
PHOTOGRAPH THIS SHEET

LEWVL c-- (CA C, Un,)yj. Ce le, NVORY

L~~z- "\A. oL o rl• i
CODV1.b , ,cI'u e.. Fo•ce 4O.

1'n _______________pwn 4(1 ~ -h Level a"t
J~ ,, . • DOCUMENT IDENTIFICATION Peet

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

DISTRIBUTION STATEMENT

ACCESSION FOR P
NTIS GRAMI•

DTIC TAB DTIC
UNANNOUNCED 0ELECTE
JUSTIFICATION AUG 5 1981

_ ___ D

DISTRIBUTION /
AVAILABILITY CODES
DIST AVAIL AND/OR SPECIAL DATE ACCESSIONED

DISTRIBUTION STAMP

81 7 17 044
DATE RECEIVED IN DTIC

PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-DDA-2

FORM DOCUMENT PROCESSING SHEET
DTIC OCT 79 70A

-
-..

I

N00014-79-C-0604((P0001) June, 1980

Final Report on the International
Workshop on

High-level Language Computer Architecture

*°
.•

APM D; .

k" C O M I•U .E R C IE N CE D EPA -R TAM N T.i
*~

4'

U J.NIVERSITY OF MA _RYLANrD
COLLEGE P.ARIK MARYLAND

20742

,w w

INTERNATIONAL WORKSHOP ON

HIGH-LEVEL LANGUAGE COMPUTER ARCHITECTURE

Date: May 27-28, 1980 (Workshop)
May 26, 1980 (Tutorial)

Location: Bahia Mar Hotel
Fort Lauderdale, Florida

Workshop Committee

Yaohan Chu
University of Maryland

Leonard Haynes
Office of Naval Research

Lee Hoevel
IBM Research Center

George Ligler
Texas Instruments, Inc.

Program Committee J. K !Iliffe Publicity

Yaohan Chu (Chairman) University of London

University of Maryland George T. Ligler Lee Hoevel

F. Anceau Texas Instruments, Inc.

Universite de Grenoble Glenford J. Meyers Local Arrangements

Klaus Berkling IBM Systems Research

Institut fur Informations- Institute Victor Moore

systemforschung Donald L. Moon IBM Boca Raton

Jack Dennis Wright-Patters~n Air FQrce Publication

Massachusetts Institute of Base
Technology Victor S. Moore Brenda J. Guarfiieri

Keith Doty IBM Corporation University of Maryland

University of Florida Amar Mukhopadhyay Treasurer

Michael J.. Flynn University of Central

Stanford University Florida Jo Ann Thompson
Leonard S. Daniel L. Slotnick University of Maryland

Office of'Naval. Research University of Ii onois

Lee Hoeve6 Masahiro Yamamoto Registration

IBM Research Center NipponlElectric Co, Ltd, Carmen Radelat
David ,K. Hsao Tutorial University of Maryland

Ohio State University
Keith Doty
University of Florida

'lb ,'

II
:/,N00014-;79-C-0604 (PO001) June, 1980

Final Report on the International Workshop on
High-level Language Computer Architecture

COMP:UTER SCIIRNCE... DERAkRTMwpT a
UNTVERSITY OF MARYLAND • :

COLLEGE PAEKM MAYLA •ND

20742

Unclassified
A;ECUAITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1, REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUM13ER

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

Final Report on The International Workshop 1 Jul 79 - 30 Jun 80
on High-Level Language Computer Architecture

6. PERFORMING ORG. REPOrF NUMBER

7. AUTHOR(o) ". CONTRACT OR GRANT NUMBER(e)

Yaohan Chu N00014-79-C-0604

, P'ERFMkING ORGANIZAT'ION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

University of Maryland AREA & WORK UNIT NUMBERS

Computer Science Depao'tment
College Park, MD 20742

11. CONTROLLING OFFICE NAME AND ADDRESS Q2. REPORT DATE

Office of Netval Research June 1980
Information Systems Program, 437 13, NUMBER OF PAGES

Arlington. VA 22217 14
¶4. MONITORING AGENCY NAME & ADDRESS(i different from Controllin Office) It. SECURITY CLASS, (of this report)

Unclassified
5a. DECL ASSI FIC ATION/DOWN GRADIN 0

SCHEDULE
is, DISTRIBUTION STATEMENT (of thli Report)

Distribution of this report is unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, it different from, Report)

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (Continue on reverse side it n•cseiary and Identify by block number)

High-level Language,; Computer Archietecture

20. ABSTRACT (Continue on t, aide it necessary and identity by block number)

The International Workshop on HLLCA was held 26-28 May I980, at
Ft. Lauderdale, FL. This Final Report lists the topics discussed and the
"participants. A 255-page proceedings was distributed during the Workshop.

DD O 1473 EDITION oF 1 NOV 6S 18 OBSOLETE Unclassified I
SECURITY CLASSIFICATION OF THIS PAGE (Wshen Data Etlrned)

.1 jv,.,

$1CURITN' Ck.ASSIFICATION OF THIS PAGM (When Dasa Entered)

I

lp.i

SECURITY CLASSIFICATION OF THIS PAGE(WAWw D016 StgflUtd)

* . .
" .

Final Report on the International Workshop
on High-level Language Computer Architecture

Reported by Yaohan Chu
June 30, 1980

This is the final report for the International Workshop on HLLCA.
This Workshop is made possible by the partial support from the ONR. The
details of the Workshop are reported below.

1. Summary of the Grant
Title: International Workshop on High-level Language Computer Architecture
Period: 7/1/79 - 6/30/80
Grant no.: N00014-79-C-0604
Grant Amount: $9,860.00
Principal Investigator: Professor Yaohan Chu

Department of Computer Science
University of Maryland
College Park, MD 20742
301-454-4245

2. Workshop

Date: May 26-28, 1980

Location: Fort Lauderdale, Ft,
No. of Registrants: Technical program: 93 (see Appendix A)

Tutorial program: 69 (see Appendix B)
Programs: See Appendix C----
Proceedings: A roceeding was distributed during the workshop.

3. Organization

The workshop is organized by the Workshop Committee. There are
four members on the Workshop Committee; the names are shown in Appendix C.

The technical program is organized by the Program Committee whose
chairman is Dr. Yaohan Chu. There are 17 members; the names of these members
are also shown in Appendix C. There are 26 papers in 8 sessions in addition

to a pannel discussion session. The details of this program are shown in
Appendix C.

The tutorial program is organized by Dr. Keith Doty. There are 5
lecturers; each provides a set of notes. The names of the lecturers are
shown in Appendix C. The other working members of the workshop are also
shown in Appendix C.

The Workshop Committee approved the travel allownaces for 4
international participants who presented a paper as a minimum requirement.
These names are shown below.

4

S--.,.-.,~--- - - -- 1!

2

(1) Professor Yoong-Nien Chen
Department of Comptuers
University of Science and Technology
City of Hefei, Province of Anhui,
The People's Republic of China
Amount: $1,000.

(2) Dr. Masahiro Yamamoto
Central Research Laboratory
Nippon Electric Company, Ltd.
Japan
Amount: $750.

(3) Dr. Esen A. Ozkarahin
Middle East Technical University
Ankara, Turkey
Amount: $500

(4) Mr. J.P. Sansonnet
Universite de Paul Sabatier
Toulouse, France
Amount $500.

4. Next Workshop

The Workshop Committee met on May 28, 1980 and decided to have
another workshop because of the attendance beyond expectation. The following
are decided.

Date: May 17-20 1982
Location: Fort Lauderdale
Program Chairman: Dr. Lee Hoevel
Program Vice Chairman: Dr. George Ligler

5. International Participation

The Workshop is truly international as there were participants from
12 countries: Brazil, Canada, China, France, Ireland, Italy, Japan, Sweden,
Turkey, United Kingdom, U.S.A., West Germany.

-N

L~

!i
/ . . .o." -

3

6. Official Reports Distribution List

Defense Documentation Center 12 copies-
Cameron Station
Alexandria, VA 22314

Office of Naval Research
Arlington, VA 22217

Information Systems Program (437) 2 copies
Code 200 1 copy
Code 455 1 copy
Code 458 1 copy

Office of Naval Research 1 copy
Branch Office, Boston
Bldg 114, Section D
666 Summer Street
Boston, MA 02210

Office of Naval Research 1 copy
Branch Office, Chicago
536 South Clark Street
Chicago, IL 60605

Office of Naval Research 1 copy
Branch Office, Pasadena
1030 East Green Street
Pasadena, CA 91106

Naval Research Laboratory 6 copie6
Technical Information Division, Code 2627
Washington, D.C. 20375

Dr. A. L. Slafkosky 7 coF,
Scientific Advisor
Commandant of the blarine Corps (Code RD-1)
Washington, D.C. 20308 P

Naval Ocean systomt Center 7 c:c '
Advanced Software Tochnology-Division
Code 5200
San Diego, CA 92152

Mr. 1. H. Gleissner L &.iy
Naval Ship Research & bevelopment Center
Computation and Mathematics Department
Bethesda, MD 20084

Captain Grace M. Hopper (008) 1 cory
Naval Data Automation Cummand
Washinagton Navy Yard
Building 166
.Washington, D.C. 20374

. . ,.irk , * ", ,

Appendix A

List of Registrants(Technical Program)

":"Leon S. Levy Tim MerriganBell Telephone Laboratories Floating Point Systems

Whippany, NJ 07981 P.O. Box 23489
(201) 386-4955 Portland, OR. 97223

(503) 641-3151

Hartmut G. Huber Reinhard G. Kofer
Naval Surface Weapon Center Siemens AG, ZFE-FL-SAR 112

Box 117 Otto Hahn Ring 6
Dahlgren, Va. 22448 8 Muenchen 83 West Germany
(703) 663-8656(of fice)
S(703) 775-7046(home) Richard C. Flemiug

The Aerospace Corperation

N.R. Harris M.S. A2/2043
Stanford University P.O. Box 92957
Computer Systems Lab Los Angeles CA 90009

Department of Electrical Engineering (213) 648-7098

Stanford CA 94305
(415) 497-3511 Dr. C. U. Merckel

IBM Dept. 24k Bldg 032-3

.Mary Miller 2000 NW 51 Street

Bell Laboratories Boca Raton FL. 33432
30W062 Capistrano Ct. Apt. 302 (305) 994-4763

Naperville IL 60540
(312) 62-4269 (office) Melvin Hallerman

IBM Dept. 24K bldg 832-3
John J. Zaloudek 2000 NW 51 Street
Naval Surface Weapons Center Boca Raton FL. 33432
Dahlgren, Va. 22401
(703) 663-7368 Kerry V. Richmond

McDonnell Douglas Astronautics Co.
E. Dean Earnest P.O. Box 516
Burroughs Corporation St. Louis, MO. 63166

'i ~25725 Jeronimo Rd. ,

Mission Viejo, CA 92691 James D. Mooney
(714) 768-2321 West Virginia University

Dept. STAT. & COMP. Science
Heinz Schlutter dorgantown, WY. 26506
Gesellsehaft fur Mathematik und (304) 293-3607 .

Datenverarbeitung, MBE
Postfach 1240 Heir Kaftor M/S BI00
Schloss Birlinhoven Honeywell Information Systems
D-5205 St., Augustin 1 P.O..Box 6000
lonn, West Get-many Phoenix, AZ. 85005

" "e G(602) 866-3381
Dr. Klaus Berkling
(same address as Schlutter) Nobi~yuki CotoToshiba Corporation

W"iorgio Sofi I Komukai-Toshiba-cho, Saiwai-ku
CSELT2 VIL REISS R0.tOLI Kawasaki, Japan 210
Torino, Italy 10129 (044) 511-2111
tele. 21691

- I,..,

5

List of Registrants (Technical Program)

Jack B. Dennis Harvey G. Cragon
MIT Lab for Computer Science Texas Instrument's, Inc.
545 Main Street P.O.Box 225012
Cambridge, MA. 02139 Dallas, TX 75265
(617) 253-6856 (214) 238-3023

Mou-Shin Yang Leon I. Maissel
Sustems Emgineering IBM Corp
6901 W. Sunrise Blvd. Dept. C14, Bldg 704,
Ft. Lauderdale Fla. 33313 ?.O.Box 390
(305) 587-2900 X6236 Poughkeepsie, NY 12602

(914) 463-2301
Gilgert J. Hansen
Texas Instruments Raymond L. Phoenix
P.O. Bax 222013, MS 3407 IBM Corp
Dallas, TX. 75222 Dept. C14, Bldg 704,
(214) 462- 4742 P.O.Box 390

Poughkeepsie, NY 12602
Daniel L. Slotnick (914) 463-5445
University of Illinois
283 Digital Computer Lab Zvi Weiss
Dept. of Computer Science IBM Research Center
(217) 333-6726 Yorktown Heights, NY 10598

(914) 962-7036Terry Welch

Sperry Research Richard Ramseyer
100 North Rd. Honeywell SRC Research
Sudbury, MA. 01776 2600 Ridgway Pkwy, MN17-2352
(617) 369-4000 Minneapolis, MN 55413

() 378-5023
Samuel P. Harbison
Carnegie-Mellon University Tetsuo Ida
602A Kelly Ave Institute of Physical& Chem. Res.
Pittsburgh, Pa. 15221 2-1, Rirosawa,
(412) 731- 1472 Wako-shi, Saitama 351

Japan
Charles V. Flink II ureg Bettice
Naval Surface Weapon Center Naval Vaionics Center
K-74 8125 Harrison Drive
Dahlgren, Va. 22401 Lawrence, IN 46226
(703) 663-7517 (317) 353-3226

Bill Kwinn Roger R. Bate
Hewlett Packard Texas Instruments, Inc.
3404 E. Maruony Road P.O.Box 222013, M/S 3407
Fort Coll3ns, CO 80525 Dallas, TX 75222
(303) 226-3803 X3242 .(214) 462-4790

Jaishanker Menon
Dept of Computer Science Ron Rutledge

DOT/TSC, P.O.Box 53Ohio State University
Columbus Ohio 43210 Kendall Square
(614) 422-5813 Cambridge, MA 02142

(617) 494-2038

List if ReRistrants (Technical Program)

Gerhard Herrscher Allen u
LITEr. Hewl'ett-Packard
Loerracher Strasse 1 HPL/CRL
7800 Freiburg 1501 Page Mill Rd.
West Germany Palo Alto CA 94304
0761-4901212 857-8776

A. Speckhard Keiji Kuwahar5
Aerospace Corperation Nikkei-McGraw-Hill
2350 E. El Segundo Blvd. 2-1-2 Uchikanda, Chiyoda-kuI; El Segundo CA 90245 Tokyo Japan
(213) 648-7067 (03) 256-1561

%John Francis Y. El-ziq
Sanders Associates, Inc. Honeywell
95 Canal Street Honeywell Plaza
Nashua NH 03060 Minneapolis Minnisota 55408
(603) 885-3746

David E. Heinen
Paula Bernstein Tektronix, Inc.
B.•ll Laboratories P.O. Box 500 DS 63-311
W&rrenville-Naperville Rds. Beaverton OR 97077
Nap'-rville IL 60540 (503) 682-3411 x3845
(312) 462-2B98

Lawrence Katz
R.F. Hobson Tektronix, Inc.
Simon Fraser University P.O. Box.500 DS 63-311
S.F. University Beaverton OR 97077
Computer Science Department (503) 082-3411 x3081
Burnaby British Columbia VSAIS6
(604) 291-4277 R. Curtis

Canisiu- College
Dr. Warner Kluge 2011:Miin Street
GMD/ISF BuffalQ NY 14208
Postfach 1240 M&Nf' 831-7000
SchloB Birlingubven
West Gerqany John Powles

NCR qorporation
Malcolm Mir 3325 Platt Springs Rd.
Datamedix, Inc. C. Columbia SC 29169
555 Hillsboro Plaza (803) 796-9250 x524
Deerfield Beach FL 33441
(305) 428-4526 David M. Abrahamson

Department of Computer Science
Ronald L. Engalbrecht Trinity College
NCR Corp. - E&M-Wichita Dublin 2 Ireland
3718 N. Rock Road 772941 Ext. 1765
Wichita KS 67218
(316) 688-8646 Hugh L. Appliwhite

Honeywell 17-2352
Dr. P.J. Burkowski 2600 Ridgway N.E.
Computer Science Department YI 7nneapolis, 4N 55413
University of Manitoba (612) 378-4510
Room 545 Machray Hall
Winnipe$ Manitoba, Canada R3T 2N2
(204) 47408313

7

List of Registrants (Technical Program)

David K. Hslao
Ohio State University Labort ories•i Ball Laboratories
Department of Computer Science•i ~~~Columbus Ohtio 43210 om7-1
Columbu1 Ohi 432-5 10 600 Mountain Ave.
(4 2 8Murray Hill NJ 07974

N). Tsuchiya (201) 582-5797
TRW DSSG R2/2036i•One Space Park David R. Ditzel

eoo Spach Pa 07 Bell Laboratories
Xedondo Beach C4 90278 2C-523

, (213) 535-0580(35-8Murray Hill NJ 07974.

Dr. William D. Murray (201) 582-3655
University of Colorado
1100 14th Street Thomas A. Almy
Denver CO 80202 Tektronix, Inc. M/S 50-384
(303) 629-2872 Box 500

Beaverton OR 97077
Bantwal R. 8u 644-0161 x6056
Coordinated Science Laboratories
University of Illinois Nerman Hartig
Urbana IL 61801 Universitat Karlsruhe
(217) 333-7146 Institut fur Informatik IV

75 Karlsruhe I
Leonard Haynes Postfach 6380
Office of Naval Research Zirkel Nr.:2
Arlington VA 22211 W-Germany
696-4302 KeQa OfLazer

Yaohan "to M. -T.U r
University of Maryland U
Department of Computer Science
College Park, Maryland 20742 John Peterson
(301) 454-4245 Universtiy of Colorado

2845 S. Gilpin
.Krishna M. Kavipurapu Denver CO 80210:•' (303) 629-2872
Southern Methodist University (2
Department of Coaputer Science
Dallas TX 75275 Bernard Lecussan

36 impasse at. Felix(214) 692-3095 31 Toulose Y.Flee31400 Toulouse, France /

Barry C. Goldstein
IBM T.J.Watsen Research Jean-Paul Sansonnet
24 Glen Terrace 15 Rue ctre Midi Bat. 1
Chappaqua NY 10514 31400 Toulouse, France
(914) 945-2693 (office) Lars-Erik Thorelli
David A. Patterson Royal Institute of Technology
University of California S-100yy Stokhom, Sweden
Electrical Engineering and
Computer Sciences Goran Bage
Computer Science Division Royal Institute of Technology
Berkeley, California 94720 LU Erricsson
G�.T i~gl1r S-12625 Stockholm, Sweden

blu rghv Corp. Dennis A. Roberson
P.OO Box 517 IBM - Boca Raton 1
Paoli, PL 19301 Boca Raton FL 33432
2,36-60-3248

Z :................ •,•..::o••,. . : ,, .•;,•,. ...- °. .: .. • ,.•- ;.m :.' • ':••••..: ., ;.-••••. •,-, .• •..,. - • -:- .

ýjg; 2f Reaistrarits (:rechnlcal Proftra

Dick oun ack Quanstrom
Fai~rchild Camera & Instrument DCop
Corp. P.0.Box 1328,Dept.24k/032-3

464 lli Stret oca Raton, FL.-33432
Mt. View, CA 94040 994-4770
(A15) 962-2337

962-457.3 Glenford J. Myers
1BM Systems Research Inst.

Ticli T. Dao 205 9 42ad.Street
Fairchild Camera & Instruysents Now York, NY 10017
Crp. (212) 983-725.0

464 Ellis Street
mt. View, CA 94040
(415) 962-7532 X& Dmv4.u

962-4523 C &-CR
2-- ic*3 Bean aP 1025

M~ark T. Michael 'U.us fae(10)
Us Al.; Force, Avionics Lab (61) 25 21 88
WAFBP OH 45433
(513) 255-4920 Fogchn Wang

Cthio state U1niverdty
Dr. Esen A. Ozkarahau 2036 Neil Avenue
MKTU Covbbuts,, Mijo 43202
BMB-MKTU (ODTH) (631&) 4~2a.8039
Ank~ara Turkey

J. K. IUlf
Internat4ozal Conptatm Ltd& DW.pl...Ig 'Thxiiger St~relow
37 Westezz BDad Simans AG-Bereich Systemteabn~ache
tondon Ui 9JB hItwi4klung
Uiglnd ftGzaMnag-Ubd InfO=&tiOzAsWjem9

imarfe~a~harowaky-Btambe 2

Lou~~ . m~a~(09W.. 7-6923

FLaim maw Otrszsao 17 Sfeh =
780.1 &W~gsrA/3Ucbbch
West SAM Y 4-40Un ~Avema

Kawasaid , ToIqe 39 High Acrop D±ri
Pougbkepsie# N J 12603

14J17 Re lab 914-452'w204&9
ry Uvac

I 7~~8t. ~Martin Fromma
~~519 iAZ oratorien

(6.12)9ýý-4MWh ,N.J. 07981

1114ass A. 140444t~o
UsoolA Pa3itecwica da USP, DepbWom ars
zaganakria do T~ericidade Gidade acb Ur o
universitariaC. Po.tg N1o455

0550 Sw?&ux> s W -T?251. Hercear St*
c~o8ao~lo- ,~A~ThN.J* N#X 10012

212Z-,6.7287

9

4pvgendix~

{ List of Registrants ýTuto ial Prozr~am)

; Herbert Schorr Tim Merrigan
IBM T. J. Watson Research Center Floating Point Systems
P.O. Box 218 P.O. Box 23489Yorktown Heights, N.Y. 10598 Portland, OR. 97223(914) 945-1285 (503) 641-3151

Hartmut C. Huber Reinhard G. Kofer
Naval Surface Weapon Center Siemens AG, ZFE-FL-SAR 112
Box 117 Otto Hahn Ring 6
Dahlgren, Va. 22448 8 Muenchen 83 West Germany
(703) 663-8656(office)
(703) 775-7046(home) Mr. Lucas Moscato

No Address
Richard c, Pleing Country: Brazil
The Aerospace Corporation
M.S. A2/2043
P.O. Box 92957
Los--Angela,-CA--9000S Dr. G. U. Merckel

Joseph M. Herko IBM Dept. 24k Bldg 032-3
IBM Corporation 2000 NW 51 Street
P.O. Box 1328, Dept. 25T 032-1 Boca Raton FL,. 33432
Boca Raton, Florida .33432 (305) 994-4763
(305) 994-3458

Melvin Hallerman

IBM Dept. 24K bldg 832-3
John J. Zaloudek 2000 NW 51 Street
Naval Surface Weapons Center Boca Raton FL.. 33432
Dahlgren, Va. 22401
(703) 663-7368 Kerry V4 Ricbmond

McDonnell Douglas Astronautics Co.
E. Dean Earnest P.O. Box 516
Burroughs Corporation St. Louis, MO. 63166
25725 Jeronimo Rd.
Mission Viejo, CA 92691 James D. Mooney
(714) 768-2321 West Virginia University

Dept. STAT. & COMP. Science
Heinz Schlutter Morgantown, WY. 26506
Gesellschaft fur Mathematik und (304) 293-3607

fl atenverarbeitung, MBH
Postfach 1240 Meir Kaftor M/S B100
Schloss Birlinhoven Honeywell Information Systems
D-5205 St., Augustin 1 P.O. Box 6000
1onr; West Germany Phoenix, AZ. 85005

(602) 866-3381
Dr. Klaus Berkling
(same address as Schlutter) Nobuyuki Goto

Toshiba Corporation
I Komukai-Toshiba-cho, Saiwai-ku
Kawasaki, Japan 210
(044) 511-2111

..~*- . • '' "•"T'T'T "'' " ,7 '' 2 •, •h .,.•.,•.'*,. .',.Ž -- '. •

10

Tutorial Program

Gerhard Herrscher Allen Brown
LITEF Hewlett-Packard
Loerracher Strasse 18 HPL/CRL
7800 Freiburg 1501 Page Mill Rd.
West Germany Palo Alto CA 94304
0761-4901212 857-8776

A. Speckhard Keiji Kuwahara',
Aerospace Corperation Nikkei-McGraw-Hill
2350 E. El Segundo Blvd. 2-1-2 Uchikanda, Chiyoda-ku
El Segundo CA 90245 Tokyo Japan
(213) 648-7067 (03) 256-1561

John Francis Y. El-zig
Sanders Associates, Inc. Honeywell
95 Canal Street Honeywell Plaza
Nashua NH 03060 Minneapolis Minnisota 55408
(603) 885-3746

David E. Reinen
Paula Bernstein Tektronix, Inc.
Bell Laboratories P.O. Box 500 DS 63-311
Warrenville-Naperville Rds. Beaverton OR 97077
Naperville IL 60540 (503) 682-3411 x3845
(312) 462-2898

•:. 'Lawrence Katz
R.F. Hobson Tektronix, Inc.
Simon Fraser University P.O. Box 500 DS 63-311
S.F. University Beaverton OR 97077
Computer Science Department (503) 682-3411 x3081
Burnaby British Columbia VSAIS6
(604) 291-4277 R. Curtis

Canisius College
Dr. Werner Kluge 2011 Main Street
GMD/ISF Buffalo NY 14208
Postfach 1240 (716) 831-7000

SchloB Birlinghoven
West Germany John Bowles

NCR Corporation
Malcolm Muir 3325 Platt Springs Rd.
Datamedix, Inc. C. Columbia SC 29169
555 Hillsboro Plaza (803) 796-9250 x524
Deerfield Beach FL 33441
(305) 428-4526 David M. Abrahamson

Department of Computer Science
Ronald L. Engelbrecht Trinity College
NCR Corp. - E&M-Wichita Dublin 2 Ireland
3718 N. Rock Road 772941 Ext. 1765 A
Wichita KS 67218
(316) 688-8646 Hugh L. Applewhite

Honeywell 17-2352
Dr. F.J. Burkowski 2600 Ridgway N.E.
Computer Science Department Minneapolis, MN 55413
University of Manitoba (612) 378-45io
Room 545 Machray Hall
Winnipeg Manitoba, Canada R3T 2N2
(204) 47408313

Tutorial Program

Leon 1. MaisselLeon . MasselRobert F. Cmelik
IBM CorpBell Laboratories

Dept. C14, Bldg 704,P.O.Box 390 600 Mountain Ave.
Poughkeepsie, NY 12602 Murray Hill NJ 07974.(914) 463-2301 (0)5259

Raymond L. Phoenix David R. Ditzel

IBYorktp egtN 09 o 0

Bell LaboratoriesDept. C14, Bldg 704, 2C-523P.O.Box 390
Murray Hill NJ 07974,Poughkeepsie, NY 12602i

(914) 463-5445
Zvl eissThomas A. Almy

ZiB Weiseas ne Tektronix, Inc. M/S 50-384

IBM RPosarchhC6380

Box 500
Yorktown Heights, NY 10598e nR
(914) 962-7036

Richard Ramseyer

Honeywell SRC Research 3ary . arIl g2600 Ridgway Pkwy, MN17-2352Unesta rluh
ap1nstltut fur Informatk IV8125neapoison DNive375 Karlsruhe I378-502 Postfach 6380

LaTence, INd 422(31)t 53-22 JohnZi PeteNrson

Institute of Physical& Che. Res. W-Germany
2-1, Hirosawa,

Wako-shx, Sa2tama 351 Mary (6ller
Japan Bell La2orator2es
Greg Bett4ce 30W062 Caprstrano Ce. #302Naval ,Vaionies Center Napeirviller T11 6Q54C0

8125 Harrison Drive (312) 4620u26 a
Lawrence, PN 46226
(317) 353-3226 John PetersonUniversity of Colorado

CbRiger R. Bate 2845 SR GilpinTexas Instruments, Inc. Denver CO 80210
P.O.Box 222013, M/S 3407 (303) 629-2872 :
Dallas, TX 75222 ,
(214) 462-4790 Bernard Lecussan

36 Impasse St. Felix
Ron Ruledge31400 Toulouse, France •

DOT/TSC, P.O.Box 53 '
Kendall Square Jean-Paul Sansonnet.-
Cambridge, MA 02142 15 Rue ctre Midi Bat.1

(617) 494-2038 31400 Toulouse, France

Win,1

12

Tutorial Program

David A. Patterson Tich T, Dao 1/S 17-5904
University of California Fairchild Camera &
Electrical Engineering and Instrument Corp.

iand Computer Sciences 464 Ellis Street
Computer Science Division Mt. View, CA 94040
Berkeley, CA 94720 (415) 962-7532

Lars-Erik Thorelli Mark T. Michael
Royal Institute of Technology US Air Force, Avionics Laboratory
S-10044 Stockholm Sweden WPAFB, OH 45433

(513) 255-4920
N.G. Frank Thorns
IBM
4686 NW 2nd Ct.
Boca Raton EL 33431
(305) 368-4676

Joseph C. Rhodes, Jr.
IBM Corporation
P.O. Box 1328
Boca Raton FL 33432
(305) 994-7654

Goran Bage
L]d Ericsson
S-12625 Stockholm, Sweden

Peter Klambatsen
IBM Corporation
2000 NW 51st Street
P.O. Box 1328
Boca Raton, FL 33064
994-5098

Moises Cases
BIM-GSD

Yamato Road
Boca Reaton, nL
994-,7992

Dick Conn
Fairchild Camera &

Instrument Corp.
464 Ellis Street
Mt. View, .CA 94040 '•1
(415) 962-2337

Jack Quanstrom
IBM Corporation
P.O. Box 1328
Dept. 24K/032-3
Boca Raton, 7L 33432
994-4770

.: '0 .

13

* 'I ,I '

•III i!

,.1

11 JAI I
iii aj

14

ii

SII Ii I Iji J

f il I

pi li h I

a a.

flirT r . ,,. . . .,WWIIw

PROCEEDINGS

OF THE

INTERNATIONAL WORKSHOP

ON

HIGH-LEVEL LANGUAGE

COMPUTER ARCHITECTURE

MAY 26-28, 19'080

FORT LAUDERDALE., FLORIDA

SPONSORED BY
THE DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND

20742

•i:• Ac knowl editement

The International Workshop on High-level

Language Computer Architecture acknowledges

the partial support which it received from

the Office of Naval Research.

Copyright Q l48O

University of Maryland
Department of Computer Sciknco
College Park, Mdry~and 20742 ,4

A SWM1 INliU WIZM2Dam~e ~

Department of Computer Scienci
University of Maryland
College Park, Maryland 20742

U. S.A.
(301) 454-2002

At

.I

#Z

~~ I
'I,

Internat ional Work5hpj on • igh..lvel lisnguage Computer Architecture

Tabte of Content4

Session A: High level Architecture I
Chairman : Dr. Victor Moore

IBM Soca Raton

The Architecture of a Parallel Execution High-Level
Language Computer..I

Ming T. Liu & P.S. Wang, Ohio State University

Direct-Execution High-level Language Fortran Computer 9
Y.N. Chen, K.L. Chen and K.C. Huang
China University of Science & Technology
People's Republic of China

A JOVIAL Direct Execution Computer..................... 17
,a,'ahan Chu, University of Maryland

Session B: Directly Executable Languages
Chairman % tr. Michael Flynn

Quest for an 'Ideal' Machine Language ... 33
Krishna M..Kavipurspu, Southern Methodist University
Harvey Cragon, Texas Instruments

A Directly Executable Language Suitable for a Bit Slice
Microprocessor Implementation .. 40

N.R. Harris, Stanford University

Partial Evaluation of a High-level Architecture ... 44
('oran Rage and Lare-Erik Therelli
Stockholm, Sweden
Directly Interpretable Language Design for High Level

Language Support ... 52
B.R. Rau & P. Bose
University of Illinois at Urbana

Session C: Issues and Perspective
Chairman : Dr. George Ligler

Texas Instruments, Inc.

Twenty Years of Burroughs High-level Language Machines 65
r. Dean Earnest, Burroughs Corporation

A Survey of High-level Language Machines in Japan 72
Masahiro Yamamoto, Nippon Electric Co., Ltd.
Japan

Reflections on a High-level Language Computer System
or Parting Thoughts on the SYMBOL Project ..

80 ,
David K. Ditzel & William A. Kwinn
Bell Laboratories. Murray Hill and Hewlett-Packard 4i

A Case Against High-level Language Computer Architecture 88
H.C. Cragon, Texas Instruments, Inc.

i1 0

• a~ a,+••',•"•r ... :........ •..... "" 7., • i'• ., • ., . •. •, .T, ,:.• .

Snusslon D: Data Base Architecture~
Chafrraain Dr. Teonard Haynes

Office of Naval Research

Design Issues of High-level Language Daitabase2 Compiter 92
David K, Haiao, Ohio State Uiniversity

Hashing Hardware and Its Application to Symbol
Manipulation.. I................... 99

Tetsuo Ida, Institute of Physical & ChemIcal ki'search
Japan

RAI'.3 - A Multi-microprocessor Cell Architecture for the
RAP Database Machine... 108

1.Oflazer and E.A. Ozkarahan
Middle East Technical University. Ankara, lurk,-v
K.C. Smith, University ot Toronto

l'onel St.,ssion Et Future Impact of High-level ArChittiiturv
ChaIt rnan :Dr. William A. Wulf

Carnegie-Mellon UnIversits

t',inel imts Dtr. Herbert Schorr Dir .. Jak bvivnt,
IBM Research Center Maiissarhusotts Inmtitute. of Technology

Mr. Harvey C.'Cragon Mr. L. 1)e~in Earnest
Texas Insturments, Inc. lturroui~ths Corporation

Dr. Leonard Haynes
Office of Naval Research

No papers in this session ..

Session F: High Level Architecture I
Chaitrman : Mr. Masahiro Yamamoto

Nippon Electric Co., Ltd.

Architeccture of a Multi-languagt. Ilr(v-imi lLikt m i
List Structured DELs.................................... 120

J.3.. Sansonnet, M. Castan and C. I'ercebis.uL
Universit:6 Patil-Sabatier, F'rance

Iligh Level Architecture for a Real Time Latpguage LTN 130
C. tDurrieu, B. Froment, F. Cuazitl, B. tLecussaii,
J2. Romain, D. Vidal and J3. Vuarier
Universitg Paul Sabatier

An Architecture for the Dynamfic Opt imizatiton ill H1ih-Ilevel
+Language Programs... 140

* Samuel P. Harbison and Wmn. A. Wulf'
Carnegie-Mellon University

Session G: System-Oriented Architecture
Chairmian :Dr. Lee Hoevel

IBM Research Center

Architeetural. Support for Abstraction ... 145

I.K. Iliffe, University of Loundoni
111 rsirchilcai Finite Statoe Mnieiiint t. ii i si rmoim !.i,

I ii11ii t/Ouitput Sys tenis..I
tiluih L, Appiewhite, Honeywel II Syn;t eni 1. Roi~ivir,hI
C,?nt er

t.J

SWARD - A Software-Oriented Architecture ... 163
Glenford J. Myers. IBM Systems Research Institoto

t:on Is t•vt ra L oio In o)po'raL I•ii ., y , I h eign fo lr
Multiprocessor Structure s ... 169

Harold Lorin, IBM Systems Research Institute
Barry C. Goldstein, IBM Research Center

Session H: Functional Programming Language Architecturv
Chairman :. Dr. Klaus Berkling

Gesellschaft fUr Kathematik und
Datenverarbeitung
mbH Bonn, West Germany

An Architecture for Direct Execution of Reduction
Languages 174

Werner Kluge and Heinz Schlutter
Gesellschaft fUr Mathematik und Datenverarbeitung

mbH Bonn, West Germany

An Expression Oriented Editor for Language with a

Construc tor Syntax 181
Ferdinand Homes, Gesellschaft fUr MAthematik und
Datenverarbeitung, mbH Bonn, West Germany

Purallel Computer Architecturte Ilmploying PunFrtional
Program ing Systems .. 190

John C. Peterson and William D. Murray
University of Colorado at Denver

Session I1 High-level Architecture 11
Chairman : John K. 111ifee

University of London

On Architectures for Document Preparation .. 196
Martin Freeman and Leon S. Levv
Bell Laboratories, Whippany

A High Level Architecture for a text Scanning

Processor .. 206
F.J. Burkowski, University of Manitoba
Canada

A COBOL Machine Design and Evaluation .. 212
Masahiro Yamamoto, Ryosei Nakazaki, Minoru Yokota and
Mamoru Umemura
Nippon Electric Co.. Ltd., *Jap:in

iL

gN

Papers for Publication Only

A Direct High-Level Language Computer Architecture Scheme
(A Computer with a 1Inified Language Which are the Same
Inside and Outslde-One of Researchee on Nea Architecture
of General Purpose Computers) ... 2

Gao Qing-Shi. 'rhe Computing Technology Institute of the
Academy of Sciences of China

PASC-HLL- A High-Level-Language Computer Architecture
for PASCAL 222

Jean-Pierre Schuellkopf, IMAG. France

An Extensible Stack-Oriented Architecture for a High-Level
Language Machine .. 231

Robert P. "Qoak and Insup Lee
Univeristy of Wisconasin-Madion

The High Level Language Instruction Set of the SYMBOL
Computer System ... 238

Robert F. Cuelik and David R. Ditzel
Bell Laboratories, Murray Hill

High Level Languag' Debugging Tools on the SYMBOL
Computer System s .. 247

David R. Ditzel, Bell Laboratories
Murray Hill

4.

Vi

1a

44 1{

~a ~ j\A~,~AA.A~ ' ,. ' 'A ~A.'~. 94 '."

TiHE AACHITECTURE OF A PARiALLEL EXECUTIUV
HIGH-LEVEL LANGUAGE COMPUTER *

Pong-shang Wan& and Ming T. Liu

Department of Computer and Information Science
The Ohio State University

Columbus, Ohio 43210

Abstract machine hardware. We will describe first the
features in the internal language that make

This paper presents an internal langu&se for parallel and try-ahead operations possible, and
a high-level language comptwr to facilitate then the computer organization for carrying out
parallel execution of arithmetic expressions and these operations. We vill discuss only the
concurrent statements and to perform try-ahead features in the internal language that are
operations foy IF, WHILE, and REPEAT statemesnts. relevant to parallel execution and try-ahead
The architecture of such a computer is also processing, and ignore others such as identifiers,
described, which consists of multiple independent labels, etc., since they are imaterial to the
processors for language processing and parallel purpose of this paper and they can be found in
computation. The increase in speed is achievnd by other papers, e.g. (11 (4). The syntax and
parallel execution, by try-ahead processing, and semantics of the high-level language constructs
by the pipeline effect created by the independent are the same as those in PASCAL.
processors simultaneously performing veriouit
tasks. An algorithm that translates an arithmetic In Section 2.1, we firse briefly describe the
expression intc the internal language form is also notion of Parallel Execution Strings (PES) for
included in tht ;endix. executing arithmetic expressions in parallel, end

then propose a linear repr-sentation scheme as the
internal language for a high-level computer. Au
algorithm vhich translates Pn arithmetic

I. Introduction expression into the internal language form is
included in the Appendix. In Section 2.2, we

In the area of high-level computer present a method of representing a concurrent
architecture, various machine organizations have statement in the internal language so that it can
been proposed with features to increase the be executed concurrently. In Sections 2.3 through
program processing speed [1] 12]. These designs 2.5, ve describe the representation of IF
include independent processors to perform various statements, WHILE statements, and REPEAT
tasks in language translation and execution, such statements in the internal language for try-ahead
as the lexical processor, syntactic processor, processing. The representation allowo the
semantic processor, arithmetic processor, etc. possible paths in a statement involving a
These croceasors operate simultaneously and condition to be executed even before the
asynchrouously, and create a pipeline effect in evaluation of the condition is completed.
the whole system. The concurrency among these Finally, a high-level computer organization tos
processors results in the speed increase in presented in Section III, which includes
language translation and execution, independent processors for language processel'g,

and multiple Semantic Processors and PES Access
In this paper, however, we look into another Processors for parallel computations. In the

possibility of gaining opeed in high-level computer organization, each execution stream is
larnuage computers, namely, the parallel execution accessed and executed by a P18 Access Processor

of arithmetic expressions end concurrent and a Sementic Processox. Each Semantic Processor
statements, and the try-ahead processing of has its own Arithmetic Processor and Local Storae.
statments involving conditions, such as IF, for concurrent processing and try-ahea
WHILE, and REPEAT. The scheme that we use here proeessing.
calls for an indirect-execution arzhitecture which
uses an internal language and is of type 3
according to Chu's classification [3]. Source II. Internal Leaauata Constructs
programs are translated into the iLternal
representation, which is then interpreted by the 2.1 Arithmetic Expressions for Parallel ,xtrution

A scheme for decomposing arithmetic
__expressions for parallel execution, called the

RsrhaParallel Execution String (PES), has been proposed
Research reported herein ws supported in part in [51 161. It can be summarized as follows.
by NSF-MCS-77-23496. 1

-"'C, - --

De _ton To implement this concept in a high-level
longuage computer, we have to devise a linear

In an *xpresejon tree, an operator node is representation for the parallel execution strings
called in an expression tree and use it as the internal

language for the high-level language computer.
type I -- if all of its operands are With this internal language, the entry points of

variables or constants; the etring& are chained as a linked list by
tpe2- if exactly one of its operands is pointere called Parallel Pointers. For the

an operator; and operator where two strings meet, one of its two
t -- if it is a binary operator and operaads is the result of the previous operation

both of its operands are in the processor and hence need not be specified,
operators. and the other operand is represented by fi, where

i is a unique number identifying a temporary
Consider an expression in its tree storage for the partial result obtained by the

representation. Those operator nodes, the processor executing the other string. The first
operands of which are variables or constants of the two merging strings has a Jq Pointer
(i.e., type 1), will be the starting points of the following the merging point operator and pointing
parallel execution strings. Beginning at the to the location that imediately follows the
starting points, these ottLngs are executed in the merging point operator in the second string.
direction toward the root node, each of which can
be asiultaneously executed by an independent To eliminate the need of a stack during the
processor. Each processor executes the type 2. execution of arithmetic expressions, the ordering
operators in a string one by one at its maximum of operands will be reversed in the following
speed without waiting. At an operator node where situation: when the result of the previous
two strings meat (i.e., type 3), the processor operator is the second operand of the current
which reaches this node first will deposit the operator, the first operand will appear as the
partial result It obtains thus far into a second operand in this representation. Thus, if
temporary storage and then stop, whereas the othar the operator is non-commutative, it will be marked
processor which reaches this node later will with an apostrephe following the operator to
execute the operation at the mergin& node and indicate that the ordering of its operands is
continue to execute the remaining string. For reversed.
example, the expression tree in Figure I has three
type I nodes: A+B, C*D, and G-H; and hence there Figure 1 is an example of representing an
are three parallel execution strings. The two arithmetic expression in the internal language.
type 3 nodes in Figure I are labeled as #1 and #2, In Fr&ure 1, Para represents a Parallel Pointer,
respectively. Note that the number of type 3 and •Jg a Jump Pointer. When a PUS Access
nodes is always one less than the number of type I Processor executes a Parallel Pointer (see Section
nodes. III and figure 3,) it will put the pointer value

into ono of the Entry Point Registers so that the
next string can be chosen for execution as soon as
another PES Access Processor becomes free.

The expression J-(A+B)*(C*D+E-F/(G-H))
can be represented as a tree:

2.2 Coucurrewt Sttoment_

A concurrent s&atesent (7) is a set ofJ * #1 statements enclosed by a header COBZGIN and a

+/'f trailer COEND; for axample,
+ ?#

41 COBEGIN

A B + Statement 1;
statement 2;

C D G
COEND Statement n

It can be translated into the internal languake ran:

The statements in a concurrent statement can
Ps. A B + 11 * Jun be executed simultaneously. A flowchart of the

"above concurrent statement is shown in Figure 2.
C D E + #2 - Ju To execute the concurrent statement, it will be

translated into the internal language as follows;
C H -F #2 01* J

COBEGIN PArp Statement 1; Psra Statement 2

Fig.1 Examplt of Translating an Expression Krar Statement n COEMi
into the Internal Language ,-

..... ...

_______-____.,________ "..,

processor executes the symbol "THEMND". or when
the ELSE state processor executes the symbol
"ELSEND", the processor will halt its execution in
the WAIT state. However, "THENEUD" and "ELSE*ID"
will have no effect on a processor which is in the

normal mode of operation.

tarr'-,t r When the first processor executes the symbol
"IF", it interrupts both the second and the third
processors. Depending upon the result of the
conditional expression, it makoesone of the two

processors free idmadtately and discards any
computation the processor has done; any
environment changes made by the other processor
are copied into the main storage and the processor
becomes free. When that is done, the first

2 Flowchart of Concurrent Statement procassor resumes execution from where the latter
processor was interrupted.

The processor that executes Statement n will
execute COEND. The effect of executing COEND is 2.4 WHILE Statements
that the processor will halt itb execution
temporarA.Jj until all the other processors become
Oree. WHILE statements and REPEAT statements will

be processed with the try-ahead method similar to
The semicolons in a concurrent statement will that for IF statements. However, only the

be preserved in the internal language. A repetitive path will be tried in advance.
hemicolon indicates the end of a simple statement
in a concurrent statement and hence makes the The WHILE statement
processor which is executing the simple statement
free. WHILE condition DO statement 1;

will be translated as:

2.3 IF Statements P condition sHlL(ILKDO statemeatl WHILEND J

IF statements will be processed with a The processor which executes the conditional
try-ahead method. The following IF statement expression sets up the entry to the WHILIDO path

for a second processor. The conditional
IF condition THEN statement I ELSE statement 2; expression and the the WHILW)O path are then

executed simultaneowuly.
will be translated intc the internal language as
follows: Executing the symbol "HI/LEDO" forces the

second processor to enter the WHILIDO state. The
Pars condition IF -Par& THEN statement I THENEND environment changes made by a WHILEDO state

processor do not affect the sain storage and are
_ ,SE statement 2 ELSEND only kept in the local storage of the processor.

A WHILEDO state processor will halt its execution
in the WAIT state when it executes the symbol
"WULKND." However, the "WHILUD" will have no

The processor wtih starts exocuting the IF effect on a processor which is in the normal mode
statement will set up the entry to the THE clause of operation.
for a second processor, which in turn sets up the
entry to the ELSE clause for a third processor. When the first processor executes the symbol
While the first processor is evaluating the "WHILE," It interrupts the second processor. If
conditional expression, both the statement I and the result of the conditional expression is FALSE,
the statement 2 are being executed simultaneously, the second processor becomes free immediately and
However, any environment changes resulting from everything in its local storage will not be used.
the executiott of the statement I and the statement The first processor then follows the WHILE pointer
2 are kept in the local storage of the second and to execute the next statement.
the third processors, respectively, end will have

no effect either on the execution of the other or If the result is TRUiK, the environmunt
on the evaluation of the conditional expression, changes stored in the local storage of the second

processor will be copied into the main storage,

Executing the symbols "THEN" and "ELSE" and the second processor becomes free. The first
causes the processor to enter the THEN state and processor then resumes execution from where the
the ELSE state, respectively. When the THEN state. second processor wee Interrupted.

3.

S... . ! . '-- ~, "'.. ' ,

2.5 REPEAT Stateoseto Haynes [I] except that multiple identical
processors are also used for parallel
computations. Since we are interested only in the

The REPEAT statement parallel execution aspects of the architecture,
other features which are the same as Haynes [1)

REPEAT will not be duplicated here.
statement 1;
statement 2;
se PES Access Processors

The PIS Memory stores the internal
statement n representation of the source programs. During the

UNTIL condition; translation phase, the PS Access Processor
receives program tokens in the internal form from

will be translated ams the associated Syntactic and Semantic Processor,
assemubles and stores then into the PIS Memory.

statement 1 easement2 ... statement n REPEATEND During the execution phase, each PIS Access

Sa di U Processor read* the program from the PIS Memory,
Pa condition UNTIL kP5 separates and deliver& the symbol* to the

Sassociated Syntactic and Semantic Processor that

it is attached to. A free PM5 Access Processor
The processor which executes the conditional will start executing a (parallel) execution string

expression sets up the entry to the REPEAT path by using a uou-supty value from one of the Entry
for a second processor. The conditional Point Registers as a starting address in the PES

expression and the RIAUT path are then executed Memory for execution. After that the Entry Point

simultaneously. Executing the symbol 'REPEAT" Register is cleared.
forces the second processor to enter the REPEAT

state. The environment changes made by a REPEAT The PIS Access Processor can continue reading

state processor do not affect the main storage and from the PES Memory until either ito buffers are
are only kept in the local storage of the full or it has read a semicolon, which indicates
processor. the end of a simple statement in a concurrent

statement.
The symbol "RZPBATEND" is added to the

statement. Execution of "UPEATEND" will have 'no Parallel Pointers and Jump Pointers are

effect on a processor which Is in the normal moda executed by PES Access Processors. When a PIS
of operation. Once a REPEAT state processor Access Processor reads a Parallel Pointer, it puts

executes the "REPtATUMD", it will halt its the pointer value and its processor identification

execution in the WAIT state. into one of the Entry Point Registers and
continues its processing. When a PIS Access

When the first processor executes the Processor reads a Jump Pointer, it simply alters
"UnTIt," it interrupts the second processor. It its program counter and reads the program from the

the result of the conditional expression is TRUE, now location.
the second processor becomes free imediately.
The first processor than follows the UNTIL pointer
to execute the next statement. Syntactic and Semantic Processors

If the result is FALSE, the environment Each PIS Access Processor is attached to a

changas stored in the local storage of the second Syntactic and Semantic Processor. The PES Access
processor will be copied into the main storage, Processor and its associated Syntactic and

and the second processor becomes free. The first Semantic Processor are operating concurrently and
processor then resumes its execution from where asynchronously. The communication between them is

the second processor was interrupted, carried out by the buffers in the PES Accecs
Processor and a counting semaphore. During
translation, the Syntactic and Semantic Processor
voeceives program tokens from the Scanner, performs

III. Architecture syntax analysis) translates the program into the
internal language, and delivers the resulting
program to the FEB Access Processor. During the

The architecture of a high-level lsaguage execution phase, the Syntactic and Semantic

computer which can execute the internal language Processor executes various types of operators sent

As described in Section II is shown in figure 3. by its PIS Access Processor, such as IF, THEN,
It consists of PIS memory, Mahin Memory, Partial ELSE, BEGIN, WHILE, REPEAT, etc. It also sends

Result Itaroff, a Scanner, an 1/0 Processor, and a commands to its Arithmetic Processor and the 1/o

number of PIS Acces Processors, Entry Point Processor. A Syntactic and Semantic Processor can
Registers, Syntactic and Semantic Processors, clso alter the program counter of Its PIS Access

Local Storage, and Arithmetic Processors. The Processor when it executes 8 "GETOS", "WHILE", or

various kinds of processors are operating "UNTIL." Each Syntactic and Semantic Processor has

simultaneously in a pipelined manner, and the its own local memory to temporarily store the
organivation is similar to the one proposed by environment changes during try-ahead processing. I

- •. '• . . ., , ., .• ' • " •, •. •..• • ; •' : ', ; ' ' " • .. :.. . ,4

q

The Syntactic and Semantic Processors are statements. for an IF statement, both the THUiN1
interconnected to each other so that when a path and the ELSE path are tried simultaneously,.
try-ahead path is taken by a Syntactic and while the conditioual expression in being
Semantic Processor, It can @and its processor executed. The wrong path Is later discarded, and
identification to the processor which is executing the right path activated. For WHILE etatdmemnte
the conditional expression. After the conditional and IDERAT statements, only the repetitive pith is
expression is evaluated, the latter processor will tried ahead, since it is the one more likely to be
interrupt the former and take the appropriate correct. The resulting system can increast its
actions as described in Section I1. processing speed over other designs thtough

distributed processing of varioua tasks by
multiple independent processors, through parallel

Arithmetic Processors execution of arithmetic expressions and concurrent
statements, and through try-ahead processing of

An Arithmetic Processor is connected to each the statements Involving conditions.
of the Syntactic and Semantic Processors. When a
Syntaoic and Sementic Processor receives an
operand from its PAS Access Processor, it saves V. Rjeference
the type and value of the operand into its operand
registers. When it receives an arithmetic
operator. it directs its Arithmetic Processor to (1[Haynes, L.S., "The Architecture of An Algol 60
perform the operation on the operands stored in Computer Implementation with Distributed
its operand registers. The Arithmetic Processor Processors•" Proeeings oL the Ath MAnga
will check the types of the operands, end perform 1xio _% Computer Architecture, pp.95-104,
all type conversions if needed. The results of an March 1977.
arithmetic operation are stored into the operand
registers of the Syntactic and Semantic Processor 121 Chu. Y., "A LSI Modular Direct Execution
which has seAL the operator. Our scheme used here Computer Organization," ..•.. W., Vol.11,
will not require any stack for arithmetic No.7, pp.69-76, July 1978.
expression executions, and, at any time, no more
then two operands will be in the operand registers (3] Chu, Y., "Concepts of High-Level Language
of a Syntactic and Semantic Processor. A stack is Computer Architecture," inJ Hgh-leve ggL gs
used in the main storage only to allocate space QiwutGV ArChliteturL. (Y. Chu, ad.),
when a block or procedure is entered. pp.1-le, Academic Press, Now York, 1975.

[4) Haynes, L.S., "Structure of A Polish String
Partial Result Storate Language for An ALGOL 60 Languale Processor,"

ProeedUs1u 9L ACKI&ER IYNDIUS a
The Partial Result Storage is to temporarily High-Level Lanuasga CL uter Architecture.

store the partial results obtained during the pp.131-140, Nov. 1973.
execution of an expression. Each location in the
Partial Result Storage has a tag associated with [51 Wang, P.S. and Liu, M.T., "Parallel
it to indicate whather it is empty or full. All Processing of High-level Language Programs,"
tags are cleared initially to indicate "empty." Frog. I the 1221 = Za termstional SL.
When a Syntactic and Semantic Processor receives a Palll Procesaing , pp.17-25, Aug. 1979.
partial result operand, i.e., an operand of the
form .I, from its PAS Access Processor, it will (61 Wang, P.S. and Liu, K*T.. "Ak
check the tag of location I in the Partial Result Multi-microprocessor System for Parallel
Stoelage. If it indicates "empty". the Syntactic Computations," Proceedings o2 .he So~aad
and Semantic Processor will save the contents of Symosoium on f gSystem pp.59-68, October
its operand registers into location I of the 1979.
Partial Result Storage and set the tag to indicate
"full". The Syntactic &ad Semantic Processor then [7) Dijkstra, U.W., "Cooperating Sequential
becomes free. If the tag indicates "full." the Processes," in r!ozarana Luugnuasau,
Syntactic and Semantic Processor will reset the (F. Genuya, ed.), pp.43-112, Academic Press,
tag to indicate "empty", read the contents of New York, 1968.
location I into its operand registers, and use
them as the operand for the next operation. [81 Laliotis, T.A., "Implementation Aspects of the

SYMGQ1. Hardware Compiler." Procee ding R h
f~irs AuuiAnI xmalIaa M fommute
Architecture, pp.111-115, December 1973.

IV. Conclusions

In this paper we have presented an internal
languaSe for a high-level language computer, in
which arithmetic expressions and concurrent
statements are expressed as parallel executable
strings. Try-ahead operations are performed for
IF statements, WHILE statements, and REPEAT

5•

A o ndkx 4. Push $(TKMP-CUUNT"K + 1) onto
OPN-STK.

A Translation Aleoritha Cae. 1.. OPN-STK(TroP) is a Sk:
1. Output OPR.

The algorithm is to translate an arithuetit: Case 2 £he OPK being popped is a binary
expression into the internal language form operator. Depending upon the top
described in Section 2.1. During the translation two elements on OPH-STK, there are
process, two stacks will be usedt OPi-STK and three cases:
OPN-STK, for storing operators and operands,
respectively. Dollar signs ($) will also be used _Qase L. Bath of the two elements are
in OPN-STK. LC is the Location Counter which variables:
contains the address of the location for storing 1. FINLSH-PREVIOUS-PES.
the next output. Two variables are used: 2. Output the top two elements from
TE(P-COUNTER is for the number of temporary OPN-STK.
storage locations used, and PES-BEGIN in the 3. Replace the top two elements on
starting address of the string currently being oPN-STK by $(T&1P-COUwTVK + 1).
generated. An array TEIMP-POINTIR (Tp) is used Ln 4. OuLput OMR.
the algorithm. TP(i) stores the address of thei
first of the two We'e in the output, so that whoa: .qj.: 2.2 One element is a variable, ,and-
the second #i is generated, a Jump Pointer to the the other i. a $i:
second #i can be generated at the location I. Outptit the rartable.
following tets first #1. 2. If OPK is non-commutative and

OLYN-STK(TOP) is $i, then output
The algorithm is similar to that of OPk', else output OPR.

translating an expression into a reverse Polish 3. Replace the top two elements on
string, except that operands are not written out OPN-STK by Ui.
immediately and its operator output procedure is
m more complicated. A hardware translator can be Cage 2.3 both of the two elements are
easily implemented in the Syntactic and Semantic Va. Let OPN-STK(TOP-1) be $k, and
Processor (82. Figure 4 is the flowchart of the let OPN-STK(TOP) be Sit
algorithm. I. Output Ok.

2. If OPR is non-commutative, then
output OP1, else output OPI.

Main Procedur•e 3. Output OPf to the location pointed
to by TP(K).

1. Clear TP array. Initialte TEhMP-COUNTYK 4- 4. Outplit .iump Pointer with thi
0; PES-BEGLN 4- LC. content of1 IC to thie location

2. 8 4- next input symbol. pointed to by TP(K)+i.
3. If S is a '(', then push OPR-STK('(') and &in 5. Repla, ae thie top two elements oit

to 2, OPN-STK by $j.
else if S ts a variable, then puel,

OPN-STK(S),
else RROR..

4. S 4- next input symbol. Peroceure FINISIPKEVIOUa-PES
5. WHILE Priority(OPR-TOP) > Priority(S) DO

POP-OPR-STK. i. TgMP-COUNTgK 4- TEMP-COUNTER + 1.
6. If S is a)' and OPRTOP-'(', then pop OPR-STK 2. Output O(TEIP-COUNT3R).

and go to 4. 3. TL(TEiP-CuUNTebk) 4- LC; increment LC by 2.
If S is a ' and OPRTOP is not "(', £EROR. 4. Output a Parallel Pointer with the content ,ot

7. If S is an arithmetic operator, then push LC to the location addressed by PES-DgCIN.
OPR-STK(S) and go to 2. 5. PES-BEGIN 4- LC.

8. If S is "end-of-axpression' and OPR-TOP is not
a "(V,

then DONE else ERROR.

Procedure POP-OPR-STK

Case I The OPR being popped is a unary
operator:

Case 1.1 OPN-STK(TOP) is a variable:
I. FINISH-PREVIOUS-PMS.
2. Pop OPN-sTK, and oti(i It .t
3. Output OPR.

h

!.ýV AL
11,ýA,

Procso Mmork Result
Procesor MmoryStorage

g n

Snatc&Syntac~tic Syntactic&

vProcessor 0 Processor I roeso

Pro. c5Cor 1 IPr Procso

- I Ii iEntr Pr,.oint.I l

Rp~is

ater

zii& ; I

keIN.C So

Itipu Sf*

FPusr 4b OocdurPP-OR-S-l

I *jjW

Di~i 4u r-a."c'JTION IIllJH-UaV61.LLNUUAUZý I'LkliJAN CuU~wr&H~

Yoor.y huin Chen, KUo Liaalg Chen, Ku Chng IlHuang

University of Science and Tochnolory or± China

Iiefwi Anhul •11"oplub hevuulic of Chinga

'Abstract mited to a certain nuMbur.

rhis •aoer presents a c,,neoptul (2) The types of all the variables and arrays

,vuisin of" the direct-elxcutlis Fortran shoud be deuclared explicitly, espeOially

Ccmauter. First some ,i.lt1Oto3 OCe tne wiusy argents of the statement

introduced into the lar uut,e r'rtvan nt iof.

to nsours simpler execution and uetter lnction.

performance. Next follows a brief .ila-
cession of the architecture of this (A) In oraer to ,.uistinuush between the ton-

comluter and then, ii ivre ,iutt j, ut'

' I'I uYN(,'. "I.UMO" 1Is p.laoed at the beoinaing
tf~Uairut-uacuton jroc~a~ o' C unch stotiment function. Thu dImny Srgu-

typical kortran statements which ;:y m61tu u utstement function are looalizedu

furnish snoutline 01 thu wore. of this n the prorsem unit of this ftateaedt

compjuteZ. finally, soaiu cowui.at ore i t pog.

SOde on the posliblu devulopruuit o1'

the lirect-axwoution hleh-luvui languae (4) 'he .4UIVA.,2WA statement is deluted.
1omlutor.

The architecture of the diruct-execution

ýortran computer Is doecribed briolly in suotion
Ii of this paper. The direct-execation proce-

4ures ua' sowe typicls statunents of the language

tortran are discupied in section I1I. We believe

that may fUWrat.N, an rutline of the work of this
uirect-eoxoution Forditan computer. Finally some

it introduction corants are maue on the possible development
at' the airuct-eaecution high-level language

Nith the rapid advance of the science and com.tur in suction IV.

technology of comrutwrs and electronics, the

csut of the hardware bea'mes chorpoz sand that 11. Architecture
Cf the sol'twnre becomes more •QApunivu lay by

lay. This makes it both oossible and necessary, The direct-execution high-level language

to domuni the dIrect-lxecution ; Fi±nh-level Ian- icmputer should execute the program written in

thue mot;ater. w 3dnu e the ian'hlevela ortrc tie this la;unage directly according to its lexicon,
the u,¢,.t widely used high-lovul ian•.ne o, thu -ayntax and semanticas without usinug the tradi-

m.uneirch aud design of the liroct-exucution tional and complicate multilayer software. (such

Fortvnn computer may not be 11-nivisot. an compilers, assemblers, loaders, eto). Thus,

Ita architecture should reflect the structures
this paper Cives n conceptual .in1 el' thu of' iexicon, Control asad Data of this high-level

Jhruet-naeoUtion F'ortranm coputer. It uneo th aInnguage, so that the program written in this

AKI;. basic Fortran as the tuna•-untnl langua4e, lang/uage may be treated more efficiently.
uut in or.er to in3ure ci-,plur exucutiun and

-utter 1,erformance, some modifications a, The computer architecture diagram proposed

introduced into this langua,3 as 'onlowS. is shown in Fig. 1. It conjista of a Program

Muemory HW (to store the user's program), a Data
(1) Main program proceeded by the &uySird Memory DM (to store the relevant data) and four

"Master" should be put at the one. For 1oroceasorn (Input/Output Processor I/o P.

interaction between man and machisiu input- Luxicnl rTrocesaor LP, Control Processor CP and

ting is carried out toun uy torun; thL, t o D). mong th, processors there 4

: raein program should1 bo, put at the ±rnt ,�r fire olso the control bus, the address bus, the

the vholo pruogrami. Uut at that timu the Uta sus sal .one rUgisturs to store Interectioa

j-,uels of each iprogrno, Qwiit uhhutld be li- at

L9

0.

'i

temporarily. These processors Wan be microp- It tills the corresponding entries of DAM for
rooaesora or built up with IJS chips. They my the variables and arrays but does not allocateoperat 90iIoI0lly and syAchronously with each any cells in Em. (except GOiOjol Statements).
Other in order to inorease the proeoel& speed. For executable stateLents no treatment should

as necessary; it's a matter Of starting tle LPThe user's program may be input Into the pA LOy OP to continue the scanning. NoW As DP is Ineither all at once, or token by token, execu- the operating mode, it not only fills the ocar-ting and storing suaultaneously to allow into. responding entries of DAM, but also allocates
faotion between =A and machine. After treatemnt cells In PA for them. Then It calculates the
by 1/0 P the user's program Is input into the Value* of eseousable statements sad asaigns
HA in a defaite form: nely with a terminal values to the&. The register Po? points to
character at the end of each state nt a two the first usable location oa the tree space in
taaging characters one at tbe beginning of each &. (After returning of the called subprogram
Prognma unit and the other at the end of the te spans in VM allocated to it should be ro-
wseola Provea. These- tagilg oharacters are lOaled for other uses.) 4XP Steak storos op-called unit heas kiand program eA cbaraceors rators. V Staoa stores the values of operands.?ZVespectively, they ar In the frist position of L St.ck *tares tow logical operands.

'",the label reionj and are different trim any
brdinary cheracter* uad by Fortran. The codes Besies, LU is toe Data Memar7; data stored
stored in the 1% may be e*ther ASCII or coa- In It are tagged to indicate the type ot data.pressed Internpl codes. 3caanor pointer UP is a pointer which points to

the location of the character being treated in
LP is used for lexical analysis. It includes PM. Th• z • T register stores the operatingthe UA (Scanner Associative im .e7 which stores results to control the DO and IF atctoeants.

legal cheracters, eteo) There sru two working
.-*odes for LP controlled by OP, scanninl and Ill. Di•tjt-exZcutioc of Soe statemAnts
exocuting. In the scanning amod, LP cheeks the
characters sent from YX whothe" there is a Before executing we assial that the user's
terminal character or not, so as to find out program is stored in PM already. The pointvi. SPthe label region (since the label region in points to the first character of the program in
Just next to the terminal eOacter.) After LF I'M and LP is in the seaniagi ode.
finds out the label, the unit head tag and the
character "Dw at the ftit position of the 1. Treatment of unit head statements

tatemnet, L? is traestered to the executing
od n the eOesa•nl mode, it cheoks the tOea I. sc&as the unit hoed tag, it is

1# ll4ity of characters seat from IM, $polls 4hand tO the eneoutiag modu, spelling thea into tokens and sends then to op and/or characters Into tokens to be output. op receives
* ,Ift the tokens are a striang of numbers, set and analyses the tokens to determine the type,
q 046ASer to 010, aeo el coliverss and class and nAas of this program unit. Then itPut the converted codes Into the VALVg; register tills thes isms into the corresponding fields

and then send them out. Rto global AMW as shown In Fig. 2, where DAmPT
points to the tirst loadlias of the local quad-CP consists of the CAMU (UAit dead Control titile in DAM, U points to the first charac-

Asoeciative Memory), the CAUL (Label Control ter location ot the first executable osatementAssociative Meamry), the CAMl (kigserved Word of this u•it in PM, UT points to the lodation
Qontrol A-sooiativo Memory), the p Stack (ieturn of the first label of this unit In CAML. The"--
Stack), the no Staek, tt.e CALL Stea and the pointers should be filled before the unit is
MDLUO (Mode of DP anW Lp sgjinter). OP is the called.control center of this omputar. When the main -progrm is executed or the subproverm is clleb If this uait is a function subprogram, DP
it sets DP into the opOrOting mode by mans of should be activated to fill its name into thethe register fDLuM. Otherwise It may set Dp DAM of this unit as shown In Fig. 3. Then the
Into the syntax node. fte wosting modee at Lp location of the first entry in DAM of this unitare also sot by meUas of the register bOLIU. should be put into the field DAMPT In CAMJ.
A Stack is used for roeerviAn %he return pool- Finally, there should be left a blank betweention. DO Stack Is used for resle-ving the Do the two neigboring units in DAM, CAL. eta, to
statement Information and C" itack for roser- indicate the ead of the units.
ving relevant information of local quantities
when a call subprogram is ezecutod. mhen Lp For the subprogram wtth tum4 arguments,
outputs a unit head or a label, OP should fill after oP recognines a dwu. argument, it acti-
the entries of CAMU and GAML respoectively for votes DP to fill the entries of this block
14460 u4s In *ofN control statements concerned. sucessively o. d Vput n dumy symbol in the Cf;•l

Dumay. When it encounters the character ")I itOP consists of DAM (Date Associative Memory), fills the cumber of dummy arguments in the field
some stacks (kXP Stack, V Stack, L Staca and F UZZB.
Stack) and register FWY. In the syntax mode
for non-executable statements (declaration pert) to i

10L

2. Treatment of declaration state•l•nts body

-,ihon OP enconterf the names of variables or If the first character of the statement is
array" of the Aon-szeoutablo statlments, it Puts nAt the alphabet 0D"0 then the LP ehould scan
thes into the DBR (Data Search Rogifter) aed continuoutsly. It It is, the Lp should output
then activates DP to find out whether there a" a token. When aP does not g"1euatO the keyword
such names in DJAM or not. if there are, DP fill& "DO", it seta LP to aoannals mode sgain; If It
bhe Correspon•ing fields. If there aren't It does encounter WDO' the following statemet

Illodatuv5aes entries. should be a DO statement such as:

The field STIUCTIJU Indicates that the DO L I m, , m2 , m 3
structure or the name is a variable, an array or

a function. The field TYP indictaeet that its %'bon OP pushes the label of the terminal state-
type is a reel or an integer; the •ield COMWM neat L Into the field T. of the Do stack
Indicates whether it is allocated in the COiN" (remains the other fields blank) and pushes t.he
region or not; and the field SMI indicates the roturn location (i.e.the first character of the
volume of array or the nulAr of the duf7 l2ooP body) into the R stack ae shown in]ig.5.

arguments. Besides, the field FPl points to the

location of the variable (or the location of 0hen a definitional label is encountered CO
the first component Of the array) stored In the fills an entry of cAWuL md so" into its field
ON. In our scheme, for all the quantities of DJL as well. Wh~n the label of the terminal
non-edeoutable statement s eoept thdeo saSci- stfatmsit L is encountered, besides filling It

fied by the O~lOM statements, we do not alla- into tne CA, the DO etaock and Ji stank should
oats any celle in UM. thet is to say, we do not be Popped, the values of the DL Of all labels
fill T1'l until this unit Is called by another within this DO loop should be Increased by "1n.
proaram unit. Of cou•se, for these quantities
in the main program cells are allocated. The For multi-esated DO Loops, say, with three
pointer PTI stores the information for calau- nested layere, utter 8P transfer* out of all the
lating the location of the aoopouents of o nO loops the DL value of the innest layer i .
array, sn it to filled for arrays only. 3, that of the mid1le lOfr ie 2 ann that of th.

outermost layer Is I. TIio treatment of defini-

3. Treatment of the statement function tional labels in the main prograft will be die.
cuseed in the aelt pamragraph.

The treatment of the statemsnt function Is

to fill its ncae and dummy arguments together 5. Treatment of DO Statements.
sith their types into the svhM but not to allo-
Cate any colls in the DM. When UP encounters shen OF Is In the operating oode to execute
the token".", the content of SW should be the DO statement .Do L i " 0' ", If the

filled in the field PT3 In the DAM skI than dP tOFsnmlb-l statement label Lt i ound tn the oAL,
sots LP to san until the tlerinal symbol of the tWIT of L ii pushed into the field IL of the
this statement is encountered. D0 stic, a1 i assigned to i, and the locatiOns

of i. meanm are pushed into the fields qY

4. Treatment of the Definitioal Label (Control variaSle)$ 14 (Final Pareater) A" IP
(Iinoremental 't1 remater) of D stack respectively.

Before enouonterinh the f ist the Tstat he return location is pushed into a stack

statmlent of the main program, D' is in the (.oeturn Utack; also, as shown In FVI.5. labels

syntax mode, i.e. It only treat& the non- which are foun4 In the CAUL with addresses both

ezeotable statements as discussed above while less then or equal to that of the terminal label

Vor the executable statements it treats the L and greater than or equal to that of the R

definitional label only. stack are within the Loop body. Then the values
ohf the field DL of ell the labels within the loop

Tie treatment of the defidittioual lnbel is body should be decreased by "1". The Values of

to till the label in the entry of the ChiML of IlL of this layer now equals to "o", which 1mdi-

its unit according to the sequence tf its Oats$ that these labels are in the gsae layer,

appearing In the program as Shoen in Fig,4, so that thby may be tranfored. When the nasted

where VMFT (program Neory Pointer) points to DO statement 1i encounterOd C es goe through all

"the location of the first character of the the procedure as diacussed above. Having executed

statement of this label in PH. DL indicates the the terminal stateet of the DO loop, OP actie-

number of nesting of DO Loops and is used for tee DP to calculate i w I + a sad PR Ty . I -

pruventing the program to transfer into Inner a , It ROULT dO0,then the tip items of i ttack 1

layer of the loops. soould be Copied into SP to mako the loop enecu-
tion saain. if the RHBLT3O, tie loop execution

For the xa.outable statements of the subpro- 35 completed, the vltes of the field DL cf all

gra, Lae is set iJth. soanning mode to scan the the labels within the loop body should be

label rtngton and4 the fj••t chaflater of the Increased by "1", It indicatse that thees labels

statement. Now if the label is encountered, CP witlie this loop should not be tran•foerd. Then

fills one entry of CGAL and "0" in its VL field the DO stack and aI stack Should be popped.

to iodiosto that the label Is not In any loop

11

;L1

If L to not found in CAUL the stateomnts subroutine and function subprogram
In the loop body should be executed. Ahwn the
definitional labels are encountered, CP allo- In the case of calling a function subprogram
Oates the entries of CAML to them and fills the or a statement function, it is necessary to find
fieldo DL With wO". Having executed the terminal the nase of the function in the region of the
statement of the DO loop, treat them as discuar current operating program unit of the DAM. If
sed above, this name Is found it is a statement function;

otherwise, it may be a function eubprogram. For
6. Treatment of COTO and IF statements a function subprogram, Its name mould be found

out in the CAMU.
If the COTO L statement Is not In any DO

Loop, and the label L is found in the corres- OF copies the values in the fiels NpT,
ponding region of CA'IL, OF checks the value DAMPT and LPT of the CAMU into the fields of
of the field DL; if It is 0", the program may temporary register. OF allocates a coll in DM
transfer to the label L; otherwivse, an error for the function nam to store values of the
has occurred. If the label L. is not found In functiou. Then the Cp recogaizes the actual
the corresponding region of CAiML, OF sets la, arguments, say, there are three arguments. A
and DP into scanning and syntax modes respec- (variable), 3 (constant) and C + D (expression).
tively, scanning the program to find the L. The C? activates DP to find out (by DAM) the loca-
treatment Is similar to paragraph 4. tion In DU allocated for A. The locations of A

and those of temporary cells allocated for
When the L is found hi the program, in or- constant 3 and the result of expression (C + D)

der to prevent transfer into the inner layer together with the location of the function same
of Do loop from the out layer, the L should not should be copied into the fields PT1 of dummy
be transferred immediately (although the valae arguments and the function name of the called
of its fields DL is "0" at that time), The subprogram in iAm respectively. Then DP pushes
location of L In GA)OL should be stored in the the value of the field Prl of the function name
temorary regieter TR. LP soans the program into t, stack, as shown in Fwi.6.
continuosly until it returns to the same layer
of this 0O•0 L statement, i.e. the DO loop It, our scheme we use call by name. C'urtainly
layer whose fields CV, FP and II' in the UO uuring the process of substitution some ayntax
atnock are blank should be soanoe,i out diuu the chcking (as on whether the nunoers of the
values of field DL should be i-cruaswd. Tnen actuul anu dummy arguments are equal, whether
the values of the field FM and DL in CAU the types of both arguments are the same, etc.)
should be found out by mans of the content in should ue made. Nhen the character ")" ham been
TH. If the value of the field DL is "U" then treated, the return location In 11 (the value
the progream transfers to L; otherwise an error of SP) should be pushed into R 3%ack, the values
has occurred, of DAp-T snd LFT of TIR and tht, of FuMP' pushed

into the CALL stack as shown in FIB.5. The value
For the OCTO L statement lying in a certain of kWV of CAMU in the temporary register should

nlAtI* Do loop layer, it is necessary to find be put into the pointer aP to perform the trans-
out L within the current nested layer of CAML. fer. In executing the executable statements of
(If it is not found in CAML 1Y should be set the function subprogram, DP should allocate
in the scanning mode To EM the prOgr6A cells in D for local variables which have not
to find the L of this Do loop layer in the been allocated yet, and should modify FD6PT also
program as discussed above). If L is found and . once the RV¶II Statement is encountered OF
its DL value is "0", the program should be puts the value of R stack Into SF, pope the CALL
transferred to L. If L is not ftand, the values stack snd R stack and clear& all the fields I-rl
of the field DL of all the labels within th1is . o0 the DAM of this subprogram. The calculated
loop layer should be increased by "1". C0 pope result is now automatically available in the
the top of DO stack and R stack; goes on to cell of the function name.
find the label in the outer layur (in the CA~tL
or in the program). The above process is re- Me call of a statement function is very
posted again and &a4&i until the L Is found uiallar to that of the function subprogram but
and the program is transferred to it. the value of 1T3 of the statement fouctioa in

the DAM should be put into SP instead of PT'.
The execution of 11 statement IF (e) i, in CAMU of the function subprogram. At the same

Li L Is slmliar to the UOTM statement. olen time, It is not necessary to alter the CALL
Or regognizel the keyword e01 " it aetivates Stack.
DP to calculate the expression and puts its
logical result (less than, equal to or greater Since the call of a subroutine atatemeut
than zero) into the MAMULT regiter. Then is proceeded by the keyword "CALL", it is
according to this result CP puts the value of easier to recognize. The treatment of the call
the orreponding M of Ll, L2 or L into subroutine is rather similar to that of a
Sp to perform the transfer. lfunction subprogram.

7. Treatment of the call of statement function

1?..2

- •

IV. Conclusion computer Society, July, 1978, pp. 69-76.
(3) Yaohan Chu and Cannon, i.R." A Programming

The language Fortran has been in use for Languaee for htigh-Level Arhlteocture m ,
many years in scientific comutstion and Is Proceedings of the national Computer
fomiliar to most computer users. Since however, Conference, Now York City, June. 1979, pp.
quite a lot of trouble is involved in the use W•7-665.
of the language Fortran for direct-executing (4) Yaohan Chu and Cannon, X.IR. "Interactive
we have to modify it properly in desilgning the High-Level language IireCt-Axeeution Misro-
high-level language computer. processor Systems", ME51 Transactions oan

Software C ptgneerIng, oh ie, 19y6. PPo 126-
la day, the computer hardware an the i oepu- 1e4.ter software hold a relation of mutual impetus, (5) ISO Recommendation R 1539 PROOFW44ING

mutual penetration and mutual constranat. The LAN(GUAGEi FORTRAN.
development of the computer lanaue and prop, (b) ANSI, B4s10 FORTRANM, X3.10-1966.
grumming has gireatly affected computer archi- (7) David Cries, Compiler Construction for
teoture, as is shown in the im~provement from Digital computer, ;ohn• Wiley & sons, Inc.

language computer architecture. on the other (8) Ow LAFORTRAN *t4*LJ
band, the development of computer architecture 1979.1z.
also leads to a development of lagueae*, such
as the HIf lonauage proposed by rrof. Yaohan
Chtu.

To sus up, the development o1' tee high-lsv
level lagu•gse computer snould lead to a close
merging of the programing language and the
computer architecture; that is, the language
and the computer architecturo ought to execute
the program effectively and the progr tmiug
also ought to satisfy the retuirments of the
language and architecture, so as to improve tho
reliability and practicality as well as the
cost-efficiency of the whole system. So in the
long run. It is necessary tc reconsider and
redesign new language from the point of view
of programing and computer architecture.
Indeed the conception of structure programming
and structured language has appeared already,
but the languages evolved are not solely dedi-
cated to the high-level computer

Since the said H•i languae Ias not won
Wide acceptance yet, we think it necessary
to design some new computer arr ,cture for
the curregnt language such as Ft an, Cobol
e*t, This is our motivation in 'iting thia
pater.

V. Aoknowled•gement

We are grateful to krof. Yaohan Chu of
University of Maryland U.S.A. foi his kiac
help and active support!

he are also grateful to tnose of oar
University --- University of science and
Technology of China --- who have been sind
enough to provide various facilities for
aaking this paper possible.

References

(1) Yaohan Cha "JDireot-Axeoution in a eigh-
Level Computer Architecture", Proceedings
of the ACM Annual Conference, washingtqn

U.C., Dec•mber, 1978.
(2) Yeaoh& Chu "An 1.L8 Moduler Direot-Izeou-

tieo Computer Organizatlon", COM•P AS"I~uk

13 t

2I
!'V

++ .4

•! !, j ~ .•! • ., •.. • •- • ,,.. 4f•-• .g , - ' ,• .i i ,,! - n... .. , -. -.

. ..

P14

~~LP

I/O PROCBSSOR
LM RG

SEARH REGIST

L DO STAM--

LEXICAL PROCESSOR LCALLSTC:

PVALUE MLASS TOKEN -L

DATA PROCESSOR

LSTAC ,1

COTO PRCESO IV,

DM

Fig.1 Organization of the Direct-executionr

FORTRAN Chmputer.
14.

...

C A Mu

'WI TY 'I CIA9S DAMPT PMPT LPT

f REAL FUNCTI ON ____

L'ig. 2 The Unit Head of Lth 'ontro'l Associative Memory

"~dT P'~rr ~ riF Il D; *X!. PT1 Pr? P'13

y ______ ____ DU1¶Y - - -

B ARRAY .1NTFIGPR 50 C'OMMON

Fijg.3 A DJat.. Aii3ocj'ltiva Menrory

____________ C k M1 L

LA~PPT F M P T D L

" "gA 'Thi Label "Irt of the ThoVtrol

Asl~ciatve oo.-orI

L (i) (M2) (m3)____

TL CV PP IP FDN4PT DAI4PT LPT

DO S TACK flSTAC~K CALL ')TACK

Fig.5 a DO STACK, a Return 1' (XK arid a (ALI, 'TACK

NAME STRUCTURE ... DUM14Y MT -M

f FUNCTION -(-)

x

Z D 3~1~~

B'ig.6 Illustrating the process' of the substitution of the

Actual argnment.8 for the D)ummy Illustrating argiamonts.

16

A .1O"IAI, WhRF('T EXF'I'T()?! COJITTER

Vaolhln Cho

ef', irtment o-f :oftOI pl et f S' ot i t,'

Ilniversity of Marvland
College Park, 41) 2074.1

301 -454-424 5

is shown in Fig. 2, where there ares a program
SAbstract memnory PM, a data memory flM, three asaociative

memories (SAN, .AM. and sAM), and three processors
(lexical processor LP, data processor DP, and:.' ' This paper reports a ,JOVIAL direct-

ethi papher report cc aJVaL dubret- ofcontrol processor ,P). The program memory stores
execution machine which accepts a subset of the source program. The data memory stores the
the JOVIAL J7: language. It descxies the dita values. The associative memories store
J73 subset. I• also describes the organizationof subset .OVIAL o dr eact- ibesuthen corpaniaton descriptors which represent the data and control

of te JOIALdiret-eecuton cmpuer wichinformat ion in the source program. After initial-
reflects the language constructs of the J73, ioation n the control processor fetches the next
There are 3 processors, 3 associative memories, token from the lexical processor which has access

a program memory, a data memory and 10 inter- tote progen eith execue*
it'a'tng registers. The mumorv/register/stack to the program memory. It then either executes
structures and direct-emecution alizorithms the token or activates the data processor to

of the processor are described, execute it. This process of direct-execution
token-by-token continues until the source program
reaches the end.

This paper describes a JOVIAL direct-execution
computer, wbich makes use of the above-mentioned
direct-execution organization.

2. A JOVIAL Machine

The JOVIAL computer in this paper is designed
for a subset of the revised MIL-STD-1589A (IISAF)

1. Dlirect Execution Computer definition of the upgraded J73 JOVIAL programming
language dated MARCH 15, 1979 [11].

fnirect-execution refers to the operation
mode of a high-level architecturr,. Thl:i opornt Ing, 2.1 A J73 Subset
mode directly accepts and execlit , a high-lievl
language program without the ned of imiitiplei The .173 is a dialect and an outgrowth of the
layers of conventional. software. A!; a reoult, ALGOL (,6 programming language (10]. As a result,
there is no compiler, no assembler, and no the J73 retains a great deal of the ALWOL 60
linkage editor. The high-level programming language. It is a complex compiler-oriented
language is the machine language that the bare language. A subset of J73 is chosen. There are
hardware recognizes. A direct execution computer 46 syntacticaL statements. The syntactical
is capable of operating in the direct-execution constructs are outlined below.
mode.

(a) Program Structure
Thc direct-execution computer jqj is

structured with a direct execution cycle; this The subset allows the complete program to
is showi in Fig, 1. A high-order language have a main-program module and zero or more
Program is stored in the program memory. The procedure modules. The main program module must
lexical processor fetches the next token from be the first module. Its construct is shown below.
the program memory and delivers the token to
the laitguage processor; the language processor START PROGRAH < name >;< program body > TERM
executtes the token accordingly, This cycle
contint.es until the program ends, The construct of the program body is the same as

the procedure body except the former permits
1'he direct-execution computer 11,7,8] is directives.

organized to reflect the construct , orf a high-
lovel programming language. The uorganization

17

4 ,l. .. "' .. . :" • " ,i

"u" . "= ••-• -. ,. •,•v''•"',(:-''z••:'. :'-:•,,'••"• •]"• "• •'!£ ':• "Y':'?•: : •''• !"•• •:"'".)'U

(b) Declarations distinguished by being referred to as upper lines

There are four types of declarations: itep, &And lower lines.

table, external, and define. The first two declare The upper lines 00000 to 02000 indicate the
the data elements, while the third declares a t he termination00f to0 0 loto the
procedure module. The last is a macro for text strt ndp hetermination of t c ie program
substitution. The declarations may be enclosed The complete program consists of a main program

by a pair of 'BEGIN' and 'IEND' to become a block module and & procedure module. The main program

declaration, module consists of program name TSIJOV (upper line
00100), program body (lines 00200 to 01900). The

(c) Procedures and Functions program body has an external declaration (upper
line 00300) of Proc TRIG which includes a block

There is both procedure declaration and declaration of items AM, SANG, and CANG (upper
lines 00400 to 00800), three daclerations of tables

procedure utflnition. The procedure 0eclaration DIG, SSIN, and CCOS (upper lines 00900 to 01100),
is for use .a the extern declaration. When a a declaration of tem 11 (upper line 01200), a

,procedure definition is enclosed by a pair f declrtion of iTEmI (upper line 01200), a
,Laeserved words 'START' and 'TRIM', It becomes a directive of TRACE (upper line 01300), and a FOR:,•rcedre mdul. Itperlta onm parmetrs, statement (upper lines 01400 to 01900). In this

-vrocedure module. It permits formal parameters. FOR statement, there is a call of procedure TRIG
There is one function 'FLOAT (nombser>) which (line 01700).
.,,onverts an integer into a floating number.

The procedure module begins and terminates
(d) Statements at the lower lines 00000 and 02200, respectively.

A statement can be simple or compound. There It has a procedure heading (lower line 00100) and
four types of simple statements: assigmuent, a procedure body (lower lines 00200 to 02100). The

trop four typesof- imple stateme) and pr ssignme- nt, procedure body has a define declaration (lowerJoop (or FOR-statement), IF, and procedure-call. line 00200), declarations of six items (lower lines
:.tataments may be enclosed by a pair of 'BEGIN' 00300 to 00800), a coement (lower lines 00900 to

and 'SW)' to become a compound statement. 01000), three assignment statements klower lines

(e) Formu:las 01300 to 01500), and a FOR statement. The controlled
statement of the FOR statement is a compound state-
ment which consists of an assignment statement and

Theru are three types: integur, floatiug, an ip statement.
ia, booleat. An integer formula represents an
integer, wbile a floating formula represents a 2.3 Computer OrganiZation
float.1tig-point number. There are four operators
(1+1, ". '*', and '1') for both integer and The organization of JOVIAL direct-execution
1loating-point operations. A boolean formula computer (13] it developed from the direct-execution
represents a value of true or false. There are computer organization in Fig. 2. It is shown in
ntu relational operators. the diagram in Fig. 4 where there are the following

t0) L)ata References compliter elements:

There are two types of data references: (a) 3 processors: LP, CP, and DP,
hieand functiontyaes A vata can be (1) 3 associative memories: SAM, CAM, and DAM.L,ib,e ,adfunction-calls. A variable ca b c) 2 random access memories: PM and OH •

an item ur a table. As mentioned, there is only (d) 2 tabl es in POn,
,.,ne intrinsic function. ()2tbe nRM

(e) 10 interfacing registers, and

(g) lexical Elements (f) main bus

The memory/regiater/stack structures of the
There are 56 characters which are grouped a processors together with the interfacing registeruIntoe 26 letters, 10 digits, and 20 marks. There

are shown in Fig. 5. The functions of these 10Cre 4 basic lexical elements: token, comment:, interfacing registers are described below. *

define, and trace. A token can be a name, a ib

,tumber, a floating-literal, or an operator. There (a) Register SPTR points to a character in Program
nre 34 operators which include 15 reserved words. Memory. It is of special importance when
A comment is a string of characters enclosed by marking the location and other unique pointers
a pair of quotation marks. A define has as its of control statements and procedure modules,
body also a string of characters enclosed by a the bodies of define declarations, and the
pair of quotation marks. Only one directive is return position from procedure and define calls.

permitted; this directive has as its body a series

of names separated by comas. Except for the very first call for a token,

SF11 is set at the first character of the next
2.2 A Sample Program token to be formed when a token is requested.

After the token has been formed by the Lexical
A J73 sample program is shown in Fig. 3. ThePrcso, F1isavnefncsayt

line numbers are not a part of the program; they Processor, tPTf is advanced, if necessary, to

are used for references. The numbers are the same point to the first character of the next token.

for the two parts of the program; they are

""18

I - .' -

(b) Register TOKEN holds the last token formed by A .173 program specifies a sequence of data
the LP. This resister is referenced by nearly operations. The sequeocing is dpeelfied by control
every sequence, since the tokens define the state•nts. The control proeesor recogilsee the
program. control reserved words and then manipulatea the

pointer in resistor SMIT (which points to the next
(c) Register TYPE stores the type of a name. A character in execution of the source progrm) of the

lems may be a reserved word ('R'), pseudo- LP processor to carry out the sequencing.
function call ('FLOAT'), trace-directive name
('DIR') or identifier ('N'). The structure of the C? consists of one

associative memory and S stacks as shown in ihg. 5.
(d) Register BLOCK stores the top entry of the The functions of these memory and stacks are

Control Processor's BSTACK. It identifies described below.
the module which the program is currently
executing so scope checks can be made on (a) Control Associative oemory CAM is to speed up
declared names. statement execution by saving critical infor-

mation about control statements and ýrocedure
(e) Register BArK-PTR saves the position of the modules. There are three types of CAN entries:

first character of the current token, if-statement, loop-statment, and procedure-
module. The type of entry is stored in the

Mf) Resister D-LEV stores the top entry of the Type field. Information for control statements
Lexical Processor's RETURN stack. (An empty consists of fields for the location of the
stack gives D-LEV a velue of zero.) This statement (for identification), else-part
value identifies a specific define call or pointer for if-statmenta, increment formula
that there Is no active define call (it can pointer for loop.statewents, and an exit pointer
be considered a 'define-activation-level'). to point to the token following the statement.
The register's purpose is to protect the C) Procedure CAM entries store the nme, location#
from creating CAN entries for control formal-parameter-list pointer, and body pointer
statements whose Program Memory Pointers of procedure-modules.
are in different define bodies.

The CAM entries for some control statements
(S) Register DXF-DCL is n flag which identifies composed of define-calls cannot be made.

whether a define declaration is permitted or Unless the Program Mmory Pointers of a control
not. Define declarations follow all the rules statement's CAM entry are all on the same
associated with other declarations. 'define-activation level', the proper stack

management steps of define-calls and returns
(h) Register DfF-CALL is a flag which identifien may not be followed when SPTR is Jumped. When

whether or not a define call is permitted, this type of statement is encountered, it will
A define call is not allowed when the next always be treated as a 'first-time', so SPTR
token expected is a module name or declaration is adjusted by repeated calls of sequence NEXT-
name. TOKEN,

(i) Register PROC-NAhE saves the name of a pro- (b) Stack BSTACK saves the body pointers of program-
cedure when the procedure is called. The body and active procedure modules. Each entry
register is used to match a procedure module uniquely identifies a module. The top entry
name on the first call of the procedure, and of BSTACK is stored in register BLOCK to
as a switch to determine if the procedure identify the currently executing module.
heading and declaration list must be processed
(first tise) or skipped over (second time). In addition, the positions of 'BEGIN's before

the first simple-statement of a module body
(j) Register RESULT holds the information about the are pushed onto (and then popped off) the stack.

value, type and structure of formulas and This is necessary because both compound-
variables. It is used by the Data Processor declarations and compound-statements are
to calculate and pass values to the Control delimeted by 'BEGIN' and 'END'.
Processor.

(c) Stack RSTACK eaves the return position of Id,

3. Control Processor procedure calis. The token position following
an executed procedure-call-statmant is pushed

The control processor CP directly executes onto the stack. It is restored into register
control constructs such as conditional branch, SPTR after the procedure-body is executed.
procedure call, nesting., and looping of the J73
subset. It also createe and stores the control (d) Stack CTR-STACK's top entry serves as a counter
descriptors in the control associative memory of the 'BEGIN's pushed onto BSTACK and the .0
CAM. These control descriptors can expedite the parameters in a parameter list.

I repeated execution of statemencs in a program
loop without the need for repeated syntactical

processing.

I
• • ,19

,. .

(a) Stack SPTR-STAcK has two fields: LOCN holds the relationship of these sequences. These sequences

location of an active control statement, and are briefly explained below.

DLEV holds the define-activation-level of the
location pointa. Before a control statement's (a) Sequence COMPLETE.-PROCRAM1, This sequence

PM pointer field is assigned a value, the reflects the syntax that •h• complete program

current activation-level must equal that on has one main-program mo'.ile followed by 0 or

the SPTR-STACK. If they are ever different the more procedure modules.

statement's CAM entry cannot be kept - the
location field must be erased. Loop-statements (b) Sequence INIT. This seque,:,c sets the ,-istert

must have their increment and exit pointers on to zero and empties the $tact..

the same level. If they are not, the statement
is considered illegal. (c) Sequence MAIN-PROGRAM-MODULE. This sequtnce

Is identified by three reserved words ani a

The control processor CP direct* the control semicolon as follows,

flow. It activates both the data processor
DP and the lexical processor LP, processes START PROGRAM... ;... TERM

the following control constructs:
'his sequence identifies the main program

(a) Program structure module. It calls sequences NAWt ai-d PROGRAM-

(b) Procedure definition BODY.

(c) External declaration
(d) Statement (d) Sequence PROGRAM-BODY. The prosraw body is a

(t) IV statement series of 0 or more declarations followed by

(f) FOR statement one or more statements, enclosed by a BEGIN/

(g) Proc-call statement END pair. The presl-,cs or absence of a

(h) Declarations declaration has to be determined ýy the first
token of the declaration.

In the following processor design, sequence
"N"XT-TOKEN, which fetches the next token from (e) Sequence CAM-CHC1K. This sequence searches the

the source program, is executed by processor CAM for an entry whose name field is the same

LP as will be d4ecribed later. as the contents of vogister TOKEN. If it is
not found, it reb;,rne; otherwise, It is an

3,1 Program Structure' error.

The program structure consists of those control

constructs which form a complete program. These (f) PROC-MODULE

are shown below.
A procedure module is identified by two

1. < complete-program> ::-esuin-program module> reserved words as follows.

,,, ploaduremoidule>... START...TERM
2. .emain-progro-m-odule>: :-START

PROGIAM However, there is no need for sequence PROC-

"n rame> ; MOb'3LE since each will be searched and called

L progrem-body> as a result of a procedure call.

3.2 Procedure Definition

3. <program body> ::-UEGIN - decl-list>
(. directive >...] The procedure definition specifies a procedure

Sstateent>,., structure. The syntax is shown below.

5. .'procedure definition> ::- < procbdure heading>,

4. < procedure module > ::USTART - procedure body*;

< procedure-definition> 6. < procedure-heading> ::- .PROC < name
(< formal parameter

,,

~list>)

The above syntax calls for the following hardware
,]

sequences. 7. < procedure-body> :1- BEGIN < decl.-lit>.Ssequecee,
f< statement> ...

01 COMPLETE-PROGRAM
END

02 INIT The above syntax call for the following hardware

02 MAIN-PROGRAM-MODIILE sequences•,
~ 03 PROC-DEF.F

03 PROGRAM BODY03PODF

02 CAM-CHEMC /*check the variables in CAM*/ 04 PROC

02 NEXT-TOKEN /*processed by LP*/ 04 DEF-HFADING

Most of the names of these sequences reflec, 04 PROC-HOtY

the terminals or non-terminalm of the control
syntax, The level numbers indicate the hierarchical 05 PARA-CPOCKS

20 ~05 PARA-POP 7
.20 ,.

.........

X

These sequences are explained below. 3.4 Statement

(a) Sequence PROC-DEF. This sequence calls sequence A otatement can be a simple statement or a
PROC-UZADZUG and then calls sequence PROC-lOUT. compound statement. There are 4 types of simple

statementa: if. for, proc-call * and ass igendut.
(b) Sequence ?10C-DUF-NKADTUG. Sequence PFROC-DZF- The first three statements are enecutod by the CIP

HIAIANN checks the syntax of the procedure- The assignment statement io executed by the If.
heading and sete the parameter pointer aid body Two additional statements, define end comment, I
pointer of the procedure's CAN entry. are handled by the LP. The syntax in sobaf below.,

(c) Sequence F3.OC-I00'. A procedure body in similar 9. seftambt), frn4 ipetant
to a program body. except for two special -c'compouad-otatammk,'
consideratioma: the formal parameters must beI;declared, and the declaration list io skipped 10. 9 himplý-Stat=Met). ~Itsfignmet-statenent>
over after the first call of the procedure. 'lo-ttmn)

Sif-statement),
(d) Seiuefce PAXA-CUICKS. This sequence check. 'procedure-call-

whether the types and scructure of actual statment>
and formal parameters agree.

11.* < compound-statoment>
(e) Sequence PARA-POP. This sequence calls DP- :iUClEIN cstatment). . .11

sequence PMA1-19MPX1 to pop each of the
procedure's parameters of the parameter The above syntax calls for the following herdware
stacks in the DIP and to return into result sequencest
of output parameters.

01 ITHI
3.3 Zxternal Declaration 02 COIIPOUND-STNT

The external declaration declares an external 02 SIM1LE-STHT
procedure. The syntax is shown below.

These sequences are explained below.
S. < external-iec laratiLoo I t- RE? -c procedure-

hand ine I (A) Statement. Sequence STNT :aIla sequence
C~declaration>] SIMPLE-STNT or sequence CO0MF1WD-STNT by the

absence or presence of ORIGIN' respectively.
The above syntax calls for the following hardware
sequeoces a (b) Compound Statement. Sequence CWOMPOMD-STNT

01 ZXTUIINAL-DICL calls sequence STNT one or more times.

02 SCAN-ORCL (c) Simple Statement. Out of the four types of
02 PROC-HUDING simple statements the If and LOOP statements

can be positively Identified by 'ZIP' and 'FOR',
03 PROC respectively. On the other hand, proc-call

03 PP-LIST-CHICK and assignments begin with a name. Rowever,
the proc-call statement begins with a procedure

Thes seqencs ar expaind beow.name which must heve been declared and should
Thes seqencs ar expaind beowbe found in the CAM. If It is not found, the

(a) Sequence EZTERNL-DECL. The external dec- name is assumed to be the data nme* of an
laration is recognized from the reserved word assignment statement.
'REY' which Is then followed by a call of 35Lo ttmn
sequence PIOC-IIICL. . ttmn

(b) Sequence SCAN-DICL. This sequence skips the The loop statement In Machine A is the P0K-
declarations of the external procedure's statement. It hes a control variable, an initial
parameters, value, and an Incremental value. There is

(c) equncePRO-RUDNG.Thi seuenc idntiies additionally a wbile-clause which sets the
prc) eduene CnRame C. Ths anshi aaequerc identifi condition to terminate the looping. The syntax

procdur flmes nd hei parmetr htsis shown below.

(d) Sequence PROC. This sequence fetches the proc
name anid then searches for It In the CAM. xIf 12. -c loop statement> I i-?OI variable), I integer
it is not found, It creates a CIAN entry for the foruala'
procodure end inserts the name in the entry. BY <integer formula),

IlUILI (boolean-foruulaN;
(a) Sequence PP-LIST. This sequence counts and 4. otatmnt>

checks the syntax of a formal parameter list.t"
21

AW VAkl- *-,-I

Pbs above syntan calls for the following hardwsre executed.- Durinpi .succeasive*.tlIes. no
sequences. scinning to needed since all pointers hove

been established.
01 LOOP-STKW

02 SCAN-STNT (d) Optional Elae-clause. Th. else flag is
available in "he CAN entry to indicate

02 FIIST-TINS-LOO whether there is an else-clause. If there
02 .EPE•T-WHIL! in, the else-flag is set and the ELS!-PTR is

inserted.
The loop statement faces 3 considerations,

(a) looping, (b) nesting of loop statements, and 3.j Procedure Call Statement
(c) first-ti"e problem. The procedure-call statement invokes the

(a) Looping. The looping requires computation of execution of a procedure definition. It should
new value of the control variable and evaluation be noted that the procedure definition mnay occur
of the boolean formula. If the evaluated result before or after a procedure-call stateent. If
is true, the loop body is executed, and if the it is before, the location of the procedure
loop body Is executed for the first time, the definition can be found from the CAN. If it Is
tXIT-PTR is Inserted in the CAM entry, If the after, the program execution has to be suspended
evaluated value is false, the loop's statement and the source program is scanned until the
is scennod and the EXIT-PTR marked, or execution procedure definition is found. The syntax of the
is directly Jumped to 331T-??R. procedure call statement is shown below.

(b) Nesting of Loop Statements. The nesting of loop 14. - procedure-call-statment> ::- name>

statements (and if statements) is handled by 1 actual-parameter-list>];
pushing its CAK entry LOCH fields onto stack
SPTR-STACK at the beginnin of the sequence The above syntax calls for the following sequences.
and by popping it off at the end.

01 PROC-CALL-SThT
ie) First-Time Problem. If no CAM entry exists for 02 SCAN-IINTIA-PROC

this statement, one must be created. The
location and increment formula position are 02 PROC-DEF)NITION
stored in addition to the EXIT-PTL.

The procedure-call statement faces 5
3.6 if Statement considerations- (a) existence of parameters,

(b) nesting of proc calls and returns, (c) first-
The If statement causes conditional branching, tine problem, (d) ahsad or behind a proc deftni-

The syntax is shown below. tion, and (e) Call-by-value or'by-reference.
These considerations are discussed below.

13. - if-statesent>t:-IV < boolean-formula>i
< statement> (a) Parameters. The parameters may or may not
[3LsX< statement>] exist. They can be input or output parameters.

Their presence is determined by the parameter
The It statement faces S considerations: count field of the procedure's CAN entry.

(a) branching, (b) nesting of If statements, The DP is then activated to execute sequence
(c) first-time problem, and (d) optional else- ACTUAL-PARApLIST. -

clause. These considerations are discussed below.
(b) Nesting of Proc Calls and Returns. When a

(a) Branching. The branching requires evaluation of proc-call statement is encountered, the return
boolesn formula. If the evaluated result is address of the calling procedure is pushed
true, the Then-clause is executed and the down onto RSTACI.. When the execution of a
execution continues at the location indicated procedure reaches the end, the return address
by the NUSE-P'h if it exists. and otherwise the is obtained from the top entry of PSTAC! and '
EXIT-PTR. the entry is then popped off.

(b) Nesting of If statements. The nesting of If (c) First-time Problem. If the PROC-NAN register
statements is handled by pushing the LOCH fields is not empty, the procedure is called for the
of their CAN entries onto stack SPTR-STACK at first time. During the first time, program
the beginning of the sequence and by popping it execution is now changed into program
off at the end. scanning until the procedure definition is

found. This identification is achieved by
(c) First-time or Seond-t4i. During the first comparing each procedure name encounteredred

time, if the boolean formula is true, the then- during scanning with that in the KAM! field
clause is executed but the else-clause is of the top entry of RSTACK. The scanning is 7
scanned by sequence SCAN-8•TM. rf.,the boolean done by sequecie SCAN-UtNTIL-PROC.
formula to fnlse, the then-clause '.e scanned by
sequence SCAM-STHT, but the else-clause is

22

"I q

Program Memory
Entry

Initialization
High-level language i

program
Processor

assemble next tokenby lexical processor

'Language

Processor

IoIra as
and exit

(a) Program storage no

execua the
token by language

xprocessorFig. I Program Storage and Direct - -
Execution of a High-level1T
Language Program

(b) Program Execution

(d) Second-time Problem. The declaration list O DECL-LIST
of the procedure body is not processed on 02 DECL
succeeding calls.

(e) Cell-by-value or by-reference The parameter (a) Sequence DECL-LIST processes the declarations
pall-n a in the J73 as follows, of a program-body or' pkocedure-body. Names

may not be declared twice in the ame nodule,

(1) Formal-input parameter: it must be an nor duplicate a procedure-name. A define-
item, it is bound by value, call is not permitted when the name of a

declaration is the next token expected.
(2) Formal-output parameter: if it is an item. 'BEGIN' reserved words are stacked because

it is bound by value-result, If it is a they may signal either a compound declaration
table, it in bound by reference, or compound-statement. After all the deola-

tions have been processed SPTh In adjusted,
(3) Actual-input parameter: it can be an if necessary, to point to the token which

integer or a floating form~tla. begins the first directive or statement.

(4) Actual-ol' at parameter: it must be a (h) Sequence DECL calls iither ITI4-DECL, TABLE-
variable. DECL or EXTEP.NAL-DECL to process a declaration,

The evaluation and passing of parameters are 4. Data Processorhandled by the DP. iA J73 program specifies date elements in data

3.8 Daclarations declarations and type declarations. it also spec-
Iflen data operations by assignment statemants;

The declaration statements consist of: for example, the operations can be arithmetic or
dLlogical. When the control processor identifies a

15. K docl-list > LL-(<declarstlon.s data operation, it activates the data processor.
-<define-declarat ion>

BEGIN < decl-list>END)... The dat. processor DP directly executes the
16. declaration>::-<item-decleratiom> data constructs of the J73 language. It recog-

!<table-declaration> nizes data and type declarations, creates data
kaexternal-declaratton> descriptors, and stores the data descriptors in

the data associative memory DAM. The data des- .1
The above syntax calls for the following criptors in the DAM allow data references by

hardware sequences. symbolic names and permit rapid access of data
values in the data memory. In addition, the DP
executes assignment statements, evaluates

23

A
•:L
-;.I

Proram L.exical Prncessor Assoc tat iye
Memory OE~ory SAM

-JJ

Control Processor Assiociative

S.... memory CAM

Data Mamory Dta Processor ___ Associative

Fig. 2 Organization of a Direct Execution Computer

formulas, and handles parameters. The structure variables are Kept on the stack throughout
of the data processor DP consists of one associa- execution of the loop statement, since the
tive memory, I register. and 5 stack@ as shown in control variable is changed on every itera-

t ion.
r tia . 5 .t / n

(a) The Data HMwry stores the values of declared (g) Stack OPSTACK saves lower proeendence opera-
variables. One word of storage is allocated tore during evaluation of a formula.
for each item or table ,emalt. (h) Stack APSTACK contains seven fields which

(b) Data Associative Mwmry DAN stores infor- save infomation about the actual parameters
mation about declared imaeric variablee, of a procedure call. Five of the fields
HaMsm and Block-id fields identify each holds the value, type, structure, size and
entry. Items and ona-dimensional tables parameter type (input or output) of a
are the only possible structures. Possible parameter. In addition, an output parameter's
types gre siglned and unsigned Integer float- DM-locn is saved (so its value can beIl* real numtbers. The Sixe field identifies returned), and its name is saved if it is
the number of DI words allocated for the being traced.
variable. The trace-id field acts as a
flag which identifies whether the variable (i) Stack FPSTACK has three fields to save In-.is being tracnd, formation about an active procedure's formalparameter. The name and parameter type make

up two fields. The third (Decld) is a fleaxthat serves as a ftol i to rdentify which is set during the procedure's first
Swhetha er a variable f the object of a execution if that parameter is declared in

whetherC ax vari.ble isThe objfect of athe module. All formal parameters must be
TRACI directive. The VI field is declared. Also, the number, type and struc-
the switch, and the Naem field eavestueoacalndfrlprmtrsutthe name of an assignment ttatementsure of actual and fo l parmeters ut
variable for use tn the output mesesaci• which notes the variables new value.

The data processor DP processes data declare-
ýý(d) Stack SYNTAX contains the current tions and controls data flow. It is activated by

syntax productions being executed. CP, but it also comunicates with LP. The data
constructs that are processed by DP are:3¶(a) Stack VBTACK.holido the value and type

of formu.le•joperandi and intermediate (1) Directive
S results. U eands must be item. or (2) items and table declarations

- (3) assignment statement
(4) formulae

. sosk PSTACI holds the IH-locn of veriables. (5) boolean formula
The DM-locns of loQV statement control (6) variable and subscript IS 24 '

-i ,YL

(8) ctu l pa ame ers(a) Seqauence ASSICN-STNT
(7) actul pdntfrthaometetehercll

4.1 Directives This sequence calls sequene VARIABLE to

The TRACI directive is a special sttmn trstefruasvleit h Nlc them
which directs a message to be outputed whenever a pointed to by the top entry of PSTACK.
wattable in the statemnet's naoe list gets as-
signed a value. The syntax is, (b) sequence TIACE-CEICK

17. 4dIrectIv0'..* TRAK''am)'... Sequence TIACI-CRICK, Identifiesa wbether tbO:
4,2 Ite ad Tbl Delaatinsvariable in an assignment statement or the output]
4.2 tem nd ableDecaratonsportion of on actual-paremeter-liat in being

Machine A accepts declarations in data,trcd
procedure. define, end block declarations. The CP 4. Boolean Formula
executes define declarations. The DI' executes
data and block declarations. The syntax of do- A boolean formula represents a value f To
clarationa is shown below. or FALSE. It occurs in the 1F-clause or thle WR~w

18. <itssn-deckaration>: - IIT9hn~eme..S!U!F)t clause. It can be either a formula followed by a.
19. tabl-delaraion - T BI~relational operator further followed by a variab4#

[9dimbe-eclaaio t.(!ion) orAB~am3 at formula.* The syntax is shown below.
20. <dimensioWn' - ',(<integer foul)2.~ola-oml::formula),)(I

The above syntax calls for the following tc-t1kIW)cformu~a>a

hardwre ~The resulting value from a relational qpstion Is
01 ITUI * .DEL *. ether Integer 1 for TIEM or saro for =AU. Thee

truth value of the boolean formula's result is
02 rrmdetermined by examining its low-order bit.* A'102 ITINis TRUlE, '0' if FALSE, This Implemntation makes

01 TABL....DBCL off integers evaluate to TRUE!, ewen integer to I
FALSE.

02 TBLE4.5 Formula

02 DUMNKSIOW A formula represents a value. It can be all

(2) tem equecesinteger formula or a floating formula, represent-
(2) tem equecesing either an integer or a floating-point number,

Itse sequences consist of sequence ITE respectively. An integer formula is a positive
orba regAtiwe integer term, which can be added toDICL and sequence ITEM which create an entry mutreated from a succeeding Integer term. This

the DAN from the name and attribute in the item- inemdaerslOa te eadd(rsb
declraton ad alocae a1K wrd.tracted) to another Integer term, and so on.

