PHOTOGRAPH THIS SHEET

Qe |,
73]
(ap] g LEVEL Ma*_c\l land Univ. ) Colleye ?a.tk, INVENTORY
) z MDD ’-D‘C\f* of Comj‘;der SCleace
s . .
g g ]ého“'efrul_(d'con\\ \{‘/Mkskop oo H(f(h - Level Lanr‘\nte.
o e Ly .
U .
m— |2 1sL 79~ 3, BOCUMENT IDENTIFICATION Final Regt
< E L‘L“ZE'C'Q&O#‘ dUh 80
9: DISTRIBUTION STATEMENT A
Approved for public release; |
Distribution Unlin_l_itfd
DISTRIBUTION STATEMENT
ACCESSION FOR
NTIS GRARI
e A DTIC
UNANNOUNCED O ELECTE
JUSTIFICATION
AUG 5 1981
BY D
DISTRIBUTION | _
AVAILABILITY CODES
DIST AVAIL AND/OR SPECIAL DATE ACCESSIONED
DISTRIBUTION STAMP
81 7 17 044

PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-DDA-2

DATE RECEIVED IN DTIC

FORM

DTIC Jorye 70A

DOCUMENT PROCESSING SHEET

e ® fat A s ans e e kewd -
’éﬁi&.if;ﬁgikuj\n—-,‘i*”)&ts_"xﬂ‘*ww" . )




L d . . . .

sz P

COMPUTER SCIENCE DEPARTMENT
UNIVERSITY OF MARYLAND

NO0014-79-C~0604 (POOOL) June, 1980

i
t

Final Report on the International Workshop om

High-level Language Computer Architecture

Arprovie yoff PURLIC REfans
EISTRIBUIION UNLINITAD »

et
AESE-N
RSN
a
2y
e
«
e
mt Rl
- G R
[ :;;fl'..'g‘. .
e ey v
W IR

COLLEGE .PARX, MARYLAND

P R G N <

KEF




Program Committee

Yaohan Chu (Chairman)
University of Maryland

F. Anceau
Universite de Grenoble

Klaus Berkling
Institut fur Informations-
systemforschung

Jack Dennis
Massachusetts Institute of
Technology ,

Keith Doty
University of Florida

Michael J. Flynn
Stanford University

Leonard S. ‘Haynes

0ff1ce of Naval Research -

. Leé Hoevel . -
IBM Resezrch Center oL

 David K. Hsfao . -
’Ohjo‘§;ate University

Location:

INTERNATIONAL WORKSHOP ON
HIGH-LEVEL LANGUAGE COMPUTER ARCHITECTURE

May 27-28, 1980 iWorkshop)
May 26, 1980 (Tutorial)

Bahia Mar Hotel

Fort Lauderdale, Florida

Workshop Committee

Yaohan Chu
University of Maryland

Leonard Haynes
lOffice of Naval Research

Lee Hoevel
IBM Research Center

George Ligler
Texas Instruments, Inc.

J. K. ITiffe
University of London

George T. Ligler
Texas Instruments, Inc.

Glenford J. Meyers
IBM Systems Research
Institute

Donald L. Moon
Hright-Pattersgn Air Fqrce
Base

Victor S. Moore “
IBM Corporation

- Amar Mukhopadhyay
- University of Central

Florida

Daniel L. Slotnick
University of I11inois

Masahiro Yamamoto
Nippon E]ectric Co, Ltd.

'TutoriaI

Keith Doty ‘
University of F1or1da

Publicity

Lee Hoevel
IBM Research Center

Local Arrangements

Victor Moore
IBM Boca Raton

Publication

Brenda J. Guarnieri
University of Maryland

i
Treasurer

Jo Ann Thompson ’
University of Maryland

v

Registration -

Carmen Radelat
Univorsity of Maryland



N00014~79-C-0604 (PO001) June, 1980

Final Report on the International Workshop on

High~level Language Computer Architecture

ARPROVED yoof PURLIC RELALY!
RISIRIBUTION UNLINITED

COMPUTER SCIENCE DEPARTMENT

UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND
20742

Ate o - 0 g s A A AP0 et 4+ T

. ? e T By TUNTEY okt o e
2 W i T R A

N e o oz
. g, R L

I T LRI P PR LT gt . SIS II U S R S PR




Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
I READ INSTRUCTIONS
‘. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER

4. TITLE (and Subtitle) 5. YYPE OF REPORT & PERIOD COVERED

Final Report on The International Workshop
on High-Level Language Computer Architecture 1 dul 79 - 30 Jun 80

6. PERFORMING ORG. REPOF.T NUMBER

8. CON'TRACT OR GRANT NUMBER(s)

7. AUTHOR(s)

Yachan Chu N00014-79-C-0604
10 s f
9. PERFORMING ORGANIZATION NAME AND ADDRESS ::giﬂ:aaﬁnlkiasINTTNPJ:‘OBJE!&S'I’ TASK

University of Maryland
Computer Science Depa:'tment
College Park, MD 20742

g ,‘;" 11, CONTROLLING OF FICE NAME AND ADDRESS 12, REPORT DATE
§ ) Office of Naval Research June 1980
A Information Systems Program, 437 13 "“"‘EEZFP‘GES
f: ‘T’é&n‘i‘g%%%%%ﬁ%mz'_mwu dilferent from Controlling Office) | 16. SECURITY CLASS, (of this report)
! 3 Unclassified
§ At 13a, DECL ASSIFICATION/DOWNGRADING
o ¥ SCHEDULE
£ g’ 76, DISTRIBUTION STATEMENT (of fhle Neporl)
i
i ; Distribution of this report is unlimited. f
f“ ]
] E:". 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, I different trom Raeport) 1
L £
i
! & 18, SUPPLEMENTARY NOTES 1
119, KEY WORDS (Continue on reverse side if nccessary and identify by bluck number) A
¥
High-level Language,; Computer Archietecture "
¥
b
by
20. ABSTRACT (Continue on reverse side Il necessery and identify by block number) E
The International Workshop on HLLCA was held 26-28 May 1980, at §
Ft. Lauderdale, FL. This Final Report lists the topics discussed and the %
participants. A 255-page proceedings was distributed during the Workshop. g
DD , %%, 1473  roimion oF 1 NOV €8 i OBsOLETR Unclassified
S/N 0102-LF-014-6601 SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

e e ey baa s e o -

-

1 A . .
PR SIETS SRR U PRNE S e Tk .
1= SR s, Y i buratar 1Y D Y5 L At AT A




SECURITY CL.ASSIFICATION OF THIS PAGZ (When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Dete Entered}



O S D R itinise :xa.c50 LA L e

Final Report on the International Workshop
on High-level Language Computer Architecture

Reported by Yaohan Chu
June 30, 1980

3 This is the final report for the International Workshop on HLLCA.
3 This Workshop is made possible by the partiadl support from the ONR. The
i details of the Workshop are reported below.

1. Summary of the Grant : )
Title: International Workshop on High-~level Language Computer Architecture
Period: 7/1/79 - 6/30/80
Grant no.: N0Q014~79-C-0604
Grant Amount: $9,860.00
Principal Investigator: Prcfessor Yaohan Chu

Department of Computer Science
University of Maryland
College Park, MD 20742

301-454-4245
2. Workshop
Date: May 26-28, 1980
Location: Fort Lauderdale, FL (r

No. of Registrants: Technical program: 93 (see Appendix A)
Tutorial program: 69 (see Appendix B)

Programs: See Appendix C ... ¢
Proceedings: %/iSS-page groceeding7'was distributed during the workshop. i

: = ]

3. Organization

The workshop is organized by the Workshop Committee. There are
four members on the Workshop Committee; the names are shown in Appendix C.

The technical program is organized by the Program Committee whose
chairman is Dr. Yaohan Chu. There are 17 members; the names of these members
are also shown in Appendix C. There are 26 papers in 8 sessions in addition
to 8 pannel discussion session. The details of this program are shown in

b i

Appendix C. ;
5

K

The tutorial program is organized by Dr. Keith Doty. There are 5 i
lecturers; each provides a set of notes. The names of the lecturers are %
shown in Appendix C. The other working members of the workshop are also E
shown in Appendix C. 3
The Workshop Committee approved the travel allownaces for 4 g
international participants who presented a paper as a minimum requirement. b
These names are shown below. ‘%
&

PR
R
e

Mmoo R i e T e
-

- .
fler i B eI A TR T i i e W £ B s s g el




LUl i 1t

(1) Professor Yoong-Nien Chen
Department of Comptuers
University of Science and Technology
City of Hefei, Province of Anhui,
The Pedple's Republic of China
Amount: $1,000.

(2) Dr. Masahiro Yamamoto
Central Research Laboratory
Nippon Electric Company, Ltd.
Japan
Amount: $750.

(3) Dr. Esen A. Ozkarahan
Middle East Technical University
Ankara, Turkey A R
Amount: $500

(4) Mr. J.P. Sansonnet
Universite de Paul Sabatier
Toulouse, France
Amount $500.

4. Next Workshop

¥ The Workshop Committee met nn May 28, 1980 and decided to have
another workshop because of the attendance beyond expectation. The following
are decided,

I Date: May 17-20 1982 ' .
] Location: Fort Lauderdale
Program Chairman: Dr. Lee Hoevel

i%- Program Vice Chairman: Dr. George Ligler 4
; 5. International Participation }
3 The Workshop is truly international as there were participants from L

12 countries: Brazil, Canada, China, France, Ireland, Italy, Japan, Sweden, »
Turkey, United Kingdom, U.S.A., West Germany. ;
© A

L%

19

3 'ﬁ

i f

.

5 '-.'?‘

i

L} F ‘vg

o i i
o

ST s A STV EPL R R IR T T T YOI




6. Official Reports Distribution List

Defense Documentation Center 12 copies =
Cameron Station
Alexandria, VA 22314

Office of Naval Research
Arlington, VA 22217

Information Systems Program (437) 2 copies
Code 200 1 copy
Code 455 1 copy
Code 453 ] copy
Office of Naval Research 1 copy

Branch Office, Boston
Bldg 114, Section D
666 Summer Street
Boston, MA 02210

Office of Naval Research 1 copy
Branch Office, Chicago

536 South Clark Street

Chicago, IL 60605

Office of Naval Research 1 copy
Branch Office, Pasadena

1030 East Green Street ]
Pasadena, CA 91106 - .

: Naval Research Laboratory 6 com‘eq}
: Technical Information Division, Code 2627

Washington, D.C. 20375 v

Dr. A, L. Slafkosky . 1 copy

Scientific Advisor
Commandant of the Marine Corps (Code RD-1)
Washington, 0.C. 20308

B« R

-

R L el Ea R A T S st

Naval QOcean Systems Center 1 capy
Advanced Software Toechnolegy -Division '
Code 5200

San Diego, CA 92152

afin et e e aT

Mr. L. H. Gleissner : 1 oy
Naval Ship Research & Cevelopment Certer '
Computation and Mathematics Department

Bethesda, MD 20084 a

AR T,

Captain Grace M. Hopper (008) 1 cory
Naval Data Automation Command

Washington Navy Yard

Building 166

Washington, D.C. 20374

R )

sl S,

7 S T . N . . . . N
v vwens A3 s M o i e it R it e M e . A



S

I

Acetian

O A R g S ARSI T

’
EN
&
i
!
&

4

Appendix A

List of Registrants(Technical Program)

Leon S. Levy

Bell Telephone laboratories
Whippany, NJ 07981 )
(201) 386~4955

Hartmut G. Huber

Naval Surface Weapon Center
Box 117

Dahlgren, Va. 22448

(703) 663-8656(office)
(703) 775-7046(home)

N.R. Harris
Stanford University
Computer Systems Lab
" Department of Electrical Engineering
Stanford CA 94305
(415) 497-3511

Mary Miller

Bell Laboratories

3OW062 Capistrano Ct. Apt. 302
Naperville IL 60540

(312) 462-4269 (office)

John J. Zaloudek

Naval Surface Weapons Center
Dahlgren, Va. 22401

(703) 663-7368

E. Dean Earnest
Burroughs Corporation
25725 Jeronimo Rd.
Mission Viejo, CA 92691
(714) 768-2321

Heinz Schlutter

Gesellschaft fur Mathematik und
Datenverarbeitung, MBH

Postfach 1240

Schloss Birlinhoven

D-5205 St., Augustin 1

fonn, West Germany

Dr. Klaus Berkling
(same address as Schlutter)

Glorgio Sofi

CSELT, VIA REISS ROMOLI
Torino, Italy 10129
tele. 21691

Tim Merrigan B
Floating Point Systems
P.0. Box 23489
Portland, OR. 97223
(503) 641-3151

Reinhard G. Kofer
Siemens AG, ZFE-FL-SAR 112
Otto Hahn Ring 6
8 Muenchen 83 West Germany

Richard C. Fleming
The Aerospace Corperation
M.S. A2/2043
P.0. Box 92957
Los Angeles CA 90009
(213) 648~7098

Dr. G. U. Merckel

IBM Dept. 24k Bldg 032-3
2000 NW 51 Street

Boca Raton FL. 33432
(305) 994-4763

Melvin Hallerman

IBM Dept. 24K bldg 832-3
2000 NW 51 Street

Boca Raton FL. 33432

Kerry V. Richmond

McDonnell Douglas Astronautics Co.

P.0Q. Box 516
St. Louis, MO. 63166

James D. Mooney

West Virginia University
Dept. STAT, & COMP, Science
Morgantown, WY. 26506

(304) 293-3607

Meir Kaftor M/S B10O
Honeywell Information Systems
P.O.. Box 6000

Phoenix, AZ. 85005

(602) 865-3381

Nobuyuki Goto

Toshiba Corporation

I Komukai-~-Toshiba-cho, Saiwai-ku
Kawasaki, Japan 210

(044) 511-2111

o AT TNV = W opumerrc ey p y T Sy v ez - o -
AN 0y Chnsi Al AL B Lt g et M G R T T T bk s o i e F e
d

R g

Qv SUC S

S33E S RN

F b L h A
i.:ga.:mms;isagimzmtgj,;;

3 .
AN a

£
5




List of Registrants (Technical Program)

Jack B. Dennis

MIT Lab for Computer Science
545 Main Street

Cambridge, MA. 02139

(617) 253-6856

Mou-Shin Yang

Sustems Emgineering

6901 W. Sunrise Blvd,

Ft. Lauderdale Fla. 33313
(305) 587-2900 X6236

Gilgert J. Hansen

Texas Instruments

P.0. Bax 222013, MS 3407
Dallas, TX. 75222

(214) 462- 4742

Daniel L. Slotnick
University of Illinois
283 Digital Computer Lab
Dept. of Computer Science
(217) 333-6726

Terry Welch

Sperry Research
100 North Rd.
Sudbury, MA. 01776
(617) 369-4000

Samuel P. Harbison
Carnegie- Mellon University
602A Kelly Ave

Pittsburgh, Pa. 15221

(412) 731- 1472

Charles Y. Flink II

Naval Surface Weapon Center
K-74

Dahlgren, Va. 22401

(703) 663-7517

Bill Kwinn

Hewlett Packard
3404 E. Marmony Road
Fort Colljins, CO 80525
(303) 226-3800 X3242

Jaishanker Menon

Dept of Computer Science
Ohio State University
Columbug Ohio 43210
(614) 422-5813

v

-
-

- . B N PR
IV P ok itane wea R 4 A P T . , N o Gy, 1L
= O e v e WY - S O T L A!uJvf«,‘(ﬁmu'z}x:»_i-\q'mj_—;ry;.1‘~,m~.\ AU e i SR i

Harvey G. Cragon

Texas Instruments, Inc.
P.0.Box 225012

Dallas, TX 75265

(214) 238-3023

Leon I. Maissel

IBM Corp

Dept. Cl4, Bldg 704,
?.0.Box 390
Poughkeepsie, NY 12602
(914) 463-2301

Raymoad L. Phoenix
IBM Corp

Dept. Cl4, Bldg 704,
P.0.Box 390
Poughkeepsie, NY 12602
(914) 463-5445

Zvi Veiss

IBM Research Center
Yorktown Reights, NY 10598
(914) 962-7036

Richard Ramseyer

Honeywell SRC Research

2600 Ridgway Pkwy, MN17-2352
Minneapolis, MN 55413

( ) 378-5023

Tetsuo Ida

Institute of Physicals Chem. Res.
2-1, Bircsawa,

Wako-shi, Saitama 351

Japan

Ureg Bettice

Naval Vaionics Center

8125 Harrison Drive

Lawrence, IN 46226

(317) 353-3226

Roger R. Bate

Texas Instruments, Inc.
P.0.Box 222013, M/S 3407
Dallas, TX 75222

(214) 462-4790

Ron Rutledge
DOT/TSC, P.0.Box 53
Kendall Square
Cambridge, MA 02142
(617) 494-2038

23

- s e e
By S T S S

I R A e




S AL PR T B T s iy

R L

TR RTINS ST M R Y A )

T

e

List of Registrants (Technical Program)

Gerhard Herrscher
LITEF.

Loerracher Strasse 18
7800 Freiburg

West Germany
0761-4901212

A. Speckhard

Aerospace Corperation
2350 B, El Segundo Blvd.
El Segundo CA 90245
(213) 648-7067

John Francis -
Sanders Asspciates, Inc.
95 Canal Street

Nashua NH 03060

(603) 885~-3746

Paula Bernstein

Bell Laboratories
Warrenville-Naperville Rds.
Nap-rville IL 60540

(312) 462-2898

R.F. Hobson

Simon Fraser University

S.F. University

Computer Science Department
Burnaby British Columbia VSAIS6
(604) 291-4277

Dr. Werner Kluge
GMD/ISF

Postfach 1240
SchloB Birlinghoven
West Germany

Malcolm Muir
Datamedix, Inc.

555 Hillsboro Plaza
Deerfield Beach FL 33441
(305) 428-4526

Rongld L. Engelbrecht
NCR Corp. - E&M-Wichita
3718 N. Rock Road
Wichita KS 67218

(316) 688-8646

Dr. F.J. Burkowski

Computer Science Department
University of Manitoba

Room 545 Machray Hall

Winnipeg Manitoba, Canada R3T 2N2

(204) 47408313

Allen Zaum
Hewlett~Packard
HPL/CRL

1501 Page M{ill Rd.
Palo Alto CA 94304
857-8776

Keiji Kuwahara
Nikkel-McGraw-Hill

2-1-2 Uchikanda, Chiyoda-ku
Tokyo Japan

(03) 256-1561

Y. El-ziq

Honeywell

Honeywell Plaza
Minneapolis Minnisota 55408

David E. Heinen
Tektronix, Inc.

P.0, Box 500 DS 63-311
Beaverton OR 97077
(503) 682-3411 x3845

Lawvrence Katz
Tektronix, Inc.

P.0. Box.500 bS 63-311
Beaverton OR 97077
(503) 682-3411 x3081

R. Curtis
Canisius College
2011.Main Street
Buffalo NY 14208
{716\ 831-7000

John Bowles

NCR Corporation

3325 Platt Springs Rd.
C. Columbia SC 29169
(803) 796~9250 x524

David M. Abrahamson
Department of Computer Science
Trinity College

Dublin 2 Ireland

772941 Ext. 1765

Hugh L. Applaevhite
Honeywell 17-2352
2600 Ridgway N.E,
Mlaneapolis, MN 55413
(612) 378-4510

Eorr e

o L

S R AN B A i

e i "l i

e el AN




T

RS SR MY R e

AT G

Gredli it et o

TR e 2

N
s, . -
__.mu:;.;..:_-., PR

List of Registrants (Technical Program)

David K. Hsiao

Ohio State University
Department of Computer Science
Columbus Ohic 43210

(614) 422-5813

M. Tsuchiya

TRW DSSG R2/2036

One Space Park

Redondo Beach Ci 90278
(213) 535-0580

Dr. William D, Murray
University of Coiorado
1100 1l4th Street
Denver CO 80202

(303) 629-2872

Bantwal R. Rau

Coordinated Science Laboratories

University of Illinois
Urbana IL 618C1
(217) 333-7146

Leonard Haymes

Office of Naval Research
Arlington VA 22217
696-4302

Yaohan Chu

Uziversity of Maryland
Department of Computer Science
College Park, Maryland 20742
(301) 454-4245

.Krishna M. Kavipurapu

Southern Methodist University
Department of Copputer Science
Dallas TX 75275

(214) 692-3095

Barry C. Goldatein

IBM T.J.Watsmn Rescarch
24 Glen Terrace
Chappaqua NY 10514
(914) 945-2693 (office)

David A. Patterson
University of California
Electricel Engineering and
Computer Sciences

Computer Science Division
Berkeley, California 94720

GeTe ligler
Burroughe Corpe
PsOe Box 517
Pacli, PA 19301
215-6h8-32hﬂ

o 3
n L T
PARCV- S R A A Sl A0 50 e e A R ‘ Z

Robert F. Cmelik
Bell Laboratories
Room 7D-414

600 Mountain Ave,
Murray Hill NJ 07974
(201) 582-5797

David R. Ditzel

Bell lLaboratories
2C~-523

Murray Hill NJ 07974,
(201) 582-3655

Thomas A. Almy

Tektroanix, Inc. M/S 50-384
Box 500

Beaverton OR 97077
644-0161 x6056

Herman Hartig

Universitat Karlsruhe
Institut fur Informctik IV
75 Karlsruhe I

Postfach 6380

Zirkel Nr.:2

W~-Germany .

Kemal Oflazer
MEoT Uy
Ankars, Turkey

John Peterson
Univeratiy of Colorado
2845 S, Gilpin

Denver CO 80210

(303) 629-2872

Bernard Lecussan
36 Impasse st. Felix
31400 Taulouse, Frence

Jean-Paul Sansonnet
15 Rue ctre Mid{ Bat, 1
31400 Toulouse, France

Lars-Erik Thorelldl
Royal Institute of Technology
$-100yy Stockhom, Sweden

Goran Bage

Royal Institute of Technology
LM Erxricsson

5~12625 Stockholm, Sweden

Dennis A. Roberson
IBM - Boca Raton
Boca Raton FL 33432

P rer
N T e gt
oy Al

G o T R VR TR R R S




T e i

. ST~ e g,

e e L Cr .8

8

Lisg of Registrants (Technical Program)

Dick Coun
Fairchild Camera & Instrument
" Corxp.
464 Ellis Street
Mt. View, CA 94040
(415) 962~2337
962-4523

Tich T. Dao
Fairchild Camera & Instruwments
Corp. ‘
464 Ellis Street
Mt. View, CA 94040
(415) 962-73532
962-4523

Mark T. Michael

US Air Force, Avionics Lab
WPAFB OR 45433

(513) 255-4920

Dr. Esen A. Ozkarahan
METU

BMB-METU (ODTH)
Ankara Turkey

Jo Ko T2iLE

International Computexrs Lid.
37 Western Hoad

london ¥a 9JB

England

Lecnard Jo Dlach
IEEE

Flaun ser Starausae 17
7801 Stegen/Eschbach
Wast Garmany

l(uahirou Yamamoto

EC

Uil Miyazaki Takatsu-Kn
Kawasakl, Tolge

(Quk) 8551221

Imrw Re Lebahn

ry Univac
o Stage: Wi 55109
(612) A

Inoss Ao Moscato

Esocola Politecnica da USP, Dept.
Engenharia de Kletricidade Cidadn
Universitaria~Ce Postal 134455
05508 = Sao Paulo - SP, BRAZIL

Jack Quanstrom

IBM Corp.

P.0.Box 1328,Dept.24k/032-3
Boca Raton, FL. 33432
994-4770

Glenford J. Myers

IBM Systems Research Inst.
205 B 42nd . Street

New York, NY 10017

(212) 983-7250

Mo Meu

. = CERT
z Ax E, Berlin BP 4025
Toulouse, France (31055)

¢61) 25 21 88

Pong=sheng Wang

Chio State University
2036 Neil Avenue
Coluwbus, Chio L3202
(61h) 422-8039

Diple~Ing Rudiger Strelow

Siemans AG-Bereich Syatemteclmiacha
Entwdi cklung

Stevarunga-und Informationssyteme
Gunter=-Scharowsky-Strabe 2

(09131) 7-6923

wiliiam M, Cooper
Softech, Ince

5140 Iinden Averms
Dayton, Ohio L5L32

513-253-1522

Robert Kopsc
IBM=~Poughkeepsia, Nele
DB T
e O,
9m4sz~zow’ )

Martin Freemm

Bell Isboratoriss

whippany Boad

m:L s Node Q7981
5~1895

Malcolm Harzison
NeYolUeo
251 Mercer St.

NYe, NoYo 10012
212-060-7267

2
1,
o
1
{
9

S 2 T A S s g e o st :
FRT R R 1o L il S 51 s Y whE e

T o leua

S S




EBBendix-B

List of Registrants gTutor;gl Prog;gg)

Herbert Schorr

IBM T. J. Watson Research Center
P.0. Box 218

Yorktown Heights, N.Y. 10598
(914) 945-1285

Hartmut G. Huber

Naval Surface Weapon Center
Box 117

Dahlgren, Va. 22448

(703) €63-8656(office)
(703) 775-7046(home)

Richard C. Fleming

The Aerospace Corporation
M.S5. A2/2043

P.0. Box 92957
Log_Angelaeg, -CA—Q20006

Joseph M, Herko

IBM Corporation

P.0, Box 1328, Dept. 25T 032-1
Boca Raton, Florida .33432
(305) 994-3458

John J. Zaloudek

Naval Surface Weapons Center
Dahlgren, Va. 22401

(702) 663-7368

E. Dean Earnest
Burroughs Corporation
25725 Jeronimo Rd.
Mission Viejo, CA 92691
(714) 768-2321

Heinz Schlutter

Gesellschaft fur Mathematik und
‘Datenverarbeitung, MBH

Postfach 1240

Schloss Birlinhoven

D-5205 St., Augustin 1

Ronn, West Germany

Dr. Klaus Berkling
(same address as Schlutter)

r— ey “ T——-,--v -v-——- ey

Tim Merrigan

Floating Point Systems
P.0. Box 23489
Portland, OR. 97223
(503) 641-3151

Reinhard G. Kofer
Siemens AG, ZFE-FL-~SAR 112
Otto Hahn Ring 6

8 Muenchen 83 West Germany

Mr. Lucas Moscato
Yo Address
Country: Brazil

br. G. U, Merckel

IBM Dept. 24k Bldg 032-3
2000 NW 51 Street

Bnca Raton F1,, 33432
(305) 994-4763

Melvin Hallerman

TBM Dept. 24K bldg 632-3
2000 NW 51 Street

Boca ‘Raton FL. 33432

Kerry V. Richmond

McDonnell Douglas Astronautics Co.
P,0. Box 516

St. Louis, MO, 63166

James D. Mooney

West Virginia University
Dept. STAT. & COMP. Science
Morgantown, WY. 26506

(304) 293-3607

Meir Kaftor M/S B100O
Honeywell Information Systems
P.0. Box 6000

Phoenix, AZ. 85005

(602) 866-3381

Nobuyuki Goto

Toshiba Corporation

I Romukai-Toshiba-cho, Saiwai-ku
Kawasaki, Japan 210

(044) 511-2111

T e pmau&.«:ﬁ.«m&uwu;m.ijé&.vm%ﬂ ST A RO




W VTR T ¢

T

10

Tutorial Program

Gerhard Herrscher
LITEF

Loerracher Strasse 18
7800 Freiburg

West Germany
0761-4901212

A, Speckhard

Aerospace Corperation
2350 E. El Segundo Blvd.
El Segundo CA 90245
(213) 648-7067

John Francis

Sanders Associates, Inc.
95 Canal Street

Nashua WH 03060

(603) 885-3746

Paula Bernstein

Bell Laboratories
Warrenville-Naperville Rds.
Naperville IL 60540

(312) 462-2898

R.F. Hobson

Simon Fraser University

S.F. University

Computer Science Department
Burnaby British Columbia VSAIS6
(604) 291-4277

Dr. Werner Kluge
GMD/1SF

Postfach 1240
SchloB Birlinghoven
West Germany

Malcolm Muir

Datamedix, Inc.

555 Hillsboro Plaza
Deerfield Beach FL 33441
(305) 428-4526

Ronald L. Engelbrecht
NCR Corp. - E&M-Wichita
3718 N. Rock Road
Wichita XS 67218

(316) G88-8646

Dr. F.J. Burkowski

Computer Scilence Department
University of Manitoba
Room 545 Machray Hall

Winnipeg Manitoba, Canada R3T 2N2

(204) 47408313

B R L s B0 N e e S MR AT EN I ST G

Allen Brown
Hewlett-Packard
HPL/CRL

1501 Page Mill R4,
Palo Alto CA 94304
857-8776

Keiji Kuwahara °,
Nikkei-McGraw-Hill

2-1-2 Uchikanda, Chiyoda-kun
Tokyo Japan

(03) 256-1561

Y. El~-zig

Honeywell

Honeywell Plaza
Minneapolis Minnisota 55408

David E. Heinen
Tektronix, Inc,

P.0. Box 500 DS 63-311
Beaverton OR 97077
(503) 682-3411 x3845

Lawrence Katz
Tektronix, Inc.

P.0. Box 500 DS 63-311
Beaverton OR 97077
(503) 682-3411 x3081

R, Curtis
Canisius College
2011 Main Street
Buffalo NY 14208
(716) 831-7000

John Bowles

NCR Corporation

3325 Platt Springs Rd.
C. Columbia SC 29169
(803) 796-9250 x524

David M. Abrahamson
Department of Computer Science
Trinity College

Dublin 2 Ireland

772941 Ext. 1765

Hugh L. Applewhite
Honeywell 17-2352
2600 Ridgway N.E.
Minneapolis, MN 55413
(612) 378-4510

e

SEEC PN SEME B N TR e S

o




11

Tutorial Program

Leon 1. Maissel

IBM €orp

Dept. Cl4, Bldg 704,
P.0.Box 390
Poughkeepsie, NY 12602
(914) 463-2301

Raymond L. Phoenix
IBM Corp

Dept. Cl4, Bldg 704,
P.0.Box 390
Poughkeepsie, NY 12602
(914) 463-5445

Zvi Weiss

IBM Research Center
Yorktown Heights, NY 10598
(914) 962-7036

Richard Ramseyer

Honeywell SRC Research

2600 Ridgway Pkwy, MN17-2352
Minneapolis, MN 55413

( ) 378-5023

Tetsuo Ida .

Institute of Physical & Chem, Res.,
2-1, Hirosawa,

Wako~ghi, Saitama 351

Japan

Greg Bettice

Naval Vaioniecs Center

8125 Harrison Drive

Lawrence, IN 46226

(317) 353-3226

Reger R. Bate

Texas Instruments, Inc.
P.0.Box 222013, M/S 3407
Dallas, TX 75222

(214) 4624790

Ron Rutledge
DOT/TSC, P.0.Box 53
Kendall Square
Cambridge, MA 02142
(617) 494-2038

- L e g e
e N . . PP NUY P, (ST | R T A SIS 1 WY DIV PR, 5 1 )

Robert F. Cmelik
Bell Laboratories
Room 7D-414

600 Mountain Ave.
Murray Hill NJ 07974
(201) 582-5797

David R. Ditzel

Bell Laboratories
2C-523

Murray Hill NJ 07974,
(201) S582-3655

Thomas A. Almy

Tektronix, Inc. M/S 50-384
Box 500

Beaverton OR 97077
644-0161 x6056

Herman Hartig

Universitat Karlsruhe
Institut fur Informatik IV
75 Karlsruhe I

Postfach 6380

Zirkel Nr.:2

W-Germany

Mary MiJler
Bell Laboratories

- 30W062 Capistrano ‘Ct. #302

Naperville, T1ll, 60540
(312) 462-4269

John Peterson
University of Colorado
2845 s. Gilpin

Denver CO 80210

(303) 629-2872

Bernard Lecussan
36 Impasse St, Felix
31400 Toulouse, France

Jean-Paul Sansonnet
15 Rue ctre Midi Bat.1
31400 Toulouse, France

PSR IO

o
1
R
s
4
"l"
b
i
v %
N
45
KB
P
3
h
N
&
.
-
‘1
)
" #
‘

el i e o aw o



¥
I
Vv
1
<

T s

12

Tutorial Program

David A. Patterson
University of California
Electrical Engineering and
and Computer Sciences
Computer Science Division
Berkeley, CA 94720

Lars-Erik Thorelli
Royal Institute of Technology
§~10044 Stockholm Sweden

N.G. Frank Thoma
IBM

4686 NW 2nd Ct.
Boca Raton EL 33431
(305) 368-4676

Joseph C. Rhodes, Jr.
IBM Corporation

P.0O. Box 1328

Boca Raton FL 33432
(305) 994-7654

Goran Bage
IM Ericsson
$-~12625 Stockholm, Sweden

Peter Klambatsen

IBM Corporation

2000 NW S51st Street
P.0. Box 1328

Boca Raton, FL 33064
994-5098

Moises Casges
IBM-GSD

Yamato Road
Boca Raton, FL
994+7992

Dick Conn
Pairchild Camera &
Instrument Corp.
464 Ellis Street
Mt. View, .CA 94040
(415) 962-2337

Jack Quanstrom

IBM Corporation

P.0. Box 1328

Dept. 24K/032-3

Boca Raton, FL 33432
994-4770

W N Ao e a1 erdi b

Tich T, Dao M/S 17-5904

Fairchild Camera &
Instrument Corp.

464 Ellis Street

Mt. View, CA 94040

(415) 962-7532

Mark T. Michael ’
US Air Force, Avionics Laboratory
WPAFB, OH 45433

(513) 255-4920

LTy s SO s -
mmd’:’i:}ﬁm‘ﬂ Facwoc il el AR L g i 4

AR

Yoilia,



T .

13

$50 2DEnBusy JRIaASS NN SOUISdXS UD PEssq
Agousion 8| wORY

-Med SEOCLNNY WIEAS SOSSRISIP JUONAL S|

(doyspop) 0B6T ‘8Z-LC Aepy
(epoing) 0861 ‘92 Aew P1mq

3YNLIFLHOYY YILNINOD
JOVNONY] BATTHIH
NO JOHSNHOM TVNGILVNYILNI

3 xypuaddy

NOLYIIGNd
vsn
20u8) \pseesay WOS
uooy 820@ na) AR} 8]
sy -o.elu
380u00) YISESEY a!i_..:u!ih
-!!u:-unﬂu vuly “r Pepy
vsn
ALDNand SPyIOL] J0 Ayssaaniny
Lpa e
epyoy3 jo Ayssanun prowm.4 Ll
fiog Bl 10 Simpsuy sPIESTEY
suweq yacr
VoL Auouises 3sap
BMPSIONN IS
ucder é!_.!.
P ~00 Jupdary vaddiy et}
COILBUIBY, DopESELY 0001
vsn SIOURID 3P APSIIMUG)
Soui 10 Arsaaun s 4
WRRoS ] Peq vE
Vs Duetioen 10 lumoannh

©oNes0di0) Wl U SIBRINIISYY SEABY
25009y °g JOPIA i) slioan
Ius) yueesay Wl

vsn ABO§
93304 ay vosIhIed- W, -
ooy — P YAINEEDY SARN 10 0
vsn pusyisepy J0 Aussanmn)
S ) veyosy

yusesay sueisis men

wkapy °r puosD FALLINGD JOHSHUOM

305 ulisag swasds Bupessd) W SWOREsIpENCD., (F)

AR A P A DT o

ro R PR L T o, N et =




L)
- €
WBNPANS 8 S SIUNORN BINE Sy Iemsil.,  (Z)
vedey Aysssapun progng
wopuo) uil:..:!.!.x... Rusesay g T e T
UORIRISQY 104 VCAdRS IRINANNINY, .l...u...l. sadond

.z......-uﬁa.....:o. " 10quiss ey uogeddy 3. Pue ssempey TuMSH.,  (2) 0] sqeroery Aeng @ womees  wd OGTT - OF0
S A v—_ o0 e 060100

essg  wd 0O:ZI - 000 ssequmeq sdendus) panily) 0 sanss) udesq,. (1) li::.nng

Ayssanjuf) vogep-23ie) ponyy

gi"dg:}ﬁ.u ﬁg‘!ﬂiﬁ ) iigdﬂi,‘: ©

UOSTILRAD HuUAQ By} so) BsmdeyY wy., () uapspy 388 KRG i woEsas  wd % Bopupe !!-Rl_oul..b 80?5::.}-&0

2ouesy !!:d.:d.l.u....s..lc.:.u
QRS INRY SNTIANI) ug sago) wd [ 3 @

JSPONA [ 7§ PEPIA “Q ‘WewoY

°f 913000 @ ‘RReRD 4§ w0y ‘g ..!E.n._.u .u....a..!.....oah...oﬂﬁh isﬂ“’.o
-.:93:5.3:.!228&31.&?? @ iy i Rl €3]
eouss -1y Janduc) sBenSus] asy-yiey sy #s8) [ Pangyih SO0 PRIy € JO RMNRIY L. (1)
Je08qeg 108y SUSISANA) W Srasngy ‘5303008 Hog SOy 2208 P
- HoGRMAY gghgg.g“ il‘i‘gi SIOOH JOPNA '3 HOMNSYD)
— PoSER 20530004 SBenliS-AMN & J0 LIBPIPYNY, EMAS ol w0 Siydnoyy Bupieg 1o weisis LAPNIRRIY B Y Y wopseg  we 0001 - 069
P11 ~00 Jsoes MOdd maduo) sleadury maniii & o suopeny., (€) ) USYORA K] VOIS WOl 8 OE G
A CINSSEN 1N ) P10 PN woddii
N MRy PN 4B 3] UossIs  we 0001 - 068 CIOWBWE) 1HYSSEYY 0861 LT AVW ‘AVOS3NL
0861 ‘8Z AV ‘AVOSINGIM o ssuppep shenBusy pastylyy jo Laang v, (2)
O wesd o iy 03apasd O} PUSR SEM DS WM B
vopriodio) sylnoLng SSauppen -iocu.hss!._i.lr.!!:. pecsdde won
W 0ESQ I sSenaduey masiudii syBinoung jo siee) Ausm), oy 2608 SiB 10 LORKsINEP © PE
ABopue) jo sIsY SHISMOEIIEN 20 “SuswATSE SEXAY 38 ssuppei Jo SEN LR 10} Myosopyd s
proepag i Togdp) 201000 3] UMD 10 vopduasap ® Sapniw W 0Z1S/0KTS/00
éﬁl‘!ﬂle ‘souppows slenBuey syl PuS-MS) NE)
.uc..l.!.lionh shAPedssag pus S306S) ) WOy  wd Of: 002 B4} JO BINIBYYNS DY) WO SHERI0H JBLI0ING SAIL
voler) ) Leaseyy “m seuppeyy slendus) pean-ulisi pus-mo] mMal ey
p.o....uw.eual::a..n Uy Wi 00z -002 ey 5208 W E|
Lussmamqy voppg-sdaue) SUNGH) I8 SIouT) JO ANSseapny WORNGOY Y QNN Sempe w2 009 - 6 m
YRR g e S———_y 4% % N d ‘samsdeis weslosd ep 81 Bupasppe ) 80050 i
ocdey foady sawo> WVULTIQ P> NYINOS 14 130 SM1 |
LADINPLY A4S 4t s0) ulisaq adenlus) sqEpxiey Aenqg. (0) ‘NYMINO] 0 uomea o.o:ﬁ
10 Peduy wmn) ] Hopsag wued  we 0001 - 00R vapems ii-i&u.ﬂwﬁa‘
Mopwpe) jo s iog B T s s o
086 VI ‘ONINIAZ AVAS3INL [ e B henedl ulpsaq sBendury pegnaen3 AReng  -ado)
LAY BAS-yBi € 10 UONeNSA] TRy,  (E) v
OoI0g J0 Spssaapug I0um) ueIesy;
pre e, gg.vl&iﬁ.: PAsoyy 58] ag 0] wd GYP - OF-
Argn) ‘eywy Weussydusg J0ss80k
Ayssonta) [oRae] 1883 SOPIA isﬁii?ggfﬁ wagead wd0E§
]




T e IR PRI [T IR T ST e PR

PROCEEDINGS
OF THE
INTERNATIONAL WORKSHOP
ON
HIGH-LEVEL LANGUAGE
COMPUTER ARCHITECTURE

MAY 26.28, 1980 =
FORT LAUDERDALE,. FLORIDA

SPONSORED B8Y
THE DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND
20742

e L L ok RRSTE Al o 2 2 htcm T e A 2 e A A T £ 2 - W AT o e

P




bt TN s ey v, tn e s
o g Vb o B T 2

B
3
b Acknowledgement
g‘ The Intetnational Workshop on High-level
é Language Computer Architecture acknowledges
.
L the partial support which it received from
f
E the Office of Naval Research.

x

s copyright (&) 1980 :
;1 ’v

[

AN

' University of Maryland : p
) Lepartment of Computer Science E
3 College Park, MJr)'}a;\d 20742 .

9 ‘ * - ) . ' :

u

arreovyy yof PUBLIC RRLEASE
A IllllllllliﬂrICIl l"jill‘!:ﬂ‘b mrite 03

bepartment of Computer Science
University of Maryland

College Park, Maryland 20742
1. S.A. B

(301) 454-2002

g e e W b ol B T E . e etk

&
4
i 4
’ [l
i
;
o
4




TS T T T T TR ;
T TR T R ST N B W

—————

International Workshop on High-level Lhngunge Computer Architecture

Session At High level Architecture 1
. Chairman : Dr, Victor Moore
; 1BM Boca Raton

¥ The Architecture of a Parallel Execution High-Level
i LangUABE COMPUL BT ..yt tvesronsasrusroosossscrisussssssoareossesnstssssassssarnovess 1
Ming T. Liu & P.S. Wanp, Ohio State University

i Direct~Exscution High-~level Language Fortran COmMpUter.....cveieisvsssacnssnsreransssnssns
§ Y.N. Chen, K.L. Chen and K.C. Huang

i China University of Science & Technology

4y Peaople's Republic of China

f A JOVIAL Direct Execution COMPUEeT....uusessvarnreisnsnsorasssrsesscsotsssssssssessnnsss 17

Yachan Chu, Univeraity of Maryland

9

Session B: Diraectly Executable Languages
Chairwan : LCr. Michael Flynn

Quest for an 'Ideal’ Machine LANGUAEE. .cvttvrvteertrnrcerssrrsnossrsnrsassrserssassonens 33
Krishna M. Kavipurapu, Southern Methodist University
Harvey Cragon, Texas Instruments

A Directly Executable Language Suitable for a Bit Slice
Microprocessor Implementation. vvsseeriiorrronisonscivrotiscroronsssasssssssoassses 40
N.R. Harris, Stanford University

Partial Evaluation of a High-~level Architecture. .. vcivvivsivrorrsosssrsasesssnssenssssss bb
Coran Bage and Lars-Erik Thorellt

; Stockholm, Swaden

1& Directly Interpretuble Language Design for High Level ’
iy LANGUABE SUPPOLL .« it ta ittt anssssusvatassonasssssersstnenerossnostasssnnsasnsssres 52

i B.R. Rau & P, Bose .
University of Illinois at Urbana

: Session C: Issues and Perspective
3 Chairman : Dr. George Ligler
Texas Instruments, Inc.

alide s

<RI

Twenty Years of Burroughs High-level Language Machinmes....... . vciiueniiivanescstinsnssee b5
E. Dean Earnest, Burroughs Corporation

A Survey of High-level Language Machines in Japan.......icerviienunnsrrsnscassoseoransee 12 5
Masahiro Yamsmoto, Nippon Electric Co.,, Ltd. . 4
Japan g
Reflections on a High-level Language Computer System 5

or Parting Thoughts on the SYMBOL Project......covtivusrsrooressnrassssseasansssnnses 80 Q
David R. Ditzel & Willimm A, Kwinn a

Bell Laboratories, Murray Hill and Hewlett-Packard

A Case Againot High~level Language Computer Architecture.... . vveviiescosrasansanrossseses8B
H.C. Crasgon, Texas Instruments, Inc.

2w Tr A

Pl

At

C e e e -

‘
o
iy

'

e -

.
b gt 1L

. e .- - "
PR RPN Y T I NERTE il . A ek 1
um kot ¢ Lt s o e Sttt 0 e 20 LAY



s
,
Segslon D Data Base Architecture
Chafrman : Dr. 7eonard Haynes
Office of Naval Research
Design Tgsues of High-level Language Databast Computer...vv.er v eeerrnrvnerrnininsornsns 92 !
David K. Hsiao, Ohio State University
Hashing Hardware and Its Application to Symbol
MANLPULAELOM A ¢ 4 et e tovesoauennnononsasnsonnneornensseis voveresrosnerasesasnsensasss 99
Tetsuo Ida, Institute of Physical & Chemical kcbcarch
Japan
RAP,3 - A Multi-microprocessor Cell Architecture for the
RAP Database Machine......ovviiveiiininnn.nn P e ve.. 108
I"v 0flazer and E.A. Ozkarahan
Middle East Technical University, Ankara, Turkey
K.C, Smith, University of Toronto
Panel Session E:  Future Impact of High-level Architecture
Ghairman ¢t Dr, William A, Wulf
Carnegie~Mellon University
Panelists: Dr, Herbert Schorr Dr, Jack bennis
1BM Research Center Masgachusetts Institute of Technology
Mr. Harvey C. 'Cragon Mr. £, Dean Earnest
Texas Insturments, Inc. Burrouchs Courporation
Dr. Leonard Haynes
Office of Naval Resvarch !
No papers in this sessfon...iiveivvaiin, P TS T
b
Session Fi  High Level Avchitecture 1
Chatrinan ¢ Mr. Masahiro Yamamoto
Nlppon Electrie Co., Ltd.
; Architecture of a Multi-language Pro essor Basod om )
: List Structured DELB. . .vui it ittt iinti i ionnnnitnenana, e 120
i J.P. Sansonnet, M, Castan and C. Percebols
Université Paul-Sabatier, France ;
1 i
! High Level Architecture for a Real Time Lavguape LTR. .. v.ovovui., Ch et s ceeeas 130 .
¢, Durrieu, B. Fromemt, F, Cuazitl, B. lLecussun, k!
J. Romain, D. Vidal and J. Vuarier "
Université Paul Sabatier é
An Architecture for the Dynamic Optimization ot High-level P
g Language ProgramB. .. . oeueerenornn e, e PP 111 3
A Samuel P. Harbison and Wm. A. Wulf ':
* Carnegle-Mellon University S
] . ¢
4 Session U: System-Oriented Architecturc i
Chairman : Dr. Lee Hoevel B
IBM Research Center 3%
Avchitectural Support for Abstraction.....oovviiiiiiiiiiaiienna, B €31 ZE
LK. T1ffe, University of Lundon a
i
Merarchical Fiufte State Machines anoa Stractoare o ) . 3
Input /Output Systems..... e e e coa 10 o
Hugh L. Applewhite, Honeywell Systems & thvnx\h 2
Conter %
;
9|
8

M

- " B . ' e ;A -
. ' [ W] LR RS A TN ) e N R T S T TR T MR LI RAL” S e e



¥ SWARD ~ A SOftware=0riented ATChiteCtUTe. « e trrtuoteeonnssrsstornennsesosasannsorsssss 163
i 7 Glenford J. Myers, IBM Systems Research Institute
f g congiderations In Operating avsten besfgn for
PR MUl CiPrOCeBE0r SErUCTUPOR, vt vuuirieannseertasrareirassenasesrsaniransrossoranness 169
Y Harold Lorin, IBM Systems Research lnstitute

Barry C. Goldstein, 1BM Research Center

B
Al S

Session H: Functional Programming lLanguage Architecturye
Chairman : Dr. Klaus Berkling
Gessllgchaft fUr Mathematik und

. Datenverarbeitung

! ; mbH Bonn, West Cermany

g An Architecture for Direct Execution of Reduction

i Y hngu‘l.l--nu-...-...~..-.u........-.n..‘.u..................................174

to Werner Kluge and Heinz Schlutter :
b Cesellachaft fur Mathematik und Datenverarbeitung 1
AN nbH Bonn, West Germany r
Rt An Expression Oriented Editor for Language with a

F . COMBELUCEOT SYME@R (s e v e vuusvnsauunenessoosesaserabssssetaseionoonsosnsoessnnnsssss 181

A Ferdinand Howmes, Gesellschaft fur Mathematik und

P Datenveraxbeitung, mbH Bonn, West Germany

o Purallel Computer Architecturc kmploying Functlonal

L PTORTAMNANE SYBROME . ¢y vt v vt et e ettt unnrstaesornaorseosnssrnsessnnsssntoonnssnseses 190

. John C. Peterson and William D. Murvay
F University of Colorado at Denver

d

E . Sessfon It High-level Architecture I1I

! Chiairman : John K. Iliffee

} University of London

On Architectures for Document Preparation. ..ue.oeesvesure.orrreresrossssaronesessenas, 196
' Martin Freeman and Leon 5. Levy
Ball Laboratories, Whippany

A High Level Architecture for a Text Scanning

| T T 7o RN
F.J. Burkowski, University of Manitoba
Canada

A COBOL Machine Design and Evaluatfon......veveiiviiiirnniyonennes
Masahiro Yamamoto, Ryoseil Nakazaki, Minoru Yokota and

Mamoru Umemura

Nippon Electric Co., Ltd., Japan

206

212

L N N A R A ]

.
AL vy Y S

T -
T O A
o L ENE . T A

" . " e - P T T e R T CEPE B - w m e e [P

7R 2 o~ b - -k

. NN L, . Lt . [ RPN
;- o e . 1 R RS . SO .‘.nv
R T T TN PTG TRINIRL-S1 /5., ST WP R R -




L s

Papers for Publication Omnly

A Direct High-Level Language Computer Architecture Scheme

(A Computer with a "nified Language Which are the Same

Inside and Outside~One of Researches on New Architecture

Of General PUTPOBE COMPULEIS) o1 ecvsrrorrnsersiororrasersntassasessasssssssonssrase 189
Gao Qing-Shi, The Computing Technology Institute of the
o Academy of Sciences of China

o PASC-HLL- A High-Level-Language Computer Architacture
FOE PASCAL .o oot etenesasasrsnsasosrnosiassosssssasssesososasssnsatassrsnsrsnsnanss

Jean-Plerre Schuellkopf, IMAG, France

222 [

An Extensible Stack-Oriented Architecture for a High-Level

T T U & &
Robert P. “‘pok and Insup Lee
Univeristy of Wisconsin-Madison

The High Level Language Instruction Set of the SYMBAOL

COMPULOY SYSLOML ¢ v v v et v nesennerennnesunessnsosssessnsossssssasssssnassnsennansesy 238
Robert F. Cmelik and David R. Ditzel
Bell Laboratoriss, Murray Hill

High Level Languaga Debugging Tools on the SYMBOL

! COMPULEE SYBEMME.L ¢t vvsueneeeneousoneotonaooeivsosnsosssiosassssonssvassvssosass 287
y David R, Ditzel, Bell Laboratories

, Murray Hill

TR

A

P

5 R L

g

RN X,

vi

e R g B

)".

-

TP SR NUTh MY 54




T L

|

\
L3
{
i

B T T T et e s S

3 TR I
TN, BT AT e s

[PTTRY VIR SRR PELE A

IR RIIV T LB sk g e

TUE ARCHITECTURE GF A PARALLEL EXECUTION
HIGR~LEVEL LARGUAGE COMPUTER *

Pong-shang Wang and Ming T. Liu

Department of Computer and Tnformation Science
The Ohio State University
Columbus, Ohio 43210

Abstract

This paper presents an internal langusge for
a high-level language comptur to facilitate
parallel execution of arithmatic expressions and
concurrent etatemants and to perform try-ahead
operations forv 1P, WHILE, and REPEAT statemesuts.
The architecture of wsuch a computer 1is also
described, which consists of multiple independent
processors for language processing and paralilel
computation. The incresse in speed is achievnd by
parallel execution, by try-ahead processing, and
by the pipeline effect created by the indapendent
processors simultanecusly performing variocun
tasks, An algorithm that translates an arithmetic
expression intc the internal language form ia also
included in the »eadix.

I. Introduction

In the area of high~level computer
architecture, various wmachine organizations have
been proposed with features to increase the
program processing speed [1) [2]. These dewigns
include independent processors to perfora various
tasks {n language translation and exacution, such
as the lexical processor, syntactic processor,
semantic processor, arithmetic processor, etc.
These orocewsors operate simultaneously and
asynchronously, and create a pipeline effect in
the vhole syotem. The concurvency among these
processors results in the epeed 1increase 1in
language translation and execution.

In this paper, however, we look into another
possibility of gaiaing opeed 1in high-level
lacguage computers, namely, the parallel execution
of arithmetic expressions aund concurrent
statements, aund the try-szhead processing of
statements involving conditions, such as 1IF,
WHILE, and REPEAT. The scheme that we use here
calles for an indirect-execution ar:hitecture which
uses an internsl lenguage and is of type 3
according to Chu’s classification [3]). Source
programs are translated into the {uternal
representation, which 4s then interpreted by the

* Research reported herein was supported in part
by NSF-MCS-77-23496.

.
S . P

A R e S YL I kit 7 4)

machine hardvare. We will describe £first the
features in the dinternal language that make
parallel and try-ahead operations possible, and
then the computer organization for carrying out
thase operations. We will discuss only the
features 1in the iaoternal language that are
relevant to parallal execution end try-ahead
processing, and ignore others such as identifiers,
labels, etc., since they are immaterisl to the
purpose of this paper and they can be found {n
other papers, e.g. (1] [4]. The syotax and
semantics of the high-level language constructs
are the same as those in PASCAL.

In Section 2.1, we firs\ briefly describe the
notion of Parallel Execution Strings (PES) for
executing arithmetic expressions in parsllel, and
then propose a linear reprs=sentation scheme as the
internal language for a high-level computer. Au
algorithm which translates a2n aritheetic
expression into the internal language form 1is
included 1in the Appendix. In Section 2.2, we
present a wmathod of representing a concurreat
statemsnt in the internal language so that it can
be executad concurrently. In Sections 2.3 through
2.5, wve describse the representation of 1I¥
statements, WHILE stateaents, and REPBAT
statements in the internal language for try-ahead
processing. The rapresentation allows the
possible paths in & statement involving a
condition to be executed even before the
evaluation of the <condition is completed.
FPinally, a high-level computer orgaoization is
nresented in Section III, which 1includas
independent processors for language proceselug,
and wmultiple Semantic Processors and PLS Access
Processors for parallel computations. In the
computear orgacization, esch axecution stream is
accessed and executed by a PES Access Processor
and a Semantic Processor. BEach Semantic Processor
has its own Arithmetic Processor and Local Storage
for concurrent processing and  try-shesd
processing.

I1, igternal Lauguage Constructs
2.1 Arithmetic Expressions for Parallel Exenution

A scheme for decomposing arithmetic
expressions for parallel execution, called the
Parallel Execution String (PES), has bean proposed
in [5] [6]. It can be summarized as follows.

3 ot T R VLI BT

P,

P NN o

+

STER W

Gratas,




RIS

e T s o e

Definition

In an sxpression tree, an operator node 1s
called

type 1| ~= it all of 4its operands are

: variables or constants;

type 2 — 1if exactly one of its operands {s
an operator; and

type 3 ~ 1f it is & binary operator and
both of its operands are
operators.

Consider an expression in 1ite tree
representation. Those operator nodes, the
oparands of which are varisbles or constants
(1.0., typs 1), will be the starting points of the
psrallel execution strings. Begiuning at the
starting points, these stcings are azecuted in the
direction toward the root node, each of wvhich can
ba sisultanevusly executed by an independent
processor. Each processor exscutes the type 2
oparatoras in a atring one by one at its maximum
‘spead without waiting. At ap operator node whera
tvo atrings mest (i.a., type 3), the processor
which reaches this node first will deposit the
partial result 4t obtains thus far 4into a
temporary storage and then stop, whereas the othgr
processor which reaches this wnode later will
axecute the operation at the merging node and
continue to execute the rasmaining string. Por
example, the expression tree in Pigure | has thres
type 1 nodes: A+B, C*D, and G-H; aad hence thare
ars thres parallel execution strings: The two
typs 3 nodes in Figure ! are labeled as #1 and #2,
regpectively. Note that the number of type 3
nodes 1s always one lass than the number of type !
nodes.

The expression J=(A+B)*(CHD+E-~F/(G-H))
can be represented as a tree:

/\

J * #1
+/
\

A B

It can be translated iato the fnternal language as:
Para A B + #1 * Jum
Parg C D * E + #2 - Jump
G H - F /0 2 - H * J -

Fig«l Example of Translating an Expression
into the Internal Language

= ” N .
) PP ISR~ TR AT T ST PR

Tc implement this concept 1in a high-level
language computer, we have to devise a linear
reprasentation for the parallel execution strings
in an expression tree and use it as the internal
language for the high~level language computer.
With this internal language, the emtry points of
the strings are chainad as & 1linked 1list by
pointars called Parallel Pointars. Por the
oparator vhare two strings meat, one of 1its two
operands 4is the result of the previous opersation
in the processor and hence need not be specified,
and the other operand is represanted by #1i, where
i is a unique number identifying & temporary
storsge for the partial result obtained by the
processor axecuting the other string. The first
of the two mnerging strings has a Jugp Pointer
folloving the merging point operator and pointing
to the location that iwmediately follows the
marging point¢ operator in the second string.

To sliminate the need of a stack during the
execution of arithmetic exprassions, the ordering
of operands will be reverasd in the following
situation: vhen ths result of the previocus
oparator is the second operand of the current
oparator, the first operand will appear as the
second operand in this representation. Thus, if
the opsrator is non-commutative, it will be marked
with an apostrephe following the opazator to
indicate that the ordering of its operands is
reversed.

Figure | {s an example of representing an
srithmetic expression {a the ioternal language.
In Figure !, Para reprasents a Parallel Pointer,
and Jump a Jump Pointer. When a P25 Access
Processor executes a Parallel Pointer (sae Section
III and Figure 3,) it will put the pointer value
into on¢ of the Entry Point Registers so that the
next string can be chosen for execution as soon as
another PES Access Procemsor becomes free.

2,2 Coucurrent Statements

A concurrent eiatement (7] Lo a set of
gtatements enclosed by a header COBIGIN and a
tvajiler COEND; for azawmple,

COBEGLN
Statewment 1;
statement 2;
Statement n
COEND

The statemants in & concurrent statement can
be enecuted simultaneously. A flowchart of the
above concurrent statament is shown in Figure 2.
To execute the concurrent statemant, it will be
trans lated into the internal language as follows:

COBEGIN Para Statewment 1} ;nrf>5tntenent 2

SAra esss) Statement n  COEND
[T

o Ll R T

L

ENTOR 2y SONCILI

S 3

R OO

el ST




i AT AT PR

- iz g R

s

o

BRI S b o)

Figure 2 Flowchart of a Concurrent Statement

The processor that executes Statement n will
executa COEND. The effect of executing COEND is
that the processor will halt its execution
temporar.ly until all the other processors become
free,

The semicolons in s concurrent statement will
be preserved in the internal language. A
samicolon indicates the end of a simple statement
in a concurrent statement and hence makes the
processor which is executing the simple statement
free.

2.3 IF Statements

EASEL AL

IF statements will be processed with &
try-ahead method. The following IF statesment

IF conditivn THEN statement | ELSE statement 2;

will be translated intc the internal language as
follows:

Para  condition IP 'P!rjg THEN statement 1 THENEND

s e——.

gggg\ EZS! statement 2 ELSE!E’

The processor wi;:h starts exwcuting the 1F
statement will set up the entry to the THEN clause
for a second processor, which in turn sets up the
entry to the ELSE clause for a third processor.
While the first processor is e¢valusting the
conditional expression, both the statement 1 and
the gtatement 2 are being executed simultaneously.
Howaver, any environment changes resulting from
the axecution of the statement | and the statemant
2 are kept in the local storage of the second and
the third processors, respectively, and will have
no affect either on the execution of the other or
on the evaluation of the conditional exproseion.

Executing the symbols "THEN" and “ELSE"
causes tha processor to enter the THEN state and
the ELSE state, respesctively. When the THEN state.

processor executes the symbol "THENEND'", or when
the ELSE state processor axecutes the symbol
"ELSEND'", the processor will halt its execution im
the WAIT state. However, "THENEND" and “ELSEND"
will have no effect on a processor which is in the
normal mode of operation.

When the first processor executes the symbol
"1F", it interrupts both the second and the third
processors. Depending upon the result of the
conditional axpression, 4t makes one of the two
processors free lmmediately and discards any
computation  the processor  has done; any
environment changes made by the other processor
are copied into the main storage and the processor
becomey free. When that 1s dona, the first
procassor resumes execution from where the latter
processor was Ilnterrupted.

2.4 WHILE Statements

WHILE statements and REPEAT statements will
be processed with the try-shsad method similar to
that for IF statements. However, only the
repatitive path will be tried in advance.

The WHILE statement
WHILE condition DO statement 1}

will be translated ast

Para, condition WHILE JHILEDO statementl WHILEND 15?

i—-—-\A

The processor vhich executes the conditional
expression sets up the entry to the WHILEDO path
for a second pProcassor. The counditional
expression and the the WHILEDO path are then
exacuted simultanecusly.

Exacuting ths sywbol "WHMILEDO" forces the
second processor to enter the WHILEDO state. The
environment changes made by a WHILEDO state
processor do not affect the wmain storage and are
only kept in the local storage of the processor.
A WHILEDO state processor will halt its axecution
in the WAIT state when it executes the symbol
"WHILEND." However, the “WHILEMD" will have no
effect ou a processor vhich is in the normal mode
of operation.

When the first processor executes the symbol
"WHILE," 4t interrupts the second procecsor. If
the result of the conditional exprescion is FALSE,
the eecond processor becomes free immediately and
everything in its local storage will not be used.
The first processor thea follows the WHILE pointer
to exacute the next statement.

1f the result is TRUE, the eunvironmant
changes stored in the local storage of the second
proceasor will be copied into the main siorage,
and the second processor becowes free. The first
processor then resumes execution from where the
second processor was interrupted.

ol M T s s n

2rs

-k

I

e

-

A

i

]

AR TSR T e gk S ST i i T

-

]

o . . . Y
st o SR Rt s eroe i e VR i, ARG D e ) F e 20l R ik




IR

Lk 2o i

. .
. R .
. N T . e . 3 e
e SR A Baed s ¢ vt et i dosnl O . iy B rateen, B

2.5 BEPEAT Statesents

The REPEAT statement

REPEAT
statement !;
statement 2;
.

statament n
UNTIL condition}

will be translated as:

statemant 1 statement? ... statement n REPEATEND

\ Para condition UNTIL ‘uruj

The processor whichi executes the conditional
expression ssts up the entry to the REPEAT path
for a second processor. The conditional
axpression and the REPEAT path are then exaecuted
simultanecusly. Executing the symbol “REPEAT"
forces the secoud procassor to euter the REPEAT
stats. The environment changes made by a REPEAT
stata procussor do wot affect the main storage and
are ouly kept in the local storsge of the
processor.

The symbol "REPEATEND" 1is added to the
statemant. Execution of "REPEATEND" will have no
anffect on a processor vhich is in the normal mode
of operation. Once a REPEAT state processor
executes the "REPRATEND", it wiill halt dite
execution in tha WALIT state.

When the first processor executes the
“UNTIL," 4t {iaterrupts the secound processor. It
the rasult of ths conditionsl expression is TRUE,
the second processor becomes free immediately.
The first processor then follows the UNTIL pointer
to execute the next atatement.

If the result 4s PYALSE, the environment
changss stored in the local storage of the sacond
processor will ba copied into the main storage,
and the sscond processor bscomes free. The first
processor then resumes its aexscution from where
the sacond processor vas interrupted.

I11. Architectute

The architecture of a high-lavel language
computer which can exacute the internal language
as describad ip Section II {s shown in Pigure 3.
It cousiats of PES Mamory, Main Memory, Partial
Result Btarage, a Scenner, an 1/0 Processor, and a
nusber of PES Access Processors, Entry Point
Registers, Syutactic and Semmatic Procassors,
Local Storage, and Arithmetic Processors. The
various kinds of processors atre oOperating
simultaneously 1in a pipelined manner, and the
organisation is similar to the one proposed by

-

. g e (it
et S ton sas daki g i il Seans

T T TR T T T ramam s e ;e

Haynes {1} except that wmultiple identical
processors ars also used for parallel
computstions. Since ve are interested oanly in the
parallel exacution aspects of the architacture,
othar features which «re the same ss Haynes [l1]
will not be duplicated here.

PES Access Processors

The PBS Memory stores the internal
representation of the source programs. During the
translation phass, the PES Access Processor
recaives program tokens in the internal form from
the associated Syntactic and Semantic Processor,
assembles and stores them into the PES Memory.
During the execution phase, each PES Access
Processor reads the program from the PES Memory,
separates and delivers the symbols to the
associated Syntactic and Semantic Processor that
it is attached to. A fres PES Access Processor
will start executing s (parallel) axecution string
by using a non-empty value from one of the Entry
Point Registers as a starting address in the PES
Memory for execution. After that the Entry Point
Register is clearad.

Tho PES Access Processor caun cortinue readiug
from the PES Memory until either its buffers are
full or it has read a semicolon, which indicates
the end of a simple statement in a concurrent
statement.

Parallel Pointers and Jump Pointers are
executad by PES Acceas Processors. Whan a PES
Access Processor reads a Parallel Pointer, it puts
rhe pointer valus and its proceasor identification
into one of the Entry Point Registers and
continues 1its processing. When a PES Access
Processor reads¢ & Jump Pointer, it aimply alters
its program counter and rsads the program from the
new location.

Syntac ic F sors

Each PES Access Processor is attached to a
Syntactic and Semantic Processor- The PES Access
Processor and its associated Syntactic and
Semantic Processor are oparating concurremtly and
asynchronously. The communication bestween them is
carried out by the huffers i1in the PES Accecs
Proceassor and a4 counting semaphore. During
translation, the Syntactic and Semantic Procassor
veceives program tokens from the Scaunner, performs
syntax enalysis, tracslates the program into the
internal language, and delivers the resulting
program to the PES Access Processor. During the
axacution phase, ths Syntactic and Semantic
Processor cxecutes various typas of operators sent
by its PES Access Processor, such as IF, THEN,
ELSE, BEGIN, WHILE, REPEAT, etc. 1t also sends
commands to its Arithmetic Processor and the I/0
Procassor. A Syntactic and Semantic Procesaor can
clso alter the program counter of its PES Access
Processor when 1t executes a "“GOTO", "WHILE", or
"UNTIL." Each Syntactic and Semantic Processor has
its own local memory to temporarily store the
anvironment changes during try-ahead processing.

LB

-y

s e

i et S G i e A -

e

SIS £8




o
;
2
i

SPETTET

y
¥
i,
¥
k)

o S )

The Syntactic and Semantic Processors are
interconnected to each other aso that whan &
try-ahead path 1is taken by a Syntactic and
Semantic Processor, it can send 1ite processor
identification to the processor which is executing
the conditional expression. After the conditional
expruession is evaluated, the latter processor will
iunterrupt the former and take the appropriate
actions as describad in Section II.

Acichwetic Proceswors

An Arichwetic Processor is conaected to each
of the Syntactic aud Semantic Processors. When a
Syntactic and Semsatic Processor receives an
operand from its PES Access Processor, it saves
the type and valua of the operand into its opsrand
registers. When it receives an arithmatic
oparator, it directs {ts Arithmetic Procasssor to
perform the operation on the operands stored in
its operand registers. The Arithmetic Processor
will check the typea of the operands, snd perform
all type conversions if needed. The results of an
arithmetic operation are stored into the operand
registers of the Syntactic and Semantic Processor
vhich has sent the operstor. Our acheme used here
will not require any stack for aritheetic
expression executions, and, at sny time, no more
than two operands will be in the operand registers
of a Syntactic and Semantic Processor. A stack is
used in the main storsge only to allocate space
wvhen a block or procedure is entered.

Partisl Resylt Storage

The Partial Result Storage is to temporarily
st.ore the partial results obtained during the
exacution of an expression. Each location in the
Partial Result Storage has a tag associsted with
it to indicate vhether it is empty or full. All
tags are clesred {initfally to indicate “empty.”
When & Syatactic and Semantic Processor receives a
partial result opearand, 1i.e., an operand of the
form #1, from ite PES Access Processor, it will
check the tag of location { in the Partial Result

tocege, If 1t indicates "empty", the Syatactic
and Semantic Processor will save the contents of
its operand registers into location 4 of the
Partial Result Storage sud set the tag to indicate
“"full". The Syntactic and Semantic Processor then
becomes free. If the tag indicates "full," the
Syntactic and Semsntic Processor will reset the
tag to dindicate "empty", read the contents of
location 1 into its oparand registers, and use
them as the operand for the next operation.

1V, Conclusions

In this paper we have presented an internal
language for & high-level language computer, in
which arithmetic expressions and concurrent
statements ars expressed as parallel executable
strings. Try-shead operations are performed for
IF  statements, WHILE statements, and REPEAT

statements. Por an IF stateaent, both the THEN |
path end the ELSE path are tried simultanescusly, -
vhile the <couditiounal expression s being
axecuted. The wrong path is later discarded, and ’
the right path activated. For WHILE statéments '
and REPEAT statements, only the repetitive path s
tried ahead, since it is the one mors likely to be
corrects The resulting eystem can increass ite
processing speed over other designs thiough
distributed ©prcocessing of various tasks by
nultiple indepsndent processors, through parallel
execution of arithmetic expressions and concurreat
statements, and through try-shesd processing of
the statesments ilavolving conditions.

V. Refersnces

{1} Heynes, L.8., "The Architecture of An Algol 60
Computer Implemantation with Distributed
Processors," Procesdings of ths

Ath Anpual
Bruposiuym on Compyter Axchitecture, pp.95-104,
Mavch 1977,

[2) Chu, Y., "A LSI Modulur Direct Exacution
Computer Organization,"” Compyter, Vol.ll,
No.7, pp«69=76, July 1978.

(3] Chu, Y., "Concepts of High=Level Language
Computer Architecture,” in High-leve] Lansuase

Somputer (Y. Chw, od.),

pp.1=14, Academic Press, New York, 1973,

4

Haynes, L.S., "Structure of A Polish String
Language for An ALGOL 60 Language Processor,”
Proceedings of AQI-IKEE Symecsius o
Hish-Level Languaxs SComputer Axchitectyte,
pp.131-140, Mov. 1973,

{5] Wang, P8, and Liu, MeTs, “Parallel
Processing of High-level Language Programs,”
Prog¢. of the 1979 Iuteryationsal Gouf. on
Mmi ppoU-ZS. All'o 1979.

(6] Wang, P.8. and-  Liy, M.T., "A
Multi-microprocessor System for Parallel
Computations," Progesdings of the Second

Symposium on Swmgll Syetems, pp.59-68, October
1979.
[7] Dijkstra, E.W., "Cooperating Sequential

Processes," in Erograsing Languages,
(F. Genuya, ed.), pp.43«112, Academic Prass,
New York, 1968.

[8] Laliotis, T.A., "Implementation Aspects of the
SYMBOl. Hardware Compiler,” Proceedings of the
Firet  Apnyal  Sympoeium on
Architecturs, pp.l1l=115, Dacember 1973.

R E T

B ot Ty e Aot

4
i



;
:
r

I N T

Appendix
A Translation Algorithm

The salgorithm is to translate an arvithmetin
expression into the internal language form
described in Section 2.1, During the translation
procass, two stacks will be used: OPR-STK and
OPN~STK, for gtoring operators and operands,
respectively. Dollar signs ($) will also be used
in OPN-STK. LC 1s the Location Countar which
contains the address of the location for storing
the next output. Two variables are used:
TEMP-COUNTER 18 for the numbar of temporary
storage locations used, and PES-BEGIN iz the
starting address of the string currvently beinp
genurated. An array TEMP=-POINTER (TP) is used (in
the algorithm. 'TP(1) stores the address of the
first of the two #1’s in the output, mo that when
the second #1 is generated, a Jump Pointer tu the
sacond #i can be generated at the location
following the first #1.

The algorithm 4s similar to that of
translating an expression 4into a reverse¢ Polish
string, sxcapt that operands are not written out
immediately and its operator output procedure ie
more complicated. A hardware translator can be
easily implemented in the Syntactic and Semantic
Processor {8]. FPigure 4 is the flowchart of the
algorichm.

Main Procedyre

1. Clear TP array. Initialize TEMP-COUNTHR <~
0; PES~BEGIN <~ LC.
2. 8 4~ next input symbol.
3. If 8 is & '(’, then push OPR-STK( (‘) und go
to 2,
uluo if 8 is a variable, than push
. OPN-STK(8),
alse ERROR.
4+ 8 4= next input symbol.
5. WHILE Priority(OPR-TOP) > Prtority(S) Do
POP~QPR-STK.
6. If 8 is a ’)’" and OPRTOP=’(’, then pop OPR=STK
and go to 4.
If S is & °)’ and OPRTOP is not ‘(’, ERROR.
7, 1f 8 14 an srithmetic operator, then push
OPR=-8TK(3) and go to 2.
8. 1f S is ‘end-of-sxpression’ and OPR-TOP is not
o
then DONE else ERROR.

Procedyre POP-OPR-~STK

Case | The OPR baing popped is a unary
operator:

Case 1.1 OPN-STK(TOP) is a variable:
1, FINISH=PREVIOUS~-PES.
2. Pop OPN~STK, and ountpmi {1,
3. Output OPR.

i doairy e S A N T ~=rr=

RS SRV IR AN AT S TR s v

4. Push $ (TEMP-COUNTEK + ) onmto
OPN-STHK.

Cass 1.2 OPN=STK(TOP) 1s a $kt
I. Outpuc OPR.

Case 2 The OPR being popped is a binary
uperatocrs Depanding upon the top
two alements on OPN-STK, there are
thred cases:

Case 2.1 Botih of the two elements are
variablest

1. PINLSH~PREVIOUS=-PES.

2+ Output the top two elements Lrou
OPN-STK.
Replace the top two elemants on
OPN=STK by $(TEMP-COUNTER + 1).
dutput OPR.

3

-

4

Cane _!s2 Uno element {8 a variable, anl

the other i3 a $1it

lv Output cthe varfable.

2. [f UPR is non-commutative and
OUN=-STK(TUP) 1is $i, then output
UPK’, else output OPR.

3+ Replace the top two alements on
OPN=STK by §i.

Case 2.3 both of the two elements ace

$’ss Lat OPN-STK(TOP-1) be $k, and

let OPN-STK(TOP) be $§t
1+ Output #%.
2. Lf OPR is non~commutative, than
output OPR°, ulse output OPR.
3. Output OPR to ths location pointed
to by TP(K).
Ao Output a Juwp Polnter witin the
content of 1L,C to the location
pointed tu by 'IP(K)+l.
Replare the top two clemants on
UPN-STK by $j.

~
-

Procedura FINISH-PREVIOUS—-PES

l+ TEMP-COUNTER <~ TEMP=-COUNTER + 1.

2. Output #(TEMP-COUNTER).

3¢ TL(TEMP~CUUNTER) <= LC; increment LC by 2.

4. Qutput a Parallel Pointer with the content ot
LC to the location addressed by PES-BECIN.

5. PES=-BEGIN <~ LC.

Wihe BLAK P AL ARG

R 7 ¥ 1 Y Y00 TR eyt ey = e e

3t s a3 e B e T

A

i aml e e

A



W T T
W i iae el e L T T U NP

!

|

d

3

!

