear array with equi-

distant sensors at a spacing D. Assume that the first sensor is located

at the origin of the coordinate system (i.e. , r. 0) and suppose that
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the remaining (N-I) sensors are positioned along the positive x-axis.

Then, it follows that

r. iDi
-1I -X

where i denotes the unit vector defining the x-axis. Suppose further

that only the horizontal wave motion is considered so that

T
- -

- c

iD T .
c -

iD
- cos 0.

c

Similarly, it follows that

iD
T. = - - COS .

For this planar situation, the array pattern assumes the form

N _jiD (cosO cosO)

A(, =v) e - c

i=l1

Let

(cos 0 cos0)

so

N

A) A e - i

1=l
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But the summation can be expressed as

A() -J (i- e-Nn)

(N+1)r
sin(N -i/2) -J 2 (2.13)! sin( :12) e 2.3

The array pattern A(n) is periodic with period n = 2T'. The

maxima occur at n = 2n7, n =- 0, ±1, ±2..... The maximum that

occurs at rl = 0 is referred to as the mainlobe and

sin(N 7/2) = N.
sin( ,/2) n=0

The other maxima for n # 0 define the grating lobes of the array and

are undesirable as they imply that signals with directions that generate

these values of n are enhanced as much as signals with direction B and

speed c. The array pattern vanishes for n = 27Tm/N, m = ±1, ±2, .

±(N-1) to form nulls. Waves corresponding to these nulls are attenuated

totally for some frequency.

The mainlobe occurs at ri = 0 and the grating lobes are located

at n = ±2-, ±4- ..... It is desirable to avoid the influence of the

grating lobes since signals with characteristics that yield values of n

corresponding to the location of the grating lobes are enhanced. The

grating lobes can be eliminated for band limited signals through the

appropriate choice of the sensor spacing D.

Supposeb defines the highest possible frequency of the signal.
b^

Then, for waves such that c =c, the variable n can be rewritten as
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r= D(cos 0 cos 0) /c

< D(cosO - cos 0) B/C

2Tr(cos 0 cos 6)D/XB

where

X A 2 c wB

To eliminate the grating lobes, n should be restricted to a magnitude

less than 2-1

ril < 271.

This can be achieved for any angles 0 0 by choosing the sensor spacing

such that

D < X B2.

This requirement represents the spatial version of the well-known sampling

theorem. XB represents the shortest wavelength present in the incoming

signal. Thus, there should be at least two sensors contained in the

interval defined by XB"

It is useful to continue the analysis for some examples. Suppose

that a broadside beam is considered (i.e., 0 = T/2) for D/X = 1/2.

Then it follows that

Tf < n < 7T.

For an endfire beam (i.e., 0 = 0), one sees that

0 < n < 27.
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Nulls in the array pattern occur for i = 2-rm/N; m +1, +2,

-(N- I). The location of the null depends upon the wavelength, the

array spacing, the number of sensors, and the direction of arrival of

the wave. For a broadside beam and minimal spacing D = XB/2, the

first null occurs at n = +2-/N so

cos ") = 2/N.

Since the maximum occurs at 0 = 1/2, the width of the mainlobe as

measured by the distance between the first nulls is

BW = 2(-/2- 01).

This provides a convenient measure of the beamwidth of the array.

Note that for large N, this beamwidth is given approximately by

BW %- 4/N.

Thus, the beamwidth is proportional to the number of sensors for the fixed

spacing D = ki/2. For an arbitrary spacing D, the first null occurs at

cos Q -

and induces the beamwidth for large N of

2X
BW -I

ND

Thus, the beamwidth is a function of the length of the array rather than

the number of sensors.

For endfire beams, the first null occurs at

2 r Co 2,,D- (1 - cos )NX

or

A
cos 1
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and the resulting beamwidth is

BW = 2 9

For small X/ND, this reduces approximately to

Now, the beamwidth is inversely proportional to the square root of

the array length.

Another measure of the array capability is provided by deter-

mining the magnitude of the sidelobes relative to the magnitude of the

mainlobe. It can be shown for large N that the magnitude JA1 T of the

first sidelobe to the magnitude JA0 1 of.the mainlobe is approximately

AI11 2

Thus, the sidelobe magnitude is approximately 13. 5 dB less than the

mainlobe. To first order, this ratio is not affected by the array length

nor by the number of sensors.

The linear array produces an array pattern that depends upon

the beam direction . If the signal direction is not known, it may

be desirable to consider array configurations that exhibit angular

symmetry. In this case, circular arrays may be more suitable. The

analysis of a circular array is considerably more complicated than for

a linear array (e.g., see Ma 171 ) and shall not be presented here.

However, for any array configuration, the array pattern can be studied

numerically by returning to the defining relation (2.12). For a small

array (i.e., N < 20) the calculations are not lengthy. For a planar

array, the graphical presentation of the numerical results is more

complicated. We shall return to this point in Part 111.
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Let us ,ummarize and generalize the important points of the

discussion of linear arrays.

1. The magnitude of the array pattern provides the basic

characterization of the array response. Because of the

polynomial character of the array pattern, it is useful to

investigate the maxima and minima of IA(w,v_%) I.

2. The maximum of JA(w ,v) I is achieved for v = 0. However,

maxima of equal magnitude can be experienced for other

values of v. The influence of these grating lobes can be

eliminated through the sensor spacing.

3. Grating lobes can also be avoided by using nonuniform

spacings of array elements. The uniform spacing of elements

is often introduced more for the convenience of the analyst

than for any other defensible reason. Nonuniform spacings

may be more appropriate when some prior knowledge of beam

direction is available.

4. The resolution of the array is measured primarily by the

width of the main lobe and by the ratio of the mainlobe and

sidelobe magnitudes. For the example, the width of this lobe is

inversely proportional to the length of the array. The relative

magnitudes are independent of the number of sensors.

5. As discussed below, the array resolution can be modified for

an array of fixed dimension through the introduction of

weights for the sensor outputs or through the nonuniform

spacing of the sensor elements.

6. An important indicator of the discrimination capability of the

array is obtained by comparing the magnitude of the mainlobe

with the sidelobe magnitudes. The array effectiveness can

be regarded as improving as the ratio of the magnitude

increases. The directivity is a quality that is intended to

serve as a measure of effectiveness and is defined below.
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The number of sensors N serves to introduce limitations regard-

ing the processing gain that is possible for an array. The array

geometry can be chosen to provide maximal gain for a given number

of sensors. As indicated above, linear or even circular arrays with

uniform element spacings do not necessarily provide the optimal con-

figuration. However, these uniform configurations do have the

advantages of convenience. Even for uniform arrays, processing gains

are possible relative to the simple delay and sum configurations intro-

duced above by introducing weights w. for the output of each sensor1

element.

For seismic surveillance, the number of sensors in an array

can be expected to be relatively small. As a result, attention must

be directed to the extraction of a maximal amount of information from

the sensor data. This requires a careful definition of the array

performance measure, of the system description, and of the class of

admissible processing algorithms. It is to these questions that the

following discussion is addressed.

S 7 A .A . O R IN C O N



11.3 The Array Processing Problem and Array Directivity

The array processing problem can be defined in the context of

a parameter and signal estimation problem and this approach is taken

and developed here. Basically, we shall consider the estimation of s(t),

3 and c from the sensor output z. (t) , i = 1, 2, ... , N. It is assumed-- 1

that the estimator is restricted to the general form

N

s(t) Wi z i(t-Ti) (2.14)
izl

where the delays -i are selected to estimate the direction _ and speed

c of the incoming wavefront. The weights w. are used to improve the1
ability of the array to discriminate between signals from nearly equal

direction with similar speeds. Imbedded in the delays T . are the sensor1

locations. The array configuration can also be adjusted to enhance the

performance of the array.