(The arithmetic operators are left easociative.)
(b) Table end Dimesion Sequences An Integer term is an Integer factor, which can be

Tabl seqence conistof squenes TBLE multip~lied or divided by succeeding Integer fac-
TabLlSe, seunce conist of. sequences TABLE tor (as with terms). An Integer factor can be

...DICL. anTABLE.!cet and DI S .Sqenrintes DAN.E an integer literal, a variable, or an integer
Sequence DI)I3ION calculates the value of thefomlenoedbapirfpreteu
dimension, which allows one dimension and only floating formulas are similar to integer
needs an upper bound (the lower bound is 0). This fomlsexptaacrmstboflain
value Is Inserted into the size field, aed afomlsexptaacrmutboflsit
block of continguous ON words equal to this value type. In addition, a floating factor may be a

are llocted.call of function FLOAT, which converts an Integer
are allcated.formula's value to floating form. The syntax for

4.3 Assignment statement (a) Actual Input Paramters "l

An assignment statement causes the value of The actual input parameters can be 0 or
a formula at the right of am equal sign to he more formulas. Each formula is evaluated; mad
assigned to the variable at the left of an equal its value, type, structure sand parameatr type are
sign. A variable Is a namme or a subscripted name. pushed onto Al-STACK.
A subscript Is an Integer onalosed by a pair of
brackets&. The syntax is shown below. (b) Actual Output Parameters

21. Uassignmet-statement>t: < variable-w The actual output parameters can be 1 or
<formula> more virl~ablea . Since each of the actual output

25

parameters that aren't tables mat returned a new popping return into SPTR. Recursive define calls
value, their DX-locna are also saved in the AP- are not allowed.
STACK. Output parameters being traced also have
t1ir names placed in the Nome field. (i) There are two tables: LEGAL-CHAR-end RESER-

WORD. It needs to check each character of the
d(c) Parameter Matching source program to determine whether it is legal

by looking up table LEGALCAAR. It needs to
Corresponding actual and formal parameters determine whether the new token is a reserved

must agree in type, structure, size, and input/ word by looking up table RESERWORD. The legal
output type. character table is shown in Table 2; there are

56 legal characters in 10 classes. The reserved
5. Lexical Processor word table is shown in Table 3; there are 19

reserved words.
The J73 program is a string of characters.

The lexical processor LP scans the characters in The lexical processor LP scans the source
the source program, checks their legality, and string of characters, checks their lcgality and
assembles them into tokens. The tokens can be assembles them into tokens. It is activated
reserved words such'as "ITWI" and "IF", operators by either CP or DP. The lexical constructs are:
such as "'" and h;% names, or numbers. The
lexical processor together with the associative (1) token
memory SAM also handles define declarations and (2) character
define calls, and comments. It also handles the (3) name
directive. (4) number

(5) operator
The structure of the lexical procsssor LP (6) define and comment

consists of an associative memory, and registers
as shown in Fig. 5. They are described below. The hardware sequences of the LP which have

sequence NEXT-TOKEN as the root sequence consists
(a) Program Memory PM contains the text of the of:
JOVIAL program to b6 executed. It is arranged
as one long string of characters. Each 01 NEXT-TOKEN
character is assigned an ordinal position so it 02 NEXT-CHAR
can be identified by register SPIR. 02 NAME

02 DlRECTIVE-NAME
(b) Scanner Associative Memory SAM stores 02 DEFINE-DECL
informrtion about define declarations. For each 02 DEFINE-CALL
valid define declaration, an entry is created 02 REL-OP
to store the name of the declaration, the location 02 NUMBERICAL-LITERAL
of the first character of the define body and the 03 EXPONENT
first after the last character of the define body. 03 FRACTION

02 COH14ENT
(c) Table LEGALCAR contains valid characters
of the JOVIAL syntax and their respective classes. 5.1 TOKEN

(d) Table RESERWORD contains reserved words and Token is the lexical element of a source
their type. Special reserved words are 'DEFINE' program. It can be a name, a number, an operator,
(type 'D') and 'FLOAT' (type 'FLOAT'); the others or a separator as shown in the suntax below.
are type 'R'.

32. <next-token> ::- <name>
(e) Register CHAR holds the last character I <numeric-literal>
fetched from'Progran Memory. I <operator-separator>

I <reserved-word>
(f) Register CLASS holds the class of the 38. <operator-separator> ::-
character stored in register CHAR. The class, an
interger, is found by searching the LEGAL-CHAR (I) I I ; I , I I I +
table. ! - I * / l 1 1 . I <> ,

I . I I I I I Iblank
(g) Stack RETURN saves the SPTR position 3-T
immediately following a define call so that, 39. <reserved-word> STARTIPROCGI 4ITERM

after SPTR has advanced over the define body, it
is reset to the proper position to continue TABLEIREF

program execution. I PROCIFORIBYIWHILEI
IFIRLSE

(h) Stack DEY-END saves the end-ptr positions I EISIUIF

of the bodies of active define calls. When SPTR Sequence NEXT-TOKEN is designed to assemble
reaches the position pointed to by the top entry the adjacent characters in the source program into
of the stuck, that define call is completed and a token. It extracts the next logical group of
a return iJ performed by popping DEF-END and characters (the next token) from PM. The token

26

...................................... , ,,..• . .•.. I

may be a reserved word, identifier, numeric-liter- Sequence NEXT-CHAR fetches tho next charac-
al, operator, separator or directive. This ter from the source program in program memory.
sequence also handles define-declarations (macro The next character Is pointed to by register SPTR
definitions) and define-calls, because they affect and becomes available in register CHAR. A test
the control flow of program text. must now be made to determine if SRTR points to

next to the end of a define body by aomporing it
Initially, the starting position of the token to register DEF-END. If it does, SPTR is-givenIs stored In register BACK-PTR. Then the token Is the value of register RETURN (i.e. to return from

forlxl. If the token is the reserved word 'DEFINE' the define call) before the next character is
a define-declaration is processed; if it is an made available. The character Is then tested for
identifier with an entry in the SAN a define-call legality and register CLASS is set to the class
is processed. When the next token to be passed to number of the character.
the other processors has been formed, the 'noise'
following it is skipped over. Noise consists of 5.4 Numeric-literal
blanks, illegal characters and comments. Upon
return, the token will be in register TOKEN, its A numerical-literal is a positive integer,
type will be in register TYPE, and register SPTR and a floating literal is a numerical-literal
will be pointing to the beginning of the next token with a decimal point. The lexical rules forto be formed. numerical-literals and floating-literals are

shown below.
Sequence NEXT-TOKEN fetches the next char from

the source programand than acts according to the 34. <numeric-literal> ::.<integer-literal>.
class number of the character ss follows. <floating-literal>

class 1: An illegal char. Call ERROR. 35. tinteger-literal>::-<digit>...
class 2: A blank. Skip the blank.
c:lass 3: A letter. The succeeding charoaters 36. <floating-literal>::*<digitt...

are assembled into a name. The name <exponent>
can be reserved word, an LPcommand, I j<digit>].<digit>..
or an operand name. f[exponent>]

class 4j A digit or period. The suceeding
Characters are assembled into a 37. <exponent> :uZ[+!-j]<inteSer-
number. <literal>

class 5: A decimal point. This case Is hand-
led the same as class 3. Sequence NUMERICAL-LITZRAL needs to detect

class 6: Unary operator '+' or '-'. It is the sequential combinations of digit, period,
stored in register TOKEN. 'E', '+', '-', and others. There are 3 sequences

class 7: An operator. It is stored in regi- as shown below.
nster TOKEN.

class 8: A '<' or '>'. A two-character 01 NUMERICAL-LITER.AL
operator ('<-', '>-', or '<>') it;
assembled. 02 EXPONENT

class 9: A '1'. A directive name is assem-
bled and identified. 02 FRACTION

class 10: A double-quote. A comment Is flush-
ad out. Sequence NUMERICAL-LITERAL constructs

numerical-literals. There are two types: integer
5.2 Character (type '1') and floating (type 'FL'). Floating-literals have a decimal point and/or an exponent;

A character can be a letter, a digit, or a integer-literals have neither. Sequence FeRACTIONl
mark. There are 10 digits, 26 letters, and 17 extracts the digits following the decimal point
marks, as shown below. of a floating-literal, while sequence EXPONENT

extracts the exponent part of a floating-literal.
36. <character> ::- <letter, t.

4

I <digit> 5.5 Relational Operators "Y
I <mark>

The operators of machine a consist of single
43. <digit> ::- 0 1 I f 2 1 3 I 4 I 5 I 6 and double-character operators and the reserved

1 7 t 8 l 9 words. Sequence lZL-OP extracts the relational

operators '<', t>#, t>', t<%, or #>-'.
44. <letter> ::- AIBICIDIEIF!GI

IHIIIJIKILIMINIO 5.6 Comment1PtQtRiStTtU1Vt1 .
IXIYITZ The coent is a stting of 0 or more

characters enclosed by a pair of quotes. The syn-
45. <mark> ::-+?-!*I/V!•f!-' tax is shown below.

I.!Iltblank 35. <comment>.-"[<cbsracter>I"

27

"-- .

Sequence C~O•MT flushes out the string of charac- processing of the control statements in a program
ters. loop.

The idea of a direct-execution machine iN
5,7 Define (Fig. 27) simple, but its structure can be highly complex

The define-declaration is a macro definition; if the programming language such as JOVIAL is
its body, like a comment, is a string of 0 or complex. Thus, there are two issues: the issue
more characters. The syntax is shown below, of the programming language and the issue of thecomputer architecture for the programming langu-

43. <def ino-declarat ion>::-DEFlN .namv> age. Criticisms on a particular direct-execution
"[<claracter>.E..] machine should address clearly the whether it i."the language issue or it is to the architecture

46. <define-coll>::,<name> issue.

Sequence DEFINE-DECL processes a define- 7. Acknowledgements
declaration, The define-name cannot be the same The author wishes to acknowledge the support
as any name declared in the same module or any pro- of this work by Grant 79-0056 from the AFSOR/
cedure name. A SAM entry is created to hold the RADC He also wishes to acknowledge help from
name, module-id, location of the first character several students, Marc Abrams, Eric W. Bonwit,
of the define-body, and location of the double- Richard A. Britton, Edurd Lor, Carmen Radelat,
quote C') which signals the end of the define- -and Cliff Schaeffer, who helped in the preparation
doby for each valid declaration. The define-body., of the manuscript.
is enclosed in double-quotes, so no comments are
allowed between the define-name and define-body. 8. Reference

Sequence DEFINE-CALL processes a define-call, (1) Bloom H ""A define-call is not allowed when the name of a High-Level Language Processor"i Technical
declaration or a procedure is the next token ex-
.peted. On a valid call, the return location Report T1-239, Department of ComputerbypushiOng aait o , stackhe URN regurnlo iist Scies v, tilversity of Maryland, April,saved by pushing it onto stack RETURN, register 1973. (NITS PB-224093/AS,)
SPTR is assigned to point to the first character
of the define-body and the end position of the (2) Chu, Y., "Introducing the High-Level Langu-
define-body is pushed onto stack DEF-END, age Computer Architecture", HIGH-LEVEL

LANGUAGE COMPUTER ARCHITECTURE, Academic
The top of RETURN4 identifies the 'define- Press, Inc.17,p.-4

activation level' of the source program. This , n 1975, pp. 1-4,
level needs to be known by the CF to determine if (3) Chu, . J.C. Yeh, and E,R. Cannon, "Direct-
cnntrol statements may have CAM entries, so it is Execution on the Burroughs B1700 System",
always stored in register D-.EV. 'Technical Report TR-335, Computer Science

Department, University of Maryland, Oct.
6. Concluding Remarks 1974.

The above JOVIAL Direct-Execution Machine A (4) Carlson, C.R., "A Survey of High-Level
directly reflects the language constructs of the (angagn C. A.,

J73 language. The lexical processor directly re- LANGUAGE COMPUTER ARCHITECTURE, Academic
cognizes the legal characters, reserved words, Press, Inc, 1975.
operands, operators, It assembles token, and axe-
cutes lexical "commands" (such as the DEFINE (5) Chu, Y., H.M. Bloom, and E.R. Cannon, "High-
co.etructs of the J73 language. The control pro- Level Language Hardwre Contrnl Archi-
oelsor directly executes the control statements tecture", Technical Report TR.412, Depart-

and sequences the order of execution of the ai- ment of Co hnputer Science, University of
signment statements; this control processor Mand Oct. 1975.
organization reflects the control constructs of Maryland, Oct. 1975.
the J73 language. The data processor diretly re- (6) Chu, Y., "Evalution of Computer Memory
ferences symbolic names and executes data opera- structure", Procesings of the National
tions; uhis data processor organization reflects Computer Conference, June 1976, pp. 733-748.
the data constructs of the J73 language.

The above JOVIAL Machine A is a multipro- (7) Chu, Y., "Architecture of a Hardware Data
ceasor system; each processor performing a Interpreter", Proceedings of Computer

futetion reflecting language conitructfs. If the (8) Architecture Symposium, Silver Spring,
lexical processor were operated in a parallel but Maryland, 1976, pp. 1-9.
eynchroniaed %anner with the control procesdor and

:data pgoceesor, the repeated lexical processing in (9) Chu, Y. and E. R. Cannon, "Design of a High-
a program loop would not impede the execution Level Computer Architecture", Technical
dpeed. By using the information of the control Report TR-550, Department of Computer
structure of the source program in the associative Science, University of Maryland, June 1977.

,,mory (A1., there need be no repeated syntactical

28

(10) Sctwartz, Jul" I.. "The Development of
JOVIAL", ACK SIGILAN Notice•., vol. 13, no.8,
Aug. -978. pp. 203-214.

(11) "Military Standard JOVIAL (J73)", HIL-STD-
1598A (USAF). Softech, Inc., March 15, 1979.

(12) Chu, Toathn, "Direct Execution on a JOVIAL
M•i•e.i", Technical Import TR-827, Depart-
ment of Coampter Science, University of
Maryland. Nov. 1979.

(13) Chu, Toahan, "Design of JOVIAL Direct
Execution Machine", Technical Report TR-859,
Desprtamnia of Computer Science, University
of Maryland, Feb. 1980.

29-•Ii

.) .. . •

00000 SA<

00100 1I (OG'AM TS IJI)V;

00200 M.:SIN
00300 RE F PROC TRIG (AN , SANcCA)

00400 N

00500 [Tl:.M ANC,(I00500 ITFM SANG I;
00700 1 T1ll I •.A,;(;

0(1800

L (10 1 .1AIIIl D:M I oI ' S ';
I)11 0 0 'vi'Ah.E. S iN'. •ll I

0110 0 ITAll 1: (') 9lj(' Iv F;

]200 lrtIM 11 S;

01300O 1 I.*A('P. IIF , S;' I i, fl!

01400 Pilt 11:0 BY I will i 11 i" 9ý ji

01500 DEGIN

01600 ilGuI]il 11 I;

01700 ,'rIs(DFGtI1h:SiI1IIC. u3IIID'.

01800
019010 ND:l)

0201(10 TERMI

00000 ',,I ls I
Of) 0 r) POC TNlI;(Cl:;:IN, COB) BEGI N

00200 lIWW1E P "1.I 1 59P2(

00300 ITEM 1JJ U,

001400 211yl o)r.(; U;

00500 1 iT1 ('APAD V;

0000 ITEM I'AcrR r;

007w)0 ITEM SiN Y:

00 400 ITH IS COS F;000 "TIlIS PROC)CDDRE cOMPUTES ROTrH S1'N A::D COSI?'F. OF AN AN~GLE

01000(U, I w; A TM Il S, I E'"

(111 (10

01(112 51 . (O 1 .1

01200
01400 HLAD EIOXI(0I,: *PC) //1,1"IE

h FACT9 - .0.('1 ('00V F O R J .l : l I ly I 'A I .l .~i Z-1 - < 2 •0 ; I" E C '",

017001 F-A(-TIR .RA * FACTRI/FLOAT(3-W);
i OB(Ii I" IN BE I 'A•

::01900
SIN "SN#iAT;:

"•02000 ACTR -FACTKR END,

02100
'•: 0 100 FLSE CO B CO B 4 EACTR I E N{) F.ND

Fig. 3 A Sample J73 ?vogram

30
:

- ---- ---- ,-

F1 ig. 4 JOV'IAL flirect-execution

L. Machine Organization

RFTt'RtN rW FMY-

T-I

SPT TOWEN TYPE HI.OCK

- ~ IISTACY CTR-STA('K
CCA

__ LidH]
- RSTACIK SPTh STACK

LL .1 [~j L~j~j -~RESULT ?~JN

VSTACK ISTACK FPSTACK

DAM

A?_SIACK

EZIiiITRLACE D

31

Lexical Proceasor LP CLASS CHAR

lntt~ci ng Re•isters

ACKP-TR DEFDCL DEF CALL SPTR TOMEI TWFE

D LEV VALUE TrPE STRUCTURE PROC NAHE BLOC
RISULT

Control Frocauao ei P Data Processor D?
CAN -DAN

TV ; La "2 Ar. SA; - - w s)rid T)yc %rat !ýILffWwS

I=_ 5I

Li I L 1JI i
CTR•STACK BSTACX 'STACK L4O. DLIV Data Hmory DiM

SPTR STACK LOCH DATA

TRACE

NIAME 1/0 ? TA~ ALU TOPE
oPSTAsK VSmft -r

MANZ 01 Tls tyl "Z. 110 Irl

Al •U.STAUCX :

7f1. 5 Memory/register/stack structure of the JOVIAL Direct-execution Computer

32

......

QUEST FO1 AN 'IDZAL' MACHINE LANGUAGI

Krishna M. Kaviutrapu
(Southern Methodist University)

S8Harvey Crasoo

(Texas Instruments)

Abstract The semantic gap can be reduced by construct-,
ing a high-level language macblue for each lana

Researchers have realised that von Neumann Such blhb-level lnue UacWAne have Smny adva
machlues do nt adequately provide for the con- tagsa (Tannembas [761). Owe the past decade,
atruct. that occur in c, - progrming languages, there has been icreased interest In building
Most of then* saortcminge are attributable to a -- chines that have mile smantic gap. Theme I
phenomenon known as smatic gap. Over the past attempts are surveyed to Carlaon (75) &ad Myers
decade there has been increased intereat 1a building [78). The proposed deslgUs fall into 3 categori•i
machines that have smaller emetic gap. It can be
conjectured that there exists an 'ideal' directly 1. 'Truly' high-level language processors.
executable language (DIL) which describe. an archi- 2. 'Pseudo' high-level language processors.
tecture with a sIler semantic gap than coiven- 3. Intermediate language proceasors.
tional machines. The proof of this conjecture will
enable us to evaluate candidate machine Lustructions In 'truly' high-level language proceasors,
and to select the most suitable machine language (e.g. Bloom (73)) the processor accepts a program
for a given omputinS environment. In order to string written in a high-level language and per-
prove this conjecture, certain characteristics of forms operations'as determined by the semantics of
machines like the level of a machine with reapect the program string. The Important characteristic
to a high-level language must be quantified. of this design is that the architecture operates ob
Halatead's Software Science &serics are vsed for the program directly. A little thought will con-
this purpose. vince the reader that such a design is not the

ideal alternative to von Neumann architectures from
either the aemory ala. standpoint or interpretation

Introduction time standpoint (Hoevel 1741).

Before we start our introduction, we would In 'pseudo' high-level language processors,
like to define precisely the meaning of the term (e.g. Burkle et.al. [781) the source program is
architecture as used in this paper. Computer preprocessed; the software preprocessor performs a
architecture is the virtual machine as viewed by a lexical transformation on the input changing the
machine language programmer. This is the view held keywords and operators into internal code. All
by Flynn (75). Thus, changing machine la:,quage data objects in the program are replaced by refer-
(assembler language) changes the architecture. ences to memory locations. With the exception of
Using the sane argument, all models of IBM/370 have superfluoe, blanks, preprocessing Is an isomorphiss.
the same architecture.

The two high-level language processor designsResearchera have realized that von Neumann described above are highly source language depen-
machines do not adequately provide for the con- dent and so a machine should be constructed for
structR that occur in common programti•g languages, each high-level language. In the case of inter-
Most of these shortcomings are attributable to a mediate language processors, the source program is
pheniomenon known as semantic grp (Gagliardi [73)). converted into a program in an intermediate language.
The semantic gap is a masure of the difference The resulting surrogate program is executed .by the
between the concepts in high-level languages and architecture. It has been established (Wade and
the concepts in computer architecture. Most current Schneider (73) and Lancaster 172),176)) that a
systems have an undesirably large semantic sap in certain set of semantic primitives can adequately
that the objects and operations reflected in their expreas the major portion of the semantics of
architecture are rarely closely related to the programs written in any of the several comon high-
objects and operations provided in programming level languages. therefore, it is coujectured
languages. As shown by Myers [78], this large (Wade and Schneider (73]) that by designing a com-
semantic gap contributes to software unreliability, puter organization which Implements a set of semen-
parformance problems, excessive program size, com- tic primitives that describe comon high level
piler complexity and distortions of the programing constructs, one instruction per primitive, speed
languages, all of which contribute negatively to increases approaching that of a 'truly' high-level
the economics of data processing, language processor can be achieved while retaining

33A

MINNOW"-

A

the flexibility characteristic of software dominatud whe.re N is its length and n is the size of its
conventional machines. vocabulary.

The authors believe that the intermediate 2. The Potential Volume V*: The most succinct
language processor is the desirable choice. The form in which an algorithm could ever be expressed
authors also believe that there exists a direct re- would require the prior existence of a language in
I. latioaship between the level of a target machine which the required operation was already defined
with respect to the source language (cf. SECTION 2) or implemented, perhaps, as a subroutine or a
and the machine's dependence on the source language. procedure. The potential volume of an algorithm
That is to say, the higher the level of a machine is the volume of the program which expresses the
with respect to a language, the more language do- algorithm in its most succinct formi
pendent will the machine be.

V*- (2 + n)log2 (2+)()
Because of this relationship one can measure

the closeness of a language to the machine. It can
be conjectured that there exists an 'ideal' directly where is the number of unique operands.
executable language (DEL) whic' deascribes an archi-
tecture with a smaller semantic gap than conven- 3. The Level of a Program L: Since there can be
tional machines. Hoevel (74] gave an analytical more than one possible implamentation of an algo-
argument to show the existence of an 'ideal' rithm, it is necessary to define the level of a
directly executable language which performs better program. The level of a program L is defined as
than conventional machines. In order to prove the
above conjecture we must quantify certain character- L - V*/V (3)
istics of machines like the level of a machine with
respect to a source language and semantic gap. This 4. The Level (,r a Language A: When different
is the topic of present research. The metrics do- algorithms are programed in a given •mplementation
flned in this work are based on Halstead's (Halstead language, it is observed (Halstead 1771) that as
[77]) Software Science. This research is a step in the potential volume V* increases the program
the direction of quantifying architectures and Is level 1 decreases proportionately. Consequently,
an attempt to bridge the gap between language do- the product L times V* remains constant for any
signers and computer architects. The metrics language. This product, the language level, is,
defined can be used either to evaluate candidate denoted by A:
intermediate languages and select tht most suitable
machine language for a given computing environment A - L" V* (4)
or to evaluate existing machines for a given
environment, The fuur quantities defined above form thc.

basis of our research. In order to discuss the
Hoevel [741 has argued that neither machine details a few more terms must be introduced.

language of conventional machines nor source lan-
guage is an 'ideal' DEL either from interpretation 5. Level of a machine with respect to a
standpoint or from storage point of view. He con-
tends that an 'ideal' DEL for a contemporary comput- Language 8L Certain machines are more closely

ing system lies somewhere between its source lan- related to the operations and data structures in a
guage and the language accepted by its base machine, high-level language than other machines. A measur-
In this research, we attempt to prove that an able quantity that describes this characteristic of
'ideal' DFIL from semantic gap standpoint also lies a machine is in order. The level of a machine with
somewhere between the source language and machine M
language. in the next section, software metrics respect to a language o is defined as
that will be used to quantify architectures are .
defined, Results obtained so far are included. L- a V/V (5)

L L
Section 2

V is the volume of an algorithm implementation in

Hlalstead and his students (Halstead (731, 177 L". lilstad nd ll sudtt$ l~astma [7], 77] the language L And Vg is the volume in the machine :

and Software Engineering (79]) found that applica- t
tion 'of the classl•cal methods of natural sciences language of the machine H.
d - p-trate that sima such intangible objects as
written abstracts and computer programa are govened Remarkas 1. The authors strongly believe that the
by matural laws. Some of the mettics used by them qu-atity in equation (5) is a constant for a gives'
that are pertinent to present work are now presented machine M and a language L (and a compiler) and
without explanation. Interested readers should does not vary significantly with either algorithms
refer to Halstead 177] for details, or programing styles.

1. The Voliue V: A suitable metric for the site 2. Compiler overhead is included while measuring
of any implementation of an algorithm, called the volume V in equation (5). Thus, V is the volume
volume V, can be defined as of the program translated into machine language M

V N by a compiler starting with the program in the high-
102n level language I.. This approach is used for prit,-

tical reasons.

- . ..-

S. " • ' • • ,' "" + ,• . ' + ::•. .=k. ... :. :.,,+

3. If compiler overhead is to be excluded, a dif- language and dT In the execution time of the
ferent metric, the Potential Level of a Machine program for the dynamic volume Vd.

" iay be usedt
Remarks: 1. To evaluate equation (7), a program

aor-a nte of programs) must be executed with dif-
S- An/AL (6) ferent sats of data. For each set of data, the

dynaic volume V and the execution time dT suet be
where A it the level of the machine language of noted. Then, t intvgration in equation (7) cam

be approximated by suation.
machine M and AL is the level of the high-level H
language L. Potential level can be greater than 1 2. The product L' L in asure of the speed
since it is possible to have a machine language at which programa written in a high-level language L
whose level is higher than that of a high-level are executed on machine M.
language. The perfostance of a compiler can be
evaluated using the two levels defined above. Some Results: A simple program is run on Cyber 72

a number of t imes with various values for Input
Some Reaults: 32 FORTRAN programs written by Brad- data. The values of execution time for various
i fte and freoeen computar science students at 8)U dynamic volumes are plotted In Pig. 3. As can be
are used in our validation of equation (5). seen from the graph, the rate at which Cyber pro-
Operators and Operstde in the programs used are ceases information is fairly constant and is given
counted according to the rules suggested by bulut by the slope of the graph.
1741,(73J. The results are gIven in Table 1. WThen
these values are plotted (Fig. 1). a straight line 6 15.746x 106 bitso
relation between the two volumes with a correlation ICyber 72
coefficient of 0.978 is observed. From the plot,
the level of Compass (assembler language of Cyber) Applications
with respect to FORTMAN (using MTH compiler with
OPT 0) ti given by the elope of the curve: Although the results obtained so far are not

enough to claim the validity of our metrics, they
aCompass tend to support our intuition. However, since

FY 01 9intuition is far from trustworthy, we are planning
to collect data for three languages FOMTRAI•, Pascal,

Similar computations are performed on COBOL and the and COBOL and on three architectures Cyber, ANWL,
results are tabulated in Table 2. The level of and TI 9900. We believe that this set is a repre-
Compass with respect to COBOL is calculated to be sentative class of languages and machines most
(Fig. 2) cmmonly used.

Compass Once the consistency of these metric. has been
COBOL 0validated, they can be used to select a machine

language that is best suited for a computing eavi-6. Dynamic Volume Vd: The volume of an algorithm roement, Denoting the set of progrmming languages

defined in (1) Is a static measure of the size of under consideration by P, the machine language for
the algorithm and it can be used as an estimate of which the quantity
the memory required. However, the actual amount of
code processed by the computer Is different for 1 (k L) (8)
different mots of data. Depending on the input, LcP
certain segments of the program my be executed
more often than other segments. The Dynamic Volume is maximum describes an architecture with a minimumof a program in the code of the program that is semantic gap for the set of programing languages P.
actually processed for a given set of data. The constant k in equation (8) it a Weighting

factor that re]lects the frequency of usage of7. Average Information late I34: Since it ii poe- Language L in a particular environment. Typically,

mible to cnce~ive hinem with the sae if 90% of the time COBOL Is used in a given environ-sibl sment, kCOO will take a value of 0.9.architecture where one machine executes programs COBOL w
faster than the other (e.g. the various models of
1B4/370 series), a measure of the processing speed Equation (8) can also be used to evaluate
of machines mast be defined. The average Informa- existing architectures for a given environment.
tion rate 1) of a machine H is much a quantity and Uts of the metrics defined In this paper provides
is gIven by useful Information on the basic architecture of the

iT 1machine and the Implementation details such as the
___L_ " .T information processing rate are separated from the"Y dd (7) architecture. This information is not provided byIN (Av'g. Me per run [0fT benchmarks which reflect only the speed of execution

of the benchmark programs on the machine. However,
where T it a sufficiently long time period over the authors believe that the counting techniques
which the behavior of the program is observed, Vd suggested by Bulut (74),(731 must be refined before
ts the dynamic volume of the program in the machine existing architectures can be compared using our metrics.

35

S.-.... .. . - -..... -. - -_ ,"i-
: .,- ".-...... . .

I, q

Observations It is probably too early to outline the
machine characteristics that cause *emantlc gap,

While compiling FORTRAN programs, we tried but we observed that direct execution of a few
various optisization. that are available on FIN coa- high-level instructions would enhance the perfor-
piler. After looking at the code generated, we mance of computers appreciably. These instructions
decided to use only the code generated using FMN are very similar to the semantic primitives sug-
compiler with no optimization. The reason for this gested by Lancaster (72).
is the fact that optimization is not linear; only
certain portiona of the progrem are optimized. For Biblioaraphy
example, no attempt is made to reduce the code re-
quired to implement subroutine calls and passing Blocs, H.M. [73), "Structure of a Direct High-
of parameters. Thus, if a progrea.has a large Level Language Processor," Proc. of Symp. on Archi-
number of subroutine calls, the amounts of code tecture, ACM SIGPLAM Nov.
generated by both optimizing compiler and regular Bulut, N. (73). "Invariant Properties of
compiler are almost the ame. This nonlinearity Algorithms," Ph.D. Thesis, Purdue Univ., Dept. of
leads to an unfair comparison of FORTI•A programs. Comp. Sci., Aug.

We also observed that on Cyber 72, there are a Bulut, N. [74), "Experimental Validation of a
few systm Macros to execute wsst commonly occurring Structural Property of FORTRAN Algorithms," Comp.
YORTRAN functions like format conversions for READ Sci. Tech. Rapt., CSD TI 115, Purdue Univ., April.
and WRITE statements. Similar observation can be Durkle, H.7., etal. (781, "High-Level Language

*Asincnncio it OBLprograms. Ste Oriented Hardware and the Post-von Neumann Era,"
f de in connection with COBOL pors.So, the u a,.Jte 78," h-va nuo

elthors would like to stress the fact that the O mput er te e Nes, April.
mabern obtained are for a virtual machine as
vleoed by a compiler writer. However, the use of Carlson, C. R. [75], "Survey of High-Level
ouch macros strengthens our belief that a new Language Computer Architectures," in High-Level
sochine language which has a higher-level than Lanuua Computer Architecture, Edited by Chu, Y.,

nventional machine long"u&a is needed to improve Aced= ic Prus.
'toe performance. Flynn, N. J. [751 "Interpretation, Micropro-

Conclusion graming, and the Control of a Computer," in
Introduction to Computer Architecture Edited by

, In this paper, the authors have attempted to Stone, H. 5., I

•toduce the subject of their research. The Gagliardi, U. 0. [731 "Report of Workshop 4 -
thors started out with an asomption that there Software Related Advances in Computer Hardware,"
oiets an 'ideal' machine language which has most Proc. of Symp. on High Cost of Software.

L#the advantages of high-level language processors Halstead, M. H. (731 "Language Leveljial retaining the flexibility of onoventionalReesd .. 7]"lmusLae-

N a mchies. In order to prove this con- A 4Missing Concept in Information Theory," ACM SIGNE,
UPerformance Evaluation Review, March.

a.~s a few %style@ are deflood. UASin theseHased .. 17 EmntofStwrmetrics, a most suitable machine language for a Halsteed, K. H. (771 Elements of Software
given computing enviroment can be designed. Science, American Elsevier.

Although, the actual values of our metrica may Hoevel, L. W. (741 "Ideal Directly Executed
change if a different counting technique is used, Languages An Analytical Argument for Emulation,"
the conclusions are still valid. The values obtained IEEE Trans. on Computers, Aug.
must be used only to compare two languages and no Lancaster, R. L. 1723 "Semantic Primitives for
significance must be attached to the absolute values. Quick Implementation of a Family of Procedural

Languages." Ph.D. Thesis, Purdue Univ.
In our research, one basic assumption is that Lancaster, R. L. end Schneider, V.3. (76],

"the language in which a program is written is ths "Quick Compilar Construction Using Uniform Code
but lassuage for that algorithm. However, we did Geuickto r Sofaruction U ng Unifr ce
not sea any published results claiming the superi- Generators," Software - Practice and Experience.
ority of one language for a particular application. Myers. G. J. [783 Advances in Computer Archi-
Our method can be extended to evaluate various tecture, John Wiley & Sons.
programing languages for a given application. In Software Engineering (79] IEEE Trans. on
order to do tiiS, one has to write a umber of Software Engineering, March.
programs (within a given area of application) in a
set of progriaing langiu as and measure volumes of Tannenbaum, A. S. [763 Structured Computer
these algorithms in the different languages. The Orgenisatton, Prentice-Hall Inc.
high-level language that hea an overall minim= Wade, 3.W. and Schneider, V. B. [73) "A Generalmvolume for the set of progrmes is the best imple'- Wadpoe,5 Rih-. and LruScheidr .B (73]ic "Ar General
meataon l 4quage for the area of application F Purpose High-Level Language Machine for Minicom-
. aet &sldeation. Oncr the ain o u liketio puters," ACK 3XGPLAN/SIGKICRO Interface Meeting,

caution the reader that the counting techniques may
have to be refined before our method can be used
for the suggested applications.

36

, g - , , 4 - -. Vj.

I:

V~cmmV SvFRo T, U v compase m n V NCom pass

2031.9704 6349.54" 449).4105 2421.7177
'•+• 2347*1734 M146.4650 1946. Ni 13116.3500!2%. 0315 1764.19915 •m.5021133

•, 421..1067 2,41.M471 311.0.9413. 194117,"870
•+13,14.02,80 770. Mill 1596,.1231 9350.6000

r 24.0000 394.2272 343.3762 1917.2798S361.2110 3006.60O73 1155.79" 6561.7912
-352.3M0 2313.*110 1065.3293 &M4.3600

373.0000 24157.3806 48.0130 IMA0M71

206.1483 1343.3554 124.0000 M0.3611
20.5551 2171.9507 73.0124 362.2120
365.0000 2768.0630 194.41441 1150.310
35.3509 549.5710 246.3796 1623.9272

853.0376 5941.6165 12.0000 107.3469
121.0000 1149.2961 65.1101 8U6.8996
518.9212 3646.4257 1183.0721 U34.6131

Table 1. ValidatiLo of UquatiOn (5)
MU Cmpiler vith OPT - 0 I• used.

V=Tm 1.i the vilme in ORTR0AK. it the volume in CAmpass.

265.4) 592.26 ,79.14 1361%.9 17S2.61 2139.70 252.s56 2913.42 3300.27 3217.13

Crnelatiout 0.97764

slp.. 5.,2416 I ;

. atevoeptl 240.47389 1 .

I I I

IlI I1. I + .

I I I
t I I

I1224.32 4 I I /

---------------------------------....-............................-.................................
II I. I I l ÷

II • o I I

4126?.324 +

I I . I
II 1 1

1 2 1 ,

I~ i I /I I

9107.53 4 I 1

ttI!I I

aln I . I ÷•
41 1 4 1 I

I I ' I

I I "I I •

4712..3..4.4 . .1 . .4 . .) .. €.+.. .4. . +A l O . .+.- . l'

1 2 Llre1.Vldtno Iuto 1) 1.

1-. * FOTAN1o1 X-le cmls1o 1 . I18

• + 37

'2 1 1 I
10.542

V COBOL Compass COOLCou

167.371790 3700.9530 227.548950 3977.9047
655.131790 11260.78640 230.321550 4645.9535
403.254150 10222.6950 483.308970 10455.0650
91.376518 2422.8076 21.00O0000 527.3324
46.506993 1250.2098 57.359400 1386.6956

122.984890 1951.2472 339.001500 7949.2895
H 245.969780 6198.6132 159.911340 3831.2925

286.620880 5333.9861 95.908275 2028.3122

Table 2. Validation of Equation (5)
C0O0L compiler on Cyber 72 is used.

VCOBOL is the volume in COBOL.. Vconpass is the volume in Compass.

"

Correlation: 0.966391 /'

1 Slope: 19.33681"

Intercept: 430.06945 /

9114.09
t
I I I

8040.75
... I

6957.40 *

I I

tI I I

..
5894.06 i

t I II

4820.71
t ! I...

3747.37

2674.02 I

1600.68 .

527.33 -..

21.00 147.83 274.65 401.48 528.31 655.13

Figure 2. Validation of Equation 05)

V alonK X-axis, V along Y-axis.COBOL X- 8 .83

38

V4 dT V4 d4d d
5244252.049943 0.305 68172286.369940 4.285

10466254.909940 0.606 68172286.369940 4 .245
15732257.769940 0.897 6737539.570993 0.353
20976260.629940 1.257 10106234,950990 0.506
26220263.489940 1.526 13474930,3)0990 0.676
31464266.34944U 1.903 16843625.710990 O. A
36706269.209940 2.327 20212321.090990 1.012
41952272.069940 2.546 23581016.470990 1.178
47196274,929940 3.006 26949711.850990 1.341
52440277.769940 3.297 30318407.230.90 1.522
57684260.649940 3.376 33687102.610990 1.680
576U4260.649940 3.529 37055797.990990 2.021
62928283.509940 4.031 40424493.370990 2.177
62928283.50940 3.623 437931N.750990 2.317

Table 3. Validation of Squation (7)

Vd is the dynamic volume in Compase. dT is the excution time on Cyber 72.

4,28
Correlatiout 0. 99237

3.69 Slopes 0.635089-07

Intercept: -0.16444

3.49

3.09

2.69

2.30

1.90 0

1.50

1.10

.70

.30 . *

.052 .115 .178 .241 .304 .367 .430 .493 .555 .618 .681

*1i

Fisure 3. Validation of Equation (7)
Vd x 10-8 alon1 X-aexi. dT along f-axis.

(unite: Vd in bits, dT in seconds)

39

!II

A DIRECTLY EXECUTABLE LANGUAGE SUITABLE
FOR A BIT SLICE MICROPROCESSOR IMPLEMENTATION"

Neville R. Harris

Computer Systems Laboratory, Stanford University2

ii Abý,tra.c.
The aim of DEL code [1.2.3] is to provide al

Directly executed languages (DELs) as proposed ideal architecture for any high level language.
by I lynn have variable sized fields for both opera- The encoding is not optimum in the Huffman coding
tors and operands. For efficient implementation sense but instead a compromise between compact
this architecture requires access to main memory at coding and ease of interpretation. "An ideal
thf. bit level, and also requires powerful operations representation must be concise in its coding of
un varialbe sied bit fields in the host processor. identifiers yet not so concise that It exacerbates
For a hardware architecture based on bit slicd interpretation" [2 page 22]. In this architecture
processors and byte addressable memory it may be the scope of an identifier in a procedure is very
more advantageous to consider a byte oriented DEL. important. The address of an identifier is given
This simplifies the memory access hardware and makes as the address (offset) within the contour. Hence,
the decoding of the DEL code a straight forward look the number of bits required to hold an address is
up procedure. This paper reports on a project to given by log2 (V) where V is the number of unique
build a Pascal oriented micro processor (POMP) and
co•ipares the POMP encoding of instructions with identifiers within the scope. Operators can also
those of the DEL code. Initial results indicate be encoded in this manner but the number of opera-

that POMP code is less than fifty percent larger tors is small and hence a fixed encoding may be

than D9-1 code and hence will be preferable when used instead. The DEL code instructions mirror the
,iii~i~lhitIy of interpretation is required, operations in the high level language giving three

address type instructions. When the stack is
required in expression evaluation then all loads

Introduction and stores come as additions to the main operation
being performed. In a sense they come for free.

A Pascal oriented micro processor is being The loads and stores are not explicitly given in

built at Trinity College Dublin using AMD bit slice the DEL code instead they are implicitly applied as

processors,. It will be used for research into the part of other operations. Thirty two formats

emulation of intermediate forms for block structured specify all the different forms of the three address

languages. Pascal will be the initial language instructions. The DEL encoding for a number of

considered and will also be used in all examples in expressions is given in figure 1. The encoding

this paper. During the design an architecture to contains the format, operands and operations fields.

efficiently support Flynn's DELs was considered. In the format field A, B and C represent the three

It would have required bit addressable memory, and operands of an instruction when they are not in

operators for variable sized bit fields. Instead the stack. S represents the resulting operand
an architecture based on byte sized instructions pushed on top of the stack, and T represents the
wAs chosn to give easier interpretation and a operand on top of the stack, which may he popped
simpvler main menmry interface. It was also felt if required, and U is the next to top operand on
tha.t a compiller producing byte sized instructions the stack.
would be easier to construct than one producing DEL
code. The only disadvantage is the loss of compact- In examples 3 and 2 the operation is perfor4ed
hess of code. This paper reports on initial without the use of the stack. In examples 3 and 4
investigations into the comparison of the two the stack is used and its use is indicated by the
encodfiigs and considers the tradoff between compact- format of the instruction. In all the examples

, nles', of coude and ease of interpretation, there is one DEL code instruction for each operator
in the high level language expression. Note also
that the load and store stack are implicitly
implied by the format and combined with the instruc-

IThr work described herein was supported in part tion operation. One memory reference is saved in
by the Army Research Office - Durham under contract example 4 where the identifier K appears more than

no. DAAG29-.78-0205. once. Conditional statements and the addressing of
arrays can also be accomplished in a similar manner,2, as shown in figure 2.

O0n leave from the Department of Computer Science,
Trinity College Dublin.

40

S.T..

The if statement in example 1 produces a DEL 0 - Null
code Instruction to test the condition and skip if
the condition is not true, and another instruction 1 - Boolean
to evaluate the expression K:- K + 1, which is 2 - ASCII (Character)
executed, if the condition is true. In example 2 3 - Address (pointer)
the array address calculation is considered as a
single operation along with the assignment, and 4 - Bit address (for pecked structures)
in example 3 it is considered as a single operation-
along with loading or storing from the stack. 5 - Integer

6 - Real
This encoding produces compact code, anywhere 7 - Set

from three to eight times more compact than that
produced by compilers for traditional machines. The state is contained in a three bit field in

s rp o P) the processor's PSW. Some Instructions are state
Pi Orindependent, e.g. LOADS, and hence the opcode
The size of procedures written in a structured range is divided into a state dependent and a state.

manner• using a high level language tend to be independent range. Assuming that these ranges aresmall [4n. The most frequently occurring state- equal in size then there are 1152 potential opcodes.
ment is assignment, followed by procedure call, if For this architecture the low end of the opcode
and return. Assignment statements tend to be very range ra te dependent instb tos Te
simple with the majority having only one or two opcode range XOO to X'2F' has been reserved for
term on the right hand side. The majority of zero address instructions. The opcode XsIO'
procedures have a small n ertnter ddton f the processor stateis integer and real addition if the state is real.
and a stall nadder of local scalar variables. The null and boolean states are used for uncondi-
Hence, the addresses of local variables and the tional jumps and false jumps respectively. A few
most frequently occurring global variables may be lines from this area of the opcode table are shown
compactly encoded. The coding of procedure calls in figure 3. Each opcode represents five different'
must also be carefully considered. operations depending on the processor state.

A significant compaction of code can be gained Branch instructions are implemented in both a short'

from the fact that during the execution of any and long form. The short form is given in this

Pascal statement the state of the processor is narea of the opcode table and consists of two bytesPascl satemnt he tateof he rocesorisin the following form.
always known e.g. integer or real. Between state-
ments the state of the processor returns to the
null state. For example the statements DO-

var J,K : integer" ; A,B : real, oce-+ 4K offset
J :a K + TRUNC(A + B) opcode _os

produce the following instructions for a stack This requires thirty two opcodes X'OO' to X'IF'.
machine. The state of the processor is also given. The long form jump consists of an opcode followed

by a two byte offset.
Instructions Processor State Load instructions, which are state independent,

-> Null are used to load the stack and also set the
LOAD K => Integer processor's state. Eight of these are provided

for each of the states: boolean, ASCII, address,
LOAD A -> Real integer, real and set. Three bits within the byte
LOAD B I> Real give the local variable number and the format is

ADD -> Real 4-++...

TRC -> Integer

ADD => Integer opcode J
STORE J -> Null local variable number

The processor state is null between each state- The long form of these instructions is used if the
ment and is set by load instructions and, in this procedure has more than eight local variables -
example, by the truncate instruction also. this will occur six percent of the time [4].
Advantage can be taken of this fact [5) to provide
a two dimensional Instruction set thereby greatly Separate one byte opcodes are used to perform
increasing the range of opcodes available. Eight operations between the top of the stack and oight
states of the processor are used. local variables. If a local variable Is added to

the top of the stack this requires a one byte
instruction rather than two Instructions in the
conventional stack machine. These instructions are
two dimensional in that the meaning of the operation
also depends on the processor state. The operationq

41

•., ,.• , .• .. , ., .• ••-, ,. , • • • ! • •,• •. • j •

involved are add, subtract, multiply, divide. The results were then compared with the DEL
compare for equality, compare for Inequality and code produced by a DEL compiler being implemented
store. The null state of-this pert of the opcode at the Stanford Emulation Laboratory. The object
table cannot be used with these operations and code size produced by compiling a qulcksort program
hence Is used to zero local integer, increment on the three different compilers were:
local integer, and decrement local integer. These
instructions also have eight different opcodes for DEL POMP code P code
eight local variables and again they replace either
th 'ee or two instructions in the conventional Size 292 430 1004
stack machine.

Factor 1.0 1.47 3.44

instreuction, brIn donb co mpaeuetion type wPreP
T he: oduet generator (the assemb~ler) of the P Thetreuctions irkn dode siz duepation thpe PO reP

coeel mple was modified in order to obtaim a
eefor the compactness of the P04P code. The Compaction Numb~er of

modified coMpiler produces either P code [6) or a, in bytes instructions Compaction type
cI obine*tio 0,Of P code and POW code depending onIhe setting of a number of control flags. These 34 (6) 17 Short branches
lags are used to test out the relevent importance 267 (47) 89 Load and Store local~f comacting different P code instructions 'rather variables

than only obtaining the total effect. The P com-
piler produces code for a stack machine where all 129 (22) 43 Load integers 0, 1, 2,
operations are performed on the top of the stack. load boolean true or false,
Hence no advantage could be taken of the POMP increment and decrement by I
instructions which operate between local variables 144 (25) 48 Zero address instructions -
and the top of the stack. For examiple the 37V TO7 operating on top 2 elements
expressions A :* B * C and A t- A + 1 produce the of the stack.
following P code and POWP code:

A 9 * CThe total number of instructions is 251 for
A~B Cboth the Pcode and POMP code. In the POMPcode

they are broken down into 180 one byte instructions,
P code -LOAD 3 POMP code - LOAD 817 two byte Instructions and 54 P code instructions.

LOAD CMUL CAlmost half of the comaction is achieved by comn-
LOAD CMUL Cpacting the load and store locals. In contrast the

MUL STA A short branches had almost no effect (6%).

From the preliminary results it looks iimprob-
STA Aable that the POMP code produced from the P cod&

A :A + I compiler can achieve the compactness of the DEL
code. Each POMP instruction would on average only

Pcode - LOAD A POW code - INC A occupy 1.16 bytes as the DEL code for this program
consists of only 68 instructions compared to 251
for the P compiler: a factor of 3.7. Even allowing

INC 1 for the fact that DEL operators often have implicit
STA Aloads and stores associated with them there is still
ST Aa remarkable difference in the number of operations.

The ourarea mot eailyI laentd an whch Hence the P code compiler has been discarded and
Thefor res os esiy mplmne n hc present work is using a Pascal compiler which

were considered to result in the, greatest compac- generates an abstract syntax tree during parsing.
tion are, Using this compiler the full POMP code can be

1) Sort ranhes offet elatve t PCenerated including the instructions which operate
1) Sortbraches- ofse reltiv tOPC etween local variables and the top of the stack.
2) Ladig ad strin loal vrialesStatistics will also be generated on fourteen

substantial Pascal programs giving the frequency
t fareof oprators and memory references, and the

3)Loading small iptae rs (0,1 and 2), loading resulting DEL and POMP codes will be compared. I
boolean true or fase, increment and
decrement top of stack by 1 An advantage put forward for minimizing the

4) Zero address operators i.e. acting on the top number of instructions of the object code is that
it speeds up the execution. A large numer of

two elements of the stack. instructions increases the fetch and decoding time
codecompler rodues ne Pcodein~tuc- but with instruction prefetch and with simple ROM *

The loo upd decoding itdue ise ePece that thesiffeenc
tion per 32 bit computer word. No compaction of ino ex-ecutiong spee duexpeto d this eff e wi fersmall
the code was considered. i xcto pe u oti fetwl esal

42

S.~rJ ",, , .. .,_ =,
- .. -' ~ ~ -!

References

[E] Hoevel, L.W., and Flynn, M.J., "The Structure (4) Tanenbaum, A.S., "Implications of Structuredof Directly Exe uted Languages: A New Theory of Programming for Machine Architecture, CACM Vol. 21,
Interpretive System Design," CSL Tech. Rpt. 130, No. 3. March 1978.

Stanford University, March 1977. [51 Jones, J., "Towards a High Level Language

[2) Flynn, N.J. and Hoevel, L.W., "P Theory of Microprocessor Oriented Instruction Set," (to be
Interpretive Archil.actures: Ideal Language published - Euromtcro). 1980.
Mochines," CSL Tech. Rpt. 170, Stanford University
February 1979. (6) Alpert, D., "A Pascal P Code Interproter for

the Stanofd Ewof," CSL Tech. Note 164, Stanford
[3) Hoevel, L.W. and Flynn, M. J., "A Theory of Universit September 1979.
Interpretive Architectures: Some Notes on DEL
Design and a Fortran Case Study," CSL Tech. Rpt.
171, Stanford University, February 1979.

Expression Format Operands Operation Stack Value

1) K:- J + 2 ABC J 2 K + -

2) K:- K + 2 AA K ? + -

3) D: K+ J + L + 7 SAB K J + K +J

TTA L + (K + J) + L

ATB 7 D + -

4) D: K K + K 4 7 SAA K + K+ K

TTA K + (K + K) + K

ATB 7 0 + -

Figure 1

Expression Format Operands Operation Stack

1) if K J then SAB K J Skip offset < > GoTn -

K :K 1 AMB K 1 +

2) K :=,i ARRAYA J H K A- B[X]

3) H[K] J] + N[J] ARRAYA 3 M S :A[X] ME,]

ARRAYA u N [:-A[X] N[J],M[J]

TUT + 4Jj] + N[J)

ARRAYA K H A[X] :- T

Figure ?

Opcode Null Bool ASCII Addr BitLAdd Int Real Set

X'10' UJP FJP - - ADI ADR UNI

X1'll UJP FJP - - SBI SBR DIF

X'12'. UJP FJP- MPI MPR INN

Figure 3

. .;.,
..

PARTIAL EVALUATION OF A HIGH-LEVEL ARCHITECTURE

Gdran Bige, L H Ericsson, S-126 25 Stockholm, Sweden

Lars-Erik Thorelli, Department of Telecomunication and
Computer Systems,
Royal Institute of Technology,
S-100 44 Stockholm, Sweden

Abstract It turns out that LAX2 uses significantly fewer
bite for instructions, both statically and

The architecture of the high-level language dic y thu s, t rt study ie t
machiie. 1AX2, designed for efficiency in string dynamically. Thus, the present study gives yet
aish ain n Ian designtedrctveffpictiency instring another example of the superiority of high-level

cnttip,1ld With anrintercti applicrativonse isndarchitecture, designed from language and appli-
evaluated with respect to program volume and cation considerations, over conventional archi-
.oumber of interpreted instruction bits. The eva- tecture. After a short description of the high-
Inos ion takes Lhe form of a comparison with the level architecture the evaluation method and
PIP--lI i. .Iitecture using av test data a set of results are presented. The concluding sections

.mp,., e reslist ic programs from a well-known compare the present work with earlier evaluation
h eusuperiority studies and discuss the significance of the

hi#h- ee,,I architecture. results.

Introduction Short description of the high-level architecture

h,\ 0, is a high-level architecture designed . 4
- isnt ao hith-level arieureo ndesined LAX2 is a tagged architecture . Its design pre-

bole el ficiont for string manipulation and inter-
aclive aipplications. It has type-marked values, supposes a basic word format of 16 bits. Currently

dytami, sttrage allocation, and powerful inatrec- the machine recognizes types of values according

tiolt! Jo0' strinig manipulation. The language of the to Figure 1.

machite is specified in two levels, a source or
t.,xt leve.l 'IAX and an executable level ELAX. Simple types: nil, boolean, character, index
There are u,) GOTO's in TLAX; all jumps are gene- (integer in the range 0-16383)
iaLed from high-level control structures by the Composite types:
stimple 'ILAX - ElAX compiler which is a fixed part string (of characters)
.-f the machite. Memory is splitted into a number node (heterogeneous arrav)
-A ,teld atd program blocks; relative and indirect decimal (detimally represented integer)
:tld',stiog is used with out-of-bounds checking to prog (execr'table procedure)
•hhi,,ve compact code and high reliability. coprog (coroutine activation)

The main design goals for LAX2 are low cost for channel (for input or out ut)
(real, realarray planned, not vet imttlemented)quftwarn• producrtion and good memory and execution

time ectntomy for the intenuad class of applications.
rh. Jesign lirs' been heavily influenced by the con- Figure 1. •AX2 datr types
,t'ts of structured programing. The architecture
tas been implemented as a partially microcoded
int:erpreter on a Varian V73 minicomputer. A value of simple type is represented hy one

lts present paper reports on an evaluation of 16 bit word with its leftmost bit cleare
4 . A com-

rrhed wrseth m aemry rneecurtion tim ecauton omyisvle srpeete ya1 it.e h
architecture. The evaluation is only con-a 16 bit o, the

thr it eo ard exeuation econly head, whose leftmost bit is set, pointing to e
lavin tt omplem ely aspexecutson such aeseoofy pr memory block, the body, containing a type-and-lo•aving, out completely aspects such as ease o f pro- length descriptor and the value proper,

gr.u•tuing and debugging, software security, and ease
0t tottipitlation. Furthermore, the number of inter- The memory area of a LAX2 process is divided
prated instruction bits, rather than physical exe- into a stack in which procedure activati.oa recordr
.ution Litm, is used as the dynamic measure. The are allocated, and a heap, where compactifying
evaluation consists of a comparison of LAX2 with garbage collection is performed when necessary
P)P-iJ1 , using a set of programs taken from the (Figure 2).
t.Pel li--kicwn book Software Tools by Kernighan and

1'The work was done while the author was with the Group for Datalogical Research, Stockholm

44

- .

ELAX code consists of a sequence of 8 bit byt~s.
HEAP ,Tf k='riTe design is similar to that of EM-1 (Tanenbaum)

HEA, j S Ki(and is characterized by compactness and the possi-SI IIhi lity of fast instruction decoding. Figure 5 shows

po-lon simple statements in Algol-like notation and

their ELAX counterparts.

Figure 2. Memory area of LAX2 process
Statement EI.AX code No of

bytes

An executable procedure, i. e. a prog value, can A:-B+3 push B, push 3, add, 5
only be created by means of the LAX2 instruction locate A, store
'compile', taking a string, the TLAX version of the A:-A-l8 push B, locate A, minus 3
procedure, as main argument. The body of a prog A:-A+i locate A, incr 2

value is shown (with some simplification) in A:-O locate A, clear 2
Figure 3. Each rectangle. represents a 16 bit woru.

S-: - _ -Figure 5. SimpleELAX examples

overhead own variablea EL.AX code LAX2 has a powerful set of string manipulation
(not more than 3!) instructions. A small example is given in Figure 6.

The guiding principle has been that although it
Figure 3. A prog value should be simple to dynamically create and throw

away strings, this feature should not be forced
upon the programmee', and that lexical and other

The ELAX code can only access the owo variables kinds of string adislysis could be done with high
and stack variables (locals and parameters) of the machine efficiency. The reader is referred to

current activation record. Figure 4 shows the struo:- (1,2) for further information on this and other
ture of an activation record on the stack. The aspects of the LAX2 architecture. Appendix A
stack variables are also represented by one word summarizes the ELAX instruction list.
each, and their number may not exceed 32. In this
way addresses to coimonly referenced qattities aru
kept very short. More remote infrmatiun is Problhm: The string S contains an identifier, an
reached through indirect addressing. A complete operator symbol and an unsigned integer, pos-
user program consists of a network of prog and sbly separated by blanks. Assign the Identi-
data values linked by the own variables of the fier (a string) to A, the operator (a charac-
prog's, ter) to OP, and the integer (an index) to B,

EIAX solution: locate V, clear,
7-] , ,h S,, lote, V, getident, locate A, store,

Local P- V Milt V push S, hlcate V. getchar, locate OP, store,
puslh S, lou:Lt V, getindex, locate 1, store.

tur", stoc, k vtrio l !; 1' Iota llnAtr oi bytes: 17
addr(one word each, cntni
(within head of simple vslue or head of
prog) activated composite value) Figure 6. String analysis example

link Lo " p rog

underlying
record

Method of evaluation

are 4,_Act. vat ion reccind The book Soft ware Tools3 is highly suitable as a
- -.... -,,,,-.,. ,source of benchmark programs for IAX2, since the

programs art, complete, have been used in practice,Sand are typical of the application area of the .:•

Dynamic type checking and the static checking
machine. The programming language used in (3) is

ph'compile' iaRatfor, a structured dialect of Fortran. The fol-
great number of possible programming errors, lowing programs ware selected for use in the in-

Another feature promoting the efficient production lowigatron-
of reliable software is absence of jump instruc- vestigation.

tions in the TLAX representation. All jumps are a. ENTAB ((3) pp 37,21,20).
generated during compilation from high-level con- Copies a text file, substituting each sequence of
trol structures. In many other respects TLAX offers
a rather primitive notation which, together with spaces preceding a tab stop by a tab character.

the high level of EIAX# makes the ccmpilation pro- Tab stops are located at each 8'th position in the

cess simple. line.
P'rogram size: 46 lines of source code (not counting
comment and blank lines),

9L

•i,

b. LIPRESS ((3) p 44). (3) the recursive sort program QtIICK.REC was pro-
Produces a compressed version of a file using run duced also for PDP-Il.
length compression, i. e., a sequence of identical
characters is encoded by length and character

Program size: 36 lines. The results

c. PUTDItt; ((3) pp 61,62, plus a main routine). The volumes of the programs, excluding input/
Convarts integers to ASCII format and places them output routines, were measured. The volume is de-
hi specif ied fields fined as the size of the executable form of the
ILtwlraii size: 38 lines (excl. main routine), program including statically allocated data. The

sorting programs operate on data in primary storage;
d. qUItlCKSKORIT ((3) pp 115,110,111, plus a main this space is not included, as its size depends on
'outI i 11. the size of the input.
Siorts a !;,quence of text lines into lexicographical The result is displayed in Table 1.
order by means of the well-known "quicksort" algo-
i-i ihm.

Program,! size: 66 lines (excl. main routine). Program Result Result LAX2/PDP11
FIND ((3) pp 136-138). PDP-11 LAX2 in %

Searches a file, outputting each line containing ENTAB 204 189 93
a cert.ain pattern given as input. The pattern is
ossentially a regular expression. COHPRES- 251 210 84
t'iogriui size: 279 lines. 1

The set: of programs is rather small but is PUTDEC 97 60 62

hoped to be representative of the text processing QUICKORT 233 132 57
application area. I

Nexi, these programs were translated for the QUICK.RRC 175 77 44
two ar.hitLctures LAX2 and PI)P-11.

The translation for LAX2 was obtained as follows. FIND 1282 776 61

The programs ware rewritten into the language HLAX, ND.OPT (1282) 841 66
a high-level (above TLAX) notation for LAX2. The
RILAX programs were compiled using a cross-compiler
on a DRC-l0 computer. During the rewriting process 2
cwre WIs taken to stay glose to the original pro- Total 2242 1444 64
gramsa. As a consequence the programs run on LAX2

have, except for minor details, the same data and
pi ogram structures and use the same algorithms as Notes: t: exoluding main program
th, or[gillai programs. This means that the features 2: excluding FIND.OPT
of, tlJX2 have not been used to full advantage.
tluwever, an additional version (FIND.OPT) of FIND,
optimized for LAX2, was written. The optimization
reliei mainly on the observation that a majority
of search patterns consist of or start by a literal Table 1. Program volumes (unit: 16 bit words)
striaig. Therefore it should pay to modify the inter-
nal representation of patterns and use the sub-
airing searching 'part' instruction of LAX2. Also, The high percentage figures for the first two
a rec•'rsive version (QUICK.g1C) was written in programs are explained by the fact that they use
addition to the non-recursive version from (3). data structures whose sizes dominate over the sizes

To translate the programs to PDP-11 code the of the programs proper.
languuge C (6) was used. As before, the rewriting In addition to these static results, dynamic
w•s done to faithfully preserve the given algo- measurements were derived. The programs were exe-
ri.thrms and structure. To obtain high quali.ty cuted on the two machines and the number of inter-
machine code all features of the C language pro- preted instruction bits was recorded. These counts
neti~ng this goal were used, including the possi- exclude all input/output handling.

bility of declaring quantities to reside in regis- The following text files were used for input

ters. The programs were compiled usi" the opti- during the dynamic measurements (Table 2).
,nizing compiler available under UNIX . As a result da
uf these measures we believe that the machine code
is as efficient as that produced by a competent
assembly language programmer, with the possible
exception that the letter may in some cases feel
inclined to use a less general subroutine calling
sequence, to save time for the saving and restoring
of registers. In addition to the five programs from

46

File Content No of ASCII No of lines
symbols

TEXTO "tract from 580 13report Program Data Result Result LA12/PDPi1
PDP-11 LA12 in

TEXT1 extreot from 4752 98
report ENTAB TEXr4-II 7105 4357 61

TEXT2 extraot from 3806 99 COMPRESS TEXTI-4 9599 7308 76
report PUTDEC - 130 46.3 36

TEXT3 source code, 1038 51QUICKSORT TT1,3,4 2942 421 14
C language

TEXT4 mail address 5697 100 QUICKSORT TEXT4S 6000 558 9
K list

QUICK.RSC TEXTI,3,4 2925 354 12
TEXT5 mall address 1139 20

lilst UICK.REC TEXT4S 5925 516 9

FIND: all 667 187 28
PATTERN patterns

Table 2. Input data FIND: group 1 8323 2768 33
HATCH group 2 16588 4778 29

group 3 23286 6166 26
The %HNTAB and COMPRESS programs were run using

files TEXTI - TEXT4 as input. PUTDEC uses no input group1-3 48197 13712 28
file; instead, the main routine makes 36 calls on
the conversion procedure. FIND.OPT, all (667) 121 18

PATTERN patterns
The sorting programs were used to sort the lines

of TEXTI, TEXT3, and TEXT4, and also an already FIND.OPT: group 1 (8323) 68.8 1
sorted version TEXT4S of TEXT4, resulting in worst- MATCH group 2 (16588) 1102 7
case performance. group 3 (23286) 6630 28

Finally, the FIND programs were run using a col-
tection of 19 search patterns and the input files groupl-3 (48197) 7801 16
TEXTO, TEXT3, and TEXTS. Three groups of measure-
ments were performed. Group 1 uses simple search
patterns consisting of single literal strings. Table 3. No of interpreted instruction bits
Group 3 uses complicated search patterns, and group (ujnit: 1000bits)
2 falls in between groups I and 3.

As in the selection of the test programs them- programs also perform better than average on LAX2,
selves, the aim in the selection of test data was mainly due to the use of string comparison instruc-
to achieve realistic and typical conditions with a mions built into LAX2.
reasonable amount of effort.

The least favourable case for LAX2 is theTable 3 summarizes the r~sult of the dynamic COMPRESS program. A closer look shovs that this is

measurements. For FIND measurements were taken sep--

arately on the pattern building part (PATTERN) and the program with the lowest frequency of procedure
calls. Procedure calling is more efficient in the

,the pattern matching part (MATCH), high-level machine than in PDP-1l, and the genera-
The superiority of the high-level architecture lity of the call-return sequence produced by the C

is evident. Summing all measurements (omitting the compiler emphasizes the difference. Code optimiza-
non-recursive QUICKSORTs), we get the overall tion across procedure boundaries can be expected to
figure 28% for the ratio of LAX2 to PDP-11. However, improve the PDP-11 results in some cases. Such
the variation across the programs is high, and the optimization Is however a complex task.
result depends on the teat data used.

The case of the optimized MATCH shows highly
favourably values for LAX2, especially for group 1.
The main explanation is that the search patterns of
group 1 consist of single literal strings, allowing Discussion
the search to be performed by the substring search- 0ý1
ing 'part' instruction. Likewise, the patterns of An objection to the results presented is that
group 2 consist of literal strings appended by the influence of data storage and accessing has
other constructs, so part of the search can be been neglected. Additional questions may be raised
speeded up as in the case of group 1. The sorting concerning the relevance of the number of

47

S • ..•... ; , ,.., •. •.,2• •2 ; • • • ' •' •6 •', L,•• ' -- .. • .

interpreted instruction bits as an architectural non-vector, instructions. Assume further that all
measure. These issues will now be discussed, In instructions are of the same length in bits - which
addition, the present work will be related to aim- is close to being true. Then we arrive at a prolong-
ilar published investigations. ation factor of 1.4 due to the use of vector in-

The volumes displayed in Table I do not include structions. That is, to get a more realistic measure
of expected execution time, add 40% to the resultsstorakgU all.ocated dynamically during execution. How in TFable 3 in the case of tihe sort programs.

would this dynamic storage requirement affect the
compattrisoil'• A look at the test programs shows that The non-optimized FIND program makes less fre-
the effect is small. Only the sort programs can quent use of vector instructions. The optimized
allocate mute than in the order of 10 words. The FIND.OPT:MATCH, however, uses the substring
sort prigianis use one more word per line of input searching instruction 'part'. For literal string
in].AX2 than in PDP-ll, due to the use of type-and- patterns (group 1) we find the relative frequency
length descriptors. With the test data used this of 'part' to be 2% and the average number of ite-
mounts to it 6% increase in data storage. The stack rations to be close to 50. This gives a prolonga-
frames in LAX2 are smaller than those used by the tion factor of close to 4.
111W-1.1 (!od. The influence of this difference is These findings correlate well with the results
small, however. Tile recursive sort programs grow a of Table 3 but do not fully account for the high
si:auk whut,-, depth is only log2(n) frames, where superiority of LAX2 in the cases discussed, Tile
V, iA Lhe number of input lines, remaining cause seems to be that the PDP-il versions

[lhe iumbor of interpreted instruction bits has are more heavily burdened with subroutine linkage
eeuui shown to be small for LAX2 (Table 3). It might, than the LAX2 versions, where certain subroutines

however, bh suspected that the number of memory have been replaced by vector instructions.
refet unc(t during access to data is higher for lAX? As mentioned in tile Introduction the I.AX2 machine
thitit for tho conventional machine, since each com-
poaite valu, ia equipped with a one-word descriptor. has been implemented as a partially microcoded

Ulrifrtunatel.y no mechanism was available for moni- interpreter on tile Varian V73 minicomputer. The

Loring thi effect. Inspection sllows that in the volume of tle microcode is 180 64-bit words, and

c•oeeof thoite test programs the deacriptor references the remainder of the interpreter consists of

woeld add well. below 5% to the execution time, The approximately 7K 16-bit words of V73 machine code.

would fd e is heof c toure quthe implementatioen Th %Thus the microcoded part is small. Execution times

dpctual fogure instofcourse, quie mplemeotatiould pr on the two machines were measured for the test pro--
dleptb'ndtlot, ol instance, a cache memory would pro- grams. The execution time ratio of LAX2-V73 to
*hably ,lmost eliminate the overhead. PDP-11/45 varies from 14 to 0.3 with 6-8 as typical

liii ouui.er of interpreted Instruction bits (NIB) values. These fig',res are quite satisfactory, con-
i, ar im 'chitectural measure clearly related to exe- sidering the usual slowdown due to software inter-
cut lno spied. Small NIB values means that little pretation. The hardware characteristics of tile two
tita is ilent in fetching instructions, however, minicomputers are roughly equal.
thie complexity of the decoding process must also be Finally a comparison of the present work with
consi-dered. In the case of LAX2 vs PDP-i1 the latter similar published investigations.

atudor sneeis to be of small Importance.8
Wilner8 has evaluated voulmes of Fortran and

Given a phys
4
cal implementation of an architec- Cobol programs on Burroughs B1700 using language-

tore, one would expect the execution times of pro- oriented instruction sets, in comparison to IBM
grasms t.o be proportional to their NIB values. System S/360 (and Burroughs B3500). The results
flowevar, thu accuracy of this correspondence depends show improvements by a factor 2 to 3, larger than
on the homogeneity of the instruction set, i e the the factor of about 1.5 for LAX2 compared with
degree to which the instructions all "do the same PDP-lI. This is however not surp~ising; S/360 code
ainount of work". In particular, the effect of is less compact than PDP-1l code
vector instructions has to be taken into account. 10
Like many other high-level architectures LAX2 has Wortman compared the-Student PL Machine of
instructions operating on variable length data, in his own design with the S/360. A large number of
particular strings. If such iterative or vector small student programs were used as test cases.
instructions are used frequently and on large data Several dynamic and static measures wera evaluated.
items, then clearly the number of interpreted in- The results show a twentyfold superiority for his
strucitlon hits will give a too optimistic view of machine in number of instruction bits, both in the
physical, execution time. static and dynamic sense. However, it should be

* In estimate this effect the use of vactor in- noted, first, that his 8/360 programs were produced

siructions in the test programs was investigated, by the standard PL/I(F) compiler, and secondly,

The programs ENTAB, COIPRESS, and PUTUEC make neg- that all runtime chacks built into his high level

ligible use of vector instructions. The sorting architecture are also included in the 5/360 ver-

progrsama compare text lines by means of the vector sions. These checks include the PL/I(F) conditions

Instruction 'string compare'. With the test data 'subscript rangoe','overflow', and 'etringrange'.

itoed the average number of iterations (character This is in contrast with our investigation, where

comparison steps) performed per such instruction is such checks are indeed performed by the LAX2

Ns Low as 3. The relative frequency of the instruc- machine but not by the PDP-11 program versions.

tiniu in 5%. Let us assume, rather arbitrarily, Nielsen 1 compared a proposed high-level
1thaFt etch iteration counts as three normal, i e language architecture for the SPL language, a

48

'1 IL

high-level language with special provisions for would require, in the first place, more practical
expressing vector and matrix computations, with the experience with the machine than is available today.

4 Honeywell HDC-701P aerospace computer. The high-
level architecture versions of a set of benchmark
routines were found to require 19% fewer program
bits than carefully coded assembly language ver- Acknowledgement
stoes. A timing analysis showed that the high-level
architecture programs could be expected to require This work was supported by grants from the
14% less execution tim,. Swedish Board for Technical Development.

Tafvelin and Wikstrim' 2 compared a proposed
high-level language architecture for the machine
oriented high-level language Mary with IBM S/360.
A set of seven programs was used, with a total References
S0360 volume of 42000 bits. The main result is that
program sie is reduced almost by a factor of 3. I 1.-E Thorelli, Description of the high-level
This is partially attributable to a sofisticated machine language LAX2, Part 1, TRITA-CS-7602,
adressing scheme called "refined display" used in Royal Institute of Technology, Stockholm, 1976.
their architecture. No dynamic results are given.

5 2. (; A-ge, Description of the high-level machineThe work by Tanenbaum has already been men- language LAX2, Part 2, TRITA-CS-7901, Royal
tioned. His EM-I architecture shares several proper-
ties with LAX2 but does not have the application Institute of Technology, Stockholm, 1979.
orientation of the latter. The performance evalu- 3 B W Kernighan and P J Plauger, Software Tools,
ation he reports is based on a small amount of data. Addison-Wesley, Mass., 1976.
All performance figures concern static code size.
Apart from isolated statements and programming 4. E. A Feustel, On the advantages of tagged archi-
constructs he treats only four small proIrams. tecture, IEEE Trans. on Computers 22(7), 644-
Their total size on the PDP-11 is 3776 bits and on b56, 1973.
EM-I 47% of this figure.

5. A S Tanenbaum, Implications of structured pro-
gramming for machine architecture, Comm. ACM
21(3), 237-246, 1978.

Conclusion
6. B W Kernighan and D M Ritchie, The C PrograIming

The reported work has given yet, another example lainguage, Prenctice-Hall, New Jersey, 1978.
of the superiority of high-level itrchitecture,
designed from language and app Ii cat iont toi d,.r.. /, 1. The Bell System Technical -Journal 57(6:2) (Spe-
Lions, over conventional architectur,. The evalu- -ial i• ow on the UNIX system), 1978.
ation was partial - the only examined properties
were program volume and number oh' interpreted in- B. W T Witter, Design of the Burroughs B1700, Proc.
struction bits. These quantities were evaluated AFII'S FJGC 1972, AFII'S Press, N.J., 489-497.
usiog a set of colplete, realisti- programs from ,
well-known source . 9. W 1' Burr, A H Coleman, W R Smith (EdR.), Final

The following features contribute signific:antly Report of the Computer Family Architecture
Lo the shown superiority of the high-level archi- Selection Committee, Army Electronics Command,tecture: Ft. Monmouth, N.J,, August 1917.

- efficient subroutine support- structured memory, short addresses 10. D 8 Wortman, A study of language directed com-Sspprucatured mory, shortaddrees dpra ,puter design, Technical Report CSRG-20, Univ.- application oriented data types a~nd uperat~ion. of Toronto, 1972.

As stated in the Introduction the goals for the
LAX2 design include low cost for software produc- II. W C Nielsen, Design of an aerospace computer
tion. The high-level architecture supports this for direct HOL execution, Proc. ACM-IEEE Sym-
goal by: posium on High-Level Language Computer Archi-

- eliminating concepts from low-level programming tecture, New York, ACM, 34-42, 1973.
such as registers, primitive addressing,
pointer arithmetic, and Soto statements 12. S Tafvelin and A Wikstrtm, Aspects of compact

- easing the compilation process (the basic com- programs and directly executed languages, BIT
piler is available as a machine instruction) 15(2), 203-214, 1975.

- providing extensive run-time protection.

We are convinced that these properties signifi-
cantly promote programer productivity as well as
the reliability of the software produced. The con-
tinuing rise of the ratio of software cost to hard-
ware cost emphasizes the importance of such "soft"
advantages of high-level architecture. Unfortuna-
tely they are hard to quantify. To do so fot LAX2

49

* -- -,~- --. V.-.- ~*~** -

¶ V.. -.- ,,-

The constant nil and the boolean constants true
Appendix A and false have one-byte representations.

String constants: The empty string has a one-byte
EMAX Instrution Sumiary representation. Other strings have a (n+2)-byte

representation, where the first byte is an opcode,
Of the 256 available byte values, the ones in the the second contains n, and the remaining bytes
upper half are reserved for producers and locators the character codes of the string (10n*255).
(byte values in ht~adeci*&aQ): Decimal constants: See ref. (2).

80-91": producers, stvack variables (Real constants: Planned, see ref. (1).)
A0-BE: producers, oihn variables The remaining data types (see Fig. 1) have no con-
CO-DP: locators, stack variables stants.
K0-FE; locators, own variables.

The instruction class computors contains instruc-
A producer pushes the value of a variablo on the ctiuns taking a number of values from the stack
stack. In the case of a composite value, only its and producing a value on the stack. These inOtruc-
head is pushed. lions, like the constants, are side-effect-free.

Subclasses of computers include binary operators,
A locator locates the place of a variable and initi- unary operators, binary predicates, unary predi-
ates a locator-sequence. The latter is composed as catts, converters, and creators. All computers have
described by the rigular expression a one-byte representation.

locator pursuer (catch~rl effector)
The binary operators are '4', '-, 'i', '/', and

The oprodes uaid for pursuers, catchers, and effec- 'modulo'. They are defined for boolean, index,
tors are in the interval 00-2F, and the same op- decimal (nd real) operands.
codels are also used for other instructions. This

ii posnibl.e since the same instruction cannot The unary operators are 'negate', defined for boo-
ock:ur both within and outside a locator-sequence. lean, decimal (and real) operands, and 'abs', de-

Pursuers enable remote accessing. The three main fined for decimal (and real) operands. ('truncate'

pursuers are: and 'round' arc plannid fur reals.)

'Poomp': The located value must be a string (,real-
array) or nude v. An operand i of type index is The binary predicates are same', 'diff ' fu1 r ur,-
required (on the stack). The it th component of* pionat oIeitI H 0 otpcn fLr Veands o yp-.i
v becomes located. tlonal predinatex, deinm d (, r operands of Lypc.ct

'Pt.i.cat': The located value must be a string (,real- boolean, index, decimal (, real), and character and
array) or node v. The first component of v be- string. - Here, as with most other instructions,comes located. a character is regarded as a string of length one.

'Pown': The located value must be a pros p. An ope-
rand i of type index is required. The i'th ownl The unasry predicates are 'letter' and 'digit' fur
variable of type de s reo ured, icharacter operands, and 'bad', yielding true if andvariable of p becomle located, only if its operand is nil, and 'good' - the nega-

Catchers push a value on the stack. The three main rion of 'bad'.
catchers are 'Ccompl. 'Cfiret'. and 'Cown', ef theatchers; abover The 'Cc alue ' prot'ucd 'sotn'tcf the Converters convert from one data type to another.
produtcers above. The value produced is that of a In essence, direct conversion is possible between
component or an own variable, respectively. character and index, between index and decimal

(, between decimal and real, and between index and
Effectors are categorized as basic effectors, real). The converter 'length' produces the length

string efoectors. and special effectors. The basic of a string, node, decimal, prog (or realarray).
effectors are:
'scratch': writes the value nil. The creators create a new composite value (head on

stack, body on heap). They are 'create', to oreate•store': writes a value poppe-47-from the stack.
'plus','minus' (only for index values): adds, reap. a string or node (or realarray) of specified length,

'copy', to produce a copy of a composite value,
subtracts, a value popped from the stack. 'substring' to produce a substring from specified

'i.ucr','decr' (located value must be index): incre- psis itring ,a 'a', to produce tho e
meims by 1, reap. decrements by 1. positions in a string, and 'cat', to produce the

concatenation of two strings.

lefore summarizing the string effectors some other The string effectors have the following in commn,
clases of instructions will be treated. - The located value must be an index v.

v- At least one operand, a string a s...5u isConstants are instructions pushing a value described
by-thl1'e instruction itself on the stack. required.

tide's constants: Values 0-10 are represented by the - v must be less than a.The effector treats the string segment s + .. s and
byte values 00-OA. Values 11-255 are represented v+l n
by two-byte instructions. Values 256-16383 are will normally increase the value of v as a side
reprehy ntedwbythree-byte instructions. V es -ffect. 'rhe aim has been to enable convenient ýj

Character c'oaatants: R~presented by two-byte i r- and efficient sequential processing of strings.
Charater ui nwhere the second byte contatns the Tc . string effoctirs a:re .ategorized as prediat,,
stiarctionsder effectors, pass effectors, locate effectors,
character code.

50

a ralI

get effectors, and put effectors. Descriptions of
the individual instructions can be fotund in ref.
(1). Here we can only offer an enumeration of them,
hopefully their names give some hints of their

meanings.
Predicate effectors:• 'prefix', 'part', 'subequ'

Pass effectors:
Opass', 'pealet', 'pasdig', 'pasletdig'

l.ocate effectors:

'locate', 'loclet', 'locdig', ']ocletdig'
Get effectors (get value from string):

'getindex', 'getchar', 'getident', 'getdec',
('getreal',) 'getetring'

Put effectors (put value into string):
1putnext', 'putpart'

The next instruction class of interest. is the jumps.
All jumps are generated from high-level control
structures during the TLAX-ELAX compilation. These
include, in short:

if - then - else : generates forward jumps
case : generates jump table, an indexed jump,

and forward jumps
do - od : generates a backward jump
exits from do-ad: generate forward jumps.

In addition, the constrol structure suggested by
Zahn (C T Zahn, A control statement for natural
top-down structured prograsmingt Programming Symp.
Proc. 1974 (Edi B Robinet), Springer, 170-180)
is implemented in LAX2.

All jumps are within progs and relative; distances
are coded in one or two bytes. In total 22 opcodes
are allocated to jumps.

Additional instructions controlling the flow of
computation are:
'exec', $return': for ordinary procedure (prog)

activation,
'aitr', 'attach', 'detach', 'resume', 'call': used

in connection with coroutLines (coprogs).
'exit': for abandoning the current computation

and reinitialization of the LAX2 process.

lAX2 supports frequency measurements during exe-

cution. So-called counters can be placed at arbit-
rary points in programs; they are (if enabled)
automatically incremented each time they are passed
during execution. instructions exist for operating
the counters.

.Fixprograms are protected programs created at the

initialization of a IAX2 process. Some of them are
automatically activated by different rontime error
events. There are also instructions for activating
.ixprograms from other programs.

1he 'compile' instruction, invoking lhe TL'AX-MLAX
compiler , is implemented partially as hidden
LAX2 programs, There exist special IELAX instruc-
tions only available to these programs, cf ref.

(2).

A s;et of input/output iustructim,ý. i, iesuribed

in ref. (2).

o4

D)I RECTLY 1N'[TRI'R l:(1 Bl I.E lANGUAGE DESIGN FOR HtIGHi UIi:VEI. I ,LAN(; AGI : ;I'tPP)RT

11. I. Rau and P. Buse

Coordinated Science Laboratory
University of Illinois
Urbana, Illinois 61801

Abi.ract often, the machine language has not been designed
with the given [ILL in mind leading to significant

Ilie. complexity, in space and in time, of inefficiencies in time and space. It is of
diroetly ihterpreting serial, block structured, interest, therefore, to understand and formalize
hilgh level languages is examined. On the basis the design of a DIL that is well matched to a
1.- thio titudy, it is apparent why it is undesir- given HLL and the relationship between the two.

nble to directly interpret high level languages. Such a DIL could than either constitute the
A ,ysatiatilc procedure is developed for the instruction sat architecture of a machine
d,.eit.i or well-matched intermediate languages dedicated to that HLL, or could be interpreted"roi IuIp,,rttng high level languages. by a universal holt machina (UH1), i.e., a

machine which can interpret any DIL with equal
1. Introduction and relatively little difficulty. This paper

presents some preliminary results relating to
With the steadily increasing emphasis upon the properties of HLIa that disqualify them

Olw ,ontitruction of structured, reliable and from being DILs, the relationship between well-
•iiintii soe software, the trend is toward the matched HLLs and DILa and the process of
use of nittablo high level languages (HLLS) in designing a DIL for a given liLL. Identifying
pr,'ec•r•e, to machine or assembly level lan- the essential characteristics of the universe,•B0.The computer architect thus, is faced of DIIL• clearly is valuable in determining Lim,
e;th the task of designing a conducive environ- architecture of universal host machines.

1,,a•t for the execution of HLL programs. This
Is i shift, in perspective at least, away The prim ry motivation behind the search
I'nom the traditional role of the computer for an ideal DIL is the desire to optimize the
'irthltect; no longer is it appropriate to space-time requirements of the interpretation

upprtitch the design task at the machine language process. A secondary goal is to facilitate
level, the compilation process. Some interesting

space-time measurcs and analyses of "ideal"
one, viewpoint advocates the direct interpre- intermediate languages have been developed by

totion of the HiLL program, by a interpreter Hoevel and Flynn [6]. In this paper an attempt
Inpl.m.,nented in either hardware, software or is made to approach the design of DII. in a
II uwwore, e.g., (1,2.3]. The problems associated systematic, top-down fashion with no assumptions
,tth inuch direct interpretation have been as to what the end-product should look like.
eIlwtched fin previous work [4,5] and will be Instead, it is dictated by a systematic method-

le.borated upon in this paper to demonstrate the ology that accepts as input a description of
gnneral undesirability of this approach. Thus, the HLL and is guided by current technological
It will be shown that most fiLLs ere not directly limitations.
interpretable by the space-time criteria that
nre devialoped subsequently. The DIL design will be affected in this

paper by considering the issues and problems
'The alternative is to translate the HLL involved in directly interpreting a tiLL. By

program into an intermediate representation that removing these problem. via a systematic trans-
is dirctly interpretable. Such an :intermediate formation process, the target DLL will be
language is termed a directly interpretable derived. Although no specific host hardware
la'g•g (DLl ._i. Currently, the DIL most descriptions are considered during the design,
frequently used is the machine language of an such a DIL should (by the definition of a OIL
4Available a•mputer. Unfortunately, all too [5]) be one for which it is technologically
I...feasible to build a hardwired interpreter. In
'1 d work was supported by the Joint Services other words, it should be possible to view the
l.Iectrouics Program under Contract target OIL as a machine language for a hypo-
InAAB4-07-72-C-0259. thetical computer with certain basic, practically

feasible data and control structures. Such

52

....

Liza" ,i

e1

specific implementation considerations will be 4. gynamic Semantic Analyzer: This processdiscussed in one of the later sections. actually performs the semantics of the program.

by executing the semantic actions associated
2, A Model of Interpretation with each node of the tree. Subtrees are die-

carded as soon as the relevant semantic actions
In this section, we shall present a concep- have been executed and the attributes are no

tual model of the process of (direct) interpre.- longer needed by the static semantic analyzer.
tation of a aerial HLL. Some of the main features
of the interpretive process will then be illus- It is important to note that the four pro-
trated in term of this model and a specific cesses listed above run in a mutually interlocked
example high level language. Figure I presents manner such that each process gets ahead of the
the syntax and semantics for some of the produc- next one in sequence only to the extent necessary
tions of our example HLL. The syntax it specified for the latter to operate. The controlling pro-
in a context free BIF metanotation; the serantics ceas is the dynamic semantic analyser wiose
corresponding to each production, are specifind actions are specified by the statements following
in a semi-formal manner, If not originally so, the label "Dynamic actions" in the definition of
the source context free grammar (CFG) specifi- the semantics in Figure I. In performing its
cation is assumed to have been converted to an function, it must make use of certain attributes,
equivalent E-free form. The algorithmic methods termed S-derived, which are evaluated by the
of achieving such a conversion are well known 17] static semantic analyzer. S-derived attributes
and are not discussed here. The IILL program of are defined to be those attributes which can be
Figure 2 will be used as a working example, derived by an analysis of the program text

(i.e., input data independent). The derivation
Our conceptual model of interpretation of these attributes is specified in Figure 1 in

drawe heavily upon the concepts in Johnston's an assertive rather than an imperative manner,
Contour Model 18] and Knuth's approach to i.e,, their relationship to other attributes is
specifying the semantics of programiing languages specified instead of a series of statements the
(9]. It consists of four concurrent, interacting exocution of which would assign to them their
processes: correct value. The manner in which they are

derived is deliberately left unspecified. It is

1. Lexical Analyzer: This process is a string implicitly understood that the dynamic semantic
to orina transducer which converts the input analyzer forces the static semantic analyzer to
slphanumeric string into a output string of proceed just far enough that the needed S-derived
tokens corresponding to lexemes, The function, attributes have been evaluated. The syntax
operation and complexity of this process are analyzer has a pointer, SYN, into the string of
relatively well understood and will not be lexemas emitted by the lexical analyser, that
considered further in this paper. points one lexeme beyond the (miniams) amount of

the string that the syntax analyzer muat have
2. Syntactic Analyzer: This phase of inter- consumed so as to set up enough of the syntax

pretation (also known as parsing or recognition) tree for the static semantic analyzer to perform
is in essence a string to tree traneduction its function. The syntax tree is necessary
process, where the string of tokens emitted by since the S-derived attributes are necessarily
the lexical analyzer is converted into a (parse) defined in the context of this tree. Generally,
tree using some convenient parsing strategy, the lexical analyzer's pointer, LIX, into the

alphanumeric string will correspond exactly to
3. Static Semantic Analyzer: This process is SYN4. Assume the dynamic semantic analyzer is

the one which operates on the tree being built executing the semantics of the node labelled
by the syntax analyzer by associating with each 'Block)l in Figure 2. This requires lmnowlodge
node the relevant semantic information needed of the number of declarations in the outermost
to be able to perform the actions called for by block. To determine this, the static semantic
the program semantics. Any propagation of analyzer requires that all the declarations in
attributes (up and down the tree) required to be the outermost block be parsed. Consequently, IX
performed in order to fully specify the attri- will be at the "x" immediately following
butes (and hence, the semantic actions) of each "integer x;".
node, has to be carried out by this analyzer [1].
Nodes or subtreos deemed useless (i.e. after all The manipulation of SYN and LEX is, by and
relevant attributes have been made use of or large, implicit. in the case of loops, condi-
transmitted to the root of the subtree) Ira tionals, procedure calls and returns, the
discarded as the analysis proceeds. This process dynamic actions explicitly alter LEX (and
does not, itself, perform the actions indicated consequently SYN) by a statement of the form
by the program, It merely gathers the information "Parse (u,v)" or "Parse and Process (u,v)" where
needed and sets up the next process. All data- u identifies a character in the program text by
independent actions that can be performed by its memory address and v is a non-terminal which
analyzing the source program alone, are in the serves as the goal for the parser. In the case
realm of the static semantic analyzer. of procedure calls, the current value of LIX is

saved explicitly.

A -÷

In Figure 1, attributes labelled D-dgrived comparison tc alternative ,itrategi,,. Thus, the
a-re evaluated by the dynamic semantic analyzer, demarcation between languages which are and are
An S-derived attribute is termed COPIED if it is not directly interpretable is vague at belt and
tuerely the ctpy of an attribute elsewhere. An may be expected to rhange with time.
attribute is INIHkZMT if its Value is an inherent The space occupied by the interpreter is
property of that node. In addition, the type related to its complexity. The dynamic semantic
of the Attribute (IlTlIR, REAL, OIMTZR, t,) analyser is central to the interpreter and can,
are specified. Figure 1 clearly dmonstrates at bet, be made more efficient but cannot be
the complexity of the procedure call and retuirn eliatnated. As shall be shown subsequently, the
(sme productions 10 and 24), Note also that static semantic analyzer and the syntactic
production 21 requires that the text to be skipped analyzer can be eliminated by suitably cdifying
be parsed, even though it will not be executed,a
Jstf to determine where the (Strmt) or (Simpatmt) the language.

eods. The space requirevents for the syntax tree
are best minimized by reducing the amount of the

3_..,pce and Tin Reguirements tree that is in existence at any one time. This
for Interpretation corresponds to those nodes that have not yet

been processed and discarded by the dynamic
'lha model of interpretation developed in semanvic analyzer. Whereas the objective must

the previous section may be used to obtain a be to prevent the syntax analyzer from getting
qlualitative understauding of the time and space far ahead of the dynamic semantic analyzer
Involved in the direct interpretation of HL.Ls (to minimize the size of the tree present), there
Although, in practice, the tree representation are factors that will prevent the realization of
would probably be discarded in favor of a more this goal; there are occasions when the dynamic
oompact representation such as a stack, the space semantic analyzer, to perform its function,
occuplod by the tree is related by a factor of requires information (attributes) that the static
propottiooality and, so, is a good indicator of semantic analyzer can provide only by looking
thlu actoir space requirements, The advantage ahead in the tree, which in turn requires that
of fhe tree representation lies in its conceptual the syntax aralyzer have proceeded far enough
"timplicity which is uncluttered by extraneous ahead. The language must be altered to remove
implementation issues, such situations, These modifications, by

reducing the size of the tree, also reduce the
'ihe epace requirements are five-fold: total number of attributes that must be stored

(1) the space occupied by the program being and, consequently, the amount of space needed for
intarpreoted; (2) that occupied by the interpreter; this purpose.
(3) that required to hold the portion of the syn-
tLx tree that is currently in existence; (4) the The fifth space requirement depends upon the
Hpoo needed to store the attributes associated parsing strategy that is selected (or imposed
with the tree nodes; (5) the space occupied by by the graeear specification). The two broad
the pavse stack which contains terminals and non- classes of parsing techniques are the top-dow
turminala that have been scanned by the syntax and the bottom-up methods. Most parsing strat-
oneulyzar but are yet to be reduced. (This is egies can be viewed as either one or the other
needed when a bottom-up parsing scheme is used.) or a hybrid. With the top-down technique, the
'Ilie total computation time for the interpreter is production to be used is known when the syntax
tihe sum of the computation times for the individ- analyzer's pointer into the string corresponds to
uat processes, the left most terminal of that production (with

an optional look ahead of k). The input tokens,Ali obvious way of reducing the size of the atherefore, may be consumed and acted upon as

program being interpreted is to replace the therefor nybcnsumed and ted upntasn n r t r e a o e bthey are encountered since their syntacticsignificance is defined when they are first
mort, efficiently encoded bit-strings during a encountered. In contrast, bottom-up techniques
l)•t'.lroceasing step. As a result, the lexical know which reduction is to be applied only when
ent lyals process would be eliminated from the the syntax analyzer's pointer is at the token
Interpreter thereby reducing the interpretation which corresponds to the right moo, terminal of
time, on the other hand, no longer would one be tho corresponding production (once again, with
interpreting the original HLL directly; instead,c.]oo~yreltedlanuagewoud b th obectan optional look ahead of k). In general, there

cloly related language would be the object xist a number of terminals (and non-
of Interpretation. In this manner, by identi- terminals) whose syntactic significance has not
fying the problems associated with the direct
interpretation of the original HLI, and by modi- yet been established (since the correspondingright handles have not yet been encountered), but
firng the HLL only to the extent absolutely which have been already scanned by the syntax
necessary to remove these problated one obt rig- analyzer. Space is needed to store these items,
nl tha t p ss ashilepossessinglated the p roperty generally in the form of a stack. From this1nnl no possibles while possessing the property ont of view, a grammar suited to top-down

ot being directly interpretable. Pragmatically, poin
S language will be considered to be directly parsing is indicated.
(titurpret-able if, in the context of current With respect to interpretation time, there
technology and cost-functions, it is feasible and is little that can be done to minimize the time
dcal 'ibl•, to directly interpret the language in required by the dynamic semantic analyzer beyond

54

,.1
'~. .

eliminating inefficiencies since the algorithm that are intermediate between these two DII.s
embedded in the program must be executed. The
amount of computation performed by the static 4. A Desiat bethodoloen for Diroctl .
semantic analyzer is reduced if the type of Interpretable languame
attribute propagation can be matched to the pars-
ing strategy. Inherited (synthesized) attributes In the context of the previous discussion,
can be handled easily with a top-down (bottom-up) the following sequence of modifications (on the
strategy. However, since both types of attri- high level language) may be Used Lo arrive at a
but*s are generally involved, the beast approach directly interpretable language:-
is to explicitly provide certain crucial'attrn- (a) Distinct syntactic tokenM or left handles
butes in the string, thereby implying a further (represented by underscored integers in this
modification to the language. paper, e.g. 1,3) are inserted to all production

Before discussing ways of reducing the time right-hand sides (Figure 3). This makes the

expended in syntax analysis, it is instructive gremmar LL(l), thus simplifying the top-down

to catalog the various reasons for the existence syntax analysis phase.

of syntax with a view to totally eliminating the In practice, all productions would not have
syntax analyzer if possible, distinct left handles; only the productions

1. Reliability. The major function of syntax corresponding to the ne non-terminal need have
at this point is to restrict the user to a distinct left handles. This would drastically

set of strings that are meaningful to the reduce the number of syntactic token needed to

language processor. six. However, in the interests of clarity, we
2. Readability. shall retain this redundancy. No changes to the
3. To remove static semantic ambiguities. she semantics are called for as a result of this step.procdure for dertvint attributei gi defined (b) Each production right hand side in %W.

in the context of the syntax tree which dnt, ordered, in accordance with the sequence of
therefore, be derived. semantic specifications attached to that produc-

, o vdynamic semantic a iguities, tion, i.e., the terminals and non-terminals are
Of ten the dynamic semantics of certain con- placed in the same order in which they are used.

struct* are defined by the syntax tree, step. shows the productions affected by this
e.g., precedence relationships binding (c) o (integers with overecoree:
5.Topermitandsas A or v) aA introduced at selected points in

5. To permit an efficient parsing strategy. the productions to indicate the need for semantic

In the case of a HLL, all of these points actions. Of these, the first type of tokens
are important aud the syntax cannot be ignored; (,a,, TY) calls for semantic action(s) which can
nor can the syntax analysis be eliminated. if be performed without reference to a propagated
the emphasis is placed on the last issue, that attribute. Such tokens can thus be scanned and
of an efficient parsing strategy to reduce the immediately acted upon. The second type (e.g. %)
interpretation tine, then it may be necessary, references an attribute that is propagated from
as we shall see, to sacrifice some readability, a node which is to the right in the tree (right-
We shall do so to obtain a "high-ish level" OIL. to-left attfibute propeSation), while the third

on the other hand, if we are interested in type (e.g. 6) use an attribute obtained from the
a related "low level" DIL, i.e., one which is left (left-to-right attribute propagation).
compiled into and then interpreted but never Figure 5 illustrates the effect of applying this
directly progranmed in, thnn only issues 3 step to the selected productions.
through 5 are relevant. Readability is clearly (d) The second and third types of sientic
unimportant and reliability is guaranteed since tokens (warked A and V) are replaced, in each
the compiler will not pass any illegal programs, case, by a token of the first kind (marked -)
If we further perturb the language so that the followed by an explicit attribute, (ea,. (numb)),
semantics are defined independently of the thereby eliminating the need to propagate attrn-
syntax, then syntax analysis is rendered useless butes at interpretation time. In the last two
and may be discarded altogether. The interpreter steps a number of redundant seanntic tokmns have
may now recognize a degenerate grammar (one with been defined to enhance clarity. In practice,
very few productions) which essentially permits this reuundancy would be eliminated.
any string of terminals. The syntax analysis for (e) All the original termsinal symbols (e.g.
such a gramr consists merely of checking for ý , Md etc.) are deleted from the language
illegal terminals, and the gramar. These symbols, it may be noted,

Both the high-ish level DIL and the low are totally redundant at this point, both syntac-

level DIL are closely related to the original HLL tically and semantically.

by virtue of the systematic transformations The final form of the DIL grmar at the end
that are listed in the next section. The former of steps (a) through (e) is shown in Figure 6.
DIL may be viewed as a substitute for the HLL It is to be noted, in sury, that our
if a directly interpretabla HLL is deemed
essential. The latter OIL is best viewed as a newly derived language (DIL) has the following
well matched intermediate language for the tLL desirable properties:

It is clear that a number of llas may be defined I) Top down LL(l) parsius (with no back A
track) is possible. Thus syntax analysis

55

Wit"-

in uimple, between the two "extremes" of Figure 6 (full
2) close tracking between the three inter- syntax checking capability) and Figure 7 (no

pretation subprocesses is possible, syntax checking),
resulting in miniamum tree storage re-
quirements and overall speedup in the 5. Technological Constraints
semantic analysis phase. and Implica.tiona

3) D~ue to the closely matched HLIL and DII.
gratitnars, a simple syntax-directed trans- Various assumptions regarding the available i
mu~on scheme (SDTS) (101 may be adopted hardware and software technology have been
far the translation phase. implicit up to this point. These assumptions,

It I tobe nted tha miimizng h. sace will now be discussed. Firstly, it is assumed

requirement: for holding the DIL program, has not thart trebeist tehro queh o the cossucio of a psdw
reallv been considered in listing the modificd-pastreithogteueofauhdw
tiun stepis. However, one might guess that the automa~ta. (Comptler theory offers no better
price paid (Ili terms of increased program Off ntriive) Itlince, -cniuing. analysis tileVlO'~~
f or tch iotving tile adfvantages lisfted above is -wvaI Ivh m-osm-y nestt Itvla

Ltit;I aami'sied that thev large ae ctl. use ofTh Ini'lnguage that we have just dek ived nity usucociative actuary wi 11 not be cost-effective tor
I,(use~d an a high level language in whic'h pro- *acjItdiiue Ilence, informati on must be repro-
greisrlinfg may be performed if the lexames are .na ydt tutre htspotsaclt
ir!prvesnted alIphanumerically and the tokenis art: ro instunco, the association of ain identi fier
"rpresented by keywords. This will require tile reference to the cart enpondtin. declaration

totnraulctiti o th lexcal nalser.~ (o obtain attributes) would clearly be faci If -
most unacceptable feature of this language lies tated by Lihe use of associative memory. Ini thv
Ill having to explicitly specify the number of allsence of issuciative mcmor.-, this informat ion
Ifsomps that have to be branched over. 'lle useahs
ollabelIs, while making thle language msarginal % 'to 111 han isiun nodle 'I if daeta struictursi Ihash1

aceoptable, would require the equivalent oiat ;(, tab llu - Fit nhear st , sitc which sarches arktl
one-and-a-half pass assembly phase. 'Ilic Ian- Ci c irh inc. 1uc sreerarches trogugewoldnologe b ircty ntrpetbl. at best, re latively slow,Itsprfabet

guuge oul noloner e drecly ntepreabl. rcevidL explicit attributes Iin the program which
1.f we desire a language that is to be used conivert the atssociative search to a well-definud

mitraly to be compiled into and then directly)uoo-up proceduro . Ini the previous example, tho
Interpreted, we canl continue the transformation identi Liar reference should be replaced by two
luro.nass further. Since the need for attribute attriibutes consisting of the specificati on
propagation by the static semantic aaialyv~er is (relative to the current contour) of thle contouir
not looper present, syntax analysis at this containing the variable and the ordinal number ,
point is needed only for checking tile sfni'actlc ii ide dntifLiar dec laratioun amongst thle Set of

correctinous of the program. If thle flIL Ls iot dleelarittoion attn but u-s attaeched to the comre-
to be used for direct prograrmilng, syntactic s pond ing II loc.-) nilde (Ii . (- , fil address coup1)le
Lcuutcking is unnecessary, sit-ce any errors would Also, it is not evident how a tree atruct~uru
have been detected during the translation Pgiaso.ý sity ha implementead Iin hardware whereas stacks' arV
akdoptftng this point of view, we may proceed roadi ly imiplementabie either in hardware or it.
to delete all tokens which are purely syntactic software. Thlus, whereever possible, tree strife-
(IL.a., tokens that are only underscored) frost tures must he replaced by stacks. The sub-true
die IllI., gretmuar of Figure 6 . The result, flowcorsndgto-x)calbsuptebyn
truly resembles an "assembly" languetage, in thaitorsad gt x a espotdb ievaluation stack. 1if this 16 done., thle 8ellmot i,!
tile. program consists of a sequence of semantic
tokens, or "op codes". Figure 8 shows the pro- associated with cesrtaIn productI~ons in the gram-

grmwi th numerical tokens rep laced by all h- mar Must be at'terad and he expressed Iin terim; of

beLic uuinemonics . The simplest graytianr that iiitalte opuilngons.i p 1mm ite (as it rthecaetInor

WillI aLccept programs in this "assembly': faiguaIti. ofanipe language(puinith coturnds msLf aye I ter

Is tliv trivial graimmar shown in Figure 1, sioce , uxmi Itongug) a h contour stc nodtes mays b te i
the absence of syntax checking implies that any ik~trtionaautl trIb fcuteurstack ah ie allctdspace i'l

sequence of semanti~c tokens is acceptable to an el location st~ack. As fit tile IBurroughis' Itiwltut
* th~Lie ilitterhreter, even if semantically mecaningý- I h he tcstn ecmie til

grasusiar, the syntax analysis process becomes
*degenerate. The graimmar of Figure 6 (efter 0. hpi suliksiftn

deleting purely syntactic tokens) is needed,

neviurthe leas, to permit the translation of tile The undesirability, in space and time, of
11A rorminto the "assembly" language Ini if directly interpreting -tiost IILLs stems fromsth

sfyntax-directed way. tieed to do) s,'uttdx and static somantic analyses.

Iin actual practice, some minimumi amount ar .it-luls !.ictointl contribute to this need and it . A
iý!',tax checkting may be desirable oven lit tbi Itn heel) shown iou they call he eliminated to

* 'assemlbly'' language lovelI, Inl %whiell (are, tho %i'IdI it di I' tlI il lt.l)lilt~llI4 I,: illF.U11' . Ilic I'l

Y.ratlittlii iipeiI c~il 0)1o wooIuld huo il) amcdainLi

tiiat is obtained is not unique; two DIIls, a low- resul.~ of encoding decisions and conforw to,
level one and another higher level one, rather than constrain, the other synI~ti d

o in this paper by a systematic -r-isforma- semvantic requirements of the DIL.
tion process. Other trade-offs, not discussed I ocuin ed o doaetedrc
inl thisl paper, exist between the sizec of the Uill. int pctncliionw of nooiticatdvhighelehel direc

program, the size of the syntax tree avid the itreatho oa spitcte hig leelIan

interpretat4'. time. Thus, a space of DILts exist guages since thee ire fr too flny costy comu-e
tations involved that are best factored out andfor each IUi. and the one selected rrnst be performed juast once during a compilation phase.

specified by further COTO'~ ints and cf~-J& Insteavd, a w4l1-uatchad directly interpretable
Also, ptrecise smasurem Ace and tr i'e language 5hould be designed along the lines
to be developed to plact qualltat1'.t suggested in this paper. Thereby, sp~ace-time

sio~s quntittivefootng.savings will be achieved and the compilation
Most compilers have a code -opt imi zattor, proceaa will be facilitated.

phase which performs two functions: si.ie
independent optimization and machine -dependent References
optimization. 1%Thfe. uer consist, of p- ,rai
transformations .+iich involve knowlL.-Abe of the 1. K. J1. Thurter and J1. W. Myna, "System design
)IL being comgp1le' into. Ruc1, ul',imization is of a cellular Anl computer," IEEE -Trans.
generally self-d:ta.u in . HLL interpreter Comp., C-19, 4. 1970, 291-303.
since the cost of reie~ted optimization out 2. .J. P. Anderson, "A computer for direct
weiihs .he benefits accrued. when designing a execu~tion of clgorithmic languages," Pro.
DIL for a tILL, the presence of the optimization gJCC, 1961, 184- 193.
phase i", the compi' .r should not b- ignored
since it can alter the structure of the syntax 3. H. M. Bloom, "Conceptual design of a direct
tree into a directed acyclir. graph (e.g., a high-level language processor," liit~h-Level
comeon sub-expression's tree may be a sub-tree Lanausse Computer Architec are, Y. Chui (Ed.),
for a number of nodes). The stack, by itself, Avrademic Press, 1975. 187-242.
may not be an adequate vehiclc for implemer'ting 4. L. W. Iloevel, " 'Ideal' directly executed
such networks. Machine-dependent Optimfi.71,tiol is languages: an analytical argument for emela-
present primarily to bridge the mismatch eýetween in"IETrs.Cua,-2,,194
the semantics of the HLL and Zhe machine language. ti759-76 ras7CmeC-3 8 974
However, if the "machine" langulage -designed to757 .
match the :1LL, this form of~ optimization Tr~ 5. B. R. Rau, "Levels of representation of pro-
pr')ve unnecestery. grams and the architecture of universal host

The iaap~rtant issue of encoding strategies machines," Proc. 11th Axin. Wkhyh. on Micro-
for DII. progrem.sm has not been touched upon in p~og., 1978, 67-79.
this wpapur and, so, program stetistica for the 6. L. W. Hoevel and M. .1. Flynn, "The structure
lILL nave not "'llraled an input to the DIL designo ietyexctdlnuge: anwter
process. Tlh- encoding techniqute used can assume of dintrretivexsystem dagaesig, aDigithel r
iarlotus levels of complexity. To hegin with, fitrrtv systems da.Teh ep. gno13," Sigtanfl
the introduction of redundant syntactic and Ui. ac 97
semantic tokens should be avoided. Assuminm; that Ui. ac 97
the interpreter will run on a tmechine that pro- 7. J3. E. Iiopitroft and J3. E. Ullman, Introduction
vides for accesuing arbitrary length bit-strings to Autom sa Theory, L.an gaes and Computation,
(essenttal for a UMI), the trt~rninals of the hDh, Addison-W~sloy, 1979.
should be assigned codes that contain Just enougi, 4. J. H3. Johnston, "The Contour Model of Block
bits to differentiate between the ter'ninals that structured Processes," SIGPIAN Notices,
could have appeared at that point In this Vl ,Fb17,5-2
respect, the graimmar of Figure 6 is prufurablc o.6 e J7,5-2
to that in F4.gure 7 since it reduces the inherent 9. D). I,. Knuth, 'Semantics of context-free lang-
ambiguity at each step. On the other hand, guegus," Miath, Sys. Theory, 2, 2, 1968,
syntectic tokeas are now needed and may cause -. 27-145.
net increase in prcgram siz.e. finally, a 1.I.N eiU 3 oska~ n .E
frequer..q-based "neoding scheme may be employed, Stearns, Compiler tiesistr Theory, Addison-
defined either .in the linear string or on theWely198
parse tree [12]. The latter sciiemu will probably .ele,1l8
do better, but makes synl'r. analys's a necessityv- 11. FE. A. Ilsuck and 13. A. Dent, "Burroughs' 4
Yet another space-time t ide-off. 816500/117500 stack mechanism," "roc. SJCC,

Ihle low- level DIL that was obtained Is niot 1968, 245-251. 1 4
radical is nature and, in fact, looks kquite sind- 12. It. h. Sweet, .. pirical Estimates of Prograsm
lar to 4 number of stack architectures. IHowever, i-,ntropy, Pht.D. Dlissertation, Dept of Computer
the crelationship~ betweev fuatuons (,' the 1)1 L anti Scientie, Stanford llniv. , 1976.
the IILL is now clearer. Al so, ;ssttus, atch as
the instruction formats Lo he 'iscd, whil Kell-
vralIlIs assumu a centre 1 post timi It, Inst.ruction,
4v u design, fallI out loi a nature I -onni-r as a

14 A

'a V

rr

S...p:) ..4W ."4

I 4 1 o w c ell I I 1 4w,

~1 T

-.. '-. ,8. -

, ,. i' ..i €.

,..-,.fl

"*• ' 0 , • p ,. " •. .. ,,,

qu-Pit 'a-• qp w''r-,, ! .,. • - :.
MO * u ,'• ... rZU-- •p , . c

'•. ,c r .% . 'ii. .

,i Ii..vfl,, m .•. , .. . A•l0 4 4

i :'h" "' 44 "' 3' 'i

-.4 l1.

?.:
0,,, ••,.; ,;,, ',, ,

•.,,

ce

cn

434

hiP. ,i

ui
4-. tiV"-

in E,',h58

Aw0

.,.•~~pe v• • • ,4"s

..-- , - ,-.A.. . '>. • . ,l

X4

_ ,

F b . AA

S-
N A V 9 A V t f h l

*4 t' U S -

iF
.4.

.. .. ,1 ,. - C 4,,,g, ,.,/ •. •.• , 4 .
. . .. ,, ,, • ,• Mt,... • , • ,,• , . . .

:• " ,•, . •. .• • ,,. . _• ,,,,• : ,•.-...

ris r r 0.w 1fl. V . 1

* 4 .,44

14

AA o. ..

60;

5� V

1

.5 I
- V A.

- Mq V . I,
*� a�

0-A Si '
* ,- -. A 7

j 1'
Si

� � 5� V

-c .� p. *
V W U

5'. -�
Si Siii PO U

0* 0)
. �. - 0

5--.. 1 - -

C @�K 1i � V b�5� � Ia,
I V ...

C -.5
.5 �. �

'5
� *. P - '5

V V '

0 11-ii I -

I

2%

'.4

�ji

"4
f1

I'

0 P

S0 .4 4 * 3 1' +' ' P 4{ bu b. P, 9 .0, o n - ,'

4' 0 ,.l • l0 o- oS ft " .0 Kt cP . a. CI 0 0 ' o .40,0044 '.
r'. , v . c

40

4f+Wo..•
2o4I,

+ • SS.
.t ... S,.- a i AIl .,t , €ia IiAs.,' klIV P.+ 4 1 ,,1

•

62.... .i .
T , ,.. .. , ,, .,lb . . . , .

\a 'i i i i.
i;:3::t: 3 : ', ;+ : : " ::' t : : : ;:;:: :::+ 3 ::; :; '..::33; :::. ; t :*- ' ::: ; ;:

0000 0 4 ,,s.a~~iinaa. tbsifl,~' ' "'4
^ ,, R

IICCII'M S SICIS 4656 5, 554 5 S 5 5 S

"4%A i++

.4 • .. 'N- 4)+• , , 0 l ! + +B

4, u4* 54 P P

+-4 4- 4 u l 4 1* 41 ius+ i 'l+ + :,.,++ j,+ ,+ V .&G ,.,.,, , ,o , ... S,

, • V V . . , , . a C E.. .