\

i

4 L/o Main Partial
. Processor Memory Result
£ Storage
3

i

Scanner

r-—----d-—v-ﬂ '---.-—-—q--o-ﬂ r-,----pqnn-q
(| | I { ' ' |
) local ) ' hocal ' 1 Local |
Sturage Storage
' 5 ' \ ) 7 \ ' St.o:lgo '
' ' ' ' ' '
' Syntactic & | , ' Syntactic & | ' Syntactic & | )
' Semantic Y Semantic eae Semantic
v ) . Processor O . . Processor | ‘ ) Processor n :
\ ;rith‘ 1 ' ] \ Arith, ' \ ]
' rgc. ' ‘ ' \ Pr:c. ! p
! PES Access ! ! PES Access ! ' PES Access | ‘
* ' Procassor G| ! ! | Processor | ' | Procemsor n | ! d
[} [} | ! ] )
L----—--p-p-J L---"“""F'-r-'l L---.--- o j
!
: !
]
!
i
. 3
| !
B! !
i
- Entry Point L
PEs Registers i
Meory h
A
k!
i
0
L]
1
W
Sheare b Macarne Oeand cat oo ‘Z
L
. Ed
x
N
1
]
;
}
, ]

+

WP 1 PR Filin e R 7 ¢ My o T S A Aok 1S & R T B A 1 T b
-

bl Mate RS 12T iy oot adlh b 2 s i



STARY

Kedd Next
Inout 8

Puah
‘_—J OPR-STX (" (")

Pushy Raad b xt
[ B Y % laput o

P
Pri (ork-Tul)

POP=(WPR-5 'ld

N

uiey

riahle
" { R S TR (TOR D

Figure 4a Main Procedure of the Translation Alporithm

AP

i ovariab e
1 st

ll';(‘.":'l\ i ! 5 e M
PR
N N
ERRUR
S s
Pusly Y < ;
TR (S Arltismtic
o' R=STh(S) upe.
N
N OFR-TOF
PR
1 RROK S- kNI
BRI
!
ity
variahles taje S'y
prem———— Flepents o

FINISH=1F REVI O, Wutpuat ('R

FINESI- PR Vo

~IES
!

I'op OPN-STX and
autput ft,
Qutput OPR,
Pusl § (TEMP-ONT
+1) onto DPN-STX

rE ]

Halput top lwe

talpat Hie
CATERILY FEN
Hubpral (R,
Replane Lop twn
¢ lementa by $1,

clepent on
=01k,

Repl v tap two
vhoments by

SO -ONTED)
vatpul WK,

1

apat Sk,
tuwtpd HPR,
Baipnt WK Lo
adibpess (R,
Dutput fomp
folnter Lo
RYUACZONR i 4 RN
Replacre fop tee
clements by §), .

Flgure 4b

Arvaeriatae

o ANt sl L B RV RS

Procedure POP-OPR-STK

8

JRIP T P,

e

Ps¥: FPSEE T TR Y

BINEEIN_Satr-= CT T RNETT B o




T ot o m—— s toatetn 2kl itk U S
T - 4 ul = " —— - -

DI REC P=uasClTION HIGH=LeVel LANGUAUS TURLIHAN CUMPUTZR

Yoory Nuin Chen, Kuo Liang Chen, K¢ Cheng Huang

University of science oad Technolopy of Chine
liefwi Anhul 1woplu's iepuvlic of Chinu

‘Abstract

This poper presents a cruceptual
ausign of the dirvot-exwcution Fortran
ccoputer, First some mauificationa are
introduced into the languuge l'ertiran
to insure simpler exscution and vetter
pevformnoce. Next fullows a brief Jla-
cussion of the architecture cf this
computer apd then, it ore uutnal, of
the uirvetessvaution proctas of swnu
typscsl lortran statuments which .mny
furnish snoutline of thu wors ¢r thia
computer, Finally, suliv cowiclits ore
Sadw on the possiblu developrent of
the iirect-exveution high-iuvu. looyuage
QOmputyr.

Lo latroduction

Aith the rapid advance of the sciwnce ond
tuchnology of computurs and clectronics, the
cost of thu hordware Lecomes chorper and that
¢f the sof'twnre becomos more vapuasive .lay by
duy, This mnkes it both possiblie and nocussary.
to dosign the direct-execution aigh-lavel lan-
$uage compater., uince the langunge Kortrnn is
thy most widely used high-level laspunse, the
Juvenreh any design of the lirect-exucdtion
Fortran computer may not be ill-nivisod,

rhis paper gives n conceptinl dvaiyn ol thy
lirvct-gxecution Fortran cowputur, It ugsea the
Al asic Fortran as the funuaruntnl language,
vut in order to inzure ei-.plur eivcution and
wutter performance, some mcdifications ar-
introiuced into this langunge aa tollows,

{1) Main prograa proceoded oy the auymird
“Master" should bLe put ot the enu. For
interaction Letwesen man and machiuw input-
ting is carried cut tocxun Ly toaun; the
tnin program should be put nt the troat of
the wholo jrougran. But at that tlmw the
snvale of wach prowrnn unit should by li-

mited to a certain number.

{2) The types of all the variables and arrays
should Ue declared explicitly, especially
the dumny argunvnts of the atatement
iunction.

(K]

In order to Jistingush betwwen the uone-
vavcutnble and execulnole statemenity, a
suysord "MACRQ" is placed at the bejisuing
6} unch gtatumunt function. The dummy argu-
ments of utatement function are locnlized
in the proxrem unit of thia atatement -
iunetion,

{4) I'he oUIVALLNCE statement i3 deluted.

The nrchitecture of the diruvct-execution
rortran couputer is dosoribed brioily in swction
11 of this paper. The direct-execution proce-
dures of' sowe typical atatuments of the laaguage
rortras arv discursed in seotion IJI. We believe
thet may tursisl an cutline of the work of this
direct-eavcution Foriran computer. Finally some
comients are maue on the posgsible development
of the Jirvct-eascution high-luvel language
computur in swotion IV.

11. Arohitecture

The direct-execution high=-level language
computer should execute the program written in
this language directly according to its lexicon,
syntax and semantics without using the tradi-
tional and complicate multilayor software. (such
as compilers, ussemblers, loaders, stc). Thus,
its architecture should reflect the structures
of jeixicon, Control aud Data of this high-level
language, so that the program written in this
language may be treated more efficiently,

The computer architecture diagram proposed
is shown in Fig. 1. 1t conaists of a Program
Memory IM (to store the user's program), a Data
Memory DM (to store the relevant data) and four
procesgors (Input/output Processor 1/0 Py
Lexienl I'rocesaor LP, Control Processor CP and
urta I'roceasor DP'). Among the processors there
tire also the control bus, tho addruss bus, the
data vus and Jonw rugisters to store information

i TramaE o e T ik B BB et T e




TR

TP Y ool

temporarily., These processors may be microp-
fooegaors or bullt up with LBI chips. They may
Operate paifillelly and synchrosously with each
Other {a order to inorvase the processing apeed.

The user's progras may be input into the )2}
oither all at once, or token by token, execu-
ting and storing simultesnecusly to allow inte~
Taction between man and machine. After treatasnt
by I/0 P the user's program 1s iaput into the
B 1o a definte form: namely with a terminal
character at the end of each statement aad two
tageing charasters one at the beginning of each
Proguam unit and the other at the end of the
*hole program. Theas tagging characters are
dalled unit heads und program ead chbarsacters

{respectively, they are in the first positioa of
:%he label region aud are differeat from any
brdinary characters used by Yortraa. The codes
Stored in the JM may be either ASCLI or com-
proased internpl codes.

LP i» used for lexical analysis. It includes
the SAM (Scmaner Associetive liem iy which atores
legal chsracters, etc), There aru two working

“modes for LP controlled by OPF: scanning end
oxecuting. In the soanning mode, LP checks the
characters seat from M whethexr there is a
terainal charaster or not, so as to find out
the label region {(aince the label region is
Just aext to the terminal chadacter.) After Ly
finds out the label, the unit head tag and the
character "D* at the firet position of the

ptatemsat, LP is trensfered $0 the executing
ode. In $he exzesutisg mode, it checks the

048118y of characters sent from MM, Spells
heam into tokens and sends them to QP and/or

s+ 1f the tokens are a string of numbers, set

: Fedister ta "1%, make some cotversioa and

put the converted codes into the VALUx register

and then send them out. v

CP consists of the CAMU (Unit Head Control
Associative Memory), the CAMI (Label Coatrol
ASgsociative Memory), the CAMR (fwserved Word
Control ismsouiative Memory), sthe R 3tack (Return
Staok), the N0 Steck, tie GALL Stack and the
MDLREG (Mode of DP and LP Register), CP is the
control center of this computer. When the main
progrem is executed or She subprogrem is caliea
it sets DP into the operating mode by ssams of
the register MDLREG. OSherwise it may set DP
iato the eyntax mode, The working modes of LP
are also set by meaas Of the register MDLRUG.
R gtack is used for reserving tvhe returs poai-
tion, DO Stack is used for reserviag the DO
statement informasion amd CALL Htack for reser-
ving relevant informaticn of local quantities
vhen & call subprogras is exeduted, Whea LP
outputs a unit head or a labe), OF should fill
the sntries of CAMU and CAML respoctively for
lave» yae in some control statementa gooceraed.

DP consists of DAM {Duta Associative Memory),
sone staoks (KXP Staok, ¥V Bteck, L Stack and ¥
Stsck) and register FPOMI'T, ln tShe syntaz mode
for non-executable statements (declaration part)

10

it fills the corresponding entries of DAM for
the variatles and arrays but does not allocate
any oells in DM. (except COLiiON Statsments).
Tor executable statements no treatment should
D9 necessury; it's a matter of starting tae 1p
by OGP to continue the scanning. Now as LP is in
the operating mode, it not only fills the cor-
Tesponding entries of DAM, but ulso allocatus
Sells in UM for them. Then it caloulates the
Yalues of exeguiable atatements and assigna
Yalues to them. The register FONPT points to
the first usable locatica of the free space in
UM, {After resurning of the called subprogram
toe space 1o DM allocated to it should be re-
lessed for other uses.) LXP Stack stores op-
Tators. V 3tack stores the values of operands,
L Stuck stores tos logical operands.

Hesirdes, LM 18 tne Duta leaor7; data stored
1o it are tagged to indicate the type of dats.
Scauasr poiater SP is s pointer which points to
the location of the character being treated in
. The RAMULT register utores the opersting
results to control the DO and IF stetements.

11s E;ngtax”utgog of soxe statements

Before executing we assume that the user's
program is stored in PM already. The pointvr SP
poiats to the first character of the program in
M and Lk s io the goanniag wode.

1. Treatasnt of unit head statements

Whed LP scans the unit head tay, it is
Shanged to the siecuting modu, spelling the
charasters iato tokeus to be output. CP receives
and analyses the tokens to determins the type,
class and name of this prograu unit, Them it
tills thase 1%ems in%0 the oorresponding tieids
of global CAMU as shown in Fig. 2, where DAMPT
poinss to the fires locesios of the local guan~
tities in DAM, TMPT points to the fires Charac-
ter location of the first sxwoutable atatemsent
of this unit in FM, LPP points to the lodation
of the first label of this unis in CAML. These ™~
pojnters should be filled before the unit 18
cslled,

If this unit is a funotion eubprogrem, DP
should be activated to fill its name into the
DAM of this unit as shown in Pig. 3. Then the
locasion of the first entry in DAM of this unit
should be put iato the field DAMPT im CAMU.
Fioally, there should be left a blank between
the two neigboring unita in DAM, CAML wtc, to
indicate the end of the uaits.

For the subprogram wi.th dumay argumeats,
after OP recognises a duwmy argumeat, it scti-
vates DP to €111 the entries of this block
Sucessively aud put o dummy symbol in the fie)d
Lumay, When it encounters the oharscter "ja it
fills the aumber of dummy arguments ip the field

e e ey

!
4
- s‘.-ﬁ'/ R SN

s Vi

.Y
&3

A Y . o e bt St T




i

AL et Catari i s e e s

2, Treatment of declaraticn staterents

ihen CP encounters the namse of variables or

Rt

body .

N If the first character of the statemsat 1»
E arreays of the aon-executable statements, it puts aot the slphsbet "D", thea the LP should soan
{ them into the D3R (Deta Sverch heglster) and contindously. If 1t is, the LP should output
; then activates DP to find out whether there are s token. When CP doss not gpgeuster the keyword
v such oames in DAM or not. If shere are, DP fills *DO®, 1t seté LP to scennlag mode again; if it
% ‘he corresponding fields, If there aren't it does encounter “po® the following etatesent
3 allocatus:aew eatries. ahould be a DO statement such as:
The fiwld STRUCTURE indicates thatv $he DOL 1em, M, my
structure of the name is a variable, an array or
a funotion, The field TYPs indicates that its hea CP pushes the label of the terminal state-
type is & real or an integer; the field COMMON meat | into the fisld TL of the DO stack
indicates whether it is alloceted in the COMMON {remains the other fields blank) and pushes “he
reglon or not; and the field SIZE indicates the roturn location (l.e.the girst character of the
volume of array or the number of the dumay loop body) into the R stack as shown in yig,.5.
arguments. Besides, the field PTl poiats to the
location of the variable (or the location of dhen a definitional label is encouantered Cp
the firat composent of the array) atored ia the £11ls an entry of CAML sad °0* into its field
DM. In our scheme, for all the yuantities of DL as well, Whaa the label of the terminal
non-axecutable statements except those speci. atatement L is anaountered, besidea rilling it
fied by the COMMON statements, we do act sllo- i0to the CAML, the DO stack and R staok should
cats aoy cells in DM, that is to say, we do not be popped, She values of the DL of all ladbels |
£fill ¥M until this unit ie celled b, another ."h‘n this m loop should be ‘n°"'..‘ b’ win,
program unit. Of course, for thusw quantivies
io the main program cells are aliocated. The For multi-nested DO Loops, say, with shree
- pointer Prd stores she inforsation for ocalcu- aested layers, ufter SP Sransfers out of all the
latiog the location of the compcuvats of sa 1O loops the DL value of the fnnerwmoat layer is
array, sn it is filled for arrays oaly. 3, that of the middle lgyer is 2 and that of the:
outermost layer is ). The treatmeat of defini-
3. Treatmeut of the statement function tiocoal labels in the main program will be dis-
! cussed in $be next parsgraph.
The treatment of the statement function is
to £ill its oane and dummay arguments together 5. rreatment of DO statements.
with their types into the UAM but oot to alle- .
cate any cells ia the DM, When L} encounters whea DP is ia the operating mode to execute
the token“s", the coatent of 8F should be the DU statemsat *"D0 L { « a8, al, if the
filled io the field PP3 in tbe DAM and thea CP . Serminul statement label L 18 found {a the CAML,
seta LP %0 soan until the serminsl symbol of the HMPT of L 1s pushed into ine f1eld 71 of the
this statemsnt is encountered. DO stack, -& i¢ sssigaed to 1, and the looations
: of {, an sre pushed into the fields v
4, Treatmeat of the Defimitiooal lavel (Control variable), P (Final Paramster) and IP
(Incremuntal jarameter) of DQ stack respectively.
pefore eacountering the first executable stat  .ng peturn location is pushed into R stack
statement of the main program, DP is io the (Heturn utack; also, as shown in Fig.5. Labels
syntex mode, 4.60. it only treats the noa- which are found in the CAML with addresses both
exectable statements as discussed above while less than or equa) to that of the terminal label
tor the exesutable statements it treats the L and greater than or equal to that of the R
definitional labei only. stack are within the Loop body. Then the values
of the field DL of ell the labels within the loop
The treatment of the definitioual label i body should be decreased by "1%. The values of
to £i11 the labwl in the entry of the CAML of UL of this layer now equals to "0", which {pdi~
its unit accoraing to the sequence &f its cates that these labels are in the seme layer, i
appearing ia the program as shows io ¥ig.4, 80 that they may be transfered. when the nested {
. whers PMPT (Program Memory Pointer) points to LU statement 18 encountered Cr goes through all ,d';!
T~ the locstion of she firss character of the the proosdure as discussed above, Having executed el
T~ statemeat of this label in PM. UL indicates the the tersisal statement of the DO loop. CP active- -
- aumber of nesting of DO Loops and is used for tes DP to culoulate § » 1 ¢ and RRSULY = { - %
pruventing the program to trensfer into inaer m, i If RESULT4 0, then the :3; items of R 8tack 5
layer of the loapse, lﬁouxd be copied 1nt0 SP to muke the loop execu-~ 3
- tion agaio. 1f tho HRSULY»O, the loop exeoution 3
For the ¥xecutable statements of the subpro- ;4 gompleted, the values of the field DI of all 3
cram, LP is set iB-the wcanning mode to scan the  ¢ng )ahele within the loop body should be 3
label regios and the lpat chadacter of the increased by "1%, It 1odioates that thess labels !
. statement, Now if the label is eacountered, CP witita this loop should oot Le traunsfered. Thea ,i
: f1lls one eotry of CAML and "O" in its DL field the D0 stack and R stask should be popped. :
! to iodicate that the label is not ia say loop ﬂ

T T

4 . ' . - e e e [ L
1 N » .
L . . . r ot
o y e . "y a ap wetg e LAt S L
SR TENG: PP oV AR e s e S el aaktes e ik Ut 20 SRS L




If L is not found in CAML the ststemwnt:e
ia the loop body should be executed. when the
definitional labels are encountered, CP allo-
cates the entries of CAMI to them and fills the
fieldr DL with "0%. Having executed the terminsl
atatemeat of the DO loop, treat them as discusr
ased above.

6. Treatmeat of COTO and IF statements

It the COTO L atatement is not in any IO
Loop, and the label L is fouod in the corres-
poading region of CAML, CP checks the value
of the field DL; if it is "0", the program may
trensfer to the label L; otherwise, an wrror
has occurred. If the label L is not found in
the corresponding region of CaMl, CP sets LY
aud DP into scanning and syntax modes roespec-~
tively, scaaning the program to find the L. The
treatment is eimilar to paragraph 4.

When the L is fouad 4a the program, in or-
der to prevent transfer into the inaur layer
of DO loop from the out layer, the L akould not
be transferred immediately (elthough the value
of {ts fields DL is "“O" at that time), The
location of L in CAML should be stored in the
temorary register TR. LP scans the program
continuoaly until it returas to the same layer
of this QOTO L statement, 1.¢. the DU loop
layer whose fielda OV, FP and II' in the bO
stack are blank should be scanned out aunu the
values of field DA should be iucruasud. Tnen
the valuvs of the field HMPT ama DL in CAMU
should be found out by means of the cuatent in
THe I1f the value of the field DL is "U" then
the progrem trausfers to L; otherwise an error
hias ooourred.

For the COTO L statement lying ia a certain
neating DO loop layer, it ias necessary to fiad
out L within the current nested layer of CAML.
(If it 18 not found in CAML LP should be set
io the scanning mode TO 68EA the program’
to find the L of this DO loop layer in the
program Ae discussed above)., If L is found and
its DL value is "O", the program should be
transferred to L, If L is not focund, the volues
of the field DL of all the labels within this .
loop layer should be jncreamsed vy "1", CF pops
the top of DO stack snd R steck; poes on to
find the label in the outer layur (in the CamlL
or in the program). The above process is re-
peated again and sgetin until the L is found
and the progrem is transferred to it.

The execution of IF stetement 1T (e) :ﬁ'
L;. L, 18 simliar to the UOTCU statemant. Wihen
s} rogoanizol the keyword "1¥” it activates

DP to calculate the expression and puts its
logicml result (less thaam, equal to or greater
than zero) into the KESULT regicter. Then
according to thie result CP puts the value of
the corresponding HIPY of L), L, or L; into

SP to perform the transfer.

7. Treatment of the call of statement functioa

i

12

IR T AP, o 5. VI
o S s o0l s T N st i e i et

subroutioe and fuasction subprogram

In the case of calling a function subprogiam
or a statement function, it is nocessary to find
the name of the function in the region of the
current operating program unit of the DAM. If
this nems is found it ia a atatement function;
otherwise, it moy be & function subprogram. For
a function subprogram, its name sould be fouud
out in the CAMU.

CP copiea the values in the fisls PVUPT,
DAKPT aod LPP? of the CAMU iato the fields of
tomporary register. (P allocates a cell in DM
for the function name to store values of the
funotion. Then the Cp recogaizes the amctual
argumenta, say, there are three arguments: A
(variable), 3 (constant) and ¢ + D (expression).
CP activates DP to find out (by DAM) the loca-
tion in DM allocated for A. The locations of A
and thoss of temporary cells allocated for
constant 3 and the result of expression (C + D)
together with the location of the function name
should be copied into the fields PT1 of dummy
arguments and the function neme of the called
subprogram in DAM respectively. Then DP pushes
the value of the field PIl of the funotion name
into I stack, as shown in Fig.b.

ln our acheme we use cal)l Ly name, (urtainly
during the process of substituvion some syntex
checking (ua on whether the numvers of the
actuul anu dumay orguments are egual, whether
the types of both arguments are the same, etc.)
should ue made. when the charactur ")" has been
treated, the return locatioa in 113 (the value
of SP) should be pushed into R atack, the values
of DAMPT and LPT of TR and the¢ of FDMPT pushed
1ato the QAll stack as shown in Fig.5. The value
of PMIT of CAMU in the tenporary register should
Le put into the pointer SP to perform the trans-
fer. 1In executing the executable stateseunts of
the funotion subprogram, DP should allocate
cells in DM for local variables which have not
been alloocated yet, and should modity FDMIT also
. Once the RETURN statement is encountered CP
puss the value of R stack into 3P, pops the CALL
stack and R stack aand clears all the fields }T1
of the DAM of this subprogram. The calculsted
result 1s now automatically available in the
cell of the function name.

I'he call of a statemeat function is very
diuiliar to that of the funstion subprogram but
the velue of IT3 of the statement fouction in
the DAM should be put into 8P instead of PMPT
in CAMU of the function subprogram. At the same
time, 1t ix not necessary to alter the CALL
Stack.

Since the call of a subroutine statemeut
is preceeded by the keyword "CALL", it is
sasier to recognize. The treatmeant of the call
subroutine is rather similar to that of a
fuaction subprogrem.

At s e 0 e e Tl

3




atrodhebr e L Al S0

Iv. Conclusion

The language Fortran has been in use for
maqy yesrs in scientifie computation and is
fomiliar to most computer users. since however,
yuite a lot of trouble is iavolved in the use
of the language Fortran for direct-exvcuting
we heve to modify it properly in designing the
high-level language computer,

Today, the computer hardware and the coampu-
ter software hold a relation of mutual iampetus,
autual penetration and mutual coastraiat. The
dovelopment of the computer languase and prop.
grammiog has grestly affected computer archi-
tecture, as is stown in the inmprovement from
classical computer architecturs to high-level
language computer architecture, On the other
band, the duvelopment of computer orchitecture
alsc leads to a development of languages, such
as the Him lenjuage proposed by rrof. Yaohan
Chu.

To sum up, the development of the high-lav
lovel lauguage computer snould lead to a close
merging of the programming languege and the
computer architecture; that is, the laaguage
and the computer architecturv ought to execute
the program effectively and the programuiug
8130 ought to satisfy the requirzents of the
lenguage eand architecture, so as to improve thu
reliability and precticality as well as the
coast-efficiency of the whole systeam. 30 in the
long rua. It is necessary tc reconsider and
redesign nev language from the point of view
of programming and computer architecture.
Indeed the conception of structure programming
and structured lsaogusge has appearvd already,
but the languages evolved are not solely dedi-
cated to the high-level computer

Since the said HLM language has oot won

wide acceptence yet, we think it necessary
to design some new computer arr seture for
the currant language such as F¢ an, Cobol
ete. This is our motivation in ‘iting thio
pajer,

V. Ackoowledgement

Ae are grateful to krof. Yuohan Chu of
Uoiversity of Marylemd U.3.,A. for his kind
help and ective support.

40 are also grateful to those of our
University --- University of Science and
Techaology of Chioa ~-- who have been xind
encugh to provide various facilities for
making this paper possible.

Jeferences

(1) Yaohan Chu "Direct-aXeoution 18 a High-
Level Computer Architecture", Proceedings
of the aCM Annusl Contference, washingtgn
UeC., December, 1978.

(2) Yeohan Chu "An LSI Modulur Lirect¢-gxecu-
tion Computer Organization”, COMPUTER.REK

13

(3)

(4

—

(5)

(6)
(n

(8)

vomputer Socliety, July, 1978, pp. 69-76,
Yaohan Chu and Cannon, £.R«" A Programming
Language for High-Level Architecture”,
Proceedings of the Nationsl Coaputer
Conference, New York City, June, 1979, pp.
657-665,

Yachan Chu and Cannon, E.R. "lnteractive
High=Level language Direct-Execution Micro-
Processor Systems”, IKRE Traunsactions oa
fg{t-aro kngineering, Juae, 1976, pp. 126~
150 Recommendation R 1539 PROCRAMIING
LANGUACE FPORTRAN.

ANSY, Basic PORTRAN, X3.10-1966.

David Cries, Compiler Comnstruction for
Digital Computer, John Wiley & Sons, Inc.
New York 1971.

UK. R L83t 50T FORTRAN Héi AL
1979.1¢.

T e S s il T .

o gt e A 2

P




T T 2y em Ty anagey s e L

—ov

L=~ |

SAM LpP

CAMU CAML CAMR

RSTACK

MDL RFRG

1/0 PROCESSOR

1 SEARCH  REGISTER
‘ DO STACK

————3 LEXICAL PROCESSOR CALL STACK

VALUR TOKEN -;
o ' |

ATA PROCESSOR b DAM

l I EXP 3TACK

RESUIT 1

JLV L STACK

CONTROL PROCESSOR j———! v_ STACK !

14:] .
-]

P 8TACK

FDMPT

D3R

f )
[ DM

Fig.t Organization of the Direct-execution

FORTRAN Camputer.
14 -

- . 1

i o O o b i i
. T L SR T P (= VI TRy ; SRR L e B . ") 3 v vl oot
TP Y 0L TN & R TR " A 4 AN o

- .
[ M ay i + o ot il
e a2 o M ittt Rk e B st O T




R

TR AR T

vig.2

CAMU

WAME

TYPE CLASS DAMPT PMPT | LPT

REAL [PUNCTION

,e
Lx XY
..
see

The Unit Head ©f Lho “ontrol Associative Memory

T T T A e e e

L AM

WAME

STrutTmR

TR S17E CulMGN

Dupiy

PT1

PT2

PL3

5

FUNITTOY

REAL 2

DUMMY

DUMMY

DUMMY

ARRAY

JNTRGER 56 COMMON

fo

Fig.3

Flg.4

«

4 Uata Augocintive Memory

CAML

LARRT, rmerT

DL

e

"he lahel

et of the Tontrol

Aasociative Naemory.

O L

e fen o s Deeireal R TS A

15

e A A A————— o st

SO U W N 2 % SYIIEPC NS o ST - S

Ve




N

2 e

TN

N Syt otk

L (1) (m2) (m3)
™ | cv FP 1P FOMPT | DAMPT LPT
DO STACK RSTACK CALL HTACK
Fig.5 a DO STACK, a Return ST4CK and a ¢ALL TACK
DAM
NAME |STRUCTURE «vs | DUMMY PM DM
b4 FUNCTION ot (A)
X D PP .:
Y D ‘€ 3
Z D . € (C+D)
: f
H
-

Fig.6

Illustrating the process of the substitution of the

Actual argnments for the Dummy Illustrating argumants,

16

;
;
]
i

e Sk o

"y

Heg

T w2l T

=



A JOVIAL DIRFCT EXFCUTION COMPUTER

Yaohan Chy

hn.!rtment of Computer Selence
iiniversity of Marviand
College Park, MD 20742
3014546245

Abstract

This paper reports a JOVIAL direct-
execution machine which accepts a subset of
the JOVIAL J7. language. It desciibes the
J73 subset. 1¢ algo describes the organization
of the JOVIAL direct-execution computer which
reflects the language constructs of the J73,
There are ] processors, J associative memories,
A program memory, a data memory and 10 inter-
tacing reglsters, The memorv/repistor/stack
structures and dircct-exacution algorithms
of the processor are dencribed,

1. Direct Execution Computer

Nirect-execution refers to the operatiny
mode of a high-level architecturr. Thiu operatinn
mode directly accepts and executes a high=leved
lanpuage program without the need of miltiple
tavers of conventional software. As a result,
there is no compiler, no assembier, and no
linkage editor, The high-level programming
language is the machine language that the bare
hardware recognizes. A direct execution computer
1s capable of operatiug in the direct-execution
mode,

The direct-execution computer (9] s
structured with a direct execution cvcle; this
is showa in Fig. 1. A high-order language
program is stored in the program memory. The
lexical processor fetches the next token from
the program memory and delivers the token to
the latguage processor; the language processor
executs#s the token accordingly. Thir cycle
continues until the program ends.

Fhe direct-executlon computer |1,7,8] is

organlzed to reflect the constructs of a high-
tevel programming language. The organization

BT

s bbby £ s TR £ Mt b

17

is shown in Fig. 2, where there are: a program
memory PM, a data memory DM, three agsociative
memories (SAM, 7AM, and MAM), and three processors
flexical proceasor 1P, data processor DP, and
control processor CP), The program memory stores
the source program. The data memory stores the
data values, The associative memories store
descriptors which represent the data and control
information in the source program. After initial-
{zation, the control processor fetches the next
token from the lexical processor which tas access
to the program memory. It then either executes
the token or activates the data processor to
execute it. This process of direct-execution
token~by-token continues until the source program
reaches the end,

This paper describes a JOVIAL direct-execution
computer, which makes use of the sbove-mentioned
direct-execution organization,

2. A JOVIAL Machine

The JOVIAL computer in this paper is designed
for a subset of the revised MIL-STD-1589A (USAF)
definition of the upgraded J73 JOVIAL programming
language dated MARCH 15, 1979 [11).

2,1 A J73 Subsget

The 173 is a dialect and an outgrowth of the
ALGOL 60 programming language [10]. As a result,
the J73 retains a great deal of the ALGOL 60
language. It is a complex compiler-oriented
language. A subget of J73 {8 chosen, There are
46 syntacticul statements. The syntactical
constructs are outlined below.

(a) Program Structure

The subset allows the complete program to
have a main~program module and zero or more
procedure modules, The main program module must
be the first module. 1Its construct is shown below.

START PROGRAM < name >; < program body > TERM
The construct of the program body is the same as

the procedure body ex~ept the former permits
directives.

e aide T -

o? T RN I

FPTTE

e

R TS

N

B RN

ATNER T T

Eirind . i



el AR 5 e

(b) Declarations

There ara four typss of declarations: item,
table, external, and define. The firat two declare
the data elements, while the third declares a
procedure wodule, The last is a macro for text
substitution. The declarations may be auclaosed
by a pair of 'BEGIN' and 'END' to become a block
declaration,

(¢) Procedures and Punctions

There is both procadure declaration and
procedure urfinition. The procedure declaration
is for use .n the external declarstion. When s

,procedure definition is enclosed by a pair ot
Ateserved words 'START' and 'TERM', it becomes a
Jpracedure module. It permits formal parameters.
‘Thare is one function 'FLOAT (<numbar>)’' which
Lonverts au integer into a floating number.

{d) Statemants

A statement can be simple or compound. There
wre four types of simple statemants: assignment,
*Joop (ov FOR-statement), IF, and procedure-~call,
‘Btatements may be enclosed by s pair of 'BEGIN'
and 'END' to become a compound statement.

(@) Formulas

There are three types: integur, floating,
vad booleann. An integer formula represents an
integer, while a floating formula represents a
floating-puint number. There are four operuators
('4', MWt 'et ) and '/') for both integer and
{loating-point operations. A boolean formula
represents a value of true or false. There are
n{x reletional operators,

{f) Data References

There are two types of data references:
Wholabse and function-calls, A variable can be
an {tewm or a table. As mentioned, there is only
vne Intrinsic function,

(g) lexical Rlements

Thare are 56 characters which are grouped
fnto 26 letters, 10 digite, and 20 marks. There
ure 4 basic lexical elements: token, commeut,
define, and trace. A token can be a name, a
aumber, & flosting~-literal, or an operator. There
ure 34 operators which include 15 reserved words,
A comment is a string of characters snclosed by
a pair of quotation marks. A define has as (ts
body also a string of characters enclosed by a
pair of quotation marks., Only one directive is
permittad; this directive has as its body a series
of names separated by commas.

2.2 A Sampls Program

A J73 sample program is shown in Fig. 3. The
line numbare are not s part of the program; they
are used for references. The numbers are the same
for the two parts of the program; thay are

. . .
. e - . ;
o e bR o s B i i ot ilRIR i it

distinguished by being referved to as upper lines
ond lower lines.

The upper lines 00000 to 02000 indicate the
start and the termination of the complete program.
The complets program consists of a main program
module and a procedurs module., The main program
wodula consiste of program name TSIJOV (upper line
00100), program body (lines 00200 to 01900), The
program body haw an extearnal declaration (uppex
1line 00300) of Proc TRIG which includes a block
declaration of items ANG, SANG, and CANG (upper
lines 00400 to 00800), three declarations of tables
DEG, SSIN, and CCOS (upper lines 00900 to 01100),
a declaration of item II (upper 1line 01200), a
directive of TRACE (upper line 01300), and a FOR
atatement (upper lines 01400 to 01900). 1In this
FOR statemant, there is a call of procedure TRIC
(1ine 01700).

The procedure module begins and terminates

at the lower lines 00000 and 02200, respactively.
It has a procedure heading (lower 1ine 00100) and

a procedure body (lower linas 00200 to 02100). The
procadure body has a define declaration (lower

line 00200), declarations of six items (lower lines
00300 to 00800), a comment (lower lines 00900 to
01000), three assignment statements (lower lines

01300 to 01500), and a FOR statemant., The controlled

statement of the FOR statement is a compound state-
ment which conslsts of an assignment statement and
an 1F statement.

2.3 Computur Organization

The organizatlion of JOV1AL direct-execution

computer [13] 1a developed from the direct-exccution

computer organization in Fig, 2, It is shown in
the diagram in Fip. 4 where there are the following
computer elements:

(a) 3 processors: LP, CP, and DP,

(L) 3 asmociative memories: SAM, CAM, and DAM
(c) 2 random access memories: PM and DM

(d) 2 cables in ROM,

(e) 10 interfacing registers, and

(f) main bus

The memory/register/stack structures of the

1 processors together with the interfacing registers

‘are shown in Fig., 5. - The functions of these 10
interfacing registers are described below.

(a) Register SPTR pointas to & character in Program
Memory. It is of special importance when
marking the location and other unique pointers
of control statements and procedure modules,
the bodies of define declarations, and the

return position from procedure and define calls.

Except for the very first call for a token,
SPTR ia set at the first character of the next
token to be formed when a token is raquested.
Aftear the token has been formed by the Lexical
Procassor, SPTR is advanced, if necessary, to

point to the first character of the next token.

18

NFrr 5 fe B GREREE N Ew

Wit b e 2 e

et

o

]
A
¥



T

)
i,

BT ETEITY FRRT .S o e al bt ok by

(b) Register TOKEN holds the last token formed by
the LP. This register is referenced by nearly

every sequence, since the tokens define the
program.

(c) Register TYPE stores the type of & name. A
hame may be a reserved vord ('R'), pssudo-
function call ('PLOAT'), trace-directive nawe
('DIR') or identifier ('N').

(d) Register BLOCK stores the top entry of the
Control Processor's BSTACK., It identifies
the module which the program is currently

executing so scope checks can be made on
declared names.

(e) Registar BACK-PTR saves the position of the
first character of the current token,

(f) Register D-LEV stores the top entry of :he
Lexical Processor's RETURN stack. (An empty
stack gives D-LEV a value of zero.) This
value identifies a specific define call or
that there is no active define call (it can
be considered a 'define-activation-level').
The register's purpose is to protect the CP
from creating CAM entries for control
statemants whose Program Mesiory Pointeras
are in differant define bodies,

(g) Register DEP-DCL is a flag which identifies
whether & define declaration is permitted or
not. Define declarations follow all the rules
associated with other declarations.

(h) Register DEF-CALL is a flag which identifies
whather or not a daofine call is permitted.
A define call is not allowed when the next

token expected is a module nama or declaration
name,

(1) Register PROC-~NAME saves the name of a& pro-
cedure when the procedure is called. The
- register is used to match a procedure module
name on the first call of the procedure, and
as a switch to determine if the procedure
heading and declaration list must be processed
(first time) or skipped over (second time).

(}) Register RESULT holds the information about the

frepemn e v TOTIERT Lo R S

A J73 program specifies a sequence of data
operations. The sequencing is épecified by comtrol
astatemints. The control processor recognizes the
control ressrved words and then manipulates the
pointer in register SPTR (which points to the next
character in exscution of the source progras) of the
LP processor to carry out the saquencing.

The structure of the CP consists of one
associative memory and 5 stacks as shown in Fig. 5.
The functions of these memory and stacks are
described below,

(a) Control Associative Memory CAM is to speed up
statement executiopm by saving critical infor-
mation about control statements and ¢rocedure
modules. Thare are thrae types of CAM entries:
if-statement, loop-statement, and procedure-
module. The type of entry is stoved in the
Type field, Information for control statesments
consists of fields for the location of the
statement (for identification), else-part
pointer for if-statements, increment formula
pointer for loopvstatements, and an exit pointer
to point to the tokan following the statemasnt.
Procedure CAM entries store the name, location,
formal-psrametar-list pointer, and body pointer
of procedure-modules.

The CAM entries for some control statements
composad of define-calls cannot be made.

Unless the Program Memory Pointers of a control
statement's CAM entry are all on the same
‘define~activation level', the proper stack
management steps of define-calls and returns
may not be followad when SPTR is jumper. When
this type of statemant is encountered, it will
always be treated as a ‘first-time', so EPIR

is adjusted by repeated cslls of sequence NEXT- .

TOKEN,

(b) Stack BSTACK saves the body pointers of program-
body and active procedure modules. Each entry
uniquely identifies a module. The top entry
of BSTACK is stored in register BLOCK to
identify the currently executing module.

In addition, the positions of 'BEGIN's bafore
the first simple-statement of a module body
are pushed onto (and then popped off) the stack.

—

value, type and structure of formulas and This is necessary because both compound- %
variables, It is used by the Data Processor declarations and compound-statements are ¥

to calculate and pass values to the Control delimeted by 'BEGIN' and 'END'. B
Processor. o

: (c) Stack RSTACK saves the return position of ?ﬁ

3, Control Processor procedure calis. The token position following .2
an executed procedure-call-statemant is pushed %

The control processor CP directly executes onto the stack. It is restored into register %
control constructs such as conditional branch, SPTR after the procedure-body is executed. P
procedure call, nesting, and looping of the J73 Y
subset. It slso creates and stores the concrol (d) Stack CTR-STACK's top entry serves as a counter j
descriptors in the control associative memory of the 'BEGIN's pushed onto BSTACK and the -%
CAM. These control descriptors can expedite the parameters in a parsmetar list. ﬁ
repeated execution of statemencs in a program 2
loop without the need for repasted syntactical ﬁ
proceusing. ;
!

-

- M c . a5 1]
) o N . U i A fE e s i
P T TOR L B e L OTI (F O VY 0% o pevier DRSPS 5




ST e e TE L a2 TR

Ca gt

(8) Stack SPTR-STACK hms two fields: LOCN holds the
location of an sctive control statement, and
DLEV holds the define-activation-level of the
location pointer. Bafore a control statement's
PM pointer field is assigned a valua, the
current ectivation-level must equal that on
the SPTR-STACK. If they are ever different the
statement's CAM entry cannot be kept - the
locution field must be erased. Loop-statements
must have thelr increment and axit pointers on
the same lavel. If they are not, the statement
is conaidered 1llegal.

The control processor CP directs the control
flow. It activates both the data processor
DP and the lexical processor LP. processes
the following control constructs:

(a) Program structure
(b) Procedure definition
(c) Bxternal declaration
(d) Statement

(e¢) IF statement

(f) FOR statement

(g) Proc-call statement
(h) Declarations

In the following procassor design, sequence
NEXT-TOKEN, which fetches the next token from
the sourcs program, is executed by processor
LP as will be dascribed later.

3.1 Program Structure

The program structure consists of those control
constructs which form a complate program. These
are shown below.

1. < completa-program> 1i=<main-program module>
‘ [« pracadure wodule>...)
2. <main-program-module>:;=START
PROGRAM
< name> }
< program-body>
TERM

1 1=BEGIN < decl-list>
(< directive >...]
< statement>...
o

3. <program body>

4, < procedure module > 1:=§TART
< procedure-def inition>
TERM

The above syntax calls for the following hardware
sequences,
01 COMPLETE-PROGRAM
02 INIT
02 MAIN-PROGRAM~MODIILE
03 PROGRAM BODY
02 CAM~CHECK /#check the variasbles in CAM*/
02 NEXT-TOKEN /#procassed by LP*/

Most of the names of these sequences reflec.
the terminals vr non~-terminals of the control
syntax. The level numbers indicate the hierarchical
20

-

. . . .
el Bai oo P ;. 1ot : o Ny LY °
FERCTYRT] LERMIIS TP JONTIY "SI N DT & DN TSI ) L - W TSR W TR T Y

relationship of these saquences. These scquences
are briefly explained below.

(a) Sequence COMPLETF-PROGRAM. This sequence
reflects the syntax that ibhe complete program
has one main-program motule foliowed by 0 or
more procedure modules.

(b) Sequence INIT, This sequance sets the ripisters
to zerc and empties the stack..

(c¢) Sequance MAIN-PROGRAM-MODULE. This sequénce
1s identified by three rcserved words anl o
semicolon us follows,

START PROGRAM...;... TERM

This sequence identif ies the main program
module. It calls sequences NAMFE aid PROGRAM-
BODY.

(d) Sequence PROGRAM-BODY. The prosram body 18 a
saries of 0 or more declsrations fullowed by
one or more statements, enclosed by a BEGIN/
END pair. The presrvcg or sbsence of a
declaration has to be determined Ly the first
token of the declaration.

(e) Sequence CAM-CHECK. This sequence searches the
CAM for an entry whose name field is the same
as the contents of reyister TOKEN, If it is
not found, it retirns; otherwise, it is an
error,

(f) PROC-MODULF
A procedure module is identified by two
reserved words as follows,

START...TERM

However, there is no need for saquence PROC-
MODULE since esch vwill be sesrched and called
as a result of a procedure call.

3,2 Procedure Definition

The procedure definition specifies & procedure
atructure. The syntax is shown helow.

5, <« procedure definition> 1i= < procedure heading>;
< procedure body>;

tt= ‘PROC < name >
[ < formal parameter
1ist>]

t1m BEGIN < decl-list>
{< statemant>...
END

6, < procsdure-heading>

~

. < procadure-body>

The above syntax call for the following hardware
sequances

03 PROC-DFF
04 PROC
04 DEF-HEADING
04 PROC-BONY

05 PARA-CRE(KS
05 PARA-POP

e !
RL, A oY vy g o

B

DR eV LT

-kl

SPESERT LL S TN

SR o

AT 2 s
AN o e A D



PO

e ;_v-v!m’*?»’.'a-‘—."‘_‘"\f#—‘ S A Gaa

These sequences sre explained balow.

(a) Sequence PROC-DEF. This sequence calls saquence
PROC-NEADIWG and then calls sequence PROC~BODY.

(b) Sequence PROC-DEF-READING. Saquence PROC-DEP-
HEADING checks the syntax of the procedure-
heading ¢nd sete the parameter pointer and body
pointer of the procedure's CAM entry.

(¢c) Sequence PROC-BODY. A procedure body is similar
to a program body, except for two special
considerations: the formal parameters must be
declared, and the declaration list is skipped
over after the first call of tha procedurs.

(d) Sejuence PARA-CHRCKS. This sequence chacks
vhather the types and scructure of sctual
and formal parameters agres.

(¢) Sequence PARA-POP, This ssquence calls DP-
sequence PARA-RESTORE to pop each of the
procedure's parameters of the parameter
stacks in the DPF and to return into remult
of output parameters.

3,3 External Declaration

The external declaration declares an external
procedure. The syntax is shown bslow.

8. < external-declaration> ::w REF < procedure-
heading>)
[ < declaration>]

The above syntax calls for the following hardware
Sequencas:
01 EXTERMAL~DECL
02 SCAN-DECL
02 PROC-HEADING
03 PROC
03 FP-LIST-CHECK

These sequences are explained below.

(s) Sequence EXTERNAL-DECL., The external dec-
laration is recognized from the reserved word
'REF' which is then followed by & call of
sequence PROC-NECL.

(b) Sequence SCAN-DECL, This sequence skipa the
declarations of the external procedure's
parametars.

(¢) Sequence PROC~HEADING. This sequence idencifics
procedurs names and their parameter lists.

(d) Sequence PROC. This sequence fetches the proc
name and then sasrches for it in the CAM. 1If
it i not found, it crestes a CAM entry for the
procedure and {nserts the name in the entry.

(e) Sequence FP-LIST., This sequence counts and
checks the syntax of a forsal parameter liet.

21

3,4 Statement

A statement can be & simple statement Or a
compound statement. Thare are 4 types of atmple
statementa: if, for, proc-csll, and assigradnt.
The first thres statemants sre exacuted by the CP.
The assigmment statement is executed by the PP.
Two additional statements, define and comment, !
are handled by the LP. The syntax is shown below.,

9. < stutemeht>; =< aimple-statement> !
: | <'compound -statement>

10, < simple~statement>::> @ssigment-statement>
! <loop-etsteament>
! < {f-statement>
! < procedure-call-
statament>

11, < compound-ststement>
1twBECIN < statement>...END

The above syntax calls for the following hardware
sequences:

01 sT™T
02 COMPOUND-STHT
02 SIMPLE-STMT

Thess sequances ars axplsined below,

(a) Sctatement., Sequence STMT calls sequence
SIMPLR-STMT or sequence COMPOIND-STMT by the
sbsence or presence of 'BEGIN' respectively.

(b) Compound Statement. Segquence COMPOUND-STHY
calls ssquence STHT one or more times.

(c) Simple Statement. Out of the four types of
simple statements the IF and LOOP statements
can be positively identified by 'IF' and 'FOR',
respectively. On the othar hand, proc-call
and assigmments begin with a name, However,
the proc-call statement bagins with a procedure
nams vhich sust have baen declared and should
be found in the CAM, If it is not found, the
name is assumed t0 ba the data nams of an
assignment statement.

3.5 Loop Statement

Tha loop statement in Machine A is tha FOR-
statement. 1t has a control variable, an initial
value, ard an incremental value., Thare 1a
additionally a while-clause which uets the
condition to terminate the looping. The syntax
is shovn below.

12. < loop statement> ::=FOR< varjable>:< integer
formula>
BY <integer formulas>

WHILE < boolesn-forsula>;
< gtatement>

e AT

& STV NS VN T

EVERSPEL A PRTY, SRt - P &

e

Y S e . ’ * .ot s >
a2 i VK DA v oot 04 bt R b B s A i 0Tt S0 M At VA




T =

T T

"”Ill ) v T P T T T PIoT L, S oreeeyrewes
e )

.

The above syntaz calls for the following hardware
sequences.
01 LOOP-STMT
02 SCAN=-STMT
02 FIRST-TINE-LOOP
02 REPEAT-WHILE
The loop statement faces 3 considerations:

(a) looping, (b) nesting of loop statements, and
(¢) first-time problem.

(a) looping. The looping requirss computstion of
new value of the control variable and evaluation
of the boolean formula., If the evaluated result
is trus, the loop body is exacuted, and if the
loop body is sxacuted for the firvet time, the
EXIT-PTR is insarted in the CAM entry. 1f the
evalusted value is falgs, the loop's statement
is scannod ard the EXIT-PTR marked, or execution
is directly jumped to EXIT-PTR.

(b) Nesting of Loop Statements. The nasting of loop
statements (and if statements) is handled by
pushing 1ts CAM entry LOCN fields onto stack
SPTR-STACK at the beginning of the sequence
and by popping it off at tha end,

{e) First-Time Problem, If no CAM entry axists for
thig statement, one must be created., The
location and increment forsula position are
stored in addition to the EXIT-PTR.

3.6 If Statement

The If statement causes conditional branching.
The syntax is shown below.

13, < if-statement™::~IF < boolean-formula>;
< ptatement>
[ELSE < statement>)

The It statament faces 5 conaiderations:
(a) branching, (b) westing of If statements,
(c) first~timm problem, and (d) optional else-

T T v

axecuted.. During successive times, no
scanning is needed since all pointers have
been established.

Optional Elce-clause, The else flag is
avallable i{n the CAM entry to indicatae
whether there is an else-clause. If there
is, the else~-flag is set and the ELSE-PTR is
inscrted.

(d)

3.7 Procedure Call Stateaent

The procedure-call statement invokes the
axscution of a procedure definition, It should
be noted that the procedure definition may occur
bafore or after a procedure-call statement. If
it is before, the location of the procedute
definition can ba found from the CAM, If it {s
after, the program execution has to be suspended
snd the source program is scanned until the
procedure def inition is found. The syatax of the
procedure call statement is shown balow.

14. < procedure-call-utatemant> :i=< name>

[ < actual-~parameter-list>];
The above syntax calls for the following sequences.

0l PROC-CALL-STMT
02 SCAN-UNTIL~PROC
02 PROC-DEFINITION .

The procedure-call statement faces 5
considerations: (u) existence of paramsters, ‘
(b) nesting of proc calls and returna, (c) first- 4
time problem, (d) ahsad or behind a proc defini- 3
tion, and (e) Call-by-value or by-reference.
These considerations are discussed below, =

(a) Parametars. The paramsters may or may not
exist, They can be input or output parameters. |
Their presence {s deterwmined by the parameter 1
count field of the procedure's CAM ntry. : . i
The DP is then activated to execute seguence 3
ACTUAL-PARAPLIST, . . '

clause. These considerations are discussed below.

(b) Nesting of Proc Calls and Raturns. When & {
(a) Branching. The branching requires evaluation of proc~call statement is encounterad, the raturn 1
boolean formula, 1If the evaluated result is address of the calling procedure is pushed - ’ -,;
true, tha Then-clause is axecuted and the down onto RSTACK. When the axecution of a ¥
execution continues at the location indicated procedure resches the end, the return address . ¥
hy the ELSE-PTR {f it exists, and otherwise the is obtained from the top entry of RSTACK and v 4
EXIT-PTR. the entry is then popped off, N
N
(b) Nesting of If statemwents. The nesting of If (c) First-time Problem. 1f the PROC-MAMF register 2
statements is handled by pushing the LOCN fields is not ampty, the procedure is callad for the ‘*
of their CAM entries onto stack SPTR-STACK at first time. During the first tiwme, program o
the beginning of the sequence and by popping it axscution is now changed into program ! i’
off at the end. scanning until the procedurs definition is M
found. This identification is achieved by ;
(c) First-time or Second-time. During the first comparing each procedurs name encountered M
time, 1if the boolesan formula is trus, the then- during scanning with that in the NAME ficld %
claugse 1is executed but the else-clause is of the top entry of RSTACK. The scanning is 3
scanned by sequence SCAN-STMT, If-the boolean done by sequence SCAN-UNTIL~PROC, A
formula is false, the then~clause is scanned by i
sequence SCAN-~STMT, but the else~clause is 5
22 i

o

A

:

|

i

o 85 i -n",‘,,\” et . v ¥ -
L2 T n-vlu'!-'mv"hmﬂhlﬂ&lhk-l-&mA"-:"ﬂnh#mw.nllv'u:naii»;-m,.ﬂ,;:f““m;ﬂg- 4 :




|“
&
:
Y

- w - N VS P oer~r= ™= —— -
Program Memory
Eutry
! - Jg
Initialization
High-level language l
A Lexical
program Processor >
assemble next token
by lexical processor
S E—
Language
Processor 4
fotogram

(a) Program storage

Fig. 1 Program Storage and Direct

Execution of a High-lavel
Languuge Program

(d) Second-time Problem. The declarstion list
of tha procedure body is not processed on
succeaeding calls,

(e) Call-by-value or by-reference, The parameter

passing in the J73 as follows.

(1) Yormal-input parameter: it must be an
item, it 1s bound by value.

(2) Pormal-output parameter: if it is an item,
it is bound by value-result., If it is a
table, it is bound by reference.

(3) Actual-input parameter: it can be an
integer or a floating formula,

(4) Actual-ou*_ 4t parameter: it must be &
variable.

The evaluation and passing of parsmeters are
handled by the DP,

3.8 Daclarations
The declaration statemants consist of:

15, < decl-list > LLw(<declaration>
t<define-declaration>
! BEGIN < decl-11st>END),..
16, < declaration>:iw<item~declaration>

!<table-decl sration>
!<external-declaration>

The above syntax calls for the following
Q,rdwaro sequences.

23

G 4 £ et v AL T 28

| end

execute the

token by language
TOCessOT

L

(b) Program Execution

0i DECL-LIST
02 DECL

(a) Sequence DECL-LIST processes the declarations
of & program-body or procedure-body. Names
may not be declared twice in the ssme module,
nor duplicate a procedure~name. A define-
call is not permitted vhan the name of a
declaration is the next token expected,
'BEGIN' reserved words are stacked because
they may signal either a compound declarstion
or compound-gtatement, After all the decla-
tions have been processed SPTR is adjusted,
if necessary, to point to the tokan which
begins the first directive or statement.

(h) 3equence DECL calls sithar ITEM-DECL, TABLE-

DECL or EXTERNAL-DECL to process a declaration.

4. Data Processor

A J73 program specifies dats slements in datas
declarations and type declarations. It also spac-
ifien data opsrations by assignment statemants;
for example, the operations can be arithmetic or
logical. When the control processor identifies s
data operation, it activates the data processor.

The data processor DP directly executes the
data constructs of the J73 language. It recog-
nizes data and type declarations, creates data
descriptors, and stores the datas descriptors in
the data associative memory DAM, The data des-
criptors in the DAM allow data refarences by
symbolic names and permit rapid accese of data
values in the data wemory. In addition, the DP
executes sssignment statements, evaluates

i W]

R e o e ot M L PRy, et 2 e

- g th



e T T T R TR T LT T A

-

: Program sl lexical Processor
' —— *-‘

Mamory
; e s 4 l -

3
k. Control Processor Associative
! T memory CAM
l‘ - ’

Associative
memory SAM

Data Mamory Data Processor

AT S T s

formulas, and handles parameters. The structure
of the dats processor DP consists of one associa-
tive memory, 1 register, and 5 stacks as shown in

rig. 5.

(a) The Dats Memory stores the values of declured (g)
variables. One word of storage is allocated
for aach item or table element. ™

(b) Data Assaciative Mamory DAM stores infor-
mation about declared numeric variables.

Mame and Block~id fields identify each
antry, Items and one~dimansional tables
ara the only possible structures. FPossible
types are 8 and unsigned intager flost-
ifg real numbers. The Size field identifies
the nuaber of DM words allocated for the

M variable, The trace-id field acts as a

flag which identifies whether the variable (1

™ 1c baing traced.

(c) Register TRACE is a two-fisld register

: that serves as a flag to identify

. whather a variable is tha object of a

' TRACE directive. The FLAG field is
the switch, and the Name field saves
the nane of an assigoment statement's
variable for uss in the output message
which notes the variables new valus.

{
.‘f(a) Stack SYNTAX contains tha curreat

§ syntax productions being executed.
Al
i

3(e) Stack VSTACK. holds the value and typs

of formulas' operands and intarmadiate
o results. ands must be items or
tshie elemsnts. .. . __

&ﬁ - #ssek PSTACK holds the DM-locn of variables.
The DM-locnas of loup statement control
. ARe_FnTLecns ¥ 2

. Associative
__JF( womory DAM

Fig. 2 Organization of a Direct Execution Computer

varisbles are kept on the stack throughout
exacution of the joop statement. since the

control variable {g changed on every itera-
tion.

Stack OPSTACK saves lower precendence opera-
tors during evaluation of a formula.

Stack APSTACK contains seven fields which
save information about the actual parameters
of a procedure call, Fiva of the fields
holds the value, typa, structure, size and
paramater type (input or output) of a
paramster. In addition, an output parameter's
DM-locn is saved (so its value can be
returned), and its name 1s saved if it is
being traced.

Stack FPSTACK has three fields to save in-
formation about an active procedurs's formal
parametar. The name and parameter typs mike
up two fields. The third (Decld) is a flas
which is set during the procedure's first
exscution if that paramater is declared in
the module. All formal paramaters must be
declared. Also, the number, type and struc-

ture of actual and formal parameters muast
match.

The data procassor DP processsas data declara-

tions and controls data flow. It is activated by
CP, but it also communicates with LP. The data
constructs that are processed by DP are:

(1) Directive

(2) 1items and table declarations
(3) assignment statement

(4) formulas

(5) boolean formulas

(6) wvarisble and subscript

i A e Bl o e B Fani

Gt S Y



T

e st

- em——,

FIAEY US) RE RO

(7) formal parameters
(8) actual paramaters

4.1 Directives

The TRACE diractive is a special statement
vhich directs a message to bs outputed vhenever a
viriable in the statement'’'s name list cets as-
signed a value. The syntax is:

17, <directive>: = ! TRACE<nams>,...}

4,2 Item and Table Declarations

Machina A sccepts declarations in data,
procedure, define, and block declarations. The CP
executes define declarations. The DP axecutes
data and block declarations. The syntax of de-
clarations is shown below,

18, <item-declaration>) = ITEM<name>{S!U!F){

19. <table-declaration>: = TABLE<name>
[<dimension>]«(S1ULF)

20. <«dimemsion>: « '(<integer formuls>)

The above eyntax calls for the following

hardvare sequences. '

01 ITEM...DECL
02 1M
01 TABLE...DECL -

-

02 TABLE
02 DIMENSION
(2) 1ltem Sequences

Item sequences consist of sequence ITENM...
DECL and saquence 1TEM which create an entry in
the DAN from the name and attribute in the item-
declaration and allocate a DM word.

(b) Table and Dimension Sequences

Table saquences consist of sequences TABLE
+0.DECL, TABLE, and DIMNENSION. Sequences TABLE
«++«DECL and TABLE create an entry in tha DANM.
Sequence DIMEMSION calculates the value of the
dimension, which allows one dimension and only
needs an upper bound (the lower bound is 0). This
value is inserted into the sise field, and a
block of continguous DM words equal to this value
are allocated.

'6.3 Assignment Statement

An assigomant statemsent causes the value of
a forsulas at ths right of an squal sign to be
sssigned to the variable at the left of an equal
u.u. A variable is & nsme or & subscripted name.
oulucupt is an h\tqut enzlosed by a pair of
brackets. The syntax is shown below.

2l. <assignment-statement>:: = <variable>w
<formuls>

25

v e m—

(a) Sequence ASSIGN-STMT

This seq e calls segquence VARIABLE to
identify the object variable, aud then calls
sequence FORMULA to evaluate the formula, It thea
stores the formula's value into the DM location
pointed to by the top eatry of PSTACK.

(b)  sequence TRACE-CRECX

Sequance TRACE-CHECK identifies vhether the |
variable in an asaignmeat statement or the outputy
portion of an actual-paramater-list is being .
traced.

4.4 Poolean Formula

A boolean formula represents a value of .
or FALSE. It occurs in the IFP~clauss or the WHL
clauss. It can be either & formuls followed by a.
relationsl operator further followad by a vcthbl.
or s formula. The syntax is shown below.

24, <boolean-formula>::=<formula>{{i<»
tew]>aic)>)<formula>)

The resulting valua from a relationsl ?mtm iy
either integer 1 fnr TRUR or sero for The
truth value of the boolean formula's rssult is
determined by examining its low-order bit. A ‘1’
is TRUE, '0' 4f PALSE, This implamentation makes .
off integars evaluate to TRUK, even integer to !
FALSE, .

4.5 Formula

A formuls represents a value. It can be sn E
integer formula or a floating forsula, represent-
ing either an integer or a floating-poiat number, |
reapectivaly. An integar formuls {s a positive |
or & regative integer term, which can be added to |
subtracted from a succeeding integer term. This |
intermediate result can then be added (or sub-
tracted) to ancther integer term, and ¢o on. '
(The arithmetic operators are left associative.)
An integer term is an integer factor, which can be
msultiplied or divided by succeading integer fau- [
tors (as with terms). An integar factor can be
an integer litersl, a variable, or an integer |
formuls enclosed by a pair of parsatheses. !

Floating formulas are similar to integer
formulas, axcept a factor must be of floating
type. In addition, s floating factor may be a
call of function FLOAT, which converts an iateger
formula's value to floating form. Tha syatax for |

(a) Actusl Input Parsmeters '

The actusl iuput parsmeters can be 0 or
more formulas. Each formula is evaluatad; axd
its valus, type, structure and parsmetsr type are
pushed onto AP-8TACK.

|
|
i
|

(b) Actual Output Parameters

The actusl output parameters csn bs 1 or

" wore viriables. S8ince each of the actual output

Flaas = S

r
N

= [t S

P i e o AR R e TS P



parameters that aren't tables sat returned a new
value, their DM-locnus are also saved in the AP-
STACK. Output parameters baing traced also have

_their names placed in the Name fiaeld.

4s(e)  Parameter Matching

Corresponding actual snd formal parameters
wust agree in type, structure, size, and input/
output type.

5. Lexical Processor

The J73 program is a string of characters.
The laxical processor LP scans the charactexs in
the source program, checks their legality, and
assembles them into tokens. The tokens can be
reserved words such as "ITEM" and “IF", operators
such as "+" and ";", names, or numbers. The
lexical processor together with the associative
memory SAM also handles define declarations and
define calls, and comments. It also handles the
directive,

The nttuéturc of the lexical procesaor LP
consists of an associlative memory, and registers
as shown in Fig. 5. They are described below.

(#) Program Memory PM contains the text of the
JOVIAL program to be executed., It is arranged
48 one long string of characters. Each
character is assigned an ordinal position so it
can be identified by registar SPIR.

(b) Scunner Associative Memory SAM stores
informetion sbout define declarations., For each
valid define declaration, an entry is created

to store the name of the declaration, the location
of the first character of the define body and the
firet after the last character of the define body.

(c) Table LEGALCHAR contains valid charscters
of the JOVIAL syntax and their respective classes.

(d) Table RESERWORD contains reserved words and

- their type. Specisl reserved words sce 'DEFINE'
(type 'D') and 'FLOAT' (type 'FLOAT'); the othexs
are type 'R',

(e) Register CHAR holds the last character
fetched from Program Memory.

(f) Regiater CLASS holds the class of the
character stored in register CHAR. The class, an
interger, is found by searching the LEGAL-CHAR
table.

(g) Stack RETURN saves the SPTR position
immedistely following a define call so that,
after SPTR hag advanced over the define body, it
is reset to the proper position to continue
program execution.

(k) Stack DEF-END saves the end-ptr positiouns
of the bodies of active define calls., When SPTR
reaches the position pointed to by the top entry
of the stuck, that define call is completed and
a return §- performed by popping DEF-END and

-

e T

26

R YR TN ) . N : oo Lo
sl Ak e o ol 2B R L e 40 R s S

o

popping return into SPTR. Recursive define calls
are not allowed,

(1) There are two tables: LEGAL-CHAR -and RESER~
WORD. It needs to check aach character of the
source program to determine whether it is legal
by looking up table LEGALCHAR. It needs to
deteruine whethar the new token is a reserved
word by looking up table RESERWORD. The legal
character table is shown in Tabls 2; there are

56 legal characters in 10 classes. The reserved
word table is shown in Table 3; there are 19
reserved words.

The lexical processor LP scaus the source
string of characters, checks their ligality, and
assembles them into tokens. It is activated
by either CP or DP. The lexical constructs are:

(1) token

(2) character
(3) name

(4) number

(5) operator
(6) define and comment

The hardware sequences of the LP which have
sequence NEXT-TOKEN as the root sequence consists

of ¢
01 NEXT-TOKEN
02 NEXT-CHAR
02 NAME
02 DIRECTIVE-NAME
02 DEFINE-DECL
02 DEFINE-CALL
02 REL-OP
02 NUMBERICAL-LITERAL
03 EXPONENT
03 FRACTION
02 COMMENT
5.1 TOKEN

Token isg the lexical element of a source
program. 1t can be a name, a number, an operator,
or a separator as shown in the suntax below.

1= <pame>

! <numeric~-literal>

! <operator-separator>
! <reserved-word>

32, <next-token> :

38, <operator-separator> :ii=

1)
1
!
!

! ! !+

/ ‘ " ‘ 1) . ‘ <>
< ! t >t
"y, ! iblank

39, <reserved-word> :i= START!PROGRAM!TERM
| BEGINIEND! ITEM!
TABLE { REF
{ PROC!FOR!BY IWHILE!
IFJELSE
! EISIUIF

Sequance NEXT-TOKEN is designed to assemble
the adjacent characters in the source program into
a token. It extracts the next logical group of
characters (the next token) from PM. The token

AL
vV * —
A~ B

.
+

R A

3%

LR o

~
¥ 3

T S vt




may be a reserved word, identifier, numeric-liter-

Sequence NEXT-CHAR fetches the next charac-
al, operator, ssparator or directive. This ter from the source program in program memory.
seéquence also handles define-declarations (macro The next character is pointed to by register SPTR
definitions) and define-calls, because they affect and becomes available in register CHAR. A test
the control flow of program text. nust now be made to determine if SRIR points to
next to the end of a define body by & ring it
; Initially, the starting position of the token to register DEP-END. If it does, SPTR is given
P is stored in register BACK-PTR. Thon the token 1is the value of register RETURN (i.e. to return from
3 4 tormx!. [f the token is the reserved word ‘DEFINE' the define call) before the next character is
% é a def ine-declaration is processed; i{f it is an made available. The character is then tested for
g ¥ identifier with an entry in the SAM a define-call legality and register CLASS is set to the class
8% is processed. When the next token to be passed to number of the character.
to the other processors has been formed, the 'noise’
N 2 following it is skipped over. Nolise consists of 5.4 Numeric~literal
X E blanks, illegal characters and comments. Upon
o return, the token will be in register TOKEN, its A numerical-literal is a positive integer,
L f type will be in register TYPE, and register SPTR and a flosting literal 1s a numerical-literal
- will be pointing to the beginning of the next token with a decimal point. The lexical rules for
L to be formed. numerical-literals and floating~literals are
b : shown below.
o Saquence NEXT-TOKEN fetches the next char from
; ! the source program and then acts according to the 34, <numeric-literal> l=<integer-litural>.
s class number of the character as follows. ! <floating~literal>
A clags l: An illegal char. Call ERROR, 35, “integer~literal>im<digit> ..
i class 2: A blank. Skip the blank.
i : vlass 3: A letter. The succewdlng characters 36, <floating-literal>le<digitree.
. are assembled into a name. The name <exponent>
can be reserved word, an LP command, ! |<digit>)e<digit>.
or an operand name. [<exponent>)
class 4: A digit or period. The suceeding
Characters are assembled into a 37, <exponent> wmEl+!=)<integer~
number . : <1literal>
clags 5: A decimal point. This case is hand- '
led the same as class 3. Sequence NUMERICAL-LITERAL needs to detect
class 6: Unary operator '+' or '-', It is the sequential combinations of digit, period, :
: stored in register TOKEN. 'E', '+', '.' and others. There are 3 sequences g
class 7: An operator. It is stored in regi- a8 shown below. : 4
ster TOKEN, .
class 8: A '<' or '>'. A two-character 01 NUMERICAL-LITERAL \
operator ('<=', '>«' gor '<') {s : :
azsembled. 02 EXPONENT ]
class 9: A '!', A directive name is assem-
bled and identified. 02 FRACTION
class 10: A double-quote. A comment is flush-
ed out. Sequence NUMERICAL-LITERAL constructs
numerical-l{terals. There are two types: integer
5.2 Character (type '1') and floating (type 'FL'), Floating~ ‘
literals have a decimal point and/or an exponant; o
A character can be a letter, a digit, or a integer-literals have neither. Sequence FRACTION of
mark, There are 10 digits, 26 letters, and 17 extracts the digits following the decimal point
marks, as shown below. of a floating-literal, while sequence EXPONENT &
extracts the exponent part of a floating-literal, o
36. <character> ::= <letter- ﬁ
! o<digit> 5.5 Relationsl Operators 4
! <mark> 'd,‘x
The operators of machine a consist of single ?E
43, «<digit> = ? ; % é f ; 3ratrstoe and double-character operators and the reserved "

words, Sequence RIL-OP extracts the relational
operators '<', '>' ‘'ex', tca! or '>e',

L

44, <letter> ::= AIBICIDIEIF!G!
fHITIJIKILIMINIO

%

5.6 Comment 3

IPIQIRISITIVIVIV 4

Ixtyrz The comment is & string of 0 or more ﬁ

: characters enclosed by a pair of quotes. The syn- b

43.  <mark> predletA /L fetu tax is shown below. : ﬁ
Lot ene! . i

.11 1blank 35. <comment>..="[<character>]" 1

27

e L. N l“ R o St i RN - PR T
. - . L 'J-:A,.n'-\ . o e e LU . K
- .



A e

e

Saquence COMMENT flushes out the string of charac-
ters,

5.7 Define (Pig, 27)

The define-declaration 1s a macro definition;
ita body, 1like a comment, i@ a string of 0 or
more characters., The syantax {s shown below,

43, <define-declaratlon>.apEFINE<name>
"[<character>...]"

46, <define-calld>li=<name>

Sequence DEFINE-DECL processes a define-
declaration. The define-name cannot be the same
as any name declared in the same module or any pro-
cedure name, A SAM entry ila created to hoid the
name, module-id, location of the first character
of the define-body, and location of the double-
quote (') which signals the end of the define-
doby for each valid declaration. The define-body..
is enclosed in double-quotes, soc no comments are
allowed between the define-name and define-body,

Sequence DEFINE-CALL processes a define-call.

A define—call 15 not allowed when the name of a
declaration or a procedure 1is the next token ex-
pected. On a valid call, the return location is
saved by pushing 1t onto stack RETURN, register
SPTR is assigned to point to the first character
of the define-body and the end position of the
define-body is pushed onto stack DEF-END,

The top of RETURN identifies the ‘define-
activation level' of the source program. This
level needs to be known by the CP to determine if
control statements may have CAM entries, so {t is
always stored in register D-LEV,

6. Concluding Remarks

The above JOVIAL Direct~Execution Machine A
directly reflects the language constructs of the
J73 language. The lexical processor divectly re-
cognizes tha legal characters, reserved words,
operands, operators., It assembles token, and exe-~
cutes lexical "comsands" (such as the DEPINE

‘coustructs of the J73 langusge, Tha control pro-

- casgor directly executes the control statemants
and saquences the order of exaecutfon of the asc-
signment statements; this control procaessor
organization reflects the control constructs of
the J73 language., The data processor directly re-
ferences symnbolic names and executes data opera-
tions; chie data processor organization reflects
the data constructs of the J73 language.

The above JOVIAL Machine A is a wmultipro-
cessor system; each procedsor performing &
function reflecting language comdtructs. If the
lexical praocemsor were operated in a parallel but

.aynchronized manner with the control processor and

.data processor, tha vepsated laxical processing in
a program loop would not impede the execution
spead, By using tha information of the control
structure of the source progras in the assoclative

28

processing of the control statements in a program
loop.

The idea of a direct-execution machine is
simple, but its structure can be highly complex

1f the programming language such as JOVIAL is

complex. Thus, there are two isgsues: the igsuc

of the programming language and the issue of the
tomputer architecture for the programming langu-
age. Criticlsms on a particular direct-execution
machine should address clearly the whether it i
the language issue or it is to the architecture
lssue,

7. Acknowledgements
The author wishes to acknowledge the aupport

of this work hy Grant 79-0056 from the AFSOR/

RADC, He also wishes to acknowladge help from

several students, Marc Abrams, Eric W. Bonwit,

Richard A, Britton, Edward Lor, Carmen Radelat,

and Cliff Schaeffer, who helped in the preparation

of the manuscript,

8, Reference

(1) Bloom, H.M,, "Conceptuul Design of a Diicct
High-Level Language Processor'. Technical
Report TR-239, Department of Computer
Science, Unfversity of Maryland, April,
1973, (NLTS PB-224098/AS.)

(2)  Chu, Y., "Introducing the High-Level Langy-
age Computer Architecture', HIGH-LEVEL
LANGUAGE COMPUTER ARCHITECTURE, Academic
Press, Inc, 1975, pp., 1-4,

(3) Chu, Y., J,C, Yeh, and E,R. Cannon, "Direct-
Fxecution on the Burrougha B1700 System",
Technical Report TR-335, Computer Science
Department, University of Maryland, Oct.
1974,

(4)  Carlson, C.R,, "A Survey of High-Level
Language Computer Architecture", HIGH-LEVEL
LANGUAGE COMPUTER ARCHITECTURE, Academic
Press, Inc., 1975.

(5) Chu, Y., HM, Bloom, and E,R, Cannon, "High-
Level Language Hardware Contrnl Archi-
tecture", Technical Report TR-412, Depart-
ment of Computer Science, Univeraity of
Maryland, Oct, 1975,

(b)  Chu, Y., "Evalution of Computer Memory
Structure”, Processings of the National
Computer Conference, June 1976, pp., 733-748,

(7)  Chu, Y., "Architecture of a Hardware Data
Interpreter', Proceedings of Computer

(8)  Architecture Symposium, Silver Spring,
Maryland, 1976, pp. 1-9,

(9) Chu, Y. and E. R. Canaon, "Design of & High-
Level Computer Architecture", Technical
Report TR-550, Department of Computer

Science, University of Maryland, June 1977,
‘ e et S e ia

IR  LN xaaeeg yL

=

YA BEN

v

o V201

o,

YR

el e et e

i

S R

-

= A




(10

(11)

(12)

; (13
i

Schwarts, Jules I., "The Development of
JOVIAL", ACM SIGPiAN Notices, vol. 13, no.8,
Aug. 1978, pp. 203-214,

“Military Standard JOVIAL (J73)", MIL-STD-
1598A (USAF), Softech, Inc., March 15, 1979.

