AD=ALD2 618

UNCLASSIFIED

CARNEGIE=MELLON UNIV PITTSBURGH PA DEPT OF STATISTICS F/6 1271

ITERATIVE PROPORTIONAL FITTING.{(U)
JUN 81 S E FIENBERGs M M MEYER
TR=270

N00014~80-C-0637
NL

Voor
an s




DTIC FILE COPY

DEPARTMENT
OF
STATISTICS

Carnegie-Mellon University
PITTSBURGH, PENNSYLVANIA 15213

81 8 10 011




R S I TP T

ITERATIVE PROPORTIONAL
I FITTING

by

[ Stephen E.|Fienberg
and

i

Michael M./Meyer

Lo 1
.~ Technical Repon_'No. 270 : ,
Department of Statistics !
Carnegie-Mellon University

, . | June, 1981

ARy s A e Ve AP SN < 20 T e

This is a draft of an article prepared for the Encyclopedia of Statistical Sciences, 1o be
published by John Wiley & Sons. Inc.

/ ,
eparation of this article was partially supported by the Office of Naval Research
Contractf N00014~80~-C—0637 at Carnegie-Mellon University. Reproduction in whole or part is
permitied for any purpose of the United States Government. i

SR




‘...7 - . 1
00 e
; ; c 5 ]
h : [ —
h' 'J R ‘ .
1 ° 3 ! P ‘
L ] LS C - o ) -
g 2 &% e Tl i
SeEmg o | l'»‘} P i
RaBICIET I I £ %
(218 &0 &y ! - . =
S LRI L |
gomdu | In § o P
O & 3 3 B oo g 13 h
. < =z o A S ’-
1. Introduction and Historical Remarks T = I {

The lterative Proportional Fitting Procedure (IPFP) is a commonly used algorithm for

maximum likelihood estimation in loglinear models. The simplicity of the algorithm and its 4

relation to the theory of loglinear models make it a useful tool. especially for the analysis of

cross—classified categorical data (q.v.) or contingency tables (q.v.). §
F

To illustrate the algorithm we consider a three-way table of independent Poisson counts.
X = {xm}. Suppose we wish to fit the loglinear model of no~three—factor interaction for the
mean m, i.e. the model ¥

ln(mnjk) sud ulm * u:(j) * uam * ul?,(ij) * u13<m * u:aun' ) i
The basic IPFP takes an initial table m'®, such that In(m‘®) satistfies the model (tvpically we
would use m‘i‘: = 1 for all ij. and k) and sequentially scales the current fitled table 10 satisfy
the three sets of the two-way margins of the observed table. x. The v'th iteration consists of

three steps which form: i

m(\_.l) = m(‘\'r-l.3| ' / m(\-l.3) L.'
1jh ijk iy i {4
‘T':) = m(f.l) X / mf\.l) (2) :
13K 1jk 1+k 1+K
AR (,\'2) X 0.2 1
ijk ijk ~ik +ih .
(The first superscript refers (o the iteration number. and the second to the step number within
iterations). The algorithm continues until the observed and fitied margins are sufficiently close. ‘;.‘

For a detailed discussion of convergence and some of the other properties of the algorithm.
see Bishop. Fienberg and Holland (1975) or Haberman (1974). A FORTRAN implementation of
the algorithm is given in Haberman (1972 and 1973). (See also the discussion of computer
programs for loglinear models in the entry Contingency Tables, by Fienberg).

As a computational technique for adjusting tables of counts, the IPFP appears to have
been first described by Kruithof (1937) (see also Krupp (1979)) and then independently
formulated by Deming and Stephan (1940). They considered the problem of adjusting (or
raking) a table. n = {".jx}‘ of counts to satisfy some external information about the margins of
the table. Deming (1943, p.107) gives an example of a cross—classification, by age and by state.
of white persons attending school in New England. The population, N = {Nm}. Cross—

classification is unknown but the marginal totals are known. In addition a sample. n. from 4
the population is available. Deming and Stephan's aim was to find an estimate N which

ey

satisfies the marginal constraints and minimizes the X°-like distance.
Z(N.J - n‘j):/n” . (3)




Their erroneous solution (see Stephan (1942)) was the IPFP. Although the N produced by the

IPFP need not minimize (3), it does provide an approximate and easily calculated solution.

