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ABSTRACT

An efficient automatic procedure is given for evaluating the integral of the bivariate normal
density function (IBND) over an arbitrary polygon H1. The polygon IH, defined by N points, falls
into one or more of the following clas>es: 3,1, %.mple polygons., S , limit elements of sequelces
of uniformly bounded N-sided simple polygons of the same orientation: 11). arbitrary polygons,
which includes self-intersecting (SI) ones, wh.re (S) C ( S ( _ (1). It is not necessary to specify

the class beforehand. The method extracts from H1 a set of N exterior angular regions. 'ie HIND
is evaluated over eacht of these, and the results are properly combined to yield IN1) for II. In
casc H is SI, account must be taken of the number of its "primary circuits" and their orientations.
A by-product of the analyses is the evaluation of a function A(H) for which IAI. when properly
interpreted, gives the area of I.

Another procedure for obtaining the same final results is described for completenes which is
not as efficient, It treats an SI polygon by decomposng it into a finite set of S or S type elements.
The IONI) is evaluated over eachi of these: the results are properly summed to give the IBNI) for H
In contrast to the first method, the smallest class (S}, (S) , , H) to which It Ublongs must tw
specified for computational efficiency.

The Fortran IV programs for both procedures are presently set to yield approximately 3. 1.
or 9-d•cimal-digit accuracy. Fortran IV listings of the prograns are given,
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I. INTRODUCTION

This report describes two automatic and efficient procedures for evaluating the integral of the
general bivariate density function over an arbitrary polygon' H. Specifically, we evaluate P(11), i.e.,

_(I -p.2)-1/2 r Aw_- 2 (w-p z-(1) P (6) - exp 11[)( - 2p•. 2ruw °z ,, U-wOw Z

+ ]/2 (l-p2) dwdz,

where (w, Az) is the mean and

a~ /
is the covariance matrix of the normal random variable (w. z) with correlation coefficient p, tPi < 1.

Three nmain classes of polygonal elements2 (S), (,I, (1I) are treated in the text. The set of

simple polygons is denoted by (S) with the subset of convex polygons denoted by (C). The class
(S) is enlarged to include elements which are limits of sequences of uniformly bounded N-sided
simple polygons with the Same orientation, (S, (N)). This class is denoted by (S). A more ex-
tonded class (II) is obtained by adding selkl'tersecting (SI) polygons) to (,).

Using the well-known linear transformnation

[W. -L, ,1

in (1) results in a new integrand which has circular symmetry about the origin In addition, Since
(21) maps straight lines into straight lines, II transforms, by (2), to another polygon II of the same
dass. Thus (1) can be written as

-(3) P(0) =Pal) Z(x, y) dx dy,

t IA lygon or iolygonal clement will always nmean a closed fimite broken line, with its interior, ian the plane. The
last squiewn terIinates at the first point, his boundary is defined by an ordered set of N points in the plane. How-
ever, we specify a polygon by N + I points, where the (N + I)st and firmt points are the UAme.

2For etae of language, polygon and polygonal elemnent ate used in(tetdarigeably.
3We say a polygon is self-intersecting if it is not in (S). A characterization is given to Section II!.



where

(4) Z(x, y) E I exp [-(x2 + y2)/2)

Hereafter, we assume (1) has been transformed to (3), and we deal only with (3), the integral of
the bivariate normal density function (IBND) for II. Also, unless noted otherwise, we denote an ele-
ment of a particular class or set by the letter in braces designating that set. For example, C refers
to an element of (C). Note that fC) C (SI C {S) C (H1).

We make the convention that if a simple polygon S is positively oriented, (PO), i.e., with its
area on the left as one traverses the boundary continuously, (3) yields a positive result, whereas if
S is negatively oriented (NO), i.e., with its area on the right as the boundary is traversed contin-
uously, (3) yields the same tesult with a minus sign. If 11 is SI, there can be both positive and
negative contributions to P(H). For example, in Figure I below, P(HI) is made up of the sum of
the probabilities over triangles A and B, where A is specified by the point set (1, 2, 3, 1) and B by
(3, 4. 5, 6). Thus P(H) = P(A) + P(B), where P(A) > 0, but P(B) < 0. Clearly then. P(I1) may be
negative and make no sense in terms of probability: nevertheless we *.ften call P a probability,
regardless of its sign, for ease of language. In Figure 2, we have an example of an element S of (SI,
where P(A) and P(M) are both positive. Theose concepts will be discussed more fully in Sections III
and IV.

In Figure 3 we show an element of a sequence (Sn(! M)1 of I-sided simple polygons for which
a limit element S is obtained by letting the points 3-9 converge onto the sanmt straight line as
shown in Figure 4.

A main objective of this report is to describe and discuss two procedures, (P - A) and (P -B1,
to evaluate (3). In either case, if III in i (SI. PI(1) is found by integrating (4) over a set of exterior
atngular regions of I1. essentially in the tame way as desctild i4 121 131 for convex polygons. "hlie
details arm given in Section III. For background and completinai, the convex case is sua•n•ariied
in Section II.

s4
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Figure 1. An SI Polygon of CLass (II) Figure 2. A Polygon of Clhu {S)
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Figure 3. A Simple Polygon of (S (I) } Figure 4. Limit Element S of {S (So ) I I

The samne is true if il is in (8). Some pre-processing of I1, which reduces it to an element
of {S), as described in Section 111, may b- necessary with (P-A) and desirable with (P-B1). It is
then treated as indicated in the previous paragraph.

If H1 is self-intersecting (SI). procedures (P-A) and (P-BH) are quite different. For (P-A). 11
is first decomposed, by separate sub-promedures, into a set of disjoint isolated ek, meints in (s). or
perhaps (S). The value of P for each of these isolated elements is computed and the results are
summed to yield P(I). For (P-0) no decomposing procedure is necessary, It treats I1 as if it
were in (S) or (S), This is possible because it keeps track of the number of "primary" circuits, or
loops, in II, Generally (P- R) is faster than (P- A), since there is no neces.ary pr,-processing to do,
Moreover, in (P-A). for effidcency, one must specifyI thie smallest class to whic't 1t belong: if. by
error, one specifits a class to which II does not belong. then P41) will be computed incorrectly.
For (P-8), the smallest class need not be specified, and incorrectly computed results are not
possible, Since (P- .-A decompows U. it is useful in analyzing the configuration of II. Neverthele,.
(P - U), with mine of its parts it) common with (P - A), ii die preferred procedure. It will be dis-
cussed in Section IV. The rcmainder of the discussion on (P-A). with sone numerical results, is
relegated to Appendix A.

"We enmphasize that the procedures described in Sections III and IV lead to a computer ptogram
whic1 is completely automatic in the sense that one can simply sjecify, as input, tile coordinates
uwd to define It in proper order, the numbter N . such points. and one of three accuracies deired
for P1ll). A by-product of the pnoair is a function A0l), where IAL properly interpr.ted. gives
the area of I1.

.In the most general cave where It is SI. we do not know of another program to compute 11.
Even if 11 it simple we are not awart of an automatic program. although such a program would
have many applications in probability and statistical studies. Of course, brute force mnethods canl
always be devised, such as decomposing I1 into triangles and quAdrilaterals 15. p. 9561, Even
though it L% easy to obtain a program for decompoing all arbitrary polygon into a set of triangles.
the required number of such triangles would result in an inefficient procedure.4 For example. in

n41 Scctiou Vt. (sre page 47). stch a lxtcedute is decwribed. Combined with ID rc'c algorithm. 12. Mace 181 f
givesius an idt, x eade .ethud fr dliroking ou progianu. A ligin; of the checkout p(00311% u giveo in
AppeadixG,

3



the case of an N-sided polygon, P would be required, in general, for 3(N-2) angular regions,
whereas (P-B) needs P for only N angular regions. The major time-consuming portion of the
program for computing P(II) is the evaluation of P for each angular region needed.

The computer program and its flow charts are discussed in Section V. The Fortran IV
CDC-6700s program listings are given in Appendix F. Section VI contains numerical results for
polygonal elements displayed in Figures 30-58. These figures demonstrate the robustness of
the program.

11. NORMAL PROBABILITY OVER CONVEX POLYGONS (SUMMARY)

The numerical method and computing program tfr evaluating P(C), -where C denotes a convex
polygon. are described in detail in an earlier report, 121, We proceed to sumnimarize the main ideas
since most of themn carry over to polygons in (S).

We use the notion of an angular region. iLe., the semi-inkfinite region bounded by two inter-
secting straight lines. There are four such angular regions v ssociated with two intersecting straight

lines and one must keep in mind which one is of interest. Let a denote the angular region of
interest. As shown in Figure 5, it can be specified by the paramneters R, 01. 0, Lines I and 2
fonr the boundarics of a. The quantity R denotes the distance from the origin to the vcrtex of
a at V. When necesary we shall denote a by a0R. 0, O8). Our objective is to give an efficient
procedure to evaluate Pta).

lkcause of tile circular symmetry in thie ilitegrand of D3). it is convenient to prftorm a rota-
lion of axes through tihe angle r, such that tile line J, and the new positive x-axis coincide. The
rotation for Figure 5 is Shown ill Figure (i. Hmreaftcr. w assume mlch a rotation has been carried
out and call the ltcw axes x anid y agail.

Y
L

10 FijursS. AnpibLr Region aR, 0t, 01.

( Amw Region)

•VRS

511UeCIC-6700 is a b*ve.~cakc bisury computet -Aiikb don~1'aihcke~i~sp:su ~ $bi:u~s.~

4



Figure 6. Showing Angular Region a
* Relative to Rotated Axes

Introducing polar coordinates (r, 0) centered at V = (R, 0), we have

(5) x R + rcos0, y rsin0, -r < 0 < 7r.

The variable 0 will be measured, from the x-axis (x > R) about (R, 0), as positive in the counter-
clockwise direction. Using (5), (3) becomes, with a in place of n,
(6) P(a) = fL exp [-1/2(R2 + 2rR cos 0 + r2)] rdr dO.

An integration by parts in (6), on the integral in r, yields

00

(7) f e-r'/2e-rRcosG rdr I 2u erfc(u)/z(u),

where

(8)u z(u) (Uexpsu), erfc(u) z(t) dt.

Using (7) in (6), and carrying out the obvious part of the 0-integration yields

W e R2/ -2-r u{erfc(u)/z(u)1 dO .

1If R = 0, then P(a) 9AO2 as required, where A1 j- 02 - 01.

For exte-raor angular regions of polygons we can require that -ir < AO < r. For PO (NO)

Sc-)vex polygons, 02 will always precede 0, in the counterclockwise (clockwise) direction, so that
0 < AP < (-ir < AO < 0). Hence from (t.N, P(a) > (<)0 for PO (NO) convex polygons.

5



We resolve the difficulty of evaluating the irntcgral in (9) by using a minirnax polynomial fit to
erfc (u)/z(u) for 0 < u < c(8). That is, for a given 6 > 0, a set of real numbers, fak}, and a least
positive integer K are found such that

(10) erfc (u) - z(u) akuk 1.• - , 0 - u .c(,).

It is shown in [2, page 61 that if (10) holds then

neR2 /2 0 2 K K
011) 'u[erfc(u)/z(u)1 - adO • 6/V..

"Thus the constant c is chosen, once 6 is specified, so that the probability over the semi-infinite
region to the right of the line x - c is equal to S/vri-, i.e.,

•t?: 1 ~~erfc (c) = e --.8V"

The coefficients ak as well as K and c(S) are given in [2] for4 different values of e corresponding
to desired accuracies of ' 6, 9, and 12 decimalt.di, ts in P(a). They are also included in Appendix E
of this report.

Recurrence relatioms allow us now to carry out the numerical intogration of the integral in (9).
We have, using (10), that P(a) is given within ±e by

•R2/2

(13) P(a) =kjI • - 2ak+i] , l 1

where

(= (r2f' cos'O dO
(14) f

'k+1 _k [(ua2gk -111~ + k 3k-l

with

, c'Os 01 hi = Sill, O i 1. 2
(15)

R2 (xW + yl), with vertex of a at (x. y),

and

(16) Jo =40 =0 01 J, 1J =I - ht,

6



The constraints 1011 < 7r/2, 1021 < 7r/2 in (13) are required since (10) only holds for u> 0, which
requires cos 0 > 0, since R > 0. For arguments outside the range 101 < 7r/2, we make use of the
relation

(17) Pta(R,0,0)] = erfc 1(-,,,,- sin 0) - P[a(R, 0, r -0)] , 101 < 7r,

where a(R, 0, 0) denotes the angular region with its vertex at R, 01 = 0, 02 = 0 (see Figure 6).
The various situations in which (17) is needed are shown in Figure 5 of [2].

The program resulting from (13), (14), (17) is very efficient and takes advantage of situations
where reduced computing effort is possible, namely when R is sufficiently large or small. For
example, (1.8) is used when R2/2 < a2, with G set to zero when R2/2 < ap.

(18) P 2a) -a o - G = A - (h2 -h) - (g2h2-glh)

See Section V (page 28) for added comments. Details are given in [2, pp. 6-8].

Letting C(v1 , v2 , ... VN) denote a convex polygon with N vertices, vi, v2, .... VN, where
(vi) =- (xi, y1), we have

N
(19) P(C) = 1 - -P(a1).

IThis equation is fundamental to computing P(C) by the use of probabilities over appropriate
angular regions aj, i - 1, .... N. These angular regions, quite simply, turn out to be the exterior
angles of C as shown in Figure 7 for N 6.6

Us6U

Figure 7. Convex Polygon, N 6. Shows 6 (4)
"Anuar Regions for (19). (,l) a3

(3)

(V5)
(12

6jn 121, 131 we desijnote4 dhu angular tegions for P(C) in a slightly different but equivalent way.

•77



C'early (19) is true since , P(ai) = 1 - P(C). We also note that the vertices are specified in
ccunterclockwise order so that the area of C is on the left as one travels along C continuously from
('. to(vk-.1), k = I, ... , N, (VN -= (VO)

When AO is very near 0 or 7r, the possibility of a catastrophic error due to round-off must be
dealt with. As an example of this singular situation, suppose we are considering a polygon where
one of the angular legions, say a, as shown by the solid lines in Figure 8, subtends an angle of
nearly 7r radians with the sides of a at large perpendicular distances from the origin, so that
0P(a) 1.0. But suppose that by rounding error line I is actually given by the computer as
line Q so that the angular region a subtends an angle 9, near (-7r) radians. The program would
then yield a value P(a) near zero. Moreover it would be negative since 0 is measured, from 1 to
-Z , clockwise rather than counterclockwise as required. The reader should note, as stated earlier,
that for a positivwy oriented convex polygon all the angular regions ai i = 1, ... , N are positive,
i.e., rotating from 01 to 02 is always in the counterclockwise direction so that each A0i is non-
negative and no larger than 7r.

The program is al'ýrted to a sin~alar situation, such as the above example, whenever

(20) sin (02 -01) < 0,

for any angular region a, .... , aN. If thyý inequelity holds, and it can only hold through rounding
error, a second inequality is tested, namel,

-- i(21) Cos to, - 0) < 0.

If (20) and (21) are both satisfied, we re.olve the dffl,:tlty by setting P(C) = 0, since it' an angular
region has AO = ir for a ,.-onvex polygon all vertices must he on the same line. If (20) holds but (21)
does not, we set P(a) = 0, since A0 - 10-4. Ilowever, in this case, a remote possibility can
arise for which 1(a) 0 may be inmorrect. In partictir, wher. g, and g2 are both negative and R is
very large. Qy 109, 11(a) may not be near zero ,ven though AO - 10-14. Under these very unlikely
circumstances, we cannot determine P(a) wit11in thie single preCision capabilities of the CQk:-6700.
because of the inadequate precLsion in do.

- x FIgure 8. A SinSulr Cawe Shitation

2
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In the earlier report on convex polygons, [2], we remarked that a program was available for
arbitrary polygons which made fundamental use of the probability program for convex polygons.
Those ideas are briefly summarized in Appendix C. Since the completions of [2], [3] later studies
revealed that a significant increase in efficiency could be made by dealing directly with simple
polygons, rather than decomposing them into sets of disjoint convex polygons, as done originally.
These results are the main topic of the next section.

III. NORMAL PROBABILITY OVER S AND S POLYGONS

In this section, we describe our method, based on computing normal probabilities over exterior
angular regions, for evaluating P for elements in fS). The same method, by continuity arguments,
can be used to find P for elements in {S}, provided certain precautions are taken, which will be
discussed later. Just as for the class (C} (convex polygons), we shall show that P for an N-sided
simple polygon requires the integration of (4) over its N exterior angular regions. Taking the
precautions mentioned above into account, no more than N integrations are also needed to compute
P(S), where S is specified by N points.

It is important to keep in mind that the angular measure AO = 0, - 01 for an exterior angular
region a of a polygon, satisfies -7r < 60 < r.7 Also one can see from (6) that P(a) takes the same
sign as AO, where 0 is taken positive (negative) measured from the x-axis, x > R. about (R, 0) in
the counterclockwise (clockwise) direction, (see (5)).

We say S is postiel *y oriented (PO) if its vertices (vj), j = 1, 2, .... N are ordered such that the
interior of S is on the liet as the boundary is traversed continuously in the direction of increasing j.
If, on the other hand, the interior of S is on the right as the boundary Is traversed in the way just
described, then we say S is negatli'ely oriented (NO). For example, the polygons A and B, making
up II, in Figure 1 arc PO and NO, respectively.

One way to deternine the orientation of S is by the sign of the expression for A(S),

N
(22) A(S) Xj(Yt÷| -YJ-d1 YO -: YN, YN÷I E Yl,

j~t

where (x,. yj) dcnotcs the coordinates of the J111 vertex (v1) of S. In fact, it can be shown that S is
PK it and only if A(S) > 0, and NO if and only if A(S) < 0, (see Appendix D). The area of S is
given by I A I. The expression in (22) yields an efficient procedure for computing A(S). The com-
puter program for this computation, SMP-7, is listed in Appendix F. Tihe derivation avid orientation
properties of (22) are given in Appendix D. Also the expression for A in the wz-plane is given there,
(SeC; pagie I).

Consistent with earlier remarks that P(S) is taken positive if S is PO, we have

CJ3(IS) > 0. if A > 0.

•(23) 'P(S) < 0. if A < 0, (P(S) = 0, if A = 0). (Sce page 26).

?For coMi1patwi(s, a strict lnequality on the left is used. More on this later in the report.
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Moreover, since A is a continuous function of the vertex coordinates of S, (22) must also hold for
all S in {S}. Thus S may be replaced by S in (23).

Consider first that S is PO; then we shall show that

N

(24) P(S) = I - P(ai).
i=1

Here a1, as before, denotes the exterior angular region at the ith vertex of S, which is formed, as
always, by extending the sides (i - 1, i) and (i, i_+ 1) as shown in Figures 7 and 9, where for i = 1,
(0, 1) = (N, 1) and for i = N, (N, N + 1) E (N, 1). A glance shows that (24) is the same as the
expression for P(C) given by (19). In (19) each P(a1) is positive. In (24) this will not be the case if
the interior angle at (vi) of S exceeds 7r radians. For example, in Figure 9, the interior angle at (3)
exceeds 7r, so that a3 is measured in the clockwise direction rather than counterclockwise. Hence
AO <0 for a3 and P(a 3) < 0. Note that P(ai) > 0 for i = 1, 2, 4.

aa3

3 Figure 9. Polygon S. Shows Angular
Regioits a1, i = 1, .... , 4.

Since the sign of P(a) is determined by the sign of A0, it may also be fixed by the s4gn of
sin AO. Thus, we also have

2 N{P(a) > 0 if silnAO > 0,
S(25)p(a) < 0 if sinO0 < 0, A0 - 0 - 0. 1401 < ,

As a second example, in Figure 3. oil page 3. S is 1P0 with P(a,) >0 for i = 1, 2, 3, 5. 7. 9, 10, 11,
and P(ai) < 0 for i = 4. 6, 8. The ambiguous case, sin AO = 0, with IA01 A I , is connected with tile
precautions mentioned earlier for S. and will be discussed later in this section.

Let (S+) denote S when PO, and let (S-) denote the same configuration when NO. If (24)
holds for (S+). then

N

(26) P(S-) 1-4 - P~a1),

where aN •_ - from (24) aod a, from (26). with (N + I) 1(), are vertica. angles with their measures

of opposite sign.
10



Indeed, since P(S-) = -P(S+) = -1 + 2 P(al), and 2 P(a1 ) for (S-) has the same absolute value,
but opposite sign as the corresponding quantity for (S+), (26) follows directly. By continuity
arguments, (26) also holds for NO elements in (SI provided certain precautions are taken.

The truth of (19) for convex polygons is obvious. In the case of (24) we give a heuristic
argument for its validity, which can be made rigorous.

The argument is inductive. Certainly (24) holds for N = 3. Some insight is gained by con-
sidering N = 4 with S not convex, as in Figure 9. We see that I - P(S) is obtained by considering
Z4 P(a1 ), where P(a 3), which is negative, compensates exactly for the- excessive positive contribu-
tion from P(a 2). Thus (24) holds for N = 4.

Now assume (24) is true for N = J - 1, J > 4. We shall show that (24) holds also for N = J.
We look at the special case J = 8, with Figure 10, since the essentials of a rigorous proof are con-
tained in the arguments for this case.