As indicated in (2.14), the estimator s(t) is formed as a linear

combination of the time-delayed sensor outputs. For generality, one

could consider complex weights operating on the complex representation

of the output signal in (2.14). This shall not be done here although the

extension of the following results for real weights and real output signals

is simple [e.g., see Reference 8]. It involves primarily a modest change

in notation.

The estimator in (2.14) can be written in. vector notation as

Ts(t) = w x(t) (2.15)

where
T (

w A (w1, w 2 , .... w)

x(t) A (zl(t-I) , z 2 (t-T 2 ) .... zN(t-T N))

A x1 (t) x 2 (t) .. .xN()

58 A0. v vv- - -ORINCON



Whereve," possible, summation notation, as used in (2.14), will be replaced

with more compact vector notation introduced in (2.15). The equivalence

of the two representations is apparent.

The sensor output zi(t) is defined to have the form

z.(t) = si(t) + n.(t).

If ri represents the actual signal delay, then

zi(t- T) = si(t-Ti) + ni(t- i

= s(t) + ni(t- i

A x.(t) .1

The collection of all N sensor outputs can be expressed in vector form as

x(t) = s(t) 1 + n'(t) (2.16)

where

1T  A (1, 1, T

and

n'T(t) A (n 1 (t- 1 ) , n 2 (t-t 2 ), ... , nN (t- T N))T

Equation (2.16) defines the signal-aligned (or beam-formed) statement

of the problem. Using (2.15), it follows that

s(t) = wT [s(t) 1 + n'(t)]

= s(t) wi + wT n ' ( t ) .

It is reasonable Lo expect that s(t) should equal s(t) in the absence

of noise and other errors. This implies that the weights should satisfy

the normalization condition.
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NN T
1 1 (2.17)

For example, uniform weights, w. = w. for all i,j, must be1

w. = 1/N.
!

We shall return to the signal-aligned model (2.16) during the subsequent

model. First, we shall examine basic properties of the array as implied

by (2.15).

II. 3. 1 The General Array Pattern

Suppose that the sensor outputs are delayed by T.1

T r.

where g and c represent estimates of the wave front direction and

speed. Then, for signals with direction 13 and speed c, the array

output is given by

N

s(t) = wisi(t- i )
i~1

N

- wis(t-ir +Ti)

i=l

N
T

= w.s(t-v rd

i=1

where
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Assuming, as above, that the signal has a Fourier transform, this

can be rewritten as

J S(,)A(., v w)ej()td, (2.18)

-0o

where

N 2 T19)

A( N, v W) w. e (2.19)
i=l1

The quantity A(u, w, w) is defined as the array pattern and has the

same form introduced in (2.12) with the addition of the weighting

vector w. It should be emphasized that (2.19) is valid for any weight-

ing vector that satisfies (2.17).

Considerable information is provided from the analysis of the

array pattern. It is convenient to rewrite the exponent in (2.19) in

terms of the angular variables defining the arrival directions. Note

that since the sensors are assumed to be contained in the x-y plane

the sensor location can be expressed as

Cos e.
r. = r. sinei-1 1 1

0

Also, the arrival direction 8 can be written in terms of the cone and

azimuth angles as

cos sin

sin, siny)

CosORINCO
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Then, we see that

T

[ ~~:.3 ') - r = : .j - i r1c-c 1
- 'T T

r. -i27 -- i k T

where

S2-rTT
r. kr

27C

and

k - wave number
c

But it follows that

T
r. = r. sinp cos(0-O.)

It is useful to consider the array pattern as a function of

the arrival angles 9 ,O for fixed frequencies c,, sensor locations r

and array parameters , $, w. Thus, it becomes convenient to

define

A(,, v, ',) _ A(0, 9)
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and note from the preceding discussion that

N -j[ . - k r. sin(9cos(O-O i ) l

A= _ wi e 1 " (2.20)

i=l

A specific array configuration defines r. and e.. The weights can be
1 1

determined from a variety of arguments such as presented below.

The angle '
. is defined in terms of r., e., 0, and k. The wave

I I

numbers, k and k, depend upon the signal frequency. For a narrow-

band frequency, the center frequency represents the single frequency

of interest. By assigning values to all of these physical parameters,

the magnitude

IA(9,c9) 2 = A(9,(P)A*(9, 0)

can be determined to establish the array response to signals emanating

from directions (0, q). This computation should be regarded as funda-

mental to the analysis of any array processor.

II.3.2 Optimal Array Directivity

Suppose that one wants the array to be as sensitive as possible

in the mainbeam direction relative to the average of the sensitivity in

all other directions. This represents a reasonable objective when there

is no information available regarding the direction of potential inter-

ference sources. One can formulate this problem quantitatively in the

following manner.

The array pattern magnitude-squared IA(0, () 2 describes the

response of the beam-formed array to signals coming from the direction

', 1. The average response is obtained by integrating with respect to

all possible values of ), P.
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27 T/2

Average response A d0 JA(9,0) 2 (f in9) d9 (2.21)

In (2. L), we assume that the cone angle , is equally likely for

0 < ) < -r12 and arrivals from above the earth (i.e., TT/2 < 9 < TO are

impossible. The weighting g(9,9) is included to indicate sensor

limitations. For example, a vertical seismometer cannot sense hori-

zontal particle motions but is otherwise isotropic. Then, one might

choose g(9, 9) = cos y to reflect this sensitivity.

The directivity of the array for an arbitrary direction eo , (Po

is defined as

jA(0o,9 0 ) 2

D A f2 1 ) (2.22)S2 T T/2

+ dOf IA(M,9)1 2 g(6,0) sin99d O

of 0

D indicates the sensitivity in the direction (60, 9o) relative to the

average sensitivity in all directions. A general problem can be

stated in the foll wing manner.

Maximum Directivity: Choose the weights w. and the phases

i to maximize D for the direction (6, 9 ).
10 0

Basically, this problem statement assumes the use of complex

weights with amplitudes w. and phases zP. For our purposes, we
1I

have chosen the phases p. by defining 0, . Furthermore, we want

to maximize the directivity for

0 0
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In this case,

N -j(k-k)r sinyocos(O-0.

I if kk

To proceed, define the vector b as

b T w [ -j)WN e -1* N 12. 23a)

and let g be

Tk I ekrsin~ocos (0- I1 jkr Nsinypcos(- N- (2.23b)

With these definitions,

A ( 0, ) =b Tg

and

A 9,(10) (bg)* (b g)

b b*T g * gT b

A b* T G b

where ()*represents the complex conjugate of ( .Since b does

not depend upon (3 or 40, it follows that

DAV0 0, jd0JA s ) 2g (,(P) sin (clsW

0 0
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where

B 9 I d- g(3 *g9T] sin(PdP

0 0

Thus, the directivity for any 0 o p has the form
0 0

b TG b
D - (2.24)

b:5B b

where

G A * T0 = =Zo -go

and

g / g

-o = (0 , (P

The directivity D is maximized by choosing b in (2.24) to

maximize the ratio of two quadratic forms. It can be shown that

the matrix B is positive-definite. Using results from matrix theory 191

(i.e., the Rayleigh quotient), the ratio is maximized when b is the

eigenvector satisfying

Gb Bb M

where XM is the largest eigenvalue of the regular pencil (A-XB).