Over twenty years after the work of Deming and Stephan. Darroch (1962) implicity used
a version of the IPFP to find the maximum likelihood estimates in a contingency table but left
the details of the general algorithm unclear. Bishop (1967) was the first to show how the
IPFP could be used to solve the maximum likelihood estimation problem in multidimensional
tables. Some further history and other uses of the algorithm, including applications to
doubly-stochastic matrices (q.v.). are discussed in Fienberg (1970).

2. A Coordinate-free Version of the IPFP

The basic IPFP is applicable to a class of models much more general than those described

soley in terms of margins of a multiway table. Consider an index set J with J elements and
let x be a tabie of observed counts which are realizations of independent Poisson random
variables with mean m. Further let M be a linear subspace of R' with a spanning set {fk .
= 1,2....K } where each fk is a vector of zeros and ones. The calculation of the maximum

likelihood estimate m for the loglinear model ,

Infm) € M, 4
begins by taking a starting table m' with In(m'”) € M (m'” = 1 will always work). and
sequentially adjusts the table to satisfy the "margins". i.e.(fL x> for k=1.2..K . the inner '

products of the data with the spanning veciors. The v'th cycle of the procedure takes the k
current estimate m“~-*' = m" and forms
x> f ‘
mt = mtA b ™t (- ) k=120K . 4
<f .m(\.k-l)> [§
A

(i.e. adjusts the current fitted table so that the margin corresponding to fk is correct) to vield

)

m"' = m"*' . The maximum likelihood estimate is lim m If one wished to fit the log-
affine model

Infm) € t+ M,
which is just the translation by t of the loglinear model M . then using the IPFP with starting

values which satisfy this model (e.g. m'" = exp(t) ) leads to the MLE.

There are many ways to view this basic algorithm and many problems for which the IPFP
is of especial use. Although, the basic algorithm is limited to linear manifolds. M . with zero-
one spanning sets, it is possible to generalize the method to work with any linear manifold.
We now look at some topics which relate 10 the aigorithm or its generalizations.
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3. Some Computational Properites

Common alternatives to the IPFP are versions of Newlon's method or other algorithms
which use information about the second derivative of the likelihood function. or Hessian
(q.v.). While such methods have quadratic convergence properties compared (o the linear

ﬁ_,_.—..__
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properties of the [PFP, and are often quite efficient (see e.g. Chambers (1977). Haberman
(1974). or Fienberg. Meyer and Stewart (1979)) they are of limited use for models of high
dimensionality. For example. the model of no-three-factor interaction in a 10 x 10 x 10 table
has 271 parameters and this requires » x 271 x 272 = 36.856 numbers 10 represent the Hessian. '
In contrast the IPFP requires only about 300 numbers (i.e. the 3 marginal lotals) in addition to

the table itself. For many large contingency table problems the IPFP is the mos! reasonabie 3
computational method in use. Of course, for problems with only a small number of

parameters Newton's method may be preferable. especially when the model is such that the
basic IPFP is not applicable. Newton's method also automatically produces an estimate of the

variance—covariance matrix of the parameters, but this is what requires all of the storage space.

mr e et e e

It is well known that the IPFP can often be slow to converge. Our experience is that it

is generally restrictions on storage rather than computational time which limit an algorithm's
usefulness. Thus slow convergence. while disturbing in some contexts. is not necessarily a i d
crucial property.