62

I. ..,,, •. ... ,+. ,,+..,+ , . . +•+0 . . , +, .+,,•) .. ,, .+• •+@ .•.•,# ,•u,!+ + o: ••,, , . ••+, " +, ••,. . . .,• . .'+++ .,

/j

IT

MIN1 (23
PRtOC[9
11011 4[91 IN?

PUSHI+ [() ASSIGN 10,o1 FusHI+ Lo1 ASSIGN 12,11 P9SHVAL+ ji,'i
Pisjz+ [1 TOT URPC 251 PUSHVAL.+ 12,o0 PUSHVAL+ Ii ,o TOl UPC
£[61

PUHAPUSHVAL+ 1SVL 2,01 ADD ASSIGN 111.11 P'JSHVAL. 12,01
PUSH! 1I ADD ASIGN 12,01 BU [231

END ,T•B URN
IN?
PUSHI. (101 ASSIGNI 10,11 OALL2 10,01 PUSHYAL4, 10,11 PASSVAL PUSHADDR
(0,01 PASSADDR

END HALT

Figure 8. "Assembly" language program. Numbers in "[1" represent
literal values; those in "f I" represent address couples.
The lexioal level of the outermost block (main program) is
0, that of the procedure is 1 and the inner block is at
lexioal level 2.

V The address couple has the format lexioal level, ordinal number of variable in
the declaration listi. For both the numbring starts with 0.

tVal-or-loc is an explicitly propagated attribute which can ass*=e one of two
valuep, Speocifingo respectively, whether the value or the address of the
identifier is required. Since this attribute can assume only tvo values, it is
better taken oars of by asauming two different semantic tokens (op codes) where
neceseazry e.0 49VAL and 49LOO; (vide Fiure 7).

63

/I-

-- -

TWENTY YEARS OF BURROUGHS IIGII-LEVEL LANGUAGE 14ACHiNES

E. Dean Earnest

Burroughs Corporation
Mission Viejo, California

Thin hoi•c set of trachine desion and use
concepts were first publicly discussed by Bob

~str'a.~t Barton in 1961. The first commercial delivery
of a machine whose design was based on this

A discussion is presented of several approach (the Burroughs B5000) was made in the
* ciputpr systems developments over the past 20 early 1960s. The concepts embodied in that
yeors at Burroughs Corporation. Some of the system have been expanded over the past 20 years
,y,,tem design philosophy and concepts employed through insights made possible by our accumu-

by the system designers are includea to pro- lated experience in high-level language oroces-
vide ,)n understanding of the motivation of sing environments.
,:e'tain design decisions.

A brief discussion is presented of some of
the concepts and design principles which have
guided Burroughs' computer systems design. A
review of some representative developments frum
selected systems design projects is included
with some of the design and use ideas which were
incorporated.

GC'eral. Conceptýs§ad Ideas

Burroughs' computer systems architecture for
the past 20 years is a consequence of the artic-
ulation of and adherence to a relatively small
set of closely related design concepts and ideas.
Following are representative of these tenets:

Introduction High-Level Languages

A discussion of Burrroughs Corporation's 20 One of the more important concepts introduced
years experience with high-level language with the Burroughs B5000 was a dedication to the
machines, should be considered in the context of use of higher-level programming notation to the
some of the concepts and philosophies which practical exclusion of machine or assembly lan-
sm'rved t'o guide the system designers. guages. It was proposed and demonstrated that

a computer system could be designed and imple-
A central theme which has guided the devel- amented which would provide a sympathetic and

opiment of computer systems for over 20 years efficient host to an exclusively higher-level
it, Burroughs can be characterized as follows: language processing environment.

lhe role of computer systems is to At the time of introduction of the B5000, 3
facilitate communication between higher-level languages were considered to be of
people through the amplification of limited practical value in the real world of
human capabilities. Anything which information processing. Their use consumed
creates a distraction from the vast amounts of resources (particularly time)
achievement of this role should be for the compilation process.
regarded as being wrong.

The resource consumption for the compilation
The use of higher-level languages throughout process was considerd so severe that users

lBurroughs computer systems is consistent with frequently abardo,.wJ the high-level represen-
that theme. The development and evolution of tation of a program after the initial design
efficient machine architectures to support and an error.-free compilation. They frequently
Lho.;e abstract notations significantly facil- completed the testing and patching process in a
itate'; coninrmcation. more primitive representation, They thereby

64

•. -.... -• ...

avoided solving the basic problem of not having qroup of people from the several necessary dis-

an efficient language processing system. As ,a ciplines. Each participant must, of course, be
result of this multiple representation, the well qualified in a particular discipline and
operational program did not resemble the initial must have a good working knowledge in the other
high-level description, represented areas. This cross-discipline know-

ledge is necessary for effective contribution to
In addition to the problems with compilation the design and implementation decisions.

performance, the object programs executed sig-
nificantly slower than the proportedly equiv- There has been much written about the inte-
alent programs written in lower-level notations. grated hardware/software approach to systems de-
On contemporary machines, both performance obser- sign. Experience has shown that it is not
vations were valid. The problems confronting sufficient to collect experienced people from
compiler writers were significant--conventional the contributing disciplines. As Bobby Creech
machines were not designed to facilitate the observed in his paper on the B6500 architecture,
mapping of an abstract notation to the set of the attitude and the personality of the parti-
primitive functions suppcrted by those machines. cipants are critical to a successful system de-

sign. 2 Intelligence, common sense, and previous
In spite of these drawbacks, higher-level experience help considerably, but the successful

languages achieved some acceptance because of blending of these three attributes require the
the now-recognized advantages of their use for correctness of the contributors' attitude and
program design, implementation, and enhance- personality.
ment.

Design -Scop~e
Since the B5000 was designed to efficiently

handle programs written in ALGOL 60, it was Bob Barton, as indicated in his 1961 paper on
natural to Implement all programs, including a computer system design approach, suggests that
systems software, in that language. 1 8 The use higher-level programming languages should be
of higher-level languages for all progranmiinq employed for all programming tasks to the prac-
was critical to the success of the entire pro- tical exclusion of lower-level notations.1
ject. The approach permitted a continued Additionally, he believed that the operation of
interaction and feedback among the hardware the computer system should be under control of
and software designers, the system implementors, the system itself. This injection of user and
and the system users. During the course of the operator perspective into the system design
85000 project and subsequent developments, the process implied a much broader utilization of
roles of most of the participants in the de- high-level languages than had been considered
sign changed. Systems designers subsequently in prior systems. Contemporary machines of that
became software designers. These, in turn, era attempted to implement a higher-level lan-
became software implementors who are included guage in the hostile environment of a machine/
in the population of systems users. The assembly language system. To provide a con-
continued, exclusive use of higher-level lan- sistent implementation, the design team on the
guages contributes to a fluency in those B000 broadened their scope of responsibility
languages. It also provides strong motivation to include the entire programming and operation-
for the development of an efficient system. At al environment of the system.Burroughs, the system users are system de-
signers and are expected to contribute to the Early in the higher-level language system era
hardware and software architectures, implemen- at Burroughs, Lloyd Turner and other software
tations, and enhancements. team members developed a particularly effective

graphical representation of the ALGOL language
The viability of using higher-level lan- syntax. 3 This representation significantly

guages, which was demonstrated on the 85000, clarified the language structure for the team
reinforced Burroughs' commitment to the ap- and permitted new insight into an effective
preach on subsequent systems designs and compiler implementation. Additionally, this
program product developments, representation and understanding of the language

permitted the definition of consistent exten-
It should be noted that while high-level sions to the language when other components of

languages have achieved a certain acceptance systems programming and operation were con-
today, it is largely due to advances in sidered. The entire software system was
compiler technology. Some modern compilers do implemented in ALGOL (as was the ALGOL compiler
achieve an acceotable performance level. Else- itself). Since the scope' of the systems de-
where in the industry, machines are not being signers' responsibility ehcoinpassed the entire
designed to facilitate high-level languages. hardware, programming, anid operational environ-

ment, additional opportunities were available
The Design Team for the partitioning and implementation of

required functions. Commonly used functions as
A blending of technologies and experience is well as systems management algorithms were

required for the design of a corixircially via- factored out of the users environment into the
ble computer system. At Burroughs, a system operating system. Where appropriate, these
design team typically consist-, (f very small functions wcre replaced in the users environ-

61

merit by calling (naming) syntax which was consis- in his paper on B1700 memory utilization, pre-
tent with the calling language. This system- sents some interesting observations and comments
wide approach to the use of higher-level lan- on the dramatic effects which may be achievd
guages provided a natural environment for the through optimal information representation. 9
handling of general systems functions. These
Functions were represented by a syntax which The principle of minimally representing in-
was consistent with that utilized for the formation is consistent with the abstraction of
syttems software. This environment permitted higher-level languages. In natural languages,
the development and integration of such in- also, people abstract and codify high-usage com-
novations as automatic memory management, munication sequences for efficiency and compre-
virtual memory and general file management hension.
into the operating system. A description of
the results of this pioneering effort is in- The Importance of Information Structures.
i.uded in ?e 85500 Master Control Program des- Burroughs' emphasis on the efficient handling of

cription.15 information structures, particularly control
structures, has provided far-reaching benefits.

The conmitment and the adherence to the ex- The use of the stack in our machine architectures
,.lusive use of higher-level languages through- for the partitioning and handling of subroutines,
mtit the system produced a systems software and procedures, and processes has permitted the
usage base which could be readily enhanced. practical application of several of the concepts
-lhe interface between cooperating software and ideas noted in this paper. Additional ben-
•iiouidules implied by the consistent use of efits of the use of the stack mechanism include
.highei-level abstractions permits new functions those which contribute to the multiprogramming,
Lu be easily integrated into the software multiprocessing, information protection, and
iy;tem. This abstraction also allows software control distribution facilities of typical
ýyýLems to be propagated over several gener- Burroughs systems.
,Li(ons of hardware. Software subsystems, such
as the Network Definilion Language, 4 the Data Abbreviated History

Yý`. Management Languages, and augmented operation-
al dialogues which have been implemented over Observers of Burroughs systems developments
the past several years have been guided by the have detected a consistent philosophy regarding
global perspective suggested by Barton and systems appearance from the perspective of
urnhanced by subsequent software teams. programmers and users. These observers cor-

rectly concluded that the primary impetus for
General Design Principles the control and guidance necessary to maintain

this image is largely attributable to an in-
The preceeding discussion suggests that the formal and long-standing relationship among key

r.cognitionof and adherence to a closely Burroughs technical personnel. This group
interrelated set of sound concepts and design shares both a personal rapport and a commitment
principles provides far-reaching benefits. to a set of system design and use concepts. In
Ifitl conceptual base is required to be succes- informal meetings and conversations, Barton.
ful in the typical commercial systems environ- Lloyd Turner, and others have served as a
mient oF evolution, growth, and change. In catalyst for the elaboration of the original and
addition to the concepts and ideas previously the synthesis of new ideas and concepts. With
mentioned, the following are representative this common experience as a basis, it is not
c:nmplementary design principles which have surprising that there are repetitions in concepL,
proven successful at Burroughs. approach, and appearance within the several

Burroughs systems.
i[ecursive Definition. This simple approach B

(iAell'iToyed to verify the consistency, Following is a brief discussion, not neces-
completeness, and orderliness of a defined sarily in chronological order, of the evolution
object. Several current notation systems per- of some attributes of higher-level language
wit solution definition as a recursive process, oriented systems at Burroughs. Also included

are observations on some of the reasons for
Minimal Representation of Information. Not particular developments or emphasis.

al I information has the same im-portance when
c:onsidered in a language, program, or system The B5000, B6000, B7000 Series
context. The use of a higher-level programming
notation wherein information can be represented In the late 1950s, Burroughs implemented an
LIS appropriate to its static and dynamic usage early version of the ALGOL language on the
frequency offers some interesting options to be Burroughs B220, a conventional machine of that I
exploited by system implementors. As an example, era. This implementation served to prove
Don Knuth has reported on the extremes in several of Barton's original higher-level lan-
FORTRAN function usage in that operational lan- guage machine concepts. It provided a vehicle
quage environment. 1 7 This representational for the evaluation, feedback, and refinement of
frcodom allows for significant systems perfor- an ALGOL virtual machine.
iiail:e trade-offs to be effected. Wayne Wilner,

66

41

The-, HOODm...W 3yt was aennone in. ~ w r 1961 Th h-tc mlmntto nteB00 i

Tnhea50nc yemet wase announced winh 191thhe B7inad700stakimplementaton on therene Bith tnd
1uccsso 3B0,anucdi 16.Icue 5500, wae enancddursing the desig fof thelan

global variables was mofe consistently developed,

The M sstem anomedin 966,Incr progrhatmheingand al idesiing. A grom treat-
porated signforan consistmen wo o endrlesorc cuenteofdthe use oex~e cutios stfc PIn oceIss
mahines~ aontgrmutiped loaly and/o ideast andminaige autpovaidell by tahk Clearyind hraer'

The i 7n 0 v ain scThe le system, which was Thed carctusestac Iybnve a sdtin ah cnetre of
Intrduead in 1976. provided bot sourefctie an *cackus withc the trntrdcenaiin the doasi p
mpowjet-langug ofa~blywt the 3600seie atingac systcem porhes rere esentation of multies

isries system fditoalItuofresad frogrmin tharnd conain contrlanga. ti

buitned peysotnnems inoonto Ineriyhifatio fosubject. a teyr
Thd disribte ioneu-oulesytemt whacilitis. The crated uhs strucktuye vifewers fao crmofvn

376t00, intoue n 107? poise aot highrcper and strees winh thatte trunk ca cont inuag toasi
"foane erio ofit the B7000er0s grwg afster branchess haeben crated". Orne

Folowng etyicnal of tofeedfo the ideas ancocrprsntation of this strucetureic

cnetofte300360,and 97000rUnited States-henc t aiiis he crcactuThs st acfer k' design-
sys, itiom: in17,ia hge a-tion.trm The paper by trv luck cand contnu Deto

forane erio o th B00 sris." furised ban echesn discussien ofeated. Odeti
ware appliedcinethesdesignoofothehSysteructeferenc

theoin ar0 sse. Onel of the idrea mprant sranbles bosagaok on tuo the 360spovthwestago
idnepts ~ofli that m.600,achne was0 thein-tredateentfhenc thcactus stack * dntesonteto
tectire. Theon stac mechnis is particularlyanDen

effetiv In he .GO lanuag hadlinisni-d r. Thell~ descrsipor on h Burrougs.
Stackn. Theaowe of the stackelis ind ida fte95 tc~ eal efudI

provoNTYnotd wee aplie in he dsig of he Sste PleoencouMn tered durinL.t
thenOd tsyustem fOnemof the morar imtortanet Oaccssn bok inomton. The B60 rvdesriptorom
ritdetas exprdessIons tatahnd wstoraeintramt of pae tIsdtoe searausackI thos fuctonsex asof

tetricadcnrlifration fftestc nor th gchneralize anvead l withthem Infoription. deii0nenoto
scubrouTine sand procuehanding. It partclsofoarceuarly Ti stm fds
allowsiv en efetive redLanuctio inndprogramnvto- Theption and functionefacilitates thehandling
aereqltments sicThe tope of the stac k isih tofd dat andgl-ncddsquneo programwtemi~ aimin h ih
prdvides ause ldadrs for dnmctmporaystofrte levelastratio of inomthen user dencriptrayt beoo
ordis foe f hachlt emt fiiene. eAcmleateo des detailed dsaeesriptions for of thsowerful facirit
criphmtiemxfptestacns and sothger ofepatres of the cansefud in thepapaer byos fu~ndtDent andt
metri0 and Iotro sucesormainfrgnraietdwt the 350cabeirnicksfookaton thefnto a6nd0 conro
fuboundinte and r~oceugRfrehnlnce Manuals onmpoeua cd.Y~ earto fds
thoe system.-.. sihe the0 to ftStcro aa n ie wies10afig-teh

provides. ~ ~ ~ ~ ~ ~ ~ ~ '~ anIpidadesfrms ftelvlasrcino h srawom.E

"* T1

A major objective of the B2000, B3000, and for each program or process. it did not dearait
B4000 systems design was a family of systems from the rapid state-switching requiremments of
which would be efficient at character handling, the system.
Specifically, the systems were to provide an
effective and efficient host for the COBOL pro- EDIT Inst-uction. The application of exper'-
gram environment and for character-oriented ence -a '6Yser`vat-ons for development and
peripherals such as data communication term- implementation of character handling lanquage
inals and magnetic and optically encoded and functions is typified by the B2000 series
document handlers, EDIT instruction.

The B2500/B3500 systems were introduced in The character handling facilities of the HSOOL0
1966. The B2700/B3700,B4700 enhancements to the machine and the necessary primitives to accom-
series were announced in 1970 and 1971. The plish the COBOL-specified MOVE and EDIT functions
B28OO/B3800/B4800 systems which provided both were not well designed or implemnted or that
higher performance and machine-language compa- machine. COBOL was a new programing language
tibility with earlier systems in the series, at the time of the B5000 design. There was
were announced in 1975 thru 1977. Many en- little experience with the practical requirements
hancements to the 82000 series have been of that language environment. Additional in-
integrated into the B2900 systems which were formation was required on the problem of mapping
announced in 1979. the requirements of the MOVE and EDIT functions

on the 85000. The compiler group developed an
General Architecture. The experience base enumeration and representation of the functional

for a machtne which could perform well in a requirements defined by COBOL. They then per-
character-oriented environment began with the formed a simulation of the virtual machine
BU0D systems of the early 1960s and included implied by that form and semantics. This expe-
observations and experience with the B5000 and rience and the resultant insights provided a
B5500 systems. 1 4

sufficient basis for the appropriate generators
in the COBOL compiler for the B5OO. The re-

The processor and memory of the B2000-B4000 presentation, algorithms, and techniques devel-
systems are oriented toward the character, oped for the B5000 compiler were supplemented by
field, and record requirements of the COBOL lan- the results of observations on that virtual
guage. The instruction set accommodates machine. This experience served as a basis for
variable-length strings of alphanumeric and the design and implementation of the MOVE/EDIT
ruiiKric representations, instruction on the B2000, 83000, B4000 systems,

On those machines, most MOVE verbs in COBOL can
Because of the dominance of field-to-field be performed by a single instruction.

operations in the COBOL operational environ-
ment, the processor was designed to utilize Details of the structures and operations
primarily a memory-to-memory instruction im- implemented on this family of systems can be
plementation. Since the processor retained found in the Reference Manual for those systems.
minimal state between instructions, the system 11
could quickly respond to interrupts from the
high frequency of input/output operations in a The BI000 Series
typical data processing envfronme~it. This fast
interrupt response facilttated the handling of The current Burroughs BI000 series (81700,
data communications requirements. It also al- B1800, 81900), were designed to support a multi-
lowed the handling of the real-time functions plicity of high-level language and processing
of high-volume document handling peripherals environments. In addition, the system was in-
in a multiprogramming mi'x, tended to support the emulation of several

The machine also incorporated a stack mecha- existing and/or proposed machines.

enism to facilitate the handling of control in The initial systems of the B1000 series, the
thr COI3OL and operating system environments B1700s, were announced in 1972 and 1973. The
Sincu the stack was mapped into the memory area BIROOs, which incorporated significant perfor-

4

mnnce enhancements were introduced in 1976. and storage hardware fetches and stores one or
Initial 11900 systems were announced in 1979. more bits from any location with equal facility.

The Dosia. Based on analysis and experience, The B1700 processor was designed to provide an
thedesign t concluded that the range of repre- efficient vehicle for the emulation of multiple
sentations and functions dictated by the proposed language processing environments. The instruc-
set of po"rming languages and machines could tion set of the machine included primitives from
not be directly accommodated with a single, com- the set of programing language and emulation
mercially viable architecture. A sufficiently environments as well as those which contribute to
smu!l set of structures and operators could not be the emulation, or interpretation, piroess itself.
defined which was efficient for all languages and For example, the Arittmotic-Logic Unit could be
processing environments. A Machine architecture parameterized to a width which corresponds to the
wms indicated which could be adapted to each pro- data or machine being handled. A good exposition
cesting and language requirement. of the B1700 design was provided by Wayne Wilner

in his paper on that subject .nd.is detailed in
The 31700 system design included an attempt to the System Reference Manual.,1n.13 The book by

define a mchine which had no Inherent structure Oranick and Hinds contains an excellent des-
and no a pri--i instructions. To satisfy this de- cr ption of the 11700/11800 systems architecture
sign objective, a passive machine was required and application. 20

which could accomodate definable information
structures and instructions. Langua -Specific Machines. The congruency of

the uncotTOns dCtaad by a p•ocessing environ-
The design approach used on the 91700 system ment and the repertotr of structures and opera-

ems to anticipate a unique machine architecture tors supported by a machine generally determines
for each pr amging language and emulation envi- the efftcfency of a system. For the 81000
ronment. The designers had to consider both the systems, an "ideal' machine was designed for each
typical high-level forms of program representation processting environment. Where an existing
as well as mchne-l��g form from existing machine was to be emulated, the form and smntoc•
machines. lestated, th B1700 design objective of that machtne constftuted the definition. Afte$
was to efficiently emulate a set of real and the machine deffnition, an emulator, or inter-
virtual machines. preter, was developed which provided the semantic,

deftnition of that virtual machine. Thus, the
Variable-Field Handling. The ability to vary compiler writers had an ideal Machine structure

the-mchfn's 1rge for each emulation environ- and operator set for their object code. This
ment implies some very specific hardware and soft- repertoir of structures and operators provided an
ware adaptations. Fortunately, our experience on isomrphitc relationship beteen most functions
several prior machine designs and research pro- expressed In the high-level language and the
jects suggsted several potential solutions to target machtne.
this variable-environment processing problem.

Opttimration. Since the virtual machine could
It was observed that data and program are fre- be adapted to each processing and language envi-

quently not suited to the representation Imposed ronment, facilt'ties were Integrated into the de-
by typical word or character organized storage and stgn to optimize the adaptations. Tools and
pressing elements. The actual nature of program techniques were indicated which could supplement
and data demands variable stze representation. our perception of the environment with empirical
Considering the range of storage and processing tnformtton.
environments of the B1700 system, the smallest
unit of Information, the bit, must be addressable Both hardware and softare facilities were
in order to provide complete flexibility In the integrated Into the system to permit static and

Smapping and processitng solutions. To acco date dynamic observations on the virtual machine's
this requirement, the 81700 system was designed representation and performance. These observa-
with a defined-field storage capability. In this ttens ware utilfzed to extend our 'nowledge base
mmory system, all storage is addressable to the on these language-specific machines. Virtual
bit, all field lengths are expressable to the btt, machine definitton and representation are changed

69 4.,

4 I

• • •! • ,•, L • -•... _ 'r• - -- r ,-•n• . r . . , .. itr T•l '• . ,-- r - •

,j

as indicated by static and dynamic observations on group, and the many participants in Burroughs
the wachine's behavior. This technique, and the developments over the past 20 years, have expan-
adaptability of the machine, has permitted very ded and amplified the basic set of ideas.
effective enhancement and optimization efforts to
ýbe realized, ahe author wishes to thank John McClintock and

Barbara Bennett for their conscientious criticism
It should be noted that the exclusive use of of various drafts of this paper.

higher-level languages contributes significantly
to the success of the optimization efforts. The References
use of abstract programming notations provides the
hecessary representational freedom to effect the 1. A New Approach to the Functional Design of
indicated virtual machine changes. Some addition- a Digital Computer. R. S. Barton. Western Joint
01 background material and experience with the ap- Computer Conference Proceedings (1961). Asso-
'pication of the systems monitor facility is ciation for Computing Machinery, New York.
#rovided by Russ Hagen in his paper given at a
$omputer performance seminar. 2 1 A description of 2. Architecture of the 86500. B. A. Creech.
'he supplemental functions provided in a perfor- Prnceedings COINS--69 Third International Sympo-
:Nance measurement subsystem can be found in the sium,. (1969).
•ystom Performance Monitor Reference Manual. 2 2

R13. A Syntactical Chart of ALGOL 60. (1961).
Resource Management. The BIO00 systems support W. Taylor, L. Turner, R. Waychoff. Communica-

the concept that the machine should manage its own tiris of the Association for Computing Machinery.Ienvironment. These systems incorporate the stan- Vol. 4, No. 9.
dard Burroughs set of operating systems scheduling
and Qother resource managemnt facilities. Program 4. Network Definition Language Manual,
arid information segments are handled automatically Burroughs Corporation, Detroit, Mi.
for both interpreter and virtual machine processes.

5. 87000/86000 Series ONSII DASDL Reference
At a typical installation, several language Manual. (1978). Burroughs Corporation, Detroit,

environments may be concurrently active in a mix Mi.
of programs. Through appropriate information
integrity and resource management mechanisms, each 6. Burroughs B500O Information Processing
user views the system as a dedicated facility de- Systems Reference Manual. (1964). Burroughs
signed to effectively accommodate his particular Corporation, Detroit, Mi.
lan•uage environment.

7. Burroughs B5500 Information Processing
Systems Reference Manual. (1964). BurroughsCorporation, Detroit, Mi.

The comprehensibility of communications as a
result of the exclusive use of higher-level no- 8. Process Handling on the Burroughs B6500.
tations throughout Burroughs computer systems en- J. Cleary. Proceedings of Fourth Australian
hances their role in human communication. The Computer Conference (1969). The Griffin Press,
development and evolution of efficient machine Adelaide, South Australia.
architectures to support abstract information re-
presentations makes the use of higher-level lan- 9. Burroughs B6500/B7500 Stack Mechanism.
titiages effective and practical. E. A. Hauck and B. A. Dent. Proceedings 1968

Spring Joint Computer Conference, Thompson Book
1kcknowledgemont Company, Inc. Washington, D.C,

Many people have contributed to the set of 10. The B5700/B6700 Series. (1973). Elliott
concepts, ideas, and design principles included I. Organick. Academic Press, New York.
in this paper. Their application in Burroughs is
a tribute to the strong commitment and persis- 11. Burroughs 82500/B3500 Systems Reference
tfnce of Bob Barton and the B5000 team, This Manual. Burroughs Corporation, Detroit, Mi.

70

12. Design of the Burroughs B1700. W. Wilner.
1972 AFIPS Conference Proceedings. Vol. 41, Part
1. AFIPS Press. Montvale, N.J.

13). Burroughs 81700 Systems Reference Manual.
(1972) Burroughs Corporation, Detroit. Ni.

14. Burroughs 8200 Information Processing
Systems Refiurence Manual. Burroughs Corporation.
Detroit, Mi.

15. A Narrative Description of the Burroughs
85500 Disk File Master Control Program. (1966).
Burroughs Corporation, Detroit, Mi,

16. Burroughs 86500 Information Processing
Systems Reference Manual. (1969). Burroughs
Corporation, Detroit, Mi.

17. An Empirical Study of FORTRAN Programs,
(|q7l) Software--Practice and Experiencp, Vol.
I.

18. Report on the Algorithmic Language ALGOL
60. (1960). Communications of the Association
for Computing Machinery. 3. No. 5,

19. Burroughs 81700 memory utilization. Wayne
Wilner. 1972 AFIPS Conference Proceedings. Vol.
41, Part 1. AFIPS Press. Montvale, N.J.

20. Architecture and Programming of the B1700/
B1800 Series. (1977). Elliott 1. Organick,
James A. Hinds. North-Holland. New York.

21. System Performance Indicator (SPI) Monitor
System. (1976). Russell L. Hagen. Proceedings
of the Burroughs Computer Performance Seminar at
U. C. Santa Cruz. Burroughs CorporAtion, Detroit,
Mi.

22. Systems Performance Indicator (SPI)
Monitor System Reference Manual (1976.
Burroughs Corporation, Detroit. Mi.

71

A SURVEY OF HIGH-LEVEL LANGUAGE MACHINES IN JAPAN

MAsahiro YAmAMoT(

Nippon Electric Co., Ltd., Central Research Laborat~ories
4-1-1 Miyazaki, Takatsu-ku, Kawasaki 213, Japan

1Abstract hardware oonfigurations in order to cover most
high-level languaae mac4hines. For easy understand-

Many high-level language machines in Japan ing and clarification of their differences, arch-
have been made which can use most high-level lan- itectural ccxsparts~ns between high-level language
guages. Saveral proposals an experiments were machines for the sawe high-level languages are
performed since the late 19605 and significant considered.
research started after 1975. High-level language machine research in Japan

Much of them are proposed on experimental has been made for mast high-level languages.- Much
machines. There are & few co!Iuercial high-level of them , however, concentrate on experimental-level
language machines. It is characteristic that much high-level language machines and there are only a
LISP and APL machine research has been achieved at few comercial-level high-level language mach~ines.
Laboratories and Universities and a few FORTRAN several proposals and experiments were made in the
and COBOL machines have been made by computer man- end of 19605 and early 1970S. significant research
ufacturers. ef forts have started after acme 1975, ansahown in

Fig. 1.
Introduc' ton Generally speaking, it is chaxiacteristics that

much research data have been gathered on LISP and
This survey report Is an overview of the ac- AP)L machines at Laboratories and Universities and

tivities related to high-level language machines a few FORTRAN4 and COBOL machines have been made by
in Japan. Commercial, experimental and pruposed comlputer manufacturers.
machines are covered. More space is devoted to Referinces are listed at the end of this re-
significant characteriati.-s in their intermediate- port in which the reader can find detailed infor-
lanquage architectures, hardware structures, soft- mation. Unfortunately, most of them are writte'n
ware/f irmwere/hardware tradeoffs and evaluation in Japanese.
data, rather than their detailed architectures and

- 68 '69 170 '71 -72 .'73 ' 74 '75 '76 '77 17S 1 79

i;1 1

PL/I cSiigiftoto

x FORTUMI
2

Processor .51230-75 APU 3

FOR~kKN* -lS10 ZAPS

a r/H-L%51c 7

BASIC xBASIC Machin-e10lirae5A1)

o COMBAT
13

COBOL

aSin LIPP 1 16 0 Kobe LISPh
LISP AoSUTV LISP n-oEVio LISP

2 4

IONK3 20 oZvL1S 26

x fir are APL 3a 0 r YA36

AI'L ~oH~msjioToshiba APL
3 4 AL

o ZLCAL&PASCAL Comrcial Machine t ECperirn, Machine Paper Machine machinei

Fig. I High-Level Language Machines in Japan

72 :

Man hih-lvellantme mchies n 3p~min an clrifcaton f hei difernce, ach
havebeanmadewhic canusa ost igh-evelfan- .t,', ra c,' rsn etenhg-evll ug

HighLovl Lnguae mchies In 1973, S. Takahashi et al. at Hitachi Wt.
reported results of twidaimental, experimental to-

F!LZI Processors searc.h efforts an a firmware VORTPAN processor 2 ,
where FORTRAN source statements are troanlated into

PlI/l is the mat complex comercial high-level both reverse polish and mixed reverse polish inter-
lan~usg. Heow* it is time-consuming to manipulate mediate teats. in mined reverse polish. arithmet~ic
an a conventional compuiter. flwretfore, the appear- statements are translated into reverse polish texts
amos of edvaoed" and consistent PL/I processors hatu end IF otatements are translated *pto nomal polish
been desired for quite a while. texts, excapt for arithmetic expreeioms in them.

IMe first significant step in the research on Th~e authors concluded that the exegution time
high-level Imogus,. machines in Japan occurred with ratio for reverse polish and mixed revers polish
the propoeak for a P4QI proceDsor by M. Sugimoto. built in microprogrom, reverme polish in software
in 3969, he proposed a PZL/I processor1 composed of and Object machime codes is 0.6 1 1.3 1 9.7 1 1, based
a transleatr, called the FL/I reducer, and a hard- on a VOMW3AN dynamic statmnt mi". On the other
ware interpretter, called tha direct processor. hand. the object mory capacity ratio is 0. 53 1
"ise PL/1 reducer translates a FL/I program into a 0. 56 10. 58 -1, based on a VORWIA static statement
list-structured intermediate language, DIPL (Di- mix.
rect Proceasor input language), that consist% of The FACO 230-75 MVU (Array Processor Vhit)3,4

fourý parts, Program structure List (PSI.), Statemerit from Fujitsu Ltd. is a pipelimed vector machine
Normal orm= List OWiL), Attribute List (AL) and attached to a PACON 230-75 system in which the ApU
Constant List (CL). The direct processor consists and CPU (central Processor unit) share the main
of several fmctionaliy auton~mous munts, as shown memory (rig. 3). The AMU machine stroature is
in Fig. 3. characterised by various kinGs of internal regk.e-

*ae FlA/ reducer has been implemented. For toer (vector registers, data registers anod bias
typical scientific program, the object code length registers), vector descriptors end powerful vector
has, been reduced by a factor of 25% on the average, instructions for array or vector operations. A
cometsed to that of the object code generi~ted by FORM'P user's progrsm is written in Ar-POR"hAN
the FL/I compiler available at that time. Accord- which is an extension of standard voftnm to IA-
ing to the timing simulation program for the direct dlude vector tunctiona. it was indicated that the
processor, it was shoam that 2816 speed gain over maximum MPU per formance is 22 "eA Floating-point-
the conventional computing system can be obtained Operations end the AVI system performance of vari-
for anithestic/string operations. ous application programs written in Wp-owam is

4-20. times that for corresponding CPU programs.
An APU. system was installed in Japan' s national

/0 Aerospace Laboratory,
Ink tamThe IBM Systsm/360 - 2936 AV and the FWCON

1/0 2 30-75 APU are an attached processor to the central
/O processor through an I/0 channel ar a shared smin

memory. In order to solve problems, wherein a large
amountm of hardware was necessary end that a special
description uaing non-stwndar VOrWUAN would be te-

AM WIT&quired, Hitachi Ltd. developed the 31-140 ZAP (inte-
grated Array processor) 5 where array processing
functiona are included within a central processing

OW ------ illsunit as a general instruction set (vector instruc-
tions). A concise vector instruction set, consist-

...... ing of 28 instructions, was seLected based on an
analysis of the statistics on the behaviour of

outou Wit (101 11V IIU zuMV1,0 IWUING MIT FORTRAN program., obtained using a software tool,
tow /0 oot NITFOWIA S. in the 31-160 ZAP, YORAN user'Is program
I# to~kmto wwritten in standard ro~an" are vectorised throughA

Com-ue U tl the vectorizing FORTPAX compiler6 . it was shown
that About 50% of the benchmark programs using e=-

ow opeftlo wi eavtsumution steps can be vectorised by 29 vector instruc-
NM 11191110111 I'AR tions.

Pi~j. 2 Block Diagram of the Direct Processor.

FORTRAN Processors aiyai wy"A UOM ai a

FORMWA or array processors art only uped as
a commercial high-level language machine in Japan. t2
Sces of them have actually been used as an attached -
or integrated processor in a conventional general
purpose computer system for performance enhancement
of FO~rTR program execution. Also, in accordance /01"
with recent urgent requirements for effective exe-
cution of large scale scientific applications, more
powerful array processors have been planned. Fig. 3 The FACOM 230-75 APU System Configuration

73

IA

13AS IC Machines processor modules for instruction fetch, operand
fetch and instruction execution as shown in Fig. 4.

In 1974, Y. Nagai, M. Yamamoto at al. of NEC It was indicated that the COBOL machine execution
Ltd. quantitatively analyzed software/firmware/ timal4 v 5 is about 3-5 times faster, than that in a
hardvsre tradeoffs in A BASIC interpreter. For this medium scale conventional cosrputer. The COBOL ma-
purpose, three kinds of high-level languacje ma- chine is running at a processor attachsd to the
chinos, a software-implasented BASIC interpreter conventional commercial computer.
(s-BASIC), a firmwaru-implemented interpreter (F-

AS IC) and a firmware implemented interpreter with A
a~dditional hardwaro (H-BASIC), were implemented.
1'..OASrC7 is implsemented with firmware on the Goner-
alI Purpose Microprogreined simulator (GpNB) 4,1,. FIFO ---- O
reinforce the F-BASIC rerformanco, hardware func-
tiotne, svech as transfnr/pointer operati~ons, associ- P EP
a~tive fuinctions and so on, were tntruduced into the
Fl--BASIC 8 on the microinstruction level. EAch BASIC External
processor translates a BASIC progra~a into a same system
intermediate language, end then interprets it.
Experimental results9 show that 17 times perfcrm- H 4P
ance improvement is obtained by adopting fIrmware.
.3. times more performance improvement wasi obtained

hy introducing appropriate hardware functions. The
memiory :!apacity necessary for a language processor
wan a1qo reduced,

M. Yamarnoto, an implementor of the precodihg AC: Advancu Controller
o*)poriment, proloued an advanced high-level Ian- IL~t intermediate
yL34ge architecture1 0 for a BASIC machine as an ex-
tonstion of uhr. above three BASIC interpreters in Lagug File
1975. The BASIC machine is capable of both trans- FIFOt First In First
lAtion and interpretation of a BASIC program and is Out Memory
characterized by a tagged architecture,-& large IFPt'K Instruction retch Processor Module
[Runher of general purpose regiaters and powerful 0rPM: Operand Fetun Proceacor Module
niachirne itstructions. In addition, bit-handling, UXI'N: Instruction Execution Processor
vAuk inq and table-pointer operations bre also in- ldl

Moul

staI led, It was estimated that the ASIC machine MCM: Mmory Control Processor Module
ptrformance is about 2 times that of F-BASIC

T. Maruyama of Hee j i Institute of Technology 1tMi
made a BASTC interprAterllS12 on a general purpose Fig. 4 COBOL Machine Tonfiguration

I cminicomputer, HP-2N1eX Using a software translator,
(BASIC programs are translated into intermediate LISP W chine-
A)languages, which are interpreted by a firmware in-
terpreter. In the interpreter, commonly usable Th,- mos; researched high-level language machine
lunctional routines for such as table pointer/entry in Japan is LISP machine. Since the LISP languagwe
mndipulations, data conversion* and. arithmetic oper- has many in,.-'sive characteristics, e.g. dynamic
at-iona, vather than for the whole of a special data allocation, recursive fmiction call and list
statement, are implemented with microprogram tech- porceseinq, it is impossible to effectively execute
niqaes, based on execution frequency evaluation LI" programs on conventional computers. Increase
data. The microprogram amount is about 1.,3 k words in research areas for symbol manipulation and advent
A firmware BASIC interpreter is about 4 to 9 times of low cost, highly iunctional and eAsily usable
-f-ster than a software version on benchmark test microprocessors have been accelerating the demand
programs. for LISP machines since 1970 In Japan.

An early experiment on a LISP machine was made
COBOL Machine by T. Shimada et al. of Electotechnical Laboratory

(ETY.) in 1974. LISP machine research in ETL nas
COBOL is the most cor m nly used commercial been performed in three steps. The first experiment

progrtamming language. it is used for some 70% of involves a microprogrammed LISP interpreterI6e 1 7 on
all programming. Therefore, hitherto, conventional a user microprogrammable computer, HP-2rMX.
rimputers with specialized functions or architec- A Babrow stack model in implemented with micropro-
tur e for COBOL and COBOL machines appeared at the gram techniques, on whic-, LISP intarpreter is made
t:uum rcial level overseas, with LISP oriented highly efficient iigstruetions.

I9 n the B other hand, in Japan an experimental Also backtracking and coroutine functions are adopt-
COBOL machine 1 3 similar to NCR COBOL Virtual tMauhinsead. It was concluded that about 5 to 6 times faster
hais been put into implementation since 1975 in NEC than HP-2100 machine instruction codes is attained.
Ltd. The COBOL machine architeocture, called COMBAT Moreover, much basic evaluation data about micro-
(Cobol Oriented Machine Basic Architecture), has Program~ed LISP interpreter were ebtairuid. It is

*many facilities for efficient COBOL program execu- shown that highly efficient decision making includ-
tion, e.g. many internal data, data descriptors and ing multi-path jump, recursive call at the micro-
intensive COBOL function capabilities. Th- COaBOL program control level, bit manipulation and main
machine hardware is functionally composed of three memory control are effective for a LISP interpreter

74I

perfrmace i abut ti"S tat • F-ASI. Z

* - xrnm.

hamed on theou evaluation dat., and expersunce, Pnsearch on LISP machines in Iapan was pro-
now LISP machine (EOi LISP 2)1 0wa-i implemented on noted by the advent of low-cost, high-performance
a universal smualattan machirie, ACE~ (Adaptive Com- and easily usable microprocessors, specially bit
puting Slosent34 1. Integral data formi.t and inter- or byte slice microprocessors.
Preter structuke for this LISP machine 4re identi- K. Taki at aI. at Kobe University developed a
cal to the HP-21NX version,. In ordor to attain LISP Procossor22 *23, organised with 4-bit slice
betteTr perfsmwene however. all the interpreter microprocaasors (Am 2900 series), which has 16-bit
is 'eritteft AA microprogram, and stack configuration, data length, S6-bit microinstruction length and
hdrbwsre regibttr utilization and memory management 32-bit list-cell length. It also has special hard-
site Improved t"NA to using advanced ACZ hardware ware components charaqteriaed by a 16-bit 4-k word
facilities, hardware stack, a field extractor for data meaking

in addition, virtual Lisp machine19 is twinc, and shifting, a 3-bit 1 k word mapping unry gen-
implemented an a 6owerful 16--bit microc-omputer, orating a 3-bit usage code corresponding to the
whose conceptual structure is shown~ in riy. 5. main wemory address and a 1-bit 64 kc word bit-table
In the virtual LISP macA,no, intermeidiate lanquaqtl supportinq qarbage collection function. Figure 7
iwnutructians~ directly correspondinq tn LISP func- shows the hardware structure for the lobe University
tions are (eons~der#,I, LISP machine, which is connected to a general put-

Stack 5.,eeto pose computer, PACON 230-38, through an S0S0 micro-
awl" Vwwinascomputer. A DEC 1.81-11 minicomputer performs ini-

ON14001 tiation and maintenance functions, Lisp progrea
L ~ J e~esttee loading and input/output operations.

ke taus do NO to"& eta

~ Pveue~e heelstao Pr- &1

uestie Woku 55intwar
ruhniefts ~ ts lo I ot o

140wods
Fig. S conceptual structure of the Virtual LISP

%&chino F~ig. 7 Hardware Configuration of A LISP Machine

LVAP machine NK3 20 '2 1 of Kyoto University is Sysem

based on a LISP oriented special processor, which T'. Usuki et aI., from-Kisia Unkiversity, ippls-
is9 71-bit data length, 42-bit microinstruction mented a LISP machine24 2 on a multi-mioroproces-
length and 64-bit list-cell length. Alse,, it has *or system, which is composed of an interpreter
special hardware units, such as a transfer table processor UIP), a storage management processor (81W)

for "jnetating microinstruction branch addresses to and an input-output processor (10P). IP performs
aid checking for tag field and data category end a overall control of LISP program processing end LISP
hardware stack, vhose top areas are always storod program's interpretation, and has a 16-level hard-
in a fast buffer memory. NK3 has about 150 macro- ware stack for sequence 'control and list manipula-
instructions mainly for stack and tag manipulation, tion capabilities. Garbage collection and CONis,
in order to effectively execute LISP functions. APLACE and RPLACD function execution are achieved
%.* pJrocessing speed of a LISP interpreter on WKI independently of interpretation on SHP, which is
it 5-6 times that of a LISP system on a qcnerni orgjanized of byte-slice microporcessors, i2 special
purp.ose. minicomputtur. F'igure 6 PhuwR an NK1 rogisters and a writable control storaget. Garbage
b.,IWkdtAqram. colluution function is attained based on Dijkstrals

alqurithai. 10r, a general purpose minicomuter
Too".(WOVA), ac~complishes input operation of a LISP g-

on lin expression, conversion from it to internal forms
Tab and file processing. Figure a shows the configura-

F t _4 ýtion of an oxp-crimental multiprocessor system.

rig. a3 System Configuration of Zxperisental
rig. 6 Block Diagram of LISP Machine NKI Multi Processor system

iH. Yasui ot al. of Osaka University have been LIsp machine on a universal 8-bit mlcroprocessor
4• d,_hv•lrLping a new multiprocessor LISP machine, EVLIS (i :A080). L. Goto, T. Ida el al., of the Insti-

;j 1. 1hj 1e2G,27. In a traditional multiproceusor LISP rule of Phynical and Chemical Research, are design-

l-rlil.-l, li!it processing and garbage collection or jug a machine for numerical, symbolic and associa-

I/,, pocessing are performed in a parallel mode. tive computing, FLATS (Fortran and Lisp machine

1.4 the other hand, in EVLIS machine, each argument with Associative features for Tuples and Sets)
2 9 .

1,,r a lI1P function, EVLIS, is parallelly evaluated In FLATS, overflow free and variable precision
to xultijilu processors. It is based on the concept arithmetic, tablc look-up computation, and associa-

tlat paralhio interpretation of EVLIS arguments is tive computatio.t are realilzed by hashing hardware,

'iririhie r an arqgment evaluation does not affect ti, rnechanism aInd hardwarc list processing.
tire other argument because of its list alteration
opal ation. Figure 9 shows the system configuration
of the EVLIS machine, in which an evaluation proc-

or,,sor can accomplish an argument interpretation.
Ahi uvaluation processor is organized of Intel bit-

.]ice nicroprocessors, I 3000 serin, and is 20- .
btnt dat-i length and 50-bit microinstruction length. 55
A lu-bit list cell can be brough into a CAk-DiR

Ilur from a maint memory. When the ri iý tijir-

targ,. oolection function requirement, all evalua- p Nor fo.r

lion po•ocestors stop interpreting EVLIS arguments
• nd paralIally perform their function. A simula- T
tiul. t "salt related to the performance enhancement TSW " bu FIT

tio. to mrulti processors was shown in the paper 2 7 . UimtLrrlrr P~lT"

'Typical LISP machines have been surveyed.
lta .'. I shows a summary of their major character- ...
i;Lticir. Il addition, there are other research ef- bank 4

f.orrts related to LISP machines. ALPS/I (Aoyama
Sit.tjt 1iocesninq System/I)

2 8 is a compact, low-court I'lrj. 9 System u :,nfiquration of EVLIS Machin.

Table I Architectural Cormparlson |t, tweuii .1S71 m•arnitirsri

Intermediate Processor Special Parall! liardwart Garbaqe Mlgc..L--

Language Configuration Processol Proce'srtn Stack Collection atieous
Architecture

(Direct Inter- Univeral)lost FS. w Stack

K'F' Pretation of ACE + NOVA t mirorMod1

n LISP texts) processor Rinq Mode
Stack
(8 words)

CAR Special Proce- Special Fast Buffer Transfii

NK3 CDR 6sor hardware Mornrmy Tab

CONS +Interdata 8/32 Processor

CAR Special Proce- sit Slie 4k word i4

CDR ssor Microproe';%ur I wr it Table Mvmr•iI!5•CONS + S 1(Am 29)00) ýta.-.k

" (Direct Inter- 3 Special Byte Slice E'xccutI'In
Pretation of Processors Microprocessor Garbage

LISP LISP texts) Cletct io

"l (Direct Inter- 4 Special Bit Slice Parallel
Macin S Pretation of Processors Microprocessor execution -

Maichine-I LISP texts) (1 3000) of List +5

Processing

1*6

!,1

I.

_ _ Intepreoters Y. Morimoto from Toshiba Ltd. implemented a
firmware APL interpreter, APL/SPOB I interpreter34,

3 5 ,
APL has many features to be implemented by on an EPOS (Experimental Polyproceosor System) "ya-

firmare/hardware techniques, some of which are (1) tem
4 4

, whose component processor is organized of a
dynamic data and dimension attributes asaociated universal host microprocessor, PULCf (A high pr-
with variables, (2) various operators to be applied formance universal computing element)

4 5
, dedicated

to vector and array operands, and (3) a large num- to emulation with powerful microinstruction .sets,
bar of nonstandard operators. Moreover, because various kinds of hardware registers and so on.
APL allows dynamic data handling and because it is APPL source statements are translated intd int/sAe-
an interactive language, data type checking, sub- diate texts similar to the preceding firmware APL
script checking and text editing are to be perform- interpreter by a translator written in pseudo APL
ed at execution time. language (PAPL), which is emulated with micropro-

In order to overoome inefficiency in APL qrams. on the other hand, intermediate texts are
software interpreter due to these features, some interpreted by PAPL and microprograma, and micro-
microprogramed APL interpreters, similar to IBM programs mainly play scanning for intermediate
Massitt' machine, are experimentally implemented texts, decision on operation category to be mani-
an a microprogrmmed coputer since 1975 in Japan. pulated and execution of basic APL operators.
Various quantitative evaluation data about fire- According to evaluation data, APL/PO I interpret-
ware effectiveness in an APL interpreter were er is 100 times faster than a software version, on
accumulated. some AFL functions. Also, it is faster than the

In 1975, an early experiment on a firmware execution of object codes gonerateai by a compiler.
AFL computerre was made by T. Notooka et al. at Moreover, another sisilar research effort 3

Tokyo University on an experimental machine, PPS1
4 3

. has been carried out on a dynamic microprogrianble
An APL source text is translated into an interne- computer, QA-1 4 6

, by K. Kinoshita et al. of Kyoto
diate language on a one for one basis by a Lexical University. Various unique experimental results
analyzer written in a microprogram. /u intormedi- will be obtained because of many special QA-l faa-
ate languaqeo is composed of identifiers, operators, tures, e.g. hardware stacks, low-level parallel
constants and brackets. The order of elements for processinq capabilities due to using four ALUs and
a statement is sam in the internal represontation. tag minipulation functions.
The intorpreter is written in microprogream and

ALa. both the lexical analyzer and the interpret- PASCAL Machine
or are implemented on a microprogramsed experimen-
tal computer, PIll. The authors concluded that the The use of a structured high-level language,

firmware ARL? computer is much slower than an APL PASCAL, is increasing due to-its high portability,
machine in software on scalar operations, but fast- proqrsmnr/execution-efficiency and onmpactness of
er on many vector operations. language processing system. At the same tins, in

N. Niyawaki et aI. of Himeji Institute of order to effectively execute PASCAL proerais, PASCAL
Technology made a firmware APL interpreter

3 1 . 33, machines, such as PASCAL Ricroengine. of Western
based on a quantitative analysis

3 2
of the inter- Digital Corp., have appeared.

pretation part, which ts implemented in software T. FuCUy& of UTL experimentally implemented a
on a general purpose minicomputer, HITAC-1O. An concurrent Pascal Nachine

3 7
on the multiprocessor

APL source statement is translated into an intor- nystom (ACE)
4 2

, based on P.D. Hanson's Concurrent
mediate text which is composed of 32-bit text ole- Pascal Machine. An interpreter to execute Concur-
ments followed by an end element as shown in Fig. rent Paseal Machine (CPH) instructions and a Kernel
10. It was indicated that, iii a firmwar,7ation, to suupervise parallel processes were made with both
appropriate functional modules, frequently used to PDP-11/45 instructions and CPN oriented language
implement an APL interpreter, are to be selected (C-language) which were emulated with AC! system
S.4ther than all of an APL statement. As a result microprograms. C-language consists of conventional
of this experiment, it is shown that a firmware machine instructions like PDPlI/45 and frequently
interpreter, made ot about 4.8-k words micropro- used CPM instructions. In order to parallelly axe-
grams is 6 times faster than a software version. rute multiple processes on a multiprocessor system,

process synchronization instructions and I/0 opera-
tions, having a process.schedule function, are in-
troxluccd to the Krnel with the aid of an ACE syn-
chromization module; As a result of the experiment,
various valuable evaluation data were shown, and

8 sit 24 sit qreat decrease in overhead time was attained by
parallel execution of processes and efficient proc-

-1 ubsidirY ess switching.no part

$owe* statement Other Research Efforts on H~igh-level Languag

Machine Design Problems
Atllil 21+0 (W)+13.

C . . In addition to high-level language machine in-
(Instruction coumtsr)* plementation efforts described earlier, a numer of

other research efforts related to high-level Lon-
rig. 10 Source Ttatement, Intermediate xt ,;usqo machine desiqn problems have been made. The

and Its Element intermediate lanquage architecture of a high-level
•,i 77

bI
.7 . -"

language machine is one of major keys for success- COBOL
ful implementation. Some evaluations 38 , 39 on this
problem were accomplished. Moreover, the problem 13. M. Yamamoto, et al. A COBOL machine architec-
of a multilingual high-level language machine was ture, Proc. IPSJ 19th Nat!l Conf. 1976
:considered 4 0

. PP. 307- 309 (in Japanese)
14. M. Yamamoto, at al. Design of a COBOL ori-

ented high level language machine, Proc. of
3rd USA-JAPAN Computer Conference, 1978

summary PP. 417-421
1H. M. Yamamoto, et al. A COBOL machine designHligh-level language machines ,in Japan were sur- and evaluation, Proc. of International Work-

veyed. General)v speaking, much of them are at the shop on High-Level Language Computer Architoc-
stage of fundamm.,tal and experimental research com- ture, 1980
pletion. In the future, the appearance of regular
coimmercial high-level language machines and the
confirmation of their effectiveness will be desired. LISP

16. T. Shimada, et al. LISP machine and its
evaluation Tech. Memo of WGARC of IPSJ

References No. 74-7 1974 (in Japanese)
17. T. Shimada, et al. 7' LISP machine and its

lL1evaluation, J. IECE Vol, J59-D No.6 1976
PP. 406- 413 (in Japanese)

SM18. Y. Yamaguchi, at al. A LISP machine on the1 . N. Sugimoto PL/I reducer and direct processor, ACE system, EC Monograph of IECE of Japan
Proc. ACM 1969 PP. 519-538 Vol. EC76-13 1976 PP. 67-75 (in Japanese)

19. T. Yamaguchi, et al, Dynamic measurements
of LISP programs on a virtual machine,
J. IECE Vol. J61-D No.8 1978 PP. 517- 5242. 5. TRakahashi An experiment of a firmware (in Japanese)

FORPRAN procossor, Proc. IPSJ 14th Program- 20. M. Nagao, et al. Machine architecture and
minq Symposium 19e 3 PP. 201 .. 208 micro-instruction structure of a LISP machine

NK3, EC Monugraph of IECE of Japan Vol. EC77-3. 0. Miwa, at al. FACOM 230-75 array processor 17 1977 PP. 67 - 78 (in Japanese)
system, Fujit;t' Vol. 29 No.1 1978 PP. 93- 21. M. Nagao, ot al. LISP machine NK3 and its
128 (in Japanese3 performance evaluation, Tech. Memo of WGSYM

4. K. Uchida, at al. The FACOM 230-75 array ormance V aluation,9Tech. Memo Gof IPSJ Vol. 7-4, 1979 (in Japanese)processor system, 3rd USA-JAPAN Computer 22. T. Taki, at al. Experimental LISP machine,
Conference 1978 PP. 369-373 Tech. Memo of WGARC of IPSJ Vol. 32-3 1978

5. Y. Umetani, at al. An analysis on applicabil- (in Japanese)
ity of the vector operations to scientific 23. K. Taki, at el. Experimntal LISP machine and
programs and the determination of an effective its evaluation, Tech, Memo of WGSYM of iPSJ
instruction repertoire, 3rd USA-JAPAN its evapanese)

Computer Conference 1978 PP. 331 - 335 1979 (in Japanese)
CG. R. Takanuki, at al. Some cm7 i al 24. T. Usuki, et al. Experimental LISP machine

for an array procesor, compiling algorithms on multi-processor system, Proc. 1PSJ 19th
Computer Conferecessor,83rd USA-JAPAN Nat'l Conf. 1978 PP. 27-28 (in Japanese)25. T. Usuki, ot al. LISP machine implementation

BASIC on multi-microprocessor system, Tech. Memo of
WGARC of IPSJ Vol. 33-4, 1979 (in Japanese)

7. Y. Nagai, et al. An experitiental !;tudy •tl a 2G. II. Yasui ct al. Parallel processing of t.VIT.*Y. Naomi l. Ant himelnt uacie machinu, I'r•c. [PSJ 2OLt NLt' I Connf. 1971)
firm'are-implemsnted° high level langUw~l' P11. 183- 184 (in Japanese)
machine (I , EC Monograph of IECE of Japan 27. H. Yasui et al. Dynamic behaviour of parallel
EC74-29 1374 PP. 73- 84 (in Japanese) processing on a LISP program and a system

63. N. Yamamoto, at al. An experimental study on rcsigoaLIPpgamndasteconfiguration of EVLIS machine, Tech. Memo ofa nigh level language machine with specialized WGSYM of IPSJ Vol. 10-4 1979 (in Japanese)hardware modules 131), CC Monograph of IECE of 28. M. Ida, et al. Lisp machine based on a micro-

Japan, EC74-30 1974 PP. 85-92 (in Japanese) processor- ALPS/I, J. IPSJ Vol. 20 No.2 19799. K<. Kumano, at al. A quantitative evaluation P.13-11(nJpns)•
of a high level language machine NEC R&D 29. P. Goto et 1 l. FLATS. A machine for nuJari-

No.50 1978 PP. 30 -4129 E.Gt ta.FASAmchnfonuei
10.No.5 Y 7t An. eval o olcal, symbolic and associative computing,1I0. M. Yamamoto An evaluation of a high level Prec. of thp 6th Annoal Sumposium on Comp•.t,.r

language machine architecture, Tech. lim Prc fte'whAmni upsumo np'
GWOa aof hPSJ Vol. 75-9 1975 (in Japanese) Architecture 1979 PP. 102- 110

* 11. T. MaruyaMa A firmwars BASIC interpreter (T),
Proc. of 19th Nat'l Conf. of IPSJ 19791 Al').
PP. 23 -24 (in Japanese)

12. T. Maruyama A firmware BASIC interpreter In, I W. T. Motookd, et. dl. A firimwarv APL machiinm,
Proc. of 20th Nat'l Conf. of IPSI 1979 Prec. IPSJ 16th Nat'l Conf. 1975 PP. 109-
PP. 31- 32 (in Japanese) 110 (in Japanese)

78

*1"•

31. IM. Niyawaki, et al. An APL interactive 46. H. Hagiwara, at al. Hardware organization of
processing system in firmwere, Proc. rPSJ a low level parallel processor, Proc. of hIFP
X6th Ntlr1 Conf. 1975 PP. 111-112 Congress 77 1977 PP. 855-860
(in Japanese)

32. N. Niyawiki, at al. Analysis of the inter-
preter of the APL interactive processing
system and the points to iuplement in firmware,
J. lVSJ Vol. 19 No.S 1978 PP. 390-397
U.. Japanse)

33. N. Niyawski, at al. Effectiveness of firmware
in APL interpreter, J. IPSJ Vol. 20, No.2
1979 PP. 172-178 (in Japanese)

34. 1. Norimoto, at al. Operator processing in
an M'L interpreter, Proc. IPSJ 17th Nat'l Conf.
1976 PP. 547- 548 (in Japanese)

35. '.. NMrlmoto Implementation methods of a
ismers APL interpreter and its evaluation,

Tek. Nowm of MUSTN of IPSJ Vol. 9-2 1979
(4r, Japanse)

'36.. ".'I-t.'U4ebit& A finare AFL processor on the
It, Vwr. IM? 20th Wat'l Conf. 1978

f9. 29- 30 (in Japanese)

37. T. Onwye onourrent pascal machine on multi-
pressaser system (hAC), 3C Monograph of 1zCt
of Sp~an , BC 78-30 1978 PP. 1-10
(in Japanese)WI- PX.--u

36. N. Arisaw Compilers with intermediate code,
md iatermadiate code machines, 2C Monograph
of I=3 of Japan WC 74-26 1974 PP. 45 -52

(in Japanese)
39. 1K. VWeeha, at al. Design and evaluation of

ixtesmdiAto lanquage for firmware internm-
.dLO-lamraage owahines, Proc. of 16th Nat'1
pief. of 1113 1975 PP. 133-134
(jn Opesge.)

40. V. RitaUmaa, at al. A microprogrmed imple-
sentation of high-level language oriented
wilti-proceesor system, RC Monograph of IECE
of Japan ZC 74-28 1974 PP. 63 - 71
(in Janese)

41. N. ammmoto, at al. A microprogrmmed com-
utir design and evaluation system, Proc. 1st

VA -JAPAN Cmputer Conference 1972
PP. 139- 154

42. C. lisuka at al. ACS - A new modular computer
•46wbitejutre, Proc. 2nd USA-JAPAN Computer

oisrernce 1975 PP. 36 -41
43. '.T. NotA.ok, at al. Pelyprocessor system:

* P1S-,, Information processing Vol. 15 No.7
* 199 PP. 557-564 (in Japanese)

44. N. 'beuma, at al. tnperimental polyprocessor
'ysV m (was) - Architecture, Proc. of The
deh bm•l 8•WesiAm on Computer Architecture

19l9PP. 16- 195
45. 8. Usuka, at al. Development of a high-

perfermance universal computing olmant-PU.LCZ,
Pxft. AFP National Computer Conference
Vol; 47 1971 PP. 1255-1264

4 S ., ,

Reflections on a High Level Language Computer System
or

Parting Thoughts on the SYMBOL Project

V" V Id Rb1..

Murray Hall. New Jersey

Williamn A. Kwinn

Ft Collins, Colorado

ABSTRACT
akrui

th ctul co strcti n an us of hih lvel lto Calforia h eavt l by f thre ufndegrlynared wair ei tacnd lo th t ic-
laftguadgte sysptem. Sevra of thiqe pnthroc itectureds tated t.he ase meory maa gemenfrtrdtibecluseoftunreafuton .--.. copte
thsed insrctuiong sthe andtom lagati ge.oryimanagemetarietrs ihlvllngaecmue a ena nase

jail (lesihardwareeimplementedoperatiiglsystem.unoqreducing risinitsoftwareicosts
lattaemptrs the soum warie arme compared lesion oftefiseasatclrnaetesecfctonodnwpo

fron th mahinedurng he lst igh yeas o it ogramm deingn.I wgagesPL aelon thatexiineg pofraLGOLg l(anduge had

us.Cmet r md ntehg aleral uctc heet withouecdto unervlyn macthie infeluenceg Thadre. langutage walu
Uricofli oset, randia ho h cmputer arciecued o h lagehnsts debld deitgnedfor p ieraouncessinahrce rilbeinte datetnt prons-id he variacl

wuiiafvejctd at7 ith sythem Seeannucmn of the prcsYsors t came aa type, suhap an me ioe. Rangemdn tyecandse declnraratonshatl woiuld
patr ytm. Th pincuigte galtofatie YmO eeaorch projgecet waanrmalyhidetrs A compilervere omittaed fromputher langage as the anwerean tlehadariplmntdpeaieenstm to beucigrdeing sotheauer conesios. adsaemngeetwr adonTrae with a ull-secalorkng opteredi eugn thata oeda d ned auomathficall bysk tackldBO hrwarte. struifcatures of arbtrary-
gc leaal-pro e prganmd n lh otarguage acdmaparged &rortion ofg ae(P)- aln time-so A G L 0ad I

sliaad iperatin sysem ouldbe ipleente dirctl in ardwre, shaped wexre obesexpliciaatlrepresrentabed in t the t lagae.d Ae top a
r Outne if ,e ma strkedimpovmnti computerarchit naturaes, af Ah l usthr dsnwa derietyesae ad frizte. R anguagtye adsp ecificationsan thet deoielt

supor multiple uinr in7 ant intrte environment. Poi the thcOI cm
-ataallgrop i ~~plein resonble mout o tie trouh te ue nonmall aidtwar luctmilne steteteir were puttdfrm th iangug athard w ereh

of apr sys ltem. i d rie gn toal and chS MOnstruct enatchniqoue ws. rto ent ud nteue:cn esosadsaem ng m n eeh n
demnstratnea with ain initisalpaer workng thcomputer tyhatna weroeumade sydl asdsged auomcal tha aYBO' u harcudwalk. Srcup es to a rcldcopter.rgeneral-purpose ~ ~ ~ ~ ~ ~ ~ ~ ~ ur atgrmmn lnuganalrepotnofaim- s an, ande havbe exltly thepfntinr rees aaryli toe bagaegin tpdowrmmngsh araed sl-uatitg wsntys e t foully oeipleeratioaead warctl bing moved deign was h dghrlveldlanguageeusangvrually seicaono syste sotwaesre. Th

goa owas Sto Univerhity forh anascold debgig m vauationb an r selaiey spotmlil.sr naitrcieevrnet ato h

Alerarall fu tat ISU the comutrerasomadle fnully opietra uhteuetional, adw rsourcewneeed fntion desig this tpext haitrdware were subtar tiale Ah

Alsedri apriagrau'itroing tenvionmpuent. aeful prtonl n a computer aided design sysletem" was developed to check timing and
usedin proramingenvionmnt.loading, to do placement and wire routing, and to maintain a system