When G is formed as an outer product as in (2.24), the maximum
0

eigenvalue is

*T B-
XM=go -0

and the eigenvector corresponding to X is
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b B - iz

Since we have defined the phase values q), the preceding

results specialize in the following manner. Note that

A('3JcP bTE = T

This implies that

b* G b b; _R*gTb

T T

- w

Further, it follows that

b = Y

where Y4 j- diagle 'jI

Consequently,

b B b = w~ T _~ AW

where C A TP *T BY . The directivity reduces to

D = WTow(2.25)
TW Cwv

The matrix C is positive-definite since T and B are positive-

definite. Thus the precedinjZ results apply and D has the maximum

value
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D = iT C-I 1 (2. 26a)

and

wM  = C 1 1. (2.26b)

Thus, the gains that maximize the directivity of the array in the direc-

tion 0, .9 are given by (2.26b). This calculation requires the determina-

tion of the matrix C and its inverse. For uniform linear or circular

arrays, the calculation of B can be accomplished in a closed form 1101.

The inversion of C can be computationally burdensome, particularly for

large arrays, but it is conceptually straightforward.

When there is no information regarding the noise field, the pre-

ceding discussion provides a reasonable approach to choosing the array

weights w. Simple examples demonstrate that considerable improvements

are possible. For example, the directivity of a uniformly-spaced linear

array with isotropic elements spaced at intervals of 0.425X has a direc-

tivity of 12.5. Using optimal weights obtained by solving (2.26b), the

directivity for this array is 22.0. Thus, D is increased almost by a

factor of two.

II.3.3 Null Placement and Maximum Directivity

The preceding approach can be extended to consider the case in

which an interference signal emanates from a known direction ( 0I 1 ( I

with speed c. To eliminate the influence of the interference signal, one

can choose to locate a null of the array pattern in the direction (OI, 91

This can be accomplished with only a modest change in the preceding

result. Let g, define the vector associated with (01,  Oi
)

T jkri sinPl cos (0I- 01) jkrNsin 1 cos ( 01- 0N)

To obtain a null in this direction, the weight vector b is required to

be orthogonal to since the array pattern magnitude vanishes.
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b 0 (2.27)

Now. we want to maximize D subject to the constraint (2.27). Note

that as many as (N-i) nulls can be introduced by defining constraints

having the form (2.27). This is obvious since the N sensors cause

the weight vector to be N-dimensional. An optimization problem can

be defined when there are no more than (N-i) constraints.

The presence of constraints (2.27) reduces the number of

degrees of freedom available for the optimization. In general, the

imposition of constraints means that the maximum directivity is less

than can be achieved for the unconstrained problem. It has the

effect that the optimization problem can be formulated in a lower-

dimensional space. Effectively, the dimension of the matrix that

must be inverted in (2.26) is smaller. This is accomplished by

solving the M constraints for M variables in terms of the remaining

(N-M) variables. Then, these M variables are eliminated in the direc-

tivity equation to define an unconstrained maximization problem

involving (N-M) variables. Because the constraints are linear, the

nature of the original problem is not altered. One is still concerned

with maximizing the ratio of two quadratic forms.

Let us summarize the preceding discussion.

(1) The weights of the estimator (2.15) can be selected

to maximize the directivity (2.22). The optimal weights

are obtained from (2.26) and requires the inversion of

an (NxN), positive-definite matrix.

(2) As we shall see below, the general structure of the

optimal solution as given by (2.26) repeats for other

problem formulations.

(3) Nulls can be imposed in the direction of as many as

(N-i) known interference sources. The imposition of

these constraints does not alter the form of the optimal
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solution other than to reduce the dimensionality of

the optimization problem.

(4) The problem that has been formulated requires almost

no information regarding the nature of the signal and

noise. However, the calculation of the average response

(2.21) can be interpreted as assuming that the noise is

uniformly distributed for 0 < e < 27r, 0 < 0 < 7r/2. None-

theless, this approach can be regarded as utilizing a

minimal number of assumptions regarding the structure

of the signal and noise.

70 ORINCON



11.4 A Statistical Approach to Optinai Array Processing

The signal-aligned model of the problem was given in (2.16).

This model shall be used as the basis for the remaining discussion in

which we shall introduce statistical descriptions for the noise to obtain

optimal estimation and detection algorithms.

Consider the noise n'(t). During any time interval, it is

unrealistic to expect that the output noise will be known or pre-

dictable. A stochastic model is indicated and n'(t) shall be regarded

as a realization of a random process. For a limited time interval,

it is reasonable to assume that n'(t) is a stationary random process

with zero mean

E[n'(t)] = 0 for all t

The assumption of zero mean can be justified since the noise basically

is composed of a combination of seismic waves from many unknown

sources and electronic sensor noise. If the sensors are calibrated

adequately, the sensor noise should have zero mean.

The second-order statistics for the noise must also be specified.
th

For the i sensor, the correlation of the output noise is given by

ri(A) E[n.(t) n.(t-A)I.
n - 1

The cross-correlation of the noise in the ith and jth sensors is

r0(A) A E[n.(t) n.(t-A)l.

Thus, the correlation matrix for the noise vector is an (N"N) matrix

with elements rj(A,)n
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R ,(j) E[n'(t)n' T(t-A) ]

= {rl'( +T. - .
r ij(A+ 1

where T. represents the delay associated with the i t h sensor as
defined above. It is assumed that Rn (A) is either known or can be

determined. Then, optimal array processing algorithms can be

defined for estimating and/or detecting the signal.

In general, the noise can be regarded as arising from either

the electronics of the sensor or from seismic sources. Electronic

sensor noise can be expected to be statistically independent from

sensor to sensor, thereby inducing a spatial "white noise." Further-

more, it is reasonable to assume that this type of noise is temporally

white (i.e., broadband relative to the range of frequencies important

for seismic signal processing). In addition to the electronic noise,

the sensor output can be expected to reflect noise signals generated

from unknown seismic sources. Background noise from a number of

distant sources may combine to produce outputs that appear to have

no directional characteristics that induce a spatial independence among

the sensor outputs. However, it is realistic to expect that some

directional noise sources will appear in the sensor outputs that will

produce correlation among the sensor outputs. Commonly, these

directional noise signals represent the greatest source of difficulty

for the signal processor. Their influence must be eliminated to

enhance the ability of the signal processor to detect signals ema-

nating from specific directions.

Two types of directional noise can be considered. In some

cases the direction of the noise is known. Then, the signal processor

attempts to place a null of the array pattern in the known noise
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direction in order to eliminate its influence. In many other cases,

the existence and location of a directional source is unknown. Then,

the signal processor should adapt to recognize and to eliminate the

effects of a noise source having these unknown characteristics.

11.4.1 The Linear, Minimum Mean-Square Error Estimator

To begin the development of array signal processing algo-

rithms, suppose that the noise covariance matrix Rn, is known.

Later, we shall consider the more realistic case in which Rn, must be

estimated. Suppose that the signal s(t) is assumed to be deterministic

but completely unknown. Let us assume that s(t) is to be estimated

as a linear combination of the delayed sensor outputs x(t). Thus,

!(t) A w x(t)

T
where w 4 (w, w 2, .... wN)T.

Let us require that this estimator is absolutely unbiased 11).

That is, we want the conditional expectation to equal the signal.

E[ (t) s(t)I = s(t)

To achieve this requirement, note that

T
E[9(t) Is(t)] = E[w x(t) s(t)

T
= w E[x(t) s(t)I

since Elln'(t)] = 0. But this reduces to

73 A V ORINCON



E[s(t) 1 t I [ V s(t)

Consequently, an unbiased estimator is obtained by requiring that

N

Observe that uniform weighting

w. = I/N, i = 1,2,...,N

yields an unbiased estimator and confirms the earlier discussion.