Chu, Yoahan, "Uirect Execution on a JOVIAL
Machine", Techmical Report TR-827, Depart-
amt of Computer Science, University of
Mexyland, Wov, 1979,

Chu, Yoahan, "Design of JOVIAL Direct
Execution Machinae", Technical Report TR-859,
Deaprtasnt of Computsr Science, Uaiversity
of Maryland, PFeb. 1980,

FUATSPITSR TR VTR SN ST IR TR

B T

PR

PR T aT ST IET T S

Ll Gl B BT et Y IR T 5




|
]
f
1 00000 STARY
! 00100 PROGEAM TS TV
: 00200 BEGIN
: 00300 REF PROC TRIG (ANG : SANG, CANG) §
| 00600 REGIN
: 00500 1TEM ANG
; 00600 1TEM SANG 1
00700 1TEM LANG 1
00800 RRT
00900 JABLL LEGYROY Y
01000 TARLE KRINTNOL 15
ollu0 vapth ceoslyol ¥
7 L1200 1TEM 11 8§
01300 t TRACE NEC, S50, 0005,
n4no Fon 11:0 BY 1 WHIIE 11 w8 Y.
01500 BEGIN
01600 peeiril - 1L
01700 .'rmc(urclnl:ssmln).m 03111))s
01800 END
M 9no 1un
(12000 TERM
VOO0 STARA
oni o0 PROC TRIGDUG:SIN,COSYS BECIN «
00200 BEVINE ' ", 16159265"3
00300 TrEM J0 0 ‘
00400 11¥H DRG Uy &
00500 1TEN PAD B :
00600 ITEM T'ACTR Fi .
00700 1TFM SIN 13
00800 1THH COS ¥
00400 “TitIS PROGEDURE COMPUTES RQTH 51N ANR COSINE OF AN ANGLE
01000 USIHG A TAYLOK SER1ES" -
nrron
01200
, 61300 g1 = 0.0 tos = 1.k,
: 01400 NAD = FLOAT (DECYRPT/V BEDS 2
h AR FACTR = 1.0% ) 1‘
5 1600 FOR JJ:1 BY 1 WHILE b &= 20; TEGIH k)
4 01700 FACTR = RAD # cACTR/FLOAT{3)3 -
01800 1r 11; BEGIN A
01900 SIN = SIN + FACTR; .
S 02000 FACTR = -~FACTR; END "
02100 [SE  COS = COS & FACTR; END FND %
Fi‘: o200 TERM o
! i
i : W
E 3
4 Fig. 3 A Sample J73 Program ‘-‘;}
: B
it
A
4
30 4
3
oL
~ Y w
FOR YRR — e e W.‘. o, .
re eSO R Y B AP <~:;f.,v,u.’-,¢.,,:..véiu-}'f.u'{x‘fu’n‘&




s e it oo B - o Rt

o T I TR A s e s et o

e L
i
]

)
: K l S Fig. 4 JOVIAL Direct-execution
] s I Machine Organization
¢
{ .
& * "
’x
/ ‘ J { -
o —_—
RETURK DLE_END
i 1P
o — - e
’ l CRAR ‘:] ‘_EU\SS
: i 4

; ___’ L_E_E\_’_JE&%( PTR |[IE’ FD—CQ F _CALL

| [
ifﬂ. o] B (o] (] | -

RSTACK CTR_BTACK

N cp :j
F . | |
‘ _ U.J

‘ RSTACK SPTR_STACK ‘

y / il STTJ Jﬁi ol
L I

VSTACK PSTACK FPSTACK

L _ |

AP_STACK

I N L ™

1 e e R e TR il S T B L

.
SIS RS

il

T

.
>
| ' .
’ e e e mene v PR h e u..'.— —— . . :
TETY i o < o - ae i .
i ’ T . Ly Py . SR IR " B h
- e ) TRIRR PP b e TR s o A ey (,.”,_v:. . A ,
R e bl t ' o o e B et I B e e e ol



I ‘ I WAl Locw [T 585

Program Memory P¥ [ | [ | RETURNDIF BWD SAM
" Lexical Processor LP CLASS CHAR

Intefacin ing lesistu‘lr
(J 33 ] 2 (] E:I ,
BACK PTR DEF_DCL DEF_CALL SPTR TOKEN :
D_LEV VALUE TYPE STRUCTURE PROC_NAME BLOCK
RESULT ,
Control Procsssor CP Data Processor DP
““‘“_ : DAN
T”.!% Locafinete JRuiys [E TRl TYPE [Shrut [S12E Pﬁ.\m raceM|
S fir Lﬂt—ﬂ%_ U hey
el LN NAME G ], [t
CTR_STACK BSTACK RSTACK LuUCN DLEV Data MemoTy DM 3
| SPTR_STACK LOCH | DATA :
: ot A
;} TRACE
! NAME 1/0 PSTACK  VALUE TYPE i
? FPSTACK - VSTAMX B
}
)

NAME VALUE TYPESTRU SIZE 1/0 PR
_AP_STACK

HREE bt

=S

¥ig. 5 Memoxy/regieter/stack structure of the JOVIAL Direct-execution Computer

Ratass

¢ 32

. o ,
ORI | PRTRRILY ./ ST Apem

SR A et/ Lidaasn oo iy Gl




I e L T e

g

[
>
8
t

-

onidt i S K rnn o e S

QUEST FOR AN 'IDEAL' MACHINE LANGUAGE
Krishna M. Kavipurapu
(Southern Methodist University)

Harvey Cragon
(Texas Instruments)

Abstract

Ressarchers have rsalized that von Neumann
machines do not adequately provide for the con~
structs that occur in common programming languages.
Most of thess shiortcomings are attributable to o
phenowenon known as semantic gap. Over the past
decade there has been increased interest i1 bullding
nachines that heve smaller ssmantic gap. It can be
conjectured that there axists an 'ideal' directly
executable language (DEL) which describes an archi-
tecturs with s smaller semantic gap than conven-
tional machines. The proof of this conjecture will
enable us to evaluate candidate machine iustructions
and to select the most suitsble machine language
for a given computing enviromment. In order to
prove this conjecture, certain characteristics of
machines like the level of a machine with respect
to a high-level language must be quantified.
Halstead's Software Science metrics are vaed for
this purposa.

Introduction

Before we start our introduction, we would
1ike to define precisely the meaning of the term
architecture as used in this paper. Computer
architecture is the virtual machine as viawed Ly a
machine language programmer. This is the view held
by Flynn (75]. Thus, changing machine la:guage
(assembler language) changes the architecture.
Using the same argument, all models of 1BM/370 have
the same architecture.

Resasrchers have realized that von Neumann
machines do not adequately provide for the con-
structs that occur in common programming languages.
Moxt of these shortcomings arc attributable to a
phiciomenon kpnown as semantic gap (Cagliardt {73]).
The semantic gap is & messure of the diffaerence
betveen the concepts in high-level languages and
the concepts in computer architecture. Most current
systems have an undesirably large semantic gap in
that the objects and operations reflected in their
architecturs are rarely closely related to the
objects and operations provided in programming
languages. As shown by Myers (78], this large
semantic gap contributes to software unreliability,
parforsance problems, excessive program size, com-
piler complexity and distortions of the programming
languages, all of wvhich contribute negatively to
the economics of dats processing.

.
e g,{.a‘.y';l,;-,,_g,,‘s;%.,’-:;‘:;;.::ﬁ;-;“*J U NP S TR o)

33

M

]

The semantic gap can be reduced by eoucruet-!
ing a high-level language machine for each languags.
Such high-level lsnguage machines have many advaw~
tages (Tannenbaum [76]). Over the past decads,
there has besn incressed interest in building
sachines that have smaller sesantic gap. These
attenpts are surveyed in Carlson (73] and Myers
{78). The proposed desigus fall into 3 categories

1.  'Truly' high-~level language proceasors.
2. 'Paendo’' high~level language procassors.
3. Intermediate language processors.

)
|
|
H
}

In 'truly' high-level langusge procassors,
(e.g. Bloom [73)) the prucessor accepts a progras
string written in & high~level language and per-
forms operations as determined by the semantics of
the program string. The important characteristic
of this deaign is that the architecture opexatas ob
the program directly. A little thought will con~
vince the reader that such a design is not the !
ideal alternative to von Neumann architectures from
either the memory size standpoint or interpratation
time standpoint (Hoevel (74]).

1n 'pseudo'’ high-level language processors,
(e.g. Burkle et.al, [78]) the source program is
preprocessed; the software preprocessor performs a
lexical transformation on the imput chenging the
keywords and operators into internal code. All
data objects in the program are replaced by refer~
ences to memory locations. With the exception of
superfluons blanks, preprocessing is an isomorphism,

The two high-level language processor designs
degcribed above are highly source language depen-
dent and so a machine should be constructed for
each high-level language. In the case of inter-
mediate language processors, the source program is
converted into a program in an intarmediate language.
The resulting surrogate program is executed by the
architecture. It has besn established (Wade and
Schneider [73) and Lancaster [72),([76]) that a
certain set of semantic primitives can adequately
express the major portion of the sesantics of
programs written in any of the several common high-
level languages. Thersefore, it is coujectured
(Wade and Schneider [73]) that by designing a com-
puter organization which implements a set of seman-
tic primitives that describe common high level
constructs, one instruction per primitive, speed
increases approaching that of a 'truly' high-level
language processor can be achieved while retaining

S e




TR e e

the flexibility characteristic of software dominatued
conventionial machines.

The authors believe that the intermediate
Language processor is the degirable choice. The
authors also believe that there exists a direct re-
lationship between the level of a target machine
with respect to the source language (cf. SECTION 2)
and the machine's dependence on the source language.
That {s to say, the higher the level of a machine
with respect to a language, the more language de-
pendent will the machine be.

Becauase of this relationship one can measure
the closeness of a language to the machine. It can
be conjectured that there exists an 'ideal' directly
axecutable language (DEL) which describes an archi-
tecture with a smaller semantic gap than conven-
tional machines. Hoevel [74) gave an analytical
argumant to show the existence of an 'idesl’
directly executable language which performs better
than conventional machines. In order to prove the
abova conjecture we must quantify certain character-
{stics of machines like the level of a machine with
regpect to A source language and semantic gap. This
i8 the topic of present research. The matrics de-
f{ned in this work are based on Halstead's (Halstead
{771) Software Scienca. This research is a etep in
the direction of quantifying architectures and is
an attempt to bridge the gap between language de-
signers and computer architects. The metrics
defined can be used sither to evaluare candidate
intermedinte languages and select th: most suitable
muchine language for a given computing enviroument
or to evaluate existing machines for a given
enviromment.,

Hoevel [74) has argued that neither machine
language of conventional machines nor source lan-
guage 1s an 'ideal' DEL either from interpretation
standpoint or from storage point of view. He con-
tends that an 'ideal' DEL for a contemporary comput-
ing system lias somawhers between its source lan-
gnage and the language accepisd by its base machine.
In this research, wa attempt to provae that an
'{deal' DKL from semantic gup standpoint also lies
somewhore between the source language and machine
languaga. In the next section, software metrice
that will be used to quantify architectures are
defined, Results obtuined so far are included.

Section 2

Halstesad and hie students (Halstead {73},(77]
and Software Engineering (79]) found that applica-
tion of the classical methods of natural sciences
dusgnatrate that even such intangible objects as
written sbstracte and computer programs ave govewned
by satural laws. Some of the wmetrics used by them
thet are pertinent to present work are nov presanted
without explanation. Interested readers should
rafer to Halstead [77] for details.

1. The Volume V: A suitable metric for the size

of any implementstion of an algorithm, called the
volume V, can be defined as

V =N log, n (1)

where N is Qts lenpth and n s the size of its
vocabulary.

2, The Potential Volume V*: The most succinct
form in which an algorithm could ever be expressed
would require the prior existence of a language in
which the required operation was already defined
or implemented, perhaps, as a subroutine or a
procedure. The potential volume of an algorithm
is the volume of the program which expresses the
algorithm in its most succinct form:

" . * " 2
v (2 + nz) 1052(2 + n2) (2)
wheru n; is the number of unique operands.

3, The Level of a Program L: Since there can he
more than one possible impleaentation of an alpo-
rithm, it ia necessary to define the level of a

program, The level of a program L 4is defined as

L= VY (3)

4, The Level ¢z a_Language A: When different
algorithms are programwed in a given implementation
language, it {» observed (Halstead {77]) that as
the potential volume V¥ increases the program

lcvel L decreases proportionately. Consequently,
the product L times V' remains conrtant for any
language, This product, the language level, i
denoted by A:

Aw iyt (4)

The four quantities defined above form the
basis of our research. In order to discuss the
details & few more terms must be introduced.

5. Level of a machine with respect to a

Language DL: Certain machines are more closely

related to the operations and data structures in a

high-level language than other machinas. A measur-
able quantity that describes this characteristic of
a machine is {n order, The level of & machine with

M
respect tu a language 3‘ is defined as

M
N VL/VM (5)

VL is the volums of an algoritim implementation in
the language L and V,, is the volume in the machine
language of the machine M.

Remarks: 1. The authors sctrongly balieve that the

quantity in equation (5) is a constant for a gived .
machine ¥ and a language L (and a compiler) and

does not vary significantly with either algorithms

or prograsming styles.

2, Compllar overhead is included while measuring
volume VH in equation (5). Thus, V" is the volume

of the program translated into machine language M
by a compiler starting with the program in the high-
level language 1. This approach is usked for pruc-
tical vedasons.

Yh

g Af,_n-,~", o e o - o
. | .'.\ﬂ!}lh.hm—&ffﬁ-:\!—d);’il!lﬂh?émwﬂmi‘auﬁtﬁyfj;n7:

dh

%

[ecpecy

L, Frdion ratin b ot on o e

B SR S s s S L

g

LR RS

£ 0

ey

S Da P

5




AR

e A

3. If compiler overhead is to be axcluded, a dif-
ferent metric, the Potential Level of a Machine

O;" say be used:

*M
OL = AHIAL (6)

whete A" is the level of the machine language of
machine M and AI.. is the level of the high-level

language L. Potentisl level can be greater than 1
since it is possible to have a machine language
whose level is higher than that of & high-level
language. Tha perforasnce of a compiler can ba
evaluated using the two levels defined above.

Some Results: 32 FORTRAN programs written by grad-
uate a reshaen computsr science students at SMU

are used {n our validation of equation (S5).
Operators and Operands in the programs used are
counted according to the rules suggested by Bulut
(74},(73}). The results are givan in Table 1. VYhen
these values are plotted (Fig. 1), a straight line
relation betwsen the two volumes with a correlation
coefficisnt of 0.978 is observed. PFrom the plot,
the leval of Compass (assembler language of Cyber)
with respect to PORTRAN (using FTN compiler with
OPT = 0) 1is given by the slupe of the curva:

Compass

pn

= 0.1716986

Similar computations are parformed on COBOL and the
resultes are tabulated in Table 2. The level of
Cupn;)vlth respect to COBOL is calculated to be
(rig.

Compass

3conoL

= 0.0517147

6. Dynsmic Volume V4: The volume of an nl'.orithn

defined in (1) is & static measure of the size of
the algorithm and it can be used as an estimate of
the memory required. However, the actual smount of

v

35

Tomy o et AL SRy e R e oo v

language and dT is the execution time of the
program for the dynamic volume V e

Remarks: 1. To evuluate equation (7), & program
(or a set of programs) must be executed with dif-
ferent sets of data. Tor each set of data, the
dynsnic volume V, and the execution time 4T must be
noted, Then, thé integration in equation (7) can
be spproximated by summation.

M
2. The product Lyt aL is & measure of the speed

at which programs written in a high-level languagel
are executed on machinoe M.

Some Results: A wimple program is run on Cyber 72
a number of times with various values for input
data, The values of execution time for various
dynamic volumes are plotted im Fig. 3. As can be
seen from the graph, the rate at which Cyber pro-
cesses information is fairly conatant and is given
by the slope of the graph.

= 15,746 x 10° bits/sec

ICylut 72

Applications

Although the results obtained so far are not
enough to claim the validity of our metrics, they
tend to support our imtuition. However, since
intuition is far from trustworthy, ve are planning
to collect data for three langusges FORTRAN, Pascal,
and COBOL and on three architectures Cyber, AMDAML,
and TI 9900. We believe that this set is a repre-
sentative class of langusges and machines most
commonly used.

Once the consistency of thess metrice has baen
validated, they can be used to select a machine
language that is best suited for a computing envi-
ronment. Denoting the set of programming languages
under consideration by P, the machine language for
which the quantity

o

code processed by the computer is diffarent for ) (%, 3:) )

different sats of data. Depending on tha input, L¢P . )

certain segnents of the program may be executed Py

more often than other segments. The Dynamic Volume is maximum describes an architecture with a minimus ’f

of a program is the code of the program that is semantic gap for the sat of programming languages P, o

actually processed for a given set of data. The constant k; in equation (8) is a weighting ,‘%

Ky factor that reflects the frequency of usage of &

7. ‘' Average Information Rate IM: Since it is pos- Language L in a particular envirooment, Typically, “

. if 90X of the time COBOL is used in a given envirca- £}

sible to conceive of two machines with the same o

architacture whers ons machine executes programs ment, RCOIOL vill take & value of 0.9. ‘;

faster than the other (s.g. the various models of W

IBM/370 series), a measure of the processing spaed Equation (8) can also be used to evaluate o

of machines must be defined. The aversge informa- existing architectures for a given anviromment. : :"

tion rate l!l of a machine M is such a quantity and Use of the metrics defined in this paper provides bl

is given by useful information on the basic architecture of the ¥

wachine and the implementation detsils such as ths M

1 1 (T information processing rate are separated from the i

I" - {Avg. time per rum) |T J \Id - dT (7) sarchitecture. This information is mot provided by 9'

0 benchmarks which reflect only the speed of execution K

) of the benclmark programs on the machins. However, 4

; where T 1s a sufficiently long time period over the authors believe that the counting techniques :3

| which the bshavior of the program is obaerved, vy suggested by Bulut [74],(73] must be refined bafore §

; 1s the dynamic volume of the program in the machine existing architectures can be compared using our metrics. &
|
+

. D VS,

. . .
{ ° ’ » M % ' o . N S e
oot A B et el s ot A e NI v e et 2t L e R R




TRV A ST PRI o4

Observations

While campiliog FORTRAN programs, we tried
varions optimisations that are available on FTN com-
piler. After looking at the tode generated, we
decided to use only the code generated uasing FIN
compiler with no optimization, The reason for this
is the fact that optimization is not linesr; only
certain portions of the program are optimixed. For
example, no attempt is made to reduce the cods re-
quired to implement subroutins calls and passing
of parameters. Thus, if a program-has a large
number of subroutine calls, the amounts of code
generated by both optimixing compilar and regular
compiler are almost the same. This nonlinearity
leads to an unfair comparison of FORTRAN programs.

We also observad that on Cyber 72, there are a
foew system Macros to execute most commonly occurring
PORTRAN functions like format conversions for READ
and WRITE statements. Similar observation can ba
mhde in connection with COBOL programs. 8o, the
glithors would like to stress the fact that the
mmbers obtained are for a virtual machine as
viewad by a compiler writer. However, the use of
such macros strangthens our belief that a new
tachine language which has a higher-level than

nventional machine languags is needed to improve
The performance,

Conclusion

#«  Io this papsr, the authors have attempted to
troduce the subject of theix research. The
thors started out with an assumption that there
dets an 'ideal' machine lapguage which has most

the advantages of high-leval launguage processors

e retaining the flexibility of conventional

Neumann machines. In oxrder to prove this con-

hise, & fon metrice are dafined. Usisng these

metrics, a moot suitable machine language for a

given computing envirooment can be designed.

Although, the sctusl vslues of our metrica may
change 1f a different counting techunique is used,
the conclusions are etill valid. The valuas obtained
must be used only to compars two languages and no
significance must be attached to the absolute valuss.

In our resesrch, ona basic assumption is that
the language in vhich 4 program is written is the
bast language for that algorithm. However, we did
not ses any published results claiming the superi-
.ority of one language for a particular applicationm.
Our method can be extended to evaluate various
prograoming languages for a given application. In
order to do this, ons has to write a mumber of
programs (within s given area of application) in a
set of programming es and measure volumas of
these algoritims in the different languages. The
high-level language that has an overall mipnimum
volume for the set of programs is the best imple-
maptetion language for the ares of application
-under censideration. Once again, we would like tco
caution the readar that the counting techniques may
have to be refined before our method can be used
for the suggested applications,

36

-

ton vyt . . 4 - !
etk RN v N S 0 2 b L2 A LN 0 Y PR

It is probably too aarly to outline the
machine characteristics that cause semantic gap,
but we observed that direct axecution of a few
high-level instructions would enhance the perfor-
mance of computers apprecisbly. These instructions
ars very similar to the samantic primitives sug-
gested by Lancaster (72].

Bibliography

Bloom, H.M, {73], “Structure of a Direct High-
Level Language Processor," Proc. of Symp. on Archi-
tecture, ACM SIGPLAN Nov,

Bulut, N. [73], "Invariant Properties of
Algorithms,” Ph.D. Thesis, Purdue Univ., Dept. of
Comp. Sel., Aug.

Bulut, N. {74), "Experimental Validation of a
Structural Property of FORTRAK Algorithms," Comp.
Sci. Tech. Rept., CSD TR 115, Purdue Uaniv., April.

Burkle, H.J., st.al, (78], "High-Level Language
Oriented Hardware and the Post-von Neumann Ers,"
ACM Computer Architecture News, April.

Caxlson, C.R. [75]), "Survey of High-Level
Language Computer Architectures," in High-Level

Lan, s Computer Architecture, Edited by Chu, Y.,
Acn!nic Press., .

Flynn, M. J. (75] "Interpretation, Micropro-
gramming, and the Control of a Computer,” in
Introduction to Computer Architecturs Rdited by
Stone, M. 8., SRA Inc.

Gagliardi, U. 0. [73]) "Report of Workshop 4 -
Software Related Advances in Computer Hardvare,"
Proc. of Symp. on High Cost of Software.

Hulstead, M.H. (73] "Language Level -
A Missing Concept in Information Theory," ACM SIGME,
Performance Evalustion Review, March.

Haletead, M, H. (77) Elements of Software
Scienca, American Elseviar.

Hoevel, L. W. [74) "ldeal Directly Executed
Language: An Anslytical Argument for Emulation,”
IEEE Trans. on Computers, Aug.

Lancaster, R. L. {72] "Semantic Primitives for
Quick Implementation of a Family of Procedural
Languages.” Ph.D. Thesis, Purdue Univ.

Lancaster, R. L. and Schneider, V. B, (76],
“Quick Compilar Construction Using Uniform Code
Ganerators," Software - Practice and Uxperience.

Myers, G. J. [78] Advaunces in Computer Archi-
tecture, John Wiley & Scns.

Software Engineering (79) IEEE Trans. on
Software Enginearing, March.

Tapnenbaum, A. 5. [76] Structured Computer
Organiszation, Prentice-Hall Inc,
Wade, B, W. and Schneider, V. B, [73) "A General

Purpose High-Level Linguage Machine for Minicom-
puters,” ACM IIGPLAN/SIGMICRO Interface Meating,

S e AN e Sl R Fn FR




il bl Tt M SRR e b L

i N ey bk o
i SR *

‘l.l =
"
¥
\
.
v
&
¥

Vroxmean Veompass VeorTaan Voupass ?
r 2031.9704 6349,5468 449.480% 2821.7177 ;
5 2347,1734 13846.4650 1946.9811 13816, 3500 |
4 294,018 1764.1995 2880, 5540 23131. 5030 :
¥ 421.1067 2408.5471 3110.9361 19617.8670 !
: 118.0280 770.3418 1596.1231 9580.6700 ;
4 . 24.0000 394.2272 33,3762 1917.2798
& 361.2140 3006. 6073 1135, 7944 6561,7922
K 352,33%0 2313.9810 1065, 3293 8346, 3600 i
; 375.0000 2957.3806 448.0130 1900. 2761 :
: 208.1485 1843.33%4 124.0000 803.M11 ;
i 298.5351 2171.9507 73.0024 362.2120 ;
' 385.0000 2788.06%0 1944868 1150.3680
: 55.3509 549.5718 246,379 1623,9272
833,0376 5941.6165 12,0000 107.5489
128,0000 1149.2961 85,1101 886.8998
518.9212 3646.4257 1103.0721 68346131
Tsble 1. Validation of Bquation (3) i
TN Compiler with OPT = 0 1is used.
Vm 1is the volume in FORTRAN. Vc“““ is the voluma in Compass.

HOS:‘J . S'?:!l . 979,14 1363.99  1752,03 2139,70  1924.3¢  2913.42 1380.27 )697.1)
$ # ry Y 'y & & & ry ry & & & & & ry

-
*

130 ¢ 4 T T t M o
‘ 1 Correlationt 0.97764 ! H T
t t
gy, | Slere 5.82416 ; H i
e 1
t Iatercept:  240.47389 H M
1 1
: 1 1 : ! :
10828,90 : : HE 1
: 1 | § 1 | 4
t 1 1 1 f
1 1 t ;
1 1 1 r ! ’
16224,32 + t 1 + ! '
1 1 t !
: . 1 |
1 1 1
19192 s : : ‘ )
. + 1 H +
t 1 1 r . 4
1 1 ¢ 1
1 1 1 ' 1 1
‘ . 1 t 1 T 1
11819.83 1 1 re ;
1 t 1 1 4
) 1 1 1 t s
; { 1 1 l 4
" 917.13 ¢ : ; HE '15
; v 1 1 M é
o ! :
- : ............. . % b
= 7014.74 ¢ H : ' ‘ “?;
{ t M 4
; 1 1 1 5
. 1 . 1 1 o
l ] 1 1 S e
_ 1 1 i 1 ’
o 2,34 4 1 t + ;
g ' 1 \
- . : ! : 3
o 1 1 1 1 ‘!
anse | : : ;
1 1 1 I ¢
: 1 t 1 4
: : ' :
107,58 4204 g oy
Susmmpocnebouna bornmbeemnemmd ---5 .................... + ‘l 'Y 'Y * 'y IS 4 ‘ '34\
12000 I9m0%  ase a1 1172087 1559, 47 1946.28 2133013 2719.99 306,00 349370 - 3880, 88 ;
B
Yigure 1. Validation of Equatiom (5)

vm along X-axis. . vm. o along Y-axis.

e ———— ™ v -r h TET T ae@ ol pe s Seadmdife p LR SR Snealads L



R v e T~ e N R
-
P
{ W,
i .
L VeosoL vCo-pnl ¥comoL Veompass
{ 167.371790 3700.9530 227.548950 3977.9047
d 655.131790 11260.7840 230.321550 4645,9535
g 403,254130 10222.6930 483.308970 10455.0650
91,376518 2422.8076 21.0060000 527.3324
l 46.506993 1250. 2098 57.359400 1386. 6956
¥ 122,984890 1951.2472 339.001500 7949,2895
3 245.969780 6198.6132 159.911340 3831.2925
3 286.620880 5333,9661 95.908275 2028,3122
Table 2. Validation of Equation (5)
i. COBOL cumpiler on Cyber 72 {is used.
& VCOBOL is the volume in COBOL. vCompass is the volume in Compass.
i
i
t‘.
3 11260.78 +' ™ ' ) S
! Correlation: 0,96639} / :
Vi ] t
, | Slope 19,3368 :
: 10187.44 3 SioPe: § ‘
: ! Intercept: 1030.069"55 !
- 1
: 911409 ¢ { :
‘ : : {
' 804075 5 :
:.....--------.-........-.-...-.-..; ................................................................ E ‘
6957.40 | :
i t i
: Yol ! :
5894,06 » : : ;
: « : , 1
i i ! ;
4820.71 . 1
t t t
LSS L SRS UREE SRR SPPPP :
3747.37 & ‘E '
! ] 1 .
s : t
2674.02 | :
i i ! g
¢ ¢ i :
1600.68 ; : }
H ( K
? : : )
4 t . B
527,33 4 x R S :
21,00 147.83 274.65 401.48 528,31 655,13 "
Figure 2. Validation of Equation (5) é
Veopoy, dlome K-axis, V(‘umpass along Y-axis, ':é
*
§
¥
M
"
i
B
|
?
i
KA
18 ;

DAL ERTEL A R v, ol : PO RS
P it SN ARt e Aol T R A L et A AT PR AL 1%

G SRR T o



T R WY RSNy

Ve
5244252, 049943
10488254 . 909940
15732257.769940
20976260. 629940
26220263. 489940
31464266, 349440
36708269. 209940
41952272.069940
47196274.929940
$2440277.789940
57684280, 649940
57684280, 649940
62928283 509940
62928283 509940

dr v d dar
0.305 68172286. 369940 4.285
0. 606 68172206.369940 4,245
0.897 6737539.570993 0,353
1.257 10106234 ,930990 0.506
1.526 13474930, 330990 0.676
1.903 16843625 .710990 0.8404
2.327 20212321..0909%0 1.012
2,546 23381016.470990 1.178
3.006 26949711.8309%0 1.341
3.297 30318407, 230990 1.322
3.376 33687102. 610990 1.680
3.529 37053797,9909%0 2.021
4,031 40424493,370990 2.117
3.623 43793188.750990 2,31

Table 3. Validation of Rquation (7)
V‘ is the dynamic volume in Compass. dT 1is the execution time on Cyber 72,

4.28

Corralationt

3.80 b 8lope:
Intercept:

s}
3.0 |
2,69
2.30
1.90
1.%0 |}
1.10
.70

30 L e

0.99237
0.63508%-07
"o; 1““

e o 4 A

.082 115 .178 .24)

<304 367 LA30  .493 335,618 ,681

Figure ). Validation of Equation (7)
\A x10°8 along X-axis. dT along Y-axie,

(units: Vd in bits, dT in saeconds)

cuaesr 1 oA TS

39

LRETE TR P

[ —

A AT

Tl
S

SR S E N

- .
P Lok ~i

-

s g etad

Z L3 w

PSSR AN




A DIRECTLY EXECUTABLE LANGUAGE SUITABLE
FOR A BIT SLICE MICROPROCESSOR IMPLEMENTATION

Neville R, Harriy

Computer Systems lLaboratory, Stanford University2

Abstract

Directly executed languages (DELs) as proposed
by lynn have variable sized fields for both opera-
tors and operands. For efficient implementation
this architecture requires access to main memory at
the bit level, and also requires powerful operations
on varfalbe sized bit fields in the host processor,
For a hardware architecture based on bit slice
processors and byte addressable memory it may be
more advantageous to consider a byte oriented DEL,
This simplifies the memory access hardware and makes
the decoding of the DEL code a straight forward look
up procedure. This paper reports on & project to
build a Pascal oriented micro processor (POMP) and
compares the POMP encoding of instructions with
those of the DEL code, Initial results indicate
that POMP code is less than fifty percent larger
than DFL code and hence will be preferable when
simplicity of interpretation is required.

introduction

A Pascal oriented micro processor is being
huitt at Trinity College Dublin using AMD bit slice
processors, It will be used for research into the
emylation of intermediate forms for block structured
languages. Pascal will be the initial language
considered and will also be used in all examples in
this paper. During the design an architecture to
efficiently support Flynn's DELs was considered,

It would have required bit addressable memory, and
operators for variable sized bit fields. Instead
an architecture based on byte sized instructions

was chosen to give easier interpretation and a
simpler main memory interface, It was also felt
that a compiler producing byte sized instructions
would Le easier to construct than one producing DEL
code.  The only disadvantage is the loss of compact-
ness of code. This paper reports on inftial
tnvestigations into the comparison of the two
encodings and considers the tradoff between compact-
ness of code and ease of interpretation.

the work described herein was supported in part
by the Army Research Office - Durham under contract
no. DAAG29-78-0205,

‘On Teave from the Department of Computer Science,
Trinity College Dublin.

Directly Executable Languages

The aim of DEL code [1,2,3] is to provide an
ideal architecture for any high level language.
The encoding is not optimum in the Huffman coding
sense but instead a compromise between compact
coding and ease of interpretation, "An ideal
representation must be concise in its coding of
identifiers yet not so concise that it exacerbates
interpretation" [2 page 22], In this architecture
the scope of an identifier in a procedure is very
important, The address of an identifier is given
as the address (offset) within the contour. Hence,
the number of bits required to hold an address is
given by log, (V) where V is the number of unique

identifiers within the scope, Operators can also
be encoded in this manner but the number of opera-
tors 15 small and hence a fixed encoding may be
used instead, The DEL code instructions mirror the
operations in the high level language giving three
address type instructions, When the stack is
required in expression evaluation then all loads
and stores come as additions to the main operation
being performed. In a sense they come for free.
The joads and stores are not explicitly given in
the DEL code instead they are implicitly applied as
part of other operations. Thirty two formats
specify all the different forms of the three address
instructions, The DEL encoding for a number of
expressions is given in figure 1. The encoding
contains the format, operands and operations fields.
In the format field A, B and C represent the three
operands of an instruction when they are not in

the stack. § represents the resulting operand
pushed on top of the stack, and T represents the
operand on top of the stack; which may be popped

if required, and U is the next to top operand on
the stack.

In examples 1 and 2 the operation is performed
without the use of the stack. In examples 3 and 4
the stack s used and its use is indicated by the
format of the instruction. In all the examples
there is one DEL code instruction for each operator
in the high level language expression, Note also
that the load and store stack are implicitly
implied by the format and combined with the instruc-
tion operation. Ore memory reference is saved in
example 4 where the identifier K appears more than
once. Conditional statements and the addressing of
arrays can also be accomplished in a similar manner,
as shown in figure 2.

o

.

T ACELIRD Y A S




e TR

PR RTE I R L < e Do L L

The if statement in example 1| produces a DEL
code instruction to test the condition and skip if
the condition 1s not true, and another instruction
to evaluate the expression K:=K + 1, which is
executed, 1f the condition is true. In example 2
the array address calculation is considered as a
single operation along with the assignment, and
in example 3 it is considered as a single operatim
along with loading or storing from the stack.

This encoding produces compact code, anywhere
from three to eight times more compact than that
produced by compilers for traditional machines.

Pascal Oriented Microprocessor (POMP)

The size of procedures written in a structured
manner, using a high level language tend to be
small f4]. The most frequently occurring state-
ment 1S assignment, followed by procedure call, if
and return. Assignment statements tend to be very
simple with the msjority having only one or two
terms on the right hand side. The majority of
procedures have a small number of formal parameters
and 2 small number of local scalar variables,
Hence, the addresses of local variables and the
wmost frequently occurring global variables may be
compactly encoded., The coding of procedure calls
must also be carefully considered.

A significant compaction of code c2n be gained
from the fact that during the execution of any
Pascal statement the state of the processor is
always known e.g. integer or real, Between state-
wments the state of the processor returns to the
null state. For example the statements

var J,K : integer ; A,B : real;
J := K + TRUNC(A + B)

produce the following instructions for a stack
machine. The state of the processor is also given.

Instructions Processor State

=> Null

LOAD K => Integer

LOAD A => Real

LOAD B => Real

ADD => Real

TRC => Integer

ADD => Integer

STORE J => Null

The processor state is null between each state-
ment and is set by load instructions and, in this
example, by the truncate instruction also.
Advantage can be taken of this fact [5] to provide
a two dimensional instruction set thereby greatly
increasing the range of opcodes available. Eight
states of the processor are used.

- Null
Boclean '
ASCIl (Character) ‘
Address (pointer)

Bit address (for packed structures)

- Integer

- Real

7 - Set

The state is contained in a three dit field in
the processor's PSH. Some instructions are state
independent, e.g. LOADS, and hence the opcode
range is divided into a state dependent and a state
{ndependent range. Assuming that thase ranges are
equal in size then there are 1152 potential opcodes.
For this architecture the low erd of the opcode -
range is for state dependent instructfons. The
opcode range X'00' to X'2F' has been reserved for
zero address instructions. The opcode X'10' :
represents integer addition {f the processor state
is integer and real addition {f the state is real.
The null and boolean states are used for uncondi-
tfonal jumps and false jumps respectively. A few
lines from this area of the opcode table are shown
in figure 3. Each opcode represents five different’
operations depending on the processor state. ,
Branch instructions are implemented in both a short
and long form. The short form is given in this )
area of the opcode table and consists of two bytes
in the following form.

1]

BN N~ O
L

000, ....00000ee .
— i, vy’
opcode - l__t QK offset

This requires thirty two opcodes X'00' to X'IF'.
The long form jump consists of an opcode followed
by a two byte offset.

Load instructions, which are state independent,
are used to load the stack and also set the
processor's state. Eight of these are provided
for each of the states: boolean, ASCII, address,
integer, real and set. Three bits within the byte
give the local variable number and the format 1s

Lol o 0 AN
e’

opcode 1 l

ocal variable number

The long form of these instructions is used if the
procedure has more than eight local variables -
this will occur six percent of the time [4].

Separate one byte opcodes are used to perform
operations between the top of the stack and eight
local variables. If a local variable s added to
the top of the stack this requires a one byte
instruction rather than two instructions in the
conventional stack machine. These instructions are
two dimensional in that the meaning of the operation
also depends on the processor stute. The operationy

41

R

e

i WO P ST Y




involved are add, subtract, multiply, divide,
compare for equality, compare for 1Mguﬂita and
store. The null state of this part of the opcode
table cannot be used with these operations and
hence 1s used to zero local integer, tncrement
local integer, and decrement local integer. These
instructions also have éight different opcodes for
eight local variables and again they replace either
three or two instructions in the conventional

stack machine.

Test Results

The code generator (the assembler) of the P

code comptler was modified in order to obtain a
feel for the compactness of the POMP code. The
modified compiler produces either P code [6] or 2
‘gombination of P code and POMP code depending on -
‘;r\e setting of a number of control flags. These

lags are used to test out the relevent importance
Agf compacting different P code instructions 'rather
han only obtaining the total effect. The P com-
piler produces code for a stack machine where all
operations are -parformed on the top of the stack.
Hence no advantage could be taken of the POMP
instructions which operate between local variables
and the top of the stack, For example the
axpressions A := B * C and A := A + ) produce the
following P ccde and POMP code:

Am=B¥(
P code - LOAD 8 POMP code - LOAD B
LOAD C ML C
MUL STA A
STA A
A=A+
P code - LOAD A
INC 1
STA A

POMP code - INC A

The four aress most easily implemented and which
we‘re considered to result in the greatest compac-
tion are;

1) Short branches - offset relative to PC

2) Loading and storing ltocal varfables

3) Loading small intagers (0,1 and 2), loading
boolean true or false, increment and
decrement top of stack by 1

4) Zero address operators {.e. acting on the top
two elements of the stack.

The P code compiler produces one P code instruc-

tion per 32 bit computer word. No compaction of
the code was considered.

Y 1}

42

R B U S PP o
e BB RN 1+ TSSO T T T /R SRR 1Y, S v,

The results were then compared with the DEL
code produced by a DEL compiler being implemented
at the Stanford Emulation Laboratory, The object
code size produced by compiling a quicksort program
on the three different compilers were:

DEL POMP code P code
Size 292 430 1004
Factor 1.0 1.47 3.44

The reduction in P code size due to the POMP
instructions, broken down by compaction type were:

Compaction Number of

in bytes instructions Compaction type

3

34 ( 6) 17 Short branches

267 (47) 89 Load and Store local
variables

129 (22) 43 Load integers 0, 1, 2,
Toad hoolean true or false,
increment and decrement by 1

124 {25) 48 lero address instructions -

57 w7 operating on top 2 elements

of the stack.

The total number of instructions tis 251 for
both the P code and POMP coda. In the POMP code
they are broken down into 180 une byte instructions,
17 two byte instructions and 54 P code instructions.
Almost half of the compaction 1s achieved by com-
pacting the load and store locals. In contrast the
short branches had almost no effect (6%).

From the preliminary results it looks improb-
able that the POMP code produced from the P code
compiler can achieve the compactness of the DEL
code. Each POMP instruction would on average only
occupy 1.16 bytes as the DEL code for this program
consists of anly 68 instructions compared to 251
for the P compiler: & factor of 3.7. Even allowing
for the fact that DEL operators often have implicit
loads and stores associated with them there is stil)
a remarkable difference in the number of operations.
Hence the P code comptler has been discarded and
present work 1is using a Pascal compiler which
generates an abstract syntax tree during parsing.
Using this compiler the full POMP cude can be

enerated including the instructions which operate
gemon local variables and the top of the stack.
statistics will also be generated on fourteen
substantial Pascal programs giving the frequency
of ogerators and memory references, and the
resulting DEL and POMP codes will be compared.

An advantage put forward for minimizing the
number of instructions of the object code 1s that
it speeds up the execution. A large number of
instructions increases the fetch and decoding time
but with instruction prefetch and with simple ROM
look up decoding it is expected that the difference
in execution speed due to this effect will be small.

AT

LY B e A

R

=k
RXCEF &

N BRAIRS ol o i s o




References

[1] Hoevel, L.¥W., and Flynn, M.J., "The Structure
of Directly Executed Languages: A New Theory of
Interpretive System Design,” CSL Tech. Rpt. 130,
Stanford University, March 1977,

[4) Tanenbaum, A.S., "Implications of Structured
Programming for Machine Architecture, CACM Vol. 21,
No. 3, March 1978.

[5] Jones, J., "Towsrds a High Level Language

EZ] Flynn, M.J. and Hoevel, L.N., "R Theory of Microprocessor Oriented Instruction Set,” (to be
" nterpretive Archi‘actures: ldeal Language published - Euromicro). 1980, ’ .
: Machines," CSL Tech. Rpt. 170, Stanford University [6] Alpert, D., "A Pascal P Code Interpreter for
; February 1979, the Stan.urd Emmy," CSL Tech. Note 164, Stanford
y {3] Hoevel, L.W. and Flynn, M. J., "A Theory of Universit  September 1979,
f Interpretive Architectures: Some Notes on DEL
i Design and a Fortran Case Study,” CSL Tech. Rpt.
% 171, Stanford University, February 1979.
% Expressien Format Operands Operation Stack Value
A 1) Ki=J+2 ABC J 2 K + -
2) K:isK+2 AAB K 2 + -
i 3) DieKed+L 47T SAB K + K+
] TTA L + (K+J) +1
3 ATB 70 + -
f 4) D =K+ K+K+7 SAA K + K+ K
TTA K + (K+K) +K
ATB 70 s -
y
3
3 Figure 1
Q Expression v Format Operands Operation Stack ;
1) if K = J then SAB K J Skip offset| < > GoTn - A
Kz K+ ! AAB K 1 + - g
2) K = WlY ARRAYA J H K A:=B[x] -
3) HLK] := 9]+ N(J] ARRAYA J M S := A[X] M[J]
ARRAYA 1 y N S:=A[X] N[J],M[J] )
w + N[9] +R[J) ]
g
ARRAYA | K H A[X] = T 5
i
Figure 2 >
Opcode  Null  Bool  ASC11  Addr  Bit.Add  Int Real Set §,
g,
X ude FJP - - - $81 SBR DIF é
L4 ]
X2 WP R - . ) M1 MR INN |
]
3
Figure 3 ﬁ
43 ,3

-

e e e i S E s i it




T 2 e

PARTIAL EVALUATION OF A HIGH-LEVEL ARCHITECTURE

Glran l‘gl. L M Ericsson, $-126 25 Stockholm, Sweden

Lars-Erik Thorelli, Department of Telecommunication and
Computer Systems,
Royal Institute of Technology,
$-100 44 Stockholm, Sweden

Abutract

The architecture of the high—level language
machine 1AX2, designed for efficiency in string
manipuliation and interactive applications, is
evaluatued with respect to program volune and

nuber of interpreted instruction bits. The eva-
notion takes the [orm of a cowparison with the
POP-11 amichitecture using av test data a set of

compleve, realistic programs from a well-kinown
soucce, lhe result shows the superiority of the
hipgh-tevel architecture.

Introduction
ra2? i a high-level architecture designed
tu he efficient for string manipulation and inter-
active applications. It has type-marked values,
dyonami., sturage allocation, and powerful instruc-
tione lor string manipulation. The language of the
machine is specified in two levels, & souxce or
Lext level TLAX and an executable level ELAX.
There are no GUTO's in TLAX; all jumps are gene-
rated from high-level control structures by the
simple TLAX - ELAX compiler which is a fixed part
of the machine. Memory is splitted into a number
af data and program blocks; relative and indirect
wldressiug is used with out-of~bounds checking to
achieve compact code and high reliability.

The main design goals for LAX2 are low cost for
gof tware production and good memory snd execution

time economy for the intenaed class of applications.

e Jesign has been heavily influenced by the con~
cepts of structured programming. The architecture
lias been implemented as & partially microcoded
interpreter on a Varian V73 minicomputer.

the present paper reports on an evaluation of
tie: LAX2 architecture., The evaluation is only con-—
¢ rued with memory and execution time economy,
leaving out completely aspects such as ease of pro-
gramwing and debugging, software security, and ease
of compilation, Furthermore, the number of inter-
preted instruction bits, rather than physical exe-
cution time, is used as the dynamic measure. The
evaluation consists of a comparison of LAX2 with
PP-11, using a set of programs taken from the
wvell~kngwn book Software Tools by Kernighan awl
Plauger

It turns out that LAX2 uses significantly fewer
bits for instructions, both statically and
dynamically, Thus, the present study gives yet
another example of the superiority of high-level

“architecture, designed from language and appli-

cation considerations, over conventional archi-
tecture. After a short description of the high-
level architecture the evaluation method amd
results are presented. The concluding sections
compare the present work with earlier evaluation
astudies and discuss the significance of the
results.

Short description of the high-level architecture

LAX2 is a tagged architecture®. Tts design pre-
supposes a basic word format of 16 bits., Currenily
the machine recognizes types of values according
to Figure 1.

Simple types: nil, boolean, charvacter, index
(integer in the range 0-16383)
Composite tvpes:

string (of characters)

node (heterogeneous array)

decimal (decimally represented integer)
prog (execvtable procedure)

coprog {coroutine activation)

channel (for input or outsut)

(real, realarray planned, not vet implamented)

Figure 1. 1.AX2 datr types

A value of simple type is represented by one
16 bit word with its leftmost bit cleared, A com-
posite value is represented by a 16 bit .oru, the
head, whose leftmost bit is set, pointing to &
memory block, the body, containing a type-and-
length descriptor and the value proper.,

The memory area of a LAX2 process is divided
into a stack in which procedure activatioa recorde
are allocaced, and a heap, where compactifying
garbage collection is performed when necessary
(Figure 2).

§ The work was done while the author was with the Croup for Datalogical Research, Stockhiolm

i

Sadoih ! i

i
i
3

e ey

W LT ol vk



Lo a b St b B L b

| ueae m STAUK

top=of-stack

Figure 2, Memory area of LAX2 process

An exucutable procedure, i, e. a prog value, cau
only be created by mesns of the LAXZ instruction
'compile', taking a string, the TLAX version of the
procedure, as main argument. The body ul a prog
value is shown (with some simplification) in
Figure 3. Each rectangle vepresents a 16 bit woru.

Wz

adainistrative

— _/
—_—

overhead own variables

(not more than 3i)

ELAX code

Figure 3, A prog value

The ELAX code can only acceuss the own variables
and stack variables (locals and parameters) of the
current activation record, Figure 4 shuws the struc-
ture of an activation recaord on the stack. The
gtack variables are also represented by one word
cach, and their pumber may not exceed 32, In this
wity addresses to commonly referenced quatities arce
kept very short. More remvte information is
reached through indirect addressing. A complete
user program consists of a network of prog and
data values linked by the own variables of the
prog's,

[}7 P T T

paratn Lees 4]

e e e e e mmmn
voturn stack variabloy
address (one word each, containing
(within head of simple value ur head of

prog) activated composite value)
link to Prog

underlying

record

Figure 4, Activation record

Dynamic type checking and the static checking
performed by the 'compile' instruction catch a
great number of possible programming errors,
Another feature promoting the efficlent production
of reliable software is absence of jump instruc-
tions in the TLAX representation. All jumps are
generated during compilation from high-level con-
trol structures. In many other respects TLAX offers
a rather primitive notatlon which, together with
the high level of ELAX, makes the ccmpilation pro-
cess simple.

=--1 1 f--=--1,]
N

e B by or i i T T TR T e

ELAX code consists of a sequence of 8 bit bytegs.
The design is similar to that of EM-1 (Tanenbaum™)
and is characterized by compactness and the possi-
hility of fast instruction decoding, Figure 5 shows
nome simple statements in Algol-like notation and
their ELAX counterparts.

Statement ELAX code No of
bytes
Ai=B+3 push B, push 3, add, 5
locate A, store
A:=A~B push B, locate A, minus 3
As=A+]| locate A, iner 2
Ai=0 locate A, clear 2

Figure 5. Simple ELAX examples

LAX2 has a powerful set of string manipulation
instructions. A small example is given in Figure 6.
The guiding principle has been that although it
should be simple to dynamically create and throw
away strings, this feature should not be forced
upon the programmev, and that lexical and other
kinds of string analysis could be done with high
machine efficiency. The reader is referred to
(1,2) for further information on this and other
aspects of the LAX2 architecture. Appendix A
summarizes the ELAX instruction list.

Problum: The string § contains an identifier, an
operator symbol and an unsigned integer, pos-
sibly separated by blanks. Assign the jdenti-
fier (a string) to A, the operator (a charac-
ter) to OP, and the integer (an index) to B,

ELAX solutjon: locate V, clear,
push 8§, locate V, wetident, locate A, store,
push §, locate V, getchar, locate OP, store,
push 8, lucate V, getindex, locate B, store.
Fotal nuaber ol bytes: 17

Figure 6. String analysis example

Method of evaluation

The book Software Tools? is highly suitable as a
sourae of henchmark programs for JAX2, since the
programs are complete, have been used in practice,
and are typical of the application area of the
machine., The programming language used in (3) is
Ratfor, a structured dialect of Fortran. The fol-
lowing programe were selected for use in the in-
vestigation.

a. ENTAB ((3) pp 37,21,20).
Copies a text file, substituting esch sequence of
spaces preceding & tab stop by a tab character.

Tab stops are located at each 8'th position in the
line.

Program size: 46 lines of source code (not counting
comment and blank lines).

ol Bt WA i sioiids

-

A L5

L i e

=% SERC O TR P



b, COMPRESS ((3) p 44).

Produces a compressed version of a file using run
leugth compression, i. €., & sequence of identical
characters is encoded by length and character
value,

Program size: 36 lines.

¢. PUTDEC ((3) pp 61,62, plus a main routine).
Couverts integers to ASCLI format and places them
in gpecified fields.

Propram size: 38 lines (excl. main routine).

o QUTCKSORT ((3) pp 115,110,111, plus a main
voutine),

Sorts a sequence of text lines into lexicographical
order by means of the well-known "quicksort' algo-
rithm,

Program size: 66 lines (excl. main routine).

e, FIND ((3) pp 136-138). .
Searches a file, outputting each line containing
# certain pattern given as input. The pattein is
ensentially a regular expression.

Program size: 279 lines.

The set of progrems ie rather small but is
hoped to be representative of the text processing
application area.

Next, these programs were translated for the
two architectures LAX2 and PDP-11.

The translation for LAX2 was obtained as follows,
‘'ha prougrams were rewritten into the language HLAX,
4 high~level (above TLAX) notation for LAX2. The
HLAX programs were compiled using a cross-compiler
on a DEC-10 computer. During the rewriting process
care was taken to stay close to the original pro-
grams. As a consaquence the programs run on LAX2
have, except for minor details, ths same data and
program structures and use the same algorithms as
the original programs. This means that the features
of LAX2 have not been used to full advantage.
However, an additional version (FIND,OPT) of FIND,
optimized for LAX2, was written. The optimization
relies mainly on the observation that s wajority
of search patterne consist of or start by a literal
string., Therefore it should pay to modify the inter-
nal representation of patterns and use the sub-
string searching 'part' instruction of LAX2. Also,
a recursive version (QUICK.REC) was written in
addition to the non-recursive version from (3).

To translate the programs to PDP-11 code the
language ¢ (6) waw used. As before, the rewriting
was done to faithfully preserve the given algo-
rithms and structurae. To obtain high quality
machine code all features of the C language pro-
moting this goal were used, including the possi-
bility of declaring quantities to reside in regis-
ters. The programs were compilad u|i9s the opti-~
mizing compiler available under UNIX . As a result
uf these maasures we belisve that the machine code
is as efficient as that produced by a competent
assembly language programmer, with the possible
exception that the latter may in some cases feel
inclined to use a lass general subroutine calling
sequance, to save time for the saving and restoring
of registers. In addition to the five programs from

46

L e B i e e

(3) the recursive sort program QUICK.REC was pro-
duced also for PDP-11,

The results

The volumes of the programs, excluding input/
output routines, were measured. The volume is de-
fined as the size of the executable form of the
program including statically allocated data. The
sorting programs operate on data in primary storage;
this space is not included, as its size depends on
the size of the input.

The vesult is displayed in Table 1.

Program Result Result LAX2/PDP 11
PDP-11 LAX2 in
ENTAB 204 189 93
COMPRESS 251 210 84
PUTDEC1 97 60 62
QUICI(SOI‘(T'l 233 132 57
QUICK.REC1 1715 11 uy
FIND 1282 176 61
FIND,OPT  (1282) 841 66
2
Total 22h2 14uy 64
Notes: It excluding wain program

2: excluding FIND,OPT

Table 1, Program volumes (unit: 16 bit words)

The high percentage figures for the first two
programs are explained by the fact that they use
data structures whose sizes dominate over the sizes
of the programs proper.

In addition to these static results, dynamic
measurements were derived. The programs were exe-
cuted on the two machines and the number of inter-
preted instruction bits was recorded. These counts
gxclude all input/output handling.

The following text files were used for input
during the dynamic measurements (Table 2).

da sk

T WA I e VT e ey < e L o sy

SEPRE

5 =



} File  Content No of ASCII  No of lines
' aymbols
¥ TEXTO  extract from 80 1
report 5 3 Program Data Result Result  LAX2/PDP11
£ PDP-11  LAX2 in 3
¢ TEXT1  extraot from U752 98
b report ENTAB TEXLi-N T108 8357 61
;
i TEXT2 extraot from 3806 99 COMPRESS  TEXT1-4 9599 7308 16
N report
E po PUTDEC - 130 46.3 36
) TEXT source ¢ode 1038 1
, 38 langusgs ' 3 5 QUICKSORT  TEXT1,3,4 2942 421 14
TEXTY  mail address 5697 100 QUICKSORT ~ TEXT4S 6000 558 9
’ list
i s QUICK.REC  TEXT1,3,4 2925 354 12
£ T 1 r
: BATS At tdarees ¥ 20 QUICK.REC TEXTHS 5925 516 9
) FIND: all 667 187 28
! PATTERN patterna
Table 2. Input data FIND: group 1 8323 2768 33
MATCH group 2 16588 4718 29
group 3 23286 6166 26
The ENTAB and COMPRESS programs were run using
files TEXT1 - TEXT4 as input. PUIDEC uses no input groupi-3 MN8197 13712 28
file; instead, the main routine makes 36 calls on
the conversion procedure. FIND.OPT: all (667) 124 18
. PATTERN patterns
The sorting programs were used to sort the lines
of TEXT1, TEXT3, and TEXT4, and also an already #IND.OPT: roup 1 (8323) 68.8 1
sorted v;rnion TEXT4S of TEXTé, resulting in worst- MATCH :rou: 2 (16;83) 1102 7 :
case periormance. . group 3 (232“) 6630 28 i
Finally, the FIND programs were run ugéing a col- 2
tection of 19 search patterus and the input files groupi-3 (48197) 7801 16 b
TEXTO, TEXT3, and TEXT5. Thre¢ groups of measure~ !
ments were performed. Group 1 uses simple search K
patterns consisting of single literal strings. Table 3. No of interprated instruction bits 3
Group 3 uses complicated search patterns, and group (unit: 1000 bits) !
2 falls in between groups 1 and 3. :
As in the selection of the test programs them- programs also perform better than average on LAX2, 4

selves, the aim in the seiection of test data vas
to achieve realistic and typical conditions with a
reasonable amount of effort.

mainly due to the use of string comparison instruc-
tions built into LAX2.

The least favourable case for LAX2 is the
COMPRESS program. A closer look shows that this is
the program with the lowest frequency of procedure
calls. Procedure calling is more efficient in the
high-level machine than in PDP-11, and the genera-
lity of ths call-return sequance produced by the C .
compiler emphasizes the difference. Code optimirza-
tion across procedure boundaries can be expected to
improve the PDP-11 results in some casas. Such
optimization is however a complex task.

Table 3 summarizes the rusult of the dynamic
wmeasurements. For FIND measurements were taken sep—
arately on the pattern building part (PATTERN) and
the pattern matching part (MATCH).

The superiority of the high-level architecture
is evident., Swmming all measurements (omitting the
non-recursive QUICKSORTs), we get the overall
figure 28% for the ratio of LAX2 to PDP-11. However,
the variation across the programs is high, and the
result depends on the test data used.

The case of the optimized MATCH shows highly
favourably values for LAX2, especially for group 1.
The main explanation is that the search patterns of
group 1 consist of single literal strings, allowing
the search to be performed by the substring sesrch-
ing 'part' instruction. Likewise, the patterns of

PR S, X
E R

Discussion

An objection to the results presented is that

group 2 consist of literal strings appended by
other constructs, soc part of the search can be
speaded up as in the case of group 1. The sorting

LY

the influence of data storage snd accessing has
been neglected. Additional questions may be raised
concerning the relevance of the mmber of

ST e s S S It .

F i Re R P AT




T ™ T, T

3

~

e

A,

RIS S

ey

AR A i 2 e

interpreted instruction bits as an architectural
measure, These issues will now be discussed., In
addition, the present work will be related to sim-
ilar published investigations.

The volumes displayed in Table 1 do not include
storage allocated dynamically during execution. How
would this dynamic storage requirement affect the
comparisont A look at the test programs shows that
the effert is small. Only the sort programs can
atlocate mure than in the order of 10 words. The
gort programs use one more word per line of input
in LAX2 thao in PDP-11, due to the use of type-and-
length descriptors. With the test data used this
amounts to a 6% increase in data storage. The stack
framea in LAX2 are smaller than those used by the
PDP-1} ecode. The influence of thia difference is
small, however., The vecursive sort programs grow a
staclk whose depth is only log2(n) frames, where
v is the number of input lines.

lhe numbar of interpreted instruction bits has
Leen shown to be small for LAX2 (Table 3). It might,
however, be suspected that the number of memory
referencan during access to data is higher for LAX2
than for the couventional machine, since each com-
posite value is equipped with a one~word descriptor.
Unfortunately no mechanism was available for moni-
coring this effect. Inspection shows that in the
care of the test programs the dascriptor references

The programs ENTAB, COMPRESS, and PUTDEC make neg-
ligible use of vector instructions. The sorting
programa compare text lines by means of the vector
{natruction 'etring compare'. With the test data
ged the average numbaer of iterations (character
.comparieon steps) parformed per such instruction is
46 low as 3, The relative frequency of the instruc~
tion {s SX. Let us assume, rather srbitrarily,

thint each iteration counts as three normal, i e

non-vector, instructions. Assume further that all
instructions are of the same length in bits - which
is close to being true, Then we arrive at a prolong-
ation factor of 1.4 due to the use of vector in-
structions. That is, to get a more realistic measure
of expected execution time, add 40% to the results
in Table 3 in the case of the sort programs.

The non-optimized FIND program makes less fre-
quent use of vector instructions. The optimized
FIND.OPT:MATCH, however, uses the substring
searching instruction 'part'. For literal string
patterns (group 1) we find the relative frequency
of 'part' to be 22 and the average number of ite-
rations to be close to 50. This gives a prolonga-
tion factor of close to 4.

These findings correlate well with the results
of Table 3 but do not fully account for the high
superiority of LAX2Z in the cases discussed. The
remaining cause seems to be that the PDP-11 versions
are more heavily burdened with subroutine linkage
than the LAX2 vevsions, where certain subroutines
have been replaced by vector instvuctions.

As mentioned in the Introduction the LAX2 machine
has been implemented as a partially microcoded
iuterpreter on the Varian V73 minicompurer. The
volume of 1he microcode is 180 64-bit words, and
the remainder of the interpreter consists of

architecturs are also included in the 5/360 ver-
sions. Thess checks includa the PL/I(F) conditions
'subscript range’,'overflow', snd 'stringrange’.
This is in contrast with our investigation, where
such checks are indeed performed by tha LAX2
machine but not by the PDP~11 program versions.

Nlolunl1 compared & proposed high-level
language architecture for ths SPL language, a

. . £ P i . .
. .. RO S S R L N TR 1 T

) . . e . approximately 7K 16-bit words of V73 machine code.
[ fgrlﬂld??yxtéljzﬁﬁ?wczﬁrzz ;H:::x?;:ESSZnt:2§;nThe Thus the microcoded part is small. Execution times
;. depunduntj lov instance, a cache memory would pro- on the two machxngn were measyred for the test pro- i
bably almost eliminate the overhead. grams. The executlon time ratio of LAX2-V73 to g
PDP-11/45 varies from 14 to 0.3 with 6-8 as typical d
The uumber of interpretad instruction bits (NIB) vulues. These fignres are quite satisfactory, con- iy
is an architectural measure clearly related to exe- sidering the usual slowdown due to software inter- h,
cution epred, Small NIB valuas maans that little pretation. The havdware characteristics of the two H
time is spent in fetching imstructions, howaver, minicomputers are roughly equal. i
the complexity of the decoding process must also be Finall . . £ th X t K with |
congidered. In the case of LAX2 vs PDP-11 the latter -~ y a couparison of the present work wi g
factor seems to be of small importance. similar p:bllnhed lnvestigations. 1
Sio teal i . Wilner  has evaluated voulmes of Fortran and :
ures e a4 oxpect” the execution times of pro.  CobOl programs on Burroughs BL700 using langusse-
’ oriented instruction sets, in comparison to IBM
grams to be proportional to their NIB values. System §/360 (and Burroughs B3500). The results
flowevar, the accuracy of this correspondence depends uzow improvements by a fictot 2 to'3 larger than

ou the homogeneity of the inltruction“sct, i e the the fucgur of aboutyl.S for LAX?‘rom;aredgwith )
e of worn o areiculer, the effect of POP-i1. This is however not surppising; 5/360 code ]
vector instructions has to be taken intc account. is less LOTB‘Ct than PDP-11 code”. b

Like many other high-level architectures LAX2 has Wortman compared the . Student PL Machine of
instructions operating on variable length data, in his own design with the $/360. A large number of :
particular strings. If such iterative or vector small student programs were used as test cases. o
instructions are used frequently and on large data Several dynamic and static measures wera evaluated. ]
items, then clearly the number of interpreted in- The results show a twentyfold superiority for his 5
struction bits will give a too optimistic view of machine in number of instruction bits, both in the ;%
physical execution time. gtatic and dynamic sense. Howaver, it should be e
To estimate this effect the use of vector in- noted, first, that his §/360 programs wers produced g
structions in the test programs was investigated. by the standard PL/I(F) compiler, and secondly, #
that all runtime chacks built into his high level 4

e




! L ChEA R OBt At TCTT IR TR Y aens
TR i - TR Ty Al sa e 2 et S T R R

high~level language with special provisions for would require, in the first place, more practical

— T

! expressing vector and matrix computations, with the experience with the machine than is available today. g
i Honeywell HDC-70lF aerospace computer. The high- 4
@ level architecture versions of a set of benchmark §
¥ routines were found to require 192 fewer program i
} bits than carefully coded assembly language ver- Acknowiedgement ﬁ
A sions. A timing analysis showed that the high-leve! -
[ architecture programs could be expected to require This work was supported by grants from the 3
% 147 less execution time. Swedish Board for Technical Development. %
i Tatvelin and Hikutr&m‘z compared a proposed 1

high-level language architecture for the machine
oriented high-level language Mary with IBM 5/360,

A set of seven programs was used, with a total
50360 volume of 42000 bits, The main result is that

i 2

References

{ program size is reduced almost by a factor of 3. 1. L-F Thorelli, Description of the high-level

ﬁ This is partially attributable to a sofisticated machine language LAX2, Part 1, TRITA~CS-7602, ?
[ adressing scheme called "refined display" used in Royal Ilnstitute of Technology, Stockholm, 1976. )
? their architecture. No dynamic results are given, X

2. G Bige, Description of the high-level machine
janguage LAXZ, Part 2, TRITA~CS-7901, Royal
lustitute of Technology, Stockholm, 1979,

: The work by Taneubaum5 has already been men-

: tioned. His EM-1l architecture shares several proper-
ties with LAX2 but does not have the application

3 orientation of the latter. The performance evalu-

i ation he reports is based on a small amount of data.

All performance figures concern Static code size,

Apart from isolated statements and programming

constructs he treats only four small prozrams.

Their total size on the PDP~1l is 3776 bits and on

EM~1 47% of this figure.

3. B W Fernighan and P J Plauger, Software Tools,
Addison-Wesley, Mass., 1976.

O o i e

4. I A Feustel, On the advantages of tagged archi-
tecture, IEEE Trans. on Computers 22(7), 644~
656, 1973.

5. A § Tanenbaum, Implications of structured pro-
gramming for machine architecture, Comm, ACM
21(3), 237-246, 1978.
Conclusion
6. B W Kernighan and D M Ritchie, The C Programming
The reported work has given yet anuther example Lunguage, Prenctice-Hall, New Jersey, 1978,
of the superiority of high-level architecture,

designed from language and application consjdera- /. The Bell System Techuical Journal 57(6:2) (Spe-
tions, vover conventional architecture. The avalu- vial fssue on the UNIX system), 1978,

ation was partial -~ the only exanined properties

were program volume and number ol interpreted in- 4. W T Wilvber, Design of the Burroughs B1700, Proc.

struction bits. These quantities weru evaluated AFIPS FJCC 1972, AFIPS Press, NJJ., 489-497.
using a set of cngplete. vealistic programs from o
well-known source”, 9. WL Burr, A H Coleman, W R Smith (Fds.), Final
Report of the Computer Family Architecture
Selection Committee, Army Electronics Command,

¥Ft. Monmouth, N.J., August 1977,

The following features contribute significantly
to the shown superiority of the high-level archi-
tecture:

~ efficient subroutine support
~ structured memory, short addresses
~ application oriented data types and vperatious.

10. D B Wortman, A study of language directed com-
puter design, Technical Report CSRG-20, Univ,
of Toronto, 1972.

As stated in the Introduction the goals for the

EL ISR SR

LAX2 design include low cost for software produc-
tion. The high-level architecture supports this
goal by:
= e¢liminating concepts from low-level programmiug
such as registers, primitive addressing,
pointer arithmetic, and goto statements
~ easing the compilation process (the basic com-
piler is available as a machine instruction)
- providing extensive run~time protection.

We are convinced that these properties signifi-
cantly promote programmer productivity as well as
the reliability of the software produced. The con-
tinuing rise of the ratio of software cost to hard-
ware cost emphasizes the importance of such "soft"
advantagez of high-level architecture, Unfortuna-
tely they are hard to quantify. To do so for LAX2

49

W e 1 A B8 1P NIV The 4 < - T A 5 et
LR~ : e -

11. W C Nielsen, Design of an aerospace computer
for divect HOL exacution, Proc, ACM-1EEE Sym-
posium on Righ-Level Language Computer Archi-
tecture, New York, ACM, 34-42, 1973,

12. § Tafvelin and A Wikstrdm, Aspects of compact
programs and directly executed languages, BIT
15(2), 203-214, 1975,

TN ST T e T Ny o ¥
- L , g . .2 i - ot W o3l N .
C e e RN 2 N e 02D et KRN T L s '.mﬁm}:y-.;»n Sendadon s G

© e o

PR 2 A N P

Rrde; ST

1



e Tt

fea

IR TN L T W e

N

T ——— Y

R s o

Appendix A

ELAX Instru-tion Sumssary

Of the 256 available byte values, the ones in the
upper half are reserved for producers and locators
(byte values in hoxadeciwal):

80-9F: producers, gtiack variubles

AD-BE: producers, own variables

CO-DF: locators, stack variables

FO-Fii:  locators, own variables.

A producer pushes the value of a variable on the
stack., In the cave of a cowposite value, only its
head {s pushed.

A locator locates the place of a variable and initi-
ates a locator-sequence. The latter ig composed as
described by the rigullr expression

focator pursuer” (catchar | effector)

The opeodes used for pursuers, catchers, and effec-
tory are in the interval 00-2F, and the same op-~
codes are also used for other instructions. This

{4 poasible since the same instruction cannot
oceur both within and outside a locator-sequence.

Pursuers enabtle remote accessing. The three main

pursuers are:

‘Peomp': The located value must be a string (,real-
avrray) or nude v. An operand { of type index is
required (on the stack). The i'th component of
v becoues located.

feficat': The located valua must be a string (,real-
array) or node v. Tha first component of v be-
comes located.

'Pown': The located valus must be a prog p. An ope-
rand 1 of type index is raquired. The i'th own
variable of p becomaes located.

Catchers push a value on the stack., The three main
catchers ave 'Ceomp', '"Cfirst', and 'Cown', cf the
producers above. The value produced is that of a
component or an own variable, respectively.

Fffectors are categorized as basic effectors,

string eflectors, and epecial effectors. The basic

effactors are:

'clear'; writes the index value 0.

'scratch': writes the value nil,

"store': writes a value popped frow the stack.

fplus’, 'minus’ (only for index values): adds, resp.
subtracts, 4 value popped from the stack.

‘incr','decr! (located value must be index): incre~
ments by 1, resp. decrements by 1,

defore summarizing the string effectors some other
clagses of instructions will be treated.

be instruction itself on the atack.

[ndex constants: Values 0~10 are represented by the
byte values 00~0A, Values 11{-255 are represented
by two-byte instructions. Values 256-16383 are
repragsented by three-byte instructions.

Character constants: Rapresented by two-byte in-
structiony, where the second byte contains the
character code.

50

The constant Ell and the boolean constants true

and false have one-byte representations.

String constants: The empty string has a one-byte
representation, Other strings have a (n+l)-byte
representation, where the first byte is an opcode,
the second centains n, and the remaining bytes
the character codes of the string (1€n%$255),

Decimal constants: See ref. (2).

(Real constants: Planned, see ref. (1).)

The remaining data types (see Fig. 1) have no con-

stants.

The instruction class computors contains instruc-
ctions taking a number of values from the stack
and producing a value on the stack., These instruc-
tions, like the constants, are gide-effect-free.
Subclasses of computors inciude binary operators,
uinary operators, binary predicates, unary predi-
cates, converters, and creators, All computors have
a one-byte representation.

The binary ovperators are '+', '-', 'x' '/' and
‘modulo', They are defined for boolean, index,
decimal (and real) operands.

The unary operators are 'negate', defined for boo-
lean, decimal (and real) operands, and ‘abs', de-

fined for decimal (and real) operands. ('truncate'
and 'round' are planned for reals.)

The binary predicates are 'same', 'diff' For com-
parison of heads of composite values, and six vela-
tional predivates, delined for operands of types
boolean, index, decimal (, real), and character and
string. ~ Here, as with most other instructions,

a character is regarded as a string of length one.

The unary pradicates are 'letter' and 'digit' for
character operands, and 'bad', yinlding true if aud
only if its operand is nil, and 'good' - the nega-
tion of 'bad',

Converters convert from one data type to another.

In essence, direct conversion is possible between
chatacter and index, between index and decimal

(, between Jdecimal and real, and between index and
real). The converter 'length' produces the length
of a string, node, decimal, prog (or realarray).

The creators create a new composite value (head un
stack, body on heap). They are 'create', to create

a string or node (or realarray) of specified length,
'copy', to produce a copy of a composite value,
'substring', tu produce a substring from specified
positions in a atring, and 'cat', to preduce the
concatenation of two strings.

The string effectors have the following in common:
- The located value must be an index v,
- At least one operand, a string L PERRL is

required.
- v must be less than n.
The effector treats the string segment LIVORERLM and
will normally increase the value of v as a side
affect, The aim has been to enable convenient

and efficient sequential processing of strings.
The string effectors are categorized as predicate
effectors, pass effectors, tocate effectors,

TooTYY

B ey

Pl e S RS

3

£




AR <1 ¢y e,

get effectors, and put effectors. Descriptions of

i % the individual instructions can be found in ref.
T (1). Here we can only offer an enumeration of them;
ook hepefully their names give some hints of their

& : wmeanings.

y ! Predicate effectors:

Lo ‘prefix', 'part', 'subequ'

E Pasx effectors:

‘pass', 'paslet', 'pasdig', 'pasictdip'

P Locate effectors:

i *locate', 'loclet', 'locdig', 'locletdig'

Get effectors (get value from string):
‘getindex', 'getchar', 'getident', 'getdec',

: ('getreal',) 'getstring'

3 Put effectors (put value into string):

'putnext', 'putpart'

The next instruction class of interest is the jumps.
3 All jumps are generated from high-level control

structures during the TLAX-ELAX compilation. These :
: include, in short: F
i if ~ then - else : generates forward jumps
i case : generates jump table, an indexed jump,

) and forward jumps
g dv = od : generates a backward jump
A exits from do-od: generate forward jumps.
1 In addition, the constrol structure suggested by
; Zahn (C T Zahn, A control statement for natural
3 top~down structured programming, Programming Symp.
g Proc. 1974 (Ed: B Robinet), Springer, 170-180)
) is implemented in LAXZ.

All jumps are within progs and relative; distances
are coded in one or two bytes, In total 22 opcodes
dre allocated to jumps.

Fg Additional instructions controlling the flow of ;
computation are: 1

‘exec', 'return': for ordinary procedure (prog) -}

activation, r

'init', 'attach', ‘'detach', 'resume', 'call': used
in counnection with coroutines (coprogs).

‘exit': for abandoning the current computation
and reinitialization of the LAX2 process.

LAX2 supports frequency measurements during exe-
cution. So-called counters can be placed at arbit-
rary points in programs; they are (if enabled)
automatically incremented each time they are passed
] during execution. Instructions exist for operating
N the counters.

Ti -

SRR Al D

: Fixprograms are protected prugrams created at the
: initialization of a LAX2 process. Some of them are
automatically activated by diffevent runtime error

A

events. There are also instructions lor activating {

fixprograms from other programs. ﬁ?

. ¥
B -
. ] : . . N " . s . I‘ d
] The 'compile' instruction, invoking Lhe TLAX-ELAX ¥

compiler , is implemented partially as hidden é
, : LAX2 programs., There exist special ELAX instruc- @
) tions only available to these programs, cf ref. 5
: . %
A set of input/output instructions i« vescribed )
v ref. (2), A

Fidi.

o

P - arae o]

it

. " o ST PR
L Aa L w s i w0 oL i A 5 Y SRRy i LA




oGt RS b

ko oD ool G

DTRECTLY INTERPRUTABLE LANGUAGE DESIGN FOR HIGH LEVEL JANGUAGE SUPPuRTL

d P. Bose

GCoordinated Science laboratory
University of I1llinois
Urbana, Illinois 61801

Abutragt

e comploxity, in space and in time, of
Hroetly Interpreting serial, block structured,
Wigh level languages 18 examined. On the basis
oL thie ntudy, it is apparent why it is undesir-
able to divectly interpret high lavel languages.
A nystematlc procedure is developed for the
design of wall-matched intermediate languages
lor supporting high level languages.

1. _Introduction

With the steadily increasing emphasis upon
the conotruction of structured, reliable and
maintaionhle software, the trend is toward the
use of sultable high lavel langumges (HLLs) in
prafarence to machine or assembly level lan-
guagas . The computer architect thus, is faced
with the task of designing a conducive environ-
ment for the execution of HLL programs. 'Thia
18 a ghift, 1in perspactive at least, away
from the traditional rola of the computer
avehittect; no longer is it appropriate to
approsch the design task at the machine language
level.,

Une viewpolnt advocates the direct interpre-
tation of the HLL program, by s interpreter
twplamented in elither hardware, software or
f1onwwere, e.g., {1,2,3]. The problems associated
ulth nuch direct interpretation have been
nkatehed in previous work [4,5) and will be
cinborated upon in thig paper to demonstrata the
genaral undesirability of this approach. Thus,
it will be shown that most HLLS are not directly
interpretable by the space-time criteria that
nre developod subsequently.

The alternative is to .translate the HLL
program into an intermediste represeantation that
is directly interpretable., Such an intermadiate
language e termed a directly fnterpyetable
lapguage (DIL) [5]. Currently, the DIL most
frequently used is the machine language of an
avallable agmputer. Unfortunately, all too

This work was supported by the Joiut Services
Ljactronics Program under Contract
DAABR-07-72-C-0259.

IRV NERIRR,, I

o - L. . L ean LR
3L e 1 P A T 2 N S e 2GS .';\g.mmg:mm 2

often, the machine language has not baen designed
with the given HLL in mind laading to significant
inafficiencies in time and space. It is of
interest, therefora, to undarstand and formalize
the design of a DIL that is well matched to s
given HLL and the relationship betwean the two.
Such & DIL could then eithar constitute the
instruction set architecture of a machine
dedicatad to that HLL, or could be interpreted
by a verpal h [} , L.@., a
machine which can interprat any DIL with equal
and relatively little difficulty. This paper
prasents some preliminary results relating to
the properties of HLLs that disqualify them

from being DILs, the relationship between well-
matched HLLS and DILs and the procuss of
doaigning a DIL for & given HLL. Identifying
the essential characterietics of the universc

of DILs clearly is valuable in determining the
architecture of universal hoat machines.

The primary motivation behind the search
for an ideal DIL is the desire to optimiza the
space~-time requiremonts of the interpretation
process. A secondary goal is to facilitate
the compilation process. Some interesting
space~time massurcs and analyses of "ideal"
intermediste languages have been developaed by
Hoavel and Flynn [6]. In this paper an attempt
is made to approach the design of DILA in a
systemmtic, top~down fashion with no assumptions
as to what the end-product should look like.
Instead, 1t is dictated by a systematic method-
ology that accepts as input a description of
tha HLL and is guided by current technological
limitations.

The DIL design will be effected in this
paper by considering the issues and problems
involved in directly interpreting a HLL. By
removing these problems via a aystematic trans-
formation process, the target DLL will be
derived. Although no specific host hardwarc
descriptions are considared during the design,
such a DIL should (by the definition of & DIL
[5]) be one for which it {s technologically
feasible to build a hardwired interpreter. 1In
othar words, it should be possible to view the
targst DIL as a machine language for a hypo-
thetical computer with certain basic, practically
feanible data and control structures. Such

T M i wnmmr,mﬁ%:mwz- M r g v e

B i T BN e 5

NS

St

)
4



speeiflic implementation considerations will be
discussed in one of the later gections.

