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ABSTRACT

This technical report summarizes the image understanding and VLSI system research activities

performed by the USC Image Processing Institute and the Hughes Research Laboratories during the

period of 1 October 1980 through 31 March 1981 under contract number F33615-80-C-1080 with the

Defense Advanced Research Projects Agency, Information Processing Techniques Office. This contract

is monitored by the Air Force Wright Aeronautical Laboratories, Wright-Patterson Air Force Base,

Dayton, Ohio.

The purpose of this research program is to develop techniques and systems for understanding

images, particularly for mapping applications. The research activity includes low level image analysis and

feature extraction, statistical and structural texture analysis, symbolic image representations, and image

to map correspondence using relational structures. Additional activity is concerned with VLSI

architectures for implementation of image analysis and image understanding operations. 4'
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1. IMAGE UNDERSTANDING PROJECTS

1.1. Research Overview

This report primarily describes the results of our research under contract F-33615-80-C-1080, but

also contains results of some research only partially supported by this contract. Our research includes

work at many levels of an Image Understanding system, including low level feature extraction, symbolic

descriptions and image matching. We have also been working with Hughes Research Laboratories on

hardware implementation of IU algorithms using VLSI technology. The research results are

summarized below.

Scene Matching

We have continued to work on the problems of matching two images of a scene, or one image

with a map, by generating symbolic descriptions from each. We have implemented matching

techniques. We feel that our system can handle complex aerial images, the major limitations being due

to failures of the segmentation procedures. We have initiated work to use the map as a guide to such

segmentation.

Symbolic Texture Analysis

We have a system in highly developed form for describing natural textures in terms of their

primitives and relations among them. The descriptions consist of the primitive sizes and rtpetition

patterns if any. A statistical analysis of our technique agrees with the experimental results. The

descriptions have been tested for texture identification and we are investigating their use to estimate

surface orientation form texture gradients.



Texture Synthesis and Analysis

We have been working on several different statistical techniques for synthesizing natural textures.

Both gray level and binary textures can be synthesized, and ten distinct techniques with various

tradeoffs have been explored. The tradeoff parameters include such factors as computation time for

generation, computation time for data collection, memory requirements, and quality of simulation.

Many commonly occurring natural textures have been adequately simulated using very simple models,

providing potentially great information compression for many applications. Other textures with

macrostructure and nonstationary characteristics require more extensive computation to synthesize

realistic, visually pleasing results. Although the success of any synthesis method is highly dependent on

the texture itself and the modeling scheme chosen, general guidelines for predicting the performances of

various techniques have been developed.

We also hope to use these techniques for texture classification and image segmentation. Some

preliminary experiments employing statistical feature selection and classification techniques for

discrimination have been undertaken by this approach.

Other Projects

We are continuing to make improvements to our road finding and linear feature extraction

programs. We have incorporated Laplacian-Gaussian masks, suggested by Marr, as an alternative for

low level edge extraction. We have also implemented techniques of connecting segments to give more

continuous boundaries.

We are also investigating the use of hierarchical gradient I techniques for matching of 2-D and

3-D shapes. We hope to present results in a later paper.

Hardware Implementation

In continuing work with Hughes Research Laboratories, Malibu, California, we are exploring

architecture and hardware issues in the implementation of image understanding algorithms by VLSI

techniques. The initial part of the study has concentrated on three algorithms: a) Nevatia-Babu Line

Finder; b) Ohlander-Price Region Segmentor; and c) Laws I Analysis System (see section 2 for details)

These three algorithms are all very computation intensive and have a broad range of applications in

image understanding research. Common to algorithms a) and c) are extensive two-dimensional

convolutional processing, especially in the early stages of the algorithm. This convolutional processing is

largely local and is well matched to the nature of VLSI systems, in which interconnections are difficult

to implement.
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More recently, the convolution problem has led to a detailed design for a 5x5 pixel convolution

processor based on residue arithmetic. The system is called RADIUS (Residue Arithmetic Digital

Image Understanding System). The residue arithmetic approach has the advantages of modularity, ease

of design, programmability, broad application to many problems, and ease of implementation in many

integrated circuit technologies with submicron structures. Using residue arithmetic, there are no carries

in the numerical computation and minimal interconnections on the chip are required. Very high speed

processing is possible because many of the numerical operations reduce to table lookups in binary digital

RAM's. Special purpose integrated circuits to perform part of the processing are being fabricated, and

the construction of an experimental system is in progress. In addition to the increased computational

speed for convolution, the processor has applications in evaluation of polynomial functions, integer

coefficient transforms, enhancement operations, and moment calculations.
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1.2. Relaxation Matching Applied To Aerial Images

K.E. Price

Introduction

We have developed a symbolic matching system which can be used for a variety of matching tasks

in scene analysis. The system is designed to handle many of the problems encountered in the analysis

of real scenes: noisy feature values, missing elements, extra pieces of objects, many features, many

objects. At the heart of this system is a relaxation based matching scheme. A variety of relaxation

procedures have been used with varying results.

The basic matching procedure III and the various relaxation methods [2,31 are discussed

elsewhere and will only be outlined here. This paper will concentrate on a discussion of the overall

matching system and the performance of the various relaxation techniques.

The input to the matching procedure is two relational structures-one for the model of the scene

and the other for the input image. The structures are represented as graph structures with objects at the

nodes (with associated feature values) and relations between objects as the arcs between the nodes.

Symbolic Matching Procedure

The goal of the matching procedure is to find the objects in the image (regions and lines) which

best match the objects given in the model. This is essentially finding a subgraph in the image which is

isomorphic to the model, except that objects may be missing and single nodes in the model may

correspond to several in the image when objects are broken apart by the segmentation procedures.

The matching procedure is divided into two iterations (see Fig. 1). The outer loop consists of

computing initial estimates of the assignments for all elements in the model. Up to 30 potential

assignments for each element are maintained. Then a relaxation procedure is applied which updates the

ratings of the assignments. When the rating for one assignment of an element in the model exceeds a

threshold, the relaxation update loop is terminated and all assignments above the threshold are made

permanent. Then the process continues with the recomputation of the initial estimates, but now

relations (above, near, adjacent) with the permanently assigned elements can be used in the

computation.

The repeated initialization is a crucial component of the process. Since the initial guesses are made

only on the basis of feature value (color, shape, texture. etc.) many incorrect assignment are initially

highly rated. The relaxation steps eliminate many of these mistakes, but cannot correct all of them
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Compute Initial Likelihoods

Apply Relaxation
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Any of most likely above threshold

YES

Make Assignments

Fig. 1. Use of the relaxation procedure
in the overall matching system.
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because some correct assignments are not among the early candidates. This procedure also easily allows

for multiple segments in the image to be assigned to one element in the model.

The final termination condition is the number of iterations without any assignments reaching the

threshold. This number must be large enough so that valid assignments can reach the threshold but not

so large that an incorrect assignment is forced, by default, to a large value. This is especially true with

our primary relaxation method [11 where something is always forced to a high value (how rapid can he

controlled and we use a relatively fast setting).

Several different relaxation updating schemes can be used in the inner loop. The simplest

technique is the "classical" method of Rosenfeld, Hummel, and Zucker 121. Our primary technique [I]

is similar, except that the updating is always in a direction which improves a global criterion. A third

method is that of Kitchen [31 which provides a different means of combining match rating from

different properties. See the Appendix for a summary of the relaxation updating functions for these

methods.

Results

The various methods were tested on 3 different aerial views (1) a scene with 14 storage tanks, of

5 different sizes, (2) a high altitude view of the San Francisco area with 14 objects identified in the

model (95 in the image), and (3) a view of the Stockton, CA. area with 20 model objects (24 or more

valid matches possible, and more than 200 image elements). The results on these images allow us to

make some general comments on the performance of the various methods.

The basic technique of Rosenfeld et al. (21 quickly makes several assignments in each of the test

scene, but then reaches a stable state with low probabilities for the most likely assignment.

The method of Kitchen (31 allows for a variety of combining methods (by using different

functions for the fuzzy set operations). Additionally, restricting the computation to use only the one

most likely assignment of neighboring (related elements reduces the time substantially and improves the

performance.

The results of running the various relaxation methods are presented in Table 1. The set of

assignments shown n Figs. 2, 3, and 4 are the ones generated by the criteria optimization method

described fully in [11 (FP in Table 1). K-I is the Kitchen method [31 which uses MIN, MAX, and the

mean for nl, U, and the outer n (Form 4 in his paper), the use of MIN for the outer (Form I in his

paper) produced no assignments in our tasks. K-2 uses product instead of MIN (Form 5). K-3 is the

same as K-I exact all possible assignments of neighbors are considered rather than the one most likely

assignment. Kitchen's Form 6 produced the same results on our tasks as K-2. RHZ is the classical
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Table 1. RELAXATION RESULTS.

Number

Method Scene Correct Incorrect Not Assigned Time

K-1 1 (Tank Farm) 12 0 2 5
K-2 1 14 17 0 30
K-3 1 0 0 14 -

RHZ 1 14 28 0 29
FP 1 14 0 0 4

K-I 2 (San Francisco) 7 0 7 19

K-2 2 9 0 5 28

K-3 2 7 0 7 4:50
RHZ 2 8 11 6 53
FP 2 14 0 0 9

K-i 3 (Stockton) 9 0 11 1:25
K-2 3 16 4 5 3:00+
K-3 3 6 0 14 6:00+
RHZ 3 16 11 6 2:30+
FP 3 24 1 0 1:00
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Rosenfeld et al. method [21 and is included as a historical reference point.

The threshold for forcing a permanent assignment is 0.75 (for the Kitchen algorithms the values

were normalized only for this test) and 15 iterations were run before terminating the procedure due to

lack of assignments. In tests with our algorithm, changing the 0.75 threshold (between about 0.7 and

0.8) by small amounts has little or no effect. Increasing it requires more iterations and thus more time

and some assignments may be lost. The results include only those assignments which exceeded the

threshold (0.75) and does not include the most likely assignments at the time of termination (15

iterations). Including all these would increase the number of correct ones with no clear separation in

likelihood values between correct and incorrect ones.

Several comments can be made from these results. First, Kitchen's method was not designed to

fit into our matching system and is not oriented toward quickly producing unambiguous results for a few

of the elements in the graph. But this feature is necessary when dealing with problem domains such as

these (i.e. many feature values, many elements, similar objects, and noisy data).

Second, considering more alternatives for neighbors does not improve performance, but decreases

it with a substantial increase in time. this was not totally obvious without experiments) since the

likelihoods of the second, third and other alternations are much less than the most likely one they

should contribute little, it any, to the computation. Tests with the other methods (K-2, FP) give similar

results (decreased performance increased time).

Third, our method performs better than the others in these tasks. One major reason is the

optimization procedure used to guide the updating thus some assignments are discovered early and then

contribute substantially in the search for further matches. Also, in our system, all relations and features

contribute to the rating rather than only the best or worst as with Kitchen using MIN and MAX.

Fourth, the 17 incorrect assignment by K-2 for Scene I start after 13 correct matches are

located. This is accounted for by the way we handle multiple assignments for model elements and by

the fact that multiple matches for image elements are only discouraged not forbidden. The change from

MIN to product (between K-1 and K-2) also contributes to the problem.