Suppose that the weights ware chosen to minimize the

mean-square error in the estimation. That is, choose w so that

Z AMS = Ef(s(t)-9(t)) 2 1s(t)) (2.28)

is minimized. The Gauss-Markov Theorem [e.g., see Reference 11

asserts that the absolutely unbiased, linear, minimum mean-square

estimator of s is given by

T -11 R n
sAMS M T -1 x(t)

- x(t)SAMS (t) Lv1 -

Sa~fs(t) L WAIST x(t). (2.29)

2
The variance u ot the error in this estimator is given by

2 2(3 s E f(s- 9) 2 s ]
S

H' rI R -1 1)-1
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Let us compare the optimal weight WA M with the weight A

that maximizes the array directivity.

1 -1
w ANS 1T R-lI R ni I

iR, 1
M= C l!

Both gains require the inversion of an (NxN) matrix. The matrix C

is related to the average of the magnitude-squared array pattern.

Consequently, it permits an interpretation that has some characteris-

tics in common with the noise covariance matrix Rn,. However, the

matrices C and R i are obtained in very different ways. The esti-

mator (2.29) provides a conceptual flexibility that is very useful.

In fact, (2.29) provides the basis for adaptive array processing in

which the noise covariance Rn? is estimated from the sensor data.

By generating estimates of the noise covariance for use in the signal

estimator, the processor can be regarded as adapting to the current

environment. Thus, it is useful to examine the properties of the

estimator (2.29) in greater detail.

Suppose, first, that R is a diagonal matrix (i.e., the noise

is spatially and temporally white).

R = diag {r (0)}n' n

Then,

R -, = diag fl/r ii(0)}
n n

and it follows that

IT -1

r I rr
n n
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and

NT] -1, x Eiii
I R I I n

i~l

Consequently, the estimator is given by

N

s i=l

From this expression, it is obvious that the output x. is given the

greatest weight when it contains the least noise (i.e., r 21 < r i j)
n n '

The accuracy of the estimator is dictated, primarily by the

number N of sensors. For simplicity suppose that the noise is iden-

tically distributed so that

r A for all i = 1, 2, .... N
n n

Then,

-1

: 1/N

idl
2 /N 

(2. 30)

The error variance is inversely proportional to the number of sensors.

This dependence is valid even when the noise is not identically distri-

buted. Only the constant of proportionality is changed. In fact,
2

R does not have to he diaLonal for the proportionality of 2 with

I/N to be true.
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The observation that the error variance is inversely propor-

tional to the number of sensors reflects the lack of any assumptions

regarding the time-variation of the signal s(t). Generally, noise

effects are reduced by processing redundant measurements. In the

case considered thus far, all redundancy is provided by combining

the outputs from the array sensors (i.e. , spatial redundancy).

Without introducing any structure regarding the time-variation of

signal, further error reduction is not possible. We shall return to

this aspect later in the discussion.

II.4.2 The Maximum Likelihood Estimator and Adaptive Arrays

The estimator (2.29) can be obtained from other points-of-view

that are useful for considering other aspects of the general problem.

In particular, it is convenient to assume that the noise is jointly

Gaussian with probability density function

I- N/2 - 1 T -l
fN(n'(t)) = (2Tr) (det R n,) exp{- n'T(t)R n'(t) } . (2. 31)

But this can be rewritten in terms of the unknown signal using

(2.16). One obtains

(n'(t)) = (2Tr)- N / (d et R n ,) exp - x (t) -s (t) IT R n -I

[x(t)-s(t) 111 . (2. 32)

Using (2.32), we can now determine the maximum likelihood

estimator of s(t). The likelihood equation [II] for s(t) is

[-MS~t 11T R- l MSt)1 0
IT n

Carrying out the differenliation with respect to s, one obtains the

('(lLuation1

77
V ORINCON



I r R lx t)-5 tl =

\hen solved, the maximum likelihood estimator of s is seen to be

ITR -1
I R

_ ( - n x(t)SML t  1TR-11

I R 1- n -

- AMS(t) (2. 33)

Thus, under the assumption that the noise is Gaussian, the minimum

mean-square and maximum likelihood estimators of s(t) are identical.

In (2.29) and in (2.33), it is assumed that the noise covariance

matrix R ,is known. For seismic surveillance, it is unrealistic to

assume that R , is known for all times. In fact, the noise covariance
n

matrix must be estimated from the sensor outputs. The repeated

estimation of R n ' provides the basis for adaptive array processing.

The noise covariance matrix can be estimated from samples

of the outputs of the N sensors. In the absence of a signal

x(t) = n'(t)

Suppose that the outputs are samples at times tk = kT, k = 0,1,...,

M- I. Then, the maximum likelihood estimator of the noise covariance

m itrix is given by

M- 1

Sx(iT) xT (T (2. 34)

i=O

',,CV of this estimator depends upon the number of inde-

- ,:),.s used to form Ril. The independence of the samples
• tht. choic(- of the sa nplincg interval T. As indicated

.A 11), satisfactory estimates are often obtained
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by using twice as many independent samples as there are sensors

(M - 2N).

The estimator Rn, must be computed in the absence of any

signal. In order to adapt to a changing noise environment, the

estimator Rn, must be recomputed. Then, Rn, must be inverted in

order to determine the weighting vector. To simplify the calculations,
-i

the inverse Rn, can be computed recursively, thereby permitting a

recursive computation of the weighting vector. These recursive rela-

tions are obtained using the Sherman-Morrison lemma till of matrix

algebra which are stated below.

The maximum likelihood estimator, using Rn,, is given by

IT lk-1

t -(t)
L - x(t)

_n 
-

1 Tp

- T x(t)

where

M-1 1

E xOiT) xT(iT)

i=0

Let us denote P explicitly in terms of the number of samples used

in its formation.

P(k+1) xT x (iT)

ELxOiT)T J
Li=0

P (k) + x(kT) xT (kT)1-1

Usin _ the Shrman-Morrison lemma 111J. this becomes
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P(k+l) = P(k) P(k) x(kT) x T(kT) P(k) (2.34)

1 + x T(kT) P(k) x(kT)

It is important to recognize that no matrix inversion is required

after PI) is formed.

The inverse of the sample covariance matrix is determined,

except for the multiplication by the number of samples, by evaluating

(2.34). The matrix is caused to adapt to the changing noise environ-

ment by continually introducing noise samples, separated sufficiently

in time to ensure independence. The adaptation is enhanced by

introducing a fading memory into the calculation by redefining

P(k+1) as

P(k+l) = (k) P-(k) + x(kT) xkT)I

The scalar parameter a (k), 0 < a 5 1, is the fading factor and causes

the past measurements to be given less weight when a < 1 than the

current measurement. It follows easily, assuming that a fading factor

is introduced at every step that x[(k-1)TI is faded by a (k),

x[(k-l)T] is faded by a(k-1) a(k), and in general xl(k-QZ)TI is

multiplied by a(k) rt(k-1) . . . a(k-Q-1). Thus, older samples

are given much less weight than the most recent sample. The fading

memory maximum likelihood estimator is defined as

T
^C(t) = wa (k+l) x(t) (2.35)
ML -ML 

where

a rA (k+])a C(k+l) 1 (2.36)

NIL I T p (k+l) I

A P.
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and

P(k) x(kT) x (kT)P(k)
S + x (kT) P(k) x(kT)

(k) -A 1 Pa(k)
cc(k)

With (2.35), a data-directed procedure for determining the array

weights has been defined. The signal is estimated using (2.35) and the

array pattern that results is obtained by using (2. 36) in (2.20). The

array sensitivity can be established and signal estimates are computed.

It is appropriate now to consider the problem of detecting the presence

of a signal in the prescribed beam direction.

HI.4.3 The Signal Detection Problem

To provide a basis for signal detection, assume as in (2. 31) that

the noise is multivariate Gaussian. Then, at each sampling time, the

detection problem can be stated in terms of two hypotheses H 0 and HI .