As we have seen. the basic IPFP is very simple and can require little more than hand ;
calculation. The simplicity of the algorithm allows one to understand and use the mechanics !
of the calculations to show theoretical results. A good example of this is the theory of !
decomposable models (models with closed-form estimates) as developed by Bishop. Fienberg and
Holland (1975} or Haberman (1974). These models are closely related to the IPFP : a
fundamental theorem (Haberman (1974, p. 191)) says that for every decomposable model there
is an ordering of the margins such that the simple IPFP converges in one iteration.

One of the ideas underlying the IPFP is to sequentially equate a vector of expected values
with the sufficient statistics of the model. The IPFP does this one dimension at a time but
there is no reason why several dimensions can not be simultaneously adjusted. This idea
underlies the estimation scheme for partially decomposable graphical models outlined in
Darroch, Lauritzen and Speed (1980). They show that for many models it is possible to fit
certain subsets of the marginal totals and to combine the resulting partial estimates using a

direct formula. Their approach helps answer the question which asks for the cyclic order that
the [PFP should use in satisfying the marginal totals. The results of Darroch. Lauritzen and

Speed show that certain groupings and orderings are particularly advantageous.




4. Generalizations of the IPFP

A limitation of the basic IPFP is that only certain types of models can be fit. We now
consider several methods for extending the IPFP 1o cover any loglinear model For
multinomial and Poisson data the problems of maximizing the likelihood function and
minimizing the Ku//back-Leibler information number {(q.v.) can be considered as dual
problems which lead to the same estimates (see the entry. Contingency Tables by Fienberg).
We now consider generalizations of the IPFP from both these points of view.

Haberman (1974) shows that, when viewed from the likelihood perspective, the IPFP is
just a version of the cyclic coordinate ascent method of functional maximization. To illustrate
Haberman's approach, we choose a fixed set of vectors which span the model space, M , and
then we maximize the likelihood along each of these directions in turn. Specifically. we
consider a set of vectors = {fﬁ k = 1.2...K} which span M. If we denote the log-
likelihood by £(m|x) and consider an initial estimate m'® with In(m'”) in M , then the
algorithm proceeds by finding m" such that

In(m"™) = In(m“™") + ¢f :i=k mod K| .
where a is determined so as to increase the likelihood sufficiently. When fL is a vector of
zeros and ones

¢ =In( < x> /<f .m"" )

(i.e. the a corresponding to the IPFP adjustment maximizes the likelihood in this direction).
For arbitrary f‘ there is no direct estimate of a and we are left with a one dimensional
maximization problem.

Csiszar (1975) considers the IPFP as a method for maximizing the Kullback~Leibler
information between two probability distributions. When specialized to distributions on finite
sets, Csiszar's methods yield a generalized IPFP. The class of algorithms which result from
Csiszar's work are dual algorithms to the cyclic ascent methods except now maximization can
be over entire subspaces of M rather than just vectors. These methods yield powerful
theoretical tools and have been instrumental in finding new algorithms which combine some of
the advantages of both Newton's method and the IPFP (see Meyer (1981)).

The third generalization of the IPFP we consider is due to Darroch and Ratcliff (1972).
This algorithm, known as Generalized Iterative Scaling. was also developed from the
information theory perspective, but is not closely related to Csiszar’s method. The calculations
are similar to those of the basic IPFP: a set of vectors F which span M is chosen and the
likelihood is increased (but not maximized) in each of these directions in turn. Each iteration

can require that the scaling factors be raised to arbitrary powers. These features combine to
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make the algorithm expensive as it often takes many ilerations 1o converge and each iteration
is complicated.

For some problems it is possible to avoid the complications of the generalized IPFP's by
transforming the contingency table into a form where the basic IPFP can be used (see Meyer
(1981) for details and Fienberg, Meyer, and Wasserman (1981) for some examples). This can
result in a significant saving in the computational effort and recognition of some of the
theoretical advantages (e.g. closed—form eslimates) associated with the IPFP. Fienberg and
Wasserman (1981. Fig. 1) present an example where the convergence rate can be substantially
improved by taking advantage of this transformation technique.

Related Entries Categorical Data. Contingency Tables, Kullback-Leibler Information.
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