2. A Model of Intsrpretation

In this section, we shall present a concep-
tual model of the process of (direct) interpre-
tation of a serial HLL. Some of the main features
of the interpretive process will then be 11lus-
trated in terms of this model and a specific
oxampla high leval language. Figure 1 presents
the syntax and semantics for some of the produc-
tions of our example HLL. The syntax is specificd
in a context free BNF metanotation; the semantics
corresponding to each production, are specifind
in a semi~formal wanner. If not originally so,
the source context frea grammar (CFG) specifi-
cation is assumed to have been converted to an
equivalent €-free form. The algorithmic methoda
of achieving such a conversion are well known [7]
and are not discussed here. ‘The WLL program of
Figure 2 will be used as a working example.

Our conceptual mode! of interpretation
draws lieavily upon the concepts in Johnston's
Contour Model [8] und Knuth's approach to
specifying the semantics of programming languagos
[9). 1t consists of four concurrent, interacting
processes;

1. Llexical lyzer: This process is a string
to stying transducer which converts the input
alphanumeric string into a output string of
tokens corresponding to lexemes. The function,
operation and complexity of this process are
relatively well understood and will not be
considered further in this paper.

2. Syntectic Apslyrer: This phase of intaer-
pretation (also known as parsing or recognition)
is in essence & stripg to tree transduction
process, where the string of tokens emitted by
the lexical analyzer is converted into a (parse)
tree using some convenient parsing strategy.

3. §Static Semantic Analyzer: This proceas is
the one which operates on tha trae being built

by the syntax analyzer by associating with each
node the relevant semantic information needed

to be sable to perform the actions called for by
the program semantice. Any propagation of
attributes (up and down the tree) required to be
performed in order to fully specify the attri-
butes (and hence, the semantic actions) of each
node, has to be carried out by thls analyzer [B].
Nodes or subtreos deemed usaless (i.e. after all
relevant attributes have besen mada use of or
tranemitted to the root of the subtree) are
discarded as the analysis proceeds. This process
does not, itself, per’orm the actions indicated
by the program. It marely gathers the information
needed and sets up the next process. All data-
independent actions that can be performed by
analyzing the source program alone, are in the
realm of the static semantic analyzer.

4. pynamic Semantic Analyzer: This process
actually performs the scmantics of the program,
by executing the semantic actions associatad
with each node of tiia trea. Subtrees are dis-
cardad as soon as the reluvant semantic actions
have been executed and the attributes are no
longer needed by the static semantic analyzer.

1t is important to note that the four pro-
cesses listed above run in a mutually interlocked
manner such that each process gets ahead of the
next one in saquence only to the extent necessary
for the latter to operate. The controlling pro-
cess is the dynamic samantic analyzer wiose
actions are spacified by the statements following
the label "Dynamic actions" in the definition of
the semantics in Figure 1. In performing its
function, it must make use of certain attributes,
termed S-derived, which are evalusted by the
static samantic analyzer. S-derived attributes
dre defined to be those attributes which can be
derived by an analysis of the program text
(1.e., input data independent). The derivation
of these attributes is specified in Figure 1 in
an assertive rather than an imperative manner,
i.0., thair relationship to other attributes is
specified instead of s serias of statements the
axccution of which would assign to them their
correct valua, ‘'The manner in which they are
darived {s deliberately left unspacified. 1t is
implicitly understood that the dynamic semantic
analyzer forces the static semantic analyzer to
procoed just far enough that the needed S-derived
attributes have been evaluated. ‘the syntax
analyzer has a pointer, SYN, into the string of
lexamas enmitted by the lexical analyzexr, that
points one lexeme beyond the (minimus) amount of
the string that the syntax snalyzer must have
consumed so as to set up enough of the ayntax
tree for the static semantic analyzer to perform
its function. The syntax trea is nacessary
since the S=derived attributes are necessarily
defined in the context of this tree. Generally,
the lexical analyzer's pointer, LEX, into the
alphanumeric string will correspond exactly to
SYN. Assume the dynamic semantic anslyxer is
executing the semantics of ths node labelled
‘Block) in Figure 2. This requires imowledge
of the number of declarations in the vutermost
block. To determine this, the static scmantic
analyzer requires that all the declarations in
the outermost block be parsed. Consequently, LEX
will be at the "x" immediately following
"integer x;".

The manipulation of SYN and LEX is, by sud
large, implleit. In the case of loops, condi-
tionals, procedurc calls and returns, the
dynamic actions explicitly alter LEX (and
consequently SYN) by & statement of the form
"Parse (u,v)" or "Parse and Process (u,v)" where
u {dentifies & character in the program text by
its memory address and v is a non-teraminal which
serves as the goal for the parser. In the case
of procedure calle, the current values of LEX is
saved explicitly.

T v fee Taat . e b w ol

e i I e il

e Tt

- 4

Rt S PP

i Y

i SALE L a



In Figure 1, attributes labelled D~dgrived
ure evaluated by the dynamic semantic analyzer.
An §-derived attribute is termed COPIED if it s
nerely the cupy of an attribute elsewhere. An
attribute is L[NHERENT {f its value is an inherent
property of that noda. In addition, the type
of the attribute (INTEGRR, REAL, POINTER, etc.)
arve specified. Figure 1 clearly demonstrates
the complexity of the procedure c¢all and return
(sve productions 10 and 24). Note also that
production 21 requires that the text to be skipped
be parsed, even though it will not ba axecuted,
Jn:t to determine where the (Stmt) or (Simpatmt)
QLUN .

3._.3page end Time Requirepsnts
for Interpretation

The model of intaerpretation developed in
tha previous saction oay be used to obtain a
qualitative understanding of the time and space
fnvolved in the direct interpretation of HLLs.
Although, in practice, the tree represantation
would probably be discarded in favor of a more
compact represuntation such as a stack, the space
occuplad by the trea is related by a factor of
proportionality and, so, is & good indicator of
the actual space requirvements. Tha advantage
of the trea reprosentation lies in ite conceptual
almplicity which is uncluttaered by extraneous
implementation issues.

The upsce requirements are five-fold:
(1) tho spuce occupied by the program baing
Intarpreted; (2) that occupied by tha intorpreter;
(1) that required to hold the portion of the syn-
tux tree that ie currently in existance; (4) the
space needed to store the attributes associated
with the tree nodes; (5) the spaca occupied by
tho pdvee stack which contains terminals and non-
tormina la that have been scanned by tha syntax
nnalyzer but arve yet to be reduced. (This is
nooded when a bottom-up parsing scheme is used.)
The total computation time for the interpreter is
the sum of tho computation times for the individ-
ual procusses.

An obvious way of reducing the size of ths
progrem being interpretad is to replace the
alphanumeric steing representation of lexames by
more efficlently eucoded bit-strings during a
pre-processing step. As a result, the lexical
analyuis procass would be aliminated from the
iuterprater thereby reducing the interpretation
time. On the other hand, no longer would one be
interpreting the original HLL directly; instead,
4 ¢losoly related language would be the object
of Interpretation. In this wanner, by identi~
fying the problems associated with the direct
interpretation of the original HLL and by modi-
fying the HLL only to the extent absolutely
nocaddury to remove these problems, one obtains a
language that is as closely related to the orig-
inal ns poasible while possessing the property
ot being directly interpretable. Pragmatically,
4 language will be considered to be directly
tnterpretable {£, in the conteaxt of currant
technology and cost-~functions, it is feasible and
desfvuble to directly interpret the language in

comparison tc altevnative ntrategive. Thuse, the
demarcation between languages which are and are
not directly intevpretable {s vague at best and
may be sexpected to change with time.

The space occupied by the interpreter is
ralated to its complexity. The dynamic semantic
analyzer is central to the interpreter and can,
at best, be made more efficient but cannot be
eliminated. As shall be shown subsequently, the
static semantic analyzer and the syntactic
analyzer can be eliminated by suitably modifying
the language.

The space vequirements for the syntax tree
are best minimized by veducing the amount of the
tree that is in existence at any one time. This
corresponds to those nodas that have not yet
beer: processed and discarded by the dynamic
somanti¢c analyzer. Whereas the odbjective must
be to prevant ths syntax analyzer from getting
far ahaad of the dynamic semantic analyzer
(to minimize the size of the trae¢ present), there
ara factors that will prevent the realization of
this goal; thore are occasions when the dynamic
semantic analyzer, to perform its function,
requires information (attributes) thet the static
semantic analyzer can provide only by looking
ahaad in the tree, which in turn requires that
the syntax analyzar have proceeded far enough
ahead, 'The language must be altered to remove
such situations, Thesc modifications, by
roducing the size of the tree, also raduce the
total number of attributes that must be stoved
and, consequantly, the amount of space needed for
this purpose.

The fifth space requirement depende upon the
parsing strategy that is selected (or imposed
by the grammar spacification). The two broad
classes of parsing techniques are the top-down
and the bottom-up methods. Most parsing strat-
egies can be viewed as either one or the other
or 8 hybrid. wWith the top-down technique, the
production to be used is known when the syntax
analyzer's pointer into the string corresponds to
the left most tarminal of that production (with
an optional look shead of k). The input tokens,
therefore, may be consumad and acted upon as
they are encountered since their syntactic
significance 18 defined when they are first
encountered. In contrast, bottom-up techniques
know which reduction is to ba applied only when
the syntax anslyzer's pointer is at the token
which corrasponds to the right most terminal of
the corresponding production (once again, with
an optional look ahead of k). In general, there
will oxist a number of terminals (and non-
terminals) whose syntactic significance has not
yet baan established (since the corresponding
right handles have not yet been sancountered), but
which have been already scanned by tha syntax
analyzer. Space is neaded to store these items,
generally in the form of a stack. From this
point of view, a grammar suited to top-down
parsing 18 indicated.

With respect to interpretation time, there
is little that can be done to minimize the time
required by the dynamic semantic analyzer beyond

LB e HELE At e s A

RN

P UG S o ot

i s



o

SR

eliminating inafficiencies eince the algorithm
embedded in the program must be executed. The
amount of computation performsd by the static
semantic analyzer is reducad if the type of
attribute propagation can be matched to the pars-
ing strategy. Inherited (synthesized) attributes
can be handled eas{ly with a top-down (bottom-up)
strategy. However, since both types of attri-
butes are generally involved, the best approach
is to explicitly provide c.ttlin cerucial attri-
butes in the string, thereby implying a furthev
modification to the language.

Before discussing ways of reducing the time
expended in syntax asalysis, it 1s instructive
to catalog the various reasons for the existence
of syntax with a view to totally eliminating the
syntax analyger 1f possible.

1. Reliability. The major function of syntax
at this point is to restrict the user to a
set of strings that are meaningful to the
language processor.

Readabi lity.

To remove static semantic ambiguities. The

procedure for deriving attributes is defined

in the context of the syntax tree which must,
therefore, be derived.

4. To remove dynamic semantic ambiguities.
Often the dynamic semantics of certain con-
structs are defined by the syntax trea,
e.8., precedence ralationships binding
operands to operators.

5. To permit an efficlent parsing strategy.

In the case of a HLL, all of these points
are important and the syntax cannot be ignored;
nor can the syntax analysis be sliminated. If
the emphasis i{s placed on the last issue, that
of an efficient parsing strategy to reduce the
interpretation time, then it way be necessary,
as we shall see, to sacrifice some readability,
Wa shall do so to obtain a "high-ish 1evel" DIL.

On the other hand, if we are interasted in
a related "low level' DIL, i.e., one which is
compiled into and then interpreted but never
directly programmed in, than only {ssues 3
through 5 ara relevant. Readability is clearly
unimportant and reliability is guaranteed since
the compiler will not pass any illegal programs.
I1f we further perturb the language so that the
semantics are defined independently of the
syntax, then syntax analyais is rendeved uscless
and may be discarded altogether. The interprater
may now recognize a deganerate grammar (one with
very few productions) which essentially permits
any string of terminals. The syntax analysis for
such & grasmar consists merely of checking for
illegal terminals.

Both the high-ish level DIL and the luw
level DIL are closely related to the original HLL
by virtue of the systematic transformations
that are listed in the next section. The forumer
DIL may be viewed as a substitute for the HLL
if a directly interpretabla HLL is deemed
essential. The latter DIL is best viewed as a
wvell matched intermediate language for the HLL
It is clear that a number of DILs may be defined

‘

wnN

that are intermediate between these two Dlls.

4. Depi odo £ rect
lpterpretable Leuguages

In the context of the previous discussion,
the following sequance of modifications (on the
high leavel language) may be used Lo arrive at a
directly interpretabls language:-

(a) Distinct pyntactic tokeng or left handles
(represented by underscored integers in this
paper, e.g. 1,3) are insarted to all production
right-hand sides (Figure 3). This makes the
grammar LL(1), thus simplifying the top-down
syntax sanalys{s phase.

In practice, all productions would not have
distinct left handles; only the productions
corresponding to the same non-terminal need have
distinet left handles. This would drastically
reduce the number of ayntactic token naesded to
six. However, in the interests of clarity, we
shall retain this redundancy. MNo chauges to the
semantics are called for as a result of this step.

(b) Each production vight hand side 1s yse-
ordared, in accordance with ths sequence of
semantic spacifications attached to that produc~
tion, {.e., the terminals and non-terminals are
placed in the sams order in which they are used.
Figure & shows the productions affected by this
step.

(c) (integers with overscores:
~y A or V) are introduced at sslected points in
the productions to indicate the need for semantic
actions, Of thase, the firat type of tokens
(8,8, 53) calls for semmntic action(s) which can
be performed without reference to s ptopluud
attribute. Such tokans can thus be scanned and
lrmediutely acted upon. The second typs (e.g. ’3»
references an attributa that is propagated from
a node which i{s to the right in the tree (right-
to-left ut&b«to propagation), while the third

typs (e.g. 6) use an attribute abtained from the
left (left-to-right attribute propagation).
Figure 3 illustrates the effect of applying this
step to the selacted productions.

(d) The sccond and third types of semantic
tokens (marked A and V) are replaced, in each
case, by s token of the first kind (marked =)
followed by an explicit attributs, (a.g. {(numb}),
thereby eliminating the need to propsgate attri-
butes at interpratation time. In the last two
steps a number of redundant semantic tokens hava
baen defined to enhance clarity. In practice,
this reuundancy would be sliminated.

(a) All the original terminal symbols (e.§.
begin, end etc.) are deleted from ths langusge
and the grammar. These symbols, it may be noted,
are totally redundant at this point, both syntac~
tically and semantically.

The final form of the DIL grammar at the end
of steps (a) through (e) is showm in rigura 6.

It is to be noted, in suomary, that our
newly derived language (DIL) has the following
deairable proparties:

1) Top dowm LL(1) parsiug (with no back

track) is possible. Thus syntax analysis

A

LT Byt “ . . -
TR M Ly s s B R A e MBI Y . asied

oo

ke v

B e Gy

con et a e e TG

L

2 R

5




@
¢

SEm Ay AL e

is simple.
2) Close tracking between the threce inter-
pretation subprocesses is posaible,
resulting in minimum tree storage re-
quiraments and overall speedup in the
semantic analysis phase.
Due to the closely matched HLL and DIL
grammars, & gimple syntax-directed trans-
tation scheme (SDTS) [10) may be adopted
for the translation phase.

3

~

It {8 to be noted, that minimizing the space
requirement for holding the DIL program, has not
really been considered in listing the modifica-
tion steps.  However, one might guess that the
price pafd (in terms of Increasod program sive)
for achfeving the advantages listed above is
necaptable,

The Janguage that we have just doirived may
Le uged as a high level language in which pro-
gramming may be performed if the lexemes are
represented alphanumerically and the tokens aru
ropresented by keywords. This will require the
reintroduction of the lexical analyzer. The
most unacceptable feature of this language (ies
fn having to explicitly specify the nuwber of
lekemes that have to be branched over. The use
ol labels, while making the language wavginally
nceaptable, would require the cyuivalent ol a
one~and-a~half pass assembly phase. 1he lan-
puage would no longer be directly interpretable.

1f wo desire a language that is to be used
merely to be compilod into and then directly
futerproted, we can continue the transformation
process further. Since the need for attribute
propagation by the static semantic aaalyzer is
no lonper praesant, eyntax analysis at this
polnt  is needed only for checking the syatactic
corvectovess of the program. If the DIL ts uot
to be used for direct programming, syntactic
ciecking is unnecesssry, since any errors would
have buen detected during the translation phase.
adopting this point of view, we may proceced
to delete all tokens which are purely syntactic
({.e., tokens that are only underscored) from
the DIL grammar of Figure 6. The rasult, now
truly rvesembles an "assembly” language, in that
the program consists of a sequence of semantic
tukens, or "op codes'. Figure 8 shows the pro-
pram with numerfcal tokens replaced by alpha-
betic mnemonics. The simplest grammar that
will accept programs in this "assembly’ lunguapd
te the trivial grammay shown in Figure 7, siuce,
the absence of esyntex checking Implies that any
seditence of semantic tokens is acceptable to
the interpreter, even 1f semantically meaning-
less. 1I[ the interpreter is based on this
graumar, the syntax analysis process becomes
degenarate. The grammar of Figure 6 (after
deleting purely syntactic tokens) is nveded,
neverthelees, to permit the translation of the
HLL, program into the "assembly’ language in a
syntax-directed way.

1n actual practice, some minimum amount vy
svntax checking may be desirable even at the
“"asgombly" language level, {n which case, the
prammar specification would be intermedint

between the two "extrames'" of Figure 6 (full
syntax checking capability) and Figure 7 (no
syntax checking).

5. Technological Constraints
and Implications

Various assumptions regarding the available
hardware and software technology have been
implicit up to this point. These assumptions
will now be discussed. Fixstly, it is assumed
that the best technique for the construction of a
parse tree is through the usc of a pushdown
automata. (Compller theory offers no better
alternative). Hence, syntax analysis will
necegsarily be time-consuming unless the srasmin
is LLiL).

[t is assumed that the large sedie use ol
associative memory will not be cost-effective oy
aeceptable. Hence, information must be repro-
sented by data structures that support searchiw .
For instance, the assoclation of dan identifier
reference to the coriespouding declaration
(to obtain attribytes) would clearly be facilf-
tated Ly the use of associative memory. In the
absence of asgociative memor., this {nformation
must be maintained In data structures (hash
tubles, tiuear Hsts, ete.) which simpU Ly Lin
search.  Furthermore, since such searches are,
a4t best, relatively slow, it is preferable to
provide explicit attributes in the program which
cowvert the assoclativae search tuv a well-defined
look-up procedure. In the previous example, Lhe
identitier rveference should be replaced by two
attributes consisting of the specification
{relative to the current contour) of the contour
containing the variable and the ordinal number «)
the {dentifier declaracion apongst the set of
duclaration attributes atteched to the corre-
sponding  Bloey) node (i.e¢., an address couple),

Alaso, it 18 not evideant how a trec structure
may be implemented in harvdware wherveas stacks ave
veadily {mplementable either in hardware or iu
software., Thuy, whereever possible, tree struc-
tures must be replaced by stacks. ‘The sub-tree
corresponding to -cxp can be supported by un
evaluation stack. 1 this is done, the semanticy
asgociated with certain productions in the gram-
mar must be a'tered and be expressed in terws of
stack opurations. [ the block reteution rules
of the languapge perwit (as is the case fn our
cxample language), the cuntour nodes muy be
maintaluned on o contour stuck and the associated
duclaration attributes may be allocated space un
an o) location gtack. As in the Burrouphs' Bonsul
J11), the three stacks may ba combined (with o
s)ight attendent increasa in complexity).

b. _liipeursion
The undesirability, in space and time, ot
directly interpreting wmost l{LLs stems from the
need ro do syntdx and static semantic analyses.
cartous ltactors contribute to this need and it
Las becu shown how they can be eliminated to
ciedd a dirvocthy interproetable language.  the il

el SATANAEE S s g AN

A8

Ttk et SR )

b M ki



.
L3
d

i A ac Y T

5 s R

tiyut is obtained is not unique; two Dlls, a low-
leve! one and another higher level oune, e
acudv: 3 in this paper by & systematic _ru.sforma-
tion process. Other trade-offs, not discussed

in this paper, exist between the sizc of the L(l
program, the sfze of the syntax tree aud the
interpretarir  time. Thus, & space of DI's exist
for each Hi.., and the one selected must be
specified by {urther cons* ints and cri‘vris.
Also, precise msasures ice and tivv  oed
to be developed to place cqualitative g
sf{oas on & quantitative footing.

Most compfilers have a code-optimizaticrn
phase which performs two functions: mi:hine-
independent optimization and machine-dependent
optimization. Thr fo.mer consiets of ;- ,ram
transformations which involve - knowleuge of the
DIL being compiled into. Such upnimization is
generxally self-duiiwating in . HLL interpzeter
since the cost of repuuted optimization out
weigha _he benefits accrued. When designing a
DIL for a HLL, the presence of the optimization
phase in the compi!.; should not b ignored
since it can alter the structure of the syntax
tree into & directed acyclic greph (e.g., a
comaon sub-expression's trae may be a sub-tree
for & number of nodes). The stack, by itself,
may not be an adequate vehicle for implemerting
such networks. Hachine-dependent optimizuction is
present primarily %o hridge the mismatch Latween
the semantics of the HLL and the machine language.
However, {f the "machine" language _. designed to
match the [ILL, this form of optimization may
prove unaecesuary.

The fwpsrtant issue of encoding strategies
for DIL progrums has not been touched upon in
this ;apur and, so, program statistics for the
[ILL have not ““rued an input to the DIL design
process. Thz encoding technigue used can assume
rarious levels of complexity. To begin with,
the introduction of redundant syntactic and
semantic tokens should be avoided. Assuming that
*he interpreter will run on a muchine that pro-
vides for accessing arbitrary length bit-strings
fessential for a UHM), the terminals of the D11
should be assigned codes that contain just encug)
Yits to differentiate between the terminals that
could have appeared at that point  1n this
respect, the grammar of Figure ¢ is preferable

T I T T ‘.fw,u-r#wmwwwg... e ——— g

resul. of encoding derisions aud conforu to,
rather than constrain, the cther synt=ctic and
semantic requirements of the DIL.

In conclusion, we do not advocate the direct
interpretation of sophisticated high level lan-
guazes since there are far too many costly compu-
tations involvad that are best factored out and
performed just once during a compilation phase.
Instead, a wll-matched directly interpretable
language stiould be designed along the iinea
suggested in this paper. Thereby, space-time
savings will be achieved &nd the compilation
proc2 i3 will be facilitated.

References

1. K. J. Thurter and J. W. Myna, "System design
of a cellular APL computer,” IEEE Trana.
Comp., C-19, 4, 1970, 291-303.

2, J. P. Anderson, "A computer for direct
execution of slgorithmic langusges," Proc.
EJCC, 1961, 184-193.

3. H. M, Bloom, "Concaptual design of a direct
high-level language processor," High-level

langusge Computer Architec:ure, Y. Chu (Ed.),
Academic Press, 1975, 187-242.

4. L. W. Hoeveli, " 'Ideal' df{rectly executed
languages: an anelytical argument for emula-

tion," IEEE Trans. Copp., C-23, 8, 1974,
759-767.

5. B. R. Rau, "Levels of representation of pro-
grams and the architecture of universal host

machines," Proc. llth Ann. Wkshp. on Micro-
prog., 1978, 67-79.

6. L. W. Hoevel and M. Jj. Flynn, "The structure
of directly executed langusges: & new theory
of interpretive system design," Digital
Systems vab. Tech. Rep. No. 130, Stanford
Univ., Mavch 1977.

7. J. E. Hop:roft and J. E. Ullman, Introduction
to_Automa.a Theory, languages and Computation,
Addison-Wesley, 1979,

8. J. B. Johnston, '""The Contour Model of Block

Structured Processes,'" SIGPIAN Notices,
Vol. 6, Feb 1971, 52-82.

to that in Figure 7 since it reduces the {nherent Y, D. £. Knuth, "Semantics of context-frec lang-
ambiguitv at each step. On the other hand, gudges,' Math. Sys. Theoxy, 2, 2, 1968,
syntactic tokens are now needed and may causc 1 127-145.

net increase in pregram size. Final'y, a
frequercy-besed ~ncoding scheme mav be employed,
defined efither on the linear string or on the

10. p. M. Lewis, D. J. Rosenkiraniz and R. E.
Stearns, Compiler vesign Theory, Addison-

parse tree [12]. The latter scueme will probably Wesley, 1978. ¥
do better, but makes syn*~x analys’s a necessitv- 11, E. A. lauck and B. A. -Dent, "Burroughs’ w4
yvet another space-time t ide-off. B6500/37500 stack mechanism,' Droc. SJCC, B
the low-level DIL that was obtained is uot 1968, 245-251. 3
radical is nature and, in fact, Jooks juite simi- 12, R. E. Sweet, _ mpirical Estimates of Program X
lar te & number of stack architecturvs. However, intropy, Ph.b. Dissertation, bept of Computer ;
the relatfonship between features of the UL and Scirnce, Stanford Univ., 1976, é
the HLL i8 now clearvr. Also, issucs such as ﬁ
the insiruction furmats to be used, whic gen- o
vrallyv assume a central position Iv instruction ﬁ
set design, fall out i a natural ~anncr as a i
~§

i

4

i

w— . - . . [
.

O T PR TN

"
o st bbb itk s il ST A R A A Lt




TN

REXRIE L

et M X Bty o T T AR P T IO

i

*BOTJUBLAS [UE Xujuks U -} ainfyy

@
II]\

AIS3E RCT
ans
GEISARIEY ¢ IXE-ORY-3SHYE
iciki5s SKRIV0BE
Ki038 NAHI TYACAS 41
TIYATKGSTCPEOSY <3 TYAONCI
2¢pe> SS3IDVES
~:SUOTLIY OTWRUAL
{SYITO0L CCEATEIGC-Q) FTYAQNCD
<3TISCEISHARTY USRI (PUODIIT ai:
USRI LPUSSIET -
GEeEEISy < <3EIL>
(IETTIMISH 1<IMEY it

QUG w3t ISTTIES) -

R

&y

LEALIDT A JIITTRO-TYY CIKFEIYKD, JLIWEYL
IINE8: L1 [ET PRI
POTEL =52 PE-FS IR

SNEDLEE

1eda> S8800ad

~ZSUTTISY OTEWRLC

\Canki¥a # ZdRilI
4RITVIE o LdAIKI
SIRVN « ZHYRCI

e (ISITHEIJY ‘QIAITIC-S, ELVIIRSINEYE

e 1 CALDCT TEAITYA; = JOT-HC-IVA 3Ll W,

SAIaE¥2T (SR = (DUI-ES-TYS CGEILOC CEATESC-S, fdadWEVE

TERYSCKFIS e LXNIEZZ CQSI410 “QIAIRIGC-S, CERYH
CPIOTBEI [ =t WIoMEds T
FI>IRFeLTT S, et CITFEY Cn.

3 Y oty

seseEadE gy SSEICHS

$(108Pa> SSZEO0BE

-~:$00TIIDY u«ﬂlﬂbﬂ

{e ‘SIDEWDElW

% $3877 PENES YOTUx JDIBIsd0 TOIIWUMIEOUOT ¥ 8T |, o,

{ZIVIDGINEYE * IS TR [ JITIIMGINAV " CIO8Fd>

- LSSITELLY *Q3ideo ‘CINIEIG-S ) ALVIAMALIREYd

st eseTRadRIg> - 0 oe (NZDIIKI CAAIERC-S, K
CRTRIAMIL) S (TIIPE> -2 "2
(TP e cetmadmigy -y

{KENITE
taasmdmy; g53
~:8T0TAVY DFMETAG
L SIVIIGINEYE - e madnig>
- (SEITBLIY grostis “CIATERG-E *EIVIDGIREY2
tacIsTMAEID) o (EIATAILT 'CFIL00 "QIAIRIC-E) K
(asTerduzyy) «:: (Iopxadmigy
B 1y |
tqropmdEigy SSAT08E
sz
W=7 NEVdaNuk
*IIVIAKGEINRYGE ~* JBOSBANEYL
SWIAVIELNZ = WICY
fALID0¥E =% LA3AI
SDIVE -° THVNAD
KI22E 0 {I1;.WNOIKO> HLIL
SENCINUD " (SPOR ADOTE IOIWOSTYD w: UNOINCI
~:1870T30y STEwmil
(» PCRLLETEILY AL IBIT = JISTTELLY
el v §
f ESAS3EAAITVA, fZTdRAT
FEALIVEEdALIKDI, *
TONTELS CENYNCT

CECLEE » SELNEIXILY Z211 .

D e et e S A L i B Rt et n e R T s

“Ci

2TY201, ‘G3ATHAU-Q; SENCINOC

tAIVIddainuye - cTopmadmazy

- 11817633% *CE1dCs ‘QRAIEAC-S) *3IVIEMRLRNYG
1R CIsredes:, - (RINALKT ‘QSI0D CUEAINSE-R) R

e ORTBAS MZIOVEVHC LOdET ERI OJMT

BIINIOd o, (CHOOTEX « (HEDEINI ‘QAATHEIC-S] ECCVINIRG
$I°CISYIEI> » (HEOAINI *0FIJ05 GUATESA-S) <1

SERYKCCFIL - (DRIEIS ‘QFIM00 “QIATERITS) SWYR

(x301g> 1 ¢IopRM I H¢PI) #anpesodd a:
Qi22Tg) tPIyempescHd o:
CPI>TOEI w:

<FIraeBescy

SEuALTE
H€IINETIND SEIO0Nd
21980 SSID0Ed
~:seolacy oTmeRig
Sioe ]1T430UINED> o (REQSINI ‘TEAINIC-S) CI
T3 INEITOE> .+ L e (EADZIND ‘TIAIEEI-S) K

{23200 LCION) w2

2LT00) =::
1udnlzy
(e 3VEWDOITATS
Fue acwds ;0 UOIIEOOIIEMI o) ITTE  ei  ENCINOD
S<IPTTAIS) SSAD0U
1IN 100, SEIQ0EE
[ “71I% 93 38 S1 31
SETRIHLIC - TIS[AE SUC FT SPOU ADVIG-{sInPpesoad; FuizoIoUS
L18.WT40F1 3608 G303 3GTod 03 epEE ST XEITIVIS
SXRITIVLS SIGWISEA 223uT0d #y3 O sarwa ledoxd egi emf se
STIINCI  SIIWEWIS  ETY] o) MKYTIVIS) ARQI-IIINIC-ITE
{e -®owds pey .17®
siyy oz :ujod ©3 epem s7 ENOLNCS AiGwIIms  satuyod
ALy tEITITE  x  S0;  OWdS YITA (TYDCT) Taw: AIEIDOEEE
USRS JUSTUCITAUS XIDTq AsT 83983) o) {ENDLNC): AIK
-:5801320y ojwwndQ

(w TMALI 4C ;[ 1-N""0] IVEEY = TVO0T

@3
£ ¥I0RINI
REVAEAE 1LSITHALY, :EoSaqKREYd
+§303150 *EQY) * d12008L
H(SAMIYA FTVA) *JAITVERLLL 1
20 K31 3575
2{dAZOCK: *dXITVEN LI IIKT) “4RIGT
OETRES FHUVECT
QRODGE QXXJOVd » WAL
-amd

CIVZ UOYATVEN) cdIITVER
$(BSCEIE1 TVALNY) :ELJINI
&C TYEE-TN-LKISBAON ISV
THOOEE = SAZTYA
S{&AITVEE ‘dilik.) - TVER-B0-A
Edil o)
S(TYO0T. ‘TEATERC-C) SEICIKOD
{(SGORSTEL, ‘QEATENG-C) *MMIIIVIS
{e SEOIIVEVIONQ
20 ERERAX TYSICES ) fi- - (EIDSINT CIEEEIRNT) (1
16T Gaavdiosgye (EEDILE. °GEIJ00 ‘CEATERG-S) K
PRe I XTTINIE> <IN o0g>UTIg a::
PO GATTIMGHUTING o
‘MRpISE
SIIVEIREIL
1€X207g> SEEOCKI
- ISUOTIIV STTRLLG
CCHOOTIE) =t

c1087;

199G

<aIwe I

o018 >

«3g;

g T TG WA 4y I _
S A R P R AL T I S e ey

e

cfaiw 388, 200 2 a5

FPROMEFNTS |

i

.
R T TET P

¢

DA
ity

A R

o

TETIIN 0T S




R ek 2 B et ST S R g e e S S S

]

i +(*Pauc0) SOTIUNENS pUv xejuls T -1 eINFTI

SEQOK-<ISTNE> =: FOON

1508060 <I9WRL> = JORRO (o -Surawpdn ook edojed
- :suoT3oY oTweRAq o0} eav SUOTEINAGD odfy peatnbai fuw (msejemeasd ARGl
2 +(Es]. ‘CIATERG-4) 90T (remase) ITv IUTIRpdn 3o XeW 6R3 smxozaed pom (TELIOV
3 {(SI0TVA CIATEMC-Q) FTVA £q, 93 PeIETOd) TYOUTA STAM W1 w3dedsu} KUTImoL STRD @)
3 t(50T-RO-TVA ‘QEATENG~0) IOEFEO0 $(TYLLOY) SEALENVEVA-VIRSEL-EIWGdD
3 {(TVE~40-IK1 °CIATENG-G) :3aC tEIG~CEAVS =: WIS
: (mIBL> <t x> “CY IXR1-CEAVE = XE1
. £(XP0TE> ‘D017 .00TA1) ESED0WI-QNV-S5AVL

3 4 ez -6 tEIS = MIS-QEAVS
) mil i : {X§] =2 IFI-CIAVS

oC @33 s tcosdousndion) SEEO0R

. el: -9l {EOEIANN =! MUI'LIVIS

> w2 -5 (e -woR2IDS

¢ m2t dotewy “¥f £ 30y wosds  m  (TVo0ld) OTIA%  PeIEIoceRe e

26TV =3 ] JTSEGOJITARS  XPOTQ nutu.!.lu AT 039833 o) (TVAION) MEE

AL -:: -2 ' SNEYIONNE® D011 = K

A1 AOTIE AXT> «:: «PReD> " if . (o “poITIIOR

wenian sas sanpevcad Gi GOTYA W] SPOC  AO0TR e 03 Jeymyed

: ASTTRINEROY> EEEI08L v 5T WOTNA C‘ECEIANKE ceATwA WX UE SRININL SHIINGI

) aqy os%s ST T3 w3 3deSIe UL O3 IPTIUIS )

2(NOEILNE “DO0TC1 “TAVE) DOITIDONIIRS

JOTREVE = JUTIIOSEN"{f ). TVAIDY

£007° <dx5> = OCTNUVE ~:#uoTIoY STmemig
.

: 51094 (e dAIOVI-IOLLEC o) ISTH ‘o
4 o (MEIT. O0TIINSEE) dAIEEE
: tTvANEYd o TVACNEII°[ ). TYRIOV t{; :dI3TVA
_ srep- x> o2 TYANIVE 6 QLMY 3SYS
£1590 KL dXLTVA-IDUSE0 I $001-HC-TVA IRV
tdxp SEXO0Nd i SMELI 053401
ug.mhucg -t IOUCE0 CELCZE QDIDve 40 _..un..on. IVENY = TYO0Nd 38l o)
ugung.p—-uﬂ:ﬂr)‘ =3 0K .ﬁ...—duon. G, ‘CIATENG-G) TTVOIOY o
SIYNLISY " (3RVNE) =3 TYLIOV . (UTOSIAI “CRATEGG] K w
-:ou0T3OY STWeTRAQ r,r.mourﬂ "QZATEEC-Q; *EiS-GRAVE ‘XRI-QRAVS
t (MBI, ‘QIATERG-G) OOTMMVE *(p309ILT CCHATERO-C) NOWIARE ‘IKITIVIE
S(SENTYA*CATERE~Q) >TVAMEYE . +(MEII. ‘QLATENI-Q) D02a1
£ (50T-%0~T . “GIATEBG-Q) :IDErE0 SEHIYETCPI> - (DKIHIS ‘QNIdOD ‘QEATEMA-S) ENVK
S(TVEE-U0-1%] ‘GEAIENA-G) MK oelamasd3 V> CFI) =13
STV, CORATESG-Q) *TVRIDV DI =32 QEmeESy 52
) < rocI0uIRD> o (RGOILND ‘CEATEMI-S) :f *EIITE
astrmadion talzg) «i: ‘axg
A1) «:: GETTEIAMIDY> *67 fYA =3 THAT D0TGT
ganiEe reac<Axg> o2 VA
TasTIRedIoY> SEEO0RE tdXy> STYO0d
TTYLIOY CAISTASLD> =3 TVRIOV 1EAICIT .00NAT == 3A0K
-38u0Ta Iy STwenkg XI9GS 4572
$(TYO0Td. “QAATERA-Q} TTYDIOY o - - ls duna300EL
i e (1308047 ‘LCSEEMNT) Gf 0l 1nEAKDISSY e UORME NEEI dAIDCEd - dAMAICT.D0TCE dI
:uuaﬂlnluuni eiz ¢oodsmawdily) "57 - \e - INJssscmsan
QOOIE> =31 -1z 1 yI3Tee SN 2T (8 8TTIN0I a0a3e »33zadoddn
3m5>0pcdag> 11T dx5>d 08l EI Y 2 (FII0F & 32 ores 178 SBIINOI ey  "YIIWAE Ir;ESEOINE ®  ue  peuyEIqe
‘EANIgE KS2z oy 03 Is3urod § ST YTINM ‘041 suINes 3 ~guvR
tams) GINS-UAV-35UVE I6TH :Kax w3y BWIST. *SETq¥S TYOU1 WIMCIGY FIRSIses uy saeiuiod

FETT-ITIMS 3O TIWGS #J3 MAOTIC) STIINCI ITINWEES SIL o)

a3
(20701 ‘EHYK) J0ICIIRT

4001 0302
rame SEIMM -:#80730y ITewuig
L1286 FIWI TVAQNOS &l T EAI, CCIAIEBO-C) D0
LTPAQEOD” CPUCD) »: TVAANOD $(SENTY: ‘CIATEEG-G) TVA
${<PU05r IEVIE) SSOORI-GNV-ZSEVE 3001 *{TYRI-S0-31 "CRATECTD; ‘00K
-:wBoT3oy symeuig 2ISTVA = (DOT-EO-TYA “LEGEENED LArNC
1puo:4 - (§303IE] ‘CAATERG-S) 13TV SENYSTCFD> - (OATEIS ONIA0M GIAIE-S. EKTE
1 L1008 “CRATEA-C) FIVALNCO AXer D =i EEES 7
z GREISSOPCPROIIOTION o33 N+ Rl
w., H 4 ki ] Hr
(s "IUIWICITARS GeeedEis) $$30CES
pra essés 4T UOTIMICITEE o TIIA -t TR0 20LEIE> INS-QKY-ZSENE




B REAAh . T

SSUSIIINFOSS PA3SE1aS ISUMNO; OIIUEESS ;O TTILIIET; -: 3, dazg ¢ aandn

e <FI> j© ssalppe
TIRIAS o, EQOVAELIEE (e 4AIOCT = IDEFEHO o, 3513

i T T TR ST FA - R R R T P R T T R B T T T DT

\a <F1- 3€
SrIBL LITIEI o, TVAKELIGE KIHI GXITYA = LJEEC dI QY
CBIRY =32 LTINS |
t e <dXZ) PUN <ES8Q) ;0 SenIBr o) QAY 49
£9cdTE> (2005 (T =22 dxz, -
£<PEOD>S TEVANOVEANGS 8%
o 55 3FW #°% o, 6EL JNLT WAMD TYAQNOS IOK LT 95 _
wMAulunvuu@Auﬂoule«r‘,mm .z “52
{TVDIOV) AEK *¥2
cosdemawdisvy G -:: B
e PTILA I LLTUFISEE IBRIDY o, DIVA =: TYAC DOTED LS
(e Alussecsu 31 seui3nol
ST . TIeI eIz 3T SAS XOPYD PUE DOV V8L o, T2
L5AXIIIE -t srmLesuiz. - oo
Lo imisdErc)
LEWC 80T o, (@IESEINIS) (¢ LTTWHOIITPUOITR ) JWLL 3
1¢am3edEISHE RS NAKS TYAGNOD JOK &1 §E
AEEEEIEH T ARLITIN CPIOISTIT ~it P S
{<3 m1gy)0h =2 cTapexdmeg: <o
‘oaE
(e | IMITZ BpTA :aTQES
PRLEIDITE LT TLTI (I W31 JO SeINQIIIe Jejug 4}
Kiod onuwwg HIIR nmh
HICTED 2T %11><PIH8Inped 0 alit WIDEZ
1IN =3 EDOLNOD ‘Y5
URAITINAE ) AKIT-OIIVIS-IES G{HACLECY) AIK "ws.l
PORYSISTIITIS) (IINATIMDTTHGL o EEEN S
*ZIVEINEAL G£§
~£0<XI0TE> .12 wFe
-suoTonpozd uwaslsa Fuliepio-esp -:(q deig -§ aInEr:
7<830> AORDHTF =22 waag> 57
IO IPTF =2 CKEIBL) *F3
“8ITF8G €% RIIITUESS ~dIE IS TF == dxg> -2y
~AXg) IO F w22 @xg> ° 1y
cdo1eg> AXD> ATP T =z: <FBO5> *if

«2CAXEI P =32 3RISTIS)

SEaTRTWY 38T 3OCIISTE 30 WOIIONPOAITI -:(w; daig

QERE>~-FL «::
(QETN> |G w22

-83C;92 S EILILUTEeS

Pud nuw«upulvmvﬁnun.uomnvnnmunw -z
TU(IOTTIRICHTTHONT ~:2 o218
CCASDIEYT et P

vy

1R

-ﬁ-m_uﬁcnv\. 6013UBWaS puw Hﬂ&ﬁhn Tk

QT -
<RETE
<Fix-
B y-iohe-ry
${007 ‘EWVK, J07CIIAT ICTE
- -aanpadcat il ;o c O3 PUNC] ST (PI> PITUSISIAZ U3
3% FeT1®R SIT £ BLILNMCI 30333 s3wradoadds lariinos w3l
i JuCP TSR A€ SUOTEISATOS »dL3 pasTnbes Lus ‘isysmniwd
TERIC; 1¢ BIOFTINL 7R3 s Jo addy egs 67 GSTUR,
3Coa FTIEE  i(PI> 3O OTEA  TERION Q3 STINIES 3T MEWR
€72, TT 3sus 3d80X8 30IQIZ3L 0% IVITEDS ST SUIINGI STYL o,
\TYL ‘ZO0R "SRYR; TYACIISS MEEI GXITVA = JCECHC A8
SI0ATE0 <IMIBI) o DATED
SRQON" <3OUI®I> =1 ICCK
-:SUGIISY STIuLc
(MEII. CPAATEIC-L, T
*{SENTYA “GIAAITSGC-C, “TVA
2{007-BCTVL TEATRAG-Q. *I0ETEC
I{TVEE-GO-AAT ‘CEATEIC-G) EGOK
IEWNYNCCPIY = OAIEIS ‘CEId00 ‘GAATEG-S T INVE
<PI>
dxgy;
<3ea0T>
SEL>
(EIBL )/ 3>
{WIETD gD
«axnd>
dxg>-(u3el>
*MR0ITE
‘o
2TV CEXZ)> » TYACCEIOL) =1 TV
tqixp SSEO0Bd
1cumInl> SEID0RE
Iag 357
(e °mS¥D STRI TY aeyemexed 31TeSe: 3
oG 30TUVC JajeWelwd [PMI0; o) YOURE KEAL 4XED0T-10ACE0 &1
2IIELGOIGNITL> -3 IIECHD
SHIOK T <IMIRY> =1 FAOK
-:18m0732Y STERSAg
:{SENTYA “CRATEIC-1) “T¥A
£,207-25~T¥A ‘QSATRI-C; LJECED
H{TYZE-EO-INT ‘GRATEEC-Q) *3A0K
Arzsecesaly
SEELITE
S9CTCEIRI) =i 0T {e akID(I=ilErEC o) 2672
THATCTIBL w3 TYL NEEI SRITVASLIENND &
ICEIRL. SSRODEL

TIEN:

Ry

B N = o i A St 5
.
3
H
[
H
, oIn¥Tg 5
'
P2 -1 n
% B
H
o
&




VIR

o
x> ! AR ﬁurov

Ny
/

codemadazyy (F)1> <d3gy e A1

 aad

-3y »s1vd pue ovifoid 11§ »u..l..inu. *z a3wdIy

a 3
28 ] a digreminly

dxg> o: 1> I < PRI

wi¥eq op A¢a STTRA VSN OKX J¥

<Imge> : aamg>
||.|.—I.IIL
we astung ey 10 =3 3 ¢] = A ia z8¥e3uy
. - P—
[EE )l § £¢n utleq
i -
o 2 WM P (PO [34 1 2(z 38¥e3u} 1TNEII L JsFejuy enTwa) g sanpedoad
) —
dxgy =1 B> oc1 0 ﬂ ' .m
/V\ N [ i
aneisis; W amg T8 waly 71 ATg> = B> AES =2 <PLD urdeq
v = i
ams> ami ¢ aub a  asteim
. —_— . -
we astams> adpp TR
3 H ;
- « :
x Nﬁ.bouhv s 7oFe3ut 3I0W81  cpl> IBEIWY SAIEA
' ;
@i> asera> R
4
4 . . . - Py
4 (..-? N : <1oep 14> > »
1 . :
* . @1y eIy

7 .
<3Inis)> ! «ams)
foAna E——

N

C198Q> 2 <180

QiR ey

s
—d

A

L)
+ Yoo

—

oty

61

RE RPN ONY o

e eat

®

TR L S, SRy Ty

1K

2



A e o D TR T 2 \J‘x\ﬂ.ﬂ»pékﬂh‘m%«ﬂ\ R O TR Y SR

i
Wv
3
S ISSTITEEAL (RIIIWE YITAT XeLULE  eFwniun LIqueksE_ 18T1: - san¥i:
e -IPTIILI QEDG) = “{2) we (p; 5dass 133J% JUKWRIS g [PUI4 -G BANITS
3 40} #Owds 537A JUSMIOITAUS XICIC
(sdnpedoad ; asc #3883 :(TWAIOY,
pAk  :<o1dnolippY> Q. peyrIoeds
acnpedoad ;o COTIWOOL K3 38D o 12 2TIVD =:3 <yuenal,;
; (e “¢o1dnodapPY> @mp 3 -
3 iq peijionds <PI> " Pl TT) -zt Fee T
; 03 A9%36 oGy jo do3 ey3 uRISEY i 5§ ROISEY =:: <STERDIZERY) ﬂ ez
3 o5 -TRAHSOd 33 * eemecppe
: 20367 BOOVHSTG 3= $27 uInel W[e  ‘(#idnodIppY> £Q peyzTaeds <pIr
1 (e <“ADWIE 8yl ag: 3o sCTEs OY: UINMIAI usyl JILTYA = (POT-0-TX2> I ¢
03 Wo (aTdnedIppY) £q perjiosds Aoaunooud:vaoouulu»inrv %- L2 TN
<F1> 3 Jo enTma #q) UETY o) _HCE ~TVAHSDE o33 dx5> TF =::
LTTVD =t «Saeyay; <a8wo> I¥
.rM Mig~== <=y ¥ fet FOIR
(s <Q®ng) IEnmom g9 I8 SF
43 £TTEN0TITPUCONS AOR WOUESE o)°  £§ nHEE - 15 IS T
{e <qWmg) jmmoms L3 3oy IF === Pe Y NN
t £119R0T5TPUOINY PIRAIOL YIUSRE o) LS NdEs - 95 EXE WO TR Atz
. (e <Qwng> jumcas iq 5y AT (E38Y IT et
LTTPEOTITPUL. FIINI0S WOUWRE )7 4§ DdEE - cxsez> BF m:: wdxz
[ ~IHSGE = B -
(o ASWIS B3 ﬂ EH]
9% US (QEmECIMGBNR MR BTG 4 «IHSOd »:° N it
$in 2084 w32 .23
(e °SOTIITE (QWREK)> « & 207 sonds -t -
GITR PA3UTOO0SER  WITA JUSWROITARS -il doTeE> -
AIOTR AT eweas :(EOCIN0D) MAK o)F £ 1098 =3 <ZEOAOT. .z
a5 AJG » w
g IR - - Aol dx5> TS | @Rz
9% 40s =: <38TEIA30Y) (IO~ 30 ~THLD ﬁu@ &
(e XASWIS a3 O O ~ 1201 -
Les oy gend pow wegy  Bps  ixomys sseappe  ssw sETe  ‘aeswsawd  s®  (TVAC Q—nﬂv -
:30  siusweis o3 do3 dog 4): 49 5+1) <dxg) 3O eaTEs zand TaYI GLITVA = IOT=I0-TBs SI 29 A
(o (3030ma1nd ’ (PPT-3-T80 95 AT B et qermadssyy 2 k
IINB6I)  SREIPPE SRS )7 PICVYS asTEafioy 82 -3:  (ledsmadisy: 52 4
Lo S030wmInd SRTBL SEBG o)  TVAYS AROE> [T =it 4 g
E44 awmp (o ame 25 @1 19 d1p g Axf: sz ?
2 18913308 QWD) + k 10 #3848 TITA IDEWOITATS -3
& 2001¢  (»InpSd0ad)  aet  39eId  :(eTAROBIGPY)> L4 L]
(e "sdezexsind 3Tneea siwpdr PeTITo0EE eampeooad Jo IBEESOITAZS FLR NOI3WOOT JaL g2 3
s :3tewbes JUTTIRO 03 BAMINK o) S5 > CQERED (' =3 - 73 N
3 L acoTdnosapen> §g - 1 =
A mn.m *TéROIITIY> i
3 A oeds I> 93 33> ;o enyss. uiisey &
3 - S pews ¥ = »<OTIRCIIRPD> @5 iw R -2 gmsders: oz 5
i ok QRIS QED (§ GRS AMMD §§ PR n =i ‘e : M
3 % GRS WD 95 DU sz R 1
3 P8 ~smyeduyg) <85 Bl 3
3 (o -.0oT8_usod sels ‘Xomie ANTMHAMD %1 2
o3 03 Do _enuy  TweIoeq v gend amg asasg Ll -]
3 ueyy 3juewsls do3 8Y3 TWhy Jejvesd 9t AA
3 s7 3cemeTe o3 eN3 ©3 3Zem g3 34> *§i A
A It NOWIE ey3 IO SAWADeTs ony doy PZT tH “ri =
T dog :uEgy Je3vea53weld JT 3sel o)1 i I8l =37 > L1 =it asepd> *C1 vw
< [{4 ISTVHSHY = G CoepD TN - R 4 E
- (e "XoW3E ook M e aermalwip g, <
: TEIIInTRAS uoysseadze oyl sy Tl =3t osasy Gl =
23 B3 _enyg, UNETO0G ® WNWZ L)t Zf ANBIBEGT =33 & ORI CToPRME > qmE> § -1t 6
: g2 BOd =32 34 Q@reigr<qmep § -3 “E \m
N 3 TVEE =33 ' T iz L E
- (e JI95836] i3 ze1qus cToeC, & v 3
2 InCILID T LIjue  IXOW  INJUF 4 5 IE] w:? cLueNsy; -z Y m
<ATINODIPPY ) <AETNSC YTONOL) w3i aedioegy Ct =
5 <*TANCTIPFYICLROROL> @33 © Qn«dﬂmen&auﬂleU Z.: e i
L CRERYEH(ZOOROL) =i - GBTREWD T - <HIIVTE? L (]
<1aexoLy 3 cc STE> T wi: By o E
TR UHADLS w:3 i avem < E
1

CEORDTS w12 D
- -

ot RO e BN T SR et g i T ST S p i




PR TR T o U L
T O O dadias o _ T T S

-3
P E - - . S
L
b Beorn (2]
Py PROC [49]
Loy BEGIN [1] INT L
Pob PUSHI+ [1] Assiam {2,0} PUSHI+ (0] assIew f{2,1] PUSHVAL+ {0,:]
i Euss]m {o] tor Brrc {25] Pusivane {2,0] pusHvAL+ {1,0] TXB BRI
£ 16
L PUSHVAL+ {1,1} PUSHVAL+ {2,0} ADD Assion {1,1] Pusuvan+ {2,0)
. L PUSHI+ 51] ADD A3SIGN [2,0} BmBU [23]
{ BHPU (4 -
END BRETURN
Nt .
) pusit+ [10] assion (0,1} oaLt2 (0,0} pPusHvaL+ (0,1} PASSVAL PUSHADDR
3 {0,1} PASSADDR :
A END HALT

Pigure 8. “Assembdly" language program. Numbers in *{ 1" represent
1iteral valuss; those in *{ |" represent address ocouples.
The lexioal level of the outermost block {main program) is
Q, that of the procedure is 1 and the inner blook 1s at
lexioml level 2.

B e im i

‘ e(

.;;,‘J

outooteni- @ Fig 6 W) %
¥ The address couple has the format {lexical level, ordinal nusber of varisble in i%
the declaration list]. PFor both the numbring starts with O. ]
tVal-or~loc is an explicitly propagated attridute vhich can assume one of two ,&
values, specifying, respectively, vhether the value or the asddreas of the ¥
fdentifier is required. Sinoe this attribute can sssume only two values, it is L

better taken cars of by assumiang tvo different semantic tokens (op codes) where
necessary: e¢.g 49VAL and 49100; (vide Pigure 7).

63

bttt AN 1 it s R




‘
1

RIS FRYT VS SN it sl it int,

AR AR

S T S R AR B M
T S I Y= . =gy

TWENTY YEARS OF BURROUGHS MIGH-LEVEL LANGUAGE MACHINES

£. Dean Earnest

Burroughs Corporation
Mission Viejo, California

Abstract

A discussion is presented of several
compyuter systems developments over the past 20
yuedrs at Burroughs Corporation. Some of the
system design philosophy and concepts employed
by the system designers are included to pro-
vide on understanding of the motivation of
certain design decisions.

Introduction

A discussion ef Burrroughs Corporation's 20
years experience with high-level language
machines should be considered in the context of
some of the concepts and philosophies which
sorved to guide the systiem designers.

A central theme which has guided the devel-
opment of computer systems for over 20 years
at Burroughs can be characterized as follows:

The role of computer systems is to
facilitate communication betwaen
people through the amplification of
human capabilities. Anything which
creates a distraction from the
achievement of this role should be
regarded as being wrong.

The use of higher-level languages throughout
Burroughs computer systems is consistent with
that theme. The development and evolution of
efficient machine archilectures to support
those abstract notations significantly facit-
itates communication,

64

o e Uy A . y
ot 2t Rt I s ittt i it 00

The basic set of wackine desion and use
concepts were flrst publicly discussed by Bob
Barton in 1961.% The first commercial delivery
of a machine whose design was based on this
approach (the Burroughs B85000) was made in the
early 1960s. The concepts embodied in that
system have been expanded over the past 20 years
through insights made possible by our accumu-
lated experience in high-level Tanguage proces-
sing environments.

A brief discussion is presented of some of
the concepts and design principles which have
guided Burroughs' computer systems design. A
review of some representative developments firum
selected systems design projects is included
with some of the design and use ideas which were
incorporated.,

Genera) Concepts and ldeas
Burroughs' computer systems architecture for

the past 20 years is a consequence of the artic-
ulation of and adherence to a relatively smal)

set of closely related design concepts and ideas.

Following are representative of these tenets:
High-Level Languages

One of the more important concepts introduced
with the Burroughs B5000 was a dedication to the
use of higher-level programming notation to the
practical exclusion of machine or assembly lan-
guages. It was proposed and demonstrated that
a cumputer system could be designed and imple-
iented which would provide a sympathetic and
efficient host to an exclusively higher-level
language processing environment.

At the time of introduction of the B5000,
higher-level ianguages were considered to be of
limited practical value in the real world of
{nformation processing. Their use consumed
vast amounts of resources (particularly time)
for the compilation process.

The resource consumption for the compilation
process was considercd so severe that users
frequantly abardoncd the high-level represen-
tation of a program after the initial design
and an error-free compilation. They frequently
completed the testing and patching process in a
nore primitive representation, They thereby

s TR A s e o S 7 50

—

:
g
+
i
4
;

¥

S

LS




= P T

X3 ‘ o ERR (U, (TOR RY

VT

avoided solving the basic problem of not having
an efficient language processing system, As a
result of this multiple representation, the
operational program did not resemble the initial
high-level description.

In addition to the problems with compilation
performance, the object programs executed sig-
nificantly slower than the proportedly equiv-
alent programs written in lower-level notations.
On contemporary machines, both performance obser-
vations were valid. The problems confronting
compiler writers were significant--conventional
machines were not designed to facilitate the
mapping of an abstract notation to the set of
primitive functions suppcrted by those machines.

In spite of these drawbacks, higher-level
languages achieved some acceptance because of
the now-recognized advantages of their use for
program design, implementation, and enhance-
ment.

Since the B5000 was designed to efficiently
handle programs written in ALGOL 60, it was
natural to implement all programs, including
systems software, in that language.l8 The use
of higher-level languages for all progranming
was critical to the success of the entire pro-
ject, The approach permitted a continued
interaction and feedback among the hardware
and software designers, the system implementors,
and the system users. During the course of the
B5000 project and subsequent developments, the
roles of most of the participants in the de-
sign changed, Systems designers subsequently
became software designers. These, in turn,
became software implementors who are included
in the population of systems users. The
continued, exclusive use of higher-level lan-
guages contributes to a fluency in those
Tanguages. It also provides strong motivation
for the devélopment of an efficient system, At
Burroughs, the system users are system de-
signers and are expected to contribute to the
hardware and software architectures, implemen-
tations, and enhancements.

The viability of using higher-level lan-
guages, which was demonstrated on the B5000,
reinforced Burroughs' commitment to the ap-
proach on subsequent systems designs and
program product developments.

It should be nnoted that while high-level
languages have achievad a certain acceptance
today, 1t is largaly due to advances in
compiler technology. Some madern compilers do
achieve an acceptable performance level, Else-
where in the industry, machines are not being
designed to facilitate high-level languages.

The Design Team

A blending of technoiogies and experience is
required for the design of a commercially via-
ble computer system. At Burroughs, a system
design team typically consist, of o very small

- E I e T Bl

AT

aroup of people from the several necessary dis-
ciplines. Each participant must, of course, be
well qualified in a particular discipline and
must have a good working knowledge in the other
represented areas. This cross-discipline know-
ledge is necessary for effective contribution to
the design and implementation decisions,

There has been much written about the inte-
grated hardware/software approach to systems de-
sign. Experience has shown that it is not
sufficient to collect experienced people from
the contributing disciplines. As Bobby Creech
observed in his paper on the B6500 architecture,
the attitude and the personality of the parti-
cipants are critical to a successful system de-
sign.2 Intelligence, common sense, and previous
experience help considerably, but the successful
blending of these three attributes require the
correctness of the contributors' attitude and
personality.

Uesign Scope

Bob Barton, as indicated in his 1961 paper on
a computer system design approach, suggests that
higher-level programming languages should be
employed for all programming tasks to the prac-
tical exclusion of lower-level notations.!
Additionally, he believed that the operation of
the computer system should be under control of
the system itself. This injection of user and
operator perspective into the system design
process implied a much broader utilization of
high-level languages than had been considered
in prior systems. Contemporary machines of that
era attempted to implement a higher-level lan-
guage in the hostile environment of a machine/
assembly language system. To provide a con-
sistent implementation, the design team on the
B5000 broadened their scope of responsibility
to include the entire programming and operation-
al environment of the system.

Early in the higher-level language system era
at Burroughs, Lloyd Turner and other software
team members developed a particularly effective
graphical representation of the ALGOL language
syntax,3 This representation significantly
clarified the language structure for the team
and permitted new insight into an effective
compiler implementation. Additionally, this
representation and understanding of the language
permitted the definition of consistent exten-
stons to the language when cther components of
systems programming and operation were con-
sidered. The entire software system was
implemented in ALGOL (as was the ALGOL compiler
itseif). Since the scope of the systems de-
signers' responsibility ehcompassed the entire
hardware, programming, and operational environ-
ment, additional opportunities were available
for the partitioning and implementation of
required functions, Commonly used functions as
wel) as systems management algorithms were
factored out of the users environment into the
operating system. Where appropriate, these
functions were replaced in the users environ-

N A ' S R S i g
Srde B bad bl “-:.uu_',udim : X y

RIS

e il ol i r:

oo il 7

=

Y i T R

AL A

Dk TN e T te L

I Sy - ST DU 5 S 2 RN

A
5

I

oo T

A et e



PRERY -

g

I i

ment by calling (naming) syntax which was consis-
tent with the calling language, This system-
wide approach to the use of higher-level lan-
guages provided a natural environment for the
handling of general systems functions. These
functions were represented by a syntax which
was consistent with that utilized for the
systems software. This environment permitted
the development and integration of such in-
novations as automatic memory management,
virtual memory and general file management

into the operating system. A description of
the results of this pioneering effort is in-
¢luded in ghe B5500 Master Control Program des-
¢ription.!

The conmitment and the adherence to the ex-
tlusive use of higher-level languages through-
out the system produced a systems software and
usage base which could be readily enhanced.

. The interface between cooperating software

. Management Languages,

modulaes implied by the consistent use of
higher-level abstractions permits new functions
tu be easily integrated into the software
system.  This abstraction also allows software
wystems to be propagated over several gener-
alions of hardware. Software subsystems, such
as the Network Definigion Language, 4 the Data

and augmented operation-
a1 dialogues which have been {mplemented over
the past several years have been guided by the
ylobal perspective suggested by Barton and
enhanced by subsequent software teams.

General Design Principles

The preceeding discussion suggests that the
recognition of and adherence to a closely
tnterrelated set of sound concepts and design
principles provides far-reaching benefits.
This conceptual base is required to be succes-
ful in the typical commercial systems environ-
ment of evolution, growth, and change. In
addition to the concepts and ideas previously
mentioned, the fo1low1n? are representative
complementary design principles which have
proven successful at Burroughs.

Recursive Definition., This simple approach
can he employed to verify the consistency,
completeness, and orderliness of a defined
object, Several current notation systems per-
mit solution definfition as & recursive process.

Minimal Representation of Information. Not
all information has the same Importance when
considered in a language, program, or system
context. The use of a hi?her-Ievel programming
notation wherein information can be represented
as appropriate to its static and dynamic usage
frequency offers some interesting options to be
exploited by system implementors. As an example,
Don Knuth has reported on the extremes in
FORTRAN function usage in that operational lan-
quage environment,l7” This representational
freadom allows for significant systems perfor-
mance trade-offs to be effected., Wayne Wilner,

66

.:ﬁw;iﬁgi:ﬁm&cmﬁmhnﬁ%JmngﬂmaQEmJAY?mn

in his paper on 81700 memory utilization, pre-
sents some interesting observations and comments
on the dramatic effects which may be achiev?d
through optimal information representation. 9

The principle of minimally representing in-
formation is consistent with the abstraction of
higher-level languages. In natural languages,
also, people abstract and codify high-usage com-
munigation sequences for efficiency and compre-
hension.

The Importance of Information Structures.
Burroughs' emphasis on the efficient handiing of
information structures, particularly control
structures, has provided far-reaching berefits.
The use of the stack in our machine architectures
for the partitioning and handling of subroutines,
procedures, and processes has permitted the
practical application of several of the concepts
and ideas noted in this paper. Additional ben-
efits of the use of the stack mechanism include
those which contribute to the multiprogramming,
multiprocessing, information protection, and
control distribution facilities of typical
Burroughs systems.

Abbreviated History

Observers of Burroughs systems developments
have detected a consistent philosophy regarding
systems appearance from the perspective of
programmers and users. These observers cor-
rectly concluded that the primary impetus for
the control and guidance necessary to maintain
this image is largely attributable to an in-
forma) and long-standing relationship among key
Burroughs technical personnel. This group
shares both a personal rapport and a commitment
to a set of system design and use concepts. In
informal meetings and conversations, Barton,
Lloyd Turner, and others have served as a
catalyst for the elaboration of the original and
the synthesis of new ideas and concepts. With
this common experience as a basis, it is not
surprising that there are repetitions in concept,
approach, and appearance within the several
Burroughs systems.

Following is a brief discussion, not neces-
sarily in chronological order, of the evolution
of some attributes of higher-level language
oriented systems at Burroughs. Also included
are observations on some of the reasons for
particular developments or emphasis.

The BS5000, B6000, B7000 Series

In the late 1950s, Burroughs implemented an
early version of the ALGOL language on the
Burroughs B220, a conventiona) machine of that
era, This implementation served to prove
several of Barton's original higher-level lan-
guage machine concepts. It provided a vehicle
for the evaluation, feedback, and refinement of
an ALGOL virtual machine.




The 85000 3ystem was announced in 1961. The
successor B5500, announced in 1964, included a
large, fast secondary storage facility and a
more comprehensive operating system. [lurther
’g%mts were smnounced with the 8570 in

The D450 system, announced in 1966, incor-
porated significant enhancements to earlier
machines and integrated many new ideas and
{mmovations. The BEB0D system, which was
anndunced 1n 1976, 1ded a more effective
{mplementution of BG000 series architec-
ture.’ 1’ &30 incérporated features and
functios for consistent work and resource
sharirg among mitiple local and/or distri-
buted svstems.

The 87700 large-scale system, which wes
1ntuﬁuﬂ in 1970, paacﬁg’ M%hthmt:m and
ohject-1anguage compat’ w e B60OOO
saries systams, Additionally, 1t offered
snhanced performance, information 1ntu9r1t¥.
and distributed 1nput-output facilities. The
87800, introducad in 1977, 15 a higher per-
formance version of the B7000 series.

Following are ical of the ideas and
concepts of the . B6000, and 87000
systams:

1_'5,. Stack. Many of the concepts and ideas
previously noted were applied in the design of
the B5000 system. One of the wore important
1deas embodied in that machine was the in-
tegration of the stack into the machine archi-
tecture. The stack mechanism is particularly
effective in the ALGOL language handling envi-
roment. The power of the stack lies in the
co”st::l uch;nin mg can be ubodgod in it
and its use for dynamic temporary storage.
This facility permits efficient ovahut?:n of
arithmetic expressions and storage of para-
metric and control information for generalized
subroutine and procedure handling. It also
allows an effective reduction in progrem stor-
age requirements since the top of the stack
provides an fwplied address for most of the
order codes of the mechine. A complete des-
cription of the stack and other features of the
] and its successor, the B5500, can be
found in the ltﬂ,wnm Reference Manual on
those systems .,

AN PN, T R PRI AP L YT OI ¥V SORMPRIL . 1

The stack implementation on the B5000 and s
85500 was enhanced during the design of the ,
86500, An evolution of the B6500 stack struc-
ture is emploveu in the current Burroughs 86000
and B7000 suries. Bised on exparience with the :
85500, the addressing mechanism for local and
global variables was more consistently developed,
so that the ¢ addressi miwt on-
countared in execution of progrems 1is :
maintained automatically by the stack and re- '
lated structures. In addition, the concept of °
a “cactus stack" was introduced to {de & ;
vehicle. for the more Ty control of mlti- |
programming and multiprocessing. A treat- |
ment of the use of cactus stick 1n roau \
handling s ‘prov& by Jack Cleary in his paper:
on that subject.® : : .

The cactus stack may be viewed as a tree of .
stacks with the trunk containing the basic oper-
ating system process representation. Sranc :
from the trunk contain control and parsmetric
information for new processes as thay are
created. This structure differs from conven-
tiona) trees in that the trunk can continua to
grow after branches have been creatad. :
gr-lghic representation of this structire re- |
sembles the Saguaro cactus of the soutimest i
United States--hence the “cactus stack® design-
atton. The paper by Erv Hauck and Ben Dent ‘
furnished an oxccl'l;nt discussion of the details;
of the BE500 stack.’ Details ry be found in '
the Systems Reference Manua], 10 “Ell{ott ,
Organick's book on the 85700 provides a gocd :
treatment of the cactus stack 1n the context of
an overall system description.l0

The Descriptor. The descriptor on Burroughs'.
:{: ) y-encodad sequence of progrem

{ch is executed when 1t is encountered during .
accessing of information, The descriptor my be
regarded as a generalized form of control word.
It is used to separate those functions associ-
ated with the informition definition and control
from procedural code. This separation of des-
cription and function facilitates the handli
of data and progrem while mefntatning the high-
Tevel abstraction of the user enviromment, !
detailed descriptions of this powerful facility
can be found in the paper by Nlusk Bnd Dent and
in Organick's book on the 86200,%.1

The Series

e T Ak A et A e 2

T T T




B I e e T T

A major objective of the B2000, B3000, and
84000 systems design was a family of systems
which would be efficient at character handling.
Specifically, the systems were to provide an
effective and efficient host for the COBOL pro-
gram environment and for character-oriented
peripherals such as data communication term-
inals and magnetic and optically encoded
document handlers,

The B2500/B3500 systems were introduced in
1966. The B2700/83700,84700 enhancements to the
series were announced in 1970 and 1971. The
B2800/03800/84800 systems which provided both
higher performance and machine-language compa-
tibitity with earlier systems in the series,
were announced in 1975 thru 1977. Many en-
hancements to the B2000 series have been
integrated into the B2900 systems which were
announced in 1979,

General_Architecture. The experience base
for a machine which couTd perform well in a
character-oriented environment began with the
B200 systems of the early 1960s and included
ohservations and experfence with the B5000 and
B5500 systems .14

The processor and memory of the B2000-B4000
systems are oriented toward the character,
field, and record requirements of the COBOL lan-
guage, The instruction set accommodates
variable-length strings of alphanumeric and
nunkeric representations,

Because of the dominance of field-to-field
operations in the COBOL operational environ-
ment, the processor was designed to utflize
primarily a memory-to-memory Ynstruction im-
piementation, Since the processor retained
minimal state between {nstructions, the system
could quickly respond to {interrupts from the
high frequency of {nput/output operatfons in a
typical data processing environment. This fast
interrupt response fac{liftated the handling of
data communications requirements. 1t also al-
lawed the handling of the real~time functions
of high-velume document handiing peripherals
in a multiprograrmming mix.

The machine also incorporated a stack mecha-
nism to facilitate the handling of control in
the CORBOL and operating system environmentis
Since the stack was mapped into the memory area

68

Tor each program or process, it did not detract
from the rapid state-switching requirements ot
the system.

EDIT Instruction. The application of enper:-
ence and observations for development and
implementation of character handling language
and functions is typified by the B2000 series
EDIT instruction.

The character handling facilities of the 850Q0
machine and the necessary primitives to accom-
plish the COBOL-specificd MOVE and EDIT functions
were not well designed or implemented or that
machine. COBOL was a new programming language
at the time of the BS000 design. There was
1ittle experience with the practical requirements
of that lanquage environment. Additional in-
formation was required on the problem of mapping
the requirements of the MOVE and EDIT functions
on the B5000. The compiler group developed an
enumeration and representation of the functional
requirements defined by COBOL. They then per-
formed a simulation of the virtual machine
implied by that form and semantics. This expe-
rience and the resultant insights provided a
sufficient basis for the appropriate generators
in the COBOL compiler for the B5000. The re-
presentation, algorithms, and techniques devel-
oped for the B5000 compiler were supplemented by
the results of observations on that virtual
machine. This experience served as a basis for
the design and implementation of the MOVE/EDIT
instruction on the B2000, B3000, B4000 systems,
On those machines, most MOVE verbs in COBOL can
be performed by a single instruction.

Details of the structures and operations
impiemented on this family of systems can be
Y?und in the Peference Manual for those systems,

The B1000 Serfes

The current Burroughs B1000 series (81700,
81800, B1900), were desfigned to support a multi-
plicity of high-level language and processing
environments, [n addition, the system was in-
tended to support the emulation of several
existing and/or proposed machines.

The initial systems of the B1000 series, the
B1700s, were announced in 1972 and 1973, The
B1800s, which incorporated significant perfor-

e . .
i~ 2 L 3 ..

Ch e Y !
EERRC LGS - TN S/ PP ESRRUE LY 7 TR

[T T X T

[ —Zeey

(e e s s o EY e | ke il

AT o - -




b
i

mance enhancements were introduced in 1976,
Initial B1900 systems were announced in 1979,

Tha Design. Based on analysis and experience,
des T u_i concluded that the range of repre-

the

sentations and functions dictated by the proposed
set of programming languages and machines could
not be directly sccommodated with a single, com-
mercially viable architecture. A sufficiently
small set of structures and operators could not be
defined which was efficient for all languages and
processing environments. A machine architecture
wes indicated which could be adapted to each pro-
cessing and language requirement.

The 81700 system design included an attempt to
define & machine which had no inherent structure
and no 2 pri-=f instructions. To satisfy this de-
sign objective, a passive machine was required
which could accommodate definable information
structures and instructions.

The design approach used on the B1700 system
was to anticipate ¢ unique machine architecture
for sach programming language and emulation envi-
ronment. The designers had to constider both the
typical high-level forms of program representation
as well as machine-language forms from existing
machines, Restated, the B1700 design objective
was to efficiently emulate a set of real and
virtual machines.

Varjable-Field Handling. The ability to vary
the machine's image for each emulation environ-
ment implies some very specific hardware and soft-
ware adaptations. Fortunately, our experience on
several prior machine designs and research pro-
Jucts su?oosted several potential solutions to
this varfable-environment processing problem.

It was observed that data and program are fre-
quently not suited to the representation imposed
by typical word or character organized storage and
processing elements. The actual nature of program
and data demands variable stze representation,
Considering the range of storage and processing
environments of the B1700 system, the smallest
unit of information, the bit, must be addressable
in order to provide complete flexibility in the
mapping. and processing solutions. To accommodate
this requirement, the B1700 system was des‘gned
with a defined-field storage capability, In this
mewory system, 311 storage is addressable to the
bit, all field lengths are expressable to the bit,

69

and storage hardware fetches and storas one or
more bits from any location with equal facility.

The B1700 processor was designed to provide an
efficient vehicle for the emulation of multiple
language processing environments. The instruc-
tion set of the machine included primitives from
the set of programming language and emulation
envirorments as well as those which contribute to
the emulation, or interpretation, process itself.
For example, the Arithmetic-Logic Unit could be
parameterized to 2 width which corresponds to the
data or machine being handled. A good 2xposition
of the B1700 design was provided by Wayne Wilner -
in his paper on that subject !nf {s detatled in
the Systam Reference Manual.l<:13 The book by
Organick and Hinds contains an excellent des-
cription of the B1700/B1800 systems architecture -
and application,20

Language-Specific Machines. The congruency of :
the functions dicta y & processing environ-
ment and the repertofr of structures and opera-
tors supported by a machine generally determines |
the efficiency of a system. For the 81000 ;
systems, an "ideal” machine was designed for each
processTng environment. Where an existing
machine was to be emulated, the form and semantics
of that machine constituted the definition, Afte
the machine deffnitfon, an emulator, or inter-
preter, was developed which provided the semantic
definition of that virtual machine, Thus, the
compiler writers had an 1ideal machine structure
and eperator set for their object code. This
repertoir of structures and operators provided an
isomorphic relattonship between most functions
expressed T™n the hfgh-level language and the
target machine, .