H 0 no signal present

x(t) = n'(t)

HI: signal present

x(t) = s(t) 1 + n'(t)

where n'(t) has the Gaussian distribution given by (2.31). For the

moment, it is assumed that the noise covariance R , is known. Also,n

the signal is assumed to be unknown but nonrandom.

The likelihood ratio

A A f(x IH0 ) 
(2.37)
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is well-known Ie. g.. see Reference 131 to provide the optimal detector,

for example. for the Neyman-Pearson criterion. In (2.37), f(x Hi ) repre-

sents the probability density function for the output x under the hypothe-

ses H.. i = 0, 1. From the definition, the output x is seen to have a

Gaussian distribution under both hypotheses. The covariance of x is the

same for both cases and the distributions differ only because the mean

values are different.

-/21/2 1 T -f(xJHt0 ) = (20)-N/ 2 (detR _ (t) (2.3_1 xt(t)R) x11T8a

u-( 1 2)) = (20 -N/2(detR)-1/2 exp {1t(t)11 T

R-'I x(t)-s(t)] "  (2.38b)
n'

Substituting (2. 38) into (2. 37) obviously allows the normalizing
cosat 2 -N / 2 -1/2

constant (2-T) (det R ,) to be ignored. To eliminate the exponen-

tial, the logarithm can be taken without changing the nature of the

hypothesis test. Then, one obtains after straightforward manipulations,

the following test.
H1

1T R>s(t) I R, 1 x(t) (2. 39)

H 0

where the choice of X is based upon the desired false alarm and detec-

tion probabilities. Equation (2.39) indicates that the output x(t) is

correlated with the signal Is(t) after normalizing with the inverse of

the noise covariance matrix R,.

There is a major problem that arises in the application of (2.39)

to the seismic signal processing problem. Neither the noise covariance

matrix Rn ,nor the signal is known. As discussed above, the noise

covariance Rn, can be estimated using the sample covariance matrix

obtained from output samples obtaincd in the absence of any signal.

Next, the signal s(t) can be estimated using (2.35). The generalized

likelihood ratio test proceeds by replacing the unknown parameters in

O"'
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the likelihood ratio test by the best estimates of the parameters. In

this case, (2.39) is rewritten as

H I
Tn1

S M(t) IT R x(t)
MNL n - t<

H 0

or

H

s (t) 1T P x(t) X (2. 40a)
L t- - < M

H 0

But this further reduces to

I T p x(t)]12 H I
1 - > (2.40b)

IT p 1 < M
_P_ H0

Thus, one can use the left-hand side of either (2.40a) or (2.40b) to

define the test statistic for the hypothesis test.

In (2.40b), a quadratic form is determined as the test statistic.

This quadratic form could be recognized as a x 2-variable with a single

degree of freedom were P to be a deterministic or known matrix rather

than a random variable formed from the sample covariance matrix. If
2

P were known, the hypothesis test could be evaluated using the x -

distribution to evaluate the probability of detection and probability of

false alarm for a prescribed threshold value X. By ignoring the random

character of P, approximate probabilities of detection and false alarm

could be determined 1131.
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11.4.4 The Effect of Signal Models

In the previous discussion, no assumptions were made regarding

the character of the signal. As a result, the signal estimator in (2.35)

is based entirely on the aligned outputs of the N sensors. Further

understanding of the estimation problem is obtained by introducing

assumptions regarding the signal and reconsidering the preceding

analysis. As discussed above, a seismic surveillance system may be

required to detect either narrowband or wide band signals, depending

upon the nature of the target. Both types of signals shall be consid-

ered below and related to the preceding results.

Narrowband Signals: Suppose that the signal energy is known

to be concentrated at some center frequency wc. It has been proven

Ie.g., see References 8, 12 or 141 that for narrowband signals, the

structure of the optimal estimator is given by

s(t) = w x(t)

where

w = 3R 1

The parameter 8 is a scalar that follows from the optimality criterion

(e.g., minimum variance, minimum mean-square error, maximum signal-

to-noise ratio). Thus, the results obtained above are not changed

significantly when attempting to detect the existence of a narrowband

signal.

The relationship between estimators can be defined more precisely

and their examination provides insight into the interrelations. Suppose

that S represents the signal power in the narrowband signal. The noise

power is defined fr'om the earlier discussion to be

' T -l
N0  I TR j!I
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Then, the weight vector that results in the largest output signal-to-

noise ratio is given by

-- NR = R,1 1 (2. 41a)

The weight vector for the maximum likelihood estimator is given by

SA SN (2.41b)

Assuming that the signal is narrowband with power S, the mean-square

error is minimized with the weight vector

2
SN 0

-mSE =S 0  NWML (2. 41c)

As discussed earlier, the structure of the estimator is provided essen-

tially by forming the gain (2. 41a). Estimators for other optimality

criteria are obtained by simple scalar operations.

It is interesting to note that the center frequency of the narrow-

band signal does not appear explicitly in the estimator. To implement

the MMSE estimator, the signal power S must be known. In many cases,

the maximum likelihood estimator (2.41b) appears to provide the most

satisfying approach.

Broadband Signals: We have seen that the estimation error is

proportional to the number of sensors. To reduce the errors for a fixed

number of sensors having a prescribed geometry, one must consider the

temporal behavior of the signal. For a band limited signal with maximum

frequency of f Hz, it is well known that the signal can be reconstructedm

from uniformly-spaced samples obtained at a rate of 2f samples/second.m

Based on this realization, the estimation of the signal s(t) can be formu-

lated in terms of an appropriate number of delayed samples of the output

of each sensor in addition to the signal-aligned samples. Essentially,

the sensor outputs are filtered before summing and estimating.
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Weighted tap-delay lines can be introduced to accomplish optimal

signal estimation for broadband signals 115]. The development of the

approach reduces to the previous discussion through the appropriate

redefinition of the relevant quantities. This occurs at the expense of

a greatly increased dimensionality of the matrices and vectors that are

treated. We shall demonstrate the reformulation of the problem in

the subsequent paragraphs.

Suppose that L uniformly-spaced samples of each sensor output

are to be utilized to estimate the broadband signal s(t). The sampling

interval is chosen consistent with the highest frequency component of

the signal. The outputs of each delay are multiplied by weights w.1
which are chosen to obtain a suitable estimator of the signal. Nota-

tionally, let

T
T A Ix (t), x M .. xNMt)

A (t-A), x 2 (t-A), ..... xN(t-5)

L  . [x, t-(L-1) Al, x 2 [t-(L-1)AI . . . xN[t-(L-1)A]

and

x A [ i x , 1.... -L "

Similarly, let

w. A [w wr. .... w.i , ..
-- : li, 2i " Ni

T T T

W , I \V2 .....
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and

s(t) w X. A wT (2.42)

It is apparent that the signal estimator (2.42) has the same form

as introduced in (2.15) at the beginning of this discussion. The dimension

associated with the weight vector w is now equal to LN rather than N. Thus,

the earlier developments and remarks can be applied, virtually without modi-

fication except for matters dealing with dimensi-nality. For example, the

noise covariance matrix Rni is, now, an (LNxLN) matrix. Since it must be

inverted to determine the optimal gains, one can be faced with a substantial

computational burden. However, the uniformity of the delays causes the

matrix R , to be block Toeplitz. Consequently, there exist efficient numeri-
n -1

cal algorithms that can be used to determine Rn,

The Toeplitz structure of the noise covariance matrix is demon-

strated easily. Suppose that nk represents the noise in the output

x k , noting that

nT n [t-(k-I)AI, n2[t-(k-1)A, ... , nN[t-(k-i)A]

Then, it is apparent that

E[nk T ""Z

R

where

r 1 (9,A) = E ni t-(k-1) A] n t-(k+Z-i1)A]

= E L i(kA) n(+Z

w..
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The covariance matrix depends only on the delay difference and it

follows that it has the following structure.