The updating approach adopted by Faugeras [11 clearly performs better and operates faster. Each

iteration of this program takes longer, but fewer are required.
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Appendix

We only present a summary of the equations for the relaxation updating the details are contained

in the appropriate papers. Therefore many of the terms will not be fully explained. The classical

Rosenfeld et al. method [2] is:

k - -Pi' ink)il (nk)

pp+)(n) - ((n1) Q(n

n/ in A

pi(nk) is the likelihood of assignment for unit i to name k, Q is a measure of the compatibility of the

assignment with assignments of neighboring units. N is the set of all possible names (image elements).

The Kitchen updating method 131 is (rewritten for our problem)

p - - l((n) (2)

-Ci (nk n U
all relations rel all al
S.t. u i rel Uj -s.t,

nk rel n,

[pi (nk n Pj (n,)("n c (ui,n k,Uj,n/)] (3)

[all features i(nk) n f(ui,nk)ll

of Ui "
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where n and U are the fuzzy logic AND and OR operations. C is a local consistency measure which is

also used to compute the Q's in the equations above and below. The generality of the original

formulation is not retained - only features of single objects and relations between two objects are given -

not the arbitrary number of the original.

The third method of Faugeras [11 is:

+ = + (4)

where Pn is a positive number (step size) to control the speed, Pi is a projection operator to

maintain the constraint that pi is a probability vector, and g, is a gradient function computed from the

compatibility measures and current probability values for an object and its neighbors.
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1.3. An Algorithm to Group the Edges of a Picture Using a Local Criterion

Gerard G. Medioni

The first step in the process of scene analysis is usually to extract the edges from the picture,

along with some information about these edges, such as orientation, strength and relative brightness.

Nevatia, Babu and Huertas have been using such techniques in the past at USC [1]. A good

continuation would be to try to organize these edge elements into classes before going to the semantic

processing of "making sense" out of them, that is labeling them with a list of reference tags. Of course,

this classification is very subjective and the probability of misclassification is non-zero, but it requires no

a priori assignment of probabilities and is hence information preserving. that is, even after classification,

no final assignment or interpretation are done. In the case of aerial images, we decided to take

advantage of the following properties of roads and other man-made linear constructions:

u] In most cases, a road is locally defined by two antiparal/el segments

ol Also, a road is locally straight.

Following these two simple and reasonable rules, we developed an algorithm taking a pair of

antiparallel line segments as input and producing a continuation of these segments in both directions,

creating new segments where gaps are found. The core of the algorithm is

Given a segment, create a search window, scan it and extract the most likely continuing segment,

if any; repeat until no segment can be further expanded.

The dimensions of the search window are determined by the length L and the angle (b. Let 01 be

the angle of the current segment and 02 the angle of the prospective continuing one, we choose the

closest segment to the axis A1B1 that minimizes 02-011, provided that this value does not exceed a

certain threshold (30(l). In the figure, the search window is thick-lined.

13
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L

Al

Figure 1.

The only parameters to this algorithm are L, the neighborhood length and 4), a representation of its

width. It was found that the algorithm is not very sensitive to variations of these parameters, so that

the values L=30 pixels and 0 =10 degrees are very good default values. The running time of the

algorithm is dependent upon the total number of segments present in the picture and upon the size of

the window. It took 30 secs to process Fig. 2(b).In Fig. 2, (a) represents the original image, (b) the

edges and (c) the continuation of some segments. As demonstrated on this example, the results are

very encouraging. The future developments of this study are: In a first step, expand all pairs of

segments that are the left and right components of an antiparallel system in an image and therefore

obtain a set of "SUPER-SEGMENTS" as a basic working set, then express the model of the scene we

are looking at in terms of these super-segments, and finally find a functional relationship between

elements in both "graphs", that is find a semantic labeling of these super-segments.
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1.4. Edge Detection in Aerial Images Using V 2G(x,y)

A. Huertas and R. Nevatia

Introduction

The use of an orientation-independent operator for the purpose of edge detection in aerial images

is discussed. The operator isV 2G(x,y), the Laplacian of a Gaussian distribution.

Intensity changes are detected by finding the zero-crossings in 1V2G(x,y)*l(x,y) for image

I. Different kinds of features are seen with varying accuracy by filters of varying sensitivity. The

sensitivity of the filters is primarily associated with w, the width of the central excitatory region of the

operator, and secondly, with X the diameter of .he operator. The smaller the value of w, the more

sensitive the filter and the more detail is seen, including noise.

The accuracy of the filters is limited by the size of the individual features in the image and by the

spatial separation between them in relation with the width of the central excitatory region of the filter.

The zero-crossings found for each filter are assigned a magnitude and a orientation for further

linking along continuous lines of zero-crossings. Only one convolution operation is required for each

filter and no thinning or thresholding is required. Additional information on the V 2G filters can be

found in [1).

Goal-oriented processing can use several available parameters and simple measures associated with

each zero-crossing to decide the "goodness" of each zero-crossing for the intended purpose. It is shown

that a straightforward global combination of filtered images oversees the excessive detail seen by the

most sensitive filters while augmenting the view of the less sensitive ones with unseen detail. Results

obtained for an aerial image are presented.

Combined zero-crossing images are the input to a higher level feature detector to be described in a

subsequent report. It uses the combined output as a basis to perform goal-oriented processing with

feedback access to individually filtered zero-crossing images.

16
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Detection of Intensity Changes

Wherever an intensity change occurs, there is a peak in the first directional derivative of the

intensity and a zero-crossing in the second directional derivative. Detection of intensity changes is then

reduced to finding the zero-crossings in the second derivative of the intensity in the direction of

maximum slope at the zero-crossing. By using an orientation-independent operator the number of

required convolutions is reduced to one and the direction that yields the maximum slope is found

locally. This direction is used to compute a magnitude and an orientation to be associated with each

zero-crossing. Basically the magnitude is the value of the largest slope measured at the zero-crossing

among a selected number of directions, and the orientation is the direction perpendicular to the

direction of maximum slope. The convention followed for orientation is that the bright side of the edge

lies to the right of the line of zero-crossings.

Figure 1 shows a profile of the operator and the parameters involved in the following discussion:
a) G(x) - 1/(O(2r)'/ 2)exp[-x 2/(2o. 2)]

b) G'(x) - x/(0 2(27r) / 2)expl-x 2/(20- 2)]

c) G" (x) = -/(o- 3(27r)/ 2),(l-(x2/o 2).exp[-x 2/(20 2)]
In two dimensions:

d) V 2G(x,y) = -l/(21r0.4)(2((x 2+y 2)/ 2))exp[-(x2+y 2)/(2ur 2)1

w = 20. (Width of the excitatory region of the filter).
X = 27ro (Diameter of the filter).

Figure 2a shows the intensity profile of an ideal step edge taken in the direction dmax for which

the slope measured at the correspondinC zero-crossing shown in Figure 2b is maximum. Several

parameters associated with each zero-crossing are also shown. They can be used to determine the
"goodness" of a zero-crossing for a given purpose.

The following criterion has been adopted to determine the existence of a prospective edge point at

a zero-crossing. Basically we require that the amount of energy on both sides of the zero-crossing be

nonzero. That is al and a2 in Figure 2b are nonzero in absolute value. This criterion,of course, does not

prevent false or displaced edge points to be rejected but eliminates ghost echoes caused by specific

physical phenomena as well as very small and faint edges.

To See Or Not To See With V2 G(x,y)

The sensitivity of the filter depends primarily on the value of w, the width of the excitatory region

of the filter. To a lesser extent it also depends on X, the diameter of the filter. The diameter of the

filter is about 3w ( irw, precisely). The smaller the value of w the smaller the value of A, the more

detail is seen, and the sensitivity to noise is increased. Filters with larger values of w see less detail and

17
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are much less sensitive to noise due to the smoothing properties of the Gaussian.

The ability to detect accurately located edge points is chiefly determined by two factors: The size

of the features and the spatial separation between features in the image with respect to w.

For accurate detection and positioning, the overall size of a feature, or the width of a linear

feature must be at least the same as the width of the central excitatory region of the filter. In addition.

sections along the linear features where intensity changes occur in a very non-linear way, will cause the

detected zero-crossings to be displaced by amounts up to w/2 (see Figs. 3a and 3b).

In general, low contrast situations as well as ramp and roof intensity profiles occur in a variety of

aerial images. Figure 3d shows an ideal intensity ramp. Second derivative operators are desirable in

these case because they allow to limit the width of a ramp for which it is desirable to consider the

existence of an edge point at its middle point. This limit is precisely X, the diameter of the filter. If an

intensity ramp of width larger than X occurs, as shown in Figure 3d, a sequence of about (I-\) zeros

result in the filtered image. None of these zeros are detected as edge points because of the nonzero

energy requirement in the immediate vicinity of a zero-crossing. This is also the case for the outermost

ghost circle of radius A that would otherwise be detected in the cases of Figure 3a and 3c; or the extra

pair of ghost parallel lines that would be seen separated by a distance of' A in the cases of linear features

of width smaller than w.

In general, The various kinds of features that are present in aerial images do not occur in isolation.

The ability to detect individual features separatedly also depend on w and X.

Figure 4 shows some of the anomalous effects that occur. In Fig. 4a two features with overall size

smaller than w/2 are separated adistance s<w. Recall that an isolated feature of this size is seen as an

oversized circle of diameter w. The situation is similar if one of the dimensions in the size of the

feature is smaller than w and the other is of arbitrary length, as shown in Figs. 4b and 4c.

If the overall size of the feature is at least that of the central excitatory region of the filter, the

minimum required separation is w/2 if the action of the inhibitory region of the filter covers enough of

the features on both sides of the gap. Otherwise, the required separation is w (see Fig. 4d).

Summarizing our discussion we have:

I. On size:
a. If the overall size (diameter) of a feature is smaller than w, the diameter of the

excitatory region of the filter, the detected edge points form either a ghost or a
oversized circle shaped blob. The amount of oversize is (w/2 - r), r being the radius
of the feature.

19
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b. If one of the dimensions (length) of the feature is larger than w and the other
(width) is smaller than w, the detected edge points form an elongated blob. The
length of the blob is the same as the length of the feature, but the width is increased
by 2"(w/2 - I), I being the width of the feature.

c. If the overall size of the feature or its smaller dimension is at least w, the detected
edge points depict the feature very closely in shape, size and location. Exceptions are
sharp comers and end points which tend to be rounded up.

2. On separation:

a. If the separation between two features of diameter I<w is smaller than w, the
correspondingly detected ghost or oversized closed contour of zero-crossings appear
blended together into a larger ghost or oversized contour of zero-crossings of
size w*(w+l). The minimum required separation for separate detection is then w.

b. If one of the dimensions I (length), of a feature is larger than w, and the other
(width) is smaller than w, and the features are collinear or nearly collinear, the
minimum distance for separate detection is w as in the previous case. The size of the
blended contours of zero-crossings if the separation s is less than w , is w*(2*1 +s).
If the features are parallel or nearly parallel, the minimum required separation is also
w. Otherwise the contour of zero-crossings formed is a blob of length equal to the
length of the feature and (2*l+w/2+s) wide.

c. If the overall size (diameter) or the smallest dimension of the feature is at least w,
the two separatedly detected contours of zero-crossings are very close in size and
shape to those of the features in the image. As mentioned before, sharp corners and
end points are rounded.

Experiment and Comments

Aerial images in general contain regions of natural texture such as forests and artificial or

man-made textures such as low resolution urban areas. Both the size and the separation between

individual texture features impose limits to the accuracy with which these features are seen, even if

small values of w are used in the filters.

