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1. Introduction and Historical Remarks -.. r..

The Iterative Proportional Fitting Procedure (IPFP) is a commonly used algorithm for

maximum likelihood estimation in loglinear models. The simplicity of the algorithm and its

relation to the theory of loglinear models make it a useful tool, especially for the analysis of

cross-classified categorical data (q.v.) or contingency tables (q.v.).

To illustrate the algorithm we consider a three-way table of independent Poisson counts.

x : {x. ). Suppose we wish to fit the loglinear model of no-three-factor interaction for the

mean m. i.e. the model

In(m) = U + u + U, + +Uli) 2j + u 13(k + 23( ()

The basic IPFP takes an initial table m"°', such that ln(m' ° ) satistfies the model (typically we

would use m'0 ' = 1 for all i,j. and k) and sequentially scales the current fitted table to satisfy
i.fl

the three sets of the two-way margins of the observed table. x. The v'th iteration consists of

three steps which form:

m m x / m"' 3

= m''. .x /m'' )  (2)
Jik ijL I L j+L

m ( ' 3)  
= In'' 2  . X mk.

2 ).

ijk Lk ,ik jk

(The first superscript refers to the iteration number. and the second to the step number within

iterations). The algorithm continues until the observed and fitted margins are sufficiently close.

For a detailed discussion of convergence and some of the other properties of the algorithm.

see Bishop. Fienberg and Holland (1975) or Haberman (1974). A FORTRAN implementation of

the algorithm is given in Haberman (1972 and 1973). (See also the discussion of computer

programs for loglinear models in the entry Contingency Tables, by Fienberg).

As a computational technique for adjusting tables of counts, the IPFP appears to have

been first described by Kruithof (1937) (see also Krupp (1979)) and then independently

formulated by Deming and Stephan (1940). They considered the problem of adjusting (or

raking) a table. n = (n ). of counts to satisfy some external information about the margins of
.jL

the table. Deming (1943. p.107) gives an example of a cross-classification, by age and by state.
of white persons attending school in New England. The population, N = [N 1, cross-

Ilk

classification is unknown but the marginal totals are known. In addition a sample. n. from

the population is available. Deming and Stephan's aim was to find an estimate N which

satisfies the marginal constraints and minimizes the ,(--like distance.

I - n )2/n (3)
I )J I
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Their erroneous solution (see Stephan (1942)) was the IPFP. Although the N produced by the

IPFP need not minimize (3), it does provide an approximate and easily calculated solution.

Over twenty years after the work of Deming and Stephan. Darroch (1962) implicity used

a version of the IPFP to find the maximum likelihood estimates in a contingency table but left

the details of the general algorithm unclear. Bishop (1967) was the first to show how the

IPFP could be used to solve the maximum likelihood estimation problem in multidimensional

tables. Some further history and other uses of the algorithm, including applications to

doubly-stochastic matrices (q.v.). are discussed in Fienberg (1970).

2. A Coordinate-free Version of the IPFP

The basic IPFP is applicable to a class of models much more general than those described
soley in terms of margins of a multiway table. Consider an index set J with J elements and

let x be a table of observed counts which are realizations of independent Poisson random
variables with mean m. Further let M be a linear subspace of RI with a spanning set {f: k

K

= 1,2.....K ) where each f is a vector of zeros and ones. The calculation of the maximum

likelihood estimate m for the loglinear model

In(m) £ M.

begins by taking a starting table m") with ln(m °) M (m'°  = I will always work). and

sequentially adjusts the table to satisfy the "margins". i.e.<f .x> for k=1.2 ..... K . the inner

products of the data with the spanning vectors. The v'th cycle of the procedure takes the

current estimate m(%I].Ki = m' ' and forms

<f 'X> f
m LI = mn.('k-< k L + m'' -'. 0 - f) k=1.2 ....K. (4)

<f .m'-''>

(i.e. adjusts the current fitted table so that the margin corresponding to f is correct) to yield

m"' = m(%.K  . The maximum likelihood estimate is lim m'" . If one wished to fit the log-

affine model

In(m) c t + M

which is just the translation by t of the loglinear model M . then using the IPFP with starting

values which satisfy this model (e.g. in"0 = exp(t) ) leads to the MLE.

There are many ways to view this basic algorithm and many problems for which the IPFP

is of especial use. Although. the basic algorithm is limited to linear manifolds. M . with zero-

one spanning sets, it is possible to generalize the method to work with any linear manifold.

We now look at some topics which relate to the algorithm or its generalizations.
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3. Some Computational Properites

Common alternatives to the IPFP are versions of Newton's method or other algorithms

which use information about the second derivative of the likelihood function. or Hessian

(q.v.). While such methods have quadratic convergence properties compared to the linear

properties of the IPFP. and are often quite efficient (see e.g. Chambers (1977). Haberman

(1974), or Fienberg. Meyer and Stewart (1979)) they are of limited use for models of high

dimensionality. For example, the model of no-three-factor interaction in a 10 x 10 x 10 table

has 271 parameters and this requires 16 x 271 x 272 = 36.856 numbers to represent the Hessian.