R 0  R 1  • . R L _

R EInnT] R-1 R0 ... RL- 2  (2.43)
n

R1-L R2-L R R0

But this is a block Toeplitz matrix as was asserted above.

Because of the block Toeplitz form of the noise covariance

matrix, computationally-efficient algorithms exist for finding the
-1

inverse R or for the solution of the normal equations to determinen
the optimal gains. For example, the Toeplitz matrix inversion algo-

rithm of Trench [61 could be used. Alternatively, the multivariable

form of the Levinson algorithm could be utilized to determine the weight

vector [171.
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PART III

GENERAL ALGORITHMS AND RECOMMENDATIONS

ABSTRACT

The conclusions and major results of Parts I and II are sum-

marized in the following pages. The theme of this presentation has

been to identify important physical characteristics of the signals

generated by a seismic source. These characteristics have been used

to define general signal processing algorithms that can provide an

appropriate framework for the design and analysis of specific algo-

rithms. Because of the intrinsic complexity of the operational environ-

ment and of the limitations on the deployed system, it is imperative

that the greatest processing gain possible is achieved. The general

approach that is presented in Part III should provide a performance

baseline for evaluating any processor. Furthermore, it permits great

flexibility in the design of signal processors for the operational system.
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111. 1 Gcercral A.\ltori t hmic Conside ratiolns

In this section, the lengthy discussions that have appeared

above are summarized by identifying the fundamental computations

that must be accomplished. First, some general observations are

required.

I. An essential aspect of the detection/estimation problem that

has been defined appears in the estimation of the noise

covariance matrix R (or, equivalently, its inverse). Then

estimated covariance matrix R must be repeatedly deter-n

mined from sensor outputs. The reestimation of R providesn
the adaptive capability of the array processor. This can be

accomplished in a variety of ways. For example 18], the Widrow's

LMS filter or the Howells-Applebaum adaptive processor are

based, essentially, on the covariance estimation. As discussed

by Reed, et. al. 112], more rapid convergence is achieved by

working directly with the covariance matrix and its inverse.

This increased convergence is achieved at the cost of a greater

computational burden. We propose the direct approach here

for two major reasons.

(i) It is desirable at this early stage of the development

of a seismic surveillance system to obtain some idea

of the best convergence that can be achieved. Also,

(ii) It is likely that the arrays used in an operational

seismic surveillance system may not use an excessively

large number of sensors. Then, the computational

burden might not be excessive. Furthermore, with a

limited number of sensors, rapid convergence becomes

particularly imortant.
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2. In order to ensure that R nadapts to changing noise conditions,

it is necessary that new samples of the sensor outputs be given

greater emphasis than outdated samples. While this effect can

be assured by defining a fixed 'window' of samples in computing

R n, finite-memory filters generally are computationally burdensome

and require considerable amount of storage. Thus, a. recursive

updating procedure that incorporates a fading memory may offer

a significant advantage. Although not discussed here, many

nonrecursive methods can be used to obtain R n, including the

FFT and spectral estimation.

3. The computation and display of the magnitude of the array pattern

can provide geometr-ic insights into the response of the processor

for arbitrary array configurations and geometries. As discussed,

the generalized array pattern incorporates the weighting vector

of the signal estimator. Although discussed only in passing, the

array pattern can be modified to incorporate any directional

limitations of the sensor. For example, a vertical seismometer

is not sensitive to a direct P-wave. The array processor and

its attendant pattern should incorporate this information in

testing for each type of seismic wave.

4. Throughout this discussion, restrictive assumptions regarding

the signal structure have been carefully avoided. In Section

11.4.4, the development was seen to apply directly to narrow-

band signals. However, at the cost of increased dimensionality,

the results were extended to broadband signals through the use

of tapped-delay lines and some subsequent notational changes.

Reasonable assumptions could be introduced that would reduce

the dimension of the filter development for broadband signals.

At this early stage of development, more involved models seem

inappropriate. However, separate processors for narrowband

and for broadband signals appear to be desirable.
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5. In the formulation of the problem, it is not difficult conceptually

to place pattern nulls in the direction of known interference

sources. The computational burden is increased, however, and

one must expect the convergence rate of the processor to be

affected. In the following, we shall not explicitly describe the

inclusion of pattern nulls, although this subject has been dis-

cussed in Part II.

6. There are many questions regarding parameter choices and

processor performance that can be resolved primarily through

numerical experimentation using both simulated and real data.

In fact, simulations based on reasonable models of the sensor

outputs should be used for all preliminary testi ig and for

development of the algorithms.

7. As discussed in Part I and Section II. 1.1, the components (i.e.,

the outputs of the horizontal and the vertical seismometers) of

the 3-axis geophones can be used to classify the type of seismic

wave that is detected. By defining classification procedures that

are based on the physical properties of the wave propagation, the

range of speeds and directions that must be considered can be

limited appropriately to reduce the computational burden.

8. The propagation of seismic energy from the source to an array

of sensors has a very complex description. Several propagation

paths are possible; the effect of the earth upon a specific

propagation path is itself very difficult to describe or predict.

Consequently, it is generally unrealistic to introduce detailed

mathematical models of the signal for the definition of the pro-

cebsing algorithms. For this presentation, the primary assump-

tions are the following.
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(i) The elements of a single array are spaced sufficiently

close that the passing wive can be regarded as having

a planar wave front with a direction _ and average

speed c.

(ii) The signal sensed by similar elements (e.g., the vertical

seismometer) of the array is identical except for a time

shift that depends upon the array geometry and the

wave front properties.

(iii) Signals are band limited and can be either narrowband

or broadband. Other than this qualitative description

of the signal, mathematical models are not defined for

the model.

The processing gain of the array for narrowband signals is

provided primarily by the number of sensors in the array. For broad-

band signals, tapped delay lines can be used to incorporate the redun-

dancy provided by successive samples of the sensor outputs. As dis-

cussed in Section 11.4, the Toeplitz form that obtains using tapped

delay lines permits the development of efficient computational algorithms

for inverting R
n
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111.2 Structure of the General Algorithms

A seismic signal processor must provide the following capabilities.

l. Detection: The existence of a signal must be detected from

the sensor outputs. The performance of the detector must

be assessed, typically by determining the Receiver Operating

Curve (ROC) (i.e., the probability of detection versus the

probability of false alarm).

2. Estimation: The direction B and the speed c of the detected

wave front must be estimated. The quality of the estimates

in terms of bias and error variance must also be determined.

In addition, signal characteristics must be estimated. For

example, an estimate of the center frequency of a narrowband

signal should be determined. For a broadband signal, the

time-of-arrival of the signal may be a desirable parameter to

know. Also, the bandwidth of the signal should be estimated.

In order to discriminate between signals and noise, it is

imperative that the noise covariance matrix is estimated. These

estimates must be updated continually from samples that are

obtained in the absence of the signal. As discussed in Part

II and summarized below, the noise covariance matrix (or its

inverse) provides the basis for any signal processing algorithm.

3. Classification: From estimates relating to the detected signals,

it is necessary that the type of signal source is determined.

The features of the signal have been discussed in Part I and

these characteristics should provide the basis for a classifica-

tion procedure. The performance of a classifier will depend

upon the quality of the detection/estimation algorithms so will

not be addressed herein. It should be noted that the source

of narrowband energy will often by moving (e.g.. a truck.

tank, or aircraft). The motion of the source will introduce
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an additional property to the sensor outputs that may assist

in the classification problem.

