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ABSTRACT

An efficient automatic procedure is given for ¢valuating the integral of the bivariate normal
density function (IBND) over an arbitrary polygon I1. The polygon 1, defined by N points, falls
into one or more of the following classes: {37, simple polygons: { 8}, limit elements of sequences
of uniformly bounded N-sided simple polygons of the same orientation; { I}, arbitrary polygons,
which includes self-intersecting (S1) ones, where (S} € {S) € (11}, It is not necessary to specify
the class beforehand. The method extracts from IT a set of N exterior angular regions. The IBND
is evaluated over each of these, and the results are properly combined to yield IBND for 1L In
case I is 81, account must be taken of the number of its “primary circuits’ and their orientations.
A by-product of the analyses is the evaluation of a function A(ID) for which |Al. when properly
interpreted, gives the area of I1.

Another procedure for obtaining the same final results is described for completeness which is
not as efficient. It treats an S1 polygon by decomposing it into a finite set of S or § type elements.
The [BND is evaluated over cach of these: the results are properly summed to give the IBND for 1.
In contrast to the first method, the smallest class {S}. (S}, {11} to which 11 belongs must be
specified for computational efficiency.

The Fortran IV programs for both procedures are presently set to yield approximately 3, o.
or 9-decimal-digit accuracy. Fortran IV listings of the programs are given.
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1. INTRODUCTION

This report describes two automatic and efficient procegures for evaluating the integral of the
general bivariate density function over an arbitrary polygon! I1. Specifically, we evaluate P(I1), i.e.,

L (1-p2) M2 w =\ W=y )z~ )
(1) Pl = —W J:fexp {—[(T) ~2p 0u0,
n

o ;z“’)z]/z(n —pz)} dw dz,

where (n,, p,) is the mean and

6l pogo,

po0, 0
is the covariance matrix of the normal random variable (w, z) with correlation coefficient o lpi <.
Three main classes of polygonal elements? {8), (S), (I1) are treated in the text. The set of
simple polygons is denoted by (S} with the subset of convex polygons denoted by (C). The class
{8} is enlarged to include elements which are limits § of sequences of uniformly bounded N-sided

simple polygons with the same orientation, {S4(N)). This class is denoted by {S). A miore ex-
tended class {1} is obtained by adding self-intersecting (1) polygons? to (S},

Using the well-known linear transtormation

w - z1- 4 . 2-~n
(2) x=[—7,-"!- —-6»-4]/\/1' L oy B <,
' 4 [ 4

in (1) results in a new integrand which has circular symmetry about the origin. In sddition, since
(2) maps straight Jines into straight lines, 11 transforms, by (2), to another polygon I1 of the same
class. Thus (1) can be written as

(3) Pty = pay = } Z(x, y) dx dy .
i

1A polygon or palygonal element will always mean a closed finite broken line, with its interios, in the plane. The
last seament terminates at the first point. dts boundary is defined by an ordered set of N points in the plane. How-
ever, we specify a polygon by N ¢ 1 points, where the (N + 1)st and first points are the same.

For case of language, polygon and polygonal element are used interchangeably.

3We say a polygon is self-intersecting if it is not in {§). A chatacterization is given w Section Il

1




where
4) Z(x,y) = 2—1“- exp [—(x2 +y2)/2] .

Hereafter, we assume (1) has been transformed to (3), and we deal only with (3), the integral of
the bivariate normal density function (IBND) for I1. Also, unless noted otherwise, we denote an ele-
ment of a particular class or set by the letter in braces designating that set. For example, C refers
to an element of {C}. Note that {C} C {8} C {8} € (I}.

We make the coavention that if a simple polygon S is positively oriented, (PQ), i.e., with its
area on the left as one traverses the boundary continuously, (3) yields a positive result, whereas if
S is negatively oriented (NO), i.e., with its area on the right as the boundary is traversed contin-
uously, (3) yields the same iesult with a minus sign. If IT is SI, there can be both positive and
negative contributions to P(I1). For example, in Figure 1 below, P(IT) is made up of the sum of
the probabilities over triangles A and B, where A is specified by the point set (1, 2,3, 1) and B by
(3, 4,5, 6). Thus P(II) = P(A) + P(B), where P(A) >0, but P(B) <0. Clearly then, P(IT) may be
negative and make no sense in terms of probability: nevertheless we often cail P a probability,
regardless of its sign, for case of language. In Figure 2, we have an example of an element § of (51,
where P(A) and P(B) are both positive. These concepts will be discussed more fully in Sections 111
and IV,

in Figure 3 we show an clement of a sequence (S, (11} of 11 sided simple polygons for which
a limit element $ is obtained by letting the points 3-9 converge onto the same straight line as
shown in Figure 4.

A main objective of this report is to describe and discuss two procedures, (P~ A) and (P~B),
to evaluate (3). In either case, if [His b (S}, POID) is found by integrating (4) over a set of extenrior
angular regions of 11, essentially in the same way as doscribed in { 2], {3) for convex polygons. The
details are given in Section HI. For background and completeness, the convex case is summarized
in Section .

4
B A
S
3
2 3 e \
A -
1 1
Figure 1. An SI Polygon of Class (I1} Figure 2. A Polygon of Class (S)
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Figure 3. A Simple Polygon of (S, (11)} Figure 4. Limit Element S of {S,(11)}

The sanw is true if 11 is in {S). Some pre-processing of I, which reduces it to an element
of {S}, as described in Section U, may b~ necessary with (P-A) and desirable with (P-B). It is
then treated as indicated in the previous paragraph.

If 11 is self-intersecting (SD), pracedures (P~A) and (P-B) are quite different. For (P=A), 11
is first dccompowd by separate sub-procedures, into a set of disjoint isolated elements in {S), or
perhaps (S}, The value of P for each of these isolated elements is computed and the results are
summed to yaeld P(IN). For (P-B) no decomposing procedure is mecessary. It treats Il as if it
were in {S) or {§). Thisis possible because it keeps track of the number of “primary”* circuits, or
loops, in I Generally (P B) is faster than (P~ A), since there is no pecessary pro-processing to do.
Morcover, in (P=A), for efficiency, one must specify the smallest class to which 11 belongs: if. by
error. one specifies 3 clags to which IT does not belong, then PUIT) will be compuied incorrectly.
For (P~B), the smallest class need not be specified, and incorrectly computed results are not
possible. Since (P=A) decompeses I, it is useful in analyzing the configuration of I1. Nevertheless,
(P=B), with sonte of its parts in common with (= A), is the prefersed procedure. 1t will be dig-
cussed in Section IV, The remainder of the discussion on (P=A), with some numerica! results, is
relegated to Appendix A.

We emphasize that the procedures described in Sections I and 1V lead to a computer program
which is completely automatic in the sense that one can simply specify, as input. the coordinates
used to define 11 in proper order, the number N of such points, and one of three accutacies desired
for P(ID. A by-product of the program is a function A(11), whete AL properly interpreted. gives
the area of 1.

In the most general case where 11 is SI. we do not know of another program to compute P.
Even if I is simple we are not aware of an automatic program, although such a prograim would
have many applications in probability and statistical studics. OF course, brute force methods can
always be devised. such as decomposing Il into triangles and quadrilaterals {5, p. 956]. Even
though it is casy to obtain a program for decomposing an arbitrary polygon into a set of triangles,
the required number of such triangles would result in an inefficicnt procedure.* ¥or example. in

——

Areranans.

410 Section V1, (see page 47). sech a procedute is desceibed. Combined with Deczner's algorithm, (2. page 18] &
gives us an independent imethod for checking owr proglams. A liting of the checkout progranm 1s given in
Appendix G.
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the case of an N-sided polygon, P would be required, in general, for 3(N-2) angular regions,
whereas (P—B) needs P for only N angular regions. The major time-consuming portion of the
program for computing P(II) is the evaluation of P for each angular region necded.

The computer program and its flow charts are discussed in Section V. The Fortran IV
CDC-67005 program listings are given in Appendix F. Section VI contains numerical results for
polygonal clements displayed in Figures 30-58. These figures demonstrate the robustness of
the program.

II. NORMAL PROBABILITY OVER CONVEX POLYGONS (SUMMARY)

The numerical method and computing program for evaluating P(C), where C denotes a convex
polygon, are described in detail in an carlier report, [2]. We proceed to summarize the main ideas
since most of them carry over to polygons in (S).

We use the notion of an angular region, i.e., the semi-infinite region bounded by twe inter
secting straight lines. There are four such angular regions associated with (wo intersecting straight
lings and one must keep in mind which one is of interest. Let @ denote the angular region of
interest. As shown in Figure 3, it can be specified by the parameters R, 8,, 4y, Lines | and 2
form the boundaries of . The quantity R denotes the distance from the ornigin to the vertex of
a 3t V. When necessary we shall denote @ by atR, 8,, ;). Our objective is to give an efficient
procedure to evaluate Pla).

Because of the circular symmetry in the integrand of 31, it is convenient to perform g rota-
tion of axes through the angle v, such that the line L and the new positive x-axis coincide. The
rotation for Figure § is shown in Figure 6. Hereafter, we assume such a rotation has been cared
out and call the new axes x and y again.

Figure 5. Angular Region (R, §,. 0,).
(Shaded Region)

\%

P A I R F IV SR Ay

5 The CDC-O700 is 2 targescale binary computes which does 108 atithmeilc aperations per sovond on 48-bil mantissas.
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Figure 6. Showing Angular Region a
Relative to Rotated Axes

Introducing polar coordinates (r, 8) centered at V = (R, 0), we have
(5) X =R +rcosf, y=rsinf, -n<0<m,

The variable 8 will be measured, from the x-axis (x 2 R) about (R, 0), as positive in the counter-
clockwise direction. Using (5), (3) becomes, with g in place of II,

2n

8, oo
(6) P@) = L f f exp [~1/2(R? + 2rR cos 6 +12)] rdr d6 .
8, 0

An integration by parts in (6), on the integral in r, yields

(N f e-1*/2g-tReos6 rdy = | — 2u erfe(u)/z(u),
0
where
(8) u = R cosb, z(u) = "g“exp(-uz) erfc(u) = " z(t) dt.
v vE |

Using (7) in (0), and carrying out the obvious part of the O-integration yields

- 6, -0
) P(q) = e-R¥W2 {-—-2-51—(——‘ —-}r- 1;02 uferfc(u)/z(u)l d()} .
{

If R =0, then P(«) = A0/27 as required, where A8 =0, - 0,

For exterior angular regions of polygons we can require that ~7 < A0 < 7. For PO (NO)
convex polygons, 8, will always precede 0, in the countercluckwise (clockwise) dircction, so that
0< A8 <7 (—n < A8 <0). Hence from (6}, P(a) 2 ()0 for PO (NO) convex polygons.
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We resolve the difficulty of evaluating the integral in (9} by using a minimax polynomial fit to
erfc (u)/z(u) for 0 < u < ¢(8). That is, for a given & > 0, a set of real numbers, {a,}, and a least
positive integer K are found such that

K

erfc (u) = z(u) Z aguk
0

(10) < 5, 0 < u=<c@®).

-

It is shown in 2, page 6] that if (10) holds then

(1) < BI/T

-R2 6 K
€ :/2 fz {u[erfc(u)/z(u)] - Z aku"”} d6
CH 0

Thus the constant ¢ is chosen, once § is specified, so that the probability over the semi-infinite
region to the right of the line x = /2 cis equal to 8/\/7, i.e.,

(12) Loorfe(e) = e = ST

The coefficients a, as well as K and c(8) are given in [2] for 4 different values of ¢ corresponding
to desired accuracies of * 6, 9, and 12 decimal-digits in P(a). They are also included in Appendix E
of this report.

Recurrence relations allow us now to carry out the numerical integration of the integral in (9).
We have, using (10), that P(a) is given within ze by

.-a!/z X _
0
where
(&
s (RIVI) f cosk0 40
(14) o

|
ha =197 [(hz&a -y + "-( ) by 1]

with

&ﬁ—}:wse, hi=-%~—sin05. i=1.2
(5) Ve

RY = (x2 + y), with vertex of @ at (x. y),
and




..‘:j -

¥
0
3

The constraints [6,| < 7/2, 16,] < w/2 in (13) are required since (10) only holds for u= 0, which
requires cos § = 0, since R 2 0. For arguments outside the range 6] < 7/2, we make use of the
relation

—_— 1 - -——R— 1 Eaad ~—
an P{a(R,0,8)] = 2 arfe (\[2_ sin 9) Pla(R,0,7~8)], (8l <,
where a(R, 0, §) denotes the angular region with its vertex at R, 8, =0, 6, = 6 (see Figure 6).
The various situations in which (17) is needed are shown in Figure 5§ of {2].

The program resulting from (13), (14), {17) is very efficient and takes advantage of situations
where reduced computing effort is possible, namely when R is sufficiently large or small. For
example, (18) is used when R¥/2 < ay, with G set to zero when R?/2 < a;.

(18) Py = §l-g- 40 [;iﬁ (hy =hy) = 3 (851 -glh,)J.

See Section V (page 28) for added comments. Details are given in {2, pp. 6-8].

Letting C(v,., v, ..., vy) denote a convex polygon with N vertices, v, v,, ..., vy, where
(v} = (x;, y;), we have
N

(19) PC) = 1 - ) Pla).
l

This equation is fundamental to computing P(C) by the use of probabilities over appropriate
angular vegions a;, 1 = 1, ..., N. These angular regions, quite simply, turn out to be the exterior
angles of C as shown in Figure 7 for N = 6.8

Figure 7. Convex Polygon, N = 6. Shows
Angular Regions for (19).

6)n [2]. [3] we designuted the angular regions for P(C) in a dightly different but equivalent way.
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Cuearly (19) is true since Z) P(g;) = 1 ~ P(C). We also note that the vertices are specified in
ccunterclockwise order so that the area of C is on the left as one travels along C continuously from
Qo k=1, ., N, (vge) E(v)).

‘¥her Af is very near O or m, the possibility of a catastrophic error due to round-off must be
dealt with. As an example of this singular situation, suppose we are considering a polygon where
one of the angular 1egions, say a, as shown by the solid lines in Figure 8, subtends an angle of
nedarly 7 radians with the sides of a at large perpendicular distances from the origin, so that
P(a) ~ 1.0. Bui suppose that by rounding error line is actually given by the computer as
ling @ so that the angular region 4 subtends an angle 6, near (—m) radians. The program would
then yield a value P(@) near zero. Moreover it would be negative since ] is measured, from @ to
@, clockwise rather than counterclockwise as required. The reader should note, as stated earlier,
that for a pesitivcly oriented convex polygon all the angular regions ¢; i = 1, ..., N are positive,
i.e,, rotating from 6, to 6, is always in the counterclockwise direction so that each A, is non-
negative and no larger than 7.

The program is alerted to a sing alar situation, such as the above example, whenever
(20) sin (8, - 6)) < 0,

for any angular region gy, ..., ay. If thic inequelity holds, and it can only hold through rounding
error, a second inequality is tested, namel:,

an cos (9, —0,) < C.

If (20) and (21) arc both satisficd, we resolve the diffisulty by setting P(C) = 0, since it an angular
region has A6 = w for a convex polygon all vertices must be on the same line, 1f (20) holds but (1)
does not, we set P(a) = 0, since 40 ~ 10-1. However, in this cese, a remote possibility can
aris¢ for which F(a) = 0 mav be incorrect. In particv'ar, wher g, and g, are both negative and R is
verv large, say 10% P(a) may not be near 22ro even though A6 ~ 10714, Under these very unlikely
circumstances, we cannot determine Pa) within the single precision capabilities of the CDC-6700,
because of the inadequate precision in a0,

y A @ @

/
\ i
a "3

/

X Figure 8. A Singular Case Situation




In the earlier report on convex polygons, [2], we remarked that a program was available for
arbitrary polygons which made fundamental use of the probability program for convex polygons.
Those ideas are briefly summarized in Appendix C. Since the completions of [2], [3] later studies
revealed that a significant increase in efficiency could be made by dealing directly with simple
polygons, rather than decomposing them into sets of disjoint convex polygons, as done originally.
These results are the main topic of the next section.

III. NORMAL PROBABILITY OVER S AND S POLYGONS

In this section, we describe our method, based on computing normal probabilities over exterior
angular regions, for evaluating P for elements in {S}. The same method, by continuity arguments,
can be used to find P for elements in {S), provided certain precautions are taken, which will be
discussed later. Just as for the class {C} (convex polygons), we shall show that P for an N-sided
simple polygon requires the integration of (4) over its N exterior angular regions. Taking the
precautions mentioned above into account, no more than N integrations are also needed to compute
P(S), where S is specificd by N points.

It is important to keep in mind that the angular measure A6 = 6, — 0, for an exterior angular
region a of a polygon, satisfies -7 < A6 < 7.7 Also one can see from (6) that P(a) takes the same
sign as 40, where 8 is taken positive (negative) measured from the x-axis, x 2 R, about (R, Q) in
the counterclockwise (clockwise) direction, (see (5)).

We say S is positively oriented (PO) if its vertices (v}, j =1, 2, ..., N arc ordered such that the
interior of S is on the left as the boundary is traversed continuously in the direction of increasing j.
If, on the other hand, the interior of § is on the right as the boundary is traversed in the way just
described, then we say S is negatively oriented (NO). For oxample, the polygens A and B, making
up I in Figure | are PO and NO, respectively.

One way to determine the orientation of S is by the sign of the expression for A(S),

N
(22) AG) =33 Xy =YD Yo = Ve Yner S ¥y

=
where (x). y;) denotes the coordinates of the i vertex (v,) of 8. In fact, it can be shown that $ is
PO it and only if A(S) > 0, and NO if and only if A(S) <0, (see Appendix D). The area of S iy
given by [Al. The cxpression in (22) yields an efficient procedure for computing A(S). The com-
puter program for this computation, SMP-7, is listed in Appendix F. The derivation and orientation
properties of (22) are given in Appendix D. Also the expression for A in the wz-plane is given there,
(See page 1).

Consistent with carlier remarks that P(S) is taken positive if S is PO, we have

3 {l’(S) >0. ifA>0,
- P(S) <0, if A <0, (P(S)=0,if A=0), (See page 26).

o \ttn

TFor computations, a strict inequality on the left is vsed. Mote on this later in the report.
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MoIeove& since A is a continuous function of the vertex coordinates of S, (22) must also hold for
all Sin {8}. Thus S may be replaced by S in (23).

Consider first that S is PO; then we shall show that

N
(24) PS) =1 ~) P@.

i=1

Here a;, as before, denotes the exterior angular region at the ith vertex of S, which is formed, as
always, by extending the sides (i— 1, i) and (i, i + 1) as shown in Figures 7 and 9, where fori=1,
(0, )= (N, Dandfori=N, (N, N+ 1) = (N, 1). A glance shows that (24) is the same as the
expression for P(C) given by (19). In (19) each P(q,) is positive. In (24) this will not be the case if
the interior angle at (v;) of S exceeds m radians. For example, in Figure 9, the interior angle at (3)
exceeds m, so that a5 is measured in the clockwise direction rather than counterclockwise. Hence
48 <0 for ay and P(ag) < 0. Note that P(a;) >0 fori= 1,2, 4.

Figure 9. Polygon S. Shows Angular
Regionsa;, i=1,..., 4.

Since the sign of P(a) is dotermined by the sign of 40, it may also be fixed by the sign of
sin AD. Thus, we also have

(25) {P(a) >0 if sinad > 0,
) Pla) <O if sina0 <0, A0 =0, -0, |40 <=
As a second example, in Figure 3, on page 3. 8 is PO with P(@) >0 fori=1,2,3,57.9,10, 11,

and P(a)) < 0 for i = 4, 6, 8. The ambiguous case, sin A0 = 0, with [40] = n, is connected with the
precautions mentioned carlier for S, and will be discussed later in this section.

Let (S+) denote S when PO, and let (S=) denote the same configuration when NO. If (24)
holds for (S+), then

N
(26) PS-) = -1 =) Py,
il

where dnez-; from (24) and a; from (26), with (N + 1) = (1), are vertica! angles with their measures
of opposite sign.

10
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Indeed, since P(S§—) = -P(S+) = —1 + Z P(q)), and T P(g;) for (8-) has the same absolute value,
but opposite sign as the corresponding quantity for (§+), (26) follows directly. By continuity
arguments, (26) also holds for NO elements in {S} provided certain precautions are taken.

The truth of (19) for convex polygons is. obvious. In the case of (24) we give a heuristic
argument for its validity, which can be made rigorous.

The argument is inductive. Certainly (24) holds for N = 3. Some insight is gained by con-
sidering N = 4 with S not convex, as in Figure 9. We see that 1 — P(S) is obtained by considering
E? P(a,), where P(a3), which is negative, compensates exactly for the excessive positive contribu-
tion from P(a;). Thus (24) holds for N = 4.

Now assume (24) is true for N=J — 1, J 3 4. We shall show that (24) holds also for N=1J.
We look at the special case J = 8, with Figure 10, since the essentials of a rigorous proof are con-
tained in the arguments for this case.

First a diagonal L is drawn from vertex (3) to vertex (7) which remains inside S. Such a line
can always be found for any simple polygon; a proof of this fact is given in Appendix B. This line
separates S into two simple polygons with the same orientation as S. Call the separated polygons D
and E. Each has fewer than J vertices. From Figure 10, D is defined by the vertices, of S, (1), (2),
(3), (7), (8), and E by the vertices (3), (4), (5), (6), (7). Note S, D, and E are all PO. By assumption,
(24) holds for both D and E, where we have g, 1 = 1, 2, ..., 8, the angular regions of S:%; and &)
j=1.2,3,4,5, the angular regions of D and E. Hence

Figure 10. Shows Angular Regions of Simple Polygons D and E

1
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27 PD)=1-3" P@), PE)=1=-) PE&), PD)+PE =PS),

i=1 i=1

4

where
(28) 2y =a1, %y =0y, Ds =ag, 6 = ay, 6y = a5, 6, = ag.

We also have &3, ¥, &}, and &5 as shown in Figure 10. Moreover, with P(a3) <0 and P(a;) >0,
clearly

(29) P@a;) = P(?y) — [P(L) - P(&],  Plag) = P(&y) + P(&y) - [1 -PL)],

where P(L) denotes the (positive) probability over the half-plane below the extended line L.
From (27),

J

S
(30) P(D) + P(E) = 2~ )" P(&) - ) P(&).
i=1 {=

Ju-

—

By using (28) and (29) in (30) wo have
@ty PS)yY=PkD)+PE)=2- P(al) = P(ay) = [Play) + P(f.) - P(4))]
~[P(a;) = P(&5) + 1 = P(L)] - P(ag) ~ P(&)) — Play) — Play)

8
-Pag) = P(dg) = 1 = ) Play.
i=1

This completes the argument based on Figure 10. In order to make the proof rigorous, it is necessary
to consider all the basically different possibilities for the measures of the angular regions at the two
vertices on the diagonal L. In Figure 10, the interior angle at (3) was greater than  radians and the
one at (7) less than # radians. The three other possibilities were checked. The arguments in these
cases réquired nothing new and are not included.

In discussing the sign associated with P(a), sec (25), the ambiguous case arose wheresin A9 = 0,
i40] = =. The precautions we mentioned at the beginning of this section, in order to extend our
resuits from the class {S} to the class (S}, are necessary because of this ambiguous case for P(a).
To specify these precautions explicitly, we introduce soveral definitions.

We say an angular region a is singular (SAR) if (a) or (b) holds:

(a) Three consecutive points specifying a, say (k ~ 1), (k), (k + 1) are colinear, i.c., are vn
the same line L, with [A8| = x. Such an angular region is called a a—angular region,
(PAR).

(b) Two successive points of a, say (k — 1), (k), coincide. We call them successive duplicate
points, (SDP).

12
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Examples of (a) occur in Figure 4 for k = 4, 5, 6, 7, 8. Examples of (b) are shown in Figure 31,
where (1), (2) and (3), (4) and (15), (16) are SDP.

The problem of SDP is easily treated by discarding one of the points from the xy-array speci-
fying the polvgon S.8 Clearly dropping such points does not affect the value of P(S).

The PAR, say a, which is our prime concern here, has the property that its angular measure A8
can take either a plus or minus value of 7 and P(a) given, with a proper choice of signs, by +1/2 erfc
(+t/+/2), where t denotes the normal distance from the extended line L to the origin. Once the sign
of Af is chosen ‘“‘correctly.” and this is not trivial to do, the signs of P(a) and of the argument t are
determined. In addition, from a computational viewpoint, the correct choice of signs for a PAR
must take into account the fact that the 4-quadrant arctangent subroutine returns A9 = 7 which
may be wrong. If the correct choice is not made, then computationally such an element of (S} is
considered to be SI. The reasoning for this must be postponed until we give a characterization of
S1 polygons in the next section.

As a consequence of SAR(s), our main program package contains two subroutines for evaluating
P(S) which treat SAR(s) in different ways. One, VALR-7, cannot evaluate P(S) directly if SAR(s)
exist in S. It resolves the problem by pre-processing S with another subroutine SORT III which
eliminates SAR(s). This is permissible since the deletion of such regions does not affect the value
of P(8). For example, SORT I in processing S of Figure 4, would delete points (4), (5), (6), (7).
(8) which clearly would not change the value of P(S). The deletions by SORT I1I reduce § to a
simple polygon which can then be treated by VALR-7 to compute P(S).

The other subroutine for evaluating P(S). VALR-2, based on (P-B), is the more versatile
routine. In Sections IV and V. we shall show that it can find P(II) for any I in {I1}. 1t does not
need to pre-process {1, and yet it handles PAR(s) and SDP so that P(ID) is always computed cor-
rectly. Thus, it has no problem with singular situations mentioned on page 8. Like VALR-7, it
integrates (4) over N-angular regions to determine P(I1), where I1 is spocified by N points.

The subroutine VALR-7 is included in the program package, because it can be, on the average,
slightly faster than VALR-2 for simple polygons, where, of course, most applications occur. It uses
A(S). (22). to decide whether (24) or (26) is needed. The reason for its greater speed will be given
in Section V, page 38,

In the next section, the discussion is extended to arbitrary polygons.
IV. NORMAL PROBABILITY OVER ARBITRARY POLYGONS

In this section we show how to evaluate (3) for SI polygons. By our curlier remarks, these
clements belong to (11} but not to (S).