It would be nice if a definitive statement could be made neatly for documenting the circuitry of more than 20t,(MO packages.
caiteglorizilig all of the successes and failures of the prajet. At the time that the fabrication of SYMBO0L was compfludes and

* ~~~Unfortutnately, such data was remarkably diffcult ito collect. proiject dbgigbgn h eiodco nu*ywsi eeso n
menambers 'till disagree on many issues. Part of the problem in evaluat. dbgigbgn h eiodco nutywsi eeii n

* lu SYNOLwasthat th mahin wa raicaly dffeentfro trdi- managerial decision was made not to continue the project through a
ing YMBL ws tht te mchin wat rdicaly iffrentfro trdi- second design that Iowa State University was to have received for* tiajial cottiptaters in so many ways that a controlled comparison was evaluation. Instead ISU obutained the (Wiifinlal machine from Fairchilil

practicially infeasible. Nevertheless. we feel it is important ao state our in 1971, through a grant from the National Science FOUndlitia.to, ij
opinionas; it should be understood that the fnillowing comments are per- the purpose of bringing the machine to full operatio'n so that the
sonal observations by the authors, based upon four yeiars saf daily coin- unique ideas of the architecture could he rmor fully kiocumntried uutid
fact witl, the SYMBOL machine. In defense at the original demsriiges evlaeA Sthnacsewsboutitosflotrio b

oflatd Ate mahite wee feel wat nbressar tot reiterat thattio SYBL wa v
of te mchie, e fel t ncemry o riteatetha SYBOLwa% 1973. Work on the sydete software and hardware was done by at

intetaoile as a learning device, rather than as a commtercially viable gopo bu i epe anygaut tdns udn o h

projiect terminated in 19711, and shortly afterwards hardware failure-,

t wad jixwi At tuimi Wte Usieil, nua tdcr NSF pant 0)33097X forced she machine to be permanently deconamiationed. -

Eseulnem -'~ NI ~information that must be loved can be father laWg. A large fracition
The SYM90L instructioni set. 4 reflects the SYMBOL Progtam. ol SYMiot's djesign hugs were the result of the failure to save all the

filing I.AngsVW with alInut a OIme-tit-OFIC C4rC ndeneW bt'ween ncccsaur> state informalion. This; type of lt-1 win extur.n*l difficult
toki~en in the sousam and the object code. T~he hardwired Translator totrc doiwn. As thes fatal intesrri. was ohmtengneralesi amt-

us be stacud the- Uwtea irncean ntrnall peratfix arepi entric;n the ermittiUi y from cobi~nationas of disk instsmnts. udoc Urns-ouits
to oo scied y he ~raillPfuiesix Al opratrsarelilntrc; he or users pressng interrupt buttons. Another problem was this inablity

t4iw of tyaad are datennined from the lescrnptor% and type tapg. isvalthnesarifominfrpalca tu$ith
amadislaed with such Idertifier or corlitant. Pic instruction seit i% rithm. These- wveraurE.h were eventually fixed. sonima at the
.uesilhoesicly appealing in Its simplicity. 'The itrc arApproximately fifty .pne s i nomtora cnein hcp~t"

in'enictiosa. only xi% if which require an ,sddrev.% field. All r'lctiiiiXn fmiigmleifrmaik I cneietcekpit"

lto idenirsesre amassde with an instruction that contains the address Rofiiga uhcecpst zetdnele okatrt ht
downs, and worst, caused hundreds of times more oate saves than

the idenstifier's descriptor. Constants may appear in-line and are
were necema.,y; thta degraded system perfornance perhaps as much as

always tansged The advantages of the instruction set would appear it,
be itu isemantic conciseness; and uniform mechanism for referencing
data.Otmzli

Ctxk(Vi#Veron 'ode optirnizetinn in SYMBOL would be difficult to achieve

Ther se sevralprobemswit thehig levl ntureof hc because ol the generalized nature of the operatdor.. T1he adOMditinf
Themwe eveal roblms iththehig levl ntur ofIN: lower level instructions could have allowed optirmiiatlon of many Wse-

instucton et.onl a fw o whch re peciic o SMBO. Te eal cases. For example, incremnwrting, a variable on SYMBOL couald
high lesel and pstwfix stack orientation of the instruction wet were take over a dozen mvemory referencts due to its stackt mechaisama and
v~ected to give good code compaction. Closer examination however indirection throuilh le-scriptors. The uniform refererncli% io data struc-
revealed that SYMBOL's code was much les compacet for typical pro-. tures meant that a comspiler could nvot optimize accoenstn for special
grams than on traditional machines such as the IBM 94t or PDP-l I Icawes; in particular at tremendlous perfornmace penalty wa paid witii
Several factors account for this poor code den-it ' . A substantial f rac- SYMBOL because the memor-y structure Made it impossble to perform
tion of(the object codev consisted of non-functional "end of statement" traditio'~al indexing and address caktlcultions. Even if such inldexing
oleratiorts. debugging links po~inting to the source program aind No- were possibl, there would he an ioseompetibility because of the inabil-
()ps, Code density was also los due the fact that opcodes. which arc I ity to do binary arithmetic fot addressing on the decimal only
bteii in length, could be placed only in the first or fifth bytes ot the mcie
eight byte word, thus walling three bytes for each upeode that did notI
require an address field. T'he Translator contributed to the problem hy Dem.rirptorr arnd Tagir

producing extreniely poior cuide, at limes even replicating non- Because SYM1BOL wats one ok the few examples of a descriptor

functional instructions. T*he strict one-to-one correspondence between based machine And a tagged architecture, a few commrenits are

uwaurce and ob~ject code resuilted in the absence of many instruction% appropriate. Operand and instruction tagging was uswful in catching

that could have been useful in optimizing for commont special cawes. ocscasionsal machine errors, when,. for a number of reasons a viemory

Fsamples of such instructions would be incrementt set ito 'icro. 11id reference returned an inconrect value. There, were never any instances

append a character. T1w unusual memory structure alsor hindered essic where datit couild possiby be mittaken for program or vice versa; this

comspoikrtk by prohibiting any address calculations, thus precluding did in tact report many machine error,, that mighit have gone
space saving using relative addressing techniques. The lesson learned undetected in a traditional machine, Tagp were also of preat benieft in
was that code compaction does not necessarily result from htgh level debugging and in developing sophisticated software debugging tools.

instructions, and that factors of two or 'hree in code- density can be Descriptors had an evenj stronger impact on SYMBOL, both
los without careful Integration of the instruction set, compiler technol- positive and negative. Descriptors were invaluable in efficiently isuple-
opv anid the memory structure. nienting the dynamic typing presen t in the languaep and in the benefits
High Level Instructionis and Interrapt Handling provided for debugging tools. On the other hand, itupkimenting reawe-

An unexpected lesson was that there are times when instructions sion in the SYMBOL Programming LAnpuage win a task lef to systemn

can be at too high a level. Because of# the varirarble i'neth operands software, and turned out to be extremsely inefficient. A silmple test of
and high level operations. hundreds or ever thoiasan,.. of memory Ackermann's function would show SYMBOL to be at least three ord-

references couldl be required to execute a single instruction. This had ers of magnitude slower than traditional machines. TUe main probletin

ratinr severe coinsqenrces on interrupt handling (page fault, disk ser. was that the descriptors for !he entire procedure had to be copied upon

vicing. user interrupt, process switch. etc.). Proper interrupt handling a recursive call if the descriptors themselves might be modified in the

requirei; the ability to sto; txecution. iriJ thie interrupt, and then call -- a virtual certainty in SYMBOL.

resume execution of the original instruction at the point oif the inter- Need Jim- a Systems Languale

rupt. For efficienicy reasons it is important to he able to sop execution One of the problems with the SYMBOL languagie amd instiruction
40 an instruction (without completion), save all %tatle information active %et wait that they were not efficient for lower leivell trasks common to
in the proceissing oif the Instruction and renume execution at or near system% programming. The wupport tools on SYMBOL could have
the- point (it interruption rafthr than to restart executioo otf the instruc- ticen more effectively supported though a systersm oriensted language
thus fromt the beginning. For a high lesel algorithin. the .late such its li(PL.111 M.USS,tt or C.12 While inefficiencies in short lived

use.r progras-il could he tolerated the same can nox Ile- said for systemI I tanolator is perhap. thIIc. most anmiting of SYMBOL'% processor%. mit,
software The SYMBOL Programming Language turned out ito he oirflý because of it% tremendous sp'cd of compiling but also in that it

Inappropriate for systnms programming. It is recommended that even worked at all. One ots the beniefits of this tremendous. traitslattion
tin compuxters that intend to suppx.nt only one user la quage. a signift. speed was that no ohtect files were saved. This was :ln ads:intatg Iin
cant effort should go into supporting :in' underlying systems language siaving storage space and in insuring that obleet progranm% ,lwaiv% '
Addition oif a few lower-level instructions could have made SYMBOL. reflected the current source progran.
ian effective multi-language system. We do not wish ito imply, however, that such speeds arte L, it

crally obtainable front a hardwired compiler and a high level instrtic-

System Soflsare and the Hardwired Operating Systemn tion set. The perfotrmance figures of SYMBOL's Translator are.somne
'1ftC fLItIetiorIS of a co iplete time-shared operatmiti :ystem woire what misleading in that the speed came primarily from twu. other fac'

Implettettted directly in hardware by the System Supervi-Aor.1 aided it- stots. First, the SPL language"' had a grammar designed to be eas% to
(lie Mlemory Con~troller, Memory Reclaimer. Channel Controllet. pars.. Nun-optimal code was generated in one pass with backpaiehing
Driumi Contllici, and laiputI/.itpsit Processor. Systetm stsftware was and without the ntieil for building compale-time data structures T'he
iniientled oily to handle certain exceptional conditions, but in fact was htgh itr.oislitanon speed could not be expeced in a proper tmpii'ttenta-
tiead toi a miuch greatter extent than the designrs~r origiitally foresaw. tio tot l of coitpilcr st ir SPIT or stnore conmplex p~rogrammining laitgilaigcs

Subtmantial efforts of the research team were speqt oiii developing Secomtid the I rainslaior did almosit nothing more thait crude code gen-
lvlrtext editors, improved diagnostics, detissgging Package%, library cito rasemblyl. Error ianws ernxto

routine~s artd ai file -;ystemn. This software was seen as essential iii mttk' tholtsah in the ntajolity of cases syta errors itt programs% %ctv
tie svstettVuser interface tolerable System software accounted for detected. Our esperience suggest% that comspilers should iwtl% he con.

several tltoussard lines of code by the end of the troject. Much oif the structed using at h~gh lekel progratmming lsinguagc. Compiler ecimptes'
success oif thes software was dJue to the foresight of(the '.!esIIIctes itt try can pe~rhaps like m~taced more successfully' by using modertn comt-

proidingt "hooks" in the haroware for softwaire intervention. atllowitng piler writittg iotilsit " than bs dev"-lo.ping high level instruction set,

the system ito rilaits so~me flexibility despite nra hiardwired implemeitta Pihe poor design of the franslatot was u, - doultedly duie in large part to
tirt. 14 the lotw-level implententatioti the designer was forced to work with and

Iwo imtportarrt questions aire answered by SYMB~OL conicerning the infantile state iii compiler swehnology it, the early IW~f'.

Ili,- ben'efit, derived fromn implementing major parts oif an opijroli'k, INbugging the 'I ranslustor hardwaie was extirtmely difficult. I,
syicin in Itardwa~re. First, it would seem that the overall desiin corsts register level tios. :harts and wire lists proved to he a totally inade-

oI dvelpin a ardareimpemeted pertia syter ar muh qate ormof ocuentng he oncptua prces oft-rslaion Il

hig8her that1 Ji1 equivalent software implementation; the desire to lesser, no way could the design, implementation and d.cisgging ofI the
the cost of developitig ait oj-erating system was not achieved. .Sofnvi'iu- SYMBOlV's 'runslator have been cost effective compatred] tol ; ci)Iipi!..r

LOSISs werc reduced, but overaill costs were not. Tradittonal software proigrarnmed in a hiign level language. The hardware dedicated tot the
hug foixs were: merely exchanged for a "Reqluest for H-ardware Modifi- I'ranlautor was not cost ellective. it; ific logic wits ruirel in use antda

catioti sheet. tie bound RFHMs were user iour inches thick -- atid similar functiotn ciouldl have be'en llerformed by the C'entratl l'rocck'esis

atcciiunted only for changes after the system was delivered "debugged' Perhaps a snore reassonable tradeoff would have been lit) pritvide the
to ISt)! 'IThe second atid snore positive point is that the implementa- Central Processor with special purpose hardwhre ito aid with the kari-

thin ofl the hardwired operating system seems to have been very suc- ous translmttioit functions. This w'ou*d have had the added beneftit of

tc-s-f-ul froiti a pierformance and programming sfattdpoiraf. Though the uallowintg special purpase hardware to be used for other functions III

itillexilmilits' of the htardware often prohibited chatnges towards moure atdditiotn to translation
" itioem" iiperiiing system concepts, the implementation was vet y sue- Even more thatn the 'Tranislator. the 1/O processor suffered litn'

cmvsfiif ill feterns otf the original design goals. Using hardware flot the rigidity (itf .u Iiaidsired implemnentation. Tut offload the ('entr~il

heavily used funtmeions such as process schedulint,. virtual mernutrv Processo.r. the l1/0 ttroee',ror contained a hardwired text editor thai rail
ittanuigetnlelt. memory allocation, and scheduling of tmultiple ptrocessotr, extremely 4ui'. klI'nlortunatcly the puishuttiim otperated editoit %%;s
'u-citis it) have beern a wise tradeoff. It was also shown thiat ci rmiples v difficult it) use aiid so) primitive that all ott-line editing was dotii Ini

htardwatre cant be Successfully interfaced to the stftwaic part itf the thre C'entral PIttoear with software text editors. [bhe strict awpjtwItIIIi
opexratiitg Nystem. Ilii terms of the otverall dexigit, SYMISC)f. deserses irf tfie 1,0 Priwemwir anid the Central Processir did not allow the prs
I ectigititioti is it successful Operaiting Systcm Macftine ats ttuch its tt ives Iit the hardwircd text editor to be shared by the software text edi.
ds.'s ftt l.icing a High Lecvel Language Machitte. tors.

'Two lessons are evident. First, essential utilities itf a system ucht
A t'itle iii'tito Processc -s at ; text edititr and compiler need the ability ito chiange and; grtoA. stiolt

W~tie jtafiwird ipleentaionof igh ve unciiix ha is itl citrrect bugs and ito add new features. T'he hardwired apprisich didi

itterits. it kai~k at two of SYMB3OL's processors might provse imiightful. stiltt allow' the jaissibilitv for this growth. The functional divsitonm Aas

Ilcltiaps the mrost striking aspect of SYaMBOL it) a user wats the jiiiii/ atl toil gross .t lcsel. c g. the specialited ftardware in the 'Iransl~iti

ing slieed aml whticht programis were compiled (71 t.11(Iii II it i K1111i statk- priovidedl an all iii nimmt' service. Second. special psirl; ise hariklts tii

irmeitý l ic minute) . huei SYM BOL)lT1runslatimrl I, is ribalmli' th It'. ' tmaide t1cibsle 1ts mod sularizinig primiritive operaittitts so the% citn Is.ci Con
svuiiple Hi a commpiler Imnplemented entirely %kith ittndtmn logic 'Iftic titolled bmy the sottlmarc It the sequencing of the primnitives in th 10cI

112 '4

JLI,

Prucieawr had been controllable by sattware acceust'e by the CentrAl drammic~ally Tbe greatest benefits were reallizd whon one sixth to
Processor. puiormistic of the sofwart editors might have ticen much one fourth of each pag was reserved for the uheve-mentioned expan-
cloter to thist of the huinjeed text editor. Mduch of the problem of Wn~
SYMUIN. was do the dadswignr itixwagh thei, knew novw user't would Experiments. were performeed reducing SYMBOL' pap siz
%N111w Wo Oft' 116111 OhNt. Whets this vewW WA%. hAngWeven 161iislighl, from the built in ZK-by1ee per pop us low as 256 bytes pe pap. The
the hauwlred Wature at the Truwanitor. Editor and operating system use of wraller pagies usually enidured the peong am"iit for a flied
kicked the user Inuo a arnold he did not want to he in. main memoicry size. This trichnkique worked tihenever severn saterwifg

was encountered. regardless of its origin. Umfoiwustatiely, the use of
"Sa" ass! hurmp ssa: At Can ed Wrsle~ Dledllisw small pagers could hurt where saequntiatl sco to a larg bodly of code

Ofte of SYMBOL.s unique features WaS it'. compex , .,W or data was typscal. Furihermore, the coot of the overhead Iwhceda

orstgusimion. SYMBOL prmide direct hard ware %uiiorl ot for a with a large number of pages could become significant. Although it
paged virtual amemory aied few dynamic data stnictuws The SYMB)l. would have contradicted the dedlanstiowifre character o1 WPL. ane
hardware itlilsoirtv-d the Alkaction. deletion and manipulation ti cannot help but speculate that the ability to reques contiguous iallca-

witoages strinp. Them vioralle snap viere comstrai~ied hy linking 5101 (it large %trsactufts would have reduced palging consindurably.

together .lghtworw groups. Linked liks itf %uch 4avagec wting% were
ws.-j itee vpr true vinacturve which were iwce&d in Sf1. a hetenv- DehaSglus Sallweeiwse SYMBOL
Voinesms vrray. The vma and duaipm of tlsher structures were dynami- An outstanding benefit from the hiO level natue of tOn SYM-
evdiy varale. 901 compusta was shown in the efticay of fte debqging todateas

The dsng 01o SYMBOL foresaw and attempted to mitigate prouctied for the sysem. Prolps were developed! to allow the user
The 411111111111 InKtrcion 01 SYMBOWS Unique Combination Ot mnteor) it) examine the state 01 his proansa in deated. at the swn. IroSi

manqapsom aind virtual memory. They realized that particular level. For example. at a user-geeerated interrwt the IroI
madviti amet 0-Or shail characteristic memory access pattecns. For could ask the inquire subsysieem wharn the ppam wuasicuft angsd
aiampilc. the source code was used in prognam editing but not at all have the statement in exection dcnpled for dhilay. The dmoo-
duaring execut *on. lIt program compilation. source code and object latiuen process was remarkably effective, and generally dtipfferd from
voik.' 4cre 'a.annetl only twice. whereas dth name table-i were seanoed the original -iourve program only with respect to spacies and feduondsnt
rceftatedhs Wence, fth &esigner% decided that each paige ejeoukl N- pairentheses iNow SYMPOL was a descripitor based and togged archmi-
used (tir a hingle purpvww an that paige listi. would 1%, maintained to lecture, the current types and values of all identifiers in the owets pro-
waagA.te2 thc "-4' Aceiwding ite their usc'. When memory was .allii- graiii were kintwni.

VagedA. t11 C~rude UN&p 4,1810, for fth' needed4 %p.e Wa% specificd ti) the There was never any need for a propvintmer to rto"z thast he
hientware. This uaag caim determined which page list the system program was being translated into an Intentesiate form for essoitlon.
would ouimilt to fin the needed space. SYMBOL maintained three This is one ot the strongest points for the claim tha SYMBOL was a
separate ppe llss one for source code. another for object code, and High Level Language ConspUare SytmM. 2t In aiddition to tfm benefits
the third for ah cube niecds. Once any space on a pape was alkoepted. that the machine offered for debouggin, the dyanarnie typo checkin
the pole wan inserted on the appropriate Pate list. henrceforth, that mechanisms in she hardware proved very valuable for detecting coca-
pageli would only be uead for further alkicutiten' of iquice oft the %amv .ional machine errors such as trying to use insinicticm as data or vice
usag class. This 1-Pme worked well for program editing and for con- versa.
sAtrhcting agsev tables bod object code at compile time. However, at
cxecuion time. all data accessing involved one puge list, so there was DebtlgIngi Hardwan e SYMBOL
110, advantagei to th11s 1cheme at that time. One, of the questions the impleneentalicas 01 SYMBOL was, map.

It would hav been worth while Ito experientn with adding more posed to answer wast whether or not extremiely compnlex hrdware: couldi
piag 4hs to SYMVOl,- hist% of papa used solely for the %trick. for he designed and debugged. Thte answer is tha consplex hardware cart
ftemorairles or for larg structure. This likely would have limited the be designed and debuggd buat only throeao the isrumiatse 01 trasesk-
watterfng of them objects by riestricting them to A segregated set til dou, effort and time. In 1971 SYMBOL. was deboggd So the -o
rops..- Unfortunately, im plemnentation oft additional page lists would where it couki run simple props.ms, yet in 1973 bop wse re s etilhn
hose xreqird evits-ve modifications throughout SYMWB.*% Central found in %arious procenrors. The situation qspetirs to be so diftesan
Prix aw. and hencer was never actually tried. from bugs that plague software years after a prop.. is developed,

In SYMBOL. a single large structure could comeicto occupy %mall even if it is continuously having bull removed. The asuthors' eapairi
portlens 01. -aWlae nsutmber of page. There wa% no mechanism for enee with detuggng the SYMBOL yawue W andmre coniventlostali
ctmpeilI these sructures. Modifications to the memoiry allocation software projects would suggest that beig in hardwmccsr ~in satchs
striategy attacked the problem by preven ting siome tit any reclaimed the smie wa) that they do in software. However, the ;astWen mood-
vace on eaich pag fromn being found. except foir expansion r4 strtk- ated with finding and curing; hardware beig are far mone sievese.
turn which already occupied a ponicon of that page. This was known Changes to hardware are mor time coneausing then chsanges to
#A the Spoct Available Usi(SAL) Threshold technique. 1K Measure. software, Modifications to SYMBOL, had to be done with extrPeme
mWsa taken an SYMBOL programs which had had significant paging care. changes often had unexpected 9dW effects because the coneepwtul
activity indicated that this approach reduced the nuinber of page faults details of an algorithm were nte doumsensed as they m~ight have been

83

with well Lotnsmented software. It was not uncommon to cure the solultion to the sanit problem%. Perhaps the conclusions would have

Symptom iathcr than cure the problem because of this lack ot concep- been different in another environment. but SYMBOL wa% not as much

tual documentation. Unlike software, certain chang" could not be an advantage oier the son Neumann machine as had been hoped ear-

made because of physical limitations such as the number of bus ptns or her

the number ol IC packages that would fit on botard. Ilardare

errors and bugs were not always deterministic. BIeause of this non- Microucode

determinism it was first necessary to ascertain whether a hug was due Ihe hardwired nature of the SYMB(H. machine is oien crilt-
to an incorrect algorithm or if a circuit was failing because o(f a had cized for its inflexibility Microcoding has been suggested as an tmplc-

contponent, mentation solution that is flexible and still efficient. The understand.

Any similar scale hardware project must make special efforts to ing of the authors i, that during the 60's when technology decisions

provide the maximum possible effort for developing design and debug- were being made. ROM's suitable for microcode iacked speed, lacked

ging tools. The state of the art in constructing and debugging digital density, and were prohibitively expensive for the quantities required

systenis is tat behind the same technology of software systems. This is for SYMBOL. If one were to design the same processors today,
probably connected with the limited use of high level engineering sys- microcoding is obviously superior to a random logic implementation.

toins such as SCALD 22
or DRAW. 23

Computer aided debugging is a Part of the SYMBOL experiment, however, was to push the limits of a

necessity. SYMBOL needed the ability to trace and store the last cormpletely hardwired implementation; microcode would nom have

several thousand operations in real time and have the trace informa- accomplished this. The significant le*mons to be learnied from SYM-
tiot analyzed automatically. The limited trace facility on SYMBOl. BOL are not whether it should have been microcoded or not. but

perturbed the system sufficiently that some errors would go away when rather in the Iescins learned about sys•.'m complexity, refinement oý
traced, ant whent a problem could be traced reliably it was often complex systems, debugging of complex systems, functional division.

h beyond the ability of a human to read through hundreds ol lines (if hcx and instruction set design. In many instances system software needs it)
hi 1x:ttrns t) find the offendipg error. te installation ,motlt hle. a microcode implementation wiould gencall.%

nint fall into this category.
Von Neumann Realities

SYMBOL is a classic example of a distinctly non-von Neumant Was SYMBOL Really a HLLCS?

architecture. Features that take it out of the von Neumann class are Ih is crucial to note why we conmsider SYMBOL ito bl oe iio the

the non-contiguous memory structure, automatic memory manage- tcv real High t.cL l Language Computer Systems. The SYMBOL
itett, distinguishability of instructions from data, the self-describing machine, with and only with the software deeloped for it, meets the

nature of structures, and the high iev-;. instruction set. An early paper IIlLCS definition
t
l hecause it:

made the comment that (I) Uses a high level language for all programming, debugging and

as implemented in the SYMBOL hardware, however, any task other user/system interactions.

requiring the variable field length processing and storage or the (2) Discovers and reports syntax and execution errors in 'erm%(of the
dynamic structure features of the language should show a consid- high level language source program.20

erable performance gain over conventional software/hardware 13) Dotes not have any outward appearance of transformations front
systems. the user programming language to any internal languages.

Lixperienae with SYMBOL sughws that this is probably true, but Perhaps the most crucial part of meeting this definition in any systen)
ufruaeythere were nut enough ta-tks of this type.uis being able to debug a program at the sorce language level. The

Tc reality was that programs on SYMBOL, a. otn most comput- SYMBOL architecture facilitated this with high level instructions that

erm, tended to do relatively simple omerations. Arithmetic operations allowed object code to he easily de-compiled back into source, and in
were mainly adding or subtracting vezy small integers; little use was the self-describing nature of all data objects that allowed the unambi-

made of the 99 digit precision controlled arithmetic. Character strings guius interpretation o0f any data storage. A High Level Langu'ge

were most frequently only a single character, and rarely exceeded a Computer System is different from and more important than just a

dozen characters in length. While site use was made of dynamically machine with a high level instruction set. ,
variable arrays, arrays were almost always homogeneous and remained

static once grown. At the machine level, it hurt a great deal that the Coasluslo
memory structure and decimal arithmetic proceurr precluded indexing The existence of the working SYMBOL computer system clearly

with addrevs arithmetic. Object code, name tables, and source files demonstrates that a high tevel insruction set, a compiler, automatic

were nlwavs sattic obj*cts after their cme.eion; a better storage organi- memory management and a major portion of a time thared operating

ration for these wouMd perhaps have b.mn a traditional contiguous system can he implemented successfully in hardware. Use of the

linear store. The moral of this story is that the traditional von Neu- SYMBOL stem showed tot a letsr degree that the cats titt ltihitg
mann computer is perhqa not so ill-ani.ed to the operations actually such a system arc not les than building tn equivaleit systen ili

performed by typical programns. The 9'L languuige and SYMBOl. software; that thme ahilitr to evolve a syaten m is l erhaips equiva intlhsittin

•"hardware were more powerful that, the averi•,e us,,r required. Somae "itav htteatlt 4 vlei ytmi ehp oeipial

hardio r SYMB re,, more powanerful tharthes coavere uberrequirped.ented titan having a very fast functional unit that is never used, that perfoi-
of SYMB3OL's more advanced features could have been implemnented mnegisfo adie mlmnainaeesl ot
by software tn a traditional machine to sachieve a more cost effective m4

C,84

SYMKXl. taughti us a preat deali ahioit building 4;0ft1* %Y'.tVlu1 MSvihpwouto1n N#KHih.1.reid'LOquage Oompatr Ar~tigteuarr, New

11h to don dsin aproch Wak i nv~ar fr te te etie -y%.Yor, smiiaton orComputing M ney(1973). KI
tent to be wocived before any of it win implemented; the result% ioxcsson number PS-228 78DIAS.
show that tis i dairqeous. Building complex hardware is prone to I1) M. Richards. "'BCFL: A Tool for Compiler Writinl and Smw.

11t sa Wad(wdmn design errvors that plagu complex trdPurmig~Poednzo h FP 99SC

soitwan syems. SYMBOL cointained many excelient and'unique ue Prgamn, oe gsf04 FIS1f K

aiidti4Ifls to individuaol ;mioblum e ut the canipte interhactions 4f all of
thoew onhuttou coouiined to miake the entire %ytcn cuunbewrivxr .rnd t1. W. A. Wulf. D. B. IturelU. andl A. N. Habeemanw. "BUSS A

%kim. Ileflaemeat and iterative honrovemneft are steps that most Languagle for Systerm Prqransomitlng2 Cow wmmwavo. of 1),t

mifwate w~ssiatrnna p)l g thrmoug beftwe reaching mucepiahle levels of AChE 14(12). pp. 7W0-90 (Dweember 1971).

puf i Wu n utility; this step was desper¶ately nee~ded with SYM. 12. RI. W. Kemnighan and D. M. Ritchie. Tim c Propramming

BOL. Perfhrmanc couald have been imnwtvd perhapi more than an Lungieople. Prentice-Hall. Englewoned Clffs. New Jersey (1975).
order of mlt'ds if manoy of the bowts inefficiencies could have 13. W. R. Smirth. "Systin Smquiotiilo AiplUe~o for the SYMBOL
been tuionsd or ruosoedý. Despite severa negative comments in this Computer.� Dixes's of Pepen, COMPCON72, New York,
polir. the SYMBDOL experience was a very positive first step in the pp. 21-26, IEEE (1972).
dealign of Hio Level L&Vgup Computer Systems. 94l. H. Ricrhards. Jr. and A. E. Oldehet "Hoidwsre-Saftware

Intenactlsus in SYMDOL-2R1's (Iperaslag &0"." P-Mreedegu
pf'shi' Sroiul Mutalwu Sqwrsulmon EmCoiuaqiw Artv'fartesvn NTIS
ummeaavt number P9-23 221VAS (1975).

0S. T. A. Lakliuts. "Impitemamtlalan Aspeeu of the SYMBOL
Hardware C(nIffoer," Proeeedkag: of doe First Assnul Symyouiwo

I. It. Rice and W. R. Smith. 'SMO"A Major De-purture on Coonrpaier Architrr'aur. pp. 111.115 (1973),
front Classic Sottware Doiminated van Neumann Computingm Sr- 16. S. C. "onsow and M. E. Las*, "Uwix Time-Shreft Sy'shem:
tems." Pnarerslmpo; of r~w AFIPS 1971 Springr Joint Com~puiter agaeDvkpun ol, elSy.Ts .9()

Cmareormy Montvale, N.J.. pp. 375-587. AMPIS Prew(1971). pp.j 2155.2175(ok,1sll978).eii.J.676)

2. W. ft. SwAs. er aI,, "SYMBOL .. A Large Experimental Syt' 17 B. W. Levervti, Rt. D. G. Catial. S. 0. Hobibs, J. MA. Newco-
tent Exploring Makiw Hardware Replacement of Software." mur. A. H. Reiane. B, R. SchMt. and W. A. Wulf. "An Over-
Pripwelings qf t AFIPS 1971 *piuum Johis Cnniniler Coccferenti'. view of the Production Qwilaky CompilevCooppieir Progslet.1

Monmale.N.J. pp WIlilA API'S rov (191).Reposi ('MU-CSS-79-I03, CarnegIe-Mellon UL~huerity (Febarnay

34. G. D. Liteajy and W. R. Smith. "T1he Hardware-lInplemtented 1979).
Hi*hLeve Laquag for SYMBOL." Proc-rdlogs of ths' AFIPS lIN. W. A, Kwlnn. "Memory Masnaglement Policha for a Huldwatrit
1971 Sprkg AidEi COeq'ier CoovSerencr. Montvale, N.J.. Implemented Comnputer (Oernla S"soam" Special Report
pp. W6-573. AMIPS Press (1971). MS2d62C~II ~i .pt briv o'

4. H. Ricards. Jr., -SYMBIOL IlK Programmingl Language Refer, State University. Ames. kIwa (1979).
ame Mustual." Repast ISU-CCL-7.V1. Cyclone Computer Lab 1.D.. lzI "neatv DbglgTol o BokSnc
lows Stae University. Ames. lowa (1973). NTIS accession tu9 e P.Rogramml, Interactive. Repsastall To 72ok for a Blok ,w

nmbiser P9221 378. trdPopamn oplo"Rpr K 2062472
Cyclone Computer Laboratory, lawa State Univorlity, Agnes,

5. H. Rieletar. Jr. and C. Wright. "Introduction to the Iowa (1978).
SYMEOL-2111 Programming Languor~.. Proix's'dlngs o'f thei -10, D. It. Ditzel, "High Leve LAngug Debuggin Tools an the

MV-I:Z S'assviemaon iil,.~rs''IaIfts~s(istpii't r~siSYMII() Comiputer System." 1910 Wae*.hrp an HlgA'Levs'it
n'syare. New York. A~wxiatlon for (Cornpuling MachineryLjnusi 'merAchrrse.FtLadrle loda(a
(1973). NTISuo'ein number P9-228 I ISIAS. 9W)

6. B. E. Cowart. K. Rice. and S. F~. Lumisrom. TePhysical9 211. D. Rt. Mattti an D, A. Patterson, "Relrospeetive mt HighLevel

Artwat~lt s ofd Teting A secta 191Srnointh CYmBpu Svter iiem. Language Computer Architiectura," Prix. of 7Ah Ain. SyF., ont
Praa'elnsy9'he FIP 19) Srig JintCosiiavr o~tvrev.Compator Arcuhitecure. La Bautle. Pransce (May 1960).

Man-id. NJ.,pp.58900.AFIS Pess(999).22. T. M. McWilliams and L. C. Widdoes, Jr.. 'SCALD:. Sinsetugred
7. M. A. Calhioun. 'SYMBOL Hardware Debugging Facilities. optrAddLgcDsg, ehia easN.I?

Prncw'dngss~th AFPS 972StWIIM "~ rmpirrrC'ikrri.Digital Systems Laboratory, Stanford Univaelsty, Stanford, Call-
Montvale. N.J., pp. 359-368. AFII'S Prewt (0972). fornia (March 1978).

14. D. R. Dimrel. "Program Measuremenits on a High Level 2.A .Fae,"NXTm-trn ~aa:CrutDsg
Lanpoage Computer." Aii'ptel hir pubh-thoiiun in Ciompiutet Aids.'fri RAr).r. Treh, J. 57(6). pp. 2233-2249 (197*). I

11. 11, C. Ilutdiciaas and K. IFthiutgton. Alrotmim Uiix~eutiom in th .4

%YMK)L. 2k 'imiputier." P1're',r1lini .-I* the Al P4.IAj-l
85

'7

Appendix. SYMBOL Bibliography

1 0. Agrawal. Applicacbility of fiufftrird Main Mirmnor to S)'MBOI. 13. M. C. Dakins. -Nonnumeric Processing in the SYMBOI.'2R
2R Like Compucting Structures. Iowa State University, Ames, Computer Systemn." Repirt NSF-OCA-GJ33097-CL741 0.
Iowa (1974). Ph.D disertatioll Cyclone Computer Laboratory. Iowa State University. Ames.

2. L. MI. Alarilla. Jr.. "'Sborage Linking Technique% for the lw 17)
Automatic Management of Dynamically Variable Arrays.� 14 1). R. Diticl. "MASK and FORMAT: O~perators fcsr Editing andl
Report ISU-CL-7403, Cyclone Computer L~aboratory, Iowa Formatting." SIGPILAN Notices 12(11). pp. 28-35 (November.
State University, Ames, Iowa (1974). 1977).

3.1 J. W. Anderberg and C. L. Smith, "High-Level Language 15. D. R. Ditzel. "Pattern Matching for High Level Languages."
Translation in SYMBOL 2R," Proceedings of the ACMf-IIEEb .IGPLAN Nolicus 1305). pp. 46-55 (May. 1978).
Sympo~sium (inl High lcLevee/L~anouagr Computer Architecture, New 16. 1). R. Ditzel. ' nteractive Debugging Tools for a Block Struc-
York, Association for Computing Machinery (1973). NTIS tured Programming Language." Report MCS72-03642-CL7I`(2.
accession number IPB-228 117/AS. C'yclone Computer Laboratory, Iowa State University. AmcN".
3. . W. Anderberg "Source Program Analysis and Object String Iowa (1978).
(icueratton Algorithms and their Implementation in the SYM- 17. D. R. Ditiel, "Program Measurements on a High Lescl
ItOL 2R1 Translator," Report NSF-OCA.GJ.133097-CI.7410. Language 'Comnputer." A'ccepte'd focr Pcccll'ctilon in Cismputcr
C'yclone Computer Laboratory, lowit Slate Unitversit> , Allies,. (197Y).
Iowa (1974). NTIS accession number PB-2310 h14/AS 19. D. R. Ditzel and W. A. Kwinn. "Retleetions ont a High Level

.5 R. W. Black, "Structured Programming in the Ss'MBOL-11 Language Cocmputer System or Parting 'Thought% cat theý SYNI.
P'rogranmming Language,' Special Report ISU-CI *7405, ('velicici 11031. Procjc.'t .' 198(Workshccqi on Isigh-Lc'cel Laccguctgc Comcpute'r
Computer Laboratory, Iowa State University, Ames. IISwn A n ilc~es -ure, Fort Lauderdale, Florida (May 1980).

(1976).(9. 0. R. Ditzel, "High Level Language Debuuglng Tools on the0. A. C. Bradley, "An Algorithmic Description (if the SYMBO)L SYMBOL Computer System.' 1980 Workshop on Hilth-1.eve(
Arithmectic Processor," Report NSP-OCA.GJ33(l97-CL7301. Languacge Compccut'r Architectuie, Fort Lauderdale, Florida (Mul
C'yclone Computer Laboratory, Iowa State University. Ames. 198o).
Iowa (1973). N1'IS accession number PS-222 972. N)1. III. Falk, "Hard-Soft Tradeoffs:' IEEE Spectrum 11(3). pp. 42-431

7 R. F. Bredl, "A Hierarchic Control Structure for User Progranis (Feb. 1974).
in the SYMBOL System," Special Report lStI-CI-75ol. 2 1 P C. Ilutchi-Ain and K. Lthinglon. 'Program Execution in thle
Cyclone Computer Laboratory, Iowa State Univerlits. Aim's. SYVMBOL. 2R1 ('onmputer," Prmcs'crdings of the ACM-lW:E Sc-cup..-

Iowa~~tu (17i. tni High .evL anc'.Lituage Computer Architecture. Ne%% York.
8. MI. A. Calhoun. "SYMBOL Hardware Debugging Facilities Association for Computing Machinery (1973). NTIS accession

P'rocee'dings of the AFIPS 1972 Spring Joint Computer 'Conferecic r. number PB-228 7lIOiAS,
Montale N.., p. 59-68,AFIS Pess(192).22. P. C. Hutchison, "Extensions to a Block-Structured Program'-"

9. Gi. 1D. Chesley and W. R. Smith, "The Hardtwure-lmplensented micig Language ito Support Processing of Symbolic Data and
lligh-level Language for SYMBOL," Proc'.eelingig qf she A/-II' Dynamic Arrays," Special Report ISU-CL-7705, Cyclone Co'im-
1971 Spring Joint Computer Conference. Montvale. N.J.. puter Laboratory. Iowa State University. Ames. Iowa (1977).

pp.56-53. FIS res (97).23. W. E. Jones. "The Role of the Interface Processor in the SYM. g
10I Y. Chu, "Significance of the SYMBOL Computer System." Di.c(. SQ I optrSse"Special Report NSF-OCA-

ert (if P'apers, COMPCON72, New York. pp. 33-35 (1972). CJJ33097-CL?304. Cyclone Computer Laboratory. Iowa State
11. R. F. Cmelik and D. R. riteel, "The High Level Language University. Ames. Iowa (1973). NTIS accession number PB-

Insstruction Set of the SYMBOL Cconputer System.' limli 227 454/AS.
Workshop on High-Lieve Language Computer Arc/cit4c'itcre. Forl 24. W. E, Jones, "A Microprocessor-Based Input/Output System for
L~auderdale, Florida (May 1980), ain Interactive Computer." Special Report ISU-CL-750t.

12. B3. F. Cowart, R. Rice, and S. F. Lundstrom. "'rhe Physical Cs'clme Computer Iabioratory. Iowa State University. Anics.
Attributes and Tesing Aspects of the SYMBOLI. System;'.* Iciwa (14176). lih.1) divscrtialioit
P'roceedincgs of the AFIPS 197/ Spring Joint Compuite'r C',nfc'rc'cs v.
Montvale, N.J.. pp. 589-6(X), AFMPS Press (1971).

86

77 --- z,

7.

25. W. A. Kwinin. "Memory Management Ptilicies for a Hardware 401. W. I. Smith. "System Supervisor Algorithms for the SYWMIOL
ImpFmNte Computer Operating System.' Special Rcpuwt computer,-- mitet of Papers. coAEpcoN7. New York.
MC372036M2-CL7801. Cyclone Computer Laboratory. Iowa pp. 21.26. IEEE (1972).
State Universty. Amee. Iowa (1978). 41. R. E. Walf. "SYMBOL 2-R Cbmiplfble TMu Mospuhletim"

26. T. A. Lulotis. "Imq~emr'station Aqpects 0 the SYMBOL Special Report ISU-CL.7602. Cyclone Compulsoo L.Aboratory,
Hardware Canyller," Prixeedings of the rurst AR#uueul S~ympoxiiumi Iowa State Uiniversity. Ames. Am (1976).

on Cyuutr A *it'nae. p. 114 I (1Q3).42. R. J. Zinng and H. Rich"md. Jr.. "Opstaticed E9si0ac Wi
27. T. A. LAWai. "Main Memoiry lechnology." Contputer V9u~1, SYMBOL," Oigest of Popm.s COUPCON72. New York,

pp. 21.27. IEEE (Septemnber 1973). pp. 31-35 (1972).

284. T, A. Lellasis. -Architectufre of the SYMBOL Computer Sys-. 43. Rt. J, Zina and H. Rih",~ Jr.. 'SYMDOL: A System
tern." in Hilk.Level Lanouagte Comapifter Architecture, ed. Y. Tailored to the Structure of Dote," Praceftdwsqa d th Nalo~wI
Chu. Academic Press (1973). Electronics Cotoferene. Oak Brook. Sncle 2V, pp. 306.311,

2.0. J. Meyers. pp. 97-147 in Adcuunce'A hic (uuuuutuutu Archite'cture', National Elccitrisma Confermne, Inc. (1972). WMt &ased"n

John Wiley said Sons. Inc. (1978). number PS-221 2M1.

X 1. E. 1, Chup"e. Prvvrucedings qi the AFIPS Wuurktohp on the Influg. 44. W. R. Smith. ett&I. "SYMBOL .- A Larpe Experimental Sys-
ofPrommnv~i#s LamNgages cal Coomptiuter SVstrms Architec. temn EM*:wlng Major Hardware Replacmemnt at Software,"

owre. Momeva sk. N.J., AFIPS Press (197 1). Prorrediias of #04 AFIPS 1971 Spirg eimr Compier Coo.*w t.c

31. Rt. Rice and W. R. Smith. 'SYMBOL -- A Major D~eparture Montvale, N.J.. pp. 601416, AFIPS Press (1971).
from Cleada Software Doiinated von Neumann Computing Sys-
tems." Priceedlgs ! Mhe AFIPS 1971 Sprintt Joint Comhpuuter
Coerfernse, Montvale, N.J.. pp. 575.587. AFIPS Press (1971).

V 32. R. Rice. "The Hardware Imiplemsentation of SYMBOL." flIX01

of Panpers, COMPCON72. New York. pp. 27-29. IEEE (1972)

.33, R. Rice. "A Projec.t Ove'rview." Du~lmuA (it Paupers. ('(MI'
('0N72. New York, pp. 17-20. IEEE (1972),

34 11. Ridrchati. Jr. and ft. J1. Z.inlg. "'Mea Logiucifl Suturu. urt oliuui
Me.mtav Rtiatrve in the. SYMWICN.2R Co'ucnpte.r." Plrotucudlp.r

ucithe ACM.IEF.E Sympinuu.car on Hh.uvIIgunuC~u omngutw'

Archittutuore. New York. Asmwlntlon for ('ompulting Machincr%
(1973). NTIS secesision nuriftr P8.228 I IKWAS

35. KI Richards Jr. and C. Wright. Anrrodcluviou to tluv
SYMBOL-2R Programming Language." Pro-ed-dings o/) dir1

ACM IEEE Syvmpociums gin 4ihLvILuc~uug 'ccpggrdAciv

lecture. Nerw York. Association for C'omjuuting Meuchiccu.r)
(1973). NTIS accession number PB-228 II SI5AS.

.16. H. Richards. Jr., "SYMBOL IIR Programming Language' Refer-
ence Manual." RpAort tSU-CCL-710I. Cyclone Computer Lah..
Iowa StaN University. Ames., Iowa (14731. NTIS ace~.ssion
number P8221 3714.

37, H. Ri1chards, Jr. andl A. E. Okirhoefl. Hrwr.otuu
Inieul u - I'in SYMDCL'2R's Operating System.' Prc'curu'ificug
of the Srcvid Annual Symposium on Cumpcnter Arehitc'uuuru. NTIS
accassion numberr P8.239 22WAS (1975).

314. H. Richards Jr.. "Controlled Information Sharing in thu.
SYMDOL'2R Catyutfr System." Special Re"or ISU.-CI-7ettl.
Cyclone Compttlaer Laboratory. Iowa State University. Arnse.V
Iows (1976). 1%.D dissertation

39. C. L. Smith. C. T. Wright. and R. J. Zin~g . -Problems in the.
Push-Down Stack App roch to the Implementation of Hfigh
Level Langualles." Diqesc of Popers. COAIP('N76. NeA York.
pp. 9641t. IEEE (1976).

8(7

A CASE AGAINST HIGH-LEVEL LANGUAGE
COMPUTER ARCHITECTURE

Harvey C. Cragon

Texas Instruments Incorporated
Oallas, Texas 75265

ABSTRACT A recurring Idea is the high-level language archi-
tecture whch directly executes a selected Ian-

This paper considers the principle motivations guage. SYMBOLI5 6) is" this type of architecture
for a high-level language architecture, Program- as Is Mte recently discussed Ada processor by
mar Productivity, Compiler Simplification, and Intel (I. For many reaso thesc architectures,
Run-Time Efficiency. individually ind coliec- labeled "Type C" by Myerst , are deemed ineffl-
Lively, these motivations do not represent comn- clent. Most proposals today for a high-level
pelling Justification for a departure from architecture embrace some Intermediate language(9)
conventional architectures, It is suggested as the language to be accepted by the computer.
that a more beneficial architectural departure
is to be found in a lower-level micro architec- Proposals for high-level language architecture
Lure Instead of a higher-level architecture. are based on achieving three improvements:

T. Prograiiiiier Productivity
INTRODUCTION . Compi ir SI'pi Ir ic.at on

I. ItmJ - 1i11, Iflic I i y
The quest ion ou the de-!rabi lily o'1 i hiih+
level lanquage architecture was abkLd -i the iI(()GRAMMLR IRODUCTIVIIY
hirth of the stored program digital computer
by Burks, Goldstine, and von Neumann(l), Uiifortunately, the observation has been made that

closing the gap will have a significant positive
"In general, the inner economy of the impact on programming cost. This has had the
arithmetic unit is determined by a com- result of drawing attention away from the real
promise between the desire for speed of problem of selecting elementary operations. I
operation -- a non-elementary operation believe that this argument proceeds as follows:
will generally take a long time to per-
form since It Is constituted of a series 1. The best performance and the minimum
of orders given by the Control -- and code space results when a problem is
the desire for simplicity or cheapness programmed in assembly language.
of the machine," 2. Poor performance and code space result .4

if a high-level language Is used.
Over the years, architectural trade-offs have 3. Programmer etficiency is Improved if a
been made In favor of selective Incorporation high-level language is used.
of complex functions in those architectures
where performance was a dominant consideration. Thus, a carefully selected ;ntermedlate
Floating point as an elementary operation was execution language, which can be compiler
provhlje as a hardware operation In the jvid- generated, will give good performance,
195 0st), A variation of the FORTRAN 00 loop reduced code space, and Increase programmer
"was Included in the CC. STAR and TI ASC archl- productivity. .

"tectures in the 1970 3) , With vector Instruc-
Lions Included as elementary operations, the Programming costs are a function of the language

* generation of addresses Is overlapped with the and the quality of the support functions provided.
operation Itself yielding improved performance It should make no difference In programmer pro-
and a reduction In required memory bandwidth ductivity whether the support functions are pro-
Is achieved by the reduction In the numbcr of vided in hardware or software.
instruction fetches.

Assistance In program debug is a benefit fited
A vievw has been introduced into the discussion for A&high-level language architecture(tI which
of elementary operation selection. This Tiew should reduce programming cost. I believe that
is an observation that a "semantic gap" 4 there is a lesson to be learned today from the
exists between the programming language and support systems provided for microprocessors.
the language which the computer actually exe- Program development Is moving Into a cross sup-"
cutes. The existence of a gap Is an invitation port mode. More and more programs are developed
to close the gap. on a host which is not the computer on which the

qAU-i

program will execute(il). One reason for this Let me examine the reduction In memory bandwidth
is that powerful debug tools can be provided in resulting fros the Inclusion of vector Instruc-
the development software. Only a very small tions. Myers 15) describes the case of two 100
subset of these tools could be provided in the by 100 element fixed binary arrays which are to
hardware of a high-level language architecture, be added together. A programmed loop would
software support would still be needed. Relat- require 40,004 memory references for instructions
ing execution errors during development to the and 30,003 for data, a total of 70,007. A single
source program Is enhanced more with software vector instruction would require only 30,001
tools than with a menger set of hardware capa- (30,000 for operands and one Instruction). An
bilitles. alternative to this Is found In computers such

as the COC 7600. which has a program buffer cache.
COMPILER SIMiPLIFICATION This architecture requires only eight references

to main memory for the Instructions and 30,000
A benefit frequently advanced for a high-level references for the date, Vector Instructions are
architecture Is that a well-selected set of not needed to reduce memory bandwidth If Instruc-
intermediate level language significantly tion buffering and high execution rate Is pro-
reduces the complexity of the compiler. This vided for the elementary operations.
Is hard to understand. It can be argued that
these compound elementary operations of the The use of compound elementary operations can
intermediate language can be defined as macro reduce the storage requirements for Instructions
subroutines which the compiler can easily pro- due to the instructions' higher Information con-
duce. These macros can then be Interpreted by tent. In Myer's example, the number of instruc-
the machine. Again, this becomes a question of tion bytes is reduced from 274 to 13. This Is an
cost and performance. This "soft" Intermediate impressive reductioni However, If the program
level language architecture yields all of the represents 20% of the total memory requirement,
desirable compiler characteristics as doe; a for example, the compound elementary operations
"hard" architecture. The Burroughs 811700%12) can yield, at best, a 20% reduction in required
Is an I 1vitratlon of this point. Cohen and total memory space. This small memory savings
Frenclst'll describe another system which may not be worth the increased cost of the CPU.
executes on conventional microprocessors.

Compound elementary operations to enhance run-
I will not argue that the specification and time cost effectiveness are provided at a cost
use of an Intermediate level language is not in hardware, logic, and microcode. The Justifi-
beneficial for compiler creation. I do argue cation of this cost depends upon the number of
that this language, in total, should not be timeb the function is executed In a program;
Implemented in hardware. For those cases frequent use justifies, occasional use does not.
where an Intermediate language seems beneficla: Figure I Illustrates this point. The higher the
to the compilation process, Interpretation of cost of providing a hardware macro, the larger
this language Is completely feasible, although the use factor must be to achieve a breakeven
slow In execution. The benefits of reduced cost.
code space, Including the Interpreter, gen-
erally are realIzed. Sloe • Cost

RUN-TIME EFFICIENCY Cost MACRO In.truct.is Om Cott

Pot UsN
I perceive that the semantic gap has become
highly visible because of two factors. First,
the non-computational overhead of structured
programming is Increasing the run time of our Costa 01 preaf IW
programs, and second, the execution of operating ProiWing
system functions Is also consuming a highly MACRO (_ _ _ _

visible amount of CPU time. In both of these Nuftrd limusN ---

cases, the root problem stems from the lack
of a few elementary operations selected to Figure I
support these functions, not a closing of a
semantic mop.

Computer architects can quickly select most of
Myers(14) provides an Interesting comparison the elementary operations of their design. The
of the concepts of PL/I and the support pro- inclusion of more complex or compound elementery
vided by the 5360. I believe that In every operations requires knowledge of the Intended
case cited by Myers, the issue resolved itself use of the computer. Care oust be exercised
Into the need for the compiler to generate a that static and dynamic statistics collected on
body of code which implements the PL/I concept. programs run on a unique computer reflect the
This Is on Issue of elemntary operation silec- true nature of the problem i and e thex •m-
tion sad the cost performance of the computer. characteristics of the ..r 41'1
ecs ro n oao t ha gople, code used for Fr-t lW.i"di-will Uothi

The cost performance of a computer having more Identified with the higher purpsee of the code.
complex elementary operations is of real concern. Nevertheless, choices are made and computers are

69

a'1

designed and built, which are Improvements over A writable control store with program access to
prio, designs. sequences of microcode Is one technique. This

will, in effect, provide for the Interpretation
For a computer which must be multilingual, that of the compound elementary operations by micro-
Is, can be programmed in many languages, great code. Substantial I mprovement in program execu-
care must be exercised In the selection of tion time can result(I8,19,20). The compiler
compound elementary operations which will be should be able to make a selection of those com-
useful for all the languages, The result of pound elementary operations which are Interpreted
Implementing the Intermedlate language :,. by the machine's elementary operations and those
hardware can be a loss of generality. An which are to be interpreted by microcode. Pro-
Intermediate language for COBOL is not likely duction runs of a program can further adapt the
to be the same language for FORTRAN or PASCAL. mix to achieve the fastest execution rate.
And what does one do when Ada becomes popular?
Will the Intermediate language support the A second technique, and one which is attractive
new programming language efficiently? for Implementation in VLSI, Is the usa of com-

pound function attached processors(21). A float-
Jigure 2 Illustrates the problem which is ing point chip and an FFT butterfly chip which

I..Created as the language implemented by the can be attached to a microprocessor are examples.
hardware approaches the programming language, A Decimal String Chip would be useful for a

:closing the semantic gap. In a conventional microprocessor executing a heavy COBOL load.
processor, the high-level language is com-
piled into machine language which Is Inter- I will concede that there may be a place In
preted by the hardware. As the machine computer architectures for the inclusion of
l,,'language approaches the programming HLL, hardware employed to improve the reliability of

..the machine languages will diverge and software in execution. The run-time environment
:become two or more different machine lan- creates problems which cannot be anticipated by
.\'guages if the semantic gaps are completely the compiler or require high checking overhead.
Y•('cl sed, This issue should be addressed as a stand-alone

issue and should not be combined with the Issue
Nil. NU.#i HLU Q of a high-level language architecture.

I The ultimate architecture appr €cý was suggested,
N 4 ita + I believe, by McKeemen In 1967 22.

Ierm. "The obvious attack for programmers and

Haj.a \ Lhardware people together is to devise
language that reflects what we want to do

CONVENTIONALPROCESSOR HIOW" I LANGUAGE and how we do it (for Instance, In parallel)
PIOCESSOR and machine structures effective in handling

2 that language. Let us call this method
'gure 2'language directed computer design."'

and Cragon(17) are conducting a In the future, the language referred to by
McKeeman must man nonprocedural programming

search for commrn elements and their fre- i23.
quency of use In FORTRAN, COBOL, and PASCAL The machine structures will

be microprogrammed in nature. The architecture
wosewif therefare a few compoundoperatios, will be capable of either Interpreting a "soft"
which will benefit all three languages. I Intermediate language or executing a compiled
believe that there Is a good chance that a microprogram. With memory becoming the least
small number will be found that, if Imple- costly component, complied microcode will become
mented in hardware, will substantially more and more cost effective. if a lower per-
Improve a computer's code space and execu- formance Is satisfactory, then the Interpreted
tion time. Success in finding a few is not soft Intermediate language can reduce memory
a mandate to Implement everything In an cost. I believe that there Is no "Ideal DEL,"

there may be a DEL for every nonprocedural

A high-level or Intermediate language Imple- language and this DEL can be Interpreted on a
mend hinhardwareor intormesitrl tivage nd- soft architecture if memory cost is to be mini-

costly. However, selective implementation mized.
of a small set of compound elementary opera- CONCLUSIONS
tions can substantially Improve the perfor-mance, of a computer. The question facing
manceofracomputer. they quetiont faingh v A case has not been made for the creation of
computer new architectures which implemnt high-level
language archi tectures, but architectures nwacietrswihIpeethg-eeor Intermediate level languages. All of the

which permit the Inclusion of selected benefits can be achieved without the loss of
compound elementary operations which generality by selective Implementation of some
match the use environment at any given ctmp lementat in c a mo-
time. compound elmntary operations In callable micro-

90

It, .ý 44" 0..6*,,y.~*qA 4***' p

code or attached processors. The ultimate archi- 11. Stefano Crespi-Reghizzi, "A Survey of Micro-
tencture will be a lower-level one, not, as many processor Languages," Coptr Vol. 13.
advocate. a higher-level one. No. 1. January 190,p657-

ACKIGOWLEDGEMENTS 12. W. T. WIlner, "Design of the Burroughs 61700,'1
AFiPS FJCC, Vol. 1.1, 1972, pp. 1.89-1.7.

The author would like to thank the reviewers for
constructive criticism which helped clarify the 13. Harvey A. Cohen and Rhys S. Francis, "Macro-
position taken In this paper. Special thanks go Assembliers and Macro-Sased Languages In

r.to George Ligier without whose encouragement this Microprocessor Software Development," Coptr
Paper would not have been completed. Vol. 12, No. 2, February 1979. pp. 5-1

REFERENCES 14.. Gienford J. Myers, AvneInC tar
Architecture, John WIiey& SnsNow York,

1. Arthur W. Burks, Nerman H. Goldstin*, and 1978, pp. 11-13.
John von Neumann. "Preliminary Discussion
of the Logical Destgn of an Electronic 15. Ibid., p. 16.
Comiputing Instrument," The Institute for
Advanced Study, June 191.6, p. 1. 16. G. Jack Lipovski and Keith L. Doty, "Develop-:

ments and Directions In Computer Architecture,"'
2. Saul Rosen, "Electronic Computerst A His- Computer, Vol. 11, No..8, August 1378, p. 57.

torical Su rvey,"1 CPtin %rveys, Vol. I.
No. 1, March 1969.p.14. 17. Krishna Kavipurapu and Harvey G. Cragon,

International Workshop on High-Level Language
3. C, V. Rammoorthy and H. F. LI, "Pipeline Computer Architecture, Fort Lauderdale,

Architecture," Coptn Sres Vol. 9, Florida, 1980.
No. 1. March 1977, pp 5-95.

18. A. M. Abd-Alla and David C. Karlgaard,
1.. U. 0. Gagliardi, "Report of Workshop 5.-- "Heuristic Synthesis of Microprogrammed

Software-Related Advances In Computer Herd- Computer Architecture," IEEE Transactions
ware,"' Proceedings of a Symposuium on the onS tos Vol. C-27, No 9,Sep
Hlhcs f otae Menlo Park, Calif.: 1916,pp. 1T6-037.
Stanfoiir i searc ntitute, 1973, pp. 99-120.

20. Tomlinson 0. Rauschor and Ashok K. Agrawala,
5, Rex Rice and William R. Smith, "SYMIUL-A "Dynamic Problem-Oriented Redefinition of

Major Departure from Classic Software Computer Architecture via Microprogramming,"
Dominated von Neumann Computing Systems," IEEE Transactions on Computers, Vol. C-27,
AFIPS SJCC, Vol. 38, 1971, pp. 575-587. NO. 11, November 1737, PP. Iooo-il14.

6. William R, Smith, Rex Rice, Gilman D. Chesley, 21. G. Estrin and C. R. Viswanathan, "Organization
Theodore A. Laliotis, Stephen F. Lundstrom, of a 'Fixed-Plus-Variable' Structure Computer
Myron A. Calhoun, Lawrence D. Gerould, and for Computation of Elgenvalues and Elgenvectoris
Thomas 4. Cook, "SYMIOL--A Large Experimental of Real Symmetric Matrices," Journal of ACM,
System Exploring Major Hardware Replacement Vol. 9, No. 1, 1962, p. 41:1
of Seftwere.," AFIPS SJCC, Vol. 38, 1971,
pp. 601-616. 22. W. M. McKeemen, "Language Directed Computer

Design," AFIPS FJCCVl3,197pp 1-
7. "Intel Takes Aim at the 180s." Electronics, 5.17.

Vol.S3.No.5, ebrary28,1917-pF-W95. 23. Michael Hammer, W. Gerry Howe, Vincent J.
8. Glenford J, Myers, AvneInCm uter Kruskal, and Irving Wladawskl, "A Very High

Architecture, John Vi-y&Sns e ok Level Programwing Language for Data Process-
1978, p. 29. Ing Applications," Communications ofteACM,

Vol. 20, go. 1i, NOVOe %f71 p. It
9. L. W. Hoevel, "Ideal Directly Executed

Language: An Analytical Argument for 24.. William A. Wulf, "Trends in the Design and
Emulation," IEEE Transactions on Computers, Implementation of Programing9 Languags,"
Vol. C-23: No. 8. August' 1974, PP. 11-13, Computer, Vol. 13, No. 1. Janua ry 1950

10. Andrew S. Tanenibaum, StutrdCmue
OrupojizesjLf Prentlcie_-i1T1?inc. Eglt-od
CTl1iff, owJersey, 1976, P. 384..

91

DESTrN ISSUFS O)F }IICH 1,EVI. LAN:UAfIr:
DATABASE COMPUTERS*

David K. Hsiao**

Laboratotr for Computer Science
Massachusetts Institute of Technology

Cambridge, MA 02139

field names and values (of a segment), sequence
fields, primary and secondary indices (of seg-

ABSTRACT ments), segmente (of a type), types (of a parent-
child relationship) and relationships (of the

in this paper. the destign goals of database). Likewise, there are logical properties
direct execution database .computers are 3
stated. Using an- existing database manage- of CODASYL databases 3 . By defining information
ment software system, the paper attempts entities in terus of logical properties of a data-
to show the replacement of the software base model, the user can capture the information
system with a hardware database computer content in the database and sake (symbolic) ref-
may not obtain uniform performance gains erences to the Information entities.
and storage savings. This discovery may DDL also allows the user (especially, the
render the original design Soals overly database designer) to define tb02 physical proper-
ambitious. "140e of tb databausc. Physical properties of a

On the other hand, the complicating database are those which deal with unit@ gf star-
factors which hinder the gains and savings age (say, number of rages and page size), kinds of
may contribute to the antique modes of storares. (e.a., moVing-head disks ve fixed-head
database mapagement of conventional soft- disks), storage formaLs of the logical entities
ware systems. To this end, the paper (dIrertovy format for Indices, pointers for re-
attempts to isolate these factors and lated tuples or segments and encodings for re-
identify the modes of operation for poated attributes or field names) and access modes
consideration, (e.g., access by direct address calculation, via

intermediate records or by way of directories).
Because modern databases are meant to be

shared, the database system mest provide concur-
rent access and multi-user operations. DDL of a
modern database system mast therefore provide a

1. COALS means to alloy the database owner (or adainistra-
tor) to authorize and validate certain users of

Normally, the effective use of a database his database, define different portions of the
system by a user requires the user to be familiar- aatabase for different users (e. s., by creating
tead with the lansules of tIe database computer different views of the same database), specify
system. There are essentially two such languages: the types of control operations peritted or do-
the database definition language (DDL) and the nied on the sathorised portions, and place proce-
database manipulatton.,language (D)ML). DOL allows dures (e.g., program written by the administrator
the user (especiallj,"the database administrator or owner) at the points of access paths to his
or database owner) to define t~e logical and phy- database (say, at each file opening time).
sical properties ot the dAitababe. Logical proper- .-
ties of a database'tie obaracterized by the data- nn the other hand, the database manipulation
base models used. For example, in the relational language (DU.) is primarily concerned with the
model , the logical proorties of the database con- specification of search, retrieval, update, and
mists of attributes and domains (of a tuple), processing requirements of the database. Because
tuples (of a relation), primary keys (to the tup- the use of data models enables the Information ý1
lea) and relations (of the database). In the hier- content to be captured in the database, the modern

2 DI. enables the user to address the database byarchical model , the logical properties consists of content for search, retrieval, update and proces- 3- ~sing operations. content-addrenssln Ie steam- "
"*The work reported herein is supported by the sing opertios. C onten-ad ressicgis. a or•i plushed in flIt as expressions of predicates. For
Office of Naval Research under contract NOOO14-75 example, the following is a simple expression of
* C-0573 and by Deferse Advanced Research Project three precicates, namely, a conjunction of an
Agency under contract N0001475C-0661. equality predicate, an inequality predicate and a
S **On leave from The Ohio State University. greater-tham predicate.
**On lv r T O(Type-DLODYEE) A (Emp-Dept - TOY) A (Salary

"> 20,000) which specifies those records of the

92 -

Al'

employees who are not In the toy department and baae fov storage. Furthermore, the physical
hae. salaries greater than 20,000. by referring to structure generated must take fiall advantage of
specific attributes, providing the necessary the strong points and new capab~itiem of the
predicates,.amd specifying the Intended operations database computer.
in DM,~ the waer ca smiardpqate the database Let us review briefly the logical properties
effectively at various grasulavities of the data- of an IM3 database and present a (hardware) trans-
base (i.e., at field or aittribute-value pair formation algorithm (as designed for WI) which
level, tuple or eetmet level, relation or segment converts the logical organization of an INU 43tn-
type level, and rsfoashlp. leveil), base Into a physical structure for database camp-

This goals of hjio-level language database puter storage. We will also mention biriefly *ome
machine designers ate therefore to be able to come stroug point, and new capabilities of it.database
up with hitgh-perfsermnce and great-capacity corn- computer.
puter architectures which allow direct execution
of DDL and tM@ itatement. of the user application 2.1.1 ft e
Programs. Direct emedution of user programa en- Database. AnmS toba cnslte of A ~a of
able. the performance and capacity gains of the new hi;erarchlically related ~ vne o
machine to be contributed to the user In term of simply, *p!t each o 1ch belonsg to a
high-volume management and quick response which Are selmnt m~t In the exampile Figurs' 1, segment
diff * cult to achieve in conventional software-lIden type A; the root sexmr~t t* has three occur-
computers for very large database applicationn. rencee. All other, are d~iftffi Segment types,
This difficulty ts due largely to the fact that each having a unique paL491m1igmiant type and zero
conventional computers are not designed specially or more child segment types. Some relationships
for database management. Consequently, very elabo- among the various segments in our examples are:
rate software for database management must be sup-
ported on the computers. The execution of very Al to the pareat of 11 sod 01.
complex and sizeable database management sof tware P41, 112 and 11 are children of 01.
tends to deplete aystem resources and provides in- .71 and J2 are Wt
adequate responses to user applications. 111, 112, 11, J2if d~a~4ecns

Can ye design direct execution database com- or dependents of .' -

puters?' In other words, o're there comidicatione Al, (il and 11 are Antaso-ra of 31.
in reaching out design goals?

2. 153"Sx CO)M'IC&TINCG 1IIRCT F..1X1~ttTlfN 14tievc'saivc levels arei atimbeted such that a root
negmont is nt level 1. All segment occurrencem

There arv at least two tsauovs whichb have comn- Art' mindt of one' or more fields.
plicatod the des1gn goals of direct exceutIon An IMS dqtobrnse ts .tza~arnain the order:
database computers. one issue is related to DDI.~ parent to child, front t; bacA amng tWins and
the other is concerned with 1*0.. Theme two issues inoft, to ri~tht Among children. The traversl
may render the direction execution of MI1). and DHI. seauence for the database o~f TioretI to W, I1,
statements for conventional database management cl, 1)1, D32, 133, ?r1, 11, U2, V2, 13, Ci, 111, H2, 11,
application ineffective. .. 71. J32, A2, A3). Notice that the traversal **-I

The moat illustrative viny to study these corn- quenca defines a next segment with respect to a
plicationa is perhaps by focusing our attention at given segtment, A bAjra~bhMo-l..ath -to a sequaee
a specific database NOWe and a certain high-level of' segments, on. vioi, 1T0'!I a prl t the root,
,language databasae computer design. Here, we. e.g., (Al, (~.11, Ml 2.
focus on the hierarchical model2 . We chnone thie 2.1.2 Autaicenriooftre tu-
DDL 4nc' WIlL of IBM'@ rnformation Marnitewent Fvster. ttore. An IMS databse with rthe! aovelgiapr-
(fIMS) for study . Presently, ims i.,; a- widely erties can he defined in DDL statemesnts which upon
used hierarchical database marnapemon~?t software execution transform the databasee Into proper stor-
system. For database computer hardware designs. we age format of' the database computer (i.e., DBC).
choose the database computer (DBC) uhich has be~on Reenuse PlC does not address physical records by

j~o(,c8.9 locntiotim, location-dependent pointers are not
propsed to support, iamong other ilaribase mwodplý tined by PlC for the purpose of facilitating hier-

the hierarchical database model of datahanes. archicalky related records. Instead, physical re-
However, much of the findings producedu In the fol- cards are content-addressed by DUC provided that
lowinwg sections are valid for other models And ma- cte content of a physical record. is presented as
chines which although not elaborated here, can he onon or more. variable length attribute-value pairs,
found in10 '1 1'12 ,13 known as keywords. Thus, an INS database is trans-

forvod by conmidering every IMS segment as a h-
rxtctio ofDDLStaemets or roaingIcal record (or, simply, record) composed of key-

Now Databases wrs
An IMS segment includes a sequance field

whenever It is necessary to ind-icate the orderDirectly executable ocr. statoreont'I ror hivr- among the twin segments. Since each segment be-archical databases must be available so that giveti comies a record and no address-dependent point~ers
the logical-'properties of a hierarchical database, are Allowed, the database computer assigns a ayn-
the PilL statements, upon execution, can automatic- bolic identifier to each segment, identifying It
ally ltenerate the physical structure. of the data- uniquely from all other segments in the database.

A
93a

Ici1 .i1 o I in.t-* ciscc' to no-i- 'ifm ogica I Iv a !,I or
* rchic cdi ht .Iii'4c Ait, ti-icc' nutomatic genetit in,.

the, cliitcIii.: c.* all N r,:d il-.- realized ini thc
.1 ctar a-! 1,o -xcur ec .11rcct 1" to yield ci --i11

tIon of nhvsiv 1l rercoi~l of ktvisords for gtoi -

..... i.I,. vnnah ilc.t, doitabAlie computer (,)it*F ~I.- ct-11tc' III -IIV.''- , ' 1 o d."1'' 'IT, - , iae . .
LI -o~i t! l i-'H. TtiiUC. the'lhardware real1

-v *;tiilnimn -;rntruent, Indeped titiltzes 1-4
wipit o.. .. i"i hulvitc

I,~.* cc . 1i the -Icl of r'l-bo Iti l vt!!

it~ r 'I' incrtecin 01
1

, . torni-v r, rtcirorcec't of tict ccc I
: riir c .. .tit iir t rP,rm i , I. the Ivvv'v o f

/I Ii tir."r-chv doiviolc'tici I-lii shice renil rarnent of it,

/ -4 ~Ilhi-c I, evident h-, rhe fc'lici¶inl' observatio'n thit
ItI cIAch c'r-rroqundi icc d1 nendent seiclmpnt the I)),--

Iitfon I elrco ris-t c add11 .iitional storcico

,cii ficictic cf its elictstolr-

The civiiiholic identifier of a i;egmucnt I. c-a,-ininc .ic- I'vure) -I vh'.qtrul .;tudenL rio-r
i. I ii fi Idci co'nillis tiot' of: I, it invi I I ,I -. It-Ois i-'rcoir datt! the qicall if j(

bl. c ,iv Studenct I, ,I I . Ii, ndditltton the st-idcrit

0) thei aymbo-lic' lilunti fivi ill' OW Ii* ni-l oci, ci it -it ,iiid tl t- Aliiqllene(fieldl (I

lcliji'lt of ~IS, nild I.- itvi fit-n1-11 I t- I i Iorutit (I.v.*, ai cert c nt

II tho meill-c fi l fIi, I) - I t-o-',i'ii. F-Iflrv thlt -aia -Ill
il ~ ~ ~ ~ ~ ~ o tic Ietee fiel - lii ii n c-lirSI' ro-corit who-i.- X

I t iiti' iiuenri' fields of diffeiont .*.t,. no l'ir 1 ,, ,~ -r oki iriherbe (i.e., Course)
IVIU opt-s use11 tilt slame field name, lo w,i i- 1:1 1 - -l i.- -I -,,-vic! fto tiho ;ttldent record glc-h3is
flit- field tiname with the sepnoprt tni-. qirict 'I I. tC1,111 i r-o tinclucsion of ('courtn

The oreat ion of at record From -In PIS---- l

(II For each field in thl, er~c of ginlric
form a keyword cisInp the Fiol i i1I I itild idTicmT
namne as tile attrlhuti' anidtl I~~
value as thle value. B*tciit

(2) Form a keyword 'of the for-c .. i~1"' I N -r~ ame,. I`Ircii,
sellttvile >where TVT'F lIs ;I li-t-crol-
cand segtype isc the 51Ži'Iltit I '-*. 11 Wit",t it;
Iin consideration.

I) For ench sequeince fie-ld Iiitll- (Ik ;ll 1i1-,c I l I
slymbolic identifier of tilt',i. Icl -
men t, form it koviword ItSinc tit,
field name (quailifif ed b\, ti t

,
miugmtnt tvpcc) al-i the citt i. 1111
and the fielid vaillic i~i tilt- 1.41 . Iii~ib , ihi'," 11. ccc l ll I~ r I I I o s in t1.1 i ll'I

For examplie , for an IM9 i~ttIlhiae 91lown Iin ri'it'cc, daiir-ci-iI'ctcI-aii- io,1oiiti:biv. nn thuile
thle iLttnibtute templates of the five' vo I itoi-% cc cilttc-ic i- o t 4'lilVleii ~kw i.c

ci recccrcds corresponding to the five Rutgitonit tvjini Iin riLcortis li irinticiia thc' nie-'t of pointer siia~c(i
It c shown tic Figure 3. Qua~lifiedi field clcvi;~c suchl whichl i'ere Oicesl4orv in ti.e 71; segiments fc-r tilt,
:i.; Pi-ereq. Course ~I are used to diftiiitrp11h tict pliripoio of I inkini' all the twins~ of a giver. naret-ti'
sameni fiteld names, i.e., Courtse P~, amonct citffit-i icicitcilent toll-.. Di-!-t'i t AI-Idli trade-off (if lii'act .

.'v~tD~I t tIeq 'jlS illaltvs is liaci shcotcn Itthait the increasec mayfv N-'
I,,r I ovo I stcri -t Ill't a t I eve 4 . Similnr f~iiccln-;-

2.1. .1 t~xecution rmain vs '014111-c~ n V oil ,ci;rnlpw miti,, 11110 tv ne1, ditichiisl machitne re--
title to tile STimpliCITY of thle trans fcrma-t Ioii Ir 11 rc-ileent aire ohi aled In relatitonal a-s well
1 thin, it is not scirlrisinp. thalt T~fIM. ,;atoiticnrs. Cc0tAiSYI muclei ti c'aitabiasieg.

finding the first segment at each level i satisfy-
ing ':. and finally retrieving the segment satisfy-
in it " n .. A get-next (tN) call starts the search at

Smf the current position in the database and proceeds
/ntite- along the traversal sequence satisfying Si for all

.. and retrieving the segment satisfying Sn.
We shall illustrate the manner in which get-

unique (GU) and get-next (ON) calls are executedS] yH-re~. ;e"°(er~aI by the database computer. Referring back to the

£.- r) IMS database of Figure 2. let us suppose that the
I~M_.MUI±' 2sh,. P1./I call to be processed is:
Title- LeaLt " ,

Sroat- G U Course (Title - 'MATH')
Offering (Location - 'CAMBRIIDGE')
Student (Grade - 'A')

This asks for the first Student segment of the
database which satisfies the predicate Grade -'A',
and which has a parent segment Offering with Loca-
tion - 'Cambridge' whore parent, in turn, is a
Course segment with Title - 'HATH'. The call is
executed as follows:

(1) Starting with the first segment
search predicate i.e., Title
'MATH', the Course segments which

,s~'~s t~aIILA, i ~satisfy the predicate are re-
trieved by utilising the query

P.,, t h. e, T•,a, ,f !LC A 4(nd, 1. formulated by the machine

((Type . COURSE) A (Title - MATH))
and are sorted by the machine
according to the value of their

It is not clear whether it is possible to devise a sequence field, i.e., by the at-
hardware transformation algorithm which is as sim- tribute Course 0.
ple as the one mentioned above and which can yield (2) If no Course segment exists, then
storage gains. Until such an algorithm is found, the DL/1 call is unsuccessful.
direct execution of DDL statements for database otherwise, the first Course seg-
creation in the new database computer environment ment is found and designated as the
may actually cause a loss in storage. current Course segment.
S2.2 Direction _eution Of DM Statements (3) The Offering segments are then re-

2 Dieo trieved with the predicate Location.
for Database Transformation 'CAIMRIDOE' and sorted by their se-

quence field, i.e., date. If the
In INS, the database manipulation language sequence field of the current Course

(DM,.) statements known as DL/i calls have the tol- segment is (Course #, C), then the
lowing format query used by the machine for this

content-addressing is
Operation list ((Type - OFFERINO) A (Course * - C)

A (Location - CAMBRID•E)).
where the Operation is one of insert (TSRT). delete (4) If no offering segment exists, then
(DLET), replace (REPL) and get (GET) calls, end the current Course segment is re-
where the list is a number of segment search predi- moved and control is trareferod to
cates, at Post one per level, which are used to Step 2. O'herwise, the first Of-
select a hierarchical path. Each segment search fering serpent is designated as the
predicate is preceded with the name of the segment current Offering segment.
type. Let as denote the segment search predicate (5) The Student seaments are then re-
st level i " Si. trieved with predicate Grade - 'A'

After each retrieval or insertion operation, a and sorted by their sequence field,
segent is "established" in the traversal sequenLe i.e., by Omp *. If the sequencs
of the fU deaubese. For a retrieval operation, field of the current Course sag-
this segmnt refers to the segment just retrieved; ment is (Course 0, C) and that of
for an insertion operation, this segment refers to the current offering sepment is
the saegment just inserted. Such a segment in the (Date, D), then the query used by the
traversal sequence is termed the current vostion in machine for this round of content-
the database. There are seieral forms of the get
call, each of which returns a single segment. A ((Tgp w STUDENT) A (Course C)
let-uniaue (0U) call retrieves a specific segment (Te u StD) A (Scados A)).
at level n by starting at the root segment type,

type

S... - . * , , ; , , - .x,• " : ' .

(6) If nc Student segment exists. Transaction Requirement:
then the current Offering seg-
ment ie removed and control (1) Find all segments satisfyinP
is t-anasferred to Step 4. Riven predicates.
Otherwise, the first Student (2) The predicate at tile root level

segment is designated as the does not involve the sequence
current Student segmbnt. field.

(7) The DL/I call is successfully (3) No predicate is given at any

executed and the current intermediate level.
Student segment is returned.

Example: Find all those students who failed

It should be noted that at this point that a mathematicr course regardless of the location at

the content of the work space of the machine es- which the course was offered.
tabli 3hed by the above GU call may be used to ex-

ecute Lhe next DL/l call, for axamplo, to retrieve C1U Course (Title - 'MATH')

the next student who has an A grade in a math offering

course offered in Cambridge. This is depicted by Student (Grade - 'F')

the. followhig get-next (UN) call: Loop ON Course (Title - 'MiATHI')

GN Course (Title - 'HMATI') Offering
Offering (Location f 'C 4AMBRIDGE') Student (Grade ' F')

Student (Grade - 'A') CO TO Loop

In this case. the relevant segment may already be Let N be the number of root segmants (i.e.,

peasant in the work Apece of the machine. The courses). All of the root segments satisfying

current Student seguent is removed and control is the predicate are content-addressed. For each of

transferred to Step 6 given for the GU call. t'sse root segrents, all y of Its third level

On the other hand, if the GN cW-1 is: twins satisfying the predicate. are then content-
addresred. We also assume that these third level

GN Course :Title - 'MATh') segments (i.e., those students who received grade
Offering (Location - 'CAMBRIDGE') F) are scattered evettly. The relative performance
Student (Grade 'F') is charted in Figure 4. The entries of the chart

are compoted as the ratio of page accesses (to IMS

then only existing Course and Offering segments segments in the old scftware-ladevi environment) to

maty be used. However, it is neceeseTY that the block accesses (to physical records in the new

next Student segment returned should not precede database computer environment).
the current Student segment in the traversal se- Due to very large content-addressable block

quence. Hence, if the sequence field of the cur- size (approximately 1/2 megabytes) and relatively

runt Student sevgunt is (Imp #,I), that of the small scquential-addreasable page size (about 2

current Offering seftnt is (Date, D), and that of kbytes), this type of transaction may yield one or

the current Cours,4iese t is (Course 0, C), then two orders if magnitude of performance gain over

the following machine query is used for content- the conventional system.

addressing the next set of Student segents:
2.2.2 Where are the Performance Gins? Now

(('Type-STUDENT) A (Course f-C) A (Date-D) A let us consider another type of transaction as
(Emp # _ E) A(Grade.FV) follows:

Vie previously existial Szudent sementz are re- Transaction requirexent --

m:oved and control is transferred to Step 6 given (1) Find r single segment satisfying
* for the GU call. the given predicates.

Finally, if the GN call is (2) A predicate involving the se-
quesce field is given ft root

UGN Coves (Title " 'HISTQOt') level.

O Iv~tlS.,, .. •.ample Find the student w•th eomloyee

number 50. takins a CT. 211 course
then ,ao c*rre•at•ti. an~eis er% useful. in Coumbu. *fa noto 'dt
Hence, new eets ,o4,'•9eansuts *at be trtrieved, one course nmbsts are meque•t d. c
set for each 1eve, . .,,U Course (Cour6 0 = CI3 211'SOffetring (LeJl

2,2.1 Pgrfop m•We 9•~a~ IJmdd frota Dliect rI '(oIstioa I
*. o0" Abe". discuss ,o,,. it is not studett (amp - 50)
*r lteg a,*t 41e4ctly eeanugabte data-

base manipulation (DPL) statements of the follow- The performence gains of this tyPe of transection
ing types of tranasction* will produce the "best" are chartea Im Figure 5. U isedtappointing to

performance for the databae computer over the note that the performance of the dataa"* computer
coriventional scftware-lejen IMS system. for this type of tranaaction is not such better

than the conventional software-laden system.

96

- . " ~~*.4. "•• .v

IA
V.*e The eaaXFU~e deta in -h~e :eble or* extroeted ft., (.

are made of predicates wichei require content-.
N * ho mberof tot ep~aa.addressing instead of sequential Accessing. than

the strong points of the database computer Usard-
N . the SWWGC of IVIOC (1.4.. * h11-t,~ s4;-ot'C9). were can Indeed yield high Perfoammn. IdeaIUY

lbS~~~n wmber went* ~ ~ to ~co up with a design of high-
a t asba o fiteati stifyig a;ien reicae, performance and great-capacity database comu ter

which can provide effective and effitidIt aobhar
- ~ --- -- r ~tions to either low-volume and mequstAdl ia4 ba me

8100 I N 1000 N 10000 manipulation or the high-volums andeb~ta

I~1 I i bk i- - ~ dressable database manipulation. SuchV I F ~Inis:
~-r not in night.

10 U 3 M It 214 75 35 710 391 152

20 $a 44 41 232 96 55 1,126 507 13, 3. COMCUIDIING RMUSfl

4C 4~ .2 43 0 1&1 7 9832 Direct execution of existing high-level

so d.) 41 40 96 .d9110 7 atabase definition and manipulation language con-
160 1 460 ;954 4 33A133 6 eructa may not be desirable. The undaersirbility
150 ? 4 I. 1954. .8 ~ 33 6 ti due to the lack of good database comuter de-

sign for uniform gains in star.&* requiremnt andI
transaction execution. In other words, Special-

NNO.e oftr Amt t, Z;e .1ft 7fk purpose database computers may not be able to
"ti aty e. Of At:05Ia. to bring about the high hope of anticipated through-

teecble51o~ke & ~put gains whidh has been the design goal of the

database 'computers in the first place.
lNevertheless, database compaters which are

cap~hle of direc~tly executing database definition
Figove 8. Perfortooce Utrs 1tessureiet in Tmrae ot and manipulation language constructs will stay.

Their impact will be* twofold. First, tazo~basa ap-
Accehses to flatsbuo ictriacA tlication prograzmrýg will change. ýbo Aangs

will primarily be prvipted by the adv...,c. faa-
tures provided by the v.,tchineiz which &to not
otherwise adeuntely avail..'Ilo In cooventional soft-
warea systems. ?or examle, security and integrIty

Suso The sataekictre daaora -.a- art (,,#4.. .ract.4 checks and concurrency controls can be made more
e ffectively and efficiently Introduced as hardware

Sm ~ mchanisms. The use of high-volum. and content-
addressable search and update for very large data-
bases is another need for hardware realization

N the A10:60 09 ;.a.t '~These advanced features will allow existing data-
, the M.zzor of winfs. bases to migrate to a new database machine envir-

__________onment with newly written application programs. On
130LOWO, the other hand. there is sot much that the new

I ~machine can improve for the old- application pror
I grams. However, with some Interfacing software,
I the existing application programs can still be run

27 1.70 on the new environment without the need of program
.0 4 .4.0 4.43- conversion. It is hoped that in the long run the

4.71. database application will be dominated by the newly
written application programs.

ines will have an important impact on the future
development of database definition and imanipula-
tion languages. Despite their claim of data in--
dependence (i.e., devoid of database software and
hardware implemetation issues), the languages

YL~~. SP,:J~Ane ~~ ~ '~were designed with certain known processing modem
and underlying technology of the time.* As a niw

S- -- technology with a high degree of parallelism and
2.*2.3 Performance Gains vs.* Transact ion content-addressabil ity, the database computer will

Tyes Dy comparing the examles presented in the require new database definition and manipulation
previous two sections, It Is evident that the new languages to be highly concurrent end associative.
hardware of the database computer will not yield furthermore, the new languages should have an in-
significantly better performance over the software grated approach to the specification and control
system* if the user transaction demand records in of security and integrity checks of database acceso
a sequential manner sand receive them one record and update. Thus, the study of database computer
at a time. On the other hand, if for a user dsg ilas rmtorivsiaino e
transaction, the demand is of high volume and the* DDL and MEl for the computers.
search criteria of the demand

97

ACKNWMGEDaENT able from IEEE Computer Society.

[12] Banerjee, J. and Hsiao, D. K. "A Method-
The excellent research environment provided ology for Supporting Existing CODASYL Data-

by Piofessor Michael Hammer on the Project on bases with New Database Machincs," Proceed-
Very Large Databases and in the Laboratory for ings of ACM '78 Conference, (Washington,
Computtr Science at Massachusetts Institute of D. C. 1978), available form ACM.
Techno.ogy is greatly appreciated. The author
was also benefitted by several discussions with [13] Banerjee, J., Hsias, D. K., and Ng, F. K.
Professor Hanmer regarding the paper and by Jai "Data Network -- A Computer Network of
Menon for his careful. reading of the paper. General-Purpose Front-End Computors and

Special-Purpose Back-End Database Machines,"
Proceedings of the International Symposium

REFERENCES on Computer Network Protocols, (February
1978) pp. D6-1 - D6-12. Available from
the University of Leige, Belgium.

[11 Chamberlin, D.D. "Relational Database Man- [14] BanerJee, J., Hsiao, D. K., and Ng, F. K.,
agement Systems," ACM Computing Surveys, 8, "Database Transformation, Query Translation,
1, (March 1976) pp. 43-66. and Performance Analysis of a New Database

Computer in Supporting Hierarchical Data-
121 TsIchritzis, D. C. and Lochovsky, F. H. base Management," IEEE Transactions on

"Hierarchical Database Management, "ACM Software Engineering, SE-6, 1, (January

Computing Surveys, 8, 1, (March 1976) pp. 1980).
105-124.

[31 Taylor, R. W. and Frank, R. L., "CODASYL
Database Management Systesw," ACM Coomu"ing
Suey, 8, 1, (March 1976) pp. 67-104.

[4] IBM, Information Mana&ement System/Virtual
Storage (IMS/VS) Version 1, General Infor-
mation Manual, GH20-1260-4.

[5] IBM, Information Management System/Virtual
St orage- NS/VSVersion 1, Application
Programming Reference Manual, SH20-9026-4.

161 IBM, Information Mangemant Syet./Virtual
Storage (IMS/VS) Version 1, System Pro-
gramming Reference Manual, SH20-9027-4.

[7] IBM, Information Manlement System/Virtual
Storage (IMS/VS) Vervion 1, System/Appli.
cation Design Guide, GH20-9025-4.

[18 Banerjee, J., Baum, R. I., and Hsiao, D. K.
"Concepts and Capabilities of a Database
Computer," ACM Tran&actions on Database

SSys, 3, 4, (December 1978), pp. 347-
384.

[91 Baneriee, J., Haiso, D. K., and Kannan, K.,
"DBC -- A Database Computer for Very Large
Databases", IZERxTaotina on Qimpait.rA,
C-28, 6, (June 1979), pp. 414-429.

!lO] BanerjeL, J. and Hsiao, D. K. "The Use of
a Database Machine for Supporting Relational
Databases, "P2oadin'i of 4-th Workshop on.
CQoauter Architecture for Non-numeric Pro-
j.jau (Syracuse, 1978) Available from ACM.

111] Banerjee, J. and Hsiao, D. K. "Performance A
Evaluation of a Database Computer in Sup-

porting Relational Databases, "Proceeding
p& 4-th International Conference on Very

Urge Databases, (West Berlin, 1978), Avail-
98

ILASHlBJG I'A1D'*A1U: A iD ITS A"PL CATIi:, TO SYXJ4OLo IW4 tPULATTON

'Tutsuo Ida

Information Science Laboratory
Institute of Physical and Chemical Research
2-1, Ilrosawa, Wsko-%hi, Saitama 351, Japan

Abs tract

"Al"architecture of implemented hashing table organized as a b by P two-dimensional atray
hardware to be used in symbol manipulation is pre- (b columns, to be called memory banks, are ac-

eanted. The major components of the hashing cessed in parallel)(n<b) (c4.-Fig. 1), and pre-
hardware are a hash addressing unit and hash table sented performance analyses. ' The resulta of
memao+es which can also be used as main memory of the analyses assured us of the average execution
the system. The hardware makes use of parallel time of less than 1.18 successful table look-ups
read-out and comparison mechanisms of logic-in with n-b-4, or even 1.05 with Psmb32 until t e
memory banks. Basic hashing algorithms such as load factor of the table gets as high as 0.9.
search, insertion and deletion of keys are real-
ised by microprogram control. Performance im- Based on the analyses, we realized a parallel
provwmeuat of ranging 9 - 13 times are obtained hashing scheme on an experimental system, to be
ever pare software hashing. The application tech- used for symbol manipulation. In sections 2-5, we
niq*se ef hashing hardware to symbol table manipu- discuss the architecture and the performance of
latieo, property list handling and set operations the implemented system.
are given. The advantage of hashing over associa-
tive memories in these applications are also dis- The fact that basic hash table look-up opera-
cussed. tions can be done with speed comparable to single

indirect addressing encourages more extensive use
I. Introduction of hashing in new areas of applications. In sec-

tion 6, we explain how several importeat algor-
Hashing plays an important role In speeding ithms in symbol manipulation are speeded up by the

up table look-up operations. It is extensively hashing hardware.
used, not only in the traditional language trans-
lation, i.e. assembling and compiling, but in 2. Initial Design Considerations
zymbolm1mipulation at large, e.g, formula mani-
pulation , execution oJ a Lisp dialect , and Our problem domain is symbol manipulation
aassciative processing . where tables (data bases) to be searched are taken

In main memory and accessed by hashigg algorithms
Although hashing is the fastest among known such as given in chapter 4 of Knuth.

methods in the table searching of N items in terma Our approach is
of computational complexity (O(1) compared with (1) to build into memory-CPU interfaze parallel
O(log N) of binary search, for example), a con- mechanisms of (hash) addressing and data (key)
*tat time factor due to calculation of hash ad- comparison,
dress sequences is not small in software hashing and (2) to incorporate hardware logic to compute hash
in some cases, hashing gives way to alternative addressee into the address forustion unit in

Stechniques. Moreover, to avoid rapid degradation CPU,
of the performance, the table utilization must be and
limited to far less than that of the total capaci- (3) to replace the hashing control sequencing
ty, say 70-80 Z. (traditionally done by software) by faster

logic, i.e. microprogramming.
To overcome these difficulties, we proposed

parallel hashing schemsa in which n independent Several variations of hashing algorithms are
hash address sequences are used to access a hash known with regards to key collision and deletion

handling, apart from the choice of hash functions.
Research supported in part by grants In aid from We summarized below our considerations on theseus
Ninistry of Education (No. 479039) and Kurata issues. For detailed discussion, see papers.

Research Founder ion

fill

Epen addressing vs. chaining methods for collision the instruction reperioire of the processor is
res.lou.t i-o augmented with the hashing instructions given in

Table 1.
When bits required for chaining are rightly
raken Into account, overall performances of HAU is further divided into three parts. hash
the two are nearly equal, address generator (HAG), hash code generator (HCG)
The open method is more amenable to and hash table descriptor unit (HTDU), as shown in
parallelism of memory at:cesses than Fig, 3. HCG is used to generate, out of a key k
chanining. bit patterns (hash code) which are then input to

HAG for the generation of a habh address sequence
Hence, thn onen addressing method is selected for (h). HAG implements the following generation al-

eur tmplementation. gorithm (cf. Fig. 3):

With or without key deletion Let o and o' be the hash code, and P be the
size of a hiash table (cf. Fig. 1). P should be

Traditional aovlication of hashins such as a prime number. To generate h and Ah, we use a

symbol table manipulation in lansuase mask value 2 which satisfies the relation
translation may not require handling of key "I M. I
deletion, since a symbol table is discarded 2 2 :

as a whole when compilation (or assembling) (2 1-1), Ah -' , (2M-l)
is over. h
However, in the advanced application to be if h 0 _ P hJ "- h -P
discussed in section 6, i
key deletion handling is indispensable, if Ah P a, Ah A- ' - P

Among the key deletion algorithms based on for i, 2, . P-I

the open addressing method, an efficient '1 ,

intthod developed in [7] requires extra ht h +

hardware resource in memory (collision number if hi ? P, /i• n-P
counters in each memory word).
In our implementation, it is expensive to HM's ar, realized by logic-in-memory cards,
incorporate extra bits in each word each having 32 k bytes of memory, They are inter-
withotit losing the compatibility with faced to common bus (Unibus) (hence accessed as
the target computer architecture. main memory via memory management unit (MMU)), and

The above considerations lead us to adopc a key have following functions;

deletion algorithm which makes use of three states parallel read operations of HM1-Wi4 which are

of a memory word, i.e. 'deleted' (all 1), 'empty' invoked by HAU,
(all 0) and 'occupied' (bit patterns other than , pattern matching capabilities, which detect
the shov, two bit patterns). 'deleted', 'empty' states, and key matches,

The dificulty with thir algorithm is that the Hash table descriptor unit (HTDU) in Fig. 3

'deleted' words accumulate after repetitions of contains 256 table descriptors and each provides
hash table base, size, and the other auxillisrykey deletions and insertions, It causes degrada- information to be used in HAG, microprogram con-

Lion of the performance, especially unsuccessful trol unit and ALU. The dascriptor of each hash
searches. We need a clean-up operation of the tabl can also b e d erate an had-
hash table; i.e. to reclaim 'deleted' words that table can also be used to generate an 18 bit ad-
Are no longer in collisions with other keys and to
turn them into 'empty' state, relocating keys, if
necessary. Without collision number conters,realized by mcropro-

this operation must be performed with the aid of gram and its algorithm i. discussed in the next
software (rehashing all the keys in the table) in section.

conjunction with garbage collection. The hardware

must have a function for monitoring the perfor- 4. Basic Hashing Algorithm

mance in order to determine when to initiate the
garbage collection, however. Given key k, let k's be the simltaneously

read-out key from bank i, for i.l,2,...,b.
3. Description of the Hashing Hardware We define following signals to be used in the

microprogram control unit;
Figure 2 shows our experimental system incor-

porating the hashing hardware unit (HU). It Is M - m1 v m 2 , ... mbthe implementation of the model in Fig. 1 with
*• t£nl and b-4 in the case of single-length (16 bit) E - • M' (aI. v e ' . Ub)

keys. The hashing hardware consists of two parts;
hash addressiug unit (HAU) and hash table memories D - U (. vdb)
0(1i). 'the conventional ALU (16 bits) is micro-
program controlled. Without HAU, the system can where
emulate an existing mini-computer (particularly
suited for PDP 11). With the hashing hardware,

100 I

ANS:. . --. +J-

e. is the resulc of the r.omnarison of k. and table. Therefore, the algorithm for IWI is only
to repeat the table look-ups until either If or D'emey '.becomes true.

i. is the result of the comparison of k,. and

'deleted' Execution of the hashing instructions is in-
and terrupted when the number of table look-ups ex-
m. is the result of the comparison of ki and k. ceeds the pro-specified value (sceps not shown in

the above algorithms).. Counting the number of in-
a•, d• end m. are generated in memory bank 1041. terrupts, the hashing software can monltor the

performance of the table look-up operations of a
We should uote that the comparisons are per- particular hash table; thus we can tell when to

formed in parallel and that the results (M. E and invoke the clean-up operation as discussed in sac-
D) are available immediately after the completion tion 2. Returning from the interrupt and restart-
of the key read operations. Ing the instruction is performed by instructin

HRTI. Instructions on 'virtual' keys are die-
Algorithm S (key search)_ cussed in section 6.

Instruction HSR io implemented by this algorithm. Keyllm.
Stop 1. Set i 4 0
Stop 2. Compute a hash address h,. The hardware has to cope with multiple-length

Step 3. Access the hash table. keys, since the keys are often strings of char-
(N •'and D are available at the end of this acters, complex data structures, etc. The opera-
step.) tion of HU is not affected by the atrribute of the
S.bit pattern (data type) other than the length.

Step 4. If N then return the mtched a osition. The basic lengths are 'single' (16 bits),
If E then t erminate the elgorithe. 'double', and 'quadruple'. Longer keys are treat-
(key k does not exist in the table.) ed either as 'virtual' keys (cf. section 6) or as
Otherwise, set i .- i+l. and goto Step 2. lists. Hash tables are created to be oun of the

above types, 'pair' (i.e. pair of a single length
The key deletion algorithm is similar to Algorithm key and the associated value) or 'virtual'. The
S& replace the first line of stop 4 above with
"If N then put 'deleted' in the matched position", ined from the descriptor) by Instecition (Ta-
Instruction HSD Is used to executt the deletion (GTHT), This type information is used to invoke
algorithm, appropriate micro code at the exuntioe tims of

HSR, HGV etc.. Note that for 'double' keys, the
The key insertion algorithm which corresponds hash table appears as two-bmk (b-2), sand for

to HSI is an follows: 'quadruple' keys, as one-bank (ba').

Alporithm I (key search and insertion)- 5. Rvaluation of the Perfo•9rm e

Step 1. Set 1 + 0. Figure 4 is the timing chart of MiU operating
Step 2. Compute a hash address h. on 'single' key. The actual clock periods for
Step 3. Access the hash table.
Stop 4. If N then the algorithm terminates. t1, and t, in Fig. 4 are approvisately 300, 400

(Key k already exists.) and 1000 ns respectively, and therfore the esti-
If E AD then put k in the 'deleted' mated execution time (excluding the fetch and

position, decode time) of HSI in the case of successful
and terminate the algorithm, search is 1.6+l.31 micro sac, where i is the number

If N then put k in the 'empty' position of hash table accesses. i depends upon the load
and terminate the algorithm, factor of the table and the number of mory

If D then set t+ the 'deleted' poTition,he tales of mem
seat i.i+l, &ad goto stion 5banks. The values of i based on theoretical

Otherwise, set i4-i+l, and goto step 2. analysis are given in references. ' In the
parallel hashing schemes, i is equal to I mostly,
unless the hash table is heavily loaded.Step 6. Access the hash table.

Step 7. If N titan terminate the algorithm. Talbe 2 shows the timin of typical runs
(Key k already exists.) which make use of HSR. We can observe the
If 9 then put k in position t performance enhancement by a factor of ten over

and terminate the algorithm, the software hashing. Similar improvements of the
performance are observed in the case of the other

Go tstp5.oto step hash instructions.

Instruction HNI is used to insert a new key
that is known to be non-existent in the hash

1['1

II
%•" ' , •_.....,, ., _. _.. . .• .• ,• •,• ,•..,•"/•,• .••.',•L',.>.,••;• ,/• •!!;-•i•• '•' ' *;•; ' "';••. ~I

6. Application of the Hashing Hardware he formatted so thiat HU can handle t. One way to
handle the complex structure is to make an abbre-.

• Although the hashing hardware is designed to viated key (p.543 in Knuth
6

) or
be general as far an possible, in this paper we v(virtual)-keyll out of It. How to make the
only give following applications. This is because v-kay is in the realm of software. To treat a
these are used in existlug software systems and v-key as a proper hash key is that of hardware.
the effectiveness of use of hashing is already eI- In treating a v-key, we should note that:
tablished, The hardware replacement of the hash- • creation of a v.kev out of a complex structure
lag software algorithm will greatly speed up the Is many-to-one mapping,
operations as observed in section 5. , hence, HU has to cope with the situation of
(1) symbol table manipulation in assemblers and multiple key matches.

compilers,
(2) property list handling, 8

The search algorithm in a v-key differs from
(3) creation of a unique copy of data structures Algorithm S in the following points:

to enable fast equality checking,2' 9
1. When a v-key match occurs, it saves

(4) as a special case of (3), hash 9cons' in Lisp the current hash status (o di mi hi 4h),
for the sharing of sub-data structures and
fast equality checking, 2

and returs ths pointer to
(5) set operations.9 r-key* (performed by instruction HGR).

2. The associated software checks whether r-keys
•ymtbol table manipulation match.

3. If r-key match occurs. the search ends

Figure 5 illustrates data structures of the successfully.
uymbol tables to be used in conjunction with HU. Otherwise, the search restart, -rom the next
Eln Fig. 5, HT1 is the 'pair' type hash table. point where it is suspended eftir restoring
When the key in 16 bit, the key itself is put in the hash status (performed by instruction
th- key part of the hash table. Longer keys are HORN)
accomodated as a pointer to some appropriate entry 4. When E*

2
becomes true, the search terminates

of another hash table (e.g. when a key is unsuccessfully.
'double', a pointer to an entry of HT2 is placed

* ill HTl.) As a special case, we consider the case that
the key itself is again a pointer to a hash table.

Prop*t ylist handling This is the case where a set is implemented.
Figure 6 shows the data structure. The search

A property list is a Lisp terminology. 1 0
algorithm is as follows:

Am implementation method as given in reference
1 0

1. Compute the v-key using a symmetric hash
relies on sequential search of lists. The function, g
method discussed here is a speed-up version of i.e. g(x,y)-g(y,x), since the order of
property list handling using hashing. For exam- elements of a set is insignificant.
pie, the Lisp code (GET OBJECT ATTRIBUTE) may be 2. Use NOR and find the v-key match.
executed (interpreted) as 3. If & then terminate the algorithm

I1SR tl,a ; a points to a double-word key (unsuccessful search).
consisting of pointers to 4. Use HSR to test the matches of each element of

atoms OBJECT and ATTRIBUTE, the hash tables.
and tl denotes a hash table 5. If all the elements match, terminate the
Snumber, algorithm, otherwise find the v-key match by

This instruction searches for HORN and goto 3.
a Lisp cell constructed by
hashed cons(OBJECT, ATTRIB1i11[)

tBNE UNSUC ; If not in the hash table,
unsuccessful search
(result in r) I. When necessary, we use term 'r(real)-key' to

MOV r,a denote the key other than v-keys to clarity the
,GV t2,a ; t2 is the 'pair' type difference.

hash table, where the value *2 Strictly speaking, R is not the same as that
associated with defined in section 4, since the scan of signals
(OBJECT ATTRIBUTE) is stored. (eimidi)may start from the bank different from

UtNSUCM 1, and since multiple match may occur.

Creation of unique copy of complex structures

in general, complex structures cannot be tre-
Hted directly by HU, unless it is built up of uni-
form sttructures such as lists in Lisp. It should

102

41

we should Soto that .14. 1W is used recur- would be difficult to develop. Dif forest
sively. we aoed to save timle cotests of the temop- apipr~oache to thOSO applisations woul be
rary storage im (i.e. Ahh I i), booides status macescary.

ei di and miIs the v-hey pi~oeamalg (Semanticm of .ceas a
Ma sad I001). Numes, ve wi~ dwgIliato of regsi- h
tore in W detually.B me. got X-hy hushins sad Ve bane uham hU0 hsbada s e ys
the others for v-hay haehang. by hardmosu and gLees oeIllutrative exu1es

of Its ame.
In the ease oI lnt. s, wesea do without

v-hays. W3 In Fng. 5 ilseetreta the shared thM architecture deems Is I4 reflect.
Linkend lint constmucted by umique lions' by the beasic voqutrmfts fer do hankie hardwre a
hashing. given in (7). it asloe mflese ame desse ova-

prom"* Imposead by. pvesstaI .4601ddursetme for
7.An~lto-AJI LMwith the emerimat" a59St ov mi maat-m.ý wrnmsco

A"Itrnmatv~d suescompatibility with the exietiag system, dimmestmss
of the system, eft.. V rA ics h

Toharing la the a ppl-dana stutrstnocctuoetta whe avtermage we stos lm ban Ouibds I soe of12h
so@is tht bankngures.wdesnilyI th22 aboed lthemthfe won fussed I .5 o

was 1 seomaistfe retrieval yhashng (is boetged p-tfS ~ptwy hSml nta
up.theso iiahit" cropey of daaystruthis foprfast that otaethe hanhingt o feelm Mu mmary-aute.a
squchity subeedh" n by) Yan a e" m 'pab- s of h2, a sashin ba willo bay furth .er iqioved
Aarcoustder hobking strucavstureos In contuctig TN M& m mSAINA"lae4,
cmlex sti fructure* 12o2m anda4soma the lnrtisaloidthm . hash 0.ddfro

(ledsmMooe ~ry hip),ofy secssad ll, bay th sI --- n ofiothber stain
whsichtive lrinaretrirvlb bathngi bated Opvolrnticone torespoerti ofly. thiseu 1841a-"f
bpo sth sle-Ut popuorert of kgeyts. Thsbeo htwn spee Madi opeationms o an u dis-Untod.

thesmd beperformed beoy ehm~ipe W01P* Inte fa104, ticris of - iia ashuduas a"avalbe d these
cot to gutlf eys tecatd performaue. seled fherde.1 ' lbef~be-IN

we consider MWit thre cm lvelapu ofZprb
Usedmaino for thefollsow Aaaefatring resm:Tegnrthen figoresthm beS 2,b ad&@@@ o

thich ansa~oiative srucuesaegtalvl clod e tho th choiwer of 2.l (Tem NAg) sad f
hoss-i atemt mepordatiofmaghaihtude iafatot(ouemeg bpese) seem tloas of aeuthe (meibu
thansocitatIvo memoryechisa&.ne 14 wihadtio m f aldtIb hardare we oud he.cOe
not maention scae cqlaua ost L perormabce. t parsewtere.- sihieecuo h efrec
o urthhamhiegwithma the mie@ ee ofthtblLi wl autobdwthecmmryad
siautd emly behooy d ReNs pace ofasther Isaia eqipd the f4 is5* hIn allthe 2m euscan could
thn ssy.aiv emre bI cudue fort hashong. w (n A)adb
houell maneiy ofplheations hasin be fatlied fu apbns o ob dqae(e
tha assmimativem pithchashn tbleaseduato onorftwance, fouthieh waoensive) uNeof the
awoi.t~h no ots.wt additional hardware, wost wouldaui harvaei e e oaaed Pullova-
hasgersables arpe rmedtto s posiblmemoy with paaeter of th hardwrehase tof ait peformathe
ou bence gscea the apbiit of eoitiv rtrleva softwallresl) dlorpasut.ithe*c memoeryecaritdtea
lata d eaily incodrpoaeds inpocexitn inadeeut of the h&n*upe ih6 .7mashitng hamriar wull
amhiecturey. aov L rwiu.scim be usabed buol has ler ys o eoo
Ful Varie ilty of datastructu can be aged ineegba"V a.ta teiercisrpr
hhing clujaetsm wtho hare teabled maiuain n toiewerovwide datas toxtensariv sedo thehaig
ha~sh (alsaerdi omain .amery lueations bethei hardware se t ad t fofr the alo
Boseretn caapabciity iof asmoiedatav herea op.thate ineivelevmelt % exeren e wiah thasbis-

Vreyodaastructures woul be subec ed ionawr halgebare wil boettte incroaeastrucionatpor-te
hashngsncr te aord cogrniealzdI units since hashide idaelia to sandadied up hshn

RA~s(ant meary)opeamtions abath Is hrdatrse ind imterprtorebalso
whefr te"i uscondcudthio"Mri&d uatf aai syste tuha In igp levd la dires machtineankn

corespyondin cofficetagoraithms (engist macinesfo bahing lebelievgaed ospee u

operatioos) based an associative memories

103 -

Achnwadgemst

We thank Prof. 1. GOto of Unversity of Instruction Function
Tokyo for discussionsa n application techniquaes of nSK Search key
the hashing hardware to various symo1 masipula-
tion algorithms. We also thank Mr. K. itraki of HGV Get value of 'pair'
University of Tokyo and many people of Mitsui HPV Put value in 'pair'
Engineering and Shipbuilding for the help in the S4 Nayo key insert
implementation of the whole system. HSD Search and delete

Nofereosa OHR Get real-key
CIIIORN Get real-key next

]dioPR Put reel-key[I] Gets,.DX Delete existing virtual-a ytime complexity with application to formula RRX Deturn from hash inter=
manipulation, HT Put in ha h tb teript
Proc. ACK-SYhSAC, 1976 PTHT Put in hash table descriptor

[2] Goto, E. Monocopy and associative algorithms LTUT Get from hash Table descriptor
in an extended Lisp, Tech. Rapt. 74-30,
Department of Information Science, Table 1 List of Hashing Instructions
University of Tokyo, (1974)

(3] Feldman, J. A. and Rovaer, P. D.
An Algol-based associative language.
CACM, Vol.12, No.8 (1968)

[4 GCoto, 8., Ida. T. and Gunji, T. case 1K case 2"1 case 18 case 2S
Parallel lashiag algorithms,
Information Processing Letters, Vol.6, No.1 HSR for 6.1 6.6 S.SxlO 8.3x10
(1971) 'aingle'keys

[5] Ida, T. and Gato, Z. Analysis of parallel
hashing algorithm. with key deletion, HSR for l.lxlO 1.2nD 1.21102 . x102
Journal of Information Processing, Vol.1, 'double'keys-
No.1 (1978)

[6] Knuth, D. E. The art of computer programming, HSR for 1.8x10 2.0x1 0 2,01102 2.3x102
Vol.3, Addison-Wesley (1973) 'quadruple'

[7] ida, T. and Gote, 1. Performance of a
parallel hash hardware with key deletion, keys
Proc. IFIP Congress (1977) (in micro seec)

(81 Kanada, Y. Implementation of HLISP and Note:
algebraic manipulation language R'DUCK-2, 1. Values are average execution timings
Tech. Rapt. 75-01, Information Science when accessing all the keys that are
Laboratories, University of Tokyo (1975) 1H: filled upto 50% of the table that in

(9] Sassa, M. and Gets, K. A hashing method initially 'empty'
for fast set operations, 2H: filled upto 80% of the table that is
Information Processing Letters, Vol.5, No.2 initially 'empty'.
(1976) Cases 1S and 2S are those obtained by executing

[101 McCarthy, J. at. al. Lisp 1.5 programmers equivalent pure software (using standard PDPIl
mannual, MIT Press (1965) instructions) hashing algorithms on the same

III] Ida, T. and Goto, E. Parallel hash machine.
aLgorithms for virtual key index tables, 2. Timings include fetch and decode time and
Journal of Information Processing, Vol.1, interrupt handling time if interrupt occurs.
No.3 (1978)

[123 Ida, T. A computer architecture with hash
addressing capabilities (in preparation) xc

I'I ;oto, E. et, al. FLATS, a machine for .. -. --. ...---.. . ,
numerical, symbolic and associative
processing,
Proc. 6th annual symposium on computer
architecture (1979)

114] Chu, Y. Direct-execution computer 0
,rchitecture I,
l'roc, IFIP congress (1977)

11] Yau, S. S. and Fun&, H. S.
Associative processor architecture - A
Horvey,
(Com~puting Surveys, Vol.9, No.1 (1977)

104

-4

LA~ 'jý.!L

• • • . . • • • : • ; • " '-' • -'- r - '- " - - '- 'J • I i • . . " • . . ." -, - - " " '

i: O, , 1 1
t 2 h"

in heah eiresid

ms msbus switch.

h.........

I microprogram *0,
Main I control unit

Fiura P rall asig ch m

12drinlg K 32KB 32KB 32KB 32KB

Hash

-'--'- -' '

ML* ro Unit c, R4
Memorybu

SAddresddres. It dat)
Figure 2 System with Hashing Hardware

105

!:I

r~~~~~~ ~ ~ ~ ~ - -------

key

rT

SHash -.... Non-Zero
Code Transform
Generator I h°i

S~~~~~~(mask bits)•I _ • -

: l [multiplexer
size(P)

_bale

physical addres

Figure 3 Block Diagram of Hash Addressing Unit
"HAG microprogramr ALU time in total

tV2minguolt HTOU HCG HAG -M control

selectste~ 1. t. a hash table

clheck
s te p 2 - to ty pe s

_2t-

step 31 to generate transfer key
hash code to KR's

compute OCCUPY
step 4: t' ~ h.4.bass common bueh . i e cycle t'

step 5: ti compute common bus• h cycle,_ ,/
lpisrole, readl Ii-t -t i

compute. eMuitpe.jump GR- matched

common bus jump to
stop 7: ts cycle Stop6

jp o rei~ llo e ai d l ilia. 3 - -,t . t 0, lt, t

stop j: to lump to Set condition
fetch routie code

________.______ . - 4-u)t,• t, it.

Figure 4 Control Sequence of HSR Execution
106

- . 'A

*0"A

VW.

oc. attr. type. etc.

Figure ~ ~ ~ `1 5 Rersettin ofaSybl.al

v-key ointe

'virtuar'air hash ttleabl e'hshtae

Figure 6as Repree ntto ofule Sets UsngHahlabe
MT2 107

RAP,3 - A MJLTI-MICROPROCESSOR CELL ARCHITECTURE
FOR THE RAP DATABASE MACHINE

KOFLAZER E.A.OZKARAHAN
Middle East Technical University, Ankara, Turkey

and

K.C.SMITH
University of Toronto, TorontoCanada

Abstract microprocessors, maqnetic bubble memories (MBM),
high density bulk RAM chips, etc.

Recently introduced database machine proposals
are critically reviewed, A new architecture for Survey of Recent DBM Proposals
the cell processor of the RAF database machine util-
izing multiple microprocessors and LSl serial Most of the recent database machine proposals
menvries is presented, The proposed cell processor have exploited the advances in technology by
designed down to the logic gate level, embodies incorporating microprocessors, CCD's, MBM's and
concepts of modularity, flexibility, and firmware the like.
driven query processing. The concept of firmware
execution of high level RAP assembler instructions DIRECT is a system for supporting relationlal
is presented. The results of various analyses of databases. The system comprises a host for
the analytical and simulation models of the new interfacing with the users, a backend controller
architecture which were carried out elsewhere are for coordinating the overall database machine
summarized. Special emphas is is given to bulk hardware and software, mass storage units for
memories that have the start-stop controllability storing the database,a set of query processors,
(like magnetic bubble memories or RAM arrays and CCD page frames for holding the relation pages
simulating serial access) together with the that are being processed.
increases in functional capability and performance
obtained by incorporating such memories. In this system, the query processors and CCD

paqe frames are connected to each other by util-
KEYWORDS: DATABASE MACHINESASSOCIATIVE PROCESSORS, izinq a cross-bar switch, so that all processors

DATABASE MANAGEMENT, LSI MEMORIES, can access all page frames. Although this cross
MICROPROCESSORS, COMPUTER ARCHITECTURE bar switch is much simpler than the conventional

Lross-bar switches, it may not be cost effective

Introduction and may also reduce performance in larger 9
implemeptations of this system as proposed in

The idea of providing backend computers for with lO processors. This is because, as the

the efficient management of large databases, as a number of processors and pace frames increases,
substitute for the slow software access methods, the selector/decoder networks at the processor
has received considerable attention in the recent interfacet and the qating networks at the pageTied rnsiderarh e rtsention inthis areat frame interfaces of the cross-bar switch grow inyears, The research efforts spent wn this area size,thereby introducing extra delays in the datahave got issueserved J on transfers between the processors and the page

frames, and hence decreasing performance consider-

In the last years, many specialized processors ably.
for handling the database management operations
have been proposed. Among these there •re CASSM3 Another feature of the DIRECT system is that the
tI process hierarchies and tables, RRES for results of the basic relational algebra operations
relational database management and RAp5 ,6 that has executed by the query processors are treated as
been implemented at the University7of Toronto and temporary relations and are written onto free
S has also undergone certain changes. DIRECT8, is page frames allocated by the controller. The
being implemented at the University of Wisconsin. number of temporary relation page frames depends
Other proposals include the Database Comaputer on the number of query processors assigned to the
(DBC)'O,1 as a backend processor-memory complex query.
and the Bubble Memory Relational Systemt 2 . This scheme increases the query processor-

In this paper we will first survey the most controller interaction durinq page frame processing
recent research efforts in the database machine because of temporary page frame requests and may
field and then present a new approach to the RAP introduce unnecessary page faults for so other
processor architecture, beyond that of RAP.2 7 set of query processors executing another query

utilizing LSI technology, like off-the shelf concurrently, just because their page frames may

"108

ii
be assigned to the temporary relations of a Furthermore. since this system relies also onhigher priority query. In this way, the degree of the concept of index orocessing (although in hard-

parallelism my drop seriously because of the ware), the similar problem incurred by the update
creation of taimporary relations. The temporary operations on conventional systems is 1ikely to
relations may cause a more serious performance occur in DBC, because the structure memory should
degradation during the join operations in which be updated as to reflect the'result of the update.
the system page frame resources have to be onal
partitioned for the source and result relations. Utilization of MBM's for supporting rol
The Join ,operation may produce result relations databases has been recently proposed by CheanQ'
with sines comeparsble to the source relation and The proposed hardware comprises ON chips with
it is very likely that this system will suffer the certain augmentations to facilitate associative
thrashing problem in the join operation, selections. A relation is mapped oan oN or more

ISM chips with tuples across the min l~ops and
The Database Computer (DBC) is a system the domains along the minor loops. It is claimed

proposed for very large databases and a variety by the author that augmentation of the NO chips
of data models, utilizing modified conventional with off-chip indexing loops provides convenient
moving head disks. The basic system comprises two indexing during data qualification and avoids
processing loops; the structure loop for pipelined redundant traversing of disqualified data. Two
processing of the keywords and record indices and off-chip registers and a one bit comparator are
the data loop for actually processing the database provided for the database operations. The
contents. instruction set of this system is said to be

inspired from that of RAP with minor changes.
One of the major drawbacks of this system is

its way of representing data as attribute-value The operational deficiencies of this system
pairs. This scheme of repeating the attribute result from mainly the following: Since the hard-
information wastes a considerable amount of data ware employed is substantially small and simple,
space. Another drawback is that the number of provisions for in-place updates have not been
processors for doing the actual processing is very provided. Furthermore, the existence of only one
small compared with the database size; thereby comparator limits parallel comparisons on data,
reducing the parallelism that should be inherent hence limits query complexity. Also, the join
in database machine systems. Furthermore. the operation is handled implicitly as in RAP, but only
number of interconnections required between the a single domain value from a source relation is
disk drive array and the track information transmitted to the target relation per scan. This
processors may be prohibitive in terms of cost and mode of operation may severely degrade the perform-
physical requirements for the configuration ance of such a system in a join operation.proposed.

The following sections describe a restructur-
The DBC relies on the concept of partitioned ing of the RAP cell processor utilizing off-the-

content addressable memory (PCAM) for data accesses. shelfmicroprocessors and bulk serial memories,
A PCAI is one cylinder of a disk volume and is the especially MOM's. The proposed system differs
largest amount of memory that can be processed considerably from the previous designs of RAP.
with the limited amount of processors. Cne PCAM First, the hardware structure of the cell is
can be processed in one disk revolution, but if the configured into a more regular and modular structure
qualification for a retrieval is 'complex and/or if and the hardware complexity in terms of chip count
the data to be processed occupies a large number has been reduced to a third of the previous designs.
of cylinders, then many disk revolutions are Secondly, query processing driven by microprocessor
necessary for processing the data. The relational firmware and utilization of start/stop controllable
operation of join is also executed in a very memories such as MBM and/or high density RAM's
inefficient manner. First, all the qualified permit highly complex data qualifications and
domain values of the source relation are retrieved highly efficient join operation. The proposed
and then for each source value, another retrieval system can bg considered as a RAP.3 system
instruction over the target relation is issued. described in'. The reader, after following the
This implies that the number of instructions paper, can draw a comparison of other database
executed by the track information processors machines with the enhanced features of RAP, as
depends directly on the number of source domain also summarized in the conclusion, including
values. especially the join operation.

The performance study of t s system in The RAP database machine can also be regarded
supporting relational databases" shows that a as a good eowple of a High Level Language Computer
general purpose conventional computer performs Architecture. Since the context of the present
better than DOC for large relations (e.g. with discussion will deal with the architectural aspects
20000 tuples) with reasonably large tuple sizes. of the new version of thA RAF cell structure and
This in turn implies that this system, although the fact that the basic RAP architecture ;lpng with
designed to support large data bases efficiently, its instruction set are covered elsewhere*,°t, we
cannot support a database with large relations as will be content with providing only a summary
efficiently as a conventional computer despite description of the latest RAP instruction set in
the additional hardware costs introduced. Annendix-4.

. .,

ihe ew AP Cll 4~4s ch~~t~.T~,CH of each cell also his a differentth e APCl or ft ius All .741 tai its counterpart fh pviu

h, f ~c:~gbeen de is.' The, CM is chosen Iwod Orial
RAd 4.in yet organiU90ti.Nmaiv1 to fit data esce$ 'port size

~nohe aray~d)~~Ehft~yop~e~ *ucj.6 o h chell micrjrro~ssor data bus.wldth and
wre each subcoll ;caiorises a hitc rp¶ssor with Oiso to, 1MO~porate ~ather slao., 11ij emerging

wh ri -ohl0 rhg~est

necessary pen nr~'yip ft hp*. b"ch Oq b up I~i bk m"190. tslogieis like orh hdesy
funtinalcab~t A for *ev1$6 4 dfl0 cqeX RAM's (0.9., 1j. K) in t ale~ra i ton so as

data qualif~ir~tir ý* 1d iaSdMT9 to GO~Ahe ' 4 effectiye 4eta r&e. A RAP relation
incaae hef 11 weI~ten j9 ~ 41e Ifmpe 4itl to the' Cl(*fý4'thit the logical

cell .. uch sl'hcellpl" 44, td4~I%~~ nd~y ph~caITtru~ctu~ms 'of del* A ', re eXctly the
a rqa and a,datý.jk &Vi s~d to same. 'The format 4,% ikin#ormation reqiiiredlby the £
allow for 'pa~rAllb a. Ofe tupIe f ormat seresi4g circuitry of the jrovious designs

('e.u1na a'A is el iaieatWd cooqlef~ly And the. humber of mark b it

relation ",, sto It$ at(i domairA is (hcrfea$6d to'16.
celule~ yst~ 'l~*; ay citing In !t', nudiric dowwins can be 2 or 4 bytes

a tvodm~in 'Te I mi Inar With 2'!,(jj ement representation and non-numeric
array. 1Fiquro~-l 90QW thoS oy~erA ,uso 1 a sln a eurd rvddta

the nw RAP cell of a~ doanlntsi-ls hnoqa

A D 0 CMMTOI.LEU c Lontrol

S..

Fi~ure-1. S ul tructr ftuenwRAPcel

Vigure a) Cel ircuaiisting memory soruct.re

110 jl- ,- .

1101

to the maximum tuple size of 1024 bytes. Further- synchronization, the first tuple should be stored
more, other data types like floating point numbevs from subcell , while the k th tuple is being
can be easily supported without any extra hardware. loaded Into lubcellk, and the 2nd tuple should be
Figure-2 shows the format of the cell CM. stored from subcell while the (k+1)th tuple is

being loaded into sbbell etc. D•jring the
Operation of the Cell circulation, each subcel1 microprocessor isi initiated for processing as soon as its buffer is

The linear array of subcells provides multiple leased with a new tuple.
buffers (as small RAM's) for the tuples coming fiom
the CM. At any time during CM circulation, more It is evident that during the processing of CM
than one tuple can be out of the CM, which may be contents, only (k-2) of k subcells are actually
in the states of being loaded into a subcell buffer, active at a given time. This may bring the idea
being stored into CM from a subcell buffer, or of multiplexing (k-2) processors among k tuple
beingprocessed in a subcoll. The existence of buffers or, in general, multiplexing P processors
multlple buffers provides the necessary time for among M tuple buffers where N>P, IfI M is not anprocessing the tuples, thereby synchronizing the integral multiple of P, then a general interconnec-

data rove and data processing rates. The sequence of tion network (e.g. a cross-bar) should be utilized
operations during a circulation of CM can be to allocate processors to buffers. If however M
Wdescribd with a process/time-slot diagram given is an integral multiple of P, then a simple
in Figure-3. but static interconnection sche•i for multiplexing

each processor among (N/P) huffers uy suffice.
In Figure 3, Li, P, and S, denote the load, However in both cases, besides the interconnection

process, and store states of some tuple forsubcell., complexity introduced, the imlOftant feature of

respectively. When the CM circulation is initiatde CM wait time utilization (to be described later)cannot oe made, possible.
successive tuples are loaded, via DMA, into
successive subcells starting with subceli, until After pointing out' this alternative to the
the end of (k-l)th tuple. In order to si;y in original k-parallel microprocessor approach, the

F , F-L,-i t....

ifVlpme - 3 : Load/roceu@/Store sequences of call operatsas

U-4

I I I I 1 i 11 ",
'' ', ~ ~'Ii ,,.=

•. 11 = % .' "ii • .umu

VI V2 3 5 W'et

VLpre - 4 t Illustration of MOM wait states for ks I4

111!

'.

paper will continue dealing with the dedicated k SUBCELLs: They process the tuples loaded into
r)arallel microprocessor approach to elaborate on their buffers by the DMA CONTROLLER. The
t511 wait schemes and to preserve the modularity of irrocessing is driven by a query routine loaded
the cell architecture, into SUBCELL memories prior to the initiation of a

16 RAP instruction.
As it was pointed out in 16, the processing

time allocated for a subcell after its tuple is DMA CONTROLLER: This module controls the
l,';.ded is simultaneous bidirectional data transfers between

the cell memory and subcell buffers during the
TR (k-2 load/store operations. It also sequences the load/

k LS orocess/store operations and keeps track of the

w.here k is the number of subcells in a cell and l cell CM status.

is the DMA load/store time for a tuple. It shoul#l BUSES: There are four buses that provide data,BSES Therd ahrt four buseste time proends dnathe
(i, noted that the allocated time depends on the address and control paths between the cell modules
1uple size and is larger for longer tuple sizes.
in any case, the worst case expected processing during data transfers.

time should be less than or equal to T for a CFLL INTERFAC[: This module coordinates the,
given tuple size so that synchronizatigb is not inw, rall cell operation during instruction
lost. This constraint puts very high demands on initiation and termination, keeps track of cell
the subsell microprocessor performance and on the status, and provides for the connunication of the
number of subcells k (increasing k increases the cell with the RAP array controller.
allocated time) if the CM cannot be controlled in
't start/stop fashion (as would be the case with
-,t.ating devices or CCD memories). Furthermore, query Execution

this constraint limits the functional capability of In the new architecture, the microprocessors
tne subcell by restricting the complexity of query of the subcells in each cell are the basic data
qualification expressions. processing units. Therefore, these microprocessors

rihe proper use of the start/stop feature of can be programmed to execute RAP instructions','

MBM's (or asynchronous access feature of bulk RAM's)
reliuves the above constraints, so that hardware The basic idea behind the emulation of RAP
1,araa•ters can stay within feasible limits. This instructions with microprocessor routines is that
i• allowed in such a way that no performance each RAP instruction can be mapped into what is
degradation for average processing times occurs, called a "query routine". The basic RAP instruc-
while longer processing times corresponding to more tion constructs (i.e. MARK, RESET, MKED, UNMKED,
complex qualification expressions impose a certain
dynamic performance degradation which can be traded et , set nion copuons, comparisonsudetc. have simple microprocessor code equivalents.off with the issue of minimizing hardware, Furthermore, the combination of the results of
Furthermore, it is observed that in the execution various qualification tests as disjunctions or
of the 5relational join operation, handled implicitly conjunctions (or mixed which was not available in
in RAP where a target relation (domain) value i the previous designs) can be embedded into the
matched disjunctively against an array of source sequential logic of the microprocessor query
relation (domain) values, the deliberate imposition routine. This oapping brings considerable

f ' oi% CM (by stopping CM whenever nICWUS',v enhancements to RAP capabilities, since now,
Sejuces the overall time to execute the join qualification complexities are limited only by the
o,,eration. This point will be detailed in a subcell microprocessor program memory size ins-ead
!iIcming section. of the static hardware registers of the previous

Sigure-4 shows the process/time-slot distribu- designs . Furthermore, since the whole tuple can
Figure- a sontrollae CMandrfores/ties diTh - be accessed during processing, domain to domain

.)e, fir a controllable CM and for k = 4. The comparisons and updates are also made possible.b~asi.c idea behind the utility of the start/stop An example of a query routine is provided in
fe aLure of Lontrollable memories can be stated in Andex ov
'iht, following way: when the time comes to store a
tuple from a subcell buffer (e.g. storing subcell 1 The subcell microprocessor memory comprises two
wliile loading subcellk) if that subcell has not p The ROM prt cons e icequ twific.
yet asserted that the processing of the tuple is parts.in evaluationThe ROM partoinesta(i.e. numeric andli finon-

•omplete, the CM is put temporarily in a wait numeric value comparisons) and routines for the
state to allow for the completion of processing. relational join and free variable operations. The
]he extra time requested by a subcell becomes also Rc.
available to (k-2) succeeding subcells so that the RAM part is logically partitioned into two arts:
.h'arce that they will impose further waits is one for the query routines and compunicatircn
highly reduced. A,, analysis of the timing of buffers, and the other for the. tuple to be processd. *1

operations fue t'is case is presented in Appendix I. Before the initiation of a RAP instruction.

F unctions of the Basic Hardware Modules the equivalent query routine and/or necessary
So e i r dparameters are loaded into the RAM's of the

The hardware modules given in Figure-I have subcells of all the cells involved in the instruc-
the following functions: tionafter the cell interfaces connect their cell

112

S,' .'

Fr.

buses to the buses of the RAP controller. values are buffered and the above operations are
repeated until all source relation cells are

Each time a CM circulation is started and processed.
whenever a new tuple is loaded into a subcell
buffer, the microprocessor is forced out of the The number of source values loaded into
idle state to branch to the query routine. At the target relation cells per circulation depends on
end of processing, a hardware flag is asserted to the size of RAM space of the subcell, and in the
signal the DMA CONTROLLER so that the tuple can be current design, 400 2-byte numeric domain values
stored back. (equivalently 200 4-byte numeric and a total of

800 bytes of non-numeric domain values) can be
The cell interface is also controlled by a loaded and matched against a single target value.

microprocessor, which after each RAP instruction This number compared with 3 to 5 of previous RAP
is executed on the CM contents, polls each subcell designs shows a significant Improvement in the
and updates the cell status and computes (if execution of the join operation. (The improvement
applicable) cell set function subresults. however is not as much as the ratio of the loading

factors due to the differences in the architectures
Execution of the Implicit Join Operation and the fact that the cross-mark operation is now

broken into discrete steps each starting at a new
The important and frequently encountered revolution (i.e. a repeated MARK Instruction)).

database operation of join, is done implicitly in A snapshot of cross-mark execution is provided in
RAP""= by the cross-mark type commands. This Figure-5.
operation is accomplished by extracting the qualified
source domain values from the source relation It is evident that processing that many source
cells and transmitting them to the target relation values imposes waits on the CM and hence increases
cells until all source (master) relation cells are the overall circulation time. However, it is
processed. The execution of this operation had to observed that (in Appendix-2), if n is the number
be made as efficient as possible, because it was of source values that can be processed without
practically the only case where the superiority of imposing any waits, loading mxn (m >1) source
the RAP system to conventitoal systems was estimated values per circulation will reduce the number of
as to be less than lO-fold', circulations by (1/m) while the increase in each

circulation time of the target relation cells will
The new architecture employs a similar scheme be significantly less than m-fold, because of the

for this operation. The values from qualified parallelism in the cell. In this way, the overall
tuples of the first source relation cell are read time to process a source cell with m x n values
out and buffered at the RAP controller, then a loaded per circulation will be less than the
block of source values are loaded into target overall time with n values loaded per circulation.
relation cell subcells and these cells are
initiated for processing, this block loading is Features of the New Design
repeated until all of the buffered source values
are processed; then the next source relation cell The new RAP cell processor based upon the

Source, rr1rtior, ceill Target relation cells

Joi d main

I ý Va I [Jes > /I

"v•| sl 12 2

Controller

buffer

n total of mxn scans over p

- the target relation
' The join domain values The entire target relation
are read out from each is scanned completely in
source cell and buffered one memory circulation time

at the controller

F iqure-5 Execution of the cross-mark instruction

,Ill

_ ",:I
i.k

concepts presented above has been designed down to to reflect the average case. The second distri-
the gate level, together with'the necessary micro- bution had a mean of I 0 P sec with 125 P secs
processor query routines for the general RAP and 2000 p sacs as the bounds to model heavily
Instruction constructs . loaded processing sessions as would be in a join

operation. It was further assumed that the
In order to arrive at a decision for the controllable memory array (16 bit wide) could

number of subcells to usit vrious simulation deliver data with up to a 600 K Words/sec rate.studies were carried out * . Tuple processing The results of these experiments are provided in
times were sampled from two exponential Figure-6.
distributions. The first distribution modeled
processing times as to have a minimum of 25 p sec. It was decided that k - 4 would be a cost-
a mean of 125 jj secs and a maximum of 500 w secs effective choice to reduce hardware complexity

tiorma•ized total processing time

1.20 (M TP
1k 0 lOlz

1.15 " N, ý %
1.10 8 HS X I N%

1.05 % * ',,% ,

3 4 5 6 7 k

(a) Eap•eantial processing time distribution
1113:25 psce •SWM:125 ýwec MAX:50O paee,

4%
4%

4. (irTPT) %

•,%40 "ha
4.0 4%4

3.5

3.0
5 h

2.0

3 4 5 6 7 a k

(b) xpolneutial processing time distribution for CROSS MARK

H=83125 pose bMANt100O peac MAX:2000 usec -

ligure - 6 :Plot of norisalized processing tiom va k
(data rate as parameter

114 J
S. ,+•+,+., ... ,. ...:++,.,,+;% .,,+ ,++++ .,,+:,;:•, m + ? +.,+,,+ ++,i ,, ... I+

and impose practically no waits '-r the avwraq, efficiently, because a larger number of values can
processing times at the memory rate of 300 K he matched during each circulation.
Words/sec (5 M bits/sec)which is attainable by
the current MBM's, Furthermore, since all the cell status

information is kept by a microprocessor at the cell
The cell design utilizes 4 subcells where interface, task switching in a~greemptive resume

each subcell contains an Intel-8086 microprocessor multiprogramming environments'. , requirps no
sowith 2 K bytes of RAM and I K bytes of ROM and extra hardware. Relation status saving and•, some additional control logic. Total chip count restoring are accomplished by the two new,••

per subcell is 20. The cell memory interface is instructions SAVE-MARKS and RESTORE-HARKS'MO
configured for 16 x 92 K bit MOM's but can easily which save and restore tuple mark bits into and
be modified for other types of MBM's and/or bulk from special domains appended to the end of each
RAM's (The reader, although not implied in the tunle that serve as a push down stack during task
paper, should not be disillusioned by the fact switchings.

I •that other types of bulk serial or block
addressable memories cannot be supported. They can The overall RAP system configuration with the
be with the exception of not having the further new processor architecture Would be similar to
performance gains achievable by the controllability previous RAP configurations"O,. only that the
feature. The architecture could also be controller for the cell array, which is currently
conceptualized as havinq a bulk RAM memory with a being designed, is expected to be a more
single microprocessor similar to the original design, intelligent unit. Its hiain functions will to be to
However, the speed to be imposed on a single keep track of device status by maintaining
microprocessor will be beyond those conjectured necessary relation and cell status tables,
for the future at least at the cost effective instruction scheduling for a RAP query whose
scales. Cost of RAM's would be another issue which instructions have been converted to microprocessor
must be cheap and competitive despite their code, data buffering in Join operations, control
volatility). The total chip count of this of hardware and software iterative instructions,
configuration is 160 per cell which is slightly computation of overall set function results and
over one third of that of the previous designs, communication with the frontend computer. It ts5

also expected to do the functions of the monitor
It should be emphasized that utilization of for the RAP multiprogramming and virtual memory

8086's is a specific case of the implementation of operations. The entire cell-array controller
the proposed architecture, In fact, besides the configuration will be driven by a conventional
large data bandwidth, only the powerful string frontend computer to interface the users.
operation instructions and a suitable subset of the
remaining general purpose instructions of the 8086 Conclusion
are utilized for implementing the subcell firmware,
In a possible large scale commercial implementation, After a survey of recent database machine
a special purpose microprocessor with only the proposals, a new architecture for the RAP database
necessary instructions can be developed and utilized, machine's cell processor is presented. The new
Depending on the cost versus speed trade-offs, it architecture has certain advantages over the
is also possible to implement the proposed previous hardwired RAP designs. Mainly, the
architecture with powerful 8-bit microprocessors hardware complexity is decreased while the opera-
having fast block operations, tional flexibility is increased. The utilization

of LSI components opens the way for the modularity
In memory, the CM data rates can be as of the architecture. The utilization of

high as technology permits, For example, the 8086 controllable memories also relieves the architec-
based system can support a 16 M bit/sec burst data ture from the constraints of worst case timing
rate for low to medium complexity qualification requirements.
terms of RAP instructions without any serious
performance degradation due to the utilization of Prom a feature comparison point of view the
waits, It may be concluded that, it is the proposed architecture has the following properties
limitations of controllable memories (e.g. MBM's) one or more of which are not shared by the other
that will be the determining factor for the database machines:
terminal speed of the proposed architecture,

a) Data qualifications of any complexity can
The simulation studies and analytical ... jdelinq be eva uated over the memory contents in one

of the cell operation show that considerable circulation of the memory.
performance improvements over previous RAP designs
can be attained. It has been observed by b) All kinds of updates and arithmetic
simulation 0 that the new processor performs 3-6 operations can be done on the memory contents
times better than the previous designs despite the without transfering data in and out of the RAP
fact that a larger and slower memory is being system.
"incorporated.

c) Join operation is handled in a very
The join operation, which has not been efficient manner, In most of the typical cases,

empnasized (from a performance point of view) in one target relation cell memory circulation may
nther database machiness, can be performed rather suffice to process the values of one source

VA
!i4

relation cell, compared to the large number of plus the capacities of the (k-1)
circulations (or revolutions) required in the subcell buffers).
nther database machine proposals. TWAIT total time during which the cell

d) Since no software access methods are memory Is in the wait state in
utilized, no overhead on the frontend computer is circulation
i mp $)osed . Then ý ,e have the follow ing relationships:

e) A multiprogramming environment can be T . i
attained without any extra hardware. TTLS+, wj-(lT..ji.(-2

j (k-2 andw)o)
f) It is expected that a sinle RAP database

machine is going to be confined w~thin certain
practical physical limits, In order to support whert, w are the wait times
very large database applications, either one or
c.onfigurations can be incorporated: 5,1 TW NT wj

1) Virtual me ry back up as in for a TweA T Jw.

single processor TREST , (k-1) TLS
?) The database can be distributed in a TTOTAL " NT *TLS+ TWAIT + TREST

network of RAP database machines and a given
database operation can be decomposed and executed - (NT+kW)*TLs+TwAIT
on the network of modest sizi RAP's concurrently,
as shown by a previous study' 2 . It should be noted that TWAIT is dependent

RAP,3 prototype implementation, along with its on the complexity of the query routine (if k and
d Iroady operational softawaretis nearing completion TBIT are fixed), but an upper bound on TTOTAL can
at the METI , we derived as follows:

:klt w~l _d_~e iw en t . A s s ume th a t a l l t up le s re q u ire e xa c t ly L t im es
We gratefully tharnk Intel Corporation for the the time allowed by the architecture i.e.:

donation of 8086 microprocessors and memory chips, TREQ - L*(k-2)*TLS (L > 1)

Appen Ix 1 Assuming also that mod (NT,k) s 0, then
Timing Analysis of Cell Operations during the circulation, NT/k tuples will be

processed by each subcell, The time to handle a
The following analysis describes the tuple is:

relationships among certain timing parameters.

Let TT UPLE " TREQ+ 2 *TLS
TBIT CM bit time - CM shift titm/16 where the last term accounts for the load and store

TUPLEN a length of a tuple in bits times.

k -number of subcells/cell (k3 because Since processing of the tuples are overlapped
of the data move strategy Incorpo- over the k subcells, the total time for a
rated) circulation will be:

TLS -time to load (store) a tuple via T" (NT/k) *TTU (k-l)* T
DMA - TBIT*11JPLEN TOTAL PLE + LS

TAVL _ available time to process tuple i + (L-I)*(k-2)*TLs

NT a number of tuples in CM

~tOA total circulation time of CM from where the first teiin is the time to process NT
the start of loading of the first tuples with k subcells in parallel, the second

tuple to the end of storing of the term is the time to restore the (k-l) tuples at

last tuple. the end of the circulation and the third term is
the initial extra time (beyond the allocated time)

1REST -extra time needed to restore the last required by subcel1 for tuple Inserting
(k-1) tuples. (It should be noted T TPLE gives on upphr bound fo p the circulation
that CM circulation is completed only tui

afte th la t t ple s rstoed, time when each tuple requires L times the
,

after the last tuple is restored.
Some extra time is needed to restore allocated time. as:
the last (k-l) tuples because the TTOTAL ((NT/k)*(2 +L*(k-2))
total dynamic capacity of the cell
memory is equal to the CM capacity +L*(k-2)+I)I TLs

116

-- ~J

,~

~

Anuendix ? Nrri l' tinq Ilie teems I- I and m(k-Z)+i in the
!xLtwo equatinni . whiich are much less than the

Anal ysis of the Jo in Otier-At ion rov-' rvial,; . (rireSpond inq ternis we can write:

The time to process one tSourcf9 ,,,I oit -1; 7TI _~ (NT/k)(?+-m(k-2))
contpnts can be aooitoximated i%: - .- -.. P -*

TJOI - + TOTAL, nowait NT
BUF TOAL. ?+m(k-2)

where the first term is the time to read and buffer k orm5
the source cell values (1 CM circulation) and thek
second t.erm is the time to process the NS buffered it can be observed that imposing waits on the
source values and represents rNS/nl circulations CM by feeding in more source valus per circulation
(i.e., n values are passed in each circulation) reuet&nubro icuain y atro

of te trget reatio cels.1/rn while the increase in the total time of each
If n Is he umbr o sorcevales hatcan such circulation is less than rn-fold, hence the

be procesled in one target relation cell memory iseal redu ed. rcs h ufee orevle
circulation without imposing any, waits (L x 1), then I.srdcd
the total circulation time for this case will be The actual execution time in reality will be
(ref. Appendix 1): much less than the above derived bounds because

T (NT+k-) *Tof the fact that after each target relation scan,
TTOTAL,nowait 0 (N~-l*Ls the number of target values not yet selected and

while the total number of such circulations will be hence will impose waits, will diminish at an
fNS/nll.increasing rate until the last target relation
NS/n 1 1 scan,

If M *n source values are processed in one Tecretdsg mly orsbel
target relAtiln cell memory circulation, then Lh urn eineposfu uc'l

will be roughly m, and the total circulatio n time (kz4) and assumes that CM shifts at 300 kHz giving
will be: a T BIT of 208 ntec/bit; then for 1Kbit target

relation tuples, the allocated time is 426 psecs.
T TOTAL, wait 2 ((NT/k)(2 -m(k-2)) Within this time, the INTEL 8086 routine

+m(k-2) 4 1 Tdeveloped to perform equi-join on 2 byte numeric
l TLS domains can process 100 source values without

whie he otl nmbr o sch irulaios wllImposing any waits. Processi ng 400 such source
beil th oalnmero uc*icuainswl values gives Lt4, Since atarget relation value

be [S/(*n)].may qualify for the join before the whole source

QUERYRTN :LEA SP,MASKD / check if tuple is deleted
CALL MKED / previously-,
JB NOTQJAL / exit if deleted;
LEA BP,MAKT4 / check if tuple is T4 marked
CALL MKED / previously; JMKED (T4) ?
JNB NOTQ.JAL / exit if not T4 marked;
LEA BP,PBl / set pointer to parameter block 1,
CALL COMPIIIM2 / call numeric comparison routine*,J SALARY 2000 It
JNB NQTOJAL / exit if comparison fails;
LEA BP,PB2 / set pointer to parameter bloc k 2
CALL COMPLITR / call literal comparison routine J DEPT a 'SHOE' It
dM8 N0TQIJAL / exit if comparison fails;
LEA BP,P83 / set pointer to parameter block 3; AD50TOSLR

N0TtJAL CALL ADD? / tuple is qualified, update i D 0 OSLR
NTUL JMP WAIT / and wait until next tuple;

MASKD DC X180001 / mask for deleted tuples;
MASKT4 OfD X108001 / T4 marked mask;
PBI DC A(TUPLE+SALARY) / address of SALARY domjin in buffer;

DC 1412001 / external comparand;
DC HIV' / comparison mode for "Greater than'";

PB2 :DC A(11JPLE+DEPT) / address of DEPT domain in buffer;
DC H18' / length of the domain;
DC HI'21 / comparison mode for "equal to";
DC C'SHOE' / external coimicarand;

PB3 :DC A(TUPLE+SALARY) /
DC H'5001 external value to be added.

r i 9ure- 7 Intel 8086 Proqram for a RAP Instruction


~~~~~~~~~~~~~~. ..: .. ....... . .. • • • L • ,• , • - " . . .. . ..

value block is scanned, the actual average total SUm Selects and accumulates
",irculation time will be considerably less than COUNT Selects and counts

whit was found in the above analysis for the worst- MAX Selects and finds the maximum
v La;e assumptions. MIN : Selects and finds the minimum

AVERAGE Selects and computes averaqe
Ap.pndix 3

Insertinn and deletion commands: Insert and delete
Query Routi.ne.Examp. record occurrences.

Comsider the RAP instruction: DELETE Selects and deletes record
occurrences from the record type

ADD [EMP (SALARY): MKED (T4) & INSERT : Inserts record occurrences into
SALARY >2000 &DEPT . 'SHOE'] L500i the record type

which adds 500 to the salaries of those employees Data definition commands: Initialize. populate,
which satisfy the accompanying qualification and delete a record type.
expression. It is assumed that SALARY is a 2 byte
nuneric domain and DEPT is an 8 byte literal RELATION Defines a new relation (record
domain. type). Size, type, length

oarameters for the data are
The query routine for this RAP instruction, declared. (Key attributes and

in INTEL PO86 instruction set, can be given as in access paths are defined if the
f iqr u- I, sofware emulator rather than the

actual machine is used). User
The routines MKED, COMPNUM2, COIPLITR and capabilities, access rights, and

ALD2 reside in subcell ROM and perform mark status the protection paramters are also
tests, value comparisons and addition updates on declared with the use of this
thil domains of the tuples according to the command,
information supplied with the associated parameter CREATE Populates the database for the
blocks. Since the data qualification evaluation specific record types which have been
8nd the update are done together, this instruction defined by the RELATION command,
would take only one cell memory circulation to DESTROY Deletes a record type
process all the tuples of a relation.

Sys tern commands:
It should be noted that, it is possible to

construct query routines for data qualifications AUTHORIZE Grants access to the user via a
ond/or updates of any complexity, password

LOCK Specified record types are locked
Aend~ix_.4. against concurrent accesses

RELEASE Releases locks
Summary of the instruction set of the RAP SAVE MARKS Current mark bits of specified
D•1'As-ensmler language - relations are pushed onto stacks of

each tuple
selection and retrieval commands: Implement RESTORE MARKS Restores marks by poping the
%election and/or data retrieval. - saved mark bits

LOCATE Returns the node address of the
MARK Selects and tags relation being searched
RESET : Selects and removes tags MOVE Moves an entire or restricted
iF.AD Selects and reads subset of a relation to the
CROSSMARK : Maps between two record types specified site
(.RS CONDMARK : Maps between two record types STATUS Performs dynamic status checking

F, . I. r IRST MARK Cursor and mapping within a for branching purposes
record type READ MARKS Same as READ, but output includes

(1.T.JFIRST :Cursor -also mark bitsSAVE : Selects and saves item in RAP
register Register manipulation commands:

Update commands:Perform selection and in-place READREG : Reads out RAP registers
:arlthmetic and replacement updates. STORE REG : Enters data into user registers
•tl t t o nDEC REC Decrements specified register" AD: Iteml Iteml+Item2 (or constant) contents by oneSUB : Iteml + Iteml - Item2 or constant INC REC : Increments specified registerMill. : Iteml I4teml * Item2 or constant contents by one
UIV : Iteml4.Iteml/ Item2 or constant) RADD,RSUB,RMULRDIV: Perform specified arithmeti.
RFPLACE : Iteml - Item2 operations on registers as:<ýreq> - < re 9>< ropr>Kope rand,> where

St.(ttistical (Set function) commands: Select and ropr is one of RADDRSUB,RMUL, or:ompute functions in-place. RDIV.

.S, ,. P,,, " . .... . , , . ,''. . . : , • • . -,...,% .



Decision and transfer comimands: Control program Berlin, September 1978, pp.319-329.
i; loops,lo12) CHANG, H., "On bubble memories and relational

TEST Tmsts presence of tags within a database", Proceedings of 4 th Int. Conference'
record type on Very Large Databases, Berlin, September

BC : Branch, conditional and uncondi- 1978, pp.207-229.i tional

EOQ End-of-query 13) OZKARAHAN, E.A., SCHUSTER, S.A,,SEVCiK., K...,
(;. "Performance evaluation of a relational

References associative processor", ACM Treneections on
Database Systems, Vol.2, No.2, June 1977,

1) IEEE COMPUTER, Special Issue on Database pp.175-195.
Machines, Vol.12, No.3, March 1979.

14) SCHUSTER, S.A.,OZKARANAN, E.A.,SMITH, K.C.,
2) IEEE Transactions on Computers, Special Issue "A virtual mimory system for a relational

on Database Machines, Vol .C-28, No.6, June associative processor", ArIPS, Proceedings of
1979. NCC, Vol.45, 1975, pp.291-296.

3) COPELAND, G.P.,LIPO4SKI, G.L.,SU, S.Y.W., 15) OZKARAHAN, E.A.,SEVCIK, K.C., "Analysis of
"The architecture of CASSM: A cellular architectural features for enhancing the
system for non-numeric processing", performance of a database machine', ACM
Proceedings of First Annual Symposium on Transactions on Database Systems, Vol.2, No.4,
Computer Architecture, 1973, pp.121-128. December 1977, pp.297-316.

4) LIN, C.S.,SMITH, D.C.P.,SMITH, J.M., "The 16) OZKARAHAN, E.A.,OFLAZER, K., 'Microprocessor
design of a rotating associative memory for based modular database processors',
relational database applications", ACM Proceedings of the 4 th Int. Conference on
Transactions on Database Systems, Vol.1, Very Large Databases, Berlin, September 1978,
No.1, March 1976, pp.53-65. pp.300-311.

5) OZKARAHAN, E.A., 'An associative processor 17) OFLAZER, K.,OZKARAHAN, E.A., "A I•ulti-micro-
for relational databases-RAP", Ph.D.Thesis, processor architecture for a cellular database!
Department of Computer Science, Univ. of machine-RAP", Technical Report IS-OS.5, Dept.
Toronto, January 1976. of Computer Engineering, MElIJ, December 1978.

6) OZKARAHAN, E.A.,SCHUSTER, S.A.,SMITH, K.C., 18) OrLAZER, K., "A Microprocessor based approach
"RAP-An associative processor for database to RAP database machine cell structure-Design
mana ment*, AFIPS, Proceedings of NCC, Vol. and Analysis", M.Sc. Thesis, Dept. of
44, 975, pp.379-387. Computer Engineering, METU, June 1979.

7) SCHUSTER, S.A.,NYUGEN, H.B., OZKARAHAN, 19) UNLO, S., "Design and implementation of a
E.A.,SMITH, K.C., "RAP-2, An associative software emulator for the Relational
processor for databases and its application", Associative Processor-RAP", M.Sc. Thesis,
Proceedings of 6 th Annual Symposium on Dept. of Computer Engineering, MElJ, August
Computer Architecture, Palo Alto, April 1978, 1979.
pp.52-59. Also in the special issue, IEEE
Transactions on Computers, Vol.C-28, No.6, 20) OZKARAHAN, E.A.,ONLO, S., "The revised RAP
June 1979. instruction set and the RAP software emulator",

to appear.
8) DEWITT, D.J., "Direct-A multiprocessor

organization for supporting relational 21) OZKARAHAN, E.A.,SCHUSTER, S.A., "A High-level
database management systems", Proceedings of machine oriented query language for a
5 th Annual Symposium on Computer Architecture, Relational Associative Processor", Computer
Palo Alto, April 1978, pp.182-189. Systems Research Group Technical Report CSRG-

74, University of Toronto, 1976.
9) DEWITT, D.J., 'Query Execution in Direct",

ACM-SIGMOD Conference Proceedings, May 1979, 22) TANSEL, A.U.,OZKARAHAN, E.A., "Query Execution
pp. 13-22. in Distributed RAP Database Machine Systems",

Dept. of Computer Engineering, Technical Report
10) HSIAO, D.K.,KANNAN, K., "The architecture of IS-D0-6, Middle East Technical University,

a database computer-A summary", Proceedings 1978.
of 3 rd Workshop on Computer Architecture for
Non-Numeric Processing, May 1977, This work is supported it part by the NATO research

number RC002,80 of the Scientific Affairs Divimion.
11) BANERJEEJ.,HSIAO, D.K, "Performance study

of a database machine in supporting
relational databases", Proceedings of 4 th
Int.Conference on Very Large Databases,

A

......................................................



AKCHITECTURE OF A MULTI-LAIGUAGE PROCESSOR

BASED ON LIST-STRUCTURED DELs

J.P. SANSONNET
M. CASTAN
C. PERCEBOIS

Laborstoire "Langages et Systkies Irormatiques"
Universite Paul Sabatier

118, route de Narbonne 31077 TOULOUSE CLMEX
FRANCE

ABSTRACT I.1. lhe 3L-mudel
A direct execution scheme with a single level

,A ditvct-execution model, based on the tree- was defined i.e. a scheme including only one inter-
struLtured internal representation of the source- mediate environment between the source-text and the
texLs has been defined. It features a single inter- executional environment (fig.1),
wediaLe envirunaent and two environment transfers e

0he first one corresponds to a bidirectional trans-
lation between the source-text and the tree-struc- Exttrnal Environment
turod intiernal form. The second one is a conven- SOURCE- TEXT
tional microprogrananed interpretative process on a I..
specialized hardware architecture.

In this paper. a full description of a hardware
arcMliecLure which directly holds the tree-structu- EDITOR
red forms is given. Its characteristic features are
discussed and the ,atcro-control operations which "
deal with the main tree-structured form concepts
(recursivicy, top-down tree traversing, escapes) Internal Environment
are preseinted, 3L - FORM

L
1 - INTRODUCTION INTLRPRETLR E

N
To solve the problems resulting from the seman-

tic gap, which arise in the conventional computer
,ystetns, new computer architectures have been revea-
led these last few years. Their purpose is to sup- Executional Environment
port directly one or more high level languages, in 3L - MACHINE
hardware, In this way, eliminating the order-codes
tends to close the gap between the high level lan-
yuAge and the physical structure of the host machine.

Although the Von Neumann architecture is increa- Fig.1 - The 3L-model
singly and rightly questioned none of the proposed
systems of high level language processors have been A first interactive processor, the editor, is res-
traded successfully. We tried to analyse the reasons ponsible for the communication between the external
of these failures 2 and it appears that the attrac- environment (source-text) and the internal environ- .
tiveness of the Von Newnann architecture resides in ment (DEL).
its conce tual simplicity, whereas the suggested
solutions3 4,5 are characterized by complex models, A second processor. the interpreter, is responsi-

difficult to understand and to implement, and often ble for the evaluation of the internal form through

leading to gas-works architectures, the hardware operators.

Therefore, we nave proposed a direct execution The 3L-machine (M3L) is the physical support of the
scheiie, based upon the definition of a class of list- 3L-model. Both processors are microprograimed on
structured directly Executable Languages (DELs), r43L, with a high level microprogramming language,
which is derived from LISPo. The objective of this specialized in the expression of the emulation pro-
SCneme Is to provide the implamentation uf high level cessing : the Language for E14lation (LEM).
languages with a systematic support, easy to under-
"stand, and to use 7 . 1.2. The 3L-form

The choice of the intermediate environiient deter-
wines the direct execution scheme. As we wished to

120

- -.--

- .,.I . .. ..'4, , .,: =



•, ,• •,••N, -• , . ",•, • • ? ¶ ' ,

.,alntdin the whole semantics of the source-text
wnhile providing the interpreter with an easy form
to nandle, we chose a list-structured internal form.
based upon LISP : the LISP-Like-Languages (31). The I ' W'

3L forn is prefixed anU fulTy paFenthetited.Although
its stemntic power is very high, its syntax is abso-
lutely trivial and it offers a great systbmatization f
for the internal representation of the programs.

The JL form is represented within the memory x
"by a binary tree-structured form. This form is tag-

ged. its unit is the pair-cell :
16 16 8 No

CAR • C •R I UES

the CAt field generally represents a left pointer, M ,
the CUR field a right pointer, and the LES field 'ji-
ves the description of the cell content, more pre-
cisely for tne representation of objects. Y

Examl : Suppose that in the high level language nodewe ave the operation f(x,g(y)). It can be expres-
sed in the terins of the symbolic 3L forin as
(fx (gy)), and within the pair-cell memory

MICROINSTRUCTION

STACK MEMORY

16

('N MAL !1S

6 C (AR' ' - O

SI, [•',,.* - ARCHII;CTI-, C 'U I,' l iiiH3.

S121

ECI MM

I~~ ~ ~5 e..... .. _......