Texture features in general are seen as small closed curves in the zero-crossing image. Less

sensitive filters make this anomaly even more severe by blending together groups of features which are

seen as a single larger closed curve. Linear features such as roads consist of regions of approximately

uniform intensity. Such property makes them consistently visible in the zero-crossing images obtained

for filters of varying sensitivity. Other man made objects such as storage tanks and buildings that are

located against contrasting backgrounds are likewise consistently detected with little or no change in

location, size or shape. In less contrasting situations or at lower resolutions, the objects tend to blend

with the background and observable changes in size and shape occur but their presence is consistent.

A desirable property of the detected lines of zero-crossings is their continuity along the curves in

the zero-crossing image. This property greatly facilitates the linking of adjacent zero-crossings along

these lines and consequently, the latter fitting of linked zero-crossings into linear segments, using
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techniques like the one described in [21. For less sensitive filters on the other hand, because of the

smoothing properties of the Gaussian, sections of low contrast along a road, for example, will tend to

blend together with nearby features in the zero-crossing image. Continuity therefore will not cause a

line of zero-crossing to stop when the edge of the road is not discernible, but rather it will continue

around a nearby feature before comming back on track. Goal-oriented edge detection can solve this

problem by using evidence gathered by more sensitive filters as we will see in the next section.

Figure 5 shows the picture of a road and the zero-crossing images (linked) obtained with three

filters of varying sensitivity: a) original; b) w=3: c) w=4 and d) w=6. Notice the detail seen by the

most sensitive filter as well as the continuity and consistency with which the main road is seen. The size

of the image is 384x256 pixels. The convolution with a 17x17 filter takes about 68 seconds on a DEC-10

under TENEX using an array processor. The detection of zero-crossing takes about 7 seconds on a

DEC-10 under TOPS-20.

Notice that for the most part, it is not easy to tell the small buildings from the surrounding

texture. Higher resolution is required to see buildings and other similar objects. Notice also the difficulty

in dealing with highly textured images. Only the most sensitive filter may provide some information

about the concentration and size of the texture features.

In general, fine detail imposes a problem. The more sensitive filters see it more accurately but the

less sensitive ones provide better orientation information along long lines of zero-crossings.

Goal-oriented processing can manipulate the trade-offs involved in a local as well as in a global manner.

That is, the zero-crossing images can be individually filtered on several available parameters, or

combined in a suitable manner.

Combination of Zero-Crossing Images

In this section we discuss one of various ways of combining zero-crossing images. The general idea

is to oversee the fine detail seen by the most sensitive filters while augmenting the view of the less

sensitive ones with unseen detail. Marr [1] suggests a spatial coincidence assumption that is basically a

local one. It states that provided the zero-crossing from independent channels of adjacent size coincide,

they can be taken together. That is, provided that the channels (at least two) are reasonably separated in

the frequency domain, and their zero-crossing agree, the combined zero-crossing can be taken together

to indicate the presence of an edge in the image.

The combination of zero-crossing images based on a coincidence criterion is difficult to achieve for

aerial images. The increased amount of fine detail and subtleties prevent the proper registration of

corresponding zero-crossings. The lack of registration is overcome by combining the filtered images
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rather than the zero-crossing images. Coincident or nearly coincident zero-crossings will see their energy

on both sides of the zero-crossing enhanced. Roughly coincident ones tend to average their energy and

less coincident ones tend to cancel eack, other. In addition, the adjacency in the sizes of the filters is less

tight using this global combination approach.

Figure 6a shows the result of the combination of the zero-crossing images individually obtained

for w=3,4 and 6 (see Figure 5). Note that global boundaries are preserved while fine detail suppressed.

In particular, The edges along the main road are less smooth for w=3 because the orientation of the

individual zero-crossings changes at a faster rate. For w=6 the edges along the road are smooth but

some of the narrow secondary roads are not seen. In the combined zero-crossing image the edges of the

road are smooth and the secondary roads are present. Figure 6b shows the result of line segment fitting

using the technique described in [21 and applied to the zero-crossing image of Figure 6a.

The value of the combined result depends on the intended purpose for the processing. A higher

level feature detector and extractor that uses the combined output as its basis for the detection of

cultural features is currently under investigation.

Conclusion

Fairly good results are obtained with theV 2G(x,y) filters for a variety of aerial images. Although

their limitations are explicit when fine detail and small features are involved, man made objects such as

roads, channels, airstrips and buildings at a proper resolution are seen fairly well. The reduced number

of convolution operations is advantageous specially when large images are being processed. No thinning

or thresholding steps are required and small windows are sufficient for their detection. The continuity of

the contours of zero-crossings facilitate the linking and the subsequent line fitting steps for higher level

processing. Goal-oriented edge detection has available several parameters that can be used to measure

the "goodness" of a zero-crossing for the intended purpose. Global combination of filtered images as

discussed is straightforward and the combined output appears suitable for processing by higher level

feature detectors and extractors.
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(a) Combined zero-crossing image with
w =34and6,

(b) Line segments.

Fig. 6. Road: Combined Zero-Crossing Image.
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1.5. Automatic Grid Relation Extraction and Texture Reconstruction for
Homogeneous Regular Textures

F. Vinroter,1 R. Nevatia, and K. Price

Introduction

In a previous USCIPI Semiannual Report [11 a method for automatically determining the spatial

relationships between texture primitives in homogeneous regular textures was described. Also, a

possible approach for the automatic extraction of a minimum set of relationships (not necessarily

unique) needed to characterize the underlying grid pattern in these types of textures was discussed. In

the following the actual method used for automatic grid relation extraction is described and results are

reported.

Determining the underlying structure of square or rectangular cellular textures has been

investigated by Davis [2]; computing spatial relationships between connected regions of constant gray

level has been investigated by Maleson et al. [3] and by Matsuyama et al. [41 who use "regularity

vectors" to determine texture primitive arrangement.

Background

In previous reports, we have described programs used to generate descriptions of natural textures

[5-61 and extract and describe texture primitives [71 and the spatial relations between them [1]. Short

descriptions of some of these programs may also be found in [8-91.

In the first part of the program edge repetition arrays are produced using the edge and direction

images corresponding to the original image (an edge repetition array is the binary case of a gray level

co-occurrence matrix). These arrays are calculated for 6 directions (0, 30, 60, 90, 120, and 150

degrees), for both dark and light intensity objects, and distances within a range specified by the user. A

comprehensive discussion of edge repetition arrays is given in [51.

In the second part of the program the edge repetition arrays are analyzed to determine whether

there are predominant element sizes in any of the 6 scan directions and if so whether these elements

occur at regular intervals within the image. The details of this analysis are presented in [61 and will not

t Felicia Viinrotter is supported by a Hughes Aircraft Company Doctoral Fellowship.
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be repeated here.

In the third part of the program groups of texture primitives are extracted and described, using the

texture descriptions generated in part 2. Primitives are represented as masks. These masks are then

individually analyzed to determine the characteristics (average size, intensity, etc. ) of each primitive

group. The details of the primitive extraction and description processes are given in 17].

In the fourth part of the program a set of placement rules is generated using the primitive masks

generated in part 3. These placement rules are the most frequently occurring inter- primitive spatial

relationships. A detailed discussion of the algorithm used to generate these rules is given in [1]. These

spatial relationships, or placement rules are of the form:

PRIM1 1 A PRIM2 = B ANGLE = 0 DISTANCE = D PERCENTAGE = P

This relationship states that the centroid of a primitive of type A is separated from the centroid of

a primitive of type B by a distance of D pixels at angle 0 P percent of the time that a primitive of type A

is encountered.

To summarize: analysis of edge repetition arrays provided one dimensional texture descriptions.

These descriptions are the starting point for a two dimensional texture primitive search. The products

of this search are a set of texture primitive masks and descriptions. Using the texture primitive masks a

set of placement rules is generated.

If we are working with a homogeneous regular texture, i.e., a periodic texture in which each

primitive of a given kind exhibits the same kind of interprimitive spatial relationships, then we should

be able to extract a minimum, not necessarily unique, set of rules which completely characterize the

underlying texture pattern.

In the event that the texture under consideration is a striped pattern the program would report

that each primitive type repeats in the same direction and forms part of the background. Upon detecting

this condition the program would only have to select one placement rule for each type of primitive. The

rules would relate each primitive type to a given primitive type, say A, in the direction of scan which is

precisely the direction of repetition for each primitive type detected.

The remainder of this report describes the algorithm developed to handle homogeneous regular

textures in which there is more than one direction of repetition.

Suppose we are given such a texture. If all of the primitives of one type, say type A , are

extracted a single primitive "subtexture" of the original texture can by formed. Choosing the 2 nearest
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neighbors of a type A primitive so that the 3 primitives are not collinear, we have a configuration similar

to the one in Figure la. This is equivalemt to choosing 2 noncollinear placement rules relating primitive

type A to primitive type A which minimize distance. Since each element of a given type has the same

environment the structure in Figure la can be propagated to form a triangular or parallelogram grid

pattern as in Figure lb, all of whose nodes correspond to type A elements contained in the "subtexture"

pattern.

Suppose there exists a primitive of type A in the "subtexture" which is not represented in the grid

pattern. Placing this primitive in the grid, but not in the position of a grid node presents a problem.

There is no position that this primitive can take where it would be at least as far from every grid node as

the maximum distance of the 2 relationships chosen above, and these relationships were chosen so that

interprimitive distances would be minimized. This is a contradiction. Hence there is no primitive of

type A in the texture which is not included in the grid.

In order to reconstruct the original texture pattern only one placement rule need be used to relate

each additional primitive type to the grid. In each case the relationship would be between a primitive

type alreaay included in the grid and a type not yet included.

For example, suppose there exists a placement rule relating type A primitives to primitives of type

B. This rule could be used to place one type B primitive in the grid for each type A primitive already

included, see Figure Ic. All type B primitives placed in this way correspond to a type B primitives in the

original texture. Likewise, it can be argued that there exists no type B primitive in the original texture

which is not now included in the grid. If there were such a primitive it would not exhibit the

interprimitive spatial relationship used to place all of the type B primitives already included in the grid.

Hence, we need only establish the underlying grid pattern using 2 single primitive placement rules,

both referring to the same primitive type. Then only one placement rule for each additional

non-background primitive type need be used to include the remaining primitive types in this grid

structure.

Overview

There are 2 main objectives in this section of the program, namely, selecting a minimum set of

grid pattern relations, and reconstructing the oiriginal texture pattern using these relations and a set of

average primitive templates and descriptions. The latter is done to provide a visual measure of

algorithm performance.

Grid relation selection entails choosing 2 noncollinear single primitive placement rules referring

to the same primitive which maximize frequency of occurrence while minimizing interprimitive
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distances. Next, the most frequently occurring placement rules relating elements already included in

some grid relation to ones not yet included are choosen until all non - background primitives can be

related to the basic grid structure.

Using this set of relations a grid whose nodes represent primitive centroids can be constructed. By

replacing each node with the corresponding "average" primitive a pattern similar to the original texture

pattern can be created.

Methodology

Grid Relation Selection

1) Combine redundant single primitive placement rules - rules relating a primitive to itself at a

distance, D, and an angle, 0, are combined with rules relating this same primitive to itself at distance,

D, and angle 0 + 180 degrees or 0 -180 degrees.

2) Determine Underlying Grid Pattern - from the reduced set of single primitive placement rules

created in 1) choose 2 rules to span the image space as follows:

El Let SETO be the reduced set of single primitive placement rules.