First a diagonal L is drawn from vertex (3) to vertex (7) which remains inside S. Such a line
can always be found for any simple polygon; a proof of this fact is given in Appendix B. This line
separates S into two simple polygons with the same orientation as S. Call the separated polygons D
and E. Each has fewer than J vertices. From Figure 10, D is defined by the vertices, of S, (1), (2),
(3), (7), (8), and E by the vertices (3), (4), (5), (6), (7). Note S, D, and E are all PO. By assumption,
(24) holds for both D and E, whore we have a,, I = 1, 2, ... 8, the angular regions ofS; 91/ and Xj
j 1. 2, 3, 4, 5, the angular regions of D and E. Hence

S(3) / (

"•''f

(4

Fkmuie 10. Shows Anular Regiom of Simple Polygons D and E

I-



S
(27) P(D) = 1 -L P(OO), P(E) = I -L-j P(Ne), P(D) + P(E)= P(S),

: ill ill

where

(28) :2 = a,, •i 2 = a2 , 25 = a8 , e'2 a4 , e3 = a5 , 44 = a 6 .

We also have f 3, f 4 , dl, and e5 as shown in Figure 10. Moreover, with P(a 3) < 0 and P(a7 ) > 0,
clearly

(29) P(a 3) = P(9 3) - [P(L) - P( 1d)], P(a 7 ) = P(4 5 ) + P(9 4) - [1 -P(L)],

where P(O) denotes the (positive) probability over the half-plane below the extended line L.
From (27),

S 5
(30) P(D) + P(E) = 2 - L P(fi) - L P(ed).

By using (28) and (29) in (30) wo have

(31) P(S) = P(D) + P(E) = 2 -- P(a 1 ) - P(a 2) - [P(a) + P(L) -P(40

-[P(a 7 ) - P(4 5) + 1 - P(L)] - P(a 8 ) - P(S 1 ) - P(a 4 ) - P(a 5 )

8
-P(a 6 ) -P(45) L - P(a 1).

This completes the argument based on Figure 10. In order to make the proof rigorous, It is necessary
to consider all the basically different possibilities for the measures of the angular regions at the two
vertices on the diagonal E. In Figure 10, the interior angle at (3) was greater than w radians and tile
one at (7) less than r radians. The three other possibilities were checked. The arguments in these
cases required nothing new and are not included.

In discussing the sign associated with P(a), see (25), the ambiguous case arose where sin G0 = 0.
I AO I = ri. The precautions we mentioned at the beginning of this section, in order to extend our
results from the class {S} to the class =(), are necessary because of this ambiguous case for P(a).
To specify these precautions explicitly, we introduce several definitions.

We say an angular region a is singular (SAR) if (a) or (b) holds:

(a) Three consecutive points specifying a, say (k - I), (k), (k + 1) are colinear, i.e., are on
tile same line L, with I A0 1 = r. Such an angular region is called a a-angular region,
(PAR).

(b) Two successive points of a, say (k - I), (k), coincide. We call them successive duplicate
points, (SDP).

12



Examples of (a) occur in Figure 4 for k = 4, 5, 6, 7, 8. Examples of (b) are shown in Figure 31,
where (1), (2) and (3), (4) and (I5), (16) are SDP.

The problem of SDP is easily treated by discarding one of the points from the xy-array speci-
fying the polygon g. 8 Clearly dropping such points does not affect the value of P(S).

The PAR, say a, which is our prime concern here, has the property that its angular measure A0
can take either a plus or minus value of ir and P(a) given, with a proper choice of signs, by ± 1/2 erfc
(+t/'./f), where t denotes the normal distance from the extended line L to the origin. Once the sign
of AO is chosen "correctly." and this is not trivial to do, the signs of P(a) and of the argument t are
determined. In addition, from a computational viewpoint, the correct choice of signs for a PAR
must take into account the fact that the 4-quadrant arctangent subroutine returns AO = 7r which
may be wrong. If the correct choice is not made, then computationally such an element of {S) is
considered to be SI. The reasoning for this must be postponed until we give a characterization of
SI polygons in the next section.

As a consequence of SAR(s), our main program package contains two subroutines for evaluating
P(S) which treat SAR(s) in different ways. One, VALR-7, cannot evaluate P(S) directly if SAR(s)
exist in S. It resolves the problem by pre-processing S with another subroutine SORT III which
eliminates SAR(s). This is permissible since the deletion of such regions does not affect the value
of P(S). For example, SORT III in processing S of Figure 4, would delete points (4), (5), (6), (7),
(8) which clearly would not change the value of P(S). The deletions by SORT Ill reduce S to a
simple polygon which can then be treated by VALR-7 to compute P(,).

The other subroutine for evaluating P(S). VALR-2, based on (P-B), is the more versatile
routine. In Sections IV and V. we shall show that it can find P(H) for any I1 in (II}. It does not
need to pre-process 1, and yet it handles PAR(s) and SDP so that P(H1) is always computed cor-
rectly. Thus, it has no problem with singular situations mentioned on page 8. Like VALR-7, it
integrates (4) over N-angular regions to determine P(II), where I1 is specified by N points.

The subroutine VALR-7 is included in the program package, because it call be, on the average,
slightly faster than VALR-2 for simple polygons, where, of course, most applications occur. It uses
A(SM. (2 ). to decide whether (24) or (26) is needed. The reason for its greater speed will be given
in Section V. page 38&

In the next section. the discussion is extended to arbitrary polygons.

IV. NORMAL PROBABILITY OVER ARBITRARY POLYGONS

In this section we show how to evaluate (3) for SI polygons. By our earlier remarks, thes
elements belong to (!I) but not to (SI.

8 %W limit our discussion here to elemmits in (S), but certainly SAR(s) cmn also occur with elonlints of (11) not
in3

[1



Recall that (P-A), to be discussed in Appendix A, is based on decomposing an SI polygon 11
into a set of disjoint elements 9 in {S} or (S}. In addition, if care is not taken, and a class is speci-
fied to which HI does not belong, thei. a wrong value of P will result; moreover for computational
efficiency, it is necessary to specify the smallest class to which HI belongs.

For (P - B), on the other hand, we shall show it is not necessary to specify the class to which H
belongs, and that P for any H in {-I} is evaluated by computing P over its N exterior angular
regions, where N, as usual, denotes the number of points specifying H.

We first characterize SI polygons. Then we describe in detail and establish procedure (P - B),

(see page 3) for evaluating P(1I).

One way to note an SI polygon is to show it is not in (S). Our classification procedure is
straightforward, and it is easy to conclude from it, in principle, if a polygon is SI. Before supporting
these statements, some additional definitions and notation are given.

The ith node (j) associates the integer j with the jth xy-point, (xj, yj) of the ordered point
set V which defines [. The set V is denoted by the set of nodes (1, 2, ... , j - I, j, j + 1, ... , N +1).
Let the ith edge of H, denoted by j, mean the directed line segment of HI originating at (j - I) and
terminating at (j), so that j terminates and j+l (N + I= 1) begins at (j). We say j and j +-I are
associated with the jth node. Of course, more than one node can exist at the same xy-point, in
which case that point is called a multiple node (MN). If only one node occurs, it is called a simple
node (SN). For example, in Figure 13, page 16, the first node has two edges T, 2 associated with it.
Nodes (4) and (7) at that same xy-point have the edges 4, 3 and 7, 8 associated with them, respec-
tively. We identify a particular MN by MN(i), where (i) refers to the first node met at that xy-point.
In the example above of Figure 13, we would refer to MN(I). A vertex (j) of 11 is a point of V such
that j and j + I have different slopes. We define a path 1j, k I of H as a line made up of consecutive
edges j, j +-], . i < k.

In order to characterize an SI polygon, we use an o-numbering scheme, sometimes simply
designated as an c~o ption, for specifying H1. By this scheme, all vertices, points where two segments
cross, and initial and terminal points of overlapping segments, are numbered in their natural order
as ii is traced; i.e., starting from a point (1), each time such a situation is met it is numbered, in
sequential order, until I is completely traced. Some polygons numbered under the e-option are
showr. in Figures 13, 15, 18, 19, 20, 24. 25, and one that is not is given in Figure 26,1D We will
give a brief further discussion on Figures 25 and 26 at the end of this section, (Page 24).

To establish whether H1 is SI, we use the fact that 11 cannot be a limit element of (S,,(N)}, a
sequence of uniformly bounded N-sided simple polygons with the same orientation, ii" the path
foanned by two of its edges associated with a nodal point at an MN penetrates another such path at
the same MN. By penetrate. we mean pass through rather than just meet. Such a situation is shown
in Figure 11. If two paths (j, j + 11. ( k, k + II just meet at an MN, as shov'tn in Figure 12, It may
be reached by a sequence (S.(N)}, as in Figure 2, page 2.

9Two polygonal elements of 11 are disjoint if they have no more than one node in common. A node is defined hi
the fifth paiagraph on this page. A .wt of elements is disjoint if its elements are pairwise disjoint.

t0Oflon. for computations, dhe number of nodes under the ot-option can be reduced.
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(j-l) (k-I1) 0j+ 1) (k1-- - •!•-- -+ t (k+ 1)

Figure 11. A Situation for an SI Polygon

(j), (k)

(k- 1) 6: +, 1~ ) . k+1

Figure 12. Situation Does Not Imply an SI Polygon

(j), (k)

Using these notions, it is easy to see that the polygon of Figure 1 is SI, whereas the one in
Figure 2 is in (SI. There are, however, configurations with overlapping edges, such as appear in
Figures 15, 18, and 19, (page 17), which need a more precise description for SI polygons.

With this in mind and with MN(j) denoting tile MN at (j), where (j) is the first numbered
node at that point, let J(1, 5) represent a disk centered at (j) with radius 5&, where bj is chosen so
small that J(j, 6j) intersects only those edges of H1 which originate or terminate at MN(j). Often,
we simply refer to such a disk as a J-disk.

The approach now is to make a T-construction, i.e., to construct a closed polygonal path T,
Swhich is "close" to 1l, and which is then used to classify 11, as to type, S or SI. So, consider two
successive nodes (k - ), (k)1 1 with 2 < k < N + 1, and (N + 1) =- (1). Let Tk denote a segment ofT
which will be taken "close" to edge k. This segment is constructed as follows: Begin with k 2.

(A) Tk = k, if (k - I ) and (k) are SN points, (N + 1) - (1).

(H) Tk - BkI if(k - 1) isan SNand (k)isat MN(j), I <j 14 k. where Bk emanates from (k - 1)
and terminates at a point tk in J(j, 6j). If k = N + 1, then we require j = I, TN,, = T, =
III I so that T is closed, i.e., T, terminates and T, originates at (I).

(C) Tk Dk. if (k - 1) is at MN(i) and (k) is an SN, I 4 i < k, where Uk emanates from
tk.1 a point in J(i, 6j), and terminates at (k). If i = I and k = 2, then t, = (1) so that T
will be closed.

(D) Tk = Lk. if (k- 1) is at MN(i) and (k) is at MNU), i # j. I < i < k. I <j ' k. where -.k

emanates fromt t l• Ji (i, 6j) and terminates at tk in i~j, 6). Ir k N + i. then 3 -,

and for T to ti closed, TN-I = T, = L, with tN. tt (I). Also, for the same reason.
ifk= 2, i 1 andt, =(1).

"tIWith no loss in gen•rality (k - 1) and (k) are assumed not to be SDP.
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Repeat the procedure with k = 3, 4, ... , N + I to obtain T. Clearly by choosing the 5i sufficiently

small T can be obtained arbitrarily close to H. Now if the tk can be chosen, for any 6i so that T is
simple, then by choosing a sequence of 5i approaching zero, for each 65, a sequence of T's can be
constructed which make up {Sn(N)} converging to H. Hence in this case HI is in {S}. If this cannot
be done, i.e., if in some J-disk paths of T must cross then H1 is SI since it cannot be obtained as the
limit of a sequence (Sn(N)}. If an intersection takes place in J(j, 5) between paths [Tk, Tk+1 I and

---[Tk+m, Tk+m+l] we say H has a SI point at (k, k + m).

Clearly from this characterization of S and SI elements, by T, the polygon in Figure 1 is SI
and the one fin Figure 2 is in (S). A more complex example, given in Figure 13, shows it is neces-
sary to consider all of the nodes at an MN. Accordingly, it is not determined that H of Figure 13
is SI until J( 1, 6 ) is entered for the sixth time, as shown in Figure 14, where B10 cannot possibly
terminate at (1) without intersecting B7 and/or D8.

From HI of Figure 13, an interesting situation is reached by letting (5) and (6) converge, by
sequences of points, to locations of (3) and (2), respectively, such that each polygon of the
associated sequence is SI. The limit element, however, shown in Figure 15, is in {S}. There is
nothing contradictory about this with respect to our previous remarks. Figures (16) and (17)
show that S of Figure 15 can be obtained as the limit of a sequence of SI elements, or as the limit
of a sequence (S.( 9 )). Hence, it is still correct to say the element of Figure 15 is in (S), since T
for it cat, be constructed as a simple polygon as shown in Figure 17. And, it is also correct to
maintain that if T is SI, then there exists a sequence of SI elements which converge to an SI limit
element since by the way T is made there cannot exist a sequence (Sn(N)) converging to that same
limit element. Note that S of Figure 15 has a PAR at (4) which is the reason for the phenomenon

just described. More will be said on this near the end of this section.

We show two more interesting examples in Figures 18 and 19. The element of Figure 18 is
in fS); i.e., it is not SI, whereas the polygon in Figure 19, by our characterization, is SI.

SI polygons should not appear often in practice. But, if the generation of a polygon is not
under control of the user, say the nodes are computer assigned, then SI polygons can occur, For
example, consider Figure 20. It is clearly SI at MN(3) with se,-ifntersection point (3,6). Note that

a renumbering I - 1, 2 -2. 3 - 3, 7- 4. 8- 5, 6 - 6, 4 - 7. 5 -+ 8, 9 9 gives tl• sane regions.
but now the renumbered element is in (S).

116

4:• 7

i!3 4 111
3; Ds 111o

iiFigure 13. An S! Polygon, 11 Figure 14. T for 11 of Figure 13
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Figure 15. A Polygon i Derived from Il

of Figure 13

Figure 16. Incorrect T for Figure 17. T for S of

Sof Figure 1S Figure 1S

3'6 3 ,6
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5 9

t 2,4 
2,5

Figure 18. A Polygon in for F igure 19 . AT SI Polygon

•3,
!3,6

41,4
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The basis for (P- B) is given by one e-liation, which is a main result of this section. Namely,
for any element H of (1-}

N
(32) P(H) = W - P(ai),

where P(ai) is the value of P for the ith exterior angular region of I1, and W is a new quantity, which
we define below and call the winding number of 1n. Thus, there are two basic steps here. The first
is to evaluate P(ai) for each i = 1, 2. ... , N, and the second is to compute the winding number of n.

The first has been discussed extensively in the earlier sections and offers no difficulties, except that
there remains to discuss the evaluation of P(a) when a is a PAR. We shall show below that W can
be obtained by simply adding up the angular measures ,0j in radians of the ai and dividing the
sum by 21. Thus, for an element in (S) or {S} that is PO(NO) W = 1(-1). which gives agreement
of (32) with (24) ((26)) for such elements.

We now need the following definitions and additional notation, where n1 is numbered under

the a-opdon:

A circuit of 11 is a closed path of H with no sellfintersections. Thus a circuit is in (Sf, and its
first and last points are located at the same MN. Note that if II is in (S}, then MN( ) is the only
MN in the sense that 1I is closed and (N + 1) is at MN( 1).

A primary circuit of H1, Cp(ll), is the first circuit detected in tracing II, starting at (I ), which
terminates at a self-intersction of 1,1' way betwen paths (k. k + I I and (J + in, i + !n + I I at
MN(j), where j 4 k < j + in, (see Figure 1I). with Cp c (k. k + 1.... j - Ij + n). It contains
all other nodes (k + i) at MN(j) such that k < k + i < j + m. As, an example. Cp' of Figure 20 is
(3. 4. S. 6); note that k --- 3. 1 + in 6, there are no other nodes (3 + i) at MN(O) with
3 < 3 + i < 6. fi Figure 50, Cp - (3. 4, 5. 6, 7. 8, 9). we have k = 3 - j. j + II I . all other nodes
(3 + i) at MN(3) with 3 < 3 + i < 9 are included in Cp. Natu.ely, node (6) with i 3. i.e,. C1,(d •-
(6, 7. S. 9). If 11 is an S elentent, theln Cp{I) a 11.

The windikV number of a circuit C is givtn by I A1,!2w. where AO is. the agula. In
142radians. of the j'h eCterior angular region of C. 01C integer r delotes the numttr of points I;Pci,
fyingC C, The winding number is + 1 (-1) if C is PO(NO).

In order to establish 032), lot 11I a 11 and decompose 11 as follos,:

.() Obtain Cp,(IlI ). Set i -" I. Go to (6)

(0) Find C1(II,). Go to (6).

(y) it h3% Seen decomposed into a wt of diijoint elements. in (Sj. (Se, Footnote
page 14). tIhie decomnposition is complete. It i a K. we say It has or decompows
into K primary circuits.

(6) If Cr( 1 ) t fli go to (7y). Otherwisc. delete Cl(.r1) from 1l (except for its last ntle).
call the result Ili. Iwt i + I = i. and go to (3).

12Cre znws be taken whvA PAR(s) ate tnvoittcd. Moe later. See footnote 03.

18



lFor example, for the SI polygon of Figure 20, we have

II' = (1, 2, ... , 9, 10), Cp(H) = (I . 4, 5, 6), r2 = R1 -Cp(Hll) = (1. 2, 6, 7, 8, 9, 10)
Cp(fl 2) = r12. Thus Hl = Cp(l-1) U' *v(ii2), where U denotes union.

The decomposition of 11 into primary circuits can always be carried out. Indeed, by a slight
modification of a proof by Knopp [4, page 151, one can state that any polygon can be decomposed
into a finite set of disjoint elements in fS}. Knopp's proof is constructive, and, if it is followed, as
described in Appendix A for (P - A), the polygon II is decomposed into a set (S I = (S1, S2, S3,
SJ) of simple polygons and a set {L} = (L', [2 ..... LO) wheie each Li denotes an overlapping line
segment (a PAR). Now Cp(l1,) is made tup of the union of a subset of (S} and a subset of {L}.
Deleting these elements from (SI U (1,} leaves [12. Then CP(I12 ) is found, for H12, in the same way
from (S) U {L} - Cp(Il). For example in V,,-ire 22 we have L' = (3, 4, 5), S1  (1, 2, 3, 6) and
Cpr(H,) = LH1-t S1 fl, with W1  W = 1.

In general,

K

(33) H J Cp(fli), I • K < N,

where the Cp(fHi) are disjoint, 'See Footnote 9, page 14). Hence

K

(34) P(n) = Y, P[Cpi),

where, using (24) and (26),

KI  I if Cp(fHi) is PO

(35) P[Cp(Hf 1) = Wi1-1 Pain), W( N
n-1 --1 if Cp(fI'I) is NO,

with aij denoting the jth of Ki exterior angular regions of Cp(ll). Then, substituting (35) into (34)
gives

K K KI
-•('6) P(fl) = 'W - P(a())W

"• "1. 1"1 n~

The winding number of H, W, is defined to be

K
(37) W Wi"

19



Now let

N
(38) = & AOj, -7r < AMi < 7T,13

i=l

where AO: has the usual meaning, i.e.. it denotes the angular measure, in radians, of the exterior
angular region ai of Hl. To establish (32) and that W can be expressed in terms of U2, we need to
show that

"ST/2"r = W

(39) N K K1

. k=1 i=1 nl

We proceed to present the elements of a proof for (39). The argument goes as follows:
__....• ~Suppose Cp(I111 (j,,j + 1, .... , j + m), so that 1`I2 = (1I, 2, ... ,.j - l,j, j + m + 1., N + 1), where

,2 = Hn - Cp(H 1 ). Denote the exterior angles of Cp(H 1 ) and H2 at (j) by al,. and a2,j,
respectively. Denote their corresponding angular measures by ý and ). Also, let Alj and AG1.
t -- j + in, denote the measures of aj and a, of H1.

With the aid of Figure 21 below, we have for one particular situation,

(40) + X = AQj + AOt.

Then from geometrical arguments, wt must have also

(41) a1 ,1  U 2j = aj U aj, ,. and P(al, 1) + P(a 2 ,j) P(al) + P(ai+m),

112/

•" (0 + j + I ,..

Figure 2 1. Parts of Cp(t 1 ) amd II2 of St Polygon at (j.j + In)

131T rema•i COIldISlent witlh our Carac-torinfation of S and Sl elements from thwTconstructionwc need 1A0 11 ,
but comnputatioailly we always have -v < A01 ,4 It as a reult of using the 4.quadrant arctngent routine to
compute Mi.
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In fact (40) and (4 1) hold for any other configuration with a self-intersection at (j, j + in). There are
five other basically different configurations to check. This has been done; the details are not given.

Assume now that H has only one self-intersection. Then by the relations given in (40)
and (41), we see that the only angular regions affected are at (j) and (j + in), where the intersection
takes place. Therefore with (34) and (35)

(42) P(H) = P[CPp(HI)] + P(112), (W=W1 +W2 ),

F r-1*i-I N P
= W [P(a,,,) + P(ak + W2- P(ak) + P(a 2 j) + ak

[P k=j+l 1k-1 k=j+m+l .