2 - THE GENERAL STRUCTURE OF M3L The arithmetical and logical unit (ALU)• 
The ALU o f -13L -f i u il-M-fr- o-m-- Tour AM 2903 LSI

The i43L project started with a systematic study
u" the interpretation of LISP. First, we defined a chips. Owing to the use of an arithmetical proces-
.pseudo-machine, then we wrote a simulator, and de- sor, its task is very small it has to manaae the

veloped a microprogrammlid LISP interpreter upon it. Ai registers, and it performs data amxjarisons which
The simulation measures opened up on a new archi- are typical tasks of the environment transfers.
tecture, wnich was defined for the M3L prototype, Inputs/outputs
presently in the achievement phase, Theints7outputs system is built from a 8

bit wide peripheral minibus on which the interface
2,1, Sýynjotic of H3L adaptators for asynchronal communications are con-

Th oralo ation ote3L-achine is nected. These chips perform the standard controlv, Thr e siiple. The resources are interconnected via a functions according to the CCITT V24 Standard. The
viry le. Tu whie resourcies are interconnected viaa- minimal version of M3L includes an ACIA for driving
%itO is 1b.bit wide, being the naxtiaal size of the the TTY, and another for interacting with a micro-prototy isr- e widemo, bein th(figs2) system, responsible for the management of inputs/prototypie pair-cells memory, (outputs and disk-files,

In the 3L--machine there are four categories of
registers
Ai registers iCLO,1b5

they are used for current works and information
transfers between microprocedures GE1ERAL BUS

Bi registers idU,2551
they serve as global registers for every micro-
procedure, they contain the descriptors of the a

* current emulated system
ri registers icLO,31.

they are flip-flops which give the status of the 1/0

system. They are global resources and some of
them can be set or reset by the programmer

RIi registers ifA0,33
they iake the recursivity in LEM possible by tne
use of their locality.

Thre numerical -processing
In the Von Neumann architecture, the numerical

prucessing is prevalent. It is represented by the
central operator and the inputs/outputs. More and 0
more, it is integrated, especially in the riicrosys-

tems. On the contrary, in a high level language
processor the non-numerical processing is prevalent.
It: is true for 13L where the architecture is desi-
gned according to the emulation processing. Of course
it is yet necessary to incorporate the elements of I
the numerical processing within this architecture. AI IRSSE
Never•ireless, they take a marginal place in M3L and
they are entirely supported by a single LSI family
(A00d 2900),
. Tne arithmetical processor

o thearilthmetical functions of the 3L DIK
machine are performed by a monolithic processor
(AM 9511). This processor relieves the machine of
"all the corresponding micro-software of mean impor-
tance for emulation. It can be viewed as a periphe-
ral of M3L, it runs in parallel, and it is inter-
faced by the general bus, The main operations per-
formed by tre A4 9511 are t

-18 data manipulation operations : conversions
fixed-float, read, write, ..

- 5 fixed arithmetical operations l16and32bits)
4 float ariti•metical operations 32 bits) : t-

*i -11 secondary operations (32 bits floaL)•
sin , cos, xY, ... PERIPHERAL

MINIBUS
Fig.3 - THE PERIPHERAL MIINIBUS

122L.I
I



3 - THE i41CROCONTROL The typical formats are

23 7 0
3,1. A two-levele. wilcroprograntoin.i-,

Microprogram's, written in LEM, are coinpiled to CST-8

produce fixed microcode. Vertical microprogramning 1

used for this implementation results in two advan- 50
tagu s : the effort of the compiler is less important CST-16
and the size of microinstructions can be shortened.
This reduces the amount of microcode to swap during
control switches. Short and long constants

The great diversity of control signals to pro- 2._ _ _ _....._ _ _
vide (in particular, to control the tri-state bus) A 1  A 1  At 4 .
nas led to a two leveled microprogramming. The method L 4

used here is different fron the nanoprogramming of
QM.16 which uses a second level of microprogramming. Three different places are available for
To execute a microinstruction through the datapath the Ai registers
one must 23 20 11

1. provide some parameters . ':./ Ri Ri R'
- number of Ai , Bi ,RI ... I I
- long, short constant Four different places are available for
- numoer code of branch operation, of the Ri registers

ALU function ...

2. define an action to execute, i.e. to state a 23 is 0

particular data transfer through the datapath. Bi 8

The second part, fixed for a Mivan action,still
requires much imore bits for the direct control of Bi registers
gates. The repetition of such a long "ded-bit" se-
4LuO'ce is cuwbersome. fhut, the action to be execu- 2
ted is specified by the second level of micropro- Ti T BR
graiming, in a single horizontal word where each
control bit drives directly the gates : it is theexecutive e Tihe Ti registers are associated with the

execuiveBRanch field
The format of a fix-sized microinstruction is B

t he. 1

OPC IPl P2 ...... Pn ISB16

UPC represents the code number of an executive, and SB specifies the CALLed microprocedure address
the Pi's are the arguments.

Tihe size of the microinstructions is 32 bits. 23 7 0
To tne ope,'ation code (opc) can correspond up to IND ESC
256 executives. Theoretically, a great number of
executives can be defined but practically the faci-
lities of a datapath are never completely put on USC is the escape tag and IND specifies the stop
use : our simulation of a LISP systeil required 60 mode for the return on escape condition < , ,
executives only. The executives reside in a fast
PROiI mmamory (tA- 35 mis) with 256 words of 116-bit . Tie executive word
length. Fife-executive ii-roy-ided into 14 sub-fields which

J.2. Uescription of the microcontrol words can be, or not, attached to a particular control
_ ------- task upon the datapath. The size of the following

Tito microinstruction.arameters sub-fields is illustrated below.
Tnrre are-1U available pi paFrme-ters. A nicro-

instruction is an assembling of sov.e of these para-
itieters.The assenoly rules ire stated hy Pch ara-

mmeter place within the 24-bit parameter field.

iPc D111 AIII i i I ý1

U dHiIi' S. J 1 4,1, .1'Id . 16

EXECUTMV WORD) FO~MAT

123I.I
;),1



P I

field name CONTROL OF 3.4. Suspensions

IPC microprogram counter A suspension is a request for a temporary halt
o1.5 MPX (Shift and I4ask) of the current microprogram. During this halt a sin-
SK Stack memory gle microinstruction is performed. The suspension
MSLL Memories selection takes place when the latch is loaded : an encoder
ALU A1D 2903 ALU detects the suspension and yields its number. As
SA,13,•. source selection for the general there are 8 different suspensions, the 8 first exe-

bus transfers cutives will therefore be regarded as suspension

IA,Bl,C,O receptor selection for the general handlers.

_-_- _ I bus transfers One of these suspensions will be the refresh
(AV,,C,D specify the four different transfer nodes, request for the dynamic fIOS memory. The aim of this
via the general bus) suspension is to perform a refresh cycle without

modifying the current context.
3.3. u pLer4if 3.5, Interrupts and microinstruction tracing

ihe cycle time of the 03L microinstructions is Another suspension will be associated with the
fixed to 5t00 ns. It nay seem to be long for a modern interrupt request. It has to save the current con-
technology but with regard to the. power of wicroins- text without changing the microprogram counter
cructions it is a good speed. The cycle starts with (pPC), also it has to branch to the interrupt hand-
the fetch of tne microinstruction (100 ns), it in- ler. At the hardware level, the management of in-
cludes some register moves, and always a wain con- terrupts is achieved with the help of two interrupts
Lrol poase which is 200 ns longý controlers (AM 2914) which allow the handling of

As thL case may be, this phase performs 16 interrupts levelst

ll dcL.s. to the pair-cells memory
-iin driihmietical operation on the ALU TRACING EXTERNAL
- a contu;xt switch with an access to the stack memory FUNCTIONS INTERRUPTS

l, r e f r e s h c y c l e . t o .1, ,

MIfADORM MEMORY TRACING

RAM MEMORY

(tA 50 ns) IT VLCTlik STATUS ASK IT

... ;8 GENERAL BUS re

hardwi red
4 A parameters To each microinstruction word, a tracing byte

PRI ORIY is cUncatenated,where each hit is associated with a

L E I microsoftware interrupt. The bits are setted at theMJX MLX Lom1pilling stagu. Thus, when running, they activaLesp request the correspondinjg tri interrupts which then are hild

SI sequentially, according to their priority level.

LATCH They can be enabled or disabled in software.They
are used in microprograms debugging and for the M3L

56 prototype measurement.
4A- THE PAIR-CELLS MEMORY

EXLCUTIVE 14ME40RY
PROM The pair.*cells memory is the main resource of Itns 1613L. It is built with dynamic 140S memory, Each chip(tA S 1 MICROINST. PARAJIS contains 16 k - I bits and its access time is 150 ns.

The pair-cells memory is organized in 40-bit wide
o P ... words which are divided in three fields having eachElso one 16 , 16and B bits,

Fig,4 - THE TWO-LEVELED 14ICROPROGRAI4MING

124

- ~ r~EŽ.& 3~.3 ~J ~ * ~ . ~ .:.' ~. -'JAW



Data moving in the write mode

BP14 1ISK (I
(WRITE)swi ~SHTth

The first regi ster -contains the a~r-ss of the
- leirooy celil to be modified, and the second one cont-

F0 Fl F2 teins the information to be moved.

Access in the control mode----- •--,A • -- • ACTIONS
LIST

The register contains the address of the
referenced to memory word. After reading, the con-
tent of the corresponding Fj field is added to thei 6i microinstruction address register. In most situa-

64K 16 4 tions, the access in the control mode concerns the
descriptor field of the memory cell. Hence, thismultiple branch operation enables the 3L form to be

6PM -SK decoded. More details on this microinstruction art
(READ)) SHT given in the section 5.3.

16 16 4.2. Access to the descriptor field
Whereas the access to the pointer fields (fO,

- - - FI) is fixed, the access to the descriptor field
(F2) is more versatile. As a matter of fact, for a
given emulated system,. this tield can arbitrarily

Fig.5 - THE PAIR-CELLS MEMORY be divided into contiguous, or sup.rposed sub-fields..
These sub-fields can be accessed to in the read/
write, or control modd, like the pointer fields.

Ensuring the access to a sub-field of DES needs
The access to the pair-cells menory, in the a special device to select the field. Thi; device

read/write mode, ;: done through the general bus. was discussed in a more general situation. Here it
With respect to data moving there are two kinds of is applied to a byte only, thutiw t is very simple.
access in t0e read mode and one in the write mode. There is a mechanism for thrvkutn operationand
As for control there are three kinds of access. another. mechaaAfm, strictlg s ic,,or the writ-
4.1. Acces. to t pointer field ting operatiap, Therefe we 1 ,t'Nlv describe the

oata moving in the read mode fetch mchansm.
SingIM~rft :Thng syntaix is-i~Q A DESCRIPTORM~O1

the first register specifies tnd the F

second one contains the address of the emetter.

LLAaMII : A2 . FI(R3) means z
"MEER the Fl field of the pair-cell, which address

is stated in the R3 register, and store it into
the A2 registerm

when compiled it yields the following microinstruc- SHIFT
tion : SHIFT

PC-tREAV1 / j A 1  B

double transfer 8 MASK

Tne first register contains ene address of the emet-
ter whereas the second and the third registers deal
wilt, the receivers of the fields FO and Ft. GENERAL BUS

fetci Al into A2 and R3 is equal to A2 ,-FO(AI)
It yie l d R3 * FI(AI) Fig.b - PRINCIPLE OF THE DES ACCESSING MECHANISMIt yields:

23 20 17 15 11 5 A first logical level, MUX, performs a circular
PC-REA2 I A R A1 i' TA i BR shift on the descriptor byte. This shift is perfor-

med in a purely combinatory an parallel manner by a
special chip (SGN 0243). A second logical level masks

125



the irrelevant part of the descriptor byte. The se- P1 takes its input arguments into the At regis-
lection of a field requires the specification of a ters and outputs its results to P2 via the Ai's.The
shift (0-7) and a mask (a byte). These informations object of the Ri registers is to maintain the value
are included into the executive of the microinstruc- of Ai registers in the environment of PI, this value
"tion wnich fetches the sub-field. does not have to be erased by the application of V2.
Example To the recursivity an automatic escape mechanism

is added. Writting the top/down recursive parsers
requires such devices wich are similar to software

DESCRIPTOR SUB-FIELDS 14ASK SHIFT interrupts (like "ON conditions" of PL/1).
6 An escape microinstruction performs a return___________ _ operation to the last call microinstruction which

F2 ii# FF 0 has set, in the recursivity stack, a tag number
(El constant) equal to the tag number of the escape
microinstruction. Escapes and recursivity are two
concepts which are closely related, hence they have

F3 #07 0 bee" merged In order to offer a better systematiza-
3 0tion of the control transfer between microprocedures.

It is thus stated that, in LEM, calls are recursive
and returns are escapes.

The control unit is illustrated in the fig.7.4 (W//•////..J 4O Its ma in c omponents are .

ESC stack :eviables the escape number to be saved

when a recursive call occurs

,//- ,// ,,.C014P :when an escape microinstruction is per-
FS #ul fomed it ndiate ifthe escape num-O Mer, given as an argument. corresponds

to the escape number, that is read into
Tne combinatory nature of the select mechanism the ESC stack

of the descriptor sub-fields enables the 93L *me- 4PX3 32 x I multiplexer, The selection is made
Smory word"pto be viewed as a sequence of fields according to the Ta numr ssed as
.FtO,n * whichtare equally accessible in the road, an argument, meanwhile T aallows the
wrdte, or control mode, in a single microinstruc output to be, or not, inverted
ttention uPC stack is the saving stack for the microins-which was paid to the access to the intermediate truction address registerFI environment on M3L,

ADDER is a simple adder to perform relativebranches

THE CONTROL UNIT MPXI,MPX2 are the input multiplexers of the micro-iiBeyond the special organization of the main m-instruction address register

mory, the second feature of the K3L architecture VPC is the microinstruction address register
.concerns its control unit, As a matter of fact, it I1P', control : produces the control signals which
has to support the recursivity mechanism which is a correspond to the operation code of the• !•fundamental aspect of the emulation functions. The current microinstruction.
LEM language is recursive and this is conveyed
through the hardware structure at the level of the The control unit microinstructions
control unit of 93L. The five bassic milcilnstructlons dealing with

rA LEM module iscomp d of lthe sequencing of the microprograms are : the con-
which are independent and not ordered, They can tinuation, the conditional branch, the multiple
refer to each other and even to themselves. In con- branch, the recursive call and the escape.
trol swAtching from a micro~rocedure to another1 A. 1. Continuation
global registers are used for parameter passing ana _______________________
Ri local regist;ers are automatically saved. SubroutineNTIUA.T em ddress .SB

PFC - SB 
.S

Owing to the continuation microinstruction, it is
possible to perform branches between the micropro-
cedures without any push uperation.

126

*" "•<(•-•• -.-.. ~'l•- ••... 1 I
•i iL,% • • ;.*, •.,• K. " I



PaE param param

ESCAPE P

STACK DISTC

16KI t@ A 6 - o A

IAAX

PMicroprogram

FIg. -0 THE CONTRL UN

m a UP- C
T AsS +1loADck PX TC

MU- -

CONiNUATHO CNTO LOA 1N2

BRANCH LOAD

CALL + 1 LOAD 1 2 WRITE(*)

a LOAD
ESCAPE NO 0 READ

_ _ _ _ _0 NO_ _

MULTIPLE BRANCH _1 + 1 LOAD 2 1

()Tne storage of the uPC into the stack is performed after the Incrementation and before the load

Table 1I THE MI1CROINSTRUCTIONS OF THE CONTROL UNIT

127



2. C t bra

2. Conditional branch Whereas the numerical processing can be easily
integrated, this is not true for the non-numerical

,I 1 processing. As a matter of fact, it deals mostly
BRANCH T...i 'I with the organization of the information. It does

not need any special processor but it is expressed
if (T- I and Ti = 1) or (T= 0 andd ri= 0) through the distribution of the resources in the

-.... computer architecture. On M3L, a special attention
then pPC - PC+ BR+ I was paid to the organization of the resources and
else viPC . pPC+ 1 in particular to the memories management the M3L

The deplacement BR is signed. The signe bit is in architecture is based upon two memories the pair-
the iost significant position, cells memory and the stack memory.

3. Multiple branch Thp, M3L project started in september 1977, The
prototype, drawn during 1979, is presently in the
achievement phase and will be operational in June

CASE Fi, ,F ,, 1930. The complete machine, with the input/output
n\ terfaces for the connecting of the TTY and disks

management, is made of five boards following the
SP(•P(;+ 1+ Fi(Aj) (1• 2) European standards. The prototype is equipped with

This microinstruction enables a decoding starting a 64 K pair-cells memory and a 16 K stack memory,
froi, a sub-field (Fi) of the descriptor, representing 70 percent of the chips.

4. Call The architecture of M3L is simple. Just like the
_ _....._Von Neumann architecture, it varies in direct ratio

Subroutine .' with th: size of the memory. Therefore, it can serve
CALL Address (SB) as a basis for a line of general host systems.The
E present implementation corresponds to a middle need

S' 'but a new version of M3L, with a virtual pair-cells
* I•PC 4. 11PC+ I. 1memory is studied where the datapath will be 24-bit
* the current context is saved into the stack wide, Just. like the Von Neumann architecture it

Ri stack 4 Rij 0 ,3  offers a systematic approach for the implementation
ESC stack 4 iSC of the direct execution scheme, that makes it easy
uPC stack + •PC to understand and to use. Consequently, it bears the

p IPC ,- SB r'.quired features for a large diffusion. From that
v time onwards, there is no doubt that such an archi-

tecture, and more generally X-architectures, will5. Esa supersede the conventional sequential computer sys-

tems,

V
11n1 context is popped from the stack:

Rilo, 3 ÷ Ri stack
-if. Ei - ESC stack then, IPC ÷ PC stack

The escape microinstruction is executed as many ti-
Ies as necessary until finding an escape number cor-
responding to that, specified in the Ei field, It
scans the control unit stack in search of its cor-
responding context. Hence, it generalizes tile return
meclhani1 sin, '.mocilari Sill

CU1NCLUS IONS AC KNOWLELGEMENTS

Tlhe first remark that we can make about the This work was done at Paul SABATIER University
MAL architecture is related to the numerical proces- in the Laboratory of Professor R. BEAUFILS and was
sing ; it is not absent, since without it there sponsored by the French IRIA under grant #79-027
would not be any execution, but it takes a seconda- for tile building and evaluation of a prototype offe-
ry place. This does not imply that 143L is not able ring LISP and PASCAL capabilities.
to perforlll efficiently this kind of processing. On
tle contrary, owing to the advanced integrationr
;capabilities, a LSI family ensures, alone, the func-
tions of the conventional architecture very effi- J
cil),tly.

128

" ' , , , • "-. , : .. .



REFERENCES

LiJ J.P.SANSONNET, M.CASTAN

Un oxomple d'emulateur : 143L
Report LSI # 131 Univ.Paul Sabetier Toulouse
June 1978

L21 J.p.SANSOdNET, A.CASTAN, C.PERCEBOIS
Jefinition at dvaluation d'un fmulateur
Report IRIA 79.027 Vol.1,2 1979

L31 RICE et al.
Symbol-ZR System
SJCC AFIPS 1971

14J DASKOW, SASSON, FKONFELI
System design nf a FORTRAN-machine
ILEL Trans.on Computer Vol.16 n14 1967

[SJ Y.CHU
Hiqh level computer architecture
Ac.cdemic Press 1975

r6] J. Mc CARTHY
LISP 1.5 programmer's manual
A4IT Press - Cambridge 1962

/1/ J.P.SANSUH*iET
The 3L-Model : an alternative to the Von
Neumann architecture
LSI Report # 77 TOULOUSE January 1980

13 J ANOOATA CORPORATION
Computer alters its architecture via new control
Electronics - August 1974

L91 U).LITAIZE et al.
An efficient hardware tool for bit pattern
manipulation
EUR0I41CRO Congress Venice 1976

I101 4,L.uISs, il.R.SWAHSON
A microprogratmmed LISP-machine for the
Burroughs B1726
SIGI41CRO NEWSLETTER Vol .d '3 1977

LII.i ABAWDEN, R.UREENBLATT, JHOLOWAY
LISP-machine progress report
HIT Report # 444 August 1977

1112J L.W,IHUEVEL
"Ideal" directly executable languages - An
analytical argunent for emulation
IEEE Trans.on Computers Vol.C-23 nO8 1974

L13j E.I.ORGAWICK, JA.HINUS
Interpreting machines. Programming of the
_117O-B1800 serle
Tne Computer Science Library, North Holland,
197d

129

.I,
- . ,;



HIGH LMEVEL ARChITrECTURE FOR A REAL. TIML LANGI'AGE LTR

G,F. CUAZITI.* D. VIDAL

B, FROMENT B. RMCUSSAN P. VUARIER

*CERT/DERI 2 Avenue Edouard Belin **UPS/ISI 1l8,route de Narbonne
J31055 TOULOUSE CE'DEX 31077 TOULOUSE CEDEX
[iU,\NCI.: FRANCE

ABSTRACT Iii recent years, maony stud itas have been carried
out based on languages which are, essentially, algo-

This paper presents a methodology of definition rithmic (FORTRAN, PASCAL, EULER, BASIC, SYMBOL,...).
of a high level machine for a real time language. The study described in this paper concerns the de-

First, the choice of an indirect execution computer fi ition of an architecture specialized in the axe-
architecture for this class of language is discussed. cution of a real-time system. The fact that a real

Apart from the algorithmic aspect already exami- time application is taken into account introduces

ned in previous realizations, this type of language some specific problems i
creates problems of management in a multi-task un- - the programming system is composed of very nume-
vironment, of definition of the concept of interrup- rous (' 500) interacting programs ; therefore,on
lion on a high level machine and of implanting corn. the one hand, there is an extremely large volume

plex systems which require a structured conception, of source programs (in the region of several hun-
An application of the defined methodology is dreds of thousands of instructions) and, oil the

described which consists of the definition and rea- other, the problems of synchronization between the
lizaLion of a hiigh level machine for the M'R Ian- differeot tasks are crucial
guage, insisting on the implementation of problems - tan k Witching mus t b, ef fic lent so thitt a i 0 iitt, r-

specifically linked to reai tLilie. nal or ixtorntial event can ito uneable as quickly as
po~is i 111 c

INTRODUCT ION - Lth, computer must allow srparaLt execuition of tile
different tasks so as to ensure a struclturation

The design of a general-purpose compuLer usually of the application.
precedes the design of the software tools it is in-
tended to support ; software and hardware interfacing I - INDIRECT EXECUTION ARCHITECTURE
is performed by instructions in the machine language
managing the physical resources of the computer.The Indirect execution architecture, is made up of
implementation of a high level language on a general two distinct parts :
purpose computer calls for, therefore, the presence - a software module, which produces an intermediate
of translators which produce (compilers) or use language based on the source language
(interpreters) these instructions. - a hardware module, which execute this intermediate

'fhe semantic gap between the external form of a language.
high level language and the machine language infers The crucial point of this approach is the defi-
very complelx, expensive translators which are not nit ion of the intermediate language (IML) which must
necessarily free from errors, be sufficiently close to the source language if tile

It the last 20 years many high level languages compiler is to remain simple, and sufficiently close
adapted to progranamer's needs have appeared which to tie hardware if the execution must be efficient.
have been implemented with the help of compilers. It follows, therefore, that there cannot be an

At present a large number of high level langua- general purpose IML adapted to every machine langua-
ges exists which correspond to most programming needs. ge and architecture. The definition of such an archi-

tecture must, therefore, start with tile definitionThle definition of a data processing system (corn1- oftsiteedaeevl
of this intermediate level.puter + language) may, therefore, move in a new dircc- Suparate module compiling thus demands existance

Lion : given a chosen programming language, let us of a linkaltg editor to generate an executabl system.
define a computer architecture associated with thIis 'wo aolttions may be eovisagcd
Language. - tile edition of static links takes Up the r'oncepts

This approach is attractive for two fundamental which exist on conventional machines and furnishes
t i oeasons an executable module
- choice of the language which best exRANresses the - the edition of dynamic links is carried out at the

Sproblems to be dealt with (FORTR.AN for scient ifimc execution time ; in this case, when the resident
calculations, COBOL for management decisions, system meets an external reference, it must enter
PASCAL for general applications, ...) the module in central memory and start the execu-

- tile efficiency of all architecture designed speci- Lion. This procedure, which includes an address
Cfically to support the language. ('omputation, is time costly.

130

".0:;

- ., , .



The choice between these two teciniqut ii dopends i)roarani.
on the source language organization and thL ,1,ols-
traintLs of execution Lime.

DirecL execution computer nrehiteotLur', III thelh
other hand, can support the execution of a high It- VIRTUAL
vpl language without any change of the original text.
This approach presents many advantages (suppression
of all the software system, the compiler, the lin-

itkage editor, the loader; interactive program debug- REOURS lNr~MCHN
glng 6,7 ) for a certain type of application ; this
layout seems to be difficult to implement for com- inte rater
plex systems, notably for multi-task real time sys-
tems. For example the definition of interruptible EAi set of interpretation functions
points in such a layout is rather delicate: an in- S interpretation functions scheduler
terruption can be enable either at fixed points in The form of the IML Is determined by the nature
the execution of a source instruction (at the begin- The far oae ; however, some characteristics may

ning or at the entd), and, in this case, thu masking be singled out. The transfer of the source program
time may become too long to comply with the system into the virtual machine hrings about an environmen-
specifications, or at each analysed token and, in t cthanige. An intermediate environaient may be corn-

this case, the processor context may become too vo- poe oh ree typ e of mpace

luminous and context switching inefficient. posed of three types of space :
- program space
- descriptor space2 - HIGH LEVEL ARCHITECTURE FOR A REAL TIME LANGUAGE - dat or space

The need for efficient execution, the management The program written in ItL is a finite series of
of a multi-task environment and the complexity of binary fields, of varying length. These fields are
the real time systems involved lead to the choice the operation codes, operand identifiers, descriptor
of an indirect execution architecture to support space references or constants.
the execution of these systems. The descriptor space contains all the semantic

This methodology, essentially interpretive,com- information on the data, and, notably, the type and
bines the advantages of the compiling and interpre- the access mode to the data space.
tation techniques. The data consist of information of varying length.

The source text is translated into a coded text, They represent arithmetic values, texts, system in-
compact and syntactically correct, whose execution formation (events, semaphores) or procedural para-
may be restarted, postponed or linked with other meters.
modules. 2.2. Characterization of interpretation processing

ihe intermediate text is interpreted with the Interpretation processing comprises three types
help of microprograumning techniques on a data path of processing :

gdapted~o tocssn it:nepetto.-Thdapted to its interpretation. - organic processing associated with the management
This methodology avoids the two basic reproaches of the tasks making up the system (activation-

which are levelled at compilation and interpretation, deactivation) and managing the machine resources
The compiling phase is simple, since it does not - formal processing associated with an execution
realize code generation and optimization as in clas- control mpncging the execution of a task
sic compilers, Moreover, the text produced is inde- - effective procassing associated with the final aes-
pendent of machine resources (memory, registers,.,.) cution of the instructions.
and the seantics of the instructions are close to The central processing unit of present-day com-
the source language. puters are defined solely to the execution of effec-

The interpretation of such a language level may tive processing.

be efficient thanks to microprogramming. Classic A h igh

programed interpreters were not very efficient as made up of h are structures in order to support

they were in the central memory and they acted on efficiently formal processing and organic orocessing.
rudimentary data paths (adders, registers).On the These structures must permit a description of progrim
other hand, a microprogrameed interpreter is in con- algorithms at a macroscopic level ; that is, at the
trol store (with an access time about 10 times fas- level of the algorithmic logic.
tsr) and present day technology allows the creation Effective processing, on the other hand, permits
of data paths better adapted to interpretation, a description of the algorithms at a microscopic

2.1. Intermediate machine language level ; that is, at the level of functions realization.
The compilation phase must make the source text

directly interpretable. The properties of these DEL
(Directly Executable Language) have been largely
defined by L.W. HOEVEL 9 . This phase comprises, there-
fore, a syntactic and semantic analysis of the
source text, symbol processing, processing of for-
ward references and labels and the prefixing (or
postfixing) of the inatructions. This processing
may be defined as a transfer from a concrete machine
(source text), defined by a concrete grammar, to an
abstract machine (DEL), defined by an abstract gram-
mar, used by the interpreter to execute the abstract

131

S:1



APPLICATION The implemented system must ensure local proce-
HI0i LEVEL ARCHITECTURE FOR THE LTR LANGUAGE dure recursivity and task reentry.

LTR is a ten years old real time language whose
application are now implemented on classic computers GLOBAL ARTICLES
(MITRA, IRIS,...) through the intermediary of a com-
piler which produces a symbolic text which must be SYSTEM DATA
assembled on the target machine. GLOBAL DATA

This implementational outline is not very effi-
cient at the compiler level nor at the code genera- jGLOBAL PROCEDURES
tion.

On the other hand, this language is complete
enough to be able to express most of the problems
of a real time application. Therefore it has been PROCESS PROCESSi
chosen by several departments of the French Defense D
Departulht for writing real time systems. DATAARTICL l, DATA ARTICLE

The problem is the definition of a machine ar- S* !
.tecture which can support its execution efficien- PROCEDURE ARTICLc EPROCEDURE ARTICLES

t y. We shall, therefore, examine an indirect axacu- , , _ I

t$on computer architecture to execute LTR even ARTICLES PROCESSES
t4ough this is a compiler oriented language.

J•PRESENTATION OFJK J"UAGE II RCS

-TR, Real Time Language (Langage Temps Rdel) is DATA ARTICLES
hih level programming language destined for sys-
as realization. It presents a highly structured PROCEDURE ARTICLESorganization shown by a partition into ARTICLES at

.•e highest level. A LTR iyetem~is a set of ARTICLES. ARTICLE START PROCESS
1 .l. Types of articles

Data articla are of three types Fig.: STRUCTURE OF A LTR SYSTEM
W' DATA ARTICLE , data shared by a program and its F

subroutines
,GLOBAL DATA ARTICLE I data common to the system The range of the identifiers outside the proces-

data set sins article is as foll-*4s i
,i SYSTEM DATA ARTICLE i data specific to the system . the only accessible data are those declared in i

environment. - the task DATA ARTICLES
The processing articles describe the algorithms - GLOBAL DATA ARTICLES

gencerning the data declared in the data articles - the parameters
0" in the processing articles. the only usable ones are

a.,tiý• L * ' i•s of processing articles - the task PROCEDURE ARTICLES
- PROCEDURE ARTICLE : corresponds to the concepts - the GLOBAL PROCEDURE ARTICLES

of subroutines or functions Inside the article, the classic block structure
- PROGF, SS ARTICLE ; describes a process running in rules must be respected.

a multi-task context (concept of 1,3, data allocation
NTERRUT software task) In LTR, lead to different data storhge alloca-

- INTERRUPT PROCEDURE ARTICLE : describes a process, tion the type of article and the data organization.
whose execution is tied to the in-
terruption system (concept of an A. Static and permanent
immediate task), These are the data,-"•'ales or structures decla-

red in a GLOBAL DATA ARTICLE or in a DATA ARTI-
1.2. Structure of a LTR system CLE. The store space is reserved by the compiler and

FI ---7 de~scrbes a LTR system ; the separate life expectation is linked with that of the task.
compilation of a task may be carried out, the comn- B. automatic allocation
pilDation unit being D These are the data, tables or structures locally
<SYS'TEI DATA ARTICLE><GLOBAL DATA ARTICLE>*<EXTERNA1. declared in the processing articles. The data are
GLOBSAL PROCEDURE>*<EXTERNAL PROCESS>*<task, dynamically initialized and data overlay takes place

Program procedures may be called only by those according to the block structure. Life expectation
of the same task. is linked to the internal block in which they are

A task may activate another task and take back declared.
control at the end of execution (closed call) or C. Controlled allocation
lose this control to the advantage of a task with This concerns virtual data pointed by the user,
higher priority (open call). The data are described in a data or processing arti-

cle : links between the description and the data zone
* This work is supported by the Direction des Recher- to which they apply is realized by the execution of
chea cut Ltudes Techniques (ORLIT) of the French De- pointer manipulation instructions or by storage
lonse Department, at the department of CompuLtr allocation.
Science of the i'aul Sabatier University and tise •c- 1. Chain allocation
po rLment of CoMputer Engineering (ONERA-CERT) oh This ronceris sets pointed by ihe hiser hut whosm
th0 Centre d'EL;tules Ut de Rechicrclies do '1'o2l.s,. chaining is aLtomatical ly ensured by the allocation

............. : . . .
"132.



CODE Pares, I Param 2 nd othersCotesI APPopde orAF¥ operand constant Affectation
ADD operand opde or opde or (I)

constant constant
LSS operand operand Comparison of Params 2 + 3 and affectation of result (I)

(booleen) to Poram I
IF address I ar(dress 2 address 3 (f I) (2)

FOR address I address 2 (f 2) (2)

WOILE address I address 2 (f 3) (2)

(opde or * Param I i descriptive of procedureCALL operand constant) Param 3 % parameter list

CALLP operand entry TD Entry TD: address of a TASK DESCRIPTOR
Params 2+3 : identical

NEW operand operand opde or Insertion of an element in a set
constant Param I : set

2 : insertion address
L 3 : name of element to be inserted

(f I) IF <aO><&2 ><a 3 > <exp.bool.block> <THEN block> <ELSE block>

(f 2) FOR <a -a <incr.block+test> <FOR block>

(f 3) WHILE <-a><a 2 > <exp.bool.block> <WHILE block>

(I) Parameter I may be an intermediate variable produced by the compiler
(2) The addresses are N-uple addresses

mechanism. The data are described in a GLOBAL CONY :t- cv NUMBER
.DATA ARTICLE. MOD m:- ct,(CTSI/OPDE,CTSI/OPDE)/pt,H.S.H.,CONV'

This presentation of the language fixes thu INDEX ::- ix,H.S.H./indexi,CTEi
apnstraints on defining memory management for a LTR CTSI ::m ct,CTEi
machine. We shall present the solution chosen for H.S.H. :in address of descriptor
implementing such a system below, CTEi ::- immediate constant
2, INTEIREDIATE LANGUAGE (DIL5 FROK LTR This intermediate form is very close to the

"An intermediate instruction is a byte chain source language. The semantic information contained'
of varying length called N-uple.l in an LTR instruction has been coded in the inter-

A N-uple may be an expression (OPERATOR,(OPE- mediate instruction so at to facilitate interpreta-
IAND)*) in which the number of operands is fixed tion : the interpreter will analyse instruction pre-
only by the LTR instruction specifications, fixing by operational code, execution and control

Definition of the operator codes is fixed by the addresses and operand directives.
LTR instructions ; each instruction has been regrou- All non-constant variables are addressed througI
ped in the form of an N-uple, at the same time con- a descriptor which contains the information set cha.
serving all the semantic contained in the source racterizing the data used by the interpreter.
instruction, The basic descriptor is a 10 bytesword which mas

The upper table gives some examples of N-uples. have extensions for complex operands (table, struc-I
In the operand part, we may find either +, cons- ture, process descriptions). In the standardized

tant, an N-uple address, or a data descriptot Ld- part, it contairs I
dress. The operand is prefixed by a directive which LAME INDIC BASE DEPL. PE STRUCT SIZE SCAL EXT
prescribes the descriptor type :

(oh) 'corchain' for bit chaivs NAME %reference to a filt containing the symbolic
S(ix) table tinex name of the variable,this information allows
S(rf) reference of a structure field the editing of the state of the variables du-(pt) pointer to a set ring, the debug~ing phase(pt) pointerstas at INDICt data implantation type : global,local,parametdrs(op) operand BASE-DEPLACEIENT: data implantation address

(cv) conversion TYPE* Integer, Real, Fixed, Index, Character string,logic, boolean, quality, static reference,virtThe DEL-LTR may be sumarized schematically as tual data reference, set element reference
follows

LMI m:= (N-uples)* STRUCT: arraystructuretatructure array,virtual data,N-uple i:- (OPCODE,(OPEAND)') set

OPERAND ::- (CTSI)(OPDE),(CONV/MOD,(CONV)) SIZE: space occupied by the data
OPDE :: op,H.S.H.,(INDEX) SCALE% normalization factor

EXTz pointer to an extension descriptor
133

•, - ..+;~ 4 , " . . ... . .. . . .. . . ...



3. LTR PROCESSOR STRUCTURE - the N-uples memory has read access over 4 bytes
T"•he LTR processor structure follows from the me- the descriptor memory has a double read/write ac-

thudology described above, cess also over 10 bytes ; the first contains the
The processor is composed of two pipe-line units, descriptor and the second the context of the micrc-

one for macro-interpretation processing (MAI), the machine
second for micro-interpretation processing (MlI) - the data memory has a read/write access over two .
(fig.2). bytes, the size of the data path being 16 bits.

The scheduling algorithm occurs on the Micro
Interpreter which sends a tatik number to the MAI

N-UPLE DESCRIPTOR DATA the context set is described in the CONTEXT section.

3.1. Macro Interpreter Structure (fig.3)
The macro-interpreter supports the formal and

S CCESS S organic processings attached to the system execution
control. Formal processing amounts to management of
the N-uple ordinal counter (management of the recur-
sivity of IML instruction) and organic processing
concerns procedure context switching. A context swit-
ching may occur on two types of event I

M IMI - switching on interruption
- switching on process call

M. In the first case, the interrupted process con-
texts muay be managed in stacks ; interruption inecha-
nism cnn he implemented according to a hierarchic
algorithm.When the process attached to the interruption of

SElevel takes place, it can be interrupted only by an
interruption of level j (j > i) ; control will be re-

INFO .turned, after processing of level j, to the level i
process or to a process with a higher priority.

This mechanism may be implanted with the help of
I/O just one stack, the summit context being the active

context.
F.ig.2 I LTR processor block-diagram On the other hand, for process activated by an

open call, it is possible to avoid returning to the

The central memory is divided into three physi- calling process. A stack must, therefore, be alloca-
calty separate memories : ted to this process and, during switching, the num-
- the N-uple memory coiatains the intermediate code ber of the stack containing the caller's context must'and is accessible totahe MAt processor only be saved . The task is, then, executed in its
- the descriptor memory contains the data deso rip- own stack space. For all closed calls, the context

tohs, systems data and processeso: it is accessi- may be safeguarded in the active stack (mechanism
tor sytems data d process es oy iidentical to that of activations on interruption)and

ide to the XII processor only for pseudo-open calls (an open which return control
- the data memory contains the data described in to the call| ng process) two stack spaces are auffi-

the [jource program. tteca l

A N-uples is interpreted in two phases : We allow for 16 stack spaces (15+ interruption)
- Lho first, in the macro-interproter (MAf),managcs which permit in interleaving of 15 open calls without

the iML execution control ; it divides a N-uple return to the calling process. The size of each space
iitlo simple instructions which it sends to the is assessed at I Kwords. This space and the manage-
micro-interpreter (MII) ment mechanism are represented by stack 11. The micro-
the second phase, therefore, takes place in the interpreter context will be switched at the top of
micro-interpreter (MII) which merely executes, the active stack, the active stack being found in
sequentially, the actions send by the MAI: search the process descriptor.
for operand descriptor, conversion of a number, Ordinal counter management is ensured by a reen-
arithmetic operations ... ; these actions corres- microprogrammed interpreter whose essential
pond to a set of microprograms contained in the functions are
"M11 control store.

The connection between the two units is reali- - access to the source text
- analysis of the instruction operation code

zed through the intermediary of two hardware queues: - to break up an N-uple into elementary ACTION
a parameter queue and a action number queue. Moreo- functions.
ver, state variables and calculation results may
transit between the two units.

The two queues allow a synchronization of the
two processors and ensure pipe-line m;l:,agement.

The division of the stores in function of the
information they contain allows a real parallelism
between the different accesses and also paruicula-
risation of each access 1
~134



PROCESS NUMBER FROM Ill

16 A ybltemnldcd

iADDRES INTEARRETER te
Fi. TEXCR0-INERRE1 AR So h SAKo TACK eis

R 1 MEMOO)RY

I ,
it~ 

~ e OTO FO 1

FIL 2 CO CA ybltrmnldcd



-Transition tied with
"interrupt task

Transition tied with

NON-ESTENT software task
i} End of task

EXIT

CREATE END CYLE

EIIL oPrioit \rcsIL

End of Enable IT

ACTIATEEnable priority IT

i •/ • CRE~g clsed ESTTE
FRE ACTIVE

* End End of delay / Disable higher
%% priority IT

/EVERY delay 00

/ CREATE closed .- ACTIVATE
. SETEV

- End of delay

1Fig.5 ThE SCHEDULING PRINCIPLE

Example : Interpretation of an IF instruction, 3.2. Micro-Interpreter Structure (fig.4)
When the operation code is decoded, the inter- The micro-interpreter is the CPU of conventional

pretation consists in t computers. It is composed of a control store contai-
- stacking the three addresses <a, ><a 2 ><a 3 > in ning the set of interpretation microprograms and a

stack It of the active procedure data path formed by an arithmetic logic unit (AND
"- loading <a,> onto the CPT register 2903) and a Bit Pattern Manipulator (BPM) capable

calling a •ule <boolean expression> (I) of performing logic operations on bit sets (permu-'
tation of byte, extraction and scaling of bit fields,

The end of the <Expbool block> is supplied by concatenation). The MI1 manages access to descriptor
the comparator which determines the agality between anr gand data stores and executes the part of organic 14
the CPT register and the instruction counter (I). processing relative to the management of the data

Depending on the value of the boolean transmit- prcessing relaie t
ted y te MI, adres a2 is oadd ono ~ ICspace of a procedure.ted by the KII. address a2 is loaded onto the IC The access register of the descriptor store is,

' laud address al is loaded onto the CPT (value 0) Or in fact, a local memory composed of three blocks of
1 iddress a2 is loaded onto the CPT and the IC regis- ton bytes. This memory constitltes an extension of
ter is not affected (value i). At the and of the internal registers to microprocessor AM 2903.
<block THEN) , address a3 is loaded onto IC, The first block contains a procedure descriptor

(1) This call is carried out by stacking AR onto or a data descriptor, the second may contain a data
Stack I and the return of the rule provokes a pop descriptor, and the third contains the MHI context.
operation. This mechanism allows an interpretation We shall see in the CONTEXT section that this solu-
'of the language in accordance with a method of des- tion allows an optimisation of context switching.

S,. cending analysis.

136

'4

Ai. ,-S*.•, i •i I I'" f •t~:•'•, -..'",• ''ql



4. STORE MA .NAGEMET An address of this type is alwaya
4.1. Data store managemAnt a pointer

• - Calculation of a process.local addrea. O(PEA)

Logically, this store should be managed in such a -fTOPO ((base L) + deplacement)
a way that the implantation of data and way of acce- - Calculation of a procedure local address (iDA)
ding to it should be directly deducible from the LTR a- f TOPO ((base Z) + deplacamant)
system structure and from the constraintz quoted in(I).- -

The structuration of the program into ARTICLES
suggests an addressing in relation to different

'k.bases. This technique allows, moreover, the defini- I
tion of a protection for such segment, an important AA
factor in the real-time field. DA

it will, however, be necessary to allow for di- one .

rect addressing in particular for the passage of pa-
rmeters by address.

Since the LTR processor takes the recursion and ne• ata
reentry of the procedures and processes into account,
it leads us to allocate a stack for each process "
where the contexts of each procedure call will be
conserved and local data of the called procedure g DA
will be created. IE

It can be seen that the basic addressing is not .I- -........
sufficient to manage the memory efficiently. There S L o daa_•rmet
is a possibility of a proliferation of %ones of dy-ntically creaved datat It foalows that it will bea e
4ifficult to recover the free space and for this SAtba son we have added to the addressing system a eye- -j40

$ým of storage allocation by paging and "topogra-. DATA
9hic" store, tooaphic p ocesi

However we have also tried to adapt the addres- at zone
sing mode to the type of accessed data by addres4
sing directly the global data, whose life expectan- V
cy is that of the system, and reserving topographic procedure zone i
Addressing for data with a shorter life, The cha- pro ess call 1
racteristics of these different zones are determi- stack
ned by the requirements of the LTR system to be procedure zone j to 4

executed.j call 2
To sum up, we have allowed for the following I

addressing modes, which appear in the descriptions
of the system variables :
- general direct addressing, for the use of data procedure zone k

declared in GLOBAL DATA ARTICLE call n
- direct addressing for the use of the process or

procedure call parameters and also the sets
- topographic addressing, localized in the process, Fig.6 DATA STORE MANAGEMENT

for the use of data declared in DATA ARTICLE
- topographic addressing, localized in the proce- -_ _ ,_ _,,_ _

dure, which interests the process stack, for the
use of data declared in a PROCEDURE ARTICLE. glo- 4.2. Descriptor addressing
bal or not, The data of a program are referencod in the co4e

Different address calculations through the intermediary of a descriptor. It is im4

Let fTopo be the function calculating the real planted in a memory 10 bytes wide and addressable
address of a variable from its virtual address.This on 64 K. However, in order to simplify program de-
Association function consists in replacing the vir- bugging, the LTR source text may be compiled by moe
tual page number by the real page number. This as- dules (an executable system may be composed of so-
sociation is realized during storage allocation, by veral modules). The solution classically adopted irk
the operating system and is materialized by a machine languages to assemble the different modules
"topographic" store. The list of pages allocated to consists in making the process linking dynamically.
a process is part of its context. We have not retained this solution as it has proved

Therefore to be too time costly in execution and considerably
- Calculation of a general direct address (GDA) increases the system overhead time. We have, there-

a- (base G) + ddplacement fore, chosen, to address the descriptors by (base,
- Calculation of a reference direct address (DA) deplacement). Therefore, at a given moment we have

ha bsdeplacementt
a - Base of Global data descriptors

- Base of Data descriptors
- Base of local data descriptors for active procedure.

137

.

. . .. . . .* • , • . . . *,. . , , . . ¶ • , . *• ...* .' , '. . . * , . .. . ,,- - . , - '- , ., .¶



The values of these bases are determined when The IT descriptors are implanted in addresses
loading the blocks they reference. It is to be noted equal to running level (IT N* i - descriptor of
that these bases are an integral part of the process address i). When an IT is enable, the IT processor
context, inserts the process at the head of the queue. The

scheduler takes control and, if necessary, activa-
4.3. Implementation of data systems

We shall now examine the solutions adopted for This processing concerns IT directly connected
the implementation of the system processors,notably: with a task.
the scheduler, management of events and semaphores
and interrupts. 5. INTERRUPTIBILITY

431 The definition of interruptibility at a "logic"
The Processor imolantation level, that is, at the level of the intermediate

run pn tie mscromachine. The data manipulated by language and the macro-interpreter, is very deli-
cate, or, even, impossible, given the contextual

these programs are implanted in the form of des- interpretation mode we have chosen. An "instruction':criptors, for protection purposes. In effect, only o xcto nt tti eeii fet
the microprograms are authorized to write in the something of variable length, and may even be the
descriptor store during the execution of a system.T|,ese processors manipulate descriptor strings. program• itself.

The concept of point of interruptibility must,

4.3.2. Implantation of scheduler data therefore, be more closely defined, even if the
The scheduler manipulates process descriptors, macro-interpreter level presents the interest of

These descriptors have the following structure. reducing context volume to a minimum when enable

N/di INI~t LA LAREXTBAS COE BAE OSC ATA tho interrupt.I NI IA 1 DTThe division of an N-uple by the Macro-lnter-

BAStP PROG SPACE I PROINIT STACK NUMBER I>prter into ACTIONS permits the interruptible points
to be fixed at the beginning of each ACTION. This

NDi: pointer towards process identification choice establishes a compromise between the volume
INDIC ' process current state word of information to be saved and the time neededlAV-LAR :stringing of process in queuestoetuthssfuad Infec

EX'T : pointer towards all extension to set up this safeguard, In effect :
UASE CODE : address of code implantation - The fastest possible takeover of the interrupts
BASE CODEDATA address of codetmpl tipon s will have for effect the switching of a larger
BASE DERC DATA : address of data descriptors number o" data, therefore an effective time such
BASE PROG SPACE : address of data that this politic is in danger of losing its
PROINrT : pointer towards procedure status descriptor interest

The scheduler manipulates only the CU proces- - A takeover defered until certain key moments in
sor's queue (ready processes). In effect, the other the execution of a program will entail the mani-
lists are manipulated by the other system proces- pulation of a smaller amount of data and may,
sors which will return control to the scheduler at therefore, be more efficient than immediate pro-
the end of their execution. The head of this list cessing.
is represented by a descriptor implanted in a fixed Moreover at the beginning of ACTION, MA! con-

address with the form :
____text is at a minimum. However, to justifie this

TST I NB LISTCTIE choice, the execution time of an action must remain
Sr c tcompatible with the requirements of interruptF'IRST,LAST :reference points on the listprcsig

NB LIST number of processes in the list processing.

NB CREATED number of processes created 6. CONTEXT
NB ACTIVE number of active processes at present. Given the machine structure we have described,

4.3.3. Event and semaphore management this context will be larger than that found on a
We first decided not to implant event expression conventional machine. It is, moreover, spread over

resolution. Our choice was motivated by the corn- several functional units and, thus, may be divided
plexity of such a resolution and the multiplication into three parts :
of hardware it would cause. We have, therefore, - task characterisation context
grouped Lthe processing of events and semaphores. - macro-interpreter context
The physionomy of the descriptors manipulated is as - micro-interpreter context
follows ;•

follows6.1, Task characterisation
NAM4E IVALUE ITYPE IFIRST ILAST I- -

-This is the part of tile context which is clo-
NAME pointer towards the semaphore or event sest to the information found on a classic machine.

identifier It defines, both the identity of the process and
VALUE i value of an instant of the variable its work space for anything concerning the Jata
TYPE : event/semaphore manilpulated.
FIRST,LAST : processor queue reference D('efinition of process identity includes the

4.3.4. Interruption management following infrrmation
The interruptions are mate'r al i zed by a des- NAME pointer to the name of the process'

criptor with the form AI)COD 1: pr,,.Vss star't address

I NERUIT ISTATE JATTACH PROCES S ADDRESS NIT tied number ofI inter p8

1 38



This information will be contained in a speci- - effective processing associated with the execution

tic location in the descriptor memory. of each instrictions of one procedure.
TcThe hardware structure has been designed to sup-
The definition el port efficiently these three kinds of processing.:'the following informations:

The realization of a prototype able to supportL• ADDESC :description space base
TACS dnumesrip heeetion spacesbhthe LTR language should allow the validation of
STACK number of the execution stacks in thethscoepsthese concepts.

l'acro-lnterpreter
BASE] (G) process global data base REFERENCES
BASE2 GL) process local data base
BASE 3 (Z) local data base for running procedur( I] LTI - Manuel do Rdrence 5616/U/FR

BASE 4 • address of page table for the process. 2 1 LTR-Mlanuel d' lImpl imentat ion 8072/U/FR

the type ot topographic implantatiotl chosen I 31 LTR- Manuel d'Utilisation 5blg/UI/FR

(see abov.e) calls for Lhe constitution of corres- CIMSA 10-12 Avenue de l'Europe 78140 VELIZY France

pondanct tables, virtual pages -* real pages. proper
to each process. During execution of a process this 4. I. ETiT roprogAInBUstAtegySfO NtETtabe i lodedia spcilizd mmor an inst4.1. A microprogramming strategy for HLL inter-

table is loaded in a specialized memory and mlst pretation SIGMICRO NEWSLETTER Dec,76'l.7 n°4
e'xist in memory so that it can be reestablished 4.2. An efficient hardware tool for bit pattern
after interruption followed by context switching. manip ion hadwSymposu or Mic arcmanipulation 2nd Symposium on Micro Arch|-

6.2. Macro-Interpreter context Lecture EUROMICRO - 1976 - Venise

'The execution of a process brings about an L5] Y.CHU
evolution of the information contained in the Concepts of a high level language computer ar-

macro-interpreter, characterizing the logical eve- chitecture-Proc.ACM Conf.Mitineapolis,MN,

lution of interpretation. pp.6-13 - Octobre 1975

This information also,- may be put in three [6J Y.CHU
parts : Direct-execution computer architecture
"- Pror-IFIP CongreassToronto,CanadaAug. 1977 ,

IC ' instruction counter of the program in Iro
CPT : address of end of block under anamination [7J Y.CHU

. STACK It and TOP 2 ; address stack for the end Issues an concepts of high-level computer archi-
ot the ir-!luded block and its pointer tecture - IEEE Computer Society, 1979

- Lntepret ji~ n riZXt [8J Symposium on High Level Language Computer Archi-
. AR : address register on interpretation program tecture ACM.IEEE Nov.7-8.1973 Us v.of Maryland;
* STACK 2 : return addeess stack at the end of 8•1. W.C.NIELSEN

the decoding submicrAprogram Design of an aerospace computer for direct

Generated actions queue and its pointers 82. N.e.BLOOi
•Queue of parameters to be t.ransmitted and its 82 .. LO

Structure of a direct high level language
pointe,'s. proceasor

6.3. Micro jci;y contuxt 8.3. GLOSS
A high level language machine

The v. '. e of significant context in the micro- 8.4. L.N. Hc MAHAN at E.A.FEUSTEL
machine hn, •¢n reduced considerably by the fact Implementation of a tagged architecture
that the interrupts are enauled between two ac- for block structured languages
tions, as we have said above, 8.5. V.R. BASILI at A.D.TURNER

The information to be saved are the five re- A hierarchical machine model for the semas-

gist,-rs making up the external register of the Aierarcine modes

CU 2903. These registers are used to transmit the
paraw.aters between the various actions. It is to [9) L.W.HOEVEL
be noted that as this extension is in direct access "IDEAL" directly executed languages :an analyti-
with the dmscriptor memory, its content is saved in cal argument for emulation
a single memory cycle. IEEE Trans.on Computer, August 1974

This information will, therefore, be saved mu •lO] J.C,STRAUSS et K.I.THURBER
the space descriptor of the interrupted process. A computer design for real time coamand an

CONCLUSION control - EASCON 76 T

The high level computer architectures previous- I] KI.TI ER and al.
A computer architecture for an advanced real

ly studied or realized concerned monotask langua- time processing system - COMPCON 76 EAST
gas. his study shows the priccipal problems met
in the implementation of a multi-task real time [123 A.S.TANENBAUM

language. Implications of structured programming for ma-'
Interpretation processing has been divided chine Architecture-Comm.AO( March 78 VoL2l n!3

into three classes :
- organic processing associated with the management [131 W.T.WILNrtR

vf a multi-task syste- Design of the Burroughs B1700-Proc.AFIPS FJCC;Qf amult-tas syseml.41 AFIPS Press Hiontvale 1972 p.489-497- foimel processing associated with tt;i control of Vo
one task [14] W.T.WILNER Burroughs B1700 Mmory Utilizatiou

PLc.AI•A S FJCC VbL41 AMPS Press Wntmale 1972 p. 579-536t

139

v__



An Architecture for the Dynamic Optimization
of High-Level Language Programs

Samuel P. Harbison
Win. A. Wulf

Carnegie-Mellon University
Department of Computer Science

Abstract. We introduce an architecture which performs expressiuns out of loops. These optimizations traditionally

many of the optimizations commonly seen In sophisticated require sophisticated [low analysis during compilation, so their

compilers f6r high-level languages, Including redundant elimination from compilers should be beneficial, Our research

expression elimination and the movement of Invariant is aimed at determining how big aw impact this architecture

• expressions out of loops. The Instruction set of this can have on the total cost-performance of a compiler-

machine allows simple compilers to produce a graph. architecture pair.
"structured object code which is both compact and In this paper we will Introduce the architecture and argue

efficient. The architecture features a cache which records its advantages informally and by exwrnple. Other work is under

the values and dependencies of HLL expressions in order way to determine the architecture's quantitative benefits over a

to avoid later recomputations and memory references. range of real proqraurs. Because we are interested in basic
Preliminary experimental results indicate a speedup feasibility, we defer the specification of many details which
approaching a factor of two over a pure stack architecture would be necessary before the architecture could be realized.

on some programs. In particular, we are not specifying how to implement the
architecture, nor are we specifying the instruction set beyond
what we absolutely need. So as not to be overly distracted by

1. lntroduc1lon language issues, we have chosen FORTRAN as our high-level
language. We believe that the necessary extensions for other

The argutients in favor of closing the "semantic gap" languages would be no more difficult on our architecture than
between source program and object program are well known on others, and thereloro they are Irrelevant to the current
by participants of this conference. Myers [1] characterizes the goals of the research.

'job of the computer architect as determining the proper
division of total system functionality between software, 2. Basic Concepts
firmware, and hardware. Two extremes of this division are To briefly outline the thrust of the architecture, consider
pos.;ible. At one extreme we have traditional architectures the FORTRAN statement
which tend to leave too much to the software and are ill-suited
to the software they execute. Complex operating systems are X = (A +'B)*C + (A+ B)
necessary to make them useful: complex compilers are
necessary to make high-level languages (HLLs) execute which has this parse tree:
elltc.iently. At the other extreme we have architectures which

attempt to execute high-level languages directly. These
"architectures are often Inefficient dhemselves; program
representations appropriate for programmers are not always
appropriate for computars. It is likely that better cost- X +

performance can be achieved by an architecture which falls
somewhere between these extremes. Our architecture is one +, ~of niany such; it is •ilmed at reducingeor e~minoting the need/ /

(and hence the costs) of opti-'izlng compilers by performing
important optimizatlons in hardware. It does not directly * /\ A B
address other dimensions of the piobiem, such as the C A.
complexity ol operating systems.

The total cost of optimizing compilers is great. Their A S
construction is a formidable softwarc engineering task. The

code they produce is almost aiwavs obscure, occasionally Supposc w,. had an instruction set which closely mimiced this
worse than no optimization, and sometimes just plain wrung. parse I ae representation, one instruction per no, Each
1hey also execute more slowly, and hence exar.t a price on instrlchun might be a triple
each compiltlion. Research is underway in several places
aimed at reducing this cost through the aulomatic, or semi- JOPCOUE, LlEFT-PAR1, RIGHT PARTI
automatic, generation of such compilero 121. Our approach to
this problem is different; we are trying to raise the where LEFT-PARI and RIG14T.PART would be addresses of
hardware/software interface above the level of the compiler's instructions which calculate the operands. The execution of
optimization phase, thus reducing the compiler's task to an instruution would consist of recursively evaluating the left-

'(mainly) lexical analysis and paising. Efficient aigorithms for and right- parts of the instruction, followed by the application
these phases are known, and the automatic construction of of the indicated operation. This architecture could be
suh compilers would be within our grasp. implemented using two stacks: one to hold intermediate

Our architecture is able to perform two common and computations and one to hold partially-evaluated instructions
important optimization-.: redundant exorassirn elimination and during the post-order traversal of the parse tree. The order of

_ type of code motion typified by the movement oi invariant instructions in memory would be irrelevant in this instruction
140

r'•:-, ,, ,,,. .-,..,.,..,,.



set--the control flow is specified explicitly. The translation of emphasize that this version of the architecture Is a reoiii
the above statement would be vehicle--one intended (only) to test the feasibility of the Idea

and their impact on performance. A realistic Implementation,
N.,X,Pt would need to address other issues and would require carelul

P1: +,P2,P3 tuning and elaboration of the Instruction set,
P2: 0.P4,C
P3: +,A,B
P4: +,AB MAIN MEMORY

This instruction set is obviously very inefficient, but it can
illustrate two points, First, because the instructions labeled P3
and P4 are identical, there is no reason to duplicate them; we
can eliminate P4 and change P2 to Logic

P2: 1P3,C.

The subexpressf6nis giving rise To P2 and 24"are called, in vlaoCntlvleI
the parlance of compilers, formally Identical or congruent. stukc€nh
This simply means that they are identical in form-not
necessarily that they have the same value, It is both simple Figur r onvoplenis
and efficient to detect formal identity during parsing, and doing
.so at compile time allows us to represent programs more There are four Important parts of the machine, as indicated in!
space-efficiently in our architecture, By contrast, detecting Figure 1:
,common subexpresalons, i,e,, formally Identical expresaiolnsi
'that also are guaranteed to have the game value at execution Memory A linear vector of fixed-size words, indexed
Atime, is not as simple or efficient. Our architecture will not by address,

Notuie that c iev thoug the e£Evaluatlon Stack A LIFO stack of words, used to hold
Notice that even though the expression "A+B" Is Intermediate values during computation,

,represented only once in the object program (using the much the same as in other stack-oriented
aforementioned compaction), it is actually evaluated twice In machines.
,the implied traversal of the parse tree, The structure of the
object code gives us the possibility of avoiding this Control Stack A LIFO stack of control Information, used to
renomputation, Suppose that alter completing the evaluation control the recursive descent through the
of P3 (while computing the LEFT.PART of P1) we saved the parse tree graph,
"value" of this Instruction In a cache, labeled by the address Value Cache An Aoaociative memory used to gave the '
P3. If we checked that cache before evaluating each vaues of expression.
.instruction operand, we could retrieve the value of P3 when vu oersn
computing the RIGHT-PART of P1 without actually recomputing The Control Stack and the Value Cache will be explained in
it. Suitable care would have to be taken to record dependency more detail later,
information In the cache so that we could remove the value, -i
should either A or B change in the future, Tom vo

Our architecture provides such a cache, which Is the major Cg o*
source of execution-time efficiency, The effect of using this
cache corresponds closely to the elimination of redundant
expressions by optimizing compilers, In fact, this technique Figure 2: Menory word itrimt
may be superior, because it can eliminate expressions which Every word in memory Is a one-operand instruction,,
are redundant under the particular execution history of the formatted as a [TAG, VALUEI pair (Figure 2). .Even words usually
program. Consider, for Instance, the following FORTRAN thought of as data are, in this machine, instructions. The TAO
statements: field is further divided into a number of subfielks, named R, x,'

I. and op. op is the operation code (e.g. ADD), and n, x, and I.
Y a A+B are single-bit fields denoting Roturn, IndeX, and Indirect,
If (Y ,LT. 0) A * A+1 (These will be described later.) The actual bitwise packing of
X - A+B these fields into a word is not too important, but br

concreteness, we think of TAG as being a bits and vA.UE as
Because the two occurences of "A + B" are formally kientical, being (say) 24 bits, This would give us a 5-bit operation code
they can be computed by a single Instruction which is and leave 24 bits for data or an address.
referenced in two assignment statements. It can be seen that . ....... .
the value of the expression A+ B, computed in the first 3.1 Instructlon Classes
statement, can remain In the cache unless the asaignment to A The Instructions are divided into thrie classes according to'
actually takes place (invalidating A + B). The some mechanism how their operands are Interpreted. The three classes vsl
serves to move invariant expressions out of loops, since any data Instructions, address-operand instructions, and vasue-'
expression which does not depend on a value changed in the operand Instructions,
loop will remain In the cache.

This simple example illustrates our architectural goal: to Data Inituctione. The INT, REAL, and ADDR Instructionsj
provide an Instruction set which preserves the structure of the correspond to the three data types recognized by this simple
parse tree in a way that permits both space-efficient version of the architecture. Executing any of theen
representation (by having only one copy of the cede for instructions causes them to push themselves (vALUE and TAG)
formally identical expressions) and tlIme-effIcient execution (by onto the Evaluation Stack, setting Rl and x - I -0. T•hl
detecting and avoiding the re-evaluation of expressions whose contents of the VAI UIE field in 'ata instructions is the actual I
value has not changed). data (i.e., In INT instructions, vALUE is the integer diltum, in!
31The Architectlire REAl it is the floating-point representation, and in ADDRI

instructions it Is an address).
We now introduce the architecture and instruction se.t The data Instructions are quite like "tagged" data in other

currently being used In our research. We would like to HLL architectures. In particular, we will assume automatic) N
141



type conversion throughout- -there will not be separate Strictly speaking, there Is no restriction on what,
instructions for floating-point addition and integer addition, for instructions can occur in the new instruction sequence.
instance. However. it is our intent that the sequence of instructions,

If X is a variable of type REAL with value 43.5, the name X which is called a phrase, will leave a single value on the
will be bound to the address of a word containing (the Evaluation Stack, If we make the further assumption that the
instruction) computation is independent of data already on the Evaluation

Stack, It is possible to speak of the value o/ A, or the value of
REAL 43.5. the phrase A.

Note that a single data instruction, with n = 1, salishios
The reason we make data words executable will become clear these conditions for a phrase. Hence, a single data word may
when the operand-fetching mechanism is examined later, be "fetched" by evaluating (executing) it.

Add ress-operand iJnstruc.tions These instructions include 3.3 Irdexing
INCI (increment-by.one), INC (general increment), 510 (store),
anld the tweive conditlonal-ulp instructions. In each case, the The x field is provided in TAOs to perform some simple

VAI N. field is Interpreted as an address, and this address is the address arithmetic. When x = 1, the address in the instruction

ish uction operand. The semantics of the instructions are as is first increeiented by the value found oii top of thle Evaluation

follows: Slack (which is removed as a side ellect). The new address
becomes the operand (for address-operand instructions) or the

.1o Removes the top word from tihe Evaluation Stack and address to be evaluated to obtain the operand (for value-
stores it at the operand address. 1 he R lield is set to operand instructions). In our examples, we will indicate that
I in the stored word, and the X and I lields are set to x = 1 in an instruction by appendinci "x" to the Instruction

name, as In "STOx A",
Occasionally it will be useful to obtain an indexed address

INC Removes th-" top word from the Evaluation Stack and on the stack without evaluating the result. We therefore allow
adds it to the word at the operand address, the x field to be set in the ADUlt instruction, in which case the

INCI Increments the value of the word at the operand address present in the VALUE field of the ADDIt Instruction Is

address by one, incremented by the value on top of the Evaluation Stack, and

JI I , Jl-t, JUIl , JOU . JtQ, JNU Hemove thle top value the resulting address is pushed onto the stack.

from the Evaluation Stack and branch to the operand 3.4 Indirection
address if tihe value Is les's than, less tlhon or equal to,greater thean, greater thhn or equal to, equal to, or not The I field is used to provide an extra level of evaluation In
equal to zero, respetoively, obtaining operands. When I= 1, tife operand obtained by the

above imechanisms is evaluated an extra time to obtain the

Ya.l.o-p.er!nd instrucltions. Those instructiUns ai:lulde PUSII true operand. For instance, in "SlOi A", the address A is

and lhe A0ri0hmetic instructions, A1)1, Stil, MII , and I)IV. For evaluated, and the actual store occurs to the address returned

these Inslructions, the VAL.uL field Is again inlerpreted as an by the phrase A. In "ADIDI A," the address A is first evaluated

addres,,, but the operand is obtained by evaluating the normally; then the resulting value of A is evaluated, yielding the

address, as explained below. Otherwise the semantics of the operand,
This mechanism makes several assumptions. In particular,

In value-operand instructions it Is assumed that the value

PUSH pushes its operand onto the Evaluation Stack, returned by the first evaluation Is an address (so Ihat it can be
evaluated again). Likewise, in address-operand instructions it

NEI(G negates its operand before pushing it. Is assumed that the evaluation (the one caused by I = 1 is the
only one) produces a value of address type.

Ai)ll removes tile top word from the Evaluation Stack and When I - X - 1, the indexing operation Is applied before the
adds it to its operand, leaving the sum on the (first) evaluation.
Evaluation Stack. Type conversions are performed, if
necessary, according to standard FORTRAN 3.5 Discussion
conventions. (Type Information is available In time TAO Returning to our original example, we can see what the
fields of the data on the Evaluation Stack.) code actually looks like In this architecture,

SLIB, MUt , ItV work like AI)D, with the left-hand argument
being on tho stack and the right-hand argument being X (A + B)*C + (A + B)
the operand of the Instruction,

PUSII P3
Occasionally, one will want an instruction such as ADD to MUt. C

take both its operands from fhe stack. We therelore adopt the ADD P3
convention that it VAt U(i; =O, the operand normally specified in STO 9
thp inslructi:)n will be found as tie topmost element oii the - - _
Evaluation Stack. This applies to both address-operand and P3: PUSII A
value-cperand Instructions. ADDr B

32 Operand Evaluation A: REAL r 23.5
B: REAt.r -3.0

As stated above, ialue-operand Instlructions obtain their C: REALr 4. 56E I
operands by evaluating the address which appears in the X. REAL r 0.0
instruction. In this architecture, the evalua tion mechanism
uniformly replaces the "letch-the-contents-of" mechanism in Note how the evaluation mechanism is exploited in
traditional architectures. To evaluate an address A, the collecting the formally identical expressions into a single
current instructlon-execution state is saved on the Control phrase (P3).
Stack and execution begins at A. After each instruction The indexing and indirection mechanisms are optimizations
completes, the R bit is examined; If n = 1, the Control Stack Is designed to facilitate address computations in array and
popped, terminating the new instruction sequence and structure accesses, much like the use of index registers in
returning to the previous one -t the point where it was conventional architectures. In (a). below, we see the simplest
interrupted. In our example,,;, we will indicaft' that an form of indexing; in (I)) the two occurences of "C(I)" have
instruction has n 1 by appending "'" o the operation name. been implemented as a bingle phra•se; in (c) tlhe phrase has

142



been constructed to compute the address of C(l) since both accumulated for the current phrase (C. DEPENDENCY). -T1{I

the address and value are needed. phrase Is not found, the current execution state is saved on
the Control Stack and a new frame is added for the new•C111) a A(J X =(0() + B) *C(I) CMI 2 0() + B phrase, whose evaluation begins, C&,OEPENDENCY for the now

phrase is initially null.PUSH J PUSH L PUSHII L
PUSHx A-I ADD 8 ADD0B During evaluation. Every execution of a data instruction
PUSH I M4UL L ST01 L represents a dependency; the dependency Is derived from the
STx C- ST0 X - -address of the data instruction, The encoded dependeiiuy Is

... L; PUSH I added to the dependencies already recorded in CS.DEPINI)ENCY,
L: PUSH I ADDRxr C-I

PUSHxr C- 1 After evaluation. When an instruction with n - is completed,
fie--p-hFse-vailueP (the top value on the Evaluation Stack), P.

(a) (b) (c) ADDnF.S8, and CS.DEPF.N4DcEN.Y are sent to the Value Cache for
recording as VC.VALUE, VC.ADDRESS, and VCDEPENDENCY,

These examples Indicate that there Is some choice in how respectively. (if the Value Cache is full, some mechanism for
to structure the object code. In terms of space-efficiency, any removing entries must be employed.) The Control Stack is
expression appearing in the source program more than once then popped to return to the previous phrase; the
should be expanded as a separate phrase. Execution-time dependencies of the completed phrase are added to the
efficiency can be gained by additionally separating expressions dependencies accumulating $or the previous phrase. (That is,
used within a loop; if their value does not change, the effect Is it phrase A invokes phrase B, phrase A's dependencies include
the same as if the compiler had moved them outside the loop, those of phrase B.)

3.6 The Value Cache During a store operation. Whenever a STO, INC, or IfNCI
instruction is executed, every Value Cache entry which shows

The Value Cache Is the most unique and important part of a dependency on the altered word is purged, (This may not be
the architecture. Its purpose is to save the value of phrases, a perfect discrimination, depending on the encoding D(X).)
Every time an evaluation is attempted, the Value Cache is first The value being stored (itself a phrase) is entered into the
checked to see if it contains the phrase's value; if found, the Value Cache as a side-effect; its dependency is precisely itself,
value can be immediately entered on the Evaluation Stack
without any need to actually execute the phrase in question, if As an example, consider the following (assume M(6)I 45):
the Value Cache does not contain the desired value, evaluation
proceeds normally and the new value is copied into the Value K a M(I) + I
Cache as a side-elfect of the processing of the ii field in the
last instruction of the phrase, PUSH L

An Important part of the cacheing mechanism is keeping SID K
track of dependency information. The value of a phrase can - - -
depend on an unbounded set of memory locations- -namely all L: PUSH I

-those which are referenced in the course of Its evaluation. PtUSIIx M-1
Should any of these locations be changed, the old value in the ADrm" I
Value Cache must be purged. I: INr a 6

Because the space available to represent dependency K: INrr 45
.Information in the cache will be limited, we must have a way to
encode the dependency information, A possible There are four phrases entered in the Value Cache after
implementation is to represent the dependency set as a bit executing this statement:
vector of length n. A dependency on a particular memory
word with address A could then be mapped into one of the n v( AD[RESS VC.VALUE VC.D1'PENDENCY
bits by an operation on the word's address, D(A), An inclusive
"OR" of all encoded addresses would then represent the I INT 6 D(I)
dependencies of the phrase. Purging from the cache all M+5 ITNT 46 D(M + 5)
values dependent on address B could be accomplished by L ADDR M+5 D(l) V D(M + 5)
eliminating all entries which included bit D(B) in their K ITNT 61 D(K)
dependency mask,

To explain how the Value Cache is used, we need some If we later changed the value of I, the phrases I and L would
Information about both the Value Cache and the Control Stack, be purged from the Value Cache, but M(6) (i.e. M + 5) would
The Value Cache Is an associative memory, each entry of remain, unless by chance D(I) - D(M + 5).
"which has three fields:

4. MeasurementsVCADDAESS address of phrase4,Maue nt
VCVALUE value of phrase To obtain objective measures of the performance of this

VCDEPENDENCY dependency of phrase architecture, we resent here analyses of four simple programs:
three production-quality statistical subroutines taken from the

Control Stack entries also have three fields: Scientiic Subroutine Pachage and one simple quadratic-
equation solver taken from an introductory programming text.

P.ADDRESS address of phrase When we say production-quality, we mean that there is no
I-STATE current execution state obvious way to rewrite the source program more efficiently In
CS.DEPENDENCY -accumulating dependency the statistical subroutines. In contrast to this, the quadratic-

equation program contains several examples of formally
There are four activities which involve the evaluation identical (and redundant) expressions.

mechanism and the Value Cache: We examined the execution of these programs on three
acompiler/architecture pairs: on our architecture with a simple

BInninf an evaluation. The Value Cache is checked to as compiler performing no optlmizatlons: on a DEC PDP-1O with
it conta ns the phrale's value; If so, the value Is Immedlately the FORTRAN-10 optimizing compiler; and on a modified sfockentered onto the Evaluation Stack and the evaluation Is architecture (MSA). The MSA is a variant of our architecture,

oonsidered complete; dependency Information from the Value obtained by eliminating the evaluation mechanism (including""ache (VC.DEPENDENCY) Is added to the dependencies being 43Value Cache and Control Stack) In favor of the simple "fetch-.

143

...~ ... . ..



the-contents-ol" mechanism; it is thus a simple stack and execution, However, even with well-coded programs, we
architecture with the same one-operand instructions as In our see a significant Improvement over a simple stack architecture,
architecture, The compiler for this architecture Is identical to Of course, these few examples cannot alone establish the*
the one for our principle architecture. benefits of our architecture. It is meant only as an Informal

Code size statistics were obtained from listings of the argument to establish the possibility of such benefits, even in
compiled assembly code. Execution statistics were obtained programs not easily optimized. We hope to provide more
from instruction traces on the POP-10 and from emulators of quantitative evidence on a wider range of programs In the
the other architectures, In emulating our architecture, we used future, along with more information on the effect of the size of
a Value Cache with 100 entries and a 32-bit-wide dependency the Value Cache and on cache-full policies [3].
field with D(A) a A mod 32.

In comparing program sizes, we assume that a "word" is References
equivalent on the different architectures. Likewise, execution
statistics are expressed as the number of memory fetches nd 1] Myers, G. Advances in Computer Architecture. Wiley, 1978.
stores (instructions plus data), We do not count internad 121 Leverett, et al., An Overview of the Production Quality
processing, so all instructions take unit time unless they Compiler-Compiler Project, Technical Report CMU-CS-79-105,
Involve a fetch or store from memory. (We do not consider the Carnegie-Mellon University Computer Science Department.
Value Cache to be memory In this sense,) With this in mind, 1979,
we present the data In Tables I and 2. Tablee 3 and 4 present (SJ Harbison, S. P., The Dynamic Optimization of High-Level
the same data as a fraction of the MSA values. Language Programs. Ph,D, Thesis, Carnegie-Mellon University

SArchitecture Computer Science Department, To appear.

1Jprogram PD.P-10 Ours MSA

At 1 too 211 224
12 148 168 166

83 80 94 go
84 121 118 169

Teble 1: Codes lze (wordll)

Architecture

,Proaram PDP-10 Ours , M
.iSI 2.162 2,414 3,647
.82 1,282 1,726 2,219
S3 6.516 9,666 12,942
S4 408 447 824

Table 2: Eixecutilon speed (letches)

Architecture

Program PDP-10 Ours

SI .83 .94
S2 .90 1,02
63 .98 .83
S4 .72 .70

Table 3: Code size (fraction of MeA)

Architecture

Program POP-I1 Ours

S1 .59 .66
S2 .58 .78
S3 .50 .75
S4 .50 .64 1

Table 4: Execution speed (fraction of tEA)

The PDP-10 and MSA are In a sense upper and lower
bounds for comparison purposes. The PDP-10 Is a mature
instruction set in the traditional Von Neumann mold; it has
been carefully designed and optimized. MSA on the other
hand is the simplest stack machine one can imagine. Likewise
the PDP-10 Incorporates a sophisticated compiler, whereas the
other architectures have very simple compilers. (In particular,
they 0o not even have to do register allocation.)

The data confirms that the PDP-10 is still the more highly
optimritzed architecture, but in the case of the S4 program, our
simple compiler was able to produce code which was morne
compact and which executed almost as quickly. Clearly the
benofits depend to some extent on the degree to which
rdu.tint� x_•.. q_• _opa..cn be eliminated du n_ compl!atiLn

144

I0

I.... . .+ , . . •.. - .. .. . .
' '" ' " . ' .•'" . • ; + •?, .+''



ARCT13179 RA.L StPOPO FOR ABSTRACTION i '*

O.K. Iliffe

International Computers Limited ()

Abstract language engineer with considerable privilegea

for precisely that reason it has been impractical
A mechanism for supporting fine-grain to make wide use of improvements in the encoding

program protection and abstraction in a multi- of high level languages which depend on havin#
outer context is described. It is argued that variable intermediate code formats. Attempts to

such features are necessary to suaport high level define architectures at even higher level run
moor interfaces and particularly high level lan- correspondingly higher risks.
ttuage implementations uing microprogram control,
.ut that their cost must be small in relation to The order of events, therefore, is to
iLoroinstructions. The mechanism is currently define the abstraction mechanism first and then
being investigated by simulation techniques as use it to model whatever Werational behaviour is
part of a general-purpose system stuo. required. But what is meant by doing that

'efficiently'? Fifteen years ago, under the
objective umbrella provided by the ISM 360, it seemed sf-

cient to achieve the objective with 'no increase
The meet important objective of general- in program size or loss of speed', which is eassen-11,

purpose computer design is to model accurately, tiallt what happened with the Basic Language
reliably and efficiently the data of widAly varying Machine 1 . Today that umbrella is permeable and tel
problem domains. We might instance records, out-perform current range-defined architectures isl
massages, tax tables or graphical images as typic- commonplace. The essential requirement now seem
-al classes of data familiar to coqputer users, and to be to provide the benefits of abstraction at
to the extent that the attributes of a class, the finest level of description used by system,
neither more nor less, are recognised we can say language or application engineers - in other words
that a successful abstmotiou has been achieved, at what is usually regarded as the microcode level4
We define a 'high level' architecture as one that Once that is done, the way is open to realising in
supports such abstractions for an open-ended list a practical context the advantages of microcoding
of classes. Its importance is that it enables corn- that have often been demonstrated under special
plex data processing applications to be developed conditions.
and maintained in a reliable state by offering to
information engineers something comparable with In this paper I shall outline a design,
the subassemblies and precise tolerances of, say, which for reasons soon to become clear is called
mechanical design. Overall, one expects as a a "Pointer-Number system", which demonstrates onc
result to produce better systems more quickly and way of meeting the objectives. It takes account
more reliably and at a lower cost than would other- of system requirements not mentioned here, and has
wise be possible, been carried to a detailed simulation in order to

make realistic performance estimates. In the next
The complexities of operating systems subsection we review the techniques on which it is

have drawn attention to the importance of program based and the range of problem that have to be
structure, most designers making use of the ideas solved at the next stage of design. The followisag
of task (i.e. process), fiU, segenst, event and subsections outline respectively the 'PX Machine'
others in abstract form. We could include code and 'PN system'. Finally, some conclusions &M I
*epmt in the list and thus lead to the accurate, drawn from the exerimental work done so far. Thea
reliable and efficient modelling of high level len- reader is referred to the PN estem mmtl2 

for
guages, but it would be a mistake in the present more detailed explanation and justification.
context to put either operating system or language
engineers in positions of privilege since (through Abstraction aechanism
no fault of their own) that seem to guarantee poor
response to user requirements. For example, in The basic requirement is to machanise the
range-defined architectnre (in the style of the ideas that might be expressed ase "Let A be a .
IBM 360) the micro programmr has in effect been a class of objects with attributes (a.) 1- 0 .L",

"Let x be a (meaber of the class) A", "let v
(*) Present addresst Department of Computer Science

and statistics, Queen Mary College, University of London
145 !1



denote (the same member of the same clams as) x", individual operations are fairly substantial and a
and so on, all the representations being within the number of capability systems have been implemented'
limits of a finite computer store. In programming in which pointers are interpreted by the operating
terms this quickly resolvse into the use of des- system without serious loss of speed. In moving
criptors or pointers as a type of operand distinct towards simpler operations the interpretive mecha-
from the attribute sets that represent the individ- nism must be refined and assisted, first by micro-*
ual objects, a construct that has been used from program and finally by hardware, and in the present
the earliest days, though it was not precisely en- context the stringent requirement of having low
gineered until segmented storage came into use in ovexhead in relation to micro-operations forces us
the early 1960's (Figure o). In the case of pro- to disregard all but the most delicate controls.
gram space the connection between (indexed) pointer In the model provided by Figure I we might nominate
and attribute is notionally direct, but it is a the 'effective storage access time' as the relevant
simple extension of the same idea to interpret the 'parameter. In Figure 2 the critical time is that
descriptor as referring to a member of any given taken to move the locus of control from the 'user
Tasm of objects, which was the generalization made domain', containing the capability, to the 'class
in the Basic Language Machine (Figure 2). In the manager domain' in which interpretation takes place

and back again. In either case, if the observed
cost is too high users will tend to avoid the

T = F facility and lose its benefits.WO= RD' _oo. ."
CODE WR(a 0 ) ----(, ri -v, i d

CAPABILPPY USER'Is

c: object class """
(aL) V: Acoes8 options

Representation id: object identifier o

- -o- "oun -ary

T: Segment type
L: Maximumn index CLASS
F: Location MANAGER S

id A I
Fi:gure 1. Storage segment

lAtter case the pointer contains indices c, id that.

uniquely identify the class and object in question. Master
In accordance with current practice we refer to ojeOt Representation
pointers used in this indirect way as "capabilities" T
but the term "codeword" is retained for the spocial Tfobrecase of reference to storage. for class a

it is implicit that pointers cannot be
forged, otherwise the whole point of having precise-
ly engineered program structures is lost. On the
other hand they must be manufactured somewhere and
the class manager must be able to manipulate the The other factors are more difficult to
representations directly. Such considerations lead quantify because they entail the inevitable com-
to the notion of protected domains characterized by promise between cost of management and ease of use. .h
sets of pointers that define the 'rights' of a pro- It might be askedt "If members of a clams are
gram at any instant of its execution. As control generated at a given rate, what is the resulting
flows from one domain to another there must be management overhead?". For example, how often can
correspoding changes in the list of rights, one open now files, create messages, or assign new

tasks without undue penalty? Clearly, some costsBefore 4iscussing possible mechanisations are passed on to storage management which has to
we should be aware of the performance parameters to provide file control blocks, buffers, task vectors
look for in the final analysis. Amongst the most and so on, but there remains the responsibility A
important is the time taken to access the attribute for master object tables, for recovering 'dead'
given a valid pointert there is no absolute figure identifiers, and for error management. The tech-
to aim for, but it is required to be short. in rela- niques available for reducing costs are mainly con-
tion to the class of operations that it supports. corned with the time taken to scan the program A
For example, in dealing with files or tasks the space looking for particular classes of pointer

and might be aimed at eliminating that need
146

•.4

"•, . ... . .. . .. . .. ..... ", "" , ; " . ... ' -.... •......... ... .A:'



entirely, e.g. by: Figure 3 illustrates the use of pointers
in referring to different program workapaces. The

(C) enlarging the master object tables to service transformation a is handled by capability managers,
all foreseeable requestsi or while 8 is the responsibility of the segment mana-

(b) restricting the use of pointers, e.g. by ger. Parallels can be drawn between writing in a
indirect reference through system tables or conventional high level programming language and
by linguistic devicess operating on global data, between microprogramm.ng

and working at local level. However, a key feature
alternatively we can seek to minimise the actual of the PN system is that sharp distinctions are not
scanning time by: drawn and it is easy to move from one level to the

next.
(c) limiting the extent of pointer-bearing

segmentsi or
(d) constraining the program structure, e.g. to

separate task domains or to a 'tree' form. ABSTRACT CAPABILJTTES e.g.

In any well-designed capability system the con- •ECTS TASK,

straints are small in relation to the benefits they FILES

bring, but the fact remains they are a psycho- I WSSAGE

logical hindrance to widespread acceptance. The
best way round that, architecturally speaking, is
by: 

I1
(e) providing high speed memory scanning and up- G "CBAL CODEWORDS e.g.

dating operations enabling many of thePCONTROL
restrictions to be relaxed. SPRA COETRO1and

• SPACE DATA
The last solution is pursued in the PN system by ASEGNTS
using what are effectively microprogrammed manage-
ment procedures in conjunction with hard-wired
'planar' memory scanning functions.

Returning to the primary measure of ii
qtorage access rate, it is clear that no scheme LOCAL ADDRESSES e.g.
dependent on validating pbnters at time of use
(against access list, segment table, capability PROR CONTEXT,

SCRATCHPAD,registers, etc) would be acceptable, and in order SPACE REGISTERS
to compete with 'unrestricted' access mechanisms
we are forced (i) to admit pointers as operands
used directly by machine instructions; and (ii) to
control their formation so as to preserve the Figure 3: Levels of progron space
integrity of programs. There still seems to be no
better way of doing that than by using a tagged
register format. However, in moving the control A protection domain is defined by the com-
mechanism to microinstruction level the interpre- bined effect of two sets of rules: those that
tation of tags must be resolved in single micro- govern the inheritance of access rights in regis-
orders. In theory, just one tag bit is necessary, ters and storage, formation of new addresses from
to distinguish between pointer# and number8, but it old ones, restriction of access options in capa-
will be seen in the next subsection that fifteen bilities, etc, all of which are reductive in char-
pointers and one form of number are distinguished acter; and those concerned with the expansion of
by a four-bit tag code. rights in passing from one domain to another. The

ability to expand rights depends on some prior
We have already seen that becausp of its authority saying in advance that "program module N

practical importance storage is distinguished from shall only access resources m1 , mi, ... mk", which
all other abstract classes. A further distinction iis drawn between sharable (global) and unsharable in turn devolves on the constructi.on of control •

segments and associated data. Apart from the need
(Zooat) data areas. The corresponding pointers are su
odaworde and adefeass~ respectively, which have for speed and flexibility in implementing such a
almost identical properties in normal use. It is rule we also require that it should be easy to
unfort'uiate to make the distinction, but it re- apply and not expensive to support. In the PN
flects the fact that controlled access to shared system the region into which rights expand i. de-
resources uses a single level of indirection which fined by a set of resources known as a base. There
is otherwise unnecessary. The same mechanism is will be several bases in a system, so there is
used to distinguish between data that might be at scope for partitioning at that level. The objects
a remote site in a multicooputer system (and there- Mln M2 , ... M are identified by indices that are

embedded in object code. That seems to be the mostfore 'global') and data areas that are strictly '
local. economical way of changing access lists, since it

147

.. . ...".'.'. .."."...



I, rv -' M WJ, 11 1 P

is done at zero cost in conjunction with control The sequenca controller plays a conven-
transfers. It will be shown later how the inter- tional role. The most frequently used control
connection mechanism is supported by machine func- fields (control pointer, condition codes) are held
tions in the context of a dynamically changing as separate registers, the remainder being found
base, task and module population. in the generdl register file and protected from

mis-use by overall controls on program construc-
tion. They include base and task indices, stack

Pointer-Number Machines base and current stack frame, current control seg-
ment index.

in order to evaluate the above ideas in a
practical system context a detailed machine model The local memory controller serves requests
known as "microPN" has been defined and simulated. for data and instruction accesses within the pro-
The intention has been to provide full support for cessor and external requests arriving via the
abstraction in the context of an assembly of global memory controllee.. The memory operattons
processor-memory pairs, each comparable in cost includo normal fetch and store of byte, word and
and speed with current microprogrammable machines. tagged values, and 'planar' accesses arising fromI, the use of local memory as an active storage

The main components of microPN are shown device.
in Figure 4. The register file Wn consists of 16
32-bit general-purpose registers. Most internal The four high order bits of each register
machine operations can be completed in one or two conatJ.n a tag, as shown in Table 1. The remaining
ALU cycles, typically processing the 'high' halves 26 bits are interpreted accordingly. The format
of the operands first, which includes checking of tagged elements in store is the saxus as for
their tags, followed by the 'low' portions. The registers. Note that tags 0..7 are 'global', and
ALU carries out elementary arithmetic, logic and have the same meaning for every machine in an
shift operations on numeric words, and the special assembly, while tags 8..f are addresses with no
operations required in controlled pointer forma- meaning outside the processor in which they occur.
tion.

TABLE 1
External \ Interprocessor

Connectiona L Hfghway microPN REGISTER FORMATS.

GLOBlAL OBJECTS
GLOBAL 4 12 16
MEMOR.Y Itag I

01CONTROL ( 0 high i -Integer
1 a i Entry pointer

LOCALArithmetic 2 o1 id Indexable capability

"" '- E M O R Y 3 a i I n d e x a b Z e c o d e w o r d
C O4 C id System capability

I !5 a i Control pointer

S StQ 

No n-ri.l 
id Capabil •i ty

SEQUENCE .c.,' i
CONTROL 1 4 i Codeword

16 6 LCAL OBJE• rS ,.4

8E I L P P te sequenct?
GENERAL

X PURPOSE PLANE ALU I-,aad-wit

Ol ESPLANE REGS 1 F Tagrd seque.nce?

T OIC
d LOGIC L F Word sequence
(ALU) 56 256 Read-only 14 L P Plane sequence

-" LOCAL A'MORY .1 L F Tagged sequenceDATA 16 .t64K esT

.ADDRESS 6 PLNA EMRY'

to64 Kplane

Figure 4: General schematic of microPN machi new.zi

i 

|48



It can be seen from Table I that capabil- The 'plane ALU' operates on three planar
ities and codewords have 'arithmetic' and 'non- registers, each 256 bits in microPN: an accumulator
arithmetic' formsa in the former the object index which can be regarded as 16 words of 16 bits or one

/ or identifier can be altered by arithmetic opera- bit from each of 256 words stored in plane sequence;
tions. In neither case can the clams or segment a carry plane associated with the accumulator for
index be changed without authority. A distinction bit-serial operations; and an activity plane that
can thus be drawn between a 'singular' reference to selectively controls store write operations. A
an object or element of a segment and one that can further set of operations is provided to move the
be treated as on, of a sequenco,. accumulator in either 'row' or 'column' directioh,

with linear or cyclic edge connections. The planar
Local objects are the addresses in local functions are designed primarily to assist in high

memory (starting at byte position F or plane P) of speed operations on numerical data, digitised
L+1 consecutive elements of the specified type. images, signal data, etc. However, in the present
The local store is extended by an optional planar context planes play a prominent part as 32-byte
store which serves as a back-up for the (presumed) units of memory allocation, and planar functions
faster local memory. In microPN planes are just are used in module interconnection and scanning
256 bits in size, and to enjoy the full advantage operations. The conventional store operations are
of the addresssing scheme it ts envisaged that extended to transmit numeric data between general
planes of 1024 or 4096 bits will be used in practice. purpose registers and word planes along common row
Data is transferred between levels via the planar or column data lines. Hence the design achieves
register unit. another fundamental objective, of easy transition

between 'parallel' and 'scalar' modes of operation.
Global segments are addressed indirectly

by the global memory controller through a segment In a tagged machine the instruction set is
table which might be associated with another micro- designed to carry out normal arithmetic and logical
PN processor in the same assembly. Segment table functions on numeric data and to provide separate
entries have the same form as addresses. Figure 5 functions for operating on pointers. Thus the
shows the principle of interprocessor communication 'modify' function in various forms applies to any
assuming a bi-directional data and address bus of address and increases F (or P) by a given amount,
32 bits. The requesting program applies a memory decreasing h accordingly. The 'limit' operations
function m to the codeword (ai) . From a the reset L to a lower value. If the bounds of the
position of the 'host' is founds if not in the same original sequence are exceeded an 'invalid address'
pro•essor-memory pair the parameters (m,S,i) are (system capability class 8, see below) is returned.
transmitted to the receiving module, where the In that way the current protection domain can be
function m is interpreted with reference to its delineated with a precision of one byte.
segment table. A suitable reply is sent to the
requesting program. Details of the interaction In microPN there are eight primary func-
depend on performance objectives and cannot be tion groups, of which four are tag-independent and
meaningfully examined until program design strate- four restrict the tag of one or two general-purpose
gies have been fully explored, registers. The tag limitations can be simply ex-

pressed in tabular form and as far as can be seen
GLOBL a,- would have very little effect on cost or speed.

• OqLOBP.. i Nevertheless the essential protection mechanism$
&WERY y have been retained.XO N T R O L u e 'Rqu An incidental effect of the PN protection

Vol'nscheme is to make it easy to apply 'execute-only'

options to control segments. Advantage has been
i taken of that to preserve some engineering flexi-

L- - - .I bility and to undertake some security checks during
(CALLER) program translation. For example, all register,

base, label and system function indices are checked
SINTERPROCE'SOR BUS by the compiler and written into code sequences

knowing that they cannot be changed by the user.

Similarly, privileged function codes (such as 'settag') can be generated without direct control by

the programmer and there is no need for a distinct
'reply (RECEIVER) 'inicrosystem state'. There is, of course, the

- possibility of code being corrupted by store mal-
I ....- -c... #ba • function which, like pointer errors, could lead to

segment wider breakdown. Whether to control such errors by
eo n further checks on the code, the pointers, the task

GLOB• .Segment space, the processor, ... or at some other boundary

COP.TTtbt, r depends on the type of reliability and availability
Tc",.'ethat is demanded.

Figure 5: Access to rImnte global data
149

A
• ..... ... ............ . •



• Control Segmerts
Pointer-Nubzer systems

In the saei way, control se4:ment capabil-
iThe PtN system supports ton classes of icies are distinguished from contro. pointers (tag

abstract objects, see Table 2. The aim of each ab- I or 5). A control segment contains encoued in-
stLaction is to disclose as much about each class structions and data derived from definitions given
as the user needs to know in order to operate on it in the system programming language. Although many
efficiently, concealing attributes that are irrel- features of the PN machine are abstracted the seg-
evant or liabl.a to change. For example, binary in- ment size, which contributes to channel loadins and
struction formats are concealed in the def.nition working set requirements, is not: in -nicroPN the
of control segments in order to allow freedom to maximum size is 4096 bytes. There is only weak
change the instruction coding. The system abstract connection between segments and control flow, i.e.
objects constitute the resources available for pro- change of segment does not imply change of proce-
gram construction at the lowest design level. To dure, nor vice versa, the reason being that although
reach the level of facility normally seen by appli- one can sometimes take advantage of such conventions
cation or system programmers new classes of object it is usually undesirable to couple logical control
such as 'message' orlqueue' will be implemented in structure to physicul store assignment.
terms of those that already exist. The use of
separate tag codes for 'system' and 'user' capabil- The definition of control segments in-
ities, while not strictly necessary, is helpful in cludes a precise specification of the registers
defining system structure, they use, their entry points, and external connec-

tions that may be established with reference to the
environment at time of use. The compiler, in con-

TABLE 2 junction with machine functions, ensures that the
bounds so defined are strictly observed. That is

PN System capabilities the essential requirement of software engineering,
brought down to 'micromachine' level. A logical

4 (A l eements in this group have tag 4, property of a control segment (Figure 6) is that
the index value id identifies a member the only resources it can use are those defined in
of the aZase a) or accessible from the registers at a point of

entry (e0 , el, ore 2 in Fig.6), or those acquired
a. 0 Null by expansion (m1i or M a), or those that it creates

I Control segment by using one of the resource managers.

2 Pointer segment

3 Base

5 File EntrC• e 'FZ| S' m EXTERNAL

6 Host (Prooaessor-meioy pair) Point$ el | (T) CONNEC-

7 CFC (see text) m3 J TIONS

8 Function error 6S2

16 Numerio segment

The principles of capability management Figure 0: Interconnection of controL eents
are widely understood, so we examine here only
aspects peculiar to the PN~ system. It is theoretically attractive to have

Data segments precise control over which of the entry points to
a module can be used in a given context. For

datdistinction is drawn between example, if M controlled a class of queues and e0An important dsicini rw ewe

data segments (identified by numeric or pointer ea and e• allowed users to 'Join', to 'leave', and
capabilities) and access paths to them (identified
by codewords) . A given segment may be accessible to 'delete' a specified queue, it might be desir-

through 0,1 or more such paths at a time, each able to withhold e from all but a limited subset
using a distinct index. Their allocation is con- of users. That would mean having distinct pointers
trolled by system functions to facilitate data for each entry point and increased overhoads in the
sharing at global level. The distinction is imper- management of bases. On balance, it is preferable
tant because not all operations on segments demand to define inly a single codeword for the module,
access to individual elements: for example, one say M, and to enumerate the entry pointers as N,
might want to know the type or size, position in M+1, and M+2, corresponding to e.' eI and e2 in the 4
the hierarchy, or simply to pass the segment cape- example. More precise control can be achieved by
bility as a parameter. (a) using separate control segments for 'Join' and

'leave' on one hand and 'delete' on the other;

150i

-5.

. -,



(b) by using part of the identifier field to encode
the permissible operations (the 'access options' ir. Capabilit management
Fig.2)1 or (c) by controlling the indexing opera-
tions in a higer level language. To form a new class of abstract objects

the desigrer requests permission from the system,
Once formed, a control segment is ready which returns a capability-forming-capability (•C)

for execution. There is no need to .oad or consol- containing the index 0 of the new class. To form
idate it into a particular program, tusk or pro-. a new capability one can than present to the
cessor rpace. The reason for that dawign decision system that CFC together with the object index id.
is that it qives the greatest flexibility in pro- IL; return a tag 6 usex. capability, class c, index
gr-m construction at a cost which, from experience id is obtainad:
of similar systama, appears to be small. External
connections are 6efined by ref#rencv to the current CFC 41 7 .. 0
hava and task, but since the sae segment might be and object id IQ
in concurrent execution with reference to several give
different barnes and tasks, each with different corn- user capability .' 01'
ponents, the environmental vectors are treatead as
'sparqe' and connection is made by an associative We now see that the tpic•i. 'package'
search using the resource name as argument. The c-aling with a class of objects consists of a
association is done by parallel (planar) operations manager M, whose name is made public, and essen-
and is relatively fast. tially private data strLctures such as the master

object table and CFC whose names (mi and M2 ) are
The only method of expanding rights is via excluded from other segments. Disclosure of M will

the list of resource names, and strictly speaking also document the ftnctiors of its entry points.
the inclusion of a name in a control segment should Tle 'difficult' aspects of R are concerned with
be subject to formal checks. It would be possible h
to give a list of 'valid' names to each user or index management which, as we saw earlier, leads
software design group, but here again the advantage to various forms of evasion. In microPN, system

gained from a strict rule of construction must be support is offered to dilete either (a) a given
balanced against the cost of administering it. In capability or (b) a capability class (authorised
our experience informal controls are sufficient for by the CFC) from program space.
mat applications, wherein the 'prior authority' Inevitably, pointers must be scanned
can verify by inspection of the source code that a looking for such capabilities. In a multico1puter
control module (such as N) cannot extend its effect
beyond the permitted bounds (such as Mand system the rate of scanning store has two impor-

.o1  t rant characteristics: (i) it is relatively high,
Function errors because of the close connaction between processors

and memories, and (ii) it is roughly constant

For any machine or system functiorn con- because additional memozy brings with it additional
strued as 'failinq' there is a choice of aborting processing power. As a result we can suggest index
Sthe task or returning a recogi~isably invali' result management strategies based on the use of smallfro tsystemtcapabiiy cas 8ecogi.i y lie v r roi e isualt m.o.t. 'l whose entries are recycled when no longerfrom system capability class B. Thes -hoice is ain u e
practical matter: for exarple, illegal tagL abort in use.
the program, whereas address overflow returns an For practical reasons store allocation is
invalid address. If the former option is taken the serviced by a special set of system functions, but
'result' of a task is itself a class 8 capability. the above cobments on index management are equally
In all cases the encodin7 of the index field gives applicable to codewords and addresses. The planar

memory functions are particularly important in

A similar convention can be applied in store compaction.
the user domatn, returning class 0 system capabil- * * *
ities ('Null') to indicate failure. With regard
to dynamic type checking, the user can easily In summary, it might be said that the main
'break open' a capability to examine its -lass and problem of microsystem design is not to invent new
tag fields. There are three courses of action: facilities but to select a basic subset from the

range of possibilities on offer. It is paradox-
(a) to assume all types are correct and expect ical that at a time of great abundance in hardware

to fail later (e.g. on tagcheck) if they the need for stringency in design is greater than
are not) ever, but the fact remains that there are great

(b) to check types and fail gracefully; or dangers from 'overkill' in hardware and software,
(C) to check types and return a Null result. In microPN the decisive factoxe are the need to

maintain security at microprogram level, and un-
There are many tactical variations; which to use willingness to suffer loss of performance in doing
depends on the level of understanding between so. Emphasis is therefore placed on the ability
caller and callea, and it is important not to pre- to construct high level systems rather than commit
erpt the decision in system design, the design in one direction or another.

151

I? .- Jt



and so on. Quite often a high performance figure
SSimulation is traded for some other attribute such as resil-

.lnce or responsiveness which is difficult to
eicquantify. A vital objective is to achieve perfor-• The PN design is based on a computer mod-

Sule assumed to be comparable in speed and complexity mance in convertible shape: that applies partic-
acaularly to the levels of abstraction x.nd control,

with current microprogrammable machines. Besides because their interfaces undoubtedly decide whether
playing its part as a member of an assembly, each what is possible in theory is actually achieved in
must satisfy the most exacting requirements of
program reliability and language implementation, a practical system.
which carry over (still unsatisfied) from conven- Costs are equally difficult to quantify,
tional design. Before making specific hardware and care must be tal),en to compare designs with
recommendations it is necessary to study in depth similar facilities. For software engineering,
the program organisation and behaviour that can be
expected in practice, so the approach has been o controlled pointer formation is far more effective

than segment/page table control and costs much lesssiuaeoecmue ouean to ak~e easue-; eoymngmn.l-i s nbe h eia
on a gate-for-gate basis. The most conspicuousment frm wich he erfrmane o anasseblycan cost of microPN is the 16*16 bit planar arithmetic

be inferred. The simulator runs under the UNIX otoincPNIth166btplarrtmec
unit, whose main contribution to the ,zatcm is inop e a ti g s s t e o n th e p nP 1 1 e r i s o c o p ut r s , m e m o r y m ad n a g e m e n t , i t s us e e n ab l e s t h e d e d i c a t e d

lagilitesystiem supporancde system implementation control aid scratchpad stores normally found in
anga, l a support and error management fun- microprogrammzd machines to be dispensed with, thus

ny on-line documentation. removing a serious obstacle to microsystem support

system is simulated, and for high level languages; it also enalbles a far

between any two control points it is possible to more flexible approach to be taken in capability

count. management and program construction than has been

W(i instructions obeyed possible in e.rlier systems. Whether it will be

(ii) local store accesses justified on balance remains tr, be seen.

(iii) global store accesses Finally, it should be stressed that the
(iv) stack usage mechanism outlined here, while appropriate to the
(v) procedure calls control of program space, does not preclude the use

(vi) module interconnections of other abstraction devices. It would be possible,
(viii) planar fountions ostyne for example, to superimpose a capability nchanism

(viii) planar routing distance extending into the file space. it wuuld b, Advan-
and (ix) interrupts.
Elapsed time in the host system is also available, ta'uous to deal with scme forms of pbstraction by
and PN system functions can readily be modified to '5vft' methods in the confines of particular lan•

usage, static asures of quages. On the other hand, to make the basic
instruction coding, etc. utie significance of the architecture part of a language or file systeminstucton odig, tc.Thesigifianc ofthe specif'ication would he fundamentally bad design.
above figures should be clear. Taking store traf-
fic as the main parameter of p.rformance# it is
found that for every 100 bytes of instruction about References
30-60 further bytes of data are handlad. If the
data were all global, the overhead of segment table (2) A Pi-ioiptes, J.K. Iliffe,
access would thus be 25-40%, but that is never the Mac(oald/American Eblsevier (2nd edn 1972)
case: it is rare for less than 90% of data accesses
to be local and we conclude that the overhead is N ) .LJm Progrwwsrifqg ManuaZ , J.K. Iliffe,
negligible. Comnputer Systems Laboratory, Queen Mary

As already shown, change of access list is College, University of London (1979)
implicit in moving from one section of code to an-
other, but for each register saved or restored at i
domain boundary six bytes of data and instruction
are used. A complete task change in microPN gener-
ates about 500 bytes of store traffic, while the
s(,arch of external names associated with module
interconnection generates about 200 bytes (50 instr-
uctions obeyed). In scanning operations, about one
machine instruction is obeyed for each pointer ex-
amined, so that a typical stack (less than 100
tagged values) would be scanned in 10sec.

ITh above figures begin to provide the
context for high level program design decisions,
e.g. whether to use global or local workspace, how
to distribute segments across computer modules,
when to use advanced forms of binding, what mix-
ture of interpretive and in-line control to use,

152

...



HEIRARCHICAL FINITE STATE MACHINES.AS A STRUCTURE

FOR INPUT/OUTPUT SYSTEMS

HUGH L. APPLEWHITE

HONEYWELL SYSTEMS AND RESEARCH CENTER
2600 RIDGWAY PARKWAY NE

MINNEAPOLIS, MN 55413

1 nqgh level languages have long been looked

The :,tput/output interface has tradition, to as unifying concepts for processor ind atoa

ally been a source of trouble in computer sys. rage architecture. Significantly, input/&.itput

tess. A heirarchiral model, based on Finite interfaces are programmned almost universally in

-.ate Machines P- appropriate to ootn hardware an as ly language, not a hign level

and software, is ptejentad whlich addresses language. It is symptomatic of the lacK of

these problems. Ibis model is of interest for proqress ir, this area that the program3 which

several reasons: flrst, it suggests a struc.- deal with i/o are still constractr6 in the most

ture tor the design of input/output subsystems; primitive language. Hiigh level langmages ara

second, it ts esenable to automatic manipula- considered to ue too Jneftiainnt. This points

tion usinj wllk~nown algorittimn.• (e.g. state out te lac. oL a unifying structure at t.
minimization), third, it is easily and etti- input/output interlace.

ciently implemented in software, firmware, or

haLdware; foucth, automatic generation of we wi*, to investigats input/output interv

tests Li posible. action at the actual hardware/software interw
face. Previous work [1,21 has ema•asized the
notion of a device as an asynchronous proewas.
this is appropriate, jincL synchronization is

an important issue in dealing with pariperal
2.0 Introduction devices. 'Ibis paper, though, deals with the

input/output system at a different levelm.the
Mhile progress has been Li ,e ii, other actual hardware/software interface. The two

areas of computer system design, the view are complementary in that we do not rev
input/output area has been totally neglected. move asynchronous activity f£om the i/o area,
we speak of an architecture as being 'language but rather present a more software compatible
directed' to indicate that it eodies the phi- view of the i/o interface for the device

losopny of a language. We recognize an in- processes to deal with.

structio. met, say, as being high level. Ur we

construct a memry system to ensure an "istract 3.0 Current Practice

require mnt such as security. But try as we

may, no guiding principles can found o Given that a particular piece of equipment
input/output systems. bout the only general is to be connected to a computer system, typiv
statement to be mwe is that data is transportw cally a hardware designer steps in and designs

ed betw the outside world and the a controller. The hardware designer is given
processor/memory. the device inputwoutput characteriaticsi these

153



may involve a fairly large number of analog or
and/or digital lines subject to varying electr.
ical, physical, and logical constraints. The
product of the hardware designer's labors is begin
the logical device visible to the progr&iver as it statusolt(rn) 01) then

a set ot io ports )r memnory registersi. 'nien a eleit statjuit(n) = on then
prototye is built and the hardware debyggeo.

wow a prog4ratier enters the scene and ue- elseif statusuit(p) on then ...
signs a devire driver (or handler) to -onnrect e
the logical device to the operating systen
(and, in turn, to application level programs).

The startinq point for the programuer i1 the or some comirination of the two. In the first
logical device constructed by the hardware der case, the nwuLuer of possiblu paths tnru the
signer. Thne logical device appears as a colv code for n status Uits is 2**n. Note that in
lection of bits which represent status or com- many device interfaces the importance of the
mands and a data cagister for data or adr status bits is not at all apparent - that is,
dreases. The lines to the device which had a there is no simple way to determine the impor-
very distinct identity to the hardware designer tance of the status bits. The programmer must

:have become a hoMenous, somewhat anonymous check bit 5, then bit 7, then bit 3, or check
• set of bits to the paogrm r. 1i) the casm of different sequences of bits according to wheth-

the status and control bits, they ma e er a bit is on or not. Actually, the situation
Stogether (note that status bits are to be read, is even worsa; complex devices, such as com,
and comand bits are to be written), and inciv unicati~n drivers, can require different behaw
! Ientally groupod. fte problem, though, is that vior to the sawe status depending upon the

tL programmer tends to view the device prior history of the device.
"- oneNdisnsionelly. All status bits or all cop ic

zand bits are viewed as being equally important F'inally, the programmer has a driver dew
on the same level. but all bits are not equalv sign. No codes it and must debug it. This can

ly important; the hardware designer under* be a harrowing experience, for the programmer
stands this and, for example, will not allow is confronted with a new piece of hardware
the controller to function if the device is not which may malfunction, or he may have misunderr
initialized. This one~dimensioonal view leads stood just tow the controller works, or the
the programmer to check the status of the devw nardware designer may nave given nhim a con-
ice thru such code sequences as: troller which is difficult or unwieldy to deal

with, or his code may b& incorrect, or v-- (tMe

reader is invited to till in other reasons).
begin The driver may not worK and he can't tell it
if statusbit' a on then .. the problem is hardware or his software. 0o he
if statusbit(m,) - on then calls in the hardware designer to help him.

i ." Sut now, communication between the two may com ,
if statusbit(p) - on then ... pound difficulties.
and;

154

, 

j



commwads to a lower level (the control conai-
This paper will attempt to solve these

deration). Also, a data type is translatedproblems. A finite state machine tkik) model

into a difterent, more detailed data type for
will Lw presented wlich is suitable for liple-

the next lower level. tach Lnval, then, succev
mentation in hardware, software, and tirmware. sively refines both control and data to a more
The ,'M has several desirable properties which

detailed form. Adjacent levels share comon
mae it attractive an a hardware/ software im-

control anJ data structures. The next sectionple-ienation vehicle. The designer is forced t•oSvwill present a more specific model for the re-
explicity account for all situations which may alization of the 1/0 subsystem.
arise. It is sufticiently high level to r"rve

as a comnon design lanyg'age while hiding low

level implementation details. It i4 anenaule '.. Vinite Litate 'lachinrs

to autcomatic manipulation using well-known alr
goritmas [3). Qiven suitable restrictions on 'he reaaer is assumed to be familiar with
the model Zi.e., nrerarchical structure), and the concept ot a kinite State Machine (FSM)
forcing the interface registers (tie lcjical [7]. t*,kss w'ill Ue briefly defined in order to

devicei to zonforn to a certain standard format present nototion. We shall deal with the Mealy
which is particularly economical (in nardware) model of an tbm as it seems to ofter technical
and efficient (in software) reduces the nuuier simplifications for our purposes.
of states to a managjeaole set. In tact, ex- A tinite State M'achine is defined as a sextuple
haustive testing way become feasible. ( U Nsy, W, S
Automatic yeneration of tests is also possible

14,5,61. Lastly, the 4SM collect. together wher.

sutV.cient information to provide a history of
op•ration which can be useful tor checkout, b a set of states

testing, and performance evaluation. I - a set ot inputs

U - a set oe outputs

4.0 A Ueneral Model Nur - a next-state function

16,:SxI 0> S
In designing an I/0 subsystem, botri data Ub' an output function

and control must be considered. At the operatv hk :xl > 0U

ing system interface, control is simple and the thw initial state

data complex; at the device, the data is sin-

ple and the control complex. kor example, an
array (butter) ot words Is presented to the I/0

subsystem with a reguest for transfer. 'Te T/U
subsystem attempts the transier and replies vouhere there can be no confusion, we may

with either success or failure. At the lowest omit explicitly listing the various sets. We

level, though, single words wight be trans- will rely on context to implicitly define them

ferced one at a time, with an a&xnowledgement uy giving the Next State and Output Functions
after each transfer. in error will cause re, either in tabular fonr as in Figure la or
tries or a failure status to ue returnee, in graptical form as in Figure lb.

h'ie general model, then, is heirarchically An k'SM operates as iollows: It begins op-

structured. Lach level translates a sirnle eration in its initial state. Heceiving an
con.iand into a set of input, it perforuLs some outpit dependent on its

155

4 4, ,b, ~ &t., 4A •



state and input. Then it moves to another transition back to its initial state, the operv

state, again accoring to its current state and ation of the submachine ceases, and the next

input. The process repeats continuously. higher levol machine (which invoked the suzea

Figure Z shows a skeleton program which chine) resumes operation. Note that since the

imlememts this pre-s. sumaechine initiates and terminates activity in

the same state, it has no memory of previous

6.0 keirarchical Finite State M4achines incarnations.