8We limit our discussion here to clemonts in (S}, but cortainly SAR(s) cun also vccur with eloments of {11} not
in {S).
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Recall that (P—A), to be discussed in Appendix A, is based on decomposing an SI polygon 11
into a set of disjoint elements® in {S} or {S}. In addition, if care is not taken, and a class is speci-
fied to which Il does not belong, thet. a wrong value of P will result; moreover for computational
efficiency, it is necessary to specify the smallest class to which IT belongs.

For (P~ B), on the other hand, we shall show it is not necessary to specify the class to which ITI
belongs, and that P for any II in {1} is evaluated by computing P over its N exterior angular
regions, where N, as usual, denotes the number of points specifying I1.

We first characterize SI polygons. Then we describe in detail and establish procedure (P —B),
(see page 3) for evaluating P(II).

One way to note an SI polygon is to show it is not in {S}. Our classification procedure is
straightforward, and it is easy to conclude from it, in principle, if a polygon is SI. Before supporting
these statements, some additional definitions and notation are given.

The j™ node (j) associates the integer j with the jt* xy-point, (xj, y;) of the ordered point
set V which defines 1. The set V is denoted by the set of nodes (1, 2,...,j— 1, j, j+ 1, ..., N+I).
Let the j*h edge of I1, denoted by j, mean the directed line segment of Il originating at (j — 1) and
terminating at {j). so that j terminates and j + 1 (N + 1 = 1) begins at (j). We say j and J + | are
associated with the jt* node. Of course, more than one node can exist at the same xy-point, in
which case that point is called a multiple node (MN). If only one node occurs, it is called a simple
node (SN). For example, in Figure 13, page 16, the first node has two edges 1, 2 assaciated with it.
Nodes (4) and (7) at that same xy-point have the edges 4, 5 and 7, 8 associated with them, respec-
tively. We identify a particular MN by MN (i), where (i) refers to the first node met at that xy-point,
In the example above of Figure 13, we would refer to MN(1). A vertex (§) of Il is a point of V such

that j and j + | have different slopes. We define a path (j, k] of T as a line made up of consecutive
edgesf j+ 1, ..., k, j<k.

In order to characterize an SI polygon, we use an a-numbering scheme, sometimes simply
designated as an aroption, for specifying I1. By this scheme, all vertices, points where two segments
cross, and initial and terminal points of overlapping segments, are numbered in their natural order
as 11 is traced; i.e., starting from a point (1), each time such a situation is met it is numbered, in
sequential order, until IT is completely traced. Some polygons numbered under the a-option are
showr in Figures 13, 15, 18, 19, 20, 24, 25, and one that is not is given in Figure 26,1 We will
give a brief further discussion on Figures 25 and 26 at the end of this section, (Page 24).

To establish whether IT s SI, we use the fact that IT cannot be 2 limit element of (8,(N)}, a
sequence of uniformly bounded N-sided simple polygons with the same orientation, if the path
formed by two of its edges associated with a nodal point at an MN penetrates another such path at
the same MN. By penetrate, we mean pass through rather than just meet. Such a situation is shown
in Figure 11. If two paths [j, j + 1], [k, k + 1] just meet at an MN, as shovn in Figure 12, Il may
be reached by a sequence (S,(N)}, as in Figure 2, page 2.

9Two polygonal clements of 11 are disjoint if they have no more than one node in common. A node is defined in
the fifth paragraph on this page. A set of eloments is disjoint if its elements are pairwise disjoint.
100f1on, for computations, the number of nodes under the a-option can be reduced.

14
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Figure 11. A Situation for an SI Polygon
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Figure 12. Situation Does Not Imply an SI Polygon
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Using these_notions‘ it is easy to see that the polygon of Figure | is SI, whereas the one in
Figure 2 is in {S}. There are, however, configurations with overlapping edges, such as appear in
Figures 15, 18, and 19, (page 17), which need a more precise description for SI polygons.

With this in mind and with MN(j) denoting the MN at (j), where (j) is the first numbered
node at that point, let J(j. §,) represent a disk centered at (j) with radius 8;, where §; is chosen so
small that J(j, §;) intersects only those edges of I1 which originate or terminate at MN(j). Often,
we simply refer to such a disk as a J-disk.

The approach now is to make a T-construction, i.e., to construct a closed polygonal path T,
which is “close™ to 1, and which is then used to classify II, as to type, S or SI. So, consider two
successive nodes (k= 1), (k)1 with 2k <N+ 1, and (N+ 1) =(1). Let Ty denete a segment of T
which will be taken “‘close™ to edge k. This segment is constructed as follows: Begin with k = 2.

(A) Ty =k, if (k- 1)and (k) are SN points, (N + 1) =(1).

(B) T, =By, if (k—1)isan SNand (k)is at MN(j). | <j <k, where By, emanates from (k = 1)
and terminates at a point ty in JG. §). Ifk =N+ 1, then werequirej= 1. Ty, =T, =
By =1 so that T is closed, i.e., Ty terminates and T originates at (1),

() Ty = Dy, if (k=1)is at MNG) and (k)is an SN, 1 € i <k, where Dy, emanates from
tyy. 4 point in J(i, §;), and terminates at (k). 1fi=land k=2 thent; =(1)sothat T
will be closed.

(D) Ty =Ly, il (k=1)is at MN(i) and (k) is at MNQ), i #j. | Qi <Kk 1 <j Sk, where Iy
cmanates from ., v J(i, §;) and terminates at ty in J(G, §)). 1Tk =N+ | thenj=1,
and for T to be closed, Ty, = T =L, withtye, =t =(1). Also, for the same reason,
ifk=2,i=land ty =(1).

HWith 5o loss in generality (k ~ 1) and (k) are assumed not to be SDP.

15




Repeat the procedure with k = 3, 4, ..., N + 1 to obtain T. Clearly by choosing the 3; sufficiently
small T can be obtained arbitrarily close to Il. Mow if the t, can be chosen, for any §; so that T is
simple, thea by choosing a sequence of 8; approaching zero, for each §;, a sequence of T’s can be
constructed which make up {S,(N)} converging to I. Hence in this case Il is in {S}. If this cannot
be done, i.e., if in some J-disk paths of T must cross then Il is SI since it cannot be obtained as the
limit of a sequence {S,(N)}. If an intersection takes place in J(j, 5j) between paths [Ty, Ty, ] and
(Tx+ms> Tx+m+11 we say Il has a Sl point at (k, k + m).

Clearly from this characterization of S and SI elements, by T, the polygon in Figure 1 is SI
and the one in Figure 2 is in {S}. A more complex example, given in Figure 13, shows it is neces-
sary to consider all of the nodes at an MN. Accordingly, it is not determined that Il of Figure 13
is Sl until J(1, 8,) is entered for the sixth time, as shown in Figure 14, where B,y cannot possibly
terminate at (1) without intersecting B; and/or Dg.

From I1 of Figure 13, an interesting situation is reached by letting (5) and (6) converge, by
sequences of points, to locations of (3) and (2), respectively, such that each polygon of the
associated sequence is SI. The limit clement, however, shown in Figure 15, is in §S)}. There is
nothing contradictory about this with respect to our previous remarks. Figures (16) and (17)
show that S of Figure 15 can be obtained as the limit of a sequence of SI elements, or as the limit
of a sequence {S,(9)}. Hence, it is still correct to say the element of Figure 15 is in {S}, since T
for it can be constructed as a simple polygon as shown in Figure 17. And, it is also correct to
maintain that if T is SI, then there exists a sequence of SI elements which converge to an SI limit
¢lement since by the way T is made there cannot exist a sequence {S,(N)} converging to that same
limit clement. Note that S of Figure 15 has a PAR at (4) which is the reason for the phenomenon
just described. More will be said on this near the end of this section,

We show two more interesting examples in Figures 18 and 19. The element of Figure 18 is
in {8}:i.e., it is not SI, whereas the polygon in Figure 19, by our characterization, is Si.

SI polygons should not appear often in practice. But, if the generation of a polygon is not
under control of the user, say the nodes are computer assigned, then SI polygons can occur. For
example, consider Figure 20. 1t is clearly SI at MN(3) with self-intersection point (3,6). Note that
a renumbering } =1, 2+ 2,323,724, 8-+5,6—~6,4-7, 58,99 gives the same regions,
but now the renumbered clement is in {§).

8
7
» |
4
9
3
Figure 13. An Sl Polygon, [1 Figure 14. T for Il of Figure 13
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Figure 15. A Polygon S Derived from II
of Figure 13

Figure 16. Incorrect T for
S of Figure 15
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2,4

Figure 18. A Polygon in ()

Figure 17. T for § of
Figure 15

3,6

1,4

2,8
Figure 19. An Sl Polygon

Figure 20. An S! Polygon




The basis for (P—B) is given by one eguation, which is a2 main result of this section. Namely,
for any element IT of {II}

N
(32) PAD) = W = 3" Play,
1

where P(a;) is the value of P for the ith exterior angular region of IT, and W is a new quantity, which
we define below and call the winding number of T1. Thus, there are two basic steps here. The first
is to evaluate P(g;) foreach i=1, 2, ..., N, and the second is toc compute the winding number of IL
The first has been discussed extensively in the earlier sections and offers no difficulties, except that
there remains to discuss the evaluation of P(a) when a is a PAR. We shall show below that W can
be obtained by simply adding up the angular measures A8, in radians of the 4; and dividing the
sum by 2m. Thus, for an element in (S} or (S} that is PO(NO) W = 1(=1), which gives agrecment
of (32) with (24) ((26)) for such elements.

We now need the following definitions and additional notation, where [ is numbered under
the a-opion:

A circuit of 11 is a closed path of IT with no self-intersections. Thus a circuit is in {S}, and its
first and last points arc located at the same MN. Note that if IT is in (S}, then MN(1)is the only
MN in the sense that I1is closed and (N + 1) is at MN(1).

A primary circnit af 11, Cp(lD), is the first circuit detected in tracing i1, starting at (1), which
terminates at a self-intersection of 11,12 say between paths [K, K + 1) and [i+m, j+m+ 1} at
MN(j), where j S k <j +m, (see Figure 11), withCpa (k. k+ L. j+m~ 1, j+m) It contains
all other nodes (k+1) at MN(j) such that k <k +§ <j+ m. A< an example, Cp of Figure 20 is
(3. 4. 5, 6); note that k = j = 3, j + m = 6, there are no other nodes (3 + ) at MN(J) with
J<3I+i <6 InFigure 50, Cp 2 (3,4, 5,6, 7.8, 9% wehave k= 3 =j, j +m =9, all other nodes
(3 + 1) at MN(3) with 3 <3 + i <9 are included in Cp. Namely, node (6) with i= 3, ie, Cpti &
(6,7.5,.9) I {lisan S element, then Cp(ID) = 1.

The winding number of a circuit C is given by }.‘: 46,/2w, where A&, 15 the angula, measure,
radians, of the j*» exterior angular region of €. The integer r denotes the number of paints speci
fying C. The winding number is +1(=1) if C is PO{NQO).

In order to establish (32), fet 11; = 11 and decompose 11 as follows:
{or) Obtain Cply ). Seti= 1. Go to(8)
B Find Cp(il). Go to(d).

(v) 11 has heen decomposed inte a set of disjoint elements in {81, (See Footnote -,
page 14). The decomposition is complete. I i = K, we say Il has or decomposes
into K primary circuits.

(8) 17 Cptil) = 11 go to (y). Otherwisc, delete Cp(11) from 11, (except for its last node).
call the result Il,,. seti+ 1 = i, and go to ().

2Cure must be taken when PAR(S) ate involved. More later. Sce footaote 1 3.
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For example, for the Sl polygon of Fizure 20, we have

I, =(1,2,..,9 10, Cl}) =4, 5,6), I, =II; —Cpl;)=(1,2,6,7,8,9, 10)
Cp(I1y) = H,. Thus I = Cp(Il}) U Cp(Il,), where U denotes union.

The decomposition of IT into primary circuits can always be carried out. Indeed, by a slight
modification of a proof by Knopp [4, page 15], one can state that any polygon can be decomposed
into a finite set of disjoint elements in {S}. Knopp’s proof is constructive, and, if it is followed, as
described in Appendix A for (P — A), the polygon IIis decomposed into a set {S§y= (S!, 82,83 ...,
') of siraple polygons and a set {L} = (L}, 1.2,..., LO) wheie each L! denotes an overlapping line
segment (a PAR). Now Cp(11;) is made up of the union of a subset of {8} and a subset of {L}.
Deleting these elements from (S} U L} leaves I1,. Then Cp(Il,) is found, for I1,, in the same way
from (S} U {L} = Cu(Il,). For example in Firure 22 we have L! =(3, 4, 5), 8! =(1, 2, 3, 6) and
Cp(ll)) =L UG =TI, with W, =W = 1.

In general,

K
(33) n=[J o, 1<K<N,
1

where the Cp(IL;) are disjoint, (See Footnote 9, page 14). Hence

K
(34) PAD = ) ' PICpII],

-
1
where, using (24) and (26),

Ki 1 if Cp(ll) is PO
(35) PICp(II)] = W, =D P(ay), W, =

n=|

-1 it Cp(l1) is NO,

with g;; denoting the jtt of K, exterior angular regions of Cp(I1;). Then, substituting (35) into (34)
gives

K K N
(36) PA) =) W, =) ). Play).
i~1 ial n=]
The winding number of 11, W, is defined to be

K
W= w.

izl
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Now let

N
(38) Q=) A6, -m<Af <D

i=1

where Af: has the usual meaning, i.c.. it denotes the angular measure, in radians, of the exterior
angular region a; of II. To establish (32) and that W can be expressed in terms of §, we need to
show that

Q2 = W

(39) N K K
Y P@) =) ) Play).
k=1 i=1 n=}

We proceced o present the elements of a proof for (39). The argument goes as follows:
Suppose Cp(Ily¥ = (j, j+ 1, ..., j+m), so that [T, = (1,2, ...,j— L j,j+m+1,..., N+ 1), where
I = I} = Cp(ITy). Denote ihe exterior angles of Cp(Il}) and II, at (j) by @y, and a,,
respectively. Denote their corresponding angular measures by ¢ and ». Also, let A‘?j and A9,
t =] +m, denote the measures of ¢; and a, of I1.

With the aid of Figure 21 below, we have for one particular situation,

(40) t+ A= AG + Ab,.

Then from geometrical arguments, we must have also

(41) a4 U 02.} = (lj U dj,m. and P(al.l) + P(aglj) = P(d;) + P(ﬂjg,m).

G-n

(3 G+

(j+m+1) A jel

Figure 21. Parts of Cp(Ily ) and 11, of SI Polygon at (j.j + m)
BTo remaln consistent with our characierization of § and SI elements from the T-construction, we noed |A9;| «
but computationally we always have -z < A0, < # a3 a result of using the J«quadrant arctangent routine to
compute Ab;.
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In fact (40) and (41) hold for any other configuration with a self-intersection at (j, j + m). There are
five other basically different configurations to check. This has been done; the details are not given.

Assume now that II has only one self-intersection. Then by the relations given in (40)
and (41), we see that the only angular regions affected are at (j) and (j + m), where the intersection
takes place. Therefore with (34) and (35)

(42) PN = PICp(IT))] + P(IL), (W=W; +W,),
j+m~1 i-1 N
= Wl - P(au) + Z P(ak) + WZ - Z P(ak) + P(az’j) + Z P(ak)]
k=j+1 k=1 k=j+m+]
Using (41) in (42) we have
N
(43) P = W = ) Pg).
k=l

It remains to show the first equation of (39) in the case of one self-intersection. We have the
winding numbers W, and W,, for Cp(I1;) and I1,, respectively, given by

jtm-1 j=1 N
(44) W, = f e ) A, Wy = k)0 G+ ) 4G,
i+l 1 jtm+1

where IT with only one intersection, implios that IT; is a circuit. Consequently, using (37) and (40)

N N

(45) Wew kW oasklreas Y ag] = Y ag = ann.
kel T
kej.jtm

To treat the case where I1 decomposes into K(>2) primary circuits, an induction argument
can be used. Assume (32) holds for all elements 11 with no more than K = | primary circuits. The
essence of a proof that (32) holds for polygons with (decomposable into) K primary circuits is
obtained from the argument above for K = 2,

Let IT have K primary circuits. Then by the decomposition procedure described above,
=Gy v I,

where 11y can be decomposed into K ~ 1 primary circuits with winding numbers Wy, Wy, ..., Wy.
But (32), Yy the induction hypothesis, holds for I1,. Therefore, the remainder of the argument
goes as above for K = 2, where W, is replaced by I, W, in (42), (43), (44) and (45).

On pages 10, 12, we remarked that the cvaluation of P(ay) requires scme precaution, when
a s a PAR, ic., |40 | = ». The basic difficulty is that the sign of 40, cannot be determined from
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the arctangent subroutine, because it always gives 7 for a PAR. Thus to determine the sign requires
some additional analysis. This analysis amounts to correctly choosing the direction Ty ;| should take
in the construction of T (see page 15). For example, an attempt to construct T for S of Figure 15
by choosing Ty, as shown in Figure 16, would not be right. This amounts to choosing the sign of
Af, incorrectly since elements typical of the one in Figure 16 are SI. The correct direction for
Ty is shown in Figure 17 which indicates A6, = — rather than .

R R

5,

SR 3R
BRI e

We can further elucidate the difficulty with the aid of Figures 22 and 23. The ele-
ments in both figures are in S. Call them S, and S, respectively. Both elements have a PAR
at (4). In Figure 22, the value for A, of S, is 7 and for S;, Af, = —x. We see for S, that
I - P(§2) = P(a;) + P(ay) + P(a), and P(a) = P(ay) + P(a;) + P(as). Thus any routine, such as
VALR-7, designed to computie P for elements in {S}, but not for SI polygons, would give the
correct result for S,. For S; however, che situation is different. The arctangent subroutine would
give A8, = 7 which is incorrect for Sy to be in {S} and consequently P(as) + P(ay) + P(as) # P(a)
and the result from VALR-7 for P(§3) would be wrong.

¥ i £ g it o
R TR B R S A

:
i

The subroutine VALR-7 forms a part of our preferred program package, because of its slightly
superior speed over VALR-2 in computing P for elements in {S}. So, in order to also use VALR-7
for elements in (S}, rather than include the additional steps in the program to determine A8 cor-
rectly for PAR(s), a routine SORT Il was designed which pre-processes S by deleting from its
specitying array V all SAR(s) (see page 13). The result is an element in {S}, say S, such that
P(S) = P(8), since SAR(s) do not affect the value of P(S) by their removal.

In the case of VALR-2, which is based on (P-B), the winding number rectifies any wrong
choice for A@ at a PAR. For §,, in Figure 22, A8, is computed correctly; therefore, W = | for S,.
For S; however, A0, is computed incorrectly as noted above, so that from Figure 23, we have

Plag) + Play) + Plag) = 1 + Pla),
where P(a) is the correct value to add to Pa)) + P(a;) to get P(8,). Now by (32)

P(5;) =W = [P(a)) + Play) + | + Pa)].

@

4 dOASS Figure 22. A Polygon §, in (S}.

A04 = tr.W=|
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Figure 23. A Polygon S in (S}, a
(Ab, incorrect), W =2

]

But note that the computation of W using (38) with the arctangent routine is two, since Cp(Il,) =
(3,4, 5).Cp(Ily) = (1, 2,3, 6) and Wy + W, =1 + 1 =2. Hence P(8;) is given correctly by

P(S;) = 1 = [P(a;) + P(zs) + P(a)].

Hence, an element with PAR(s) may be classified by the T-construction as in {S} and yet its
winding number from (38), using the arctangent routine, (See Footnote 13) will not necessarily be
t1. Thus computationally it must be treated as Sl.

It is to be noted that the value of P for a PAR requires an erfc function computation. For
example, in Figure 30, W = 6 and 8 erfc functions are needed. Hence, it may be worth using
SORT Il also with VALR-2 to eliminate SAR(s), (See flow chart for P-2, page 40).

We conclude this section by giving two more examples of decomposing I1 into primary circuits,
and some remarks on numbering IT other than by the a-option.

Consider the polygon of Figure 24. We shall show that W = 3. Note, the first self-intersection
oceurs at (4,7):

CP(HQ) = (4- S: 60 7)» \v} = lo "2 = (lo 20 31 70 8' 99 ‘0» llo 129 33. ‘40 15).

Figure 24. An Sl Polygon, W =3
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The first SI point of II, is at (3, 1 1); by the preceding discussion,
C(Il,) = (3,7,8,9,10,11), W, =1, I, = (1,2,11,12,13, 14, 15),
where Cp(Il,) is PO and in { S}. With no remaining self-intersections, we have
| Cp(ly) = M3, W; =1.
Hence W = 3.

For Figure 25 (note the c-numbering) the decomposition of I is as follows:

CpIl)) = (6,7,8,9,10,11), W, =-1, I, =(1,2,3,4,5,11,12,13,14,15,16,17)

Cp(Ily) = (4,5, 11, 12), W, =1, I, =(1,2,3121314,15,16,17)

Cp(lly) = (2,3,12,13,14,15), Wy=-1, [, =(1,1516,17

Cply) = My, W, = 1.

Hence W =0.

In the actual computation of P(II), it is often not necessary to specify IT by an c-numbering
(sce page 14). However, one should not assume, forexample, that all points for which A6 = 0 can be
dropped when using (P—A), although this is permissible in (P-B). In Figure S5, if that element
were treated as SI, an additional node at MN(1) would be required, following (6), for (P—A), using
SORT I, to give the correct result. This will be clarified in Appendix A (See page A-7).

In Figure 25, six points can be dropped for computation purposes using (P - B), namely (2),
@), 16), (11), (12), (15). The reduced numbering scheme as shown in Figure 26 is called a
Buumbering scheme, cr simply a foption.

An additional short discussion on the superiority of (P—B) over (P~ A) is given on page A-15.

Figure 25. SI Polygon with
a-Option. W=0.
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Figure 26. SI Polygon with 4 5
B-Option. W=0.

V. DISCUSSION OF COMPUTER PROGRAM B (FLOW CHARTS INCLUDED)

The program package described here, call it Program B, contains five subprograms, each in sub-
routine format, P-2, VALR-2, SORT III, VALR-7, SMP-7. The second, fourth, and fifth can be used
independently; the first serves as a master routine. The last three are also used in the program of
Appendix A, called Program A. We shall discuss each subprogram, and point out how each is used
in connection with the others. VALR-7 has much in common with VALR-2; a detailed discussion
on it is not given. However, the essential differences between it and VALR-2 are noted. Keep in
mind that VALR-7 is on the average the slightly more efficient of the two for computing P for ele-
ments in {8}, but VALR-2 alone, which is based on (P—B), is capable of determining P for any
element of {I1}.} Flow charts for the first four subprograms are included at the end of this section,
pages 40-45. They will be used to aid in the discussion. No flow chart is given for SMP-7, which is
used to compute A,

The given polygon, call it [I, for which P is wanted, is spacified by its nodes at points
(xy, yi)» k=1, 2, .... N. The call line of each routine identifics thesc quantities by x, y, N.

The parameter [OP appears in the call line of P-2, VALR-2, VALR-7. It specities the approxi-
mate accuracy to which P(IT) is computed. The user assigns 10P = 1, 2, or 3, s0 that P for each
angular region of I is computed with 3, 6, or 9-decimal-digit accuracy, respectively.

The parameter ICV appears in the call line of P-2. With this parameter, the user can specity, for
maximum efficiency of computation, various combinations of the above routines or subprograms.
The flow chart for P-2, page 40, summarizes the combinations one may choose. If [T isin (8}, then
the user should set ICV =0 and P-2 would call VALR-7 to compute P(IT). When N = | is specified,
the normal probability, regardless of the ICV value, is given for the angular region @ which is
specified by three points. If the user is uncertain about the class to which IT belongs, ICV > 0
should be used. Then P-2 calls VALR-2 to find P(IT) where [T can be in (1T}, If IT has m-angular
regions, PAR(s) (sce page 12) and IT is not SI, then it may be more efticient to use SORT HI with
VALR-7 rather than VALR-2 alone. This can be done by setting ICV = =2, If [T has self-intersections
as well as PAR(s), then VALR-2 with SORT HI may be more efficient *han VALR-2 alone since

WThe package above gives an improvement in efficiency over using VALR-2 alone.
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VALR-2 makes an erfc function computation for each PAR of II; SORT III deletes such regions
before VALR-2 is called. This combination can be called by setting ICV <0, but not equal to —2.
In using SORT III, N may be reduced below 3, in which case P = 0, A = 0 as shown in boxes 9
and 13 of the flow chart for P-2, page 40.

Later, in the discussion of VALR-2, the reason why VALR-7 can be slightly more efficient
will be given. But, VAL_R-7 can give grossly wrong values of P if it is used for SI polygons or
without SORT III for an S eiement with SAR(s), (See page 31). :

A by-product of VALR-2 and a necessary quantity for VALR-7 is A, which is given by
1 N
(46) A=30 4w =Yid Yo SYn, Yyw =¥, N 23
1

For VALR-7, A is computed by the su_broutine SMP-7. It is used in VALR-7 to determine the
orientation of I, when Il is in {S} or {S}. The sign of A determines whether P(II) in VALR-7 is
evaluated by (24) or (26), (See page 9).

No flow chart is given for SMP-7, but a listing of the program is given in Appendix F,
page F-37. A derivation of (46) is given in Appendix D, where it is shown that |A| when properly
interpreted gives the area of IL.

For VALR-2, A is computed within VALR-2 iwelf. In VALR-7 it plays a crucial role as
evidenced by (24) and (26). The winding number of Il, W, plays a similar but more complicated
role for VALR-2 as (32) shows. In the previous section, it was shown that W is computed from
IN A0,/2m. where A0, is the angular measure of g, the exterior angular region of IT at (i). The
winding number in addition to P(IT), A(I1), and IND make up the output of VALR-2.