Using (41) in (42) we have

N

(43) P(1I) = W - E Pk
k=1

It remains to show the first equation of (39) in the case of one self-intersection. We have the
winding numbers W, and W2, for Cp(611 ) and H12, respectively, given by

j+m-I j-I N

(44) 2rW1i + E k, 21rW = X + + 0k
J+1 1I

where 11 with only one intersection, implies that -12 is a circuit. Consequently, using (37) and (40)

(45) W = W + W, /2+X.-- k-1 k-1

To treat the case where H1 decomposes into K(>2) primary circuits, an induction argument
can be used. Assume (32) holds for all elements H1 with no more than K - I primary circuits. The
essence of a proof that (32) holds for polygons with (decomposable into) K primary circuits is
obtained from the argument above for K 2.

Let I1 have K primary circuits. Then by the decomposition procedure described above,

rI ' CP(U1 ) U 112.

where i1 :an be decompos-d into K - I primary circuits with winding numbers Wi, W3 ,,..,WK.
But (32), 'y the induction hypothesis, holds for 1I,. Therefore, the remainder of the argument
goes as above for K = 2. where W2 is replaced by 24i W1 in (42), (43), (44) and (45).

On pages 10, 12, we remarked that the evaluation of P(ak) requires k'cme precaution, when
ak is a PAR, Le.. tA0k I w. The basic difficulty is that the sig• of A0k cannot be determined from
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the arctangent subroutine, because it always gives 7r for a PAR. Thus to determine the sign requires
some additional analysis. This analysis amounts to correctly choosing the direction Tk+I should take
in the construction of T (see page 15). For example, an attempt to construct T for S of Figure 15
by choosing T5, as shown in Figure 16, would not be right. This amounts to choosing the sign of
A04 incorrectly since elements typical of the one in Figure 16 are SI. The correct direction for
T5 is shown in Figure 17 which indicates A0 4 = --7 rather than 7T.

We car further elucidate the difficulty with the aid of Figures 22 and 23. The ele-
ments in both figures are in S. Call them %2 and $3, respectively. Both elements have a PAR
at (4). In Figure 22, the value for A04 of $2 is ir and for g3, A0 4 = -it. We see for S2 that
I - P(S 2) = P(at) + P(a2) + P(a), and P(a) ! P(a 4) + P(a 3) + P(as). Thus any routine, such as
VALR-7, designed to compute P for e6ements in {S}, but not for SI polygons, would give the
correct result for S2. For S3 however, (he situation is different. The arctangent subroutine would

- give A04 = ir which is incorrect for S3 to be in (S} and consequently P(a 3 ) + P(a 4 ) + P(a 5 ) * P(a)
and the result from VALR-7 for P(S 3) would be wrong.

The subroutine VALR-7 forms a part of our preferred program package, because of its slightly
superior speed over VALR-2 in computing P for elements in (S). So, in order to also use VALR-7
for elements in (S}, rather than include the additional steps in the program to determine AO cor-
rectly for PAR(s), a routine SORT III was designed which pre-procesess S by deleting from its
specifying array V all SAR(s) (see page 13). The result is an element in {S}, say S, such that
P(S) = P(S), since SAR(s) do not affect the value of P(S) by their removal.

In the case of VALR-2, which is based on (P-B), the winding number rectifies any wrong
choice for AO at a PAR. For S,. in Figure 22, A04 is computed correctly; therefore, W = I for S2.
For S3 however, A04 is computed incorrectly as noted above, so that from Figure 23, we have

P(a 4 ) + P(a3) + P(a 5 ) = I + P(a),

where P(a) is the correct value to add to P(al) + P(a) to get P(9 3). Now by (32)

NP(S3) W - [P(al) + P(aN) + I + P(a)].

(4)

a3  g

3,s -Figure 22. A Polygon S2 in (Sl
(1: a4 r•!•• '4 04 W I,

-- a5

.. i++• -- '-- -

ilL2

=•::-:i22



• g4

':as 3$5 3

Figure 23, A Polygon g3 in {S}, a a

(A04 incorrect), W = 2

Bit note that the computation of W using (38) with the arctangent routine is two, since Cp(III) =

(3, 4, 5), Cp(H 2) = (1, 2, 3, 6) and W1 + W2 = 1 + I = 2. Hence P(S 3) is given correctly by

P(S 3) = 1 - [P(a1 ) + P(a 2 ) + P(a)].

Hence, an element with PAR(s) may be classified by the T-construction as in {S) and yet its
winding number from (38), using the arctangent routine, (See Footnote 13) will not necessarily be
±1. Thus computationally it must be treated as SI.

It is to be noted that the value of P for a PAR requires an erfc function computation. For
example, in Figure 30, W = 6 and 8 erfc functions are needed. Hence, it may be worth using
SORT III also with VALR-2 to eliminate SAR(s), (See flow chart for P-2, page 40).

We conclude this section by giving two more examples of decomposing 11 into primary circuits,

and some remarks on numbering I1 other than by the a-option.

Consider the polygon of Figure 24. We shall show that W - 3. Note, the first self-intersection
occurs at (4,7):

CP(lI1) = (4,5,6,7), W, 1 = 1, 12 (1, 2, 3, 7, 8, 9,10, 11, 12, 13, 14, 15).

J 8 9

13

Figure 24. An SI Polygon. W = 3
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The first SI point of 112 is at (3, 11); by the preceding discussion,

CP(M 2 ) = (3,7,8,9,10,11), W2 = 1, 113 = (1,2,11,12,13,14,15),

where Cp(1` 2 ) is PO and in {S}. With no remaining self-intersections, we have

CP(I13) = H'3 , W3 = 1.

Hence W = 3.

For Figure 25 (note the a-numbering) the decomposition of 11 is as follows:

C,(HI) = (6,7,8,9,10,11), Wi = -1, n2 = (1,2,3,4,5,11,12,13,14,15,16,17)

Cp(fl 2) = (4, 5, 11, 12), W2 = 1, 113 = (1, 2, 3, 12, 13, 14, 15, 16. 17)

Cp(I13) = (2,3, 12, 13, 14,15), W3 =-11, 4 = (1, 15, 16, 17)

CP(114) = 14, W4 = I.

Hence W = 0.

In the actual computation of P(II), it is often not necessary to specify H1 by an a-numbering

(see page 14). However, one should not assume, for example, that all points for which AO = 0 can be

dropped when using (P-A), although this is permissible in (P-B). In Figure 55, if that element
were treated as SI, an additional node at MN(1) would be required, following (6), for (P-A), using

SORT I, to give the correct result. This will be clarified in Appendix A (See page A-7).

In Figure 25, six points can be dropped for computation purposes using (P-B), namely (2).

(4). t6). (11), (12). (15). The reduced numbering scheme as shown in Figure 26 is called a
-3-numbering scheme, cr simply a 0-option.

An additional short discussion on the superiority of (P-B) over (P-A) is given on page A-15.

""12
10 6 4 13

(7 )3Figure 25. SI Polygon with
•!i • a-Option, W = 0.

19 . 8 2 141
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47 8

I Figure 26. SI Polygon with 4 2
-3-Option. W = 0.

16 5 9

10V

V. DISCUSSION OF COMPUTER PROGRAM B (FLOW CHARTS INCLUDED)

The program package described here, call it Program B, contains five subprograms, each in sub-
routine format, P-2, VALR-2, SORT III, VALR-7, SMP-7. The second, fourth, and fifth can be used
independently; the first serves as a master routine. The last three are also used in the program of
Appendix A, called Program A. We shall discuss each subprogram, and point out how each is used
in connection with the others. VALR-7 has much in common with VALR-2; a detailed discussion
on it is not given. However, the essential differences between it and VALR-2 are noted. Keep in
mind that VALR-7 is on the average the slightly more efficient of the two for computing P for ele-
ments in {S}, but VALR-2 alone, which is based on (P-B), is capable of determining P for any
element of {I).b14 Flow charts for the first four subprograms are included at the end of this section,
pages 40-45. They will be used to aid in the discussion. No flow chart is given for SMP-7, which is
used to compute A.

The given polygon, call it II, for which P is wanted, is specified by its nodes at points
(Xk, Yk), k -1 2, ... , N. The call line of each routine identifies these quantities by x, y, N.

The parameter lOP appears in the call line of P-2, VALR-2, VALR-7. It specifies the approxi-
mate accuracy to which P(II) is computed. The user a"signs lOP = 1, 2, or 3, so that P for each
angular region of 11 is computed with 3, 6, or 9-dechnal-digit accuracy, respectively.

The parameter ICV appears in the call line of P-2. With this parameter, the user can specify, for
maximum efficiency of computation, various combinations of the above routines or subprograms.
The flow chart for P-2, page 40, summarizes the combinations one may choose. If n is in (S), then
the user should set ICV = 0 and P-2 would call VALR-7 to compute P(r!). When N = I is specified,
the normal probability, regardless of the ICV value, is given foi the angular region a which is
specified by three points. If the user is uncertain about the class to which 1n belongs, ICV > 0
should be used. Then P-2 calls VALR-2 to find P01) whire II can be in (n). If II has it-angular
regions, PAR(s) (see page 12) and 11 is not SI, then it may be more efficient to use SORT III with
"VALR-7 rather than VALR-2 alone. This can be done by setting IC'V = -2. If 11 hasself-intersections
as well as PAR(s), then VALR-2 with SORT IIl may be more efficient "han VALR-2 alone since

14 The paukage above gives an Inprovement in efficiency over using VALR-2 alone.
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VALR-2 makes an erfc function computation for each PAR of 11; SORT III deletes such regions
before VALR-2 is called. This combination can be called by setting ICV < 0, but not equal to -2.
In using SORT III, N may be reduced below 3, in which case P = 0, A = 0 as shown in boxes 9
and 13 of the flow chart for P-2, page 40.

"Later, in the discussion of VALR-2, the reason why VALR-7 can be slightly more efficient
will be given. But, VALR-7 can give grossly wrong values of P if it is used for SI polygons or
without SORTIJI for an S element with SAR(s), (See page 31).

A by-product of VALR-2 and a necessary quantity for VALR-7 is A, which is given by

,N
(6A N >3.

For VALR-7, A is computed by the subroutine SMP-7. It is used in VALR-7 to determine the
orientation of H, when rI is in {S} or fS}. The sign of A determines whether P(H) in VALR-7 is
evaluated by (24) or (26), (See page 9).

No flow chart is given for SMP-7, but a listing of the program is given in Appendix F,
page F-37. A derivation of(46) is given in Appendix D, where it is shown that IAI when properly

interpreted gives the area of H.

For VALR-2, A is computed within VALR-2 itself, In VALR-7 it plays a crucial role as
evidenced by (24) and (26). The winding number of H, W, plays a similar but more complicated
role for VALR-2 as (32) shows. In the previous section, it was shown that W is computed from

I AOj/2ir, where A01 is the angular measure of a1, the exterior angular region of H at (i). The
winding number in addition to P(H), A(H), and IND make up the output of VALR-2.

The error indicator IND is used in both VALR-2 and VALR-7. Its normal setting is zero. If
VALR-2 is used to find P for an angular region (N = 1), and the x, y input contains a SDP, then IND
is set to one and P is set to the absurd result of 5. If IND is set to two in VALR-7, or VALR-2, it

imeans a PAR was encountered in evaluating P(HI), and the result for P(l1) front VALR.7 is not to
be trusted, whereas the corresponding result from VALR-2 is good. If IND = 3, then a direct exit is
taken since N has been set as smaller than one or equal to two. In either case such an assignment

-J is not acceptable to VALR-2 or VALR-7. See boxes 7 and I in flow charts of VALR-2 and VALR-7,
respectively.

lFor easy reference, the above programs are numbered accordingly: P-2 4+ 1, VALR-2 4+ 2,
SORT III 4 3, VALR-7 *4, SMP-7 4+ 8.

We proceed with a more detailed discussion of 2. We refer to the ntil box of the flow chart
for 2 by 2-n.
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W

Although 4 should be used when N 1, this case is also handled by 2. When N = 1, P(a)

as computed by 2 (or 4) always gives the normal probability for a; a negative value is never

found for P(a) in this case. Three points are necessary to define a, with (1) always referring to the
vertex of a with points (2) and (3) given in counterclockwise order with 0 < AO < 27r. Notice that

this differs from AO for an exterior angular region of a polygon, where I AO I< ir. In Figures 27 and

28, the assignments of 3(x, y) coordinates are shown for two different angular regions when N = 1.

'-i The sensing for N = 1 is carried out at 2-7 (flow chart for VALR-2, box 7).15 If 4,, defined in

2-15 (see also pages 28 and 39), is nonnegative, we have an element of type shown in Figure 27,

0 < AO < 7r. If 40 < 0, Figure 28 represents a typical case, ir < AO < 27'. If 4 5- 0, then a can have

a vertex angle near 0, ir, or 27r radians. Here the user must be careful, because if rounding error

should interchange (2) and (3), a wrong result can be given for P(a), (See page 8). The error

indicator IND is not used for this situation. The other boxes used only for N = 1 are 2-57, and 2-79.

If N > 3, 2 treats any polygon IT by finding P(ak), k = 1, 2, ... , N, for each exterior angular

region ak of 11. The analysis for computing P(ak), using (13) and (17), was given in Sections II and

III. The A~k term for ak (see Figures 6, 9, pages 5, 10) is computed at 2-36 using a 4-quadrant

arctangent routine which gives values in the half-closed interval (-7r, 7r]. The sum of the AOk is
accumulated in a at 2-27. Individual terms for A, as given in (46), are computed at 2-22 (k = 1)

and 2-68 and accumulated in A. The sum in (13) is computed at 2-35 and the loop 2-34, 54. The

am,1 in 2-34 are the Chebyshev coefficients for erfc(u)/z(u) as they appear in (13). They are

tabulated in Appendix E for the three IOP settings, with an additional set for 12-decimal digits of

accuracy which is not included in the program. The value of P(ak) is given by I in 2-47, where L

refers to the erfc function contributions from using (17). Note if g, and g2 from 2-19 are non-

negative 2-29, 30, then (17) is not needed and L = 0, 2-23, 2-37.

Y4 3

Figure 27. 0, P for Shaded Region

2

y. 2 2

Figure 28. 4 < 0. P for Unshaded Region

IsThe boxes in each flow dcart are numibered, usually at the upper right4and corner.
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For efficiency, yet retaining specified accuracy, if R is sufficiently small or large, then (13) is
not used. This is reflected through the sensings at 2-18, 12, 28. If R2/2 < a, then I-• A0/2ir and
if R2/2 •< U2, then I f (A0/2ir) - G, where G is computed at 2-10 from (18). If R > R, then I = L,
2-28, 37. At this point, VALR-7 can be more efficient than 2. In4 (VALR-7), AOk is not computed
until needed (see 4-16, 34) so that when (13) is not used an arctangent computation is saved. In
2, however, AOk is compuied regardless of whether (13) is used or not, because it is needed to find
the winding number W = f/2ir. Thus, for a polygon with n vertices of S located such that R > k
for each of them, 2-28, means n more arctangents would be computed by 2 than by 4. The param-
eters a,, t2, P32/2 as well as C3 and a4, which are discussed below, are given in Appendix E. They
depend on the setting of lOP.

In 2-19, the rotation of axes for ak is done, as discussed on page 4.

If s, given by

(47) s = 24/D1 D2 = sin A01 6

is sufficiently small in absolute value, 2-20, then ak subtends an angle near 0 or ±-r. When it is
sufficiently close to zero, with t) • 0, 2-24, and I AO I < 7 (-14), 2-14, then 0 - I, 2-1I. If there is a

j:!i no at 2-14 then I - 0 only if g, > 0, 2-13. If g, < 0, with AO - 0, it may happen that ak contains
the origin, in which case P(ak) is not near zero for sufficiently large R.

If IsI -< 3/4, 2-20, with IAOI i- r(O < 0, 2-24), and if Isl < 7(-14), IND is set to two, 2-21.
There is nothing to be concerned about here. IND is simply used to alert the user that a PAR has
been encountered. Recall that in 4 if this occurs, P(H) is not to be trusted, (This is discussed
further on page A-3 of Appendix A). Now if 4' < 0, 2-6, then P(ak) is given by I of 2-4, and if

>; ; 0, then P(ak) is given by I of 2-5. Boxes 4 and 5 are where the erfc function computations are
made in the program for a PAR. Note the choice is made such that if 4 = 0 it is assumed AOk = ir.
Keep in mind that if Ihi denotes the normal distance from an extended straight line, intersecting
the nonnegative x-axis, to the origin, then 1/2 crfc (h/Vf2_) with h > 0(<0) gives the probability over
the half-plane to the right (left) of the line.

Assumc now that the program moves from 2-20 or 2-13 to 2-12 and from there to 2-29. Then,
in the next set of boxes, starting at 2-29, the necessary erfe computations, required by (17). or
approximations to them are made and stored in L. As mentioned above if g1, g2 > 0, then (17) is
not used, L is set to zero, and control is transferred to 2-28.

We uv. the notation

(4800(h) = erf(h) 0 0 - erfc(h) I - E(h), (see(8)),
8 IE(-h) = 1 + E(h) = 2 - E(h)

16Variablcs appearing in the flow charts are defined, or cross-referenced to the text, on page 39, whlIch precedes die
flow charts of tis sec tion.
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If g1 < 0, g2 • 0, then -gl -• gi, -hj -- hl, 2-29, 38 and -4' -*4,, 2-32.

If 4 < 0, then AO - 7+ AO, 2-25, and L = -L E(h ), 2-45.
2 1

If 4i> 0, then AO + 7r -> AO, 2-41, and L = _I E(-hl)"

If g1 > 0, g2 < 0, then -g 2  9 g2, -h 2 -+ h2, 2-29, 30, 39, and -4 -+ 4, 2-32.

If 4,< 0, then AO -ir -+ AO, 2-25, and L -1 E(-h2)' 2-31.
2 2

If i > 0, then AO + 7T AO, 2-41 and L= -½E(h2)

If g1 < 0, 92 < 0, then --gi I g1, -h 1 , hl, 2-29, 38, and -g2  92, -h 2 -h 2, 243, and

L =L = [E(h1 ) - E(h 2)], 2-52.

An approximation for E(h) or E(h) is used for efficiency of computations, if Ihi is sufficiently
small, i.e., Ihi I< a4. The sensings on this inequality occur in 2-39, 43, 44, 49, 50. In each case, if
the inequality is satisfied, E.(h) is replaced by (2/v.)h. The parameter N4 depends on lOP, and is
determined, to retain the accuracy specified, by using the mean value theorem on E(h). Indeed,

(49) E(h) a 2 exp(-t 2) dt = - h + (4t2-2)L eXp(-t 2)] , e(0, h).

Retaining the first term. the error e(h) is bounded accordingly:

(50) I1O4l =- - 14 L - - (-2) <3 1 <

Thus

•! (51) 1h1 4;o4 - 4'2- e
-- '7•!!with (49) and (50), implios

(52) IE(h),-'• hI, < C/2

where c and ov4 are given in Appendix E as a function of the lOP setting. For example, if (51) is
satisfied for h1 and lh. with gt, g2 < 0. then L is computed from 2-48 rather than -152 with an
error no larger than e.
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After L has been determined, control proceeds to 2-28 to check if R is sufficiently large so
that the calculation of (13) can be omitted, or if the second term on the right-hand side of (17)
can be dropped.

Consider the angular region a shown in Figure 29, which corresponds to case 1]-1 in Figure 5
of [2, page 141. The quantity P(a) is found using (17), i.e., P(a) = 1/2[E(h 2) - E(h1 )] + P(a),
where, at 2-19, g1, g2 < 0, h, > G, h2 < 0. Now if R is sufficiently large, say >'R, 2-28, thenP(W)

is negligible and its computation by (131), 2-35, 34, 47, can be bypassed by proceeding directly
to 2-37.

In case R < R, 2-28, the quantity (13) is computed from 2-35, 34, 47. Then P(ak) is obtained,
as shown in 2-47, with the result stored in I. Recall that, for efficiency, P(ak) may be computed in
various other ways as indicated at 2-2, 4, 5, 11, 37.

Control is now transferred to 2-55 to determine if N angular regions have been processed. As
each P(ak) is computed, it is subtracted from P, which is initially set to zero, 2-66. If the answer is
no at 2-55, the quantities w, z, D, at 2-59 and u, v, D2 are updated at 2-64 to be used for the next
angular region. Then P - I -* P is carried out at 2-66, as noted above, and x(Yk+i - ') + A -- A,
2-68 also noted earlier. Control is then returned to 2-26.

When [-I P(ak)] has been computed, i.e., k = N, 2-55, 56, 60, then W = 92/2V is computed,
2-61. The quantity P(IH) is then found from

N
(53) P(H1) = W - L N-

at 2-63 or 2-67 (see (32)), with W now an integer variable.

The remaining boxes of the flow chart 2 to discuss deal with the handling ofSDP (successive
duplicate points). Whenever two successive nodes of 11 occur at the same xy-point, one of them is
ignored in computing P(01). This feature is not contained in VALR-7, since it is handled by
SORT 1M1. It is included in VALR-2 so that this subroutine, entirely on its own, can find P(I1) for
any I in {(1).