Q_Ettmletion. Since the virtual machine could
be a lg ed to each processing and language envi-
ronment, facil{ties were integrated into the de-
sign to eptimtze the adaptations. Tools and
techniques were indicated which could supplement
eur perception of the anviromment with empirical
{nformattion,

Both hardware and software facilities were
integrated inte the system to permit static and
dynamtc observations on the virtua) machine's
representation and performance. These observa-
tiens were uti{lfzed to extend our inowledge base
on these 'Ilnguage-spociﬂc machines. Virtual
machine definition and representation are changed

T L e I

A L et Rty

= !



as indicated by static and dynamic observations on
the wachine's behavior. This technique, and the
adaptability of the machine, has permitted very
effective enhancement and optimization efforts to
be realized,

1t should be noted that the exclusive use of

higher-level languages contributes significantly
to the success of the optimization efforts, The

se of abstract programming notations provides the
hecessary representational freedom to effect the
indicated virtual machine changes. Some addition-
#1 background material and experience with the ap-
‘Plication of the systems monitor facility is
w@rovided by Russ Hagen in his gaper given at a
. gomputer performance seminar.2l "A description of
"the supplemental functions provided in a perfor-
‘Hance measurement subsystem can be found in the
VSystem Performance Monitor Reference Manual,22

. Resource Management. The B1000 systems support

~the concept that the machine should manage its own
«anvironment. These systems incorporate the stan-
dard Burroughs set of operating systems scheduling

and ather resource managemant facilities. Program
and information segments are handled automatically

for both interpreter and virtual machine processes.

At a typical installation, several language
environments may be concurrently active in a mix
of programs. Through appropriate information
integrity and resource management mechanisms, each
user views the system as a dedicated facility de-
signed to effectively accommodate his particular
Tanguage environment,

Summary

The comprehensibility of communications as a
result of the exclusive use of higher-level no-
tations throughout Burroughs computer systems en-
hances their role in human communication. The
development and evolution of efficient machine
architectures to support abstract information re-
presentations makes the use of higher-level lan-
quages effective and practical,

Acknow] edgement

Many people have contributed to the set of
concepts, ideas, and design principles included
in this paper. Their application in Burroughs is
a tribute to the strong commitment and persis-
tence of Bob Barton and the B5000 team. This

10

. P LT . "
ten it oG oot Sl g R Sl sttt e e i

group, and the many participants in Burroughs
developments over the past 20 years, have expan-
ded and amplified the basic set of ideas,

The author wishes to thank John McClintock and
Barbara Bennett for their conscientious criticism
of various drafts of this paper.

References

1. A New Approach to the Functional Design of
a Digftal Computer. R, S, Barton. Western Joint
Computer Conference Proceedings (1961). Asso-
ciation for Computing Machinery, New York.

2. Architecture of the 86500, B. A. Creech.
Proceedings COINS--69 Third International Sympo-

sium., {1969).
3. A Syntactical Chart of ALGOL 60. (1961).
W. Taylor, L. Turner, R. Waychoff. Communica-

tirns of the Association for Computing Machinery.
Vol. 4, No. 9.

4, Network Definition Language Manual,
Burroughs Corporatioun, Detroit, Mi.

6. B7000/86000 Series DMSI1 DASDL Reference
M:nual. (1978). Burroughs Corporation, Detroit,
Mi.

6. Burroughs B5000 Information Processing
Systems Reference Manual. (1964). Burroughs
Corporation, Detroit, Mi.

7. Burroughs B5500 Information Processing
Systems Reference Manual. (1964)., Burroughs
Corporation, Detroit, Mi.

8. Process Handling on the Burroughs B6500.
J. Cleary, Proceedings of Fourth Australian
Computer Conference (1969). The Griffin Press,
Adelafde, South Australia,

9, Burroughs B6500/B7500 Stack Mechanism,
E. A. Hauck and B, A, Dent, Proceedings 1968
Spring Joint Computer Conference, Thompson Book
Company, Inc. Washington, D.C,

10. The B5700/86700 Series. (1973).
1. Organick, Academic Press, New York,

Elliott

11, Burroughs B2500/B3500 Systems Reference
Manual. Burroughs Corporatinn, Detroit, Mi.

4 -mﬂd»ﬁ'ﬁ. P
' Y LW WS S S AT

et o bl e

YT e T o

Lt

-

T I W e

w2 o e

-



12. Design of the Burroughs B1700. W. Wilrer.
1972 AFIPS Conference Proceedings, ¥ol. 41, Part
1. AFIPS Press, Montvale, N.J.

13. Burroughs B1700 Systems Reference Manual.
(1972). Burroughs Corporation, Detroit, Mi.

14. Burroughs B200 Information Frocessing
Systems Reference Manual. Burroughs Corporation,
Detroit, Mi.

15. A Narrative Description of the Burroughs
85500 Disk File Master Control Program. (1966).
Burroughs Corporation, Detroit, Mi.

16. Burroughs B6500 Information Processing
Systems Reference Manual, (1969). Burroughs
Corporation, Detroit, Mi.

17. An Empirical Study of FORTRAN Programs,
(1971) Software--Practice and Experience, Vol .
l.

18. Report on the Algorithmic Language ALGOL
60. (1960). Communications of the Association
for Computing Machinery. 3, No. 5,

19. Burroughs 81700 memory utilization. Wayne
Wilner, 1972 AFIPS Conference Proceedings. Vol.
41, Part 1, AFIPS Press, Montvale, N.J.

20. Architecture and Programming of the B1700/
81800 Series. (1977). Elliott I. Organick,
James A, Hinds. North-Holland. New York.

21. System Performance Indicator (SPI) Monitor
System. (1976). Russel) L. Hagen. Proceedings
of the Burroughs Computer Performance Seminar at
gi C. Santa Cruz. Burroughs Corporation, Detroit,

22. Systems Performance Indicator (SPI1)
Monitor System Reference Manual (1974}
Burroughs Corporation, Detroit. Mi.

/A

PR TTEEET U TR v

K
%
#
4
!
3
o
2

. A}

E.

3
V,.:d




codednt, v bty
I ST Pers=r TR 7} JPeHTTe erm rimgrims s i < eems et e

B
i
()
o4
b

A SURVEY OF HIGH-LEVEL LANGUAGE MACHINES IN JAPAN

iy

Masahiro YAMAMOTO

Nippon Electric Co., Ltd., Central Research Laboratories
; 4-1-1 Miyazaki, Takatsu-ku, Kawasaki 213, Japan

Ahstract

3 Mary high-level lenguage mechines in Japan
have been made which can use wost high-level lan-
L‘g quages. Saveral proposals and experiments were

' performed since the late 19605 and significant
research started after 1975.

Much of them are proposed on experimental
machines. There are & few commercial high-leval
language machines. It is characteristic that much
LISP and APL machine research has been achieved at
Laboratories and Universities and a few FORTRAN
and COBOL machines have been made by computer man-
ufacturers.

Introduc’ ion

This survey report is an overview of the ac-~
tivitias related to high-level language machines
in Japan. Commercial, expesrimental and pruposed
machines are covered. More space is devoted to
significant charactevisti~s in their intermediate-

hardware confiqurations in order to covel most
high~lsvel languace machines. For aasy understand-
ing and clarification of their differences, arch-
itectural comparisdns between high-lavel language
rachines for the same high-~laevel languages are
considerod.

High-level lanquage machine research in Japan
has baen made for most high~level langudges. Much
of tham, however, concentrate on experimental-level
high-level language machines and theare are only a
fow commarcial-level high-level language mackines.
Soveral proposals and experimants were made in thoe
end of 19605 and early 1970S. Significant ressarch
efforts have started after scwme 1975, as shown in
Fig. 1.
Generclly speaking, it is chaxucteristics that
much research data have been gathered on LISP and
APL machines at Laboratories and Universities and
a few FORTRAN and COBOL machines have been wmade by
computer manufacturers.

Referances are listed at the end of this re-
port in which the reader can find detailed infor-

language architectures, hardware structures, soft- mation. Unfortunately, most of them are written
ware/firmware/haxdware tradeoffs and evaluation in Japaness.
data, rather than thair detailed architectures and
'68 '69 ‘70 ' ‘72 AR k] '74 75 ‘76 “ ‘78 19
A & I A —— A J. b A 'y -
1T
PL/1 xSugimoto
X PORTRAN®
FORTRAN Processor *F230-75 APU? B
*H-180 IAPS -
o F/H-BASICT
BASIC XBASIC Machinel0 1 b
xfirmvare BASICI! 3
3
o compary? o
COBOL
%
orrL L1gp 116 oKobe LISPZ B
L1gP GETL L1Sp m18 okeio LIspM 3
k4
ONK320 okvL1S6 3
.‘&
By
x 3 roware APLIO % ‘i
APL oMimeii ApL3} oQA-1 APL a
oToshiba APL4 ';
oascn o ETL Pascal :1
i PASCAL « Commercial Machine o Experimental Machine * Paper Machine Machine¥ A

-

TN TR TSN ETE L)

.
. f
FB RN V2 o e I e B i3 e S A Gt '1‘yi‘§' 2

1
Fig. 1 High-Level Lanquage Machines in Japan

12




ATy

LIS AT VANREE

High~Level Language Machines
PL/1 Processors

PI/I is the most complex commercial high-level
lanquage. Hernce it is time-consuming to manipulate
on a conventional computer. Therefore, the appsax=-
ance of advemosd and consistent PL/I processors hau
been 1esired for quite a while.

™he first significant stsp in the ressarch on
high-level language machines in Japan occurred with
the proposal for a Pi/1 processor by M. Sugimoto.
In 1969, he proposed a PL/I processorl composed of
& translator, calied the PL/I reducer, and a hard~
vare interpretsr, called ths direct processor.

The PL/I reducer translates a PL/I program into a
list-structured intermediate language, DIPL (Di~
rect Processor Input language), that conaists of
fouxr parts, Program Btructure List (PSL), Statement
Wormal Form List (8KPL), Attribute List (AL) and
Constant List (CL). The direct pruocessor consists
of several functionally autonowmous units, as shown
in Pig. 2.

T™he PL/I reducer has bean ilmplemented. For
typical scientific programs, the object code length
has been reduced by a factor of 25\ on the average,
compared to that of the object code generitad by
the PL/I compiler available at that time, Accord-
ing to the timing simulation program for the direct
processor, it was showm that 284 speed gain over
the conventional computing system can be obtained
for aritlmetic/string operations.

1414 INSTWUCTION ISSUING UNIY
1/0 CONTYOL UMIT
IMSTRUCHIOW CITT

WENORY (N1Y

MRORY UNIT CONTROLLER
OPERATION UmIT

OPEMATION UNIY CONTROLLER
MTRINTY. PART

R i wom Gt ol ah)

becnwamebaean .

- CONTROL PLON
——— TR PLOW

jeegesg

Fiy. 2 Block Diagram of the Direct Processor
PORTRAN Processors

FORTRAN Or array processors are only used as
a commercial high-level language machine in Japan.
Sows of thes have actually been used as an attached
or integrated processor in a conwentional general
purpose computer system for performance enhancement
of FORTRAN program execution. Also, in accordance
with recent urgent requirewents for effective exe-
cution of large scale scientific applications, more
power ful array processors have been planned.

In 1973, S. Takahashi et al. at Hitachi Led.
reported results of fundamgantal, experimental re~
seaxch efforts on a firmwars PORTRAN procemsord,
where FORTRAN source statemsnts are translatad into
both reverse polish and mixed reverse polish inter-
wediate texts. In mimed revexse polish, arithmetic
statements are translated into reversa polish texts
and IF statuments are translated into normal polish
texts, except for arithmetic expressions in thea.
The authacs concluded that the execution tims
ratio for reverse polish and mixed reverse polish
built in microprograms, reverme polish in software
and cbject machine ondes is 0.6:11.3:9.7:1, based
on a FORTRAN dynamic statesent mix. On the other
hand, the object wemory capacity ratio is 0.%3:
oiss 10.58 : 1, based on a FORTRAR static statement
nix,

The FACOM 230-75 APU (Array Prooessor Unit)3+$
from Fujitsu Led. is a pipelired vector machine -
attached to a PACOM 230-75 system in which the APU
and CPU (Central Processor Unit) share the main
memory (Fig. 3). The APU machive structure is
charactarized by various kinis of internal regis-
ters (vector registers, data registers and basas
registers), vector descriptors and powerful vector
instructions for array or vector operations. A
FORTRAY user's program is written in AP~FORTRAM
which is an sxtension of standard FORTRAN to ian-
clude vector functions. It was indicated that the
maximum APU performance is 22 Mega Floating-Point-
Operations and the APU system performance of vari-
ous application progrums written in AP-FORIMAR is
4-20 times that for corxesponding CPU programs.

An APU system was iustslled in Japan's Mational
Aarospace Laboratory.

The IBM Systam/360 ~ 2938 AP and the FACOM
230-75 APU are an attachad processor to the central
processor through an 1/0 channel or a shared main
memory. In order to solve problems, wherein a large
amount of hardware was necessary and that a special
description using non-standard FORTRAN would be re~
quired, Hitachi 1td. developed the M-180 IAP (Inte-
gratsd Array Processor)5 wherxe array processing
functions are included within a central prooessing
unit as a general instruction set (vector instruc-
tions). A concise vector instruction sst, consist-
ing of 28 instructions, was selected based on an
analysis of the statistics on the bshaviour of
FORTRAN programs, obtained using a software tool,
PORMAP 8. In the M-180 IAP, FORTRAN user's programs
written in standard PORTPAN are vectorized through
the vectorizing FORTRAM coqncre. It was shown
that about 508 of the benchmark programs using exe-
cution steps can be vectorized by 28 vector instruc-
tions.

verds W wevdn 200k wedn

W MW wrds
aery Wit —muy wit musry wait amky Wit
[~ ] Memsry amntawl wit 8 e
I/0 Davise
Channals

Fig. 3 The FACOM 230-75 APU System Configuration

B ALt A

L e

S EWS

ST

>

e S G

S d




In 1974, Y. Nagai, M. Yamamoto et al. of NEC
Ltd. quantitatively analyzed software/firmware/
hardvare tradeoffs in & BASIC interpreter. For this
purpose, three kinds of high~-level language Mu-
chines, a software-implemented BASIC interpreter
(5~-BASIC), a firmwarv-implemented interpreter (F-
BASIC) and a firmware implemesnted interprater with
additional hardware (H~BASIC), were implemented.
r-BASIC? is implemented with firmware on the Goner-
al Purpose Microprogramsed Simulator (GPMS)4l, o
reinforce the F=BRSIC performance, hardware fuac-
tions, such aas trunafer/pointer operations, associ-
ative functions and 8o on, Were introduced into the
H~BASICS on the microinstruction level. ach BASIC
processor translates & BASIC progran into a same
intermediate language, and then interprets it,
Experimental results? show that 17 times perform-
ance lmprovement is obtained by adopting firmware.
1.6 times more performance improvament was obtained
by intrcducing appropriate hardwere functions. The
memory fapacity necessary fci a languAgqe processor
was algo reduced.

M. Yamamoto, an implementor of the precoding
axporiment, prorosed an advanced high~le¢val lan-
guage architecturel® for a BASIC machine as an ux-
tenstion of Lhe: abova thres BPSIC interpreters in
1975, The BASIC machine is capable of both trans-
lation and interpretation of a BASIC program and is
characterized by a tagged architecture, a large
number nf ganeral purpose regigters and powerful
machina irstructions. In addition, bit-handling,
masking and table-pointer operations ate &iso in-
stalled. It was astimated that the BASIC machine
performance is about 2 timas that of F=-BASIC.

1. Maruyama of liimeji Institute of Technology
made a BASTC interpreterll.l2 on a general purpose
minicomputewr, HP-21MX. Using a software translator,
BASIC programs are tranglated into intermediate
languages, which are interprated by a fiymware in-
terpreter. In the interpreter, conmonly usable
functional routines for such as table pointer/entry
maaipulations, duta conversions and arithmetic oper-
ationg, vrather than for the whole of a special
statement, are implemented with microprogram tech-
niques, based on execution frequency evaluation
data. The microprogram amount is about 1.3 k words.
A firmware BASIC interpreter is about 4 to 9 times
faster than a software version on henchmark test
programs.

COBOL Machine

COBOL is the most commonly used commercial
programming language. It is used for some 70% of
all programming. Therefore, hitherto, conventional
computers with specialized functions or architec-
ture for COBOL and COBOL machines appeared at the
comnercial level overseas. .

On the other hand, in Japan an experimental
COBOL machinel3 similar to NCR COBOL virtual Machine
has been put into implementation since 1975 in NEC
Ltd. The COBOL machine architecture, called COMBAT
(Cobol Oriented Machine Basic Architacture), has
many facilities for efficient COBOL program execu-
tion, e.g. many internal data, data descriptors and
intensive COBOL funotion capabilities. Th- COBOL
machine hardware is functionally composed of three

DRt i ey

processur modules for instruction fetch, operand
fetch and instruction execution as shown in Fig. ¢.
It was indicated that the COBOL machine execution
timald,15 ig about 3-5 times faster than that in a
medium scale conventional computer. The COBOL ma-
chine is running ar a procossor attached to the
conventional commercial computer.

IAC I
o e e ——-
4 FIFo /riro kN
Kl T FPM orPM EXPM
External
System
M MCPM
ILF

AC: Advance Controller
ILF: Intermediate
Language File
FIFO: First In First
Out Memory
IFPM: Instruction Fetch Processor Module
OFPM: Operand Fetun Proceasor Module
EXFM: Instructicn Execution Processcr
Module
NCPM: Mamory Control Processor dodule
MM: Main Momusy

Fij. 4+ COBOL Machine .onfiguration
LISP M:ichines

The mos . researched high-level laiguage machine
in Japan i$ ¢ LISP machine. Since the LISP languaae
has many inu~csive characteristics, e.g. dynamic
data allocation, recursive function call and iist
porcessing, it is impossible to effectively execute
L1S» programs on conventional computers. Increase
in research areas for symbol manipulation and advent
of low cost, highlv functional and easily usable
microprocessors have been accelerating the demand
for LISP machines since 1970 in Japan.

An early experiment on a LISP machine was made
by T. Shimada et al., of Electotechnical Laboratory
(ETL) in 1974, LISP machine research in ETL nas
been performed in three steps. The first experiment
involves a microprogrammed LISP interpreterl6:17 on
a user microprogrammable computer, HP-21MX.

A Babrow stack model is implemented with micropro-
gram techniques, on whisl: LISP intorpreter is made
with LISP oriented highly efficient iistructions.
Alsc backtracking and coroutine functions are adopt-
ed. It was concluded that about 5 to S times faster
than HP-2100 machine instruction codes is attained.
Moreover, much basic evaiuation data about micro-
pProgrammed LISP interpreter were obtaincd. It is
shown that highly efficient decision making includ-
iny multi-path jump, recursive call at the micro-
program control level, bit manipulation and main
nemory control are effective for a LISP interpreter.

74

T N R T,

(o o oty

N

.

S R A T

¥R KA TR



T TR T ST VI » Ty i

Rased on thetu: evalustion data and experience,
new LISP machine {ETL LISP Z)1A was implemented on
& universal cmnu*an machine, ACE (Adaptive Com-
puting Element}#%, Interral data torms* and intor-
preter structure for this LISP machins are identi-
cal to tha HP-IINX varsion. In ordar to attain
battey performance, howaver, all the interpreter
is written in microprogram, and stack configuration,
hMrdvare register utilizacinn and memory managemant
arc improved #ue to using advanced ACZ hardware
facilities.

In addition, virtual LISP machine!? is being
imploemented on a powertui 16-bit microcomputer,
whoss concaptual structure is shown in iy, 5.

n the virtual LISP wachina, intermediate languaqu
instructians Girectly corrosponding to LISP func-
tions are cons.dered,

Stach Punstions

Conizel Punstions
LW*]L

| AU - Argumpnts
[__Shwo\we Plage |

persma e

. Variabler
taetreet ‘:’ Sostiantion | |posemcnnenns
Horage fves g Prossseing 1
[ §

i

L2100 Pyimitive
Pansty Dets
(Lists, ove)
!m Aroe
Fig. % Conceptual Structure of the Virtual LISP

Machine

L14P machine NK3%0.21 o¢ Kyotn University is
Lased on a LISP ariented special processor, which
is 72-bit data length, 42-bit microinstruction
length and 64~bit list-cell length, Alsn, it has
special hardware units, such as a transfer table
for enarating microinstruction branch addresses to
aid checking for taq field and data category and a
rardvare stack, whose top areas are always stored
in & fast buffer mewmory. NK3 has about 150 macro-
instrucecions mainly for stack and tag manipulation,
in order to effectively execute LISP functions.

The yrocessing speed of a LISP interpreter on NK}
it 5-6 times that of a LISP system on a ucnaral
purpose minfcomputter. Figure 6 shuws an NKY
Liovkdiagram.

-

Fig. 6 Block Diagram of LISP Machine NK3

S T b e e S St A

Rasearch on LISP machines in Japan was pro-
moted by the advant of lowecost, high-performance
and easlily usable microprocessors, specially bit
or byte slice microprocessors.

X. Taki et al. at Kobe University developed a
LISP procossor22:23, organized with 4-bit slice
microprocessors (Am 2900 saries), which has 16-bit
data length, $6-bit microinstruction length and
32-bit list=-cell length. It also has spacial hard-
ware components characterized by a 16-bit 4-k word
hardware stack, a field extractor for data masking
and shifting, a 3-bit 1 k word mapping mewory gen-
erating a 3-bit uaage code corresponding to the
main memory address and a l-bit 64 k word bit~table
supporting garbage collection function. Pigure 7
shows the hardware structurs for the Xobe University
LISP machine, which is connected to a general pur-
pose computer, PACOM 230-38, through an 8080 micro-
computer. A DEC LSI-1ll minicomputar performs ini-
tiation and maintenance functions, LISP program
loading and input/output operations.

13 byte @ @ K 230-30
"

] u-uz
mn-m-a- m

) ¢ o ———— - S——

Fly. 7 Hardware Configuration of A LISP Machine
System

T. Usuki et al., from Keio University, imple-
monted a LISP machine on a multi-microproces-
sor system, which is composed of an interpreter
processor (IP), a storage management processor (SNP)
and an input-output proosssor (IOP). 1IP performs
overall control of LISF program prooessing and LISP
program's interpretation, and has & 16-level hard-~
ware stack for sequence control and list manipula-
tion capabilities. Garbage collection and CONS,
RPLACE and RPLACD funcution execution are achisved
indepandently of interpretation on S8MP, which is
organized of byte-slice microporcessors, 32 special
rogisters and a writable control storage. Garbage
colluction function is attained based on Dijxstra's
algorithm. 1I0OP, a general purpose minicomputer
{NOVA) , accomplishes input operation of a LISP S~
cxpression, conversion from it to internal forms
and file prccessing. Figure 8 shows the configurs-
tion of an expcrimental multiprocessor system.

s Arbite L T
oy | | 2

Tig. 0 System Configuration of Experimental
Multi Processor System

75

£
e

LAl R e YA e L

N 5 NG PRI




H. Yasui et al., of Osaka Univarsity have beon
developing a new multiprocessor LISP machine, EVLIS
machine26:27 1n g traditional multiprocessor LISP
machine, list processing and garbage collection or
1,0 processing are performed in a parallel mode.

O the other hand, in EVLIS machine, each arqument
for a LIsP function, EVLIS, is parallelly evaluated
it ultiple processors. It is based on the concept
that parallel interpretation of EVLIS arquments is
possible if an argument evaluation does not affect
the other avgument because of its list alteration
opatation. Figure 9 shows the system configuration
of the EVLIS machine, in which an evaluation proc-
vsuor can accomplish an argument interpretation.

An vvaluation processeor is organized of Intcel bit-
uwlice wmicroprocessors, 1 3000 serie. and is 20-
bit Jdata length and 50-bit microinstruction lenyth.

LISk machine on a universal 8-bit milcroprocessol

(v 4080). L. Goto, T. Tda el al., of the Insti-
Lute of Physical and Chemical Research, are desiyn-
iny a machine for numerical, symbolic and associa-
tive computing, FLATS (Fortran and Lisp machine
with Associativc features for Tuples and Sets)29,
In FLATS, overflow free and variable precision
arithmetic, table look-up computation, and associa-
tive computatic. are realized by hashing hardware,
tay mechanism and hardwarc list processing.

“ontrol vus

A Ju-hit list cell can be brough into a CAK~CDR
vegister from a main momory.,
baye collection Function requirement, all covalua-
titon processors Stop incerpreting EVLIS arguments

when there is gar-

Eval
Proces-
[

or
— jt

and paratlelly perform their function, A simula- }

tiol 1sult related to the performance cnhancement Bus e

Jue to multi processors was shown in the papex27. unteolle N, -~-?x—~-——— ——— e
i f
4 N

1ypical LISP machines have been surveyed.
Ialble 1 shows a summary of their major character- Werory| | Memory) - [Hemory
istigs. 1h addition, there are other research ef-
forts related to LISP machines.

ALPS/T (Aoyama

bank ) bank 2 bank 8

Lint Processing System/I)28 (g a compact, low-cost 'Ly, 9 bystem “unfiguration of EVLIS Machinc
rable 1 Architectural Comparison Between LISE Machiues
Intermediate Procesgor Special Paraliel Hardwar: Garbaqgue Misce -
Language Configuration Processor Process ity stack colleetion | anvous
Architecture
{Divect Inter- Univera} host Babrow Stack
e . - - Model
v LISP || Pretation of ACE + NOVA 16 :sc micro . ode . .
It LISP texts) processor Ring Mode
Stack
(8 words!
e e e — —
CAR Special Proce- special Faut Buffer Tra?sf‘r
WK COR §801r hardware - I Memory - Tab e
CONS +Interdata 8/32 Processor
S - -
Ko CAR Special Proce- Bt Slice @k “ord Mapt 1ng
{}sv CDR ssor Microprocessor - Hardwar: Hit Table Momory
! Hyou Stack
CONS +LS1 1 {Am 2900
B (Direct Inter- |3 Special Byte Slice Execution &
Koo Pretation of Processors Microprocussor | Garbage - - -
List LISP texts) Collaction
BVLIS (Direct Inter- |4 special Rit Slice rarallel
“:}b Pretation of Processors Microprocessor | execution - - -
Machina b 1ygp texts) (1 1000) of List
Processing
76

REST GER) NSRS P LI

Al .
BT R N 2 A SN ST P AT TR AUy

Eoa-

R IR e SEOLY SN

< o i

i

- TR IER SO S

S aad

EN

o cde




APL Interpreters

APL has many features to bc implemented by
firmwarc/hardware techniques, some of which are (1)
dynamic data and dimension attributes associated
with variables, (2) various operators to be applied
to vector and array operands, and (3) a large num-
ber of nonstandard operators. Moreover, because
APL allows dynamic data handling and because it is
an interactive language, data type checking, sub-
script checking and text editing are to be perform-
ed at execution time.

In order to overcome inefticiency in APL
software interpreter due to these features, some
microprogrammed APL interpreters, similar to IBM
Hassitt's machine, are experimentally implemented
on a microprogrammed computer since 1975 in Japan.
Various quantitative evaluation data about firm-
ware effectiveness in an APL interpreter were
accumulated.

In 1975, an early experiment on a firmware
APL computer3" was made by T. Motooka ct al. at
Tokyo University on an experimental machine, pps143.
An APL source text is translated into an interme-
diate language on a one for one basis by a lexical
analyzer writton in a microprogram. /A intcrmedi-
ate languagu is composed of identifiers, operators,
constants and brackets. The order of elements for
a statement is same in the internal represontation.
Tho intorpreter is written in microprograms and
APLs. Both the lexical analyzer and the interpret-
eor are implemsnted on a microprogrammed experimen-
tal computer, PPS]l. The authors concluded that the
tirmware APL computer is much slower than an APL
machine in software on scalar operations, but fast-
er on many vector opsrations.

H. Miyawaki et al. of Himeji Institute of
Technology made a firmware APL interpreter3l.33,
based on a quantitative analysis3? of the inter-
pretation part, which (s implemented in software
on a gensral purpose minicomputer, HITAC-10. An
APL source statement is translated into an intor-
mediate text which is composed of 32-bit text cle-
ments followed by an end clement as shown in Fig.
10, 1t was indicated that, in a firmwarization,
appropriate functional modules, frequently used to
implomont an APL interpreter, are to be selected
zdther than all of an APL statement. As a result
of this experiment, it is shown that a firmware
interpreter, made of about 4.8-k words micropro-
grams is 6 times faster than a software version.

8 Bit 24 Bit
,—._I-——\,——-—h——-——q
- Subsidiary
onal part

Source Statemmnt
All;l 21«8 (mxC)oD)

(Instruction counter) -t

Fig. 10 Source Statement, Intermediate Text
and Its Element

Y. Morimoto from Toshiba Ltd. implemented a
firmware APL interpreter, APL/EPOS I interpreter34:35,
on an EPCS (Experimental Polyprocessor System) sys-
temd4, whose componant processor is organized of a
universal host microprocessor, PULCE (A high per-
formance universal computing element)45, dedicated
to emulation with powerful microinstruction sets,
various kinds of hardware registers and so on.

APL source Statements are translated intd inthrwe-
diate texts similar to the preceding firmsare APL
interpreter by a translator written in pseudo APL
language (PAPL), which is emulated with micropro-
qrams. On the other hand, intermediate taxts are
interpreted by PAFL and microprograms, and micro-
programs mainly play scanning for intermediate
texts, decision on operation category to be mani-
pulated and execution of basic APL operators.
According to evaluation data, APL/EPOS I interpret-
er is 100 times faster than a software version, on
some APL functions. Also, it is faster than the
exscution of object codes generstsl by a compiler.

Moreover, another similar research effort36
has been carried out on a dynamic microprograsmable
computar, QA-146, by K, Kinoshita et al. of Xyoto
University. Various unique experimsntal results
will be obtained because of many special QA-l fea-
tures, e.g. hardware stacks, low-level parallel
processing capabilities dus to using four ALUs and
tag minipulation functions.

PASCAL Machine

The use of a structured high-level languagse,
PASCAL, is increasing due to'its high portability,
programmer/exscution-efficiency and compactness of
language processing system. At the sams time, in
order to effectively executa PASCAL proyrams, PASCAL
machines, such as PASCAL Microengine of Western
Digital Corp., have appeared. ot

T. Furuya of ETL experimentally implemented a
concurcent Pascal Machine3? on the multiprocessor
system (ACE) 2, based on P.B. Hansen's Concurrent
pascal Machine. An interpreter to execute Concur-
ront Pascal Machine (CPM) instructions and a Kernel
to supervise parallel processes were made with both
PDP-11/45 instructions and CPM oriented language
(C-lanquage) which were emulated with ACE system
microprograms. C-language consists of conventional
machine instructions like PDP11/45 and frequsntly
used CPM instructions. In order to parallelly exe-
~ute multiple processes on a multiprocessor system,
process synchronization instructions and 1/0 opera~
tions, having a process.schedule function, are in-~
troxduced to the Kermel with the aid of an ACE syn-
chronization module: As a result of the experiment,
various valuable cvaluation data were shown, and
qgreat decrease in overhead time was attained by
parallel execution of processes and efficient proc-
ess switching. :

Other Research Efforts on High-level Language
Machine Design Problems

In addition to high-level language machine im-
plementation efforts described earlier, a number of
nther research efforts related to high-level lan-
quage machine design problems have been made. The
intermediate lanquage architecture of a high-level

77

. L Lyl
P2 0 TRPT RSP RS U W o, 23t g

SRS




T PIIIII L TT TRIIT S —y

language machine is one of major keys for success-
ful implementation. Some evaluations38:32 on this
problem were accomplished., Moreover, the problem
of a multilingual high-level language machine was
considered™v,

sumnagx

High-level language machines .in Japan were sur-
veyed. Generallv speaking, much of them are at the
stage of fundame.tal and experimental research com-
pletion, 1In the future, the appearance of reqular
comnercial high-level language machines and the
confirmation of their effectiveness will be desired.

References

bL/L
1. M. sugimoto PL/I reducer and direct processor,
Proc, ACM 1969 PP. 519-538

FORTRAN

2. 5. Takahashi An experiment of a firmware
FORTRAN processor, Proc. IPSJ 14th Program-
ming Symposium 1973 pP. 201 - 208
(in Japanese)

3, O. Miwa, et al. FACCM 230~75 array processor
system, Fujlts> Vol. 29 No.l 1978 pp. 93 -
128 (in Japanese) '

4. K. Uchida, et al. The FACOM 230~75 array
processor system, 3rd USA-JAPAN Computer
Conference 1978 PP, 369~ 373

5. Y. Umetani, et al. An analysis on applicabil-
ity of the vector operations to scientific
programs and the determination of an effective
instruction repertoire, 3rd USA-JAPAN
Camputer Conference 1978 PP, 331 - 335

G. R. Takanuki, et al. Some compiling algorithms
for an array processor, 3rd USA-JAPAN
Computer Conference 1978 PP, 273 - 279

BASIC

7. Y. Nagai, et al., An experimental study un u
firmware-implemsnted high level languaqe
machine (1], EC Monagraph of IECE of Japan
EC74-29 1974 PP. 73 -84 (in Japanese)

8. M, Yamamoto, et al. An experimental study on
a nigh level language machine with specialized
hardware modules (I}, EC Monograph of IECE of
Japan, EC74-30 1974 PP. 85 -92 (in Japanese)

9. K. Kumano, et al. A quantitative evaluation
of a high level language machine NEC R&D
No.50 1978 PP. 30 - 41

10. M. Yamamoto An evaluation of a high level
language machine architecture, Tech. lemo of
WOAKC of IPSJ Vol. 75-9 1975 (in Japanese)

11. T. Maruyama A firmware BASIC interpreter [T],
Proc. of 19th Nat'l Conf. of IPSJ 1974
PP. 23 - 24 (in Japancse)

12. T. Maruyama A firmware BASIC interpreter (0,
Proc. of 20th Nat'l Conf. of 1IPSJ 1979
PP. 31 - 32 (in Japanese)

P
. . . ,
L N R T Ul den Lad fnsda ki e s

COBOL

13.

14.

16,

LISP

16.

17.

18,

19,

20,

21,

22,

23.

24,

25,

26.

27.

28,

APl

1N

78

M. Yamamoto, et al. A COBOL machine architec-
ture, Proc. IPSJ 19th Nat!l Conf. 1976

PP. 307 - 309 (in Japanese)

M. Yamamoto, et al. Design of a COBOL ori-
ented high level language machine, Proc. of
3rd USA-JAPAN Computer Conference, 1978

PP. 417 - 421

M. Yamamoto, et al. A COBOL machine design
and evaluation, Proc. of International Work-
shop on High-lLevel Language Computer Architec-
ture, 1980

T. Shimada, et al. LISP machine and its
evaluation Tech. Memo of WGARC of IPSJ

No. 74-7 1974 (in Japanese)

T. Shimada, et al. M LISP machine and its
evaluation, J. IECE Vol, J59-D No.6 1976

PP. 406 - 413 (in Japanese)

Y. Yamaguchi, et al. A LISP machine on the
ACE system, EC Monograph of IECE of Japan
Vol. EC76-13 1976 PP. 67 ~75 (in Japanese)
T. Yamaguchi, et al. Dynamic measurements

of LISP programs on a virtual machine,

J. IECE Vol. J61-D No.8 1978 pP. 517 - 524
{in Japanese)

M. Nagao, et al. Machine architecture and
micro-instruction structure of a LISP machine
NK3, EC Monugraph of IECE of Japan Vol. EC77-
17 1977 PP. 67 ~178 (in Japanese)

M. Nagao, ct al. LISP machine NK3 and its
performance evaluation, Tech. Mewo of WGSYM
of 1IPSJ Vol. 7-4, 1979 (in Japanese)

T. Tuki, et al. Experimental LISP machine,
Tech, Memo of WGARC of IPSJ Vol. 32-3 1978
(in Japanese)

K. Taki, et al. Experimental LISP machine and
its evaluation, Tech. Memo of WGSYM of IPSJ
1979 {in Japanese)

T. Usuki, et al, Experimental LISP machine
on multi-processor system, Proc. IPSJ 19th
Nat'l Conf. 1978 PP. 27 ~28 (in Japanese)
T. Usuki, et al. LISP machine implementation
on multi-microprocessor system, Tech. Memo of
WGARC of IPSJ Vol. 33-4, 1979 (in Japanesc)
il. Yasui ct al. Parallel processing of BVLIS
machine, I'roc. [PSJ 2000 Nat 'l Conf. 1979

PP. 183 - 184 (1n Japancse)

H. Yasui et al. Dynamic behaviour of parallel
processing on a LISP program and a system
configuration of EVLIS machine, Tech. Memo of
WGSYM of IPSJ Vol. 10~-4 1979 (in Japanese)
M. Ida, et al. Lisp machine based on a micro-
processor: ALPS/I, J. IPSJ Vol. 20 No.2 1979
PP. 113 - 121 (in Japanese)

E. Goto et al. FLATS, A machine for numeri-
cal, symbolic and associative computing,
Proc. of the 6th Annual Sumposium on Comput oy
Architecture 1979 PpP, 102 - 110

T. Motooka, et al. A fiooware APL machine,
vroc., IPsJ l6th Nat'l Conf. 1975 vp, 109 -
110 (in Japanese)

T T T P LY ey

CEC . . e g

S SN

P A

e

LTSN VIS, 273

P



"EZ
¢
¥
Y

- AT R G e -

|

n.

3.

4.

35.

N. Miyawaki, et al. An APL interactive 46.

precessing system in firwwers, Proc. IPSJ
j6th Mat'l Conf. 1975 PP. 111l -~1l12

(i Japaness)

M. Miyawaki, et al. Analysis of the inter-

- pratsr of the APL interactive processing

system and the points to iwmplement in firmware,
J. IP8J Vol. 19 No.$ 1978 PP. 390 - 397

(in Jepanese)

%. Miyawaki, et al. Effectiveness of firmware
in an APL intarpreter, J. IPSJ Vol. 20, No.2
1979 PP, 172 -178 (in Japanese)

Y. Morimoto, et al. Operator processing in

an APL interpreter, Proc. IPSJ 17th Mat'l Conf,
1976 PP. 547 -~ 548 (in Japanese)

¥, Worimoto Implementation methods of &

Tizemare APL interpreter and its evaluation,

, Tech. Mamo of WGSYM of IPSJ Vol. 9-2 1979

{ir Japanese)

R Sineshits A firwware APL processor on the

‘@), Prec. IPEJ 20th Mat'l Conf. 1978
. 29~ 30 (in Japaness)

L o~ ]

n.

)

T. Feruya Osncurrent pascal machine on multi-
precesser system (ACE), EC Monograph of IECE

-of Sapan, BC 780-30 1978 PP. 1-10

"(h Japanase)

OER PESIGN PROpLENS

41.

4.

M. Arisawa Compilers with intermediate code,
‘snd intermediate code machines, EC Monograph
of e of Japan EC 74-26 1974 PP. 45 - 52
(in Jepanese)

K. Tanaka, st al. Design and evaluation of
interwediate language for firmware interme-
diste-language machines, Proc. of 16th Mat'l
g, of 1P8T 1978 PP, 133-1M

{in Japaness)

¥. Ritajima, et al. A microprogrammed imple-
mentation of high-level language oriented
multi-processor system, EC Monograph of IECE
of Japan EC 74~28 1974 PP. 63 -71

(in Jaganess)

i}

K. Yamamoto, et al. A microprograsmed com-
putar design and evaluation system, Proc. lst
YEA-JAPAN Computer Confarence 1972

. 139-154

. Iisuka et al. ACE - A nev modular computer

_qeobitecutre, Prov. 2nd USA-JAPAN Cowmputer

Canference 1975 PP, 36 -41

‘9. Notecka, et al. Polyprocessor system:
‘PP8=1, Information processing Vol. 15 No.?7
19N PP, 357 - 564 (in Japanese)

. ‘Mackava, ot al. Rxpesrimental polyprocessor
‘sysbem (EPOS) - Architecture, Proc. of The
Ak Mmual Sympesium on Computer Architecture

1979 . 168 - 198

8, Iisuka, et al. Davelopment of a high-
pasformance universal computing element-PULCE,
Proc. APIPS NMational Computsr Conference

wel, 47 1978 PP, 1255-1264

19

e LT siiein aditCaale s ik iy

H. Hagiwara, et al. HNardware organization of
a low level parallel processor, Proc. of IFPIP
Congress 77 1977 PP. 8355 - 860

£

1
§
4
5
ﬁ

o




ST S

B S N

T ATy

e T

Reflections on a High Level Language Computer System
or
Parting Thoughts on the SYMBOL Project

David R Duzel’

Bell Labuoratones
Murray Hill, New Jersey

William A. lenn'

Hewletl- Packard
Ft Colhins, Colorudo

ABSTRACT

The SYMBOL system is the prime example of
the actual construction and use of a high level
language computer. It is unique in the architecture,
the instruction set, and the language. This paper
atempts to summarize some of the lessons learned
from the machine during the last eight years of its
use. Comments are made on the high level instruc-
tion set, and how the descriptor and tag mechanisms
aftected the system. Several of the processors are dis-
cussed, including the automatic memory management
and the hardware implemented operating system.
The  difficulties  encountered in  debugging the
hatdware and the software are compared.

Intraduction

One of the most radical computer architectures of the last decade
wits unveiled in 1971 with the announcement of the SYMBOL'-2 com-
puler system. The prime goal of the SYMBOL research project was to
demonstrate with o full-scale working computer that a procedural
general-purpose programuning language and a large portion of a time-
shared operating system could be implemented directly in hardwase,
resuling in o inarked improvement in computational rates.! A rurther
gonl was to show that such a task could be mounted by a relatively
sl group of people in s reasonable amuant of time through the use
of uppropniate  design tools and construction lechniques.  The
announcement and initial papers on this computer system were made
at 4 time when it was not yet fully operational, and was being moved
to lowi State University for final debugging, evaluation and use.
Albter arrival at ISU the computer was made fully operational, and wus
used in 4 programming environment.

It would be nice if 4 definitive statement could be made neatly
categorizing all of the successes and failures of the project.
Unfortunately, such daia was remarkably difficult to collect, project
members still disagree on many issues. Part of the problem in cvaluat-
ing SYMBOL wus that the machine was radically different from tradi-
tionul computers in so many ways that u controlled comparison was
practically infeasible. Nevertheless. we feel it is important 10 Mate our
opinions; it should be understood that the Inllowing comments ure per-
sonal observations by the authors, based upon four yeurs of daily con.
tact with the SYMBOL. machine. In defense of the original designers
of the machine, we feel it necessary to reiterate that SYMBOL wus
intendedd as a lcamning device, rather than as a comsaercially viable
procduct.

1Wark done st lowa State Universty under NSF grant GJ33W7X

- i 2T i (D e WS st

Background

The roots of SYMBOL go buck as far as 1964, when it was
decided by a group of engineers at Fairchild's research facility in Palo
Alto, Culifornia that the future of integrated circuit technology dic-
tated the use of hardwere for traditional software functions. The
design of the system was, and still 15, a unigue example of i completely
top down design. 1t was feit that existing programming fanguages had
been influenced too heavily by the underlying hardware. and that valu-
able programmer time was unnecessarily being spent performing func-
tions such as memory management because of unreasonable computer
architectures. A high level language computer was scen as an answer
to reducing rising software costs.

One of the first tasks tackied was the specification of a new pro-
gramming language(SPL)43 along the lines of ALGOL 60 and PL/I,
but without underlying muchine influences. The language was
designed for processing character oriented data that covld be variuble
in type, shape and size. Rigid type and size declarations that would
nommally aid a compiler were omitted from the language as they were
scen to burden the user: conversions and space management were hun-
died automatically by SYLIBOL's hardware. Structures of arbitrary
shape were 1o be explicitly representable in the language. A top down
design was derived from the language specification and the desire to
support multiple users in an interactive eavironment.  Part of the
research effort was to probe the limits of hardware; even such tradi.
tional software tunctions as the text cditor were put in hardware  The
system was designed so that a user could walk up to a cold computer,
turn 1t on, and have all the functions necessary to begin programming
in & high level language using virtually no system software. The
resources needed to design this complex hatdware were substantial. A
computer aided design system®7 was developed to check timing and
louding, to do plucement and wire routing, and to maintuin a system
for documenting the circuitry of more than 20,000 packages.

Al the time that the fabrication of SYMBOL was compicted und
debugging began. the semiconductor industry was in a recession und a
managerial decision was made not to continue the project through a
scoond design that lowa Stute University was to have reccived for
evaluation. Instead ISU obtained the original machine from Fuirchitd
in 1971, through u grant from the National Science Foundution, for
the purpose of bringing the machine to full operatin s that the
unigue ideas of the architecture could be more fully documented ind
cvaluated. At ISU the machine was brought into useful operation by
1973, Work on the system sofiware and hardware was done by a
group of about six people, mainly graduate students. Funding for the
project terminated in 1978, and shortly afterwards hardware failures
forced the machine to be permanently decommissioned.

80

B T N

ol UL st

RECR SARCIPr NN LT « 3

T




A e T, e

Rk U e e

prorT

.

O IREY

Experisnce with a High Level Instruction Set

The SYMBOL instruction set®-¥ reflects the SYMBOL Program-
ming Language with aimost 4 one-to-one correspondence between
tokens in the source and the object code. The hardwired Translator
takes a source program and generates an internal postfix representation
1 be execwted by the Central Processor.  All operators are generic; the
types of aperunds are determined from the dewriptors and type tags
umacited with ench identifier or constant. The instruction set i
ausihetically appealing in its simphicity. There arc upproximately fifty
irdructions, only six of which reguire an addres fickl. AR refereces
to identifiers are made with an instruction that contuins the address of
the identifier's descriptor. Constants may appear in-line and are
always tagged. The advantages of the instruction set would appear to
be ity semantic conciseness and uniform mechanism for referencing
data.

Cude compaction

There are several problems with the high level nature of the
instruction set. only s few of which are specific 1o SYMBOL. The
high level and postfix stk orientation of the instruction et were
expevted 10 give good code compaction. Closer cxamination however
reveubed thut SYMBOL's code was much less compact {or typical pro-
grams than on traditional muachines such as the IBM 360 or PDP-1)
Several fuctors account for this poor code densits. A substantial fric-
tion of the object code consisted of ron-functional “end of statement”
opcrations, debugging links pointing to the source program und No-
Ops. Code density was also lost due the fact that opeodes, which are |
byte in length, could be placed only in the first or fifth bytes of the
cight byte word, thus wasting three bytes for euch opeode that did not
reyuire an address field. The Translator contributed to the problem by
producing  extreniely poor cnde. at times cven replicuting  non-
functional instructions, The strict one-to-onie correspondence between
swirre and object code resulted in the absence of many instructions
that could have been useful in opiimizing for common special cases.
Examples of such instructions would be increment, set to zeto, and
uppend o character, The unusual memory structure abw hindered code
compuction by prohibiting any wddress cokulutions. thus precluding
space suving using relative addressing techniques. The lesson Icurned
wis that code compaction does not necessarily result from high level
instructions, and that factors of two of three in code density can he
fost without careful integration of the instruction set. compiler iechnol-
ogy and the memory structure.

High Level Instructions and Interrupt Handling

An unexpected lesson was that there arc times when instructions
can be ut two high a level. Because of the variable wagth operands
und high level operations, hundreds or ¢ven thousant. of memory
references could be required to execute a single instruction.  This had
rathar severe consequences on interrupt handling (page fault, disk ser-
vicing. user interrupt, process switch, etc.). Proper interrupt handling
requires the ability to step =xecution, handis the interrupt. and then
resume exccution of the original instruction at the puoint of the inter-
rupt, For efficiency ressons it is important to he able 10 stop execution
of an instruction (without completion). suve ail state information active
in the proceming of the inMruction and resume cxecation at or near
the point of interruption rather than o resturt execution of the instruc-
tion from the buginning.  For a0 high lesel alporithm, the state

information that must be saved can be ratieer large. A large fraction
ol SYMBOL's design bugs were the result of the failure to save all the
necessary stute information.  This type of bug was extremely difficult
to track down, ds the fatal interrud was often generated von-
deterministically from combinations of disk interrupts, clock time-outs
or users pressing interrupe buttons. Another problass was the inabitity
to save ail the necessary information for particular stages of the slgo-
rithm. These oversiphis were eventually fixed. sometimes at (he
expense of sioring state information # “convenient checkpoints™.
Restarting at such checkpoirts repeated needicss work after tsek shut-
downs, and wore, caused hundreds of times more state saves than
were necessary; this degraded system performance perhaps a3 much as
W,
Optimization

CTode optimizetion in SYMBOL woukd be difficult o achieve
ecause of the generalized nature of the operations. The addition nf
fower ievel instructions could have allowed optimization of many spe-
cinl cases. For cxample, incrementing a variable on SYMBOL could
tuke over u dozen memory references due to its stack mechanism and
indirection through descriptors. The unitorm referencing to data struc-
tures meant that a compiler could not optimize accesting for special
canesy; in particular & tremendous performance penalty was paid witis
SYMBOL because the memoly structure made it impossible to perform
teaditiorsul indexing and address calculations. Even if such indexing
were possible, there would be an incompetibility because of the insbil-
ity to do binary arithmetic for addressing on the decimal only
machine.
Descriptors and Tags

Because SYMBOL was one of the few ¢examples of a descriptor
based machine und a tagged architecture. a few comments are
appropriate.  Operand and instruction tagging was useful in catching
occasional machine errors where, for a number of reasons. a emory
reference returned an inoorrect value, There: were never any instances
where datin could possibly be mictaken for program or vice versa; this
did in fuct report muny machine errors that might have gone
undetected in a traditional machine. Tags were aleo of great benefit in
debugging and in developing sophisticated software debugging tools.

Descriptors had an even stronger impect on SYMBOL, both
pasitive and negative. Descriptors were invaluabie in efficiently imple-
raenting the dynamic typing present in the language and in the benefits
provided for debugging tools. On the other hand, impismenting recus-
sion in the SYMBOL Programming Language was a task left to system
software, and turned out to he extremely inefficient, A simple tent of
Ackermann’s function would show SYMBOL to be at least three ord-
ers of magnitude slower than traditional machines. The main problem
was that the descriptors for the entire procedure had to be copied upon
a recursive cail if the descriptors themselves might be modified in the
call -- a virtual certainty in SYMBOL.

Need for a Systems Language

One of the problems with the SYMBOL language and instruction
set was that they were not efficient for lower level tagks common to
systemy programming.  The support tools on SYMBOL could have
twen more effectively supported though o systems oriented language
such s BOPL.!Y BLISS,! or C.12 While inefficiencies in short lived

PR

o aa? 2 e i

L & e’ cie ST,

T e R s

dtawnbinany Lot oo

]
d




user programs could be tolerated the same can not be sad for system
software  The SYMBOL Programming Language turned out to be
tnappropriate for systems programming. It is recommended that cven
an computers that intend to support only one user fa guage. o signifi-
cant effort should go into supporting an underlying systems language
Addition of a few lower-level instructions could have made SYMBOL.
an effective multi-language system.

System Software and the Hardwired Operating System

The functions of a co wplete time-shared operating sysiem were
implemented directly in hardware by the System Supervisor, ! aided by
the Memory Cortrotler, Memory Reclmmer, Channel Controller,
Drum Cont.olier, and lapuvOutput Processor.  System sofiware was
wmitended only to handle certain exceptional conditions. but in fact was
used f a much greater extent than the designens eriginally foresaw.
Substantia!l efforts of the research team were speat on developing
logders, text editors, improved diagnostics, demugging packages, library
routines and a file “ystem. This software wus seen as essential to make
the systemvuser interface tolerable  System software accounted for
several thousand lines of code by the end of the project. Much of the
suceess of this software was due 1o che foresight of the designers in
providing "hooks” in the haraware for software intervention. alfowing
the system to retain syme flexibility despite s hardwired implementa-
tion 14

Two important questions are answered by SYMBOL, concerning
the benefns derived from implementing major parts of an operating
syetent in hardware.  First, it would seem that the overall desivn costs
ob developing o hardwaee implemented operatiag system are much
igher thaa an equivalent software implementation; the desire 1o lesser
the cost of developing an operating system was not achieved. Sofmvare
unls were reduced, but overall costs were not. Traditional software
bug fixes were merely exchanged for a "Request for Hardware Modifi-
cation” sheet, the bound RFHMs were over tour inches thick -- und
accounted only for changes after the system was delivered “debugged”
to 1SU! The second and more positive point is that the implementa-
tion of the hardwired operating system scems to have been very suc-
cessful from a performance and programming standpoint.  Though the
mflexibnlity of the hardware cften prohibited changes towarus more
“modern” operating system concepts, the implementation was vely suc-
cessful in terms of the original design goals. Using hardware for
heavily used functions such as process scheduling, virtual memuory
management, memory allocation, and scheduling of inuluple processors
seents (o have been a wise tradeoff. 1t was alsu shown that complex
hardware can be successfully interfaced to the software part of the
operating system.  In terms of the overall design, SYMROL deserves
tecogmtion as & suceessful Operating System Machine as much s 0
dexes for being o High Level Language Machine.

A Tale of Two Processc s

Wihile hapdwired implementation of high leve! tunctions has is
merits, a luok ap two of SYMBOL's processors might prove insightiul.
Pethaps the most striking aspect of SYMBOL. to u user wiais the ami-
ing speed at which programs were compiled (70000 10 TO0OKG state
ments per mnute). The SYMBOL Translator!S 15 probably the only
example ol o compiler implemented entirely with random loge  The

.

A

eanclator is peshaps the most amaang of SYMBOL'S processors. not
only beciiuse of it tremendous speed of compiling bug aiso in that ot
worked at ull. One ol the benefits of this tremendous translation
speed was that no object files were saved. This was an advantage
saving storage space and in insunng that objct programs alwinvs
retlected the current source prograrm.

We do not wish to imply. however. that such speeds ure gen-
erally obtainable from a hardwired compiler and a high level instruc:
tion set. FThe performance figures of SYMBOL's Translator are-yome-
what misleading in that the speed cume primarily from two other fac-
tors. First, the SPL language?’ had a grammar designed to be easy to
parse. Nun-optimal code was gencrated in one pass with backpaictung
und without the need for building compile-time data structures  The
high translation speed could not be expeeted in a proper implementi-
tnon of a compler tor SPE o more complex: pirogramming languiges
sSeeond, the Transtator did almost nothing more than crude code gen-
crittion or assembly. Error diagnostics: were next 10 non-existent,
though 0 the majonty of cases syntax CIrors n programs  were
detected.  Our experience suggests that compilers should only be con-
structed using o high level prograinming language. Compiler compies-
iy cun perhaps he atiacked more successfully by using modern com-
piler writing toul?® 17 than by developing hagh level instruction sis
The poor design of the Translator was uidoubtedly due in large part to
the low-level implementation the designer was foreed to work with and
the infuntile state of comprer weehpology 1o the carly 1960°s.

Debugging the ‘Translator hardware was extremely difficult, o
register Jevel flom chants and wire lists proved to be a totally inade-
quate form of documenting the conceptua! process of t.unslation. In
no way could the design, implementation and deimgging of the
SYMBOL's Transtator have been cost effective compiared to a compilar
programmed in o ugh leve! language. The hardware dedicated 1o the
Frasltor wus non cost eflective, as the fogic wis raeely i use and o
smiliar function could have been performed by the Central Procesws
Perhaps a4 more reasonable tradeoff would have been to provide the
Central Processor with special purpose hardware to aid with the van.
ous translation functiens.  This woud have had the added benetit of
allowing special purpase hardware to be used for other functions in
addition to translation

Even more than the Translator. the VO Processor suffered tron
the nigidity of a hardwired implementation. To offload the Central
Processor, the Q) Pricessor contained a hardwired text editor that ran
extremely yuiklhy  Untortunately the pushbutton operated editor was
w dithicult o use and so primitive that all on-line editing was done i
the Central Provessor with software text editors. The strict sepagittion
of the 170 Processor and the Central Processor did not allow the primi-
tves in the hardwired sext editor 10 be shured by the software wext edi
tors.,

Two lessons are evident. First, essential utilities of o systens such
as i text editor and compiler need the ability to change and grow, both
10 correct bugs and 10 add new teatures. The hardwired approsch did
not allow the possibility tor this growth. The tunctional division wis
i too gross @ levell e gl the specialiced hardware in the Translato
pravided an all or none service. Second. speeitl purp se hirdware s
made Nexibie by madularizang prinstive operations so they van be con
trolled by the software 1t the sequencing ot the primitives in the 1O

PR

St i

T o

e e

5 7 aet ek X

Rl

T




Processor had been controllable by woftware accessibie by the Central
Processos. performance of the soltware editors might have been much
clower 10 thet of the bardwired text editor. wuch of the problem of
SVMBON. was thae the designens thought they hnew inow users woukd
Wt W we the maching. When this view was changed even slightly,
ihe kardwited mature of the Tranalstor, Editor and operating system
Incked the user imio s moid he did nct want to be in.

Massery Maragement: A Case of Strange Bedfellows

One of SYMBOL's unique festures wus its complex memory
organization. SYMBOL provided direct hardwure support both for o
puged virtual memory and for dynaric deta structures  “The SYMBOL
harideare sgported the allocation.  deletion and - manipulition ol
sorage srings.  Them: sorage stnngs were constricted by linking
wpcther sight-word groups.  Linked lits of such storuge srings were
wiad W represemt troe structuns which were uccessed in SPE, as hetero-
gencuns wvays. The sioes and shapes of these structures were dynami-
cully variable.

The designers of SYMBOL foresaw and attempted to mitigute
the adverse interaction of SYMBOL's unique combination of memor)
managenent and virtusl memory. They realized that particulur
maching famctions had characteristic memory access patterns.  For
cxumple. the source code was used in program editing but not at alt
during excoution. In program compilution. source code and obpec
vade were sweanncd only once. whercas e nunwe tables were sanned
ropeatedty . Hoenee, the designers decided that cach page shouki e
wwd for o single purpome and that page fiste wouki he maintained 1o
wpnpate e pages sovording 0 their use. When memory wans alo-
catend. the crade usage clw for the necded space was specilied by the
hurdware.  This usage clas deternuned which page list the system
would consult to find the needed space. SYMBOL maintained three
separsie page lists: one for source code. another for object code. and
the third for it other needs. Once any space on a puge was alloceted.
the puge wis imerted on the sppropriate page list. Henceforth, thi
page would only be wed for further allocations of space of the sume
usuge class, This scheme worked well for program editing and for con-
structing name tables wnd object code at compile time. However. at
execution time. all data sccessing involved onc puge list. o there was
o sdvantage 0 this scheme at that time,

K would have heen worth while 1o experimient with adding more
puge liits to SYMBOL -- lists of puges used sodely for the stack. for
temporaries, or for large structures. This likely would have limited the
scattering of these objects by restricting them to 4 segregated set of
puges. - Unfortunately, implementation of adiditional puge fists would
have required extemive modifications throughout SYMBOL's Central
Processor. and hence was never uctually tried.

In SYMBOL. a single inrge structure could come to occupy small
portions of .8 large number of pages. There was no mechanism for
compecting these structures.  Madifications (o the memory allocation
srategy attacked the problem by preventing some of any recluimed
spece on each page from being found. except for expansion of strue-
tures which already occupied s portion of that page. This was known
o the Spuce Available List(SAL) Threshold technique.'® Meusure-
ments aken on SYMBOL programs which had hud significant paging
activity indicated that this approach reduced the number of page taults

N PR y
e AR L e ALt Sy

g "”‘mmm-— .

83

g

dramzcically. The greatest benefits were realized when one sixth to
one fourth of each page was reserved for the sbove-mentionod expan-
sion

Experiments were performed reducing SYMBOL's page size
from the built in 2K-bytes per page as low as 256 bytes per page. The
use of smaller pages ususlly reduced the pegiag activity for a fixed
main memory size. This technique worked whenever severe ecattering
was encountered, regardiess of its origin. Unfortunately, the use of
smail puges could hurt where sequential access to & large body of code
or duta was typical. Furthermore, the cost of the overhead sssoriated
with a large number of pages could become significamt. Although it
would have contradicted the declaration-free charscter of SPL. ome
cannit help but speculute that the ahility to request contiguous alloca-
tiom of large structures would have reduced paging considerably.

Debugging Seftware on SYMBOL

An outstanding beaefit from the high level nature of the SYM-
BOL. computer wus shown in the efficacy of the debugging tools!?. 2
produced for the sysiem. Programs were developed (o aliow the user
10 examine the state of his program in detail st the souroe program
level. For exampie, at a wicr-generated interrupt the programeer
coujd ask the inguire subsystem where the program was executing and
have the stutement in execution decompiled for dispiey. The decompi-
lation process was remarkably effective, and generally difteved from
the original sxirce program only with respect to spaces and redundent
pitrentheses  Since SYMBOL was a descriptor based and tagged archi-
tecture, the current types and values of all identifiers in the user's pro-
M were known,

There wis never any need for 4 programmer (o realize that his
program was being transiated into an intermediate form for execution.
This is one of the strongest points for the claim that SYMBOL was a
High Level Language Compuier System.2! In addition 1o the benefits
that the machine offered for debugging, the dynamic type checking
mechanisms in the hardware proved very valusble {or detecting occe-
sional machine errors such as trying (0 use instructions ss data or vice
vErNg.

Debugging Herdware en SYMBOL

Onc of the questions the implementation of SYMBOL was sup-
posed 1o unswer was whether or not extremely complex hardware could
be designed und debugged. The answer is that complex hardware can
be designed and debugged but only through the investment of tremen-
dous effort and time. In 1971 SYMBOL was debugged to the point
where it could run simple programs, yet in 1978 bugs were still being
found in virious processors. The situstion appears 0 be 80 diftorent
from bugs thut plague software years after a progrem is developed,
even if it is continuousty having bugs removed. The awthors' experi-
ence with debugging the SYMBOL system and wmore conventional
software projects would suggest that bugs in hardware ocour in mwch
the sime way that they do in software. However, the problems associ-
ated with finding und curing hardware bugs are far more severe,

Chunges to hardware are more time consuming than changes to
software.  Moadifications to SYMBOL had to be done with extreme
care. changes often had unexpected side effects because the conceptual
details of an algorithm were not documented a3 they might have been

e St N
E R, P AT

W WU o
D et re DRCT IR




T

T

P ez Zhee s i o ot

with well commented software. It was not uncommon to cure the
symptom tather than cure the problem because of this lack of concep-
tual documentation.  Unlike software, certain changes could not be
made because of physical limitations such as the number of bus pins or
the number of IC packages that would fit on o bourd.  Hardware
crrors and bugs were not always deterministic.  Because of this non-
determbnism it was first necessary to ascertuin whether a bug was due
to an incorrect algonthm or if 4 circuit was failing because of 4 bad
component. '

Any similur scale hardware project must make special efforts o0
provide the maximum possible effort for developing design and debug-
ging tools. The state of the art in constructing and debugging digital
systems s far behind the sume technology of software systems. This is
probably connected with the limited use of high level engincering sys-
teins such as SCALD?? or DRAW.2 Computer aided debugging is u
necessity.  SYMBOL needed the ability to trace and store the last
several thousand operations in real time and hive the trace informa-
tion analyzed automatically. The limited trace facility on SYMBOL
perturbed the system suificiently that some errors would go away when
traced, and when a problem could be traced reliably it was often
beyond the ability of a human 1o read through hundreds ot lines of hex
bt patterns 1o tind the offending error.

Von Neumann Realities

SYMBOL is a classic example of a distinctly non-von Neumann
architecture.  Features that take it out of the von Neumann class are
the non-contiguous memory structure, automatic memory manage-
ment, distinguishability of instructions from data, the setf-describing
nature of structures, and the high lev2l instruction set.  An early paper
made the comment that

as implemented in the SYMBOL hardware, however, any task
requiring the variable field length processing and storage or the
dynamic structure features of the language should show a consid-
erable performance gain over conventional softwarc/hardware
systems,
Experience with SYMBOL suggests that this is probably true. but
unfortunately there were not enough tasks of this type.

‘The reality was that programs on SYMBOL, as on most comput-
ers, tended to do relatively simple onegstions.  Arithmetic operations
were mainly adding or subtracting very small integers: little use was
made of the 99 digit precision controlled arithmetic. Charucter strings
were most frequently only a single character, and rarely exceeded a
dozen characters in length. While sonie use was made of dynamically
variable arrays, arrays were almost atways. homogeneous and remained
static once grown. At the machiue level. it hurt a great deal that the
memory structure nnd decimal arithmetic processor precluded indexing
with address arithmetic.  Object code, name tables, and source files
were nlwavs static objects after their cvaetion; a better storage organi-
zation for these wou'd perhaps have bzen a traditional contiguous
linear store. The mcral of this story is thai the traditional von Neu-
munn computer is perhaps not %0 ill-siced 10 the operations actuully
performed by typical programs. The SPL lunguage and SYMBOL.
hardware were more poweeful than the averupe user required.  Some
of SYMBOL's morz advanced features could have been implemented
by suftware on a traditional machine to achieve a more cost effective

84

salution to the samie problems.  Perhaps the conclusions would huve
been different in another enviconment. but SYMBOL was not as miuch
an advantage over the von Neumann machine as had been hoped car-
her

Microcode

the hardwiced nature of the SYMBOL maching is olten cniu-
cized for its intlexibility Microcoding has been suggested as un imple-
mentation solution that is flexible and still efficient. The understand-
ing of the authors 1 that during the 60's when technology decisions
were being made. ROM's suitable for microcode lacked speed, lacked
density, and were prohibitively expensive for the quantities required
for SYMBOL. 1If one were to design the same processors today.
microcoding is obviously superior to a random logic implementation.
Part of the SYMBOL. experiment, however, was to push the limiis of 4
completely hardwired implementation: microcode would not  have
accomplished this. ‘The significant lessons to be learued from SYM-
BOL are not whether it should huve been microcoded or not. but
rather in the lessons learned about system complexity, refinement of
complex systems, debugging of complex systems. functional division.
and instruction set design.  In many instances system software needs (o
be 1nstallation modihable, s microcode implementation would generadly
nut fall into this category.

Was SYMBOL Really a HLLCS?

1015 crucial to note why we consider SYMBOL 10 e one o the
tew real High Level Languuge Computer Systems. ‘The SYMBOL
miachine, with and only with the software developed for it, meets the
HLLCS definition™! because it:

(1) Uses a high level language for all programming. debugging and
other user/system interactions.

{2) Discovers and reports syntax and execution crrors in ‘erms of the
high level language source program.2!

(3}  Does not have any outward appearance of transformations from

the user programming language to any internal languages.
Perhaps the most crucial part of meeting this definition in any system
is being able to debug a program at the source language level. The
SYMBOL architecture facilitated this with high level instructions that
ullkowed object code to be easily de-compiled back into source, and n
the self-describing nature of all data objects that allowed the unambi-
guous interpretation of uny data storuge. A High Level Languoge
Computer System is different from and more important than just a
machine with a high level instruction set.

Conclusion

The existence of the working SYMBOL computer system clearly
demonstrates that a high 'avel instruction set, a compiler, automatic
memory managemeni and a major portion of a time shared operating
system can be implemented successfully in hardware, Use of the
SYMBOL system showed to a lesser degree that the costs of bailding
such o system are not less than building an equivident system in
wltware; Uit the ability 0 evolve o system s perhups nore impotion
than having a very fast functional unit that is never used: that perfor-
mance gains from hardwired implementation are eusily lost.

e

s

SN R

+



T R L TN

SYMBOA. taught us u great deul abnut building complex systems

The top down design approuch made it necessary for the the eatire s
tem to be conceived before any of it was implemented; the results
show that this is dangerous. Building complex hardwate is prome to
the wme bugs and fundamental design crrors that plague complex
software symews. SYMBOL contained many excelient and’ unique
solutions 10 individual problema tut the complex interiactions of all of
these solutions combined 10 miake the entirne sysiem cumbersome and
sow. Refinoment snd iterstive improvement are stept that most
wftware xysemw musi go through hefure reaching acceptable levels of
porformuny: and utility; this sop was desperately nocded with SYM-
BOL. Performance could huve been improved perhaps more than an
order of mageitude if many of the known inefficiencies could have
boen tuned or removed. Despite several negative comments in this
papar. the SYMBOL experience was & very positive first step in the
design of High Level Language Computer Systems.

Relerenem

1. R. Rice snd W. R. Smith. "SYMBOL. -- A Major Depurture
from Classic Software Dominuted von Neumann Computing Sy«
tem,” Proceedings of the AFIPS 1971 Spring Joint Computer
Conference, Montvale, N.J.. pp. 575-887, AFIPS Press (1971).

W. R. Smith. et al., “SYMBOL - A Large Experimental Syr-
tem Exploring Majw Hardware Replucement of Software.”
Provvedings of the AFIPS 1971 Spring Joimt Compiiter Conference,
Momvale, N.J.. pp. 601-616, AFIPS Press (1971).

Y. G. D. Owsiey and W. R. Smith, "“The Hurdware-Implemented
High-Level Language for SYMBOL.” Proceedings of the AFIPS
1971 Spring Joimt Computer Comference. Montvale. N.J..
pp. 363-573. AFIPS Prem (1971).

4, H. Richards. Jr., “SYMBOL IR Programming Language Refer-
ence Manual,” Report ISU-CCL-7M1. Cyclone Computer Lab..
lowa State University. Ames, lowa (1973). NTIS accession
number PB-221 378.

4, H. Richerds. Jr. and C. Wright, “Introduction to the
SYMBOL-2R Programwning Language.” Proceedings of the
ACM-IEEF Symposium on High-Level-Language Computer Arcii
tevrure. New York, Assxiation for Computing Mixhinery
(1973). NTIS accession number PR-22K | IS/AS.

6. B E Cowsrt, R. Rice. und S. F. Lundstrom, “The Physicul
Attributes and Testing Aspects of the SYMBOL System,”
Proceedings of the AFIPS 1971 Spring Joint Computer Conference.
Montvale. N.J.. pp. 589-600. AFIPS Press (1971).

7. M. A, Calhoun, “SYMBOL Hardware Debugging Facilities .
Proceedings of the AFIPS 1972 Spring Joint Computer Conference.
Montvale. N.J., pp. 3%9-368, AFIPS Press (1972).

8. D. R Diteel. “Program Measurements on a High Level
Language Computer.”” Accepied for publication in Computer
(1479),

0. P Co Hutchison and K. Ethington, “Program Execution in the
SYMBOL 2R Computer.”  Provecdings of  the ACM-IEEE

(2]

85

1.

14.

IS

19,

2.

Svmpusium on High-Level-Language Computer Archiecture, New
York, Asswiation for Computing Machinery (1973). NTIS
wecession number PB-228 T&VAS.

M. Richards. "BCPL: A Tool for Compiler Writing and Struc-
tured Programming."” Proceedings of the AFIPS 1969 SICC
(196N).

W. A, Wulf, D. 8. Rusecll, and A, N. Habermann, “BLISS: A
Language for Systems Programming.™ Comamications of the
ACM 14(12). pp. TR0-790 (December 1971).

B. W. Kernighun and D, M. Ritchic, The C Programming
Languuge, Prentice-Hall, Englewood Cliffs, New Jersey (1978).
W. R. Smith, “System Supervisor Algorithms for the SYMBOL
Computer,” Digest of Papers, COMPCONT2, New York,
pp. 21-26. IEEE (1972).

H. Richards, Jr. and A. E. Oldehoeft. ‘‘Hardware-Software
Interactions in SYMBOL-2R's Operating System,” Proceedings
of the Second Anmwal Symposiven on Computer Architeciore, NTIS
wovesion number PB-2W 22VAS (1975).

1. A Laliotis, “lmplemeniation Aspects of the SYMBOL
Hurdware Compiler.” Proceedings of the First Ansutl Symposivm
on Computer Architeciure, pp. 111-115 (1973),

S. C. Johmon snd M. E. Lesk, “UNX Time-Sharing Sysiom:
Language Development Tools," Bell Sys. Tech. 1. $%(6),
pp. 2155-2178 (1978).

B. W, Levereit, R. D. G. Cattell, S. O. Hobbs, ). M. Newoco-
mer. A, H. Reiner. B. R. Schatz, and W. A, Wulf, “An Over-
view of the Production Quality Compiles-Compiler Project.”
Report CMU-CS-79-105, Carnegie-Melion University (February
1979). ’

W. A, Kwinn, “Memory Management Policies for a Hardware
Implemented Computer Opersting System.” Special Report
MCS724013642-CL7801, Cyclone Compuder Laboratory, lowa
Statc University, Ames. lowa (1978).

D. R. Ditzel, “Interactive Debugging Tools for a Block Struc-
tured Programming Language.” Report MCST2-03642-CL7802,

Cyclone Computer Laboratory, lowa State University, Ames,
lowa (1978).

D. R. Ditzel, “High Level Language Detugging Took on the
SYMBOL. Computer System,” /980 Workshop on High-Level
Language Computer Architecture, Fort Lauderdale, Florids (May
19M1).

D. R. Ditzet and D. A, Patterson, **Retrospective on High-Level
Language Computer Architecture,” Proc. of 7th An. Symp. on
Computer Architecture, La Baule, France (May 1980).

T. M. McWilliams snd L. C. Widdoes, Jr., “SCALD: Structured
Computer-Aided Logic Design,”" Technical Report No. 152,
Digital Systems Laboratory, Stanford University, Stanford, Cali-
fornia (Murch 1978).

A. G. Fraser, "UNIX Time-Sharing System: Circuit Design
AidS.” Bell Svx. Tech, J. ST(6). pp. 2233-2249 (1978).

EAEN A S

e

R R e B e 0 525 L R e e X0 3T

i



[

6.

1.

11.

VRN R SO

Appendix.

O. Agrawal, Applicability of Buffered Main Memory 10 SYMBOL.
2R Like Computing Structures, lowa State University, Ames,
fowa (1974). Ph.D dissertation

L. M. Alarilla, Jr.. “Storage Linking Techniques for the
Automatic  Management of Dynamically Variable  Arrays.”
Report ISU-CL-7403, Cyclone Computer Laboratory, Jowa
State University, Ames, lowa (1974).

J. W. Anderberg and C. L. Smith, “High-Level Language
Translation 1 SYMBOL 2R.” Proceedings of the ACM-IEEE
Symposiun an High-Level-Language Computer Architecture, New
York, Association for Computing Machinery (1973). NTIS
uccession number PB-228 117/AS.

J. W. Anderberg, “Source Program Analysis and Object String
Generation Algorithms and their Implementation in the SYM-
BOL 2R Translator.”” Report NSF-OCA-GIAMNT7-CLI410,
Cyclone Computer Laboratory, lown State University,  Amws,
lowa (1974). NTIS accession number PB-230 614/AS

R. W. Black, “'Structured Programming in the SYMBOL.-2R
Programming Language,” Special Report ISU-CL 7405, Cyelone
Computer  Laboratory, lowy State University, Ames, fown
{1976).

A. C. Bradley, “An Algorithmic Description of the SYMBOL.
Arithmetic  Processor,” Report  NSF-OCA-GJ3MW7-CL7301,
Cyclone Computer Laboratory, lowa State University. Ames,
lowa (1973). NTIS accession number PB-222 972,

R. F. Bretl, A Hierarchic Control Structure for User Progrims
in the SYMBOL System.” Special Report 1SU-CL-7501,
Cyclone Computer Laboratory, lowa State University,  Amus,
lowa (1976).

M. A. Calhoun, “SYMBOL Hardware Debupging Fuvilities .
Procecdings of the AFIPS 1972 Spring Joint Computer Conference.
Montvale, N.J., pp. 359-368, AFIPS Press (1972).

G, D. Chesley and W, R, Smith, “The Hardwarc-Ilmplemented
High-Level Language for SYMBOL," Proceedings of the AFIPS
1971 Spring Joint  Computer Conference, Montvale, N.J..
pp. 563-573, AFIPS Press (1971).

Y. Chu, “Significance of the SYMBOL Computer System,” Dig-
est of Papers, COMPCON72, New Yoik, pp. 33-35 (1972).

R. F. Cmelik and D. R. Ditzel, “"The High Level Languuge
Instruction Set of the SYMBOL Computer System.” /980
Workshop on High-Level Lunguage Computer Architecture. Font
Lauderdale, Florida (May 1980),

B. E. Cowart, R. Rice, and S. F. Lundstrom. “The Physical
Atuibutes and Testing Aspects of the SYMBOL System.”
Proceedings of the AFIPS 1971 Spring Joint Computer Conferem e,
Montvale, N.J., pp. 589-600, AFIPS Press (1971).