The error indicator IND is used in both VALR-2 and VALR-7. Its norma!l setting is zero. If
VALR-2 is used to find P for an angular region (N = 1), and the x, y input contains a SDP, then IND
is set to one and P is set to the absurd result of 5. If IND is set to two in VALR-7, or VALR-2, it
means 2 PAR was encountered in evaluating P(I1). and the result for P(IT) from VALR-7 is not to
be trusted, whercas the corresponding result from VALR-2 is good. If IND = 3, then a direct exit is
taken since N has been sct as smaller than one or equal to two. In either case such an assignment
is not acceptable to VALR-2 or VALR-7. See boxes 7 and ! in flow charts of VALR-2 and VALR-7,
respectively.

For casy reference, the above programs are numbered accordingly: P-2+ |, VALR-2 & 2,
SORT 1l + 3, VALR-7 # 4, SMP-7 « 8.

We proceed with a more detailed discussion of 2. We refer to the ntt box of the flow chart
for 2 by 2-n,
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Although 4 should be used when N = 1, this case is also handled by 2. When N = 1, P(a)
as computed by 2 (or 4) always gives the normal probability for a; a negative value is never
found for P(g) in this case. Three points are necessary to define a, with (1) always referring to the
vertex of ¢ witk points (2) and (3) given in counterclockwise order with 0 < Af < 27. Notice that
this differs frorn A9 for an exterior angular region of a polygon, where |A8| < 7. In Figures 27 and
28, the assignments of 3(x, y) coordinates are shown for two different angular regions when N= 1.

The sensing for N = 1 is carried out at 2-7 (flow chart for VALR-2, box 7).15 If ¢, defined in
2-15 (see also pages 28 and 39), is nonnegative, we have an element of type shown in Figure 27,
0< A9 < If Y <0, Figure 28 represents a typical case, 7 < Af < 2m. If Y =0, then a can have
a vertex angle near O, m, or 27 radians. Here the user must be careful, because if rounding error
should interchange (2) and (3), a wrong result can be given for P(a), (See page 8). The error
indicator IND is not used for this situation. The other boxes uszd only for N = 1 are 2-57, and 2-79,

If N > 3, 2 treats any polygon II by finding P(ay), k = 1, 2, ..., N, for each exterior angular
region a, of Il. The analysis for computing P(a), using (13) and (17), was given in Sections Il and
III. The A, term for a, (see Figures 6, 9, pages S, 10) is computed at 2-36 using a 4-quadrant
arctangent routine which gives values in the half-closed interval (-, w]. The sum of the Af, is
accumulated in § at 2-27. Individual terms for A, as given in (46), are computed at 2-22 (k= 1)
and 2-68 and accumulated in A. The sum in (13) is computed at 2-35 and the loop 2-34, 54. The
ap.; in 2-34 are the Chebyshev coefficients for erfc (u)/z(u) as they appear in (13). They are
tabulated in Appendix E for the three [OP settings, with an additional set for 12-decimal digits of
accuracy which is not included in the program. The value of P(ay) is given by I in 2-47, where L
refers to the erfc function contributions from using (17). Note if g; and g, from 2-19 are non-
negative 2-29, 30, then (17) is not needed and L = 0, 2-23, 2-37.

Ya

Figure 27. ¢ 3 0, P for Shaded Region

Ya

Figure 28. ¢ < 0. P for Unshaded Region

L T )

5The boxes in cach flow chart are numbered, usually at the upper right-hand corner.




For efficiency, yet retaining specified accuracy, if R is sufficiently small or large, then (13) is
not used. This is reflected through the sensings at 2-18, 12, 28. If R?/2 < o, then [ = Af/2m and
it R?2/2 < @, then I = (A8/27) — G, where G is computed at 2-10 from (18). IfR > R,thenl=L,
2-28, 37. At this point, VALR-7 can be more efficient than 2. In4 (VALR-7), Af, is not computed
until needed (see 4-16, 34) so that when (13) is not used an arctangent computation is saved. In
2, however, A6, is compuced regardless of whether (13) is used or not, because it is needed to find
the winding number W = §/2x. Thus, for a polygon with n vertices of S located such that R >R
for each of them, 2-28, means n more arctangents would be computed by 2 than by 4. The param-
eters oy, o, R2/2 as well as a; and o, which are discussed below, are given in Appendix E. They
depend on the setting of IOP.

In 2-19, the rotation of axes for g, is done, as discussed on page 4.
If s, given by
(47 s = 2y/D,D, = sin A9'6

is sufficiently small in absolutc value, 2-20, then a, subtends an angle near O or 7. When it is
sufficiently close to zero, with ¢ = 0, 2-24, and |AG]| < 7(-14), 2-14,then 0 > [, 2-11. If thereisa
no at 2-14 then I = 0 only if g; 20, 2-13. If g; <0, with A6 ~ 0, it may happen that a, contains
the origin, in which case P(a,) is not near zero for sufficiently large R.

If Is] < ay/4, 2-20, with |A8| ~ n(¢ <0, 2-24), and if |s| < 7(-14), IND is set to two, 2-21.
There is nothing to be concerned about here. IND is simply used to alert the user that a PAR has
been encountered. Recall that in 4 if this occurs, P(IT) is not to be trusted, (This is discussed
further on page A-3 of Appendix A). Now if ¢ <0, 2-6, then P(q;) is given by I of 2-4, and if
Y 2 0, then P(ay) is given by I of 2-5. Boxes 4 and 5 are where the erfc function computations are
made in the program for a PAR. Note the choice is made such that if Y =0 it is assumed A0, = 7.
Keep in mind that if [h| denotes the normal distance from an extended straight line, intersecting
the nonnegative x-axis, to the origin, then 1/2 erfe (h/+/2) with h 3 0(<0) gives the probability over
the half-plane to the right (left) of the line.

Assume now that the program moves from 2-20 or 2-13 to 2-12 and from there to 2-29. Then,
in the next set of boxes, starting at 2-29, the necessary crfc computations, required by (17), or
approximations to them are made and stored in L. As mentioned above if g, 5y 20, then (17) is
not used, L is set to zero, and control is transferred to 2-28.

We use the notation
E(h) = erf(h) = 1 = erfe(h) = 1 = E(h),  (see (8)),

(48) _
E(=h) = 1 + E(h) = 2 - E(l)

¥Variables appearing in the flow charts are defined, or cross-referenced to the text, on page 39, which precedes the
flow charts of this section.
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Ifg, <0, g, >0, then —g; ~ g, ~h; ~ hy, 2-29, 38 and -y ~ y, 2-32.

If ¥ <0, then A0 = 7~ A9, 2-25, and L = = E(h,), 2-45.

I § > 0, then A0 + 7 = A9, 241, and L = —5 E(-h,).
If g 20, g, <0, then ~g; > g, —h, = hy, 2-29, 30, 39, and —¢ —> ¥, 2-32.
If ¥ <O, then A ~7 > Af, 2-25,and L = —é— E(-h,), 2-31.
If ¥ >0, then A6 + 7 ~ A9, 2-41 and L = —% E(hy)
If gy <0, g <0, then ~g; =g, ~h; > h;, 2-29, 38, and —-g, = g;, ~h, - hy, 2-43, and
L =4 (E(hy) - E(y], 2:52.
An approximation for E(h) or E(h) is used for efficiency of computations, if |h| is sufficiently
small, i.e., |h| < a,. The sensings on this inequality occur in 2-39, 43, 44, 49, 50. In each case, if

the inequality is satisfied, E (h) is replaced by (2/y/7)h. The parameter & depends on 0P, and is
determined, to tetain the accuracy specified, by using the mean value theorem on E(h). Indeed,

49) Ewm) = 2 ' exp (—t2) dt = 2. [h + (482 -2) 1 exp (—§2) £c(O,h)
ﬁ ﬁ 6 ¥ ] .

Retaining the first term, the error ¢(h) is bounded accordingly:

2 h3 2 1 ¢
g = —=m (482 - 3| D axp (=F2 el 43 <&
(50) fo(h)l \/;Mé I ep(-E) <3 \/E'h < 3
Thus
/3
3
(5hH Ihl K g = (——:{ic) .

with (49) and (50), implics

(52) lﬁ(m - -—3; hl < €2,

7

where ¢ and oy are given in Appendix E as a function of the 10P setting. For example, if (51) is
satisfied for hy and hy, with g, g2 <0, then L is computed from 2-48 rather than 2-52 with an
error no larger than €.




After L has been determined, control proceeds to 2-28 to check if R is sufficiently large so
that the calculation of (13) can be omitted, or if the second term on the right-hand side of (17)
can be dropped.

Consider the angular region g shown in Figure 29, which corresponds to case in Figure 5
of [2, page 14]. The quantity P(a) is found using (17), i.e., P(a) = 1/2[E(h,) — E(h)] + P(@),
where, at 2-19, g;, g, <0, hy > (, hy; < 0. Now if R is sufficiently large, say >R, 2-28, thenP(7)
is negligible and its computation by (12), 2-35, 34, 47, can be bypassed by proceeding directly
to 2-37.

In case R <R, 2-28, the quantity (13) is computed from 2-35, 34, 47. Then P(ay) is obtained,
as shown in 2-47, with the result stored in I. Recall that, for efficiency, P(a, ) may be computed in
various other ways as indicated at 2-2, 4, 5, 11, 37.

Control is now transferred to 2-55 to determine if N angular regions have been processed. As
each P(q,) is computed, it is subtracted from P, which is injtially set to zero, 2-66. If the answer is
no at 2-55, the quantities w, z, D at 2-59 and u, v, D, are updated at 2-64 to be used for the next
angular region. Then P —1 - P is carried out at 2-66, as noted above, and X(yy4; — V) + A=A,
2-68 also noted earlier. Control is then returned to 2-26.

When [—ZY P(g,)] has been computed, ie., k = N, 2-55, 56, 60, then W = £/2 is computed,
2-61. The quantity P(I) is then found from

N
(53) PAD = W - ) Pl
1

at 2-63 or 2-67 (see (32)), with W now an integer variable.

The remaining boxes of the flow chart 2 to discuss deal with the handling of SDP (successive
duplicate points). Whenever two successive nodes of I occur at the same Xy-point, one of them is
ignored in computing P(I1). This feature is not contained in VALR-7, since it is handled by
SORT HI. It is included in VALR-2 so that this subroutine, entirely on its own, can find P(I1) {or
any 1in {I1}).

Ya

Figure 29. Shows Angular Regions a and a
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If Df < w?, where w = 7(-14), k = 1, 2-16, then (1) and (N) are SDP (within w) and control
is transferred to 2-75. If initially N =1, then IND is set to | and P to 5 since the angular region g is
not defined, 2-79. If N > 3, then N = N — | and if N is reduced to two, P is set to zero for Il with
an exit 2-77, 80. If N is not reduced to two, control is returned to 2-8, where new values of w and z
are computed and D, is checked again, 2-16. If (1) and (N) are not SDP then D% < w? is checked
at 2-17. If this inequality is satisfied, then (1) and (2) are SDP and control is transferred to 2-81.
If N = 1, again the angular region is not well defined, IND = 1, P = 5 and EXIT, 2-79. If N 23,
then k + 1 = k and new u and v are computed, 2-78, 72, and the inequality D% < w? is checked,
2-73. If it is satisfied return to 2-78, increase k by one, and repeat 2-72, 73. A no eventually
must occur at 2-73, because at k = N, points (1) and (N) are checked, but these cannot be SDP since
for k = 1 they were checked at 2-16. With a no at 2-73, is k = N — 1? If the answer is yes, then
points (2), (3). ..., (N—1) are each, with (1), SDP, so P = 0, and EXIT is made, 2-74, 83, 80. If
the answer is no at 2-74, then (N) and (1), (1) and (k + 1} in the array specifying I, are not SDP;
control is returned to 2-22, and 2 proceeds to compute P(a,). Computation of new u, v, D, quanti-
ties and updating of w, z, D; at 2-59, 64 for k > 1, also includes a check to see if (k)and (k +1)
are SDP.

The barred x and y, 2-1, 59, 64, 68, and the y, 2-59, 68, are used so that once two SDP are
found testing for more such points at the same k can be done with reference to the same point,
namely (X, y).

We next look at SORT III. Its function is to remove points from V, the xy-array which
specifies I1, when either of the following conditions hold in considering ay .

(A) Eitherk ork + 1 (see page 14) has a length no larger than w = 7 (-14),

(B) The angle AG, subtended by ay. satisfies one of the incqualities 7 ~w < a8 < n,
TR A Sw-w

1f (A) holds, we say (k= 1) and (k) or (k) and (k + 1) are successive duplicate points (SDP). I (B)
holds, we say (k = 1), (K), and (k + 1) form a PAR. In cither case, we say g, is a singular angular
region, (SAR)'T because if (A) holds D} = w2 + 22 or D§ = u? +v2 is essentially zero, yet they
must be used as divisors in 2-19 {or 4-24); if (B) holds then, because the arctangent subroutine
gives values on (==, 7], 4 cannot determine whether A8 = 7 or (=) for a PAR (this is discussed on
page 22). For 2, (B) holds no difficulty as cxplained on page 22. If neither {A) nor (B) holds, we
say g is well defined (WD)

Given an array V made up of the ordered set of N xy<oordinates which define I, SDP are
climi; “ted by dropping one of those points from V. In the case of a PAR, itisremoved by dropping
its vertex point (k) from V." where condition (B} is checked by sensing on 87 & sin? A0, < w?,
(Sce (47), page 28). When this incquality is satisfied a! ap we say points (k = 1), (k). (k + 1) are
sucressive colinear points (SCP). Note this inequality is also satisfied if (A8 | < w. so vertex points
of such angular regions are also dropped. '

Definitions here for PAR and SDP are dightly changed from those given on page 12, to account for ihe finite
precision of the CDC6700.
18The value of P{I1) is not changed by dropping such points.
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After a point, or a succession of points, are deleted from V, it is *“‘closed up” (CU). This means
the array is brought together so that no gaps occur with the points renumbered in order. For
example, in Figure 4, 4, 5. 6, 7, 8 would be dropped from V by SORT Il1I, 3, and 2 or 4 would
evaluate P over the CU ammay (1, 2,3,9,10, 11, 12), which we again call V. Thus, 3 must not only
detect when (A) or (B) holds, but it must also delete points from V and CU the array. In giving
the details of 3, we make use of its flow chart on page 43.

At each stage of 3, an angular region g, is under examination. It is made up of a vertex point
(k), a preceding point (k — 1), and a following point (m) (initially m =k + 1). Points (k — 1), (k).
(m) refer to their order as listed in V, where V may no longer be the original array due to previous
deletions.

The program 3 is started with gy, k =1, m =2, i.e., with points (N), (1), (2}, 3-2. If(N) and
(1) are SDP, then (N) is dropped from V by setting N=N -1, 3-8, 9. This is repeated until {N)
and (1) are not SDP. Similarly, (1) and (m) are tested. If they are SDP, m is increased by one
(m=m+1), and (1) and (m) are tested, where (m) now would refer to (3) of V. This is repeated
until (1) and (m) are not SDP, 3-15, 16. The 2ray V is then reduced by deleting the proper points
and then CU by replacing points of V starting at (2) by points (m) through (N). Then N is replaced
by N—m+ 2, 3-17, 22. The value of N now refens to the number of elements in the updated CU
array V. Assuming, at this peint, that (A} is not satisfied for gy, i.e., neither (N) and (1) nor (1)
and (2) are SDP in V., then condition (B) is checked, 3-18. If (N), (1), (m)(=2) are SCP (3! < w?),
then m is increased by one until (1) and (m) are not SDP and (N), (1), fm) are not SCP, 3-19,
20, 18, If m > N, 3-19, then all points are colinear. Nissetto 2and Iexitsto P2, 2 <m <N,
3-23, V is reduced and CU by replacing elements starting at (1) with elements (m = 1) through (N).
The updated V will now contain N= N - m + 2 cloments, 3-23, 27. Control is vetumed to 3-2.

IF 1 <k <N, and if (K) and {(m) are SD¥F, where m 2 K + | initially, then a new angular region
is considered by increasing m by one (m = m + 1), 3-30 until (K) and (m) are not SOP, 3-29. The
Voamray i then reduced and CU i m >k + 1, by replacing clements staring at (K + 1) by clements
(m) through (N). The updated V pow containg N=N—-m+ ] +k elemants, 3-28, 3d. Once the {A)
condition docs not hold, it is possible to check if 46, subtended by g, satisfies B, 3.335. I (B)
does not hold and a; is WD, k is increased by one (k =k + 1) and the procedure for | <k <N &
iterated, 3-39, 24,

I (B) helds, then (k = 1), (k) (m) are SCP and m is increased by one, 3-36. The value of w is
again increased by one if (k) and (m) are SDP. This & continued until (k) and (m) are not SDP so
that (B) can be tested again, 3-36. 37, 35. Eventually (A) and (B) are ruled out;if m > k + 1, then
V ix reduced and CU by replacing elements staring at (ki by clements (in = 1) througit {N). The
updated V now contains N=N~m + | + k clements, 3-14, (Note it m=k « 1 21 3-39, then (A)
and (B) do not hold and control goes to 3-21 to 1ook at the next angular region.) 1f at 3-36 m > N,
ther k. K+ 1, .., N are colinear. At 3-32 the kit point is seplaced by the N'® point and N is
replaced by k. The updated array will now have k clements. Control & passed to 3-10.

Since (k) has been aeleted, tk — 1) and the new {%) clement could be SDP. If they ane -or,
then m is set to k + ) and the procedure described above for | <k <N is repesied untit k = N,
321, 30, 3. I, however (k= 1) and (k) are SDP, 3-14, then & is reduced by one (k=% ~ i),
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3-38, m is set to k + 1, 3-33, and the pro~edure for 1 <k <N is repeated until k = N, 3-21, 3-30, or
3-36. In the event, when k is reduced, that it takes the value one, the entire procedure is restarted
with the updated Vat k=1, m = 2, 3-38, 3-2.

When k =N, the Nth angular region, specified by (N = 1), (N), (1) with respect to the updated V
is examined. It is treated in much the same way as a,. The details may be gleaned from 3-30, 36,
31,32,21, 10,11, 5, 12

A final possibility exists that the N point (N) used to make up a previously WD q; is,
subsequently, deleted. Therefore, after ayy has been accepted as WD, a, is checked again to assure
that (N), (1), (2) are not SCP, 34, 6. If they are not, then an exit is made to P-2 with the updated V
available to VALR-2 or VALR-7 depending on the value of ICV. If, however, they are SCP, then
the entire procedure starting with k=1, m =3 must be carried out again with the updated V,
3-7, 20. This takes place in the decomposition of the element in Figure 30.

Although the ideas, and general description, given here appear straightforward, their imple-
meatation into a computer program that handles general situations, i.c., for any element of
{S} using 3 with 4, or for any element of {II} using 3 with 2, requires an intricate code which is
reflected in the flow chart of SORT III.

If 3 is used with 2, there is some duplication of effort, since both,youtines check for SDP. Of
course, 2 can be used alone, as mentioned before, for any II in {II}, but it may be more efficient
to use 3 with 2 if Il contains many PAR(s), since an erfc function computation is required for cach
of them when 2 is used alone, which Joes not occurif SORT I is used first.

We elaborate the discussion of 3 by processing the polygonal elements of Figures 30 and 31 on
pages 34-37. The clement in Figure 30 is in {S}. The element in Figure 31 is also in {S}, but
computationally, on the basis of the discussion on pages 22, 23 (Figures 22 and 23), both 30 and 31
must be considered as self-intersecting. We shall refer to both of them as S. Their processing
involves every box of Flow Chart 3.

The description is given in tabulated form on pages 34-37. The tirst column contains N, the
nuniber of elements in V at certain stages of the processing. The second column lists the value of k,
where (k) denotes the k' node or point of V. It refers to the nodal point (k) which with (k= 1)
and (m) define gy . The value of m is shown, at intermediate stages, in column 3. The fourth ¢alevmn
displays the numbers of flow chart boxes in the crder they ate processed. Column five shows which
points are deleted from V. The letters preceding the dropped points are helpful to establish the
updated version of V after delevions. Forexample, (a) at the head of the sixth column refers to the
original V with N = 24 for S. and the seventh column, headed (b), represents the CU array after
points (1), (2). (?), shown in the fifth column have baen delcted from V as shown under (a). Note,
element (4) of the original V is the first eler ent of the updated CU array V, in column (b), which
now contains 21 elements, i.e., N = 21 at that stage. The updated V at cach stage, where one or
more points is dropped, is shown in CU form by columns (b), (¢), ..., (). The numbering of' the
elements in these columns retuins the original numbering of the cleracats in V.
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PROGRAM 3 FOR S FROM FLOW CHART

BASED ON FIGURE 30

CU, V(S) ARRAYS

POINTS
N|k|m BOXES — SORT Il DELETED @l ®! O @ @! O @
24101 | 228,15 ()l 4] 4| 4| 4] 4] 4
2411 ;217,18 @ s! 5| 6 61 6] 10
2411 | 31192018 @3)f 6 6| 71 9l 10| 1
241 |4 }19,20,18 @| 7 7] 8 w| ] 12
2411 {5 1]19,20,18 ) 81 81 9f 1tj12] 13
200 1 | 5 | 23,27 ®: (132),03) @] 9] 9} 1] 12] 13} 14
2001 21]28,9 ©): (24) Mmoo} 1] 13 14]1s
200 1| 2 78,1517,18,23 @ 111} 12| 14t 15t 16
200 2| 3| 24,29,28,35 @ 12] 12 13]15]16] 17
201 2| 4| 36,37,3539 o)y 13 13} 14| 16 17] 18
1912 414 (@): (5) QU 14| 14] 15] 17 18] 19
19 2] 3] 25029283539 antistast el 18] 19 2
19131 32,2 an| 16l 6] 17] 194 201 2
191 3 | 4| 25.29.28,35 Q1717 s 20| 2t} 22
191315 {36335 asyj 18 {19} 2t 22 23
191 3| 6| 36,37,35,39 ey 19 19 200 224 23
17136114 (0): (M. (8) (anj 2] 2| 2] 23
17121 3| 38,33 a8y 21y 2| 2
17121 4] 30,2928 (o)} 22 22 3
16 2] 3] 34,35 0): ) (co)| 23| 23
16121 4| 3637,35239 (21} 24
15121 4|14 ®: (6) (22)
1S 21 3 12529,28,353 (23)
151 3] 3| 21,26 (24)
151 31 4} 2529,28,3539
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PROGRAM 3 FOR § YROM FLOW CHART (Continued)

BASED ON FIGURE 30

CU, V(S) ARRAYS

POINTS
Njk|m BOXES — SORT I1I DELETED EROREC)
151 4| 4] 21,26 41 4| 4
15| 4| 51| 2529,28,35,39 1010} 10
151 5§ S} 21,26 mjuln
151 5| &1 25,29,28,35,39 12112 12
15 61 6] 21,26 13113113
151 6| 71 2529,28,35,39 14|14 14
15| 71 721,26 15115 15
15| 7| 8] 2529,28,35,39 161161 16
15 8| 81 21,26 17 {172
151 81 9] 25,29,28,35,39 20121 22
15| 9§ 921,26 21 [ 22 23
1St 9| 10| 25,29,28,35,39 22123
151010 21,26 23
1510 11| 25,29,28,35
1S 1101 12 | 36,37,35
15 {10 13 | 36,37,35,39
13{10}13] 14 (h): (18),(19)
13 91101 38,33
13 911 |30,2,28
121 9410 34,35 (i): (20)
121 9 11} 36,37,35,39
ni o110} 14 () (17
1l 9|10} 2520,283539
11 {10]101] 21,26
110 ] 11| 25,29,28,35
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PROGRAM 3 FOR § FROM FLOW CHART (Continued)

BASED ON FIGURE 30

EXIT

CU, V(S) ARRAYS

POINTS
Nik|m BOXES — SORT III DELETED ®| O @| ©] e Q@
1M]10] 12136 4| 4| 4f10] 10| 11} 11
1010 12]32 (k): (22) 1001010 11§ 11} 12| 12
10 10| 12| 10,11,5 1) o12) 12| 131 13
9l10f 12]12,10 1): (23) 1212 12] 13] 13| 14| 14
8| 10] 12| 11,12,10,11,5,4,6 (m): 21) 13[13) 13} 14] 14} 15
8|10 317201823 14]14f14] 15| 15
7110 3|27 @) (@) 15[ 15{15] 16
6 1] 2] 28,9 (0): (16) 161161 16
61 1| 218,1517,18 21 | 2t
6 1| 3]19.20,18,23 23
5 ] 3|0 (p): (10)
41 1] 21289 (@: (15)
41 1| 2]8,1517,18,23
41 2] 3] 24,29,29,35,39
4| 3] 321,26
4| 3| 4 252,28,3539
41 41 4121,1,54,6,3
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3 PROGRAM 3 FOR S FROM FLOW CHART

'=-' BASED ON FIGURE 31

CU, V(S) ARRAYS

POINTS

g N|k|m BOXES — SORT III DELETED @O e|@lE@lnl e

17111 21289 (®): (17) Mmoo o1 o] 1o

4 161 218,15 @| 2| 3| 3| s| 6| 6

: 6|1 ] 31617 3| 3] 4| s| 6] 71 7

3 15|t | 2221823 ©): @ @] 4| s| 6] 7| 8| 8

i 15| 2| 324,29 G) s| 6| 7| 8| 9| 12

.; 1502 | 41 30,29,28 ©| 6] 71 8| 9| 10| 13

142 | 334,35 @: (@) Ml 71 8| 91w 11| 14

- 14| 2| 41 36,37,35,39 ®| 8{ 9| 10] 11| 12] 15

1321 414 e): 3 @ 9l10] 11| 12]13] 16

g 1301 438 ao| 10| nl12] 13] 14

4 13111 2]28,15,16 anl 2] 13] 14415
o 1Bl1] 31517 a2)| 121 13| 14| 151 16
. )1} 222 f): 5) a3l 13} 14} 15| 16

4 1201 211823 a9l 1415 16

121 2| 3] 24,29,28,35,39 as)| 1s | 16

4 12| 3| 4] 21,26,25,29,28,35,39 (16)| 16

3 12| 4 | 5 21,26,25,29,28,35,39 17

12| 5 | 6|21,26,25,29,28,35

121s | 7/]3637

12| s | 8] 363735

1215 | 9136373539

91 5| 9114 {8): (9),(10), (11)

91 5| 6] 25297283539

g 9o 6| 71 21,26,25,29,28,35,39

cu, V(S) ARRAYS

3 POINTS .

Nlk|m BOXES - SORT Il DELETED MmO

91 7| 81| 21,26,25,29,28,35,39 1 1] 1

5 9| 8| 9] 21,26252 6| 6] 6

3 918 |10]30 71 71 7

| 8| 8 |10]31,1011,5 (h): (16) 8| 8| 8

] 718 10}]12,101 (1): (15) |l

i 6|8 |10]121011,54,6 G (14) 13{13]13

6| 8 | 10]3@EXm 14 |14
15
37
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As mentioned earliez, there is no need to discuss 4 (VALR-7) extensively, because much of the
coding in 2 {VALR-2) is shared by 4 (VALR-7). Routine 4 yields P(IT) when I1 = S or S with no
SAR(s), such as in Figures 35 and 36. Of course, pre-processing S by 3 to remove SAR(s) allows 4
to be used with the reduced element which will then be in {S}. Routine 2 is more robust than 4,
because it can find P(II) for any element in {II}. Routine 4, when it can be used, is preferred to 2,
because it may be more efficient. This requires, however, that the user must know, a priori, that he
has an element in {S}. FALR-7 cannot be used alone for an element in {S} with SAR(s), and
cannot be used at all for an SI element. If it is used alone under any of these circumstances, the
value for P will most likely be wrong.