Yo,

y

Figure 29. Shows Angular Regions a and d
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If D1 2< w 2, where wo = 7(-14), k = 1, 2-16, then (1) and (N) are SDP (within w) and control
is transferred to 2-75. If initially N = 1, then IND is set to I and P to 5 since the angular region a is
not defined, 2-79. If N > 3, then N = N - I and if N is reduced to two, P is set to zero for H with
an exit 2-77, 80. If N is not reduced to two, control is returned to 2-8, where new values of w and z
are computed and D1 is checked again, 2-16. If (1) and (N) are not SDP then D• to2 is checked
at 2-17. If this inequality is satisfied, then (1) and (2) are SDP and control is transferred to 2-81.
If N = 1, again the angular region is not well defined, IND = 1, P = 5 and EXIT, 2-79. If N > 3,

then k + 1 = k and new u and v are computed, 2-78, 72, and the inequality D• < ,2 is checked,
2-73. If it is satisfied return to 2-78, increase k by one, and repeat 2-72, 73. A no eventually
must occur at 2-73, because at k = N, points (1) and (N) are checked, but these cannot be SDP since
for k = I they were checked at 2-16. With a no at 2-73, is k = N - I? If the answer is yes, then

points (2), (3), ... , (N - I) are each, with (1), SDP, so P = 0, and EXIT is made, 2-74, 83, 80. If
the answer is no at 2-74, then (N) and (1), (1) and (k + 1) in the array specifying H1, are not SDP;
control is returned to 2-22, and 2 proceeds to compute P(a 1). Computation of new u, v, D2 quanti-

ties and updating of w, z, DI at 2-59, 64 for k > 1; also includes a check to see if (k)and (k + 1)
are SDP.

The barred x and y, 2-1, 59, 64, 68, and the ,, 2-59, 68, are used so that once two SDP are
found testing fur more such points at the same k can be done with reference to the same point,
namely (i, •).

We next look at SORT Ill. Its function is to remove points from V, the xy-array which

specifies t1. when either of the following conditions hold in considering ak.

(A) Either k or k + I (see page 14) has a length no larger than o 7 (-14).

(g) The angle AOk subtended by ak- satisfies one of the inequalities w - ' A O 'k
.- 7 < W - V-

If (A) holds. we say (k - 1) and (k) or (k) and (k + 1) aresticressh't, dapltrate xi)nts(SDP). If(B)

holds, we say (k - 1). (k), and (k + 1) form a PAR. In either Case, we say ik is a .4ngular anpular
region, (SAR), 7 becauwe if (A) holds 1)2 = w2 + z2 or W u2 + v0 is- eswntially zero, yet they
must be uxeu as divisors in 2-19 (or 4-24); if (B) holds then, becau•s the aretangent subroutine
gives values on (-v, #rl, 4 cannot determine whether AO - v or 1-•) for a PAR (this is discussed on

"page 2 2). For 2, (0) holds no difficulty as explained on page 22. If neither (A)nor B) holds, we
say ak is well defined (WM).

Given an array V made up of the ordered set of N xy-coordinate5 which define 11. SOlP are
elimn, led by dropping one of those points from V. In the case of a PAR. it is reioved by dtopping
its vertex point (k) from V,.1 where condition (11H is checked by s.enitng on s siai F-- A < ,W

(See !47). l)a4c 28). When ihis inequality is satisfied a. at we say points (k - 1, (k). (k + 1) are

s1(c4rssive i'oliuinvar tmiuts (SCP). Note this inequality is als satisfied if ItAOI < w. &o vertex points

of such angular regions. are also dropped. 16

l7 Deffixillom here for PAR and SDP are slightly dianged from thoae oven on page 12, to account for the fintie
precision of the CDC.6700.

lS1'he value of P(HI) is not cluagcd by drtoppi4g sui points.
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After a point, or a succession of points, are deleted from V, it is "closed up" (CU). This means
the array is brought together so that no gaps occur with the points renumbered in order. For
example, in Figure 4, 4, 5. 6, 7, 8 would be dropped from V by SORT III, 3, and 2 or 4 would
evaluate P over the CU array ( I, 2.3, 9, 10, 11, 12), which we again call V. Thus, 3 must not only
detect when (A) or (H) holds, but it must also delete points from V and CU the array. In giving
the details of 3, we make use of its flow Chart on page 43.

At each stage of 3, an angular region ak is under examination. It is made up of a vertex point
(k), a preceding point (k - 1), and a following point (m) (initially m = k + 1). Points (k - 1), (k),
(m) refer to their order as listed in V, where V may no longer be the original array due to previous
deletions.

The program 3 is started with a1, k = 1, in = 2, i.e., with points (N), (1), (2), 3-2. If(N) and
(1) are SDP, then (N) is dropped from V by setting N = N - 1, 3-8, 9. This is repeated until (N)
and (1) are not SDP. Similarly, (I) and (in) are tested. If they are SDP, in is increased by one
(in = m + I), and (1) and (mW are tested, where (m) now would refer to (3) of V. This is repeated
until (1) and (m) are not SDP, 3-15, 16. The a.ray V is then reduced by deleting the proper points
"and then CU by replacing puims of V starting at (2) by points (m) through (N). Then N is replaced
by N - in + 2. 3-17, 22. The value of N now rJetr to the number of elements in the updated CU
array V. Assuming, at this point, that (A) is not satisfied for ad, i.e., neither (N) and (1) nor (1)
and (2) are SDP in V. then condition (1) is checked, 3-18. If (N), (1), (0 (=2) are SCP (s2 < -•.
then in is increased by one until (1) and (m) are not SDP and (N), (1), tir) are not SCP, 3-19,
20, 18. If ti > N, 3-11), then all points are colinear. N s wet to 2 and 3 exits to P-2, If 2 < In < N,
3-23, V is reduced and CU by replacing lements starting at (1) with elemcntis (ti - 1) throung (N).
Thlie updated V will now contain N - N - in + 2 elements, 3-23. 27. Control ii returned to 3-2.

If 1 < k < N. and if (kW and 0I0) are SU, where ti =i + I initially, then a new angular region
is •-osidercd by ink.casing fi by one (i a ti + 1). 3-30 until (k) and (in) are not SUP, 3-29. 'lTe
V array is then reduced and CU if in > k + I. by replacing elements starting at (k + 1) by eklmenta
(i(t) through IN). The updated V now contain, • N-i+ I + k elements. 3-28. 34. Onc tihe (A)
condition does not hold, it is po.sible to cited if AO, subtended by at. satisfles H. 345. If (B)
doet not hold and a1, is WD. k " increased by one (k - k + I) and the procedute for I < k < N is
iterated. 3-30, 21.

If (0) hldds. then (k - 1), (k), (ni) are SCP and ti is incrcased by one, 3-36. The value of in is
again increaed by one if (k) and (ti) are SDP. liis is continued until (kW and (in) are not SDP so
that (3) can bie tested again. 3-36. 37. 35. Eventually (A) and (1) are ruled out:if in> k + 1. then
V is redduced and CU by replacing elements starting at (k) by eleentts (in - 1) thtough tN). 1le
updiated V now contains N = N - in + 1 + k elemdents, 3-14. (Note if ti k + I at 3.39. then (AI
and (B) do not hold and control goes to 3-21 to look at the next angular region.) If at 3-36 1 > N.
then k. k + I ... N arc colinear. At 3-32 the k~th poiMt is replaced by the NWh point and N is
replaced by k. The updated array will now have k cleinents. Control is pased 3-10.

Since tkl has becn tieleted. tk - 1) and the new Mk) clement could tie SDP. If they are -of.
then io is smt to k + I and the procdure described above for I < k < N is repetied until k & N.
3-21. 30, 3Y. If. however (k - 1) and (k) are SDP. 3-14. then k is reduced by one (k k - 1),
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3-38, m is set to k + 1, 3-33, and the prowedure for 1 < k < N is repeated until k = N, 3-21, 3-30, or
3-36. In the event, when k is reduced, that it takes the value one, the entire procedure is restarted
with the updated V at k = 1, m = 2, 3-38, 3-2.

'When k = N, the Nth angular region, specified by (N - 1), (N), (1) with respect to the updated V
is examined. It is treated in much the same way as a1 . The details may be gleaned from 3-30, 36,

31, 32,21, 10, 11, 5, 12.

A final possibility exists that the Nth point (N) used to make up a previously WD a, is,
subsequently, deleted. Therefore, after aN has been accepted as WD, a, is checked again to assure
that (N), (1), (2) are not SCP, 3-4, 6. If they are not, then an exit is made to P-2 with the updated V
available to VALR-2 or VALR-7 depending on the value of ICV. If, however, they are SCP, then
the entire procedure starting with k = 1, m = 3 must be carried out again with the updated V,
3-7, 20. This takes place in the decomposition of the element in Figure 30.

Although the ideas, and general description, given here appear straightforward, their imple-
mentation into a computer program that handles general situations, i.e., for any element of
{S} using 3 with 4, or for any element of fH) using 3 with 2, requires an intricate coode which is
reflected in the flow chart of SORT III.

If 3 is used with 2, there is some duplication of effort, since bothXoutines check for SDP. Of
course, 2 can be used alone, as mentioned before, for any H in (n), bit it may be more efficient
to use 3 with 2 if 1H contains many PAR(s), since an erfc function computation is required for each
of them when 2 is used alone, which does not occur if SORT III is used first.

We elaborate the discussion of 3 by processing the polygonal elements of Figures 30 and 31 on

pages 34-37. The element in Figure 30 is in fS}. The element in Figure 31 is also in (9•, but
computationally, on the basis of the discussion on pages 22, 23 (Figures 22 and 23), both 30 and 3 1
must be considered as self-intersecting. We shall refer to both of them as S. Their processing
involves every box of Flow Chart 3.

"The description is given in tabulated form on pages 34-37. The first column contains N. the
number of elements in V at certain stages of the processing. The s.concl column lists the value of k.
where (k) denotes the kth node or point of V. It refers to the nodal point (k) which with (k - 1)
and (m) define ak. The value of m is shown, at intermediate stages, in column 3. The fourth c.-h'ni
displays the numbers of flow chart boxes in the order they are proc,,ssed. ('oVumn five shows which
points are deleted from V. The letters preceding the dropped points are helpful to establish the
updated version of V after deletions, For example, (a) at the head of the sixth coltmn refers to the
original V with N = 24 for S. and the seventh colhnin, headed (b), represents the CU array after
points (1), (2). (3), shown in the fifth column have been deleted from V as shown under (a). Note.
element (4) of the original V is the first clef- cnt of the updated CU array V, in column (b), which
now contains 21 elements, i.e., N = 21 at that stage. The updated V at each stage, where one or
more points is dropped, is show n in CU form by columns (b), (c) .... (q). The numbering of the
elements in these columns retains the original numbering of the elemetnts in V.
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PROGRAM 3 FOR S FROM FLOW CHART

BASED ON FIGURE 30

CU, V(S) ARRAYS
POINTS

N k m BOXES - SORT III DELETED (a) (b) (c) (d) (e) (f) (g)

24 1 2 2,8,15 (1) 4 4 4 4 4 4
24 1 2 17,18 (2) 5 5 6 6 6 10
24 1 3 19,20,18 (3) 6 6 7 9 10 11
24 1 4 19,20, 18 (4) 7 7 8 10 11 12
24 1 5 19,20,18 (5) 8 8 9 11 12 '3

21 1 5 23,27 (b): (1),(2),(3) (6) 9 9 10 12 13 14
20 1 2 2,8,9 (c): (24) (7) 10 10 11 13 14 15
20 1 2 8,15,17,18,23 (8) 11 11 12 14 15 16
20 2 3 24,29,28,35 (9) 12 12 13 15 16 17
20 2 4 36,37,35.39 (10) 13 13 14 16 17 18
19 2 4 14 (d): (5) (11) 14 14 15 17 18 19
19 2 3 25,29.28,35,39 (12) 15 15 16 18 19 20
19 3 3 21,26 (13) 16 16 17 19 20 21
19 3 4 25,29.28,35 (14) 17 18 20 21 22

19 3 5 36,37,35 (15) 18 18 19 21 22 23
19 3 6 36,37,35,39 (16) 19 19 20 22 23
17 3 6 14 (o): (7),(8) (17) 20 20 21 23
17 2 3 38,33 (18) 21 21 22
17 2 4 30,29,28 (19) 22 22 23
16 2 3 34,35 (f: (9) (20) 23 23
16 2 4 36,37,35,39 (21) 24
15 2 4 14 : (6) (22)
1 2 3 25, 29,28,35,39 (23)
15 3 3 21.26 (24)
15 3 4 25,29.28.35.39
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PROGRAM 3 FOR ý FROM FLOW CHART (Continued)
BASED ON FIGURE 30

CU, V(S) ARRAYS
POINTS ,,

N k m BOXES - SORT III DELETED (h) (i) (j)

15 4 4 21,26 4 4 4
15 4 5 25,29,28,35,39 10 10 10

15 5 5 21,26 11 11 11
15 5 6 25,29,28,35,39 12 12 12
15 6 6 21,26 13 13 13

15 6 7 25,29,28,35,39 14 14 14
15 7 7 21,26 15 15 15
15 7 8 25, 29,28,35,39 16 16 16
15 8 8 21,26 17 17 21
15 8 9 25,29,28,35,39 20 21 22
15 9 9 21,26 21 22 23
15 9 10 25,29,28,35,39 22 23
15 10 10 21,26 23
15 10 11 25,29,28,35
15 10 12 36,37,35
15 10 13 36,37,35,39
13 10 13 14 (11): (1),09)
13 9 10 38,33
13 9 11 30,29,28
12 9 10 34,35 (W: (20)
12 9 11 36.37,35.39

I 9 10 14 (j): (17)
I 9 30 25,29,28,35,39
II 10 30 21,26
11 10 11 25.29,28,35
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PROGRAM 3 FOR S FROM FLOW CHART (Continued)
BASED ON FIGURE 30

CU, VCS) ARRAYS
NB SSPOINTS
N k m BOXES-SORTrIII DELETED (k) (1) (m) (n) (o) (p) (q)

II 10 12 36 4 4 4 10 10 11 II
10 10 12 32 (k): (22) 10 10 10 11 11 12 12
10 10 12 10,11,5 11 11 II 12 12 13 13
9 10 12 12,10 (1): (23) 12 12 12 13 13 14 14
8 10 12 11,12,10,11,5,4,6 (m): (21) 13 13 13 14 14 15
8 10 3 7,20,18,23 14 14 14 15 15
7 10 3 27 (n) (4) 15 15 15 16
6 1 2 2,8,9 (a): (16) 16 16 16
6 1 2 8,15,17,18 21 21
6 1 3 19,20,18,23 23
5 1 3 27 (p): (10)
4 1 2 2,8,9 (q): (IS)
4 1 2 8,15,17,18,23
4 2 3 24,29, Ms, 35,39
4 3 3 21,26
4 3 4 25,29,28,35,39
4 4 4 21,11,5,4,6,3

EXIT
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PROGRAM 3 FOR S FROM FLOW CHART
BASED ON FIGURE 31

"CU, V(S) ARRAYS
POINTS -

N k m BOXES - SORT III DELETED (a) (b) (c) (d) (e) (f) (g)

17 1 2 2,8,9 (b): (17) (1) 1 1 1 1 1 1
16 1 2 8,15 (2) 2 3 3 5 6 6
16 1 3 16,17 (3) 3 4 5 6 7 7
15 1 2 22,18,23 (c): (2) (4) 4 5 6 7 8 8
15 2 3 24,29 (5) 5 6 7 8 9 12
15 2 4 30,29,28 (6) 6 7 8 9 10 13
14 2 3 34,35 (d): (4) (7) 7 8 9 10 11 14
14 2 4 36,37,35,39 (8) 8 9 10 11 12 15
13 2 4 14 (e):(3) (9) 9 10 11 12 13 16
13 1 4 38 (10) 10 11 12 13 14
13 1 2 2,8,15,16 (11) 11 12 13 14 15
13 1 3 15,17 (12) 12 13 14 15 16
12 1 2 22 (f): (5) (13) 13 14 15 16
12 1 2 18,23 (14) 14 15 16
12 2 3 24,29,28,35,39 (15) 15 16
12 3 4 21,26,25,29,28,35,39 (16) 16
12 4 5 21,26,25,29,28,35,39 (17)
12 5 6 21,26,25,29,28,35
12 5 7 36,37
12 5 8 36,37,35
12 5 9 36,37,35,39
9 5 9 14 (g): (9),(100,(11)
9 5 6 25,29,28,35,39
9 6 7 21,26,25,29,28,35,39

N CU, V(9) ARRAYS

N k BOXES - SORT III DELETED (h (1) ()

9 7 8 21,26,25,29,28,35,39 1 I 1
9 8 9 21,26,25,29 6 6 6
9 8 10 30 7 7 7
8 8 10 31,10,11,5 (h): (16) 8 8 8

7 8 10 12,10,11 (W): (I5) 12 12 12
6 8 10 12,10,11,5,4,6 (J): (14) 13 13 13
6 8 10 3 (EXIT) 14 14

-1 __ 15 1
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As mentioned earlier, there is no need to discuss 4 (VALR-7) extensively, because much of the
coding in 2 (VALR-2) is shared by 4 (VALR-7). Routine 4 yields P(fl) when H- = S or S with no
SAR(s), such as in Figures 35 and 36. Of course, pre-processing S by 3 to remove SAR(s) allows 4
to be used with the reduced element which will then be in {S}. Routine 2 is more robust than 4,
because it can find P(H) for any element in ffl}. Routine 4, when it can be used, is preferred to 2,
because it may be more efficient. This requires, however, that the user must know, a priori, that he
has an element in {S}. VALR-7 cannot be used alone for an element in {S} with SAR(s), and

cannot be used at all for an SI element. If it is used alone under any of these circumstances, the
value for P will most likely be wrong.

Some specific differences between 4 and 2 are:

(1) 4 uses SMP-7 to compute A, 4-9. The sign of A determines whether (24) or (26) is used
to find P, 4-58, 59, 62. The quantity A is computed internally in 2 as a by-product; it
has no specific use there, 2-22, 68.

(2) The setting of the error indicator IND is normally set to zero. If IND = 2 in 2 or 4, then
the input polygon contains a PAR. In this case the output for 2 is correct, but for 4,
P and A are probably wrong. If IND = I in 2, then the input N was specified as one and
SDP occurred. If IND=3 in 2 or 4, then the inputN< I orN = 2. For IND =I or
IND = 3 the output is meaningless.

(3) A winding number W is not computed in 4 ((38) and (39)), since 4 never treats an SI
element alone. This has the advantage that if AO is not used for a particular ak, say if R
is large or sin AO is small, a call to the arctangent subroutine can be bypassed, 4-20, 18,
11, 12, 13, 4, 5, 6, 7, 35, 38. For 2, all AO must be computed to evaluate W which is
needed, since 2 is based on (32). Thus 4 should be used instead of 2 for simple polygons,
and also for S elements without SAR(s).

Finally, it is recalled that a polygon may often be specified by either of two numbering
schemes called a and 3-options (see page 24). Generally 0 is the desired option for computation,
since it may require f- wer points to specify the given polygon (see page 24), However if the user
wishes to determine beforehand the class to which a polygon belongs, it should always be numbered
using the a-option. See pages 18-25 for more discussion.
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Definitions and Page References for Flow Chart Quantitic:;

IBND - Integral of the bivariate normal density function, page 2

P - Value of P-function for a polygon or an angular region, •i•ge 1

A - Value of A-function for a polygon, page 9, Appendix D

ICV - Program input parameter, page 25, Appendix F

IND - Program output error parameter, page 26, Appendix F

IOP - Program input accuracy parameter, page 25, Apper.dix F

W - Winding number, page 18

al, OL2,03, 04, R32/2 - Program parameters which depenA on IOP - Appendix E

'Ii B = R2/2, page 28

gi = R/,vr/ cos 0, i = 1,2, page6

hi = R/V- sinO0, i = 1,2, page6

G = -' (h2 -hl) - - (g2h2 -g 1 hl ), page 7

u, v, w, z - Defined in Flow Charts 2 and 4

iiam-, = Chebyshev coefficients for erfc (u), page 6

E 7 X 10-14,; = 5 X 10-14 (used in SORT I), Appendix E

E(h) erfe (Ih), page 5

E(h) erf(h), page 28

S1 =Multiple of ±2r, page 20

AO tan-t (k/O) page 5. (See Footnote FA, page 20)

Z vw - uz

Suw + vz

s = sin AO = 20,/D 1 D2 , page 28

D = ([2(w2 + 12)1!12

•), = 12(u 2 +v2) 11/2

c = (R2/2) cos 0 = g1g, + hth2

Program Identification Number:

P-2 I P-7 5
VALR-2 2 SORT 1 6
SORT III 3 SORT II 7
VALR-7 4 SMP-7 8
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VI. NUMERICAL RESULTS

In this section, a variety of polygon elements are shown through Figures 30-58. Each element
has its vertices and relevant edge intersections numbered sequentially, from I to N, in the order it is
generated.' 9 The numerals are not always placed optimally for viewing; nevertheless the xy-
coordinates to which a numeral corresponds can always be decided. A numeral (node) is generally,
but not always, located below and slightly to the left oi the xy-point to which it belongs. The
xy-coordinate values are always rational numbers that can be read from the figures usir'g a iuler
graduated in tenths. Each figure lists the following information:

ICV, P, A, Classificatioi1 (, .), N.