.
,-~:,.::"‘1;':"(W&A"-“".-ﬁfr-.‘.'u.\jfnﬁ‘lf-i‘»»En:.i-‘:li:‘?\m‘;mﬁdﬁ.‘..id‘--.(",_‘.a’i',"m ke gl

86

13

15

16,

PAR

24.

SYMBOL. Bibliography

M. C. Dakins. “Nonnumeric Processing in the SYMBOL.-2R
Computer  System.”  Report  NSF-OCA-GJ33097-CL7410.
Cyclone Computer Laboratory, lowa State University. Ames,
lowa (1974).
D. R. Ditzel. *MASK and FORMAT: Operators for Editing and
Formatting.” SIGPLAN Notices 12(11), pp. 28-35 (November.
1977).
D. R. Ditzel. “Pattern Matching tor High Level Languages.”
SIGPLAN Notices 1MS). pp. 46-55 (May, 1978).
D. R. Datzel. “Interactive Debugging Tools for a Block Struc-
tured Programming Lunguage.” Report MCS72-03642-CL7802,
Cyclone Computer Laboratory, lowa State University, Ames,
lowa (1978).
D. R, Diteel, “Program Measurements on & High Lewel
Language Computer.” Aceepted  for publivation in - Computer
(1979,
D. R, Ditzel und W. A. Kwinn, "Retlections on g High Lewvel
Language Computer System or Parting Thoughts on the SYM-
BOL Project.” 1980 Workshap on High-Lovel Language Computer
Architerture, Fort Lauderdale, Florida (May 1980).
D. R. Ditzel, “High Level Language Debugging Tools on the
SYMBOL Computer System.” 1980 Workshop on High-Level
Language Computer Architecture, Fort Lauderdale, Florida (May
1980),
H. Falk, “Hard-Soft Tradeoffs.” IEEE Specirum 11{3), pp. 42-43
(Feb, 1974).
P Co Hotetison and K. Ethinglon, *Program Execution in the
SYMBOL 2R Computer,” Proceedings of the ACMAIEEL Sympu-
sim on High-Level-Language Computer Architecture, New York.
Association fur Computing Machinery (1973). NTIS accession
number PB-228 780/AS.
P. C. Hutchison, “Exiensions to 2 Block-Structured Program.
ming Language to Support Processing of Symbolic Data and
Dynamic Arrays,” Special Repon ISU-CL-7708, Cyclone Com-
puter Laboratory, lowa State University, Ames, lowa (1977).
W. E. Jones. “The Role of the Interface Processor in the SYM-
BOL JIR Computer System," Special Report NSF-OCA-
GIINYT-CLIMM,  Cyclone Computer Luboratory, lowas State
University. Ames. lowa (1973). NTIS accession number PB-
227 454/AS.
W. E. Jones, A Microprocessor-Based Input/Output System for
an  Interactive Computer.” Special Report  ISU-CL.7503,
Cyclone Computer Laboratory, Jowa State University,  Amwes,
Towa (1976). Ph.D) dissertation

N T T P It ar T5-ete grme Y yons® =, 7N 0,77 22 7o v

e 3

. VP 2
CER T2 i RPN

S A e

ek v u T

; ;4{‘"’5‘\




< e, i gt . R P VRSO

. . P . s .
T i e s T it LA DI o, e S
TR E a § g e, T g st n oo e s

28.

2

.

3l

KRR

M

As

.

3.

W. A. Kwinn, "'Memory Management Policies for 4 Hurdware
Implemented Computer Operating  Syvem.”  Special  Repont
MCS72-03642-CL7801, Cyclone Computer Laboratory, lowa
State University. Ames, lowa (1978).

'T. A. Laliotis, “lmyplementation Aspects of the SYMBOL
Hardware Compiler,” Proceedings of the First Annual Symposium
vh Computer Architecture, pp. 111115 (1973),

T. A. Laliotis, “Main Memory Technology.” Computer 6(9),
pp. 21:27, IEEE (September 1973).

T. A. Labotis. “Architecture of the SYMBOL Computer Sys-
tem." in High-Level Language Compiter Architecture. ed. Y.
Chu. Academic Prems (1975).

G. ). Meyers, pp. 97-147 in Advances in Computer Architecture,
John Wiley and Som, Tnc. (197K),

E. 1. Organick. Proceedings of the AFIPS Workshap on the Influ.
ence of Programming Languages on Computer Sysiems Architec.
wre. Montvaie, N.J., AFIPS Prem (1971).

R. Rice and W. R. Smith, "SYMBOL -- A Major Departure
from Classic Software Dominated von Neumann Computing Sys-
tem,” Proceedings . the AFIPS 1971 Spring Joimt Computer
Conference, Montvale, N.J.. pp. §75-587. AFIPS Press (1971).

R. Rice, “The Hardware Impiementation of SYMBOL." Digest
of Papers, COMPCONT2, New York. pp. 27-29. IEEE (1972)

R. Rice. “A Project Overview,” igest of Papers, COMP
CON?2, New York, pp. 17-20, IEEE (1972).

11 Richards, Ir. und R, ). Zingg, “The Logical Structure of the
Memary Rosource in the SYMBOL-2R Compatter,” Proceeding
of the ACM-IEEE Sympusium on High-Lovel-Languwage Computer
Architecture, New York., Assxiation for Computing Muchinery
(1973). NTIS uccession number PB-228 1IK/AS.

H. Richards. Jr. and C. Wright, “Introduction o the
SYMBOL-2R Programming Lunguuge.” Proceedings of the
ACM-IEEE Sympoxium on High-Level-Language Computer Arcin-
tecture. New York. Associution for Computing  Muchinery
(1973). NTIS accession number PB-228 115/AS.

H. Richards. Jr.. “SYMBOL IR Programming Lunguage Reter-
ence Manual,” Report ISU-CCL-7301. Cyclone Computer Lab.,
lowa State University. Ames, lowa (1973). NTIS accession
numbes PB-221 178,

H. Richards, Jr. and A. E. Oldehoeft. "Hardware-Software
Iinteractions in SYMBOL-2R's Operating Sysem.” Proceeding
of the Secomd Annual Symposium on Computer Architevture. NT1S
uccession number PB-230 220/AS (1975).

H. Richarde, Jr.. “Controlled Information Sharing in (he
SYMBOL.-2R Computer System.” Speciul Report 1SU-CL- 7601,
Cyclone Computsr Latoratory. lowa Stute University, Ames,
lowa (1976). Ph.D dimertation

C. L. Smith, C. T. Wright, amt R. J. Zingg . “Problems in the
Puth-Down Stack Approsch to the Implementation of High
Level Longuages.” Digest of Pupers. COMPCONT6. New York,
pp. 96-98. 1EEE (1976).

87

40,

41.

42.

43.

44,

e e

W. R. Smith, “System Supervisor Algorithms for the SYMBOL
Computer,” Digest of Papers, COMPCON72, New York,
pp. 21-26, IEEE (1972).

R. E. Wolf, “SYMBOL 2-R Compatible Tree Manipulation,”

Speciul Report ISU-CL-7602, Cyclone Computer Laboratory,
lowa State University, Ames, iows (1976).

R. J. Zingg and H. Richards, Jr., “Opsrationsl Expeilence With
SYMBOL," ODigest of Pepers. COMPCONT2, New York,
pp. 31-38 (1972).

R. ). Zingg and H. Richards, Jr., “SYMBOL: A System
Tailored to the Structure of Data," Procesdings of the National
Elecironics Conference, Oak Brook, Mincis 27, pp. 306-311,
National Elcctronics Conference, Inc. (1972). NTIS accession
number PB-221 286,

W. R. Smith, et al., "SYMBOL - A Large Expsrimental Sys-
tem Exploring Major Hardware Replacoment of Software,”
Proceedings of the AFIPS 1971 Spring Joint Computer Conference,
Montvale, N.J., pp. 601-616, AFIPS Press (1971).

P 1 g

e o




T T e e s s

R O e e

A CASE AGAINST HIGH-LEVEL LANGUAGE
COMPUTER ARCH{TECTURE '

Harvey C. Cragon

Texas instruments !ncorporated

Dallas, Texas

ABSTRACT

This paper considers the principle motivations
for a high-leve! language architeciure, Program-
mer Productivity, Compiler Simplification, and
fRun-Time Efficiency. Individually snd collec-
tively, these motivations do not resresent com-
pelling Justification for a departure from
conventional architectures, |t is suggested
that a more beneficial architectural departure
is to be found In a lower-ievel micro architec-
ture fnstead of a higher-level architecture.

INTRODUCT{ON

The quastion of the desivability ol o high-
tevel language architecture was ashed gl the
birth of the stored program digltal computer
by Burks, Goldstine, and von Neumann(1),

"in general, the inner economy of the
arithmetic unit is determined by a com-
promise between the desire for speed of
operation ~- a non-elementary operation
will generally take a long time to per-
form since it is constituted of a series
of orders glven by the Contral -- and
the desire for simplicity or cheapness
of the machine,"

Over the years, architectural trade-offs have
been made in favor of selective incorporation
of complex functions in those architectures
where performance was a dominant consideration,
Floating polnt as an elementary operation was
provi u? as a hardware operation in the wid-
19505 (2], A variation of the FORTRAN DO loop
‘was Included in the COC STAR and T ASC archi-
tectures in the 1970s(3), With vector Instruc-
tions Included as elementary operations, the
generation of addresses is overlapped with the
operation Itself ylalding improved performance
and a reduction In required memory bandwidth
Is achieved by the reduction In the numbcr of
instruction fetches.

A view has been introduced into the discussion
of elsmentary operation selection. Thi? Ylew
Is an observation that a “‘semantic gap' 4
exists between the programming language and

the language which the computer actually exe-
cutes. The existence of a gap is an invitation
to close the qgap.

75265

A recurring ldea is the high-level language archi-
tecture which ?irggtly executes a selected lan-
guage. SYMBOL(5:8) ig this type of architecture
as Is ;Ye recent ly discussed Ada processor by
intel (7), For many renso?a these architectures,
labeled '"Type C!' by Myers ’. sre deemed Ineffi~
cient., Most proposals today for 3 high-level
architecture embrace some intermediate language
as the language to be accepted by the computer.

(9)

Proposals for high-level language architecture
are based on achieving three improvements:

1, Programmer Productivity
2. Compller Stmplification
3.0 RunTime [fbicioncy

PROGRAMMER I'RODUCTIVITY

Unfortunately, the observation has been made that
closing the gap will have a significant positive
impact on programming cost. This has had the
result of drawing attention away from the real
problem of selecting elementary operations. |
believe that this argument proceeds as follows:

|. The best performance and the minimum
code space results when a problem is
programmed in assembly language,

2. Poor performance and code space result
if a high-leve!l language Is used.

3. Programmer etficiency is improved if a
high-level language is used,

Thus, a carefully selected intermediate
execution language, which can be compiler
generated, will give good performance,
reduced code space, and increase programmer

productivity. .

Programming costs are a function of the language
and the quality of the support functions provided.
It should make no difference in programmer pro-
ductivity whather the support functions are pro-
vided in hardware or software.

Assistance In program debug is a bcnef’t ted
for a -high-level language srchitecturs{10} which
should reduce programming cost. | believe that
there is a lesson to be lsarned today from the
support systems provided for microprocessors,
Program development is moving into a cross sup-
port mode. More and more programs are developed
on a host which is not the computer on which the

88

-
g . . e ¥
o,

S8 YAy

."',
CeR

, Pt as g N
RN O RS Y ST 3

e BT TS

i

S .
S . g

S e mntl

3 mm&y- b

oy

2 o AT NP

SR RS U RN o5 SIS



e e ST < 5 W B TSP ST XS N

program will execute(!!), One reason for this
is that powerful debug tools can be provided in
the development software. Only a very small
subset of these tools could be provided in the
hardware of a high-leve! langusge architecture,
software support would still be needed. Relat-
ing execution errors during development to the
source program is enhanced more with software
tools than with a meager set of hardware capa-
bititles.

COMPILER SIMPLIFICATION

A banefit frequently advanced for a high-level
architecture Iz that a well-selected set of
intermedlate leve!l language significantly
reduces the complexity of the compiler. This
Is hard to understand. It can be argued that
these compound elementary operations of the
intermediate lenguage can be defined as macro
subroutines which the compller can easily pro-
duce. Thase macros can then be interpreted by
the machine, Again, this bscomes a question of
cost and performance. This ''soft'" intermediate
level language architecture ylields all of the
desirable compiier characteristics as do.! a
"hard" architecture, The Burroughs B1700{12)
is an l“”tutlon of this point. Cohen and
Frencis describe another system which
executes on conventional microprocessors.

1 will not argue that the specification and
use of an intermediate level language is not
beneficlal for compiler crestion. | do argue
that this language, In total, should not be
impiemented in hardware. For those cases
where an intermediate language seems beneficia!
to the complilation process, Interpretation of
this language is completely feasible, although
slow In sxscution, The benefits of reduced
code space, Including the Interpreter, gen-
erally are realized,

RUN-TIME EFFICIENCY

| percelva that the semantic gap has become
highly visibla because of two factors. First,
the non-computations! overhsad of structured
programming |s Increasing the run time of our
programs, and second, the sxecution of operating
system functions Is also consuming & highly
visible amount of CPU time. In both of these
cases, the root problem stems from the lack
of a few elementary operations selected to
support these functions, not & closing of a
sementic oap.

Hyon(") provides an interesting comparison
of the concepts of PL/1 and the support pro-
vided by the 3360. | bsliave that in every
case cited by Myers, the issue resolved itself
into the need for the compller to generats »
body of code which implements the PL/1 concept.
This Is en issue of elemantary operation selec-
tion and the cost performence of the computer.

The cost performence of a computer having more
complex elementary operations Is of real concern.

t.-‘4\.."1}1';.\f%i:;#'éﬁ@;hdiﬁt.!&l?fh,-u;‘-.‘s'é:.‘:«}ﬁi»‘f.’if‘l;ﬂ:..‘}” I A L 5 5

Bieounce B o L gut

Let me examine the reduction in memory bandwidth
resulting fro? the inclusion of vector Instruc-
tions. Myers{!5) describes the case of two 100
by 100 element fixed binary arrays which are to
be added together. A programmed loop would
require 40,004 memory references for instructions
and 30,003 for data, a total of 70,007, A single
vector instruction would require only 30,001
(30,000 for operands and one instruction). An
aiternative to this Is found In computers such

as the CDC 7600. which has a program buffer cache.
This architecture requires only elght references
to main memory for the Instructions and 30,000
references for the data, Vector instructions are
not needed to reduce memory bandwidth If Instruc~
tion buffering and high execution rate Is pro-
vided for the elementary operations.

The use of compound elementary operations can
reduce the storage requirements for Instructions
due to the instructions' highar information con-
tent. In Myer's example, the number of instruc-
tion bytes Is reduced from 274 to 13. This Is an
impressive reduction! However, If the program
represents 20X of the total memory requirement,
for example, the compound elementary operations
can yield, st best, & 20% reduction in required
total memory space. This small memory savings
may not be worth the increased cost of the CPU,

Compound elemantary operations to enhance run-
time cost effectiveness are provided at a cost
in hardware, logic, and microcode. The Justifi-
cation of this cost depends upon the number of
times the function Is executed In a progrem;
frequent use justifles, occasional use does not.
Figure | illustrates this point, The higher the
cost of providing a hardwsre macro, the larger
the use factor must be to achieve a breakeven
cost.

b g o o

r::'clllg.lnurudhm Shpe + Cont of
o One instruction
Por Use

Siope * Cost of
Cost ?

LA

Providing
MACRO -

Cost of { Sroskeven Poimt

e

Number of Times Used ——

LY
oy

Figure

Computer architects can quickly select most of
the elementary operations of their design. The
inclusion of more complex or compound elementary
opsrations requires knowledge of the intended

use of tha computer. Care must be exerc!sed

that stetic and dynamic statistics collected on
programs run on & unigue computer reflect the .
true nature of the problem and wie the :
characteristics of the computer(16), For exam- -
ple, code used for Fun-tlme cheéks will not Be
Identified with the higher purpose of the code.
Nevertheless, cholces are mede and computers are

ket e

S WV S T Y

FAM L Tt o A



des igned and bullt, which are improvements over
prios designs. '

For a computer which must be multilingual, that
Is, can be programmed in many languages, great
care must be exercised in tha selection of
compound elsmentary operations which will be
useful for all the languages. The result of
implementing the intermsdlate language ..
lardware can be a loss of generality. An
Intermedlate languags for COBOL is not Vikely
to be the same language for FORTRAN or PASCAL.
And what does one do when Ada becomas popular?
Wil the intermediate language support the

new programming language efficlently?

 Figure 2 {ilustrates the problem which is
icreated as the language Implemanted by the
~'hardware approaches the programming language,
“closing the semantlic gap. (n a conventional

processor, the high-level language s com-

plled into machine language which is inter-

preted by the hardware. As the machine
,'language approaches the programming HLL,
..the machine languages wil) diverge and
 become two or more different machine lan-
3%guages if the semantlic gaps are completely
teclosed,

L L HLN HWL#
T T
Safwere
Softwary ._*__
4 o ' Hardvers
Harguite  / Microcste Microcose |
CONVENTIONAL PROCES SOR HIGHLEVEL LANGUAGE
PROCESSOR

Flgure 2

Kavipurapu and Cragon('7) are conducting @
sasrch far common elements and their fre-
quency of use In FORTRAN, COBOL, and PASCAL
to see If there are a few compound operations
which will benefit all three languages. |
believe that there Is a good chance that a
small number will be found that, If imple-
mented in hardware, wili substantially
improve a computer's code space and execu-
tion time. Success In finding a few Is not
a mandate to implement everything Iin an
intermediate language.

A high-level or intermsdiate language Imple-
! mented in hardware is too restrictive and
© costly, However, selective implementation
of a small set of compound slementary opera-
tions can substantlally Improve the perfor-
mance of & computer. The question facing
computar srchitects today is not high-level
{anguage architectures, but archlitectures
which permit the Inclusion of selected
compound alemantary operstions which
match the use environment at any glven
time,

A BT A 0 Bl S 9 e 953000 Lot h s B e R AL

[

A writable control store with program access to
sequences of microcode (s one technique. This
will, in effect, provide for the interpretation
of the compound elementary operations by micro-
code. Substantial Improvement in program execu-
tion time can result(18,19,20), The compiler
should be able to make a selection of those com-
pound elementary operations which are Interpreted
by the machine's elemantary operations and those
which are to be interpreted by microcode, Pro-
duction runs of a program can further adapt the
mix to achieve the fastest exscution rats,

A second technique, and one which Is attractive
for implementation in VLSI, is the use of com-
pound function attached processors(2l), A float-
ing point chip and an FFT butterfly chip which
can be attached to & microprocessor are sxamples.
A Decimal String Chip would be useful for a
microprocessor executing a heavy COBOL load.

| will conceds that there may be a place in
computer architectures for the inclusion of
hardware employed to improve the reliabllity of
software In execution. The run-time environment
creates problems which cannot be anticipated by
the compiler or require high checking overhead.
This issue should be addressed as a stand-alone
issue and should not be combined with the issue
of a high-leve! lenguage architecture.

The ultimate architecture appr?ac? was suggested,
| believe, by McKesman in 1967(22),

“The obvious attack for programmars and
hardware people together is to devise
fanguage that reflects what we want to do
and how we do it (for instance, in parallel)
and machina structures effective in handling
that tanguage. Let us call this method
'language directed computer design.'"

In the future, the language referred to by
McKesman myst m:’n nonprocedural programming
techniques (23,24}, The machine structures will
be microprogrammed In nature. The architecture
will be capable of elther interpreting a ''soft'
{ntermed(ate language or executing & complled
microprogram. With memory bscoming the least
costly component, complilied microcode will becoms
more and mors cost effective, If a lower per-
formance Is satisfactory, than the interpreted
soft Intermediate language can reduce memory
cost. | believe that there is no ''ideal OEL,"
there may be a DEL for every nonproceduraf
language and this DEL can bs Interpreted on a
soft architecture {f memory cost {s to be mini-
mized.

CONCLUS | ONS

A case has not been made for the creation of

new architactures which implemsnt high-level

or Intermediate level languages. All of the
beneflits can be achleved without the loss of
generality by selective implementation of some
compound elementsry operations in calisble micro-

d,

L P AT VRt S

RN

£

> ot

A

.

N
-?
&




e RTERIN

J R

code or attached processors. The ultimate archi-
tecture will be a lower-level one, not, as many

advocate, 8 higher-~ieve! one.

",

Stefano Crespl-Reghizzl, "A Survey of Micro-
processor Languages,' Computer, Vol. 13,
No. 1, Januery 1980, p. EE

W. T. Wiiner, "Design of the Burroughs 81700,

: ACKNOWLEDGEMENTS 12,
- AFIPS FJCC, Vol. &), 1972, np. 489-k97.
y The author would like to thank the reviewers for
i constructive criticism which helped clarify the 13. Harvey A, Cohen and Rhys S. Francls, '"Macro-
| position taken in ihis paper, Special thanks go Assemblers and Macro-B8ased Languages in
g to Goorge Ligler without whose encouragement this Mlcroprocessor Software Development,' CPuter,
Y puper would not have been completed. Vol. 12, No. 2, February 1979, pp. 53-
: REFERENSES 14, Glenford J. Myers, Advances In C ter
Architecture, John WTTey ¢ Sons, % York,
1. Arthur W. Burks, Herman H. Goldstine, and 1978, pp. V1-13,
John von Neumann, '‘Preliminary Discussion
of the Logical Design of an Electronic 15, ibid., p. 16,
Computing Instrument,' The Institute for
Advenced Study, June 1946, p. 1, 16. G, Jack Lipovski and Keith L. Doty, '‘Develnp- :
ments and Directions In Computer Architecture,"
2. Sau) Rosen, 'Electronic Computers: A His- Computer, Vol. 11, No..8, August 1978, p. 57.
torical Survey," C ting Surveys, Vol. |,
No. 1, March 1969, p. 14, 17. Krishna Kavipurspu and Harvey G. Cragon,
Intarnations! Workshop on High-Leve! Language
3. C, V. Ramamoorthy and H. F. Li, "Pipeline Computer Architecture, Fort Lauderdale,
Architecture,' Computing Surveys, Vol, 9, Florida, 1980.
No. |, March 197?"5'."3!7!!71‘
18, A. M. Abd-Alla and David C. Karlgaard,
4. U. 0. Gagliardi, '"Report of Workshop k-- ""Heuristic Synthesis of Microprogrammed ,
Software-Reloted Advances in Computer Hard- Computer Architecture," IEEE Transactions
ware,' Procesdings of a § sium on the on ters, Vol. C-27, Neo. 5. gpta;r 3
High Cost of Software, Fnio Park, Callf.: I§7&. pp. B16-827. 5
StanTord Kesearch Instltute, l973. pp. 99-120. i
20. Tomlinson G. Rauscher and Ashok K. Agrawals, 1
§. Rex Rice and Willlam R, Smith, ''SYMBUL-~A “"Dynamic Problem-Oriented Redefinition of .
Major Departure from Classic Software Computer Architecture via Nicroprogramming,'
Dominated von Neumann Computing Systems," IEEE Transactions on C ters, Vol, C-27,
AFIPS SJCC, Vol. 38, 1971, pp. 575-587. Wo. TT, Rovember 1973, pp. 1006-101h.
6. William R. Smith, Rex Rice, Giiman D, Chesley, 21, G. Estrin and C. R. Viswanathan, 'Organization
Theodore A. Lallotis, Stephen F. Lundstrom, of a 'Fixed-Plus-Variable' Structure Computer
Myron A, Calhoun, Lewrence D. Gerould, and for Computation of Eigenvalues and Elgsnvectons
Thomas G. Cook, ''SYMBOL--A Large Experimental of Real Symmetric Matrices,' Journal of ACM,
System Exploring Major Hardware Replacement vol. 9, No. |, 1962, p. M1,
of Scfeware,' AFIPS SJCC, Vol. 38, 1971,
pp. 601-616, 22, W. M, McKeeman, 'Language Directed Computer
Design,' AFIPS FJCC, Vol. 31, 1967, pp. 41)3- ‘
7. "intel Takes Aim at the '80s," Electronics, 417, p

Vol, 53, No. 5, February 28, 1980, pp. 83-95. 1

23. Michael Hammer, W. Gerry Howe, Vincent J.

8. Glenford J. Myers, Advances In Computer Kruskal, and irving Wlsdawsk!, “A Very High i
Architecture, John WiTay ¢ Sons, Eew York, Level Programming Language for Data Process- .
1978, p. 29. ing Applications," Communications of the ACM, :
Vol. 20, No. 11, November s P . b
9. L. VW, Hoavel, "Ideal Directly Executad A
Language: An Analytical Argument for 24, William A, Wulf, “Trends in the Design and !
Emulation,' 1EEE Transactions on Computers, Implementation of Prograsming Lanmx;s.“ W
vol. C-23, No. B, August V97%, pp. ”-U. Computer, Vol. 13, No. |, Jenuary 1980,
o pp. Th-12. M
. i0. Andrew $. Tanenbaum, Structured Computer %
; Organiz Prantice- . Inc., Englewood 3
o ﬂ"' ﬁ Jersey, 1976, p. 384, 4
- 4
¥ ’
- f 91 f
x: ;
’ 3

X
} ;
x ]

e e mr———— o a0

—
e e ¥

Y . \ . LA &li.._..ﬂn.-udumm.hum-n.zlm’ FARBRIRTAL 7 ‘M";‘ll;n‘i-éﬁ-; tatima A’AJ

oy RN e




S ——

DESIAN ISSURS NF PICH LEVFL LANGUAGIK
DATABASE COMPUTLRS*

David K. Heiao**

Laboratoxy for Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139

ABSTRACT

In this paper, the design goals of
direct execution database computers are
stated. Using an' existing database manage-
ment software System, tha paper attampts
to show tha replacement of the software
system with a hardware database computer
may not obtain uniform performsnce gains
and storage savings. This diecovery may
render the original desigm goals overly
ambitious. '

On the other hand, the complicating
factors which hinder the gains and savings
may contribute to the antique modes of
database mapagement of conventional soft-
ware systems. To this end, the paper
attempte to isolate these factors and
identify the modes of operation for
consideration.

1. DRSIGH GOALS

Normally, the effective use of a database
system by a user rpquires the user to be familiar-
ised with the languages of the database computar
systen. There ars eseentially two such languages:
the database definition language (DDL) and the
database manipulation. language (DML). DDL allows
the usar (espacially, ‘the database sdeinistrator
or database owner) to define the logical and phy-
sical properties of thé databade. Logicel proper-
ties of a database &ve characterized by the data-
base models usad. Yor example, in the relational

modell. the logical proparties of the detabase con-
siasts of attributes and domaing (of a tuple),
tuples (of a relation), primary keys (to the tup-
les) and relations (of the database). In the hier-

archical modclz. the logical properties coneists of

*The work reportad herein is supported by the
0ffice of Naval Research under contract NOOO14-75-
C-0573 and by Dafsrge Advanced Research Projact
Ageancy under contract N0OO1l4-75-C-0661.

**0n leave from The Ohio State University.

. en g t;
P DT Z

field namas and values (of a segment), sequence
fields, primary and secondary indices (of seg-
ments), sagments (of a rypas), types (of a parent-
child relationship) and relationships (of the
database). Likevise, there are logical properties

of GODASYL databases’. By definins information
entities in terms of logical properties of a data-
base model, the user can capture the information
content in the database sund make (symbolic) ref-
erences to the information entities.

DDL also allows the user (especially, the
database designer) to define thz physical proper-
ties of th> databasc. Physical properties of a
database sre those which deal with unite of stor-
age (#9ay, numbar of pages and i... sise), kinds of
storagy {a.g., moving-head disks va fixed-head
diske), storage formaLs of the logical entities
{directovy format for indices, pointers for re-
lated tuples o segments and encodinge for re-
peated attributes or fi{ald names) and &ccess modes
(e.g., acceng by direct address calculation, via
intermadiate racords or by way of directories).

Because modern databasaes are meant to be
shared, the database system must provide concur-
rent access and multi-user operations. DDL of a
modern database system smust therefore providu a
means to allow the database owmer (or administra-
tor) to authorize and validate certain users of
his database, define different portions of the
aatabage for different users (e. g., by creating
different views of the same database), specify
the types of control operstions peraitted or de-
nied on the aythorized portioms, and place proce-
dures (e.g,, programs written by the administrator
or owner) at the points of access paths to hia
database (say, at each f{le opening time).

Nn the other hand, the database manipulation
language (DML) is primarily concerned with the
specification of search, retrieval, update, and
processing requirements of the database. Recause
the use of data models anables thae information
content to be captured in the database, the modern
DMI. enables the user to address the databasae by
content for search, retrieval, update and proces-
sing operations. Content-addressing is accom-
plished in DML, as exprassions of predicates. For
axample, the following 1is a simple expression of
three precicates, namely, a conjunction of an
equality predicate, an inequalfty predicate and a
greater-than predicste.

(Type=EMPLOYEE) 5 (Emp-Dept = TOY) A (Salary
> 20,000) which specifies those records of the

oo i

NSOV RAT R O B 12 S, oI

ez




employees vho are not in the toy department and
have salaries greater than 20,000. By referring to
specific attributes, providing the necessary
predicates, and specifying the intended operations
in DML, the vesr cam manipylate the database
effectively at varioua granularities of the data-
base ({.¢., at field or attribute-value pair

leavel, tuple or segment level, relation or segment
type level, and tionship level).

Tha goals of -level langusge databuse
machine designers ars therefore to be able to come
up with high~performance and great-capacity com~
puter architettures which allov direct execution
of DDL and DML statemants of the user application
progrems. Direct expcution of user programs en-
ables the performance and capacity pains of the new
machine to be contriouted to the user {n terwms of
high-volume managemsent and quick reaponse which are

* difficult to achieve in conventional software-laden

computers for very large database applications.
This difficulty {s due largely to the fact that
conventional computers are not designed specially
for database management. Consequently, verv elaho-
vate softvare for database management wmust be sup-
ported on the computers. The execution of very
complex and siseable database management softwarc
tands tec daplete system resources and provides in-
adequate responses to user applications,

Can we design direct axecution datsbase com-
puters? In other words, are there complications
in rcaching our design goaln?

1, 18 ICATING DIRECT FXEGUTLON

There are at least two imaucs which have com-
plicatad the denlipn goals of direct exccutlon
datahase computers. Onc issue 1% rclated to DDL:
the other is concerned with DML. Theae two issues
nay rendsr the direction execution of DDL and DML
statements for conventional database management
application ineffective. __

The most illustrative way to study thu: com;

ions is parhaps by focusing our attemtion a
:ltz:ztgc daf:blup-olZl amd a certain high-level
‘language database computer design. Here, ve

focus on the hierarchical modelz. We chnoge the
DCL and DML of IBM's Information Marapement Svater

(IMs) for otudy4~7. Presently, IMS {5 a widelv
used hierarchicsl database manapement software
system. For database computer hardware desipns, wo
choose the database computer (DBC) which has been

prnpnuoda'g to support, among other darabase model s
the hierarchical database mode) of databases,
However, much of the findings produced {u the fol-
lowing sections are valid for other mndels and ma-
chines which although not elaborated here, can be
found inlo'll'lz'lj.

a

2. Ixecution of DDL Statements for Cruating
New Databases )

Directly executable DDI statorenty for hiere
archical databases must be availahle o that given
the logical vroperties of a hierarchical database,
the DDL statements, upon execution, can automatic-
ally penerate the physical structure of the data-

base fov storage. Purthermore, the physical
structure generated must take full advantags of
tha strong points and nev capabilities of the
datsbase computer.

Lat us review briefly the logical properties
of an IMS database and prasent a (hardwere) trauns-
formation algorithm (as designed for DIC) which
converts the logical organization of an DMS s ta-
base into a physical structure for dstabsse com-
puter storage. Wa will algo mention briefly eome
stroug points and new capabilitiss of the databese
computer. .

2,1.1
Database. An atabase corsiats of a er of
hierarchically related *ﬂ! ogeurxances (or
simply, segments), asch of witich belongs to a
segmant type. In the example Figure 1, segment
type A, the root segment :typs, has three occur-
rences, All others are def segment types,
each having a unique payent bagment type and sero
or more child segment types. Some relationships
among the various vegments in our examples are:

Al 1is the paremt of Bl and G1.

H1l, H2 and Il are children of G1.

J1 and J2 ave twins.

Hl, n2, 11, J1 a& J3 ave descepdants
or dependents of Gl.:: S

Al, G1 and 11 are apggeters of J1.

Suecosaive levela ate n\inbci'éd such that a root
nepment 18 at Jevel 1. All segment occuvrences
are made of one or more fieldn.

An IMS datahane {8 t!evgflgg in the order:
parent to child, front to back amomg twins amd
Inft to right among children. The traversal
sequence for the databass of Pigyre 1 i@ (AL, B1,
c1, n1, n2, n3, ¥1, ¥i, ¥2, 72, ¥3, Gi, #H1, H2, 11,
J1, J2, A2, A3). Notice that the traversal sa-
quence defines a next segmant with respect to a
given segment, A W 4s a sequeince
of segments, ona per level, starting at the root,
e.p., (A1, 61, 11, J2). '

2.1.2 Automatic Generation of Storage Struc-
ture. An IMS database with the above logical prop-
erties can he defined in DDL statements which upon
cxectition transform the databsse into proper stor-
ape format of the database computer (i.e., DBC).
Becayse DBC does not address physical records by
locat{ioun, location-dependent pointers are not
used hy DRC for the purpose of facilitating hier-
archically related records. Instead, physical re-
cordr are content-addressed by DBC providied that
the content of a physical record. is presented as
one or more variable length attribute-value pairs,
known as keywords. Thus, an IMS database is trans-
formed by considering every IMS segwent as a phys-
ica) record (or, simply, record) composed of key-
words.,

An IMS segment includes a sequance field
whenever it is necessary to indicate the order
among the twin segments. Since each segment be-
comes a record and no address-dependent pointaers
are allowed, the database computer assigns a sym-
bolic identifier to esch segment, identifying it
uniquely from all other segments in the database.

93

3
%

P e e

R ML IR

5 s = L5




1, : n ; y, : )
s Ll S TR O IET FIRAETS - W IR Ry

Fiempe 1, Tovieal Nrpanjzation o
ar IS Database

The symbolic identifierof a sepment & {. o -yow
of flelds consiating of:

(1) the symbrlic {dentificr ol 1l
pavent of &, and
MY the gequence field orf &,

Phiee the sequence flelds of difforent —vomen,
tvped mavy use the same field name, wo mav oaglf. -
the fleld name with the sepment tene,

The creation of a record from an IMN aiaent
can now he aceor il ighed by formioe Feaserds e
Po b towss

(1) For each field in the sepment,
form a keyword using the field
name as the attribute and fceld
value as the value,

(2) Form a kevword of the form. TVIT,
septvne swhete TYPE {s o lireral
and segtype is the sepment tvoe
In consideration.

(3} For each sequence fleld fn the
symbolic {dentifler of the rou-
ment, form a kevword usiav tle
field name (qualified by the
segment type) as the ateributye
and the fleld value au the valbog,

For example, for an IMS database shown io V{mn

7y the attribute templates of the five collect{.me
uf records corresponding to the five sepment tvpoes
are shown {n Fipure 3, Nualified field names such
as Prereq. Course f are used to distinpuish tiy
same fleld names, 1.e., Course #, amone d!ifferent
sepment tvpes,

2.1.3 Execution fain vs Sturage M'vnaltv.
e to the simplicity of the transformation alecr-
fthm, {t {s not surorising that DDI. statements,

vt L1 N it S o o g

Aact allow the user to soecife logically a Sivr-
rrehiienl databkase arc vrovide automatic generatio,,
¢othe databose, can be readile realfzed in the
rdvare and he axecuted lrectlvy to vield n -¢d-
bootion of nphvaicl recotds of keviords for stor-
s Kevwerds enahle the database computer (D7
toocentent - Brvace 1Y v Cnvde dp database s 1 0
contadn the terwerds,  Thus, the hardvare reatl -
fzation of N1 sreaterments Indeed utilizes the
strony noints and nev carab{i{ey of the datarase
TETTEN S o8
Povever i o camngre the Tavouts of Tlhegae
md b owe oo oot the uar of combolfle identt.
Tiorg te captere the pavent-child relationsting
wav ineraase the vtorave roquirement of the nheer |
catorecord L Yupthermors | oas the levels of o
hicrarchy dovelor the dterape renulrement of the
shvsical records -av incrense “exponentially".
This fe evident he the fellowing observation thay
ter vach enrrochondinge dinendent serment the niv-
steal record roer g lude addit{ional storave
waaee forg

Y quatdirfeart e o f the Field
names,  and
L vnaener Ticlds of lts ancestore,

bor evampl. o fr ) oeure 3 9 phvsfedl student rec-
St oat teve b e rust aeenrodate the qualificd
wine, Student, teas #0015 addition, the stadent
vecord alde st fncinde the sequence fleld (1.,
the ddate flebay or 1ts parent (f.e., 4 certain
Do ine pes Vone o kevvord, Since the varent
g chitd el certain conrae record whose see.
vete Yeld Ts Course number (f.e., Course *),
there {3 0 Fowvord {n the student record whase
ttribute s Conrse o, The {nelusion of course

Vel -

W] th et

rrerer l,:ij_'["_‘“’-__ e g e
[lrpnr;v L ‘*DatcI_[“Clti"“.r‘”rmﬂf1
- an t ‘ -

Student
Parl o TrEnp B Name) Araded

STITR LI FRTC B ORI AR § ST
et Y. e el Sreanimat n
G Y o ahos

vareehers, dates o et sualffieations {n thwe stindens
records fneroane the etoracr cequiremont of th
Floerarchical database conslbderablvy, 0on the othog
hand . the dAnetuston of wenuenee Fields ur kow oy
in records elirinates the need of pointer snaces
whieh vere necessory {n the IMY sepgments for the
purpose of linking all the twins of a piven parent
sequentially,  Despite such trade~off of gracu s,

analvais has uhnwnla that the {necrease mav be 3
per Tevel startine at tevel 4. Similar flindines
on sterage lugs due te new database mitchine re-
aufrement arce ohtatned {n relational as well os
CORASYT modellod Ontabases,

SRR PORLR

2% (i A

LA

ENTT

2§

0
3
-
]
4
o
N -
)
S
A
v




.

T e o

———————

Typeeloutae
{17 Tl
Titles
Sescripe=
‘
TysaeProreq. i Type=Ciiering
Sinzeate Couesets !
Lrares, Cogrpede Rager i
Title Locatiens
firmate
TveanToschut TrpesStudent
Seucagte . guregfe
AL Raiee
Isashac,fapde | Studeqs Laple
|| Nemae Nane~
Grades

srobalte tdentifier Lo underiined

fiture ). The Temwletas of Phvsical Ra¢nrde f
the Setwnts of Flaure 1.

It is not clear vhether it is possible to devise &
hardware tranaformation algorithm which is as sim-
ple as the one mentioned above and which can yield
storage gains. Until such an algorithm is found,
direct execution of DDL statements for database
creation in the new database computer environment
may actually causs a loss in storage.

2.2 Direction Execution of DML Statements

for Database Transformation

In IMS, the databsse manipulation languape
(DML) statements known as DL/1 calls have the fol-
lowing format '

Operation 1ist

vhere the Operation is one of insert (ISRT), delete
(DLET), replace (REPL) and get (GET) calls, and
vhere the 1ist 1s a number of segment search predi-
cates, at most one per level, which are used to
select & hierarchical path. Fach segment search
predicate is preceded with the name of the segment
type:. Let os denote the segment search predicate
at lavel { as S¢.

After each retrieval or {nsertion opersation, a
segment 1s "established” in the traversal sequence
of the IMS databsse., For a retrieval operation,
this segmant refers to the segment just retrieved;
for an insertion operation, this segment refers to
ths segment just {nserted. Such a segment in the
traversal sequance is terwed the current postion in
the datsbase. There are seviral forms of the get
call, esch of which returns & single segment., A

- e (GU) call retrieves a spacific segment
at level n by starting st the root segment type,

e A s R b e Bl M € et s

finding the first segment at each level i satisfy-
ing 5;, and finally retrieving the segmant satisfy-
ing 5;. A get-next (GN) call atarts the search at
the current position in the database and proceeds
along the traversal sequance satisfying S; for all
i and retrieving the segment satisfying Sp.

We shall 1llustrate the manner in which get-
unique (GU) and get-next (GN) calls are executed
by the databsse computer. Referring back to the
IMS database of Figure 2, let us suppose that the
DL/1 call to be processed is:

GU Course (Title = "MATH')
Offering (Location = 'CAMBRIDGE')
Student  (Grade = 'A")

This asks for the first Student segment of the
database which satisfies the predicate Grade ='A',
and which has a parent segment Offering with Loca-
tion = ‘Cambridge’' whore parent, in turn, is a
Coursme gsegment with Title = 'MATH'. The call ia
executed as follows:

(1) Starting with the first segment
search predicate i.e., Title w»
'MATH', the Course segmants which
satisfy the predicate are re-
trieved by utilizing the query
formulated by the machine

((Type = COURSE) A (Title = MATH))
and are sorted by the machine
according to the value of their
sequence field, 1.e., by the at~
tribute Course #.

(2) If no Course segment exists, then
the DL/1 call is unsuccessful.
Otherwise, the first Course seg-
ment is found and designated as the
current Course segment.

(3) The Offering segments are then re-
trieved with the predicate Locationw
'CAMBRIDGE' and sorted by their se-
quence field, {.e., date. If the
sequence field of the current Course
segment is (Course #, C), then the
query usad by the machine for thias
content-addressing is

((Type = OFFERING) A (Course # = ()

A (lLocation = CAMBRIDGE)).

(4) 1f no Offering segment exists, then
the current Course segment is re-
moved and contwol is transfered to
Step 2. Or.herwise, the first Of-
fering se;ment is designated as the
current Oéfering segment.

(5) The Student segments are then re-
trieved with predicate Grada = 'A'
and sorted by their sequenca field,
1.e., by Bmp #. If the sequancs
field of the current Course seg-
ment is (Course f, C) and that of
the current Offering segment is
(Date, D), then the query used by the
nachine for this round of content-
addressing is

((Type = STUDENT) A (Course # = C)

A (Date » D) A (Grade = A)).

95

A

= 2y

PRI R S R SLEE

B v S o a2

ol e

Ka0tn. A




wrira

Batito. P

{(6) If n¢ Stydent segment exists,
than the current Offering seg-
nent ia removed snd control
is traasferred to Step 4.
Otherwise, the first Student
seguant 18 designated as the
current Student segment .

17) The DL/1 call is successfully
executed and the current
Student saegment is returned.

It should be noted that at this point that
the content of the work space of the machine es-
tabliahed by the above GU call may be used to ex-
ecute the next DL/1 call, for example, to vetrieve
the next student who has an A grade in a math
courge offered in Cambridge. This 1s depicted by
the followiug get-next (GN) call:

CN Course (Title = 'MATH')
Offering (Location = ‘CAMBRIDGE')
Student (Grade = 'A')

In this case, the relevant segment may alveady Le
present in the work apece of the machine. The
current Student seguent is vemoved and control is
transferred to Step 6 given for the GU call.

On the other hand, if the GN call is!

GN Course <{Title = 'MATH')
Offering (Location = 'CAMBRIDGE')
Student (Grade = 'F')

then only existing Course and Offering segments
may be used. Howaver, it is necesssry that the
next Student segmant returned should not precede
the current Student ssgment in tha traversal se-
quence. Hence, if ths ssquence field of the cur-
rout Student ecegmant is (Wop #,X), that of the
current Of fexring sagmunt is (Date, D), and thet of
the current Course segwant is (Coures #, C), then
the following wachioe query is used for content-
addressing the next set of Student segmants:

((Type=STUDENT) A (Course #=C) A (Date=D) A
(¥mp # > B) A(Grade=F})

The previously existiag S8:udent segments are re-
mwoved and control is transfarred o Step 6 given
for the GU call.

Finally, if the GN call {e

GN . Gouxse  (Title = 'HISTQRY')

Offering .
Student.. .

then uo currestly sxicting segasots arm useful.
lence, new satm .of Jegments 'mat be retrieved, one
set for each laved, . - . .

2,2.1 Wm
Eﬁﬂﬁﬂiﬁ%n' Froa above discuseion,. it is not
surprising g leaxn.that divectly sxacutable data-
base manipulation (DML) statements of the follow-
ing typas of transsctions will produce the “‘best”
performaunce for the dstabase computer over the
conventional scftware-leden IMS systen.

Transaction Requirement:

(1) Find all segments satisfyiny
given pradicates.

(2) The predicate at the root level
does not involve the sequence
field.

(3) No predicate is given at any
{ntermediate level.

Example: Find all those students who failed
a mathematice course regardless of the location at
vhich the course was offered.

GU Course (Title = 'MATH')
Offering
Student (Grade = 'F')

Loop GN Course  (Title = "MATH')
Offering
Student (Grade = 'F')
G0 TO Loop

Let N be the number of root aegments (l.e.,
courses). All of the root segments satisfying
the predicate are content-addressed, For each of
t ese root segments, all y of {ts third level
twins satisfying the predicate are then content-
addresred. We also assume that these third level
segments (i.e., those students who received prade
¥) are scattered evenly. The relative performance
is charted in Figure 4, The entries of the chart
are compatad as the ratlo of page accesses (to IMS
segments in the old scftware-ladeu environment) to
block acceeses (to physical records in the new
database computer enviromment).

Due to very large content-sddressable block
size (approximately 1/2 megabytes) and velatively
small scquential-addrecsable page size (about 2
kbytes), this type of transaction nay yield one or
two orders nf magnitude of performance gsin over
the conventional systeuw.

2.2.2 Where are the Performance Gaine? Now

let us consider another type of transaction as
follows:

Transaction requirenent --
(1) Find ¢ single segmenr satisfying
the given predicates.
(2) A predicate involving the se-
queace field is givau st root
level.

¥xample: Finrd the studant vith emsployec
nuwber 50, taking a CIP 211 course
in Columbus., We nots ‘that
course numbats are sequenced.
OU Course (Courss # ='CIg 211';
Offering (Location =
'Golumbus ')
Studect (Emy ¢ = 50)

The performance gains of this type of transaction
are charted fu Plgure 5. Yt is dissppointing to
note that the performance of the database computer
for this type of transsction is not much better
than the conventiongl software-laden syatem.

L.

5!

oF-( SN

B .

SIS ¥ DS PR



R

»

T
P

Wetu: The analyticsl data in the zable are exiracted from (2],

N = the number of rooT sagaenta.

¥ the numbar of twins (l.4., chilZzes segzancs).

n o che nusbar of segoentd satislying a jivea predicete,

¥ e )00 ¥ 1000 = 10000
4 - Ll 6 1 16 ok . 16 (1)
10 » 23 U 6 M 35 729 ¥/ 152
20 51 &6 AL 232 9% 55 ! 1,128 307 1382
&0 M 43 1ab &9 &7 938 2 14
80 4) Al &0 9% 5% A4 $31 190 78
160 47 46 &) 19 %% 43 p31) .XJJ [1}

Tele Dntry o  AReefpssouies o fiie of B8

he. OF acceBius O Lon.dnt-Adde
tessable Blocks of diC

Figure & Parforwance Gains Maasured in Torms of

Accesses to Matabase 3cirages

et teett———— J—

Natet The analytizal Jaca fer tre {ailouing -, ary eitvacted
teon (183,
¥ v the avaber of oot seszents,

7 ® the sumer of vitns,

: 120 139 | 1000

! !

19 L. N33 | .33
i 4,90 EE) | (W3}
-0 440 2,33 |‘ 3.0t
] 487 .87 i 4,39
10 5,87 3.7 | 5.1

Tigure 3. Performance Cetas of Jeriaiacc .gef Transactiang

2.2.3 Performance Cains vs. Transaction
Typee. By comparing the examples presented in the
previous two sections, it is evident that the new
hardvare of the datsbsss computer will not yield
significantly better performance over the software
system, if the user transsction demand records in
s sequential manner and receive them one record
at & time. On the other hand, if for a user
transaction, the demand is of high volume and the
search criteria of the demand ’

P

are made of predicates vhieh require content-
sddreasing instead of sequential accessing, then
the atrong points of the datsbase computer hard-
vare can indeed yield high performenc. Ideally
one would want to come up with s design of high- .
performance and great-capscity database computer
which can provide effective and efficiemt solu-
tions to either low-volums and sequemtial da !
manipulstion or the high-volume and comteat-efds
dressable datsbase manipulation. Such &~ &&slgn 1s:
not in sight.

3, CONCLUDING REMARKS

Direct execution of existing high-level .-
database definition and manipulation language con-
atructs may not be desirable. The undersirability
is due to the lack of good database cowmputer de-
sign for unifors gains in stor.ge requiremsnt and |
transaction execution. In other words, special-
purpose database computers may not be able to .
bring about the high hope of saticipated through- |
put gains vhich has been the design goal of the
database computers in the first place,

Nevertheless, database compiters which are

capsble of directly exscuting datsbase definitiom

and manipulation language constructs will stay.
Their impact will be twofold. PFirst, cacsbase ap-
{lication programsiag will change. *he “hange

will primarily be prowpted by the adviice. fas-
tures provided by tha wachine) which ar¢ wot
othervise adeustely avai).“le in conveantional soft-
vare systews., TFor example, security and intagrity
checks and concurrency controls can be made wore
effectively and efficiently introduced as hardware
machanisms. 7The use of high-volume and content-
addressable search and update for vary large data-
bases is another need for hardwars realization
These advanced features will sliow axisting data-~
bases to migrate tv a new database machine envir-
onment with newly written applicatiom programs. Omn
the other hand, there is not much that the new
machine can improve for the old.spplication pror
grams. However, with some interfacing software,
the existing spplication programs can still be run
on the new environment without the need of program
conversion. It is hoped that in the long run the
database application will be dominated by the newly
written application programs.

Secondly, the preasence of the database mach-
ines will have an important impact on the future
developmant of database definition and wmanipula-
tion languages. Despits their claim of data in-
dependence (i.e., devoid of database software and
hardware implementation issues), the languages
were designed with certain known processing modes
and underlying technology of the time, As a nev
technology with s high degree of paralleliem and
content-addrassability, the database cowputer will
require new database definition and manipuistion
langusges to be highly concurreant and associative.
Furthersore, the new languages should have an in-
grated approach to the specification and control
of security and integrity checks of database access
and update. Thus, the study of database computer
design will also prompt our investigation of new
DDL and DML for the computers. )

B e TR AN

¥

ARy




i
i
L
I
s
4
H

R e e ]

ACKNOWLEDGEMENT

The excellent ressarch environment provided
by Professor Michael Hammer on the Project on .
Very Large Databases and in the Laboratory for
Computer Sclience at Massachusetts Institute of
Techno'logy 1s greatly appreciated. The author
was also benefitted by several discussions with
Professor Hammer regarding the paper and by Jai
Menon for his careful reading of the paper.

REFERENCES

(1] Chamberlin, D.D. "Relational Database Man-

agement Syatems," ACHM Computing Surveys, 8,
1, March 1976) pp. 43-66.

(2] Tsichritzis, D. C. and Lochovsky, F. H.
"Hierarchical Database Management, "ACM
Computing Surveys, 8, 1, (March 1976) pp.
105-124,

'3]1 Taylor, R. W, and Frank, R, L., "CODASYL
Database Management Systews," ACM Computing
Surveys, 8, 1, (March 1976) pp. 67-104.

[4] 1BM, Information Management System/Virtual
Storage (IMSJVS) Version 1, General Infor-
mation Manual, GR20-1260-4.

[5] IBM, Information Management System/Virtual
Storage (IMS/VS) Version 1, Application
Programming Reference Manual, SH20-9026-~4.

{6] IBM, Information gament System/Virtual
Storage (IMS/VS) Vexsion 1, Syatem Pro-

gramming Reference Manual, SH20-9027-4.

[7} 1BM, Informaticn Mangement System/Virtual
Storage (IMS8/VS) Version 1, Syetem/Appli-

cation Design Guide, GH20-9025-4.

(8] Banerjee, J,, Baum, R, 1., and Hsiaso, D, K.
"Concepts and Capabilities of a Database
Computer,' ACM Tranwactions on Database
Systems, 3, 4, (December 1978), pp. 347-
384,

{91 Banerjee, J., Hsiao, D. K., and Kannan, K.,
""DBC -- A Database Computer for Very Large

Databases", 1EER Transaccions on Computers,
c-28, 6, (June 1979), pp. 414-429.

110] Banerjec, J. and Hsigo, D. K. '"The Use of
a Database Machine for Supporting Relational
Databases, '""Proc 07 - 20 _on

o - -,
cessing (Syrvacuse, 1978) Available from ACM.

{11) Banerjee, J. and Hsiao, D. K. "Performance
Evaluation of a Database Computer in Sup-
porting Relational Databases, "Proceedings
of 4-th Intexpational Copference on Vexry
Large Databases, (West Berlin, 1978), Avail-

-

- - 4 M P - M
s e LR A O s e e U

98

(12)

{13]

{14]

able from JIEEE Computer Society.

Banerjee, J. and Hsiao, D. K. "A Method-
ology for Supporting Existing CODASYL Data-
bases with New Database Machincs," Proceed-
ings of ACM '78 Conference, (Washington,

D. C. 1978), available form ACM,

Banerjee, J., Helao, D. K., and Ng, F. K.
"Data Network -- A Computer Network of
General-Purpose Front-End Computurs and
Special-Purpose Back-End Database¢ Machines,"
Proceedings of the International Symposium
on Computer Network Protocols, (February
1978) pp. D6~1 ~ D6-12. Available from

the University of Leige, Belgium.

Banerjee, J., Haiao, D. K., and Ng, F. K.,
'"Database Transformation, Query Translation,
and Performance Analysis of a New Database
Computer in Supporting Hierarchical Data-
base Management," IEEE Transactions on
Software Engineering, SE-6, 1, (January
1980).

PR T R L ey e

R

:-,,._:A‘ it

i

Tyl 4

A

N LRI B N

Pt

<

N

S e e N .
SRR T e 1l e i sz 2

P




D
i
}‘\
{
4
:
i
%
¢
*
{
{
{

HASHING PARDVWARE AD ITS APPLICATIO 1O SYMJOT, MANTPULATICN

Tetsuo lda

Information Sclence Laboratory
Institute of Phygical and Chemical Research

Abatract

" An architecture of implemented hashing
hardware to be used in symwbol manipulation is pre-
sented. The major components of the hashing
hatdvare are a hash addressing unit and hash table
menetiss which can also be used as main memory of
the system., The hardvare makes uge of parallel
read~out and comparison mechanisms of logic-in
wenory banks. Basic hashing algorithms such as
search, insertien and deletion of keys are real-
ized by wmicroprogram control. Performance im-
provemants of ranging 9 -~ 13 times are obtained
Qver pure software hashing. The application tech-
niquas of hashing hardware to symbol table manipu-
latien, property list handling and set operations
are given. The advantage of hashing over associa-
tive mewories in these applications are also dis-
cussed.

1. Introduction

Hashing plays an important role in speeding
up table look-up operations. It is extensively
used, not only in the traditional language trans-
latien, i.e. assembling and compiling, but in
cymbol” ipulation st large, e.g, forgula mani-
pulstien™, execution °§ a Lisp dfalect”, and
associative processing .

Although hashing is the fastest among known
methods in the table searching of ¥ items in termu
of compytational complexity ( O(1l) compared with
0(log ¥) of binary search, for example), a con-
stant time factor due to calculation of hash ad-
dress sequences is not small in software hashing and
in soma cases, hashing gives way to alternative
techniques. Moreover, to avoid rapid degradation
of the performance, the table utilization must be
limited to far less than that of the total capaci-
ty, say 70-80 X,

‘10 overcoms thase difficulties, we proposed
parallal hashing schemes in which n independent
hash sddress sequences are used to access a hash

‘Research supported in part by grants in aid from
Ministry of Education (No. 479039) and Kurata
Research Foundation

99

2-1, Hirosawa, Wako-shi,

Saitama 351, Japan

table organized as a D by P two~dimensional array
(b columns, to be called memory banks, are ac-
cessed in parallel)(n<b) (c‘.s!ig. 1), and pre-
sented performance analyses, '” The results of
the analyses assured us of the average exscution
time of less than 1,18 successful table look-ups
with n=b=4, or even 1.05 with n=b=32 until tkc
load factor of the table gets as high as 0.9,

Based or: the analyses, we realized a parallel
hashing scheme on an experimental system, to be
used for aymbol manipulation. In sections 2-5, we
discuge the architecture and the performance of
the implemented system,

The fact that basic hash tabla look-up opera-
tions can be done with gpeed comparable to single
indirect addressing encourages more extensive use
of hashing in new areas of applications. In sec-
tion 6, we explain how several isportant algor-
ithms in symbol manipulation ars speeded up by the
hashing hardware.

2. Initial Design Considerations

Our problem domain is symbol manipulation
where tables (data bases) to be searched are taken
in main memory and accessed by hlqhing slgorithas
such as given in chapter 4 of Knuth,

Our approach is

(1) to build into memory-CPU interfaze parallel
mechanisms of (hash) addressing and data (key)
comparison,

(2) to incorporate hardware logic to compute hash
addresses into the address forzation unit in
cru,

and

(3) to replace ths hashing control sequencing
(traditionally done by softwars) by faster
loglc, i.e. microprogramming.

Several variations of hashing algorithms are
known with regards to key collision and deletion
handling, apart from the choice of hash functions.
We summarized below our considerations on thcst’o
isgues. For detailed discussion, see papers.” '

are~ a3

FF S AR P

8 2 NP L R N S . COF S

TSGR TR

2,

o gt



Open addressing vs. chaining methods for collisfon
resolution

+ When bits required for chaining are rightly
taken {nto account, overall performances of
the two are nearly equal,

- The open method is more amenable to
parallelism of memory accesses than
chanining.

Hence, the oven addressing wethod is selected for
our implementation.

With or without kev deletion

+ Traditional apolication of hashing such as
symbol table manipulation in language
translation may not require handling of key
duletion, since a aymbol table is discarded
as a whole when compilation (or assembling)
is over.

+ However, in the advanced application to be
dlecussed in section 6,
key daletion handling is indispensable.

« Amoug the key deletion algorithms based on
the open addressing method, an efficient
method developed in [7] requires extra
hardware resource in memory (collision number
counterg in each mamory word).

* In our implemantation, it is expensive to
incorporate extra bits in each word
without losing the compatibility with
the target computer architecture.

The above considerations lead us to adopt a key
daletion algorithm which makes use of three states
of a wemory word, i.e., 'delated' (all 1), 'empty'
(all 0) and 'occupied' (bit patterns other than
the above two bit patterns).

The dificulty with thir algorithm is that the
'deleted' words accumulate after repatitions of
key deletions and insertions. It causes degrada-
tion of the performance, especially unsuccessful
gearches. We need a clean-up operation of the
haahi table; 1.e, to reclaim 'delated' words that
are no longer in collisions with other keys and to
turn them into 'empty' state, relocating keys, if
necessary, Without collision number counters,
this operation must be performed with the aid of
goftware (rehaghing all the keys in the table) in
cvonjunction with garbage collection. The hardware
must have a function for monitoring the perfor-
mance in order to determine when to initiate the
garhage collaction, however.

3. Deacription of the Hashing Hardware

¥igure 2 shows our experimental system incor-
porating the hashing hardware unit (HU), 1t s
the implementation of the model in Fig. 1 with
n=1l and b=4 in the case of single-length (16 bit)
keys. The hashing hardware cunsists of two parts;
hagh addressing unit (HAU) and hash table memories
(M) . 'The conventional ALU (16 bits) 1s micro-
program controlled. Without HAU, the system can
emulate an existing mini-computer (particularly
multed for PDP 11). With the haghing hardware,

100

o LR F

the Instruction repertoire of the processor is
augmented with the hashing instrucctions given in
Table 1,

HAU is further divided into three parts: hash
address generator (HAG), hash code generator (HCG)
and hash table descriptor unit (HTDU), as shown in
Fig, 3. HCGC is used to generate, out of a key k
bit patterns (hash code) which are then input to
HAG for the generation of a hash addressa sequence
{h;}. HAG {mplements the following generation al-

gorithm (cf, Fig, 3):

Let ¢ and ¢' be the hash code, and P be the
size of a Lash table (cf. Fig. 1). P should be
a prime number. To generate h\,J and Ak, we use a

M1

mask value 2 which satisfies the relation

M 2m:l

i« A1), 4k e et (@M1
Lf hy 2 P h, «h -P

if Ah 2 P, MM« AR - P

1f &k = 0, bh « 1
for iml, 2, ..., Pl
}l A }l. 4 -.v‘l

1 1

if hi 2P hi - "i-P

tv

2
[

HM's ar. realized by logic-in-memory cards,
wach having 32 k bytes of memory, They are inter-
faced to common bus (Unibus) (hence accessed as
main memory via memory management unit (MMU)), and
have following functlomns;

+ parallel read operations of HML-HM4 which are
invoked by HAU,

¢ pattern matching capabilities, which detect
‘deleted', 'empty' states, and key matches,

Hash table descriptor unit (HTDU) in Fig. 3
contains 256 table descriptors and each provides
hash table base, size, and the other auxilliary
information to be used in HAG, microprogram con-
trol unit and ALU., The daacriptor of each hash
table can also be used to generate an 18 bit ad-
dress without the use of MMU,

e

i T

The hashing control is realized by micropro-
gram and ite algorithm is discussed in the next
section,

2L AR

4. Basic Hashing Algorithms

Given key k, let ki's be the simultaneously

read~out key from bank i, for i=1,2,...,b.
We define following signals to be used in the
microprogram control unit;

M-mlvmz/ .-.'mb

=M .\(el C

U~M /\(dl - dz v -.-vdb)

...\.Ub)

~
ot S A A AL e b Wi T

where

RNy e AT =

Rl L YT PRt

A e R ; P
LR USRI ST



e, is tha resulc of the comparison of ki and

‘empty',
di is the result of the comparisun of kf and
‘deleted’,

and
m; is the result of the comparison of Ri and k.

. di and m, are genarated in memory bank HMi.

We should note that the comparisons are per-
formed in parallel and that the results (M, F and
D) are available immediately after the completion
of the key read operations.

Algorithm S (key search)

Instruction HSR is implemented bv this algorithm,
Step 1, Set 1«0
Stgn 2. Compute a hash address hi'

Step 3. Accass the hash table.
(N, E'and D are available at the end of this
step.)
Step 4. If M then return the matched pomition.
1f F then terminate the algorithm.
(kav k does not exist in the table.)
Othervise. set 7 + 141, and goto Step 2,

The key deletion algorithm is similar to Algorithm
S§{ veplace the firet line of stap 4 above with
"If ¥ then put 'deleted' in the matched position".
Instruction HSD is used to exscuts the deletion
alpgorithm.

The kev insertion algorithm which corresponds
to HSI is as follows:

Algorithm I (key search and insertion)

Step 1, Set £ + 0.
Step 2. Compute a hash sddress hi'
Step 3. Access the hash table.
Stap 4., If N then the algorithm terminates.
(Key k already axists.)
I1f ZAD then put k in the 'delated’
position,
and terminate the algorithm,
If F then put k in the 'empty' position
and terminate the algorithm,
1f D then set t+ the 'deleted' posgition,
set {+i+l, wund goto stap 5,
Othervisa, set i+f+l, and goto step 2.
Step 5. Compute a hash address 4.
Step 6, Access the hash table.
Step 7. If M then terminate the algorithm.
(Key k already exists.)
1f F then put k in position ¢
and terminate the algorithm,
Set 1+i+1
Go to step 5.

Instruction HNI is used to insert a new key
that 1is known to be non-existent in the hash

% JH

1 . . . N
T T T e R 2 ¥ VT PO P PR B TR ST K v

101

table, Therefore, the algorithm for HMI is only
to repeat the table look-ups until either F or D
becomes true.

Execution of the hashing instructions is in-
terruptead vhen the number of table look-ups ex-
ceeds the pre-specified value (steps not shown in
the above algorithms). Counting the number of in-
terrupts, the hashing software can monitor the
performance of the table look-up operations of a
particular hash table; thus we can tell when to
invoke the clean-up operation as discussed in sec~
tion 2. Returning from the interrupt and restart-
ing the instruction is performed by imstruction
HRTI. Instructions on 'virtual' keys are dis-
cussed in section 6.

Key types

The hardware has to cope with multiple-leagth
keys, since the keys ares often strings of char-
acters, complex data structures, atc. The opara-
tion of HU 18 not affected by the atrribute of the
bit pattern (data typs) other than the length.

The basic lengths are 'single' (16 bits),
‘double’', and 'quadruple’, Longer kays are treat-
ed either as 'vircual' keys (cf. sesction 6) or as
lists, Hash tables are created to be one of the
above types, ‘pair' (i.e. pair of a single length -
key and the associated valus) or 'virtual'. The
type information is put in the descriptor (obta-
ined from the descriptor) by instruction PTHT
(GTHT). This type informatioa is used to iavoke
appropriate micro code at the excution tims of
HSR, HGV atc.. Note that for ‘'double’ keys, the
hash table sppears as two-benk (b=2), and for
'quadruple’ keys, as ome-bank (b=l).

5, Evaluation of the Performance

Figure 4 is the timing chart of HSR oparating
on ‘'single’' key. The actual clock psriods for to.

s and tz in rig. 4 are approvimately 300, 400

and 1000 ns respectively, and therfore the esti-
mated execution time (excluding the fetch and
decode time) of HSR in the case of successful
search is 1.6+1.3% micro sec, vhers 7 is the number
of hash table accesses. 7 depends upon the load
factor of the table and the number of mesory

banks. The values of £ based on xhg theoreticsl
analysis are given in refexences.“:’ 1In the
parallel hashing schemss, { is equal to 1 mostly,
uniess the hash table is heavily loaded.

Talbe 2 shows the timing of typical runs
which make use of HSR, We can cbserve the
performance enhancement by a factor of tea over
the software hashing. Similar improvements of the
performance are observed in the case of the other
hash instructions.

PIRIPRRY g%, OB ST

i1 har

P o

ersaT, s

NI




s U AR R G S L o e s =

” ™ - a— . S
7
: 4
I
Yot
Lo
P
P
P
4
l,‘
k‘
6, Application of the Hashing Hardware be formatted so that WU can handle 15, One way to
N handle the complex structure is to make an abbre-
i Although the hashing hardware is designed to viated kay (p.543 in Knuth®) or
¥ belgenurnl a; far as possible, in this paper we v(virtual)-keyll out of 1t. How to make the
3 orly give fo ;o:ing nppl}cationn. Thia is because v-key 1s {n the realm of software. To treat a
] C\cselgre used in existiug software systems and v-key as a proper hash key is that of hardware.
¥ the e¢ffectiveness of use of hashing is already es- In treating a v-key, we should note that:
] blished, The hardware replacament of the hash- ;
& ta + creation of a v-key out of & complex structure
3 ing software algorithm will greatly apeed up the is many-to-one wapping, B
| Y
3 ?y;ra:ign: a‘bibn.rv:d 1“ l!ction 5. 5 + hence, HU has to cope with the situation of
1 symbol table manipulation in assemblers and sultiple key matches.
. compilers, 8
] (2) property list handling, : The search algorithm in a v-key differs from
] (3) creation of a unique copy of data structures Algorithm § in the following points:
; ) an §“3§i§1§?'§a33“§§*§§>°h§i§§“?éo&.v in Lisp 1. When a v-key match occurs, it saves
. ¢ ) hash st . d.m, h, 8k
4 for the sharing of gub~data structures and the current hash status (01 dt g b )y
{ fast equality checking,z and r:furnu the pointer to
i (%) et operations.? r-key (performed by inatruction HGR).
3 2. The associated gsoftware checks whether r-keys
) Symbol table manipulation match.
3 3, 1f r-key match orcurs, the geavch ends
3 Figure 5 illustrates data structures of the successfully.
: symbol tables to be used in conjunction with HU. Otherwise, the search restarts “rom the next
o [n Fig. 5, HT1 is the 'pair' type hash table. point where it is suspended eft r restoring
. Wien the key is 16 bit, the key ituelf is put in the hash status (performed by instruction
the key part of the hash table. Longer kays are HGRN) "
accomodated a¢ a pointer to some appropriate entry 4. When F*2 becomes true, the search terminates
of another hush table (e.g. when a key iy unsuccessfully,
‘double', a pointer to an entry of HT2 is placed «
in HT1,) As a special case, we connider the case that
the key itself is agaic a pointer to a hash table.
Property 1ist handling This 18 the case where a set is implemented,
Figure 6 shows the data structure. The search
A property list 1s a Lisp terminology.l0 algorithm is as follows:

1. Compute the v-key using a symsatric hash

An implementation wathod as given in reference 0
function, g

relies on sequential search of lists. The
) method discussed hare iz a spsad-up version of 1.e. g(x,y)=g(y,x), since the order of
. property list Handling using hashing. Por aexam- elements of a set is insignificant.

1e, the Li ¢ 2. Use HGR and find the v-key match, . ‘
ple, the Lisp code (GET OBJECT ATTRIBUTE) may be 3. If ¥ then terminate the algorithm }

executed (interpreted) as (unsuccessful search)

"SR tl.a ; Zog:i:::ngoo: :3::t:r:°:g key 4. Use HSR to test the matches of each slement of k
; atoms OBJECT and ATTRIBUTE, the hagh tables. .. s
: and t1 denotus a hash table 5. 1f all the elements match, terminate the \
1]
; ; numbar. algorithm, otherwise find the v-key match by 4
0 ; This instruction searches for HGRN and goto 3. g
8 ; & Lisp cell constructed by %
! ; hashed cons(OBJECT, ATTRIBUIL) s
BNE UNSUC  ; If not in the hash table, . i
s unsuccegsful search S
i (result in r) %] When nececssary, we use term 'r(real)-key' to g
MoV ra denote the key other than v-keys to clarity the ﬁh
HGV t2,a ; t2 19 the ‘pair' type difference. %
i hagh table, where the value *2  Strictly speaking, £ is not the same as that o
; assccistad with defined in section 4, since the scan of signals b
; (OBJECT ATTRIBUTE) is stored. (eimid;)may start from the bank different from x
UNSUC: 1, and since multiple match may occur. . ﬁ
Creation of unique copy of complex structures i
In peneral, complex structures cannot be tre- L
ated directly by HU, unleas it is built up of uni- ﬁ
form structures such as lists in Lisp, 1t should g
&

4 L—,—'m'-r'xm:.'—‘:. G L AL YW e e @ e ¥ LM Lord S st b i dhes,



Vs should mots thst u&u W 1is used recur-
sively, va need to save :w«-cnu of the teapo-
rary storags ia W (i.e. AM 1 'It). basides status

. d‘_. ad =, in the v-key piccassing (emscution of

HCR and NORN). Newcse, we kava duplicate of regls-
ters in W actuslly; cass for x-hay hashing and
the others for v~key hashing.

In the cess of lists, we eam do without
v-keys. WT) ia Fig. § ulutuuu the shared
1inked 1ist cemstructed by wnique 'cons' by
mu‘.o

with
ternative ques

To summarise the spplications discusesad, we
see that hashing is wesd essentially in three
vays; (1) associstive ratrieval amd (2) oomstrue-
tion of a unique copy of a data structure for fast
squality checking, and (3) ss a comsequence of (2),
shariag the eub-data structures im comstructiag
complex structures.

Associative retrieval by hashiung 4is based
upon the sigla-hit property of kays. This opera-
tion could be performed by associggive wemories
such as surveyed by Yau and Puug. Nowever,
we cossider hashing wore sdvaatageous ia our prob-
1en domaia for the followimg reasons:

+ Nashing i based upon conventicaal RAMe
(Mamdon Agcess Memory chips),
which aze simpler in structures at gate lavel
by at least ome order of magnituds
than sssegiative memory chips o.g. Intel 3104,
not to memtion the cost performance.

¢ Yurthermove vith the same level of
senicoudiotor tachnology RAMs are faster
than associative msmories;
hence in many applications hashing is faster
than associative processing based on
associative nemories.

* Larper scale implemsutation is possible with
our hashing acheme; the sixe of the tabla 1is
limited omly by address space of the main
nenory.

s Tull capability of host CPU can be utilisad
in conjungtien with hash table msaipulation
with no additions]l hardware cost, since
hash tables are realized in main memory.

¢+ Hence tha capability of associativs retrieval
i{s casily imcorporated into existing
architecture as showm in pravious sactions.

¢ Variety of data structures can be used in
hashing, since they are realized in
RAMs (main memory)
vhereas in apsociative memories dats
structures would be subjected to hardware
mamory word configuratioa.

As for the second and third usage of hashiug,
corresponding efficient slgorithme (¢.g. sat
operations) based on associative memories

“ e,

wvould be difficult to dewalop. Differeat
approaches to thess applicatiens would be
ascessary.

8. Conclwiiag Remaiths

Ve have ohoun hov hoshing ean be inglemmted |
b;m‘ ummuw“u-.m
[ 8 Whe.

The architecturs shows in ¥ig. 1 reflects |
the basic requiremsnts for ¢the hsshiag hardware as
siven ia (7). It alsoc vefissts the design com-
prouise lupevsd by practissl esysiderations for
the enperimantal systen; such as osst-performmce,
compatibility with the existing eysten, dimsasions
of the system, etc.. We briefly discwss tha
slternstives wa could have talian if some of the
asbove 1imitations vere zemoved. -

Lat us t&a‘&c anscutien of MR operating oa'
a 'single’ key (without hey dalstiom), for axamele;

- The svarage emscutios tims 1 divided iato ALK,

103

mdmuﬂnwcmuo.o.m i
mowory accesses, key sligesmat, and other micro
operatioa, respectivaly. This witin indisates
that the hashing operatioms are wemory-limited.

1f faster ssmories or caches are available, the
spead of hashing will be further iwmproved.

The gemaratioa alporithm of hash address
sequances given in NAC suffers from asa-umiforuity
of hy and 4k, vhen the eize of the table, P is
uot closs to the powar of 3. Tha trads-off
betwesn spesd and the waifossisy of the distribu-
tion of em tdtul. bash n“null is diecussed
elgevhere.l

Exanining the u.um in ubh 2, we cem con-
clude that the choica of w=1 (ome WAG) amd b=d
(four -no’y benks) ssems to be adaquate (see
cveference,’ for further discussioms). Nowaver,
with additiomal havdware, we would have chosen
paramsters b=8 (sligh increses of the parformence
will result), or bed with each msmory card
equipped with 64 KB, Then all the memories could
b« usable for hashimg.

Softvare which makes extensive use of che
hashing hardware {s nwot yet complated. Pull eva-
luation of the hardvare has to await for the
software dovalopment. The experiance with the de-
sign and comstruction of the hashing hardvare will
be used tg buil s larger system for sysbolic
algebra. We hope that the imstruction reper-
toire will provide data to stemdardised the hashing
operatious beth i herdware and seftware. We also
hopa that im high level lamguage machinss hashing
hardvare will be imcorporated as em imtegreted
unit since hashing is balisved to speed up
eseential search oparatioms in imterpreter-based
systems such as Lisp and a diveat zucutton
machine for high level lemguages.

R SR

LS A LR R NOR SR T S G SR |

o
ot b et e s g ¢ s o m—— 0 pate

IR Wl Ry W e s aiant oy 2t Y9, n‘\’o N gt iu..) MLAAM&MDJ‘H_AJXM -




Achovlomt

We thank Prof, R. Goto of Univeraity of
Tokyo for discussions on application techaiquas of
the hashing hardware to various symbol manipuls-
tion algorithms., WUe also thank My. K. Hiraki of
University of Tokyo and many people of Mitsui
Engineering snd Shipbuilding for the help in the
implesentation of the whole systems.