Some specific differences between 4 and 2 are:

(1) 4 uses SMP-7 to compute A, 4-9. The sign of A determines whether (24) or (26) is used
to find P, 4-58, 59, 62. The quantity A is computed internally in 2 as a by-product; it
has no specific use there, 2-22, 68.

(2) The setting of the error indicator IND is normally set to zero. If IND = 2 in 2 or 4, then
the input polygon contains a PAR. In this case the output for 2 is correct, but for 4,
P and A are probably wrong. If IND = 1 in 2, then the input N was specified as one and
SDP occurred. If IND=3 in 2 or 4, then the input N <1 orN=2 ForIND=1 or
IND = 3 the output is meaningless.

(3) A winding number W is not computed in 4 ((38) and (39)), since 4 never treats an S|
element alone. This has the advantage that if A6 is not used for a particular ay, say if R
is large or sin Af is small, a call to the arctangent subroutine can be bypassed, 4-20, 18,
11,12,13,4,5,6,7,35,38. For 2, all AG must be computed to evaluate W which is
needed, since 2 is based on (32). Thus 4 should be used instead of 2 for simple polygons,
and also for S clements without SAR(s).

Finally, it is recalled that a polygon may often be specified by either of two numbering
schemes called « and f-options (see page 24). Generally 8 is the desired option for computation,
since it may require fower points to specify the given polygon (see page 24). However if the user
wishes to determine beforchand the class to which a polygon belongs, it should always be numbered
using the a-option. See pages 18-25 for more discussion.
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Definitions and Page References for Flow Chart Quantitic:;

IBND — Integral of the bivariate normal density function, page 2

P — Value of P-function for a polygon or an angular region, :age 1
A — Value of A-function for a polygon, page 9, Appendix D

ICV - Program input parameter, page 25, Appendix F

IND — Program output error parameter, page 26, Appendix

IOP - Program input accuracy parameter, page 25, Apperdix F

W — Winding number, page 18

ay, Qy, O3, Oy, R%/2 — Program parameters which depend on IOP — Appendix E
B = RY2, page 28

g = RA/2 cosf, i=1,2, pageb

hy = RW2sin8, i=1,2, page6

1 1 “page”
G = 3‘\7—17 (hy =hy) - P (g2hy —gihy), page !

u, v, w, z — Defined in Flow Charts 2 and 4

ay-y = Chebyshev coefficients for erfc (u), page 6

w E TX10¥; ¢ = 5 X 10" (used in SORT 1), Appendix E
E(h) = erfc(h), page$ B
Ech) = erf(h), page 28

£ = Multiple of +2w, page 20

A0 = tan~! (V/¢) page 5. (See Footnote 13, page 20)
Y = vw - uz

o = uw + vz

s = sin A0 = 2y/D\D,, page 28

D, = [2(w? +:))2

Dy = [2(u? +v}))?

¢ = (RY2)cos A0 = gygy + hyhy

Program Identification Number:

P-2 ! P 5
VALR-2 2 SORTI 6
SORT Il 3 SORTHl 7
VALR-7 4 SMP-7 8
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VI. NUMERICAL RESULTS

In this section, a variety of polygon elements are shown through Figures 30-58. Each element

;i has its vertices and relevant edge intersections numbered sequentially, from 1 to N, in the order it is
| generated!? The numerals are not always placed optimally for viewing; nievertheless the xy-
" { coordinates to which a numeral corresponds can always be decided. A numeral (node) is generally,
A but not always, located below and slightly to the left o1 the xy-peint to which it belongs. The

xy-coordinate values are always rational numbers that can be read from the figures using a ruler
graduated in tenths. Each figure lists the following information:

ICV, P, A, Classification (__,__), N.

All the computations were performed using P-2 as the master routine. If there is a most
efficient way to compute P, ICV is assigned one value. If there are two ways which may be equally
good, or if it is difficult to decide which is better, then ICV is assigned two values. For example,
Figure 37 shows a simple polygon, so ICV = 0. A glance at the P-2 flow chart, page 40, confirms
that P-2 calls VALR-7 to compute P(S). In Figure 32, an SI element is shown with a PAR as well.
We have ICV = |, ~1, which, from P-2, calls first VALR-2 to find P and subsequently VALR-2
preceded by SORT HI to obtain the same result. The rounded value of P given in each figure is
corroct to the number of digits shown. The value of A is given next. The classification of an
element (according to the T-construction, page 15) follows and is designated by 8. S, or SI. The
two blanks, in parentheses, following the classification, as noted above, are used to denote the
computed winding number W. 1t is only listed if VALR-2 is called. Thus, for Figure 32 two winding
numbers are listed since 1CV = 1, 1 which both use VALR-2. In the first case the arctangent sub-
routing yields # for the angular measure of the PAR at (11) instead of ~m acvording to the
T-construction. This vesults in a computed wirding number of one insicad of z¢ro. See pages 22
and 23, Note there is also a PAR at (19); however in this caxe W is not affected since  is its measure
according to the T-construction. In Figure 37, W = 1, gince the element is PO but it is not listed
beceuse VALR-2 was not used to compute P for this clement. Finally, N is listed which refers o
the number of points used to define the configuration as shown,

By our T vonstruction, page 15, an clement of S}t has a winding number W of +1. However.
becauie of the range of the arctangent routine, page 22, this need not be the case computationally
as for example in Figures 30 and 31, see page 33 also. The element of Figure 3013 isin i85 ac
cording to the T-construction, but must be considered $1 for computations. Thus P is computed
using VALR-2 with a computed W of 6(2), using 1TV = 1. Then P is computed again using VALR.?
preceded by SORT L (ICY = -0,

In Figure 34, we have the case of a simple polygon in the form of a triple spiral. Another
simple polygon is shown in Figure 37, Figures 30, 31, 38, 36, 38, 39, 42, 43, 44, 45,48, 49, 5834,
S84, 56 contain elements in {53, The remaining figures: 32, 33,40, 41, 36, 47, 50, 52, 53, 54, §7.
§8 display S1 elements.

[ESPUUCII——.

Bt should be understood that an additional nede (N ¢ 1) is located at MN{1).

SRERVVEI.
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It is our objective in presenting these figures, that there is enough variety to resolve for the
reader any remaining unceriainties regarding the robustness of (P—B), how a polygon is specified
and classified, and how a winding number is determined. Finally, for completeness and as a further
clarification of the role of exterior angular regions, we tabulate on page 48 a detailed listing of the
vajues of P(ay), k = 1, 2, ..., N, that are needed to compute P(.I) for the element displayed in
Figure 33.

This polygon is interesting in its own right, since P(II) represents, here, the probability for
an event, governed by a bivariate normal distribution, occuriing in S; and/or S;, where §; =
(1,2,3,4,5,6,7),5, =(8,9, 10, 11, 12). From probability ‘heory, we can write

(54) P(IT) = P(S; US,y) = P(5;) + P(S,) = |P(S, NSy,

where U, N denote union and intersection symbols for sets and S| N'S, =(8, 13, 14, 15, 16, 17, 18)
which is NO. The values ofP(_Sl), P(S,), P(§; N'S,) are given in Appendix A, where P(I) is found
by decomposing IT with SORT I, which is based on (P—A). See page (A-14).

The tabulation, page 48, lists in the first column the value of k for the ktt node of Il. The
second and third columns list the x and y coordinates, respectively, for each node in the order IT is
generated (the numbering used is under the f-option, see page 24). The fourth column lists the
value of P(ay), for each k. obtained from VALR-2 with ICV =1 and IOP = 3 in P-2, The corre-
sponding angular measures A6, for each a, are given in the fifth column. In the sixth and seventh
columns P(ay ) and A, are listed for ICV = —1, i.e., Il is treated by SORT III first, and then values
in the sixth and seventh columns are computed, with IOP = 3, fromm VALR-2. (Note, IOP =3
implies an accuracy of $-decimal digits for each P(ay ).) The reduced polygonasaresult of SORT 1l
treating IT is given by (1, 2, 3,4, 5,6, 7, 8.9, 10, 14,15, 16, 17,18, 19). SORT 11! has deleted (12)
since (11), (12), (13) are SCP. Then it drops (13), because (11) and (13) are now SDP. Then it
removes (11) becavse (10), (11), (i4) are now SCP. The columns 4, 5, 6, 7 are summed at the
bottom of the tabulavion. Note that W = 2 for both situations. This is not always the case. The
primary circuits (see page 18) can be gleaned from the figure. For ICV = |, the circuits are given by
Cp(Ily) = (16,4,5,6,7,8,9,16) with W, = |, Cp(Il) = (1, 2.3,16, 10,11, 12,13, 14, 15,16, 17,
18,19)% with W, = 1. Hence W =W, + W, = 2. For ICV = =1, the primary circuits are given by
Cp(Il)) = (16,4,5,6,7,8,9,16) with W; = 1, Cp(lly) = (1, 2,3,16,10, 14, 15,16, 17, 18, 19), with
W, = 1. Heoce again W = 2. A m-angular region, PAR, occurs at k = 12 initially. Hence withICV =1
an erfc calcula:ion is required at k = 12, namely 1/2 erfe (hy) = 1/2 erfe (=1) = 92135 03965, It
ICV = —1, then point (12) is deleted and the erfc computation, at the expense of using SORT 11,
is not necessary.

The time of computation per angular region is given in Appendix E.

All of the numerical results in this report, as well as many that are not given, were checked
by an independent procedure. It consists of decomposing II, regardiess of ity class, into a
set of triangles {A;}. The triangle 4; has vertices (1), ), G+ 1), Withj = 2, 3, ..N ~ | we hawe

20The order of the nodes uppears unusual because of the use of the froption numbering scheme.
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P(II) = 2}1"2‘ P(Aj). The proof of this result follows the lines of proof given for A in Appendix D;

it is not given here.

The value of P(4;} is computed from a routine we developed which uses Drezner’s scheme
[2, page 18] for evaluating P over an angular region. His method is much slower than ours but

gives very good accuracy. It is described in (2].

In this checkcut program, which is listed in Appendix G, N-2 triangles 4; are obtained for

each I, and consequently P is required for 3(N-2) angular regions.

TABULATION OF RESULTS FOR FIGURE 33 USING P-2. (e = § X 10719)

[
k| x|y| 1cv=1, P@) ICV=1, A§, ICV=-1, P(g}) ICV=-1, Af,
1{-3] o 16803 81909 (~2) 3n/4 16803 81909 (-2) 3n/4
2l o]-3] 7.8697 69659(=3) | 14288 99272 (0) 78697 69659 (-3) | 1.4288 99272(0)
3| 4| 0| 49999 79129 (-1) | 24950 91545(0) [ 49999 79129 (-1) | 2.4980 91545 (0)
4 of o -3/8 “3nf4 _ -3/8 ~3n/4
S| 2| 2| 3.0600 67674 (=3) | 1.8925 46881(0) | 2.0600 67674(-3) | 1.8925 46881 (0)
6| 0| 3] 16551 27610(-2) | 1.2490 45772 (0) 16551 27610(-2) | 12490 45772(0)
7)-31 0| 49985 63923(-1) 3n/4 49985 63923 (-1) 3n/4
8-2| 0] -3.1610 42924 (-1) | ~4.6364 76090 (<1) | ~3.1610 42924 (1) | -4.6364 76090 (~1)
9l 0[-1] 95914 28393(-2) | 92720 S2180(-1) | 9.5914 28393(-2) | 9.2729 52180 (-1)
10] 4] 1] 15865 44813(=1) | 26779 45045 (0) 15865 44813 (-1) | 26779 45045 (0)
-1 1] 26739 05696 (-2) /4
1202 0] 92135 03965 (1) "
13{=1]| 1] ~1.0674 47074 (~1) ~n/4
19 1| 1] ~8741 42552 ¢1) ~3uf4 15393 04909 (1) /4
15| o 0 38 Infd 38 In/d
10| 2 18389 57076(=1) | -26779 45045(0) || ~1R38Y $7076(~1) | -2.6779 45045 (0)
17] 0f=1] -9.5914 28393(=2) | -9.2720 5180 (-1) | 05914 28393(=2) | ~0.2729 $2180(-1)
18{-2] 0| 16509 77199(=3) | 36364 76090(-1) | 1.6509 T7199(-3) | 4.6364 76090 (-1)

PUD=2- 2P, )=094162 43130

[X 20, /2n) s W= 2

POD=094162 48129

(X a0 /) s W=2
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APPENDIX A
NORMAL PROBABILITY OVER ARBITRARY POLYGONS BY (P—A)

In this appendix, we describe Procedure (P—A) for computing P(IT), IT in {I1}. It differs
significantly from (P—B) which is discussed in Sections IV, V and V1. In (P—B), the concept of a
winding number was introduced. A program package, called Program B, was developed made up of
five subprograms: P-2, VALR-2, SORT Ili, VALR-7, and SMP-7. The (P—A) procedure, like (P —B),
was developed to treat SI elements or S elements with SAR(s). It decomposes such an element into
a set of disjoint elements in {S} or {S} depending upon whether the § or a-option is used to specify
IT (See page 24). If the decomposed elements are in {S} they are treated by removing any PAR(s).
The resulting decomposed elements are then in {S}, and P for such elements is computed by using
VALR-7. A program package is also described in this appendix, using (P— A), which is comprised of
six subprograms: P-7, VALR-7, SORT |, SORT II, SORT III and SMP-7. This program package is
called Program A.

Procedure (P—A) has merit, because its decomposition of II into disjoint elements in {S} (or
{S}) allows the analyst to gather a more detailed picture of the type of region Il represents. More-
over since it permits the decomposition to be carried out in a backward (from (N) to (1)) as well as
forward direction, it gives an additional means of checking final results (The decomposition is not
necessarily the same in the forward and backward directions). Nevertheless (P—B) is deemed the
better overall procedure. Some summarizing remarks comparing (P—A) and (P—B) arc given on
page A-15.

For computational efficiency with Program A, the pre-processing of IT must be kept to a
minimum by specifying beforehand the smallest class to which [T belongs. However if I1 is errone-
ously assigned to a class to which it does not belong, then, because VALR-7 cannot treat S elements
nor elements in {S} with SAR(s) a wrong result for P(IT) is likely. Recall, on the other hand, that
VALR-2 of Program B can treat any polygon with the same computational efficiency, although
small improvements in efficiency can sometimes be achieved by pre-processing 11 with SORT Il
and by using VALR-7 for VALR-2 as indicated in P-2 (see page 40).

We assume throughout this appendix that (P~ A) or Program A are under discussion unless
stated otherwise.

If ITis in {8}, then by computing P(a,) for cach g of S, P(S) is obtained by using (24) if
A >0, and (26) if A <Q0. In the first case [1is PO and in the second 11 is NO.

If 1T is in {8}, then SAR(S) can occur (see pages 12, 31). The SDP and SCI are treated by
removing appropriate points from the V-array which specifies I1. The reduced polygon is in {S},
and P(8) (=P(8)) is obtained as explained in the previous paragraph.

If T is SI, then 1T is decomposed into a set of disjoint clements, often referred to as isolated
elements, in {S} or {S} depending on whether I has been specified by the « or § numbering scheme.
It 1T is decomposed into (S! -+ §") then P(I) = E{' P(SY) and if the decomposition results in
(8! -+ §"), then cach S! must be processed first, as explained in the preceding paragraph, before
P(S!) can be computed such that P(IT) = ' P(SH,
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The « and B-options come into play if Il is in {S} or {IT} (see page 14). Generally the S-option
is the more efficient, since it will often rejuire the treatment of fewer angular regions (one must
be careful, however, that it specifies IT correctly). In Figure A-1,! 16 angular regions occur with
the a-option. For the same IT using the S-option, as shown in Figure A-2. only ten regions occur,
and two of those are of no consequence since A6 = 0 for them.

10 11 4 13 7 8
4 7 3 WL 4 2
9 ,\8 2 14 6 \S 9

Figure A-1. Polygon Figure A-2. Polygon
with a-Option with 8-Option

The two figures above also show that to determine whether Il is SI every vertex, meeting or
intersection of two edges must be nurabered each time it occurs in the order it occurs (see page 14).
Subsequently, the polygon can be numbered with the S-option, if the opportunity exists to do so,
for the actual computation of P(IT). Note that although IT is S in Figures A-1 and A-2, this would

not be concluded from our T-characterization (page 15) by examining the numbered points in
Figure A-2.

If 1 is SI and numbered under the a or f-options, then by (P~A) I is decomposed in the
following way:

Starting at node (1), we look for the first MN (sce page 14) that is met for the second time,
say MN(k) is met for the second time, say at node (k+m), t SkSN-L,2<sk+m<N+ |,
(k+m=N+1 means (k+m)=(1)). In Figure A-3, this occurs at MN(3), since this point is first
encountered by node (3) and for the second time by node (7). The same property also holds tor
Figure A4 at MN(3), which is met tor the second time at node (6).

When this situation occurs, there exists two possibilities,2 (4, p. 16]:

(a) Bdgesk + 1 and K+ m, m > 2, with K + 1 originating at MN(k) and X + m terminaiing
there, have more than one point in common, (Under a-optiorn m = 2).

I Figures A-1 and A-2 are the same as Figures 25 and 26.

2 Actually, a third possibility exists, namely SDP. For each set of SDP, as soon us it is detected, one of the points is
removed.
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Figure A-3. An SI Polygon with IBND
Required Over Shaded Areas, N=19

Figure A-4. An SI Polygon with Line
Segments. IBND Required Over Shaded
Areas, N = 22,

(b)Y Nodes (k), (k+ 1), ... (k+m), m > 2, specify a polygon in (S} (Under a-option the
polygon is in (S).) with a clearly defined orientation (see page 9). Here also K + 1
originates at MN(k) and k + m ends there.

In case (a), a line segment of 11 exists where edges K+ 1 and k + m completely overlap. The con-
fipuration of Figure A-4 contains examples of such line segments. They will be identified below
where I in that figure is decomposed.

In case (b), an element of {S) or (5} is obtained with M = m nodes. The function P is com-
puted for this element (using VALR-7). The nodes (k) to (k + m = 1) are then deleted from the
original V-array specifying 11, and the decomposition continues starting at (k + m?, which is now
the k™ element of the updated V-array. Since II has only N nodes. this will end after a finite
number of such steps. P(I1) is computed by adding up the positive contributions from PO
isnlated polygons and the negative contributions from the isolated NO polygons.

A proof that the above decompaosition can always be carried out is essentially given in Knopp,
[4, page tS]. His proof, which requires minor changes for our use, is constructive. We have used it
as a guide in the decomposition procedure just described.
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In detailing the decomposition of the polygons in Figures A-3 and A-4, the isolated simple
polygons are superscripted in the order they are isolated, i.e., S!, S%, ..., s They are identified,
as usual, by their nodes. We also give their otientation. They are both specified by the a-option.

Figure A-3

S!: (3,4,5,6,7) PO $3: (12,13, 14,15) NO
$2: (2,7,8,9,10,11) NO $%: (1,11,15,16,17,18,19,20) PO

Note: Case (a) does not occur here.

Figure A-4
st: (3,4,5,6) PO Line Segment: (10, 17, 18) Case (a)’
S%: (6,7,8,9) NO S3: (18, 19,20,21) PO

$3: (11,12,13,14) PO Line Segment: (9, 21, 22 Case (a)
S%: (14,15,16,17) NO 86: (1,2,22,23) PO

An automatic formal procedure for decomposing an SI polygon Il is cartied out by listing the
integers corresponding to its ordered set of nodes. In general, after St is found, i # n, all the integers
corresponding to the nodes of S', except the last, are dropped from the initial list V. However if
S' contains node (1) then one is retained, rather than the integer corresponding to the last node of
St For exaraple, for Figure A-4, we would have after deleting S

V=1267282910 111213 14,1516,17, 18,19, 20,21, 22, 23.
Starting at 6, $2 is found, and the above list is reduced to
Vo= 1,2,91011.12,13,14,15 16,17, 18,19, 20, 21, 22, 23.
After 82 and $* are found, we have
(@) 1,2,9,10,17,18,19,20, 21,22, 23,
At this stage, we get line segment (10, 17, 18) and the set (®) above contracts to
Vo= 1,29 18,19, 20, 21, 22, 23.

After S% is found, we have

The removal »f the line segment (9, 21, 22), leaves us with (1, 2, 22, 23) which is 8¢ and concludes
the decomposition.

Figures A-S and A-6 contain the same polygon with the a and g-options, respectively. From
the details of the decompositions given below, it will be clear PAR(s) under the a-option are
removed during the decomposition, but they can be retained under the -option as this example

INote that the decomposition isolutes SAR(s), if the a-option is used.
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10 9
5 S
2 3 2 3
9 8 6 8
11 12 113 1 10 11 7
7 6
Figure A-5. SI Polygon, a-Option, N =13 Figure A-6. SIPolygon, -Option, N =11

shows. Thus, with the f-option an additional program SORT I, is needed to eliminate PAR(s).
However it actually does a little more by eliminating SCP(s) (see p. 31). This program works in
the same way as SORT 11l only it need not check for SDP,* (see page 31).

For Figure A-S, the decomposition by SORT | gives:

st =(2,3,4,5) PO

Line Segment (1, §, 6) (Eliminated by SORT I since a PAR requires p = 0)
§% =1(9.10,11,12) PO

Line Segment (8, 12, 13) (Eliminated by SORT 1 since a PAR requires p = 0)
§'=(1,7,13,14) NO.

With Figure A-6, the decomposition by SORT 1 yields:

St =(2,3.4.% PO
§2 =(8,9,10.11) PO
S8 (1,5 6.7, 101 NO

where points (5) and (1) are eliminated from §* by SORT 1.

Note that in Figure A-6, it was necessary to include the point (11) coinciding with (8) or(7),
otherwise the decomposition would have left the SI polygon {1, §, 6, 7, 8, 9, 10, 12) with no
coinciding points.  Hence, after SORT I, which would remove (5). the resulting element
(1,6, 7 8 9, 10, 12) is Sl and VALR-7 applied to it would yield a wrong result. This example
serves to emphasize, with the (P-A) procedure, the care that must be taken in using the f-option
to specify 11 The (P=B) procedure would have no difficulty in this situation since VALR-2 can
handle SI polygons directly,

We proceed with a description of the computer pregram package based on (P~ A), ic., Pro-
gram A. Recell that for (P-B), Progrum B is composed of P-2, VALR-2, SORT lil, VALR-7,

41t should be evident that SDP are always detected and removed by SORT | by testing if M < 2 (see box 6 of the
Flow Chart 6).
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SMP-7. For easy reference, they were referred to as subprograms 1, 2, 3, 4 and 8 respectively.
For Program A, the program package consists of P-7, VALR-7, SORT [, SORT I, SORT I, and
SMP-7. For easy reference, we number them accordingly. 5 < P-7, 4 » VALR-7, 6 = SORT |,
7 « SORT II, 3 « SORT III, 8 - SMP-7. All of these subprograms are in subroutine format. Pro-
gram P-7 serves as a master routine, VALR-7 is much like VALR-2, but it can only compute P for a
single angular region, or polygons in {S}, provided they contain no SAR(s). SORT [ decomposes I1
into a set of disjoint elements in {S} or {S} depending on whether it is numbered with the « or
B-option. 1t is primarily used if I1 is SI. SORT Il is used on the disjoint elements in {S}, obtained
from SORT I, to remove SCP(s). SORT I was taken up in Section V. It is used to delete SCP and
SDP from I1, the original polygon, when H is in {S}. SMP-7 isused to compute the function A as
given in (22); where |A| is taken as the area of I; the sign of A is used in VALR-7 to determine
the orentation of 1 when Hisin (S} or {S).

The flow charts for 3 and 4 are given at end of Section V, pages 43-45, since they also make
up part of Program B. Flow charts for S, 6, 7 are given at the end of this appendix, pages (A-17-
A-19). No flow chart is given for SMP-7. Fortran {V listings of all the programs are given in
Appendix F.

Program § (see Flow Chart §) uses as input x, y, N, ICV and IOP. These notations have all
been used previously in Section V. The various values for ICV have slightly different meaning here.
I ICV = 0, P(S) or P(S) is wanted where S has no SAR(s) such as in Figure 35, IfICV =1, then
P(S) is wanted, where 3 is used before 4 to remove SCP and SDP. I1f N =1, P for an angular region
is wanted. If ICV = £2 or £3, P for an arbitrary polygon is wanted. 1OP specifies the accurcy
desired: it can be assigned the values 1, 2, or 3 to yicld approximately 3. 6. or 9-decimal-digit
accuracy, respectively, for P of cach angular region.