A Heirarchical Finite State Machine (kWSM) we mention in passing that an WSM is ex,

is a set of machines Mf i , i00, such that actly equivalent to a much more complex klim.
Thus, an HWSA has no greater theoretical power

<L4 l is an 0 o) I: than an F•4. Practically, though, it has sevv

oral advantages:

augmented by

< es[i3, ILF1i1 > 1. Heirarchical structure which may be

where designed and implemented in a top-down

w is contained in 5[1) faedion.

IFLi : ES[il 0> M•[j where j>i

2. A clear separation of concerns

(inputsvoutputs) at each level.
AS is often the case With

automatawtheoretic definitions, the iormal ia 3. An kI't may be implemented with less

S•appeara complex, yet the operation of the de"

1 fined machine is simple.the . ivent f, since
the *k'4 is a collection of small F'SMs

rather than large FSK. The nextstate
Intuitively, an NW.~ is a collection of and output functions grow as the pro-

FSaia with a mapping between the states Of A maw duct of states and inputs, and a sin-
chine at one level and the machines of the next gle Ki indy require a large amount of
lower level. That ise a state of a machine at m.rry to represent these functions.
level i may be associated (by an Interw6evel

' •Function Ill) with a machine at level i+1. Not

all states need be mapped to a lower level wav 6 Ip:• 6.1i Inputs

chine; The states that are so mapped are

termed explosive (the set ES in the above dew Inputs are usually specified in simple exi-
finition). Figures 3A• illustrate the amples as single symbols, for example, '10 or

structure of a simple kWS. The kWW operates '1'. Implicitly, we mean two distinct events,

similarly to an F4 with one exception& when first, that an input is present, and second,
an explosive state is reached, the execution of that the input has some given value. We wish

,i the kF at that level is susmpended, and te to deal with asynchronous systems, so input

submachine corresponding to the explosive state evaluation does not occur until an input is

is activated. The submachine starts in its in*

itial state, and execution commences around its

state transition grap. The submachine may, in For certain systems, a single input ayptol

turn, contain explosive states, in which case a may not be sufficient. In that case, an input
sub,,su~maChine is recursively activated, and so

f h tcan ue considered to be a condition miich is to
ui e evaluated as true or false. Only one iliput

156

I.4 ifAU



may be true. nie aingle input symbol is a spe- 7.3 dardwere Implemetation

cial canes it is simply the condition inputee
symbol .The Implementation of an WF in hardware

is fairly straightforward. It is similar in

6operation to the software version presented•L ~6.2 w&q 6asta
earlier. However, certain additions are made
in order to facilitate testing ,nd to accamom

The previous section presented the flow of date the lower bandwidth cmunication chaae
Control of an WSb•4. To be useful, though, it between the device controller and main memory.
must be possible to post data through the S'M. kh m may be Imple ted in Its most
Several data buffers are provided to each me* convienient formetest likely as a microprow
chinei an inputvoutput pair to be used tor

grosed controller (8]. In this conection noteC om m u n ic at i n g w i th th e n e xt ~ ig h e r l ev e l (i .e . t a i o t o f a l m c i e s i e t c l

the ioking) m , d an iputwoutput pair
for each explosive state to be used for communv Bac~h mahne an~t provide to the software
Lasting with S•m lhnes. Note that because driving it the information listed in Figure XX.
the " in a strictly sequential machine, one

pair of data buffers may be used to ommunicata All fields are encoded as mall integers so

with all next lower level machines. Four prim- that simple indexed table lookvups and' CA

statements may be used to access the kIFS.4. The
tiv r rv dt machine 10 field identifies the submachine.

The state, input, and output fields describe

1. Head from Above (HA) - head the data the machine state and its enviromient. So far,

outter containing data from the next the hardware implementation is exactly the same

hignsr level machine. as the software version. one extra itam is
added to the hardware version: tin machine 11)

2. *rite to Above (MA) - Write data into interrupt level. This is a register loaded by

the data buLfer of the next nigher the software driver at initialization time

level machine. which specifies which machine's state transi-

tions cause interrupts (or equivalently, when
3. Read from below (Hd) - Head the data software interaction is needed).

uuffer containing data written by the

sulmiaChine corresponding to the last Transitions of machines which nave IDS not
explosive state. eyual to Ue machine lU interrupt level proceed

at their own rate. The machine specitied in
4. wfrite to below (w•) - write to the this register is the highest level machine in

data butter which can be read by the the hardware. mhis is the hardware macine
submachine corresponding to the explo- which interacts with the software machine.
sive state being entered. 'Mue lower level machines are simple, execute

quickly, and do not require software interven-

ivte that the data passed by the write to tion.

delow (hb) function to the next lower level,

and received tuire by tie Head trca Above (iv%)

function, must agree in type. Similarly, the

keceive from Melow (oe) and write to Above (w)

functions must agree in type.

157

S. .. ,.. , .. .. .... ... .. ... ... .... .. i
Il



.) Tresting countered in practice, of reasonable

computational expense. in passing, we

Trnote that the k'Ms which we have usedTesting the hardware portion of the W'SM

is maie possible oy tne variable are fairly small (b-10 states and a

hardware/software interface, the machine I) re- like nuuber of inputs). Heferences

gister. In the event of a hardware failure, [1l,12J suggest a connection with syn-

indicated by illegal state transitions and the cnronization using regular path e,-[• pressions.
like, the software can test the hardware por-

tion of the dkKM. The test portion of the•,2. Certain types of exception conditions
software contains a duplicate implementation of

{• are not cleanly handled. A~synchronous
thm lower levels of the hardware machines. anAS~exceptions arising from an external
course, this duplicate is not used for mormal

source do not fit the model well as
operation, but only for testing. The software

sets the machine IL) interrrupt level to the• tion ano may occur in the middle of
next lower level machine and executes a prede-

fined test. It compares the execution of the some conceptually indivisible action.
An exampule ot this type of condition

hardware machine to its own simulation and re-A
is a power-failure indication. It is

cords ttie differences. These differences lo-

cate the faulty state transitions. If there not possible to guarantee that the

are no discrepancies, then it repeates the pro- power fail occurs only when tWe ma-

cess on the next lower level machine. It con- chine is in certain states at some

tinues checking lower level machines until given level. Lne might simply include

faulty transitions are isolated, a power-fail transition in every state

for every macnine, but this is an un-

satisiactory solution.

9.0 Unresolved Issues

Vtile W'Ss are attractive au a means of

structuring hardware/software, there are sever- lw.w Conclusions

al areas of conventiýnal usage wrich do fit

well into the model. 'flne input/output interface has

trauitionally ueen a source of trouble

1. Concurrent activity cannot be ex- In computer systems. Heasons for this

pressed within the model. An kM can- in.-lude a lack o0 cC(mnunicutiot"

not represent concurrent threads of uetween tiardware and software de-
control. iore general models, such as signers, lack of a unifying fraueworK

Petri nets, can represent concurrent for tardware and software specitica-

activity [91 and nave ueen used as tion, and an inability to completely

hardware/software models [I10. but test tiardware/software interfaces rv-

these models seem tt lose some of the alistically cue to the large nwiutr of

essential simplicity of the VcA model. states involveu. 'Tie proolfu is jat-

buthermore, many of the interesting ticularly apparent in the progratis

properties of these models are either tiiicn mate a piece ol nardware (Lot

undecidable or comuputationally expen- exainple, a perijAieral controller) to

sive. In contrast, k'SM questions are an operating system.

all decidable, and for most VbM" en'

158

iti A



1 i.k) Ac&nowledgements
7. kill,A., Introduction to the Theo-

ihe author would like to acknowl- ry of Yinite State Machines,

... edge molkmmmum Gouda, W-A)ert Arnold# mclraw-iill, New York, 1962.

!'•KicK wvmyer, and Jr•l Kell1,.n tor

t1eir time, opinions, and criticism. 8. Uensenk. and KainN., The ho-

Denise Johnson patiently typed the au- neywell modular microprogram Ma'

ttir's illegible hndwriting; as chiine, Proc kbOurth Annual Symposi-

usual, she parfortne excellently under wit on Computer Architecture, March

tight deadlines and conflicting de- 1977.

9. Peterson,J. , Ptri Nets , Co
puter purveys, Vol 9, No 3, Sept

12.0 He'terences 1977.

1. voirth,W., m~odula: A LAngua'ge for 10g. HO,C. et al, Trhe Logos Repre-

miodular Multiprogr t, irig, Software sentation System, Sixth Itkcc Com-

&'.•ractice and kxpmriee, V(,l ", puter Society Conference, Sept

l177. 1972, pp lU07191.

2. Havn,A., L)evice monitors, 1L 11. Campbell.M. and habermannN.,
Trans. on Software Engineeriny, 'Tite Specification of Process Syn-

Vol St-6, Jan 19dU. chronivation by Path E/xpressions',

in uperating 6ystems, Lecture

3. Hill,f'.and Peterson,U., Introdu:- Notes in Computer Science, Vol 16,

tion to Switching Tneory and Logi- bprinyer-Verlag, Now York, 1974.

cal uesign, oiley, New YorK, 196b.
Si2. •auernann,A. , Implementationa of.

4. Chow,T., resting Software Design ituar , Implemt ionso

modeled by tinite State ,machines, Car Patto Eniversi ons

IL66. Trans 66, Vol bL-4, tNo 3, p,'ayCangeMlo Uivrty om

puter 6cience Uepartitent Technical

97K. eport, Pittsburg, VA 1,79. -•

5. dennie,k., f'ault wetecting lxpri-

nents tor Seguential Circuits,

Proc kiftii Annual Symposiai on

6witchiri circuits and Logic Lm-

sign, erincetonNJ, 1964, p

6. dreuurmi. and tridmnanA., idia-

nosis and Reliable uesign of uigi-

tal 6ysteii,, Computer 5cien.e

PreSs, 1976.

159

- A' t '31 ¾-,*~ *~



2 2
!I i 12 .1 I2

SI SI S2  S1  0 0

11 2

2 2 2  02 02

NSF OF

Next State Function Output Function

Figure IL. Tabular FSM Description

12/02
1 /1o S1 S2 12 102

CI: I/02

Figure Ib. Graphical FSM Description

160

.49

I"



procedure fernj
type

nextatatetype array(1..2,1..2] of integer
outputtype *arrayll..2,1..2j of integer

nextstate -nextstatetype (( 1, 2)
(1j, 2 ))1

output a outputtype (C1, 2
C2v 2 M)

var
curreuntstato s Integer s
currentinput : integer I

procedure getinput (var Inp sinteger);I~ ~ ~ ~ei ( getInput (urnipt

case output(curentstate, currentinput) of

2: ..
na
end

currentutate to nextstatelcurcentstate, current input) a
until forever I

end I too

eiqure 2. AFS1 Skeleton P~rogram.

procedure hfsm
typ~e

lifaMS - record
initialuItate : integer I
cut rentatette

currentinput : integer
nextstntO t array(inputs,stateil of integer j
output 3 arraylinputs,stateal of Integer
e:.glosiv* : array(statan) of boolean 3
submachines a array(litatesl of integer;
endi

beg in
currentatate in initialstatei
repeat

ratinput(currentinput) a
case outputtcurrentatetecurrentiflputI of

2 &

enda
currentstate in nextstaxe (currentinput ,currentstatela
if eucplosiveoiurrentstatol

then hfsn(apbmaschinolcLurrentrtateI )5
until currentstatenihitisl$Zats

and I

4 vigur 3. hies#M airogram Skceletons

161



ps

Machine

s ""

II
Machinegp

i+I

2 3

"Fiur-. HadaeIpeetto fHS

162

Figure 4 Simple IHFSM

I G CURN MACHINE ID •

" • I•IG l C•ENT CURRENT ICURRENTI INTERRUPT:'
•i~ STAT INPUT OUTPUT LVL':

S; Set by Hardware Set by Software.

Figure •.Hardware Implementation of HFSM ' i

162 •.



SWARD -A SOFTWARE-ORIENTED ARCHITECTURE

Gleriford J. Myers

IBM4 Systems Research Institute
New York, New York

Abstract per 20 statements, and worse, have been
reported in the literature. Hence, a

The software problem, measured in program of significant size, such as
such terms as the high cost required to 100,000 statements, might initially con-
develop, test, debug, and maintain pro- tamn 5000 errors prior to inspections and
grams, and the high degrees of comn- testing.
plexity and unreliability in programs,
is now the major obstacle to computing, Finally, because or the Increasing
from microprocessor applications to sophistication of computer applications,
large-scale systems. One partial solu- software errors can have rather serious
tion is bringing semiconductor tech- consequences.
nology, in the form of improved archi-
tectures, to bear on the problem. In These problems will be exacerbated in
doing so, the contention is that machine the future by the increasing sophistica.-
architectures should not be oriented tion of new computer applications in such
toward just programming languages, but, areas as artificial intelligence, defense
more importantly, provide mechanisms on systems, transportation and energy
which software systems concepts can be management, and electronic fund transfer.I
readily based, and provide a more
consistent programming environment. Software engineers and computer

scientists have been wrestling with the
SWARD, an experimental architecture, software problem for the loot decade.

is discussed as an example of how a Although improvements have been made in
machine architecture can assist in the some environments and organizations, the
solution of the software problem, problem is still a serious one. One

reason is the recent explosion of the
Introduction amount and types of programs being pro-

duced. Ten years ago, the typical
There is widespread agreement that the programmer could be found producing a

development of software is the largest simple Cobol application or developing an
problem in the computer field today. The operating system for a computer manu-
problem is manifested in the foll.owing facturer. Today we find a much larger
ways. First, the production of software is programmer population developing such
a costly venture. The great leaps forward applications as chess-playing programs for
in the cost of digital hardware have not consumer games, fuel/air mixture regula-
been experienced in software developtuent. tors in automotive microprocessors, coro-
Where, in the past, the software cost of a nary-analysis programs in medical equip-
computing system was outweighed by hardware ment, collision-avoidance algorithms in
costs, the opposite is the case today. For aircraft systems, guidance programs in
instance, the cost of producing a single nuclear missile warheads, and dispatching
instruction in a program for a micro- systems for police and fire equipment.
processor system probably exceeds the cost Another reason Is that the largest areas
of the processor, of software-engimeoering research, namely

improvements In programming languages and
Second, in typical software-develop- mathematical proofs of program correct-

ment projects, more than 50% of the ness, have not yet had a significant
development costs are expanded in the effect on the software-development process

*testing and debugging processes. Further- in industry.A
more, the maintenance costs of a production

*program often exceed its development costs. Given this situation, it seems time
to exploit semiconductor technology to

* Third, error rates in the software assist in the solution of the problem.
*design and coding processes of one mistake There is ample motivation for the hardware

163

dig;4



designer to be interested in doing so. class of programs - operatino, *.;,
Given the continuing reduction in hardware This might imply increased awarene: .[
cosets, the processor manufacturer must the architecture of such conceits ýs
sell, its product in increasingly larger protection, process management., re-ces.
vol.ume:. Doing so requires increasingly synchronization and co=-i.nicat-i-
larger amounts of software, and requires memory manaZement.
movement of computer technology into new
app.lication areas. The rate of sale of Considerations -uct a:. -••e-
computer hardware, from microprocessors to been addressed in the literat-r'"--
I n te-;icale systems, is directly related have had little impact, a: .e., "
to how quickly the required system and commercially available co- ttr s -
appliC•ation software support can be pro-
duced, and the reliability of that soft- The SWAkL Archl,.ý'" r.

An example of an apFrou.n -. $
An Approach to the Problem the software problem ib wi

system under development at t1we .0
The answer to how hardware technology Systems Research InstiLute. .

might help alleviate the software problem current definition of the ;rx -
is not the simplistic approach of "moving not been published, it ha" ¶v?.y. ry-
softwtouu to silicon," since there is no earlier publitshed versions.

0evience that the problems mentioned above.
wilJ disaLppear by merely shifting respon- The five sets of considerati•_,r
sib.I.iiy for the design task from the pro- listed in the previous sectir& :.re
graammer to the circuit or logic designer. design objectives of the architeýt are.
Rather, the answer is designing machines Detailed objectives were derive-l fcr c:
that provide less-hostile environments for of the categories. Many of these -3;-e-
progr-mo, programmers, and end users. The tives are mentioned in the folloi: -
architect must now fafce up to broader con- cussion of the architecture.
.si.dnrations, such o- The major attributes of the archi-
i. Ways in which the architecture can tecture, and some of their relationst'ip.
slxplify the task of application pro- to the software problem, are outllied
gramming, for instance, by providing below.
support for more-potent concepts of input/
output- and data manipulation in pro- Tagged storage. The concept of
grnmming languages. tagged, or self-identifying, storage is

used throughout the architecture to allow
Ways in which the architecture can the machine to understand unambiguously

ene mu.age the use of good software design the attributes of the operands of an
and programming practices, for instance by instruction. This allows the machine to
providing efficient support for concepts detect operations on incompatible
of program modularity, information hiding, operands and to perform automatic data
abstract data types, and structured pro- conversions during instruction processing.
gramining. The motivation here and in Each data type has a unique representation
point I to the prevention of programming for the "undefined" state, allowing the
crvors. machine to detect attempts to use

undefined values.
3. Ways in which the architecture can
nssist the costly processes of software The tagged data elements (called
testing and debugging, for instance by cells) are variable in size. The archi-
detecting or preventing common programming tecture contains no.,tfixed-size word
errors and by providing a more-flexible concept and permits mqchine instructions
base for the development of software to address only cells as operands; hence
tesOirg and debugging tools. the data model provided by the architec-

ture closely corresponds to the data
4. tsyso in which the architecture can models in programming languages.
reduce the complexity of one of the most-
icomplex classes of software, namely com- Nested tags. The tagged storage
pilers. Such support involves reducing concept was extended to allow tags to be
the semantic gap bewteen languages and the embedded within other tags, allowing the
arc-hitecture by tailoring the operations representation of higher-order data types
and objects prcvided in the architecture as arrays, structures/records, and user-
,1,ore clioaoly to the corresponding concepts defined types. The machine, rather than
1n progrmming languages. 1  the program, handles the task of array

addressing, and automatically perform;
W.Ways in which the architecture can bounds checks. The architecture also

reduce ,ohe complexity of another complex containc explicit representations of

164



arrays of structures/records and "based Single level storage. The concept of
variables." virtual storage has been generalized to

the extent that there is no notion, above
Capability based address&ns. The the architecture, of secondary storage.

k architecture employs the addressing and For instance, the concept of files no
protection concept of capability-based longer exists; programs use arrays toaddressing. The architecture views the represent what would have been considered

world as a set of objects, each being to be a file. Hence the concept of
given a unique name by the machine when secondary-storage 1/O has been eliminated;
created. Programs cannot fabricate or all data in the system are addressed in a
manipulate addresses, and any reference to uniform way, and all other concepts in the
an object after the object has been des- architecture (e.g., tagged storage) apply
troyed results in a detected error, to all data in a uniform manner.

Capabilities and objects are used to Within the environment, all concepts
create a high-level storage model, the of storage allocation have been removed
elimination of traditional low-level from the domain of software. Although
storage concepts being another objective storage allocation does occur, it is done
of the architecture. Figure 1 depicts a implicitly by the machine, for instance,
possible state of the storage model. The as an effect of a module invocation
architecture recognizes five types of (where the machine creates an activation
objects, four of which (module, process record for the module's local variables).
machine, port, data-storage object) are Rather than being able to allocate space,
explicitly created and addressed by pro- programs are presented with a function to
grn•s and one of which (activation record) allocate occurrences of cell types, such
is implicitly created via a module invo- as strings and arrays-tg"dynamic
cation, allocation of which is embodied in a

data-storage object).
Full generality of allowinE capa-

bIlities to reside in objects is provided; Small proteotion domains. Each sub-
capabilities are protected by their being routine or procedure of a program is
one of the 15 tagged cell (data) types, represented by a module object, which

Am shown, the architecture also uses caps- contains the generated instruction stream
bilities to reference source/sink (storage- and a definition of the module's address
less) 1/O devices, space (a set of tagged cells). This

structure is shown in Figure 2. Instruc-
tions in a module can address items only
within the private address space, although
well-controlled indirect references can be
made, via parameters and capabilities,The w d iewed by..SWARD outside of the address space. Thus the

_____rid as v___ bySWARDarchitecture enforces rules of program
modularity, limits the consequences of
errors, and protects a program, including
the system software, from itself.

Automatic subroutine management. Thearchitecture removes the burden -- subrou-

time management from the shoulders of the
compilers by containing instructions that
perform all that is implied by a subroutine
call in a high-level langiage. For(WA instance, the CALL instruction saves the

state of the current module, creates and
initializes an activation record for the
called module, switches address spaces,
and begins execution of the called module.

I Loc The attributes of arguments and parameters
are verified for consistency during each 4

call.

Figure 2 shows that a module's add- 4
roes space is partitioned into two sec-
tions - the "static storage die" and
"automatic storage die." Cells in the
static storage die reside permanently
within the module object. When a module

Figure 1 entry point is called, the machine creates
165

"•



A process-machine object has the character-
istics of a hardware processor and thus
creates a multiprocessor environment; how-
ever, the mapping of process machines to
hardware processors is a matter of hardware
implementation, not architecture. (At one,

01 - •extreme, a single hardware processor can
____'"_ time-slice itself to act as all process

machines.)

ACT, 1 By creating and destroying process
machines, programs create and destroy
processes. In keeping with the design
rules followed throughout the architecture,
this entity defines only a mechanism, cut

address spac* of which programs can create policies.
Also, it is orthogonal with other concepts
i' the architecture (e.g., process inacAnes
have no relationship to addressing).

Send/receive mechanism. Two machineIns.,uc,•,io spot% instructions, SEND and RECEIVE, and an
MODULE abstract object, a port, are provided for

interprocess communication. The SEND
instruction is defined almost identically
to the CALL instruction, except where CALL
transfers control and a set of arguments
to a module entry point, SEND transfers a

Figure 2 set of argument values through a port.
That is, it transfers data but not control.

an activation-record object containing a As with the subroutine call mechanism, type
copy of the definition of the cells in the checking occurs across the send/receive
automatic-storage-die part of the address interface. As mentioned earlier, source/
space. When an instruction refers to a sink devices are represented by capabili-
cell in the automatic storage die, the ties, and one does I/O operations on these
machine automatically maps this reference devices by use of SEND and RECEIVE.
to the corresponding cell in the current
activation record. The mechanism is synchronous to the

extent that a process machine executing a
Hierarchical fault-handling SEND instruction halts until another

mnehanIsm. The architecture contains a process machine receives the transmitted
uniform, process-oriented, rather than values. Thus the mechanism is similar to
system-oriented, mechanism for the hand- the rendezvous concept in the Ada lan-
ling of error conditions, called faults. guage.
Any module can contain a special fault-
handling entry point and specify which Generic instructions. The concept of
types of faults can be handled there, tagged storage allows the architecture to
When a fault is detected in a module, the be defined with a small, highly regular,
machine searches back through the activa- generic instruction set. For instance,
tion history of the process, looking for there is only a single instruction for
the first module that has indicated a perforning addition - ADD - and only a
desire to handle that -type of fault. When single instruction for transferring values
one is found, the machine "calls" that in storage - MOVE. The semantics of the
entry point (i.e., simulates a subprogram instructions are defined by the attributes
call), passing it five arguments describ- of their operands. For instance, the MOVE
ing the fault and the state of the program instruction can be used to store an
at the time of the fault. What happens integer value in a floating-point data
after that is a function of the fault- cell (doing an automatic data conversion),
hafdling software in the module. However, store one character string in another,
the architecture provides several instruc- store a scalar value into all elements of
tions to terminate a fault handler and an an array, or set one array equal to
instruction to explicitly raise fault another. One of the benefits of this is
conditions, significant simplification of compilers,

particularly the code-generation process.
Process machines. One of the five

types 0o? objects defined by the architec- Powerful insirruction repertoire. In
ture is a process machine, an abstract addition to the instructions mentioned
entity that executes a concurrent process, earlier, the architecture contains an

I6• ,

4 .... .



Mpnrw

instruction to address and move sub- have indicated that these errors representstrings within strings, a search instruc- 30-50% of all errors in typical programs.

tion to search an array for a matching
value, and an iterate instruction embody- Virtual machine. Although not an
ing the full semantics of iterative DO explicit objective of the architecture,
loops in such languages as Fortran and attributes of the architecture, such an
PL/I. capabilities and objects, have given it

the characteristic of being a virtual-
For pioemes synchronization, the machine environment, meaning that programs

architecture contains two inistructions can exist having no relationship to the
named GUARD and UNGUARD. They can be operating system, and multiple operating-
used to prevent simultaneous execution of system environments can coexist.
two or more processes through a critical
section of instructions and were motivated Relevance of SWARD to the Software Problem
by the software destif and synchronization
concept of monitors. The SWARD architecture is unique in

that almost every aspect of the arohitec-
Transparent indirect addressing. The ture was motivated by a desire to elle-

concept of capabilities has been expanded viate the software problem. The major
to allow capabilities to point to other ways in which this is achieved are dis-
capabilities such that, if a program cussed below.
refers to a capability, the machine will
interpret this as a reference to the last The extensive semantic checking per-
capability in the chain. 1Thls concept formed by the machine should enhance sig-
can be used for added levels of data nificantly the productivity of the software
security, by an operating system for testing and debugging processes, and lessen
access control of objects, and to allow the consequences of errors occurring in
one to dynamically replace objects (e.g., production programs.
modules) in a program while the program
is executing. The object orientation of the archi-

tecture, and the use of capability-based
Progra tracing facilities. Instruc- addressing, presents a highly uniform

tions exist to activate the tracing of system environment. The objects of the
branches taken, branches not taken, and/ architecture (modules, process machines,
or calls in specified modules. When such ports, data-storage objects), a well as
events occur, they are treated by the source/sink I/O devices, are addressed in
machine as faults and thus the fault- an identical fashion. This has important
handling mechanism mentioned above implications on the complexity of system
applies. software and the user environment. For

instance, where conventional systems con-
Additional security features. In tamn a variety of dissimilar meohanisms

addition to the protection concepts of for the binding of entities (e.g., a
capabilities, small protection domains, "linkage editor" for binding program
and indirect capabilities, the architec- modules together, control-language state-
ture contains additional security fea- ments and "open" services for binding
tures, such as the ability of a program programs to files), an operating system
to restrict the copying of capabilities, can be defined with a single uniform
an instruction to assign a new unique concept of binding.
name to an object, and a second level of
protection provided by the use of tagged The single-level store concept,
storage, particularly when carried forth into

programming languages, largely eliminates
Semantic checking. One of the major the need for I/O concepts, allowing the

objectives of th chitecture is detec- programmer to think of data in a uniform
tion of large classes of semantic errors way.
in programs, errors that are (1) frequent,
(2) difficult to debug when they occur in The use of the SEND and RECEIVE
conventional systems, (3) common to many instructions as the basic I/O primitives ,Y
or all programming languages, and (4) in for source/sink devices, as well as for
general, not detectable at the time of interprocess communication, has several
program compilation. Examples of a few benefits. First, it adds another measure
of the 27 classes detected are (a) use of of unifornity to the system, since, for
undefined data values, (b) references to instance, there is no difference among
nonexistent array elements, (c) the sending a character string to a printer,
dangling-reference problem, (d) data type terminal, or another process through a
ambiguities (e.g., inconsistent declara- port. Hence there is only one concept of
tions of global data), and (e) mismatch- data transmission. Second, it allows one
ing arguments and parameters. Studies to substitute processes for I/O devices,

167



1r 1/O dev ice s for 1, 'Oc Q G ':X, i t1
is it wi one Is program. Thirdl, thilt! i

r''uce ivf mechanism is synchronious with z'Gi Cnclusion
t,1:ut to whatever is on the oither side (1/u
,eicvie or process). Hence there is only ;ivur the imagnitude of the _srt.waru
ýýte concept of parallelism in the system - prublem today and an appreciatioti for how
tio' process. There is no concept of an much worse It will be tomorrow, and givei

ilourrupt * the rapid advances in hardware techniology,
thie time seems ripe for major architecture

other unIf'ying ideas, all of which rcuirections that make fundamental improve-
erve to make the programming enivironment ments in the programming envirorwient. The

les:3-complex and less-hostile one, are SWARD architecture serves as an example of
1 lie fault-handling mechanisi. for error how rn machine architecture can reduce
!isndlinig, capability-based addressing for soft-ware complexity and lessen tilc
information sharing and protection, the difficulty and error-proneness of' -_rogram
hI 1,, -lly generic instruction set, and no esncoding, testing, and debutjping._
Le_,d for a privileged instruction state.

HefCerences
The development of well-- iructured

1.ogruns. employing concepts of modularity, 1. d;. J. Wyers, Advances in Compu~ter
1information hiding, and parallel processes, Architecture. New York: Wiley, 1976.

i encouraged by the machine concepts of ari 11. T~J. ennrThg, "A Question of .Cemani-
!fic ient subroutine-management meuchanism, tiess," Cor uter Architecture, News,

',;Aiprotection domains, thec tault-hand- k(Fs), l&-ILB ( 1978).
ling mechanism, the single-levQl ,;tore, the j. !.. A. Feustel, "On the Advantages or

U.UARD, UrIGUARD, SEUD, and RECEIVL instruc- Tagged Architecture." iEEE Trans;. cn
Lions, and others. Uomputers, C-22(7), 64T--65 (193)-.

4. J.1 P. Ehrman, "System Design, Machine-
T~he points above apply to the pro- Arcriitecture, and DebuLgginig,"

,riomming environment in general, but SIGPLAN Notices, '1(8), 18-23 (1972).
several additiunal points can be made about P. Br~cF7Hansen, "M1-ultiprocessor
compilers, operating syitems, and data-basie Architectures for Concurzrint Programis,"

mianagement. Because of the concepts of Co lter Architecture News, 7(4),

hilgher-order data types such as arrays and L,. K, Berkling, "Computer Architecture
sitructuires, the generic instruction set, for Correct Programmin~g," Proc. Fifth
itnd the power of the instruction reper- Annual Syp*o Conptr Acitcu
loire, the development cost and complexity Ne Yr7WFXCM7I9V -pp. 78-84.
oi: compilers should be significantly 7. 11. J. Saul and L. J. Shustek, "Onl
Leduced. 1Measuring Computer Systems by Micro-

Fo mnyofth smeresosanpfrograming," Mirprg and
Fur nan of he amereasnsandSystems Archiecture: InPO~ State

Locuuse of other facilities in the machine, o6f -the Art Report 23. BerkshireI
Lite overhead and development cost of high- En~gland: _;nfotech,-T97b, pp. 47.3-4891.
level-language-oriented teating and J... L. Keedy, "A Technique for Pas;sing!
telulgging tools should be greatlyi reduced. Reference Parameters in an Informa-

tion-Hiding Architecture," U m uter
iti architecture also elimninates much Architecture News, 7(9), ll1TT7(1979).

-L Lho traditional complexity of' operating 2 C J. Myers, "Irhe Design of Computer
-:ystet~mi and other subsystems b~y removing Architectures to Enhance Software
ivon them the problems of memory manage- Reliability," Ph.D. dissertation,
:iervu, protection, process synchronization, P~olytechnic Institute of New York,
inmlrprucess communication, and interrupts. 1977.

1u. G. J. Myers, "Storage Concepts. in a
'Ale use of generic instructions and Software-RelIability-Directed Compt-
igdstorage implies the latest-possible ter Architecture," Proc, Fifth Annual

binding of instructions and data; the oym~p on Computer A~rchtecture. New
:,emantics of an instruction are determined yo7~i: -LM-, 19~78, p~p7_-8,f.
at the time of its execution, using the 11. J. B. Dennis, "Computer Architecture
information in the tags of its operand and the Cost of Software," Comp3.1ter
cells. SWARD extends this even further by Architecture News, S(1) 17-L2VU976) *
allowing the programmer to incompletely 12. C. A. R. Hoir-e--IMonitors: Ani
specify the attributes of a local variable operating system Structuring Concept,"
ini its tag; this allows a local variable to Comm. of the ACM, 17(10), 549-557
acquire dynamically some or all of its 0974).
attributes (e.g., from a parameter). These
points have significance to the concept of
dilta indlependence in data 1lace environ- 16

...6...



CONSIDERATIONS IN OPERATING SYSTEM DESIGN FOR MULTIPROCESSOR
STRUC7URES

HAROLD LORIN BARRY C. GOLDSTEIN

IBM SRI IBM Research Center

DESIGN CONCEPTS
A very well known way of struetuing ma ope tg stytem is to

ABSTRACT define vertical partitios of functiong such that r is a fume-

Given the advances of technology, it is not unreasonable to pro- tional module for 1/0, memory aapmeat, pres- comunica-
ject the existence of multiple processor configurations that have tions, pro•ess synchrolaton. ec The eant advantage to the
argp numbers of processon with a variety of Interconnection structure, of cours, Is that It alows muildua peao enve to

possibilities. be achieved in mltple processo evironmeonts.

This paper discusses lagaUg comstucs for interprocess commu- The structure can be supported by hardware in a number of ways,
:1 Each functional module can be located in protectedl addressnication and process creation functions which would be funds- sacs in akarg mole pyia prooitmd i y A ntere,ps a, in a larg eig pbydW encum/easormeoty. An insaio g

mental to systems that run ees of propma dispersed across attribute of a capability, object managemet arcbitecture such as
families o, logical processors. Certain divergences between valr- SWARD[6 IJ that the phys• l ond flfpIti*• of memory is loi-
ous concepts of interprocese communication are resolved in a cally Irrelevant. ConfiuratiotN cain be formed with varions de-
sinse deie groes of shared or private physcal memory wthout Impacting the

INTRODUCTION logic of the object manaasmmt system.

Recent dramatic developments in proeaasor/memory technology The ability to assip some umber of processors of say architc-
and in interconnection methodologies for the association of proc- ture to a system mjsu ts that thes rocse on Iny be usd as
essors with each other sugest that future multiple processor Global Service processos, each asigned to a ilMmnt operatiag
configurations may have lop numbers of fast and cheap proc- system function of the type suggested above. There may be a
euors with a variety of memory sharing poauibltloail,2,3,8]. System Wide Mesae Handler, a Systems Wide Olobel Sbcdu.Iet, A Systems Wide I/O server, etc.
An objective of such multiple processor systems will be the need

io quickly and dynamically react to the changing demands on the In an alternative structure, each processing nods could be com.
system. This will imply the need to not only group a set of proc- posed of two processing nodes. Conceptoay on might think of a
essors to work on a given set of applications but will also Imply Problem State element and a Supervisor Stat olemolt. All thsen
the need to dynamically partition memory spaces which are physi- activities which would be executed in supervIsor state in S/370
cally common amongst these set of processors. For convention architecture would be executed in am element, while all thase in
we will refer to a set of processors and memory formed dynami- problem state in anothe elemont, Although this asarv as a con.
catly as a lJogal st , ceptual example, It is not clear that thls partieular paritioning of

function between elements of a nods is the I p Iartitioning
In such systems sub-coafigurtions of closely cooperating generic point, The discovery of a proper partkition between comlpt&-
multiprocessors may be formed and partitioned sets of tional element and operating systom element depends upon a
'distributed' configurations may be formed between units with a number of factors which include frequency of function, instretion
rich diversity of decisions about memory sharing, code replication, set restrictions, the degree of asyuchroulety, etc. A fall back
etc. The intent of the concept, of course, is to asow systems to concept is to view the operating system element as a kind of
take shapes appropriate for their applications. To support this network processor which becompe involved only whai the associ.
notion various speeds of memory and procassors would be avails- ated computational processor u a reqa utwicw. In.vqlv
ble so that various conempts of applcation speed and partitioning interaction with another station in the netwoer. This may be
can be supported by decisos about processor and memory sped failing beck too far since It plaeM In the CompeAAMona prco
and capacity, the burden of deterslaif when an off-stton referemo mum be

Some important concepts of dynamic conflgurability should exist made &ad this effort may be largs compaeed to making the ilter-
in the system. Sets of cklse cooperating, memory-shared proc- action itself. It is prefenble for the operating syftem Jimoessor to
eosors should be dynamically definable for short-periods, co- determine what and when off-station referenose must be Made
operating or Independent sub-confIguration of "distributed" while the computatioal proessor proceeds with other available
systems should also be definble for bref periods. Where desira- work.
ble, permanent "pgn" of asmosiatnd proceesors at different levels
of memory and operating systm sharing should also be definable
within the total population of pocessr, memories and other
resources of the system. A g of nsch a system is to make maxi-
mum use of the wee known coocept that logia systems structures
of varying kinds of -,4dotlnsips and closss of cooperation can *1
be manned onto ohvIcal structures. 169

169 ,



In sch asysem ae ech nde . copried o atthe next section 17,91, though the language constructs presentedIn mch "WAM, her ese noe i comrisd o at eas to are nat unique to PASCAL.Operating sFystem proX 0o and a computational processor, each
operating system osiemet has . funcionally equivalent local opr In the system we are prasentlzg, there are users who initiate
WStn symste that participates in global system decisions an giob processes (which can Initiate stll more) which run under a given
al system servicsees wea Woa proyldig local support. M& co~. application scope. Conseuently, the following declarative sftruc-
tutas the basis for a completely distributed nontrol systm in tues:
which intensive latarsoition Is sustained between stations and
where negotiation and co-operation lead to system wide decisions CI~MN use am~t
about work d~ilbutlo.. A beet processor for a unit of Walt ma applicationst: met a( application;
be discovered by interaction, sod negotiation with operating sys- hfe/auappl: application;
tonm elements aware of whiat thirk amociated comtputational proncso
6"Mc isl doing. This netotlatios goe on withoist disturbing the
Prograss of available work on a local dispatch list. The following type application a onesod_
sections addrsess theen deiwt objectives with respect to the Ln samle space: set of nams-epfir;
9guag construct Oed gontrol structures for process creation and defaui-..process: procedure;
inter-process coflunico.pocxoýrsoe:po ref.

in the system we are about to describe we introduce the following tM namesc
terminology: -- ar.o

name: aJa,
PROCESS CONTROL TERMINOLOGY object: object_duesrplor;

APPLICATION - An application defines a context by
indicatin a set of procedure and data objects that may
be accessed and statse the rules of reference. The wit. tM~ Proý.Ytq -ear

cation describes both the phy"sica ad abstract resource Mln-prcceswos: integer;
consttants necesary and permissible for processes be- Mdx-procesaor., integer,
longing to the awlikates. minmuftDory: Inte~ger;
PROCEDURE - A precedlure is prop,.n text and capabil- 04;- mentoal, in~teger
ities for an incarnation of a process or an instance of ittrwtio Io set: machine__type.
Activation. liM uniue feature in this system is a statement perfromW set of perfoýrn vq;
Of cooasumal resowr" cose8tralats inl & iadion to the list end
ol abostrc resource- (Pubk as filie, data bases, locks, etc)
Meceseery for "ooseeul processing type procedure - rcerd

PROCESS -The SWste dispetoable unit. A stack of Mary _poln$. program;
activation rcds, b aek soclated with a procedure, nae_spece: met of namejhr;_(
raeting upon a prscem activation block that may be used prcaýmfrt proacreq;
for reeovesy. Ap -0, is 5NMMW akhasct-resourc:ee at of resurce;
USSR - Besk Mero O9h systemn is, of comre, defined toso
the systm Pat" of tw defiiton is a MAs of the total set
of Appheatiew wehich the Muse can consnet to. The vtolds i i the above records are described as follows:

PROCESS COMMUNICATION TERMINOLOGY
USER The eppliculdon-set is a list of Application

POR - pwmy e aiotý o & romnames. These regurso t the total set of allowable appllrca-
PORT' Sid a portma heatpr o rmpo. on & tiea, that a given usrn is Wlowed to access. The

55ed51'5_p Siea ws ,jwi a named place in a senders, *fsheuk_* In the qvikcstio that a use will be auto-
propem (e.ig. a declared slucture in tam PLl "on matically connected to when he WOGONs to the system.
seving e doe soure oat I ma-P to be sent. A U4I.PmI This flied is optimnal. Ceation of an object of types user

19the "Mae of r lte*Y"qPftv . On a receiver's side a assuming the omealor has the 'right' to create such an
la-psw Is a named plaes in the receiver's program where objc, (e,.g. we ha be. use )eulsi the systens
the messag WE he pieced. A front peow U the no of creation of a use object Whem a urn issues a LOGON
a sending Proes to the system (e~g. L40GON hel). the system searches for
PATE. A -w can be either a queue namie or a file the user object named hal. If not found then the LO.

nm.TePt eatanIndirection IM 0sandsr GON is rs*ets, othewise the usrn object is searched for
to either a iPecIfWlooreeier or to an arirr mcir a defekault q nMe (e&* Isldiefaub -efpi - "nul?) If

of Iter-rocss cmmu~caton wll e de~edspecified, the the ussr will he connected to an instanceThe exact detalsfe a-roe owulainwl edtse of that dppflcetle (cue will be created If it does not
till the section on Process communication. gred exit)

APPLICATION - An dWllcetio defines the universe of
PROCESS CREATION accessihiliy for adl proose... and -sr connecteod to it.

The Moem-se"p Is thereore, a set of "wneepalnOne of the a&*r objectives in introducing new language con- (repressatleg the objects theat can be accessed). The first
structs is to insur that in so far se Is reasonabic the language for element In tde pekr is the nmew of the object, and the
application programming Is the esow as the users commained Man second is the descriptor at the object moapped to by the

ag.Not having this as &n objective results in increased oace- noe. Included in the dec wtrer ths rights of access
011e2ity in requiring a ussr to lear more than one langpuag for (such as tdo primitve Read, Write, Execute), and the
performing the sme Idential function. For slins-1ity, PASCAL type of the object (such as queue, procedure, file, nested
in used as the language for syntax expression In this section and in name mume. etc).

170



The ifaad...jicssuis te mie ofthe representtse the UUMa ""~ 01 o the created pr~oese. )flInwoe (as a procecis whie ma stac of the .ppllca. tobe will fadl if the daller specitiod Rawe is Aeudy emociated
ceinoed (as mprocem) l bostaiaIs reevn irucSrga Of then wilbeoeapeea nth lsaeoao Itrprcs
lion is create. This flow is optical ead allows ma opgli- with another process in the powficel Ugtance. The sseng of this

course, regolutaon of the aim is through the deftieod
004coiknie.nsinaeu. What his been sbowu is a very simple way to effec procem
The PMoW Anao reprmsent taw processor reuie creation. Appbcertewn and proc.... can be crestd and as a
watst of the awW AMes mand Is sell eZlph~f~Ory. Upon rsl oia ytmcnb omddmeel n iha
comopietion of the creation of an Instance of an .pplka- rsl o gsse mb omddswlal n iba
tkaw, procesor reecerces are allocated to the appleicuda. explicit InistallatIoss intoservsmto. The decision over whether the
The allocated sat is referred to so a cairn. All created Wog&a system -iatre rmted or U41stly chouled beoome peneky
processes that belong to man yplatl~ ran in the tamg onse of qpolisma mand pwds-v dolfinmio w"ik of coarse, can
assocdatd with that oolkndaea. also be dynamiallyf modified.I.
The pICOcedu represents a mode for either the creationo yai lswt eorecoaato ihsadpoaoof a procem (either Implictly or through eange of the Dyamicll coataings tosrsorciaedwi cmyaumptn rigts ad proomesorrSTART command to be discussed below) or the creation ma b omtrintbys issie d on iAthe - chretiostatua of a the*wof an &ctivatio within a ;-oces (throegh the standard I"~ .~ bFSml seo h elrd. tutrso hprogram call igterI ac). Thse processo requrnment sped-
fication in the prooedur inlows for the talloring of a lIV- The schedulig ooemstnnta which may be emoit~ed %ith START
an proces to the oocoehie rem-c r"Filremisnt of ~anow that rather ccsspba 0"ba oystem ffinigemest af the
the program. Spedtlelay performanes objectives each as type assciated with 1@49 asai Ndproomeass may be a feat me of
priority. degree of 1/0 bomsdednem. doodlim, etc can a akpi prmo agsretiv systems. Tmes ockodallas rain

be tatd i dwperoraimreqireent01the Pecs- may be easforeed by a 0"ba symo5 soloder oade at by no-A0v. The Rost* defines s amcom" of acssibilit operative isteractoio between a set of ep ersl s-stem pot-,o( the mctvmttns pawned fromn the Poslrta . It a I . ~ wa ~ctitM I oo A-qeof

"Notespece is sot restin ton definiio then the tdo system no a es-to-one or awone-to.m beab,
caller's Roost Wec. is umsd.u It alsould be nosed that INTE-PROCEIU11 COMMUIMCATION
there need aot be man latoerctloa between mpplla-
tiolaw I~.,qec mad a mow *w defined in a prove- Given pros-e the neat ste is is proai'igg them W wit samaim
Au, whom -os Is in wpslwnm aac.for inftecting ner-procees omimoloodo. For thi function weProcedwv.sba,,sg emoo ideatifies which resources, wiln Posal,"usete ezestbes of An Iatrow-hOw Coomanicat
before procee/activatlon croe:Aimon nmiocw. euist 4s a detrbutad104 sWvIcs in*e of the NeaW syse dip-

Given this beals, we can saow addrees proce ssaid Seat isrdowdfimedm Its phytism en"m sf erily ssb t heIso or.wcretos" Prsvicoaily, we bae" shown bons an qpdWM.. (adIts weetetCiyleyrM.ima peluiedn
def ault proem cast be created me aresult of a awe perforing & Osauld be riquked W., for asolo. tde deondi to hem a gMoawLOGON. 7Ue in Isel is ac novel mand is typical of may intene- &~C proved to be mroog
live system.
We wewl o lc mlct ad~we will poetulie a Seed/fAmoielv mechaiasm with five verbe!We e wll owdisom xplci prem nd *kaoximtow CONNECT, SEND, DEC55 E, SIGIaI.4 Rad DISCONNEC"Zcreation. The commandi START Is naed fcr both process mand thIda pesumyon a
qpkliestsn instance creation, and has the following format:wiaecohr edort o n iobesinaymk-

STAR sor". Rostied or asyacinanmus smimer. IU ibbty to "Md and oWl~
STAT wsbd. nawbetween proms-u snd abibest pervats I/0 to be fttwd into

This comsman is Identical to the form that would be tmed within a the COUWAlWitm Mdme~ilmi Clonnect ofblise a pbbe.
process to create another proem. or 80flieUSe. The Variable is t"Mis Wan Poom panesmd OWmined objeact of IMe sstom.
the name of the entity being started. If the isinwr is "o already Thus a pronesosamy subsequently SEND imeesagee to asstksr
coaatralnsd within an wpphwsa issldaace then START morprocessm or a aimed daa objct. Momwo owt to otbm proms-eI
the us er ltc to determie If the vusalos is a valid **kldatdon my be possed thsroug qmin or sat dirseody to ports of a re-
name. If It is not then the requesat is rejecled. Otheorwise, an oPpfi. calviig provens. A Moeeeiver my as for ~smen figs a dt
cation imstanc io created aWnd reMoe M - - IM (Dote: th~e -xobject, a qene.a or amodo roe. One to ~ slt~
sorn"~ resources allocate awe tr umaens to th cellar and ane may be defloed to mpport imem hko"Meft bm~llg o
only knows by the systm). U Use qppddcotl ha a Msellsie fros any of ma nt of poselb sesvese amo.
iAfmubjr cva dsflnsd than that process Is Impliitly created. ~ ~ oits etr fa as-msiro n
If the loomr Is already constrained to a $IVe" oppdogni Instance ticm (tIC) mascimiki on an a- eeewih M-eerbsgdt
(sither tkoefk a L4GON oir SrAXRR then the variable is Initially (61 is the u85 of the CONNECT WU* Co domilso a mom temp.
treated as a proooditme aom. I@ thi ase, a search Is made from wic providee an doeritlan of doe MessP dra rei W"
the ePPlkeiowmlatnim ec (for a firmtie I - CMMWG) or are to move between psitolourpsaw A cmomm 1be it JC

frmthe Raw --- asocated with the IssuinS prems. if a mSchansism Is unicertainty sibout wheoda a sieltat Or W re nie is atpw*oeur Is sac founid from the isc.then a search is md - when mesag fremis do net match.71 iMe ay coser be-fro the -w block treating the variable as man qr~aioesn name. It caOs Of propIMlag " errr w"s m a wreng por or qes
the prscsduww is found then a proces is created. Thie caller is not for tamsi.or roelpit of a ; s' '- mim"gs The provienjs
aware of wherve the crew"d prosem if running Of a messag tomPloe gives the tIC a mums of deeeiisuduln
Te mosoe specifited of% STArT Is th calo nonnas of the Whether wrong magesi or bodly f(med meempea wre ase re-

creaed ntiy. f apro -awasemoed hentheoppkatm~pomw sponsbllity of the sander orprece"Iver In syWe w1ir.; data Is o
creaed ntiy. f apre I ~ crate th, ~deecrlblng. an EIC can check the toot of a moepfor "Waermday

With the Mining template. Each recive tramme a bompb a1711



the expected Wessage format which is also checked against the It CONNECT is used the parameters may come from:message template provided by the CONNECT, which has the I-totally from the senderfollowing format: 2. totally from the receiver

CONNECT co~c_,on 3. in some combination of both
where:

type conner_.p~toint -record

ports: set of latesiagE _arias;
path: set of (q~mt,fik);
nwsiqe tsemplate: flwisi,.Jýortnat;
ease (send~recelre) of

send:(uo..,parr~procezssnamt),
receivc(receivepoinl,:procedure;-

fto mpoontprocess__name);

In case (1) or (2) the parametars associated with the CONNECTB Th CONECTver ca he sedby oth endrs nd Rceiera are imposed by the system upon the relationship. Cate (3) raises
(hence the u5A4 of co in defining the conneef~point type). interesting cooid~erationa that have not Yet been fully explored, ats
Ports specifies the location of the message areas in the issuing to the degrees of freadlom between SEND and RECEIVE parame-
process to be used either as the location for receipt of message# ters. For example, a CONNECT issued by a receiver that names a
or for the submission of messages, path could be considered inconsistent with a CONNECT issued by

a sender which did not naew a pata. However we may convincePath is optional AMd speocifles an indirection point in the transtmis. ourselves that there is smem advantage in having transparent tos60o1 Of the message. The object of the path is physkcaly owned one side of the send/receive relation.and managed by the [PC. U"ag of a path in the transmission of a Thoprtnofsdigamsgecnnwbeecie:message guarantees the recovery of that message. Queues arheprtono edn msaecnnw edsrbdtransient and exist as long as the Proceu which requested Its
creation (this proces cam be different from either sender or re- SEND token, from~porl, path. toport
celver anýa coud represet a caretaker process)-. Pone are prains- SN e oroead.Tefoj pcfc hc esgneant and have to be expliity destroyed. Submission of a mesatter SN a oroead.Tefop pcfe hc esgthrough a pah guaratees in geneald, the persistencee of that areas, in the seeding process contains the transmission message.
messag even Itough thel -de an Bd potntial receive go thog The pawh specifies an Indirection path for the message (as de-
untlInsy teemlad"lo.. lbt FMP sad LIFO queueaing techniques scribed above) sand the last operand, a sq__porf, ideatifle. the
axe apIPMable1 with queues Band fiaes and Is specified when the proces that will receive the message. SEND automatically block:,objec Is creoatd, the lsster unti1 either the messag has been placed on a path (it

Th BM -OA asw w wve' a for speifile) Of the reciving prOce (if no path has been spectified)
th o mpssg It donflies, for tmom*. Wh lengh o: the 069111W, has received the Bmpsea.
whatk -m0 o S m ae it (AS CI. 1111" d Decimal. S pecifiaton of the three operands (/~M -j 'peth'bopN" t) are

4s40-d 424), en l fOrMet (for a muti-espeented messagec), optional and can be derived frome the Preceding CONNECT.This fteplatIs laed by CONNECT for compariso with a tesnp- Their inclusion on SEND Is to allow, an area to he used to sendlate assca ed Wilk dothe, A sander's sad receivaess tomplate messPae to more than ofe eo"a -etpowat
is c'tpered with the pah templte. Uf there is a disagreement
between the Pea empat end*14 that of sender or receiver, the 10 fact, if t0_OPur Is Not Specified in either CONNECT or SEND,Process With the divergent temaplate Is notified of a messge typ then parh must be specifled in either. in thi case, the message
error. If *hOf. is no path. ths sender's and receiver's oemplatas are will be Placed on the queue Or file by the EPC and the sender will

ompare with csok other. In case of an error both processes are he SIGNA Lad to remove it from the blocked state. Siuch messages
Informsed of a mcaltch. This feature is tnoet practical for bard- canhe removed by anyl procs whic~h hsUIPC accem to the path.

warged sysem so hthvrsrnyet.e fslfdsrbng dt n If Path is not specified in either CONNECT or SEND, then a
tagged memory. porf must be spec~ifid. In such a case, the memsse is sent

If the cew Is for SEND then toeport refers to the process name directly t0 the escelviagl Process (if it has an outstanding CON.
of the process that is to receiv the remat. NEC? Or RECEIVE). If ther is no outstanding RECEIVE, the,

If te cve n fr " RIV aw th rwivethe -euW-POW~ iden0tifie the Pvocedsuw to be invoked and anIf te w Isfor ECEVE hen he ere w~pix refers to a Activation is Immediatey mewea and mead the current one. ThePrecedssr thalt is to be Invoked when another proces issues a deblocking of the Sander 10 thna the responsibility of theSEND (not throug a psath) to that Process. The 1w"V upin't refvepe evtc hc hud s.*SGA oIdctrepresents a point of interrouptan fot asysehronous ree~ipt Of re-eip ofO th Mimic. iaUEIBM 9a S1not bee Issndicand
messages.the CONNECT deon me defies a mewainupoles then the IpC wilil

ftipe 15 11100611 116 11i a V6CONNECT. is no CON- Imp~lty *ONm l. mesag, ba'ing the sender bilocked., until a
Nsris wod, a"eses e Mousueafte dbf aIe& I 03 ECEIVE Is 101110d11 It it A the receiver's responsibility todous1Ig dhe mea AIA eafta maaskein of ah block the sender. The systems events that occur when there is anSys" w"~ f eqe mnogdo seem of proeses d Path outstandingS RECEIVE are discussed below when we dascrib.

objects. In "hi Mqs, fuN Vfeellcaaa mustocu with SEND& RECEIVE.
a11d XACEIVAs. TING Penalty for such use is increa-*d risk of run
time faillure.

172



KIT"--

The token, is the utdique Iden~tifier of the message and is assigned rhspaper hass described a design by which simple. direct, synch-
4y the 1WC. Itis this token that is used by SIGNAL to indirectly ronous. transient lnterproosas communication may be undartaken
deblock the senider. It is &ls used by the sender to later deter- iourevraltyadntpy.Ap fthsmeccp,
mine the vistus o[ h vubmitted miessage (e.g. still on a path, an intervening file or queue masy be imposed which allows may

16(received, etc). Similarly. if a RECEIVE is issued without a to nmany, note to many, one to any. Interactions scroew protected
rec~ieiwPoixt sPecificatioFn in the cometu-epoitn, then the receiver paths. The concept of SIGNAL Iis concept of repm. ROpHte

i~ IJoced utila mssag arivesforit.are seen to be undertaken through the issuance of 9ade ait theis bockd util mesag arrvesforit.convenience of a receiver %bhen he wishesi to respond in A meIa-
SVIGNAL. is then Aimply of the form: ingful way to a previous message.

SIGNL toen The notion of START presented by this paper intends to provide
RECEVE s siila in ormto SND:a mechanism by which processes can initiate other proceisse andRECEVE s~mlarin frm o SND:call for execution on nodes of the system that have various per-

formance, status, load and scheduling attributes.
RECEIV'E token to__pont,psthjfronkpor.: A paper under preparation discusses various aspects of the struc-

ture of an operating system that would support the language

constructs discussed here.Iwhere (to__ por,tipath.f rom__rort) refer to the message ares to REFERENCES
receive the message, the pa~th (or indirection for th'e message), and IJ.Baer "Multiprocessing Systems.; IEEE Transaction~s onthe sending process rame (opticnsal). Token is the unique identifi- Computers Vol. C25 No. 12 (Dec. I P76)
er of the transmitted message, returned upon successful comple- 2. C.Hewltt, H.Bsker Acton anid Conltinuou, Funiclionial MIT' Al
tion of this operation. Memo 436 (Dec. 1978)

3. .B.Dennis et al. Research Dtrecttosu In Comup W4r Archkteetur
if path is not specified In either RECEIVE or CONNECT then the MIT Report. Number MIT/LCS/TM-l 14 (Se.t.1971)
from__port raust be specified. in such a case, tht receiver is ask- 4. R.P.Goldherg "Survey of VirtualJ machine research" Conpspa-
Ing for a mesatige from a specific process and will either wait or er, (June 1974) pp 34-35
continue asynchronously (in the event that a receivw__oint is 5 .. ooaSEMdik"ita ahn datgsi

speifid i th conec pont) Onimung REEIV. arecivse-'urity, integrity. and decision support systems' IBM Sys-
Ing procoss will get a message ifsa message is waiting in the IPC text Journal Vol. 15 No.3 (1976) pp 270-278
mechanism. If there Is no message and there Is no named 6 G.J. Meyers "Storage Concepts In a Softwsro Reliability

reer~oetprocedure sassoeiated with the CONNECT, the proc- Directed Computer Architecture". hssceedtqa of Fifth Amou-
ess will be blocked. If there is a named reevjon.the piocess al Synsposium On ConspuWe Archiltecturr, IEEE. Now York,
will be permitted to proceed asynchronously. 1979
Mrlmlarly if the from-jetrt is not specified on RECEIVE or CON- PrnhHas OEAIGS TMS RNC LS
NVECT, then the path must be specifed. Aalk identifies a queume or Prentice Hall (1973).

fil tat hereeivr s wllngto rweeve messaes from any proc- A. J.K.Oustcrhout, D.AScohsa, P.S.Sindhu, "Aedusa- An Bzpe-
qileuthat thes receiv ereeier isg beal orciewaa riment In Distributed Opereting System Structure" CACM
sent to either this pkwh or to the Pair Poth, to__pece - receiving 23,2 (Feb.1980) pp.95-lOS
process name. The receiver can not receive messags sent to thc. 9. E.lOrganick. A.lForsytise, R.P.Plunsmer, PROGRAMMING
path and directed to another process, at a path can contain ties-LNUG TUTRS cdmcPes(91
sages directed to more than one process from more than one
process.

if a fropn-,port r d path are specified, then the receiver can
receive messages sent to the path fromt only the specified process.

SUMMARY

What has been shown iu the previous two sections is a simple set
of primitives for process creation and inter-process communica-
tion.

The primitives are configuration independent and do not Inhibit
the installation from determining the appropriate logical systems

* structures,

rhere are many modeis of inter-process, communications protocouls
which differ in the relation of SEND/RECEIVE to process block-
ing and concepts of WArr. etc. They also differ in whether
intervening mechanisms are visible to communicating Processes,
whether messag collections survive process destruction, whether
message may be queued or forced upon receivers, and in conven-
tions for the concept of reply and response.

.......



AN ARCHITECTURE FOR DIRECT EXECUTION OF REDUCTION LANGUAGES

Werner Kluge & Heinz Schlutter

Gese(lschaft fur Mathematik und Datenverarbeitung mbH Bonn
Postfach 1240, Schlof Birlinghoven

D-52O5 St. Augustin I

A r The Reduction Lanausoe

A reduction Language is a functional pro- As the Reduction Language is supposed to permit a
gramlng language whose semantics is defined by strictly functional method of program design, its
a set of rewrite rules. most fundamental construct is of the form

Our paper describes the architecture of a apply function to argument
machine which directly executes reduction
Language programs. The components of this expression map onto a

binary tree with 'function' and 'argument'
A laboratory model of this Reduction Machine appearing in the left and right subtree,
has been built at the G6D Bonn and is currently respectively, and with the 'apply to' as root node:
used for experimental program design based on
Berkllng's version of a Reduction Language. apply to

/ \

function argument

Introduction in general, 'function' and 'argument' are
non-trivial tree-structured expressions. The

Reduction language machines constitute a novel 'apply to' is a constructor which relates two
approach to computing that is radically different subexpressions in some meaningful way to each
from the conventional von Neumann concept. other.

As the main feature of reduction languages is
their strictly functional style of program design, More rigidly, an expression e of the Reduction
the architecture of a Reduction Language Machine Language is defined as e := con el e2, which is the
cannot be understood without having a basic preorder notation of the tree
knowledge of the language constructs and their
execution. con

/ \
There already exist a number of papers dealing el e2

with this subject, of which are primari'y to
mention those by J. Backus [BACKUS 72 & 78] and by that Links, by means of the constructor 'con', two
K.J. BerkLing [BERKLING 76] who originated the subexpresslons 'ei' anid 'e2' to each other to form
research in this field, and by F. Hommes 'e'.
EHOMMES 77 & 79) who implemented the first
simulation model of a Reduction Machine. The most simple expressions are atoms, such as

primitive function symbols, Letter strings of any
However, it is thought helpful for the reader of finite length representing variables, or strings of

this paper to be briefed on the Reduction Language decimal digits which form decimal numbers.
with particular emphasis on the aspects that are
relevant to an appropriate machine organisation. Using this basic structure of Reduction Language

expressions, a Language designer would have to
The paper outlines a few basic Reduction establish a set of primitive functions, data types

Language constructs, their rules of execution, and and constructors, which must be complete in the

the machine features that adequately support the sense that every computational problem can be
processing of Reduction Language expressions, formulated by a systematic application of these 4

Then we give an overview over the machine primitives.
organisation and its operating principles, and a
functional description of a hardware model of the In this paper, we do not discuss the development
Reduction Machine which has been constructed at the of such a complete language but introduce only a
GMD [KLUGE 79). particular tree-processing primitive of a special

1P.,

Ar/

---. , * . . • • ,



Reduction Language [1OMES 791 to show the basic Since the preorder traversaL scheme requires
operating principle of the machine: Let '>' be a that the root node is inspected first, followed by
constructor which builds binary trees, i.e. '> A B' the traversal of the Left subtree in preorder,
is the tree foLLowed by the traversal of the right subtr*e in

preorder, it simply takes a succession of
> pop-operations to have the expression emerge from

/ \ the stack in the desired sequence, with the item on
A B FJg• top of the stack being the actual traversal

position.
with 'A' as Left and 'B' as right subexoression. A SINK-stack must be provided into which WLL

symboLs popped out of the first SOURCE-stack must
Let 'head' be a primitive function which selects be pushed in order to conserve th0 expression

the Left subtree of such a binary tree, i.e. during the traversal. The expression ending up in
the SINK-stack is supposed to appear with the root

apply head to > A 6 node symbols on top of its respective
subexpressions. To accomplish this, a third stack

results in 'A'. this transformation of an is required as an intermediate storage for
exprsslon to another expression of the same constructors since they emerge from the
maning is calLed rutio SOURCE-stack MbMW of their subexpression but must

enter the SINK-stack jfter them.

Machine raanlsation and 'ttrina PrincipLes The corresponding traversal aLgorithm brings
about the foLtowing phases with regard to the

The basic machine functions that are necessary to contents of the stacks E as SOURCE-stack, A as
execute Reduction Language expressions may be SINK-stack, and M as intermediate stack. InitiaLLy,
readily derived from what has beow said about the the expression resides in the E-stackj the stacks A
Language primitives in the previous section. and M are empty, and the topmost item on E is
RoughLy speaking, there must be means to inspected:

- represent a Reduction Language expression ina suitable storage medium so that its tree o I > I AII
structure is uniquely exhibited;

- perform a preorder traversal of the A-stack E-stackLII
expression stored within this medium;

- recognize, within the imediate environment M-stack
of the actuaL traversaL position, the EWA.&
occurrence of a reducibLe subexpressionj

As the item is a constructor, it is transferred
execute the reduction according to the into the N-stack and marked with the superscript
meaning of the respective primitive 'I' which indicates that the Left subexpression of
expressions (which primarily involves this constructor is now going to be moved from the
traversal functions such as the comparison, E-stack to the A-stack:
deletion, insertion, and copying of
subexpressions); Z Ihd I> AIe A

resume, after the completion of a reduction,
the traversal up to the topmost root node of
the expression tree. A-stack E-stock

The first two problems were solved by representing
the Reduction Language expressions in the preorder M-stack
notation 'con el a2', and storing them in a [o
push-down stack, with the root node symbol on the Lila
top: so, the expression-tree

The focus of control returns to the top of the
aplpy to E-stack and moves the atom 'hd' into the A-stack:
/ \

head >

A B Ef.iaL4 L._ _ _ _

is represented as 'ep(pLy) h(ea)d (to) > A B' in A-stack It E-stack
preorder and stored in a stack as

M-stack

Iap hd > AI 8 Lifpg
LMI fili

Ao
pl .Av -.



Then the focus of control turns to the M-stack. The constructor lop, which appears now on top of
The lap' on top of the M-stack is found to be the M-stack is found to be marked with an 'r'. As
marked with an 'IL; as its Left subexpression has its right subexpression has just been moved into
just been moved over to the A-stack, the marking is the A-stack, the constructor lap' must be popped
changed to 'r', indicating that now its right out of M and pushed into stack A:
subtree is on top of the E-stack:

The' Ao-stemck >s t '>_ hso eet a h

A -s tac k E-stack
A-stack As-stack

Li ina siuatonshon p Fi.6

A -stack r -- stack

F -_9 Li __3

The top-element of the E-stack is a constructor 1>1 This completes thL traversal since the stacks E and
which is put into the N-stack and marked M are empty and the expression is Lined up in the
with an ILI: SINK-stack A in a transposed preorder form, with

the Left and right subexpression interchanged.

- A The executhion of the same traversal aLgorithm with
A as SOURCE- and E as SINK-stack reestablishes the
original situation shown in Fig.6.

A-stack F-stack

There are two important things that need to be
L ~not iced-.

N-stack r (1) The manipulation of the StaCi contents
ap splits into two Pha!.:s. F irst the item

Fiq.1O which constitutes the focus of control, the
top of either the E-stack or the N-stack,

Then the Left subtree 'A' of '>' is moved into the is inspected. Then this item becomes the
A-stack and the constructor I>, is marked subject of a stack operation, which i
with an Ir': either a transfer to another stack or a

write-operation on the same stack.

hd I A I I (2) The constructor on top of the M-stack
L J controls the movement of its

subexpressions; moreover, there Is a

A-stack E-stack situation where lap' is on top of the
.1-i-stai k, a function symbol is on top of the

IA-stack, and the argument expression is on

r top of stack E:

M-stack r

ap 1 hdJ I > I A I

After the atom 'B' has been moved into the A-stack, A-stack E-stack
the constructor '>' is found to be marked with an
'r' and can be pushed into the A-stack to complete
the traversal of the subtree '> A W':

hd I A IB I I - --l M-stack r

Fii1

A-stack F-stack This property of the traversal scheme serves to
recognize reducible expressions.

M-stack r In utr exampLe, the traversal scheme hiringsLI about a situation where 'ap' appears on top of
_stack M arid the function 'hd' on top of stack A.

17A

i .h



I.

This situation may be readily detected by Control over the stacks is exercised by means of
simultanously watching the tops of the the Reduction Unit which may be considered as the
E-,' A- and N-stack during the execution of the processing unit of the machine. The overall
preorder traversal, function of the Reduction Unit is very simple.

Under the control of the algorithm residing on top
If an instance of a reduction rule occurs, the of the system control stack S, it inspects the

triversat is immediately suspended and control topmost symbols of one or two selected stacks.
switches to another algorithm which performs the Thereupon, it goes through a decision process
appropriate reduction steps. (realized by combinatorial Logic networks) as a

result of which it may issue new symbols and
The reduction algorithm calls other algorithms specify stacks which are to be pushed, popped,

which participate in the evaluation of the written into and read next. A saell sequential
particular subexpression. network, comprising some status ftipftlops,

This transfer of control is accomplished by navigates the machine through the sequence of
conventional methods of subroutine stacking: code actions required by the rediction process.
words representing the algorithms are, in their MIore specifically, the Reduction Unit provides
order of activation, pushed into a system control all the tacilities to perform the various traversal
stack 3, and popped out upon termination so that algorithms, to recognize instances of reductions,
control eventually returns to the original and ýo execute the reductions, including an
traversat atgorithm. arithmetic unit for arithmetic operations on

dec imal iumbers.
There is also an I/O-Processor which Loads

The r-.lxction of an expression involves rather expressions into the machine and unloads them after
simple primitive operations Like the deletion of an reduction, and via which the user may exercise
expression which may be viewed as a traversal control over the machine.
without a SINK-stack, copying which is a traversal
with one SOURCE-stack and two SINK-stacks, and An elementary cycle of operation within the
comparison which is a traversal with two Reduction Machine quite naturally partitions into
SOURCE-stacks nid one SINK-stack. four phases as illustrated below:

For instance, the reduction of the expression in
Fig.i4 can be done as follows: first, the primitive
function lhd' in the A-stack, the constructor lap' phase (1) phase (2)
in the M-Ltack and the tree-constructor '>' on top
of tho F-stack ;,re deleted; then the atom 'A' i s Reduction Unit Transfer of
moved to th, A-sttck, the atom 'B' is deleted and nnaLysus stack -> symbols from the

IA is moved back into the E-stack; su, syi;:oLs Reduction Unit
lapply head to > A B' is reduced to 'A'. to the stacks

Of course, this procedure also works properly if
'A' end '8' ara not only atoms but trees.

Other important algorithms include those for t
performing arithmetic operations on decimal numbers
uf ary finite Longth. In this case, two atomic
stibexpressions representing the operands must, phase (4) phase (3)
'ymhot by nymibot, be popped out of their respective
SOURCE-stacks and moved through an arithmetic unt Transfer of Operations
whos• output is pushed into the SINK-stack. symbols from the <- on the

stacks to the stacks
Reduction Unit

To provide sufficient space for expression
manipulation it is convenient to have more than the
stac1,u E, A, M and S available so, the machine has
another three stacks named B, U and V to store
express i ons.

Starting in phase (1), the Reduction Unit is about
to anaLyse what it has just read from the selected

An expression is manipulated only by push, pop, stacks. Then the machine enters phase (2) during
read or write operations affecting the iturms which push, pop, read and write control signals,
residing on top of the stacks, together with new symbols, are transferred from the

Reduction Unit to the stacks. '

There is no addressing of objects within the During phase (3), up to four' stacks can be
expression involved: they may become the focus of pushed and popped such that new symbols appear in
attention only through an orderly traversal of the their topmost positions at the end of this phase.
expre :,; ion trae which brings them to the top of one During phase (4), the topmost items of the stacks
(it thu stacks. Addresses are used only to identify which have been selected for a read operation are
the stacks that are to be operated upon in a moved into the Reduction Unit which again enters
p-irticular instance. phase (1).

- 177 A

t~



The GMO Hardware Model ARITllmetic unit which performs the arithmetic
olx•rutions on the decimal numbers which,

The hardware model of the Reduction Machine was iider the control of REDEX, are received
primarily intended to demonstrate the feasibility digit by digit from the respective SOURCE
ot the Reduction Language principles. Its design stacks; the resulting digits are sent back to
was Largely determinded by the objective of getting the SINK stack.
a simple end reliable machine into operation as
quickly as possible. -

The machine employs standard low-power Schottky I./0 INTERFACE ( > PROCESSOR
TTL technology for all Logic circuits, registers,
status-f lifLops etc., fast read-only-memory
davices for the realization of a control store in
which the reduction algorithms are implemented, and KBUR STACK ADDRESSBUS
dynam i c rindom access memory chips for t he
,ultization of the stacks.

ALL machine operations are under the control of LBUR
a central clock which subdivides a machine cycle - -

into eight intervals of equal length. As the clock >
runs at a frequency of 6.25 MHz, an interval Lasts >
160 tisec and a machine cycle lasts 1.280
microseconds. The effective speed of operation, - -

however, is Llightly slower since every 16th
machine cycle is used for a refresh operation on >
all stacks.

A block diagram of the hardware architecture is ,-> z •
shown in Fig.16. It comprises ihe Reduction Unit
(which is subdivided into four subunits named V V V
TRANS, REDREC, REDEX, ARITH), a set of seven
pushdown stacks, a bus system which handles the DATABUS INTERFACE
traffic of symbols and control-signals between the
Reduction Unit and the stacks, a central timing A A a
system CTS, and an I/O-Processor (a convent ional
INTEL SBC 80/20 single board computer) which also KBUS LBUS
per t orms some monitoring and prep.-ocessig I r
t iuct I 0.s.

the data paths within the entire machine are
laid out to accommodate byte formats (eight bits ->-

plus parity), i.e. all stacks, data busses anu _ •• > J
Reduction Unit circuits are one byte wide. >

The Reduction Unit comprises four modules, each > STACKB
of which is accommodated by a separate printed >
circuit board:

- TRANSport performs all traversal algorithms >
(including deletion, comparison, copying);

- REDuction RECognition is a combinatorial >ISTACKV
logic network that looks, during the >
traversal of an expression, for the
appearance of an instance of a reduction. -- >
Upon the detection of a reducible expression, >
REDREC immediately deactivates the >
TRANS-subunit, pushes a new algorithm-code on
top of the S-stack and turns control over to >

REDuction EXecution, which essentially >
comprises a fast control memory containing
a[l the control programs which are required Fia.16
to perform the reductions. As for arithmetic
operations, REDEX is supported by the Block Diagram of the Reduction Machine Architecture

I ZR

-- ~.•



A stack is schematically Shown in Fig.l?. The Upon a push operation, an item enters via

major components are the random access memory, a INBUSSELECT from KBUS or LBOS and is written into

stack pointer to the actuaL top-of-stack location, the TOP-register. Subsequently, the contents of the

a separate TOP OF STACK register in which the COPY-register, i.e. the old top of the stack, are

actual topmost item resides, and a COPY-reqiste'- in stored away in the empty cell addressed by the

which a copy of the contents of the TOP-register is stackpointer. Afterwards, the stackpointer is

held. incremented by one to point again to the first

empty cell, and the contents of the TOP-register

SThe TOP-register may receive a data item, via are copied into the COPY-register.

the multiplex circuit INSUSSELECT, from one of
three sources. the KSUS, the L.SUS, or the memory Conversely, if the stack is to be popped up, the

cell that is addr-cssed by the stack pointer. The stackpointer is first decremented by one to point

contents of the TOP-register may be supplied to tlh to the Last occupied cell, then the contents of

KBUS or LBUS via the multipLex circuit this memory cell are read out and written into the

OUTBUSSELECT. TOP-register, whose now value is copied into the
COPY-regi ster.

The stack operations are as follows: the
TOP-register contains the topmost data item k of Read and write operations affect only the

the stack, a cony of which is in the COPY-register; contents of the TOP- and COPY-registers and cause

the stackpointer addresses the first empty cell of no Inemory access cycle.

the roidon accois memory stack area. Input/output processing and certain system

support functions are handled by a conventional

S]1 INTEL SBC 80/20 single board microcomputer which,

Stack- f via a tailor-made I/O-interface, is attached to the

pointer bus system of the Reduction Machine. The currently
4 imrtevented I/O-configuration --ity supports a data

stition IcwLett Packard HI' ?64SA which perfectly
> suits the purpose of tile Laboratory Model:

Reduction Le.ngtuage expressions can be edited,

Iter k-1 shipp,3d into the Reduction Machine for the
e-ýecution of a user-specified number of reductions,

item k- I and dht.pLayed afterwards. As the HP 2645A data
st-teon includes two tape cartridge drives, user
e>'v, , .vons and standard Library functions may be
stored ii.lay to and retrieved from tape.

Item 2
Perspective

COPY OF TOP When assessing its strengths and weaknesses, the
Reduction Machine architecture and its hardware

Srealization as described in this report should be
I isoen in the tight of the following aspects:

STOP OF TAK -- -~

-the Reduction Machine is the first of its
kind that directly supports the execution of

V reduction tanguages; its architecture has
-been straightforwardly derived from the basic

I ONBUSSELECT LC structure of reduction language expressions
I und their rules of execution;

-the concept of not using addreuses for the
representation of expressions within the
Reduction Machine has nowhere been
co:iprosn i sed;

U KBUS the Reduction Machine was primarily conceived
W;;In interactive toot for systematic

__rons.tiuction of functional programs, serving
only one user at a time; '4

9 LBUS the hardware model was simply intended as a
vehicle to demonstrate that the Reduction f

t.cnguage concept can be adequately supported 61

o i�r fcby the proposed machine architecture) neither
St~ock Di gram of the Reduction Machine Stack ,•.cismory capacity nor performance in terms of

Organisation i)ror oIn runtime were a design objective, sO



There remain a number of problems that need to Rfrne
be solved before the Reduct ion Machine can) be
accepted as a competitive alternative to Von)
Newmann computers. At the leve( o f mach ir nf BACKUS 72) Backus, J .
architecture, theste problems concrnur Puduction Languages and Variable-free Programming

NIM Research Report RJ 1010, April 7, 197Z

-adequate interfacing with peripheral memory [BACKUS '(8 Backus, J.
devices Like disks and tapes to support Con Programmiting he Liberated from the von Neumann
pirogramn Libraries, seriaous data basei Style? A Funictional Style and 'ts Algebra of
app Iicat ions, and al so the concept ot pi~oorrdris
'virtual stacks',* i.e. transpatunt stac:k C Cil 21, No.8, Aug. 1978, pp.61 3-641
extension into secondary storage;

fliII~rLlIJG 76) Berkting, K.J.
-program-control led input and output of P-1twt inn Laniguaiges for' Reduction Machines

p ~express ions from -,nd to per' plterat devi ck ; I ii r t* Ber icht 1SF- 76-8, 1976
-_-) * Itotir'Ii nghoven, 0-5205 St .August in I

-interrupt facil itius support int; the
commuiriuncat ion withI 1/0--Pr-ocesf!.n-s * real t ipme II li .S le) tilorines, F.

Aapplications and the cooper-at Inn with other 1i lh nt-rnaL Stiructure of the Reduction Machine
Reduction Machines; 110t, i;Žr' Bsrrcht ISF-77--3, 1977

;t, ¶ilcp, lBii-linghoveri, 0-5205 St .August in 1
-measures that remedy a seriouIs performance

leijrad-at ion in List processing applicatitor!, -Iu1 Homines. r. & Schltitter, H.
Which is caused by exces!;i ve copying Qt.ni. tioii i.u.chine System Li~er's Guide
activities. G-A. SclofI Bir'Lingjhoven, 0--5205 St.Augustin 1

[KuIWE YQ] KLuge,li.
Preliminary studies have shown that program It., Aiu~itectui-e of a Reduction Language Machine

controlled 1/0 and interrupt handling can neatly be 1, 11"1.,! Mod"
integrated into the language concept by introducing hii r:tri [,.I i ht ISF-79-3, 1979
appropriate constructs. C. !, i~c.lor itiii-itrjhoven, 0-5?05 %t .August in I

As it appears flow, the interfacing with
conventional peripherals necessitates traditional
file management methods and data transmrissiuon
techniques since device controtl er,; are des ignted
forý statndard inter faces withI convelit i onia
'tonipu~t or a. Helnce, the nti croprou:,e or aipproatchI f or
1/0--handLing which has been taken withI th
laboratory Model seems to be a step into ther r-ight
direction, guided by the type of peripheral devices
that are currently available in the market-pI ace.
Iho ý-over, will) futur'e advances in eloctoiiic disk~
.rchtnoLogies, stack-type peripherail ncirior-y dcvi:ý. r14
ol sufficiently large capacity that are cotrpat iiih
with the internal struLctur-e of tie Redutrt ic
iMachiine way be anticipated.

To significantly expedite the processing of
largue List structures, the hard-lIi ned
'no-addresses' approach w-ay have to be softened to

sorte extent. Conceivably, subexpressiont, could be
linked to their respective coiistructors by relative
pointers within the internal representation of art
expression. Along these pointerrs, the focus of
control could be mioved dir-ect ly to a pail icitlar
;ljhuirpress ion rather t han l ravi 'r4 In It I n-ir y
tiIiottAjh the express ion ti-ee that is tou the leftI aiitd

Itiiny also be envisaged t h;)t stich a painter,
Iti-t'I.t IWt' facilitates th; part ittioning of an

57 ex-pr'ess ion into subexpressions ofi stittable meaningj
that c~it be dis~ributect for- ctrti.-tit po:rrri
ur hutl a systcnil of cooperat mr* Hi ducti ii Machut'..

I M



AN EXPRESSION ORIENTED EDITOR FOR LANGUAGES WITH A CONSTRUCTOR SYNTAX

Ferdinand Hosses

GeseLLschaft fOr fathomatik and Datenverarbeitung mbH Bonn
Postfach 1240, SchLofo Sirlinyhoven

Asact can be represented as trees. Atoms become the
Leaves of the trees, whereas the constructors form

-A wide class of languages can be defined by using a the nodes.
constructor syntax. This paer gives a short in-
troduction to the constructor syntax and describes k,
an interactive editing system for Languages having /
such a syntax. In contrast to conventionaL Line- as k,
oriented editors this editing system is compLeteLy / \
expression-oriented. The system has been success- a& k,
fuLLy implemented for Berkting's Reduction Machine. / \

a3  ks

a4 as
I. Lanauemes with a Constructor Syntax

Fig. 1: Tree-representation of the expression of
example 1.

1. Definition of a Constructor.-Sytax
The Language E which has been defined in Exmle I

Backus introduces in his report EBACKUS 73] looks very abstract, for we did not associate any
Languages with a constructor syntax: The pair (A,K) meaning with the atoms or constructors, we just
i$ a constructor syntax for a Language E if the gave them forest names.
following conditions hoLd:

Now we are going to discuss the following two
1. A c E representations of the Language:

2. Each k e K is a function from a subset Sk of I. Its representation within a machine (machine
E" into E interface or internal reoresentation)

3. For every a e E, either e t A or there awe a 2. Its representation on a display station (user
unique k C K and unique e6.,.,e, £ L such interface or exteoLnat rewresentation)
that kte1,...,e.3 w e.

2. InternaL Representation
Each element a of A is caLLed on t, and each
k 6 K is caLLed a constructor. Let kte, ... ,e.. 0 A representation of an expression within a given
e, then a,,.. .,, are caLLed subexpressions of the machine is obtained by:
expression e and k is caLLed an n-pLace-
constructor. Each expression of a Language with a 1. coding the atoms and constructors
covistru,:tor syntax -s either an atom or can be
urittter as e kx[e,..,.,e,]. 2. mapping the structtre of the expressions into

st'rage
Exam~pLe 1: Definition of a Language

Let A " (a1,,.,a,) and K - {kl,ks) with Each atom or constructor is stored within a memory
ki C [ExE -> E], i.e. the ki's are two-piace- ceLl; the coding function maps the symbotic nam of
constructors. Then (A,K) is a constructor syntax an atom or constructor into a value which fits into
dcf inig a language which we call E and to which a memory item, e.g. as is mapped to the hexadecimal
wc wiLL refer in the following chapters. An constant X1351.
ex,•mLe of an expression of the Language E is
k t t,kCaak[ag ,kEas 5a,es]]]3 In the foLLowing we wiLL denote the coding of an

atom or a constructor x by Sx, i.e. the symbolic
Fyxpres•ions of Languages with aconstructor syntax name for the coding of the atom as is $a,.

181



We have already mentioned that each expression
can be represented by a tree; this means that we 1  headia taid a, -Ala, - Blas =
have to map a tree-structure into memory. A con-venient way to do that is to connect the elements k = apply a ka a > 13 a
by pointers. Figure 2 shows such a realization for to U
the expression defined by Example 1:

Fig. 4: I/O-table for the language given by Exa-
-> -> -> -> pLe I (translation to BerkLing's ReductionFs a .1Language).

Using the I/O-table above the expression of Exam-
ple I is displayed as:

apply head
to appLy tail

Fig. 2: Representation of an expression by using to > A > B C
pointers.

which is a valid expression for Berkting's Reduc-
BerkLing has used another method within his Reduc- tion Language.
tion Machino: the expressions are stored within Different I/O-tables may exist for the same
stacks, using the preorder notation of the asso- formal Language. The next figure shows a transla-
ciated expression-tree. Figure 3 shows how the ex- tion of formal expressions to LISP:
rpression of Example I is stored.

Top of stack a, = CAR la, - CDR as , Ala 4 , Bla, . C

I$klia likiliaalikalSa3 lka id$a, ik ($:a] kk I (a0 k. a)

Fig. 3: Representation of an expression in a stack Fig. 5: I/o-table for the language given by Example
using preorder notation. 1 (translation to LISP).

In this paper we will prefer the stack representa- Using this table results in: (CAR(CDR(A.(B.C))))
tion since it has the following advantages: The editing system which we are going to develop

will only be based on the formal definition of ex-
1. The representation is very close to the pressions. The external representation of an ex-

formal definition of expressions, i.e. pression is generated by using an I/O-table, whicti
removing brackets and commas from the formal may be a default table stwplied by the system, or a
definition leads directly to the preorder no- tat)le defined by a user 4ho wants to use his own
tation (cf. Example I and Figure 3). external representation of a language.

The next figure shows the relationship between
2. It is free of pointers which are not directly the different representations of an expression:

related to the problem.

Thus the algorithms of the editing system which we [bl/ ]<- .. [F - codin
are going to describe will be more clear and pre-expresion
cise, for they are free from pointer manipulation
and garbage collection problems.

3. External Reoresentation external editing internal
=representation system representation

Normally the user is not interested in the internal
coding of an expression. He wants to see certain
keywords or strings which have a meaning to him. Fig. 6: Representations of formal expressions.

Therefore we need another function - the
1/O-function - mapping formal expressions Into ex- II. The Interactive Editintj~gys
pressions which can be isiderstood by the user. The
I/O-function can be defined by a table which asso-
ciates all atoms with a string and all constructors 1. An Expression Oriented Editing System
with a prototype-expression that consists of some
keywords and place-holders (a) which indicate where Conventional editors are Line-oriented, i.e. a line
the subexpressions are going to be inserted. In is the smallest Logical unit. Almost all commands
Figure 4 a possible I/O-table for the language of such an editor refer to lines, e.g. move tines)
defined in Example 1 is shown: copy lines, insert ltines, scroll up and down a cer-

182

S......• • .... '•, • •*• :-•,*••-•,•;,i•,•............................................,.......... •,, - ;



tan number of Lines. There is no relationship to TYPE STACKNAME -(E,A,M,B,U))

the structure of the ptogi m which is edited, or to
the Language it is written in. If a user wants to Then the algorithm TRANSPORT is given by
delete a "ein-end-block, he has to find the cor-
responding tines for deletion. This can be very PROCEDURE TRANSPORT(XY:STACKNAME)j
tedious if nested blocks are used or the block does BEGIN
not fit onto the display. CASE TOPCX) OF

We have implemented an editor which is not Line- ATOM: N4OVE(X,Y)j
oriented but expression-oriented, i.e. the smallest N-CONSTRUCTOR: BEGIN
logical unit the user cam handle is a complete ex- MOVE(X,M)j
pression. ALL commands of the editor will refer to FOR 1:01 TO N
expressions, e.g. copy expressions, move ex- DO TRANSPORT(X,Y)j
pressions, delete expressions, scroll to a sub- MOVE(MY)j
expression etc. END EN

2. Algorithms ko2_ir&iLe Exorssion END

Since the smallest logicaL units in our editing TRANSPORT is a recursive atgorithm: after a con-
s ' sttmf are complete expressions, we first describe structor has been saved in the N-stack all its sub-
soýme basic algorithms which allow us to move, copy expressions are moved to the sink-stack, then the
and to delete expressions. constructor is moved from the N-stack to the sink-

The editor works with five stacks which are stack.
Called E, A, M, B, and U. Expressions are stored
within stacks using the represent at i c.i described in hpqj&: During the transport the subexpressions of
1.2 (Cf. Figure 3). constructors are interchanged, e.g. applying the

algoulthm TRANSPORT to the expression shown in
rigure 3 yields:

EDITOR -Logic Top of stack

Fifj. R: Result of transporting the expression given
Stack St tack tackby Figure 3.

-E-1 Applying the algorithm TRANSPORT repeatedly to an
expresjio'i yields the following transformation:

Fig. 7: Memory used by the Editor.
TRA. TRA.

1here are the fokLowing primitive procedures and K (e11 , e,,) -.- > K(e,,,...,ej) -> K(e 1,...,e.)
functions to handle stackeieuients:

i.e. an even number of transports always yields the
VO () deletes the item on top of stack X original expression.

P1'!"N (I X): pushes item I into stack X
2.2. The Algorithm TRANSPORT2

1`O¶JE(CY): moves one item from stack )( to
stack Y The algorithm TRANSPORT2 moves en expression from

one stack to two other stacks. It is called by
F¶')VE2'(X,Y,Z): moves one item from stack X to the TRANSPORT2(X,Y,Z), where X, Y, and Z are

stacks Y and Z. stacknonies; Z denotes the second stack to which the
expression is moved. The algorithm differs in only

The funct ions and procedures Listed above wilt not one point from the algorithm TRANSPORT: atoms andV
hie explained any further in this paper. constructors are pushed into two sink-stacks.

2.1. The Atnorithm TRANSPORT PROCEDURE TRANSPORT2(X,Y,Z:STACICNAME~i
BEGIN

The algorithm TRANSPORT moves a complete expression CASE TOP(X) OF
from one stack to another stack. A third stack, the ATOM: MOVEZCX,Y,Z)j
control-stack M, is used for intermediate saving of N-CONSTRUCTOR: BEGIN
Constructors. A call of the algorithm TRANSPORT is MOVE(XM);
denoted by TRANSPORT(X,Y) where X and Y are FOR 1:-1 TO N
stackna3mes and the expression is moved from the DO TRANSPONtTZOCDY,Z)j
stack X to the stack Y, i.e. TRANSPORT(E,A) moves f4OVE2 (M, Y, Z)
an expression from stack E to stack A. END

Ini the foltowing we will use a PASCAL-Like END
languiage to specify algorithms. We assume that END

-ic a -iot type-decLaration of the stacks:

ILI



", I. .d , -11 -' ý-• 1 1 11-1-- --. -- ...... ... -, - I F ......................p ... ....

2.3. The ALoorithm COPY Stack E Stack B Display-
buffer

This algorithm copies an expression from one stack
to ante tc ithout interchanin the sub-FA> A>
expressions. COPY has the same parameters as the FA COPY(E,B) OUTPUT
algorithm TRANSPORT, i.e. COPY(A,E) copies an ex- -
pression from stack A to stack E. nze(0 The
algorithm COPY uses the algorithms TRANSPORT2 and
TRANSPORT:

Fig. 9: Output of an expression.
PROCEDURE COPY(X,Y:STACKNAME);I
VAR 21ZZ2: STACKNAME)I The algorithm OUTPUT is a modified TRANSPORT-
BEGIN algorithmn. It is defined by

ZI:in ....a ZZ:in.. RCDR UPT
TRANSPORT2 (X,ZI ,Z2); PRCDR UPT
TIRANSPORT(ZloX); BEGIN
TRANSPORT(Z2,Y); CASE TOP(B) OF

END ATOM: DISPLAY;
N-CONSTRUCTOR: BEGIN

The stacks Zi and Z2 are used as scratch pad stacks DISPLAY;
for exoressions. They must be different from the FOR I:-1 TO N D0ODUTPUTj
stacks X and Y. END

END;
2.4. The Atoorift-aDELETE ERROR: BEGIN

OýLETE (B); ABBREVIATE;
The algorithm DELETE removes a complete expression END;
from a stack. It has only one parameter which is END
the name of the stack where the expression is to be
deleted, i.e. DELETECE) deletes an expression in The procedure DISPLAY pop& one item out of stack B.
stack E: retrieves its representation from the 1/0-table

(cf. 1.3), and replaces the associated ptacehoLder
PROCEDURE DELETE (XSTACKNAME); within the display-buffer by the representation.
BEGIN Before the algorithm OUTPUT is called, the display
CASE TOP(X) OF buffrnr is cleared ajid one pli.cehoLdar is inserted.

ATOM: POP(X); F igure 10 shows the different states of t he
N-CONSTRUCTOR: BEGIN atujorithin OUTPUT, using the 1/0-tabLe given in

POP(X) F111ui-e 4 and tie expression k1(a1 ,kja4,as3fl:
FOR 1:0l TO N DO DELETE(X)j

END Stack Display- Stack Display-
END B buffer a buffer

END

minted by hardware in Berkting's Reduction Machine. Ia $as to a
A description is given in [KLUGE 79). no> $k,

$se $a..4

3. IbJL f the Different Stacks

We have already mentioned that the editor works
with five stacks which are calted E, A, M, B, and apply head II apply head

U. Stack E contains the expression which is dis- to 0 to > a a

of Attention (FA). Stack M is the control stack $84, $8"
which is used by the TRANSPORT-algorithm. Stack 8 $a,$8
is used for input and output, i.e. input operatictis
move an expression from the disploy station to
stack B whereas output is done by moving anl ex--
pression from stack B to the display. Stacks A and I
U are used by the scrolling operations. apply headi apply head

to>Ba to > C
4. QOutut of Expressions *> I
Output of an expression means: Display the current
Focus of Attention. First of all the expression info s
stack E is copied to stack B, from where it is
moved by the algorithm OUTPUT to the display buffer Fig. 10: Examplt showing the different phases of
of the terminal, algorithm the OUTPUT.

1984

BEGI algrith. I is efind y



The procedure DISPLAY falits if there is not enough Note: ALL addresses terminate with the speciL taom
space within the display buffer to insert the niL. Readers who are familiar with LISP arobably
representation of an atom or a constructor. In this have noticed that expression-addresses are
case the error exit is taken: The corresponding represented by a List of integers. As expression-
subexpression in stack S is deleted and the addresses are based on a constructor syntax, the
algorithm AIBREVIATE repLaces the current basic atgorithms TRANSPORT, COPY, etc. may aL•so be
ptacehotder by an abbreviation symbol. This means appLied to them. Besides these we will need some
that the innermost subexpressions are automaticaLly other atgorithuis to handle addresses:
abbreviated and the complete Focus of Attention is
shown on the dispLay. HEAD(ADOR): extracts the first number from an

address, i.e. t4EAO(1.2.3.4.nil)ui
S. ScroLt inq and Oisplaying Selected Subexoressions

TAIL(ADOR): removes the first number from an
In this chapter we will describe how the user can address, i.e. TAWL(1.2.3.4.nit) -
change the Focus of Attention in order to took at 2.3.4.nit
subexpressions which have been abbreviated. Line-
editors can display hidden information by means of REVERSE(ADOR): reverses the sequence of the
scrolling commands: Display previous page, dispLay numbers that constitute an
next page, scroll up n Lines etc., i.e. scroLling addressi.e. REVERSE(i.2.3.4.nitL)
is completely line-oriented. For our purpose we * 4.3.2.1.nit
need a scrotLting mechanism which is expression-
oriented since the hidden information atuays con- These atgorithms can be expressed by using the
slits of complete subexpressions. basic transport algorithm and the operations POP,

But the problem in how to select a subexpresslon PUSH, and MOVE.
on the display and how to find the corresponding Given a reversed expression-"addres, we can
subexpression within the expression in the E-stack. define an algorithm SCROLLOOWN which selects the
The solution we are Looking for shouLd be indepen- corresponding subexpression. Basically, SROLLDOUN
dent of the current I/O-tabLe that is used for dis- is a transport-algorithm which moves an expression
playing expressions) it should only depend on the from stack E to stack A, but the transport is
constructor syntax. stopped as soon as the selected subexpression is on

An eaty way to select a subexpression is to move tcp of stacl( E:
the ctri;ur to its position on the display. But

* mr, tisor-iddresses are not expression dependent, they PROCEDURE SCROLL)OWN(ADOR: EXPRESSION-ADOitESS);
are just gLivtn by a Line and coLumn number. So we BEGIN
have to tranutate the cursor-address into an IF NOT(AOMR - nit)
appropriate expression-address. In our editing sys- THEN BEGIN
tema these 'appropriate' addresses are themselves MOVE(E,M)j
expressions taken from a special address Language WHILE I < WEAD(ADOR)
6ADOR. The Language LAVOR is defined by the DO BEGIN TRANSPORT(E,A); Itiotli ENO)
fol lowing constructor-syntax: SCROLLDOUN (TAIL (AION)))

Let A a (1.2,...) U'(nil), i.e. an atom is END
either a natural number or niL, and Let K a END
(K2ADDR) where K2ADOR is a two-pLace constructor.
Then the editor will use the following expression When the SCROLLOOIN algorithm stops, the stacks A
of LAOUR as address of expressions or sub- and R contain the environmeit of the selected sub-
expressions: expression. Stack N contains aLL the constructors

which have been encountered when walking to the
1. The root of an expression gets the address subexpression, whereas stack A contains iLL the

nit subexpressions which have been removed in order to
2. The i'th subexpression gets the address get the subexpression on top of stack E. 9

K2AOOR[I,AOOR] where ADOR is the address of After having selected a subexpression a after, o
the current expression having performed some actions on it the user may

waint to return to the expression from where
In order to make addresnes more readable we use the scroLLing was invoked. This is done via the
following representation for the constructor stgorithii SCROLLUP whidh is the inverse of the %
KZAOOR: K2AOOREX,Y] a X.Y aLgorithi SCROLLDOWN: .

The next figure shows the expression of Figure
10, where each subexpression has been marked with PROCEDURE SCROLLUP(ADOR: EXPRESSION-ADORESS)j
its address. BEGIN

k, IWHILE I < HEADCAOOR)
(niL) DO BEGIN TRANSPORT(A,E)j 1I:i+Ij 64DA

/OVE (CE);
at a, SCROLLUP(TAIL(ADDR]) ,

(1.nit) (Z.nit) ENO

a4  a, Before the atorithm SCRLLUP is called the
(1.2.nit) (2.2.niL) expression-address is not reversed. ICROLLUP moves

the subnxpressions and constructors having been
f Eig. Iii Expression and its addresses. moved to the stacks A and N beck to stbck E, thus

• - . . . . . . . . . . . .. " -

4, . .... . .,'•.a i ,•• • .. ,' -. -i,. -.. " ,V,. -'.".-,• •,•.• • .. s :.• .. #, ... •-•• •,'.•<•,•, • • .•&



reconstructing the original expression again. Stack Address- Stack Address-
The editing system also supports nested B table B table

scroLLing: Whenever the algorithm SCROLLDOWN is
called the associated expression-address is moved
to stack U. A sequence of scroll-downs then gener- 11111 2222 11111 2222
ates a sequence of expression numbers within stack 11 343 11 345
U. When scroLl-up is requested the required =W>
expression-address is found on top cf stack U from
where it is removed. S

Now there is one probLem Left: Which expression-
address belongs to which cursor-address? This
relationship is established via algorithm OUTPUT where: 1 -> nit 4 -'> 1.2.nit
which is extended in the following way: For each 2 -- > 1.nil S -> 2.2.niL
atomn and for each constructor the corresponding S -> 2.nit
expression-address generated:

Fig. 12: Contents of the address table for Figure

PROCEDURE OUTPUT(ADDRi EXPRESSION-ADDRESS); 10.
BEGIN

CASE TOP(B) OF No entry means that at the corresponding position
ATOM- DISPLAY of the display no expression is shown. The

N-CONSTRUCTOR: BEGIN algorithm ABBREVIATE Witt insert the address of the
DISPLAY; expression number of the abbreviated expression
FOR I:=1 TO N into the address table.
00 OUTPUT(I.ADDR);

END Now we are able to translate a cursor-address
END into an expression-address: The cursor-address
ERROR: BEGIN denotes an offset within the address table, where

DELETE(B); we find the address of the associated expression-
ABBREVIATE; nddresn:

END
END ADDRESS TABLE

When algorithm OUTPUT is called for the first ti me 1
ADDR should be niL, i.e. OUTPUT(nil) is a valid ICURSORI - EXPRESSION-

call. IADORSJ R > . . > [ ADRSSJ
The procedure DISPLAY of algorithm OUTPUT has to

be extended, too. First of all we need in addition
to the display buffer a second buffer which we wiLL
call address table. The address table has as many
entries as characters can be displayed on the dis-
play. Each entry contains the address of an Fig. 13: Association of cursor- and expression-

expression-address. Now, the procedure DISPLAY wilL address
update both, the display buffer and the address
table: Whenever the representation of an item is The existence of an address table allows an ex-

moved to the display buffer, the corresponding pression oriented use of some standard display-
entries within the address table will receive the station keys, e.g. the EOF-key (- Erase until end

address of the current expression-address. Figure Of Field). can be changed to a more useful EOE-key
12 shows the contents of the Lddress table for the (= Erate until end Of Expression). An expression is
different phases of aLgorilthri OUTPUT for the exnm- erased by erasing all screen-p6sitions uhose

pLe given in Figure 10. exlpession-addresses have the same -suffix as the
currenlt addr'ess of the expression.

Stack Address- Stack Address-
B table B table .1

6. Editing: Update of Expressions

sk, 'I 1111Until now we have described the passive part of the '
$a, $a,1 editing system, e.g. the representation of ex--

-a> $k, prossicns, ho! they are displayed etc. Now we turn
$a. o0,,- attention to the active part of the system
S ,i.,c, allows the user to edit (= u ddate, de.ete,

ripjucc, etc.) expressions.

11111 2222 11111 2222 6.1. Format of the Screen Imaae
1 11333

Sk= First of aLl we have to specify the screen image
I$a, I ,id by the editor. The screen of a dispLay shoutld

lii I~v d ivied int fuiir Lorlical pail . .i~i i
-... . . Ii l 0 *

!.



DELETE CE) ) PUSH (EfIPTY-EXPRESSICN,E)iEXPRESSIC1-f teld FlP-fieldEPE- ... ..... The copy-comad copies CE either to an auxiliary
MESSAGE-fistd COMANO-fteLd stack (x a STACKO, STACKi, etc.) or into an ex-pression Library (x n rm of an expression).

Copying is done in the following way: At first the
Fig. 14: Logical fields used by the editing system expression is copied to the I/O-stack B and freekhere it is transported to the desired destination:
The FA-fieLd is the wree in which the curreot Focus
of Attention is displayed via algorithm OUTPUT. In COPY(E,B); TRANSPORT(B,X)j
the COW••NO-field the user may specify editor-
commands. The MESSAGE-field is used to display A list of the commands used by the reductionadditionaL information like aefor messages, ex- machine editor is given in [HONMES 79).
planations of the commands etc.

The EXPRESSION-field is used to update ex- 6.3. Uodating exoessions
pressions. Figure IS shows how the four fields can
be mapped onto the screen of a real display- Updating expressions in am expression-oriented
station. This display image is used by the editing editor- means! replace a subexpression by anothersystem of Berktilg's Reduction Machine. subexprossion. This is always done in the sam way:

I. The user enters an expression into the
EXPRESSION-field and positions the cursor to

E u> EXPRESSION-fie*d C a> A f ad the expression in the FA-field which he wantsto replace.
MESSAGE-field 2. Via algorithm SCROLLOOWN the expression which

in going to be replaced is brought to the top
of stack E.

FA-faetd
3. Via algorithm INPUT the new expression is

generated from the old expression, the pro-
gram Library, the auxiliary stacks, and the

Fig. 15i Display image used by the editing system inpuit specified by the user.
of Berkting's Reduction Machine.

4. The expression to be replaced is deleted.

S. The new expression Is moved from stack 5 tostack E. A scroll-up operation is performad
to return to the previous FA, which now in-We have already mentioned that the Focus of Atten- Ctude, the replaced subexpression.

tio, i.e. the expression which resides on top of
stack E, is displayed within the FA-fietd of the Figure 16 shows the contents of the stacks during
screen. NoW let us Consider a subexPression of FA the different phases of replacement:
which is given by the current cursor-position. We
will call this expression the CURSOR-expression Stack Stack Stack(CE) and denote its address by CEADOR. E E
CE must be on top of stack E When the specified TERMqINAL .. < xcommand is going to be executed. Thus we have to INPUT INPUT SCROLL-
perform a SCROLLDOWN before and a SCROLLUP after AUXILIARY •OW xxx
the exeution of a cmI• 

I STACKS 
-

SCROLLOOWN (REVERSE (CEADOR)) PROGRAM iexecute specified monitor command LBRARY
SCROLLUP(CEADOR) DELETE

In this paper we will give only the description of
two basic editing commoians: --

0: Oelete the CURSOR-expression ----- SCR"NOLL-Cxt Copy the CURSOR-expression TRANSPOT ... UP

1he 0-caommnd replaces CE by a spectit atom called -- > LI
the EMPTY-expression which pr ts the user to en- ..
tar a new expression. This ensures that 0 user can Li
never gen*rate incomplete expressions. Whenever he
deletes an expression he has to replace it by
another expression. The atgorithe for the 0-command Fig. 16: Contents of stacks When rPplacing an ex-

pression.

19

C.. . .7 . . .



Outline of procedure REPLACE: always denoted by an expression having the
following format:

PROCEDURE REPLACE(ADOR: EXPRESSION-ADDRESS);
BEGIN ap

SCROLLOOWN(REVERSE(ADOR))j an f a, ... a. or /
INPUT; f at a.
DELETE(E);
TRANSPORT(B,A); i.e. a special constructor called applicator
TRANSPORT(A,E)j followed by a function and its arguients.
SCROLLUP(ADOR)) Programs written in an applicative Language are

END executed by resolving applications, i.e. by

applying functions to its arguments, which is done
The algorithm INPUT performs the foLlowing opera- according to a set of rewriting rules. A rewriting

tions: rule specifies the expression by which an appLica-
tion is to be replaced.

1. The expression specified by the user in the

expression -fieLd is translated from its ex- ExampLe: The rewriting rule for the identity func-
ternalt representation to the associated in- tion is given by
ternaL representation by using the I/O-table.

ap
2. EMPTY-expressions are inserted for missing / \ > •

subexpressions, i.e. the expression entered id e
by the user is autolmatically completed.

An algorithm which resolves applications can be
3. References to other expressions are resolved, based on a TRANSPORT-algorithm. The idea is to move

an expression from stack E to stack A, but to stop
4. When INPUT terminates, a complete expression the transport when the following situation occurs:

has been generated within stack B. the applicator is on top of stack M, the function
is on top of stack A and the urguments are on top

There are three references to other expressions of stack E. Then the application is resolved ac-
which may be used when constructing new ex- cording to the rewrite rule, i.e. the applicator is
pressions: popped ou+ of stack M, the function is removed from

stack A, and the arguments on top of stack E are

expression-address: replaced by the result.

An expression-address is replaced by its cor- Stack Stack Stack Stack Stack Stack.
responding expression, i.e. the expression- E A M E A M
address i.nll many be used to refer to the first
subexpression of the expression which is going a,
to be replaced.

Example: Entering 1.niL wilL replace an ex- ==mass

presslon by its first subexpression

name of an auxiliary stack or of an expression:

Fig. 17: Resoly.thg an application
The name is replaced by a copy of the expregsion
which is either on top of an auxiliary stack or Having resdlved the application the TRANSPORT
in the expression Library. This reference is algorithm-'is activated again. When the expression

used to retrieve expressions which are moved to has been moved to stack A ell applications have 9

an auxiliary stack or to the Library by using been resolved. The algorithm TRANSPORT(A,E) moves

the copy-command, the expression back to stack E.
The editor can be easily extended to allow In-

Note: Expression references are resolved by teractive execution of expressions or sub-
applying the basic COPY-aLgorithm. expressions. Introducing the editor-command E

(.Evaluate) into the environment described in

This chapter has shown the basic features of an 11.6.2. wiLL result in:
expression-oriented editing-systemA [HOMMES 793
gives more information and shows especially how the
user can construct programs in such an expression-
oriented system. SCROLLDOOWN(REVERSE(CEADOR);

EVALUATE;
7. EvaLuation of Programs TRANSPORT(A,E);

SCROLLUP(CEADDR);
The editing system described so far works for
arbitrary languages based on a constructor syntax. By using the cursor any subexpression may be
Now we are going to restrict this class of selectUd for evaluation.
Languages to appLicative Languages. These are
Languages in-which an application of a function is

188



ErAcKUS 723 Backus, J.
Reduction Languages and Varilbte-free Progrm-
ming
15m Research Report RJ 1010, April 7, 1972

[BACKUS 133 Backus, j.
PrcIo amang Language Semantics and Closed
Appticative Languages
IFIt Rose.trch Report RJ 124S, July 5, 1973

(BACKUS 783 Backus, J.
Can Programing be Liberated from the von
Neumann Style? A Functional Style and its
Algebra of Progrems
CACH 21, No.8, Aug. 1978, pp.613-641

[BERKLING 763 Berkting, K.J.
Reduction Languages for Reduction Machines
Interner Bericht ISF-76-8, 1976
GHO, SchLog rirlinghovom, 0-S205 St.Augustin I

[IOWIES 773 Homoes, F.
The Znternlt Structure of the Reduction Machine
Interner Bericht ISF-77-3. 1977
GI1-D, Schto(D BirLinrhovem, 0-5205 St.Augustin I

[HOIMES 793 HoUmes, F. & SchtOtter, H.
Reduction Machine System User's Guide
GFID, SchLo(, Birtinghoven, 0-5205 St.Augustin I

[XLUGE 791 Werner E. Ktuge
The Architecture of a Reduction Language Machine
Hardware Model

"*Intern•r Oericht %SF-79-3, 1979
GNO, SchtofW Birtinghoven, 0-5205 St.Augustin I

.!;

I$•9d

• . . '

.... ... ... ... ... .... ... ... ... ... ... ...- .-. -~ -~ -- - - '4



PARALLEL. COMP'UTFR ARCHITECTURE EMPL.OYING
FUNCTIONAL PROGRAMM4ING SYSTEMS

.I,01i1 C. Peterson
WI I I lam 1). Murrav

University of Colorado at Deniver

Department of Electrical and Computer Engineering

Abstract forms, a set of definitions, and the operation of

By uing t fnctinal rugammil-,appl ication. Formal systems for functional pro-
By uing fuctioal pogrlII1i,~gramming (FFP systems) use objects LO ropresent

system as a machinle lanigouat. it hIghly F'P functions.
parallel computer call he contLrucLed. An object is either an atom, a sequence whose
A form of lazy evaluation, using [it elements are objects, or I ("bottom" or"undefined%)
frcomplterbjctipng ie a data low nI'imv Atoms include numbers 3nd identifiers, FP' systems

for onsrucing daa fow CU~Pk~Cwhoqe 4equence constructor is I preserving will
which directly executes programs W: iltell never allow I to be an element of a sequence.
using the functional program syatsi1 1in Only in all FP system whose sequence constructor is
a highly parallel manner, Sincev a laLd lnt-o J preserving could the sequence <X,.', be found,
flow architecture is used, t~his imnral- The special atom ý is used to denote the empty
lelism is not dependent til any speciahlized sequence, -Ach is both an atom. and a sequence.
parallel language or compiler. This s;equences Ji be represented by enclosing the
computer consists of thru! hasic componunts sequence ele,,..-tit in < and >. The application
a set of processors, a shared memory operation is denoted by a : , so the appl ication of
containing only FP ob~jects, andl it (IhlikL'l the lunction f to the object x would hIv written as
feeding functions to till procussors. The f~x.
design is modular, illowing anrl~l rbitrn All functions are applied to a mingle object.
number cprocessors, which need not he Since all functions have only one argument, it is
identical. unnecessary to give names to arguments. because

all programs are composed only of such funcltxon",.
all variable namtes are completely ellimna~eui.
Functions which would normally require more than
one argument are applied to a sequence containing
all of the needed arguments. A brief list of the

INTRODCTIONprimitive functions to be used follows.
A new ap,.roach to data flow computers is I WeePisaingr.Fdth

suggested by functional programlming (PPi) systems, xWhrnisaiter. Fdte
as described by Biackus 1ll. By introducing a form themntotesqun x
of "lazy evaluation", similar to that used by tl~x Remove the first element of the
Friedman and Wise [31 in a Computer whose machine sequence x.
language is an Fl? system, a simple yet powerful id:x The identity function. Return x
data flow computer results. ucagd

Unlike other parallel computers, data flow ucagd
processors [2.4,5,6] obtain parallelism directly atom:x Tests if x is an atom. T Is return-
from its source: the natural data dependencies ed for true, F for false.
between operations in a program. Such computers eqn:yaeeqa<bjcs
are not bouisd to parallel languages or compilers, q.<xy> Tests If xadyaeeulojcs
but are able to introduce parallelism into all nulli.x Tests if x is 0.
programs without need of assistance above the

reverse:x Reverse the elements of the sequencehardware level.