Refersnces

[1] Goto, E, and Xansda, Y. Hashing lemsss on
time complexity with application to formula
manipulation,

Proc, ACM~SYMSAGC, 1976

[2] Goto, E. Monocopy and associative algorithme
in an extended Lisp, Teach. Rept. 74-30,
Departmant of Information Science,
University of Tokyo, (1974)

(3] Feldman, J. A. and Rovner, P. D,

An Algol-based associative language,
CACM, Vol.12, No.8 (1968)
[4] Goto, E,, Ida, T. and Guaji, T.
Parallel hashiag algorithms,
Information Processing Letters, Vol.6, No.l
1977

{5] Ida, T. and Goto, E. Analysis of parallel
hashing algorithms with kay deletion,
Journal of Information Proceasing, Vol.l,
No.l (1978)

{61 Knuth, D. E. The art of computar programsing,

_ Vol,3, Addison-Wesley (1973)

{7] Tda, T. and Goto, E, Performsnce of a
parallel hash hardware with key daletion,
Proc. IFIP Congress (1977)

(8] Kanada, Y. Implementation of HLISP and
algebraic manipulation language REDUCE-2,
Tech. Rept. 75-01, Information Science
Laboratories, University of Tokyo (1975)

{9) Sassa, M, and Goto, E, A hashing method
for fast eet operationa,

Information Processing Lettera, Vol.5, No.2
(1976)

[10] McCarthy, J. et, al, Lisp 1.5 programmers
mannual, MIT Press (1965)

[11] lda, T. and Goto, E. Parallel hash
algorithms for virtual key index tables,
Journal of Information Processing, Vol.l,
No.3 (1978)

[12] Tda, T. A cowputer architecture with hash
addressing capabilities (in preparation)

[13] Goto, E. et, al. FLATS, a machine for
numerical, symbolic and associative

processing,
Proc. 6th annual symposium on computer
architecture (1979)

{14] Chu, Y. Direct-exacution computer
urchitecture
Proc, 'FIP congresa (1977)

[15]) Yau, 8. 8. and Pung, H. S.

Assoclative processor architecture -~ A
survey,
Comput ing Surveys, Vol.9, No.l1 (1977)

. o
St ek st v s Yatiade e Sl lew s

104

M i ol s R AR

Instruction Punction
HSR Search key
HGV Get valus of 'patr’
HPV Put value in ‘pair’
HNI Nev kay fnsert
HSI Search sad insert
HSD Search and delstas
HCR Get real-key
HGRN Get real-~-key next
HPR Put resl-key
HDX Dalate existing virtusl-key
HRTI Return from hash {nterrupt
PTHT Put {n hash table descriptor
GTHT Get from hash Table descriptor
Table 1 List of Hashing Instructions
cage 1H | case 2H | case 15 | case 28 '
HSR for 6.1 6.6 | 5.5x10 | 8.3x10
'single'keys —
HSR for 1) 1x10 | 1.2x20 | 1.2x102 | 1,7x202
‘doubla'keys —_—
HSR for |y ax10 | 2.0x10 | 2.0x102 | 2.3x107
'quadruple’
keys -
(in micro sec)
Note:

1. values are sverage execution timings
when accessing all the keys that are
1H: filled upto 502 of the table that is
initially ‘empty’
2H: filled upto 80%Z of the table that is
initially 'empty’'. {
Cases 1S and 25 are thoge obtained by executing
equivalent pure software (using standard PDP1l
instructions) hashing algorithms on the same
machine.

vy

x

2. Timings include fetch and decode time and P
interrupt handling time if interrupt occurs, i
3

Table 2 Average Executfon Timings of (SR g

DIC « Average hxecutlan Timlng s

"

5

g

. L

z

i

i

x

P i W T

R B 8 o et

bat
i

Y
o

e . S P

S b




‘ 20,1, P-1
‘ ? 2 e "
; J‘; ]"' I n hash addresses

5 P hash table

N - _
‘- IJ’ ‘L[ """""""""""""" U parakiel read

Figure 1 Parallel Hashing Scheme

Hashing Unit e e e = R
TS TTEETE TTTTTEsTEETEET S '
: HM1 HM2 HM3  HM4 '
) e e :
: <« me %I fa m ?) 3 ﬁ ) :
; m__ld_ e T T ) ]
] ' i
AU | ' |
: microprogram ‘'] o : s
Memory | . y
128K8 I 32K8 32K8 32K8 328 l 1
N ! ¥
! )
! |
! Hash '
s : : Addressing :
[MMU | Unlt i
? £ |
L. -+ a ......___...l'-E [ SR S - -——d -

common bus
— (18bit sddress. 18bit dats)

Figure 2 System with Hashing Hardware

103 .

ENVIENTL i dwersT S AR 5 L s el w e L A

4 2

4
1
]
. -“.pl‘!» - s “» . . s ) 'A. . . .. ;‘»
. . . - R R [ b
- . . : : et i gty St o8 P



T T T LTI Tor T R
1 v T !
]
HTDU Hash . Non-Zero :
Code ) Transform :
Generator '
: B !
271 c.c' E h “h |
. , | T T !
{mask bits) r- . | 1 L X
t
: 1 ]
] i
: | .
t [}
i
size(P) : S G T T X
) '
! % !
: multiplex .
}
y by .
base v carry {
t
: Hash 1
| + Address X
; Generator :
L 4

physical address

Figure 3 Block Diagram of Hash Addressing Unit

microprogram ALU time in total

-
unit
timing HTDU HCG HAG HM control
salect
step 1. Nl ash table
S S T st L
tep 2 chack
step te types
- — - - —- iy
\ . generate transter key
step 3 te hash code te KR's
3.
occupy
step 4: :°T:““ comnon bus
o ase cycle .
— W U [PV U o PRI
. compute | common bus
step 5. ti va oycle
| ggnn\lol read) et ts
compute muitiple-jump ’
step 8 te hve bt h on GR- n:;eh-d
h, + base £M acdress
BECUPY (3-1thr t ot
. common bus jump to
e {paratiel rasat) P ©
{parafiel tes {3+ 1o -t {11t
stop 8. te jump to Set condition
fotch routing | code
{4+ it

Figure 4 Control Sequence of HSR Execution

-

Yt L N e N \
N nlr-‘dl“.Am.4J&m‘)a‘:ulk‘.ﬂla’jjdx&‘“}'«!\’a?"EJ!( A Gy Ay Kk L
L Uit A w4 e K

106

s,

’

B e s W s
R L. N -
5 ol PR

E = RN




T e P TR TR P are ey £ e

loc. attr. type. etc.

AB| AB S roal | oo

15 fune | e

LAMBDA o /"’ 2 ml .........
3 int [ e

MB{DA : p—

RIKE e

‘pair' hash table
MT1

< | ;

‘double’ hash table ‘double’ hash table

HT2 HT3 o ;|
Figure 5 Representations of a Symbol Table |
xya '

Vi=glixye) | V1 . ty 'j

labd ta

<
~
1
-

V2=gllabecl)

tx

tb
tc

R

‘single’ hash table

{

i v-key Dpointer :
] to r-key :
E

‘virtusl' hesh table ‘single’ hash table J

fa: pointer to &

Figure 6 Representation of Sets Using Hash Tables

L 115 R SN e = ot
2SR 1 B D 3 O R PRI TRt e S SURE k. SR SN o

t
{
107
~ Vinakaa s

] \‘“

- o S o . =g 4 e o e ’ s

Ly . . - et .o
3

Lo BB e ek ool e sl LD e S N otk s e



RAP,3 - A MJLTI-MICROPROCESSOR CELL ARCHITECTURE
FOR THE RAP DATABASE MACHINE

K.OF LAZER E.A.0ZKARAHAN
Middle East Technical University, Ankara, Turkev
and
K.C.SMITH

University of Toronto, Toronto,Canada

Abstract

Recently introduced database wachine proposals
are critically reviewed, A new architecture for
the cell processor of the RAF database machine util-
izing multiple microprocessors and LS1 serial
memories 15 presented, The proposed cell processor
designed down to the logic gate level, embodies
concepts of modularity, flexibility, and firmware
driven query processing. The concept of firmware
execution of high level RAP assembler instructions
is presented, The results of various analyses of
the analytical and simulation models of the new
architecture which were carried out elsewhere are
summarized. Sgecia\ emphasis is given to bulk
memories that have the start-stop controllability
(11ke magnetic bubble memories or RAM arrays
simulating serial access) together with the
increases in functional capability and performance
obtained by incarporating such memories.

KEYWORDS: DATABASE MACHINES,ASSOCIATIVE PROCESSORS,
DATABASE MANAGEMENT, LSI MEMORIES,
MICROPROCESSORS, COMPUTER ARCHITECTURE

Introduction

The idea of providing backend computers for
the efficient management of large databases, as a
substitute for the slow software access methods,
has received considerable attention in the recent
years, The research efforts spent on this area
have got the deserved recognition with the two
special issues of IEEE journals'e+?

In the last years, many specialized processors
for handling the database management operations 3
have been proposed. Among these there gre CASSM
to process hierarchies and tables, RARE? for
relational database management and RAP%,6 that has
been implemented at the University,of Toronto_and
has also undergone certain changes. DIREC 9 §s
being implemented at the University of Wisconsin.
Other yrorosals include the Database Computer
(DBC)'%411 s a backend processor-memory complex
and the Bubble Memory Relational Systemi?,

In this paper we will first survey the most
recent research efforts in the database machine
field and then present a new approach to the RAP
processor architecture, beyond that of RAP.27 ,
utilizing LS technology, like off-the shelf

108

microprocessors, magnetic bubble memories (MBM),
high density bulk RAM chips, etc.

Survey of Recent DBM Proposals

Most of the recent database machine proposals
have exploited the advances in technology by
1ncorgorat1ng microprocessors, CCD's, MBM's and
the like.

DIRECT is a system for supporting relational
databases. The system comprises a host for
interfacing with the users, a backend controlier
for coordinating the overall database machine
hardware and software, mass storage units for
storing the database,a set of query processors,
and CCD page frames for holding the relation pages
that are being processed.

In this system, the query processors and CCD
page frames are connected to each other by util-
izinq a cross-bar switch, so that all processors
can access a'1 page frames. Although this cross
bar switch is much simpler than the conventional
tross-bar switches, it may not be cost effective
and may also reduce performance in larger
implemegtations of this system as proposed in
with 10% processors. This is because, as the
number of processoirs and page frames increases,
the selector/decoder networks at the processor
interfaces and the gating networks at the page
frame interfaces of the cross-har switch grow in
size,thereby introducing extra delays in the data
transfers between the processors and the page
fr?mes. and hence decreasing performance consider-
abiy.

Another feature of the DIRECT system is that the
results of the basic relational algebra operations
executed by the query processors are treated as
temporary relations and are written onto free

page frames allocated by the controiler, The
number of temporary relation page frames depends
on the number of query processors assigned to the
query,

This scheme increases the query processor-
controller interaction during page frame processing
because of temporary page frame requests and may
introduce unnecessary page faults for some other
set of query processors executing another query
concurrently, just because their page frames may

oy ot g e

DA il a8

SRR FA R A v e e AT o e

1

S




i

e

e e i, ey, ¢ ARSI A 1Y

A : N
NENNTIV VRN CRIN, P R T QT S N

be assigned to the temporary relations of a

higher ?rior‘!ty very. In this way, the degree of
parallelism may drop seriously because of the
creation of témporary relations. The temporary
relations may cause a more serious performance
degradation during the join operations in which
the system page frame resources have to be
partitioned for the source and result relations.
The join operation may produce result relations
with sizes comparabla to the source relation and
it is very 1{kely that this system will suffer the
thrashing problem in the join operation.

The Dattbase Copputer (DBC) is a system

proposed for very large databases and a variety

of dats models, utilizing modified conventional
moving head disks., The basic system comprises two
processing loops; the structure loop for pipelined
procesnn? of the keywords and record indices and
the data loop for actually processing the database
contents,

One of the major drawbacks of this system is
its way of representing data as attribute-value
pairs. This scheme of repeating the attribute
information wastes a considerable amount of data
space. Another drawback is that the number of
processors for doing the actual processing is very
small compared with the database size; thersby
reducing the parallelicm that should be inherent
in database machine systems, Furthermore, the
number of interconnections required between the
disk drive array and the track information
processors may be prohibitive in terms of cost and
physical requirements for the configuration
proposed.

The DBC relies on the concept of partitioned

content addressable memory (PCAM) for data accesses.

A PCAM is one cylinder of a disk volume and is the
largest amount of memory that can be processed
with the 1imited amount of processors. One PCAM
can be processed in one disk revolution, but if the
qualification for a retrieval is complex and/or if
the data to be processed occupies a large number
of cylinders, then many disk revolutions are
necessary for processing the data, The relational
operation of join is alson executed in a very
inefficient manner. First, all the qualified
domain values of the source relation are retrieved
and then for each source value, another retrieval
instruction over the target relation is issued.
This implies that the number of instructions
executed by the track information processors
de?ends directly on the number of source domain
values,

The performance study of t?’s system in
supporting relational databases'' shows that a
general :urpose conventional computer performs
better than DBC for large relations (e.g. with
20000 tuples) with reasonably large tuple sizes.
This in turn implies that this system, although
designed to support large data bases efficiently,
cannot support 8 database with large relations as
efficiently as a conventional computer despite
the additional hardware costs introduced.

: .
b Rttt L Bt e At e s e S AR

109

Furthermore, since this system relies also on
the concept of index processing (although in hard-
ware), the similar problems incurred by the update
operations on conventional systems is likely to
occur in DBC, because the structure memory should
be updated as to reflect the resylt of the update.

Utilization of MBM's for supporting re'llﬂonal
databases has been recently proposed by Chang'c.
The proposed hardware comprises MBM chips with
certain augmentations to facilitate associative
selections. A relation is wap oh Ohe or more
MBM chips with tuples across winor Yoops and
the domains along the minor loops. It i3 claimed
by the author that augmentation of the MBM chips
with off-chip indexing loops provides convenient
indexing during data qualification and avoids
redundant traversing of disqualified data. Two
off-chip registers and a one bit comparator are
provided for the database operations.

instruction set of this system is said to be
inspired from that of RAP with minor changes.

The operational deficiencies of this system
result from matnly the following: Since the hard-
ware employed is substantially small and simple,
provisions for in-place ugdates have not been
provided. Furthermore, the existence of only one
comparator limits parallel comparisons on data,
hence 1imits query complexity. Also, the join
operation is handled implicitly as in RAP, but only
a single domain value from a source relation is
transmitted to the target relatfon per scan, This
mode of operation may severely degrade the perform-
ance of such a system in a join operation.

The following sections describe a restructur-
ing of the RAP cell processor utilizing off-the-
shelfmicroprocessors and bulk serial memories,
especially MBM's, The proposed system differs
considerably from the previous designs of RAP.
First, the hardware structure of the cell is
configured into a more regular and modular structure
and the hardware complexity in terms of chip count
has been reduced to a third of the previous designs.
Secondly, query processing driven by microprocessor
firmware and utilization of start/stop controllable
memories such as MBM and/or high density RAM's
permit highly complex data qualifications and
highly efficient join operstion, The proposed
system can b, considered as a RAP.3  system
described in/. The reader, after following the
paper, can draw a comparison of other database
machines with the enhanced features of RAP, as
also summarized in the conclusion, including
especially the join operation.

. The RAP database machfne can also be regarded
as a good example of a High Level Language Computer
Architecture, $ince the context of the present
discussion will deal with the architectural aspects
of the new version of the RAF cell structure and
the fact that the basic RAP architecture glgny with
its instruction set are covered elsewhered0+/, we
will be content with providing only a summary
description of the latest RAP instruction set in
Anpendix-4,

Wt
AT

AN e e e

S

SRR TSP b D O




. The New RAP Cel) 'r” ¥ \ e  CM of each cell also his a different
- A struct ‘than 1ts counterpart {n the previous
i Tha ngy ‘Ecm um roach having been designs®i7. The (M is chosen as word serial
5o adopted!8 1 in organizatios uitﬂv to fit data pecesy port size
oo ,nother array of dmngm y omrct 2 to the $ubce)1 microprocessor dats bug width and
: wherg each subcelli’c ses a Mc opio wis0 to {kcgrporate ather slow, ewly emerging
i necessary per‘lp N;}( Ships T bulk maory, ‘techaplogies. 1ike w‘! or high density
: funct1on?} i t% i’ d'?r ) %A" ;hsgézl ; K}f‘nt: p.a:;‘.r rﬁlﬂi&atpoce?ot?zn
: data qualifina ne o up 0 @ effectiye a a

) i is directly ohto the (K, s¢'that the logical

increase the ef .ﬂ t onal

ceH .such suhcel and phySical' s tructures ‘of datp ‘are exactly the

same, The format information reguired By the
format sensing circuitry of the pravious designs

rmps\

3 {‘.e. re a;‘loha), ond. ty is eliminatad complewiy and the husber of mark bit

: ralation®s s s‘tov‘]' {n, tbs,‘ domains fs {hcreajed to’ 6.

! f ot v 3 .

‘ gelhﬁa:( ystemg“’ »‘zgqr B syston 4 rﬁu' fuéric domains can be 2 or 4 bvtes

; a two- dimen.dpna) i Tam within near \;ith{? d nnn% nprosentaﬁiog and ngg-guﬁric

" : 3 2-1 the overall st re of omain ang as long as required, provided tha
ey AR wa he 2 m ! domain lengths is 1955 than or equal

3 the new RAP cell,. . the sum of t

SUBCELL~2

—— QU] TCRE
DMA —aema dati

i COMTROLLER e emen control

N e A oo o w?

—_— S L —
SU (l‘;\ ’l‘- . LR 1
INTERFACE
L 3
! ‘z
v ' p
RAP CONTROLLER 3
Figure-1 Structure of the new RAP cell,
{ C
Tuple-1 Tuple~2 Tuple-3 j ’ Tuple-p
Ty
a) Circulating memorv structure
4
N
¢ *
DF Domnin-| homain-2 Dome i n=m A.:
. A i
sad 4
d Tuple mark bits 4
— Delete flag J'i
b) Tuple structure . ;
4 i .
:
Figure-2 Cell civenlating memory format. 4

110

' .
o el L ke s B b :‘.ﬁ.h"" .




R ST TP

to the maximum tuple size of 1024 bytes, Further-
more, other data types like floating point numbers
can be easily supported without any extra hardware.
Fiqure-2 shows the format of the cell (M,

Operation of the Cell

The linear array of subcells provides multiple
buffers (as small RAM's) for the tuples coming fiom
the CM. At any time during CM circulation, more
than one tuple can be out of the CM, which may be
in the states of being loaded into a subcell buffer,
being stored into CM from a subcell buffer, or
beingprocessed in a subcell., The existence of
multiple buffers provides the necessary time for
processing the tuples, thereby synchronizing the
data move and data processing rates. The sequence of
operations during a circulation of CM can be
describad with a process/time-siot diagram given
in Figure-3.

In Figure 3, Li» P; and Siv denote the load,

process, and store states of scme tuple for subcell.,
respectively. When the CM circulation is initiated
successive t:gles are loaded, via DMA, into
successive subcells starting with subceli,, unti}
the end of (k~1)th tuple. In order to stly in

3

synchronization, the first tuple should be stored
from subcell,, while the k th tuple is being
loaded ‘nto lubceIIK. and the 2nd tuple should be
stored from subcell, while the (k+1)th tuple is
being loaded into shbcell,, etc. During the
circulation, each subcell 'microprocassor is
initiated for processing as soon as its buffer is
loaded with a new tuple.

It is evident that during the processing of CM
contents, only (k-2) of k subcells are actually
active at a given time. This may bring the idea
of multiplexing (k-2) processors among k tuple
buffers or, in general, multiplexing P processors
among M tuple buffers where WP, If M i< not an
integral multiple of P, then & gensral interconnec
tion network (e.g. a cross-bar) should be utilized
to allocate processors to buffers, If however M
is an integral multiple of P, then a simple
but static interconnection schemt for multiplexing
each processor among (M/P) huffers way suffice,
However in both cases, bestdes the intsrconnection
complexity introdiced, the important feature of
CM wait time utilization (to be described later)
cannot ve made. possible.

After pofnting out this alternative to the
original k-parallel microprocessor approach, the

1 PROCESS

L,

Samt—— )

W

TR

Pigure ~ 3 : Load/Procese/Store sequences of call operatism

[ 3

rROCESS
HER R -
Wole i s ] g 4
o -
N ) Sy | ]y}
bt ;
s L 1 ." 0 :
! 2 L N L 1. !"
i s R H
1 1 I L Ll 1 o l" 1
l ] v v, !, v‘ '5 Y ’

rigurs - & 1 Illustretion of MM wait states for k:i:é

., cw e Lol . : .
e A N R TN % I RN SR P AT SO1-1 Sirabpe 03T kN el

111

o T I T T r et L A i e Y b ol

s

-
N

P

TS F N TP R (SRR RS . N




BTN e e

paper will continue dealing with the dedicated k
paraliel microprocessor approach to elaborate on
the wait schemes and to preserve the modularity of
the cell architecture.

As it was pointed out in ]6, the processing
time allocated for a subcell after its tuple is

Tnaded i;

Tog = (k=207 ¢

where k is the number of subcells in a cell and

i the DMA Toad/store time for a tuple, It shoul
ve noted that the allocated time depends on the
tuple size and is larger for longer tuple sizes.

ln any case, the worst case expected processing
time should be less than or equal to T,, for a
given tuple size so that synchrcnizatigg is not
tost. This constraint puts very high demands on
the subcell microprocessor performance and on the
number of subcelis k (increasing k increases the
allncated time) if the CM cannot be controlled in
4 start/stop fashion (as would be the case with
votating devices or CCD memories). Furthermore,
this constraint limits the functional capability of
tne subcell by restricting the complexity of query
nquelification expressions,

fhe proper use of the start/stop feature of
MBM's (or asynchronous access feature of bulk RAM's)
retioves the above constraints, so that hardware
parameters can stay within feasible limits. This
i< allowed in such a way that no performance
deqradation for average processing times occurs,
while Tonger processing times corresponding to more
complex guaiification expressions impose a certain
dynamic performance degradation which can be traded
off with the issue of minimizing hardware.
Furthermore, it is observed that in the execution
of theprelational join operation, handled implicitly
in RAP” where a tarqget relation (domain) value is
matched disjunctively against an array of source
relation (domain) values, the deliberate imposition
cf oAl on UM (by stopping CM whenever necessoiv,
reduces the overall time to execute the join
ogeration, This point will be detailed in a
titdawing section, .

[ igure-4 shows the process/time-slot distribu-
Lion T a controllable CM and for k = 4. The
basic idea behind the utility of the start/stop
feaiure of controilable memories can be stated in
the following way: when the time comes to store a
tuple from a subcell buffer (e.g. storing subcel]l
while loading subcell, ) if that subcell nas not
yet asserted that the processing of the tuple ic
tomplete, the CM is put temporarily in a wait
state to 4llow for the completion of processing.
The extra time requested by a subcell becomes also
available to (k- 2) succeeding subcells so that the
vhance that they will impose further waits is
highly reduced. A analysis of the timing of

operations fue ¢ is case is presented in Appendix 1.

Functions of the Basic Hardware Modules

The hardware modules given in Figure-1 have
the following functions:

112

TR THER T

SUBCELLs: They process the tupies loaded into
their buffers by the DMA CONTROLLER. The
processing is driven by a query routine loaded
into SUBCELL memories prior to the initiation of a
RAP instruction.

DMA CONTRCLLER: This module controls the
simultaneous bidirectional data transfers between
the cell menory and subcell buffers during the
load/store operations. It also sequences the load/
process/store operations and keeps track of the
cell (M status.

BUSES: There are four buses that provide data,
address and conirol paths between the cell modules
during data transfers.

CFLL INTERFACE: This module coordinates the
overall cell operation during instruction
inttiation and termination, keeps track of cell
status, and provides for the communication of the
cell with the RAP array controller,

Query Execution

In the new architecture, the microprocessors
of the subcells in each cell are the basic data
processing units. Therefore, these microprocessors
can be programmed to execute RAP instructions®:'?
;in"'] .

The basic idea behind the emulation of RAP
instructions with microprocessor routines is that
each RAP insiruction can be mapped into what is
called a "query routine". The basic RAP instruc-
tion constructs (i.e. MARK, RESET, MKED, UNMKED,
updates, set-function computations, comparisons
etc,’) have simple microprocessor code equivalents.
Furthermore, the combination of the results of
various qualification tests as disjunctions or
conjunctions {or mixed which was not available in
the previous designs) can be embedded into the
sequential logic of the microprocessor query
routine, This mapping brings considerable
enhancements to RAP capabilities, since now,
qualification complexities are limited only by the
subcell microprocessor program memory Ssize ins.ead
of the static hardware registers of the previous
designs . Furthermore, since the whole tuple can
be accessed during processing, domain to domain
comparisons and updates are also made possible.

An example of a query routine is provided in
Apoendix 3.

The subcell microprocessor memory comprises two
parts. The ROM part contains the basic qualifica~
tion evaluation routines (i.e. numeric and non-
numeric value comparisons) and routines for the
relational join and free variable operations. The
RAM part is logically partitioned into two parts:
one for the query routines and communicaticn
buffers, and the other for the tuple to be processed.

Before the initiation of a RAP instruction,
the equivalent query routine and/or necessary
parameters are loaded into the RAM's of the
subcells of all the cells involved in the instruc-
tion, after the ce!l interfaces connect their cell

e e s

S *&mﬁﬂ;ﬁ&ymmu.

A
XA~

e ke L ow.  AIE

*.

R T, T R S o
e X .ub;\.x\n;mu&h“é!ixx.}:n'u&ummua_s\x.'d‘?ﬂ. “\:h,:"_u, il




buses to the buses of the RAP controller.

Each time a CM circulation is started and
whenever a new tuple is loaded into a subcell
buffer, the microprocessor is forced out of the
idle state to branch to the query routine. At the
end of processing, a hardware flag is asserted to
signal the DMA CONTROLLER so that the tuple can be
stored back.

The cell interface is also controlled by a
microprocessor, which after each RAP instruction
is executed on the CM contents, polls each subcell
and updates the cell status and computes (if
applicable) cell set function subresults.

Execution of the Implicit Join Operation

The important and frequently encountered
database operation of join, is done implicitly in
RAP®*?1 by the cross-mark type commands. This
operation is accomplished by extracting thequalified
source domain values from the source relation
cells and transmitting them to the target relation
cells until all source (master) relation cells are
processed. The execution of this operation had to
be made as efficient as possible, because it was
practically the only case where the superiority of
the RAP system %o conventi?gn systems was estimated
as to be less than 10-fold'~.

The new architecture employs a similar scheme
for this operation. The values from qualified
tuples of the first source relation cell are read
out and buffered at the RAP controller, then a
block of source values are loaded into target
relation cell subcells and these cells are
initiated for processing, This block loading is
repeated until all of the buffered source values
are processed; then the next svurce relation cell

Source relation cells

join domai

e rmreT . L eunkll b RORAAE A A A

values are buffered and the above operations are
repeated until all source re'ation cells are
processed.

The number of source values loaded into
target relation celis per circulation depends on
the size of RAM space of the subcell, and in the
current design, 400 2-byte numeric domain valyes
(equivalently 200 4-byte numeric and a total of
80O bytes of non-numeric domain values) can be
loaded and matched against a single target value,
This number compared with 3 to 5 of previous RAP
designs shows a significant improvement in the
execution of the join operation. (The improvement
however is not as much as the ratio of the loading
factors due to the differences in the architectures
and the fact that the cross-mark operation is now
broken into discrete steps each starting at 2 new
revolution {i.e. a repeated MARK instruction)).
é‘snapsgot of cross-mark execution s provided in

qure-5.

It is evident that processing that many source
values imposes waits on the CM and hence increases
the overall circulation time. However, it is
observed that (in Appendix-2), if n is the number
of source values that can be processed without
imposing any waits, loading mxn (m >)) source
values per circulation will reduce the number of
circulations by (1/m) while the increase in each
circulation time of the target relation cells will
be significantly less than m-fold, because of the
parallelism in the cell, In this way, the overall
time to process a source cell with m x n values
loaded per circulation will be less than the
overall time with n values loaded per circulation.

Features of the New Design

The new RAP cell processor based upon the

Target relation cells

n
1 \va]uvs / 1
2 ‘ﬁ bTock .1 >\

The join domain values
are read out from each
source cell and buffered
at the controller

N—— A

» m .
Controller ’

buffer
n total of mxn scans over p

the target relation

The entire target relation
is scanned completely in
one memory circulation time

Fiqgure-5 C[xecution nf the cross-mark instruction

. I
. M ' L e o S A b

113

.

alﬁnusﬁinushjﬁﬁguéﬁﬂﬁ;»q”* i

B RF < T

i T

£

50w AP AR S e B RS

i St




concepts presented above has been designed down to
the gate level, together with the necessary micro-
processor query routi?as for the general RAP
instruction constructs'®,

In order to arrive at a decision for the
number of subcells to usq’ ¥§r1ous simulation
studies were carried out!/+18, Typle ?rocessing
times were sampled from two exponentia
distributions. The first distribution modeled
processing times as to have a minimum of 25 u sec,
a mean of 125 u secs and a maximum of 500 u secs

T T W T T e e s

to reflect the average case. The second distri-
bution had a mean of 1000 u sec with 125 u secs
and 2000 py secs as the bounds to model heavily
loaded processing sessions as would be in a join
operation. It was further assumed that the
controllable memory array é16 bit wide) could
deliver data with up to a 600 K Words/sec rate,
The results of these experiments are provided in
Figure=6,

It was decided that k = 4 would be a cost-
effective choice to reduce hardware complexity

# *\ Normalized total processing time
~

N
‘\\ ( NTPT )
.
1.20 T \ \\ 10 Mhz
~,
~

1,15 ¢ .
| 1.10 | h ™~ YN
. o 3
. \ \\\
. . <
' 1.05 1 ~ ~
! \ ~
R 5 Mhx Ve e ——
l.o h el e N RN
B
: A I 1 i 4 A »
b 3 4 5 6 7 » k
b

(a) Exponential processing time distribution
MIN:25 usec MEAN:125 psec MAX:500 peec

g

—

2.5 1

2.0
1.3 <

1.0

:&m;tmip‘.éﬁni'i‘-ffﬁ;m ienlx

r
~}
v

(b) Bxponential processing time distribution for CROSS_MARK
HIN3123 usec MEAN:1000 psec MAX:2000 usec

vigure - 6 :Plot of normalized processing time va % g
( ‘data cate as parametar )
114

3

i
‘ } v

-7 . Lo T i
" . ot e B BN Wk ok B D i e ,'.'1\,1.':7_',‘:}”;;,3,&&% il A dar g b




pRpee

and impose practically no waits i the average
processing times at the memory rate of 300 K
Words/sec { 5 M bits/sec)which is attainable by
the current MBM's,

The cell design utilizes 4 subcells where
each subcell contains an Intel-8086 microprocessor
with 2 K bytes of RAM and 1 K bytes of ROM and
some additional control logic. Total chip count
per subcell is 20. The cell memory interface is
configured for 16 x 92 K bit MBM's but can easilv
be modified for other types of MBM's and/or bulk
RAM's (The reader, although not implied in the
paper, should not be disillusioned by the fact
that other types of bulk serial or block
addressable memories cannot be supported. They can
be with the exception of not having the further
performance gains achievable by the controllability
feature, The architecture could also be
conceptualized as having a bulk RAM memory with a
single microprocesscr similar to the original design.
However, the speed to be imposed on a single
microprocessor will be beyond those conjectured
for the future at least at the cost effective
scales, Cost of RAM's would be another issue which
must be cheap and competitive despite their
volatility). The tota) chip count of this
configuration is 160 per cell which is slightly
over one third of that of the previous designs.

It should be emphasized that utilization of
8086's is a specific case of the implementation of
the proposed architecture, In fact, besides the
large data bandwidth, only the powerful string
operation instructions and a suitable subset of the
remainin? genara)l purpose instructions of the 8086
are utilized for implementing the subcell firmware.
In a possible large scale commercial implementation,
a special purpose microprocessor with only the
necessary instructions can be developed and utilized,
Depending on the cost versus speed trade-offs, it
is also possible to implement the proposed
architecture with powerful 8-bit microprocessors
having fast block operations,

In memory, the CM data rates can be as
high as technology permits, For example, the 8086
based system can support a 16 M bit/sec burst data
rate for Tow to medium complexity qualification
terms of RAP {nstructions without any serious
performance degradation due to the utilization of
waits, It may be concluded that, it {5 the
limitations of controllable memories (e.g. MBM's)
that will be the determining factor for the
terminal speed of the proposed architecture,

The simuiation studies and analytical ..delina
of the cell gperation show that considerable
performance improvements over previous RAP designs
can be att,éned. It has been observed by
simulation'® that the new processor performs 3-6
times better than the previous designs despite the
fact that a larger and slower memory is being
incorporated.

The join operation, which has not been
empnasized (from a performance point of view) in
nther database machines, can be performed rather

11!

efficiently, because a larger number of values can
be matched during each circulation.

Furthermore, since all the cell status
information is kept by a microprocessor at the cell
interface, task switching 1n5a greemptive resume
multiprogramming environment o1 , requires no
extra hardware, Relation status saving and
restoring are accomplished by the two new BAB
instructions SAVE-MARKS and RESTORE-MARKS!Y+20
which save and restore tuple mark bits into and
from special domains appended to the end of each
tuple that serve as a push down stack during task
switchings.,

The overall RAP system configuration with the
new processor architacture goy1d be similar to
previous RAP configurations®s/, only that the
controller for the cell array, which 1s currently
being designed, is expected to be a more
inteliigent unit, Its nain functions will to be to
keep track of device status by maintaining
necessary relation and cell status tables,
instruction scheduling for a RAP query whose
instructions have been converted to microprocessor
code, data buffering in join operations, control
ot hardware and software iterative instructions,
computation of overall set function results and
comunication with the frontend computer. It is,,
also expected to do the functions of the monitor
for the RAP multiprogramming and virtual memory
operations. The entire cell-array controller
configuration will be driven by a conventional
frontend computer to interface the users.

After a survey of recent database machine
proposals, a new architecture for the RAP database
machine's cell processor is presented. The new
architecture has certain advantages over the
previous hardwired RAP designs, Mainly, the
hardware complexity is decreased while the opera-
tional flexibility is increased, The utilization
of LS1 components opens the way for the modularity
of the architecture, The utilization of
controllable memories also relieves the architec~
ture from the constraints of worst case timing
requirements,

From a feature comparison point of view the
proposed architecture has the following properties
one or more of which are not shared by the other
database machines:

a% Data qualifications of any complexity can
be evaluated over the memory contents in one
circulation of the memory.

b) A1l kinds of updates and arithmetic
operations can be done on the memory contents
without transfering data in and out of the RAP
system.

¢) Join operation is handled in a very
efficient manner. 1In most of the typical cases,
one target relation cell memory circulation may
suffice to process the values of one Source

I3
S

SICST T

s

YA

AR,

SN T B N PSR o T




relation cell, compared to the large number of
circulations (or revolutions) required in the
nther database machine proposals.

d) Since no software access methods are
gtilizﬁd. no overhead on the frontend computer is
imposed.

e) A nultiprogramming environment can be
attained without any extra hardware.

f) It is expected that a sin?Ie RAP database
machine 1s going to be confined within certain
practical physical limits, In order to support
very 1ar?e database applications, either one or
combination of the following two system
configurations can be incorporated:

5,14

1) Virtual memory back up as in for a

single processor

?) The database can be distributed in a
network of RAP database machines and a given
database operation can be decomposed and executed
on the network of modest siza RAP's concurrently,
as shown by a previous study 2

RAP.3 prototype implementation, along with its
alraeady operational software, is nearing completion
at the METU,

Acknowledgement

We gratefully thank Intel Corporation for th¢
donation of B0BS microprocessors and memory chips.
Appendix 1

Timing Analysis of Cel) Operations

The following analysis describes the

plus the capacities of the (k-1)
subcell buffers).

= total time during which the cel)
memory is in the wait state in a
circulation.

TwAlT

Then we have the following :e}ationships:
Tap, ™ (k~2)*TLS4- 3 wj;(i-l.....NT
T

si=(k=2
Jj 3(k-2) and w°.0)

where w, are the wait times
associa{ed with tup]e‘j (ref .Figure 4).
NT

Tagst = (k1) Tig
Trotar = M * Tug*+ Tuart* TRest
- (NTH=1) % T+ Tp gy

T - )W

1t should be noted that T ;¢ is dependent

on the complexity of the query routine (if k and
TBIT are fixed), but an upper bound on TTOTAL can

we derived as follows:

Assume that all tuples require exactly L times
the time allowed by the architecture i.e.:

Assumin? also that mod (NT,k) = 0, then
during the clirculation, NT/k tuples will be
processed by each subcell. The time to handle a
tuple is:

relationships among certain timing parameters.

Let Trupie = TRe*2* Tis !
TBIT 2 CM bit time = CM shift time/16 where the last term accounts for the load and store . !
TUPLEN = length of a tuple in bits times. ?
k z number of subcells/cell (k>3 because Since processing of the tuples are overlapped

of the data move strategy Incorpo- over the k subcelis, the total time for a

rated) circulation will be:
T = time to load (store) a tuple via

4
LS DMA = Tg ¥ TUPLEN Trotar = (NT/K) * Toyppg + (k-1) ¥ T g f
3

TAVLi = available time to process tuple i + (L-])*(k-Z)"“TLs _;'
NT £ number of tuples in CM f is the time t NT ii
= where the first term is the time to process b,

rTOTAL = tg:‘ltglzcgllgégg1:i.:f°:hsnf::g? tuples with k subcells in parallel, the second N
tuple to the end ofgstorin of the term is the time to restore the (k-1) tuples at 4

Tant tusle 9 the end of the circulation and the third term is ‘

ple. the inftial extra time (beyond the allocated time) ;

TRest = extra time needed to restore the last required by subcell, for tuple,. Inserting s
{k-1) tuples, (It should be noted TrupLe gives on upplr bound fol the circulation S
:22§rczn§1?::1'%33?.‘?;°3251§§§3 only time when each tuple requires L times the ¥

M H st

Some extra time is needed to restore allocated time, as: 4

the last (k-1) tuples because the TTOTAL = ((NT/k)*{2+L*(k-2)) 1

total dynamic capacity of the cell J

memory is equal to the CM capacity +L*(k-2)+1)*‘rLS B

116

),
3

(S . s . ’, n + . .
. I T R R N S RN P L
etk by A0 W Y sl .'f'.um;i:ﬂiﬁ."x&l.\'uxﬁ\.“e?'\\,‘yié(!&" ] T



A e A o i o

I\nuen_d.i.x ?
Analysis of the Join Oneratiun Pertormanie

The time to process one tource veliytien el
contents can be approximated as:

NS|
Tooin = Tayr + lﬁTl *TrotaL

where the first term is the time to read and buffer
the source cell values () CM circulation) and the
second verm is the time to process the NS buffered
source values and represents [NS/n] circulations
{i.e., n values are passed in each circulation)

of the target relation cells.

1f ny is the number of source values that can
be procesled in one target relation cell memory
circulation without imposing any waits (L = 1), then
the total circulation time for this case will be
(ref. Appendix 1):

TTOTAL nowa it ® (NT+k-1)%T ¢

while the total number of such circulations will be
[NS/nq].

1f mwn, source values are processed in one
target relati%n cell memory circulation, then L
w}}1 be roughly m, and the total circulation time
will be:

e ((NT/K)(2 +m(k=2))
+m (k-2)4 1)*7LS

TTOTAL, wait

while the tota) number of such circulations witl
be [NS/(m*n,)]-

set pointer to parameter block 3;
tuple is qualified, update it
and wait until next tuple;

mask for deleted tuples;

Neqlecting *he terms k-1 and m{k-2)+1 in the
tasl two equations, which are much less than the
corresponding terms we can write:

(NT/K) (2 +m(k-2))

T0IAL, wait

TY0TAL, nowait NT

2+m(k-2)
s - <mform>1
k

It can be observed that imposing waits on the
(M by feeding in more source values per circulation
reduce the number of circulations by a factor of
1/m while the increase in the total time of each
such circulation is less than m-fold, hence the
overall time to process the buffered source values
is reduced.

The actual execution time in reality will be
much less than the above derived bounds because
of the fact that after each target relation scan,
the number of target values not yet selected and
hence will impose waits, will diminish at an
increasing rate until the last target relation
scan,

The current design employs four subcells
(ksd4) and assumes that CM shifts at 300 kHz giving
a TBIT of 208 nvec/bit; then for 1 Kbit target

relation tuples, the allocated time is 426 psecs.
Within this time, the INTEL 8086 routine

developed to perform equi-join on 2 byte numeric
domains can process 100 source values without
imposing any waits. Processing 400 such source
values gives L=4, Since a target relation value
may qualify for the join before the whole source

check if tuple is deleted

exit if deleted;
check {f tuple is T4 marked

MKED (T4) ?

exit if not 14 marked, }

set pointer to parameter block 1,

call numeric comparison routine;

exit if comparison fails;

set pointer to parameter block 2;

call literal comparison routine; DEPT » 'SHOE' 7

SALARY 2000 ?

exit if comparison fails,

ADD 500 TO SALARY

T4 marked mask;

address of SALARY domuin in buffer;
external comparand,

comparison mode for “Greater than',
address of DEPT domain in buffer;
length of the domain;

comparison mode for "equal to";
external comparand;

QUERYRTN : LEA 8P,MASKD /
CALL MKED / previously,
JB NOTQUAL /
LEA  BP,MAKT4 /
CALL MKED / previously;
JNB  NOTQUAL /
LEA BP,PBI /
CALL COMPNUMZ /
JNB  NOTQUAL /
LEA BP,PB2 /
CALL COMPLITR /
JNB  NOTQUAL /
LEA B8P,PB2 /
) CALL ADD2 /
NOTQUAL : JMP  WAIT /
MASKD : 0C X'8000°' /
MASKT4 O X'0800' /
PB1 : 0C A(TUPLE+SALARY) /
bc H'200' /
DC H'4' /
pB2 : DC A(TUPLEHDEPT) /
DC H'8s' /
DC H'2! /
nc C'SHOE' /
P83 DC A(TUPLE+SALARY) /
DC H*'500° /

external value to be added.

Figqure-7 Intel 8086 Program for a RAP Instruction

17

7o oty o Wi

)

-l O

Fawt o owd T S . .

IERata o e

'1.-..‘,



value block is scanned, the actual average tota!
circulation time will be considerably less than
what was found in the above analysis for the worst-
case assumptions.

Appendix 3
Guery Routine Example
Consider the RAP instruction:

ADD [EMP (SALARY): MKED (Tag &
SALARY > 2000 &DEPT « 'SHOE'] [500]

which adds 500 to the salaries of those employees
which satisfy the accompanying qualification
expression. It is assumed that SALARY is a 2 byte
gumet;ic domain and DEPT is an 8 byte literal
bmain,

The query routine for this RAP instruction,
In INTEL 8086 instruction set, can be given as in
figure=~7,

The routines MKED, COMPNUM2, COMPLITR and
ADD? reside in subcell ROM and perform mark status
tests, value comparisons and addition updates on
the domains of the tuples according to the
information supplied with the associated parameter
blocks. Since the data qualification evaluation
snd the update are done together, this instruction
would take only one cell memory circulation to
process all the tuples of a relation,

It should be noted that, it is possible to
construct query routines for data qualifications
and/or updates of any complexity.

Appendix 4

Summa*z_of the instruction set of the RAP
BMS Assembler Tanguage

Selection and retrieval commands: Implement
selection and/or data retrieval,

MARK ¢ Selects and tags
RESEY : Selects and removes tags
READ ¢ Selects and reads

(ROSS_MARK : Maps between two record types
(RS COND_MARK : Maps between two record types
GLT_FIRST_MARK : Cursor and mapping within a

record type

GET_FIRST ¢ Cursor

SAVE : Selects and saves item in RAP
register

Update commands :Perform selection and in-place
arithmetic and replacement updates.

ADD ¢ Item) + Item) + Item2 (or constant
5U8 i Iteml « Item] - Item2 (or constant
ML ¢ Iteml « Iteml * Item2 (or constant
Ny ¢ Iteml « Iteml / Item2 (or constant)
REPLACE ¢ Iteml « Item?

Statistical (Set function) commands: Select and
compute functions in-place.

. L)
a I TN N N |

.. RN
N P S -,
e e E A S & R, 1A SR

SUM : Selects and accumulates

COUNT . Selects and counts

MAX ¢ Selects and finds the maximum
MIN : Selects and finds the minimum

AVERAGE

: Selects and computes average

Insertion and deletiun commands: Insert and delete
record vccurrences.

DELETE ! Selects and deletes record
occurrences from the record type

INSERT :

Inserts record occurrences into
the record type

Data definition commands: Initialize, populate,
and delete a record type.

RELATION

I

CREATE

DESTROY :
System commands:
AUTHORIZE
LOCK

RELEASE
SAVE_MARKS

RESTORE_MARKS :
LOCATE
MOVE

STATUS
READ_MARKS

Register manipu
READ_REG
STORE_REG
DEC_REC

INC REC

t Defines a new relation (record

type). Size, type, length
vparameters for the data are
declared. (Key attributes and
access paths are defined if the
sofware emulator rather than the
actual machine is used). User
capabilities, access rights, and
the protection parameters are also
declared with the use of this
command,

! Populates the database for the

specific record types which have been
defined by the RELATION command,
Deletes a record type

: Grants access to the user via a

password

Specified record types are locked
against concurrent accesses
Releases locks

: Current mark bits of specified

relations are pushed onto stacks of
each tuple

Restores marks by poping the

saved mark bits

! Returns the node address of the

relation being searched

¢ Moves an entire or restricted

subset of a relation to the
specified site

i Performs dynamic status checking

for branching purposes

: Same as READ, but output includes

also mark bits

lation commands:

. Reads out RAP registers
: Enters data into user registers
: Decrements specified register

contents by one

¢ Increments specified register

contents by one

RADD ,RSUB,RMUL ,RDIV: Perform specified arithmetic
operations on registers as:
<reqg> « <regr<ropr><operand> where
ropr is one of RADD,RSUB,RMUL, or
ROIY.

118

TS dinlam

-

RN EGES 7 T DTy

T e




e e ey
T B TRy o e s e e+

T v g

ez ST

Decision and transfer commands: Control program

bl

Ber1in, September 1978, pp.319-329, '

: Toops.
P 12) CHANG, H., "On bubbie wemories and relational .
{ TEST i Testspresence of tags within a database”, Proceedings of 4 th Int. Conference
H record type on Very Large Databases, Berlin, September
3 8C : Branch, conditiona)l and uncondi- 1978, pp.207-229.
3 tional
] £0Q ¢ End-of~query 13) OZKARAHAN, E.A., SCHUSTER, S.A,,SEVCiK, K.L., !
8 “Per formance evaluation of a relational :
References associative processor”, ACM Tramsactions on
: —_ Natabase Systems, Vol.2, No.2, June 1977,
. 1) 1EEE COMPUTER, Special Issue on Database pp.175-195,
Machines, Vol1.12, No.3, March 1979.
i 14) SCHUSTER, S.A.,OZKARAHAN, E.A.,SMITH, K.C.,
2) IEEE Transactions on Computers, Special Issue "A virtusl memory system for a retattonal
A on Database Machines, Vol.(-28, No.6, .June assocfative processor”, AFIPS, Procesdings of
3 1979, NCC, Vo1.45, 1975, pp.291-296. :
" 3) COPELAND, G.P.,LIPOVSKI, G.L,,SU, S.Y.M., 15) OZKARAHAN, E.A,,SEVCIK, K.C., "Analysis of
3 “The architecture of CASSM: A cellular architectural features for enhancing the
system for non-numeric processing”, performance of & database machine®, ACM
Procndmg: of First Annual Symposium on Transactions on Database Systems, Vol.2, No.4,.
Computer Architecture, 1973, pp.121-128. December 1977, pp.297-316.
4) LIN, C.S.,SMITH, D.C.P.,SMITH, J.M., "The 16) OZKARAHAN, E. A, ,OFLAZER, K., “Microprocessor
design of a rotating associative memory for based moduler database processors”,
’ relational database applications”, ACM Proceedings of the 4 th Int, Conference on .
4 Transactions on Database Systems, Yol.l, Yery Lar?c Databases, Berlin, September 1978, |
i No.), March 1976, pp.53~65. pp.300-311, '
¥ 6)  OIKARANAN, E.A., "An associative processor 17) OFLAZER, K,,OZKARAHAN, E.A., "A Multi-micro- ,
! for relational databases-RAP", Ph.D,Thesis, processor architecture for a celluler database:
Depar tment of Computer Science, Univ, of machine-RAP" , Technical Report 1S-08.5, Dept. .
{ Toronto, January 1976, of Computer Engineering, METU, December 1978,
. 6) OLKARAHAN, E.A,,SCHUSTER, S.A,,SMITH, K.C., 18) OFLAZER, K,, "A Microprocessor based apg:oach .
. "RAP~An associative processor for database to RAP database machine cell structure-Design
| management* , AF1PS, Proceedings of NCC, Vol, and Analysis", M.Sc. Thesis, Dept. of
4 44, 1975, pp.379-387, Computer Engineering, METU, June 1979.
3
5 7)  SCHUSTER, S.A,,NYUGEN, H.B., OZKARAHAN, 19) ONLO, S., "Design and implementation of a
§ E.A.,SMITH, K.C., "RAP-2, An associative software emulator for the Relationa) 3
§ processor for databases and its application”, Associative Processor-RAP*, M,Sc. Thesis,
1 Proceedings of 5 th Annual Symposium on Degt. of Computer Engineering, METU, August
1 Computer Architecture, Palo Alto, April 1978, 1979. ‘,
C pp.52-59, Also in the special issue, IEEE g
ot Transactions on Computers, Vol.C-28, No.6, 20) OZKARAHAN, E.A,,ONLO, S., "The revised RAP P
Lok June 1979. instruction set and the RAP software emulator",
{ ; to appear.
b v 8)  DEWITT, D0.J., "Direct-A multiprocessor -
5 organization for supporting relational 21) OIKARAHAN, E.A,,SCHUSTER, S.A,, "A High-leyel o
o database management systems”, Proceedings of machine oriented query language for & “
N 5 th Annual Symposium on Computer Architecture, Relational Associative Processor™, Computer ﬁ
{ Palo Alto, April 1978, pp.182-189. Systems Research Group Technical Report CSRG- o
i Z 74, University of Toronto, 1976. 4
- 9) DEWITT, D.J., “Query Execution in Direct", h
A ACM-SIGMOD Conference Proceedings, May 1979, 22) TANSEL, AU, ,0ZKARAHAN, E.A., “Query Execution “
pp.13-22, in Distributed RAP Database Machine Systems", ®
" Dept. of Computer Engineering, Technical Report ‘4
: 10) H3IAQ, D.K.,KANNAN, K., “The architecture of 15-DB-6, Middle East Yechnical University, A
' a database computer-A summary", Proceedings 1978, A
of 3 rd Workshop on Computer Architecture for ‘;
Non-Numeric Processing, May 1977, Thig \mrkoé; ;upportod in part by the NATO research 's
number RG002,80 of . 5
11) BANERJEE,J.,HSIAG, D.K,, "Performance study the Scientific Affairs Division ’1,
of a database machine in supporting J
relational databases", Proceedings of 4 th
Int.Conference on Yery Large Databases, A




N NP S gy v —~
- rrrr— T s e v

PSRN SPetT T Y SO

ARCHITECTURE OF A MULTI-LANGUAGE PROCESSOR
BASED ON L1ST-STRUCTURED DELs

TR T T

J.P. SANSONNET
M. CASTAN
C. PERCEBOIS

: Laboratoire “Langages et Systémes In;ormatiques”

5 Universite Paul Sabaticr

: . 118, route de Narbonne 31077 TUULOUSE CEDEX
FRANCE

Lol The 3L-model

A direct execution scheme with a single level
was defined 1.e. a scheme including only one inter-
mediate environment between the source-text and the
executional environment (fig.l).

’ ABSTRACT

A direct-execution model, based on the tree-
structured incernal representation of the source-
texts has veen defined. It features a single inter-
mediate environment and two environment transfers :
vhe first one corresponds to a bidirectional trans-
Tation between the source-text and the tree-struc-
tured {ncernal forn. The second one is a conven-

External Environment
SOURCE - TEXT

tional microprogrammed interpretative process on a
specialized hardware architecture, ?
In this paper, a full description of a hardware L
arciitecture which directly holds the tree-structu- EDITOR ﬁ :
red forms is given. Its characteristic features are
discussed and the micro-control operations which i
deal with the main tree-structured form concepts
Internal Enyironment .

(recursivicy, top-down tree traversing, escapes)

are presvnted, 3L - FORM

1 - INTRODUCTION

To solve the problems resulting from the seman-
tic gap, which arise in the conventional computer l .

L
INTERPRETER :

systems, new computer architectures have been revea-
led these last few years. Their purpose is to sup- txecutional Environment .
port directly one or more high level languages, in 3L - MACHINE K
hardware. In this way, eliminating the order-codes v ki
tends to close the gap between the high level lan- ¥
yuage and the physical structure of the host machine. Q
Although the Von Neumann architecture is increa- Fig.1l = The 3L-model "
singly and rightly questioned none of the proposed w
systums of high level language processors have been . A first interactive processor, the editor, is res- A
traded successfully. We tried to analyse the reasons ponsible for the communication between the external ﬁ
of these failureslsZ and it appears that the attrac- environment (source-text) and the internal environ- iﬂ
tiveness of the Von wewmann architecture resides in ment (DEL). ,}

s,

its concegtua\ simplicity, whereas the suggested

14,5 are characterized by complex models, A second grocessor. the interpreter, is responsi-

e evaluation of the internal form through

SRR EIE O I SV Y, R AR ;
LN PR TR R OR T Rt e B B 2 R A o T Y TR

solutions y " ble for t

difficult to understand and to implement, and often
leading to gas-works architectures. the hardware operat?rs. hsical ‘e N
. The 3L-machine (M3L)} is the physical support of the i
Therefore, we have proposed a direct execution W
scheme, based upon the definition of a class of 1ist- 3§Cm°d?lﬁ B°§? gr?ges?o;? :;ergiﬁgxzqggr?::eg\°2 y
structured virectly Executable Languages (DELs), » With a high leve! microprog 9 nge, g
wiich is derived from LISPa. The objective of this specialized in the expressioquof :h° °TE;“ on pro- 3
schieme Is to provide the implamentation uf high level cessing : the Language for EWulation (LEM). 3
languages with a gystematic support, easy to under- y:
stand, and to use?. 1.2. The 3L-form 1
The choice of the intermediate environuent deter- 4
. winegs the direct execution scheme. As we wished to 4

20

P

aryud et L

AT




waintain the whole semantics of the source-text

wnile providing the interpreter with an easy form

to nandle, we chose a list-structured internal form,

- based upon LISP : the LISP-Like-Languages (SLz. The

Lo 3L form is prefixed and fulTy parenthetized.Although f
¢ : its semantic power is very high, its syntax is abso-

lutely trivial and it offers a great systématization

for the internal representation of the programs.

The 3L form is represented within the wemory
by a binary tree-structured form. This form is tag-
ged, its unit is the pair-cell :

16

16 8
I oo ] com ] oues |

the CAX Field generally represents a left pointer,

the CUK field aright pointer, and the UES field yi-
ves the description of the cell content, more pre-

cisely for tne representation of ovjects,

B o el - P

Exanple i Suppose that in the high level language Nt node

: we have the operation f(x,g(y)). It can be expres-
E’ sed in the terims of the symbolic 3L forw as
(fFx (gy)), and within the pair-cell memory :

] MICROINSTRUCTION

STACK MEMORY

.£

—

14K s
: ”ﬂ
"ﬁ EXECUTIVE MEMORY ;I
- - H
M E;n
=1f =1‘ ’r: f!f MICROPROGRAMS
MEMORY
.° Ry L Ay X
4 A
CENERAL BUS 1
T T 1 7

| W/ T
port ’
od r-J - ‘ ¥
1/0 | R
t [ ry port N
A : 5%
' | : ¥
L-_—amae — 4
sl UAR G DES .qw——- !q
PALR-CELLS MEMORY ' ﬁ
U i
0 “‘2
Fipat = ARCHIETECTURE OF MY, '3‘
121

v 0 B S b B R Rt Vi .‘..'.A'."éz“..‘.'_'hﬁ."ﬁ‘."'

MRS




SR Loy TN A R PAE LTSRN

Wy

2 - THE GENERAL STRUCTURE OF M3L . The arithmetical and logical unit (ALU)
The ALU of M3L 1S Euglt Trom Tour AM 2903 LS}

The 3L project started with a systematic study e 0
 bhe chips. Owing to the use of an arithmetical proces-
of the interpretation of LISP, First, we defined a sor, its task is very small : it has to manage the

T

¢ pseudo-machine, then we wrote a simulator, and de- -

é‘ veloped a microprogrammed LISP interpreter upon it. glerig‘?ggqsiazaf ;E gg:fg;$§rg:;:;f“g::;:$2is”hi‘h
) the simulation measuresl opened up on a new archi- P 5o ‘

{7 tecwure, wnich was defined for the M3L prototype, « Inputs/outputs

g presently in the achievement phase. The Inputs/outputs system is built from a 8

i bit wide peripheral minibus on which the interface
: 2.1, Synoptic of M3L adaptators for asynchronal communications are con-
: The nsral arganvation of the doscnine 15 Teist, These chps perfor the stamard contro]
3 very simple. The resources are interconnected via a minimal version of M3L includes an ACIA for driving
2 single bus which determines the datapath, The data- the TTY, and another for interacting with a micro-
; patn is lo.bit wide, being the maximal size of the system ‘responsib]e for the management of inputs/

: prototype pair-cells memory, (fig.2) outputé and disk-files.

. . In the 3L-inachine there are four categories of

j reyisters

A rugisters 10,15
thuy are ysed for current works and information
transfers between microprocedures GENERAL BUS

B, registers 1¢/'v,255)
Lhey serve as global registers for every micro-
procedure, they contain the descriptors of the
current emulated system
ri registers 1¢10,31]
they are flip-flops which give the status of the
system. They are global resources and some of
them can be set or reset by the programmer
Ry registers 1ef0,3)
they make the recursivity in LEM possible by the
use of their locality. !

(]

6850 0 S

1/0
CONTROL

]

2,2, The numerical processing

In the Von Neumann architecture, the numerical
procussing is prevalent, It is represented by the
central operator and the inputs/outputs. More and
more, it is integrated, especially in the microsys-

tems, On the contrary, in a high level language
processor the non-numerical processing is prevalent.
It is true for M3L where the architecture is desi-
yned according to the emulation processing, Of course
1t is yut necessary to incorporate the elements of ACI
the numerical processing within this architecture, CIA MICROSYSTEM

AL

]

et

Nevertheless, they take a marginal place in M3L and ‘ 6850 , :

they are entirely supported by a single LSI family n

(Avlo 2900}, V)

bt

. The arithmetical processor “
T Wost of the arithmetical functions of the 3L D1SKS

machine are performned by a monolithic processor

(AM 9511). This processor relieves the machine of
a1l the corresponding wicro-software of mean impor-
tance for emulation. It can be viewed as a periphe-

o ot B, W fa

ral of W3L, 1t runs in parallel, and it is inter- RINT
faced by the general bus, The main operations per-
formed by tne AM 9511 are :
- 18 data manipulation operations : conversions
fixed-float, read, write, ,.. . ACIA GRAPHIC
- 5 fixed arithmetical operations (16and 32bits) t
- 4 float arithmetical operations (32 bits) : m g
oym v, / ,
- 11 secondary operations (32 bits floac): v, 4
sin , cos, x¥, .., PERIPHERAL

MINIBUS

Fig.3 - THE PERIPHERAL MINIBUS
122

v s ) St

S .
DI S : - : : ; N At " L
. T e M A e o s S A e Sl e )




3 = THE MICROCONTROL

3.1. A two-leveled wicroprogramuing

Microprograms, written in LEM, are compiled to
produce Fixed microcode. Vertical wicroprogramming
used for this impiementation results in two advan-
tagus t the efforct of the compiler is less important
and che size of microinstructions can be shortened.
This reduces the amount of microcode to swap during
control switches,

The great diversity of control signals to pro-
vide (in particular, to control the tri-state bus)
nas led to a two leveled microprogramming. The method
usud here is different from the nanoprogramming of
QM.18 which uses a second level of microprogramning,
To execuce a microinstruction through the datapath
one must

1. provide some parameters :
- nunber of Ay, By, Ry ...
- long, short constant
- numper code of branch operation, of
ALU function ...

2. define an action to execute, i.e. to state a
particular data transfer through the datapath.

The second part, fixed for a iiven action,still
reyuires wuch more bits for the direct control of
gates. The repecition of such a long “dead-bit" se-
quence s cumbersomr. Thus, the action to be execu-
ted is specified by the second level of wicropro-
gramming, in a single horizontal word where wach
control bit drives directly the gates : it is the
executive,

\ The format of a fix-sized microinstruction is
then !

orc Pl P2 ... veve. Pn

UPC represents the code number of an executive, and
the Pi's are the arguments.

The size of the microinstructions is 32 bits,
To the opercation code (opc) can correspond up to
256 executives. Theoretically, a great number of
execytives can be defined but practically the faci-
litivs of a datapath are never completely put on
use ¢ our simulation of a LISP systeml reyuired 60
executives only. The executives reside in a fast
?ROM wemory {ta =35 ns) with 256 words of 116-bit
engch.

5.2, vescription of the microcontrol words

. The microinstruction parameters .

Tnere are 10 available p§ parameters. A micro-
instruction 1§ an assembling of sorw of these para-
meters.The assemoly rules wre stated by each para-
meter place within the 24-bit parameter field.

o
The typical formats are :
23 7
o CST-8 g
¢3
CST-16
Short and long constants
11 : .
A Ao boAa Fen
L LY I

Three different places are available for

the Ay register

S

11 0
A Ry 0y |R1 Rif - :
Four different places are available for
the R registers
3 16 _ 0
B [ e
1 8 /.I v
B; registers
P 1
T T BR
! S
The T registers are associated with the
BRanch field
3 1 g

SB

16

SB specifies the CAlLLed microprocedure address

23

7

0

. {IND
A2

ESC

tSC is the escape tag and IND specifies the stop
mode for the return on uscape condition: <,=,>

. Tne executive word
ihe executive s divided into 14 sub-fields which
can be, or not, attached to a particular control

task upon the datapath. The size of the following
sub-fields is {llustrated below.

rn

7

TR

e 3

ALY

PP T O T B ™
o sk, (27 R e

CXECUTIVE WORD

123

s, In] 3, ", Miscellonecus
s’ ] 9] g] |6l

FORWAT

ST




i ooy it L

T el o S Ll N TR

field name CONTROL OF

wbC microprogram counter

DES MPX (Shift and ask)

STK Stack memory

WsEL Hemories selection

ALY AWD 2903 ALU

SAL B source selection for the general
bus transfers

Ra,B,¢,0 receptor selection for the general

bus transfers

(A,8,C,D specify the four different transfer modes,
via the general bus)

The cycle time of the M3L microinstructions is
fixed Lo 500 ns. It may seem to be long for a modern
technoloyy but with regard to the power of microins~
tructions it is a good speed. The cycle starts with
the fetch of tne microinstruction (100 ns), it in-
tludes some register moves, and always a4 wain con-
trat phase which is 200 ns long:

As thu case may be, this phase performs :

- 4l gceess to the pair-cells memory

- an grithmetical operation on the ALU

= & context switch with an access to the stack memory
= a4 refresh cycle,

Ay
Mnae —AD
iIICROPROGRAIS EMORY TRACING
RAM MEMORY
(tA = 50 ns)
X : a2l 8
e
try i
spl - hardwired
’ n® . parameters
PRIORITY
LRLOUER |4 MLX MUX
sp request
LATCH
»
256
1
EXLCUTIVE MEMORY
ROM .
= \
(ta= 35050 116 | TWICROINST, PARAHS |
TTT | { 1
Ens h 3 ]

Fig.4 - THE TWO-LEVELED iICROPROGRAMMING

-

£

L y 3
Mt 2 e L i G B T g Db A W
AR ﬁ;,..&.*.mmu‘ﬁot-J.a.mdmf!.uﬂ&:;!&unl’aiul&:m&w iy

3.4, Suspensions

A suspension is a request for a temporary halt
of the current microprogran. During this halt a sin-
gle microinstruction {is performed. The suspension

takes place when the latch {s loaded : an encoder
detects the syspension and yields its number, As
there are 8 different suspensions, the 8 first exe-
cutives will therefore be regarded as suspension
handlers.

One of these suspensions will be the refresh
request for the dynamic MOS memory. The aim of this
suspension is to perform a refresh cycle without
modifying the current context.

3.5, Interrupts and microinstruction tracing

Another suspension will be associated with the
interrupt reyuest. It has to save the current con-
text without changing the microprogram counter
(uPC), also it has to branch to the interrupt hand-
ler. At the hardware level, the management of in-
terrupts is achieved with the help of two interrupts
controlers (AM 2914) which allow the handling of
16 interrupts levels:

EXTERNAL

TRACING

FUNCT 1ONS INTERRUPTS

ty g ity iy
CMON‘ e l LI I ] l

— 2 x A4 2914
1T VLCTuRﬂ @STATUS BHASK ll't

L reques
( GENERAL BUS M

N~

To each micruinstruction word, a tracing byte
is concatenated, where each bit is associated with o
wicrosoftware interrupt. The bits are setted at the
compiling stage. Thus, when running, they activate
the corresponding try interrupts which then are held
sequentiaily, according to their priority level.

They can be enabled or disabled in software.They
are used in microprograms debugging and for the M3L
prototype measurement.

4 -~ THE PAIR-CELLS MEMORY

The pair-cells memory is the main resource of
M3L. It 1is built with dynamic MOS memory, Each chip
contains 16 k - 1 bits and its access time is 150 ns.
The pair-cells memory is organized in 40-bit wide
words which are divided in three ficlds having each
one 16 , 16 and 8 bits, !

124

T  eT

Ty e

st

S

it R T e B e Y L g Srel S




FREIT AT S e e o

SO et

: BPH JeiSK
L———‘ (4RITE) 1y
) TR F2
64K 16] g4H 19 ! 4
BPM JeMSK
(READ) o~ SHT
16 16 8
(-

Fig.5 - THE PAIR-CELLS MEMORY

Tne access to the pair-cells memory, in the
read/write mede, it done through the general bus.
With respect to data muving there are two kinds of
access in the read wode and one in the write mode.
As for control there are three kinds of access.

4.1. Access to the pqinter field
. vata moving in the read mode
. oIngl¥_TransTer : The LEW syntax is
r X

the first register specifies the receiver and the
second one contains the address of the emetter.

LAample : A2 « F1(R3) means :

"réad the F1 field of the pair-cell, which address
is stated in the R3 register, and store it into
the AZ register”

when compiled it yields the following microinstruc-
tion & "
1 L B

pe-ReDl |77 Al A [T BR

Tne first register contains cne address of the emet-
ter whereas the second and the third registers deal
with the receivers of the fields FO and F1.

feten A1 fnto AZ and R3 is equal to {3 T FO(A]
It yields ;
51 23 20 15 1 5
PC-REAVZ | A; Ril a5 1 &5 M s8R

e e - —
et e et O A B o o el i s 2

Data moving in the write mode

K .
1,0, 0a0al]
The first register- contains the address of the

weinory cell to be modified, and the second one con-
tains the information to be moved.

. Access in the control mode

- ACTIONS
G Owo (%N "Lt

The register contains the address of the
referenced to memory word. After reading, the con-
tent of the corresponding Fy field is added to the
nicroinstruction address register. In most situa-
tions, the access in the control mode concerns the
descriptor field of the memory cell. Hence, this
multiple branch operation enables the 3L form to be
decoded. More details on this microinstruction are
given in the section 5.3.

4.2. Access to the descriptor field

Whereas the access to the pointer fields sFO.
Fl) is fixad, the access to the descriptor field

(F2) is wore versatile. As a matter of fact, for a
given emulated system, this tield can arbitrarily

be divided into contiguous, or suparposed sub-fields.
These sub-fields can accessed to in the read/

write, or control mode, 11ke the pointer f{ields.

Ensuring the access to a sub-field of DES needs
a special device to selact the field, This device
was discussed in a more general situation?. Here it
is applied to a byte only, thus.it is very simgle.
There is s wechanism for the: rasding operation,and
another mechanfsm, strictly s it, for the writ-
ting operation, Therefore we wiil-enly describe the
fetch mechanism. i .

DESCRIPTOR MENORY .

%%

F2

@ SHIFT

s MASK

GENERAL 8US

4%
)W)

Fig.b - PRINCIPLE OF THE DES ACCESSING MECHANISM

A first logical level, MUX, performs a circular
shift on the descriptor byte. This shift is perfor-
med in a purely cembinatory an parallel manner by a
special chip (SGN 1é43). A second logical level masks

125

Lt B Id L WK s wreliont o ke piomse s

.
M

*

s, g

¥



T T e

e & 0 W

NP S TH VR wait 2ot YO by By i

the irrelevant part of the descriptor byte. The se-
iection of a field requires the specification of a
shift (0-7) and a mask (a byte). These informations
are included intn the executive of the microinstruc-
tion wiich fetches the sub-field.

bxample @

DESCRIPTOR SUB-FIELDS MASK  SHIFT
.4 % 4. 3 .2 1
A 2 D 2 A A 3

F2 ¥ FF 0

2¢i;%2éé§%%%%;ﬁ/,/ F3 # 07 0
i /////7//////% VI

Tne combinatory nature of the select mechanism
of the descriptor sub-fields snables the M3L “me-
mory word" to be viewed as a sequence of fislds
F{x0,n » Which are aqually accassible in the read,
write, or control mode, in a single microinstruc-
tion cycle. This emphazises the thorough attention
wiich was paid to the access to the intermediate
anvironment on M3L.

(<]

5 ~ THE CONTROL UNIT

Beyond the special organization of the main me-
mory, the second feature of the M3L architecture
concerns 1ts control unit, As a matter of fact, it
has to support the recursivity mechanism which is a
fundamental aspect of the emulation functions. The
LEM Yanguage is recursive and this is conveyed
through the hardware structure at the level of the
control unit of M3L,

A LEM module 1is composed of Tittle grocedures
which are independent and not ordered, They can

refer to eacn other and even to themselves. In con-
trol switching from a wicro,rocedure to another, A;
global registers are used for parameter passing ana
Ri Tocal registers are automatically saved.

-

Py takes fts input arguments into the Ay regis-
ters and outputs 1ts results to P2 via the Ai's.The
object of the Ri registers is to maintain the value
of A{ registers in the environment of Py, this value
does not have to be erased by the application of V2.

To the recursivity an automatic escape mechanism
is added. Writting the top/down recursive parsers
requires such devices wich are similar to software
interrupts (1ike "ON conditions" of PL/1).

An escape microinstruction performs a return
operation to the last call microinstruction which
has set, in the recursivity stack, a tag number
(Eq constantl equal to the tag number of the escape
microinstruction. Escapes and recursivity are two
concepts which are closely related, hence they have
been merged in order to offer a better systematiza-
tion of the control transfer between microprocedures.
It {s thus stated that, in LEM, calls are recursive
and returns are escapes,

The control unit is i1lustrated in the fig.7.
1ts main components are :

ESC stack : enables the escape number to be saved
when a recursive call occurs

coup : when an escape microinstruction is per-
formed, it indicates if the escape num-
ber, given as an argument, corresponds
to the escape number, that is read into
the ESC stack :

MPX3 t 32x1 multiplexer, The selection is made

according to the Ty nuqegr. passad as
an argument, meanwnile T allows the
output to be, or not, invarted

uPC stack : is the saving stack for the microins-
truction address register

ADDER : {s a simple adder to perform relative
branches

MPX1,MPX2 : are the input multiplexers of the micro-
instruction address register

uPC : is the microinstruction address register

uPl control : produces the control signals which
correspond to the operation code of the
current microinstruction.

The control unit microinstructions

The Tive basic microinstructions dealing with
the sequencing of the microprograms are : the con-
tinuation, the conditional branch, the multiple
branch, the recursive call and the escape.

1. Continuation

-

S b e /»/’ R
CONTIHUATION]  adirouting,) o
o

uFC « SB

Owin? to the continuation microinstruction, it 1s
possitle to perform branches between the micropro-
cedures without any push uperation.

1 .
M S A B A R 0 Y e BRRAES 2

e

A .
B P

-
oY

Toasrialaniing Dol il fk,



Pa param param
3 BUS SB BR

uPC
STACK

16K | 3 'J

[ " ESCAPE

1

MUXs

| +1
E Load
| Clock uPe

Microprogram
Address

il

Fig.7 - THE CONTROL UNIT

T | Aab|+1| oAb |mMpx1 | WPX2| S$YACK ]
NGP +1] n i
CONTINUAT ION N | Load 1 | 2 1
T LOAD i
BRANCH , +1 Q 1 \';“
T NO %
. .“.‘;
CALL s1{wm | 1|2 | wme® i
] LOAD _ ’?z
ESCAPE N 0 READ %
# NO ;é
MULTIPLE BRANCH s1lwa | 2 |1 ;«1
i
(*) Tne storage of the uPC into the stack is performed after the {ncrementation and before the load Z

L .
o i

Table 1 - THE MICROINSTRUCTIONS OF THE CONTROL UNIT
127

- .
. .
DRSS ~ NS 1 PR T R AT T T IO Rk
Sovns - orsiar it SR LAY o dai S T b L L LA i




2. Conditional branch

—I

BR

§§§§§§: T4

LA
BRANCH \\\ QN

if (T=1and Ty=1) or (T=0 and Ty=0)

then uPC « wPC+BR+ 1
else uPC « uPC+ 1

The deplacement BR is signed. The signe bit is in
the wost significant position.

3. Multiple branch

CASE-F;-0F | Ay \ TN 4
uPCvuPU+l+F1(Aj) (i = 2)

This microinstruction enables a decoding starting
from a sub-field (Fy) of the descriptor.

4. Call
T
o | g [ w
v
* uPC « ubPC+ 1

* the current context is saved into the stack :
Ry stack « Ry.p,3
ESC stack + js¢
uPC stack + pbC

x 1Pl < 5B
v
5. Escape
ESCAPE |\ oo < | Esc
v

« Tne context is popped from the stack:
Ri=0,3 + Ry stack

« If E4=£SC stack then uPC « wPC stack

v

The escape microinstruction is executed as many ti-
mes as necessary until finding an escape number cor-
responding to that, specified in the £y field, It
scahs the control unit stack in search of {ts cor-
responding context. Hence, it generalizes the return
mechanism,

CUNCLUSIONS

The firsc ramark that we can make about the
M3L architecture is related to the numerical proces-
sing ; it is not absent, since without it there
would not be any execution, but it takes a seconda-
ry place. This does not imply that M3L is not able
to perform efficiently this kind of processing. On
tne contrary, owing to the advanced integration
capabilities, a LSI family ensures, alone, the func-
tions of the conventional architecture very effi-
ciently.

Whereas the numerical processing can be easily
integrated, this is not true for the non-numerical
processing, As a matter of fact, it deals mostly
with the organization of the information. It does
not need any special processor but it is expressed
through the distribution of the resources in the
computer architecture. On M3L, a special attention
was paid to the organization of the resources and
in particular to the memories management ; the M3L
architecture is based upon two memories : the pair-
cells memory and the stack memory.

The M3L project started in september 1977. The
prototype, drawn during 1979, is presently in the
achievement phase and will be operational in june
1930, The complete machine, with the input/output
interfaces for the connecting of the TTY and disks
management, is made of five boards following the
European standards. The prototype is equipped with
a 64 K pair-cells memory and a 16 K stack memory,
representing 70 percent of the chips.