W IICVE = 2, it is assumed that the a-option has been used to specify an element in {11
I ICVE = {31 it s assumed the f-option has been used. In the first case the isolated elements are
in (S} and in the second case they may be in (S). 1€V = 2 or 3, the processing of 11, by SORT 1,
beging at (1) and progresses sequentially through nodes (2), (3), ..., (N). I ICV = =2 or =3, then
IUis processed by SORT 1 in reverse order starting at (N) and progressing sequentially through
(N=1L(N=2), ... (1)

The parameter IND is discussed below.

We now consider 6 in more detail by using its flow chart, page A-18. Two points of v, &
(e ¥y r= 102, . K, are said to coincide or are duplicates it

(A1) =Ko, ly-wl<o, 1Sk<i<K, o5 514

Program 6 is started by setting K = N and then by sensing it v, and vy of the V-aray, which spec-
ifies T, coincide, 6-3. 11 they do, then v replaces vy in the V-array. If they do not coincide, then
vy is added to V as vN.lv and K = N + 1. Before proceeding with the decomposition of 11, 6 deter-
mines whether V is to be p.ocessed in increasing order of its elements or in decreasing order, 6-2.
The resulting decompaositions are not necessarily identical, i.¢., they may not isolate the same set of
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polygons. Figure 36 contains an example. The two decompositions for that example are given
near the end of this appendix, page A-16. Of course, the result for P(IT) must be independent of
which decomposition is used.

The procedure used by SORT I is an N2-process, whereas SORT 111 is an N-process.

We focus our attention on the forward decomposition, (ICV > 0), 64, rather than the reverse
procedure, (ICV < 0), 6-5.

The array V of data points is searched for a point Y., | <k <i, which coincides with v,,
starting with i = Z, ie., where v; and v, satisfy (A-1). If v; and v, coincide, | < k <i, then set
IST =k and IEN =i, with 2> i > L if k = |, otherwise k = i = L, 6-4. In 6-6, M is set to NUMI;
the inequality IEN = IST = NUMI < 2 is tested. If NUMI = | or NUMI = 2, then we have isolated
either a set of SDP or a set of SCP, respectively. In either case, such elements do not contribute to
P. Hence we set p° =0, and a call to VALR-7, 6-9, can ba averted. If the inequality is not satisfied,
then an clement of (S) or (S} has been isolated. In order to determine whether it is in {8}, ie.,
if the a-option has been specified, a sensing on ICV is carried out at 6-10. If the answer is yes at this
box, then the isolated element is assumed to be in {S}, (a-option), and SORT 11, 6-13, is not called.
It the answer is no, then SORT U will be called, 6-13, since it is assumed in this case that the isolated
element is in (S}, (foption). In 613, the inequality NUMI < 2 is checked again, after SORT 11
has been used. It could happen that after deletions by SORT I, the isolated elemont S retains no
more than 3 points, so that the inequality NUMI € 2 would be satisfied. Then p = 0, and VALR-7,
6-9, is bypassed: the program proceeds directly to 68, If the inequalities of 6-6 andfor 6-13 are
not satisfied, then VALR-7 i called to compute P and A for the isolated element, which we deniote
here by p and a, respectively.

Following the computation of p and a, a query is made at 6-8. Is IEN = K? If the answer is
no, It requires further processing, which is carried out after replacing elements L, ... K-M of V
by clements (L + M), (L + M+ 1), . K, with K then reset to K = K =~ M as noted in 6-7. The re-
placement begins at L rather than L + 1 because (A-1) may also be satisfied by (x, ¥ ) and some
point (X, ¥ ) where m < Lo Henee, at this stage. V is reduced and closed-up (CU) for fusther
processing. Control is retumed to 6-2 and the search continues through the updated V-array,
starting with i = k. ori= 241Kk = | for more “duplicate™ points, 6-4.

If at 6-8, IEN = K, then we must have k = 1 (IST = 1) when ICV > 0, since vy and vy are
always the same. Thus, in this case. 6 proceeds from 6-12 to EXIT, 6-14. and return of control to
P-7. If, on the other hand, ICV < 0, i.e., processing of V is from N~ 1 to 1, 63, and IEN = K at
0-8, and IST = j # 1 at 612, then an element has been isolated which is specified by G, j + 1, ... K).
Consequently 6-7 can be bypassed with V reduced and CU by simply resetting xg ~ Xj51. ¥g =
Yist. and IST -+ K at 6-11. Figures 40, 32 contain examples of where this would occur.

SORT I, 7, is now considered in more detail with the aid of its flow chart 7 (page A-19).
Recall, when the -option is used, that this subrouting is called by SORT { to delete nodes, from an

$We use p and a for an isolated dlement and retain P and A for P(11) and A1)
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isolated element of {S} which contains SCP. They are detected, within rounding error, by testing
the inequality (see page 28),

(A-2) Isi = [sinAff < w, w = 7(-14),

where s can be determined algebraically from the 3 points specifying the angular region (see (47)
on page 28;7-3, 12, 17). Recall nlso, that if (A-2) holds, then it is possible | Af]| is near zero rather
than m. In this case, although the angular region is well defined, (WD), the vertex node is deleted
since the angular region does not contribute to p or a. Angular region a, in Figure 32 is an example.

It is assumed now that an isolated clement S of (8} is available through the decomposition
of 11 by SORT L. We assume S is specified by an array 7 of M coordinate points. Two integer-
valued parameters k and m are introduced in 7-2 withk = 1, m = 2. Parameter k is associated with
the vertex point (k) of the angular region a, under consideration. The paramcter m refers to the
point of @, following (k). It is denoted by (m). Initially w is set to k + 1, 7.2, 7-9. If, however,
a, specified by (k — 1, k, m) subtends an angle 40 such that (A-2) holds, then m takes successive
values above k + 1 until (A-2) is not satisfied or m = M, 74, 211, 7-16, 7-18.

The gquantities u, v, [)§ and w, 2, Df are computed initially at 7-2 and 7-3, respectively. (The
quantities D) and D, are defined on page 39.) Then (A-2) is checked at 7-3 for gy . If it holds,
then m = m + 1, 74, with a return to 7-3 to compute new values of w, z, Df. This s continued
until (A-2) does pot hold or m = M. [f e = M a retum i made, 7-5, to SORT 1, box 13, with
NUMI = 2. Hence, ptS) = 0 for this particular solated clement S, since it is a straight line within
the telerance w of (A-2),

Assuming this does not oceur, 7 proceeds to 7.7 with?! = Jandaquery: Ism=2? w2
then points IM), (1, .., (m = 1) were found to be colincar, i.¢., each I successive points generate
an angular region for which {A-2) holds. In this case, the original array v is reduced and CU by
replacing clements of r starting at (1) by clements (m = 1), tm =2, ., (M) and M is reget to
M= M o~ tm - 20, T8 The program proceeds (o 7.9, where k = 2 m = 3, and new values of w, 2,
ang D} are vomputed. Then 7 would proceed to 7-12,

Wm = 2at 7.7, then gy i WD and 7 proceeds to 7-6, without disturhing v, with m =
Proceeding to 7-12. new values of u, v, I)f;, are computed, whete as noted above k = 2. m = 3
(Ohsetve that at this stage w, 2, ] from 7-3 are based on k = 1, m = 2, and therefore have the
correct values fop looking next at 45.) The program is now set (o look al ¢,. whive the subsceript
refers to clement () of the updated r array.

!
wr ek

AL 712 0A- D) s checked. Tt holds, 1= m + 1 in 7-18 and a retum is made to 7-12, where
new values of u, v, l‘)§ arc computed and (A-2) is checked again. This is continued until {A-2) is
not satisiied or v = M + 1. 7 (A-2) & not satisfied Tor some m, 3 <y < M, then from 7-12, the
program procecds o 7-13. 1fm = k + 1, then g,y is WD, no alterations are made tor. k =k # 1,
and if k < M, the program goes from 7-16 to 7-5, where DE. u. v arc used for the new values of
l)f. w, 7. respectively, mo= Kk ¢ 1, and a retum s made to 7-12. The angular regicn ay is now
investigated as was done previously withay. 1k =M, then 7 goes from 7-16 to 7-17 {o process ay.
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ff at 7-13 m # k + 1, then elements of 7 starting at (k) are replaced by elements (m — 1),
(m), ..., (M), with M reset toM =M —(m—k—1), 7-10. The program proceeds to 7-11, where
k=k+ 1. If k<M, 7 retumns to 7-9 and is ready to look at the next angular region. If k = M,
then 7 proceeds from 7-11 to 7-14 to treat the last angular region ay.

An answer of no to the query at 7-18 implies g, is made up of points (k — 1. k. M); conse-
quently all the points (k— 1), (k), ..., (M) taken as successive triplets (k— 1, k, k+ 1), (k— 1,
k,k+2), ..., (k—1t, k., M) are SCP, i.e., satisfy (A-2). Therefore points (k+ 1), ..., (M~ 1) are
ignored, with the M™ point replacing the k!t point and M resct to k, 7-19. It remains to process
ay - For this, we go 0 7-14.

Note that when 7 goes from 7-16 to 7-17 to compute w, 7, D{ foray thatu,v, D% are already
available from processing ay_,.

If @y satisfies {A-2), 7-17 then (M) is dropped from 1 by setting M =M — 1, 7-20 and control
is returned ta SORT 1. If (A-2) does not hold, then cont:ol is returned directly to SORT 1. The
finzl Coordinates, as contained in the T array, at exit, and the number of them are specified on the

flow chart of 7 as output X, ¥, M, respectively.

By processing polygons I, and [, of Figures 32 and 33, respectively, a more detailed deserip-
tion of SORT 1| and SORT 1 is given. We assume the §-option numbering scheme, in order to bring
SORT 1l into play for I1,. Also, I1; and I1; are processed in the order of increasing numbered
nodes, stasting with node 1. Thus ICV = 3 (see P-7, page (A-17). The descriptions gre presented
in tahulated form in the same way as was done for SORT U (page 34). Each node in the tabulation
will be identified by its number in the original V-array specifying the givea polygon.

The first column, on page A-12, contains the value of N, the number of clements in ¥V, when
SORT 1, 6, is involved, and it contains the value of M, the number of elements in the 7 array when
SORT Il 7. is operating.  The ¢ array specifies an isolated element § from the devomposition
procedure by 6. The second and third columns refer to integers i and k, and k amd m of the preced-
ing discussions on 6 and 7, respectively. The fourth column displays the boxes used, by their
numbers on the flow charts, in the order they comie into play. Column four, when referring to 6,
also shows the patticular §' isolated at that stage. Column five, when referring to 7, shows the
points deleted from cach of the §* as a result of SCP(s). The numerical data. in columa five. pre-
ceded by a letter is associated with a subsequent column headed by the same letter which shows the
teduced CU V or rarrays at pariicular stages of the programs. The sixth column, headed V), refers
to the original Vearray. The seventh colamn, hicaded 8. refers to the original © atray for the first
isolated clement §;. Subsequent clements isolated by 6 have their initial v asays listed under
columas §* and 8. Columns headed (b). (¢), ete.. refer to the reduced crwmpacted arrays as deter-
mincd by 7. for $'. 8% and $%. For example, for 11, . 6 first isolates S given by (4, 5,6,7.5.9, 10,
Then 8! is modified by deletion of (7. 8). The reduced compacted array retumned to VALR-7 is
listed in column headed (b). Numericai results of Il are given. following its tabulation, at the end
of page A-13.

For 1y, Figure 33, SORT 1 decomposes it into 3 elements of the class {S1. and a PAR, speci-
fied by: $' = (1, 2 3.4,5,6, 7, 80 = (8, 9. 10, 11,120 8% = (12,13, 14,15, 16,17, 18), and
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PROGRAMS 6 AND 7 FOR II; FROM FLOW CHARTS

BASED ON FIGURE 32

A-12

BOXES Compacted V and r-Arrays
N[ i |k SORTI Points Deleted | V, | S' [ (b) | V, | S | (&) | (d) | V3
22110 4 3,24 1{ 4| 4| 1]10]10{10]| 1
S! isolated by 6 20 51 s 21 f12)12] 2
6, 10, 13 (Call 7) 3] 6, 6| 3|12]13{13] 3
M| k| m SORT I 41 71 9(10(13 141417
6 1] 2123 50 811011 [14]15]{16]18
21230 7,612,13 61 9 121153161719
3 13,4 16,15, 12 7110 13|16 |17 20
3,414,5] 13,16,15,12 8 14 |17 21
4 16,7] 18,12,18 9 i5 22
41 4 7 |19148,17,2 (d): (N, (2 |10 16 23
Nl ik SORT 1 17
9,87 4901V, |12 18
16 51 4 |24 13 19
6,10,13 14 20
§? isoluted by 6 15 21
Mk | m SORT 11 16 22
71 1] 2123 i? 23
2143 612 18
2104 | 18,12,13,10 (c): 1 19 V,: Donotes original V-
6 3 1.9.12.13 2 V:.":/i:rolt)ggtc reduced
4 [4,5] 16,15,12,13 21 compacted arrays from
s [5.61 16,1512 2 Vev.
6.5| 5 16,7 18.1914,17 (15 23
N | ik SORT 1
9,8,7 10-16 of V,




PROGRAMS 6 AND 7 FOR II; FROM FLOW CHARTS (Continued)
BASED ON FIGURE 32

BOXES Compacted
V and 1-Arrays
N | i]k SORT I Points Deleted | S3 | (e) | (f) | (&) | (h)
51 4 | (Vyr 1-3,17-22 1 2] 2] 2] 2
9 10| 1| 24,6 21 3|17]17]17
S3 isolated by 6 3117182022
i0,13 171161921 |21
M| k| m SORT I 181191201221 2
o 1 11 21253 e 2
9 1] 3] 43 2002122
8 | 2| 3 |18912 (e): 1 20122 2
8 , 21 4 [18,12,13 22] 2
71 3] 4 ]1011,9.12 ()3 23
71 315 | 18,12
70 31 6 ] 18,1213
s o4l s (0912103 | @: 1819
s 1 S| § 1617
4 S 5 20,21 (h): 22
N ilk SORT!
4| 5|1 9,812 14
EXITTOP7

§4 = (1, 18, 19). It is worth noting that although the f-option was used, SORT 11 is not needed.
This is so decause $1, S and §? are actually in {S) and §* has only three points with zero area
{NUMI < 2 in 6-6). Consequently, SORT II can be bypassed by setting ICV = 2. The tabulation for
11, is given with ICV = 2.

The 3 final polygons resulting from the decomposition of {1, by SORT I and the removal of
PAR(s) by SORT Hl are listed under columas (b), (d) and (h). VALR-7 yields values of p and a
for cach of these polygons, namely, p(S!) = =.7078 0769, a(S") = =25, p(§?) = 0268 8323,
a(§8h) = 22, p(§*) = 0125 8574, a(§?) = 13.5. Thus P(I1}) = -.6683 3872, A(Il)) = 10.5. It is
interesting to note that A> 0 but P <0. In Figure 53, A<0uand P> 0.

A-13




PROGRAM 6 FOR II, FROM FLOW CHARTS
BASED ON FIGURE 33

o
N |i]k SORTI Points Deleted | V, | S! [V, |82 |V; |83V,
181711324 111 8} 1]12]1
S! isolated by 6 202 8. 9(12,13:18
M=6) 6,10,9 313 9(10{13]|14]19
12121 |87 2-7of V, 414 |10]11]14]15
6 | 2 |24 5|5 (1121516
M=4) $2 isolated by 6 6|6 |12 16 | 17
6,10,9 717 |13 17|18
813 |t |87 8-110f V, 8 14 18
8 | 2|24 9 1S 19
(M =6) $3 isolated by 6 10 16
6,10,9 1! 17
213 |1 |87 12-170fVy |12 18
M=2 2,4,6 13 19
8,12, i4 14
EXIT TO 7 15
16
17
18
19

The decomposition of 11, (Figure 33) by SORT 1 results in 3 polygons, 8!, 82, §3. Since ax!
the angular regions of these polygons are well defined, SORT 11 is not needed. The final array V,
consists of a singular angular region; for this region the program proceeds from 6-6 directly to 6-8
sotting p = O and then cxiting. VALR-7 yields the values p(S') = 8308 6076, a($!) = 18;
p(§%) = .5378 8935, a(S%) = 6.5; p(§8%) = ~4271 2530, a(S;) = ~4.0. Hence P(11,) = 9416 2481,
A(ily) = 20.5, (sce page 48).

Letting S denote the element shown in Figure 36, we list, on page A-16, P(a, ) for cach angular
region gy, k=1, 2, ..., N(=22). The computations were carricd out with IOP = 3 (from P-7), i.c.,
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with 9-decimal-digit accuracy for P(a,), for each k = 1, 2, ..., N. The program was run with
ICV = 0, ie., P-7 called only VALR-7 to evaluate P(S). Subsequently, the program was also run
with ICV = 2 and —2. Recall that when ICV = 2, P-7 calls SORT I which decomposes IT (=S here)
into a set of simple disjoint polygons {S'}, (in this case); SORT I, in turn, calls VALR-7 to evaluate
p(S?) for each isolated element, S', of the decomposition. The decomposition by SORT I starts at
point (1) of S, and S is processed from (2) to (N), sequentially. When ICV = =2, the procedure
starts at point N of S and carries out the decomposition in the backward direction, i.e., sequentially
from (N—1) te (1). Observe in the tabulation that the decompositions with ICV =2, and ICV =-2,
are not the same, although, of course, the final results for P(S) and A(S) must be identical within
the accuracy specified.

The first column of the tabulation shows the node number of S; the second and third columns
give the xy-coordinate values wssociated with the node number. The fourth column, headed
ICV =0, lists P(ay) for each node number (k) of the first column, k = 1, 2, ..., N. Summing the
P(a,), and using (A-3), below gives P(S) beneath columns 1-4. The next two columns refer to
finding p(S) with ICV = 2. The fifth column contains the node numbers for each isolated
S, i =1, ..., 6; the next column, headed ICV = 2, contains the P(a,) associated with the node
numbers of a particular S'. At the end of the listing for each S', p(S') is given. For example,
8% is specified by (13, 14, 15, 16); the value of P for the angular region of S? at node 13 is
8.1418 04138 X 10-'. The vafue of p(§3) = 7.3866 73215 X 10-2. The 7th and 8% columns
refer to nodes and corresponding angular regions with ICV = =2, For exumple, S* in this
case, is specified by (4,5,6,7,12,13,17,18) with P(ay) of SY. with ICV = =2, given by
=2.0268 86540 X 107! and p(§;) = ~9.1654 62410 X 10~ The results were checked by using
an independent decompaosition procedure, with Drezner’s method (2], described on page 47.

It was shown in Section 11, ((24) and (26)) that

(A-3} PS)y =1 - X Pay), if A5 >0,
(A-4) P(S) = =1 = L Play). i AS) < 0,  (Sce pages 10-12)

We note that for ICV = =2, atS), a(S*) are negative, (their values are given in the lower right-hand
corner of page A-16). i.c.. S and $* are negatively oriented, (NO), and therefore p(8') and p($h)
are also negative. Note again, that the decompositions for ICV = 2 and ICV = =2 are different.
ICV = 0 can be used, because S has no SAR. It is gencrally preferred wiien no SAR's oveur for §,
since it does not use SORT | nor SORT 1 and is therefore more efficient.

Summarizing here. we can say that (P-B) is significantly better than (P-A) for coinplex
SI polygons in the following ways:

(1) Great care must be exercised when using the J-option with (P~ A} as the example in
Figures A-§ and A-6 shows. Figure 38 is another example, where the numbering shown
while appropriate for (P-B), since VALR-2 handles any polygon, is inadequate for
(P = A) Tor the same reason as fot Figure A-6.

(2) Program B, based on (P-B). is generally more efficient than the Program A based on
(P=A) ic.. VALR-7 with SORT | and Il, because often fewer points are needed to
specify 11 as in Figure 58, and in addition, (P~ A) uses an N? process to decompose
IL(SORT 1. which is refatively slow.
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TABULATION OF RESULTS FOK FIGURE 36

(v oo

Zit AN

& &
PEI =3 pish, A®) =) aish
i i

1CV = -2
[

$

LR S
PE =) pish. AG) -%_' a(s)
i

a(8Y) = 20, a(8) = 6, a(83) =33

a(8%) = 3, a(8%) = 35, a(56) = 20

x |y ICV =0, P(a) Node ICV =2, P(g,) Node ICV = -2, P(a,)
1]-5|-s 2.8665 15719 (-7) 2 2.8665 15719 (-7) 18 91724 10707 (1)
2| s |-s 2.8665 15719 (-7) 3 28665 15719 (-7) 19 8.9450 71843 (-1)
3| s s 2.8665 15719 (=7) 4 9.9986 26366 (~1) 20 -9.6857 13286 (-1)
4|5 s 9.9986 26366 (-1) 5 ~1.3449 27576 (~4) 21 -13654 79215 (~4)
S| 3] 3 -1.32449 27576 (—4) p(8YH) 2.7128 28364 (4)* p(shH -8.5582 37140 (-3)*
6 5 |- -13736 33819 () 7 1.3496 06848 (-3) 13 8.1418 04138 (-1)
71 -31-3 ~9.9864 95777 (-1) 8 13480 75949 (-3) 14 1.0265 18201 (1)
8 -3 13480 75949 (-3) 9 9.9069 82439 (-1) 15 9.3010 33998 (-3)
9 3|3 9.9069 82439 (-1) 10 -8.5731 82606 (-3) p(s2) 1.3866 73215 (-2)
0] 22 -8.5731 82606 (-3) p(s%) 1.5177 25594 (-2) 7 1.3496 06848 (-3)
ni-3l-s -2.0268 94695 (~1) 13 8.1418 04138 (-1) 8 13480 75949 (-3)
Y 11979 54136 (~1) 14 10265 18201 (~1) 9 9.9069 82439 (~1)

2l 2 ~1.8536 42054 (~1) 13 9.3010 33998 (-3) 10 -8.5731 82606 (-3)
0]t 1.0268 18201 (-1) p(s?) 766 TR Y | e 15177 28504 (<2)
il 9.3010 33994 (-3) 16 12232 56327 (-2) p 13736 33819 (<)

-2 2 —6.2292 §5125 (~4) 17 1.624.5 062987 (~5) s ~1.3449 27876 (4)

«2 13 16245 62987 (~$) 18 8.2758 92035 (~)
6 =1.3736 33819 (-4)
- |s 8.2758 92935 (~2) ¥ 8.9450 71833 (-1)

-3 ]2 8.0 71543 (=)) pisY) 4.8507 74211 () ! 720268 8640

-2 2 -9.6857 13286 (1) H 19730 92908 (~) 5 LS9 6D
- ] e waseny | w2 11979 $4136 (-1) . 1675 4691 (~4)

s s awes ismeen) 20 9.0285 63470 (=3) 1 L6245 62987 (=5)
PEE) = 1.6193 83633 (-1) s | 13866 T3S () p(sY) 91684 62410 (-1)
o 1 2R665 15719 (=N } 25663 1571?(-'7)

"“;; 6 Y9986 26366 (=1) 2 28665 15719 (-1

PE 1Y Py, AS) =60 0 ~1 3449 27576 () 3 28665 13719(-7)

v N 18665 15719 (~T) 4 28665 13119 (=7

V=2 p(s%) 27138 28364 (~4) L p(s%) 9.9999 88534 (-1)

a(§') = -75, a(§2) = 3.5,ai8y) « 6

a($4) = ~46, a(S%) = 100

“Note: See (A-3)and (A4) of page (A-15),
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APPENDIX B
EVERY SIMPLE POLYGON CONTAINS AN INTERIOR DIAGONAL
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APPENDIX B
EVERY SIMPLE POLYGON CONTAINS AN INTERIOR DIAGONAL

By an interior diagonal, we mean the open segment (L) of the closed line segment [L] extend-
ing from some vertex (k) to some nonadjacent vertex (j) of the simple polygon §, such that (L) is
entirely in the interior of S. '

The proof given in {4, p. 17, Lemma 2] is not correct. Knopp’s proof is repeated here with a
counter-example. An argument to correct the proof is then given,

Let a straight line which does not intersect or meet S be translated parallel to itself toward the
polygon until they meet. Then the line necessarily contains a vertex A of § with the interior angle
of A less than two right angles. Let B and C denote the adjacent vertices to A. Then one of the
following is true:

(1) BC is a diagonal lying in the interior of S.

(2) There is at least one vertex of S on the (open) segment BC (let one of these vertices be
denoted by V) but no vertex in the intenior of triangle ABC, (& ABC).

(3) There is at least one vertex of § in the interior of A ABC.

It (1) is true, there is nothing further to show. If (2) halds, then AV is an interior diagonal of §.
If (3) is true, let a point X move from B to C along BC until AX encounters a vertex or vertices of §
in the interior of A ABC. If V denotes that one of these vertices which is nearest to A, then AV isa
diagonal interior to A.

The proof of part {3) is not correct. This is casily seen from the figure below. The vertex
nearest to A in A ABC, following Knopp. & D, but the lire AD contains points outside 8. The
proper vertex to have chosen was E which is in A ABC, but farther from A than D.

A Counter-Example to Knopp's Proof

B-3
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The proof is easily corrected as follows: Starting at A, move an open segment, which extends
from AB to AC, parallel to BC and towards BC until one or more vertices of S are met. If there is
more than one such vertex, choose any one and call it V. Vertex V has the property that no other
vertex of S in A ABC has, a greater (perpendicular) distance from BC. Now suppose AV is not an
interior diagonal of S. Then there exists a point (z) where AV intersects another side of §, say side
(k, k + 1). Point (2) cannot be a vertex by the way V was chosen. Now either vertex (k) or (k + 1)
must have at least as great a distance from BC as (z). Say it is (k). But, since S is simple (k) must be
in the interior of A ABC. This contradicts the way V was chosen. Hence AV must be an interior
diagonal of S.