[ Calculate THRESHI = .85 * ( Maximum percentage among all single primitive placement
rules in SETO).

[3 Define SETI = { Single primitive placement rules from SETO with percentage greater than
THRESHI ).

C3 Calculate MINI = Minimum distance among all placement rules in SETI.

0 Find RELI in SETI with maximum percentage among all placement rules in SETi exhibiting
the minimum distance MINI. REL1 defines the First Grid Axis.

o3 Redefine SETO - SETO - ( Placement rules not pertaining to the primitive related in RELI
} U { Placement rules whose angle is within 10 degrees of the angle in REL1 or it's oppositeI ).

0 Calculate THRESH2 - .85 * ( Maximum percentage among all of the placement rules of
SETO ).

LI Define SET2 = { Single primitive placement rules from SET2 with percentage greater than
THRESH2}.

o3 Calculate MIN2 - Minimum distance among all placement rules in SET2.

o Find REL2 in SET2 with maximum percentage among all placement rules in SET2 exhibiting
the minimum distance MIN2. REL2 defines the Second Grid Axis.
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3) Relate Remaining Primitives to Grid - all non - background primitives which are not specified in

RELI or REL2 are related to the underlying grid pattern as follows:

0 Determine which placement rules are STRONG. Let P1 be a placement rule relating a
primitive of type A to a primitive of type B at angle 0 and distance D. P1 is STRONG if
there exists a placement rule P2 relating a primitive of type B to a primitive of type A at
distance D and angle 0 + 180 degrees or 0 - 180 degrees.

o Redefine SETO to be the set of all placement rules relating a primitive included in the grid to
one which is not yet included.

0 Calculate THRESH3 = .85 * ( Maxinmum percentage among all placement rules in SETO ).

o Define SET3 - Placement rules from SETO with percentage greater than THRESH3 }.

0 Determine whether any of the placement rules in SET3 are STRONG , and if so add the
highest percentage placement rule which is also STRONG to the set of grid relationships. If
no placement rule in SET3 is STRONG then the placement rule exhibiting the maximum
percentage is added to the grid relationship set.

- If there are primitives which are still not related to the grid structure then repeat the above 4
steps starting with the redefinition of SETO.

Reconstruct Texture Pattern

1). Create Primitive Templates - an "average" primitive mask is created for each non-background

primitive type as follows:

O1 Using a blank image superimpose each primitive of a certain type such that their centers of

mass lie on the same pixel.

" Let each pixel value equal the number of primitives covering that pixel.

" Set to zero all pixels with values less than the total number of primitives of that type
multiplied by a user specified threshold value.

E After thresholding, the reduced "average" primitive mask is moved to a free section of the
template image, and the starting row and column, the location of the center of mass, and the
maximum length and width are recorded.

2) Construct Grid Skeleton - using the grid relation set mark primitive centroid locations with

primitive type numbers as follows:

0 Starting at the center of the image mark the primitive centroid locations for one axis using
the angle and distance information in the First Grid Axis placement rule. ( See Figure 2a.

[] Construct an axis of centroids through each of the First Axis centroid locations using the

angle and distance information in the Second Grid Axis placement rule. ( See Figure 2b.

0 The rest of the centroids are marked in a similar manner. Using each of the remaining
placement rules from the grid relation set produced in I, mark the centroid locations of each
"new" primitive type. That is, use the placement rule information to relate a primitive of
one type to a primitive of another type whose centroids have already been marked in the
image.
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(a) First grid axis centroids for placement
Rule: PRIMI = 1 PRIM2 = 1 ANGLE = 00 DISTANCE = 4.
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0 0 1 0 0 0 1 0 0
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1 0 0 0 1 0 0 0 1
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(b) Second grid axis centroids for placement
Rule: PRIM1 - 1 PRIM 2- 1 ANGLE - 450 DISTANCE - 2r2.

Figure 2.
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3) Fill in Pritnitives and Background - using the "average" primitive templates created in I ) and the

average primitive intensities calculated earlier in the program the texture pattern can be reconstructed.

The reconstructed texture image will have an "average" primitive region centered at each of the

primitive centroid markers. The intensity of this region will be equal to the average primitive intensit.

of the respective primitive type. All pixels not covered by a primitive will take on the background

intensity if a background has been detected.

Results

In the previous USCIPI Semiannual Report [1) 2 brick patterns were analyzed. and manual

reconstructions of the original texture patterns were attempted. In the results given below grid relation,,

are automatically chosen from sets of placement rules and reconstructions of the original texture

patterns are automatically generated. The original brick pattern texture images are given in Figure 3.

the texture primitive descriptions are given in Figure 4, and the actual primitives extracted are seen in

the composite primitive images of Figure 5.

The set of placement rules are given in Figure 6a for Brick Pattern I and Figure bb for Brick

Pattern 2. In each case the single starred entries represent the First Grid Axis placement rules, the

double starred entries represent the Second Grid Axis placement rules, and the triple starred entries

represent the rules used to link the primitives of type I to the underlying grid pattern.

Figure 7 shows the reconstructed texture patterns for Brick Pattern I and Brick Pattern 2. In the

first pattern, Brick Pattern I, the vertical mortar strips were determined to form part of the background,

see the description of primitive 3 in Figure 4a. fHence all pixels in Figure 7a appear to have a non - zero

intensity. (The background primitive, primitive 3, is not displayed in the composite primitive image in

Figure 5a). In ,he second pattern, Brick Pattern 2, no background was detected, also the vertical mortar

strips were sometimes not found, sometimes determined to be separate primitives and sometimes they

were absorbed by neighboring bricks. Since no background was found and the vertical strips were not

indicated as separate primitives by the analysis there are black spaces where these strips should occur.

The bricks and horizontal mortar strips, however, are reasonably well placed.

Conclusions

The final descriptions and average primitive masks produced by this method provide resonably

complete texture descriptions for homogeneous regular textures. It is hoped that this method can be

extended to include more complex texture patterns, and thus aid in the recognition of a larger class of

textures.

34





PRIMITIVE ANALYSIS FOR BRICK 1

RELATIVE INTENSITY IS LIGHT DIRECTION IS VERTICAL

NUMBER OF SAMPLES: 87 PRIMITIVE NUMBER IS: 1

AVERAGE PRIMITIVE DIMENSIONS ARE: (2.00 AND 52.92)

AVERAGE PRIMITIVE SIZE IN PIXELS IS: (105.39)

AVERAGE PRIMITIVE INTENSITY IS: (120.80)

PRIMITIVES REPEAT AT ELEMENT SPACE: (15.00)IN ABOVE MENTIONED DIRECTION

RELATIVE INTENSITY IS DARK DIRECTION IS VERTICAL

NUMBER OF SAMPLES: 106 PRIMITIVE NUMBER IS: 2

AVERAGE PRIMITIVE DIMENSIONS ARE: (10.00 AND 35.34)

AVERAGE PRIMITIVE SIZE IN PIXELS IS: (353.14)

AVERAGE PRIMITIVE INTENSITY IS: (100.59)

PRIMITIVES REPEAT AT ELEMENT SPACING: (15.00)IN ABOVE MENTIONED DIRECTION

RELATIVE INTENSITY IS LIGHT DIRECTION IS HORIZONTAL

NUMBER OF SAMPLES: 8 PRIMITIVE NUMBER IS: 3

THIS PRIMITIVE FORMS PART OF BACKGROUND

AVERAGE PRIMITIVE SIZE IN PIXELS IS: (441.88)

AVERAGE PRIMITIVE INTENSITY IS: (132.38)

PRIMITIVES REPEAT AT ELEMENT SPACING: (43.00)IN ABOVE MENTIONED DIRECTION

Figure 4(a) Brick pattern 1 primitive texture
element description.
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PRIMITIVE ANALYSIS FOR BRICK 2

RELATIVE INTENSITY IS LIGHT DIRECTION IS VERTICAL

NUMBER OF SAMPLES: 39 PRIMITIVE NUMBER IS: 1

AVERAGE PRIMITIVE DIMENSIONS ARE: (2.00 AND 145.26)

AVERAGE PRIMITIVE SIZE IN PIXELS IS: (289.87)

AVERAGE PRIMITIVE INTENSITY IS: (175.44)

PRIMITIVES REPEAT AT ELEMENT SPACING: (12.00)IN ABOVE MENTIONED DIRECTION

RELATIVE INTENSITY IS DARK DIRECTION IS VERTICAL

NUMBER OF SAMPLES: 122 PRIMITIVE NUMBER IS: 2

AVERAGE PRIMITIVE DIMENSIONS ARE: (8.00 AND 40.93)

AVERAGE PRIMITIVE SIZE IN PIXELS IS: (326.57)

AVERAGE PRIMITIVE INTENSITY IS: (134.25)

PRIMITIVES REPEAT AT ELEMENT SPACING: (12.00)IN ABOVE MENTIONED DIRECTION

Figure 4(b) Brick pattern 2 primitive texture
element description.
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BRICKI PRIMITIVE PLACEMENT RESULTS

ANGLE I DISTANCE TOTAL

PRIMI PRIM2 (DEGREES) (PIXELS) ()

1 1 -90 15 52.91
1 1 90 15 52.90

1 2 -90 6 ***62.72
1 2 90 6 52.25

2 1 -90 6 42.88
2 I 90 6 51.48

2 2 180 45 *"*65.10
2 2 -90 15 *94.55
2 2 0 45 **63.12
2 2 90 15 *94.55

Negative angles are counter-clockwise; positive

angles are clockwise.

Figure 6(a) Brick pattern I interprimitive angle
in degrees, distance in pixels and
frequency of occurrence.
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BRICK2 PRIMITIVE PLACEMENT RESULTS

ANGLE1  DISTANCE TOTAL
PRIMI PRIM2 (DEGREES) (PIXELS) (2)

1 1 90 12 18.28
1 1 -90 12 18.27

1 2 -170 18 18.47
1 2 -170 30 18.88
1 2 -30 12 ***28.70
1 2 10 24 23.81
1 2 10 33 18.76

1 2 80 6 20.70

2 2 -160 24 -,-36.63
2 2 -90 12 19.19
2 2 -30 27 -**33.17
2 2 0 45 36.53
2 2 20 24 *k36.41
2 2 90 12 20.86
2 2 150 27 **32-52
2 2 180 45 36.18

1Negative angles are counter-clockwise; positive
angles are clockwise.

Figure 6(b) Brick pattern 2 interprimitive angle
in degrees, distance in pixels and
frequency of occurrence.
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1.6. Texture Identification and Segmentation

David D. Garber and Alexander A. Sawchuk

Introduction

In this paper we examine various approaches to texture segmentation and identification using the

linear model developed in earlier papers [1,2,3]. These methods employ covariance measures of a

texture over windows of the region being segmented or identified. These same covariance measures

were used to estimate the linear model parameters which were examined in earlier texture synthesis

models [1]. The information content of these measures was shown by performing simulations of

various textures and therefore, based on these results, we might conclude that these second-order

statistics would be useful in the segmentation and identification of textures. Pictorial segmentation

results are given in this paper.

It is generally agreed that a great portion of texture information is contained in the second-order

statistics of a texture. There are notable exceptions to this rule as was shown by Gagalowicz [6],

however for most natural textures, second-order statistics have proved to be sufficient to adequately

discriminate textures in most applications 14,5]. In a practical sense, we usually are also prevented from

gathering and analyzing higher-order statistics because of computational limitations. In fact, we can

easily be overwhelmed by masses of data arising from second-order statistics.