All the computations were performed using P-2 as the master routine. If there is a most
efficient way to compute P, ICV is assigned one value. If there are two ways which may be equall\
good, or if it is difficult to decide which is better, then ICV is assigned two values. For example,
"Figure 37 shows a simple polygon, so ICV = 0. A glance at the P-2 flow chart, page 40, confirms
that P-2 calls VALR-7 to compute P(S). In Figure 32, an SI element is shown with a PAR as well.
We have ICV = I. -1, which, from P-2, calls first VALR-2 to find P and subsequently VALR-2
preceded by SORT Ill to obtain the samc result. The rounded value of P given in each figurv is
correct to the number of digits shown. The value of A is given next. The classification of an
element (according to the T-construction, page 15) follows and is designated by S. S. or SI. The
two blanks, in parentheses, following the classification, as noted above, are used to denote the
computed winding number W. It is only listed if VALR-2 is called. Thus, for Figure 32 two winding
numbers are listed since ICV = 1, - I which both use VALR-2. In tile first case thý arctangvnt mib-
routine yields ir for the angular measure of tile PAR at tl l) instead of ,-r according to the
Tconstruction. This results in a computed winding number of one insicad of zero. see pages .2
and 23. Note there is also a PAR at (19); however in this case W is not affected since it is its meamsre
according to the "'-otniction, !n Figure 37, W = 1. since the clement is K). but it is not listed
becrusc VALR-2 was not uwd to compute P for this element. Finally. N is listed which rfcrs to
the number of ;)oints used to define the configuration as shown,

By our T construction. page 15. all itovent of (S has a winding number W oft -, I howevcr.
twe.usv of the ranige of the ardtangcnt routine, page 22. this need not te the cawe coniputationally
as for example in Figures 30 and 3 1. see page 33 a1. 'llTe element of Figure 30 311) is in ,VS ac-
Lording to the T.constnrction, but must he considered SI for computations, Thu1 P is computed
"using VALR-2 with a computed W of 6(2), using ICV - I. Then P is coomputcd again rusng VALR-7
prcecded by SORT Ili. (ICV 2).

In Figure 34, we have tie case of a simple polygoln ill the monn of a triple s'iral. Another
simple polygon is shown in Figure 37. Figures 30, 31. 35. 36(.38. 39. 42. 43,44. 45.48, 49, 5L
5$. 56 contain elements in (& l lTe remaining figures: 32. 3'. 40. 41. 46. 4?. 50. 52. 53. 54. 57.
58 dislay SI Me¢mlets.

191t dsulu be untdWcsod thati anddittutal node (N* I1) is kcawed at MN I).
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It is our objective in presenting these figures, that there is enough variety to resolve for the
reader any remaining uncertainties regarding the robustnes3 of (P-B), how a polygon is specified
and classified, and how a winding number is determined. Finally, for completeness and as a further
clarification of the role of exterior angular regions, we tabulate on page 48 a detailed listing of the
values of P(ak), k = 1, 2, ... , N, that are needed to compute P(A) for the element displayed in
Figure 33.

This polygon is interesting in its own right, since P(H1) represents, here, the probability for
an event, governed by a bivariate normal distribution, occurring in S1 and/or S2, where S, =

(1, 2, 3, 4, 5, 6, 7), S2 = (8, 9, 10, 11, 12). From probability 'heory, we can write

(54) P(H) = P(S 1 U S2 ) = P(S1 ) + P(S 2) - IP(S' ) S2)1,

wbere U, r) denote union and intersection symbols for sets and S1 n S2 = (8, 13, 14, 15, 16, 17, 18)
which is NO. The values of P(S 1), P(S 2), P(S 1 n S2) are given in Appendix A, where P(H1) is found
by decomposing HI with SORT I, which is based on (P-A). See page (A-14).

The tabulation, page 48, lists in the first column the value of k for the kth node of H1. The
second and third columns list the x and y coordinates, respectively, for each niode in the order H is
generated (the numbering used is under the 3-option, see page 24). The fourth column lists the
value of P(ak), for each 1t. obtained from VALR-2 with ICV = I and lOP = 3 in P-2. The corre-
sponding angular measures A0k for each ak are given in the fifth column. In the sixth and seventh
columns P(ak) and AOk are listed for ICV = -1, i.e., 11 is treated by SORT III first, and then values
in tht. sixth and seventh columns are computed, with lOP = 3, from VALR-2. (Note, lOP = 3
implies an accuracy of 9-decimfal digits for each N(Ok).) The reduced polygon as a res.ult of SORT Ill
treating HI is given by (1, 2, 3, 4, 5, 6, 7, 8.9, 10, 14, 15, 16, 17, 18, 19). SORT Ill has deleted (12)
since (11), (12), (13) are SCP. Then it drops (13), because (11) and (13) are now SDP. Then it
removes (11) because (10), (11), (14) are now SCP. The columns 4, 5, 6, 7 are summed at the
bottom of the tabulation. Note that W = 2 for both situations. This is not always the case. The
primary circuits (see page 18) can be gleaned from the figure. For ICV = 1, the circuits are given by
Cp(Hl1 ) = (16, 4, 5, 6, 7, 8, 9, 16) with W, =, CI1,(11 2) = (1, 2.3, 16, MO, 11. 12, 13, 14, 15, 16, 17,
18, 19)20 with W2 = 1. Hence W = WI + W2 = 2. For lCV = -I, the primary circuits are given by
Ca(( 1 ) = (16,4,5,6,7,8,9, 16) with W, = 1, Cp(112) = (I, 2,3, 16, 10, 14. 15, 16, 17, 18,19). with
W2 -: 1. Hc.,c(ý again W = 2. A ir-angular region, PAR, occurs at k = 12 initially. Hence with ICV = I
an erfc calcula-:ion is required at k = 12, namely 1/2 erfc (hi-) = 1/2 erfc (-1) = .92135 03965, It'
ICV = -1, then point (12) is deleted and the erfc computation, at the expinse of using SORT III,
is not necessary.

The time of computation per angular region is given in Appendix r.

All of the numerical results in this report, as well as many that are not given. were checked
by an independent procedure. It consists of' decomposing II, regardless of its class, into a

set of triangles Aj }. The triangle Aj has vertices (I), 0), U + 1). With j = 2, 3.... N I we have

20The order of the nodes appears unusual because of the use of the g-option numbering scheme.
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P(IH) = 2_N-1 P(Aj). The proof of this result follows the lines of proof given for A in Appendix D;
it is riot given here.

The value of P(Aj) is computed from a routine we developed which uses Drezner's scheme

[2, page 18] for evaluating P over an angular region. His method is much slower than ours but

gives very good accuracy. It is described in [2].

In this checkout program, which is listed in Appendix G, N-2 triangles Aj are obtained for

each 11, and consequently P is required for 3(N-2) angular regions.

TABULATION OF RESULTS FOR FIGURE 33 USING P-2. (e = 5 X 10-10)

k X y ICV= 1, P(ak) ICV"', Ak ICV=-1, P(ak) ICV=-1, Ak

11 -3 0 1.6803 81909 (-2) 37r/4 1.6803 81909 (-2) 3w14

2 0 -31 7.8697 69659 (-3) 1.4288 99272 (0) 7.869-/ 69659 (-3) 1.4288 99272 (0)

3 4 0 4.9999 79129 (-1) 2.4980 91545 (0) 4.9999 79129 (-1) 2.4980 91545 (0)

-4 0 0 -3/8 -31r/4 -3/8 -3ir/4

5 2 2 3.0600 67674 (-3) 1.8925 46881 (0) 3.0600 67674 (--3) 1.8925 46881 (0)

6 0 3 1.6551 27610(-2) 1,2490 45772(0) 1,6551 27610(-2) 1.2490 4S772(0)

7 -3 0 4.9985 63923 (- 1) 31r/4 4.9985 63923 (-1) 31r/4

8 -2 0 -3.1610 42924(-l) -4.6364 76090(-1) -3.1610 42924(-1) -4.6364 76090(-1)

9 0 -1 9.5914 28393(-2) 9,2729 52180(-1) 9.5914 28393(-2) 9.2729 52180(-1)

10 4 1 1.5865 44813(-1) 2,6779 45045 (0) 1.5865 44813(-1) 2.6779 45045(0)

I C-I 1 2.6739 05696 (-2) ir/4

12 -2 0 9.2135 03965.(.1) _.

133 -I 1 -1.0674 47074(-1) --. _"_ _ _

14 1 1 -48741 425•.(4.) -3i-/4 3.5393 04909 (-1) v74

is 0 0 3/8 3it4 3/8
l0 2 0 -1.8389 M776(-1) -2.0779 45045 (0) 1 -1,8389 57076(-1) -2.6779 45045 (0)

17 0 -1 -9.5914 28303(-2) -9.2729 5-1180 H) -9-5914 28393 (-2) -9.27-49 5S2180 (-1)

18 1 -- 0 1.6 500 77199 (-3) 4.6364 76090 (1) 1.6509 77199 (-3) j4,6364 76090 (-1)

SPl 2-2"P(ak,)-0.9141 43130 j .:0kI 2•ilW=2 W 1 (111)0.94162 481291 ,0k!2•1-W--2
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APPENDIX A

NORMAL PROBABILITY OVER ARBITRARY POLYGONS BY (P-A)

In this appendix, we describe Procedure (P-A) for computing P(Hl), B in (ll}. It differs
significantly from (P-B) which is discussed in Sections IV, V and VI. In (P-B), the concept of a
winding number was introduced. A program package, called Program B, was developed made up of
five subprograms: P-2, VALR-2, SORT III, VALR-7, and SMP-7. The (P- A) procedure, like (P- B),
was developed to treat SI elements or S elements with SAR(s). It decomposes such an element into
a set of disjoint elements in CS} or {S} depending upon whether the 0 or a-option is used to specify
R (See page 24). If the decomposed elements are in {S} they are treated by removing any PAR(s).
The resulting decomposed elements are then in (S}, and P for such elements is computed by using
VALR-7. A program package is also described in this appendix, using (P-A), which is comprised of
six subprograms: P-7, VALR-7, SORT I, SORT II, SORT III and SMP-7. This program package is
called Program A.

Procedure (P-A) has merit, because its decomposition of I1 into disjoint elements in (S) (or

{S}) allows the analyst to gather a more detailed picture of the type of region HI represents. More-
over since it permits the decomposition to be carried out in a backward (from (N) to (0)) as well as
"forward direction, it gives an additional means of checking final results (The decomposition is not
necessarily the same in the forward and backward directions). Neverthleless (P-B) is deemed the
better overall procedure. Some summarizing remarks comparing (P-A) and (P-B) are given on

page A- 15.

For computational efficiency with Program A, the pre-processing of [I must be kept to a
minimum by specifying beforehand the smallest class to which 11 belongs. However if H1 is errone-
ously assigned to a class to which it does not belong, then, because VALR-7 cannot treat SI elements
nor elements in (S} with SAR(s) a wrong result for P(II) is likely. Recall, on the other hand, that
VALR-2 of Program B can treat any polygon with the same computational efficiency, although
small improvements in efficiency can sometimes be achieved by pre-processing 11 with SORT Ill
and by using VALR-7 for VALR-2 as indicated in P-2 (see page 40).

We assume throughout this appendix that (P-A) or Program A are under discussion unless
stated otherwise.

If H1 is in (S), then by computing P(ak) for each ak of S, P(S) is obtained by using (24) if
A > 0, and (26) if A < 0. In the first case H1 is PO and in the second II is NO.

If 11 is in (SI, then SAR(s) can occur (see pages 12, 3 1). The SDI) and S(P are treated by
removing appropriate points from the V-array which specifies 11. The reduced polygon is in (S},
and P(S) (=P(S)) is obtained as explained in the previous paragraph.

If Hl is SI, then 11 is decomposed into a set of disjoint elements, often referred to as Isolated
elements, in (S} or (SI depending on whether H1 has been specified by the a or 0 numberingscheme.
If H1 is decomposed into (S' ... S) then P(HI) = 11' P(S') and if the decomposition results in

(St ... en), then each S' must be processed first, as explained in the preceding paragraph, before

P(91) can be computed such that P(R) = 21 P(O).

A-3
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The a and 0-options come into play if H is in (S} or (11} (see page 14). Generally the 3-option
is the more efficient, since it will often require the treatment of fewer angular regions (one must
be careful, however, that it specifies IH correctly). In Figure A-i,1 16 angular regions occur with
the a-option. For the same 1- using the 3-option, as shown in Figure A-2. only ten regions occur,
and two of those are of no consequence since AO = 0 for them.

S6Al /ý

10 11 4 13 71 3 1 4 2)
8 8 2 141 6 5 9

16V 15 10

Figure A-1. Polygon Figure A-2. Polygon
with a-Option with A-Option

The two figures above also show that to determine whether II is SI every vertex, meeting or
intersection of two edges must be numbered each time it occurs in the order it occurs (see page 14).
Subsequently, the polygon can be numbered with the 0-option, if the opportunity exists to do so,
for the actual computation of P(H). Note that although H is SI in Figures A-I and A-2, this would
not be concluded from our T-characterization (page 15) by examining the numbered points in
Figure A-2.

If H is SI and numbered under the a or P-options, then by (P-A) 11 is decomposed in the
following way:

Starting at node (I), we look for the first MN (see page 14) that is met for the second time,
say MN(k) is met for the second time, say at node (k + in), I • k < N -- 1, 2 < k + m < N + 1,
(k + i = N + I means (k + ri) = (I )). In Figure A-3, this occurs at MN(3), since this point is first
encountered by node (3) and for the second time by node (7). The same property also holds for
Figure A-4 at MN(3), which is met for the second time at node (6).

When this situation occurs, there exists two possibilities, 2 [4, p. 161:

(a) Edges k + I and k--in, in > 2, with lk+ originating at MN(k) and k + in terninating
there, have more than one point in common, (Under a-option in 2).

1 Figures A-1 and A-2 are the same as Figures 25 and 26.
2Actually, a third possibility exists, namely SDP. For eacth sot of SDP, as soon as it is detected, one of the points is

removed.
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Figure A-3. An SI Polygon with IBND 18
Required Over Shaded Areas, N =19 7 19 8

3 1

....................... ... ... .............

1220 z6 3 2Figure A-4. An SI Polygon with Line

18 Segments. IBNt) Required Over Shaded
102 Areas, N 22.

.~5

1 14717

(b) Nodes Mk, (k + 1),..(k + in), in > 2, specify a polygon in ()(Under u-optiort the
polygon is in (S}.) with a clearly defined orientation (see page 9). Here also F1`7
originates at M N(k) and F +-in ends there.

In ease (a), a line segment of 11 exists where edges -k 77 and k -+trn completely overlap. '1'lie con-
figuration of F~igure A-4 contains examples of such line segmnents. They will be identified below
where 11 in that figure is decomposed.

In case (b). an element of (S'I or :,,I is obtained with M = in nodes. The function 1P is com-
puted for this clement (using VALR-7). The nodes (k) to (k + ni - 1) are theni deleted from thie
original V-array specifying 11, and the decomposition continue% starting at (k + in,, which is now
the 0't element of the updated V-array. Sin~ce 11 has only N nodes, this wvill end after a finite
number of siwch steps. POD1 is computed by adding up the positive contributions from PO
isolated polygons and the negative contributions from the isolated NO polygons.

A proof that the above decomposition can always be carried out is essentially given in Knopp,
[4, page 15 1. His proof, which requires mninor changes for our use, is constructive. We have used it

as a guide in the decomposition procedure just described.
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In detailing the decomposition of the polygons in Figures A-3 and A-4, the isolated simple
polygons are superscripted in the order they are isolated, i.e., S1, S2 ... , S'. They are identified,
as usual, by their nodes. We also give their orientation. They are both specified by the a-option.

Figure A-3
S1: (3,4,5,6,7) PO S3: (12, 13, 14, 15) NO
S2 : (2,7,8,9, 10, 11) NO S4: (1, 11, 15, 16, 17, 18,19,20) PO

Note: Case (a) does not occur here.

Figure A-4

-S: (3,4,5,6) PO Line Segment: (10, 17, 18) Case(a) 3

S2 : (6, 7, 8, 9) NO S: (18, 19, 20, 21) PO
S3 : (11. 12, 13, 14) PO Line Segment: (9, 21,22) Case(a)
S4: (14,15,16,17) NO S 6 : (1,2, 22,23) PO

An automatic formal procedure for (lecomposing an SI polygon H1 is carried out by listing the
integers corresponding to its ordered set of nodes. In general, after S' is found, i 0 n, all the integers
corresponding to the nodes of S1, except the last, are dropped from the initial list V. However if
S' contains node (I) then one is retained, rather than the integer corresponding to the last node of
Sý, For example, for Figure A-4, we would have after deleting Sl:

V = 1,2,6,7,8,9, 10. I1. 12, 13, 14, 15, 16,17,18,19, 20,21, 22, 23.

Starting at 6, S2 is found, and the above list is reduced to

V = 1.2,9,10,11.12,13, 14,15. 16,17,18,19, 20, 21, 22, 23.

After S3 and S4 are found, we have

(*) 1,2.9, 10, 17, 18, 19, 20, 21, 22, 23.

At this stage, we get line segment (10. 17, 18) and the set (,) above contracts to

V = 1,2,9, 18.19,20,21,22,23.

After S" is found, we have

V = 1.2,9,21,22,23.

The removal if the line segment (9, 21, 22), leaves us with (1. 2, 22, 23) which is S6 and concludes
the decomposition.

"Figures A-5 and A-6 contain the same polygon with the a and 0-options, reqpectively. From
the details of the decompositions given below, it will be clear PAR(s) under the of-option are
removed during the decomposition, but thel' can bc retained under the 0-option as this example

3Nutc that the decomposition isolates SAR(s), if the a-option is used.
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I

4 4
109

9 8 68
11 12 10 11 7

7 6

Figure A-5. SI Polygon, a-Option, N = 13 Figure A-6. SI Polygon, 13-Option, N = II

shows. Thus, with the 9-option an additional program SORT 11, is needed to eliminate PAR(s).
However it actually does a little more by eliminating SCP(s) (see p. 31). This program works in
the same way as SORT IIl only it need not check for "Mp'4 (see page 31).

For Figure A-5, the decomposition by SORT I gives:

S1 =(2,3,4,5) PO
Line Segment (1, 5, 6) (Eliminated by SORT I since a PAR requires p 0)
S2 =09,10,11, 12) PO
Line Segment (8, 12, 13) (Eliminated by SORT I since a PAR requires p 0)
S3 = (1,7, 13, 14) NO.

With Figure A-6. the decomposition by SORT I yields:

gi (2,3,4,5) P0
ý2 =(8, 9,10,11) pI

S= (1, S.(, 7 , 11. 12) NO

where points (5) and (11) arc eliminated from g3 by SORT ii.

Note that in Figure A-6. it was necessary to include the point (11) coinciding with(8)or( 7 ).
otherwise the decomposition would have left Ohe SI polygon (1, 5. 6, 7, 8. 9, 10. 12) with no
coinciding points. fience, after SORT II. which would remove (5), the resulting elenient
(1, 6. 7, 8. 9, 10, 12) h" SI and VALR-7 applied to it would y*Id a wrong result. This example
seti.es to emphasize. with the (P -A) procedure, the care that must be taken in using the 13-option
to :;pecify 11. The (P-l) procedure would have no difficulty in this situation since VALR-2 canl
handle SI polygons directly.

We proceed with a description of the computer program package based on (P- A), i.e., Pro-
gram A. Recrll that for (11-B), Program B is composed of P-2, VALR-2, SORT 111. VALR-7,

4, t should be evident that SDP are always detected and removed by SORT I by testing if M <2 (see box 6 of tile
Flow Chart 6).
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SMP-7. For easy reference, they were referred to as subprograms 1, 2, 3, 4 and 8 respectively.
For Program A, the program package consists of P-7, VALR-7, SORT 1, SORT 11, SORT Ill, and
SMP-7. For easy reference, we number them accordingly: 5 - P-7, 4 -- VALR-7, 6 -- SORT 1,
7 -* SORT II, 3 -+ SORT III, 8 - SMP-7. All of these subprograms are in subroutine format. Pro-
gram P-7 serves as a master routine, VALR-7 is much like VALR-2, but it can only compute P for a
single angular region, or polygons in {S}, provided they contain no SAR(s). SORT I decomposes H
into a set of disjoint elements in {S} or {S} depending on whether it is numbered with the a or
f3-option. It is primarily used if lH is SI. SORT 11 is used on the disjoint elements in {S}, obtained
from SORT I, to remove SCP(s). SORT III was taken up in Section V. It is used to delete S('P and
SDP from H7, the original polygon, when H is in {S}. SMP-7 is used to compute the function A as
given in (22); where IAI is taken as the area of Il; the sign of A is used in VALR-7 to determine
the orientation of H1 when 11 is in (S) or (S}.

The flow charts for 3 and 4 are given at end of Section V, pages 43-45. since they also make
up part of Program B. Flow charts for 5, 6, 7 are given at the end of this appendix. pages (A- 17-
A-19). No flow chart is given for SMP-7. Fortran IV listings of all the programs are given il
Appendix F.