FUNTIOAL ROR.A4IN ~distr:'a.x> Create a sequence of pairs formed by
This section will serve as a .'-fresher on FP pairing each element of s with x,

systems and as a reference fo,- later dliscussion of <ai,x>.
VP systems. Oniy those aspects of FlP systems wl
relevant to computer desigii will be reviewed. A distl:<x,s>, Like distr, except the pairs wl

complete description of the FP system used here have x fox the first element,
can be found in Backus Ill. -XS>

An PP system is described by five things: a lengthtx Find the length of a sequence.
set of primitive functions, a set of functional .

i190



+:<xy> Add x and y. (-, x, and art, The insert form computes a single result ab-
similar.) sorbing each element of a sequence into a dyadic

and:<x,y> And the booleans x and y. (Or and operator. If the operation being inserted is

not functions are similar.) associative (i.e., if f:<A,(f:<5,C)) .f:<(f:<A,B>),
C> for all objects A,B and C) then this form can

trans:x Transpose x, where x io a sequence be highly parallel. An associative insert can
of sequences identical In length. "tree in" the sequence rather than proceeding

x to the left end of seq. serially through the sequence. Associative func-
apndl:(xseq> Append ltions would be recognized before program execution

apndr:<seq,x> Append x to the right end of seq. and two different insert forms would be used:

apply:<fx> Apply the function f to the object insert and insert-associative.

x . An interesting property of these forms is
that if a parallel construction form is implement-

A I is produced whenever a function Is ed, then parallel versions of the insert-associa-
applied to an improperly formed object, such as tive and apply-to-all forms can be expressed using

applying a splector to an atom or using a sequence parallel construction. Assuming that the function
in place of a number for an arithmetic operation. is being applied to the pair <function, object>
All functions are , preserving, returning I when (the result of (2o1,2] in an FFP system), then

applied to 1. (but see the discussion later of suitable definitions for the apply-to-all and
non I preserving functions). insert-associative functions are:

Functional forms are functions which use
other functions or objects as parameters. Forms def APPLYTOALL p null° y;

are used to create expressions involving functions APPLYTOALL.*1,tl.21,

The functional forms to be used are:

fog:x Compose f and S. Returns def INSERTASSOC eq.Jlength.Z,I141.2;

f:(gzx). INSERTASSOCeREDUCEPAIRS

(f",..".fn]x ConAt:oct a sequence whose Ith def REDUCEPAIRS =_lseq.lsngth,2,J]*id;
i1 [,apndl.[apply.[1,J1*P,22]J],

elemamt is fj:x. 29REDUCKPAIRS.[1,tl.tle2J]]

(p~f;s)ix it p:x to T return fix, other-wise if pf x is p then return The function name leq is used for a less-

wse i ithan-or-equal-to function. For the apply-to-
SIX, all function, if both the apply and APIXYTOALL

;:x Return y, a constant. arguments to the apndl function are evaluated in

/f:x Insert a binary function into parallel, then eventually each application will

a sequence. be running in parallel. In the case of INSERT-

Ss eASSOC, the function REDUCEFAIRS will apply the
/ft<xl> xl;/f:<x",."Xn function being inserted to successive pairs in the

Sf:<xl,/fc<x2 ,...,Xn>>. sequence, halving the length of the sequence.
This will be done in parallel, as with APPLYTOALL.

af:<xl,...,xn> Apply a function to all ele- The INSERTASSOC function iteratively calls
smets of a sequence. REDUCEPAIRS, which trees in the sequence one level.

(while p f):x While p:x a TI apply f to x until the final result (the top of the tree) is
reached.

The state D contains all functions defined by PARALLELISM IN COMPOSITION
the user. A function definition associates a
name (an atom) with a function. Definitions are Introducing parallelism into the composition
denoted by def nae 2 function. All function form is more difficult. The nature of composition
names must be either defined in D or known by would seem to prohibit any sort of parallelism
the system as primitive functions or forms. Since due to the inherent data dependency between the
D never changes during the execution of a program, functions being composed. If it is rerjuired that
the set of functions defined for a particular the data transferred between the funcn,ions is an

program is static. object in the usual sense, then parallelism is in

fact impossible. If, however, a function is able
to form partial results, then these results can be

THE INiHERENT PARALLELISM IN passed between the functions allowing some degree*
AN Yi SYSTEM of overlap. These partial results arise from the

ability to decompose (or factor) many functions. ,

The "P forms which directly imply paral- To express partial results incomplete objects'
lelism are: apvly-to-all (a), insert (M), and will be introduced. An incomplete object is an

construction ((...1). Apply-to-all creates a object containing portions which have yet to be
sequence by applying the same function to a var- determined, but which eventually will be filled

iety of objects, while construction creates a in. The PP system requires only one new "object"
sequence by applying a variety of functions to the to express these incomplete objects, the incomplete
same object. Within these forms function eval- atom w. w will serve as the fundamental unit of

ustions can proceed in parallel, due to the incompleteness, capable of assuming any value on

absence of side effects. completion. An w can be thought of as a place-

191

.................................- --



'I

holder, representing the result of an arbitrary 2. Reverse:<A,B, 1 ,DO.E• - <E,D,(reverse:
function which has not yet been finished. <1if), B,A> - *E,D,Q2,B,A>, where a new w2 has

Every W will be associated with a completion been created to hold the result of (reverse:
function. This completion function will eventual- <11>).

ly specify a value to be used in place of the w. 3. 3:<A,B,wI> - w•. Trans:<<wl,w 2 >,
Formally, any w should be identified by its con- < 3 ,u 4 > <
pletion function. A ore casual notation, in 4. 3:<w,,BC> Length:<Wlw2> - 2.
which w's with different completion functions
will be given different subscripts, will be used A rather subtle problem has arisen here. By
herein. Of course, there may be many references postponing the completion of a sequence, the l
to the result of a single completion function. preserving nature of the sequence constructor has

When w is used as a sequence in an append been lost. For example, if 1:<A,w > is evaluated
function, a new sort of incomplete object is to A, this result becomes incorrecl if W1 is
created. If apndl:<X,w > is evaluated, the completed by I and the sequence constructor is
result will be denoted Sy <XI Q>. ii is called preserving. Thus, it is natural for an FP system
the incomplete subsequence, and is used to indi- which uses incomplete objects to have a sequence
cate a section of a sequence, of arbitrary length, constructor which is not i preserving, prevent-
which has not yet been filled in. In this example, ing entire sequences from being later replaced by
wl1 and II have the same completion function, yet I.
the result of the completion function will be in- (To further allow parallelism, it would be
stalled within a sequence in the case of ill. For lossible to produce other functions which are not
example, if 11 (end w1) complete to <YZ>, the preserving. An example of such a function would
sequence will now be <X,YZ>, not <X,<Y,Z>>. be the and function. If and is defined so that
All W's will be found within a sequence. Any its result is F (false) if either elemtnt of the
time that an fl completes to a non-sequence, an pair it is applied tc is F, then and:<F,w > could
error (1) will result. An Q is not a separate be immediately evaluated to F.)
incomplete atom, but rather a different usage of Incomplete objects are closely related to
the basic incomplete atom w. Any Pi will be the suspensions produced in lazy evaluation [3].
dependent on some wi for its completion function. One difference is that incomplete objects imply
If W aspears within a sequence, it represents a concurrent function evaluation while suspensions
particular element of the sequence whose value is imply delayed function evaluation. Another is
as yet unknown, but if 0 appears in a sequence, it that coiceptually, incomplete objects &tay within
represents a portion of the cequence itself which the realm of objects (with only w added), while
is unknown. Any sequence containing Ql will be suspensions are used transparently. The realtermed an incomplete sequence; any object contain- advantage in using incomplete objects rather than

ing either w or Q will be termed an incomplete suspensions lies in the clean notatiun of incom-
object. plate objects and the ability co stay within the

Conceptually, an incomplete object is a set set of objects,
of objects. This set contains all possible values
the incomplete object may assume on completion. THE DESIGN OF AN FP COMPUTER
For example, w would be the set of all objects,
<Qi> would be the set of all sequences (including The design goals of the FP computer will be:
•), <41,w 2 > would be the set of all sequences 1. The computer will use an FP system as a
of length 2, and so on. A partial ordering of 2. Thinor language.
Incomplete objects can be constructed using the 2. The memory will be used on y fur FP
containment relation between their associated objects.

sets. An incomplete object, X, is more complete 3. The computer will be data-driven;
than another incomplete object, Y, if the set of parallelism will result naturally from data
objects associated with X is a proper subset of dependencies.
the set associated with Y. A complete object is 4. The computer will be modular, allowing
one whose set contains only one member, the object great eApansion without any change in the basic
itself, architecture.

When a function is applied to an incomplete Goal 1 provides a computer which will enforce
object, four different situations may arise: a disciplined use of the memory at the hardware

1. The object is not sufficiently complete level, preventing destructive updating and side
for the function to have any effect. In this effects. Goal 2 allows the memory to be homogen-
case, the function must be deferred until the eous. Since only objects are being stored, the
object becomes mre complete, memory is not forced into toe conventional work2. The function can be applied to portions and address structure. Goal 3 attempts to produce
of the object, but must defer applying itself to an ideal data flow computer by putting the burden
other sections of the object. of parallelism onto the hardward. G;oal 4 states

3. The function can be applied to the object, that the design should be expandahle, allowing
but the result is still incomplete. great Increases in computing power without chang-

4. The function can be applied to the object ing the underlying architecture.
and the result is a complete object. Incomplete objects will be used to produce the
A few illustrations of thise cases are: necessary parallelism. Two basic prioriples will

1. +:<3,w1> cannot be evaluated (at this govern the use of incomplete objects. First, all
instant), functions will be completion functions. This

associates each function with a place (an

192



incomplete atom) for its result. The second prin- MULTIPLE PROCESSOR TYPES

ciple is that incomplete atoms -till be generated The architecture can be expanded to accommo-
by the function apply. This includes the use of date different types of processors. The only

apply in most functional form. For example, addition needed is a READY queue for each processor
fag:x would be treated as f:(g:z), so that two type. When a queue element is ready for execution,

incomplete atoms would be used, one for the result it in placed into the READY queue corresponding
uf g:x end the other for the result of f:(g:x). to the function within the queue element. This

The FP computer will have Lhree basic allows a system to use a smaller number of procae-
components: A set of processors, a memory, and a sore for functions which are costly to Implemut
READY queue. The processors apply functions to or infrequently used. Also, a high speed arith-
objects, the memory holds these objects, and the metic processor would not be tied up executing non-
READY queue feeds functions to the processors. arithmetic functions.

The READY queue functions as a "shared pro- One very useful processor type would be a
gram counter". All functions evaluated by the processor which only checks for executable func-
processors must flow through the READY queue. tions (functions whose object is sufficiently
Whenever a function is ready to be executed, it is complete to allow execution of the function). This
placed into the READY queque. A queque element very simple processor would remove this burden
(instruction) has four components. The format of from processors with computing abilities.
a queue element is: 0O1-ARISON WITH OTHER DATA FLOW OOIUTZKS

<function, object, w ,D>
reutA broad definition of a data flow processor

The function and object describe an application (6] is one in which the execution sequence is con-
to be performed. wresult indicates the atom btig trolled by data dependencies. Many data flow

completed, and D is the state of the prograt. D computers require that a model for the partial
will be uonstant for all queue elements of at sin- ordering of the execution sequence be constructed

gle progr°l. In a multiple program environment, before execution, at a time when data dependencies

differeu' 3grams could be distinguinhed by their cannot be completely located. The VP computer,
different D a. however, needs no such model since data dependen-

ThQ memory contains only. objecti. Objects cies are manifested Curing program execution.
include queue elements, D's, functionl, and incom- Furthermore, the FP computer allows specialized
pleate atoms. The memory muet be managed, allowing processors and program control is not directed from

new objects to be created and removing objects a single master processor.
which h-.ve become garbage. When an incomplete The use of a VP system for a machine language
atom is identified as garbage, its completion induces single assignment behavior [5], which is
function must be terminated. Since it is impor- also found in pure LISP (3,4). FP systems provide
tent to remove these garbage functions as soon as a more practical machine language than LISP 13,4]
possible, garbage should be identified immediately since FP systems do not use a changing environment
when produced. or variable names. Selectors are much more suit-

All incomplete atoms will have an attached able for accessing values at the machine level than
queue, similar to the READY queue. These queues names.
will contain functioas which are blocked by an The placing of a queue element into the READY
.*nput which is not sufficiently complete. When- queue corresponds to firing (2] but the F? computer
"ever a function cannot evaluate, it attaches it- does not know if the queue element is actually
self to an incomplete atom blocking it. When an ready for execution. An FP operation may "fire"
incomplete atom is completed (actually, it still several times, each time waiting for a more co=-
can be replaced by an incomplete object, but it plete input, until the operation is finally per-
will always become more complete), its queue is formed.
attlached to the READY queue. The overhead involved with parallelism lies

The proce3sors take queue elements from thp in encountering functions which are found to be
READY queue and execute them. Figure 1 gives a unexecutable due to an insufficiently complete
simplified flowchart of processor operation. Three object. This overhead is usually limited for a
distinct paths exist through this flowchart: one particular function, since only a limited number
for garbage functions, one for functions blocked of stages of completion are possible for objects.

by incomplete objects, and one for functions which For example, the + function normally will see a
are executed. Processors have three sorts of maximum of only 3 stages of completion of its
functions to deal with: built in functions, de- argument, such as <h 1 ,1 2>,<W 1,n 2>,<nln 2 >.
fined functions, and forms. Built in functions
have some standard representation recognized by IMPLEMENTATION OF THE FP COMPUTER
thee processors; defined functions are fetched
from ths state. D; and forms are handled through Thin section outlines those features of the FP
the metacomposition rule. All inter-processor cumputer which relate to parallel processing.
communication is handled by the READY queue and The Functional Fores
memory. No splecial inter-processor consunlcaLion Como o: Composition uses an incomplete

iardware is reqouired. Also, no processor has atom to link the functions being composed. When
imy stat., saved between instructions. <fog,x,wre tD> is executed, a new incomplete

atom, '•temp' is created. The function g is started

193

.4I



by placing <g,x,w ,D> in the READY queue. The The only other aspect of primitive functions
tamp related to parallelism 4s the ability of some

function f is placed in the queue attached to functions to decompose themselves when applied to
tempin the form of the quee element fWtemp' incomplete sequences (see "reverse"),
es ,D>. As soon as g produces its fitrst par- 1rye or Sychroiizatian

result' _~ykýo
tial result, f will attempt to proceed. Only two operations require synchronization

C-,nstruction: Construction forms a sequence of the processors, First, requests for new
of inccmplete atoms. When <Efl, .." fn1,x. objects must be synchronized. This can be ac-

complished by various techniques, depending on theSresult',Dý- is executed, a result ,<wl, ... ,w n>' exact memory organization. The simplest would use
is immediately formed. Also, for each f the a conventional free list protected from multiple
queue element <fix,wi,D> is added to tie accesses with a semaphore. An "intelligent memory'
READY queue. might be able to handle multiple memory requests

Apply-to-all: The only difference between internally.construction and apply-to-all is that apply-t:- The other need for synchronization lies in

all may be applied to an incomplete sequence. If the only object which can be updated: the incom-
<af <x I' ' n ",n>,Wresult',D> is executed. plete atom. The time between finding an incom-

the r t whe plete atom and attaching an element to its queue
the result will be <w1l' " . ' ''' wn>. must be protected from completion of the atom.
queue element <ctf,<W •>,wi-,,V will be attached to This could be accomplished with a semaphore onl
the queueall other functions each incomplete atom. Since these queues are

will be attached to the READY queue as with the not as active as the READY queue and the time
construction form. duration between finding an incomplete ,atom and

Insert-associative: When applied to a com- using its queue is short, little time would be
plete sequence, insert-associative can he imple- lost on processor synchronization.
mented in terms of other forms. When applied to The READY Queue
an incomplete sequence, this form is similar to The READY queue must be an extremely fast
apply-to-all. queue, since all functions must pass through it.

Condition: There are two ways to implement As long as all instructions put into the READY
the conditional form, (p-f;g) : parallel and non- queue are eventually given to processors, it is
parallel. Both would have the same semantics, but not important to force specific queue behavior on
a parallel conditional would evaluate p, f, and the UEADY queue. Also, it is not necessary to
g in parallel. This is not always desirable, have multiple READY queues for different proces-
since considerable processing might be wasted sora if processors pull only the type of func-
evaluating the alternative which will not be cho- tions they need from a single READY queue, although
sen. This is a real problem in loops closed by a this could involve unnecessary waiting for the
conditional, since a parallel condition form would proper function type.
look ahead beyond the end of the loop. other
timew, however, parallel evaluation of p, f, and A PROGRAMMING EXAMPLE
g will speed up execution.

F thllspeed nonpa leloon n, eA characteristic example of the parallelism
For the non-parallel condition, evaluation introduced by the PP computer is found in a

<(p-ýf;g),x,tresultD> will create a new functional sorting program. A merge-so,-t program written in
form, choose. <(choose f g x), w teptwresult,')> an I'l system might be:

will be placed on the queue of wt and <p,x,t def SORT (/MERGE)o(a[id])
t emp

temp'D> will be placed on the READY queue. Once def MERGE nullo1÷2;nullŽ?l;

p returns a value, the choose form will he acti- GREATERo[1lJ,Ioy)-apndlo[bo:!',MERGE* i
vated, which will select either f:x or g:x as a [1,tl*f.]J;
result resultapndl-ll-1.14ERGE'-JtI-1 ::1!

The parallel conditional can be expressed in
terms of construction and a new primitive function, Slince MERGE is associative, /MERGV, can be
cond. A parallel (p-f;g) would be expressed hy implementod with an Insert-associative form. One
cond-[p,f,g], where cond beheves like (142,3). kind of parallelism will result from the use of
The parallelism results fr'n the parallel function the insert-assuciative: the MERGE function will
evaluation used by construction. When p returns be arranged in a tree and all merges in a level of
a value, the unused function, f or g, will become the tree will execute in parallel. Another kind
garbage and terminate, of parallelism arises when the MERGE operations

Primitive Functions: Different primitive produce partial results through the use of in-
functions require various degrees of completeness complete sequences. Each time a MERGE produces
before being executed. A few examples are: an element of its result, this element is imedi-

+ requires a complete object. ately fed into the next higher MERGE, A d4tgram
iength requires a complete sequence. of the data flow is given in Figure 2.

3 requires a sequence whose firut 3 elements This parallelism was achieved ,omplutely by -A
are not Wa. the computer; ro explicit parallelism was embedded

iH permits any incomplete object. in the program. This example should serve as an
indication of the amount of parallelison which

194

V



would naturally occur when a program is. run on an SIBLIOCRAPHY
l'? computer. I. Backus, J.W.. "Can Programming be Liberated

COWCLSIONSfrom the von Neuman Style?, A Functional Style
and Its Algebra of Programs." Communications

Functional programing systems provide a of the ACH vol. 21, no. 6, August 1976, pp.
haxi% for a computer architecture which introduvem 613-641.
parallelium at the most basic level: the machine
language. Through the us* of incomplete objects, 2. Davis, A.L., "The Architecture and System
a completely data-driven computer has boen do- Method of DD~l: A Recursively Structured
signed. Parallelism has been achieved without Data Driven Machine," Prcedins ofthe 5th
complex synchronization mechanisms or complex Annual Symposium on Computer Architecture.
inter-processor communication networks. Further- April 1978, pp. 210-215.
more, the computer could accommodate very large
numbers of processors for the introduction of a 3. Friedman, D.P., and D.S. Wise, "Aspects of
very high degree of parallelism. Applicative Progr amotIng for Parallel Proces-

This computer has the additional benefit of a sing," IEEE Transactionsaon Comput rat
structured machine language with simple and vol. C-27, no. 4, April 1975, pp. 219-296.
clean semantics. No instructions are provided
f or the introduction of parallelism; this comes 4. Misunas. D.P., "Report on the Second Workshop
automatically. Thus, all programs run on this on Data Flow Computer and Program Organize-
comput.,a take advantage of available parallelism tion," Report *MITILCS/Th-136. Massachusetts
without the aid of special parallel languages or Institute of Technology, Laboratory for
compilers. Parallelism does not change the semmn- Computer Science, June 1979, pp. 11-12. 21.
tics of a program, allowing the programs to be
analyzed without regard to parallel behavior. 5. Plas, A. at al., "LAU System Architecture, A

top Parallel Data Driven Processor Based on Single
Assignment," Proceedings of the 1976 Inter-

"t af 4,104ntfromthenational Conference on Parallel Processina,
RIAOV4uowAugust 1976, pp. 293-302.

6. Rumbaug, 3.1., "A Data Flow Multiprocessor,"
It Wc~u1t torbosi? *~~dq~ssn Proceedings of the 1975 Sagmoro Computer

Conference on Parallel Processing, August
1975, pp. 220-223.

Istk objet s? Pfascaotlyt

comlet fo t eflct elyo

fatIMI

Ild.e W

lo queu IAttached44

to Wro% t to1to

NEW ..-. .

film I



."

On Architectures for Document Preparation

Martin Freeman &
Leon S. Levy

Bell Laboratories
Whippany, New Jersey

ABSTRACT - We claim that the principal 2. MOTIVATION
limitation in the performance of current
document preparation programs lies in the Computer tachnology is generally described
inability of the underlying architecture as having progressed through several
to efficiently execute the most frequently stages of evolution, usually referred to
performed operation -- the movement of as generations:
data and its reorganization in the compu-
tation of line images of the output. We 4 First generation (1950-1957) - vacuum
present the design of a unit intended to tubes and miscellaneous main memories
expedite this data rearrangement, in the
context of a macro-architecture, and show 6 Second generation (1958-1964) -

how this unit can be generalized to transistors and random access mag-
variety of other processing tasks. netic core memories

4 Third generation (1965-1975) - small
scale integrated circuits and random
access magnetic core or solid state
memories

6 Fourth generation (1975-present)
1. INTRODUCTION medium scale integration and solid

state random access memories
Architectures are described wi•ich utilize
VLSI technology to direct.y address the
problemu of document formatit.-q to which During the same period of time there has
computers are being applied vith increas- been a steady shift from primarily arith-
ing frequency in the rapidly evolving metic and control computation to the mix-
field of office automation. ture of arithmetic and symbolic computa-

tion typified by document prep3ration and
Both a macro-architecture and a micro- the so-called "office automation.'
architecture Are described. The macro
architecture presents a framework within The changes in technology have been
which to develop all of the functions reflected in the architecture of the pro-
associated with document processing. The ceasing units. The introduction of a bus
micro-architecture is a specification of structure was eventuated by the availabil-
the design of a particular aspect of docu- ity of large numbers of registers in the
ment processing, processing unit with the transition to

third generation systems. The introduction t
Our particular micro-architecture of cache memories came with the availabil-
addresses the area of text formatting. ity of solid-state memories. However, the
The major component of this architecture architecture of computers has not dramaet-1-
is the Fill Line Unit (FLU) which performs cally been eif'iecto Y e-a•-es in the
a functToniiW-DPTi--analogous to that per- typlT' plcation mix.
formed by the ALU's in conventional j
machines. It provides a first example ef in [71 Mukhopadhyay surveys architectural
the realization in hardware of the many considerations for non-numeric processing
!unctions associated with text processing. and points out that, "With the prolifera-

tion of computers in all spheres of human
civilization, most of what will be
expected of future computers will be non-
numerical...Existing computer architecture

196

iA



does not provide efficient non-numeric capability of machines used heavily for
computation.* this type of non-numeric computation. The

augmentation of architectures by means of
Muclh of the research in non-numeric pro- such add-on units has many precedents in
ceasing of late has centered on searching, the evolving architecture of computers:
sorting and pattern matching hardware for extended arithmetic capability, I/O chan-
database machines(8]. Architectures for nels, cache, memory mapping, and direct
dodument preparation, and in particular memory access are such enhancements which
text formatting systems, need not use spe- have been introduced as the technology
cial hardware for searching, sorting or became appropriate.
pattern matching.

We believe that the major improvement in 3. MACRO-ARCHITECTURE
computer architecture required by document
preparation systems is the rapid and effi- We now describe a macro-architecture (see
cient rearrangement of data in memory, Figure 1) as a framework for explicating
with relatively minimal associated pro- the concept of the FLU. In this architec-
ceasing. The proof of such an assertion is ture user text is kept in a Line Memory
likely to be quite difficult, but the data (LM), a buffer's worth of lines for each
in Table I show the effect of 'line fil- active user. The state of a formatting
ling' only on an admittedly simple docu- process is kept at any time in a register
ment processor--- roff (l1l. bank indexed by user. Among the registers

are the file descriptor register (FDR),
the line address register (LAR) which
points to the next. line in a user's

I of processing time processing time buffer, a memory data register (MDR) which
lines w. line filling w/o line filling contains a line fetched from line memory

(cpu seconds) (cpu seconds) or gotten from an I/O device, and the line
count register (LCR) which contains the
n .u ntmbe r of lines left to process in a
user's buffer.

16l3 2.3 1.5
Typically, a user's process index is

544 9.4 r:.3 placed in the Bank Select Register causing
the user's process registers to be

876 11.4 1;.5 selected. The LAR is used to address the
next line in the Lilne Memory to be pro-
cessed. This line is accessed and con-

Tabl3 1. Comparison of Process~ing Time catenated with the present contents of the
W and W/O 'Line Filling' MDR, the FLU unit is activated and the

result placed back in the MDR. If all the
lines of a given user's buffer area have
been processed, then a new buffer's worth
is brought into the LM.

In Table 1, the same documents were run
through the document processor twice, once
with 'line filling' in which case lines 4. DESIGN AND IMPLEMENTATION OF THE
are right and left justified, and once MACRO-ANIITECTUR9
without 'line filling' in which case the
text is printed without rearrangement. In So far we have specified a framework
line filling, the text is arranged so within which a FLU could be utilized. Now
that, on each line, the maximum number ot we specify the details associated with a
words are included and if these do not text formatting application.
quite fill the line, then the words are
spaced out inserting added blanks between The registers in the register bank have
words. Although this incremental process- only thus far been partially specified.
ing requires relatively little compute- The text formatter registers in the regis-
tion, it is very intensive in data move- ter bank consist of the left margin regis-
ment. ter (LMR) which contains the position of

the left margin on a line of output text,
In this paper we describe a document the right margin register (RMR) which con-
preparation component, the Fill Line Unit tains the position of the right margin on
(FLU), which can be used to enhance the a line of output text, the page number

197

I. .:, - • , . -•.• ,



register (PNR) which contains the number the selection of instruction formats can
of the current page, the line space regis- be found in [4,51.
ter (LSR) which contains the number of
spacen between output lines, the page Let us consider an instantiation of this
length register (PLR) which contains the format for our instruction set,
number of lines in an output page, the
header register (HR) which contains the Here we consider a flyte to be eight bits
header line to be placed on each output long and character data to be in ASCII
page, the footer register (PR) which con- representation. Since internal ASCII
tains the footer line to be placed on each involves only 7 bits, we can have a type
output page, the piece register (PR) which field of I bit and still fit a data char-
contains the piece of the MDR that is left acter in. There will be two command
after the leftmost portion of the MDR is formats---no operand and one operand, dis-
output, the header bit (H) which is set if tinguished by the setting of the second
a header is to be output, the footer bit bit. The no operand format will take up
(F) which is set if a footer is to be out- the remaining 6 bits of the flyte, the one
put, and the fill bit (FL) which is set if operand format will also latch on to the
the line filling operation associated with next 8 bit flyte (which must have left bit
the MDR is to be activated, set) for its argument (range 0-127).

The text formatter accepts text to be for- no operand:
matted along with commands describing the
output format of the text. Ideally, we -------------------------
envision a command language that resembles I I 1 0 I command I
the language used to edit manuscripts. To ---------------------------
be brief, we will confine our command
language to be rather conventional (see one operand:
Table 2). It is essentially identical to
that proposed in [31. -------------------. ...............

I I I I I command I I I I command I
Both commands and data are resident in ------------------- .
line memory. Lines are organized in terms
of flvten (short for flagged bytes) ---
there are N flytes to a line. The format
of a flyte is 5. THE FILL LINE UNIT% THE MICRO-

ARCHITECTURE

S.......................... The unit which we have chosen to call the
I type I value I Fill Line Unit, (FLU), plays a role in
--------------------------. do-ument pre-aration analogous to that

played by the arithmetic logic unit,
(ALU), in scientific computation. Like

In our case there are two types of ALU's, FLU's have a decomposition theory
flytes---data and commands. For the data which allows descriptions as serial,
flyte the value is the internal data char- series-parallel, or parallel realizations
acter representation. For command flytes with the appropriate equipment/speed
the value is an instruction to be per- tradeoffs and function of two operands and
formed, the total format of which is a carry. In FLU's, the corresponding

situation is seen in Figure 2, which is a
simplification of the FLU.

I type I fmt I op I opnd 1 I...I opnd1 n I Here I is a register which stores I
-----------------------------------------. flytes, where I is chosen large enough to

generate a complete line image of charac-
ters. The data in I at cycle n are used to
generate the output line L, and any extra .

Here the command may be comprised of flytes are then stored in 0. Thus the
several flytes. The fmt , format field, functional dependencies are:
describes the compositio-•of the rest of
the instruction. For instance, it might Ln a g(rn)
specify the number of operands. The oo On w h(in)
field provides the command which is to be
performed. A comprehensive treatment on Further the new value of I is determined

198

Stit



by the values of 0 and MDR! control information passed to adjacent
units is modified, and Ii would be

In - f(MDRn, On-1) deleted. It might then be necessary for
units to the richt of Ii to cause a left

(The analogy between an ALU and a FLU can shift of their contents to L.
now be seen more clearly since 0 is like a
carry and L is like a sum.) The two units We do not give a complete description of
or combinational logic shown in Figure 2, the S2 but describe only the logic needed
Sl and S2 are then the primary objects of to generate a filled line, omittit'
interest in the synthesis of the FLU. logic needed for the other commands and

functions. Further, we shall describe the
The above discussion has ignored signals processing as done in a single clock
which originate in 52 and set global state cycle. Assuming a maximum line length
information, and signals feeding the glo- between 128 and 255, the following bus
bal state cntormation into the FLU. lines are required (of course, using more

clock cycles allows fewer bus lines since
The complexity of the FLU is thus seen, in lines can be shared among functions):

Figure 2, to depend on the complexity of
the units Si and S2, the remaining units Function I of bits Notation
being conventional registers. The role of
the S1 unit is to shift inputs from MDR to right margin 8 RMaI-8)
the right by the length of the data in the right end 8 REEl-81
0 unit, with the non-empty data in 0 being of text
transferred directly into the leftmost word count 6 CT(l-6)
stages of I. S1 performs a uniform shift fill status I F
of all the elements of MDR; symbolically, fill shift 5 Fa(i-5)

fill parameter 2 FP[I-21
MDRn-l,k -- > In,k+d rightmost 1 S

space seek
where Rx,y is the contents of stage y of a actual shift 5 SH[1-51
given register R at time x, and d is the
amount of shift required. If the size of
the MDR is s flytes, and each flyte con-
sists of k bits, then the complexity of S1 Starting at the left, the word count is
will be proportional to k*s*log(dmax), sot to zero and passed to the right, being
where dmax is the maximum possible shift incremented at each space following a
required. in Figure 3, we show a realiza- non-space. The right margin position, r,
tion of an 311 unit for dmax -3, k - 1, is encoded on RM. At position r this
and s - 3. information is decoded and passed to the

left on S until the first space immedi-
I6 Figure 3, the binary encoded shift con- ately to the right of a non-space, at
trol on the left is via a register g which position s, and position s is then encoded
requires log(dmax) bits of storage to con- on RE. The difference between RN and RE
trol the 3hift operation of Sl, and for is then placed on FS and the value of FS
the pth shift control bit, qp , stage i is divided by CT is placed on PP.
shifted rilht qp * pp places; i.e. no
right shift if qp a 0, and a right shift FSi is the incremental amount of shift
of pp if qp - 1. required at stages following I to right

justify the line, and SHi is the actual
The S2 is considerably more complicated shift of stage i. S5i and FSi are com-
since it performs l€coding of the flytes puted from SHi-i and PSi-I with 9H1 a 6.
to interpret the embedded control informs- If Ii is not blank SHI - SHi-i and FSi =
tion and non-uniform shifts. We can ima- FSi-l. If Ii is blank and li-i is not
gine the structure of the S2, as a uniform blank then if Psi-i )a VP then PSi = FSi-I
caucade of stages as shown in Figure 4. - FP. (Note that PSi + SHi w FSI; the
Fiqur. 4 is a conceptual decomposition of ,lt.usA nhift at stage i and the added
the 62 into a linear cascaded array o f nhift. required is a constant.)
identical flyte stages. If II containsl
data, the control unit of stage I will Current component densities are adequate
pass the control signals through and gen- to contain a fully parallel FLU on a sin-
crate a shift of the appropriate amount. gle chip for a maximum line size of 138
If Ii contains a control flyte, and is characters[6].
therefore not to be shifted to 0, then the

.9

. ... • .,. • 4 . L.., • • , f• l.•.• . ~ ., ,,. , '* *.• .•. ,•. '. •.. ,• ' " *., .** - i• *. *', -, .• .,• *, . • .~ -*-



6. EXTENSIONS TO OTHER TP FUNCTIONS: 6.2 HYPHENATION
ENHANCING TEl MI-CRO-ARCHITECTURE

Most hyphenation schemes depend on some
The FLU described in the previous section simplified algorithm to approximate
has shown how to implement many of the correct hyphenation. We shall assume that
classical functions as described in (3]. we have available a small hyphenation box,
Other text processors may choose to add H, whose function is as follows: Given a
functions to these to produce a Cadillac sequence of n letters representing the
version text processor. While, for reasons tail of a word (possibly the whole word),
of style, we prefer the simpler text pro- and a parameter q, H will determine the
cesors - especially in an expository place closest to and less than q where a
treatment - it is 'worth considering hyphen can be placed. While we have not
briefly how the architecture described is studied hyphenation algorithms in detail,
adaptable to some of these deluxe we do not think that the design of such a
features. The two which we shall describe unit is axtremely difficult.
are text macros and hyphenation.

Now the FLU will gate the' word to be
6.1 TEXT MACROS hyphenated to H with parameter q indicat-

ing where the hyphenation is needed and
A text macro is a sequence of flytes which will use the returned signals to control
replace a single flyte in the source text shifting and line filling,
prior to execution. We shall assume, for
simplicity, that the replacement text is
fully expanded although, in principle, it 7. EXTENSION TO THE HOST ARCHITECTURE:
need not be. Let m be the macro variable ENHANCING ffE-NACR---RCHITFCTURE"
flyte invoking the macro and assume that m
occurs in a source line x m y. Assume In Section 3 we provided a strictly
further that M is the expansion of m. Then vanilla architecture as a vehicle for
after macro substitution the source text presenting the FLU. We believe that such
is x M y, where M is a sequence of flytes. an architecture can be generalized to one
The transformation from x m y to x M y of a document preparation machine. Per-
does not affect x and involves shifting y tinent ideas to this end will now be
to the right by length(M) - length(m). presented, but in the context of a text
Then the substitution text, 14, must be processing environment.
placed in the resultant gap. Now the FLU
architeoture is designed to facilitate The architecture of a computer system
exactly this kind of data movement, should be responsive to the needs of the

user. In a text-formatting environment.,
Within the context of the FLU, the macro there is a need for entering information
definitions could be stored in an associa- from interactive terminals and outputing
tive RON. Upon invocation of the macro the formatted information from printers or
replacement text would be retrieved from terminals.
the ROM and shifted to the appropriate
position (using the Sl unit). Users input requests and the system

translates them into actions that it can
Conditional expansion of macros based upon execute. These actions can--b-e-realized by
macro variable flytes and external vari- functional units, micro-coded subroutines,
able* (e.g. register contents, transforms- etc. For instance, the request
tions on register contents) is also possi- format(file descriptor) might be
ble. A condition PLA having inputs of translated by the System into actions
macro variable flytes and external varn- which include: transform line)
ablse can generate an output c depending get(buffer) , outputlne. Here
upon which conditions are met. The associ- transformline) would get the next line
ative ROM holding the macro definitions from a main memory buffer and format it
would be accessed by the key (m,c) where in for printing, output(line) would give the
is the ,macro variable flyte. The input line to a suitable output device, and
(m,c) would act as a composite key for the tbfoer) would replenish the lkne
macro definition, buffer.

For a given request, its associated
actions are related by rules for their
application. These rules can be
represented by a state diagram where the

20

S~200



states represent the actions and the tren- next entry from the transform action
sitions represent theTr o-utcomes (see Fig- queue, bank Select is a register which
ure 5). indexes the appropriate user's register

set, the operation 'o' concatenates the
in the high-level architecture for the contents of the next line In line memory
text-formatting machine there oxists a to the MDt, and TRANtNDR) provides the
supervisory unit which contains the state combinational logic function to do the
diagrams for all requests and that line filling and manipulating operations.
sequences through these actions as the
requests progress.

8. GCNIRALtZATIONSt OTHER APPLICATIONS OF
Figure 6(a) gives a conceptual view of the THE ARCHITECTURE
Supervisor, Figure 6(b) gives a suitable
refinement, and Figure 6(c) gives the axe- There are several essential features in
cution cycle for the refinement. Note the design of the FLU which suggest qen-
that terminals put requests on a queue eralisations to functions other than docu-
which is eventually processed by the sent preparation. First, the FLU operates
Supervisor. The outcomes of each action on a unit of data which is much larger!execution are feedback to the Supervisor then the elemental storog e component typi-

for further processing according to the cally processed at the Instruction level
state diagram associated with the execut- of the computer. This can be considered
ing request, the outer loo of the FLU control. Second,

within the untt of AMte being processed by
This supervisory model forms the basis for the FLU there is a functional pattern sug-
a multiuser Interactive system. (More gesting iterative decompositions -- which
about this approach can be found in can be patallel or series-parallel --
(1,2)). Here the actions associated with which are amenable to replication at the
the executing request of one user can be component level. Third, within the data
overlapped with the actions associated unit processed by the FLU there is a com-
with the executing requests of the other bination of data and control elements
users. Thus we have a pipeline organisa- similar to a tagged architecture.
tion where we are always executing dif-
ferent parts of separate requestsTn The general action of the FLU may thus be
parallel, understood at the outer level of control

as:
Expanding on this structure yields a
mechine architecture as pictured in Figure while (FOREVER) I
7. Users enter requests to create, edit If (DATA. UNIT NOT COMPLETE)
and process text to be formatted. Output FETCH MORE INPUTI
can appear on either the initiating termi- else
nal or on a line printer. PROCESS THE DATA UNITI

The Supervisor controls the sequence of
action executions while the functional which in the specific document preparation
units realize the actions In terms of component case becomes:
micro-orders, register transfers, etc. As
an example, let us specify in micro-orders while (FOREVER) i
the semantics of the transform action: if (OUTPUT LINE NOT COMPLETE)

FETCH ANOTHER INPUT LINECtransform(line) - else
EoNERATE AN OUTPUT LINED

Bank Select <- get queue();
If ( [LCRI w 9)

outoome(CEXHAUSTED);
else C In either case the input is a sequence of

NDR <- MDR o LMELAR)I flytes in which the data and control are
MDR (- TRAN(MDR); intermixed, and the output Is a sequence
LAR <- LAR + l1 of data flytes. The relationship between
LCR <- LCR - 1; the size of the Input quantum, the size of
outcome(OKAY); the output quantum, and the Intermediate

storage within the FLU must be studied to
Here outcome(code) places a return code on obtain optimal performance.
the Request Queue, getqueue() gets the

201



The same processing loop is applicable to 7. Mukhopadhyay,A., wHardware Algorithms
a variety of programs in UNIX which have for Nonnumeric Computation," IEEE
essentially this overall control structure Transactions on Computers, June,
- such as awk (101, sed (9], and grep (9]. 1979o
(Awk and se-analyze-text line by line,
whTie r•_ earches lines to detect a pat- 8. Langdon,G.O.(editor), 'Special Issue
tern.) ,LU can be adapted to a variety on Database Machines,' IEEE Transac-
of programs by having the cascade control tions on Computers, June,-'97T7.
logic of the S2 unit under microprogram
control. 9. Kernighan,B.W., LeskM.E. ,

Ossanna,3.P., "Document Preparation,'
The Bell System Technical Journal,

9. CONCLUSION Ju-Ay--_ugusit,-""S.

Our architectures provide for a synthesis 10. Johnson,S.C. 6 LeskM.E., 'Language
of very large scale integrated circuit Development Tools," The Bell S
technologies and program structure con- Technical Journal, July-August, 1978.
uepts to respond to the needs of office
automation. 11. McIlroy,M.D., The Roff Text For-

matter, Computer Center Report M4CHC-
The macro-architecture and the micro- i-T7Bell Laboratories, October,
architecture which we have described com- 1972.
bine to provide a state-of-the-art unit
suited to an increasing number of applica-
tions.

16. REFERENCES

1. Freeman,M., Jacobs,W.w.,& Levy,L.S.,
"PERSEUS: An Operating System
Machine,' Proceedings of the Third
uSA-japan Confrerence Octob•r-, 10177

2. Freeman,M., iscobs,W.W.t& Levy,L.S.,
"A Model for the Construction of
Operating Systems," Proceedings of
the 1978 Johns Hopkins onference on
Informa-t'oWK-iences andWýjjj ms,
Aprtl 98

3. Kernighan,B.W. & Plauger,P.J.,
Software Tools, Addison-Wesley, 1976.

4. Hoevel,L.W. & Flynn,M.J., The Struc-
ture of Directly Executed--Languagee
A New TEO!Orl of Interpretive System

,--ni _Tgit'al Systems Laboratory
Technical Report 130, Stanford
University, March 1977.

5. Flynn,M.J. & Freeman,^., Some Notes
on a DEL Basis for Language--Orien--t
0e=-*-as.i yetms, Computer Systems
LaioratoryiTechnical Note 169, Stan-
ford University, November, 1979.

6. Noyc@,R.N., 'Hardware Prospects and
Limitations', in The Colputer Na2e
ads. nertouxos,M.L.-& MoseOSJ., MIT
Press, 1979.

202

•-.'I ,. "• .•:'



FILL Fillso Owtk line by peakira 5*7lu sf
pemih 60. 6001 toutNor*

W OILL steps the fill operation.

feroAN nk aIOI rl elyflledt ino teaveotily V

LIN Not me S sow Onsiq st"10. Esbelo tam.).
SNIP Drank 0011 skit to as tup of pel U.

1.111 St owets" P"* ImgLb teEU.

SKYSSOWO C Us S 00% 8ot 111110 10 e hoMOEmtbo.
SLIg a So~mderlimimga II@sdoetheUt following

$LIU$ "Mooa "darlist lo se egs o that the following
veto vWall sot be vOlimui.

tUMMY Comes *11 mtoselmot to~t I ls Isv tohe imminted

UIU "to We fight Melia to a.
Y39 Slee amot the ilowototlem to position U for

Ith seargem Simo.

Iho ~ ~ No Pet" following test go thibtea"er of "fogy

Pin-r 2. Conceptual Repreuentation or noU
VI*IA 2. Comeot got

LIVea UKSse

Figure 3.shift centrol unit A
(Interconnections Shown for
Least Significant Sit OnlY)

Flar 1. Moero.Aae~oilteotw

203



?-

shl t control

ii

couenre ofnit',it

Request Aupgrvia r sequence* or Actions

(a) cOnceptual view

setlst faiureor.....

okay Action
"P*.at a o, a to . Pimpr . for Request

'f'oEm t(•l~e 4el~eriptor) 5upq0r-YISor() 5
FUW Ito* DI-,R efetrn Reques supeues

•t (: o lemtent Los equeue;
?t ssex.et Is request)
Issue tirst action of requosti

loe Itf (ealwnt Is outcoea)
if (outee - PINISlM)

Iseue next action of request;

CO) becutlon Cycle

lgaure 6. The Sperlvsor

204

4•.U I .- i
• .•. ,• .• t• (• • .• , " .•. _. .•..,•.". •"'""''.. . -•" ' '*" :S.. . • • ,• •s,• ,,,;.,.,:,_• :l;,;j,,'•, :,•.• ' • '"," . "•, • , " *~ *'Y•• "• ,'' A•-" "• * ' -.



Re -u*vt/OutQOd

to te"Inkle

Famc. Fullo.
"'rAt unit

unt 7 1 to Printer@

Line 
391**t

Nsftry

nk

MDR

Fleurt 7. ArahiteCtUrf

205



A HIGH LEVEL ARCHITECTURE
FOR A

TEXT SCANNING PROCESSOR

F. J. BURKOWSYI

DEPARTMENT OF COMPUTER S'.CIENCE
UNmIVERSITY OF hAN'ITOBA

WINNIPEG, MANITOBA, CAHADA

ABSTRACT whut,n t i sat i sfies t het rt qu I 1 i• ýi 1t .1

tis;,r qoery which shouo d spe('i fy a iut I i-

This paper discusses the design of a ilent number of constraints oni th•, search
special purpose computer to be used in the to produce the required documents and lit--
scanning of text. The design of this tie else.
machine allows it to operate at a reason- The internal formatting of the text
ably high level when performing text may be rather inconvenient and limited to
Ssearches. This capability not only sim- standard punctuation although special
plifies the requirements of the transla- ,iaracters may be used to diI imi t inti
tion process used to derive machine code hence define various text groupings such
from user enquiries but also enhances the as sentences, paragraphs, sections, ducu-
speed of the device which is an essential ments etc.
feature if data is to be scanned while Various papers [1l,,3,4,S,6] have
being taken from a rotating storage med- discussed a variety of architectures for
iom. Of special interest is the design of text retrieval and in I?], Hollear dis-
the term-detection unit which incorporates cusses the problems associated with such
features which should be of use in a endeavours and presents i survey of some
direct-execution arhcitecture, specifi- of the architectures which are of current
cally those modules which are responsible interest. In Ag' Chu auggestts that.
for the recognition of keywords and tokens research should explore the hardware,
in a stream of source text. software trade-offs for particular appli-

cations involving high-level constructs.
This paper is essentially in attempt to

INTRODUCTION bring some of the high efficiency and high
performance aspects of direct-execution

In the past few years we have seen a architecture to the special purpose appli-
growing involvement with systems which cation of text scanning.
have as their main function the scanning
of extremely large data bases of textual
information containing perhaps billions of' SYSTEM FUNCTIONS
characters. Examples of such applications
include text retrieval systems for intel- In text retrieval systems, a three
ligence reports, treatises and corpora in step process is involved in the captute of
law libraries, medical bibliographic sec- textual information:
vices, and large repositories of newspaper 1) query translation
articles. 2) term detection

This literature searching is mainly 3) query resolution
characterized by the fact that the textual The user terminal (see fig. 1) peshes
information is not structured. Due to the to the system an Informution request which
way the information is collected and is expressed as a query. Examples of such
because of the nature of the information an inquisition are as follows:
it is usually difficult to provide ade-
quate cost-effective indexing systems. A Keyword Search
Consequently, if there is any subdivision Retrieve any document that contains
of the information content, it will he the character string A.
such that the information is grouped into (A,' C,D)#n Threshold 'OR'
categories which are very extensive in Retrieve any document that contains
scope. In such a situation, the liters- at least n of the different character
ture search is accomplished by scanning strings A,11,C,D. Ncte thLot if I=
the entire text. Information is extracted

206

[ ,

, .:;.!.-6•,•... .,,a r ..,.•!• -,.. , " •' • " 'I



• : •" • ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ký, MP "o. ," -- ... - -: : .. . " -. ,4 , - -| , -•: r-' ," ... ..... ,, .; 7-' :". .. • . . . .• . . ... ' . . . . .

this is an "OR" operation; hence the The term detection module receives
retrieved document contains une or text from a suitable cource and attempts
more of the strings A,B,C, or D. If n to match character substringa in this text
equals the number of entries in the with the character string terms stored in
Ilist, then this is an "AND" opera- the string memory contained within the
tion; the retrieved document must module.
contain all the indicated strings In When a successful match is detected,
any order, the match line is given an active signal

A AND NOT B Logical Expressions and the memory address o. the matching
Retrieves any document that contains string is passed down to the status FIFO
the character string A but not the so that, if necessary, the match can be
character string 3. "logged" for future use ly the QRP. The

<AB>fn Directed Proximity address is also passed to the Interrupt
Retrieve any document that contains Ceneration Unit which can be used to
the character string A fol!.owed by implement the "threshold-or" function men-
the character string N within n char- tioned earlier. The ICU also decides
acters, whether the addrens is to be logged in the

!A,BlI#n Undirected Proximity status FIFO.
Retrieves any document that contains The dellmiter detection unit issues
character strings A and R within n interrupts whenever a delimlter passes In
characters of each other. the text stream. It is mainly used to

Allis "Don't Care" Characters detect the beginning of succewsive docu-
Retrieves the document with the char- mento in the source text since many of the
acter st-ing A followed by three queries will be related to the contents of
arbitrary c~eracter• followed by the a document.

character string 3. Thus, an interrupt can be initiated
for any one of the following eventst

In the next step, the query transla- a) Detection of a delimiter
tor will create the necessary machine code b) Detection of a term
and will send it (along with the required c) Completion of a threshold-or
data items) to the query resolution moduie during pawsage of a documtnt.
which guides the behavior of the control In all cases, an interrupt line
unit in the tern detector and gathers res- causes the QRP to acknowleade an event
ponses from the term detector in order to which is important to the resolution of a
resolve queries, query. If it cannot immediately deal with

Since it is necessary to scan a vast such an event, all partinant information
amount of text, a high speed of execution is temporarily logged as status in the
in the term detector and query resolution FIFO buffer until the QRP can find the
modules is of utmost importance. In this time to accept it.
design, the scan operations are dasigned
to function at a reasonably high level.
During most of the time a search operation TERM DETECTION
will be carried out as the execution af
one instruction in the search control The input to the term detector is
unit. If the input text currently being taken from a source, for example, a disk
examined contains characters that produce drive, which can issue a serial stream of
a successful match with a given term, then characters. It is anticipated that the
the execution of various instructions may amount of processing time required between
be effected in order to accomplish some character shifts will be less than 400
aspect of the query resolution, but in nanoseconds. Since t~pical transfer rates
most circimestanc•a the microcode executed for a disk are about one byte per microse-
during a scan instruction will rapidly cond this system should be able to accept
skip over texr characters rhich do not data directly from a disk without the need
match with any of the given terms. As we for buffer memories or PIO's.
shall see, it is possible to design hard- The heart of the term detector con-
ware facilities which will accomplish some sista of a lengthy shift regiater which
of tie• query resolution without resorting shifts in -ource text one byte (a single
to the execution of code in the Query character) each time a shift operation is
Resilution Processor (QRP). issued by search control. The shift

The modular structure of the nucleus register is capable of holding 32 charac-
of th,' text scanning system is presented ters which are available from the "paral-
in fig. 2. Becaure of its functional lel-out" lines of the shift register.
capabilities, it includes the term detec- These 32 characters can be compared with
tion unit of fig. I and, in addition to any one of 256 strings (or terms) in a
this, it also involves some aspects of the "string memory" which has a data bus cap&-
query resolution block. ble of dealing with 32 characters in par-

allel. Comparisons are accomplished by a

207



I!

linear array of comparitors placed between Successive words in the htring memory
the string memory and the shift register. mlght be set up as:
It is anticipated that each character
position in the string isemory will involve tlI'1IHli GUYS AND DOLLS !1t
a 7 bit ASCII code and an additional bit 1 1 t1i THE NIGHT OF THE IGUANA
used to signify a "don't care" or uncondi- 1t1li A STREETCAR NAMED DESIRE
rional match character. tlli11i1l WHAT MAKES SAMMY RUN?

The string memory is a standard i!ll 1i! THE DIARY OF ANNE HRANK
static RAM since the use of associative i 1 h1|uh1 A LITTLE NIGHT M'USIC
memory for this function would be very IlI li I ! 11 SWEET CHARITY itr4
costly at the present time. However, it 1iii THE UNSINKABLE MOLLY NRONN
in obvious that some type of parallel tIItItIlit1t A CHORUS 1iN1 l1 t
asearch must be made and consequentlv, the DON'T %OTHER NE, 1 CAN'T (}i'F
Sparallel outputs from the middle four
character positions of the shift register whtil, tht' succCk laitV' w rc ( Is it tiit'
lend to an associative memory which also ,it L4ia'' tLve me ma ry wou ld he:
has a word depth of 256. We will refer to
thege four characters as the "partial GIJY.
match" charactirs, Prior to the scan GHT
operation, the system will ensure that the TCAR
term in word n of the string memory cor- MAK
responds to four partial match characters ARY
of word n in the associative memory (CAM) ITTI

(see fig. 3). As text streams through the SWEF
shift register, a comparison can be KARL
effected between the partial match outputs A CH
and all the words in the associative NE,
memory. If a match is detected, the
address of the matching word is derived The I in the above list represents a
from an encoder which is driven by the don't care or unronditional match charac-
match outputs of the associative memory. ter.
This address is fed to the string memory As can be seen in the above example
so that another comparison can be accom- each entry in the partial match columns
plished, this time involving the full within the associative memory is selected
string, This final full comparison will from the corresponding character positions
determine whether the contents of the of terms in the string memory. After a
shift register contain one of the terms parallel comparison of source with all
required by the user query. With a suit- words in the associative memory a success-
ably fast RAM for the string memory, both ful match will simply indicate a matching
comparisons can be easily accomplished in substring and the address of the parent
the time interval between successive term containing that substring. One more
shifts as characters stream off disk. comparison with the parent term in the

Our only constraint is that all words string RAM will serve to verify whether
in the associative memory be unique. the complete term is in the source text.
Since most terms in the string memory are It should be noted that in the inter-
not going to be r foll 32 characters in est of clarity we have omitted from fig. 3
length, we should be free to locate a term the additional circuitry required to per-
within its word so that it assumes A posi- form a write operation into the associa-l
tion such that the four characters in the tive memory. Prior to the searzh, the
partial match positions are different from control unit will define both string
all the rest. memory and associative memory by s'hifting

For example, suppose we are searching each query term into an appropriate posi-
the data base for the following ten terms: tion within the shift regi .ter whereupon a

"GUYS AND DOLLS " write operation may be executed.
THE NIGHT OF THE IGUANA
"A STREETCAR NAMED DESIRE

" WHAT MAKES SAMMY RUN? " THE INTERRUPT GENERATION UNIT
"THE DIARY OF )NNE FRANK

" A LITTLE NIGHT MUSIC " When the term detector places an
" SWEET CHARITY " active signal on the match line, it is an

THE UNSINKABLE MOLLY BROWN " indication to the rest of the system that
A CHORUS LINE " the value currently on the address bus is
"DON'T BOTHER ME, I CAN'T COPE " the address of a location in string memory

containing a required term. At this time,
such an address is accepted by the Inter-
rupt Generation Unit (ICU) and used to aid
the processing of a query resolution.

208



The activity to be initiated by this CONCLUSION
detection is defined by the contents of a
RAM which is established prior to the We have presented a design for a text
search. The address value from the term scanner which uses a term detection unit
de'tector is used to access a 6 bit word incorporating random access memory and
which is used to control the following two associative memory in a cost effective
activities: manner. An additional module, referred to

a) Interrupt enable as the interrupt generation unit, contri-
If this bit is set, an interrupt sig- butsa information which greatly enhances

nal is issued to the query resolution pro- the system implementation of high level
cessor (QRP). The QRP can then act on the queries such as the threshold-or.
presence of the indicated term by execut-
ing code associated with the resolution of
some particular query. REFERENCES

b) Hardware execution of the
"threshold-or" I. Hollear, L. A., "Rotating Memory Pro-

Another bit in the IhI RAM, the censors for the Matching of Complex
"threshold-or enable", is used to deter- Textual Patterns," The Fifth Annual
mine whether or not the detection of this Symposium on Computer Architecture,
term is to be accompanied by the decre- April 1978.
menttr.g of a counter which is responsible
for the maintenance of the term count 2. Hukhopadhyay, A., "Hardware Algorithms
associated with a particular threshold-or, for Non-numeric Computation," The
The remaininR four bits of the word select Fifth Annual Symposium on Computer
(via a decoder) one of sixteen counters. Architecture, April 1978.
Each counter is programmable and can be
loaded from the data bus coming from the 3. Roberts, D. C., (ed) "A Computer Sys-
QRP. Each counter is four bits long, and tem for Text Retrieval: Design Con-
hence the maximum threshold allowed in cept Development," Report RD-77-10011,
such a query is 16. Office of Research and Development,

Since a rarticular term in any docu- Central intelligence Agency, Washing-
ment must decrement the selected counter ton, D. C., 1977.
once and only once, a separate RAM main-
t-ains a "hit-list". At the start of a 4. Roberts, n. C., "A Specialized Compu-
document, all entries in this PAM are met ter Architecture for Text Retrieval,"
to zero. When a term is first detected Proc. Fourth Non-Numeric Workshop,
(match line high) the presence of a sero Syracuse, N. Y., Aug. 1978. pp. 51-59.
from the hit-list and a one from the
threshold-or enable bit will cause the 5. Stellhorn, W. H., "A Processor for
selected counter to decrtment. This cycle Direct Scanning of Text," presented at
is immediately followed by a cycle which the First Non-Numeric Workshop, Dal-
writes a I bit into the hit-list and hence las, Oct. 1974.
any future detection of the term within
the same document will. not produce an 6. Foster, M. J. and Kung, H. T.. "Design
active level on the decode enable line. of Special-Purpose VLSI Chips: Example

In actual practice, it may be neces- and Opinions," Technical Report CMU-
sary to duplicate the hit-list facility CS-79-147, Department of Computer Sci-
since it must be cleared between docu- ence, Carnegie-Mellon University.
ments. Consequently, it may be necessary
to clear one list while the other is being 7. Hollaar, L. A., "Text Retrieval Compu-
used. ters," Computer, Vol. 12, No. 3, 1979

Finally, it should be noted that a pp. 40-50.
pipeline effect can be incorporated into
the design. Once the match address is 8. Chu, Y., "Direct-Execution Computer
available, it can be latched for use by Architecture," Information Processing
the IGU and in this way the activity of 77, IFIP, North-Holland Publishing Co.
the IOU and the processing of the next (1977) pp. 7-12.
character in the term detection unit may
be overlapped.

209

i4



2
us

ii - I

I.

J

S

S..

I-

-El
SW '1

I.. Ia



?uareou

Qucry ~sotutoftcontrol~

43ta Contrrl

Cc~aSearch

0 Interrupt

Contol Psi Control

signal ~ (a t conatch)usst tu

match -

Data
T ~j Run ctier Pt al.

from N? sates nfew211o

qm Q~ry esoutio Prcessr t

KLA. TextýCOInVL ikul -t~o



A COBOL MACHINE DESIGN A140 -t'ALUATION

Masahiro YAMAMOTO, Ryoset MAKAZAKI
Minoru YOKOTA, Mamoru UM-J-URA

Nippon Electric Co., Ltd., Central Research Laboratories
4-1-1 Miyazaki, Takatau-ku Kawasaki 213, JAPAN

Abstract greatly specialized for its machine architecture,
are obtained.

A COBOL machine applicable to an attached pro- The CODL, machine can effectively execute
cessor has been developed. It in characterized by major COBOL processing. However, input-output op-
having intensive COBOL machine architecture erations, -cmmniication control, data base manage-
(COMBAT), highly-specialised hardware structure and meint, software-level virtual mimry management and
compact and efficient host processor interface, so on, are required for a host processor. There-

COMBAT architecture has many' facilities for fore, in a high-level language machine for an at-
efficient COBOL program executions many internal tached procensor, highly effective, compact and
data, highly ftnctional data deecriptors ahd in- flexible process switching mechanism between an
tensive instructions. COMBAT machine ii func- attached processor and a host processor is re-
tionally composed of three proceosor mdules (IPPM, quired. In order to accomplish this function, ef-
OFPM and EXPM), highl.l epecialised for their fune- fective connection interface at the internal bus
tions. and firaere level is provided.

It is found that averave COBOL statement 2x- COBOL user's programs are translated into
(,cution time is 35% of host processor execution highly functional COBOL machine instructions by a
time. A COMBAT machine attains better cost/per- software translator, which runs on a host proces-
formance and is useful for a spec'pl COBOL procia- sor.
eor attached to a medium or large-scale computer. As an evaluation criterion of high-level

language machine architecture, IPr (Instructions
Introduction Per Function), which indicates how many machine

instructions correspond to a source statement, is
R.ecent advances in solid-state technology and selected. IPF means machine architecture language

software crisis due to incr-asea in computer appli- proximity. In order to evaluate IPF valuei and
cations are accelerating the research and develop- object memory capacity per a COBOL statement, an
ment ot high-level language machines. From the evaluation tool is implemented.
viewpoint of their utilization style, high-level At r!esent, the COBOL machine IV LUnnlnq as a
language machines are clac:ified into two catego- processor attached to a host processor, i-i which
rioa: a stand-alone processor and an attached a medium-scale conventional commercial computer
proce.qnor or an element processor of a distri.buted- (NEAC ACOS series 77 Model 300) is used a:; a bw.,
fur,ction computer systoml. Burroughs BC1700 2 

and computer. In the host processor, thtrifo.,
NCR COBOL Virtual Machine3 are typical examples ot FORTRAN, PL/I and COBOL program oxecut ion are pos-
a stand-alone high-level langqiago machine. PASCAL sible, ae wel! &s COBOL program compilation.
Micrort;gine 4 

from 41estern Digital Corp. is also a As a result of this attachmeit, COBOL program
rece,,t interesting product, applied to microc:om- execution in the host processor is u:'cluded for
puter Applications. the COBOL machine. This resr'lts in host processor

On the other hand, current marked decreases in performance enhancement for through-put arid turn-
the cost of hardware and advent of highly function- around-time.
al processor modules make it not only technically In the following sections, a COBOL machine
feasiblp, but ecoromically practical to develop the architecture, COMBAT (COBOL Oriented Machine basic
attached high-level language machine. Taking this ArchiTecture), a machine hardware structure, host
trend into co3nsideration, a COUOL machine applica- processor interface and evaluation results are
ble to an attached processor has beun implemented. described.

In order to attain better cost performance in
a !Jgh-level language machine, mdchine architecture Systr.m vrviw
and hardware structure desiqn, bua;ed on a(.':euil usur
environment are importauit. For this purI.Jse, an I'LiurLo I shows COMBAT system coiiqulut atldol,
analysis tool is implemented. The analysis tool including analysis and evaluation tools. The
gathers COBOL userls'proqram profile, including COMBAT system is composed of COMBAT translator and
COBOL verbs, operand d-'a attributus and i o oron. COMBAT machine connected to a host rr,,.,sot.
With the help of this tool, a COBOl, machine archi- COBOL programs are translated into. hiqhlly
tocture, highly optimized for COBOL program pro- functional COMBAT instructions by a software
ceasing, and a COBOL machine hardware structure, COMBAT translator, whose lanquage specification is

212

Am .

J4



.....

compatible with a host processor (ANSI 74 COBOL
5

) obtain high performance at the machine architec-
for.practical use and impartial evaluation of the ture level. Most COBOL statements. therefore, can
system. The higher the functional level of a be translated into a single COMA? instruction.
high-level language machine architecture becomes, Various formats of internal data directly corrU -
the simpler a translator becomes. A translator is spending to all user defined source data are pro-
composed of high-level language dependent part and vided.
target machine dependent part. In the COMBAT COMBAT machine has a hardware structure ape-
translator, the processing time and memory capacity cialized for COMBAT architecture, which is mainly
for the latter part qreatly reduce due to its high composed of three functionally distributed proces-
functionality. for Modules (IFPMs Instruction retch Processor

Module, OFPHs Operand Fetch Processor Module and
EXPM: Instruction Execute Processor Module).
Their processor modules are also specialised for
their functions using microprogramming techniques

cam - -and powerful hardware components.10UPM
0 Architecture and Hardware Organization

, .Architecture

tOrs ' AoeJ~a > o CObol Oriented Machine Basic Architecture

- r"- (COMBAT architecture) has been specified to obtain
St better trade-offs between hardware and software in

&Tz~auIM . high-level language processing. In high-level
DoTA .TOO language machines, it is most significant to decideDAT KIhow much a gap is reduced between a source state-

INL ment and a machine instruction. In order to attain

BvM.uAoI . J better performance, the machine instruction set is
SW" Wil I It T defined to correspond to a COBOL source statement
ToIAY as closely an possible. Therefore, the following
SLAU* " $1018 functions are performed durinq a machine instruc-

I IMgNu io execution.

II I W Data type conversion or adjustment.
It (1i) Indexing by index data or subscript data.

001ftT (iii) Editing required for data transfer and
AC.I..... NI arithmetic operations.

c o waL I Machine Instruction Format. Most COBOL

AIM l 8curce statements are translated into a machineIionstruction by a software translator, which corre-
sponds to a conventional compiler. A machine in-

sxrx xtruction is composed of operation code and operand

syllables, an shown in Fig. 2, If necessary, a
K14i de*hLns Instruction variant syllable or operand number syllable is ap-
M Intermetae W400" pended to the opemration code. Each operand syl-Xf~ notrwtiop Fetch processor Wattle

of P Opersad Fetch Processor Module lable represents a data item. When the operand is
vxpm, Instruction tkrecute Proeesgar module an element in an array, several operand syllable*

are necessary to specify index or subscript data
riq. I COMBAT System Confiquration and item:.

AnalYlis/Evaluation Tools

Hiqhly functional machine architecture, in- MOVE A TO B(i) , C
cludirng host pro'essor interface and intensive
hardware structure, closely related to machine
archite.cture, are required for an attached high-
level lanquage machine. The COMBAT machine can
effectively perform major COBOL functions for data
manipulation, table handling, arithmetic opera- move 3 OSILA OS-S 0S-1 OS-i _-C
tions and conditional operationt. Moreover, high [

performance ted compact host processor interface
to enable ex, cution of other features are provided
to the host proc¢ssor, e.g. input-output opera-
tions, rommunication control and virtual memory Operand Syllable
manaq(,mnt at Ph, suftware level. A host procc,-

it]r -itI nnstruction in COMBAT machine ctali7os Operand Number Syllable
tfnisi function. Opelration code •

COMBAT ma,'hin., arrhitecture is greatly optji- Fiq. 2 Source statement and Machine Instruction
mirzed for COBOL lanquaqe processing in order to Correspondence

213

4 *1



Data and Descriptor. COBOL users can handle instructions. SEARCH and PERFOP14 statement func-
various data formats in a COBOL program. Since tions are also translated into several instruc-
there are only a few data formats directly uanipu- tions.
lated in a conventional machine, an object program
should convert them into internal formats at run
time. This COMBAT machine provides all data for- Hardware Configuration
mats required in the ANSI 74 COBOL specification.
Table 1 lists arithmetic data formats as an exam- The function performed within the COMBAT
pie. inachine is higher than that for conventional ma-

Descriptor architecture is adopted to facili- chines. The microprogramming and pipelined archi-
tate more complex data description capability for tecture in suitable to effectively tealize hiqh
decimal scaling and editing operations. Simple functionality. In the COMBAT machine, a machine
data format operand, however, can be specified instruction execution is divided into three
without a descriptor to avoid performance dis- phases, instruction fetch, operand fetch and ex-
advantage due to using the data descriptor. ecution. Each phase is executed by three inde-

COBOL language allows the user to describe pendent processor modules, as shown in Fig. 3,
very complex operation in a statement. If it is Instruction Fetch Processor Module (IFPM), Operand
translated into a single machine instruction, the Fetch Processor Module (UFPM), and Instruction
hardware design becomes too complicated. In the Execute Processor module (EXPM), respectively.
COMBAT machine, complex statements are divided These processor modules are connected with each
into several basic operations. For example, other through First-In-First-Out (FIFO) queue memo-
EXAMINE or INSPECT statement functions are per- ries. This configuration is intended to.be imple-
formed with the combination of TALLY and REPLACE mented with VLSI chips.

Table I Arithmetic Data Formats in the COMBAT Machine

Data lormat COBOL Usage

Signed Binary short CIONP-1
Signed Binary Long COMP-2
Singed Packed Decimal COP- 3
Signed Unpacked Decimal COWP/DISPLAY (SIGN IS TRAILING)
Unsigned Unpacked Decimal DISPLAY (NO SIGN)
Leading Signed Unpacked Decimal DISPLAY (BIG" IS LEADING)
separate Trailing Signed Unpacked Decimal DISPLAY (SIGN IS TRAILING SEPARATE)
Separate Leading Signed Unpacked Decimal DISPLAY (SIGN 18 LEADING SUPAUAT")

t I

MAIN bMoRY POCEBOR

COMHAT MACH IN

Pig. I COMBAT M chjne 5yXtm 'onfiqurPitio

S21

DISK~.(



Instruction Fetc~h Processor Module, (IFPM) hotPoesrInterface
The main IFPM role in to generate internial formsl.
c~lrrenpondinq to an instruction for easy followinq 111t jygtvtml Ii composedi of the COMBAT machinst
minipulatioris. 'Ihe operation code and variant !o') and a host proL!QeiSU9 , is5 shown in Fig. 3. In this
lable are packid into a 32-bit intpernal machine; section, the Interface between these two proces-
iflstttction, .i' ;hoQwn in Fig. 4, and transferod t sort; I-, dvcscrib~et. A V'c101O, source program must be
orPM And EXPM through machine inhtruction Flf'Oi. translated into a COMBAT object program, before
The operand ryllableb are also packed into a 72-hit the proqram is processed on the COMBAT machint
internal data descriptor for each operand. Within The COMBAT machine executes COBOL language pro-
this process, indexing and subscripting are resolved ceaginui functions independently from the host pro-
and an effective operand address, is located in the cessor. The host processor is responsible for
internal data desc'riptor. Another important role this translation And also for miscellaneous func-
is to control the COBOL program execution sequence. tions. Fo r example, 1/O statements (OPEN/CL40SE/
Normally, IFPM continues prefetching according to DISPL.AY), inter program control statements (CALL/
the sequence represented by such as GOTO, If' and EXIT PROGRAM) and coimmunication control statements
P'ERFORM2 statements, (SFND/RECEIVE) are categorized as such functions.

Theikse ntatements are tranalated into HOST CALL
Internal FAchsine instruction innt sititions by the trans~lator.

lio ;'OMHATl machine' i-. physically connected to

0 31 Jc?' i.;0 I 11 a ,Ither,'i mai n-memory interface?

OP VAR ind .i theti- ho', intorface. D~ata and program code;T ̀1arýI. -''id by two prieoitSio S through the shared

ml tti-Itimstiy inUteface. control signals are trans-
Internal Data Descriptor foi-' thieou,4i h !iii harvd bIs interface.

0 71

IINI ON ITYpe JAmt1rI3tl'LoGIcAL ADDRESS hrdMintvlyirL!a:

NI Numer of operands Main-memory can be arcessed by both the
riN Instruction Number clOMHAT machinle and the host processor. bsat and
OWi operand Number programs are located on a host virtual storage

space as a unit of segment. Therefore# it is
viq. 4 Internal Machine Instruction and Data net'emsary to translate the virtual address into a

Deqcriptor Format real meumory address, every time a segment is so-
ri'Sse'd, The COMBAT machine has ani address trans-

i Ilvt'n 'ti:h Processor Module-(I)FPM) 'ii lot ion mewchanism cal led Memory Processor. For
tit.I I* sWl'' ro '_ Is to prpr oprai'lraf hitih '.I Io trainslation, the Memory Processor has 8

mai)tI it4 oVP1.1 r,1ý o1h, c;vtlldi ,,;td, ty chec I-XIIr''., virtiml ind rt-il addresst mapping registersi

miat riinvc'simi~iii I t)PM f'tti'hes data I ron ~I ma iiiIts III t- liWIth it tim iniciative memory device.
memory. I~ata scoittprts are examined tot val idat.- anr i.qm,'tfut tq ac-es~sed and the address trans-

I hem. The.n, d-tatied operand ittribtitt'm an, u,- laitter has been perfor-med, the address itapping

Into an Internal data descript~or. For irxamp~lv, it ieq~int.'rs vonttents are' effective, as long as the

ii determined whether dlata is positive, nerqativ, s-qnin stays at a cortain real memory location.
*all %I ice, zoro, alphabetic or numeric. WhnA Whe-n the isegmentie have been relocated by Vir-

operand data is used in an arithmetic operationn tual Memory Manager (VMbi: runs on a host proces-
OPIN convert!4'-.. into one of two internal data so thet addres!4 mapping teqisters =otents must

*tormilt', Siqn' 'I inAry Lo~ng or Unsiqnoe 1'ae'k'ii 1w''l eI" I ro. Moreovvr , whon thlt COMBAT machine
* ecima I, in criedr to he easily manipo iited I iti[l!.' 1' .!W,; -'oqment whic.h is not in the main-memory,

the -lmetit mu',t be moved to the main-memory from

Instruct jotJ Execute Proceusor Module (EXPO). t ilti' secondary storage. Thle host processor executes
;'XPM perform.; Instru~ction execution as a finaliiifit-tsorheCNTmain VMCL.
stage in a pipeline. To achieve high [ frmnI'
EXPM Installs specially designed hardware units,
E'ipeci~illy transfer And editing operations Ire
'urformeci eftt'-ti vi ly with thle aidl of t~hei' ~qw, i~il dit- tI~ u fIt'~fat

hardware uni ts, bt'catse, these opvrait lou' tr.' 55i5 i

tti.) oett Iqq,.jn' in 'u1401, procirams. Hit I rocue-ier boss i!; di r~c tly connected to
th' iCOMBAT machine. 1-0 control the bus, a special

,rli;se processor modules are, composed of tost maichine instruction, named SUPERVISE COMBAT,
bipo~lar bit-sulicL sequencers (AML 290t0 series). i; -rovided in the iost processor. This instruc-
Their instrucs:ion cycle time is 200 nsec. Ih'PM5 tion is; developed into a host micro-code, called t
And OFI'M micro instruction length is 48 bits and LCOMBAT Support Firmware. Its process flow is
EXPM is; 72 bits long, Control storage sizes for shown in Fig. 5. Under the control of the COMBAT
IEPM, ()FPM and F.XPM are IX, 2K, 3K words, respec'- Support Firmware, information can be transfered to
tively. II'PM and OFPM are implemented with 37 and and from the COMBAT machine through the bus.
42 boards, onl which a maximum of 80 ICs caii be Therefore, transferinq is possible if, and only -
installed. An EXPM is implemented with 25 boards, if, the host purocessor in executing the SUPERVISE
which cart rins,-.,) a maximum of 200 ICs. COMBAT instruction.



At the beginning of a COBOL prograin process,

"OMbAT Support Program prepares the execution en-

vironment. Segment addresses are loaded in basu

registers (BRs) and other inL'rmation in general

registers (GRs). Especially, BR4 is set to the top
ENTRY address of the COMBAT code segment, and GRO con-

tents are cleared. GRO is used as a flag tb con-

trol the COMBAT Support Firoware execution.

Then, a host processor executes the SUPERVISE

ECOMBAT instruction, that is, the COMBAT Support
Firmware ruts. COMBAT Support Firmware generates

an initialization signal to the COMBAT machine, and

transfers the segmenta' information through the

INITIALIZATION shared bus interface. The BR4 contents are trans-

L fered to the COMBAT machine's instruction counter.

SStart COMBAT ]

I'I

ENTRY

halt OMBATPREPARATION

Fi.5CMA COSpAT Support

COMBAT McEnecution Firmwaremicro-code
(Fig. 5ý)

ohalt COMBAT dat
MICROPROGRAM

halt COMBAT
(HOST CALL)

EXITL

Fig. 5 COMBAT Support Firmware

COMBAT Machine and Host Processor Interaqtoon

A translator program, runs on s host processor, oROgenerates four kinds of segments. Three of them---- RO I
are mainly accessed by the COM4BAT machine: COMBATi
object code, COMBAT descriptor and COMBAT data ! ,
segment. The other kind is a host nbject code}
segment called COMBAT Support Programi. It invludvsu•

the SUPERVISK COMBT ins truction and othvr codes EXIT

for the execution of functionu to be procusý;d on ,
the host processor mentioned a•ve. The COMBAT

Support Program structure is shown in Fig. 6. 216 Fig. 6 COMBAT Support Program

2161

fS



Then, the COMBAT machine starts to fetch the COMBAT statement mix, consisting of 15 typical COBOL
instructions and descriptors from the segments, statements, was selected, based on actual user ap-
prepared for the COMBAT machine, through the shared plication programs.
main-memory interface. After that, COMBAT Support
Firmware enters a microprogram loop until an inter- Translator Evaluation
ruption condition occurs, either on the COMBAT
machine or on the host processor. in order to clarify the difference between

when on interruption condition occurs, the COMBAT and host macsine architectures, instruc-
COMMA Support Firmware halts its supervising pro- tions per function (IPF) have been measured.
cess. At this time, the COMBAT machine cannot sc- COMBAT machine and host processor IlPl for the
cose a new segment or generate a new HOST CALL statement mix are 1.7 and 5.5, respectively. These
instruction to a host processor, until the COMBAT values show remarkable COMBAT architecture proximi-
Support Pirmware restarts its process. However, ty to COBOL source statements. The COMBAT archi-
other processes inside the COMBAT machine can be tecture brings the following effects on COMBAT
executed continuously, translator.

A host interruption causes a microprogram Translator program memory reduction
branch to an interruption process part. After in- Decrease in translation time
terruption process completion, microprogram control object program memory reduction
returns to the COMBAT Support riraware and restarts Improvement degree for these effects is in-
the COMBAT supervising process, or dispatches to fluenced by translation processor unit, machine
another host process. In the latter case, contents architecture, translator description language and
for base registers and general registers, related translator design algorithm. in order to evaluate
to the COMBAT execution, must be saved. This pro- the difference betwoen COMBAT and host machine
cess is necessary for multi-programeing control. architectures, CO0BAT translator is oomoaod in the

COMBAT machine brings about an intetruption in same way as the host compiler, except for the code
two cases. One is when the COMBAT machine requires generation phase. Those effects are evaluated with
access to a segment which is not in the main- five COBOL user programs, collected from various
memory. in this case, the COMBAT Support Firmware application areas. Table 2 shows the results of
stops its supervising process and calls a host the COMBAT translator performance, compared with
Virtual Memory Manager software routine to move the the host compiler.
segment to the main-memory from secondary storage.
The other interruption occurs when the COMBAT Table 2 COMBAT Translator Performance

machine encounters a HOST CALL instruction in the -

COMBAT code segment. This time, the COMBAT Support P * me&eU0om oft

Firmware completes its execution, and the COMBAT Translator Program Oodfiewatica "I
Sdpport Program takes a host machine cycle. Capacity

Next to the SUPERVISE COMBAT instruction in Total 94
the COMBAT Support Program is an analysis routine ...-
for the HOST CALL parameter. The parameter is Ois lmlratim MS
fe'tched from the COMBAT code segment through the Translation Tim
shared main-melOry interface. According to the Total oft
analysis result, COMBAT Support Program executes %
oin* of the functions to be executed by the host (b~ ct Prom 5%
processor described before, e.g. EXIT PROGRAM, Capacity
SEND, DISPLAY, etc. After the HOST CALL instruc- est -ompler 100%
tion execution, the COMBAT Support Prog-am sets
the GRO and executes the SUPERVISE COMBAT instruc-
tion again. Detecting that the value in GRO is not Both COMBAT translator and the host compiler
equal to zero, the COMBAT Support Firmware skips are divided into pre-code generation part and code
the initiation phase and continues its supervising generation part. The pre-code generation part
process. If the HOST CALL instruction was a STOP design is dependent on the source language and in-
OUN or ERROR instruction, COMBAT Support Program dependent of the object machine architecture. On
stops its execution, the other hand, the code generation part design

depends on the object machine.

Evaluation Results
Translator Program Capacity. The instruc-

The COMBAT system is evaluated from the as- tions per function fnr the COMBAT architecture is
pects of translation from a COBOL program to COMBAT markedly reduced. llierefore, the code generation
machine instructions and their execution. For this part capacity is 19% less than the host part ca-
purpose, COMBAT translator and COMBAT machine ex- pacity, in spite of preparing unique functions for
ecution are compared with the host COBOL compiler COMBAT architecture. The unique functions include
and host processor instruction execution, respec- generation of data descriptors, multi-operand
tively. In order to clarify the effect of an at- instructions and host processor codes. The COMBAT
tached high-level language machine, an attempt was translator pre-code generation part memory capacity
made to determine how much work load is excluded is almost the samo as that for the host compiler,
from t1e host processor. because of their source language dependency and

Ans an evaluation meanure at the COBOL program object machine architecture independency. Total

level, five typical user programs were chosen, memory capacity in COMBAT translator becomes 6%
Also, for COBOL statement level evaluation, a COBOL less than the host compiler.

217



Translation Time. COMBAT tran slator vxeou'- Ikol | I xevvut ion n each processor I. t-'.l i.o'd 1.y
Lion time is measured with software monitor and '.l.,l hardware units, consisting ul htiqh speed
compared with the host compilvr, as shown in Table, ruqister files, programrable logic arrays, etc.
2. COMBAT translation time, in code generation COMBAT performance improvement in the CUBOL
part and whole translator, reduce to 66% and 92%, statement mix, in which most statements are very
respectively. sim.le, is limited by memory access operation, as

shown in the memory usage ratio. Highly functional
Object Program Capacity. COMBAT object pro- -'OMbAT architecture and extensive COMBAT hardware

gram capacity reduces to 59% of the host object are not sufficiently utilized in this situation.
program, as shown in Table 2. Object program Qa- On the other hand, a COMBAT machine has highly .Af-
pacity effects the performance in executing the ficient machine instructions for complex COBOL
object program, from the effective memory use statements, 'STRING' and 'INSPECT' and for complex
aspect. This memory reduction brings about qood data attribute manipulation, like a subscript and
effect on program locality. decimal point scaling. Therefore, COMBAT perform-

,Vic. ilnprovVment becomes larger for these complex
Execution Time Evaluation .;tat,?m1Unts.

Average Statement Execution Time. The aver- Application Program Execution Time. In order
age statement execution times in COMBAT machine to make a program-level e~alution, COMBAT machine
and the host processor are evaluated. Memory ac- execution times for application programs, including
cess time and memory usage ratio are also evaluat- input/output and other exclusive operations, are
ed. These evaluation results are shown in Talue 3. compared with the host processor execution times,

it addition, for clarification of effects due to
Table 3 Execution Performance for Statement Mix the attached COBOL machine, through-put anid turn-

_.,._'aii(nund time improvements, for application programs
CAD? Most in rho nost processor, are measured.

Average itatement m.masation Tim 0.35 1 00

N s w r y U sea e Ra t i o 7 0 % 4 0 % C o n c l u s i o n,• -,Conclusion -

Nhwry lamsse Tim O.60 1.00
S.A ('(uBol mach Ine architectur' (icOMbAT i rchiltec-

ttit,., , a C.ttilOl machine hardware stru,.tuire (COMBAT

mujijone) anid several evaluation result,; have bet.n

presented. The COMBAT architecture and COMBAT
machine structure are specified to become optimum
fros, both machine architecture and hardware design

sides. The COMBAT architecture is highly optimized

for COBOL program processing. The COMBAT machine
COMBAT average statement execution time be- is qreatly specialized for the COMBAT architecture.

comes one third in comparison witn the host aver- In addition, the COMBAT machine iii aimed tu be
age statement execution time. The major reasons mainly a COBOL machine, attached to a hust proces-
for this COMBAT machine performance improvement are soI . Therefore, effective and compact host pro-
considered as beinqi ,esoir interface is provided,

As a result of architecture optimization and
1) Machine architecture hardwaru specialization, a highly effirient and low

Highly efficient COMBAT architecture leads to cost COBOL machine was obtained. Moreover, simp.ler
less instruction fetching and data acoiessing opera- and higher performance software translator that, .1
tions, due to compact object code, as shown in conventional compiler was attained, due to high
Table 2, For example, most literal data are di- COMBAT architecture functionality.
rectly described within the instruction and sub- It was found that the COMBAT machine is useful
scripted data address is calculated using a data for ., spec:ial COBOL processor attached to a medium
descriptor. As a result, literal and subscripted or larye-scale commercial computer. In addition, ?;
data are efficiently accessed. the COMBAT machine is applicable to us,: as arn ele-

mnt proc•4sor for a distributc.d-function computer
2) Hardware configuration 1;ys t.,m.

Memory access time from each COMBAT processor
becomes longer than that from the host processur.
In order to improve COMBAT memory access time, a

cache memory is provided. Memory access time from
the COMBAT machine with the cache memory reduces to Acknowledgement
80% of that from the host processor, as shown in
Table 3. In spite of this memory access improve- The authors would like to express holir qratpt-
ment, the COMBAT memory access ratio, 70%, is high- ful thanks to Mr. K. Nezu for his encouragement,
er than the host processor memory usage ratio, 40%. and to Mr. K. Hakozaki for his advice. The re-

This high usage ratio is accomplished due to COMBAT search reported in this paper was a'c'omplished as
machine pipeline configuration, in which each pro- a part of a research project on Pattein Information

cessor independently generates memory requests and Processing System by the Agency of International
rapidly executes each part of a COMBAT instruction. Trade and Industry.

218

Ai
S. . . .. . .. • • w '+ ::•++ I I I •1"" "+" +++++ ++•"'+' I



Referfences

I.. Nilson, R.N., DiStributed-Function Computer

Architectures, COUPUTiER Vol. 7 No. 3, March

I9 7 4 pp. 15-16

2.- Wilner, w.'r., Design of the Burroughs 81700,

Proc. AFIPS SJCC Vol. 40, 1972 pp. 489-497

J. Shapiro, M.D., The Criterion COBOL System,
Proc. AFIPS NCC Vol. 47, 1978 pp. 1049-1054

4. T71 MICROENGINE Company, WD/90 Pascal MICRO-

ENGINE Reference Manual, 197q

9. American National Standards Institute Inc.,

American National Standard Programming Lanqgunge
COBOL, X3.23, 1974

219

-..C . .. . ..... . -.. . . .... - . ..- .... ;,. . ."A



A DIRECT HIGH-LEVEL LANGUAGE COMPUTER ARCHITECTURE SCIIME*
(A Computer With a Unified Language Which are the Same Both Inside and

Outside-One of Researches on New Architecture of General Purpose Computers)

Gao Qing-Shi

The Computing Technology Institute of The Academy
os Sciences of' China.

Abstract

This paper is divided into two 7. Appendix: simplified definition of
parts. In first part using the method
of recursive definition, we describe the recuretve definition at' ALGOL-80
machine Lar4uasge and give proper expla- grammar structure
nations, in second part, we briefly
discuss the main parts of implementation R. Description of the Architecture
of this machine language. We don't at- 8. Encode and punch
tempt to use this machine language rior
replacement of concrete design of the 9. input identification and function
computers, and only in principle, give 10. Identification and function of
a discussion of the units which must be Implementation organization
altered to match this machine language.
Since time and space are limited, it is 11. The Arithmetic unit which can
only a brief discussion. The first part operate three sorts 0± expressions
can be referenced by users and the
second part can be referenced while 12. Optimum expression and the relation
designing machines. between the times of operation and

the size of "last in-'irst out"

region and the length ot' "Redundence
Transfer"

Contents 13. The efficiency of assignment state-
ment and DO statementintroduction

I. Description of the machine language 14. Other scheme of DO statement
1. Stipulation of the machine Postscript

2. Stipulation of the symbols
3. Structure of the language
3.1 Basic symbols Introduction

3.2 Names, name*s, values, variabled, Generally, the languages inside the
strings, data and comment machines are different from those outside

3.3 Control wordis and declerations the machines. The internal languages pay

3.4 Zxpressions and function designs- more attentions to considerng engines-

taen ring factors, ror example, having power-
3.3 Statements ful capability of solving problems, ca-

use. Proora sntateructurese tpo3.8 Progr'am structure ving devices and so on. The external
4. The machine language for engineers languages are to consider the raciliy 'or

5. Other writing forms or this lan- lnugsaet osdrterclt o•. Oter •i~in fors ofthlsfan-use. Yor instance, AL430L is used to pro-!

guage system vide the racility for scienti'ic compute-
8. Bxamplestonrrcmu-

.ten users and COBOL is used to provide

220



the facility for the commercial useras. machine, people can arbitrarily choose one
Naturally, people can consider, sort, two sorts. Or all the three sorta.

firstly, whether we can slightly modify After we have these three sorts of syn-

aoomon machine language (e.g. the lan- thetic scheama, we can make it easy to
guage used in the computer 104) to determine which one we prefer among the
bring the further facility for the users, seven possible scheme.
and secondly, whether we can properly
modify common external language (e.g. * This paper was published in CHINA
ALGOL) to execute it directly by computer in 1963.
without adding too many devices.

In this paper we chiefly discuss the
second point, and the first point is
discussed in the paper "A machine lan-
guage ridding of the dependency of ad-
dress.'-

All of' the discussions are preli-
minary and specialistic and are not for
being used directly in the computers.
We can imagine that we make a line to
link two terminals-One is general
machine language and another !a ALGOL,
the first point being near thr fiir+

-teminal and the second point near the
second terminal. For a specified
machine, there are a lot of points
"(i.n. scheme) to be chosen, we must
choose it according to concrete condi-

tion&. For example, the price of the
components is very low, the reliability
of the components is very high and there
is a associative aaory and so on. All
of these should be considered as engi-

neering technical conditions. ALGOL can
be chosen as a machine language for a
special scientific computation machine.

So called computer design, essen-
tially, is to choose schemes based on
considering special use requirments and
technical conditions. Whether the scheme
is good or not depends not only on the
rightness of the choice but also on the
size of the choice set. in this paper,
we discuss three sorts of expressions
instead of one sort. For a particular

221

ALL,

I



PASC-HLL
A HIGI-LVM-LAIGnAGE COMPUTER ARCHITEC•TRE FOR PASCAL

Jean-Pie'nAez SCHOELLKOPF

Compu+te., wchteetwte.
ItMG
BP 53X - 38041 GRENOBLE d•dex
F~aiice

ABSTRACT

This paper proposes a Tagged ArchIter"' :v iur PAX;CAL A PASCAL prugraneiar is allowed to "define" his own
oriented computer architecture. All variables are data types (so-called Software types) by structuring
associated to Variable Descriptors and all data ty- basic types (so-called Hardware types). Next he may
pes are described by Type Descriptors. The propo- "declare", inside each prncedure, a set of local va-
sed instruction set is directly defined from HLL riables. Finally he writes his program as a struc-
statements, ordering the expressions in a Polish tured sequence of PASCAL instructions manipulating
form and keeping inside the computer the control his variables. Such a simple description of PASCAL
structure defined by PASCAL. A hardware computer programming directly leads to a simple architecture
is next presented which executes the above code by for a PASCAL oriented computer architecture ; its
means of five specialized microprogrammed processors instruction set, so-called PASC-HLL, can be reduced
working in a pipelined manner, to a manipulation of the programmer-defined variables

and the internal operations can be directed by the
programmer-defined data types. Such an approach is

INDEX TERMS that followed by K.JENSEN when defining the P.Code
(a Pseudo-Code for an hypothetical stack computer

High Level Language computer architecture, Tagged [11). Several implementation of P. code interpre!tion, Pipelined execution. ters are available on mini or microcomputers, butnontv of them really implements the original P.Code
which is based on a TAGGED architecture. Moreover
P.Code is rather far from PASCAL for its control
instructions: the original PASCAL syntax no more

INTRODUCI'ION exists in P.Code. So we propose to keep PASCAL con-

A first section in this paper presents a new ap- trol structures in PASC-HLL to simplify debuggingand Sntroduc• a new kind of software reliability,
proach for the definition of an instruction set and by proding a c er td stwan relait,

data representation: it is based on the priniciples by providing a computer that"knows" an expreslon,

of tagged architecture. The second section briefly a Syntax-oriented architecture 10i.

presnts the currently built PASC-HLL computer that
executes the miichine language presented in Section . 1-HE PASC-HLL DATA STRUCURS

Using the principles of self-identifying representa-
SECTION I - PASC-HLL LANGUAGE DEFINITION tion, we propose a TAGGED architecture (21 with a

basic entity : the Variable Descriptor V.D. associa-
I - INTRODUCTION ted to -ich declared variable. When accessing a

V.D., the machine must get enough information to per-
Classical machines are working on typeless data h or in ordsian toeSif~peify Vhe addressin

a clletio c tiarydiitsetrc- form an operation specified by the programmer.Aconsiderqld as a collection c4 binary digits struc- fixed format was chosen to match with either 16 bitstured as bytes or words. Except for Integers or 32 b
characters, there is no direct relation betweell the or32btwodantosmlf . dreig

H.L.L. data types and the hardware types (the ones V.D.= (8 - bit TAG,8 - bit STYPE, 16 - bit SVALUE)
known by the machine). It is clear that data type TAG = (I Bit, P bit, 2 - bit S, 4 - bit HT).
definition is the most interesting characteristics
of PASCAL language: so it seems to be important to 11.1. Description of the variable descriptor format
emphasize the problem of "making the hardware suit a/ V.D. is the basic information referenced by the
the language, i.e. to define hardware data type. program : it allows the machin e to eet all informa-
that suit the PASCAL ones. Moroover, we try to do- tion about the associated variable. Field TAG gives
fine an Instruction Set which suits PASCAL, in the all the hardware description : firstly, the Hardware
way that it could be the simplest and the most com- Type is -neoded in 4 - bit HT, indicating one among
pact executable code compiled from PASCAL, keeping 16 basic types known by the machine (they are listed
its structured programming feature inside the ie- in Table 1). If the variable is a PASCAL pointer,
chine itself.._• hin it--- th~n bit P is set. Bit I indicates wether the value
* Project supported by French contract SESORI n'78-204 thn bitbP is prtsent indies wethr t valu

of-the variable is present In field SV or not if
222

LI



not, field SV holds an address relative to a segment the Variable Internal Name. Fig.3 gives the VIM
whose number is given by field S, according to encoding.
Table 2.

It in now possible to define the Access Instructions
b/ Field ST (Software Types) holds an index in the whose operand is a variable NaMe: a 6-bit opoode is
Sottware Type Table where -11 the programmer defi- associated to a 10-bit Variable MNaefor 4 basic
ned types are described. When ST is ZKRO, there is instructions: RZF and INDD allows the machine to
no Software Type, So the variable type is the hard- access a Variable Descriptor (with an indirection in
ware one, for example an 8 - bit integer with hard- the case of INDD), ASSIGN asks the machine to assign
ware bounds (-128# +127). An example of software a new value to the variable, and CALL allows the
type descriptor is given in Fig. 1, showing an ARRAY access to a Procedure Variable Descriptor. Other
type descriptor holding Lower and Upper Bounds, Elm- miscellaneous access instructions are CLEAR, SmT,
ment Size, Element TAG And STYPE and finally the INCR, DSCR to implement frequently used operations
Array Size. on variables such as 1: - 1+1 or I: o 0 (see table 3).

Now, we can show the simple I-PASCAl language.
All these informations are pointed to by the ST
field of an AMRAY variable whose access allows the
machine to compute different operations depending III - THE iASC-HLL A hzNont ro

.As an example, Bound Checking, We have just presented access instructions and as-
address calculation and building of a Variable Des- signments. Now it is time to ay that we chooseScriptor for the indexed elemnt for the INDEX the PA•CAL expression to be translated into POLIJH

ii oeratr :form expressions, and that the PASCL contr~ol ins-

is LB S Index % UB ? tructions will be translated into equivalent PAC-
if yes then t SV to SV(Index-LB)*STEP IILL control instructions.TAG to Element TAG

ST to Element TT it is clear that the PASC-ULL program will have the
same structure as the PASCAL progra it has been

c/ Field SV (Software Value) holds either the value translated from. An example is given in rig.4 whicshows the equivalence: PASC-E.L offers the same
of the variable (if it can be represented by IC bits) strUctUred eroqramlncL facilitie os hPASCL, needing

or the address of it in the other cases: i.e. for the tohin to ba faciles sotCLe ne

longvalesforindrec vales ecesar beore the machine to base its control structure on thelong values. for indirect values necessary before principles of control sanmints- deffne by a couples.
an assignment or for structured types (arrays, re- p entr o segmes defide a conrl
cords or files). A particular case is that of PASCAL (Entry Address, Return Adres is). inseie a bnto
pointers: their value is an address, so bit P is segent, a the Pru oau Counter PC Ls inra ented, but
set, and bit I is set or not depending on wether the syntactic rules must be satiseied: a PolSIh fori ex-poiner alu is resnt r no in~,.pression mist be completed befor.e an M8IG( inst-ruc-
pointer value is present or not in SV. tion is fetched and an expression cannot start with

I1.2. The PASC-HLL stack vechanism an operator, an IANDEX operator cannot be applied on
any operand its first operand must be an AMY the

Since PASCAL is a block-structured language, the second one must be a SCALUM.
PASC-HLL machine requires to have a stack mechanism
for nesting procedure during execution. If a BASE
register is associated to each Lexical Level, it is IV - TUE PABC-ULL exam
well-known that the Internal Nam of any variable compiling a PASCAL program generates a PASCAL-=
can be built as a couple (Lexical Level, Displace- code Segment holding a Types Descriptor Table, ACALf
mont) - (LL,D), and that this naew can be used du- cd emn odn ye ecitrTbe

ringexeutin t accss he arible esciptrs. constant Table and, for each procedera# a couple ofring execution to access the Variable Descriptors. two elementsi firstly the formal parmters and lo-
Previous implementations of that structure are well- cal variables descriptors, secondly the executable
known (Burroughs [33, Wi,-¶ [4], etc...). However, code. An elemnt number is associated to each pro-
it is important to note that parameters must be cedure: it is considered as the "value" of the pro-
considered as local variables inside a called pro- cedure variable, inside its Variable Descritor.
cedure, but they must be evaluated in the context
of the calling procedure. So we define two steps: During execution, the PABC-ULL machine needs to
firstly a Procedure Variable Descriptor is accessed access to other segmentst the first one, so-called
by a CALL (LL,D) instruction which allows the machi- Context, holds the nested procedure pointed to by
ne to fetch and store the Formal Parameter Descrip- the BASE registers, and the swond one, so-called
tori. Next actual parameters can be evaluated and Dynamic, is used for dynamic allocation and accessed
assigned, after a possible conversion. Finally, by means of "pointers". The Code 8e - t my bs du-
another instruction so-called ENTER can check that plicat4d as an External Code Segment holding "system"
the correct number of parameters was assigned, next or "library" procedures.
it coutes the Mark Stack Control Word [33 and So the PASC-HLL machine knows four different segments:
fetches the Local Variable Descriptors before ente- that feature allows it to manipulate relative short
ring the procedure code. Fig.2 describes the stack addresses which can be translated to beome absolute
mechanism.

addresses. It is then possible to have truely re-
Such a structure allows a simple and compact addres- entrant code and data, and iediat protection bet-

S ~ sing mechanism: a positive displacement (00..63) for ween all the segments.
local variables and a negative one (-64..-3) for pa-
rameters is associated to the Lexical Level to form 22

223

A



''I

ETON 2 - PR NTATION C TE PC-L COWT!R stations (PINS, PAC and POP) into absolute memory
addresses according to the Memory allocation made

- Tby the "host" system.
The PASC-IILL computer structiure is given by Fig.5.

After the above presentation of the PASC-HLL lan-
guage that was defined from the language PASCAL, III - THE DEPENDS
we propose a hardware computer to execute that ma-
chine-language. It is the Pipelined Architecture Suppose, for example, that the high-level instruc-
Slice Computer for High-Level Language, so-called tion "x + <expression>" has been prepared in both
PASC-HLL computer, currently built using AN 2900 PAC and POP instruction queues, or is in the process
family [5]. of execution by processor POP, when an instruction

hehave bn "of access to the variable X enters the access pro-
Pipolined architecture is characterized by a high ceo A.Ta rcso PC utb betcessor PAC. That processor (PAC) must be able to

degree of parallel operations concurrently running detect the fact that both "X 4 <expression'" andinside the computer [6]. Secetral attempts have been "Access X" instructions refer to the mama variable
73[8de : t eird hefficiency depende on cheod w utery X, since the "Access to X" instruction might have

7 : their o o dedso eway they to be differred until the ompletion of the
are programmed and requires a lot of pro-processing "X-<expreeeion5" instruction, otherwise the "Access
is churapterimed by a new approach, based on a

a decompostion of the work to be executed,as ble, but its old value.
explained in [91& "a Pipeline Polish String Computer". The proposed ,ilution uses a Content Addressable

Memory, organized in a FI-FO mode, which holds the
1I - PIPXLINED XI)OCUTZON IN PASC-HLL names of the variables whose modification is expec-

ted (access to their value must be deferred), andThe PASC-HLL order cde is syntacticaly in Polish the names of the variables which have just been mo-
notation, but execution Is not madeo using a Push- dified.
down Stack, but a FXFO evaluation queue. That struc-
ture makes appear that desynchronization between When an instruction "X4'<expression>" is fetched by
itstruction fetch, .accoes to Variable Deacriptors the access processor PAC, a Dependency Descriptor
an*d execution of operators can be achieved. The is pushed into the Dependency Queue. That Descrip-
first station in pipoline, so-called processor PINS, tor holds the internal name of the variable X (i.e.
letches the next instruction from Main Memory : it a Lexical Level and an Offset). From that time,
"eoecutes the Control Functions (Loop control, condi- further references to variables are proceseed throu4h
tional branch, procedure call and return ... ), and the Content Addressable Dependency Queue, and the
mends Access InsAtrtions to an Accees station, so- name of the variable X is known to "match" with a
called processor PAC, and operators to an Operating Dpandency Descriptor. In the same time, processor
Station, so-called processor POP. Internal instruc- POP might have completed the execution of the
tions sent by PINS to PAC or POP go through FIFO "X'<expression>" instruction. So processor PAC can
instruction queues. Variable Descriptors fetched find either the new value of the variable (just sto-
by PAC are sent inside the FIFO evaluation queue red by processor POP), or a Dependency Descriptor.

managed by another processor, so-called Local The second case is processed as the creation of an
Storage Processor LEP. Deferred Descriptor. As several deferred accesses

So, several PABC-KLL instguctions are concurrently to the sae d variable may occur, all the Deferred
in dffeentstae ofproeasngeithr i Fech, Access Descriptors related to that variable are

in diffesent stepe of rore ersing, either in Fetch, linked together, and they are replaced by the new
or Access, or Operation. Moreover, proweoar LsP value of the variable on the completion of the ex-
Sanages a 1IFO Dependency Queue, ahich allows to
solve the delicate problem of accessing a Value which pected assignment inetruction.
is not yet modified, but is known to be modified In the example illustratedby Fig.6, processor POP
just later. That queue is made up of sixteen 12-bit has just completed the modification of variable C,
word Content Addressable Memory that holds the In- and it is currently evaluating the expression to be
ternal Names of the variables which are to be modi- assigned to variable D. In the same time, processor
fied or have just been assigned: it holds the Working PAC has created a Dependency Descriptor for variable
Set of the program, achieving good performance for D and it has fetched three "Access 0" instructions
data access and reducing the amount of Memory Acces- which has been processed as three Deferred Access
ses. If the Working Set is less than 16 variables Descriptors, since the new value of U is not yet
(or parameters), nomemory access is needed except evaluated. After Completion of the modification of
for assignments: all the Variable Descriptors are variable D, the state of the queue will be as illus-
inside the CAM. Hardware design of the PASC-HLL trated by Fig.7.
computer is now completed: FIVE independent proces
sors, realised usg bipolar -bitE siesearent one- Using the above mechanism, an "Access X" instructionsore, realized using bipolar 4-bit slices, are con- cabedfrdunithcoptonftetrolled by FIVE microprogram. (the total size is can be deferred until the completion of the

"X+<expression>" instruction (assignment). A Defer-32 Kbits), with a cycle tine eruel to 150 nanoseconds. red Access Descriptor is pushed into the evaluation

The PASC-ULL computer is designed to be inserted in queue. All the Deferred Access Descriptors are lin-
a large scale computing center, as a specialized ked together, eliminating a number of memory refe-
CPU connected to a "Host" computer main Memory. rences equal to the number of linked Descriptors.

The MNery Interface Processor inside PASC-HLL trans-
lates virtual addresses sent by the PASC-HLL internal

224

•. . .• . ... . I



a new kind of machine-language, very compact (up to
IV - TUN CONDITIONAL BRANCH P3OBSLI 4 times more compact than a classical machine-lan-

Both PAC and POP processors may be considered as guage) and very near the High Level Language bringing

SLAVES of the PINS procesuor, in that they only axe- a new kind of software reliability during execution.

cute the internal instructions that they receive The PAIC-ULL pipelined architecture is potentially

from the PINS processor, which is thus considered capable of high performance, since five microinstruc-
as the MAMR of the control. However, when a con- tions are executed each cycle.
ditional branch occurs, the PINS processor is not
able to choose the right next instruction, since the Its global performance is equal to the number of
conditiona o re ion risht betingsevaluatiod a e the amemory accesses which are independently made by
conditional expretit on is beion evaluated at the three independent processors inside the computer,
same time, but it can choose one instruction among allowing an optimum use of the Main Nemory. More-
all the possible next instructions (generally two). over there is a strong relation between HIL program-
The probability for a W•0NG choice strongly depends ming and hardware processing which works with the
on the context in which the conditional branch occurs, programmr-defined variables in the programmer-de-
it is such lower for the and of a loop than for a fined control environment.
classical IF-THMI-ELSE statement. Given that the
different high-level conditional statements are dis- RWSPJRX=

tinguished by different PASC-HLL instructions, the
PINS processor knows the context and can choose the (1] K.JZNSEN, "A Pseudo-Code compiler for an hypo-

more probable next instruction. When a choice has thetical stack computer", a PASCAL program

been made, we say that the PINS processor enters a listing.
Conditional State, characterized by the fact that (2) E.A.FZUSTEL, "en the advantages of Tagged ar-
its activity is limited to a "preparation" work. In chitecture", I= Trans.on Computers, vol.C-22,
particular, if a conditional branch is fetched again n07, July 1973.
during this conditional state, no choice is made,
but the PINS processor stops ano waits for the reso- [3) Burroughs B5500, Information Processing Systems,

lution of the first conditional branch. Reference 14anual, Burroughs Corp., Detroit,

when the value of the conditional expression becomes Michigan, 1964.
available in the POP processor, the PINS processor (4) "Mu-5 Basic Principles", Manchester University,

knows whether its choice was wrong or not. england.

In the case when the choice was right, all processors [5) "The AM 2900 Family data book", Advanced Micro

can go on without any modification. In the other Devices, Sunnyvale, California, 1978.

case, all the prepared work must be disabled i this (6) "System 360 Model 913 machine philosophy and
is. achieved by emptying the input instruction queues instruction handling", IBM Jr & D, 11, nsl,
of both PAC and POP processors which hold wrong ins- January 1967.
txctions, and by updating both evaluation and de-
pendency queues in which the sequences of wrong ope- (7) R.M.TO4A8ULO, "An efficient algorithm for ex-

rends or wrong deferred variables must be deletedt ploiting multiple arithmetic units", IBM Journal
this work is achieved by processor LSP. January 1967.

]8) J.9.THORNTO, "Parallel operation in the Con-
V - HOW TO SAVE TE• UVAWUATIO4 CO•XT trol Data 6600", ArIS PJCC 1964, Washington DC.

The evaluation context, represented by the interms-
diate state of the evaluation queue, must be saved [9) G.BAILLE G J.P. SCH0ILIKOPF, "A pipeline polish

when a "function call" occurs within an expression. string computer", AMIPS MCC 1976, New York City.
When the "CALL instruction" is fetched by the PINS (10) Y.CHU, "Concepts on high-level language compu-
processor, a special order is sent to the POP ins- ter architecture", University of Maryland,
truction queue. Since several function calls can be College Park, Maryland.

nested, a SAVZ area is allocated on the top of a
push-down stack managed by POP. Then, processor
PINS which knows the current state of the evaluation
queue, generates a sequence of orders towards the
POP instruction queue. Thus, the current state of
the evaluation queue is saved by both POP and LRP
processors before the function is entered, all pre-

* vious intermediate results being compacted into the
save area.

When the function is returned, processor POP is able
to restore values, and the evaluation process goes
again.

CONCLUSION

This paper has briefly presented both machine lan-
guage and computer structure of PAB-HLL computer.
It could be necessary to mention that pipelined exe-
cution of Polish String was already described in [9)

and is not explained again here. That design shows
225

...... ...