The approach that has been discussed in Part II and which is

summarized below is based upon the continuing estimation of the noise

covariance matrix. The estimation must be accomplished for titne-lagged

versions of the noise-only sensor outputs that are consistent with the

range of delays implied by the signal directions and speeds that are to

be considered. The covariance matrix is used in a processor that is

formed as a concatenation of a beamformer and a detector. The

beamformer produces estimates of the signal parameters that are used

in a generalized maximum likelihood detector. Source classification can

be accomplished following the detection. Let us now review the basic

ingredients of the proposed signal processor.

Array Outputs

Z.(t), i = 1, 2, .... N.1

The sensor output records must be sampled at a rate consistent

with highest frequency in an anticipated signal. The sampling rate

also must be chosen to be compatible with the delays introduced in the

beamforming operation and in the tapped-delay lines useL. for broadband

signals. Because of the use of sampled-data, beamforming is accomplished

for a finite number of beam angles.

Signal Alignment (Beamforming)

The signals are aligned by delaying the outputs of sensors at

location ri by the amount

Br.

c
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The beam direction is i and c represents an estimate of the wave speed.

For a fixed _, several estimates of c are introduced whose value depends

upon the type of seismic wave that is sought. The best estimate of the

speed c is based upon the detector output (as discussed below). The

signal-aligned outputs are denoted as

xi(t), 1, 2 . .. N

and, implicitly, depend upon S and c. For convenience, we shall

denote

T_ = t), x 2 (t), . N~tx T t) A [ x 1() . 2t ... 'X 0 .

Covariance Estimation

It was shown in Section II.4 that optimal signal estimators having

the general form
T

s(t) = w x(t)

are characterized such that

-1
w = yR 1

- n-

where

1_T  A (1, 1, ..., 1).

Different estimation criteria produce specific values for y. Consequently

the inverse of the noise covariance matrix provides the fundamental

information required to estimate s(t). Note that it is the inverse, not

R n , that is required.

For seismic surveillance, it is unreasonable to expect that R -1

n

is known a priori. In fact, it is not even realistic to assume that the

covariance matrix is constant during a long period of time. Thus, an

adaptive processor will estimate R and use the estimate kRn to determinen ii

the weighting vector for the array processor. Because it is desirable
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to ensure that this estimate is most sensitive to the current data, it

seems reasonable to determine R nrecursively. That is, new output~n
data is incorporated into the estimator as a direct update of the last

estimate. To reduce the influence of data that may have been obtained

at a time more distant than is consistent with the stationarity assumption,

a fading factor a can be introduced.

Let P denote a matrix that is proportional to R n Then, Pn

can be updated recursively according to

1 a
P(k) P (k) 0 < a(k) I

where

P(k) x(kT) x T(kT)P(k)

Pa(k+l) = P(k) - TI1+ x- (kT) P kW x(kT)

The vector x(kT) represents the output sample that is used

to obtain the new estimate of ii (or R ). Note that the covariance
n n

estimate is obtained from samples for which it is assumed that no

signal is present. Furthermore, samples used to estimate R must ben

obtained at times that are separated sufficiently that the samples can

be regarded as being statistically independent.

Signal Estimation

Using P, the maximum likelihood estimator of the signal is given

by

S ML tM = _T ML(k+I) x(t)

where

_1 ML(k+l) A T Pa k(k+1) 1

I p (k+l)1
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Signal Detection

The presence of a signal is denoted by hypothesis HI whereas

its absence is the hypothesis H The generalized likelihood ratio test

requires the correlation of the sensor output with sML(t). The test

can be written as
H1

T a
SML(t) 1 P (k+l) x(t) M

H 0

or, equivalently, as

1TPk+1xtf 2  H 1[IT  Pc(k+) x(t) 1]

> M

1T P a(k+1) 1 <

When the LIS of the inequality exceeds the threshold XM' the signal

is said to be present. Otherwise, the output is regarded as noise only.

Note that the signal estimate does not actually have to be com-

puted to perform the signal detection test. Again, this emphasizes the

central role that must be played in the processor by the inverse of the

noise covariance matrix P.

The performance of the detection test is dictated by the choice

of the threshold parameter XM, A precise analysis of the detector is

difficult since P is a random quantity. However, estimates of the

probability of detection and false alarm, and, subsequently, the genera-

tion of receiver operating curves (ROC) can be accomplished with the

introduction of the following assumptions:

1. Suppose that P c is not a random quantity. That is, treat this
-1

matrix as the true and known value of R .n

2. Assume that x is Gaussian. Then, the LHS of the inequality2

can be regarded as a x -variable. We shall not pursue the

analysis of the detector at this time. The general results of

Reference 1131 provide additional details.
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Array Pattern

A basic tool for the analysis of an array configuration and

signal estimator is provided by examining the array pattern A(w,v,w)

where

NT
-_ r.

i=1-A _wv =w w. e w

and

/cos6 sin¢

= (sin 6 sin j
Cos /
cos .

r. = r, sin I

Because of the importance of this concept to the evaluation and analysis

of a specific array configuration, we shall discuss it in considerable

detail.

The analysis is facilitated by considering the variables

nx c

A

99 AmA. A.A.
ORINCON

V " V -



Then, one can write

Swi Cos 0.1A (r nx f) w 1 eL 1  oA~nx 11y wi e x y r. sin 0.

The magnitude IA(n x I y ) can be evaluated as a function of ( x 'ny )

to obtain insights regarding the response for a prescribed array con-

figuration {(r i ,0 i ); i = 1,2,... ,N} and prescribed sensor weights

{w .; i = 1,2....,N). The array pattern magnitudes for a linear and1

fur a circular array are shown in Figures II-i and 111-2, respectively.

Linear Array

Suppose there are 7 (i.e., N = 7) sensors oriented at a 450

angle (i.e. , 0. = 450 fur all i) from the x-axis and located at the points

{(i,i), i = 1,2,..., 7}. Consider equally-weighted sensors with unity

weights (i.e., w. = 1) chosen for convenience. In this case, we know1

that the magnitude of the main lobe equals the number of sensors.

Furthermore, it is clear that the magnitude is periodic with period 27r.

In Figure III-1, a printer plot of the magnitude of the array

pattern is shown. Lines of equal magnitude are indicated by the digits

0 through 4. The identification is the following.

Plot Character 0 1 2 3 4

Array Magnitude 0. 1 2 4 6 7

The plot shows the main lobe and the vestiges of two grating lobes.

Clearly, the magnitude is less than 2 for most values of (nx,n

All of the nulls are iot shown because of the scales that have been

used. This is easily remedied by appropriate scaling changes. Note

also that the directivity of the linear array is suggested by the linear

character of the iso-magnitude curves. We shall return to this point,

subsequently.
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Figure III-i. A(nx *I ) for a linear array.

N 7; w. = 1, i 1,....7.
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Circular Array:

Suppose that 10 (i.e., N 10) sensors are located on a circle

of radius 10 (i.e., r. = 10) at equally spaced angles of 360 (i.e.,

0i+ 1 - 0i = 360). Assume unity weights (i.e., w i = 1) for all sensors.

Therefore, we know that the magnitude of the main lobe is 10.

In Figure 111-2, a printer plot of the magnitude of the array

pattern is shown. The pattern is much more complicated as indicated

by the iso-magnitude lines for the portion of the array pattern that

is shown. As indicated, there is a symmetry along radial lines sep-

arated by 361. The plot characters arid array magnitudes have the

following correspondence.

Plot Character 0 1 2 3 4 5

Array Magnitude 0.2 2 4 6 8 10

The plot indicates the location of the main lobe at (0,0) with

secondary lobes scattered about the (rxny) plane. Nulls can be

located from the plot. The range of the plotted variables can be

extended further to locate the grating lobes and to further establish

the response of the array.