Program 5 (see Flow Chart 5) uses as input x, y, N, ICV and lOP. These notations have all
been used previously in Section V. The various values for ICV have slightly different meaning here.
If ICV = 0, P(S) or P(S) is wanted where , has no SAR(s) such as in Figure 35. If ICV = I, then
P(S) is wanted, where 3 is used before 4 to remove SCP and SDP. If N = 1. P for an angular region
is wanted. If I'V = ±2 or ±3, P for an arbitrary polygon is wanted, tOP specifies the accuracy
desired; it can be assigned the values 1, 2, or 3 to yield approximately 3. 6. or 9-decimal-digit
accuracy, respectively, for P of each angular region.

It' IICVi -= 2. it is aiumed that the ooption has been used to specify an element in fW.
If i ICVI = i31. it is assumed the 0-option has been used. In the first case the isolated elements are
in (S) and in the second case they may be in (S}, If ICV = 2 or 3, the processing of 11. by SORT I,
begins at MI and progresses sequentially through nodes (2), (3),.(N). If lCV =-2 or 3. theni
It is processed by SORT I in revorse order starting at (N) and progressing smquentially through
(N- I).(N- 2). 1).

The parameter IND is discussed below.

We now consider 6 in more detail by using its flow chart, page A- IS. Two points of (v,
(x1. y,)). r 1 2. , K, are said to coincide or are duplicatts if

(A-I) 1x -x~I X oI< ly-y 5 I '• o, 1 < k < i < K, o a 5(-14).

Programn 6 is started by setting K = N and then by sensing if v1 and vN of' the V-ar'ay, which spec-
ifies II, coincide, 6-3. If they do, then v, replacL-s vN in the V-array. If they do not coincide. then
v, is added to V as vN, 1 and K = N + I. Before proceeding with the decomposition of 11, 6 deter-
mines whether V is to bie p.ocemsed in increasing order of its elements or in decreasing order.6-2.
VTi resultinkg decompositions are not ncssarihv identical, i.e., they may not isolate the same wet of
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polygons. Figure 36 contains an example. The two decompositions for that example are given
near the end of this appendix, page A-16. Of course, the result for P(fl) must be independent of
which decomposition is used.

The procedure used by SORT I is an N2-process, whereas SORT III is an N-process.

We focus our attention on the forward decomposition, (ICV > 0), 6-4, rather than the reverse
procedure, (ICV < 0), 6-5.

The array V of data points is searched for a point Vk, I I k < i, which coincides with vi,
"starting with i = -, i.e., where vi and vk satisfy (A-l). If vi and vk coincide, I < k < i, then set
IST = k and IEN = i, with 2 - i - L if k = 1, otherwise k i - L, 6-4. In 6-6, M is set to NUMI;
the inequality IEN - IST = NUMI < 2 is tested. If NUMI I or NUMI = 2, then we have isolated
either a set of SDP or a set of SCP, respectively. In either case, such elements do not contribute to
.P. Hence we set p5 = 0. and a call to VALR-7, 6-9, can be. averted. If the inequality is not satisfied,
then an element of (S) or (SI has been isolated. In order to determine whether it is in (S), i.e.,
if the c-option has been specified, a sensing on ICV is carried out at 6-10. If the answer is yes at this
box, thtl the isolated element is assumed to be in (S), (a-option), and SORT 11, 6-13, is not called.
Itf the answer is no, then SORT II will be called, 6-13, since it is assumed in this case that the isolated
element is in (S), (•-option). In 6-.3, the inequality NUMI 4 2 is checked again, after SORT It
has b•evn used. It could happen that after deletions by SORT I1, the iýolated element S retains no
more than 3 points, so that the inequality NUMI < 2 would be satisfied. Then p = 0, and VALR-7,
6-Q, is bypassed. the program proceeds directly to 6-8, If the inequalities of 6-6 and/or 6-13 are
not qatisflwd, then VAL.R-7 is called to tcompute P and A for the isolated 6ent, which we denote

here by p and a, respectively.

,Following the computation of p and a. a query is made at 6-8. Is 1EN = K? If the answer is
no, II requires further processing, which is carried out after mplacng elements L..K -. M of V
by elements (M + M), Lt + %I + 1)..K, with K then reset to K - K - .4 as noted in, 6-7. The re-
placement begins at L rather than L + I because (A-I1 may also be satisfied by (xt.. yL) and some
point (x01, Y). where tin < .L cMove. at this stage. V is reduced and clowd-up (CU) for further
processing. Control is returned to 6-2 and the search continues through the updated V-array,
starting with i = k. or i - 2 if k = I for more "duplicate" points. 6-4.

If at 6(8, IEN = K. then we must have k = 1 (ISI'- 1) when ICV > 0, since v, and vK are
always the sannc. Thus. in) this case. 6 proceeds from 6-12 to EXIT. 6-14, and return of control to
IP-7, If. on ithe other hand. ICV < 0, i.e.. processing of V is from N - I to 1. 6,5, and IEN z K at
""t-K, and IST = j 4- I at 0-1 2. thcn an clement has been isolated which is speqcfied by (. j + I, K).
Consequently 6-7 can be bypa•sed with V reduced and CU by simply re'etting XK -4 XtT. Y "
YNT - and IS. - K at 6-I 1. Figures 40. 52 contain examples of where this would occur.

SORT II. 7. is now considered in more detail with the aid of its flow chart 7 (page A-19).
Recall, when the 03-option is used, that this subroutine is called by SORT I to delete nodes, from an

$We use p and a for an isolated celoent and rtwaln P and A for P(II) and Ail).
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isolated element of {S} which contains SCP. They are detected, within rounding error, by testing
the inequality (see page 28),

(A-2) Isi = IsinA01 < w, w. = 7(-14),

where s can be determined algebraically from the 3 points specifying the angular region (see (47)
on page 28; 7-3, 12, 17). Recall "lso, that if (A-2) holds, then it is possible I AOI is near zero rather
than ir, In this case, although the angular region is well defined, (WD), the vertex node is deleted
since the angular region does not contribute to p or a. Angular region a, in Figure 32 is an example.

It is assumed now that an isolated element S of (S! is available through the decomposition
of [I by SORT 1. We assume S is specified by an array r of M coordinate points. Two integer-
valued parameters k and m are introduced in 7-2 with k = 1. m = 2. Parameter k is associated with
the vertex point (k) of the angular region ak under consideration. The parameter in refers to the
point of ak following (kW. It is denoted by (in) Initially m is set to k + 1, 7.-2, 7-94 If, however,
ak specified by (k - 1, k, in) subtends an angle 40 such that (A-2) holds, then il takes successive
values above k + I until (A-2) is not satisfied or in =M, 7-4. 7-14 . 7-16, 7-18.

Tlhe quantities u, v. D- and w , tD are computed initially at 7-2 and 1-3, resp•ctively. (The
quantities D1) and I), are defined on pap 39.) Then (A-2) is checked at 7-3 for a1 If it holds,
then in =n fi I, 7-4. with a return to 7-3 to compute new values of w, z, D2. This is continued
until (A-2) dtos not hold or ti - M, If w = M a return is madte, 7-5, to SORT I. box 13. with
lNtJMI :2. ttence. ptqS ) for li particular isolated eleenlvt S' since it is. a straight line within
thle tolh-rance w of tA-2i.

,A.uming this do,.,s not occur, 7 proceeds to 7-7 with I and a query: Is in t- 2' If in l l .
"then point' NIt)., (It.. - I wctr found to bc colincar, ie., each 3 successive pointls! geierate
an angular region Cor which (A-2) holds. In this case, the original array r is reduced ind UU by
replacing Ce•lemnts of r starting at 1I) by elements (i .111 2)..... (Nl erncd NI j r(se tO

""M M - (in - 2i, 7-8. I'he program pro'Ced& io 7-1), where k !! 2. 3. and new valuc. 4f w. I-
aný 02 arc comiputcd. hlien 7 would proceed to 7.12.

If tn 2 at 7-?, then a' is WI) and 7 proceeds to 7.6, without disturhing r. with ti 3t
Procecdintr to 7-1 2. new val, of 11. v. I)O are computed. where " noted above k -- 2. "i-
(Olsetve that at this stage w-, z, DI from 7.3 ate bascd on k It 1. fin 2. and therefore have the
correct values for looking next at at.) 'fi'le progranl is fow set to look at ad. wilci• the subsrcript
refeft to elcinemit (2) of the uldated r array.

At 7-12 (A-2) i& checked. If it hold-. mn - in + I in 7-18 and a rcturn is inade to ?-12, where
lnew values of u1 V, ,); are conpultnd and (A-2) is c:hekcd again, 1-his is conftinuted tintil IA-2) is
not •atifiied or it m N! I. If (A-2) is not satisfied for some i-. 3 < ini < MI. thell froilt 7-12, the
program prox-ceds to 7-13. If in - k + 1. then al is WI), no alterations. are made to r. k = k + 1.
and if k < N1. the program goes fronm 7-11 to 7-15. where D)2., u. v arc usd for the nrw values of
Dl)I w i. repve-tively, tni = k + 1, and a return is niade to 7-12. IhV angular repi>n a3 is now
invcstigated as was done pr•viously with a2. If k -M, then 7 goes from 7-1o to 7-17 io proc•.es
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If at 7-13 m 0 k + 1, tthen elements of r starting at (k) are replaced by elements (m - I),
(m), ... , (M), with M reset to M = M-(in-k- 1), 7-10. The program proceeds to 7-11, where
k = k + 1. If k < M, 7 returns to 7-9 and is ready to look at the next angular region. If k = M,
then 7 proceeds from 7-I 1 to 7-14 to treat the last angular region am.

An answer of no to the query at 7-18 implies ak is made up of points (k - I. k. M); conse-
quently all the points (k - 1), (k). (M) taken as successive triplets (k - I, k, k + 1), (k - 1,
k, k -t 2) (k - I, k. M) are SCP, i.e., satisfy (A-2). Therefore points (k + I). (M - 1) are
ignored, with the Mth point replacing the kth point and M reset to k, 7-19. It remains to process

am a. For this, we go (o 7-14.

Note that when 7 goes from 7-16 to 7-17 to compute w, z, D2 foraM that u, v, 1D2 are already
available from processing am -1 .

If am satisfies 'A-',), 7-17 then (M) is dropped from r by setting M = M - 1, 7-20 and control
is returned ti SORT I. If (A-2) does not hold, then contAol is returned directly to SORT 1. The
finzd .oordinates. as contained in the r array, at exit, and the number of them are specified on the
flow chart of 7 as output M, ;, M, respectively.

By processing polygons 111 and II of Figures 32 und 33, respectively, a more detailed descrip-
lion of SORT 1 and SORT II is given. We assume the 0-optioo n:,umbering scheme, in order to bring
SORT II into play for Il. Also, III and Ib are processed in the order of increasing numbered
nodes, stazrting with node 1, Thus lCV = 3 (see P-7, page (A- 17)). The descriptions are presented
in tabulated form in the same way as was done for SORT III (page 34.). Each node in the tabulation
will be identified by its number in the original V-array stpcifyiýg the givto polygon.

The first column, on owage A 12. contains the value of N, the number ofelenients in V. when
SORT 1, 6. is ilvohved, and it contains the value of M, the number of elcmenas in the r arra) when
SORT It. 7. is opcmlting- The r array .1pecifies an isolated Clement S from thc deompoirio'i
pro~cdu'e by 6, The second and third columns refer to integers i and k, and k and m of the preced-
ing discussions oil 6 and 7. respectively. The fourth column displays the boxes used, by their
numbers on the flow charts, in the order they come into play. Column four. wlen referring to 6,
also shows the particular S' isolated at that stage. Colunn five, when referring to 7, show,; the
points deleted from eadc of the S' as a result of SC'PI).•, The numerical data. in column filv-, pre-
ceded by a letter is associated with a subsequent columln headed by the sa•e letter which shows the
reduced CU V or r-arrays at particular stages of the programs. The sixth column. headed V. refers;
to the original V-array. The seventh cnlumn. headed St, refers to the original r .rray for the first
isolated element S,. Suhumuent elements isolated by 6 have their initial r aaay. listed under

icolumns S. ad S. Columns headed (b). (c). etc., refer to the reduced compacted arrav• as deter-
imined by 7. for S" and S'. For example. for Ill. 6 first isolatcs Sg given by (4. •. 6, 7, ). If.1

flictn Sl is modified by deletion of (7. 8). tIhe reduced compacted array returned to VAI.R-7 is
listed in colutni headed (b). Numerical results of III are given, following its tabulation, at the end
of page A- 13.

IFor 1l2, Figure 33. SORT I decomposes it into 3 elements of the clas (,S). and a PAR. speci-
.red by: St ( 3. 2.3, .56, 7), S (8, 9. 10. II, 12), SL - (12. 13. 14. !5. 16, 17. 18). and
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PROGRAMS 6 AND 7 FOR fl1 FROM FLOW CHARTS
BASED ON FIGURE 32

BOXES Compacted V and T-Arrays

N SORT I Points Deleted V1  1' (b) V2 , 2  (c) (d) V3

22 10 4 3,2,4 1 4 4 1 10 10 10 1

isolated by6 2 5 5 2 11 12 12 2

6,10,13 (Call 7) 3 6 6 3 12 13 13 3

M k m SORTII 4 7 9 10 13 14 1417

6 1 2 2,3 5 8 10 11 14 15 16 18

2 2, 69 12 1, 16 07 19

3 3, 16,15, 12 7 10 13 16 17

3,4 4,5 13,16,15,12 8 14 17 21

4 6,7 18,12,18 9 15
•i4 4 7 19,14,17,21 (b): (7),• 10 16 2

N i k SORT 1 11 17
• ,•.9 , 8 , 7 4 -9 o f V ! 1 18

16 54 2,4 13 19
I6, 10, 13 14 20

Sisolated by 6 is 21

Mtk m SORT!1 16 22

"7 1 2 2,3 17 23

2 2,3 7.6,12 18

2 4 18,12,13,10 (c): 11 19 V,: Denotes original V-i array for rlII.

6 3 4 11,9,12,13 20 V2, V3: Denote reduced

4 4,5 16.15, 12, 13 21 compacted armys from

5 5., 16,15,. 12 22 V v,.

6.5 5 6,7 18, 19,14,17 (d): 15 23
N i - SORT I

9. 98OR 7 10- 16 of V2
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PROGRAMS 6 AND 7 FOR III FROM FLOW CHARTS (Continued)
BASED ON FIGURE 32

Compacted
BOXES V and r-Arrays

N i k SORT I Points Deleted ý3 (e) (f) (g) (h)

5 4 (V3): 1-3,17-22 1 2 2 2 2

9 10 1 2,4,6 2 3 17 17 17

g3 isolated by6 3 17 18 20 23

10,13 17 1L 19 21 21

M k m SORTII 18 19 2022 22

92 2,3 19 20 21 2

3 4,3 20 21 22

8 2 3 7,8,9,12 (e): 1 21 22 2

8 4 4 18,12,13 22 2

7 3 4 10,11,9.12 (f): 3 23

7 5 18,12

7 316 18, 12, 3

5 4 5 10, 11.9, 12,L1 (1: 18,19

5 5 5 16,17

4 5 5 20,21 (0): 22

N i k SORTI

4 S 1 9,8,12,14

EXIT 10 P-7

(1, 18, 19). It is worth noting that although the #-option was used, SORT 11 is not needed.

This is so because ý1, 92 and 93 are actually in (S) and 94 has only three points with zero area
(NUMI < 2 in &6). Consequently, SORT 1i can be bypassed by setting ICV 2." The tabulation for
112 Is given with IKV 2.

The 3 final polygons resulting from the decomposition of III by SORT I and the removal of
PAR(s) by SORT 1i are listed under columns (b), (d) and (h). VALR-7 yields values of p and a
for each of these polygons, namely, p(91) -. 7078 0769. a(S9) -25, p(92) = .0268 8323,
a(•) 22, p(93 ) =_.0125 8574, a(S9) = 13.5. Thus P(11,) = -. 6683 3872, A(11 1) 10.5. It is
interesting to note that A > 0 but P < 0. In Figure 53, A < 0 and P > 0.
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PROGRAM 6 FOR ]12 FROM FLOW CHARTS
BASED ON FIGURE 33

Compacted V-Arrays
BOXES_ _and r-Arrays

N i k SORT I Points Deleted V1  S V2 SS V3 S3 V4

18 7 1 3,2,4 1 1 18 1 12 1

S' isolated by6 2 2 8 9 12 13 18

(M=6) 6,10,9 3 3 9 10 13 14 19

12 2 1 8,7 2-7ofV1  4 4 10 11 14 15

6 2 2,4 5 5 11 12 15 16

(M=4) S2 isolated by 6 6 6 12 16 17

6,10,9 7 7 13 17 18

8 3 1 8,7 8-11 ofV 2  8 14 18

8 2 2,4 9 15 19

(M 6) S3 isolated by 6 10 16

6,10,9 11 17

3 1 8,7 12-17 of V3  12 18

(M 2) 2,4,6 13 19

8. 12, 14 14

EXIT TO1 P-7 15

16

17

19

The decomposition of 112 (Figure 33) by SORT I results in 3 polygons, S1, S•, S3. Since ai!
the angular regions of those polygons are well defined, SORT II is not needed. The final array V4

consists of a singular angular region; for this region the program proceeds from 6-6 directly to 6-8
setting p = 0 and then exiting. VALR-7 yields the values p(91) - .8308 6076, a(S3) - 18;
p(SW) .5378 8935. a(S2) 6.5; p(9 3 ) = -. 4271 2530, a(S 3) =-4.0. Hence P0(12) =.9416 2481.
A(111) 20.5, (sec page 48).

Letting S denote the element shown in Figure 36, we list, on page A-16, P(aN) for each angular
region a&, k = 1, 2 ... N(=22). The computations were carried out with lOP 3 (from P-7), Le.,
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with 9-decimal-digit accuracy for P(ak), for each k 1, 2, ... , N. The program was run with
ICV = 0, i.e., P-7 called only VALR-7 to evaluate P(S). Subsequently, the program was also run
with ICV = 2 and -2. Recall that when ICV = 2, P-7 calls SORT I which decomposes HI (=S here)
into a set of simple disjoint polygons (Si), (in this case); SORT I, in turn, calls VALR-7 to evaluate
p(Si) for each isolated element, S', of the decomposition. The decomposition by SORT I starts at
point (1) of S, and S is processed from (2) to (N), sequentially. When ICV = -2, the procedure
starts at point N of S and carries out the decomposition in the backward direction, i.e., sequentially
from (N - 1) to (1). Observe in the tabulation that the decompositions with ICV = 2, and ICV = -2,
are not the same, although, of course, the final results for P(S) and A(S) must be identical within
the accuracy specified.

The first column of the tabulation shows the node number of S; the second and third columns
give the xy-coordinate values associated with the node number. The fourth column, headed
ICV = 0, lists P(ak) for each node number (k) of the first column, k = 1, 2, ... , N. Summing the
P(ak), and using (A-3), below gives P(S) beneath columns 1-4. The next two columns refer to
finding p(S) with ICV = 2. The fifth column contains the node numbers for each isolated
Si, i = 1, ... , 6; the next column, headed ICV = 2, contains the P(ak) associated with the node
numbers of a particular Si. At the end of the listing for each S1, p(S') is given. For example,
S3 is specified by (13, 14, 15, 16); the value of P for the angular region of S3 at node 13 is
8.1418 04138 X 10-1. The •aue of p(S 3 ) = 7.3866 73215 X 10-. The 71h and 8th1 columns
refer to nodes and corresponding angular region- with ICV -2. For example, S4 in this
case, is specified by 4, 5.6,7, 12, 13, 17, 18) with P(a 7 ) of S4, with ICV =-2, given by
-2.0268 86540 X 10-' and p(S4 ) = -9.1654 62410 X 10-'. Tile results were checked by using
an independent decomposition procedure. with Drezner's inelhod 121, described on page 47.

It was shown in Section III. ((24) and (26)) that

(A-3) P(S) I - • P(a•), if A(S) > 0.

(A-4) P(S) -- - Y P(ak). if A(S) < 0. (See pages 10-12)

We note that for I(V -2. a(Sl ). a(S 4 ) are negative, (their values are given in the lower right.hand
corner of page A-I-), i.e.. S1 and S4 are negatively oriented. (NO), and therefore p(Sl ) and 1)(S 4 )
are also negative. Note again, that the decompositions for ICV = 2 and IV = 2 are different.

ICV = 0 can be used, because S has no SAR. It is generally preferred when no SARCs occur for S,
since it does not uso SORT I nor SORT IIt and is therefore more efficient.

Summariz.ing here. we can say that (P-B) is significantly better than (P-A) for complex
SI polygons in the following ways:

(1) Great care 1ilust be exercised when using the 0-<pticon with (P -Al as the example in
Figures A-5 and A-6 •hows. Figure 58 is another example, wheie the nunibering shown
while appropriate for (P-0II), since VALR-2 handles any polygon, is inadeiquate for
(P - A) for the same reason as for Figure A-0.