The most general second-order statistics are the complete second-order joint densities. These

measures may be estimated by joint gray scale histograms taken over a parent texture. For a g

grey-level image, each histogram requires g2 storage locations. But, there is one such histogram for

each vector distance or spacing between a pair of pixels. To compute these histograms over all spacings,

2,....nr, in two dimensions would result in (nr-1) 2g 2 entries. Even for reasonable g and nr this could

easily create a data expansion containing unnecessary information rather than a data reduction yielding

measurements with discrimination value.

For these reasons, texture image data is often quantized (to reduce g) and second-order

measurements resulting in joint grey-scale histograms are made over a small number of pixel spacings

(to reduce nr). To decrease the size of the feature space further, various functions of joint grey-scale

histograms are calculated and these values are primarily used to identify a texture. For a single

histogram, as many as 25 to 30 functions have been proposed 17]. In spite of the large dimensionality of

the feature space and the problems with quantizing low contrast textures, this family of texture features

is used frequently to successfully classify textures [7,81.
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Many other identification and classification schemes exist [9] as the discrimination of textures

represents the most important application of texture analysis.

In this paper, we reduce the information contained in the joint grey-scale histogram to one single

number, the correlation coefficient for that particular pixe; spacing. It is expected that this large

reduction will cause a decrease in discrimination power as the size and information content of the

feature space has been significantly reduced. The purpose of this exercise is not to develop a new, more

powerful texture identifier but merely to access the information content of the correlation coefficient

values when applied to the problem of texture discrimination. It is already apparent from the simulation

results presented in earlier papers that a great deal of texture information may be obtained by proper

use of these correlation coefficients.

Correlation measurements have been applied in various ways to the problem of texture

identification previous to this study [4,8-14]. It has generally been concluded that they are of lesser

value than Haralick's family of functions on values of the joint grey-scale histogram [5] when applied to

the discrimination problem. In this paper we will develop two new discrimination methods utilizing

correlation values. One is based on the statistical test for equality of covariance matrices. The other

utilizes multiple statistical tests for the equality of individual correlation coefficients. Both show good

discrimination power but neither exceeds the quality of Haralick's measures.

Segmentation Using Correlation Matrices

Texture is a feature which can only be measured and identified over an area of an image.

Therefore most segmentations of an image according to texture information will require that

measurements be taken over an area and then part or all of that area will be classified accordingly. In

our work, measurements were taken over a square, WBIG pixels in length, and a center square,

WSMALL pixels in length, was classified from these measurements as in Fig. 1.

Second-order statistics must be measured over a variety of vector distances (pixel-pair spacings) to

be useful in texture discrimination. In our case, these second-order statistics are correlation values.

There is only one correlation value for a particular spacing.

There are many approaches to estimating a correlation value over a window for a particular

pixel-pair spacing. One involves passing a kernel of pixels over the window and taking a sample at all

points where the kernel is completely contained within the window boundaries. Such measurements

would result in a covariance matrix for the kernel over that window. This matrix can be used to identify

a texture, as will be shown later in this section. Another approach to estimating a correlation value for a

particular pixel-pair spacing would involve measurements over all possible samples within the window of
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Fig. 1. Segmentation window.

Fig. 2. Two-dimensional spanning kernel.
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that spacing. This is equivalent to passing a kernel containing two points over the window for each

pixel-pair spacing. The result of this approach is a correlation value for each spacing which must be

examined by itself. A method for identifying texture using these individual correlation values will be

examined in section 3.

Once we have obtained a covariance matrix by passing a kernel of points over a window, that

matrix may be compared statistically with covariance matrices from known textures. Such a statistical

test has been derived for testing the equality of covariance matrices. The maximum likelihood ratio

approach used to derive this test makes the standard assumptions of multi-dimensional normality and

independence of samples. Both were used in our texture simulation work. Details concerning the test

and its derivation are given in [15,16]. The statistical test for two covariance matrices is given by

U1 = 2.3026 dB-X 2
=N(N+ 1 /2

where

D = (M1 +M 2-2)log0 C1-(M 1 -1)lOg01 ,Cji-(M 2-1)log 1 ,2

C, and C, are the estimated covariance matrices for each group,

C - [(MI-I)Ct +(M 2-1)C 2]/(MI + M,-2)

and

d-- 1- =I+ (2N2-3N-1)/6(N+ 1)
I(MI-i) (M2-1) (MI+M2-2III

N is the size of the covariance matrices being tested which is equal to the number of pixels in the

kernel. M, and M2 are the sample sizes used to estimate C1 and C2 . , denotes the determinant of

C. The test statistic, U1, has an approximate chi-square distribution with N(N+ 1)/2 degrees of freedom

and approaches 0 as C1 approaches C2.

Having derived the test for equality of two covariance matrices we must determine the contents of

these matrices. As the number of points in the kernel increases, the size of the covariance matrices

increases leading to more difficult and time-consuming determinant calculation required in Eq. 1. Also,

as the spacing of these pixels increases, the number of samples in a window decreases. Finally, as more

and more points are included in the kernel, the amount of redundant and overlapping information in

the covariance matrix increases due to redundant pixel-pair spacing.

To eliminate this redundancy, we will consider the problem briefly in one-dimension. Perfect,

non-redundant pixel spacing is possible only for patterns with maximum range of 1, 3 or 6 pixels given

by the corresponding patterns XX, XX-X and XX--X-X as shown in Table 1. For these three particular
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Table 1. MINIMAL SPANNING SETS.j

RANGE *PTS
2 2 XX
3 3 XXX
4 3 XX-X
5 4 XXX-X
6 4 XXX--X
7 4 XX--X-X
8 5 XXXX---X
9 5 XXX--X--X

10 5 XXX---X--X
11 6 XXXX--X --- X
12 6 XXXX --- X---X
13 6 XXXX----X---X
14 6 XXX --- X--- X--X
15 7 XXXXX----X ---- X
16 7 XXXXX -- x--
17 7 XXXX----X --- X--- X
18 7 XXXX----X ---- X--- X
19 8 XXXXXX --- X--- X
20 8 XXXXX-----X -----X ---- X
21 8 XXXXX -- --- x--x
22 8 XXXXX--X-- -- x
23 8 XXXX ---- X---- X---- X--- X
24 8 XXX--------- X--- X--X--X-X
25 9 XXXXXX --- X---X- -- x
26 9 XXXXXX------- ---- X

27 9 XXXXX -- X---- X--x--
28 9 XXXXX -- x-----x--- -- x
29 9 XXX------------ X---- X--X--X--XX
30 9 XXX------------- X--- X--X--X--X-X
31 10 XXXXXX- --- X ---- x---X--- x
32 10 XXXXXX --- -- X-- --- X-----x
33 10 XXXXXX--- X ---- X---X--X
34 10 XXXXX--X-X-.-X--x--- -- x
35 10 XXXX -------------- -- -X--X
36 10 XXX---------------- X--- X--X--X--X--X-X
37 10 XX-X--X - --- X-X --- X--- ---- x----XX

38 11 XXXXXXX ------- X ------- x ------- --- X
39 11 XXXXXX-----x - -- --- - ---- X
40 11 XXXXXX --- x --- -- x----X--X--X-X
41 11 XXXXX ------ X-- --- x---- X--x--
42 11 XXXX ----------- x---- x---x-- -X-- X

43 11 XXXX --------------- x---- -X-X-X--X
44 11 XX-X--X - --- --- X---X- --- X---X---XX
45 12 XXXXXXX -------- X-----------X----- x------ X
46 12 XXXXXXX -------- X--------- -------------- ------ x
47 12 XXXXXX --- X --- -- x----X--X-- ------ x

48 12 XXXXXX------------------x---X- X-------X
49 12 XXXX --------- X ------------ X--X --- X----X---X --- XX
Sc 12 XXXX -------------------- x-----x-- - X-X-

51 12 XXXX -------------------- --- - -- - - -X
52 13 XXXXXXXX ---------------- x----X---- x------ x----------X
53 13 XXXXXXX ------ ----- - x ------- x ---- X----------x
54 13 XXXXXXX -------- X--------- -------------- ------- x----- - X
55 13 XXXXXXX -------- X--------X -------- X ------ X------ ------ x
56 13 XXXXXX --- X--------x------ ----- x - -- x- -- --x---X
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ranges, the patterns shown are constructed so that no two pairs of X's are separated by the same

distance. One and only one pair of X's may be found in these patterns which is separated by each

distance less than or equal to the maximum range. For all other ranges, redundancies will exist in any

pattern spanning the range. That is, more than one pair of X's may be found which are separated by

the same distance in patterns not having a maximum range of 1, 3 or 6. A pattern spans a range if and

only if at least two X's may be found in the pattern which are separated by every distance less than or

equal to the maximum range. These patterns are sometimes referred to as difference sets [17,18,19].

A set containing a minimal number of X's can be found to span all ranges. A list containing the

minimum number of X's required to span each range and one non-unique pattern which spans the

range is given in Table 1. Extending these one-dimensional spacings to two dimensions merely requires

the vector product of the transpose of any of the row vector patterns with itself yielding a two

dimensional matrix.

A two-dimensional redundant kernel containing 16 pixels which spans a two-dimensional

range of 6 is shown in Fig. 2. Passing this kernel over a window yields a covariance matrix of dimension

16, which is not an unreasonable size for computation purposes. The number of data samples over a

window of size WBIG is (WBIG-6) 2. Even for small windows of size 16, a reasonable sample size of 100

may be obtained.

Once the kernel and procedure are determined, we proceed with the process of segmenting the

textures to test the identification procedure. There are many approaches to this problem which are

usually defined by the particular case of interest. We may or may not have prototype and parent texture

data. We can segment, cluster-analyze or identify. Notice that the generality of the test leaves a wide

variety of options open. We can compare matrices in one area of an image with those in other areas and

our test statistic values will be the distance measures defining the closeness of the textured regions. We

could compare a matrix with a number of known prototypes and classify the unknown region according

to the test statistic for each comparison. Finally, we may merely wish to locate a particular texture in an

image and thus we would compare matrices with only one prototype.

This later approach was selected in this paper as the visual results are simple to display and

analyze. We will compare the matrix measured over a large window with one obtained over the

complete parent texture prototype and assign the pixels in the small window accordingly (see Fig. 1).

Figure 3 shows the test composite image used. We will attempt to identify the texture sand in that

region. The texture sand was chosen as the simulation results of this texture were in some ways very

poor when examined critically on a high resolution device. Therefore, it represents a worst-case

example.
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Figure 4 shows the segmentation results when WBIG - WSMALL = 16. The pixel brightness are

linearly mapped test statistic values, which are supposed to be chi-square-distributed. Improvement is

made when WBIG = 32 and WSMALL = 16 as is seen in Fig. 5. Figure 6 shows much improved results

when WBIG = 48 and WSMALL = 16. The difference is due to the availability of more texture

information in the larger window in the form of increased sample size (100 to 1764).

As a final note, it should be understood that this chosen texture kernel (see Figure 2) totally

ignores information obtained earlier concerning the interdependence of pixels in the generating kernel as

expressed in the linear model. It is very possible that better segmentation results could be obtained by

using the kernel shape which best fits each texture as this particular pattern of points was found to be

most significant. The linear model used for simulation of each texture might even be used itself as the

distributions of the parameter estimates are known if certain assumptions are made [20,21]. But neither

of these approaches have been tried even though improvements are expected.