I

value Hardware Type HT value Hardware Type

0 8-bit integer 68 Character
I 16-bit " 9 Char. Strinq
2 32-bit " A 32-bit real
3 64-bit " B 64-bit "
4 8-bit powerset C7 Boolean
5 16-bit ' D ho. String
6 32-bit E Array
7 variable length F Record

powermet

Table I the PMSC-HLL Hardware Types

Tag bits

I P S caoant

0 0 value in BV field
o 1 01 pointer value in SV field
1 0 00 indirect value in CONTIEXT
1 0 01 i in DYNAMIC
1 0 1o in MAIN CODE (constant)
1 0 I 1 in EXT. CODE
I 1 00 indirect pointer value in CONTEXT
I I O0 " " in DYNAMIC

Table 2 Segment Addressing modes

Instruction meaning

RF(ll,d) access a Variable Descriptor . .
INDD(lIl,d) build an Indirect Variable Descriptor
A8SIGN(lld) assign a value to a Variable
CALL(ll,d) access a Procedure Descriptor
CA" (lld) access a runction Descriptor
PARAM(SP,-n) assign a value to a Parameter
CLRV(lld) clear a Variable (ItwO)
SETV(1l,d) set a Variable (S:-true)
INCV(lld) increment a variable (1:-I+I) ,.
DECV(11,d) decrement a Variable (Is: I-1)

Table 3 1 the PASC-HLL access instructions

226

4,V&



PASCAL :type COWVXI (blue,vhita,red);
T1 - array (0.-9) of COLOUR:
T2 - array (4..B) of TI;
T3 - array 0-,10) of TI;

PAmc-ULL type descriptors

T2 type descriptor T3 type descriptor

4 1S 10 1 10t 10

so 5 arra4 100

TI type descriptor

0 9 blu

Cal t0 white

CODDUR type descriptor re

0 2

Figure I qappxl, of ARmy tvve descriptors

Fres area
Top of stack--* _______

SP Register

Variables Values
(if needed)

:'PVariables Descriptors (up to 64)
BASS Register4

Mark stack
Control Word

*pParametorm; Descriptors (up to 62)

Parameters values
(if needed)

- , .Calling procedure area

I _ _ _

Figure 2 1 the PASC-HLL stack mnechanism (COMTXT segment)

227



incoded Internal name Comment

00 D D-0- 255 for Global Variables

0 10 d

0 1 I d0, .63 for Local Variables

1 00 d

1 0 1 d d--64. .-2 for Parameters

I110 '1

1 1 01 n Special WIlTH addressing

I 1 n Special SP' relative addressing

Fig.3 -The PASC-HIL. Variable Internal Name encoding~ (10-bit)

PASCAL structure PASC-I4LL structurv

X t- TCI+t)-i RENCT), REF(I), INC, INDEX, DEC, ASSIG?4(X

while exp do stat LoOP(,)1 expWI4ILEjstatfENDLDOP S

for I t- expi to exp2 do stat; expl,exp2,F'ORUP (L 1
ASSIGNCI) stat'R,ROFUP

case exp of 0,1:statl; exp,CASE( ),

3,4:stat2l LIT(O),LIT(I).OF(f),stat1,FO,

elsetstat3 1LIT3),LIT(4),0F(?),stat2,FO,

end; 't3,O

if exp then statementj exp,IiF( 1),statement,FI;1

PROCNAiECexpl,exp2); CAI.L(PROCNAMtE) ,expl,I'ARAM(SP,-3),

exp2,PARAM (SP,-4) ,F.N'ER;

4SET (3,1..J]); LIT(0),LIT(3),ADDELE?4,

IPEF(I), REF(J), SUBSET, UNION,

A851014(SET);

Fig.4 -Equivalence between PASCAL and PASC-HLL structures

228



- -, _____________________

I
t
V __ __ ____

24-bit address I
MAIN 5TOPA(�E

and
SYSTEM

Inter
24-bit ALL)

lb-bit address

ProceRsor

N

tnLern4Il Ds a ptnr Hu�

_______________________________________________________________________ 9

F'iqUr'� ' PAS(-HI.I i ntt�rna I i tt'' turv

'.1

2I'9

4
4.

-- ½.



DEPENDENCY OUEUE

Just modified variables a Deferred access variables

variable name A BI CIDE content-addressable

variable descriptor V V V

•! POP modifl e D • ........ • .heads.._ of the flist for D

Srwhen hors

In In~aC

7 EVALUATION OUEUE CPOP PAC

current position current position

DEPENDENCY OUEUE

variable name A BC fl E

variable doesrpo V V V V

deferred access to E

V V V
d d d

PP-- EVALUATION tIUEUE PAC
current position current position "

1-irure 7

230



AN EXTENSIBLE STACK-ORIENTED ARCHITECTURE FOR A HIGH-LEVEL LANGUAGE MACHINE

Robert P. Cook and Insup Lee

Computer Sciences Department and
Mathematics Research Center

University of Wisconsin-Madi&vuj
Madison, Wisconsin 53706

Abstract code. The MCODE improvements are based on
our analysis of 5,000 Pascal procedures
with over 160,000 lines of program text.

MCODE is a high-level language, stack The next section gives a brief EM-i
machine designed to support strongly-typed, description which is followed by a discus-
Pascal-based languages with a variety of sion of the MCODE improvements. Also, the
data types. The instruction set is con- instructions used for expressions and Modu-
structed for efficiency and extensibility la statements are illustrated. Finally,
and is based on an examination of common some comparisons are drawn with respect to
programming language operations. The ar- other current architectures, including the
chitecture provides programmed control over the PDP-II[l] and VAX[2].
both operand type selection and address
field widths. In addition, right operand 2. kgund
addressing is included to improve the size
characteristics of MCODE instructions over Tanenbaum designed the EM-lO1) to op-
those of traditional st.ack machines. The timize the most frequently occurring high-
design is compared for efficiency with the level operations in programs as analyzed by
instruction sets of the EM-1, Digital himself, Knuth(8), Alexander and Wort-
Equipment PDP-11 and VAX-11/780. man(3], and Wortman(13]. The most effec-

tive innovations in the EM-1 are encoding
CH Categories: 4.12, 4.22, 4.9, 6.21 references to the first 12 bytes of local

procedure storage and 8 bytes of static
Keywords and Phrases: stack machine, com- storage as single opcodes, array element
puter architecture, addressing modes, accessing, and *if" statement comparison

and branching. The hypothesis is that
smaller code sizes will enhance faster pro-

1. Introduction gram execution by better utilizing the
bandwidth of CPU data paths. In addition,

With the growing use of high-level as the machine gets closer to the source
languages for systems and applications pro- language, compilers can produce more effi-
qramming, computer instruction set design cient code and can eliminate space-
has moved from bit selection of internal consuming peephole optimization routines.
CPU data paths to instruction sets which Another important aspect of the EM-1
are oriented to common high-level language design is the notion of giving the program-
operations. Tanenbaum[10] discusses a mer code improvement tools which are
stack machine(EM-l) designed with this phi- machine independent. In Knuth's Fortran
losophy. The SM4-1 is intended to directly analysis[8], he strongly suggested that
execute the code produced by the SAL coin- program execution histories be automatical-
piler. SAL is a typeless systems program- ly generated for each job. With
ming language similar to BCPL[9]. In this Tanenbaum's machine organization, the pro-
paper, we have extended the EM-I to provide grammer need only declare the most fre-
an instruction set for a Pascal-based, quently used variables first in textual
strongly-typed, systems programming order to effect a performance improvement.
language, Modulae12], which was designed by
Wirth and implemented by Cook[6. our 3. Extensions
Modula machine code, MCODE, not only pro-
vides extensible type operations but also The first problem that we found in
maintains the efficiency of the EM-l. The trying to use the EM-1 design was its lack
EM-1 was designed based on an analysis of of a variety of data types. Modula pro-
300 procedures comprising 10,000 lines of vides the user with character, Boolean,

-- ..... long and short integer, and floating point
The author is partially supported by U. s. operations. When the EM-i is extended to j

Army contract DAAG29-75-C-0024 and National encompass these operations, the 255 opcode
Science Foundation grant MCS-7903947. limit is quickly exceeded. our solution

was to introduce modes of computation. A
mode sets the CV='9fetch and execute mi-

231

4 .1- , , ,. "



-R W

croprogram to adapt to a particular data 2**32 bytes. The instruction formats are
type such as floating or integer. A col- designed so that the most frequently occur-
lection of 8-bit opcodes is provided to set ring operations require a minimum of in-
the CPU mode. Therefore, a single "+" op- struction space.
code suffT'i for all addition operations A format 1 instruction can address the
on any data type. The setting of the mode first 8 16-bit words of the current
can be thought of as the replacement of the procedure's activation record. The impact
microcode jump table for a subset of the of this convention can be seen by noting
opcodes. that our results indicate that 97% of all

The mode approach is based on our ob- procedures have fewer than 4 formal parame-
servation that expressions are usually ters and 90% of all procedures have fewer
comprised of operands of the same type; than 4 local variables. Tanenbaum's short
thus, we expect that the space occupied by address convention for static variables was
any extra instructions needed to set the eliminated since the size of the static ad-
mode will be offset by the savings in op- dress space is not known until load time.
code space. Modes also provide an expan- However, the number of parameters and local
sion and contraction capability for machine variables is known at compile time. In ad-
families. For instance, all floating point dition, our analysis shows that 54% of all
operations could be eliminated to build mi- variable references were to local variables
croprocessors intended for traffic control or parameters. To test the effect of this
or a decimal mode could be added for com- idea, we changed all the local variables in
mercial applications. For many environ- the Modula compiler to C17] "register"
ments, the savings in microcode space could variables which decreased each instruction
be significant. reference by 16 bits. The compiler's size

Our second extension was to provide decreased by 10% and its compile rate went
direct addressing for right operands. Ac- up several hundred lines per minute.
cording to all of the analyses, expressions The format 2 and 3 instructions can
tend to be simple. Tanenbaum found, for have their operands on the stack or can
instance, that 31% of all assignment state- have a right operand specification.
ments had a single term for a right hand Operand addressing is optimized in a
side. Consider the evaluation of "a+b" on fashion similar to that provided by the
a typical stack machine. We must "push a", B1700[11]. The ANODE instruction sets the
"push b", "pop b and add", and *replace a address field width to 8, 16, or 32 bits
with result*. The alternative is to "push for references to either static or local
a", "add b", and 'replace a with result', storage. Note that program counter rela-
This sequence not only saves an instruction tive addressing is not affected. More than
fetch but also the redundant push and pop 90% of all Modula programs can use an ANODE
of "b" plus the instruction space. These which selects 8-blt local and 16-bit static
savings will be replicated for every term addresses.
in any expression which can be evaluated As an example, the 8-bit ANODE setting
from left to right. would save 8 bits per operand reference

FinAlly, we have extended Tanenbaum's over the 16-bit addresses used in the PDP-
single byte addressing modes, provided an 11. The ANODE setting has no effect on in-
option to shorten address fields, improved direct addressing on the stack. The VAX
subscripting, record and pointer referenc- implements 8-bit address fields but an 8-
ing, and introduced some additional high- bit selector is also required for a total
level language oriented constructs. In the of 16 bits.
next section, we will discuss operand ad- A natural concern, however, is keeping
dressing. AMODE set correctly. Since Modula has no

"go to", the ANODE bookkeeping is easily
4. Operand Addressing maintained on the parse stack. Also, the

procedure call instructions automatically
The three MCODE instruction formats save and restore mode information. In ad-

are illustrated below: dition, the linkave editor is responsible
for checking address field overflow if too

FORMAT I: small an ANODE is being used. MCODE imple-
FORM 2,3,3 0,opcode,local address ments the following addressing forms:

FORMAT 2: A operands on the stack
FORM 8 opcode [operands] B (staticllocal)x(directlindirect)

C local direct
FORMAT 3: D indirect address on the stack

FORM 8,8 255,opcode [operands] E 32-bit absolute address
F constant(8, 16, 32 bits)

In MCODE, addressing is partitioned G constant(O-15)
into references to either static or local H (subscriptlelement) x B
procedure storage. The MCODE machine uses subscript-((spf)-l)*Mode size + EA)
byte addressing and has an address space of element -((spt)+EA) Effective Addr.

232

,~i.



.I
I local x (direct,indirect,indirect x (pc) += SE(K)

(subscript,element}} CMPB<> Form C,K if (sp+)<>(EA) then
SJ 8-bit jump offset (pc) += SE(K)

K 16-bit jump offset
The PUSH instruction uses two opcodes

Forms B and It cover accesses to simple for direct or indirect references to simple
variables, pointers, one dimensional ar- variables, and two opcodes for indirect, or
rcys, and record elements occurring in "var", references to arrays and records.
static and local storage, or as parameters. The number of addressing modes for POP was
Subscript addressing assumes a lower bound decreased to one in order to increase the
of one which is the most common case. For number of opcodes. In addition, we found
direct addressing, different lower bounds that variable loads occur in a 2.7/1 ratio
can be subtracted from the address field to over variable assignments which indicates
produce the correct subscript calculation, that POP is used less frequently than PUSH.
Forms F and G are used for immediate ad- The last four opcodes were assigned based
dressing while forms E, 3 and K are used on our frequency of use information. Out
for program counter relative jumps and ab- of all operator occurrences, "+" was used
solute addressing. Forms I and C are used 21% of the time, "-" was used 9%, "-" was
with the format 1(8 bit) instructions, used 20%, and "<>" was used 10% of the
Form I can be used to access local vari- time. According to Tanenbaum, the dynamic
ables, "const" simple parameters, "var" frequency of these operators is even
simple parameters, and array and record higher. In conditional expressions, we
parameters. found that "-" made up 33% of all operators

Tanenbaum(l] recommends that refer- and that "<>" was used 171 of the tin)e.
ences to global procedure variables be im- Since Tanenbaum found that "if*, "repeat",,
plemented by a microcode search of the pro- and "while" had a dynamic frequency of 38%,
cedure call back-chains. The claim is that the comparisons were implemented to both
this method eliminates the overhead of test and jump. Using these formats, many
maintaining a static display. Based on our subprograms can be completely coded using
experience with implementations of Algol[5J only 8 bit instructions.
and Pascal(4], a single reference to a glo-
bal variable uses more time than that need- 6. Right Operand Addressing
ed to update the display. The following
code sequence is typical. Because of the number of opcodes need-

ed for right-operand addressing, we res-
pr'ocedure entry: tricted the operators based on the same

CONTROLBLOCK[SAVEI=DISPLAY[NES'r frequency analysis which was used to select
DISPLAYtNEST]-PB the 8-bit instruction set. The following

table lists the instructions which can ad-
procedure exit: dress memory:

DISPLAY (NEST] -CONTROLB LOCK (SAVE]
PUSH Form A,B,D,F,H,G (sp4.) = (EA)

The first ten locations in static POP Form A,B,D,H (EA) = (sp+)
storage are used for the DISPLAY. Accord- PUSHA Form B,EH (sp4,) a EA
ing to our study, 85% of all procedures ADD Form A,B,F (sp) a (sp)+(EA)
were not nested; 11% were nested one levell ADDTO Form B (EA) - (EA)+(spt)
and 4% were nested 2 or more levels. Out AND Form A,B,F (sp) - (Cp)&(EA)
of the S,000 procedures that we examined, CLR Form B (EA) - 0
-'ne was nested to 4 levels. Therefore, a CMPB= Form A,B,F if (apf)-(EA)
maoimum of ten nesting levels was con- CMPB<> Form A,B,F if (spl)<>(EA)
sidbred sufficient. Next, we will examine DEC Form B (EA) - (EA)-I
the format nf the one byte instructions. INC Form B (EA) a (EA)+l

MUL Form A,B,F (sp) a (sp)*(EA)
5. Local Variable References SUB Form A,B,F (sp) , (sp)-(EA)

GUBFM Form B (EA) = (EA)-(spt)
We followed Tanenbaum's design by al-

locating 64 opcodes to special addressing. The selected operators make up 80% of all 0
As we discussed previously, the local varn- operator references in the Pascal programs
able address space was set at 8 16-bit that we analyzed. Address modes B and F
words, or a 3-bit address field. This left were chosen since 35% of all operand refer-
3 bits for opcodes. These 8 opeodes were ences were to simple variables and 36% of A
partitioned as follows: all operands were constants. The ADDTO and

SUBFM instructions correspond to Modula
PUSH Form I (sp4,) , (EA) statements.
POP Form C (EA) - (sp+)
ADD Form C (sp) +- (MA) 7. Array, Record and Pointer References
SUB Form C (sp) -" (EA)
CMPB" Form C,K if (spt)-(EA) then Simple record references are treated

3AA



just like simple variable references and
can be accessed using direct addressing. ABSolute LoGical Shift
However, arrays of records or records as ARith. Shift MOD
parameters must be accessed by an offset CONVert NEGate
from a base address. The *element" address DECrement NOT
mode implements the pointer or parameter DIVide OR
case. DUPlicate SQuaRe

Our analysis showed that 29% of all INCrement XOR
array references had a single constant sub-
script and that 60% of all subscripts were MCODE also includes instructions for moving
a single variable. The constant subscript and comparing blocks of storage as well as
case resolves to a variable address so the library call instructions to implement the
standard address formats can be used to ac- Modula virtual machine environment and the
cess the array. The *subscript* mode was floating-point math routines. In the next
introduced to implement accesses to one di- section, the code generated for the "case",
mensional arrays. In fact, we found that "if* and "for" statements will be dis-
references to multidimensional arrays made cussed.
up only 10% of all array references. MCODE
uses descriptors to implement the multidi- 9. Statements
mensional case.

In the EM-l, every array has an array Procedure call and return are very
descriptor cell, an array descriptor packet similar to the EM-1, except for the display
and an array data area. This approach updating, and will not be described. The
works fine for Algol but not for Pascal- *if" statement is implemented with the fol-
like languages. First in Pascal, all ar- lowing instructions:
rays have static bounds so a single
descriptor can be generated in static CoMPare - > < >. <. 0
storage. This approach allows descriptors CoMPare Branch a > < >- <- 0
to be shared and saves stack space as well Branch so <>O
as setup time. Secondly, Pascal allows ar- Branch
rays of arrays and pointers to arrays which
implies that the base address of an array As an example, the statement
may already be on the stack and not in a "if a<>b tbhn inc(a) endN would generate
descriptor. The MCODE SUBS instruction the following code:
transforms the subscripts into a single
byte offset which can then be used by the Instructions Size PDP-11 Size
PUSH or POP instructions. The SUBS in- PUSH a 1 • a,b 'fr
struction also checks each subscript for CMPB- b Li 24 JEQ LIl 16
validity. INC a 16 INC a 32

SUBS descriptor address 48 96

The instruction address points to an The syntax and code generated for the "for"
array descriptor which contains the number statement are listed below.
of bounds, bounds pairs, multipliers, ele-
ment size and virtual origin. SUBS leaves f62 v:-el ky e2 t. e3 do S end
the element index on the stack. For in- PUSFA v
stance, "A[I].B[J]" would produce the fol- PUSH el
lowing code. PUSH e2

PUSH e3
PUSH I FOR L2
SUBS A desc. Ll S
PUSHA element( A+B offset) ENDFOR Ll
PUSH a L2
SUBS S desc.
ADD The "case" instructions are as follows:

For most Modula programs, each array type CASE constant, offset
can be described by a single instance of a CASE constant, constant, offset
descriptor no matter how many variables of CASETBL constant, constant
that tyoe are created. Next, the expres-
sion operators will be described. These three forms cover the situations in

which the Ncase" is distinguished by a sin-
B. Operators gle value, a range of values, or a jump

table. Next, we will analyze the effec-
The following table lists the MCODE tiveneps of MCODE with respect to other

operators which are all format 2 instruc- machine designs.
tions.

234



m- .....

19. Comparison with Other Machines
. se(2 ] VAXI1/780 Architecture Hand-

The results in Figure 1 extend the book. Digital Equipment Corporation,
table in Tanenbauma(l] to include the VAX (1977).
and MCODE. Obviously, the special address-
ing'and descriptor-besed array computations [3 ] Alexander, W.G., and Wortman, D.B.
make a significant difference. MCODE per- Static and dynamic characteristics of
forms better than the 04-1 for expressions X'L programs. Computer 8, (1975),
and parameter referencing and is as good in 4? 6.
all other area&. The difference in the
*it" tests occurs because the C4-1 assumes [4 1 Burger, T.M. A portable optimizing
a 2-bit field for branch offsets while we Pascal compiler. M.S. Thesis, Vander-
used an 8 bit field. The VAX instructions bilt University, (1978).
are computed using 8 bit displacement ad-I dressing. In addition, it should be point- (5 1 Cook, R.P., Hansen, G. and Haynam, G.
ed out that the VAX and MCODE are support- Extended ALGOL 60 reference manual.
ing many more data types than the PDP-11 or Vanderbilt University Computer Center
the EM-1. Figure 2 recomputes the space Report, (1970).
for the same statements but with oil the
machines forced to use 16 bit addressing. [6 ] Cook, R.P. An introduction to modular

The values in Figure 2 give a lower programming for Pascal users. Univer-
bound on the performance of MCODE whereas sity of Wisconsin Technical Report
Figure 1 gives an upper bound on the 372, (Nov. 1979).
difference. For 16-bit addressing, which
would he u3ed for references to static [7 ] Kernighan, B.W, and Ritchie, D.M. The
storage, MCODE is better in all categories. C Programmin Language. Prentice-HTaT
The EH-1 is forced to use a 16-bit opcode Tn., (1970).
to access 16-bit addresses which results in
its poor px!rformane. Since 47% of all (8 Knuth, DE. An empirical study of FOR-
variable references are to static storage, TRAN programs. Software--Practice and
we feel that this improve~rment could have a Exporience 1, (I177)1E5-13
significant impact on executiosi speed. The
VAX is still quite poor with respect to [9 1 Richards, M. BCPL: A tool for compiler
subscripting even though a special instruc- writing and systems programming.
tion is available for that purpose. Also, APIPS SJCC V. 34, AFIPS Press,
the figures do not reflect the dynamic et- R'nale,-i.J-, (1M9), 557-566.
fect of the savings since Tanenbaum's meas-
urements indicate that the Figure 1 results (10) Tanenbaum, A.S. Implications of struc-
are even more significant at runtime. tured programming for machine archi-

tecture. Comm. ACM 21, 3(tarch 1978),
11. CC11CIL3ions 2 37-246.

We feel that •- v availability of, modes (11] Wilner, W.T. Design of the Burroughs
as an extension A hmnism for high-level 1788. AFIPS FJCC V. 41, AFIPS Press,
language machines can De a signIficant fac- Montvale,7-¶•.,-"T79'2)7"489-497.
tor in adapting microprocessors to changiug
environments. Also, modes contribute to [121 Wirth, N. Modula: A language for
space efficien;cy in the instruction set. modular moltiprogramming. Software--
The use of address mode settings to reduce Practice and Experience 7, l(Tan. "
address field sizes and right operand ad- 1977), 3-35-.
dressing also contribute space savings.
The current ve'sitn of Modula produces [131 Wortman, D.B. A study of language
PDP-Il or VAX code so we have the means to directed computer design. Technical
compare the exact stati~tics on the static Report CSRG-20, U. of Toronto, (1372).
and dynamic behavior of MCODE with these
machines using the same programs in the
same environment. Our analysis should con-
tribute to the alternatives available for
opcode design in modern machine families.

REFERENCES

[1 ] PDP-lI Processor Handbook. Di-
gital Equipment Corporation, (1975).

235

" ' " , . ......- - i- ~ .. . ..-. .-



Figure 1

Direct Addressing Instruction Size(in bits)

Statements MCODE EM-1 PoP-11 VAX

it-0 16 8 32 24

i:-3 16 24 48 32

i:uj 16 16 48 40

i :i+1 16 8 32 24

i:ai+j 24 32 48 40

i; j+k 24 32 96 56

i:-j+l 24 24 80 48

i :=a[ j] 24 32 128 104

a i]"0 32 32 112 88

aEil] z-b[ ] 40 48 192 168

a sii] :-b[J]+c[k] 64 80 304 248

ati,j,kl:-6 64 48 176 200

if i-j then 32 24 64 64

if i-0 then 24 16 48 48

if i-j+k then 40 40 112 96

if flag then 24 16 48 48

call p 24 16 64 32

call p(i) value 32 24 96 56

call p(i,j) 40 32 128 80

call p(i) byref 40 32 112 56

for i:tl by 1 to N lo a[iI:0O end

104 88 17u 116

236

*':• 4.4'I-'

S. .. •... .. .•• . . . ,o , ,. •• -• , : • :•;•J~-, ., i....



Figure. 2

16-Bit Address Fields

statements 1:CO. E EM-i PDP-1i VAX

s1-9 24 32 32 32

i:*3 32 48 48 40

I:-j 48 64 48 56

i:-i+l 24 32 32 32

i :i+j 48 104 48 56

i:=j+k 72 104 96 80

j:nj+l 56 80 80 64

Israti] 72 96 128 128

a ~ij:-9 64 72 112 104

ati]linb[J] 96 128 192 290

atiIj-b~j]+c[kj 152 200 304 296

ati,jk]ju9 128 136 176 232

if i-J then 64 96 96 89

if i-O then 48 64 80 56

if i-j+k then 88 136 160 129

if flag then 48 64 89 56

237

................................................... 
." '



The High Level Language Instruction Set

of the SYMBOl+ Computer System

Robert F. (mehif

DaviJd R. [)iI:I-lT
Bell Laboratories

Murrat Hill, New Jcrsey 0t7974
ABSTRACT

The instruction set for the SYMBOL computer
system is discussed in detail, 'The SYMBOL computeri• is a large scale ntultiprocessor which intplementf, iisalrgcl nutpoesrwic mlmet perate on thle user data structures. Throughout ih e ast el this pipel

•+high level language, compiler, text editor and time- owaeo ieue aasrcue.Truhu lcrs i hsple
shig oeve tlnguasem co tier, ext editor dwr Te the word "string" referring to storage means a separatc and logically
, shared operating syrstem entirely in hardware. ' Sequential series of words, used in the sane nianni itis segmcnents in
intent of the paper is to document the instruction set. other computer systems.
"as used in the working system for over s•ven years.
Covered tire the internal codes, what they do, and the The SYMBOL Programming Language

J ~~~associated machine maintained data srcuea t i t d uBecause the instruction set of the SYMBOL. machine is so

Introduction directly tied to the language it implements, the reader will find the tel-
lowing sections easier to understand by referring to tine of the many

T]*he SYMBOl. computer system t ,.2,- is of great itmportance in descriptions of the language, 3 .1 9 .tt Basically. SPL is a genertl.
the field of computer architecture since it represents a major departure pnrpose procedural block-structured language. In many ways. it can
from von Neumann architectures and is one of the few examples of an be viewed as a mixture of APL, ALGOL and LISP. 'the language is
experimental (or commercial) machine that resulted in a lull scale free of most declarations as to the size or type of data objects; these
working High Level Language Computer System. Although the high attributes can vary dynamically during the life ot a program. Data
level SYMBOL Programming Language (SPLl was implemented in the objects are either scalars (i.e. a sequence of characters that may hap.
machine without the aid of software, SYMBOL does have an internal pen to fit the definition of a number, Boolean, or string), or the ohbecl
instruction set much like any computer. Unlike most computers. how'- is a structure whose elements are either wcalars or other structures.
ever, the SYMBOL Instruction Set is non-son Neumann andd at ;i very Structures may be of any arbitrary shape which is represntable by a
high level, with almost a one-to-one mapping l•,tween tokens In the tree. and mayt not be recursively defined. Proccdori,, pam paranctels
source code and instructions in the object ctde., Though the instruc- via call-hy-name. aluo known as call by substitution. There are no
tion set is probably the hest way to dsciribe t(ie contputtional abilities automatic variables: all variables are statically alli'ate(l. S•'oping rules
of SYMBOL, it has been one of the least documented features. hibs are such that a vanable is known only locally. unless esplicitly declared
paper seeks to fill this gap by providing a detailed description ut the to I1w global. SPL also has ON blocks, simila tit may ways to ON
instructions, how they are executed, anid the internal data structures blocks in PIt.
used in executing SYMBOL object programs.

Instruction Set Overview
SYMBOL Architecture Overview SYMBOL instructions are ordered in reverse Polish notation aiid

Because of SYMBOL's unusual mtachine architecture, a brief make use of an expression evaluation stack. SYMBOl. rises both
description of the system is in order, The SYMBOL computer system descriptors and tags for recording the attributes and structure of data.
is composed of eight relatively autonomous processors: the System Descriptors are grouped together in Name Tables. generated by the
Supervisor, the Inptit/Output Processor, t'ic Channel Controller. the Translator at compile time. Type tags are ass.ociated with the data. at
lTrum Controller, the Memory Reclaimer, the Memory C'ontrollet, tile the beginning of a data object the tag records the type; a tag is also
Translator, and the Central Processor. The last three of thef " are of used to denote the end of a data toject. The basic instruction set is
special interest for the purposes of this paper. shown in Table 1, with the internal bit representation shown in hexa-

Program execution is controlled by tire Central l'roccssor. which decimal. Throughout this paper internal citxings will be shown iII hex-
is itself composed of four sub-procemors. The Instruction Stquencer is tidecimal unless otherwise indicated. Addresses tii SYMBOl. tir 24
responsible for fetching instructions, executing some directly and bits long and address sixty-four bit words. For hardwate hussing still- 'i

delegating the rest to another sub-procmssor. The Arithmetic lrtoces. plicity, each word contains a maximum of two insiructitmou. each half-
wrr

4 performs traditional arithmetic operations with precision con- word instruction consisting of an eight bit oimctxle lillowcd ty a ,

trolled, decimal arithmetic. The Format Processor5 handles character twent)-four bit address field. Only six to the olic•itles require ain
oriented ormrations, as well as the packing and unpacking iif numbers address.
Lastly, the Reference Processor controls all identifier referencing :•

One of the more unusual aspects of SYMBOL is that the Internal Representation of Data Values

metnory structure is not organized as a contiguous set of sequentially 'The storage format for scilar character string values consists it it
numbered storage cells, Instead, storage is viewed by most of tire pro- String Start character (FS), followed by the characters in the string in
cessors as a limitless suppi, of variable length storage strings, whose ASCII, followed by a String End character (F6); this is called the data
storage cells (machine words) are logically sequential but may not be string format. Scalar values appear in the object string as a result of
consecutively addressed in memory. The SYMBOL. memory structure literals in the source stning. A scalar value may' be 'stored inii Nanme
consists of four hierarchal levels. At the lowest level a core memory Table if it is six or fewer characters in length Itnce triere musa tib
and a rotating magnetic dium constitute the ql~ysical memot-v. Next is rtoomn for the string, start and end characters in ,i eight chiractel
a paged virtual storage system consisting oi 2" 64-hit words, ut which word) For longer strings, a memory string is aluiuated. and it ;SliItCl

4096 2K-byte pages were implemented. 'Tlhe Memory Controller, with to this stritg is placed tit the Namne Table. Il.vicvi, if tile sting

,ta set of high level memory rorerations. rlis, virtual storalge vinto "logi- should later shrink to six or hewer characters. it •-i uld icnitiat ilu hl.c
cal storage.,',7 At the highest machituc lcici arc: the oi•ti't iosi which nicinuiry %trintg, and not be pIlaced iii the Naiiiv I alilh'

W work •luwal tytw 'A.lc univermsy multtk' NSI imiimi i IU NIi 3
238

!b



'table 1. SYMBOL Instructian Set

j tJincl Imik lit NuiOIrit
4i tipt1,,t Illoek I- I o I rom Reclaimii Fabile S~ifiiipI

(Jroup Pointer Variable
Assign Link to Numneri

Ou(~tput Da~ta (ru ______ Siutr
-- Gru ti-ur 4

2 Disablie Insert Numeric
__ _ __ _ Group __ _ +

3Enable String Terminal Link Iu Nmei
HeaderLal -

Fetch Ditectt Link to Numeric
4 Exact and Pamer Data in True

_______Follow mer Name Table Zero
If Falset Fetch lrrdirecti Link to String

5 Go To Empirical Then Ueen Pat Cresolved Stt
Jump ____ Subscript

Follow Link to String
6 Pause and Tempobtrars En

Fetch ___ Dta n

7 Return SystemEnd Fetch IIrnlL'
7 ReturnSystem Block Direct 1rntr

Store Parameter Link to
B4 efore Limited In and Re-turn Structure

Assin Field ___

9 Same Abs; Store Source

A After Lte *Store and Ineeie Link to
Insert lttgnc Field (In)

13 Not Gle End Store Neoe Link to
No ie + Statement Direct Negater~in

C nd Les imt Delete Field Link to Begin
______ to End Mark__ Subsrutre Vto

D O Nq - Eqal Delete Perform Begin
D r NqEul String Subkcrit1~!un -. Structure

Delete Link to End
E on Greaterý Format Page Data III Vco

List __ N.T.(lr eco
store End

F akInterrupt TerminalStuur
________ _______ Header __ tuur

fRequires address field.

A second storage format is used for packed decimal numbers, Structure values may appear on the s' .ck or in the object string
the numeric field format. This is the format in which the Arithmetic inI linear format, or elsewhere in tree format,t 2 In tree format, a strsuc-
Processor produces its results. If an operand for an arithmetic opera- ture is stored in a memory string as a succession of scalar values and
tion is in data string format, the Format Processor will automatically links to substructures. The scalars are stored with start and end char-
convert the operand into the numeric field format before the Arith- acters as described above, and are aligned on word boundaries. If, at
netic Plrocextsor proceeds with its operation. The coimponents t . it titter time. the scalar expand% and requires moire space, then addi-
ambrnlc stored bit numeric field formal are the exponenti sign. the tional (64 byte) memory groups tire linked (inaerted) into the memory

miantiss.a sign, the expinent msgnitude. the mantissa, and the precision siring A link ito a substructure consists of a single word beginning
osLe *11w esxsiimnt aIntl mantissa signs appear as two bits bit the %aili %kithi the character E.C, and containing an address; pointing to a
character (1it, Fl, Fl. or F3). The character following the mtark Uiaur- separair miemlory string whetu the wubstrueture begins. Following the
acter contains the expmnent magnitude as two BCD digits. The I it) last component in the structure, and in each asabstructure, is the End
99) digit mantissa is stored after the exponent character and occupies as Vector character (F7). A null vector, the analogue of the null string,
mtainy words as are required at ten digits per word. (The first two and is stored simply as a memory string beginning with an F7.
last bytes of a ssord arc mit used for packed BCD data so that mantissa In the linear format, the structure value begins with a Begin
digits %kill always occupy, the same portlion of the word.) Following the Structure character (1`1)), and ends with an End Struicture character
last mantissa digit is it four bit precision code which indicates that the (FF1. Between these two characters are stored the components of the
number represented has either infinite precision (1111), or only that (first level of the structure. Scalar components are store with start and
precision implied hy the number of mantissa digits (1110)t. The end characters, aligned on word boundaries as in the tree format, If
representation for a true numeric zero starts with an F4. The last thc component is a substructure, however, It IsI rtepresenited by a a StUr
word of the numeric string is indicated by a set, high order hit in the Vector character (FC). followed by the components of the substructure

last byte(which flay be scalars or structures), followed by an End Vector
239



character (FIE). 'rhe stairt and end chtaracters F'. FD,. FE. and Fl- tit %anabttlle bettag sub ~rapted ,ind t he subset apt last atditt as e1%d Ill .1 11Ac

tire linear fornalt are the only essential characters in tihe %(Il taid mt aemotry st rintg and at link win d (L-.5 IaS plaiceatl althe Staauks 1-411111111 Ita
begin. so -.even bytes are always wasted in these words, the string. The stabseiripted reference is tnot osaluatcat itital it is ,Alsoa-

If anl initial value statement in SPL. is preceded by tile kev.witd lutcl% ntecessairy tol haive the vatlue or locationa aadiaacale
SWIT~lCH', the Translator treatls the initial values thait asic being1
aass-igted as identifiers for labels. The 'Translator sltore,% valaaes tat the Name Tablesl
aobject strting ats it would for ain ordinary initiali value stattementat. usintg a 'The TIranslator prodluces a Name 'fialle tar aClah hlaKL t(Main
sinagle word] to store eatch scatlar value. The scalar label value as stored program. procedure or ON block) in the source strara All retceteates
tas at watra beginning with tile character IX) (which is aim) ttte aipeode made in lthat block tar labels. procedures, ait varattllic are tirade
fatr the Natme Table Paointer instruction), followed bay at 24*bit atddress through the descriptors itt that block's Name I tatitl: lagarcs Itaaaws
porininttg Ita a datas descriptor for the label in at Name Tatble, followed the oarganrizattion of the Naime T-able and fagure 2laurass th lt pii'arta/ia'
with thre chlatratter F6a. Label vatlues may bx- "moved around' like aithet tuna taf the cotnrarl words. Thte first word (it it Namite little as catlled
vatlues (e.g. aisigtred to) vatriables, passied as procedure aargumtenats. the Blocrk coantrol Word It contaiats twit aaddress faelads %4hich atile aased
r'eturned aits futnctioan vatlues. etc.). And art coursei Iah libell "idllmay tit linak all tite Name Tattles tait it prtogramt IThe tatsi aulda ess hel is~Ia
Ire the operand oif a (it) tt irstructiona. L~abel valates canntttat applear as% used itat faorwaird lank ,all the Natne Tables it getlite a at a saingle last.
oaperan ds fiar any atrithmtetic, st rang or lNaleaan opreratiotns. begattaa tg with thte Nante latlle fair tile ttaaia paratgw att*I lie scatira

atddrests field is used als at poinater itat the Niatae 'taille till t tar statacatlla
enclosintg block. ('The Block Control Woard lair the Namte Fattle al at te

matin progratt which is the outermost block', hats tatl Suach poitnter ) '[he
actual bit definitions are shtown in Table 2.

'The Evaluation Stack The Block Control Word contain s abit indicattang blocrk tat itse.
and at bit inadicating block recurwcd. When :t bloc'k is enrteredl. tlte

For eatch active instanace of a block, the Cenatral tProcessotr maitn- blarek-tttuse' hit is set, anad the bit is clearedt when ialear Itlaek as avlt. 11
hiats at staick to be used fair evaluatitag espressionts, p~roceduare calling, a trock is reentered (iae. etitered when the bltK'k'tia'ats bat as alivatly
attd passitng information to other processors, (Whenever pos~sible, the set), the Central Processor caills oin a softssarv iotatttt tat petlatrat at
('entratl Processor keeps the mto woird arf the stuck in atill internail regis. "fisuta" tan handle recursion, *3 (The hardwaire wats ntoti 4lsar'ataaatli
tei ) Eatch stack is a uanique memory stritng attd is creatted %% ten a block designted to htandle recursiona) T 'his tatftware mutst vi-vaae ia coapy a at thec
as enletred, and deleted when the block is exited. block's Name Tabale. motifxiy the original Natmte 'Table tat Initittalaze locatl

The first three words of the slack tire a save treat tar the tlock. varirables, attd theta set the block-recursed bit Simitlatr]%. it it I1tic~k is
Whteta the slack is created, a pointer to the block's Name Table. aint at left with the block-recursed bit set, another stiltwartr tatatifili as called
potinter to the calling bloack's stack are stored in the first woird of the thati mrust utndo the wvork of the first roustine.
stack. If thin block should call another block (explicitly by a procedure Following the Block Coanttrol Word is it saccessattat ita enttries tlal
caill tar imnplicitly by an ON reference), thent a poitnter tot tile start of each identifier in the block. Each entry conmsists atl thte ASCII natatme tat
the called block's object string and the contents of the status register the Identifier, taking as many eight-byte words as ttece'.sary and paid-
are stored In the second word. Alao,-the return point and top of stack ding with nulls, and followed by a one word athoa descriptor 'far ite
pointer are stored In the third word of the stick. identifier called the Identifier Control Word (IDLCWI. 'Table 3 shotws.

The remainder of the stack is for expression evatluation,. If itn the bit layout of the IIX.'W.
operand is being puahe on the mtack and it is one word or less 'in If the tdentifier is a local variable, it as Sto tagged air the 11KW.
length, it is coplied directly to the stack. Otherwise, it is left ill place, Teeare ailso flag bits to indicate whether the %arirable is seatlair
and at pointer (link) word is stacked. (The two exceptions to this rule vaedstuurvleorh ntetbnasindastat.Ite
are operattds for tlte Outaput operation, atad values for the atssignmenat value is undefined, then the first lime that the %atiable is acecessed. at is
oaperatlions.) given a null, scalar value, which is interpreted its a zeroa fr atrithmieatic

Litak words begin with a ch~rafter indicasting the nataare arf the ope~rations. If a value is defined, theta that value tatay appeair tat lthe
operantad: Hl (simple variable or value). El (structure). E3 (label). E4 ash*ec string, the Name Table (scalars only), tar elsewhere an inenraity.
(scalar value in Name Ta'ble), 03 (memory strinag containing sub.- If an itnitial value statement occurs itt the saturce wiing. tile
seripted variable reference), E36 (iealasr value that won'rt fit itt tti 'rranslator will place a poainter tin the tabjlevt strinag loasatioan rat the value
word), E-8 (scalar oir structure valued component of a structure). EA in the IDCW for the variable. When the variable is first accessed, the
(IN reference to simple variable), 13B (IN reference tta structure), tar Vatlue is copied fronm the object string. (Note Ithat talt structures this
FE. (IN reference to variable with value in Name Tattle). The code tmean,% converting from lit. 'str itat tree formiat.) A potictt itat the value
genaerated for an IN expreession is the IN instruction (HII), faollowed by replaces the oild pointer its the IIX'W. and ithe bit Indicatitng datt an
at subsicripled variable reference. 'The result tat the expresailon as% at aobject string as cleatred.
lksoleant value Indicating whether the Indicated comrpontent tat the vatri- o aai aaclbes eal hi cltsIstr~a ae

igablte exits. Tale lefteigt address field fteln od is used when ptointin values) are stored with a stan character which begints with hes 'V.
itigat he atavale ad te rghtaddrss iel isuse whn Ialitlug 'his half byte at the beginning of an IL)CW as uted it) indicate data lta

to the descriptor for the valiue. Name Table (i.e. the IDCW is the scalar value itself). If the value is
'The Colon (ELA), bstegrie (DA), and Plerform Subscription elsewhere in memory, the IDC`W contains a pointer ila the mnemoary

(DD) Instructions aft eMosad to struictutre references. Extpresaions for srigweetevlebn.
suabscripts wce evaluated (using the stack for intermediate values) and stiglohrethal varalues arevaiabeghair konanotr lc

tare then converted to a four digit intege. Each subscript is stored oin Goa aibe r aibe httr nw notrNc

the stack in a word beginnaing with BA or DA, which indicates the SY OLpristentngoblcsadrePt.InanrstoPIJI however, variables are local unles declared global in an SPIL!type of subacript. DD (Perform Subscription operation) follows the Global statement. The IDCW contains a hit indicating if the vartable
last subacrlpt, The character substring operation is handled ass a aorta sgoaadapite oteIs o h aral i h rcwn
tat subscription. (For' example, In SPIL x~l.2:31 is the 3 character i lnal n one oteIC o h aitaettteeeasn

stigfotthe first component oh x, beginaniang at character position btlaock. There naat in general be many levels tit suach andirectiont If

2.) The subacripit precteding the colon is stacked in a word beginning tathe idnifier wall Ior a Procedure. ia thego at variableand proceture N'it.
with the character BA (Colon opferatoir) All the remsaining subscripts aittahes IDeeate wilatl heritet ProcedAurres.'a'aaat s , anlecepion ss ateieloal
ire. staicked in words beginning with D)A t liiategrae oaperattatat Afteris no eltdgoblpicpe Apoem , ttx ~~ xed

ahe I'crtaaraa Subst.riptimmn aipelaatar hitas hecta statckead. til' hill it, tile. Il Inner litic~ks. t he 11 XV ' miwll aalslt ctatitiAta lil" i0 titte Iiskttttti
tat tobject suintg where the pro~cedure beginas tat Si'll a 1strel as alwatys

240)



Figur I, Nme laite Frmat ciii it, 1ttC ltitik %%s he; it iKti 'L l Itmever. the scope of the label
ltSlwi, et' ;citledd Iti tin inner blto'k it that block cointains a (ilobal

IllI. k Control Woid tmcnivifieit mnaing thle label, 'I bius iti (it 'To ean be used to jump out of
Idetile4 j ocl,. I lix, IIX [l a labe'l co ntaili a flointer lto the livation liti

I nirtil ind thtfili otI strilig wil1(1e execultiol 1% tO1 coninilue. -
I on-o Wor I_____

Identifier 2 ,Ilir pi ticedtac;. the I irsi enthres in the Nanme Table will be the
- -ita pitraninters (taysimiplyveas they tietefirst identifiers.tintrolotiiiitl'elvth Ilnllt~ unle itwning the source string. SYM-

BOI. implements call-by-tiamea fr all paranseters. When a procedure
is called, the formal parameters are linked. Two mechanisms exist in .I ~~~S'sM( Ii. for linking paniiilllt'C1. Ilihe miost general method (indirect
parameter) is It, comiple codle neur the calling polint in the object string
ilt evaluate the actual parameter (commonly known as a thunk).

Figure 2. Name 'lable ('sntrul Word Fields When the procedure is called, a pointer to the code for the actual

eld _____ parameter is placed into the IDCW for the formal parameter. When-
d It's rth ades ildIeer the formial paralmeter is referenced. this code is executed and the

3132 t1411actual paralneter is left oin the top of the stack. (Part of the fixttp for11 7S31.1 IY41 63recursioin reqluires that at molditied copy of this rodle he generated.
sin1ce it will in generlll. contain absolute address references to the origi-
nal Name 'Fable.) Often, however, the actual parameter is a simple

I alIsle 2, Block Control Iiiird Format .ariable. I' lI the sctind mechnismi (direct parameter), when the pro-
ceciure is called, the IDCW if the formal parameter is set up as If it

lilt losithion .......... ini ilJL .-- .. were at gltobal variable with at pointer In the IDCW of the actual
I 'tiltil %sted (always I fort 1 WI parameter The Transilator determines which mechanism to use and

I ScaI tit Namle Tlable ' Iis' s I lor lit \ii I ltotsllce the alpproipriate ins-trittiotit. Often the Transilatot chose tt;

I litof Mif n N IIIC ablt compile atil indirect paranieter where at direct parameter would suffice
J jI lie- bltock transilaed in priviledgeti nitisle because it wasits tio stupid.

3. (il111ia1 linking donte .SYMBOL. provides at mechanism for trapping references It) vari.
6 ~ f [ fiades eld valid ables. proicedures land labe~ls, called the ON block, The IPCW for an

. t k ighlt addrtess field valid Itlentifiiil which has anf 'ON block etintainst a pointer to the object string
8 - 1 1 1tli n. aill li nk i lis c n e ctli ng ~ti N a mt e I itl~es fli ti th at ( N ) N oht ck laid at bit ind icating w hether (w n ot the o ption is in

effct lThis bit. which is Initially set. may he cleared by at Disabfile
imtitrtttitin ($2) or set by ain Enable instruction ($31). If the identifier

4l ha .Il~cksstii link titI 1ilk' ot ellclotiit Illtiek is a variable name. the ON block will he invoked immediately aftee an
................. .. . . --...- --.. _____.........zisignment lto that variable occurs. If the Identifier is a label, the ON

T'Ihesill -it- is ,t 11 1. I tiislatir tilll liiIno h( 'etitrad liltokct".t i blto'k will bie itivoked upon encountering at Go To statement to that
label before the transfer actually taken pilace. If the Identifier is a pro-
cedure, the ON block will he invoked uplon encountering a call to that

'lae k4. Identifler Cuntrol lilord Formatlri.euehfieetytkspae
S- - . ,There ts line more piece of information stored in the IDCW.

-1ilMeitning -_" Recall that aI vector stored in memory is a sucoracesso of arbitrarily king
T (ilttitl sor taaas f5~ ixWl ealr aluespaeo n-oed eas the addresses of a component

*I Start tit Nameit I ablel lalsva~s It lor x 'Wi itf it ecttir tin notitvb calcitlated. finding the n'th component would
Ittill tit Natint I able inr meannsittilg the preceding it- I components. One of the mechanisms

I 1 Ness . St1 ftor itoc.al s triahiles unid labels. i~ isstlt %P.'t't up this tearlt is called current pointer. In the- IDCW
anit lha fisclie lc1 ae' bewetlot flthe trutture is stored the aiubimcript used in the last reference, and

il3 lldlt'.ttg' a ablle %ihttestNieabvw nfl- dr% l that component in memotry. If the next referentce is It) I
till it-iiHI itis WIre s Iet 11KW is aSalair sabie: t'ttijlleioia sta~ttcitling the Itis. the search begins where the falwastsach

Ino nalliimed flit last l[W'W in Name I ahle) left tift. 'The mechanism is -somewhat limited because apace for only
.4 ((tubl St Itl gliba varable, lbels andtwi digit' is provitted in the IIX'W for the subscript.

I piiiccitiircs. and for direct formal pal.imcters
j> ariattie witih saltie in ohject string Objec String

it S.iirialt'ise N old ruce valued lit 1I. scalar s itlued I it t Itl Itt .itittlit tnIt the NMintac -1 ables. the TIranslator produces a single '
I Ilang tilts 1121. Nttl md ,li'ltioi% strilig cailles the oibtect s;tring, which contains thne code directly

i-i 1 Itlir s armables. lkinwr lto value I itero it splice noi1 t'seeatt'd lis Iht C entral Prottcessstr.

set;t'sigicd. Ior abl o prsedrc.s~ner t;All language compianents havec been translated into a posit-fised
I obijecit mring entir% point strin Itirni in the tibject string. All variable referenices are made

I 3239 I Nt7 istI. sss digt curen poiter dcvthrough the daita desriptors in the Name Table. The object string is W
tlt4't during subscription not$ at ill altered while the program is running, and consists of
It fliti " is I . thenI bots 32-341 art': o~iaa and tiperatoir. T1he opecrands aire pusthedl onto a LIFO stack

IIN blocik teitlintentblahed a' Ihe% ame enctiuntered. When an operator is enicounltered, it is
'.1 ittti iiti % alabA ia-,ils lit tlie appropriate piti'es'io. which perftrirs the operationr crt

I S I lleniti i Is ur f tlit' t iperaiNndstl the top of the stack, and replaces; them with the result

S411 , i lii lilodictit % stubl ON bltsvk'. I~ltintr fit tI N biltock

it vi' Ior ii iitlieN s itititt I)N binks g~rrt'~t1 It'l5-h n tIl sit iiject siiting 1i11) tcontain Iwo nlutachinc insiruic.
it tildt ~. Winitt. oia tilt v atli halltit flheis- tiord . each csimpiwd of an 8-1St opera-

I (Wht -I'iltsiI hhlio e v ili:ad a 214-bit attdriss liceth. 'The coles til throuttgh El' never
-' ' -. ihilW.t li Ilc It'tlialtit sting Oft d ic remaining $2 instructionst. only six

'141



¢II

oise the address field as such: Block (W). It False Then Juntp 1BS)3 . cxpro.sii n. Adjacent scalar contrtpienets arC s.paairl d l-s 1hV I 'cld
Name Table Pointer (DIl). Direct Paraieter (1)4). Indirect Paranmeter KSark ti1iralor (IX'l When at word beginnitng ,llh .ile ofl I111 hli.,,c
(1D5), and Transfer (D1). The Source Pointer (lD) instructiotr is gen- ters I-( through .F iý encountered, that word is pushs.

1 oinltio thc ,tauck
crated by the Translator with an address in the addremss field, but since The extprtssons are evaluated just as if no structure olA.wiator% had Niti
this instruction is treated as a No-op. the address field is not really ,ncountered, and the result. or a link to it iN lIet on tlhc statk At ,i
required. Sotme operations must always appear in the same hall ot the later tiroe, the Reference Processor must eonnsert the linear stitclunct,
word, so No-op's (00) are used to fill out the word where necessary. value on the stack into tice format.

Illocks, Labels and End-of-Statement Name Table Pointer Instruction

The first instruction of each block in the object string is the The Name rable Pointer instruction (1)1i) 1' used tor all reier-
Block instruction (90). The block entry mechanism does not occur as cnres to variables, labels, and procedures The address field t t hi,
ta result of this instruction however, but as a result of a procedure call instruction points to an II)CW, which is examined INs the Reterence

or ON block refererice. The Block instruction is always placed in the IProces.)r when this instruction is encountered The action taken
second half of a word. The address field contains the address of the depends on what is found in the IDCW.
block's Name ,Table. n accompanying first halfword contains a No- For variaples and labels, a link word is pushed onto itI stack
op instruction. This word contains the pointer to the IDCW. and begins with a char-

Each block ends with an End Block instruction (B7). When this acter that reflects the information found to the Name lablIc 1=t (link
instruction is encountered, the block exit mechanism is invoked: The to simple variable), El (link to structure). or I4 (link it simplk vaim.
current stack is deleted and the i.alling block's stack beccmnes the new able with value stored tn Name Table). II the Name Iable Pointer
current stack. From this stack, the status register and program lace- instruction is preceded by aln IN instricton (Wl). thte ltk word will
tion counter are restored. (Generally, an End Block instruction is pre- begin is follows: EA (IN reference to simple variable). I'll (IN Melct-
ceded by a Return instruction, which also invokes the block exit trice t) structure), or EFE (IN reference it simple variable willi data
mechanism.) The stack for the main program is tagged so that a block stored in Name 'Table). For a label, the link word begins with tlte
exit from the main program causes a normal program completion shut- character U.3.
down of the Central Processor. A variable reference may be followed by a subs.cAript list. ixpres-

A Block instruction also appears in the object sting at each label sions to evaluate each subscript ate followed by an Integerize operattr

entry point. The IDCW for that label contains the address of this (DA) or a Colon operator (BA), as described above Following this
Block intttruction, Whenever a Block instruction is encountered, the subscript list is the Perform Subscription instruction (DD). Actual
contents of this instruction's address field is compared to the location evaluation of this subscripted variable reference is deferred until the
of the current Name Table. For a Go Tj" within a block or for block value or location absolutely must be bound to cimlinue. at which tittle
entry, these two addresses will match, but ,lot for a Go To acroess the Reference Processor will perform the subscription A major change
block cnoundaries. The Central Procesor presumes that the Go To is to the original design was made when problemts asAsciated with air car-

directed towards a block which directly or indirectly called the lier binding were encountered.t"
currently active block, and performs block exits until the proper block
is found. If the target of the Go To is not within one of these blocks, Arithmetic Operations
the nrain program will eventually be exited, and the Central Procemsor When an arithmetic operator is encourntered ui the object siring.

will shut down as if a normal completion had occurred, the Format Processor first converts the operands to n•itencric held for-

For each semicolon or END statement, an End Statement iat (if necessary). and then the Arithmetic Procteisvr (in the I.nimat

instruction (BB), and a Source Pointer instruction (D9) are placed into lProc.ssor for the Absolute Value, Negate. and Formal tiperatoits car-
the object string. The address field of the Source Pointer instruction ries out the operation.
contains the addres of the lIa word of the soroce statement in the The Add (AB), Subtract (AD), Multiply (AA). and I)ividc
source string. The Central Processor treats this instruction as a No-op. (AF) operators cause the top two operands on the stack to be replaced
The intended use of the Source Pointer instruction was to facilitate by their sum. difference, product, or quotient. rep.ectisely, itt numnttem
debugging by linking the location of an execution error to the offend- field format. The value is either stored directly on the stack, or a link
ing source statement. The use of this facility was abandoned when to the temporary value is stored on the stuck if the result rconiait
software to decompile the object cdde directly to source code was more than nine significant digits.
developed, which provided precise resolution of the error location A two digit Limit register places air upp•'r hirri ont the tnuber
within the source statement and because there were problems inherent of significant digits to which these four iiperatiiuis arc carried out. atid
in the Source Pointer mechaniam.I.• When the End Statement hence, an upper limit on the precision of the results (l'he precision ti
instruction is encountered, the stack is cleared of tiny remaining the result may be less than this limit, depending on the precision Al the
operands (simply by resetting the top-of-stack pointer), anti user inter- operands.) This register may be read or written by software. ,iod is
rupts (if ir'y) are handled. treated as a sytnbolic variable. The Limit instruction (IK3) causes- a

Scsiars mn Stractures In the Objec String word to be pushed onto the stack beginning with a B(. This word is
later converted to the two digit value in data string format if the value

The String Start codes, FI through F5. always appear in the first is being read. A one bit Limited flag is set or cleared as a result nit
byte of a word, and indicate the beginning of a scalar value in data these operations depending on whether or not the precmison ,t the
string or numeric field fornat, If the value is one word long (indi- result would have been more than the Limit register allowed ]'his
cared by a set. high orsder bit in the Is byte), then the word is pushed flag can only be read by "oftware. When the Limited instruction IYN)
onto the stack. Otherwise. a word beginning with an EO and contain- is encountered, the value is pushed onto the stack as a 1)" or 1" in
ing the addres of the first word of the string is pushed onto the stack, data string format, and the flag is cleared.
and succieasve words of the object string are fetched (and discarded) There are six numeric compariswn operatour: "lual to (BD), Not
until a word wtth a wet, high order bit in the last byte is found. The Equal to (91), Greater than (9E), Les than (9'). Greater than or
String End character, F6, may appear in any byte of a word, but is no Equal to (98). and Lte than or Equal to (hA). These operators cuthan
used in wearching for the Ist word of a string. the top two operands on the stack to be replaced by iv "nl" or atI 'I (liti

SThe codes rC through F-F hav'y beeii described earlier in connec- data string format) based on the outcome oi the cimpnisoA)n When
tion with initial structure values. Thee codes may be used to con- numbers of unequal precision are compared. the corpnari-io is carried
struct structure values on the stack as well. The scalar comprnents of out to the precision of the least precise oirniind
these structures in the tjec. stnng may be arbitrarily complex

242

"", -



The two monadic arithmetic operators. Absolute Value 014~) and clauses. and code to evaluate actual parameters. It is not generated ats
Negate t PB). siniplsi alter the sign tof the top operand on the ;tack is% a result ol tile SPI. 0i ITo statement however.
iequiited The I-l owl opl itior converts11 th itiueric itiperind w.0 iii I'hci% is alsoi a coniditional transfer instruction which is generated
hoi tile top tii the stickt to datag sitring otornal using a control sl-1 t %Iifl tor escti SPL If statement. called the If False Then Jump instruction
tile till) of th Ii stik is I teiiplatc.18 (1(5). It is used ito jump a.tound the code for the 'Mien clause. to the

codle for the Else clause (if any) if the conditional expression in the If
Character String Operations statement is false. Preceding this instruction there will be an exprms

'Ihe character tiring olperations are carried ixut by the Fornat iotn which should result in a single Boolean value on the top of the
Proce~stor, which wilt also unpack nunmbers (if ne~cessiary) from ouiueric stack. (Anything else will cause a processing error shutdown.) This
field format ito data string format before proceeding. value is tested andi if it is a '"ft. then the program location counter is

The imi opeato 11E) rplaes te to sringopeandson h :wt to the value in the instruction's address field. Citherwise, execution
ilutthe Jto wt in opr trnforIK)rnpaexth tw c itenring teoperand in th continuecs at the instruction following the If False Then Jump instruc-

I li Mask oiiprati r 0 Xl i, a general purprms- string editing operator I-' i~i
H ic oictwan t on tilie iop tit the stack is used as, an editing temtplaite oni A Goi To instruction 0 '5 is generated for each Go To tit the
tlic wttintl operand~ The result replaces ihe opierands oin the stack viturce piiigram Unlike the two jump instructions, it contains no

ljie~ ildtr"*s .n its address field. The target of the Go To is found
IS) %mer (89r. hid cArater (1)Astfrin eartmei compaati ocrtirs indirectly from thle top operand on the stack. This operand may be a

opeitiis. he wo perndsoc eplcedon he tac byu ' ora ~ linik it) a ItutwI (containting a pointer to the IDC-W for a label), or a(Xi, atm te twit) a~nds Alterepae (1A.Aor the isttmtackb cmar"" it "0
(in data string formiat) base-d on the outcome of the comparison. I wo simple or subsicripted variable reference. 'Ihe Reference Processor is I

strngsmus beof qua legth aswel asconainthesam chracers called onl toi evaluate the variable reference and place a label value on
in te mst e if eqal engh, s wel a cotai thesam chracers the stack. Recall that label values also contain pointers to the IDCW's

inthe Bmie odrfore ad fther eslfteSm operators comar twyina eld it "I" sofia labiels. Until the ID(W is examined, it is not known whether theMe Bfor an Afer peraorscomaretwostrngs ase onit pecal label hus been defined, or even if the IDCW is for a label at all. If theciillating sequence (null character, special character%. XVi ofritdindlbl.apcesgerrshdwn il
AiBt~c ... XY%-Zz012... 799) rather than on the magnitude of the reW sut iOthfrwire atdfied I wlal, cnai proc ddessng err or d sht ow n-wl
internal .eight hit ASCII representation as is customarily done Whtent reut.n a(Blockinsethection wille ecntacin thel addrinesso as wosribdcn
comparing unequal length strings, the shorter string is considered toIibe tiingaBoknsrconweexcuin ilcniueadsrbd
paddeil(on the end with null characters. above.

tiouean peralunsProcedure Call, Parameters, and Return
I hee ie thee kiolat ~s~rtor: No (XII Ad l( ~ i'I lie ciode in the object strinig for it procedure call (or fumnction

I er aetheeN ivn cictaulova Nxrsiitts1) n (8rc h aracter relereiiccl willt in general consist of three parts: it Name Table Pointer
(Xl t te oeraidsuse stitigs instruction for tile proceiure, code to evaluate any Indirect parameter-,,

tirioest from the three charactes i'U" "I". ind the splace character anrd parameter instructions. The code for indirect parameters is not
(which is igniitesl. The Not operator replavcs the tiip opeirand iiit the executed in-line. so if there are any indirect parameters. then a
stack with it string, (or link tot a string) formed from the operand hý Transfer instruction follows the Name Table Pointer instruction
coinverting each 11" Itii a " I", each "I " to a '11" and removing each space drce ttefrtprmtrisrcint eeeueTe o
character. The And and Or operators replace the top two stuck dieache actua ineirect parameter instheuctode to bealeuated that paamtr,

operands with their bitwise conjunction or disjunction, respeetisely. ahata nietprmtri h oet vlt htprmtr
When these latter two operators are used on unequal length operands followed by a Parameter Return instruction (DO6). (TIbi instruction is
(excluding spaces).th shorter operand is considered t be padded he afctual se he h parameter code.)edt slnalth ndo
the cud with VIs. eaculprmtrod.

The F-ormal l'roccessuur is responisible for executing the Boouleati Lastly. if there are any direct oir indirect parameicters, there are
miperations. As tiir the character string operations. operands will Iw the partimeter instructions, which will Appear in the objec string, two
ciinnsrted to dtata %Iigformat if tiece-isary (since, for example per word, tin the order opposite to the order in which the correspond-

col h ot hehtstritng oflnt he. d h ixntegrflloin ing parameters appear in the source program. FuritIndirect parameters,
coul beIsih te ht srin ii legth hre, ad te itegr flloing there will be an Indirect Parameter instruction (r4) containing the
~j) ;ddresus tof the code to evaluate the actual parameter. For direct

Orations parameters. there will be a Direct Parameter instruction (N)4 contain-
Assignmeisnt Oprtin ing the address of the IDCW for the actual parameter.

There are twm assignment operators: Left Assign (1)1). uiud After the Name Table Pointer instruction is encountered, the
Right Assign (9F)I. The former assignis the value indicated by tile iill Reference Processor informs the Instruction Sequencer that the identif-operand on the stick to the location indicated by the ciperand second ete is for a procedure. The Instruction Sequencer then begins lotoking

tit he op f te stck~thelater aign intheop~msit diecton. for parameter instructions, ignoring No-ops and executing arq Transfer
Until one of these operators is encountered in the object string. it is isrcin.m aaee ntatoi r uie notesak
not known whether the preceding operands are to be used for locationts one per word. The first instruction which is not a No-op. Transfer. or
or salues Tflits is why pointers to IDCW's are used on the stack for parameter instruction will be executed on return from the procedure
variables, rather than the variable's value or location. Before the (the return point). The parametet instructions are then popped from
assrigment is carried out, any links to values are converted to actual th ac (nttathesakortisrveeterodr)te
valuies oni the %tack, even if this may require more than one word. ILXCW's of the formal parameters are modified an described above. If

'ths mpertio. atd he ina asigmen ofvale t loatin ie pr- the numbet of formial parameters does not equal the numiber of natal
forined by the Relternce Proicessor For, a structure assignment statew sautr.apoesn rorsudw cus olwn hs

The Reference Pritcessor is rposbefur converting this value to tree voile. which isi lound from the procedure's IDCW.
lornit asit -ti va tc -lue.lorml it it tintA reference it) at direct formtal parameter is; identical to a refer-

Irasisfer and Gou li Instructions icev it) a Gilobal variable, label, or procedure, When an indirect for-
Mhe *1ransler iotistrueton (P1)7 simpls resets the program ks-tcuti itit paramieter is referenced, a word is pushed on the stack containing

thy tat Nmic the Instruction Sequencer. Program execution then cowtin.oiiinfrr to the %alue oil the instruction's addresm, field This in'trucimon te ttemdrssdsgae ntefra aauesIC.js
gemnerdt it-t deto ui-r ariouid cod~e in the object struiC vihich is Im It to i h drv eigae ntefra armw' D utai x'~ eisccutcit inmimor- such ms uititial diii values, internal btmx-k Ese i now pai)Irameter reference was in progress. (The code to evaluate the

241



t

actual parameter may itself contain indirect parameter references.) Output Data will be a simpleni •ariahle reterence. (Nulai 'I able Pointit
When the Parameter Return instruction (Dg) is encountered, the top instruction). For the remaining input modes. a;t lit itm maý Ib ia

of stack register contains the actual parameter (value or address) or at simple or subscripted variable reference or ia pit•xdure reletence
link to it, The state of the Instruction ,•euencer is restored from the (which must eventually return a simple or subsuriptld variable reler-

topmost word of the stack in memory. Program execution then contin- ce), -or thc renaining output modes, an I/o to l y ini ,ini

ucs as before the parameter reference. expression. The Code for each 1/0 item is executed cxiatl) its it no I/C)

The Return instruction may or may not return a value (or loca- instructions had been encountered,

tlion), which may or may not be used. The internal top-of.stack regis. For all output mtxies, the actual value of the I') item ntus hte
ter will contain the operand to be returned, if any. The bklok exit placed on the stack. A scalar value in numeric field format is con-

mechanism invoked by the Return instruction (1D6) will delete the veried to data string format by the Format Processor. If the value is

memory space occupied by the current stack, but will not clear this for a structure, a temporary stack is created onto which the Reference
register. So this regster becomes the top of stack for the culling block. Processor places the value, converting it from tree formal ito linear tir.

If the calling block is expecting a value, and the register is empty, it mat. The structure is then copied it the regular smuck and ,an)

processing error shutdown will result. If a value is returned, and none numeric scalar components are convened to datai string format.
is required, no processing error shutdown will result. This is because For Output Data, the variable's name must be placed Ibfore the
the End Statement instruction, which will follow a simple procedure value on the stack, The name is found in the one or more words
call, clears all operands front the stack, including the contents tit the preceding the variable's IDCW, a pointer to which will exist in the top
top-of-stack register. if stack register as a result of the just executed Nunte Table Pointer

in':truction. If the variable is scalar valued, a word is placed before
Input and Output and aifter the value of the variable on the stuck beginning with the

Inpit and Output operations transfer and transform intormation chairacters Oft and Fl, respectively. The Input/Output Proeisair Con.

between memory and the outside world. Six 1/0 status bits ire main- verts each of these words to the field mark chataicter "I" fi delitcate
tained by the Instniction Sequencer to indictte the type and nic til the value in the output.
the 1/0 operation. When the Input instructiot (Hat) is encountered, Fot Input Data, the InputlOutput ProcCuio calls oi the Triila.
the Input I/0 status bit is set, and the remaining bits are cleared. The bor to extract the variable names and values ronm the input character
Output instruction (8I) causes the Output /O status bil to he set and stritg and perform the assignment, For Input List and Input String,
the others to be cleared. the Input/Output Prioessur will leave a value on the stack on top ol a

The remaining four bits are used to indicate the I/O mode. Fol- link word pushed onto the stack as a result of executing the code for

lowing the Input or Output instruction in the object string there may the I1O item. The Reference Procesor is called tin to perform an

t-e it String intttruction (A3), a Data Instruction (At), or, for Input assignment operation, just as if a Left Assign instruction had been
only, an Exact instruction (A4) or an Empirical instruction (As), For encountered,
each of thewe instructions there is a corresponding 110 status hit which T'he Exact and Empirical input mode,.s are ued to convert input
is set when the instruction is encountered. The List mode is indicated values to numeric field format. A temporary stuck is created ontl
by the absence of any other I/O mode, which the Input/Output .Processor places the input sitlue. The value is

"The 1/O mode determines the type of data transformation tl bI moved Io the regular stack and the %calar value, or each scalar com-
performed. In memory, the data may be a scalar value in data string ponent. which must be it number. is converted to nunteric field firttat.
or numeric field format, or a structure in tree format. In the Outside If am precision tag was given in the input value, it is used in the cmnvter

world, the data exists as an1 ASCII character string, Structures in the sion: otherwise, the precision is determined by the input toushle. The
outside world are represented explicitly using the characters . an" l amsignment operation is then carried out it% for the I ist and String
":" to delineate each structure or substructure, and the field tark iiput modes.

character '1" is used to separate adjacent s.talair components. It is the
InputJOutput Procesor's responsibility ta transform daita betweeti this Pause and System
explicit structure format, and the internal, linear foritat, if the I/0 The Pause instructiin (Yb) and System ,ntstruction (97) cause the
mode calls for such a transformation, Central Procesmor to load the error code register with the one byte

Data may be directed to or from a number of different IO) dcv- opeode and then shut down, The hardwired System Supervisor notices
ices. If the default device, with associated device number zero, is nos that the Central Processor has shut down and examines the error coxte
ito be used, then following the 1/0 type and mode instructions , there register, If the instruction wai Pause, then the System Supervisor
will be code for an expression for the device number, followed by ti To deletes the process from the Central Processor's run tnteue. 'his has
instniction (AO) for output. or a From instructiotn ([I) lar input, the eflect of hailing the execution of that process. A paused pri'ess is
(After the To or From instruction, a Comma instruction is expected restarted when the user presses the Continue button aln his terminal.I

hut ignored.) The code to evaluate the expression is executed, and a If the instruction was System, then the System Supervisor executes a
value or link is left on the stack. The To or From instructions force previously defined memory string of control words. The S"ylte
the value to be placed on the stack, and then to be inlegerized, as for instruction is used in "privileged" software to ntinil, tin level system
subscripts. The two least significant (CD)) digits are extracted and data structures which are normally maintained at ' hardware. Aadding

designated as the device number for the operation. Tihe Clhannel ('on. ti deleting at process, Ironm a pr•sa•sor queue is a typi'ail example ot
troller associates devices with device numbers. the use of the System instruction.

Next to appear in the object string will Ib the I/) items,
separated by Comma instructions (AC). The Comma instruction Lolgial Memory

causes the value of the preceding 11O item to he placed on the stack As mentioned previously, SYMBOL differs Iront intot von Neat- ,'I

for output; for input, It causes the Input/Output Processor to get ait mttn computers in that the memory structure is Itit organized us at
input value which is then assigned to the preceding I/0 item. The last contiguous set of sOtauentially numbered storage cells Instead, a "logi.
I/O item is followed by either an End Statement or ali End BIlck Cat memorv" structure implemented by the Mewory otntirollki is

instruction, each of which is treated as having been preceded by a Imposed on top tit the virtual memory system. The Mentory Con.

Commat instruction. In addition, fur OUtipul . thee two instructions troller iakes each virtual page and disides it up it il Ihrc .secti isii.

cause the Input/Output Processor ito output the values uin the ;tack, The first fotur wtords til the page are the "Paige I lccmuteis,. which cummitmi
starting at the bottom and ending alt the top. pointers and %talus infmrmaiiin. Onte 1 the 1, li•minht links ,igue.

For Input Data. there will be ni l/t) items% since lxih viriable together in it lorValrd linkedt list; SYMHO)I. nminuall.) used athie aitt

names and values come front the outside world. -ach I/t) item for these "Page Lists" tof each terminal.
5 'Me tirs l'age I st was fill the

244



user's surce pirogramn. the second for user datai. the %lack and NameiL Delete to End of String: Obtains the addres (if the succeeding group
Tables., itid the third for Object String. The P'age Ilicders aIIM tidi. and rechums that and all following groups. The atisociated Page List

cata %nal pait in thej pauge h) status hits. and outside, the page lý nmust alhoA he supplied -A) that the reclaimed part of the string can be
it Sfiacv Availahli I g'is piointer which puoini the the next page that con. returndi it, the iwotwr available space list. I1 the Page List supplied ii;
tains available %piwc The remainder oit he page N divided tnt' that of the user data, then pointers to substructures will be looked for.
twenty-eight cight-word Uroup%", and twenty-eight "Ciroup in:tk and that space delettid alvl.
Wotds. rThe Metinorv Conttroller then organizes these cuontguous eight Delete Page List: The Page List supplied will be reclaimed for the ter-
word 'grtnhr*" into tnrientoy strings with a doubly linked list. All of minita on which the request was made. This operation is handled by
tite proccssiws other than the Menory Controller then view this logical the Memory Recilamer.
memory structure its. the fundamental memory organization tit the Acan ru:I h rnmte drs szrfthtetpo h

machineterminal's garbage stack;ý otherwise link the giroup onto its pag't avail-

The Prvlee Mewwr Oprtin able group list.

There art osixteen Instructions which operate directly with Feltc Dlrecit Used for fetchsing one nf the termimul hoeads reighers,

memory addres~ses to read or alter storage. These instructions aire or any absolute core adress (rather than a virtual adtdriess). The data
issued bv the hardware processors or by systems programs which have cange the raddn omemtor thdes low orderthrned71retsrmodaddressght
been translated In "privileged' mode. A request for memory to the cagdb digoet h o re he ismdl iht

Memory Controlle'r consists of a 92 hIt value consisting of three fields, Stor Dlrsicti Stores the data at the real mtiemory addrs liven. The
Hirm is a fouir bit field for the Page Li1st. followedt by a twenty-four hit returned address is changed by adding one to the low order three bits
abtlinett virtual address field, and a silxy-four bit data field. These mtodulo eight.
field% tire tronntaiitted tot the Menmoty C'ontroller. which may usev and Fetch Tertainal Hwmier: Used to fetch one of the 21 heoade registers
nmodtify them, returning them to the originating pritcsseemr. Each asitocIated with each tertonal. TIe Fetch Termainail Header ilasttruction
memory request Is almo accompanied by the termilnal number, Because differs from the Fetch Direct Instroction iIn that the Memory Controller'
words In memory tire not necessarily contiguous. no address indexing automatically mInent the terminal number Into die addreia flid, This
calculations can he performted. For this reason the memory operations allows the address of a pexti.'slar torstinal headili to be specified In a
aire of the flavor, "Here i% an address, get me the data at that adidress terminal Independent manmer The addres etokhied Is Use specified
and tell met what the address of the next' woird Iis, More specifically the physical address wills the terminal Nusmbe' alided litt WOOfr- left by

* sixteen memory operations are as follows: three bits,
Assign Group: Itrd ito allocate a new memotry string, If the transmit. Store Teutivlsia Header' Used to store one of the 21 hb.~w registers.

* t~~ed address is non *zero. the Memory Cbnttdilr will try to allocate a The address soared Into it the specified physical aidig wills tse ktemi-
group from the same page. If no group Is available oin that page, an nal number added in shifted left by three bits. 1
empty group will be, loo~ked for by following the Wpse Available List
potinter ito i page which has free space. If there are no pagets on the ctinetule
l'mtge Um1s with space. it new page will be allocated from the systenm The SYMBOL Instractiont st has now heels desesbtd ins enouaghs
Avalauble Page tList. If the transmitted addres field lIs zero, then the detail lit also the ott"Ogutihlls of snpkeneesti 6% high lWall instrucetion
Memory Contriillet wilt alltote a grotup from the same Page List its set In hardware. Many hiuather dothi'aid. bet hes are 16hiiaively
speified in the page hitd field. If the transmitted puge list field and minor. :tnd would pintsably not heoIt wte~sdwr Ofte of
the address field tire hotih ivro, then it new page is tilocAted anid the the reasnris that the Inaars!" il ~d jp~~le e
fltst group tin the pagt. will be allocated, 1The returned address Ishe the th sr f h sdu wen tI n = UIA g~t W so
addres of the first word of the maligned group. about the macist6111 lee ntatos nAm q~p
Fetch mod~ Fellow: Returns the uata at the specified address ted SF1. wis the 11 ia
returns the address of the following word in tlte string. actually turned i*Ilt to beU&cmi -d~
Fetch, laeitrs. Returns the preceding word litt the string and Its tion aet. Ottly'by a I' JA '0'.U
addree. tion details of the igatassetloss 4tdd

many Ineaftoliads whick **dtij( 1,.mq
Follow mid Fetch: Rt~turns the data and addires of the word following .- t fa fro .dl .~u .j. SM see~td~

the specified address. used *ax very ittufelastl 2, a; -s '"bsneseuae
Store aod Assign: Stores the data at the indicated address and returns when it Is realized that "17 --- Te ,~mme isuet and
the address of the iuccessor word. If' no successor word exists, a new that the designers ware limtalda in lvff th os"Us'7 pt
Sroup is allocated ats Indicated In the Assign Group Instruction, and lis ization. Neverthselem.srs, .Iel it Is Imor Amt S~iwuseIto be
linked onto the currettt stitrage string. docunsented Ps It was insphesswned. This paper. squd In edjuration
Store tisly: Stores the datat to the Indicitted address, 'he returnest with the pireviously puliftd paepers isupli A~ dd*.snotia.a
addreits Is changecd by adding oite tit the tow order three bits nvsittlo.
eight. (T1his hits the effect ofE wrapping the address around In the
group.)
Store aid Insert: Store% the word In the Indicated a~ddle. and returns
the successor addres. If the tramnaiitted add~ress specifies the last word Reree
oif a group. then at new group is allocated andi Inserted between the I . R. Rice and W. R. iSmith. "SYMNIL A Dojt1p ~ssr
group of the trttnimitted address and the group which followed it. froth Classic Software Dralmlattad von Noutnsarin 0 paiutlo Sys.
Iansr Group:i A tiew group i% allocated and Inserted after the group term,5" Pm-endings of tAw 4flPS ,1171 ý&riqav Cow#tUfar
specifiedt by the tratnsmitted address, The returned address is thot of ColVitreinw.. lMcvpiy N1J. pp. 57S.Pi ~6 1W % 197-1).
the first word of the new group. 2. W. Rt. Ishir at L, '1SYMPOL o A U r'. stlSys-
Delete Stirlin D~elete% a memory string; the transmitted address must tentt Exploring Major Hatrdware laspiliidsMiik It k~viare,"
be that of the first group of the string. Thse associated Page List mumt Procs'rsllpg 4thu ."IPS I
also he supplied Ao that the string, when reclaimed, can be returned to Mosntvale. N.J., Pp. 0416. (C971.
the proper available spac list If the Page List sutpplied is that of the 3. G. D. Chesley and W. R, Smith, "Ie Hardware-Irtplemnented
user data, then pointers to substrutures wilt he looked for. and that High-Level Language for SYMBOL," Pmvre~dlqi of sit AFIPS
space wtll he deleted also.

245

1. -' j, i



1971 Spring Joint C'omputer Confirnti'rc , Montvale, N.J..
pp. 563.573, AFIPS Press (1971),

4 A, C. Bradley. "An Algorithmic Description of the SYMBOL
Arithmetic Procemor," Report NSF-OCA-GJ33097-CL7301.
Cyclone Computer Laixoratory, Iowa State University. Ames.
Iowa (1973), NTIS accersion number PB-222 972.

5. M. C. Dakins, "Nonnumeric Processing in the SYMBOL-2R
Computer System," Report NSF-OCA-GJ33097.CL7410,
Cyclone Computer Laboratgry. Iowa State U niversity. Ames,
Iowa (1974).

6. H, Richards, Jr, and R. J. Zings, "The Logical Structure of the
Memory Resource in the SYMBOL-ZR Computer," Pro'eeding.
of the ACM.IEEE Sytxposium on High-LrvI-Lanmguage Computer
Archiecture, New York, Asociation for Computing Machinery
(1973), NTIS accesion number PB-228 I I8AS,

7. R. J. Zingg and H, Richard., Jr,, "SYMBOL: A System
Tailored to the Strncture of Data," Proceedings of the National
Electronics Cattfarence, Oak Brook, Illinois 27, pp. 306-311,
National Electronics Conference, Inc. (1972). NTIS accession
number PB-221 286.

8. H. Richards, Jr., "SYMBOL IIR Programming Language Refer-
ence Manual," Report ISU-CCL-7301, Cyclone Computer Lab.,
Iowa State Unlversty, Ames, Iowa (1973). NTIS accession
number PB-221 378,

9. H, Richards, Jr. and C. Wright, "Introduction to the
SYMBOL-2R Programming IAnguage," Pre'teding.s i'f the
ACM-IEEE Symposlmn on High-Levde-LunguuXe ('omputer Archt
tec'ture. New York, Association for Computing Machinery
(1973), NTIS acceion number PB-228 11 I 5/AS.

10. T. A. Lallotla, "Architecture of the SYMBOL Computer Sys-
tem," in High.Lse'l Language Computer Architecture, ed. Y.
Chu, Acadatie Prem (1975).

11. 0. J. Myers, Advances in Compater Architecture, John Wiley &
Sons (1978).

12. L. M, Alarilla, Jr., "Storage Linking Techniques (or the
Automatic Management of Dynamically Variable Arrays."
Report ISU-CL-7403, Cyclone Computer Laboratory. Ioa
State University, Ames, iowa (1974),

13. H. Richards, Jr. and A. E. Oldehoeft, "Hardware-Software
Interactions In SYMBOL-2R's Operating System," Proceedings
of the Second Anawal Symposium on Computer Architecture. NTIS
accesion number PB-239 220IAS (1975).

14. D, R. Ditzel, "Program Measurements on a High Level
Languae Computer," Accepted for public'ation in Computer
(1979).

15. D. R. Ditzel, "High I_cvel Language Debugging 'oo+,s on the
SYMBOL Computer System," /980 Work.shop,, on l
Languiage Computer Architecture. Fort Lsuderdale. Florida (May
1980).

16. ). R. Ditzel, "Interactive Debuggittg Tools for a Block Struc-
tured Programming Language," Report MCS72-03642-CL7802,
Cyclone Computer Laboratory, Iowa State University, Ames. -•

"Iowa (1978). A.

17. C. L, Smith, C. T. Wright, and R. J, Zingg , "Problems in the
Push-Down Stack Approach to the Implementation of High
Level Languages," Digest of Puper%. C'OMPCON76. New York.
pp, 96-98, IEEE (1976).

19. D. R. Ditzel, "MASK and FORMAT: Operators for Editing and
Formatting," SIGPLAN Notices 12(11). pp. 28-35 (November,
1977).

246

! 'I



High Level Language Debugging Tools
on the SYMBOL Computer System

David R. Ditzelt

Bell Laboratories
Computing Science Research Center

Murray Hill, New Jersey 07974

ABSTRACT "ystern" interface which appeared to the user as independent of the

The development of dehugging tools on the high hardware or software implementation.

level language SYMBOL computer is described. The

software system developed allows a detailed interac- Early Debugging

live ;nvcstiguation of the dynamic and static program Without software SYMBOL provided no facilities for debugging

structure and user variables entirely at the source pro- programs with execution errors. Consequently one of the most useful

gram level for a procedural block-structured program- programs early in the project was a traditional interactive memory

ming language, Source statements are "de-compiled" dump. This fairly small program w" effective for progrmi debugging

from the object code, descriptors and hardware main- if one was familiar with the high level instruction set and data organi.

tained type tags allow the unambiguous interpretation zation. Upon detection of an execution error the System Supervisor

of data values. Language constructs in the SYMBOL would suspend the user program. save the 24 "eadier" registers in a

progromming language which aid in debugging are known piace, and then star up a 'Monitor" progpram on the user's ter-

also described. Comments are made on the evalua- minal, From the Monitor the user could enter the dump program to

tion of the system and how the debugging environ- look at his dead program and Its source, As with most users, the first

ment was affected by the high level language architec- questions to be answered are why and where, The first place to look

ture of the SYMBOL machine. was in the AHI header,.because one of the byt was an "Error Code

Character"; this was then translated to English by looking at one of the

Introduction many Engineering Reference Cards lying around. Once the nature of

One of the motives often suggested for High Level Language the error was determined the current object code address was taken

CJmputers has been that they make program debugging easier, The from the left half of the AH2 header. By dumplng five or ix words

high level language SYMBOL computer systeml'
2 3 

provided a unique of object code at this address the user could tsually etscounter a Scoue

opp•ortunity to test out this hypothesis. In this paper the state-of-the- Pointer opeode, generated by the Translator at each aendcolon In the

ar" debugging tools develiped for SYMBOL will be presented. along source program. The addres field of the Source Pointer instruction

with a description of how and why these tools were developed. The was an absolute address painting to the corresponding line in the origi.

exposition of these debugging tools is important for two reasons. First. nat source code. This entire proce could be done at a teminal in I=

it documents how debugging was achieved on perhaps the most than a minute.

advanced high level language computer yet constructed. Second. it

completes documentation on what many users observed to be the imot The Source Pointer Problem

important feature of SYMBOL -- the high level language programming Using the source pointers left by the Translator to find the source

and debugging environment. Only by examing this user visible system line was straightforward, and so was soon programmed into the termi-

software imposed on top of the SYMBOL architecture can one make a nal Monitor. Error messages were also automatically trainslated to a

judgement on the effect the high level architecture had on the debug- more understandable English message. While this system of tracking

ging envirotment. down the source was smple it had the proverbial "Achlles' heel" t

made it untrustworthy and potentially dangerous. A program could be

interrupted, the Monitor and its subsytenms Invoked, and then the pro-

Unveiled in 1971. the SYMBOL computer system had as its gram could be resumed at the point of inter•upon. Uf the user edited

prime goal to demonstrate with a full-scale working computer that a the program source and then resumed execution of the object code, the

procedural general-purpost, programming language and a large portion source pointers in the object code were potentially invalid, The situ&-

of a time-shared operating system could be implemented directly in tion is not unlike the "dangling reference" problemn encountered in

hardware. This approach was intended to show a marked improve- block structured languages.
5 

In short-lived user programs this urned

isent in computational rates over conventional systems. Almost every out occur infrequently; systems programs on the other hand rmight be

aspect of the system was unique, from its eight special function proees- executing the samne object code for weeks while the source was being

sors to the totally new SPL
4 

programming language. While the system modified, allowing source and object files which differed greatly in

was capable of running totally without system software this was rarely content and date of last modification. Debugging systems programs

done. System software for SYMBOL greatly contributed to the then brought us hack to square one.itWitik •kw, al [m,t Sti, tlmcrqliV undo NSF pant 0JJ.10nX

247

... ........ ..... tate



Marc Problems At this. p0oit the Monitor waited for commni~ids fromt the uv.'r

SYMBOL provided a rather inadequate hardware text odoior Logical choices would be to enter the text editor and vort•et the prott.

which was limited to specially designed terminals; this lead to the lent or to enter the INOUIRI subsystem for turther eminstov

implementation of software text editors. These editors initially used

SPL structures (arrays) for storing and manipulating text. Since the INQI IRE

Translator required that the source program be in a contiguous Knowing the source line and operantds invllved ti an error is

memory string, the user's source program was copied from the text only the first step in providing good high level language debugging

structure to th memory string just prior to translation. Source tools, For proper debugging we feel it is necesary to be able to exam-

pointers generated by the Translator therefore pointed to the copy, ine the contents of variables, to examine the currently active calling

requiring a search through the structure to find the original source and sequence down to the lource line invoking the call of each active pro-

its location. Both the copying and seatching procestaes were painfully cedure, and to examine the state of the expression evaluation stack.

slow; eventually this type of editor was replaced with one which Such examination should be available after an execution error has

worked directly on menmory. occurred or at any time duting the normal running of a program, This
is the function of the INQUIRE subsysem. The INQUIRE subsystem

Dleomp1N is the primary means of examining the user program variables and

A rat*qr ma appw* was taken, to solve the above p block structure of the program. When entered, the "command

lema; a piogia was ca red w•ch "de-co. d" SYMBOL objg environment" is set to the block that wait in execution when the user

code beckt i*o ISL Kso statements. Te deoosplla tlon process wa program was interrupted.

greatly fsdlgt&tWd becatse the SYM3OL instuction set was to similar INQUIRE responds to commands from the user in the following

to the SL language and by the direct and simple manner in which the way. Entering an identifier causes the value of that identifier to be

It Translator generated object code. Decompilation was remarkably printed, providini; that it is known to the command environment. S*-

effective in re-creating source, in most instances the decompiled state- cial qualifications are given to several clasm of variables, An identif.

ment differed from the originall sourc only in ndnls ways such as the ier that has never been referenced is tagged as, "unreferenced null".

nsumber of blants, carriage returt•, the cae of letters, and the oais- Procedure names, labels and switch components are tagged only as to

jion (in the decompiled version) of redundant parentheses. type, Parameters are identified and the parameter linking is followed
to the calling environment to resolve the parameter. Global variables

Execution Error Dtlaillm are identified and the value in the defining envit,.oment is printed,

When an execuion error occurred, the user process was Each scalar element of a vector is printed along with its subscript list.

suWpended and the System Supervisor invoked the Monitor on the (Successive nulls are grouped together in an attempt to save paper,)

appropriate terminal, Use of the decompile program, coupled with a Individual elements of a vector can also be obtained, All identifiecs

program to interpret data values on the evaluation stack, allowed known to a block can be obtained with the DATA command.

excellent diagnostics to be given entirely in terms of the high level Identifiers from other than the current block tre tavailuble as

"source program. On an execution error the Monitor generated the fiA- well one of the unique features of INOUIRE is the ways in which

lowing; various blocks can he traversed, For example, the value of an iduntif.

I. Notification that an execution error had ol-curred, ier in the block calling the block of the current command environment
is obtained by preceding the identifier name with an "up-arrow" char-

2. The nature of the error (in an understandable form). acter (t or '), This specifies that the identifier i. to be looked for by

3. The statement at which the error occurred, going out one level from the command environment, according to the

4. An arrow beneath the source line pointing to the particular dynamic nesting. It a similar manner, any number of dynamically

operator or operand causing the error, nested blocks may be traversed by preceding the identifier name with

5. If the error involved a monadic operator then its operand the appropriate number of up-arrows,

was printed. If the error Involved a dyadic operator then The static program nesting can also be used to specify a partica-

both operands were identified and printed. lar block. Before this can be accomplished however, a BLOCK or

For example, division by zero in one program generated the following PROCS comtmand must be given. The BLOCK command prints the

diagnostic: static block structure of the program and assigns an integer value it)
S*.. FJXncrlON ERROR (ZERO DMISOIR - CODEi Zi) each block. This number provides a unique naming for each block.

IN THE FOLLOWING VTATIW'ENT; The character ">" followed by one of these integer value% will change

to - qmtn * (mrt I ow2 I (aiarnt I rho) I (ntinem I fl0); the current command environment to the specified block number. Set-

ting the commend environment to a block which was not a member of-
RIOHT OPERAND: the calling sequence allows looking at satic viritbilus hut presltades

t Ol -AN obtaining the values of any formal puranmterir %smit a non-alive pro-

.FinPerAND: I-• cdure hart no) calling point for parameter linka•|ts S'wt-citihn ol at i1t-.

MOrldf'QR IS NOW IN CtNIO(' )s.tive block also prohibits ue of the up-ttrrow cvitntiids. lit addition
to printing the block structure of a program, the HL(OK comsmand

prints the names of all identifiers used in each block and an

24,8



abbe' v,,i'ed lag as it, their data type. e.g., scalar. structure. label, pro- encounterng~ a GO TO stat -ment to thar Ilabel before the trailsfer actu-
cedure. etc. The PROC'S command is similar to #1 iLOCK comt- ally takes place. If the list contains a procedure name, the ON block
..anm ith the exception that it prints only the hcl.6. structUr,. will be i'voked upon encountering a call to Lhat procedure before

The WHIERE comnmand locales the msiaement in execution, entry to the mrocedure takes place. If the list contains the word

prnn& it onr the corsole device, and thent pauses. Pressing the Con- INTERRUPT, the ON block will be invoked when fth userprse
tinue button v~il -.iuss inme succeeding statement to be printed before one of the function buttons (Fl thwu F15).
pa--sing agaita. This sequoace is exited by pressing the PtO special tune. The ON block facility bears a tesemblance to the PIJI ON
ticm an toli, The moo. usefi i rof the WHERE command is in CH ECK condition. The major difference is that in VPL mutiplue ON
conjunrction with the "up-arrowý ure described previously. A corn- biocks are aillowed to cxid within a particular environment (scope) and
muind consisting of tWHLERE prints the statement that called the pro- that the invocation of ON blocks can be controlled seleactively for indi-
'cclure in execution. and tticrebv revealis the name of the procedure vidual identifiers. The IBM PL/I(F) compl~er makes no provision for
and its actual parameters. In this manner the calling sesaence may he dynamically enabling or disabling the CHECK condition, andl while
examined any number of Level% on .very specific biast Since 'in the ON CHECK units may be dynamicaly switchied. around, such
entire statement is printed using the "'HERE t. .nand. a more switching applies equally to all variables to which the CHECIK condi-I, spacific referencv- ks "scdxed to isolate it..: ... ct point of execution, A tion applies. In SYNMOL invocation of an ON block for a particular
large expression maý C "Attaik. manly ( oeraors and otseiul&nd for exam- identifier is controllable by the SPL ENABLE aind DISABLE state-
plc, the statement in the diagnostic of the previous section contained ments.
SeveLl division operations. To isolate the exact point of execution or A typical use of an ON block is shown in Figure 1, which iflus-
error a upointer is print-, beneath the ststen'l-tit directly below the trates a method to discover where a variable is wasigned undesired (or

aporaeoperand or operator, desired) values. The value of I wilt be printed every time it is modi-
Ea;.sination of expr.-Asions which may nave been partially lied and the uaer can then decide whtwt. r to continue, or interrupt his

evaluated ia possible using the STACK command. Thts command program anid diagnoae further with INQUIRE. Once the user is satis-
prints the top entry of the stack aind then paiumse Pressing Continue fied that the particular portion of the program being monitored by an
prints one successive stack entry and tness pauses again V~ the bottom of ON block is behaving properly the ON block can be disabled fronm
stack has not been reached. Pressing the Fill button before the bittomn INQUIRE. The implemenitation is a major advance over what is po.-
of stack is reached wi~llcause areturn tos he cr- .and made. As SPL sibi. in moam systems in that no extra code necda to be generated to
is a block-rurictumed language, therv is a sn-arate stack asociated with invoke an ON block nor does the program have to be re-complWe to
e,,ch active block. The stacks of other active procedures are accessed turn on or off the invocalac'n of an on block, This hasl major benefits
by preceding the STACK command with the desired number of up- in terms of execution effictency and the ability to debug noss-stop pro-

arrows or bYy first mitlering the appropriate block via the >comnmand. grams, notl to speak of the time saved in editing and re-conspiling pro-
-If a program was interrupted by pressing the intenmrv .,v. the grams after changing the cdebugging options. The ON block is also a

program may N'c resumed at the point of interruption by using the clean way of debugging a program in that it concentrates the debug-
RESUME command or at a label by using the GO TO command. gang code in one place, in contras to tredng debug I/O th'zoughout
The GO TO command has the restriction that the label must be in a a program; this inactically eliminates needing to "clean up" a program
blocV. which is currently active. The RESUME command may not be after debugging.
used alter an execution error although GO TO may he used regardless ON 1; NOTE This block invoked whenever I is assigned to;
of the- cause of the interrupt. GLOI0AL 1;

It an ide-nlifi~t has an ON block asaociated with it. that ON OU.TPUT IThe value oftI isi 1;
hicxk may be enabled or disiabled from INQUIRE. A inor- detail PAND E

dtescriptioni of ON b'locks follows.

A brie, deseoiptiorn of INQUIRE commands is available from the Pilgure 1. Simple ON bloek

terminal with the HELP command, A listing of the HELP test is
gtveit in Appendix !. Appendix 2 shows a sample- terminal session Tha desctiptor oricnitation of SYMBOL was a major factor itt the
using INQOUIRE. efficient implementation of the ON block facili1ty. Descripitors were

sixty-four bits long and contained sixteen tag bits and two twenty-four

ON btlocks bit address fields. An identifier with an associatled ON block had the

ON bock ar anS~tlarguae costrct xtrmel uslalfor left address field pointing to the identifier value and the right address

dcexigging. An ON block is similar to a procedure, in that it is a fi-Jd pointing to the start of the object cixi of the ON block. The
seres ~ sateent inoke frm omecalingpoit. nlie po- ENABLE and DISAillLE statements either set or reme and "ON%ctriesi howlever, invocatifon so me canlOng blokint cUslied po Enableil" bit in the tag field. As the descriptor had to be refereasced

byte for every idtnttfler reference, checkinsg to weif an identifiler hard an

thurene of dcarationpIit ehen spcfe bi.tt 0nms olwn ON block associated with it could be done in parallel with normal
theON eclraton.If he istcotntains a variable nain.,- the ON block

will N. invoked immediately after an sagagrn,ment to that variable acsigwtotli fpromne
oc-urm If the list contains a label, the ON block will be invosked upon

249



Evaa

To a Wpg eSII¶. ttle tools developed. show what was easy or me- National Scienci: Foundatk~a under puant GJ33097X and by the towst
sortable to do ?vlth the SYMBOL architecture. loegmiptots and type State University Enginuzing Research Institute. Prepaation aijd
tag allowed Owe type and values of data objects to be easily inter. typesetting of this paper was aidedl Immeasurably by the text prepare- j

preted. The additional level of indirection mpsdby descriptors was tion facilities on the UNIXt system.
extremely important in i. snmening ON blocks. Being able to mime-
tively Enable at Disable ON blocks firost INQUIRE or dynamically in
the users ,oiap witheut recompilation drastically riduced the compi- adefersne
lations; and editing tha mngt otherwise harve been required. Somte

Lredlt~~~~~~~~~ ha oh vnt h eieao h Y*O . R. Rice and W. it. Smith. "SYMBOL- A Majo Departure
introducing ON blodks with Enaible ands Disabie stateru rm lnc otar ointd o euanCoptngSs

Doc~aton s &subct hih rq~msevira comens.tents," Pro-ee~dings of' the AFIPS 1971 Spring Joint Computer

Deerit tlo i s utb aeln thabt whech almostrno evtral covertth. Coolference, Montvale, N.J., pp. 575-587, AFIPS Press (1971).
Fi2.t itR Smith be al.,as "ShatO we ha almoge no controoversthe

instruction *e or the codc geneated by the Translator. While we 2 WR mt ta. SMO- ag x~rmna ~se
coul hae pueatd tetie coe wth asofwarecreple, eserien-Exprloring Major Hardware Replacement of Software." Proceed-

tatlon proved a software comspiler to be to be impractida because of its Ig fteAIS17 p~gJi:Cmue ofrne
slow speed. Foirtuniately, the high level instruction set and simple Montvale, N1J, pp. 601-616, AFIPS Pits (1971).
code generation algorithms made object code relatively easy to Invert. 3. G. D. Cheeley and W. R. Smith, "The ltardware-lmplemented
On the negative side. decompilation was not trivial (some 900 lOnes of High-Level Language for SYMBOL," Proceedings of the AFIPS
code), nor was it fast (3 to 10 seod/ttnetDecomptiatiost has 1971 Spring Joint Computer Conference, Montvale, N.J..I.several other negative charateristics. Starting to decompile from the pp. 563-573, AXFIS Press (1971).
middle of control flow instructious (eg. Ifthen-ese, looping, procedure 4. H. Richards, Jr., "SYMBOL IIR Programming Language Refer-
body) made decompilInt the bottom par tit the flow syntax difficult-, ence Manual," Report ISU-CCL-7301, Cyclone ComnputeT Lab..
this could have boen much easier If, for examsple, the jumpt over an law& State University, Ames. Iowa (1973).

"elseclas hd ban lstna romothr Jmpa Coment ~ 5. L. M. Otirica, T. A. Dreithech, D. F. Martin. J. G. Peetz, and
declarstitons ret&Wad nto code, and hettee would never re-appear in a A. Sorkin, "Two ! gaiel EULER Run Time Models: The Dan-
decompiled pregram. The -Wino differences in number of blanks, car- Sling Reference, lnspoatcr Environment, and Label Prohlemsg,"
niap returt':, and case of letters were very irritating when trying to Proteedingr of( the ACM-IEEI Svmspoxiupn ona IHigh.ILei'i'.
find the "sen ~toroe line Iii an editor by using an exact string wiasrch. Language Comiputer Architec'ture. College Park, Maryland.
On the whole, If one has control over the compiler there exist much 6 D.R ttlad.A.PteoRerscivonHh-vl

bettr tehniues or mppig obect odebeckintosotc~ 5~tCLangu~ Computer ArchItectutre," Proc. of 7th Ann. Symnp. on
ments,6'7 Decompilation 'was used in our cawe because we had fewCatwrrctesrLBueFae(My91)
other options. Cmtte rhtcuc aBue rne(a 9L)

7. H. P. Kahseff, "Symbol Table Format for 5db.' Internal Tet-hni-
c~uhmcal Memorandumn, Bell Laboratories. Holmdel, New Jersey

Users of tie SYMJBOL system wee very pleased with the pro- (July 1979).
grarrimng and debugging environment; in particular with 'he way
INQUIRE allowed the investigation of ther block structured pro-
jiams. The software debugging tooks were the finishing touch in mak-
ing SYMBOL a High Level Language Computer System, 6 rather than
just a machine with a fancier instnuction set. The disappointing pant
for ex-uters of the SYMBOL system is that there are oo inherent rea-
sons why sintilar features coutld not be provided eveit on low level
language m~Iies, yet stich debugging systemns are noit appearing.
What the SYMMl architecture did fir us was make the job of build-
in& asue of our toolp codar titan wouk, I,. it been possible on a tusor
tradtitonal machine.

Ackanewlspmefts
The author wishes, to acknowledge the assistance and dedication

ot R. Cusik,?P. Hutchisont, W. Kwlnn. H. Riduardi and R. Wolf,
propeammera who contributed to the software development of this very
useful computer systn. S. R. Bourne and S. C. Johnson are thanked
for their comments on this manuscript. Financial support for the---------
SYMBOL Project itt lows uite University wmas been proiwied by the I uNiX1 "'I'mtnnmak uIiW l,,l1 hilwav,,',

250



Appendix 1. INQUIRE Help Text

This is the Inquiry subsystem, which permits examination of user-program variables and block
structure. The followir.g inputs are accepted:

1. An identifier. The value of the identifier will be printed, if possible. Otherwise an appropri-
ate memage will be produced. "Identifier" here includes LIMIT and LIMITED.

2. "LIMrl-n" where n is a number bet-.een O and 99. The value of LIMIT is ad Pcurdingly,

3. The chara ter">" followed by:

a. a number obtained from the output produced by the /BLOCK command (see below),

b. a sting of one or more " f" characten, or

c. nothing.
This respecifies the command environment as:

in case a. the specified block,

in came b. one block out from the current setting for each "i" in the string (following
the dynamic nesting, i.e., the order of activation),

in case c. the environment which was current when the Monitor was invoked.
When the Inquiry mode is entered, case c. is asumed. In case b. if the current wtmmand
environment was not active when the Monitor was invoked, a messale is printed and the
command environment is not changed.

4. The character "I" followed by a command keyword. Only enough of the keyword to distin.
guish it from all others is required, The keywords are described in the following paragraphs:

5. "/BLOCK". The static block structure of the user program is printed, each block is identi-
flied to the extent possible, the names and attributes of all identifiers kw'•vn in each block are
listed, and each block is assigned a reference number for use in setting the rmnmand environ-
ment (see paragraph 3). The current command environment and the blocks which were
active when the Monitor was invoked are identified. The listing may be terminated by pres-
ing FO.

6. V/DATA". The values of all identifiers known in the current command environment are
printed, similarly to paragraph 1, To cancel, press R).

7. "/WHERE", If the specified block was active when the Monitor was invoked, a reconxtnac.
tion of the statement which was being executed will be displayed, and the Monitor will pause,
Pressing CONTINUE will evoke consccutivc statements. pressing F) will direct the Monitor
to input a new Inquiry command.

A. "/STACK". If the specified block was active when the Monitor was invokeu, the top item
on its stack will be displayed similarly to paragraph 1. Pressing CONTINUE will display suc-
cessive stack items, pressing FO will direct the Monitor to input a new Inquiry command.

9, "/ENABLE". An identifier is requested, and the ON-block associated with the identifier is

enabled. U the identifier does not have an ON-block, an appropriate mesage is produced.
10. -IDISABLE". Behaves similarly to paragraph 9, but the ON-block is disabled.

11. "/GO TO". A label is requested, and user program execution is resumed at that point. The
label must be in an environment which was active when the Monitor was invoked.

12. V/MONITOR". Return to Monitor.

13. 'IEDIT". Equivalent to "IMONITOR" followed by "EDIT".

14. "/RESUME'. Equivalent to "/MONITOR" followed by "RESUME".

15. "/PROCS". Similar to "/BLOCK", but does not list the identifiers in each block.
Any of the above inputs may be prefixed by one or more "i" characters. This will cause the oom-
mand environment to be respecified as in paragraph 3b, but for that one input only.
If R) is pressed while in input, the input is ignorcd.

251



Appendix 2. Exanmph, Program and Execution

NOTE Demonstration program. Keywords capitalized. User input italicized;

Inure I I k Jnum 12 k Console I I . NOTE Initial value statemnens;
Vector << 11213 > < One l Two I Three > < 123.456.7813x3 Matrix I>>;
Vectcw[345.6) - Scalar stringNk
RepeAt Scan:

OUTPUT Iwhat is I-ineA '?I. INPUT LineA;

OUTPUT I What is uneB ? INPUT uneB;

perform lexical scan( LincA, LineB, Stmnt),
Until( inum EQUALS Jnum , Repeat Scan);

PROCEDURE WhichRoutinc( name)
GLOBAL Inum, Jnum;
IF name SAME I PARSEI
THEN RETURN 1;
ELSE IF name AFTER I MI

"THEN Inum - 20; RETURN 2;
ELSE Jnum - 3; RETURN 3;

END END
END

PROCEDURE Perform lexical scan( Stringl, Strdng2, Statement);
SWITCH Routine< Roatine i I Routine2 I Routine3 >;

SI - NoBhanks( Stringi );
taru't - Whicihkoutlne( SlrinI2);

0O TO Routine[ tae I;

Routdnel statement -( SI FORKW r I SDOD.IFDI MASK I 4SA.FC 1) JOIN I Ln
RETURN;

Routine21 Stateraent - tes( String) BEFORE String2 AND Target EQUALS 2);
REL'URN;

PROCEDURE taet( boolop);

oLrrTrt I Paused. .
PAUSE;
IF booiop THEN RETURN 0 ELSE RETURN I END

END

PROCEDURE Noflanks( line);
BLOCK

test - 5;
END
RETURN line MASKIFA ,

END
END NOTE End of Perform lexical scan;

PROCEDURE Until( Condition, Label);
IF Condition THEN RETURN ELSE 00 TO Label END

END

ON anum;
GLOBAL Jnum, Inum, Console;
IF Jnum EQUALS Inum OR mnum GREATER THAN 17
THEN OUTPUT TO Console, I Error Detected - Jnum Invalid I Paused. k

PAUSE;
END

END

I2

252 :I
L , . - .•

S. .. .. .. ..... •' '•"--..... :" :•" "• ...... • ... • ''" • ' ""•" ': '"• • ' "- • • .... ...... I



I

fw fi e a..,rm Is ,Nallee.

run

What I LisnA
493.08
What is UneB ?

Paused.
(At tMib p-i the uem p tWe Im'lrrapt key.) I'*

MONITOR IS NOW IN CONTROL.

?inquire

!where
PAUSE:

IF baolop THEN
RETURN 0;
tlwhere
Routine2: Stateaeni - test(Sringl BEFORE String2 AND target EQUAL 2):

f

lprocsi
MAIN PROGRAM = 1 ACTIVE (LEVEL I)

ON BLOCK FOR Jnum - 2
PROCEDURE Until - 3
PROCEDURE pero lexical wsan - 4 ACTIVE (LEVEL 2)

PROCEDURE NoBlanks - 5
INNER BLOCK - 6

PR(OCEDURE tle - 7 ACTIVE (LEVEL 3)
"INTERRUPT IN THIS BLOCK"
"*CURRENT COMMAND ENVIRONMENT"

PROCEDURE WhichRoutine - 8

swriti
"STRINGI" IS NOT KNOWN IN THE SPECIFIED ENVIRONMENT.

STRINGI: formal parameter.
The actual parameter Is "UneA" (in the calling environment),
UneA: 1493.081

.st¢atonl
STATEMENT: formal parameter.
The actual parameter is "Stmant" (in the calling environment).
Stmnt: null

Iresume

What is LineA?
555.937
What is UneB 1

'• AIBZC3.

Error Dtected - Jnum Invalid
Pauwed.

(Vusr Presses huatrrupt.)
MONITOR IS NOW IN CONTROL:
?ixqire

PAUSEF

Jnum - 3:
(Usr prices Cashime for awillsr mom Mae.)

RETIRN 3;

target * WhichRoutine(String2),

253

:iI



i ttvhere
perfomi lexical scan(LineA. LineB, Simnt):

t I itt/here
ATTEMPT TO BACK UP BEYOND OUTERMOST BLOCK

Iprovs
MAIN PROGRAM =I ACTIVE (LEVEL 1)

ON BLOCK FOR Jnum =2 ACTIVE (LEVEL 4)
"INTERRUPT IN THIS BLOCK"
"CURRENT COMMAND ENVIRONMENT"-
PROCEDURE Until = 3
PROCEDURE perform lexical scun =4 A(TIVE (L.EVEL. 2)

PROCEDURE NoBlanks -. 5
INNER BLOCK =o

PROCEDURE test = 7
PROCEDURE WhichRoutine H ACTIVE (LEVEL. 3)

!reLgmi
.. EXEcuTIO ERROR (-GO- TO NO)N- I.-A~i .1. (01* X2)

IN THE FOLLOWING 51IATEMENT

GO TO Roufinejturgetj;

OPERAND:

null

MONITOR IS NOW IN CONTROL.

'?inquire
target

TARGET: 131
roatint-fJ1
ROLTVINE13j: *Routinejl (%&tkch componenul

routine3
ROUTINE3: null

?yrarch FOR "Rouluuw2 -FROM LINE I
30 : Routinc2: Statement -test( Sitingl B~EFORE Slrinit2 ANDI) laret EQUALS 2 1

'?umert ArFER LINE t2

reUutme.( . NOTII& *uIdi,u di .I lr i,,1I' ', ~~ c~ .171ItRN.
'?inquir-e
igo 10: LABEL. - Ruiniii

What is LineA?
999.089
What is LineB ?

(Umer presses Interrupt.)__________

Es amnation un tagsMONITOR IS NOW IN C'ONTROL. Goa

?anqireL Label
?inquir ON Identfier kmON Muck~
MAIN PROGRAM - ACTIVE (LEVEL)1) Pr Prwcedre

IN11TERRUPT IN THIS BLOCK" . Srfuv
*'CI)JRRFNT COMMAND ENVIRONMENTI

perform lexical Kuan(Pr). Samni, UntI( Pr), WliichRiptiwtinePr)

ON BLO(KK I'DR Mnum 2
inum(G,ON), Iisum(G), Console(G)

PROCEDURE Until = 3
('.ndition(Pa), Lalsel(Pu)

254 .



'4P

PROCEDURE pesforn lexical mcan 4
Stringl(Pa). String(Pa), Statement(Pa), Routine(S), Routinel(L),
Routlne2(L. Routine3, SI, NoBlanks(Pr), target, WhichRoutine(G.Pr).

PROCEDURE NoBlanks 5
line(Pa)

INNER BLOCKI 6
ten

PROCEDURE text = 7
boolo9(Pa)

PROCEDURE WhichRoutine -8

namne(Pa), Inum(G). Jnum(G,ON)

test
"TEST" IS NOT KNOWN IN THEl SPECIFIED ENVIRONMENT.

>4
F test

TEST: procedure.
>6
test

TEST: 151
>8
/data
name: tomal parameter.
mnum: l&MI". In the defining environment,
I1um 1201

Inuns W~loa. In the defining environment,

> I

mnum: 1 201
Jnwn: 131

113. VU4 13,21 3 x 3Matrix It3,31: I

345,1-S1: nuslls 1345.61: IA Scalar.-tring. I

Repeat Scan: ta~eI.
LintA: 1999.0891
UneB: I A IB12C.I. I
ptrfomn 1cxir41 scant proccdure.

Simit: I S5554KNt)lIA111# :J

Until: ptocedure

WhichRoutine: procedture,

/dsaabe: IDENTUINER -mu

lenabl: IDENTIFMR -repeat scan
NO ON4 BLOCK FOR REPEAT SCAN

END OF TERMINAL SESSION.
PROCEMINO TIME: 24.2 SLC.ý
DURATION OF SESSION: 60.2 MIN.

MRESS CTRL-Q TO START

255