(2) Program B, based on (P - B1). is generally more efficient tliit the Program A bawed on
(j- A). i.e., VAI.R-7 with SORTU I and It, becatis often fewer points are needed to
specify II as in Figure 58. and in addition. (P-A) uses an N, process to decontpose
1i (SORT I). which is relatively slow.
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TABULATION OF RESULTS FOR FIGURE 36

Node x y ICV = 0, P(aK) Node ICV = 2, P(ak) Node ICV = -2, P(ak)

1 -5 -5 2.8665 15719(-7) 2 2.8665 15719 (-7) 18 -91724 10707(-1)

2 5 -5 2.8665 15719(-7) 3 2.8665 15719 (-7) 19 8.9450 71843 (-1)

3 5 5 2.8665 15719(-7) 4 9.9986 26366 (-1) 20 --9.6857 13286(-1)
4 -5 5 9,9986 26366 (-1) 5 -1.3449 27576 (-4) 21 -1.3654 79275 (-4)

5 3 I 3 -1-3449 27576(-4) p(S 1) 2.7128 28364 (-4)* p(S1) -8.5582 37140 (-3)'

6 5 -5 -1.3736 33819 (-4) 7 1.3496 06848 (-3) 13 8.1418 04138 (-1)
7 -3 -3 --9.9864 95777(-1) ' 8 1.3480 75949 (-3) 14 1[0265 18201 (-1)

8 3 -3 1-3480 75949(-3) 9 9.9069 82439(-1) 15 9.3010 33998 (-3)

9 3 3 9M9069 82439 (-1) 1o -8.5731 82606(-3) p(S2) 7.3866 73215 (-2)

10 2 -2 -8.5731 82606(-3) P(S2) 1.5177 25594(-2) 7 1.3496 06848 (-3)

11 -3 -3 -2.0268 94695(-1) 13 8.1418 04138H(-) 8 1.3480 75949(-3)

12 -1 0 1.1979 54136(-1) 14 1.0265 18201 (-1) 9909 82439(-l)

13 -2 2 -1.8536 42054 (-1) is 9.3010 33998 (-3) 10 -8.5731 82606 (-3)

14 0 1 1.0265 18201 (-1) P(Si) 7.3866 73212 (-2) p(S3 ) 1.517 25594 (-2)

15 3 3 9.3010 33"8 (-3) 16 2.2232 56327(2 4 -1.3736 33819-.4)

16 -2 2 -6.2292 55125(-4) 17 1.6245 62987(-5) 5 -1.3449 27576 (-4

17 -2 3 1.6245 62987 () 18 8.2758 92935 (2)

38 -5 5 8.2758 92935(-2) 19 .9506 -1.3736 33819(-4
7 -2.0268 86540 (-.))19 -3 2 8.9450 71843(-1) M{S4) 4,8507 74211 (-4)

-- 11-l -1A ,3 47 r -- t •(-0 #12 [1979 $4136(-1)
20 -2 2 ~-94.657 13280 (-1) ~ ,70998(I

S1. -3 -3 -1.3654 79275 (-4) la 1.1979 54136(-1) 13 -1.6754 46491 (-4)

- - MS 15719(-7) 20 9.0285 6347o(-3) 17 1.6245 62987(-5)

P(9) - 1.6193 83633 (-1) p(S$) 1.3866 73.15 (-2) p(S" -9.1,154 62410 (-1)

-157192665 9(-7) 1 2-6s 1S719(-7)

S9,96 263,66(1|) -2 '2.865 1$710(--7)

P(,)u .. A(1,)- 5640 21 A-1449 2776 (-4) 3 2.665 15710(-7)
:_2 2.8665 15719 t-7) 4 2.865 1S7I9j•7)

Icv 2 w) 2.7128 28.364 9.9999 (-1)

P2) p(),A(g).jaS) m(Sl - 20. 4(SI) -6. a(SJ) ,3. 2(S')- -7.5. a(SI) 3.5. a(s)) 6

IC -2 a(3 ) - 3. (SS) - 3S. a(S) x 20 a(S') - -46. a(SS) , 100.

(•)- u p(S'). A(•) (s) % : Set (A.3) (A4) of pi (A.1 5).
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APPENDIX B

EVERY SIMPLE POLYGON CONTAINS AN INTERIOR DIAGONAL
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APPENDIX B

EVERY SIMPLE POLYGON CONTAINS AN INTERIOR DIAGONAL

By an interior diagonal, we mean the open segment (L) of the closed line segment [L] extend-
ing from some vertex (k) to some nonadjacent vertex (j) of the simple polygon S, such that (L) is
entirely in the interior of S.

The proof given in [4, p. 17, Lemma 2] is not correct. Knopp's proof is repeated here with a
counter-example. An argument to correct the proof is then given.

Let a straight line which does not intersect or meet S be translated parallel to itself toward the
polygon until they meet. Then the line necessarily contains a vertex A of S with the interior angle
of A less than two right angles. Let B and C denote the adjacent vertices to A. Then one of the
following is true:

(1) BC is a diagonal lying in the interior of S.

(2) There is at least one vertex of S on the (open) segment BC (let one of these vertices be
denoted by V) but no vertex in the interior of triangle ABC, (A ABC).

(3) There is at least one vertex otrS in the interior of A ABC.

If (I) is true, there is not•ifg further to show. If (2) holds, then AV is an interior diagonal of S.
If (3) is true, let a point X move from B to C along BC until AX encounters a vertex or vertices of S
in the interior of A ABC. If V denotes that one of these vertices which is nearest to A. then AV is a
diagonal interior to A.

The proof of part 3) Is not correct. This is easily win from the figure below, The mertex
nearest to A in A ADC. following Knopp. iW D, but the litce AD contains points outside S. The
proper vertex to have chosen was E which is in A ABC. but farther from A than I).

A

C

A Counter-Exa-nple to Knopp's Proof
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The proof is easily corrected as follows; Starting at A, move an open segment, which extends
from AB to AC, parallel to BC and towards BC until one or more vertices of S are met. If there is
more than one such vertex, choose any one and call it V. Vertex V has the property that no other
vertex of S in A ABC has, a greater (perpendicular) distance from BC. Now suppose AV is not an
interior diagonal of S. Then there exists a point (z) where AV intersects another side of S, say side
(k. k + 1). Point (z) cannot be a vertex by the way V was chosen. Now either vertex (k) or (k + 1)
must have at least as great a distance from BC as (z). Say it is (k). But, since S is simple (k) must be
in the interior of A ABC. This contradicts the way V was chosen. Hence AV must be an interior
diagonal of S.

This result is used on page 11 and in Appendix D.
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APPENDIX C

AN ALTERNATIVE METHOD TO FIND P FOR SIMPLE POLYGONS

At an early stage of our studies, we developed a method to compute the P-function over a
simple polygon by using a program already available, which computed P for convex polygons, [21.
To put it another way, an automatic procedure was set up to represent any simple polygon by a
finite set of convex polygons. Realization of our working program required, in addition to a
program for computing P for convex polygons, a program to determine the convex hull of a finite
poinc set in the plane. Such a program was available from previous work, [ I ]. By the convex hull
C(ZN) of the point set Z1, = {(xj, yj), j = 1, 2, ... , N}, we mean the smallest convex polygon which
contains all of ZN. The vertices of C(ZN) are in ZN.

A simple polygon S is shown in Figure C-1. We set forth the procedure by applying it to this
polygon. It will be apparent to the reader that any N-sided simple polygon can be handled in
the same way.

Procedure:

(A) Find the convex hull C of S. We obtain

C = (1,2,3,6,7, 13, 14).

The P-function, P(C), for C is computed by the program for evaluating P for convex
polygons. Clearly since S and C are positively oriented, PQ, we have

(C.-) 0 < P(S) < P(C).

(B) The set of vertices of C is searched to determine which vertices of S are missing between
adjacent vertices of C. Obviously, vertices (4) and (5) between (3) and (6), and vertices
(8), (9), (10), (11), (12) between (7) and (13) are missing from C. In this way, we
isolate 2 simple polygons from C, namely

S1 -- (3,4, 6,63), S2 - (7,8,9,10,11,12,13,7).

13

-A. 13

77

Figure C-I. A I 3-Sided Simple 1
Polygon, S 1

it0

3
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(C) The convex hull C1 of S1 is found to be identical to S1. (When this occurs, that convex
hull requires no further processing.) We note C. is negatively oriented so that P(C1 ) < 0.
The convex hull C2 of S2 is then determined to be

GC = (7,9, 10, 13, 7),

as indicated in Figure C-2 by the dotted lines and the line segment (9, 10). C2 is also
NO, and hence P(C 2) < 0. Therefore, consideration of C, C1, C2 shows

(C-2) P(S) > P(C) + P(CO + P(C 2).

(D) Two Fimple polygons, both PO, are obtained from C2, by noting the missing vertices, as
explained in (B), namely

S3 = (7,8,9,7), S4 = (10,11, 12, 13, 10).

(E) The convex hull C3 for S3 is again S3. Thus, C3 requires no further processing. Since
C, is PO, we obtain P(C 3) > 0. Next, the convex hull C4 for S4 is found to be

C4 = (10, 12, 13, 10)

- ½h is also PO. Thius P(C 4) > 0 and we obtain, adding P(C 3) and P(C 4) to the right-
nand side of (C-2),

(C-3) P(S) < P(C) + P(C 1) + P(C 2) + P(C 3) + P(C4).

(F) Finally we isolate S5 from C4,

S5 = (10, 11, 12, 10).

Its convex hull CS is identical to it. Observing that C5 is NO and that P(C') < 0, we
obtain the final results by adding P(Cs) to the right-hand side of (C-3), namely, with

a C0 -C,

U • C, =S, P(S)= L P(,)

13

I ~ 7

I1 Figure C-2. Convex Hull, C2 , of
S2 "(7, 8, 9, 10, 11, 12, 13, 7)

10
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Although no proofs are given the procedure can be put on a rigorous basis by induction
type arguments.

This method, call it (0) (for old) is much slower in general than the procedure described in
Section II!, call it (N) (for new). This is so, because (in addition to finding convex hulls) the time
consuming computation is finding P for an angular region by VALR-2 or VALR-7. By our present
procedure, (N), we require the evaluation of P, in the example of Figure C-I, for 13 angular regions,
whereas by the method of this appendix, (0), we require 6 angular regions for P(C), 4 foi P(CI),
4 for P(C 2), 3 for P(C 3), 3 for P(C 4) and 3 for P(CS) for a total of 23 angular regions.

The method (0) does have an advantage in P(S) is alternately bounded above and below
with improved bcuads on each cycle of positive and negative contributions to estimating P(S).
By a cycle, we mean a stage in (0) where each convex hull obtained is of the same orientation.
The first cycle occurs with C is found. It is PO. At the second stage C1 and C2 are found and
both are NO. The third stage is manifested by the Pprearance of C3 and C4 , both PO. The
fourth and final stage is when C5 is found. It is NO. The improved bounds may allow the calcula-
tion for P(S) to be terminated early. Indeed, if at the end of any cycle of NO convex polygons, the
last denoted by Cj, the quantity

(C-5) P(Cj)

I-0

is greater than 1 - e, then P(S) 1 within c if at the end of any cycle of PO convex polygons, the
last donoted by Cj, the quantity corresponding to (C-5) is less than e, then P(S) 0 within c.
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APPENDIX D

EXPRESSIONS FOR THE AREA OF A POLYGON

We first show an expression for the area of a simple polygon in terms of vectors. There is

nothing new about the result, but it is not as easily available as one would expect, [6].
Subsequently, by some straightforward algebraic manipulations we obtain an expression for the
area, A, which leads to a very efficient machine computation for the area of a simple polygon, A(H).

Let S denote a simple polygon with its vertices numbered in the natural order from I to N,

such that in tracing S continuously, the interior of S is always on the left. We say S is positively
oriented (PO) inl this case. The classical vector expression A, for which IA(S)l = A(S), is then given
by a sum of vector cross-products.

1N
(D-l) A(S) = (i-Z)x(i -Z), -+ -I ,

where zi - Z denotes the vector from Z to z, with Z fixed, but arbitrary, and A(S) >' 0 using the
right-hand rule for cross products.

In order to establish (D-1) for simple polygons, we use induction, and the result of Appendix B
that for any simple polygon S there exists a diagonal between two vertices of S which is entirely
in S. We also need the fact that

(D-2) (it-Z) X al -Z) -(71zj ) X (t 1 )-Z

Certainly for N 3. S a triangle, (D-l) holds. Now assume (D-I) holds for all simple P0
polygons with no more than N - I vertices Let S denote a simple polygon of N vertices, PO. By

the result of Appendix U, there exists a diagonal fromv vert tvertex j + k, k > i, which I
entirely within S. except foe" Its end points at vertices j and j + k. This diagonal divides S into two
disjoint simple PO polygons, except for the common side, each with no more than N - 1 vertices.
Hence, by the induction hypothesis, (L-I) holds for eash of these polygons, cail them S, and S2.
where

S, =(I. 2,.j.j-l.J.j+kj+klk .... ,N, I),

S2 (j,j+ .. j+k-l,j+k,j).

Hence

(D-3)N
s,) = - X) x ,• - +) ÷ - x - (, Z-Z )x(., -+ X

(D S) ) X i - Z) + -;XZ) x -ii z)]

D--3

L i-j
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Since S1 and S2 are disjoint and PO, we have by adding (D-3) and (D-4), and using (D-2), the
expression (D-1) for N-sided simple polygons.

Above, we have assumed S was PO. If S is NO, then each cross product in (D-1) is reversed,
and by (D-2), A is given by (D-l) with a minus sign attached.

Now, since A(S) is a continuous function of the coordinates of the vertices of S, (D-l) also
yields A for polygonal elements of {S}, such as in Figures 35, 36, 45.

Actually (D-l) holds for arbitrary polygons, i.e., elements of {Il. This follows by using the
above results with a theorem given in [4, page 15], which states that every polygon can be
decomposed into a finite set of polygons in (S}.

An efficient expression for computing A can be obtained from (D-l). Since Z is arbitrary,
choose Z = 0. Then (D-1) reduces to

N
(D-5) A(H1)-1

In component form we have

ziXi1+1 -•xtM+1 -x-yil,

so that (D-5) can be written as

N
(D-6) A(M1) = (Xty÷1+ -- Xilyd), (XN-l, YN÷d) " (XI, yl)"

j-l

The number of multiplications can be halved by some algebra. From (D-6) take the second product
of the (I - I)' term. xlyfl1, and combine it with the first product of the ith tmrn, xiy 14 I to obtain
xi(y,, 1 -y,. This can be done successively for each i= 2, 3,.... N. The remaining elements,
namely, the first product of the first term, x1 Y2 and the second product of the Nih tern, xlyN are
combined to obtain x I (Y2 - YN)' Thus (D- 6) becomes

N(D-7) A (H) = . xj(y1÷1 -y1_1). YN+| y= y o, Y0 N" (See (22) and (46)).

This expression appears in the text as (22) and (46).

A Fortran IV listing of the short program for computing A. SMP-7, is given in Appendix F,

page (F-37).

The area of H1 in the wz-plane, A(w, z), see page 1, is given by

S(D-8) A(w, z) = a.,(I -p2)taA(M).
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APPENDIX E

PROGRAM PARAMETERS. CHEBYSHEV COEFFICIENTS, erfc (x)/z(x), x > 0

In this appendix, we list the constants that appear in the programs SORT I, SORT II, SORT III,
VALR-2, and VALR-7. There are two constants, a and w, which depend only on the characteristics
of the computer used. They are set at 5 X 10-d and 7 X I0-d, where d denotes the maximum
number of decimal digits the machine uses to represent a real number. For our machine d = 14.

For VALR-2 and VALR-7, the additional parameters that appear are listed for 4 levels of
accuracy, i.e., 3, 6, 9 and 12-decimal digits. The last is, at present, not incorporated into our
programs, but it would be easy to do so. The values for all the parameters follow.

a 5(-14) = 5 X 10-14, in SORT I

= 7(-14) in SORT I1 and SORT III

= 7(-14) in VALR-2 and VALR-7

ADDITIONAL PARAMETERS FOR VALR-2, OR VALR-7

Ace, at a, (a 3/4) 4 (R/v =

S 2.54 (-4) 2.02(-7) 1.22(-2) 5.625(-5) 6.962 (--2) 6.05160

® 2.57 (-7) 2.08 (-13) 1.23 (-4) 5.700 (-8) 6.990 (-3) 12.60605

© 2.94(-10) 2.71 (-19) 1.34(-6) 6.512(-11) 7.311 (-4) 19.201924

S1.00(-13) 3.17(-26) 6.58(-9) 2,225(-14) 5.111 (--5) 26.103925

C 6 A/V• See page 6 a 3 = 'c-1e/2 See (2, page 151

al =& See page 7 a = a3) See page 29, Eq. (12) also,

* I (9a,)113 See page 7 R2/2 Sew pages 6, 28 mnd 12, page 81

The first column of the table labeled Ace. (for accuracy) lists D ® © ( referring to
3, 6, 9. 12-decimal-digit accuracy, respectively, for the probability over an angular region. Pages
are indicated above where the parameters are discussed in the report,

The ininimax coefficients, a,. for approximating erfc (x)/z(x) on 10, c(6)] (see page 6) are

given below for the four accuracy levels associated with &, a. 0. @ as noted above. T"ltvy were
computed by a double precision minimax subroutine utilizing values of erfe (x) correct to 18
significant digits on (1/2. c(6)1 and values of erf(x) accurate to 25 digits on 10, 1/21.

E-3



For ® (Average time per angular region = 7.8 X 10-4 sec)

ao  .8 85 77 7518572895D + 00 a= -. 98 1151952778050D + 00a2  .7 59 3 05502082485D + 00 a 353644980686977D + 00a4  .69 5 232092435207D - 01

/For (Average time per angular region sec)

ao = .886226470016632D + 00 a, = -. 99 9 95 0714561036D + 00a2 = .8 85 34 8820003892D + 00 a3 = -. 6 60 6 1123 9043357D + 00a4  .421821197160099D . 00 a 2 = -. 22 8 98 055667208D + 00a6 = .905057384150449D _ 01 a7 = --.254906111884287D - 01a8 = .430895168984138D- 02 a9 = -. 323377239693247D - 03

For ( (Average time per angular region 1.3 X 10-3 sec)

a0 =.886226924931465D + 00 a1  -- 999999899776252D + 0032 - .8862237331867221D + 00 a3  --.666626670510907D + 00a4 - .442851899328568D + 00 a, = --.2656382063660251) + 00d6 = .1450600434030121) + 00 a7  *-.714909837799889t) o 0a8 = .309199295S21'lO0) -01 a9  -. 11-323532148441 D 01a10 - 324944543171185D 1 02 - -.7042602433090961) 03a11 2 = .105787574480633D '-03 a13 = -971864864160461D 05a .4= .408335517232165D -06

For ® (Average time per angular region - 1.5 X 10-3 sec)

ao .886226925452593D + 00 a, -.9999999999485971) + 00a2  .8862269227867461) + 00 a, m .. 6666666118666611) + 00a4  .44311286804891) ÷ + 00 as -. 2666627290914111) + 00a6  .1476871363219381) + 00 a7 a .-.7613658558502921) -01
a1 = .3680328493508601) 01 39 a --.167195096888183D - ofato. .7102926257340521 D 02 a1  -. 278170932906224i) 02I2 ".9811126290903331) - 03 a13= --.3025886407521081) .- 03a14  .7899609688021448D - 04 a 15 •-.1686851817670461) -04a= .2836466354093221) - 05 at 7 .-.3583144669082901) - 06a .317679497040006!) 07 -.. 1754406519404301) - 08aao= .452534347337305D, 10

Averago time per angular region a refers to the average computing time on the CD-6700 to obtain
P(a).
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APPENDIX F

PROGRAM LISTINGS IN FORTRAN IV

P-2, VALR-2, SORT II, VALR-7. P-7, SORT 1, SORT 11. SMP-7

(Flow charts on pages 40-45 and A-I 7 to A-I 9)

a,.
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MASTER SUBROUTINE P-2

(FLOW CHART 1, page 40)

P-2 is used for computing P(Il) ayir an Arbitrary Polygon II*

CALL: P-2 (x, y, N, P, ICV, IND, lOP, A, W),

where:

x is the array of abscissas of the numbered points of H. x is dimensioned at N + 1.

y is the array of ordinates of the numbered points of n. y is dimensioned at N + 1.

N is the number of points specifying 11, except if N = I when the IBND over an angular
region is computed. Three input points are needed when N 1 1, given in counterclock-
wise order, with the vertex at point one, (see pages 25, 27).

P is the location where the value of P(IH) is returned.

ICV must be set as an integer by the user according to the list below:

ICV = 0, H is simple, or of S type with no SAR(s) (see pages 12, 31). VALR-7 used alone.

ICV > 0, 1H is arbitrary. VALR-2 used alone.

ICV -2, Hl is of S type with possible SAR(s).

ICV < 0. -2, I1 is arbitrary with PAR(s).

IND is an error indicator. Normally, it is set to zero. If IND 2, then PAR(s) have been
detected by either VALR-2 or VALR-7. For VALR-2, (ICV > 0, ICV < 0, 0 -2) the re-
sult for P('H) is acceptable. For VALR-7 (ICV = 0, -2) however, this result of IND = 2,
means the value for P(I) is most likely wrong, unless N = I VALR-7 is not to be used
alone where SAR(s) are a possibility, unless N = 1. If IND = 3, then N has not been
specified as an integer equal to one or greater than two. Such values of N arc not
allowed.

lOP is an accuracy parameter. It is set by the user to 1, 2. 3 for approximately 3, 6, or
9 decimal digits of accuracy in P(HI).