This result is used on page 11 and in Appendix D.
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APPENDIX C
AN ALTERNATIVE METHOD TO FIND P FOR SIMPLE POLYGONS

At an early stage of our studies, we developed a method to compute the P-function over a
simple polygon by using a program already available, which computed P for convex polygons, [2].
To put it another way, an automatic procedure was set up to represent any simple polygon by a
finite set of convex polygons. Realization of our working program required, in addition to a
program for computing P for convex polygons, a program to determine the convex hull of a finite
point set in the plane. Such a program was available from previous work, {1]. By the convex hull
C(Zy) of the point set Z, = {(xj,¥,i=1, 2, ..., N}, we mean the smallest convex polygon which
contains all of Zy. The vertices of C(Zy) are in Zy.

A simple polygon S is shown in Figure C-1. We set forth the procedure by applying it to this
polygon, It will be apparent to the reader that any N-sided simple polygon can be handled in
the same way.

Procedure:
(A) Find the convex hull C of S. We obtain
C=4(,2,36,7,13,14).

The P-function, P(C), for C is computed by the program for evaluating P for convex
polygons. Cleatly since S and C are positively oriented, PO, we have

(C-1) 0 < P(S) < P(O).

(B) The set of vertices of C is searched to determine which vertices of S are missing between
adjacent vertices of C. Obviously, vertices (4) and (5) between (3) and (6), and vertices
(8), (9), (10), (11), (12) betwsen (7) and (13) are missing from C. In this way, we
isolate 2 simple polygons from C, namely

Sl = (3) 4’ 5’ Ga 3)’ Sz = (7; 8’ 9, 10, ‘l, 12. 13. 7).

Figure C-1. A 13-Sided Simple
Polygon, S
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(C-2)
(D)

(E)

(C-3)
(¥)

The convex hull C; of §, is found to be identical to S;. (When this occurs, that convex
hull requires no further processing.) We note C, is negatively oriented so that P(C,) <0.
The convex hull C, of S, is then determined to be

C, =(7.9,10,13,7),

as indicated in Figure C-2 by the dotted lines and the line segment (9, 10). C, is also
NO, and hence P(C,) < 0. Therefore, consideration of C, C;, C; shows

P(S) > P(C) + P(C)) + P(C,).

Two simple polygons, both PO, are obtained from C,, by noting the missing vertices, as
explained in (B), namely

S; =(7,8,9,7), S, =(10,11,12,13, 10).

The convex hull C3 for Sy is again S;. Thus, C; requires no further processing. Since
C, is PO, we obtain P(C;) > 0. Next, the convex hull C4 for Sy is found to be

Cq = (10,12,13,10)

- 'ch is also PO. Thus P(Cy) > 0 and we obtain, adding P(C;) and P(C,) totheright-
uand side of (C-2),

P(S) < P(C) + P(C)) + P(Cy) + P(Cy) + P(Cy).
Finally we isolate S¢ from C,
S = (10,11,12,10).

lts convex hull Cy is identical to it. Observing that Cg is NO and that P(C¢) < 0, we
obtain the final results by adding P(Cy) to the right-hand side of (C-3), namely, with
G, =C,

5 §
Uea=s k=) k.
i=Q i*0

Figure C-2. Convex Hull, C;, of
S, =(7.8,9,10,11,12,13,7)

C4
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Although no proofs are given the procedure can be put on a rigorous basis by induction
type arguments.

This method, call it (O) (for old) is much slower in gencral than the procedure described in
Section II, call it (N) (for new). This is so, because (in: addition to finding convex hulis) the time
consuming computation is finding P for an angular region by VALR-2 or VALR-7. By our present
procedure, (N), we require the evaluation of P, in the example of Figure C-1, for 13 angular regions,
whereas by the method of this appendix, (O), we require 6 angular regions for P(C), 4 for P(C,),
4 for P(C,), 3 for P(C;), 3 for P(C4) and 3 for P(Cy) for a total of 23 angular regions.

The method (O) does have an advantage in ikat P(S) is alternately bounded above and below
with improved bcunds on each cycle of positive and negative centributions to estimating P(S).
By a cycle, we mean a stage in (O) where each convex hull obtained is of the same orientation.
The first cycle occurs with C is found. It is PO. At the second stage C; and C, are found and
both are NO. The third stags is manifested by the appeerance of Cy and C4, hoth PO. The
fourth and final stage is when Cs is found. It is NO. The improved bounds may allow the calcula-
tion for P(S) to be terminated early. Indeed, if at the ¢nd of any cycle of NO convex polygons, the
last denoted by Cy, the quantity

]
(C-5) PRI
{=0

is greater than | — ¢, thon P(S) = | within ¢; if at the end of any cycle of PO convex polygons, the
last denoted by C,y, the quantity corresponding to (C-$) is less than ¢, then P(8) = 0 within e.
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APPENDIX D
EXPRESSIONS FOR THE AREA OF A POLYGON

We first show an expression for the area of a simple polygon in terms of vectors. There is
nothing new about the result, but it is not as easily available as one would expect, [6].
Subsequently, by some straightforward algebraic manipulations we obtain an expression for the
area, A, which leads to a very efficient machine computation for the area of a simple polygon, A(IT).

Let S denote a simple polygon with its vertices numbered in the natural order from | to N,
such that in tracing S continuously, the interior of S is always on the left. We say S is positively
oriented (PO) in this case. The classical vector expression A, for which |A(S)] = A(S), is then given
by a sum of vector cross-products.

(D-1) A®S) =

09 fom

N

D GmDXGa ~ D, Iy, =7,

is1

where 7, — Z denotes the vector from Z to Z;, with Z fixed, but arbitrary, and A(S) 2 0 using the
right-hand rule for cross products,

In order to establish (D-1) for simple polygons, we use induction, and the result of Appendix B
that for any simple polygon S there cxists a diagonal between two vertices of S which is entirely
in 8. We also need the fact that

(D-2) G- X7 -2) = ~@ - X (G -2).

Certainly for N = 3, S a triangle, (D-1) holds. Now assume (D-1) hoids for all simple PO
polygons with no more than N — 1 vertices. Let S denote a simple polygon of N vertices, PO. By
the result of Appendix B, there exists a diagonal from vertex j to vertex j+ k, k > 1, which is
entirely within S, except for its end points at vertices j and j + k. This diagonal divides § into two
disjoint simple PO polygons, except for the common side, cach with no more than N = | vertices.
Hence, by the induction hypothesis, (D-1) holds for each of these polygons, call them 8, and S,
where

S, = (LA .nj=Lij+kij+k+ 1l . N D,
Sy = Gojtl. ... jtk=1j+k j.

Hence

- 1 Y - - - - _3 - 5 e 5 - 5
A(sl) = '3‘ [L (Zi AR ¢ (l‘o] - Z) + (Zj Z) X (zj’k Z) + 2-‘ (Z‘ Z) X (liﬂ Z)\l R

iw] iujek
i i’l\:‘-l _ _ _
(D-4) ;\-‘SJ) = 3 [ z‘ (ij"‘z) x(isﬂ ~2) + (%o& =7) x(ij"i) .
iej
D-3




Since §; and S, are disjoint and PO, we have by adding (D-3) and (D-4), and using (D-2), the
expression (D-1) for N-sided simple polygons.

Above, we have assumed S was PO. If S is NO, then each cross product in (D-1) is reversed,
and by (D-2), A is given by (D-1) with a minus sign attached.

Now, since A(S) is a continuo_us function of the coordinates of the vertices of S, (D-1) also
yields A for polygonal elements of {S}, such as in Figures 35, 36, 45.

Actually (D-1) holds for arbitrary polygons, i.e., elements of {Il1}. This follows by using the
above results with a theorem given in [4,_page 15], which states that every polygon can be
decomposed into a finite set of polygons in {S}.

An_eft_'x_cient expression for computing A can be obtained from (D-1). Since Z is arbitrary,
choose Z = 0. Then (D-1) reduces to

N
(D-5) A =33 @GXZ).
i=l

In component form we have
LEXEey T XYier " X Vi

so that (D-5) can be written as

Z

(D-6) AdD ='§l,: (Xi¥iey =X W)y (XNeps YNe)) E (X1u )

-
—

The number of multiplications can be halved by some algebra. From (D-6) take the second product
of the (i = 1) term, x,y,.,, and combine jt with the first product of the i term, Xy, to obtain
Xi(¥i+; = ¥i-1) This can be done successively for each i = 2, 3, ..., N. The remaining clements,
namely, the first product of the first term, x;y; and the sccond product of the N* term, X, yy are
combined to obtain X, (y3 —yy). Thus(D-6) becomes

N
(D-7) A(ID) “%Z x;()’u: "'Y§-1)» Ynel E Y10 Yo E YN (See (22) and (46)).
i}

This expression appeans in the text as (22) and (46).

A Fortran IV listing of the short program for computing A, SMP-7, is given in Appendix F,
page (F-37).

The area of Il in the wz-plane, A(w, 2), see page 1, is given by
(D-8) A(w, 2) = a,0,(1 = p)M2A(I.

D-4
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APPENDIX E
PROGRAM PARAMETERS. CHEBYSHEV COEFFICIENTS, erfc (x)/z(x), x =0

In this appendix, we list the constants that appear in the programs SORT I, SORTII, SORT III,
VALR-2, and VALR-7. There are two constants, ¢ and w, which depend only on the characteristics
of the computer used. They are set at 5 X 10~9 and 7 X 10-9, where d denotes the maximum
number of decimal digits the machine uses to represent a real number. For our machine d = 14.

For VALR-2 and VALR-7, the additional parameters that appear are listed for 4 levels of
accuracy, ie., 3, 6, 9 and 12-decimal digits. The last is, at present, not incorporated into our
programs, but it would be easy to do so. The values for all the parameters follow.

¢ = 5(-14) = § X 10-4, in SORTI
w = 7(-14) in SORT 1l and SORT 111
w = 7(-14) in VALR-2 and VALR-7

ADDITIONAL PARAMETERS FOR VALR-2, OR VALR-7

Acc. ¢ a oy (a3/4) ay RIVZY =2

254 (-4) | 2.02(-7) 1.22(=2) [3.625(-3) | 6.962(-2) | 6.05160
257(¢-7 | 2.08(-13) | 1.23(-4) [5.700(-8) | 6.990(-3) | 12.60605
294 (-10) | 271 (=19) | 134(-6) |6.512(=11)| 7311 (-4) | 19.201924
100 (-13) | 3.17(-26) | 6.58(~9) |2.225(-14) | S.111(=5) | 26.103925

©eoee

€= §Nrm Seepage 6 | ay = /% ¢/2  See (2 page 15)

113
a = we Scepage 7 | ap = (—‘; a,) See page 29, Eq. (12) also,
ay = (9&1)" Y See page 7 R’/: Sce pages 6, 28 and {2, page 8]

The first column of the table labeled Acc. (for accuracy) lists B ® © @ referring to
3, 6, 9, 12-decimal-digit accuracy, respectively, for the probability over an angular region. Pages
are indicated above where the parameters are discussed in the report.

The minimax coefficients, a,, for approximating erfc (x)/2(x) on {0, ¢(5)] (sce page 6) are
given below for the four accuracy levels associated with @ . @, ©. @ asnoted ahove. They were
computed by a double precision minimax subroutine utilizing values of erfc (x) correct to 18
significant digits on (1/2, ¢(6)} and values of erf (x) accurate to 25 digits on {0, 1/2).

E-3




For @ (Average time per angular region = 7.8 X 10~4 sec)

<~
)
o on

.885777518572895D + Q0
.759305502082485D + 00
.695232092435207D — 01

For (Average time per angular region =

For

For D)

Average time per angular region a refers to the

P(a).

©

C) (Average time per angular region =

E N on o

=3
&
a n 8 u o

4=
B12=
ﬂNt:r

.886226470016632D + 00
.885348820003892D + 00

421821197160099D + 00
.905057384150449D — 0]
.430895168984138D - 02

886226924931465D + 00
B86223733186722D + 00
442851899328568D + 00
.145060043403012D + 00
.309199295521210D - 01
.324944543171185D . o2
105787574480633D - o3
408335517232165D - 06

(Average time per ungular region =

da9=

B86226925452593D + 00
886226922786746D + 00
443112868048919D + 00
147687136321938D + 00
-368032849350860D - 01
e 710292625734052D - 02
981112629090333D -~ 03
789960968802448D .. 04
.283646635409322D - 05
317679497040006D -. 07
452534347337305D - 10

3
43

no

—.981151952778050D + 00
—.353644980686977D + 00

1.1 X 1073 sec)

=
wy
(LS | I (I [ B

—.999950714561036D + 00
—.660611239043357D + 00
—.222898055667208D + 00
-.254906111884287D - 01
~.323377239693247D - 03

1.3 X 10-3 sec)

g u 0 n o

Lo~
- —
[IPR—.

[ ]

-.999999899776252D + 00
=.666626670510907D + 00
~.265638206366025D + 00
~.714909837799889D - ¢
- 1232353214844 1D . 01
-.704260243309096D . 03
=.971864864160461D - 05

1.5 X 1073 se¢)

k-4

alsa

-.999999999948597D) + 00
~+.006606061 18666611 + 0
- 266662729091411D + 00
~.761365855850292D .. 0
-~ 167195096888 183D - 01
~.278170932906224D .. 02
~.302588640752108D .- 03
-.168685181767046D - 04

dyre - 358314466908290D - 06
A= -.175440651940430D - 08

average computing time on the CDC-6700 to obtain




APPENDIX F
PROGRAM LISTINGS IN FORTRAN IV
P-2, VALR-2, SORT I1I, VALR-7, P-7, SORT I, SORT II, SMP-7

(Flow charts on pages 40-45 and A-17 to A-19)




MASTER SUBROUTINE P-2
(FLOW CHART 1, page 40)

P-2 is used for computing P(IT) over an Arbitrary Polygon IT*

CALL: P-2(x,y,N,P,ICV,IND, IOP, A, W),

where:

X

Y
N

ICV

IND

10P

>

is the array of abscissas of the numbered points of II. x is dimensioned at N + 1.
is the array of ordinates of the numbered points of I1. y is dimensioned at N + 1.

is the number of points specifying I1, except if N = 1 when the IBND over an angular
region is computed. Three input points are needed when N = |, given in counterclock-
wise order, with the vertex at point one, (see pages 25, 27).

is the location where the value of P(IT) is returned.

must be set as an integer by the user according to the list below:

ICV =0, M is simple, or of § type with no SAR(s) (see pages 12, 31). VALR-7 used alone.
ICV >0, Il is arbitrary. VALR-2 used alone.

ICV =-2, ITis of § type with possible SAR(s).

ICV <0, #—2, I1 is arbitrary with PAR(s).

is an error indicator. Normally, it is set to zero. If IND = 2, then PAR(s) have been
detected by either VALR-2 or VALR-7. For VALR-2, (ICV > 0, ICV <0, # =2) the re-
suit for P{IT) is acceptable. For VALR-7 (ICV = 0, —2) however, this result of IND = 2,
means the value for P(IT) is most likely wrong, unless N = | VALR-7 is not to be used
alone where SAR(s) are a possibility, unless N = 1, 1f IND = 3, then N has not been
spocificd as an integer equal to onc or greater than two. Such values of N are not
allowed.

is an accuracy parameter. It is set by tho user to 1, 2, 3 for approximately 3, 6, or
9 Jecimal digits of accuracy in P(I1).

is the location where A(ID is returned. | A/ gives area of I1, (see pages 9, 26).

is the location where the winding number of 1 is returned. It is computed in VALR-2
and takes integer values (see pagos 18, 19). W is defined as an integer variable. It is
initialized to ong, und is only computed if ICV > 0 or ICV < 0, # -2,

*Sce footnote !, page 1, for definition of an arbitrary polygon.
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SUBROUTINE P2 ( X,Y,NB,P,ICV,IND,IOP,A,KO )
DIMENSION X(1),Y(1)
IF ( NB.NE.2.AND.NB.GE.1 ) GO TO 3031
IND=3
RETURN
3031 CONTINUE
N=NB
KO=1
IF ( ICV.EQ.0.OR.NB.EQ.1 ) GO TO 3091
IF ( ICV.GT.0 ) GO TO 3071
CALL SORT3 ( X,Y,N )
IF { N.GT.2 ) GO TO 3061
=0.

RETURN
3061 CONTINUE
IF ( ICV.EQ.-2 ) GO TO 3091
3071 CONTINUE
CALL VALRZ2 ( X,Y,N,P,IOP,A,IND,KO )
RETURN
3091 CONTINUE
CALL VALR?7 ( X,Y¥,N,P,IOP,A,IND )
RETURN
END

PRI AP £ AN AL
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SUBROUTINE VALR-2
(FLOW CHART 2, page 41)

VALR-2 is used to compute P(IT) when II is arbitrary

CALL: VALR-2(x,y,N,P, IOP, A, IND, W),

where:

X

y

P A
10P

IND

w

is the array of abscissas of the numbered points of I1. x is dimensioned at N + 1.
is the array of ordinates of the numbered points of II. y is dimensioned at N + 1.

is the number of points specifying I, except if N = 1 when the IBND over an angular
region is computed. Three input points are needed, when N = 1, given in counterclock-
wise order, with the vertex at point one, (sec pages 25, 27).

are the locations where the values of P(I1) and A(IT) are retumed,

is an accuracy parameter. It is set by the user to |, 2, or 3 for approximately 3, 6, or
9.decimal digits of accuracy in P(II).

is an error indicator. Normally, it is set to zero. If IND =2, it informs the user that [l
contains a PAR. The value for P(IT) is acceptable. If IND =3, then N has not been
specified as an integer equal to one or greater than two. Such -alues of N are not
allowed.

is the location where the value of the winding number W for 1 is retumed. W is an
integer variable.

This routine requires computation of erf (x) and erfe (x) which are defined on pages §, 28 and
29. We have

ERY (x) = erf(x), ERFC (0, x) = eric(x),

where the subroutine listings for these functions are given on pages F-12 to F-15. They are identical
to the NSWC(DL) math library functions ERF and ERFC as of June 1980 which are based on the
reference below.

Cody, W.J.. Rational Chebyshey Approximations for the Error Function, Mathematics of

Computation, v. 23 (1969), pp. 631-637.

F-5
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SUBRCUTINE VALR2 ( X,Y,N,P,IOP,A,IND,KO )

DIMENSION X (1),Y(.),G(2),H(2),RSQ(4)
DIMENSION E(5),E2(10),E3(15)
DIMENSION APH1(3),APH2(3),CST(3)
DIMENSION APH4 (3),A3D8 (3)

REAL I,

REAL KOM

DATA PI/3.1415 92653 5898 /
DATA TWOPI/6.2831 85307 17958 /
DATA ALNPI/1.1447 29885 84940 /
DATA Cl1/.28209 47917 73877 /
DATA C2/.15915 49430 91895 /
DATA TAU/7.E-14 /

DATA TAUSQ/4.9R-27 /

DATA ( E(1),I=1, 5) /
.885777518572895E+00
.759305502082485E+00
.6952320924352078-01

DATA (E2(I1),I=1, 10) /
.886226470016632E+00
.885348820003892E+00
.4218211971600998+00
.9050573841504498-01
.430895168984138E-02

DATA (E3(I),I=1l, 15) /
.886226924931465E+00
.886223733186722E+00
.442851899328569E+00
.145060043403014E+00
.309199295521210E-01
.3249445431711856-02
.105787574480633E-03
.408335517232165E~06

DATA { APH1(I),x=1,3 ) /
2.02E~7,2.088<13,2.71E-19 /
DATA ( APH2(I),I=1,3 ) /
l. 223"’201- 235"‘ '1. 3‘3"6 /
DATA ( APH4(I),I=1,3 ) /
.6962E-1, .6990B-2, .7311E-3 /
DATA RTPII/.56418 95835 4776 /
DATA { RSQ I),I=1,3 ) /
6.0516,12.60605 ,19.201924 /
DATA ( A3D8(I),I=1,3 ) /
0.28125E-4,0.285E~7,0.32625E-10 /
DATA ( CST(I),!=1,3) /

.56258-4,.57E-7,.6512E-10 /

IF ( N.NE.2.AND.N.GE.1 ) GO TO 3011

IND=3

S -

- ™ % W w

N @ % e s s

F-6

~.981151952778050E+00
-.353644980686977E+00

-.999950714561036E+00
~.660611239043357E+00
-.222898055667208E+00
-.25490611).884287E-01
~.323377239693247E-03

-.999999899776252E+00
-.666626670510907E+00
~.265638206366025E+00
~-.714909837799889E~01
-.112323532148441E-01
-.7042602433090968-03
~.971864864160461E~05

N e o=

.- ® % 9 & ®
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3011

3004

3031

3041

3051

3061

RETURN

CONTINUE

P=0.

IND=0

A=0.

KOM=0.

K=1

IF { N.NE.1 ) GO TO 3021

W=X(2)-X(1)

2=Y(2)-Y (1)

U =X(3)-X(1)

vV =Y(3)-¥(1)
PSI1=V*W-U#2Z

IF ( PSIl.GE.C. ) GO TO 3041
=""10

Ti=W

w=U

U=T]

Tl=v

.9

54=Tl

GO TO 3041

CONTINUE

Y (N+1) =¥ (1)

X(N+1)=X(1)

U =X(2)-X(1)

vV =Y(2)-¥(l)

XK=X (1)

YK=Y (1)

CONTINUE

W=X{1)-X(N)

2=Y(1)-Y(N)

CONTINUE

D1SQ=W*W+2*Z

IF ( D1SQ.GT.TAUSQ ) GO TO 3051
IF ( N.EQ.1l )} GO TO 4011

N=N-1

IF ( N.EQ.2 ) RETURN

GO TC 3031

CONTINUE

D28Q=U*U+V*v

IF ( D2SQ.GT.TAUSQ ) GO TO 3071
IF ( N.EQ.1 )} GO TO 4011

CONTINUE

K=K+1

U=X(K+1)-XK

V=Y {K+1) -YK

D28SQ=U*U+V*V

E-7




IF ( D2SQ.LE.TAUSQ ) GO TO 3061
IF ( K.EQ.(N-1) ) RETURN
3071 CONTINUE
A=XK* (Y (K+1) =Y (N))
BGD1=SQRT (2. *D189)
BGD2=SQRT (2. *D2SQ)
3081 CONTINUE
PSI1=V*W-1j*y
CEE=U*W+V* 3
AJ0 =ATAN2(PSI1,CEE)
KOM=KOM+AJ0
L=0.
B=,5% (X (K) *X (K) +Y (K) *Y (K) )
IF ( B.GT.APH1(IOP) ) GO TO 3111
CAPG=0.
3101 CONTINUE
Pl =AJ0 /TWOPI-CAPG
GO TO 3621
3111 CONTINUE
G(1l)=(W*X (K)+2*Y (K)) /BGD1
G{2) = (U*X (K) +V*Y (K) ) /BGD2
H(l)=(~Y (X) *W+X (K *2)} /BGD1
H(2)=(-Y (K) *U+X {K) *V) /BGD2
IF ( ABS(PSIl).GT.(RGD1*BGH2*A3D8(IOP))) GO TO 3241
IF ( CEE.LT.0. ) GO TO 3131
IF ( ABE(AJU).LE.TAU ' GO TO 3121
IF { G(1).GE.0. )} GO TO 3121
GO TO 3241
3121 CONTINUE
P1=0,
GO TO 3621
3131 CONTINU
iF ( &Ba(PSIl) 1E. (. S*TAU*BGDI*BGDQ) ) IND=2
IF PSIl LT.0. } GO 'TO 3171
P} S*ERFCI(O H(2))
GO TO 3621
3171 CONTINUE
Pl ~~.5*ERPC1(D H(L))
GO TO 3621
IF { B.LE.APH2(IOP) ) GO 40 3301
IF { ¢(1).L7r.0. ) GO TO 3261
IF ( G{2).GE.0. ) GO TO 3471
G(2)*~G(4)
H(2)==H(2) R
CIF { ABS(H(2)).LS 3“84(IOP) ) GO TO 3251
L=.5*BRFCL(G,~H(2})
' GO TO 3461 :

B
<
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3251
3255

3261

3271

3281

3291

3295
3301

3461

- 3485
3471

CONTINUE

L=.5+RTPII*H(2)

GO TO 3461

CONTINUE

L=.5-RTPII*H (1)

GO TO 3461

CONTINUE

G(l)=-G(1)

H(l)=-H(1)

IF ( G(2).LT.0. ) GO TO 3271

IF ( ABS(H(l)).LE.APH4(IOP) ) GO TO 3255
L=.5*ERFC1(0,H(1))

GO TO 3461

CONTINUE

G(2)=-G(2)

H(2)=-H(2)

IF ( ABS(H(l)) .LE.APH4(IOP) } GO TO 3291
IF ( ABS(H(2)).LE.APH4(IOP) ) GO TO 3281
L=.5*%(ERFC1(0,H(1))-ERFC1(0,HE(2)))

GO TO 3471

CONTINUE

L=RTPII*H(2)-.5*ERF1(H(1))

GO TO 3471

CONTINUE

IF ( ABS(H(2)).LE.APH4(I0P) ) GO TO 3295
L=,5*ERF1(H(2) )~RTPII*H(1)

GO TO 3471

CONTINUE

L=RTPII*(H(2)-H(1))

GO TO 347}

CONTINUE

CAPG=Cl* (H!2)-H(1))-C2*(G(2) *H(2)~-G(1)*H(L1))
GO TO 3101

CONTINUE

PSIl=-PSIl :

IF ( PSIL.LE.0. ) GO TO 3465

L‘L‘*}‘.o ' i o

AJO=PI+AJ0

GG TO 347l

CONTINUE

AJO=AJ0 -PI

CONTINUE

IF ( B.GE.RSQ(IOP) ) GO TO 3501

CAPE=AJO

- CAPH=.5*AJ0
M=1

F=0.
Ail=H(2)-H(1)
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3481

3491

3501
3621

3631

3641
3645

3651

3661

CIRCM=AJ1l
IF ( IOP.EQ.3 ) GO TO 3681
IF ( IOP.EQ.2 ) GO TO 3701
SUM=E (M) *AJ1
CONTINUE
=M+1
H(2)=H(2) *G(2)
H(l)=H(1) *G (1)
T=H(2)-H(1)
F=F+B
CAPV= (F*CAPE+T) /M
SUM=SUM+E (M) *CAPV
IF{ M .GE. 5 ) GO TO 3491
CAPE=CIRCM
CIRCM=CAPV
GO TO 3481
CONTINUE
Pl =L+EXP(- (B+ALNPI)) * (CAPH-SUM)
GO TO 3621
CONTINUE
Pl=L
CONTINUE
IF ( K.NE.N ) GO TO 3651
IF ( N.NE.1 ) GO TO 3631
P=ABS (P+ABS {Pl))
RETURN
CONTINUGE
P=P~-Pl
KOM=KOM/TWOPI
A=. S*A
IF ( KOM.LT.0. ) GO TO 3641
KO=INT (KOM+.125 )
GO TO 3645
CONTINUE
KO=INT (KOM~.,125 )
CONTINUE
P=P+FLOAT (KO)
RETURN
CONTINUE -
W=U
2=V
BGD1=BGD2
XK=X (K+1)
YK=Y (K+1)
YRKM1=Y (K)
CONTINUE
K=K+l
UeX (K+1)-XK
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V=Y (K+1) -¥K
D2SQ=U*U+V*V

IF ( D2SQ.LE.TAUSQ ) GO TO 3661
BGD2=SQRT (2. *D28Q)
P=p-Pl
A=A+XK* (Y (K+1)-YKM1 )
GO TO 3081

CONTINUE
SUM=E3 (M) *AJ1
CONTINUE

M=M+1

H(2)=H(2)*G(2)
H(l)=H(1l)*G(1)
T=H(2)-H(1)

F=F+B

CAPV= (F*CAPE+T) /M
SUM=SUM+E3 (M) *CAPV
IF ( M.GE.15 ) GO TO 3491
CAPE=CIRCM
CIRCM=CAPV

GO TO 3691

CONTINUE
SUM=E2 (M) *AJ1
CONTINUE

M=M+1

H(2)=H(2)*G(2)
H(1l)=H(1)*G(l)
T=H(2)-H(1)

F=F+B

CAPV= (F*CAPE+T) /M .
SUM=SUM+E2 (M) *CAPV
IP ( M.GE.10 ) GO TO 3491
CAPE=CIRCM
CIRCM=CAPV

GO TO 3711

CONTINUE

p=35.