Segmentation Using Individual Correlation Coefficients

Individual correlation estimates for particular pixel-pair spacings may be made by taking

measurements over all possible samples within the window containing that spacing. This approach

utilizes more information than the fixed kernel method as it includes measurements near all edges of

the window (thus, the sample size is increased). The result is a single coefficient for each pixel-pair

spacing. If the spacing between each pair is unique then the set of coefficients will be non-redundant.

The covariance matrices used to segment textures in the last section may contain redundant information

if the pixel-pair spacings in the kernel are repeated.

A statistical test for comparison of two correlation coefficients has been derived for the bivariate

normal distribution and is

U2-- 2

where

U2 = (ZI-b2(MI.3)+(Z2-2)2(M2-3)

and ZI - arctanh(ri)

Z2 - arctanh(r 2)

Z3 - (Mj-3)Z, + (M2-3)Z2]/(M 1 +M 2-6)

r, and r2 are the computed correlation coefficients from the two groups. This test is derived using the
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fact that Z, is approximately distributed N(Z,: arctanh(p), (M-3) t ) where p, is the true correlation

coefficient of the population, For additional details see [211. Again, to derive the tests assumptions of

normality and independent samples are made.

As in the previous section, the test statistics may be used to segment or identify textures.

However, difficulty arises as our test must be performed for each measured correlation value. Thus a

number of U2 values are obtained if multiple pixel-pair spacings are used. At this point these values can

be combined in numerous ways. As each U2 value is chi-square distributed we can compute the

probability, Pu2, that a random variable, which has that chi-square distribution, is greater than or equal

to U2 as shown in Fig. 7. For U2 = 0 (rI = r2) this probability is 1.0. A product of the probabilities

associated with each U2 was used to indicate the overall fit of one set of correlation coefficients to

another set.

Finally, it should be noted that tests for equality of correlation coefficients will not detect

differences in mean and variance over the window. The correlation coefficient specifically removes

these effects. As a result, it may be advantageous to include tests for equality of means and variances

into the comparison process. For equality of means the test statistic is

ti l (M 1 2+( 2- 1& 7 CIt+M

MI +M2-2 V 1 M2

where and A2 are the calculated mean and & and Z are the calculated variances for the two groups

being compared. This test statistic is a value of a random variable having the t-distribution with

M I +M 2-2 degrees of freedom. For the equality of variances the test statistic is

f = 1 FMIM.I

This test statistic is a value of random variable having an F-distribution with M1 -1 and M2-1 degrees of

freedom. The derivation of both of these tests requires the assumption of normality for the two groups

and an independent sample set. The known distributions of the test statistics t, and f, was used to

obtain the probabilities, p,, and pf, that a random variable having that distribution would be greater than

or equal to the calculated values of Itkl and MAX(fl,1/ft) or less than t11 and MIN(ft,l/f 1 ) (see Figs. 8

and 9).

Having obtained the set of probabilities, pu2, and pt, and pf, corresponding to the set of tests for

the equality of correlation coefficients and the tests for equality of mean and variance of the window a
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Fig. 7. The chi-square distribution.

Fig. 8. Student's t-distribution.
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Fig. 9. The F-distribution.
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single test statistic

log (MAX(pu,,10 6)) +log pt +log Pf

is formed to indicate the combined fit of these tests. The probabilities are log-scaled to eliminate scaling

problems which would occur when taking the product of many small numbers. The Pu, "s are bounded

below to reduce the effect of single, noisy correlation coefficients. These output test statistics obtained

by comparing a windowed region of Fig. 3 with statistics gathered from the parent prototype texture

sand were linearly scaled to produce the intensity images shown in Figs 11 to 13. The results for WBI(,

-- WSMALL - 16 are shown in Fig. 11. Improved results for WBI G = 32 and WSMAIL = 16 are shown

in Fig. 12. Results for WBIG = 48 and WSMALL - 16 are shown in Fig. 13.

Conclusions

In implementing the two procedures detailed in this chapter, large values for the test statistics U,

and U2 were obtained even when comparing the matrices or correlation values measured from an

extracted portion of a parent texture with those obtained from the entire parent texture. There are two

basic reasons for this. First, the assumptions of normality are probably incorrect. There is little reason

to believe that the distribution of pixels in an image is truly multi-variate normal. Secondly, the samples

used to estimate the covariance matrix and the correlation coefficients are not random and independent.

They are strongly related by their spatial positions in the image and are often adjacent. The sample size

may be adjusted to reflect this fact but no work in this area was done.

In most cases, statistical tests may be Lonsidered to be robust - not weakened significantly - when

assumptions used to derive them are violated. This is probably not true of the test for equality of two

covariance matrices which has been called "frail at best" [15]. For these reasons, the methods presented

may be considered innovative but not necessarily statistically sound.

In spite of this fact, the results show that the method using the test for equality of covariance

matrices was superior to the method involving multiple tests of individual correlation coefficients. This

could be due to the method used to combine the multiple tests.

The pictorial results of this chapter indicate the usefulness of correlation values in texture

identification. The methods are not intended to be improvements over existing segmentation

identification techniques. (There are enough of them already.) The discussion is intended to apply a

specific texture model which was based on second-order statistics to the texture identification problem

and this was done successfully.
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1.7. Feature Selection In Texture Edge Detection

H. Y. Lee

Introduction

A texture edge detector which is patterned after the methods for detecting intensity edges using

directional derivatives was developed [1]. A directional derivative is defined as the difference of two

texture measures taken over adjacent, nonoverlapping neighborhoods. Combining these directional

derivatives, the presence/absence of a texture edge at every pixel is detected.

A set of texture energy measures which was developed by K. Laws [2] is adopted for texture

feature extraction. As a method of combining the edge information coming from these different

sources, the selection of the "best" frames in terms of some criteria based on the connectivity of edge

elements have been studied. The best frames are combined to form a hybrid plane which can be used

as the input of the same texture edge/line detector or some other region based image segmentor.

Connection of Texture Edge Points

To form object outlines or boundaries, edge points obtained from some edge detector should be

linked together. In other words, short spurious lines and isolated edge points are deleted and small gaps

along the outline are bridged by straight line connections under some condition or filled in by expansion

of edge points. Thus, to organize edge information, we form a list of edge points that probably lie on

the same physical boundary of an object. A scan runs through all edge points in the picture, and two

edge points are linked if certain loose conditions are met:

1. x and y coordinates match within 3 pixels,

2. their angles match within 90 degrees.

If an edge point can be linked to another edge point which is already a member of a set of

connected edge points (line), it becomes a new member of that line. If two edge points neither of

which is a member of existing lines can be linked together, they form a new line. After this edge

linking stage is finished, only lines having more points than some prescribed threshold are selected to

survive.

Texture edge detection and linking have been applied to the composite image shown in Fig. 1.
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The results of texture edge detection and linking performed on one of texture energy planes are shown

in Fig. 2 and Fig. 3, respectively.

Connectivity of Edge Points as Means of Feature Selection

Figure 4 shows 15 available texture energy planes obtained from the composite image of Fig. 1.

Some of them are obviously inferior to the others or bear no reliable information about texture

boundary location. In statistical pattern recognition area, there are several methods of feature selection

based on statistics of individual classes that form the total pattern space [4]. But these methods often

assume that the class of a given sample is known (supervised) and concentrate on the faithful

reconstruction of pattern space after feature reduction. Coleman and Andrews [5] used Bhattacharyya

measure as the criterion for feature reduction in their image segmentation scheme. Clustering using all

the features was performed prior to feature selection thus enormous computing time was required.

Besides, possibly misleading features are participating in class determination, thus may cause unreliable

clustering itself.

Therefore, the need for computationally simple but reliable means of feature selection is obvious.

On the fact that the boundary of an object in an image is continuous, edge points detected on "good"

feature spaces should form smooth, long connected sets of edge points and the number of isolated edge

points should be small. Two measures following this idea are suggested:

1. Average number of edge points in the connected sets of edge points (no thresholding is
performed before averaging).

2. Ratio of the number of edge points surviving after linking and thresholding to the number
of original edge points obtained by the texture edge detector.

These two measures computed for each of 15 texture energy planes are shown in Table 1 and Table 2,

respectively. If we select only planes with both measures above average values taken over all 15

features, we can see the reduced set of texture energy planes (7th, 9th, 10th, I Ith, and 13th plane) well

matches with our psychovisual selection.

The next step is combining this reduced set of feature planes in a meaningful way. Figure 5 shows

a hybrid plane which is the weighted sum of "best" planes with weighting factor used just for

normalizing. Another possible way is to use the above two connectivity measures as the weighting

factors, thus weighting heavily on the plane with high value of connectivity measures. This hybrid plane

shows considerable improvement in homogeneities of different regions and more clear boundaries when

we compare the hybrid plane with the 10th texture energy plane which has the higher values in both

connectivity measures. Figure 6 shows the result of texture edge detection followed by linking and

thresholding when the hybrid plane was used as input. For the comparison purpose, the results of
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region-based segmentation (simple thresholding) performed on the hybrid plane and 10th energy plane

are shown in Fig. 7.
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Fig. 7. Segmentation on hybrid plane. Fig. 8. Segmentation on 10th plane.

Table 1. AVERAGE NUMBER OF EDGE POINTS IN A
LINE FOR EACH PLANE.

1 2 3 4 5 6 7 8

8.682 10.388 9.880 10.484 10.618 11.163 11.431 10.925

9 10 11 12 13 14 15

12.769 13.472 11.865 10.517 12.696 12.674 12.051

Table 2. RATIO OF TOTAL NUMBER OF EDGE POINTS
TO TOTAL NUMBER OF POINTS AFTER
LINKING AND THRESHOLD FOR EACH PLANE
(IN PERCENTAGE).

1 2 3 3 5 6 7 8

60.051 63.202 67.331 71.976 70.017 64.324 79.561 67.581

9 10 11 12 13 14 15

76.048 77.485 72.640 64.207 72.589 69.120 69.529
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1.8. Shape Matching of Objects in Two and Three Dimensions
Bir Bhanu

Introduction

In the last report we have described a 2-D shape matching algorithm based on hierarchical gradient

relaxation [1,21 and its extension to include occluded objects using a projection gradient method and

penalty function approach. We have applied this technique to synthetic examples, industrial objects

occluded and nonoccluded [31, biological images, etc. In this contribution we present an example of

shape matching of aerial images and show the extension of this technique to do shape matching of real

world 3-D objects.

Shape Matching in 2-D

Figure 1 shows two aerial images of San Francisco taken at different times. Note that these

images are rotated with respect to each other. Figure 2 shows two regions obtained by applying the

recursive region splitting method [41 of segmentation to these images. Regions in Figs. 2(a) and 2(b)

are obtained from images in Figs. 1 (a) and 1(b), respectively. Regions in Fig. 2 are shown at different

scales. Our objective is to find out how the shapes of these two regions match.