In contrast the IPFP requires only about 300 numbers (i.e. the 3 marginal totals) in addition to

the table itself. For many large contingency table problems the IPFP is the most reasonable

computational method in use. Of course. for problems with only a small number of

parameters Newton's method may be preferable. especially when the model is such that the

basic IPFP is not applicable. Newton's method also automatically produces an estimate of the

variance-covariance matrix of the parameters, but this is what requires all of the storage space.

It is well known that the IPFP can often be slow to converge. Our experience is that it

is generally restrictions on storage rather than computational time which limit an algorithm's

usefulness. Thus slow convergence, while disturbing in some contexts, is not necessarily a

crucial property.

As we have seen. the basic IPFP is very simple and can require little more than hand

calculation. The simplicity of the algorithm allows one to understand and use the mechanics

of the calculations to show theoretical results. A good example of this is the theory of

decomposable models (models with closed-form estimates) as developed by Bishop. Fienberg and

Holland (1975) or Haberman (1974). These models are closely related to the IPFP : a

fundamental theorem (Haberman (1974. p. 191)) says that for every decomposable model there

is an ordering of the margins such that the simple IPFP converges in one iteration.

One of the ideas underlying the IPFP is to sequentially equate a vector of expected values

with the sufficient statistics of the model. The IPFP does this one dimension at a time but

there is no reason why several dimensions can not be simultaneously adjusted. This idea

underlies the estimation scheme for partially decomposable graphical models outlined in

Darroch, Lauritzen and Speed (1980). They show that for many models it is possible to fit

certain subsets of the marginal totals and to combine the resulting partial estimates using a

direct formula. Their approach helps answer the question which asks for the cyclic order that

the IPFP should use in satisfying the marginal totals. The results of Darroch. Lauritzen and

Speed show that certain groupings and orderings are particularly advantageous.

.................................. n
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4. Generalizations of the IPFP

A limitation of the basic IPFP is that only certain types of models can be fit. We now

consider several methods for extending the IPFP to cover any loglinear model. For

multinomial and Poisson data the problems of maximizing the likelihood function and

minimizing the Kullback-Leibler information number (q.v.) can be considered as dual

problems which lead to the same estimates (see the entry. Contingency Tables by Fienberg).

We now consider generalizations of the IPFP from both these points of view.

Haberman (1974) shows that. when viewed from the likelihood perspective, the IPFP is

just a version of the cyclic coordinate ascent method of functional maximization. To illustrate

Haberman's approach, we choose a fixed set of vectors which span the model space, M . and

then we maximize the likelihood along each of these directions in turn. Specifically. we

consider a set of vectors If: k = 1.2 ..... K) which span M. If we denote the log-

likelihood by e(ml x) and consider an initial estimate m€(O) with ln(m'0 )) in M then the

algorithm proceeds by finding m"' such that

In(m"') = ln(m (1-1 ) + alf i = k mod IK.
where a is determined so as to increase the likelihood sufficiently. When f is a vector of

zeros and ones

a = in( <f1 .x> /<f ,m ('> )

(i.e. the a corresponding to the IPFP adjustment maximizes the likelihood in this direction).

For arbitrary f there is no direct estimate of a and we are left with a one dimensionalk I

maximization problem.

Csiszar (1975) considers the IPFP as a method for maximizing the Kullback-Leibler

information between two probability distributions. When specialized to distributions on finite

sets, Csiszar's methods yield a generalized IPFP. The class of algorithms which result from

Csiszar's work are dual algorithms to the cyclic ascent methods except now maximization can

be over entire subspaces of M rather than just vectors. These methods yield powerful

theoretical tools and have been instrumental in finding new algorithms which combine some of

the advantages of both Newton's method and the IPFP (see Meyer (1981)).

The third generalization of the IPFP we consider is due to Darroch and Ratcliff (1972).

This algorithm, known as Generalized Iterative Scaling, was also developed from the

information theory perspective, but is not closely related to Csiszar's method. The calculations

are similar to those of the basic IPFP: a set of vectors F which span M is chosen and the

likelihood is increased (but not maximized) in each of these directions in turn. Each iteration

can require that the scaling factors be raised to arbitrary powers. These features combine to



make the algorithm expensive as it often takes many iterations to converge and each iteration

is complicated.

For some problems it is possible to avoid the complications of the generalized IPFP's by

transforming the contingency table into a form where the basic IPFP can be used (see Meyer

(1981) for details and Fienberg. Meyer, and Wasserman (1981) for some examples). This can

result in a significant saving in the computational effort and recognition of some of the

theoretical advantages (e.g. closed-form estimates) associated with the IPFP. Fienberg and

Wasserman (1981. Fig. 1) present an example where the convergence rate can be substantially

improved by taking advantage of this transformation technique.

Related Entries Categorical Data. Contingency Tables, Kullback-Leibler Information.

I.
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