IND=1

RETURN

END
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FUNCTION ERF1 (X)

DIMENSION A(4),B(4),P(8),Q(8),R(5),5(5)
DATA A/2.42667955230532E02, 2.19792616182942E01,

N N - (R S W b [ ad [l

6.99638348861914E00,-3.56098437018154E-2/
DATA B/2.15058875869861E02, 9.11649054045149E01,
1.50827976304078E01, 1.00000000000000E00/
DATA P/3.00459261020162E02, 4.51918953711873E02,
3.39320816734344E02, 1.52989285046940E02,
4.31622272220567E01, 7.21175825088309E00,
5.64195517478974E~1,-1.36864857382717E~-7/
DATA Q/3.00459260956983E02, 7.90950925327898E02,
9,31354094850610E02, 6.38980264465631E02,
2,.77585444743988E02, 7.70001529352295E01,
1.27827273196294E01, 1.00000000000000E00/
DATA R/2.99610707703542E-3, 4.94730910623251E-2,
2,26956593539687E-1, 2.78661308609648E-1,
2,23192459734185E-2/
DATA 5/1.06209230528468E-2, 1.91308926107830E-1,
1.05167510706793E00, 1.98733201817135E00,
1.0000000C000000E00/

DATA C/5.64189583547756E-1/

- . oy - . o R G . A SN W T W

AX=ABS (X)
X2=AX*AX

IF (AX.GE.0.5) GO TO 20
TOP=A(4)

BOT=B (4)

DO 10 1=1,3
J=4-1
TOP=A (J) +X2*TOP
BOT=B (J) +X2*BOT
ERF1=X*TOP/BOT
RETURN

IF (AX.GT.4.0) GO TO 30
TOP=P (8)

BOT=Q(8)

Do 21 I=1,7

J=8-1

TOP=P (J) +AX*TOP
BOT=Q (J) +AX*BOT
ERFl=)l,~EXP(-X2) *TOP/BOT
IF (X.LT.0.) ERFl=—ERFl
RETURN

ERFl=1.
IP (AX.GE.5.54) GO TO 32
TOP=R (1)
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BOT=S (1)
DO 31 1=2,5
TOP=R(I)+X2*TOP
31 BOT=S(I)+X2*BOT
ERF1=C-TOP/ (X2*BOT)
ERFl=1,-EXP(~X2) *ERF1/AX
32 IF (XQLTQOO) ERFlg"ERPl
RETURN
END
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FUNCTION ERFC1(IND,X)
DIMENSION A(4),B(4),P(8),Q(8),R(5),S(5)
DATA A/2.42667955230532E02, 2.19792616182942E01,

1 6.99638348861914E00,-3.56098437018154E~2/
DATA B/2.15058875869861E02, 9.11649054045149E01,
1 1.50827976304078E01, 1.00000000000000E00/

DATA P/3.00459261020162E02, 4.51918953711873E02,
3.39320816734344E02, 1.52989285046940E02,
4.31622272220567E01, 7.21175825088309E00,
5.64195517478974E-1,~1.36864857382717E-7/

DATA Q/3.00459260956983E02, 7.90950925327898E02,
9.31354094850610E02, 6.38980264465631E02,
2.77585444743988E02, 7.70001529352295K01,
1.27827273196294E01, 1.00000000000000E00/

DATA R/2.99610707703542E-3, 4.94730910623251E-2,
2.26956593539687E-1, 2.78661308609648E-1,
2.23192459734185E-2/

DATA S/1.06209230528468E-2, 1.91308926107830E-1,
1.05167510706793E00, 1.98733201817135E00,
1.00000000000000E00/

3 DATA C/5.64189583547756E-1/
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E AX=ABS (X)

4 X2=AX*AX

g IF (AX.GE.0.47) GO TO 20
TOP=A(4)
BOT=B (4)
po 10 1I=1,3
J=4-1
TOP=A (7) 4+ X2*T0OP

10 BOT=B(J) +X2*BOT
ERFCl=1,~-X*TOP/BOT
IF (IND.NE.O) ERFC1=EXP(X2)*ERFCl
RETURN

20 IF (AX.GT.4.0) GO TO 30
TOP=P (8)
BOT=Q(8)
PO 21 I”lp?
J=8-1
TOP=P (J) +AX*TOP
21 BOT=Q(J) +AX*BOT
ERFC1=T0P/BOT
IF (IND.EQ.0) GO TO 22
IF (X.LT.0.0) ERFCl=2,*EXP(X2)-ERFCl
RETURN
22 ERPC1=EXP(-X2)*ERFC1
IP (X.LT.0.0) ERFCl=2.-ERFCl
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30

31

32

RETURN

IF (X.LE.-5.33) GO TO 32
TOP=R(1)
BOT=S (1)
DC 31 1=2,5
TOP=R(I)+X2*TOP
BOT=S (1) +X2*BOT
ERFC1=(C-TOP/ (X2*BOT) ) /AX
IF (IND.EQ.0) GO TO 22
IF (X.LT.0.0) ERFCl=2.*EXP(X2)-ERFC1l
RETURN
ERFCl=2,
IF (IND.NE.0) ERFC1=EXP(X2)*ERFCl
RETURN
END
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SUBROUTINE SORT III
(FLOW CHART 3, page 43)

Subroutine SORT III Used to Eliminate SDP and/or SCP from II

CALL: SORT I (x,y, N),

O S G sy S e S S

P I

where:

X is the array of abscissas of the numbered points of the polygon II. The array is dimensioned
at N. Upon return to the calling program, P-2 (or P-7), the array of abscissas will be
reduced by the number of consecutive duplicate points SDP and SCP eliminated. The
array is compacted.”*

3]
3§
i1

y is the array of ordinates of the numbered points of the polygon Il. The array is dimensioned
at N. Upon return to the calling program, P-2 (or P-7), the array of ordinatcs will be
reduced by the number of points deleted due to SDP and SCP. The array is CU.

N is the number of points initially used to specify the polygon. Upon return to the calling
program, P-2 (or P-7), N will be reduced by the number of points that were eliminated.

*Compact here means that whenever a point is eliminated all subsequent points of the array are moved up one
location in the arnay, i.¢., the array is closed up (CU).




SUBROUTINE SORT3 ( X,Y,N )
DIMENSION X(1),Y (1)
DATA CST/4.9E-27 /
3041 CONTINUE
IF ( N.LT.3 ) RETURN

i v AN g At M e B o N et S et .
KR ot At Jot ps T X il i R

K=1
L=2
3051 CONTINUE
U=X (1) -X(N)
V=Y (1)-Y(N)
i D2=U*U+V*V
1 IF ( D2.GT.CST ) GO TO 3061
3 N=N-1
; IF ( N.GT.2 ) GO TO 3051
3 RETURN
3 3061 CONTINUE
i W=X (L) -X(1)
3 2=Y(L)-Y (1)
- D1=W*W+Z*3Z
3 IF ( D1.GT.CST ) GO TO 3071
. L=L+1
E; GO TO 3061

e
fitAi

3071 CONTINUE

;_ IF ( L.EQ.(K+l) ) GO TO 3091
3 LM2=1-2

4 N=N-LM2

! DO 3081 1I=2,N

3 I1=LM2+I

X(I)=X(I1)

¥(I)=Y(Il)
3081 CONTINUE
L=2
3091 CONTINUE
T=sV*¥W-U*Z
SN=(4.*T*T)/(D1*D2)
IF ( SN.GT.CST ) GO TO 312l
3111 CONTINUE
L=L+1
IF ( L.GT.N ) GO TO 3341
3115 CONTINUE
W=X(L)-X(1)
2=Y(L)-¥Y (1)
D1=W*W+Za*2
IF ( D1.GT.CST )} GO TO 3091
GO TO 3111
3121 CONTINUE
IF ( L.EQ.2 ) GO TO 314l
LM2=L-2

Y
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N=N-LM2
po 3131 1I=1,N
I1=LM2+I
X(I)=X(I1)
Y(IY=Y(I1)
3131 CONTINUE
GO TO 3041
3141 CONTINUE
K=2
L=3
GO TO 3161
3151 CONTINUE
D1=D2
W=U
2=V
3155 CONTINUE
L=K+1
3161 CONTINUE
U=X (L) ~X (K)
V=Y (L) -Y (K)
D2=U*U+V*V
IF ( D2.GT.CST ) GO TO 3171
3165 CONTINUE
L=L+1
IF ( L.LE.N ) GO TO 3161
N=K
GO TO 3251
3171 CONTINUE
IF ( L.EQ.(K+l) ) GO TO 3191
N=N-{ (L~1)=K)
KPl=K+1
12=L-KPl
DO 3181 I=KPl1,N
I1=12+1
X(I)=X(Il)
Y{I)=Y(Il)
3181 CONTINUE
L=KPl
3191 CONTINUE
TV W-U*2
SN=(4.*T*T) /(D1*D2)
Ir ( SN.GT.CST ) GO TO 3221
3201 CONTINUE
L=L+1
IF { L.GT.N ) GO TO 3211
U=X (L) -X (K)
V=Y (L) ~Y (K)
D2=U*U+V*V




3211

3221

3231

3241

3251

3255

3261

IF ( D2.GT.CST ) GO TO 3191
GO TO 3201

CONTINUE

X (K) =X (N)

Y (K) =Y (N)

N=K

GO TO 3251

CONTINUE

IF ( L.EQ.(K+l) ) GO TO 3241
I2=L-1-K

N=N-I2

LM2=L-2

DO 3231 I=K,N

I1=I2+1

X(I)=X(Il)

Y (I)=Y(I1)

CONTINUE

W=X (K) =¥ (K-1)

Z=Y (K)-¥ (K~1)

D1=W*W+Z %32

IF ( D1.GT.CST ) GO TO 3155
K=K-1

IF ( K.LT.2 ) GO TO 3041
W=X (K) ~X (K-1)

2=Y (K) ~¥Y (K-1)

D1=W*W+2+2

LeK+1

GO TO 3165

CONTINUE

K=K+l

IF ( K.LT.N ) GO TO 3151
GO TO 3255

CONTINUE

UsX (N) =X (N-1)

V=Y (N) -Y (N-1)

D2=U*y+y+y

IF ( D2.LB.CST ) 60 TO 3261
CONTINUE

W=X (1) =X (N)

2=Y (1) -Y (N)

DLeR*W+2Z*2

IF ( DI.LE.CST ) GO TO 3261
T=VeR-U*2

SN= (4. *T*T) / (D1*D2)

IP { SN.GT.CST ) GO T0 3351
CONTINUE

N=N-1

IF ( N.GT.2 ) GO TO 3251
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3341

3351

RETURN

CONTINUE

N=2

RETURN

CONTINUE

D2=Dl

U=W

V=2

W=X(2)-X(1)
2=Y(2)-Y (1)
D1=W*W+2*2
T=V*W-U*2
SN=(4.*T*T)/(D1*D2)
IF ( SN.GT.CST ) RETURN
L=3

GO TO 3115

END




SUBROUTINE VALR-7
(FLOW CHART 4, page 44)

~

Subroutine VALR-7 Used to Compute p(S), where S has no SAR(s), (See page 31)

CALL: VALR-7 (x, ¥, M, p, IOP, a, IND),*
where:
X is the input array of abscissas for S. Dimensioned at M + 1.
y  isthe input array of ordinates for S. Dimensioned at M + 1.

M s the number of input points for . When M = 1, IBND aver an angular region is com-
puted. Three input points in counterclockwise order are used to specify the region with
the vertex at (1).

p is the location where the function value for p(§) will be returned.t

IOP s set by the user to 1, 2, or 3 for approximately 3, 6, or 9-decimal-digit accuracy,
respectively, in p(S).

a is the location where the value of the function a(S) is returned. The absolute value of
a gives the area of S.

IND is an error indicator normally set to zero. If PAR(s) are detected by VALR-7, then
IND is set to two and the result for p(S) is most likely wrong, unless M = 1. See Flow
Chart 4-24, 20, 21, 22. VALR-7 should never be used alone if SAR(s) are a possibility,
unless M = 1. If M= 2 orM < 1, then IND = 3 and an EXIT is made. Such M are not

aliowed.
'-; This routine requires computation of erf (x) and erfc (x) which are defined on pages 5, 28 and
g 29. We have
IR ERF 1 (x) = erf (x), ERFC1(0,x) = erfc(x),

where the subroutine listings for these functions are given on pages F-12 to F-15. They are identical
to the NSWC (DL) math library functions ERF and ERFC as of June 1980 which are based on the
R reference below.

. Cody, W.I., Rutional Chebyshev Approximations for the Error Function, Mutiematics of
E ;. Computation, v. 23 (1969), pp. 631-637.
‘.
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*We use p, a, M here In place of P, A, N to avoid ambiguity with results in P-7, if SORT 1 is used with VALR-7.
tThe IBND over 5, p(8), will be positive if S is PO and it will be negative if S is NO.
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SUBROUTINE VALR7 ( X,Y,N,P,IOP,A,IND )
DIMENSION RSQ(4)
DIMENSION X(1),Y(1),G(2),H(2)
DIMENSION E(5),E2(10),E3(15)
DIMENSION APHL{3),APH2(3),APH4(3),CST(3)
REAL L
DATA TWOPI/6.2831 85307 17958 /
DATA ALNPI/1.1447 29885 84940 /
DATA C1/.28209 47917 73877 /
DATA C2/.15915 49430 91895 /
DATA TAU/7.E-14 /
DATA ( E(I),I=1l, 5) /

1 .885777518572895E+00 , -.981151952778050E+00
2 .759305502082485E+00 , -.353644980686977E+00
3 .695232092435207E-01 /
DATA (E2(I),I=1, 10) /
1 .886226470016632E+00 , -.999950714561036E+00
2 .885348820003892E+00 , -.660611239043357E+00
3 .421821197160099E+00 , -.222898055667208E+00
4 .905057384150449E-01 , -.254906111884287E~01
5 .430895168984138E-02 , ~.323377239G93247E-03
DATA (E3(I),I=1, 15) /

1 .886226924931465E+00 , -.999599899776252E+00
2 .886223733186722E+00 , -.666626670510907E+00
3 .442851899328569E+00 , -.265638206366025E+4+00
4 .145060043403014E+00 , -.714909837799889E-01
5 +309199295521210E-01 , -.1123223532148441E~01
6 +324944543171185E-02 , -.704260243309096E-03
7 .105787574480633E-03 , ~-.971864864160461E-05
8 .408335517232165E~06 /

DATA ( APH1(I),I=1,3 ) /
1l 2.062g-7,2.08E-13,2,71E~19 /

DATA ( APH2(I),I=1,3 ) /
l 1022E“211023E"4'10348_6 /

DATA ( APHé4(I),I=1,3 } /
1 .6962e-1, .6%990E-2, ,7311E-3 /

DATA RTPII/.56418 95835 4776 /

DATA ( RSQ (I),I=1,3) /
1 6.0516,12.60605 ,19.201924 /

DATA ( CST(I),I=1,3 ) /
1 .5625E-4,.57E-7,.6512E-10 /
IF ( N.NE.2.AND.N.GE.1 ) GO TO 3061
IND=3
RETURN
3061 CONTINUE
p=0,
IND=0
IFP ( N.NE.1 ) GO TO 3071
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3101
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K=1

A=0.

W=X(2)-X(1)
2=Y(2)-Y (1)

u =X (3)~-X(1)

vV =Y(3)-¥(l)
PSIl=V*W-U*Z

IF ( PSI1.GE.0. ) GO TO
P="lo

T1=W

w=U

U=T1

Tl=V

v=2

Z=T1l

GO TO 3081

CONTINUE

CALL SMP7 ( N,A,X,Y )

3081

IF ( ABS(A ).LE.CST(IOP) ) RETURN

K=1

W=X{1)-X(N)

2=Y(1)-Y(N)

U =X(2)-X(1)

Vv =¥(2)-Y¥(1)
X(N+1)=X(1)

Y (N+1) =¥ {1)

CONTINUE

BGD1=SQRT( 2.*(W*W+2%2))
BGD2=SQRT( 2.*(U*U+V*V))
CONTINUE

L’O‘

Bz, 5% (X (K) *X (K) +¥ {K) *Y (K))
IF ( B.GT.APH1(IOP) ) GO TO 311l

CAPG=0.

CONTINUE

T1lsV*yW-U*2

T2=U*W+V*2

PHIK=ATAN2 (T1,T2)

Pl =PHIK/TWOPI-CAPG

GO TO 3621

CONTINUE

G(l)=(W*X(K)+2*Y (K))/BGD1l
G(2) = (U*X(K)+V*Y (K))/BGD2

H(l) = (-Y (K) *"W+X (K) *2) /BGD1
H(2)=(-Y (K) *U+X (K) *V) /BGD2

SN (2. (VeW-U*2) )/ (BGD1*BGD2)
IF ( ABS(SN).GT.CST(IOP) ) GO TO 3241

CN=G (1) *G (2) +H (1) *H(2)
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3121

3131

3171

3241

3251

3255

3261

3271

3281

IF ( CN.LT.0. ) GO TO 3131

IF ( ABS(SN).LE.TAU ) GO TO 3121
IF ( G(1).GE.O. ) GO TO 3121

GO TO 3241

CONTINUE

Pl=0.

GO TO 3621

CONTINUE

IF ( ABS{SN).LE.TAU ) 1IND=2

IF ( SN .LT.0. ) GO TO 3171

Pl =.5*ERFC1(0,H(2))

GO TO 3621

CONTINUE

Pl =-.5*ERFC1(0,H(1l))

GO TO 3621

CONTINUE

IF ( B.LE.APH2(IOP) ) GO TO 3301
SN=B*SN

IF ( G(1).LT.0. ) GO TO 3261

IF ( G(2).GE.0. ) GO TO 3471
G(2)=~G(2)

H{2)=-H(2)

IF ( ABS(H(2)).LE.APH4(IOP) ) GO TO 3251
L=.5*ERFC1 (0,-H(2))

GO TO 3461

CONTINUE

L=.5+RTPII*H(2)

GO TO 3461

CONTINUE

L=.5-RTPII*H(1l)

GO TO 3461

CONTINUE

G(1l)=-G(1)

H(Ll)=-H(1)

IF ( G(2).LT.0. ) GO TO 3271

IF ( ABS(H{l)).LE.APH4(IOP) ) GO TO 3255
L=,5*ERFC1(0,4(1))

GO TO 3461

CONTINUE

G(2)==G(2)

H(2)=-H(2)

IF ( ABS(H(l)).LE.APH4{(IOP) ) GO TO 3291
IF ( ABS(H(2)).LE.APH4(IOP) ) GO TO 3281
L= ,5*(ERFC1(0,H(1))~ERFC1(0,H(2)))
GO TO 3471

CONTINUE
L=RTPII*H(2)-.5*ERF1{H(1))

GO TO 3471
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3291 CONTINUE
. IF ( ABS(H(2)).LE.APH4 (IOP) ) GO TO 3295
SR L=.5*ERF1 (H(2))-RTPII*H (1)
S GO TO 3471
3295 CONTINUE
L=RTPII*(H(2)-H(1))
GO TO 3471
3301 CONTINUE
CAPG=C1* (H(2)-H(1))-C2* (G (2) *H(2)~G (1) *H(1))
GO TO 3101
3461 CONTINUE
SN=-SN
IF ( SN.LE.O. ) GO TO 3471
L=L-1.
3471 CONTINUE
IF ( B.GE.RSQ(IOP) ) GO TO 3501
CN=G (1} *G (2) +H (1) *H(2)
AJO=ATAN2 (SN,CN)
CAPE=AJ0
CAPH=,5*AJ0
M=1
F=0.
AJ1=H(2)-H(1)
CIRCM=AJ1
IF ( IOP.EQ.3 ) GO TO 3681
IF ( IOP.EQ.2 ) GO TO 3701
SUM=E (M) *AJ1
3481 CONTINUE
M=M+1
H(2) =H(2) *G(2)
H(1)=H(1) *G(1)
T=H(2)-H(1)
F=F+B
CAPV= (F*CAPE+T) /M
SUM=SUM+E (M) *CAPV
IF( M .GE. 5 ) GO TO 3491
CAPE=CIRCM
CIRCM=CAPV
GO TO 3481
3491 CONTINUE
Pl =L+EXP (- (B+ALNPI)) * (CAPH-SUM)
GO TO 3621
3501 CONTINUE
Pl=L
3621 CONTINUE
IF ( K.NE.N ) GO TO 3651
IF ( N.NE.1 ) GO TO 3631
P=ABS (P+ABS (Pl))
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RETURN

3631 CONTINUE
P=p-P1l
IF ( A.LT.0. ) GO TO 3641
P=P+1.
RETURN

3641 CONTINUE
P=pP-1.
RETURN

3651 CONTINUE
K=K+l
W=U
2=V
U=X(K+1) -X (K)
V=Y (K+1) -Y (K)
BGD1=BGD2
BGD2=SQRT( 2.* (U*U+V*V))
P=P-P1
GO TO 3091

3681 CONTINUE
SUM=E3 (M) *AJ1

3691 CONTINUE
M=M+1
H(2)=H(2) *G(2)
H(1)=H(1)*G(1)
T=H(2)-H(1)
F=F+B
CAPV= (F*CAPE+T) /M
SUM=SUM+E3 (M) *CAPV
IF ( M.GE.15 ) GO TO 3491
CAPE=CIRCM
CIRCM=CAPV
GO TO 3691

3701 CONTINUE
SUM=E2 (M) *AJ1

3711 CONTINUE
M=M+1
H(2)=H{2) *G(2)
H(1) =H(1) *G(1)
TeH(2)-H(1)
F=F+B
CAPV= (F*CAPE+T) /M
SUM=SUM+E2 (M) *CAPV
IF ( M.GE.10 ) GO TO 3491
CAPE=CIRCM
CIRCM=CAPV
GO TO 3711
END
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MASTER SUBROUTINE P-7
(FLOW CHART 5, page A-17)

SUBROUTINE P-7 is Used for Computing P(II) i or an Arbitrary Polygon nt

CALL: P-7(x,y,N, P, ICV,IND,IOP, A),
where:
X is the array of abscissas of the numbered points of I. x is dimensioned at N + 1.
y is the array of ordinates of the numbered roints of 1. y is dimensioned at N + 1.

N is the number of points specifying II, except if N =1 when the IBND over an angular
region is computed. Three input poin:: are needed, for N = 1, given in counterclock-
wise order, with the vertex at point one.

P is the location where the value of P(II} is returned.

ICV must be specified as an integer by ihe user according to the list below:
ICV =0 [IIissimple or of S type with nc SAR(s) (pages 12, 31). VALR-7 used alone.
ICV=1 Misin (5}. SORT !} used with VALR-7.

ICV=2 Misin {I1}. SORT I is used to search for duplicate points** of Il in in-
creasing dugital oraer from point (2) to point (N). I1 is numbered with the
a-option (see page 14), so Il is decomposed into simple polygons, S!,
82, ..., 81 SORT Il is not needed. VALR-7 is used to find p(S'), which are
summed in SORT I to give P(IT).

ICV ==2 [lisin ¢II}. SORT I is used to scarch for duplicate points of Il in decreasing
digital order from point (N—1) to point (1). Il is numbered with the
a-option.

ICVS®3 Iisin A1), SORT I is used to search for duplicate points in increasing
digit order ot the numvered points from point (2) to point (N). I1 is
v bered with the f-option (sec page 24), so I1 is decomposed into S type
elements 8!, ., 8L, These elemonts require SORT 1 to eliminate any SCP,
so that VALR.7 can be used on cach §' to obtain p(Sh), which are summed
in SORT 1 to give PGI).

ICV <0 This has the same function as ICV = 3, except that SORT | scarches for
# =2 duplicate points of Il in decreasing digital order of the numbered points
starting at point {N ~ 1) and finishing at point (1).