We have reduced the regions shown in Fig. 2 by 14 times. A polygonal approximations of the

reduced regions with a smoothing factor of 4 is shown in Fig, 3. Figures 3(a) and 3(b) correspond to

the regions in Figs. 2(a) and 2(b), respectively. We call Figs. 3(a) and 3(b) as model and object,

respectively. We label the segments of the object with the segments of the model using a 2 stage

hierarchical relaxation technique [1]. J") and j(2) are the criteria at the first and second stages of

relaxation. Results of the method are shown in Table 1. Note that the second stage improves the

labeling of the first stage and the assignment of most of the segments are right. Assignment 30 is the

nil class. In the initial probability assignment we have used all the features of a segment and

compatibility has been obtained by averaging the errors of transformation [1]. Using the results of

labeling shown in Table I average relative rotation of the images shown in Fig. 1 was found to be 37.11'

(actual rotation is about 350). Computation time was 5 minutes on DEC System 10 computer with

TOPS-20 operating system. Although this technique is computationally costly as compared to other

feature based or chain code cross correlation techniques, it is very robust and flexible even when there

are significant changes in the shape as demonstrated by the aerial example presented here.
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Shape Matching in 3-D

Three dimensional scene analysis consists of providing a model for 3-D objects and a method for

matching unknown objects with the model. Given the surface points (x,y,z) of a 3-D object which are

not ordered, then first we approximate the surface by polygon faces so as to derive the model of the

object. In the sequel we describe an algorithm and present the results on a fairly complex industrial

object shown in Fig. 4. This 3-D object was selected because it was easily available and complex enough

to simulate the natural environment.

Surface Approximation by Polygon Faces

The points representing the complete surface of the 3-D object are obtained by a sequence of

range data images using a laser range finding system (Fig. 5 shows the 14 views of the object shown in

Fig. 4) and applying the necessary transformations. The planar convex faces are obtained by choosing

three very close points using the three point seed algorithm described below. Details of the algorithm

can be found in [6].

1. From the list of surface points select 3 points not on a line and close together in relation to
sampling distances.

2. Obtain the equation of the plane passing through the three points picked up in step 1.

3. Find all the points which are very close to this plane.

4. Apply the convexity condition to this set of points to ensure that the set of points make an
object face.

5. Check the face obtained in step 4 for narrowness.

6. If the face is obtained correctly (i.e., convexity and narrowness conditions are satisfied),
remove the set of points belonging to this face from the list of points and proceed to step 1
with the reduced number of points in the list.

Figure 6 shows the 22 faces obtained for 0) view of the object. Points that could not make up a

face having at least 20 points were rejected. Rejected points and the points which are common to two or

more faces are shown in different gray levels. In this algorithm first we find large faces and then small

faces. An individual view has about 2000 points and was found to have about 10-25 faces. (Horizontal

and vertical sampling distances were about 3 and 2 mm, respectively) The complete object was found to

have 8314 points after applying the necessary transformations and has 85 faces. We approximate the

faces by polygons by following their boundiir, using a boundary follower and finding the points of

maximum curvature on the boundary. The description of a face is given in terms of the properties of

the face and its relation to other faces. Neighboring faces are obtained by finding points which belong

to more than one face. So the model of the object consists of the description of the faces approximated

by polygons and the information about the neighbors of a face.
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Shape Matching of 3-D Objects

Shape matching of 3-D objects is based on matching the faces of the unknown view of the object

with the faces of the model using a probabilistic relaxation scheme which explicitly maximizes a criterion

functions based on the ambiguity and inconsistency of classification. This criterion is maximized using a

projection gradient method and matching is done in a hierarchical fashion [1,51. At the first level of

hierarchy binary relations are used and at the second level a subset of ternary relations are used to

compute the compatibility of a face of the unknown view with a face of the model. The first stage does

not resolve all the ambiguous labelings. The second stage helps in correcting these labelings. We have

found that two levels of hierarchy are sufficient for matching purposes, although the method generalizes

to include higher levels at the expense of increased computation.

The description of a face includes:

0 Number of points in the face,

13 Points on the boundary of the face,

El Number of vertices in the polygonal approximation of the face,

C (x,y,z) centroid of the face,

C Maximum, minimum and average radius vectors from the centroid and,

C Derived features from the above description.

The initial assignment of probabilities of the faces of the unknown view with the model is

obtained by using the above features. The compatibility of a face of the unknown view with a face in

the model is obtained by finding a transformation and computing the error in the feature values which

could be selected so as to make it insensitive to the reasonable changes in the shape. The

transformation is based on 1) scale, ratio of area of two faces, 2) translation, difference in the centroidal

coordinates of the two faces, 3) difference in the orientation of two faces so that they are in the same

plane, 4) rotation, to obtain the maximum area of intercept, once the two faces are in the same plane.

The initial probabilities and compatibilities so obtained are put in the relaxation algorithm which

makes use of various strategies that lead to faster computation.

Most of the computation time is taken in finding the faces. Relaxation process takes few minutes.

About 6-10 iterations at the first stage followed by an equal number of iterations at the second stage

produced reasonable results. Computation time can be cut by the parallel implementation of the

algorithm. The matching results could be fed to a robot manipulator on an assembly line or inspection

stages of the production.
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2. HARDWARE IMPLEMENTATION OF IU ALGORITHMS

2.1. A Residue Based Image Processor for VLSI Implementation

S.D. Fouse, G.R. Nudd, G.M. Thorne-Booth2 and P.A. Nygaard and F.D. Gichard3

ABSTRACT

This paper describes recent work undertaken at Hughes Research Laboratories (Malibu, California) in support of
the DARPA Image Understanding (IU) program. The principal goal of the work is to investigate the application of VLSI
technologies to IU systems and identify processor candidates well suited to VLSI implementation. One candidate that is
very well suited to the VLSI technology is a programmable local area processor with residue arithmetic based
computations. The design and development of this processor, which operates on a 5x5 kernel are described. Of significant
interest is an LSI custom circuit that we are developing and which will perform the bulk of the residue computations. In
addition, an interface that will allow this processor to be controlled by a general purpose host computer (e.g PDP 11/34)
is described.

Introduction

Our previous work [1,21 in developing image understanding architectures has concentrated on the

analysis of the processing functions required for special purpose LSI primitives. We have developed

about 16 fixed and programmable primitives for real-time operation.

The work described here represents a significant shift in emphasis and an increase in capability.

Firstly, we have undertaken a detailed design and analysis of a number of complex processing operations

including line-finding [31 and texture analysis [4]. This work has been carried out specifically with LSI

and VLSI implementation in mind. Hence issues such as chip and function partitioning, data flow, local

storage and wordlength are specifically emphasized. The results of the systems analysis and design for

these ,nperations are included in section 2. From this work we have been able to configure a fully

2Hughes Research Labs, Malibu, Ca.
3Hughes Carlsbad Research Center, Carlsbad, Ca.
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required. Similarly, the texture analysis system decomposed into five major functions: small window

convolution (5xS), small window statistical calculation, scaling, large window statistical calculation, linear

transformation, Table 2 presents the gate count for each system.

From the results of the directed graph analysis and the logic design, it is obvious that the function

that is common to all three systems and the most complex, when measured by the number of gates, is

the small window (5x5) convolution. This supports our decision to build a programmable 5x5 local-area

processor as the basic VLSI module.

A Residue Based Image Processor

The work described in Section 2 motivated the design of a processor which could perform the

computationally intensive low-level operations for each of the three systems investigated. In addition to

fulfilling the requirements of the three systems, we also wanted to select an architecture which could be

extended to take advantage of the VLSI design and processing capabilities which are currently being

developed. The architecture we selected is based on the technique of residue arithmetic.

Processor Description

We implemented our local area processor in residue arithmetic to take advantage of modularity,

and hence ease of design, within the VLSI chip and extendability to handle arbitrary dynamic range and

accuracy. The technique relies on the conversion, prior to computation, of all the data to relatively

prime bases (we chose 31, 29, 23, and 19) and the subsequent decoding of the processed data back to

binary numbers. If this overhead is accepted then the arithmetic itself is reduced both in complexity

and in required dynamic range. This enables us to use look up tables, which in our case are

programmable RAM, to perform the necessary arithmetic. Regularity, ease of VLSI design, and

function density are significant advantages. Thus this approach is ideal for VLSI implementation.

A block diagram of a general residue processor is shown in Figure 1. Some of the advantages (e.g.

modularity) and disadvantages (encoding, etc.) of this technique are clearly visible in this representation.

The encoding and decoding, when compared to a binary processor, are overhead functions and can be

the major disadvantage of a residue processor. However this overhead cost can be reduced if enough

computations can be performed while in the residue representation, and hence the encoding and

decoding amortized over a large computation base. The clear advantage of this type of processor is its

natural parallelism. Each parallel computation channel is independent, requiring no communication with

its neighbors until the conversion from the residue representation to a binary representation is

performed.
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Kernel Generation and Encoding

Typically, the input to an image processor is a string of 8 bit data values generated by a raster scan

of the image, in which case we must include in the processor the means for generating the two

dimensional kernel. This kernel generation function is most easily accomplished using a series of shift

registers. For a five line kernel four shift registers, each one containing as many elements as there are

pixels in a line, are required to generate five adjacent lines of video. For our particular application the

shift registers are 8 bits wide and 512 elements long.

Before the input data can be processed by a residue processor it must be converted from a binary

representation to a residue representation. This conversion requires that we calculate:

(X mod BI, X mod B2 .- X mod Bn)

where X is the value of the input data and Bi is the ith base. For our case, since we operate on a

5 x 5 kernel, we must perform this calculation on the input for each of 5 lines of video and for each of 4

processors (equivalent to the four bases). The simplest way to perform this calculation for a general sel

of bases is to use Read Only Memories (ROMs). By connecting the input data to the address lines of

the ROM and looking at the ROM's data lines for the output, a look-up function is performed. For our

particular processor which will support an eight bit input dynamic range and bases which can be encoded

in five bits or less. the size of an encoding ROM is 256x5 bits. Figure 2 shows the block diagram for

the kernel generation and encoding portion of a four base five line processor. Each of the five ROMs

Ior each base are programmed identically.

An alternative way to perform these two functions would be to encode before the kernel is

generated. The major drawback of this technique is that the memory requirements are much greater for

the kernel generation process. For the system we are currently constructing, each line delay would need

to be 20 bits wide as opposed to 8 bits wide for the method we chose.

A Programmable Residue Computation LSI Circuit

The actual computations on the image data will be performed by a custom LSI circuit which is

currently being processed at the Hughes Carlsbad Research Center. The circuit will process a Sxl kernel

and is capable of performing computations of the form

y = f(x)

where y is the output value, x, are the five elements in the kernel, and f, represents polynomial

functions of a single variable.

A functional block diagram of the circuit is shown in Figure 3. The word size for this is five bits,

which limits the prime bases used to a value of 32 or less. The circuit is designed to accept a 5 bit input
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word which is clocked into a 5 element shift register. The contents of each register element is then

shifted to the next register. The 5 bit data in each of the shift register elements is used to address a

look-up table, which is a 32 x 5 Random Access Memory (RAM). This look up operation performs a

unary operation, such as a multiplication by a constant or a squaring operation. The outputs of the 5

RAMS are then summed modularly to produce a 5 bit output, the base of the modular addition being

programmable by external control of the circuit. Since the look-up tables which perform the unary

operation are composed of RAMs the circuit can be programmed for many different computations, such

as different weights for a convolution or different powers of a number for a statistical calculation.

A detailed schematic of the circuit is shown in Figure 4. In addition to having 5 bits of input data

and 5 bits of output data, an additional set of data lines is included in this design. These data lines,

which are bi-directional, serve a multipurpose role for control and testing. When used as input data

lines they can be used to program the base of the modular addition and to program any of the 5 look-up

tables. When used as output data lines they can read the look-up tables to verify the operation of the

circuit.

This circuit is being fabricated using the nMOS technology and has been designed to accept a 10

MHz data rate. To achieve this data rate pipeline techniques were used and the resulting latency for this

circuit is 7 clock cycles. The circuit will be packaged in a 28 pin DIP. Figure 5 is a photograph of the

layout of th chip, which will be available for testing in April 1981.