The architecture of M3L 1s simple. Just 1ike the
Von Neumann architecture, it varies in direct ratio
with th: size of the memory. Therefore, it can serve
as a basis for a line of general host systems.The
present fmplementation corresponds to a middle need
but a new version of M3L, with a virtual pair-cells
wemory is studied where the datapath will be 24-bit
wide, Just 1ike the Von Neumann architecture it
offers a systematic approach for the implementation
of the direct execution scheme, that makes it easy
to understand and to use. Consequently, it bears the
raquired features for a large diffusion. From that
time onwards, there is no doubt that such an archi-
tecture, and more generally r-architectures, will
supersede the conventional sequential computer sys-
tems.

ACKNOWLEDGEMENTS

This work was done at Paul SABATIER University
in the Laboratory of Professor R, BEAUFILS and was
sponsored by the French IRIA under grant ¥ 79-027
tor the building and evaluation of a prototype offe-

_ ring LISP and PASCAL capabilities.

TR TP s D P




Ll

p 12]

L3l

14

i (5]

{6l

Ly

L9l

1101

Lil)

112}

L13,

A A e ol A

REFERENCES

J.P.SANSONKET, M,CASTAN

Un axemple d'emulateur @ M3L

report LSI # 131 Univ.Paul Sabatier Toulouse
June 1978

J.P.SANSOHNET, M.CASTAN, C.PERCEBOLS
vefinition et évaluation d'un émulateur
weport IRIA 79,027 Vol.l,2 1979

RICE et al.
Symbol1~2R System
SJCC AFIPS 1971

BASKOW, SASSON, FRONFELD
System design of a FORTKAN-machine
IEEL Trans.on Computer Vol.16 n°4 1967

Y.CHU
High 1evel computer architecture
Acddumic Press 1975

J. Mc CARTHY
LISP 1.5 programmer's manual
MIT Press - Cambridge 1962

J. P, SANSONKET

The 3L-Model : an alternative to the Von
Neumann architecture

LSI Report # 77 TOULOUSE January 1980

WANOUATA CORPORATION
Computer alters its architecture via new control
Electronics « August 1974

U.LITAIZE et al.

An efficient hardware tool for LIt pattern
manipulation

EUROMICRO Congress Venice 1976

M. LLGRISS, R, SWANSON

A microprogramned LISP-machine for the
Burroughs B1726

SIGMICRO WEWSLETTER Vol.¥ n®3 1977

A BAWDEN, R, UREENBLATT, J,HOLOWAY
LISP-machine progress report
MIT Report # 444 August 1977 .

L. W, HUEVEL

“Ideal” directly executable languages - An
analytical argument for emulation

[EEE Trans.on Computers Vol.C-23 n°8 1974

E.1.ORGANICK, J,A.HINDS

Interpreting machines. Programming of the
B1700-81800 serie

IggdComputer Science Library, North Holland,

2x

PR SR B O R

=g

Lon R

SRy

Sz e b

129




G. DURRIEU®
B, FROMENT

2 Avenue Edouard Belin
31055 TOULOUSE CEDEX
CRANCE

«CERT/DERI

ABSTRACT

This paper presents a methodology of definition
of a high level wachine for a real time language.
First, the choice of an indirect execution computer
avchitecture for this class of language is discussed,

Apart from the algorithmic aspect alveady exami-
ned in previous realizations, this type of languape
creates problems of management in a multi=task en-
vironment, of definition of the concept of interrup-
tion on a high level machine and of implanting com-
plex systems which require a structured conception,

An application of the defined methodology is
described which consists of the definition and rea-
lization of a high level machine for the LIR lan-
guage, lusisting on the impleaentation of problems
gspecifically linked to reai time,

LNTRUDUCTLON

The design of a general-purpose computer usually
precedes the design of the software tools it is in-
tended to support ; software and hardware interfacing
is performed by instructions in the machine language
wanaging the physical resources of the computer,The
lmplementation of a high level language on a general
purpose computer calls for, therefore, the presence
vf translators which produce (compilers) or use
(interpreters) these instructions,

The semantic gap between the external form of a
high level language and the machine language infers
very complex, expensive translators which are not
uccessarily free from errors.

In the lagt 20 years many high level languages
adapted to programmer's ueeds have appeared which
have been implemented with the help of compilers.

At present a4 large number of high level langua-
ges exists which correspond to most programming needs,

The definition of a data processing system (com=
puter + language) may, therefore, move in a new direce-
tion : given a chosen programming language, let us
define a computer architecture associated with this
Language.
This approach is attractive for two tundamental
reasons ¢
- choice of the language which best expresses the
problems to be dealt with (FORTRAN for scientific
calculations, COBOL for management decisions,
PASCAL for general applications, ...)

- the efficiency of an architecture designed speci-
fically to support the language.

HIGH LEVEL ARCHITECTURE FOR A REAL TIME LANCUAGE LTR

F. CUAZLTL**
B. LECUSSAN
J. ROMAIN

D. VIDAL
P. VUARIER

*%UPS/LSLT 118, route de Narbonne

31077 TOULOUSE CEDEX
FRANCE

lu recent years, many studivs have been carried
out based on languages which are, essentially, algo-
rithmic (FORTRAN, PASCAL, EULER, BASIC, SYMBOL,..).
The study described in this paper concerns the de-
finition of an architecture specialized in the exe-
cution of a real-time system., The fact that a real
time application is taken into account introduces
some specific problems

= the programming system i composed of very nume=
rous (» 500) interacting programs ; therefore,on
the one hand, there is an extremely large volume
of source propgrams (in the region of several hun-
dreds of thousands of instructions) and, on the
other, the problems of syachronization between the
different tasks are crucial

- task switching nmust be efficlent so that an inter-
nal or external event can be enable as quickly a8
pussible

- the computer must allow separate execution ol the
Jdifferent rasks 80 as to ensgure a structuration
of the apptication.

| = INDIRECT EXECUTION ARCHITECTURE

Indirect execution architecture, is made up of .
two distinct parts :
- a software module, which produces an intermediate
language based on the source language
-~ a hardware module, which execute this intermediate !
language. !

The crucial point of this approach is the defi- 5
nition of the intermediate language (IML) which must A
be sufficiently close to the source language if the i
compiler is to remain simple, and sufficiently close .
to the hardware if the execution must be efficicat. 'ﬁ

1t follows, therefore, that there cannot be an ?
general purpose IML adapted to every machine langua- 4
ge and architecture. The definition of suel an archi- {

tecture must, therefore, start with the definition

of this intermediate level, "a
Suparate module compiling thus demands existence . }

of a linkage editor to generate an executable system. i
Two golutions wmay be envisaged

~ the edition of static links takes up the concepts ]
which exist on conventional machines and furnishes ﬁ
an executable module - b
- the cedition of dynamic links is carried out at the )
execution time ; in this case, when the resident &
system meets an external reference, it must enter §

the module in central memory and start the execu-
tion. This procedurc, which includes an address
computation, is time costly,

B AG



The choice between these two techniques depends
on the source language organization and the cong=
traints of execution time.

Direcet exvcution computer architeeture, on the
other hamd, can support the execution of a high le-
vel language without any change of the original text.
This approach presents many advantages (suppression
of all the software system, the compiler, the lin-
kage editor, the loader ; interactive program debug-
8ing5:6,7 ) for a certain type of application; this
layout seems to be difficult to implement for com-
plex systems, notably for multi-task real time sys-
tems. For example the definition of interruptible
points in such a layout is rathetr delicate: an in-
terruption can be enable either at fixed points in
the exccution of a source instruction (at the begin-
ning or at the end), and, in this case, the masking
time may become too long to comply with the system
specifications, vr at each analysed token and, in
this case, the processor context may become too vo=
luminous and context switching inefficient.

2 - HIGH LEVEL ARCHITECTURE FOR A REAL TIME LANGUAGE

The need for efficient execution, the management
of a multi-task environment and the complexity of
the real time systems involved lead to the choice
of an indirect execution architecture to support
the exacution of these systems.

This methodology, essentially interpretive,com=
bines the advantages of the compiling and interpre-
tation techniques.

The source text is translated into a coded text,
compact and syntactically correct, whose execution
may be restarted, postponed or linked with other
modules,

The intermediate text is interpreted with the
help of microprogramming techniques on a data path
adapted to its interpretation,

This mathodology avoids the two basic reproaches
which are levelled at compilation and interpretation.
The compiling phase is simple, since it does not
realize code generation and optimization as in claa-
sic compilers, Moreover, the text produced is inde-
pendent of machine resources (memory, registers,..)
and the semantics of the instructions are close to
the source language.

The interpretation of such a language level may
be efficient thanks to microprogramming. Classic
programmed interpreters were not very efficient as
they were in the central memory and they acted on
rudimentary data paths (adders, registers).On the
other hand, a microprogrammed interpreter is in con-
trol store (with an access time about 10 times fas-
ter) and present day technology allows the creation
of data paths better adapted to interpretationm,

2.1, Intermediate machine language

The compllation phase must make the source text
directly interpretable., The properties of these DEL
(Directly Executable Language) have been largely
defined by L.W. HOEVELI. This phase comprises, there-
fore, a syntactic and semantic analvsis of the
source text, symbol processing, processing of for-
wvard references and labels and the prefixing (or
postfixing) of the inatructions., This processing
may be defined as a transfer from a concrete machine
(source text), defined by a concrete grammar, to an
abstract machine (DEL), defined by an abstract gram-
mar, used by the interpreter to execute the abstract

FOREilNt,

SCURCE

VIRTUAL
MACHINE

REAL

RESOURCES MACHINE

DA; : set of interpretation functious

§ ¢ interpretation functions scheduler

The form of the IML is determined by the nature
of the launguage ; however, some characteristics may
be singled out, The transfer of the source program
into the virtual machine brings about an environmen-
tal change. An intermediate environment may be com-
posed of thrue types of space !

- program space
- descriptor space
- date space

The program written in IML is a finite series of
binary fields, of varying length, These fields are
the operation codes, operand identifiers, descriptor
space references or constants,

The descriptor s#pace contains all the semantic
information on the data, and, notably, the type and
the access mode to the data space,

The data consist of information of varying length.
They represent arithmetic values, texts, system in-
formation (events, semaphores) or procedural para-
meters,

2.2, Characterization of interpretation processing
Interpretation processing comprises three types
of procassing :
~ organic processing associated with the management
of the tasks making up the system (activation-
deactivation) and managing the machine resourcaes

- formal processing associated with an execution '
conttol managing the exaecution of a task

- effective processing associated with the final cxe-
cution of the instructions. .

The central processing unit of present-day com~
puters are defined solely to the execution of effec-
tive processing.

A high level architecture must, therefore, be
made up of hardware structures in order to support
efficiently formal processing and organic orocessing.
These structures must permit a description of progrim
algorithms at a macroscopic level ; that is, at thae
level of the algorithmic logic.

Effective processing, on the other hand, permits
a description of the algorithms at a microscopic

level ; that is, at the level of functions realization,

131

AT T RO WY TR R LA
T T ——

Ak L

e,

It 5% SN

AL
e 2

AR

.

.

PR F SISO JoNC, P

R 2Rl

bR Y



e

APPLICATION

HICH LEVEL ARCHITECTURE FOR THE LTR LANGUAGE ™

LTR is a ten years old real time language whose
application are now implemented on clasaic computers
(MITRA, IRIS,...) through the intermediary of a com-
piler which produces a symbolic text which must be
assembled on the target machine,

This implementational outline is not very effi-
client at the compiler level nor at the code genera-
tion.

On the other hand, this language is complete
enough to be able to express most of the problems
of a real time application, Therefore it has been
chosen by several departmenta of the Franch Defense
Department for writing real time systems.

The problem is the definition of a machine ar-
thitecture which can support its execution efficien-
piy. We shall, therafore, axamine an indirect uxecu-
#jon computer architecturs to execute LTR even
though this is a compiler oriented language.

I'y PRESENTATION OF %m LANGUAGE
, LTR, Real Time Language (Langage Temps Réel) is

Wihigh level programming language destined for sys-
téms realization. It presents a highly structured
organization shown by a partition into ARTICLES at
#be highest level. A LTR dystem.is a set of ARTICLES.

1,1, Types of articles
Data articles are of three types :
w. DATA ARTICLE : data shared by a program and its

L subroutines

% GLOBAL DATA ARTICLE : data common to the system
o data set

M SYSTEM DATA ARTICLE : data specific to the system
N environment,

The processing articles describe the algorithms
goncerning the data declared in the data articles
0r in the processing articles,

o bl sve thide Lypas of processing articles :

= PROCEDURE ARTICLE : corresponds to the concepts
of subroutines or functions

= PRUCESS ARTICLE ; describes a process running in
a multi-task context (concept of
softwire task)

= INTERRUP'T PROCEDURE ARTICLE : describeeé a process,
whose execution is tied to the in-
terruption system (concept of an
immediate task).

t.2, Structure of a LIR system

Figure | describes a LTR system ; the separate
compilation of a task may be carried out, the com-
pilation unit being :
<SYSTEL DATA ARTICLE><GLOBAL DATA ARTICLE>*<EXTERNAL
GLOBAL PROCEDURE>*<EXTERNAL PROCESS>*<task=

Program procedures may be called ovuly by those
of the same task.

A task may activate another task and take back
control at the end of execution (closed call) or
lose this control to the advantage of a task with
liigher priority (open call).

* This work is supported by the Direction des Recher-
chies et Ktudes Techniques (DRET) of the French De-
fense Depastment, at the department of Computer
Science of the Paul Sabatier University and the ve-
parlment of Computer Engineering (ONERA-CERT) ot

the Centre d'btudes ot de Recherehes de Toulonse.

The implemented system must ensure local proce-

dure recursivitx and task reentry.

GLOBAL ARTICLES

SYSTEM DATA
GLOBAL DATA

JGLOBAL PROCEDURES

PROCESS PROCESSi

DATA ARTICLES DATA ARTICLES

PROCEDURE  ARTICLE ROCEDURE  ARTICLES

ARTICLES PROCESSES

INIT PROCESS
DATA ARTICLES '

PROCEDURE ARTICLES

ARTICLE START PROCESS

Fig.! ¢ STRUCTURE OF A LTR SYSTEM

The range of the identifiers outside the proces-
sing article is as foll-we
. the only accessible datu are those declared in :
- the task DATA ARTICLES

« GLOBAL DATA ARTICLES -

- the parametets
« the only usable ones are :
- the task PROCEDURE ARTICLES
- the GLOBAL PROCEDURE ARTICLES
Inside the article, the classic block structure
rules must be respected.

1.3, Principle of data allocation
In LTR, Tead to different data storige alloca-
tion the type of article and the data organization.

A. Static and parmanent

These are the data, tables or structures decla-
red in a4 GLOBAL DATA ARTICLE or in a DATA ARTI-
CLE. The store space is reserved by the compiler and
life expectation is linked with that of the task.

B, Automatic allocation

These are the data, tables or structures locally
declared in the processing articles, The data ave
dynamically initialized and data overlay takes place
according to the block structure, Life expectation
is linked to the internal block in which they are
declared.

¢, Controlled allocation

This concerns virtual data pointed by the user.
The data are described in a data or processing arti-
cle ¢ links between the description and the data zone
to which they apply is realized by the execution of
pointer manipulation instructions or by storage
allocation,

D, Chain allocation

This concerns sets pointed by (he user but whoso
chaining is autumatically ensured by the allocation

132

-~

TR T L P

EFEI A PIING NP

Nl




i

Pt e T Ad oy e

R Teachc Lomniia

" TR - - o . * .
et R B 6 v s e S Bt N o S A e s

Param 3
Param | Param 2 and others FONCTION Notes
. opde or :
AFF operand constant Affectation
opde or opde or -
ADD operand constant constant Param | = Param 2 + Param 3 (1)
.
d d Comparisun of Params 2 +3 and affectation of result )
Lss operan operan (bovleen) to Paraml
I¥ address | Jaddress 2 addrese 3 (£ 1) (2)
FOR address | |address 2 (f 2) 2)
WHILE address | |address 2 f 3 2)
(opde or Param | ¢ descriptive of procedure
CALL operand constant) | Param 3 : parameter list
CALLP operand entry TD Entry TD : address of a TASK DESCRIPTOR
Params 2+3 : identical
NEW operand operand opde or Insertion of an element in a set
constant Param | : set
2 ¢ insertion addresa
3 : name of element to be inserted
(£ 1) IF <al><'2><.3> <axp.bool.block> <THEN block> <ELSE block>
(f 2) FOR <a)><ay> <incr.block + test> <FOR block>
(£ 3) WHILE <a;><a,> <exp.bool.block> <WHILE block>
(1) Parameter | may be an intermediate variable produced by the compiler
&— (2) The addresses are N-upla addraases

wechanism. The data are described in a GLOBAL
DATA ARTICLE,

This presentation of the language fixes the
cpnstraints on defining memory management for a LTR
machine, We shall present the solution chosen for
implemsnting such a system below,

2, INTERMEDIATE LANGUAGE SDILZ FROM LTR

An intermediate instruction is a byte chain
of varying length called N-uple.!

A N-uple may be an expression (OPERATOR, (OPE~-
RAND)*) in which the number of oparands is fixed
only by the LTR instruction spaecifications.

Definition of the operator codes is fixed by the
LTR instructions ; each instruction has been regrou-
ped in the form of an N-uple, at the same time con~
serving all the semantic contained in the source
instruction,

The upper table gives sowa examples of N-uples,

In the operand part, we wmay find either 4 cons-
tant, an N-uple address, or a data descriptor ud~-
dress. The operand is prefixed by a directive which
prescribes the descriptor type :

(ch) 'corchain' for bit chains

(ix) table index

(rf) reference of a structure field
(pt) pointer to a saet

(et) coustant

(op) operand

(cv) conversion

The DEL-LTR way be summarired schematically as
follows : N

IMI {:w (N-uples)

N~uple ::i= (OPCODE, (OPERAND)*)

OPERAND ::= (CTSI)(OPDE), (CONV/MOD, (CONV))

OPDE ::= op,H,S.H., (INDEX)

CONV ::w cv NUMBER |
MOD $:= ct,(CTSI/OPDE,CTS1/OPDE)/pt,H.S.H.,CONV"'
INDEX ::= ix,H.S.H./indexi,CTEL i
CTSI :t= ct,CTE{ :
H.5.H. ti= address of descriptor

CTEi ::» ipmediate constant ,

This intermediate form is very close to the i
source language. The semsantic information contained:
in an LTR instruction has been coded in the inter-
mediate instruction so ae to facilitate interpreta-
tion : the interpreter will analyse instruction pre-
fixing by oparational code, execution and control
addresses and operand directivas. :

All non-constant variables are addressad througp
a descriptor which contains the information set cha+
ractariging the data used by the interpreter. '

The basic descriptor is a 10 bytesword which may
have extensions for complex operands (table, struc~!
ture, process descriptions). In the standardized
bart, it contairs ¢

NAME JINDIC |BASE| DEPL. [TYPE| STRUCT| SIZE SCALE‘ EXT

NAME : reference to a file containing the symbolic
name of the variable,this information allows
the editing of the state of the variables du-
ring, the debugging phase

INDIC : data implantation type : global,local,parameters

BASE-DEPLACEMENT : data implantation address

TYPE : Integer, Real, Fixed, Index, Character string,
logic, boolean, quality, static reference,vir«
tual data reference, set element reference

STRUCT : ATFay gtructure,structure array,virtual data,
set

SIZE ; space occupied by the data

SCALE : normalization factor .

EXT : pointer to an extension descriptor o

133

-

Wik of

WAL et Lt S A B o RYE g S

FRE - SR

ias



. . - .
e it K gt . P TTRR Ao RTIT : o faon ] i
NSNS 172 IR R PTG ¥ - ey A.:aw.-:'r;:f...‘uu.:,iy.,~=.-(i,»z-m:.Q!'u.'.vau:,-y-:u;Jmmw.zf'.u.‘nﬂaﬁu{ka""

3. LTR PROQCESSOR STRUCTURE
e LIR processor structure follows from the me-
thodology described above,

The processor is composed of two pipe-line units
one for macro-intexpretation processing (MAI), the
second for micro-interpretation processing (MII)
(fiﬂoz) o

N-UPLE DESCRIPTOR DATA
lACCESSl CCESS ACCESS
o
'
MAI 1 h‘J | —
]
e
FILE |
|
LNFQ,
1/0
Fig.2 : LTR processor block-diagram

The central wemory is divided into three physi-

cally separate memories @

= the N-uple memory contains the intermediate code
and is accessible to.ihe MAI processor only

- the descriptor memory contains the data descrip~
tors, systems data and processes: it is accessi-
ble to the MII processor only

= the data memory contains the data described in
the source program,

A N-upleg is interpreted in two phases :

- the firgt, in the macro~interpreter (MAL),manages
the IML execution control ; it divides a N-uple
into simple instructions which it sends to the
micro-interpreter (MII)

-~ the second phase, therefore, takes place in the
micro~interpreter (MII) which merely executes,
sequentially, the actions send by the MAI: search
for operand descriptor, conversion of a number,
arithmetic operations .., ; these actions corres-
pond to a set of microprograms contained in the
MII control storve,

The connection between the two units is reali-
zed through the intermediary of two hardware queues:
a parameter queue and a action number queue, Moreo-
ver, state variables and calculation results may
transit between the two units.

The two queues allow a synchronization of the
two processors and ensure pipe-line m uagement.

The division of the stores in function of the
information they contain allows a real parallelism
between the different accesses and also parvicula-
risation of each access !

P

L T R TR

- the N-uples memory has read access over 4 bytes ;
the descriptor memory has a double read/write ac=~
cess also over 10 bytes ; the first contains the
descriptor and the second the context of the wmicre-
machine

- the data memory has a read/write access over two -
bytes, the size of the data path being 16 bits.

The scheduling algorithm occurs on the Micro
Interpreter which sends a task number to the MAI ;
the context set is described in the CONTEXT sectionm.

3.1, Macro Interpreter Structure (fig.3)

The macro~interpreter supports the formal and
organic processings attached to the system execution
control, Formal processing amounts Lo management of
the N-uple ordinal counter (management of the recur-
sivity vf IML instruction) and organic processing
concerns procedure context switching, A context swit-
ching may occur on two types of event

- switching on interruption
- switching on process call

In the first case, the interrupted process con-
texts may be managed in stacks ; interruption mecha-
nisn can be implemented according to a hierarchic
algorithm,

When the process attached to the interruption of
level takes place, it can be interrupted only by an
interruption of level j (j» i) ; control will be re-
turned, after processing of level j, to the level i
process or to a process with a higher priority,

This mechanism may be implanted with the help of
just one stack, the summit context being the active
context,

On the other hand, for process activated by an
open call, it is possible to avoid returning to the
calling process, A stack must, therefore, be alloca-
ted to this process and, during switching, the num-
ber of the stack containing the caller's context must’
be saved . The task is, then, executed in its
own stack space, For all closed calls, the context
may be safeguarded in the active stack (mechanism
identical to that of activations on interruption)and
for pseudo-open calls (an open which return control
to the calling process) two stack spaces are suffi-
clent,

We allow for 16 stack spaces (15+ interruption)
which permit wn interleaving of 15 open calls without
return to the calling process. The size of each space
is assessed at | Kwords, This space and the manage-

ment mechanism are represented by stack 1I. The micro-

interpreter context will be switched at the top of
the active stack, the active stack being found in
the process descriptor,

Ordinal counter management ig ensured by a reen-
trant microprogrammed interpreter whosc essential
functious are :

- access to the source text

~ analysis of the instruction operation code

- to break up an N~uple into elementary ACTION
functions,




TSR VD AN QR Y OTAR e Y v et

P | N-UPLE MEMORY

- i
g ) 16 ACCESS
5o PROCESS NUMBER FROM MI1
;; d ] 1()
: BUFFER
;:3 - - — —rh
3 ECODE
5
L STACK] PIR INTERPRETER 0 o STACK
: 11 MEMORY |
: I
| SO NI 2 2 v
! FILE 1 —< CONTROL FROM MIL

[ N .dl
rﬁ COP : CAY symbol terminal decode
(1) 31 3 10 10 10 FILE 2 ACT send NUMBER of microprogram

ACTION : to MIL
COMMANDS | cop UCCESSOR | ALTERNATE ACTW send NUMBER of microprogram

ADDRESS to MII and wait for a signal
NEXT MICROPROGRAM ADDRESS REG push AR onto STACK 1 and put

ADDRESS in AR register

Fig.3 i THE MACRO-INTERPRETER LAD pop the STAGK onto Al registdr
i
DESCRIFTOR  MEMORY
80 ‘
lfuzscaxpron ] ] CTET J ,EXTENSION , ]
//’ .
4/46 16 A
DATA i
20 i
,ﬂ MEMORY -ﬁ
DESCRLPTOR ¥
\EAORY DATA MEMORY A
ADDRESS AM 2903 ADDRESS i
MANAGEMENT . MANAGEMENT “%
rpn CESS NUMBER W
9 6 %
L 16 1 E‘
<< cmeo:N'”uus,L/ - 1 - )
. ol A
SOuTROL ] T i
PARAMS e FROM MACRO AM 2910 81T PATTERN | | REAL 3
) “FROM MACRO) —4— MANIPULATO# TIME g
MICROPROGRAM CLOCK El
MEMORY i
L
Fig.4 : THE MICRO-INTERPRETER ¥
~ >

-

. . . ,
) . i et s R Rad e i g i el e
2 it KR e s sl LR o el e s e A LA M D K




X

£

ot tan e Kiusin 4o 1oLtsns

lind of task

MONLTOR

Ptiority Process

- ——d Transition tied with

-
interrupt task

~______1>Tranaition tied with
goftware task

EXLT
END CYLE

End of \\ Enable IT
task \\ITCTRL

ACTIVATR

SETEV
FREE

i

CREATE open [
RUNNING
Enable prior1ty1
\ Disable higher
N priority IT
~

,%VERY delay

—

WAIT
RESERVE /
~ ACTIVATE
CREATE clc::d — SETEV
FREE
it -
- End of delay

ig.5 : THE SCHEDULING PRINCLPLE

Example : Interpretation of an IF instruction,

When the operation code is decoded, the inter-
pretation consists in
- stacking the thrae addresses <a)><a,><a,> in
stack IT of the active procedure
- loading <a_> onto the CPT register
- calling a fute <boolean expression> . (1)

The end of the <Expbool block> is supplied by
the comparator which determines the egality between
the CPT register and the instruction counter (IC).

Depending on the value of the boolean transmit-
ted by the MII, address a; is loaded onto tha IC
(pud address a) is loaded onto the CPT (value 0) or
inddresa a2 is loaded onto the CPT and the IC regis-
tar e not sffected (value 1), At the end of
<sblock THEN> , addrass a3 is loaded onto IC,

(1) This call {s carried out by stacking AR onto
Stack 1 and tha return of the rule provokes a pop
opsration., This machanism allows an interpretation
of the language in accordance with a method of des-
cending analysis.

“ » .
X Ml Dttt e e R B el 2l o L

136

3.2, Micro-Interpretar Structure (fig.4)

The micro-interprater is the CPU of couventional
computers. It is composed of a control store contai-
ning the set of interpretation microprograms and a
data path formed by an arithmetic logic unit (AMD
2903) and a Bit Pattarn Manipulator (BPM) capable
of performing logic operations on bit sgets (permu-
tatica of byteg, extraction and scaling of bit fields,
concatenation)., The MIIl manages access to descriptor
and data stores and executes the part of organic
processing relative to the management of the data
space of a procedure.

The access register of the descriptor store is,
in fact, a local memory composed of three blocks of
ten bytes, This memory constitutes an extension of
the internal rugistars to microprocesgor AMD 2903.

The first block contains & procedure descriptor
or a data descriptor, the second may contain a data
descriptor, and the third contains the MII context,
We shall see in the CONTEXT section that this solu~
tion allows an optimisation of context switching.

Rl Tl L

TR

"

st

o il G e, RS A s




4. STORE MANAGEMENT
4.1, Data store management

Logically, this store should be managed in such
a way that the implantation of data and way of acce-
ding to it should be directly deducible from the LTR
system structure and from the constraint: quoted in
n.

The structuration of the program into ARTICLES
suggests an addressing in relation to different
basas. This technique allows, moreover, the defini-
tion of a protection for euach segment, an important
factor in the real-time field,

It will, however, be necessary to allow for di~
react addressing in particular for the passage of pa-
rameters by address.

Since the LTR procegsor takes the recursion and
reentry of the procedures and processes into account,
it leads us to allocate a stack for each process
vhere the contexts of each procedure call will be
conserved and local data of the called procedure
will be creatad,

It can be seen that the basic addressing is not
gsufficient to manage the memory aefficiently. There
is a possibility of a proliferation of zones of dy~
oamically created data, It foilows that it will be
difficult to recover the fres space and for this
tasson we have added to the addressing system a sys—
fem  of storage sllocation by paging and "topogra=
phic" store,

However we have also tried to adapt the addres-
sing mode to the type of accessed data by addrese
sing directly the global data, whose life expectan~
¢y is that of the system, and reserving topographic
addressing for data with a shorter life, The cha-
racteriatics of these different zones are determi-
ned by the requirements of the LTR system to be
executed.

To sum up, we have allowed for the following
addressing modes, which appear in the descriptions
of the system variablas :

- general direct addressing, for the use of data
declared in GLOBAL DATA ARTICLE

= direct addressing for the use of the process or
procedure call paramaters and also the sets

= topographic addressing, localized in the process,
for the use of data declared in DATA ARTICLE

- topographic addressing, localized in the proce-
dure, which interests the process stack, for the
use of dacta declared in a PROCEDURE ARTICLE, glo-
bal or not,

Different address calculations

Lat fropg be the function calculating the real
address of a variable from its virtual address.This
association function consists in replacing the vir-
tual page number by the real page number, This ag~
sociation is realized during storage allocation, by
the operating system and is materialized by a
"topographic" store., The list of pages allocated to
& process is part of its context,

Therefore :

- Calculation of a general direct address (GDA)
aw (base G) + déplacement

- Calculation of a reference direcc address (DA)
a=deplacement

B Ty T o8 OO 7 F e,

An address of this type is always countaipsd 1n!
a pointer : ’ ,
- Calculstion of a process.local addresa. (PSA) |
a=fropo ((base L) + deplacement) ) |
-~ Calculation of a procedure local address (PDA)
}

a= f1op0 ((base Z) + daplacemant). .

]
f
GLOBAL cml - g
zone ol
3
-
; 2
CTERETITRT |
L]

] DA
. e o, o o W g 0 - o
M‘E 28 43 foieheia]

. —— . - p———— ———— —

e-—--- topographic zone

) SA
- -~ -
DATA
hic Process
E‘m ¢ zone
procedure zone i
protes call 1
stac

procedure zone j
call 2

D
procedure zone klr A
call n

(associated with physical zone by fpgpg)

Fig.6 : DATA STORE MANAGEMENT

4.2, Descriptor addressing

The data of a program are referencad in the code
through the intermediary of a descriptor. It is imd
planted in a memory 10 bytes wide and addressable |
on 64 K., However, in order to simplify program de-
bugging, the LTR source text may be compiled by mo-
dules (an executable system may be composed of se~
veral modules), The solution classically adopted in
machine languages to assembla the different modules
consists in making the process linking dynamically,
We have not retained this solution as it has proved
to be too time costly in execution and considerably
increases the system overhead time. We have, there-
fore, chosen, to address the descriptors by (base,
deplacement), Therefore, at a given moment we have
three bases :
~ Base of Global data descriptors
- Base of Data descriptors

- Base of local data descriptors for active procedure.
137

= AR ST A

.

2o
SR A<



LML T ST

The values of these bases are determined when
loading the blocks they reference, It is to be noted
that these bases are an integral part of the process
context.

4,3, Implementation of data systems

We shall now examine the solutions adopted for
the implementation of the system processors,notably:
the scheduler, management of events and semaphores
and Interrupts,

4,3.1. Processor implantation

The processors monitors are microprogrammed and
run on the micromachine., The data manipulated by
these programs are implanted in the form of des-
criptors, for protection purposes, In effect, only
the microprograms are authorized to write in the
descriptor store during the execution of a system.
These processors manipulate descriptor strings.

4.3,2, lmplantation of scheduler data
The scheduler manipulates process descriptors.
These descriptors have the following structure.

NAM: | INDLCY | LAV LARIFXT BAsglconE BASEJDESC nAiX]

BASE PRO&ISPACE PROINI&iISTACK NUMBER i]

NAME : pointer towards process identification

INDIC @ process current state word

LAV-LAR : stringing of process in queues

EXT : pointer towards an extension

BASE CODE : address of code implantation

BASE DESC DATA : address of data descriptors

BASE PROG SPACE : address of data

PROINLT : pointer towards procedure status descriptor

The scheduler manipulates only the CU proces-
sor's queue (ready processes). In effect, the other
lists are manipulated by the other system proces-
sors which will return control to the scheduler at
the end of their execution, The head of this list
is represented by a descriptor implanted in a [ixed
address with the form :

FIRST LASTLNB LIST INB CREATED lNB ACTIV}:.j

FIRST,LAST : reference points on the list
NB LIST ¢ number of processes in the list

NB CREATED : number of processes created
NB ACTIVE number of active processes at prescat.

4,3.3, kvent and gsemaphore management

We first decided not to Implaut event cxpression
resolution, Our choice was motivated by the com-
plexity of such a resolution and the multiplication
of hardware it would cause, We have, therefore,
grouped the processing of events and semaphores.
The physionomy of the descriptors manipulated is as
follows :

[ NAME IVALUE l TYPE] FIRST | LAST J

NAME & pointer towards the semaphore or event
identifier

VALUE : value of an instant of the variable

TYPE : event/semaphore

FIRST,LAST : processor queue reference

4.3.4, lnterruption management
The interruptions arc waterialized by a des-
criptor with the form

[ INTERUPT ]STATE lA'r'rAcu PROCESS ADDRESS

The IT descriptors are implanted in addresses
equal to running level (IT N°® i + descriptor of
addregs i), When an IT is enable, the IT processor
inserts the process at the head of the queue. The
scheduler takes control and, if necegsary, activa-
tes, .

This processing concerns IT directly counected
with a task.

5. INTERRUPTIBILITY

The definition of interruptibility at a "logic"
level, that is, at the level of the intermediate
language and the macro~interpreter, is very deli-
cate, or, even, impossible, given the contextual
interpretation mode we have chosen. An "i

instruction!
or execution unit, at this level, is, in effect,
something of variable length, and may even be the
program itself,

The concept of point of interruptibility must,
therefore, be more closely defined, even if the
macro-interpreter level presents the interest of
reducing context volume to a minimum when enable
the interrupt.

The division of an N~uple by the Macro-lnter-
preter into ACTLONS permits the interruptible poiuts
to be fixed at the beginning of each ACTION, This
choice establishes a compromise between the volume
of information to be saved and the time needed
to set up this safeguard. In effect !

- The fastest possible tukeover of the interrupts
will have for effect the switching of a larger
number of data, therefore an effective time such
that this politic is in danger of losing its
iuterest

- A takeover defered until certain key moments in
the execution of a program will entail the mani-

pulation of a smaller amount of data and may, -
therefore, be more efficient than immediate pro-
cessing.

Moreover, at the beginning of ACTION, MAl con-
text is at a minimum, However, to justific this
choice, the execution time of an action must remain
compatible with the requirements of interrupt
processing.

6. CONTEXT

Given the machine structure we have described,
this context will be larger than that found on a
conventional machine. It is, moreover, spread over
several [functional units and, thus, may be divided
into three parts :

- task characterisation context
- macto-~interpreter context
- micro-interpreter context

6.1, Task characterisation

This is the part of the context which is clo-
sest to the information found on a classic machine,
1t defines, both the identity of the process and
its work space for anything concerning the Jdata
manipulated,

Definition of process identity includes the
following infermation
NAME @ pointer to the name of the process
ADCODE @ process start address
NIT @ tied number of interrupt

138

i B L it :
DAt .L.t:.:zu..‘:‘ux,‘_.,,;“,‘:\‘,‘.;_,‘,. e - s

YA e, ik

e T e

L v dn Fi e e T




STy e

L - S L . g
Crrnit B )n\{ud, B o v A A L8 L s AT e et Sl bl o eI ok
K X

This information will be contained in a speci-
fic location in the descriptor memory.

The definition of process work space includes

the following iutormationy:

ADDESC : description space base

STACK : number of the execution stacks in the
Macro-lnterpreter

BASE | (G) ¢ process yplobal data base

BASE 2 (L) : process local data base

BASE 3 (2) : local data base for running procedurc

BASE 4 . address of page table for the process.

The type ol topographic implantation chosen
(see above) calls for the constitution of corres-
pondance tables, virtual pages -+ real pages, proper
to each process. During execution of a process this
table is loaded ia a specialized memory and inust
exist in memory so that it can be reestablished
after interryption followed by context switching.

6.2, Macro-Interpreter context

The execution of a process biings about an
evolution of the information contained in the
macro-intergreter, characterizing the logical evo-
lution of interpretation,

This information also, may be put in threce
parts @
= Brogram.context

, 1C : instruction counter of the program in IML
. UPT : address of end of block under examination
. STACK II and TOP 2 ; address stack for the end
ot the ir~luded block and its pointer
- lnterpretation gongext
. AR : address register on interpretation program
. STACK 2 : return addcess stack at the end of
the decoding submicroprogram
- Stake oi_coumunication with the micromaghing
. Generated actions queue and its pointers

. Queue of parameters to be rransmitted and its

poiatecs,

6.3, Microusciriie context

The v. -w-e of significant context in the micro-
machine har  2cn reduced congiderably by the fact
that the interrupts are enavbled between two ac-
tions, as we have said above,

The information to be saved are the five re-
gisturs making up the external register of the
CU 29CG3. These registers are used to transmit the
paramzters between the various actiomns. It is to
be noted that as this extension is in direct access
with the d2gcriptor memory, its content is saved in
a8 single memory cycle,

This information will, therefore, be saved 1u
the space descriptor of the interrupted process.

CONCLUSION

The high level computer architectures previous-
ly studied or realized concerned monotask langua-
ges. This study shows the priccipal problems met
in the implementation of a multi-task real time
language.

Interpretation processing has baen divided
iato three classes :

- organic processing associated with the management
of a multi-task system

- foimal processing associated with the control of
one task

- effective processing associated with the execution
of each instructions of one procedure,
The harvdware structure has been designed to sup-
purt efficiently these three kinds of processing.
The realization of a prototype able to support
the LTR language should allow the validation of
these concepts.,

REFERENCES
11) LTR ~ Manuel de Référence 5616/U/FR
P2 ) LTR ~ Manue) o' Implémentation 8072/U/FR

[3) LTR - Manuel d'Utilisation 5618/U1/FR
CIMSA 10-12 Avenue de 1'Europe 78140 VEL1ZY France

J.PETIT,D.LITAIZE, B, LECUSSAN,J. P, SANSONNET

4.1, A microprogramming strategy for HLL inter-
pretation SIGMICRO NEWSLETTER Dec,76 .7 n’4

4,2, An efficient hardware tool for bit pattern
manipulation 204 Symposium on Micro Archi-
tecture EUROMICRO - 1976 - Venise

(51 y.cHU
Concepts of a high level language computer ar-
chitecture - Proc,ACM Conf.Minneapolis,MN,
pp.6~13 = Octobre 1975

{6] y.chu
Direct-execution computer architecture
Proc, IFIP Congress,Toronto,Canada,Aug.1977

(7] Y.CHU )
Issues an concepts of high-level computer nrch:—
tecture - IEEE Computer Society, 1979

(8] Symposium on High Level L;n;gggg Computer Archi-
tecture ACM.IEEE Nov.7-8,1973 Univ,of Mg;ylan{

8.1, W,C,NIELSEN
Design of an aerospace computer for direcq
HOL execution

8.2, N.M.BLOOM
Structure of a direct high level language:
proceusor :

8.3, GLOSs ,
A high level language machine

8.4, L.N. Mc MAHAN et E,A.FEUSTEL
Implementation of a tagged architecture
for block structuréd languages

8.5, V.R, BASILI et A.D.TURNER
A hierarchical machire model for the semar~
tics of programming languages f

[9) L.W.HOEVEL .
"IDEAL" directly executed languages : an unnlyti-
cal argument for emulation .
1IEEE Trans.on Computer, August 1974 i

o~
£10] J.C,STRAUSS et K.I,THURBER
A computer design for real time command an
control - EASCON 76

{11] K.X.THURBER and al,
A computer architecture for an advanced real
time processing system - COMPCON 76 EAST ’

(12] A.S.TANENBAUM .
Inplications of structured programming for ma-.
chine Architecture - Comm.ACM March 78 VoL 21 n®3

[13] W.T.WILNR
Design of the Burroughs B1700 - Proc.AFIPS PJCC,
Vol.4l AFIPS Press Montvale 1972 p.489-497 '

{4

~[14] W.T.WILNER Burroughs B!700 Memory Utilization:

139

Proc AFIPS FICC Vol.41 AFIPS Press Montwle 1972 p. 579-536!

[—

- a-.... -
. e A il

ol i

S

Kl
>

e ava e



T S ST e T e e

T

TSR

a4

An Architecture for the Dynamic Optimization
of High-Level Language Programs

Samuei P, Hatbison
wm. A. Wult

Carnegie-Mellon University
Department of Computer Science

+» Abstract. We introduce an architecture which performs
many of the optimizations commonly seen in sophisticated

., compilers {or high-leve! languages, including redundant

- axpression elimination and the movement of invariant

, expressions out of loops. The Instruction set of this

" machine aHows simple compilers {0 produce a graph-
structured object code which Is both compact and
efficient. The architecture features a cache which records

, the values and dependencies of HLL expressions in order
to avoid later recomputations and memory relerences.
Preliminary experimental results indicate a speedup
approaching a factor ot two over a pure stack architecture
on some programs,

I
v,

1. Introducilon

The argutients in tavor of closing the "semantic gap"
between sourte program and object program are well known
“hy participants of this conference. Myers [1] characterizes the
*job of the computer architect as determining the proper
division of total system functionality between software,
Hirmware, and hardware. Two extremes of this division are
nossible. At one extreme we have fraditional architectures
which tend to leave too much to the software and are ill-suited
o the softwara they execute. Complex operating systems are
necessary to make them useful: complex compilers are
necessary to make high-level languages (HLLs) execute
eificiently. At the other extreme we have architectures which
attempt to execute high-level languages directly. These
architectures are often Inefficient hemselves; program
representations appropriate for programmers are not always
appropriate tor computars. it is likely that better cost-
performance can be achieved by an architecture which falls
somewhere between these extremes. Our architecture is one
of many such; it is aimed at reducing or eliminating the need
{and hence the costs) ot optimizing compilars by pertorming
important optimizations in hardware. 1 does not directly
address other dimensions of the pioblem, such as the
complexity ol operating systems.

The total cost of optimizing compilers is great.  Thair
construction is a formidable sollware engineering task. The
code they produce is almos. wwavs obscure, occasionally
worse than no optimization, and sometimas just plain wrung.
They also execute more siowly, and hence exant a price on
each compilttion. Regearch Is underway in several places
aimed &t reducing this cos: through the automatic, or semi-
automatic, generation of such compilers {2]. Our approach to
this problem is diflerent;, we are trying to raise the
hardware/goftware interface above the level of the compiler's
optimization phase, thus reducing thc compiler's task to
“{mainly) lexical analysis and parsing. Efficient aigorithms for
these phases are known, and the automatic construction of
“such compilars would be within our grasp.

Our architecture is able to perform two common and
important optimizations: redundant exorassion elimination and
+u type of code motion typitied by the movement of invariant

(3

140

e ’ . o .
AL s A ey S0 A e DN e o DA B R e AR L

expressicns out of loops. These optimizations traditionally
require sophisticated How analysis during compilation, sa their
elimination from compilers should be beneficial. Our research
is aimed at determining how big an impact this architecture
can have on the total cost-pertaormance of a compiler-
architecture pair.

In this paper we will introduce the architecture and argue
its advantages informally and by example. Other work i3 under
way to determine the architecture's quantitative benetits over a
range of real programs. Because we are interested in basic
feasibility, we deler the specilication of many details which
would be necessary before the architecture could be realized.
In particular, we are not specilying how lo implement the
architecture, nor are we specifying the instruction set beyond
what we absolutely heed. So as not 10 be overly distracled by
language issues, we have chosen FORTRAN as our high-level

‘language. We believe that the necessary extensions for other

languages would be no more difficult on our architecture than
on others, and thereforc they are irrelevant to the current
goais of the research.

2. Basic Concepts

To briefly outline the thrust of the architecture, consider
the FORTRAN statement

X = (A+B)°C + (A+B)

X/-\#
S
+/ \C A/ \B
A/ \B

Suppose w2 had an iﬁéfructlon set which closely mimiced this
parse ' 2e representation, one instruction per no. Each
instructiun  might be a triple

{OPCODE, LEFT-PART, RIGHT PART)

where LEFT-PART and RIGHT-PART would be addresses of
instructicns which calculate the operands. The execution of
an instruction would consist of recursively evaluating the left-
and right- parts of the instruction. followed by the application
of the indicated operation. This architecture coukd be
implemented using two stacks: one to hold intermediate
computations and one to hold partiaily-evaluated instructions
during the post-order traversal of the parse tree. The order of
instructions in memory would be irrelevant in this instruction

bt

.

vl

LA AT AR S Tt b e

-

‘&;



j
!

r

sat--the control flow is specified explicitly. The translation of
the above statement would be

= X,M
P1: +,P2,.P3
P2: *,P4.C
P3: +.A,8
P4 +,A,B

This instruction set is obviously very ineflicient, but it can
illustrate two points. First, because the instructions labeled P3
and P4 are identical, there is no reason to duplicate them; we
can eliminate P4 and change P2 to

P2: *.P3,C.

The subexpressions giving risé To P2 and P4 are called, In
the parlance of compilers, formally identical or congruent.
This simply means that they are identical in form--not
necessarily that they have the same value, It is both simple
and ellicient to detect formal identity during parsing, and doing
.80 at compile time allows us to represent programs more
space-efficiently in our architecture. By contrast, detecting
common subexpressions, le., lormally idenlical expresslonsi
‘that also awre guaranteed to have the same value at execution

itime, is not as simple or efficient. Our architecture will not

require the compiler to do this.

Notice that even though the expression "A+B" Is
tepresented only once in the object program (using the
alorementioned compaction), it is actually evaluated twice in
,the implied traversal of the parse tree. The structure of the
ob}oct code gives us the possibility of avoiding thie
recomputation, Suppose that alter completing the evaluation
ot P3 (while computing the LEFT.PART of P1) we saved the
"value" of this instruction in a cache, labeled by the address

-P3. It we cheched that cache before evaluating esch

JInstruction operand, we could retrieve the value of P3 when
computing the RIGHT.PART of P1 without actually recomputing
il. Suitable care would have to be taken to record dependency
information in the cache so that we could remove the value,
should either A or B change in the future.

Our architecture provides such a cache, which is the major
source ol execution-lime elliciency. The elfect ol using this
cache corresponds closely to the elimination of redundant
expressions by optimizing compilers. In fact, this technique
may be superior, because it can eliminate expressions which
are redundant under the particular execution history of the
program.  Consider, for instance, the following FORTRAN
slatements:

Y = A+B
IF (Y LT, 0) A = A+l
X = AsB

Because the two occurences of "A +B" are formally ilentical,
they can be computed by a single instruction which is
referenced in two assignment statements. It can be seen that
the value of the expression A+ B, computed in the first
statement, can remain in the cache uniess the assignment to A
actually takes place (invalidating A + B). The same mechanism
serves to move invariant expressions out ol foops, since any
expression which does not deperid on a value changed in the
lonp will remain in the cache.

This simple example illustrates our architectural goal: to
provide an ingtruclion set which preserves the structure of the
parse tree in a way that permits both space-efficient
represeniation (by having only one copy of the code for
formally identical expressions) and time-efficient execution (by
detecling and avokling the re-evaluation o! expressions whoee
value has not changed).

3. The Architecture

We now introduce the architecture and instruction set

currently being used in our research. We would iike to

(KRN TR T P TR IR PPN YA

D e ik DAYl M A T

141

emphasize that this version ol the architecture is a researoh
vehicie--one intended (only) to test the feasibility of the ideas
and their impact on performance. A realistic implementation
would need to address other issues and would require caretul
tuning and elaboration of the instruction set, )

MAIN MEMORY
Logie .
1
Evaluation Centrol Vale |
Stack Stack Coche 1

Flgure 1: Major architecturel components i

There are four important parts of the machine, as indicated in :
Figure 1:
Memory A linear vector of lixed-size words, Indeudi

by addreas.
Evaluation Stack A LIFO stack of words, used to hold
intermediate values during computation,
much the same as in other stack-oriented
machines.
A LIFO stack of control information, used to
control the recursive descent through the
parse tree graph.
An associalive memory used to save the
valuss of expressions.

The Control Stack and the Value Cache will be explained In
more detail later,

Toy ' Valve ’

Control Stack

Value Cache

Ri| Co
Ll

Flgure 2: Memory word format ;

Every word in memory is a one-operand instrucllm.f
lormatted as a [TAG, VALUE] pair (Figure 2), .Even words uwd'yl
thought of as data are, in this machine, instructions. The TAG!
lield is further divided into a number of subfields, named R, x,"
I, and op. OP is the operation code (e.g. ADD), and R, X, and |
are single-bit tiekls denoting Raturn, indeX. and indirect.
(These will be described later.) The actual bitwise packing ot
these fiekds into a word is not loo important, but lor
concreteness, we think ol 1Ac as being 8 bits and vaLUE as
being (say) 24 bits. This wouid give us a 5-bit opetation codo
and leave 24 bits tor data or an lddrm

3.1 Instruction Classes

1

The instructions are divided into thrse classes according to'

how their operands are interpreted. The three classes e/

dala instructions, acdress-operand irstructions, and vu{ua
operand instructions.

Data Ingr%qcll ns. The INT, REAL, and ADDR lnstmctlonn]
carrespond to the three data types recognized by this tlmpb[
vorsion of the architecture. Executing any of thees,
instructions causes them 1o push themsglves (VALUE and tm)
onto the E.aluation Stack, setting R=1 and x=1=0, The
contents of the valUE field in data instructions is the actuai|
data (i.e., in INT instructions, vALUE is the integer dutum, n|
REAL it is the MNoating-point representation, and in ADDm
instructions it is an address).

The data instructions are quite like “tagged* data in oth.tJ
HLL architectures. In particular, we will assume automatic

. ‘e

¥

£
““ Iz
b

e —

g eeadat

BN o isear



it 3 M RGN Gt bt 0 00T il R et et il i A UV

type conversion throughout--there will not be separate
instructions for floating-point addition and integer addition, for
instance.

It X is a variable of type REAL with value 43.5, the name X
will be bound to the address of a word containing (the
instruction)

REAL 43.6.

The reason we make datla words executable will become clear
when the operand-felching mechanism 15 examined luler.

Address-operand instructions. These instructions include
INCY {incremant-by-one), INC (general increment), S10 (store),
and the twelve conditional-jump instructions. In aach case, the
vatur. hield is interpreted as an addrass, and this address is the
ifnuhucti()n operand. The semantics of the instructions are as
oliows:

SH) Removes the lop word from the Evaluation Stack and
stores it at the operand address. The R lield Is set to

1 in the stored word, and the X and | lields are set to
a.

ING Removes the top word from the Evaluation Stack and
adds it to the word at the operand address.

INCt  Increments the wvalue of the word at the operand
address by one.

Ji, JLb, JdGE, J6E, JEQ, JNF Hemove the lop value
trom tha Evaluation Stack and branch to the operand
address Il the value 18 less than, less than or equal to,
greater than, greater than or equal to, equal to, or not
equal to zero, respectively,

Value-operand instructions,  These instructiung include PUSH
and the arithmetic Instructions, ADD, SUB, MU, and DIV, For
these Inslructions, the vALUE lield Is again interpreted as an
address, but the operand is obtained by oviluating the
address, as explained below. Otherwise the semantics of the
instruction are as follows:

PUSH  pushes its operand onto the Evaluotion Stack.

NEG negates its operand before pushing it.

ADD removes the top word from the Evaluation Stack and
adds it to its operand, leaving the sum on the
Evaluation Stack. Type conversions are performed, if
necessary, according to stundard FORTRAN
sonventions. (Type Information is available in the TAG
flelds of the data on the Evaluation Stack.)

suB, MUL, DIV work like ADD, with the left-hand argument
being un tha stack and the right-hand argument being
the operand of the Instruction,

Occasionally, one will want an ingtruction such as ADD to
take both its operands trom the stack. We therelore adopt the
convention that if vaLUE =0, the operand normully specitied in
the instruction will be found as the topmost element on the
Evaluation Stack, This applies to both address-operand and
value-cperand Instructions.

3.2 QOperand Evaluation

As stated above. value-operand instructions obtain their
operands by evalualing the address which appears in the
instruction.  In this architecture, the evaluation mechanism
uniformly repluces the “fetch-the-coments-of” mechanism in
traditional architectures. To evaluate an address A, the
current instruction-execution state is suved on the Control
Stack and execution begins at A.  Alter each instruction
completes, the R bit is examined; H 1 =1, the Control Stack is
popped, terminating the new instruction sequence and
returning to the previcus one &t the point where it was
interrupted.  In our examples, we will indicate that an
instruction has r=1 by appending "1" o the operation name.

142

Strictly speaking, there Is no restriction on what
instructions can occur in the new instruction sequence.
However, it is our intent that the saguence of instructions,
which is called a phrase, will leave a single value on the
Evaluation Stack. I we make the further assumption that the
computation Is independent of data already on the Evaluation
Stack, it is possible to speak of the vaiue ol A, or the vilue of
the phrase A, .

Note that a single data instruction, with 1i1=1, satisiie
these conditions for a phrase. Hence, a single data word may
be "fetched" by evaluating (executing) it

3.3 Indexing

The x field is provided in TAus to perform some simple
uddress arithmetic. When x = 1, the address in the instruction
is lirst incremented by the value found on top ol the Evaluation
Stuck (which is removed as a side elfect). The new widress
becomes the operand (lor address-operand instructions) or the
address to be evaluated to obtain the operand (lor value-
operand instructions).  In our examples., we will indicute that

x=1 in an instrugtion by appending "x" to the instruction
name, as In "STOx A", ’

Occaslonally it will be uselul to obtain an indexed address
on the stack without evaluating the result. We therefore allow
the X field to be set in the ADDR instruction, in which case the
address present in the VALUE field ol the ADDR instruction is
incremented by the value on top of the Evaluation Stack, and
the resulting address is pushed onto the stack.

3.4 Indirection

The i Held is used to provide an extra level ol evaluation in
obtaining operands. When 121, the operand obtained by the
above mechanisms is evaluated an extra time to obtain the
true oporand. For instance, in "ST0{ A", the address A is
evitluated, and the actual store occurs to the address returned
by the phrase A. In "ADD{ A" the address A is first evalualed
normally; then the resulting value of A Is evaluated, ylelding the
operand.

This mechanism makes several assumptions. In particular,
In value-operand instructions it is assumed that the value
returned by the first evaluation is an address (s0 lhat it can be
evaluated again). Likewise, in address-operand instructions it
Is assumed that the evaiuation (the one caused by I=1 is the
only one) produces a value ol address type.

When =X a 1, the indexing operation is applied belore the
(first) evaluation.

3.5 Discusslon

Returning to our original example, we can see what the
code actually looks like in this architecture.

X ={A+B)*C+(A+B)

PUSH P3
MUL C
ADD P3
ST10 X
P3: PUSH A
ADDr 8
A: REALer 23.5
B: REALr -3.0
C: REALr 4,56E1
X: REALr 0.0

Note how the evaluation mechanism is exploited in
collecting the forrnally identical expressions into a single
phrase (P3).

The indexing and indiraction mechanisms are optimizations
designed 1o facilitate address computations in array and
structure accesses, much like the use ol index registers in
conventional arciutectures. In (a), below. we see the simplest
form of indexing; in (b) the two occurences of “C(l)* have
been implemented as a single phrase; in (c) the phrase has

S s w Fandh B

AEERR S




been constructed io compute the address of C(l) since both
the address and value are needed.

. cl) = Ald) xz(C+B)*Cl) Cch=cl)+8
PUSH J PUSH L PUSH1 L
PUSHx A-1 ADD 8 ADD B
PUSH I MUL L S§T04 L
STOx C-1 §sT0 X - - -
~ - - - - - L: PUSH 1

L: PUSH 1 ADDRxr C-1
PUSHxr C-1
(a) (b) (c)

These examples indicate that there Is some choice in how
to structure the object code. In terms of space-elficiency, any
expression appearing in the source program more than once
should be expanded us a separate phrase. Execution-time
elficiency can be guined by additionally separating expressions
used within a loop: if their vaiue does not change, the elfect is
the same as it the compiler had moved them outside the loop.

3.6 Thoe Value Cuche

The Value Cache is the most unique and important part of
the architecture. lts purpose is to save the value of phrases,
Every time an evaluation is attempted. the Value Cache is lirst
checked to see if it contains the phrase's vaiue; it tound, the
value can be immediately entered on the Eviluation Stack
without any need to actually execute the phrase in question, If
the Value Cache does not contain the desired value, evaluation
proceeds normally and the new value is copied into the Value
Cache as a side-ellect of the processing of the # field in the
last instruction ot the phrase.

An important part of the cacheing mechanisim is keeping
track of dependancy information. The value of a phrase can
depend on an unbounded set of memory locations--namely all

.those which are relerenced in the course of its evaluation.

Should any of these locations be changed, the old value in the
Value Cache must be purged.
Beciwise tho space avaoilable to represent dependency

Jnformation in the cache will be limited, we must have a way to

encode the dependency information, A possible
implementation is to represent the dependency set as a bit
vector of length n. A dependency on a particular memory
word with address A could then be mapped into one of the n
bits by an operation on the word's address, D(A). An inclusive
"OR" of all encoded uaddresses would then represent the
dependencies of the phrase. Purging from the cache all
values dependent on address B could be accomplished by
eliminating all entries which included bit D(B) in their
dependency mask

To explain how the Value Cache is used, we need some
information about both the Value Cache and the Control Stack.
The Value Cache is an assoclnﬂve memory, each entry of
which has three fields:

VC-ADDHESS address of phrase
VC.VALUE value of phrase
VC-DEPENDENCY dependency of phrase

Control Stack entries also have three fields:

P-ADDRESS address of phrase
1.8TATE current execution state
C8-DEPENDENCY ‘accumulating dependency

There are four activities which involve the evaluation
mechanism and the Value Cache:

Bﬁglnninq an_evaluation. The Value Cache is checked to see
t contains the phrase's value; if 8o, the value is immediately
entered onto the Evaluation Stack and the evaluation is
considered complete; dependency information from the Value
~ache (VC-DEPENDENCY) is added to the dependencies being

G e s ok —

143

accumulated for the current phrase (CS DEPENDENCY). TF The
phrase is not found, the current execution state is saved on
the Control Stack and a new (rame is added for the new
phrase, whose evaluation begins. CS.DEPENDENCY [or the new
phrase is initially nuil.

During _evaluation. Every execution of a data instruction
represents a dependency; the dependency is derived from the
address of the data Instruction. The encoded dependeiicy is
added to the dependencies already recorded in C5-DEPENDENCY.

Alter evaluation. When an instruction with =1 ig completed.
ihe phrase value (the top value on the Evaluation Stack), P
ADDRESS, and CS-DEPENDENCY are sent to the Value Cache Ior
recording as VC.VALUE, VC-ADDRESS, and VC.DEPENDENGY,
respectively. (It the Value Cache Is full, some mechaniam for
removing entries must be employed.) The Control Stack is
then popped to return to the previous phrase; the
dependencies ol the completed phrase are added to the
dependencies accumulating ‘or the previous phrase. (That is,
it phrase A invokes phrase 8, phrase A's dependencies include
those of phrase B.)

During & store operation. Whenever a STO, INC, or INCA
ingtruction is executed, every Vulue Cache entry which shows
a dependency on the altered word is purged. (This may not be
a perfect discrimination, depending on the encoding D(X).)
The value baing stored (itself a phrase) is entered into the
Value Cache as a side-effect; its dependency Is precisely itsell,

As an example, consider the following {(assume M(6) = 45):

K = M) + |
PUSH L
S10 3
L: PUSH 1
PUSHX  M-1
ADDr 1
t: INTr 8
K: INIr 45

There are four phrases entered in the Value Cache after
executing this statement:

VG ADRESS VC-VALUE VC-DEPENDENGY
| INT 8 Dl

M+5 INT 46 D(M + 5)
L ADDR M+6

by V DM+5)
K INT 51 D(K)
i we later changed the value of |, the phrases | and L would
be purged from the Value Cache, but M(6) (i.e. M+5) would
remain, unless by chance D(l)=D(M +5).

4. Measurements

To obtain objective measures of the performance of this
urchitecture, we resent here analyses ol tour simple programs:
three production-quality statistical subroutines taken from the
Scientilic Subroutine Package and one simple quadratic-
oquation solver taken from an introductory programming text.
When we say production-quality, we mean that there is no
obvious way to rewrite the source program more efficiently in
the statistical subroutines. In contrast to this, the quadratic-
equation program coniains several examples of formally
identical {(and redundant) expressions.

We examined the execution of these programs on three
compiler/architecture pairs: an our architeclure with a simple
compiler performing no optimizations; on a DEC PDP-10 with
the FORTRAN-10 optimizing compiler; and on a modilied steck
architecture (MSA). The MSA is a variant of our architecture,

.obtained by eliminating the evaluation mechanism (including

Value Cache and Control Stack) in favor of the simple "letch- .

s M Loep e Vi Pags ek i
1 s el s G b b O a0

R T ARC S

- L

R e Tt i bk x

G0

=y

oyt
"



£

roTE Bmrem s a—rme L3y

Fwnr 7y e

el et S

%

e T

the-contents-ol” mechaniam; il is thus a simple stack
architecture with the same one-aperand instructions as in our
architecture. The compiler for this architecture is identical to
the one for our principle architecture.

Code size statistics were obtained from listings of the
compiled assembly code. Execution statistics were obtained
from instruction traces on the PDP-10 and from emulators of
the other architectures. In emulating our architecture, we used
a Value Cache with 100 entries and a 32-bit-wide dependency
fleld with D(A) = A mod 32,

In comparing program sizes, we assume that a "word" is
equivalent on the different architectures. Likewisa, execution
" statistics are expressed as the number of memory letiches and
stores (instructions plus data)) We do not count intemnal
proceasing, so all instructions take unit time unless they
involve & fetoh or store from memory. (We do not consider the
"Value Cache to be memory in this sense,) With this in mind,
wa present the data in Tables 1 and 2. Tablea 3 and 4 present
the same data as a fraction of the MSA values.

b Architecture

YProgram __ PDP-10 Ours MSA

81 186 211 224

362 148 168 168

183 80 04 96

ig4 121 118 169

“Table 1: Coda size (worde)

n,.,._,. a e e s e Y PR

‘, Architecture

\Program ___ PDP-10 Qurs MSA
181 2,182 2,414 3,647
82 1,282 1,726 2,219
83 6.618 9,686 12,042
S4 408 447 824

Table 2: Execution speoad ({elches)

Architecture

Program PDP-10 Ours
St .83 .04
S2 .90 1,02
S3 .98 .83
S84 .12 .10

Table 3: Code size {fraction of MSA)

Architecture
Program PDP-1Q Qurs
St .69 .68
S2 .68 .18
S3 .60 .15
sS4 .50 .64

Table 4: Execution speed (iraction of MSA)

The PDP-10 and MSA are in a sense upper and lower
bounds tor comparison purposes. The PDP-10 is a mature
ingtruction set in the traditional Von Neumann mold; it has
been carefully designed and optimized. MSA on the other
hand is the simplest stack machine one can imagine. Likewise
the PDP-10 incorporates a sophisticated compiler, whereas the
other architectures have very simple compilers. (In particular,
they ¢o not even have to do register allocation.)

The data confirms that the PDP-10 is still the more highly
optimized architecture, but in the case of the S4 program, our
simple compiler was able to produce code which was more
compact and which executed aimost as quickly. Clearly the

depend to some extent on the degree to which

benelits
redundant expressions can be eliminated during compiistion

144

and execution. Howaever, even with well-coded programs, we
see a signilicant improvement over a simple stack architecture,

Of course, these few examples cannot alone establish the’

benefits of our architecture. It is meant only as an informal
argument to establish the possibility of such benelits, even in
programs not easily optimized. We hope to provide more

quantitative evidence on a wkier range of programs in the

future, along with more information on the eflect of the size of
the Value Cache and on cache-full policies [3].

References
[1] Myers, G. Advances in Computer Architecture. Wiley, 1978,

[2] Leverett, et al., An Overview of the Production Quality
Compiler-Compiler Project. Technical Report CMU-CS-78-105,
Carnagie-Mellon University Computer Science Department.
1879,

(3) Harbison, S. P., The Dynamic Optimization of High-Level
Language Programs. Ph.D. Thesis, Carnegie-Mellon University
Computar Sclence Department, To appear.

St i,

AL &

R e

S ae

ShP TS

ol TSI L

L
R v

-y



ARCHITECTURAL SUPPORT FQR ABSTRACTION i

J.K. Iliffe )

International Computers Limited (¥)

Abstract

A mechanism for supporting fine-grain
program protection and abstraction in a multi-
domputer context is described. It is argued that
luch features are necessary to support high level
User interfaces and particularly high level lan-
Juage implementations using micrxoprogram control,
ut that their cost must be small in relation to
swloroinstructions. The mechanism is currently
being investigatsd by simulation techniques as
'u't of a general-purpose system study.

thiectives

The most important cbjective of general-
purpose computer design is to modal accurately,
reliably and efficiently the data of widlely varying
problem domains. We might instance records,
mssages, tax tables or graphical images as typic-
‘al classes of data familiar to computer users, and
to the extent that the attributes of a class,
asither more nor less, are recognised we can say
that a successful abstrgotion has been achieved.

We define a 'high level' architecture as one that
supports such abstractions for an open-ended list
of classes. Its importance is that it enables com-
plex data processing applications to be developed
and maintained in a reliable state by offering to
information engineers somathing comparable with
the subassenblies and precize tolerances of, say,
mechanical design. Overall, one expects as a
result to produce better systems more gquickly and
more reliably and at a lower cost than would other-
wise be possibla.

The complexities of opsrating systams
have drawn attention to the importanoce of program
structure, most designers making use of the ideas
of task (i.e. process), file, segment, event and
others in abstract form. We could include oode
8ogment in the list and thus lead to the accurate,
reliable and efficient modelling of high level lan-
guages, but it would be a mistake in the present
context to put either operating system or language
engineers in positions of privilege since (through
no fault of their own) that seems to guavantee poor
response to user requiremsnts. Yor exasple, in
range-defined architectvre (in the style of the
IBM 360) the micro programmer has in effect been a

(*) Present address: Department of Computer Science

for precisely that reason it has been irpractical
to make wide use of improvements in the encoding
of high level languages which depsnd on having
varisble intermediate code formats. Attsmpts to
define architectures at even higher level run
correspondingly higher riska.

B Loy

language engineer with considerable privilege: ‘
|
|
|
i

The order of events, therefore, is to
define the abstraction mechanism first and then
use it to model whatever cperational behaviour is
required, But what is meant by doing that
‘efficiently'? TFifteen years ago, wndaxr the
umbrella provided by the IM 360, it seamed suffi~
cient to achieve the objective with 'ne increase

in program size or loss of speed', which is essen-|

tiallt what happened with the Basic Language
Machine!. Today that umbrella is permeable and to
out-perform current range-defined architectures is!
conpmonplace. The aessential roquirement now seems
to be to provide the benefits of abstraction at
the finest level of dascription used by systam,
language or application engineers ~ in other words:
at what is usually regarded as the microcode level.
Once that is done, the way is open to realising in
a practical context the advantages of microcoding
that have often baen demcnstrated under special
conditions.

In this paper I shall ocutline a design,
which for reasons soon to become clear is called
a "Pointer-Number system", which demonstrates onc
vay of meeting the cbjectives. It takes account
of system requirements not mentioned here, and has
been carried to a detailed simulation in ordsr to .
make realistic performance estimates. In the next
subsection we review the techniques on which it is:
based and the range of problems that have to be i
solved at the next stage of design. The followiag
subsections outline respectively the 'PN Nachine' |
and 'PN System'. PFinally, sows conclusions ave I
drawn from the experimental work done so !!u'. The |
reader is referred to the PN System Mauall for 1
more detailed explanation and justification. |
i
I
l

Abstraction Mechanisss

The basic requirement is to machanise the
ideas that might be expressed as: "Let A be a
class of objects with attributas {ai} im0 .. L*,

"Let z be a (member of the class) A", "Let y

and statistics, Queen Mary College, Imiversity of London

-

N
. m mea 2 WA i s A

earma e

PR T . - il 120 et St N T e bt B A

¥

e

T A




B b

denote (the same wember of the same class as) x“,
and s0 on, all the representations being within the
limits of a finite computer store. In programming
terms this quickly resolves into the use of des-
criptors or pointers us a type of operand distinct
from the attribute sets that represent the individ-
val objects, a construct that has been used from
the earliest days, though it was not precisely en-
gineered until segmented storage came into ue in
the early 1960's (Figuxe ). In the case of pro-
gram space the connection between (indexed) pointer
and attribute is notionally direct, but it is a
simple extension of the same idea to interpret the
degcriptor as referring to a member of any given
class of objects, which was the generalisation made
in the Basic Language Machine (Figure 2), In the

CODEWORD

(ao)
(al)

(ag)
Representation

I: Sagment type
Ly Maxtmen index
F:  lLoaatton

Figure 1: Storage segment

latter case the pointer contains indices ¢, 7d that
uniquely identify the class and cbject in question.
In accordance with current practice we rafer to
pointers used in this indirect way am "capabilities"
but the term "codeword" is retained for the spucial
case of reference to storage.

It is implicit that pointers cannot be
forged, otherwise the whole point of having precise-
ly engineerad program structures is lost. On the
other hand they must be manufactured somswhere and
the class manager must be able to manipulate the
representations directly. Such considerations lead
to the notion of protected domains characterised by
sets of polnters that define the 'rights' of a pro-
gram at any instant of its execution. As contxol
flows from one domain to another thare must be
correspoding changes in the list of rights.

Before aiscussing possible mechanisations
we should be aware of the performance parameters to
look for in the final analysie. Amongst the most
important is the time taken to access the attribute
given a valid pointer: there is no absolute figure
to aim for, but it is required to be short in rela-
tion to the class of operations that it supports.
For example, in dealing with flles cr tasks the

TR e L T AR £ a4 e

IR YT v

individual operations are fairly substantial and a
nusber of capability systems have bean implemented
in which pointers are interpreted by the operating
system without serious loss of speed. In moving
towards simpler operations the interpretive mecha-
nism must be refined and assisted, first by micro-
program and finally by hardware, and in the present
context the stringent requirement of having low
overhead in relation to micro-operations forces us
to disregard all but the wost delicate controls.

In the model provided by Figure | we might nominate
the ‘effective storage access time' as the relevant
‘parameter. In Figure 2 the critical time is that
taken to move the locus of control from the 'user
domain', containing the capability, to the 'class
manager domain' in which interpretation takes place
and back again. In either case, if the observed
cost 1s too high users will tend to avoid the
facility and lose its benefits.

[ of v fid

- o wy — oy

CAPABILITY USER'S
e: Obgject olass DOMATY
V: Access options

id: obfect tdentifier Proteation

Lo I -.—-bOWI -

L——-—-—-.—_—A— -4—-0—-—-

CLASS

MANAGER'S

DOMAIN

id —

{a; } k
Master ]
Obfeat Representation i
Table i
for clases o —— 3

Flgure 2: Indirect class representation

The othar factors are more difficult to
quantify because they entail the inevitable com~

% S 7 )

promise between cost of management and ease of use. )
It might be asked: "1f members of a class are N
generated at a given rate, what is the resulting t‘
management overhead?". Four example, how often can ‘\i
one open new files, create messages, or assign new ﬁ
tagsks without undue penalty? Clearly, some costs B
are passed on to storage management which has to *
provide file control blocks, buffers, task vectors ;
and so on, but there remains the responsibility kel
for master object tables, for recovering 'dead’ ;
identifiers, and for error management, The tech- [
niques available for reducing costs are mainly con- 11
cerned with the timv taken to scan the program . ?‘ﬁ
space looking for particular classes of pointer ¥

T

and might be aimed at eliminating that need

146




entirely, e.g, by:

(a) enlarging the master cbject tables to service
all foresesable requests; or
(b) restricting the use of pointers, e.g. by
. indirect reference through system tables or
by linguistic devices;

alternatively we can seek to minimise the actual
scanning time by:

(c) limiting the extent of pointer-bearing
segments; or

(a) constraining the program structure, e.g. to
separate task domains or to a 'tres' form.

In any well-designed capability system the con-
straints are small in relation to the benefits they
brxing, but the fact remains they are a psycho-
logical hindrxance to widespread acceptance. The
best way round that, architecturally speaking, is
by:

(e) providing high speed memoxy scanning and up-
dating operations, enabling many of the
restrictions to be relaxed.

The last solution is pursued in the PN system by
using what are effectively microprogrammed manage-
ment procedures in oconjunction with hard-wired
‘planar' memory scanning functions.

Returning to the primary measure of
storage access rate, it is clear that no scheme
dependent on validating pbnters at time of use
(against access list, segment table, capability
registers, etc) would be acceptable, and in orxder
to compete with ‘unrestricted' access mechanisms
we are forced (i) to admit pointers as operands
used directly by machine instructions; and (ii) to
control their formation so as to preserve the
integrity of programs. There still seems to be no
better way of doing that than by using a tagged
register format. However, in moving the control
mechanism to microinstruction level the interpre~
tation of tags must be resolved in single micro-
orders. In theory, just cne tag bit is necessary,
to distinguish between pointers and numbers, but it
will be seen in the naxt subsection that fifteen
pointers and one form of number are distinguished
by a four-bit tag code.

We have already seen that because of its
practical importance storage is distinguished from
all other abstract classes. A further distinction
is drawn between sharable (global) and unsharable
(loogl) data areas. The corresponding pointers are
oodewords and addresses respectively, which have
almost identical properties in normal use. It is
unfort'inate to make the distinction, but it re- .
flects the fact that controlled access to shared
resources uses a single level of indirection which
is otherwise unnecessary. The same mechanism is
used to distinguish between data that might be at
a remote site in a multicomputer system (and there-
fore 'global') and data areas that are strictly
local.

147

Figure 3 illustrates the use of pointers
in referring to different program workspaces. The
transformation @ is handled by capability managers,
while B is the responsibility of the segment mana-
gex. Parallels can be drawn between writing in a
conventional high level programming language and
operating on global data, betwaen microprogramming
and working at local level. However, a key fsature
of the PN system is that sharp distinctions are not
drawn and it is easy to move from one level to the
next.

ABSTRACT CAPABILITIES  e.g.
OBJECTS TASK,
FILE,
MESSAGE
(o)
GLOBAL CODEWORDS e g
PROGRAM C'OZTROL
an
(8) SEGMENTS
LOCAL ADDRESSES é.g.
PROGRAM SepATCEAD
SPACE REGISTERS

Figure 3: Levels of program space

A protection douwain is defined by the com-
bined effect of two sets of rules: those that
govern the inheritance of access rights in regis-
ters and storage, formation of new addresses from
old vnes, restriction of access options in capa-
bilities, etc, all of which are reductive in char-
acter; and those concerned with the expansion of
rights in passing from one domain to ancther. The
ability to expand rights depends on some prioxr
authority saying in advance that “program module M
shall only access resources "'1' Myy oo mk", which

in turn devolves on the construction of control
segments and associated data. Apart from the need
for speed and flexibility in implementing such a
rule we also require that it should be easy to
apply and not expensive to support. In the PN
system the region into which rights expand is de-
fined by a set of resources known as a base¢. There
will be several bases in a system, so there is
scope for partitioning at that level. The cbjects
Mya Mgy oss "‘k are identified by indices that are
embedded in object code. That seems to be the most
economical way of changing access lists, since it

#3

P ]

<
<2

F T

S

PSRN




—

b it

is done at zero cost in conjunction w