The variables (nxn y) are related to the physical variables

(,,c, 6 ,1 ) of the problem in a straightforward manner. It isx y

necessary to invert the relationship given above in order to obtain

greater physical appreciation for the plots that have been presented.

It is reasonable to consider fixed values of frequency ,0and wave speed

c for a beam direction a. In particular, assume that c c and suppose

that the narrowband signal has center frequency , . Then, it is easy

to establish a graphically simple relationship between (nxPny) and the

azimuth and elevation angles (0, 5) of the interference wave.
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Figure 111-2. A( n.n ) for a circular at-ray.

N 7; w.= 1, i- 1,2,.. 10.
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Consider constant values of 0 and €, say 0 and 00 as functions of

(nx , y). Noting that

tan 0 =Y
x

sin 2 + 82
s =y

it is easy to determine for fixed 00 that

W C
= (tan 0 ) lx + -- (6 tan 00 -yy Ox c x 0 "

Thus, a constant value of 6 induces a linear relationship between

nx and n In fact, it follows that all values of 0 have a common

point

0 "c ^  0 Wc ^

nx - ^ x 9x ny = - -; yc = c

For fixed values %0, one finds that

2
(j c 0)2 = (x+ w C )2 + +n W --- sin q x + -7- x + + ---=

Thus, the lines of constant 0 are given as circles in the (nx,ny)

The circles are centered at

0 W c 0 Wc
nx c xl ny c y

and have radius (Wc/C) sinO 0 1. Since Jsino < 1, we see that
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The relationship between (riPT yr and (6,) is displayed in the follow-

ing diagram.

0 900
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=~ 450

O= 180' 0

0Y

45'2

x

Figure 111-3. AZimTuth and elevation angles for interference wave.
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Note tha. the origin of the display depends upon the beam
direction as defined by (B , y)" The frequency w and wave speed

x y
c affect the origin and the radius of the circles of constant elevation

angles 0" Except for the origin, the radial lines that define constant

azimuth angles are unaffected by signal characteristics.

The circle of largest radius (i.e., 0 = 90o) relates to a hori-

zontal wave. The combination of the radius of this circle, as defined

by ,) /c (i.e., essentially the wave length) with the array pattern

dimensions provides a graphical means of determining the sensor

spacings that are required to avoid grating lobes.

Note that the main lobe is always located at the point nx = 0,

n = 0. The origin in Figure 111-3 is generally nonzero since the main

lobe occurs at 00 = 0, >0 . Thus, the offset of the origin is neceb-

sary to ensure that the array is maximally responsive in the direction

of the beam.

Let us illustrate the use of the array pattern magnitude plot

and the transformation from (n ,n ) to (0,) by considering the linearx y
array whose magnitude is presented in Figure III-1. Attention shall

be restricted to horizontal waves (i.e. , = 90 0 = 40). First, consider

a broadside beam (i.e., 0 1350 or 6 = 3250). Then, the center of

the circle in Figure 111-3 is given by (2wc /2c)(1,-1). It is apparent

that the circle will be centered along the main lobe ridge emanating

from the origin. The radius of the circle is c/c. If c /C = r ,

then the array pattern must include the grating lobe. This is seen

by superimposing the plot of Figure 111-3. suitable scaled, upon Figure

111-1. Since the sensors have been assumed to be separated by a

distance F212, we corroborate the assertion in Section 11.2 that the

spacing of sensors must be greater than X/2 to avoid spatial aliasing.
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The argument can be repeated for any beam direction and wave

characteristics. In fact, the analysis of the aliasing properties of any

specific array can be accomplished by superimposing the content of

Figure 111-3 with suitable scalings on the plot of IA(x,ny,) I. Although

we have not pursued it in the examples, the array pattern can include

any weighting values. Consequently, the array response can be examined

in detail by using the graphical tools that have been introduced. An

interactive graphical display can be developed that can provide the

basis for a rapid analysis and evaluation of the array performance.

Wave and Source Classification

As discussed in Part I, a source can generate several types

of seismic waves which can travel along a variety of propagation paths.

The output of the signal detector/estimator can be validated by compar-

ing the response of the sets of comparable seismometers to classify the

wave type. There must be a consistency in the characteristic of the

detected wave (i.e., bandwidths, particle motions, wave speeds, arrival

directions) to accomplish a realistic classification. Special purpose

algortihms based on the wave characteristics discussed in Part I and

in Section II.1 can be defined to accomplish the classification.

A basic objective of the seismic surveillance system is to establish

the nature of the source of the detected energy and to locate and,

possibly, track potential threats. From the outputs of a single array,

it should be possible to distinguish between broadband and narrowband

sources. As has been discussed, the direction of the passing wave

front shall be estimated and the estimate can be expected to provide

some direction-finding capability. However, the complexity of the

propagation path may greatly affect the direction of travel of a wave

front as it passes from source to array.
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Multiple Arrays

To accomplish source localization and tracking, the output from

a single array must be combined with other information. The most

reasonable source of additional data is another array (or several

arrays). We have not discussed interarray processing in this report

as it was considered to be beyond the scope of the effort. The pro-

cessing of data from multiple arrays must be considered as an integral

part of the seismic surveillance system.
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111.3 Recommendations and Summary

This report reflects the basic recommendation of the effort.

For the development of a useful seismic surveillance system, it is

imperative that the signal processor be developed from a general

perspective based upon an understanding of the physical problem.

To produce an operational system that provides for the detection of

target sources in a timely manner, the signal processor must be able

to extract maximal information from the available data. Furthermore,

it must be sufficiently flexible that nonstandard conditions and unusual

array configurations can be accommodated without serious deterioration

in the quality of the processor output. Untimely haste in the imple-

mentation of specific algorithms that are inflexible or ill-suited to the

physical problem can only be counterproductive.

To establish the performance potential of a seismic surveillance

system, it is recommended that the algorithms stated in Section 111.2

and discussed in Part II be implemented. The performance obtained

from this algorithm should provide a baseline against which any

detector (estimator/classifier) can be measured. The generality of

the algorithm permits the accomplishment of detailed sensitivity analysis

for important system parameters. The performance analysis and sensi-

tivity assessment can be facilitated by the graphical display of the array

pattern as discussed in Section 111.2.

The design and development of the signal processor, based upon

the recommended algorithm, should proceed along two complementary

paths. On one hand, a simulation should be developed of reasonable

sensor outputs. A suitable simulation can be easily defined from the

considerations presented in Part I. Then, data can be produced using

the simulation that can be used to exercise the signal processing algo-

rithm. By processing simulated data, the performance of the detector/

estimator /classifier can be judged by comparing the outputs with "truth."

The algorithms can be applied subsequently to data obtained from con-

trolled field experiments. If there are substantial inconsistencies between
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the simulated and real data, the simulation should be modified to accord

more closely with the physical environment. Thus, the analysis should

permit feedback between the artificially- produced data (i.e. , simulation)

and the experience gained in the field.

After the performance of the general signal processor has been

established, attention should be directed to the assessment of the

computational requirements and capability of appropriate algorithms.

It is reasonable to expect that limited versions of the general algo-

rithms may be required for implementation in the operational system.

An assessment of possible losses in performance must be accomplished

during this portion of the effort.

To summarize, this report is intended to provide a perspective

on the physical problem that should be used to guide the design and

development of the signal processor for a seismic surveillance system.

Important physical considerations are discussed in Part I. In Part II,

array processing is reviewed and general adaptive array processing

algorithms are developed. A unification of physical considerations and

signal processing algorithm design is presented in this concluding part

of the report.
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