To utilize this circuit (with a 5xl kernel) in a 5x5 local area processor, multiple copies of the

circuit need to be used as well as additional logic to combine the outputs of the individual circuits. For

each base, 5 of these circuits are used, one for each line of the kernel. In addition four 1024 x 5 bit

ROMs are used to sum the outputs of the five circuits. ROMs are used instead of adders because the

additions must be done modularly. Figure 6 shows the block diagram of the processor, including the

encoding and computation portions.

Decoding

The last portion of the processor is concerned with the conversion from the residue representation

to a binary representation. This conversion could certainly be done the same way as the encoding, by

table look-up, but there is a severe problem with that approach. For our particular system, to convert

four 5 bit values, the decoder would require a memory I million elements wide with each element being

17 bits deep. This table is certainly attainable but the approach is not extendable. If an extra base is

required, so that five 5 bit values need to be converted, the memory requirements increase to 33 million

elements, each being greater than 20 bits deep.

There are twoconversion methods that do not require these large memories. One is based on the Chinese
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Remainder Theorem and the other is based on a mixed radix representation. (For a complete

discussion, refer to Ref. 191) This paper will focus only on the particular implementations of these

techniques and the rationale for selecting one over the other.

To be able to reasonably discuss either of the two conversion methods some notation must be

introduced. If B is the base vector whose elements are the bases used for the computations,

B = (bi,b 2 .... bk),

R is a scalar whose value is equal to the dynamic range of the processor, which is given by

R= bl*b2*...*bk,

and x is the value we wish to encode into the residue representation then RX, the vector whose

elements are the data values for each of the computation channels, is given by

RX = (rxl,rx2 .... rxk)

where

rx i = x MOD bi, i=1 to k.

The Chinese Remainder conversion process is based on the following property. If

RX = (rxl,rx 2,rx 3,rx 4)

then

RX = [(rx 1 ,rx 2,0,0)+(0,0,rx 3,rx4)] MOD r.

Figure 7 shows a system which performs this conversion and which requires only two blocks of

memory 1024 elements wide and two adders. The adders need only be as large as the accuracy required

of the system. Typically, for image processing systems, the output dynamic range and the input

dynamic range are equal and thus the adder complexity can be relatively small.

The second conversion scheme considered is based on the mixed radix method, but is simplified

by the fact that the output dynamic range can be approximately eight bits. The method can be

explained by imagining an iterative process where at every iteration the smallest base is eliminated by

dividing the data value by that base value. Dividing essentially reduces the dynamic range of the value

and thus eliminates the need for the extra base. Of course., since we are limited to a strictly integer

system, we must make sure that the value is evenly divisible by the smallest base. This can be done by

rounding up or down so that the element in the residue vector for that base is zero. Figure 8 shows an

architecture for a four base system that performs this mixed radix like conversion. At the bottom level

of this tree structure the fourth base is eliminated. At the next highest level of the tree the third base

is eliminated. Finally we are left with two base values which can be decoded with a simple look-up

table. This system has been simulated and the computer programs exist which can generate the

contents of the ROMs for this conversion process for an arbitrary set of bases.
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We chose the mixed radix based conversion process to be implemented for our processor for two

reasons. First, the method does not require any logic other than ROMs. This tends to make it more

flexible and reliable. Second, the method appears to be easily extended to more bases, by simply

extending the decoding tree. Extending the Chinese Remainder based process would require either

larger ROMs or more adders, either way being less attractive way than the mixed radix type conversion.

Programming and Control

A major problem in the fabrication of this processor is gaining access to each of the 20 custom

residue chips for the purpose of programming the look-up tables. Each chip has three address lines to

select one of five RAM structures, a read/write l;ne, the five bidirectional programming data lines, and

a control line for the data line drivers. These 10 control lines must be brought out for each of the 20

custom chips for a total of 200 control lines for the purpose of programming. However, by bussing lines

where possible and by using a peripheral interface chip, the Intel 8255, the number of lines that are

actually brought out of the processor is reduced to 16.

Figure 9 shows the structure that will be used to program the processor. The three address lines

and the bus driver control lines are brought from each custom chip to an 8255. One 8255 is able to

control five of the custom chips, since the 8255 has 24 lines available through three 8 bit ports. Thus

four 8255s are required to control all twenty of the custom chips. In addition, the five program data lines

and the read/write line are bussed between each of the chips and these six lines are brought to a fifth

8255. The eight input data lines of the 82 55s are bussed together, as well as the two bit port select

address lines. Finally we bring out each of the 5 chip select lines to a binary decoder, allowing selection

of a single 8255 using three control lines.

To use this structure to program a given RAM element in the processor requires the following

steps. Initially, the fifth 8255 is selected and the data to be programmed are written to the port

containing the five program data lines. Next, the 8255 that controls the chip that the desired RAM

element is on is selected, and the code to select the desired RAM structure is written to the proper port.

Next, the address of the desired RAM element is provided on the input data lines of the processor, and

then the address data is shifted so that it is addressing the proper RAM structure. Finally the write data

line is strobed to complete the programming sequence. This sequence can be accomplished by three 16

bit data transfers For a processor using 31, 29, 23, and 19 as the modular bases, a total of 2,550 RAM

elements need to be programmed. Thus, if three words transfers are required for each RAM element, a

total of 7,650 word transfers are required to completely program the processor.

The processor, which involves all of the functions described above is currently being fabricated.

The majority of the electronics will be on a single wirewrap board, but the line delays will be in a
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separate box. A picture illustrating the progress on the wiring of the board is shown in Figure 10.

A VLSI Version of a Residue Computation Chip

Even though the custom chip is performing the bulk of the computations, there is still a fair

amount of extra circuitry required. Most of the extra circuitry is necessary because we are using a

custom circuit based on a 5 x I kernel. The next step then, once this processor is tested and

demonstrated, is to develop a 5 x 5 residue custom circuit and fabricate a processor which would utilize

these VLSI circuits.

Ideally the 5x5 circuit should include the circuitry for generating the five-line kernel. This would

mean that there would be five bits for input and five bits for output. If the kernel generation is

performed off of the chip, 25 lines for input would be required or at least a high speed multiplexer

would need to be on the chip. On the other hand, if a simple line delay is used to generate the five-line

kernel, the circuit would be too inflexible, since it may not be suited to certain applications. This can be

avoided by augmenting the shift register with logic to control the clocking. By multiple clocking the

shift registers can be made to delay any length up to the maximum length. In other words we could

construct an elastic delay line.

Figure 11 shows a block diagram for the data flow of a 5x5 residue circuit. This circuit includes

four delay lines, probably 512 elements long, 25 registers for generating the 5x5 window, 25 RAM

structures, 24 modular adders, and some delay stages. In addition, programming, control, and testing of

this circuit must be considered. A great deal can be learned about these issues by using the processor

currently being fabricated.

Both the current chip, the 5xl, and the next chip, The 5x5, have been sized to get a quantitative

measure of their complexity. The CRC 181 has a device count of approximately 6,500, of which the

RAM portions of the circuit take up 4,500 devices. For the 5 x 5 custom circuit the device count will

increase to 80,000. One of the reasons for the high device count is the addition of the line delays,

which account for 50,000 devices (for static memory cells). The total number of devices for random

logic is about 7000, which is low considering that the circuit will have a throughput of 500 million

operations per second.

As stated, going to a 5x5 circuit will greatly reduce the extra circuitry required to construct a 5x5

processor. Figure 12 shows a block diagram of a system utilizing a 5x5 circuit. With the VLSI circuit

the package count for the data flow portion of the processor will be only 14. This is compared to a

package count in excess of one hundred for the current design. The power and size will be greatly

reduced, thereby permitting the processor and the DEC UNIBUS interface to be put on a single card.
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Functional Capabilities

Although the primary motivation for developing this processor was that the systems we

investigated required 5x5 convolutions, the processor is capable of performing a wider range of

computations. The reason for this flexibility is due to the fact that we used a lookup table to perform a

unary operation and the table is completely programmable. The general form of the computation that

can be performed by the processor is:

y= fi(xi)

where y is the output, the xi are the 25 elements in the 5x5 kernel, and f1 are polynomial

functions of a single variable. Each fi is completely arbitrary and need not have any relation to the other

fi. By selecting subsets of the f, to be identical to zero, we can program the processor to perform point

transforms, 1-D transforms of any size up to 5xl, and 2-D transforms of any size up to 5x5. Table 3.1

lists some of the functions that can be performed by this processor.

Unibus Interface

The processor, as mentioned before, is designed to accept data at 100 nanosecond intervals. The

reason for this high speed design is to allow real-time stand alone operation. This means, however, that

when the processor is used as a peripheral device attached to a general purpose computer, the data

transfer will be limited by the memory cycle of the general purpose computer and not by the processor

speed. This means, that to get optimal use of the processor, we need the fastest type of transfer

available between the processor and the main memory, where the data to be processed will reside. The

Direct Memory Access (DMA) type of transfer is the fastest type of transfer that a general purpose

computer can support, since it does not require processor intervention. For DEC UNIBUS applications.

the fastest data rate one could expect is approximately I MHz.

The type of interface we design should then be able to provide a DMA transfer capability for both

the programming data and the image data. For either type of transfer, it is essential that the interface

be controlled to select the memory location from which the data are to be transferred and to select the

number of words to transfer. For program data transfers the interface will only be required to transfer

one way at any time. The transfer will be to the processor while in a program mode and from the

processor while in a test mode. For image data transfers the interface must be able to transfer data both

ways, for input and output. The simplest alternative to handle this bi-directional transfer of data (from

a hardware point of view) is to transfer the output data to the same memory location the input data

came from, i.e. write the output image over the input image.

DEC devices exist that can provide the DMA transfer capability as well as provide several control
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lines to the peripheral device to allow multiple transfer modes. One such device is the DEC DRIIB

UNIBUS parallel interface. Our plan is to use this device to provide the DMA capability and to design a

custom interface to permit the specific transfer modes. The arrangement suggested is shown if Figure

13.

The custom interface will need to interpret the control lines from the DR 1 B and decide if the

transfer is for program data or image data. If it is program data the interface will simply pass the data to

the 16 program data lines. If it is an image data transfer, the the custom interface is more complex.

Since it is a 16 bit transfer, the data will contain two pixels. So following the transfer, the interface must

first pass one byte to the input data lines and then the next byte. Simultaneously the interface must

load the first output image data into one byte of the 16 bit output data register and then the next output

data into the other byte of that register. Finally the output data registers contents are transferred to the

DRIlB which writes it to main memory. A preliminary schematic of a system that can perform these

types of transfers is shown in Figure 14.

Summary and Future Work

We have described the work undertaken to design VLSI processors for these widely used systems:

line-finding, texture classification, and segmentation. From this we believe we can, if required, build

the necessary hardware. However, of greater impact, we have identified and started to build a fully

software programmable low-level processor for 5x5 operations. The circuitry described relies on a

special purpose VLSI chip with 6500 components. Using this, and the interface designed to hook the

processor to commercial general purpose machines, most low-level arithmetic operations over a 5x5

kernel can be performed. This work will continue and the full system demonstrated using our in-house

PDP 11/34. We then anticipate making this available to interested government researchers in this field.

Our future plans include the investigation and possible development of a single ultra-high density

circuit to include the full processor and the development of a compatible logic processor.
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