*Sce footnote T page 1 for definition of an arbitrary polygon.
**Duplicate points arc ntot to be confused with SDI(s), sce pages 43 and A-8.
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IoP

Generally ICV = 3 is preferable to ICV = 2 and ICV = -3 is preferable to ICV = -2,
because the computing time may be less since often fewer angular regions of II will
need processing.

is an error indicator. It is normally set at zero. However, if VALR-7 is used alone
(ICV=20) on a polygon containing PAR(s), then IND is set to two and, unless N = I,
the result for P is probably wrong. This will never occur if SORT III or SORT I and
SORT II are used to eliminate SAR(s) before using VALR-7, provided I is in {S}.
If N is not set to one or greater than two, as an integer, then IND is set to three with
direct exit from VALR-7. Such N are not allowed.

is an accuracy parameter. It is set by the user to 1, 2, or 3 for approximately 3, 6, or
9-decimal digits of accuracy in P(II).

is the location where A(II) is returned. |A| gives the area of II. (See Appendix D,
also (46).)
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SUBROUTINE P7? ( X,Y,NB,P,ICV,IND,IOP,A )
DIMENSION X(1),Y (1)
IF ( NB.NE.2.AND.NB.GE.1l ) GO TO 3031
IND=3
RETURN
3031 CONTINUE
N=NB
IF ( N .EQ.1 ) GO TO 3041
IF ( ICV .EQ.0 ) - GO TO 3041
IF ( ICV.EQ.1 ) GO TO 3061
CALL SORT! ( X,Y,N,P,ICV,IND,IOP,A )
RETURN
3041 CONTINUE
CALL VALR7? ( X,Y,N,P,IOP,A,IND )
RETURN
3061 CONTINUE
CALL SORT3 ( X,¥Y,N )
IF ( N .GT.2 ) GO TO 3071
A=Q.
IND=0
P=0.
RETURN
3071 CONTINUE
CALL VALR? ( X,Y,N,P,IOP,A,IND )
RETURN
END
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SUBROUTINE SORT I (See Appendix A)
(FLOW CHART 6, page A-18)

Subroutine SORT I Used to Decompose I Into S or S Type Elements

CALL: SORT I(x,y, N, P, ICV, IND, IOP, A),

where:

X

N

ICV

is the array of abscissas of the numbered points specifying the polygon, II. x is dimen-
sioned at N+ 1.

is the array of ordinates of the numbered points specifying the polygon, Il. y is dimen-
sionedat N+ 1,

_is the number of points numbered on the polygon.

is the location where P(II) is returned.

is a user specified integer according to the listing below:

ICV =2

ICV 23

ICV <0
# -2

for a polygonal element of the class {IT} (see page 1). SORT I searches for
duplicate points of Il in increasing digital order from point (2) to point (N).
IT is specified by numbering points of Il according to the a-option. (See
page 14.) I is decomposed into S!, ..., S'. VALR-7 is called to compute
p($h. These quantities are summed to give P(IT).

for a polygonal element of (IT}. SORT I searches for duplicate points of I1
in decreasing digital order from point (N = 1) to point (1). Il is numbered
according to the a-option.

for a polygonal element of (IT}. SORT I proceeds in the same way as for
ICV = 2, except that IT is numbered according to the g-option rather than
the a-option (see page 24). The f-option numbering requires that SORT I
be used to climinate SCP in any of the S elements obtained from the
decomposition of {1 by SORT I (sec Flow Chart 6. page A-18). 1l is de-
composed after using SORT I into 8!, .... §'. VALR-7 is callod to com-
pute each p(SY). The p(S") are summed to give P(ID).

for a polygonal element of {I1}. SORT | proceeds in the same way as for
ICV = =2 except that 11 is numbered according to the g-option rather than
the a-option. The f-option numbering requires that SORT 1l be used to
eliminate SCP in any of the S clements obtained from the decomposition
of il by SORT L.

If N does not differ using the « or B-option, then ICV = £2 is preferable to ICV # 22, How-
ever. if N is reduced by using the f~option, then ICV s £2 is preferable since fewer calls to VALR-7
will be needed.
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SUBROUTINE SORT I (Continued)

..
32,550 ] ot o 2

IND is an error indicator. Normally it is set to zero. If a m-angular region, PAR, is detected
by VALR-7, IND is set to two, and p(S) is very likely wrong, unless N = 1; consequently
also P(ITy will be wrong. The routine P-7 is designed, if properly used, so that this
cannot happen under the a-option, nor can it occur under the f-option since SORT il
removes SCP before a call is made to VALR-7 (see Flow Chart 6). If N # 1 or is not
greater than two, as an integer, IND is set to three and an exit is made. Such values
of N are not allowed.

LKLk
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IOP is set by the userto I, 2, or 3 to obtain approximately 3, 6, or 9-decimal-digit accuracy,
respectively, for P(fI).
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A is the location where the A-function velue for [T is returned. The area of Il is given
by Al {sue SMP-7, pages G, F-37).
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2311
2321

2331

2341
2351
2361

SUBROUTINE SORT1 {( X,Y,N,P,ICV,IND,IOP,A )
DIMENSION X (1),Y¥(1)

DATA CST/5.E-14 /

P=0.

a=0.

IC=IABS (ICV)

IF ( ABS(X (N )-X (1)).GT.CST ) GO TO 2311
IF ( ABS(Y (N )-Y (1)).GT.CST ) GO TO 2311
GO TO 2321

CONTINUE

N=N+1

CONTINUE

X{N)=X(1)

Y (N) =Y (1)

JlsT=2

I1=2

CONTINUE

IF { ICV.GT.0 ) GO TO 236l

NUMPl=N+1

DO 2351 J1=J1ST,N

J =NUMP1-J1

JP1l=J+1

DO 2341 K=JPl,N

IP ( ABS(X (J )-X (K )).GT.CST ) GO TO 2341
IF { ABS(Y (J )-Y¥ (K )).GT.CST ) GO TO 2341
1sT=J

IEN=K

J18T=N-K+1

IF ( K.EQ.N ) Jl8T=2

LST=IST+1

GO TO 2531

CONTINUE

CONTINUE

CONTINUE

DO 2521 1I=Il,N

IMl=1-1

DO 2511 Kl=1,IM1

K=I-K1l

IF ( ABS(X (I )-X (K )).GT.CST ) GO TO 2511
IF ( ABS(Y (I )-Y¥ (K )).GT.CST ) GO TO 2511
IST=K

IEN=1

Il=K

LST=1I8T

IF ( K.NE.1 ) GO TO 2531

I1=2

LST=LST+1

GO TO 2531
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2511 CONTINUE
2521 CONTINUE
2531 CONTINUE
NUM1=IEN-IST
NSAV=NUM1
IF ( NUMl1.LE.2 ) GO TO 2575
IF ( IC.EQ.2 ) GO TO 2565
CALL SORT2 ( X (IST),Y (IST),NUMl )
IF ( NUM1.LT.3 ) GO TO 2575
2565 CONTINUE
CALL VALR7 ( X(IST),¥Y(IST),NUM1l,SMP,I0P,SMA,IND )
IF ( IND.EQ.2 ) RETURN
A=A+SMA
P=P+SMP
X (IST)=X(IEN)
Y (IST) =Y (IEN)
2575 CONTINUE
IF ( IEN.NE.N } GO TO 2577
IF ( IST.EQ.1 ) RETURN
X (I5T) =X (N)
Y (IST) =Y (N}
N=IST
GO TO 2331
2577 CONTINUE
N=N-NSAV
DC 2581 L=LST,N
K+ L+NSAVY
X (L) =X (¥}
Y (L) =Y (K)
2581 <CONTINUBE
GO TO 2331
END
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SUBROUTINE SORT II (See Appendix A)
(FLOW CHART 7, page A-19)

Subroutine SORT II Used to Eliminate Successive Colinear Points in S

CALL: SORTII(x,y, M),
where:

X 'is the array of abscissas of the numbered points of the polygon S. The array is dimensioned
. at M. Upon return to the calling program SORT 1, the array of abscissas will be reduced
by the number of points deleted, because of SCP. The x array is compacted or closed up.

y is the array of ordinates of the numbered points of the polygon S. The array is dimen-
sioned at M. Upon retum to the calling program SORT I, the array of ordinates will be
reduced by the number of points deleted, because of SCP. The reduced y array is
compacted or closed up.

M s the number of points of the polygon S that are numbered. Upon retum to the calling
program, SORT I M will be reduced by the number of successive colinear points that
were eluninated.
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3051

3071

3081

3091
3101

3111

SUBROUTINE SORT2 ( X,¥,N)
DIMENSTION X(1),Y(1l)

DATA CST/4.9E-27 /

K=1

L=2

U=X(1)-X(N)

V=Y (1) ~Y (N)

D2=U*U+V*V

CONTINUE

W=X (L)-X (1}

Z=Y (L)-Y (1)

D1l=W*W+Z*2

T=Vt*W-U*7Z
SN=(4.*T*T)/(D1*D2)

IF ( SN.GT.CST ) GO TO 3071
L=L+1

IF ( L.LT.N ) GO TC 305).
N=2

RETURN

CONTINUE

K=2

:F ( L.NE.2 ) GO TO 3081
L=3

GO TO 3111

CONTINUE

LM2=1L~2

W=N- (LM2)

DO 3091 1I=1,N

I1=LM2+I

X(I)=X(1Il)

Y(I)=Y(Il)

CONTINUE

CONTINUE

L=K+1

W=X(K) =X (K~1)

Z=Y (K)-Y (K-1)

D1=W*W+Z*2

CONTINUE

U=X(L)~X(K)

V=Y (L) ~Y {K)

D2=U*U+V*V

T=VeW-U*Z

SNe (4.*T*T)/(D1*D2)

IF ( SN.GT.CST y GO T0 3121
L=L+1

I¥ ( L.LE.N ) GO T0 3111
X (K)=X{(N)

Y (K) =Y (N)
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3121

3131

3151

3161

3165

3171

N=K

GO TO 3151

CONTINUE

IF ( L.2Q.(K+l) )

LM2=1-2

I13=LM2- (K-1)

N=N-I3
DO 3131
I1=13+I

I=K,N

X(I)=X(Il)
Y(I)=Y(Il)

CONTINUE
K=K+1

IF ( K.LT.N )

CONTINUE

U=X(N)-X(N-1)
V=Y (N)-Y (N-1)
D2=U*U+V*V

CONTINUE

W=X(1)-X(N)
Z=Y (1) =Y (N)
D1=W*W+2*2Z

T=V*W-U*2

GO TO 3101

SN=(4.*T*T)/ (D1*D2)
IF ( SN.LE.CST

RETURN
CONTINUE
N=N--1
RETURN
CONTINUE
K=K+1

IF ( K.GE.N }

D1=D2
W=l
2=V
Lek+l

GO T0 3111

END

} GO TO 3165

GO TO 3161

GO TO 3171
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SUBROUTINE SMP-7
o (No flow chart given)

SMP-7 is Used to Compute the a-Function*

CALL: SMP-7(M,a,x,y),

where:
M is the number of input points specifying the polygon.
a is the location to which the a-function is returned.

X is the array of input abscissas. Dimensioned at M.

B LR e TR N BRI SN Sl SR SR B O N cssicr e

y is the array of input ordinates. Dimensioned at M.

(See Appendix D for value of a in the wz-plane.)

. .. oy
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3' . :“l-'t;:xpmsion used to compute the a-function is given by
§ asy T X0ier ~Yic) Yo © YN YNet =¥y (Soe Appendix D)
§
i i (The area of the input polygon is given by Jal.)
- ,E' M, a are used in place of N, A to avoid vonfusion with the latter quantities in P-7 when it calls SORT 1, and
SORT | in turn calls VALR.7. See Flow Charts § and 6, pages (A-17, 18).
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SUBROUTINE SMP7 ( NB,ANS,X,Y )
DIMENSION X (1),Y¥Y(1l)

hiine

3 IF ( NB.GT.3 ) GO T0 3151

g ANS=.5% ((X(2) =X (1)) *(¥{3)-Y (1))~ (X(3)-X (1)) *(¥(2)-¥Y(1)))
i RETURN

;-f 3151 CONTINJE

NEM1=NB-1

ANS=X (1) * (Y (2)-Y{(NB) )+X(NB)*(Y(1)~Y¥Y(NBMl))
DO 3161 1I=2,NBM1
ANS=ANS+X (I)*(Y (I+1l)-Y¥(I-1) )

3161 CONTINUE
ANS=.5*ANS
RETURN
END
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APPENDIX G
TRIANGLE CHECKOUT PROGRAM WITH DREZNER,
(No Flow Chart)
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SUBROUTINE DZ
TRIANGLE CHECKOUT PROGRAM with DREZNER (See page 47)

CALL: DZ(x,y,N,P, A),
where:
x is the array of abscissas of the points specifying polygon II. x is dimensioned at N.
is the array of ordinates of the points specifying II. y is dimensioned at N.
is the number of points specifying I1.

is the location where P(IT) is returned.

> oW 7 <

is the location where A(I1) is returned.

This subroutine decomposes Il into N —2 triangles Aj with the vertices given by (1), ( i),
G+ D, j=2,..., N=1. P(4j) is computed by DZ ~ | and A(Aj) by SMP-7; the results are summed
in DZ, i.e, P(I) = 2} P(Aj), A(I) = Z)' A(A)).

This routine requires computanon of erf (x) and nrfc (x) which are defined on pages 5, 28 and
29. We have

ERF 1 (x) = erf (x), ERFC (0, x) = erfc(x),

where the \ubroutme hstmgs for these functions are given on pages F-12 to F-15. They are identical

to the NSWC (DL} inath library funcuons ERF and ERFC as of June 1980 which are based on the
s‘ef»mnu below.

Cody, W.J., Rational Chebyshey Approximations for the Error Funcl«)n. Mathemutic:. of
Computation, v. 23 (1909), pp. 631-637.

G-3




SUBROUTINE Dz ( X,Y,N,ANS,A ,IOP )
DIMENSION X(1),¥(1),U(4),V(4)

IF ( N.NE.1 ) GO TO 3031
CALL Dzl ( X,Y,N,ANS,IOP,A )
RETURN
3031 CONTINUE
IF ( N.LT.3 ) RETURN
L=3
U(1)=x(1)
U(2)=X(2)
U(3)=X(3)
V(1) =¥(1)
V(2)=Y(2)
V(3) =Y (3)
3041 CONTINUE
CALL D21 (U,V,3,ANS1,IOP,AL )
A=A+Al
ANS=ANS+ANS1
3061 CONTINUE
L=L+1
IF ( L,GT.N ) RETURN
U(2)=U(3)
V(2)=V(3)
U{3) =X (L)
V(3) =¥ (L)
- GO TO 3041
ERD '




SUBROUTINE DZ-1
Computes P(4j) for DZ

CALL: DZ-1(x,y, N, P, IOP, A)*,
where:
X  is the array of abscissas of the points specifying a simple polygon S.

y is the array of ordinates of the points specifying a simple polygon S. x and y are dimen-
sioned at N+ 1.

N is the number of points specifying S.
IOP is specified by the user.
[OP = 1 for 3-decimal-digit accuracy for P(S).
IOP = 2 for 6-decimal-digit accuracy for P(8).
IOP = 3 for 9-decimal-digit accuracy for P(S).
P A are the locations where the values of P(8) and A(S) are returned, respectively.
For each angular region a of S specified by R, 68, 6;, DZ-1 computes the corresponding
Drezner arguments m, k, p as indicated in (2, Eq. 60}. Subroutine PLAN uses Drezner’s algorithm
to determine which equatios of [1] is used to find P(a). Functions EQ 7, EQ 8, EQ9and EQ 1} of

PLAN compute P(a) using equations 7, 8, 9, and 11, respectively, of [1]. Subroutine BPHI uses
equation 3 of {T] to compute Pla).

*DZ-1 computes P(R) by Dreaner's procedure which is described in {2},
1 Z. Decanst, Computation of the Bivariate Normal Integral, Matheraatics of Computation, v. 32(1978), pp. 277-279.
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3071

3081

3151

3155

SUBROUTINE DZ1 ( X,Y,N,ANS,IOP,A )

DIMENSION X(1),Y(1l),H(2),APH1(3)

DATA ( APH1(I),I=1,3 ) /
2.02E-7,2.08E-13,2,.72E-19 /

DATA RT2 / 1.4142 13562 3731/

DATA TWOPI/6.2831 85307 17958 /

K=1

ANS=0.

IF ( N.NE.1 ) GO TO 3071

W=X(2)-X(1)

2=Y(2)-Y (1)

U=X(3)-X(1)

V=Y (3)-¥(1)

PSIl=(V*W-U*2)

IF ( PSI1l.GE.O. ) GO TO 3081

ANS=+1.
T1=W

w=U

U=Tl

T1l=V

V=2

=Tl

GO TO 3081

CONTINUE

X (N+1) =X (1)

Y (N+1) =¥ (1)

CALL SMP7 ( N,A,X,Y )

IF ( ABS(A).LE.0.6512E-10 ) RETURN
=X (1) -X(N)

2=Y (1) -Y(N)

U=X(2)-X(1)

V=Y (2)-¥ (1)

CONTINUE

BGD1=SQRT (2. * (W*W+2*2))

BGD2=5QRT (2. * (U*U+V*V))

CONTINUE

Be 5% (X (K) *X(K) +Y (K) *Y(K))

IF ( B.GT.APH1(IOP) ) GO TO 3155

Tl=V*R-U*2

T2=U*W+VE2

PHIK=ATAN2(T1,T2 )

ANS1=PHIK/TWOPI

GO T0 3211

CONTINUE

RTR=(2.* {W*V-U*2))/(BGD1*BGD2)

H(1)={-Y(K)*W+X (K) *2) /BGD1

H{2) =(~-Y(K) *U+X (K) *V) /BGD2

SGN=1,
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IF ( RTR.GE.0. ) GO TO 3161
RTR=-RTR
SGN=-1,
Tl=H(1)
H(l)=H(2)
H(2) =Tl
3161 CONTINUE
AM  =-RT2*H(2)
AK  =RT2*H(1)
RHO= (-2.* (W*U+V*2) )/ (BGD1*BGD2)
IF ( ABS(RHO).LT.(l.~1.E-13) ) GO TO 3181
IF ( RHO.LT.0. ) GO TO 3171
T1=AM
IF ( AK.LE.AM ) Tl=AK
T2=-T1/RT2
ANSl=,5*ERFC1(0,T2 )
GO TO 3191
3171 CONTINUE
ANS1=0.
IF ( AK.LE.-AM ) GO TO 3191
T1=-AK/RT2
T2=AM/RT2
ANS1=.5* (ERFC1(0,Tl) -ERFC1(0,T2))
GO TO 3191
3181 CONTINUE
CALL PLAN ( AM ,AK ,RHO  ,ANSl,I0P,RTR )
3161 CONTINUE
ANS1=SGN*ANS1
3211 CONTINUE
IF ( K.NE.N ) GO TO 3651
IF { N.NE.1 ) GO TO 3631
ANS=ABS (ANS-ABS (ANS1))
RETURN
3631 CONTINUE
ANS=ANS-ANS1
IF ( A.LT.0. ) GO TO 3641
ANS=ANS+1,
RETURN
3641 CONTINUE
ANS=ANS=-1,
RETURN
3651 CONTINUE
K=K+1
KPl=K+l
W=U
2=V
U=X (KP1) =X (K)
V=Y (KP1) =¥ (K)
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BGD1=BGD2

BGD2=SQRT (2. * (U*U+V*V))
ANS=BNS-ANS1l

GO TO 3151

END



SUBROUTINE PLAN ( H,AK,R,ANS,IOP ,RTR )
ANS=0.
IF ( (H*AK*R).GT.0. ) GO TO 3155
IF ( H.GT.0. ) GO TO 2031
IF ( AK.GT.0. ) GO TO 2021
IF ( R.GT.0. ) GO TO 2011
ANS=BPHI (H,AK,R, IOP,RTR )
RETURN
2011 CONTINUE
IF ( AX.NE.O. ) GO TO 2061
GO TO 2023
2021 CONTINUE
IF ( R.LT.J. ) GO TO 2041
2023 CONTINUE
ANS=EQ9 (H,AK,R,IOP,RTR )
RETURN
2031 CONTINUE
IF ( AK.EQ.0. ) GO TO 2051
2035 CONTINUE
IF ( AK.LT.0. ) GO TO 2061
2041 CONTINUE
ANS=EQ7 (H,AK,R,IOP,RTR )
RETURN
2051 CONTINUE
IF ( R.GT.0. }) GO TO 206l
GO TO 2041
2061 CONTINUE
ANS=EQ8 (H,AK,R,IOP,RTR )
RETURN
3155 CONTINUB
ANS=EQll (H,AK,R, I0P,RTR )
RETURN
END
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FUNCTION EQ7 (H,AK,R,IDP,RTR )
DATA RT2/1.4142 13562 3731/
T=-H/RT2

T1=-2K/RT2
EQ7=BPHI(-H,-AK,R,I0OP,RTR )
+.5*(ERFC1(0,T)+ERFC1(L,T1))-1.

RETURN

END
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FUNCTION EQ8 (H,AK,R,JOP,RTR )

DATA RT2/1.4142 13562 3731/

T=-AK/RT2

EQ8=-BPHI (~H,AK,-R, IOF,RTR) +. 5*ERFC1{0,T )
RETURN

END

FUNCTION EQ9 (H,AK,R,IOP,RTR )

DATA RT2/1.4142 13562 3731/

T=-H/RT2

BEQ9=-BPHI (H,-AK,-R,IOP,RTR) +.S*ERFCL{#
RETURN o

END
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FUNCTION EQl1(RE,AK,R,IOP,RTR )
DATA RT2/1.4142 13562 3731/
CST=SQRT (H*H-2. *R*H*AK+AK*AK )
T1=R*H-AK

Cl=1.

T2=SIGN(C1,H)

T1=(T1*T2) /CST

T4=1.

T3=H*AK

T5=SICGN(T4,T3)

TDEL=(1l.- T5)*.25

T3=R*AK-H

Cl=1.

T2=SIGN(C1l,AK)

T3=(T3*T2) /CST
RTR1=(RTR*ABS (H) ) /CST

RTR3= (RTR*ABS (AK) ) /CST

IF ( H.GT.0. ) GO TO 2031

IF ( T1.GT.0. ) GO TO 2023
T4=BPHI (H,0.,Tl1, IOP,RTR1)

GO TO 2051

CONTINUE
T4=EQ9H,0.,T1,IOP,RTR])

GO TO 2051

CONTINUE

IF ( T1.LT.0. ) GO TO 2041
Td‘. S"‘BPHI (-8000 '-Tlo IOP'RTR]- )
GO TO 2051

CONTINUE

Cls-H/RT2

T4=BPHI(~H,0.,T1,I0P, RTR1)~.5*ERF1(Cl)
CONTINUE

IF ( AK.GT.0. ) GO TO 30631

IF ( 73.67.0. } GO TO 3023

GO TO 3051

CONTINUE

T6=EQY9 (AK,0.,T3,I0OP,RTR3 )

GO TO 3051

CONTINUE

IF ( T3.LT.0. ) GO TO 3041
T6=.5-BPHI (-AK,0.,-T3,1I0P,RTR3 )
GO TO 3051

CONTINUE

Cl=~-AK/RT2
T6=BPHI(-AK,0.,T3,1I0P,RTR3 )-.5"ERF1(Cl)
CONTINUE

EQll=T4+T6-TDEL




RETURN

END
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FUNCTION BPHI ( H,AK,R ,IOP,RTR )

DIMENSION A(21),X(21),LLO(6) ,LHI(6)

DIMENSION EPS1 (11 )

DIMENSION EPS3(1ll)

DATA ( A(I),I=1,8 ) /
4.4602 97704 66658E-1, 3.9646 82669 98335E-1,
4.3728 88798 77644E-2, 2.4840 61520 28443E-1,
3.9233 10666 52399E-1, 2.1141 81930 76057E-1,
3.32246 66035 13439E-2, 8.2485 33445 15628E-4 /

DATA ( X(I),I=1,8 ) /
1.9055 41497 98192E-1, 8.4825 18675 44577E-1,
1.7997 76578 41573E+0, 1.0024 21519 68216E-1.
4.8281 39660 46201E-1, 1.0609 49821 52572E+0,
1.7797 29418 52026E+0, 2.6697 60356 08766E+0 /

DATA ( A(1),I=9,16 ) /
1.3410 91884 53360E-1, 2.6833 07544 72640E-1,
2.7595 33979 88422E-1, 1.5744 82826 18790E-1,
4.4814 1N991 74625E-2, 5.3679 35756 02526E-3,
2.0206 36491 32407E-4, 1.1925 96926 59532E-6 /

DATA ( X(I),I=9,16 ) /
5.2078 64393 18514E-2, 2.6739 83721 67767E-1,
6.1630 28841 82402 B-1, 1.0642 46312 11623E+0,
1.5888 55862 27006E+0, 2.1839 21153 09586E+0,
2.8631 33883 70808E+0, 3.6860 07162 72440E+0 /

DATA ( EPSl(I)'I=1'3 ) / "8. ,*12.,"20. /

DATA PI / 3.1415 92653 589793 /

DATA ( LLO(I),I=1,3 ) / 1,4,9 /

DATA ( LHI(I),I=1,3 ) / 3,8,16 /

DATA RT2 / 1.4142 13562 3731/

DATA ( EPS3(I),I=1,3 ) / 2.E-5,2.E-7,2.E~10 /
ILO=LLO(I0P)

IHI=LHI (IOP)

EPS=EPS1 (IOP)

CST=RT2*RTR

BPHI=0.

Hl=H/CST

AK1=AK/CST

SUM=0.

DO 3361 1I=ILO,IHI

SuM1=0.

DO 3351 J=ILO,IHI

Tl=H1*(2.*X(I)=-Hl)+AK1*{2.*X (J)-AKl)
+2.*R* (X (I)=H1) *{X(J)-AK))

IF ( T1.LT.EPS ) GO TO 3351

&' M1 =8UML+EXP(T1) *A(J)

CONTINUE

SUM=SUM+A (I) *SUML

CONTINUE
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BPHI=(SUM*RTR)/PI

RETURN
END
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