A is the location where A(II) is returned. JAI gives area of I1, (see pages 9,26).

W is the location where the winding number of I1 is returned. It is computed in VALR-2
and takes integer values (see pages 18, 19). W is defined as an integer variable. It is
initialized to one, and is only computed if ICV > 0 or ICV < 0, 0 -2.

"See footnote 1. page I, for definlitlon of an arbitrary polygon.
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SUBROUTINE P2 ( X,YNB,P,ICV,IND,IOP,A,KO )
DIMENSION X(i),Y(i)
IF ( NB.NE.2.AND.NB.GE.1 ) GO TO 3031
IND=3
RETURN

3031 CONTINUE
N=NB
KO=I
IF ( ICV.EQ.0.OR.NB.EQ.1 ) GO TO 3091
IF ( ICV.GT.0 ) GO TO 3071
CALL SORT3 ( X,Y,N )
IF ( N.GT.2 ) GO TO 3061
P=0.
A=0.
IND=0
RETURN

3061 CONTINUE
IF ( ICV.EQ.-2 ) GO TO 3091

3071 CONTINUE
CALL VALR2 ( X,Y,NP,IOPA,IND,KO )
RETURN

3091 CONTINUE
CALL VALR7 ( XY,N,P,IOP,A,IND )
RETURN
END
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SUBROUTINE VALR-2

(FLOW CHART 2, page 41)

VALR-2 is used to compute P(fl) when II is arbitrary

CALL: VALR-2 (x, y, N, P, IOP, A, IND, W),

where:

x is the array of abscissas of the numbered points of fl. x is dimensioned at N + i.

y is the array of ordinates of the numbered points of 11. y is dimensioned at N + 1.

N is the number of points specifying 11, except if N I 1 when the IBND over an angular
region is computed. Three input points are needed, when N = 1, given in counterclock-
wise order, with the vertex at point one, (see pages 25, 27).

P. A are the locations where the values of P(HI) and A(M) are returned.

lOP is an accuracy parameter. It is set by the user to 1, 2, or 3 for approximately 3, 6, or
9-decimal digits of accuracy in P(11).

IND is an error indicator. Normally, it is set to zero. If IND = 2, it informs the user that H
contains a PAR. The value for P(TI) is acceptable. If IND = 3, then N has not been
specified as an integer equal to one or greater than two. Such e'alus of N are not
allowed.

W is the location where the value of the winding number W for n1 is returned. W is an
integer variable.

This routine requires computation of erf (x) and erfc (x) which are defined on pages S. 28 and
29. We have

ERL (x) erf(x), ERFC I (O,x) eric(x).

where the subroutine listings for these functions arc given on pages F-I 2 to F-I S. They are identical
to the NSWC(DL) math library functions ERF and ERFC as of June 1980 which are based on the
reference below.

Cody, W. J. Rational Chebyshiw Approximattonr for the Ewr F4unction, Mathe•natics of
Computation, v. 23 (1969), pp. 631-637.
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SUBROUTINE VALR2 ( X,Y,N,P,IOP,A,IND,KO )
DIMENSION X(1) ,Y(1) ,G(2) ,H(2) ,RSQ(4)
DIMENSION E(5),E2(10),E3(15)
DIMENSION APH1(3),APH2(3),CST(3)
DIMENSION APH4 (3) ,A3D8 (3)
REAL L
REAL KOM
DATA PI/3.1415 92653 5898 /
DATA TWOPI/6.2831 85307 17958 /
DATA ALNPI/1.1447 29885 84940 /
DATA C1/.28209 47917 73877 /
DATA C2/.15915 49430 91895 /
DATA TAU/7.E-14 /
DATA TAUSQ/4.9E-27 /

DATA ( E(I),I-1, 5) /
1 .885777518572895E+00 , -. 981151952778050E+00
2 .759305502082485E+00 , -. 353644980686977E+00
3 .695232092435207E-01 /

DATA (E2(I),I=I, 10) /
1 .886226470016632E+00 , .999950714561036E+00
2 .885348820003892E+00 , -. 660611239043357E+00
3 .421821197160099E+00 , -. 222898055667208E+00 ,
4 .905057384150449E-01 -.254906111884287E-01
5 .430895168984138E-02 , -. 323377239693247E-03 /

DATA (E3(I),Ivi, 15) /
1 .886226924931465E+00 , .999999899776252E+00 ,
2 .886223733186722E+00 , .666626670510907E+00
3 .442851899328569E+00 , -. 265638206366025E+00 ,
4 .145060043403014E+00 , -. 714909837799889E-01 ,

5 .309199295521210E-01 -. 112323532148441E-01 ,
6 .324944543171185E-02 , -. 704260243309096E-03
7 .105787574480633E-03 , -. 971864864160461E-05
8 .408335517232165E-06 /

DATA ( APHI1(I)o;1,3 ) /
1 2.02E-7,2.08E-13,2.71E-19 /

DATA ( APH2(I),I-l,3 ) /
1 1.22E-2,1.23E-4,1.34E-6 /

DATA ( APH4(I,-I1,3 ) /
1 .6962E-1, .6990E-2, .7311E-3 /

DATA RTPII/.56418 95835 4776 /
DATA ( RSQ OI),=1,3 ) /

1 6.0516,12.60605 ,19.201924 /
DATA ( A3D8(I),I-,3 ) ,

1 0.2812SE-4,0.285E-7,0.32625E-10 /
DATA ( CST(),I=1,3 ) /

1 .5625E-4,.57E-7,.6512E-10 /
IF ( N.NE.2.AND.NGE.1 ) GO TO 3011
INDt:3
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RETURN
3011 CONTINUE

p=o.
IND-0-

ij A=0.
KOM=0.
K=1
IFf( N.-NE.1 )GO TO 3021
W=X (2)-X (1)
Z=Y (2) -Y(1)
U =X(3)-X(l)
V =Y(3)-Y(1)
psIi=V*w-U*z
IF ( PSI1.%4E.O. )GO TO 3041
p=-1.
T1=W
W=U
U=TJ

~Tl=

GO TO 3041
301&- CONTINUE

Y (N+1) =Y (1)
X (N+1) =X (1)
U =X(2)-X(1)
V =Y(2)-Y(J.)
XK=X (1)
YK=Y (1)

3031 CONTINUE
W=X (1)-X (N)
Z=Y (1)-Y (N)

3043. CONTINUE
DlSQ=W*W+Z*Z
IF (D1SQ.GT.TAUSQ )GO TO 3051
IF (N.EQ.l GO TO 4011
N=N-1
IF ( N.EQ.2 )RETURN
GO TO 3031

3051 CONTINUE
D2SQ=U*U+V*V
IF ( D2SQ.GT.TAUSQ )GO 'TO 3071
IF ( N.EQ.1 I GO TO 4011

:13061 CONTINUE
K=K+J.
OUX (F+1) -XK
V-Y (K44) -YK
D2SQ=U*U+V*V
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IF (D2SQ.LE.TAUSQ )GO TO 3061
IF (K.EQ~tN-1) )RETURN

½3071 CONTINUE
A=XK *(Y(K+1) -Y (N))
BGDI=SQRT(2. *D1SQ)
BGD2=SQRT(2. *D2SQ)

3081 CONTINUE
psI1=v*w-U*z
CEE=U*W+V*Z
AJO =ATAN2(PSI1,CEE)
KOM=KOM+AJ 0
L=O.
B---. 5 * (A( (K) *X (K) +Y (K) *Y (K))
IF ( B.GT.APH1(IOP) )GO TO 3111
CAPG=0.

3101 CONTINUE
'D1 =AJO /TWOPI-CAPG
GO TO 3621

3111 CONTINUE
G (1) = (W*X (K) +Z*Y (K)) /BGD1
G G(2) =(U*X (K) +V*Y (K)) /BGD2
H (1)= (-Y (K) *W+X (r,]*Z)/BGD1
H(2) =(-Y(K) *U+X (K) *VI,/BGD2
IF (AB (PS11).GT.(BGD1*BGL)2*A3D8(IOP))) GO TO 3241
IF (CEE.LT.0. )GO TO 3131
IF (ABS(AJU).LE.TAU GO TO 3121
IF (G(1).GE.0. )GO TO 3123.
GO TO 3241

3121 CONTINUE
P1=0.
GO TO 3621

3131 CONTINUE
IF (AB$(PSI1,).-LE.(.5*TAU*BGDI*BG.)2) ) flDu2
IF (PSI1.LT.0. )GO TO 3171
P! .5*inýrc(0,H(2))

GO TO 3621
3171 CONTINUE

P1 -. 5*EfrlpC(0Oj(l))
GO TO 3621

.3-41 CONTINUE
IF ( B.LE.APH2(IOP) )GO i0: 3301
IF G( C).LT.O. G O TO-3261
IF (G02) .GZ.O. )GO TO 3471

IF (-AOS(H(2)).LV..Anfl4(IOP) ) GO TO 35

GO To 3461
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3251 CONTINUE
L=. 5+RTPII*H (2)
GO TO 3461

3255 CONTINUE
L=. 5-RTPII*H(i)
GO TO 3461

3261 CONTINUEG (1) =-G (1)
H (1) =-H (1)
IF ( G(2).LT.0. ) GO TO 3271
IF ( ABS(H(1))}LE.APH4(IOP) ) GO TO 3255
L=.5*ERFC1(0,H(1))
GO TO 3461

3271 CONTINUE
G(2) =-G (2)
H(2)=-H(2)
IF ( ABS(H(1)).LE.APH4(IOP) ) GO TO 3291
IF ( ABS(H(2)).LE.APH4(IOP) ) GO TO 3281
L=. 5* (ERFC1(0 ,H (1)) -ERFC1(0,H (2)) )
GO TO 3471

3281 CONTINUE
L=RTPII*H(2)-.5*ERF1(H(i))
GO TO 3471

3291 CONTINUE
IF ( ABS(H(2)).LE.APH4(IOP) ) GO TO 3295
L=.5*ERF1(H(2))-RTPII*H(I)
GO TO 3471

3295 CONTINUE
L=RTPII* (H (2) -H (i)
GO TO 3471

3301 CONTINUECAPG-Cl* (H(2)-H(1) )-C2" (G(2) *H(2)-G(1) *H(1))
GO TO 3101

3461 CONTINUEPS I1--PS I1
IF ( PSILLE.0.) GO TO 3465

i Lt-L-1.

AJO PI+AJO
GO TO 3471

3465 CONTINUE
AJ0=AJO -PI

3471 CONTINUE
IF ( B.dE.RSQ(IOP) ) GO TO 3501
CAPE-AJO
CAPH-. 5*AJO

F-0.
A.; =H(2) -H (1)
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CIRCM=AJI
IF ( IOP.EQ.3 ) GO TO 3681
IF ( IOP.EQ.2 ) GO TO 3701
SUM=E (M) *AJ1

3481 CONTINUE
M=M+I
H(2) =H(2) *G(2)
H(1) =H(1) *G(1)
T=H(2)-H(I)
F=F+B
CAPV=(F*CAPE+T)/M
SUM-SUM+E (M) *CAPV
IF( M .GE. 5 ) GO TO 3491
CAPE=CIRCM
CIRCM=CAPV
GO TO 3481

3491 CONTINUE
P1 =L+EXP (- (B+ALNPI)) * (CAPH-SUM)
GO TO 3621

3501 CONTINUE
Pl=L

3621 CONTINUE
IF ( K.NE.N ) GO TO 3651
IF ( NNE.1 ) GO TO 3631
P=ABS (P+ABS (P1))
RETURN

3631 CONTINUE
P=P-PI
KOM=KOM/TWOPI
A=.5*A
IF ( KOM.LT.O. ) GO TO 3641
KO=INT(KOM+.125
GO TO 3645

3641 CONTINUE
KO-INT(KOM-.,125

3645 CONTINUE
P=P+FLOAT (KO)
RETURN

3651 CONTINUE
WOU
Z=V
BGD1 BGD2
XK=X (K÷1)
YKuY (K+1)
YKMI1Y(K)

3661 CONTINUE

UmX(K+1)-XK
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V=Y (K+1) -YK
D2SQ=U*U+V*V
IF ( D2SQ.LE.TAUSQ )GO TO 3661
BGD2=SQRT(2. *D2SQ)
P=P-Pl
A=A+XK* (Y (K+1) -YKM1
GO TO 3081

3681 CONTINUEI SUM=E3 (M) *MJ1
3691 CONTINUE

M=M+1
H (2) =H (2) *G (2)
11(1) =11(1) *G (1)
T=H(2)-H(l)
F=F+B
CAPV= (F*CAPE+T)/M
SUM=SUM+E3 (M) *CAPV
IF ( M.GE.15 )GO TO 3491
CAPE=CIRCM
C IRCM=CAPV
GO TO 3691

3701 CONTINUE
SUM=E2 (M) *Ail]

3711 CONTINUE
?4=M+1

4 H (2) =H (2) *G (2)
H (1) =H (1) *G (1)

Fr-F+B
CAPV- (F*CAPE+T) /M
SUM=SUM+E2 (M)*CAPV
IF ( M.GE.10 )GO TO 3491
CAPEwCIRCt4
CIRCM-CAPV
GO TO 3711

4011 CONTINUE
P-S.
INDMl
RETURN
END
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FUNCTION ERF1(X)
DIMENSION A(4)tB(4)LP(8),Q(8),R(5),S(5)
DATA A/2.42667955230532E02, 2.19792616182942E01,
1 6.99638348861914E00,-3. 56098437018154E-2/
DATA B/2.15058875869861E021 9.11649054045149E01,
1 1.50827976304078E01, 1.OOOOOOOOOOOOOOEOO/
DATA P/3.00459261020162E02, 4. 51918953711873E02,
1 3.39320816734344E02, 1.52989285046940E02o
2 4.31622272220567E01, 7.21175825088309E00,
3 5.64195517478974E-1,-1.36864857382717E-7/
DATA Q/3.00459260956983E02, 7.90950925327898E02,
1 9.31354094850610E02, 6.38980264465631E021
2 2.77585444743988E02, 7.70001529352295E01,
3 1.27827273196294E01, 1.OOOOOOOOOOOOOOEOO/
DATA R/2.99610707703542E-3, 4.94730910623251E-2,
1 2.26956593539687E-1, 2.78661308609648E-1,
2 2.23192459734185E-2/
DATA S/1.06209230528468E-2t 1.91308926107830E-1,
1 1,05167510706793E00, 1.98733201817135E00,
2 1.0O0O00O00OO0OOEOO/
DATA C/5.64189583547756E-3./

C - - - - - - - - - - - - - -

AX=ABS(X)
X2=AX*AX
IF (AX.GE0O.5) GO TO 20
TOP-A (4)
BOT=B (4)
DO 3.0 I=1,3
J=4-I
TOP'A (J) +X 2*TOP

10 BOT-B(J) +X 2*BOT
ERF1=X*TOP/BOT
RETURN

C
20 IF (AX.GT.4.O) GO TO 30

TOP-P (8)
BOT-Q (8)
DO 23. 1=1,7
J-8-1
TOP=P (W) +AX*TOP

21 BOT-0Q(J) +AX*BOT
ERFI-l.-EXP(-X2) *TOP/BOT
IF (X.LT.0.) ERFi--ERFI
RETURN

C
30 ERF1-1..

IF (AX.GE.5.54) GO TO 32
TOP=R (1)



BOT=S (1)
DO 31 I=2,5
TOP=R(I) +X2*TOP

31 BOT=S(I)+X2*BOT
ERF1=C-TOP/ (X2*BOT)
ERF1=1.*-EXP (-X2) *EPJ'1/AX

32 IF (X.LT.O.) ERF1=-E1RF1
RETUR~N

4 END
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FUNCTION ERFC1 (IND,X)
DIMENSION A(4).,B(4)oP(8),Q(8),R(5),S(5)
DATA A/2.42667955230532E02, 2.19792616182942E01,
I. 6.99638348861914E00,-3.56098437018154E-2/
DATA B/2.15058875869861E02, 9.11649054045149E01,
1 1.50827976304078E01, 1.OOOOOOOOOOOOOOEOO/
DATA P/3.00459261020162E02t 4.51918953711873E02,
1 3.39320816734344E02, 1.52989285046940E02,
2 4.31622272220567E01, 7.21175825088309E00,
3 5.64195517478974E-1, -1 .36864857382717E-7/
DATA Q/3.00459260956983E02, 7.90950925327898E021
1 9.31354094850610E02, 6.38980264465631E02,
2 2.77585444743988E02, 7.70001529352295E01,
3 1.27827273196294E01, 1.OOOOOOOOOOOOOOEOO/
DATA R/2.99610707703542E-3, 4.94730910623251E-2,
1 2.26956593539687E-1, 2.78661308609648E-l,
2 2. 23192459734185E-2/
DATA S/1.06209230528468E-2, 1.91308926107830E-1,
1 1.05167510706793E00, 1.98733202t81713SE00,

ci2 1.OOOOOOOOOOOOOOEOO/
DATA C/5.647L89583547756E-1/

C - - - - - - - - - - - - - -
AX=ABS (X)
X2=AX*AX
IF (AX.GE.0.47) GO TO 20
TOP-A(4)
BOT=B(4)
DO 10 1-1#3
J=4-I
TOPcA(,3) 4X2*TOP

10 BOT-8B(J) +X 2*BOT
ERFC1=1 . -X*TOP/BOT
IF (IND.NE.0) ERFC1a±EXP(X2)*ERFC1
RETUR~N

C
20 IP (AX.GT.4.0) GO TO 30

TOPmP(8)
SOT'-Q(8)
DO 21 Iam1,7
J=8-I
TOP=P(J)+AX*TOP

*121 BOT=Q (J) +AX*BOT
ERFC1=TOP/BOT

IF (IND.EQ0O) GO TO 22
IF (X.LT..0O) ERIFC1-2.*EXP(X2)-ERFC1
RETURN

22 ERFC1=EXP(-X2)*ERFC1
IF (X.LT.O0O) ERFC1=2.-ERFC1
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RETURN

30 IF (X.LE.-5.33) GO TO 32
TOP=R(1)
BOT=S (1)
DO 31 I=2,5
TOP=R(I) +X2*TOP

31 BOT=S (I)+X2*BOT
ERFC1= (C-TOP! (X2*BOT) )/AX

IF (IND.EQ.O) GO TO 22
IF (X.LT.O.0) ERFC1=2.*EXP(X2)-ERFC1
RETURN

32 ERPC1=2.
IF (IND.NE.0) ERPC1=EXP(X2)*ERFC1
RETURN
END
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SUBROUTINE SORT III

(FLOW CHART 3, page 43)

Subroutine SORT III Used to Eliminate SDP and/or SCP from II

CALL: SORT I1! (x, y, N),

where:

x is the array of abscissas of the numbered points of the polygon II. The array is dimensioned
at N. Upon return to the calling program, P-2 (or P-7), the array of abscissas will be
reduced by the number of consecutive duplicate points SDP and SCP eliminated. The
array is compacted.*

y is the array of ordinates of the numbered points of the polygon [I. The array is dimensioned
at N. Upon return to the calling program, P-2 (or P-7), the array of ordinatcs will be
reduced by the number of points deleted due to SDP and SCP. The array is CU.

N is the number of points initially used to specify the polygon. Upon return to the calling
program, P-2 (or P-7), N will be reduced by the number of points that were eliminated.

OCompact hler, means tlut whenever a pobit is eliminated all subsequent rpints of the array are moved up one
locaion in the array. Le.. the array is dosed up (CU).
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SUBROUTINE SORT3 ( X,Y,N
DIMENSION X (1) ,Y (1)
DATA CST/4.9E-27 /

3041 CONTINUE
IF ( N.LT.3 ) RETURN
K=1
L=2

3051 CONTINUE
U=X (1) -X (N)
V=Y(i)-Y(N)
D2=U*U+V*V
IF ( D2.GT.CST ) GO TO 3061
N=N-1
IF ( N.GT.2 ) GO TO 3051
RETURN

3061 CONTINUE
W=X (L)-X (1)
Z=Y (L)-Y (1)
DI=W*W+Z*Z
IF ( D1.GT.CST ) GO TO 3071
L=L+I
GO TO 3061

3071 CONTINUE
IF ( L.EQ.(K+1) ) GO TO 3091
LM2=L-2
N=N-LM2
DO 3081 I-2,N
Il=LM2+I
X (I) =X(I1)
Y(I) =Y(I1)

3081 CONTINUE
L-2

3091 CONTINUE
T=V*W-U*Z
SN= (4. *T*T) / (DI*D2)
IF ( SN.GT.CST ) GO TO 3121

3111 CONTINUE
L-L+1
IF ( L.GT.N ) GO TO 3341

3115 CONTINUEW=X (L)-X(1)
Z=Y (L) -Y{(1)
DIW*W+Z*Z
IF ( D1.GT.CST ) GO TO 3091
GO TO 3111

3121 CONTINUE
IF ( L.EQ.2 ) GO TO 3141
L142-L-2
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N=N-LM2
DO 3131 I=I,N
II=LM2+I
X (I) =X (Ii)
Y (I% =Y (Ii)

3131 CONTINUE
GO TO 3041

3141 CONTINUE
K=2
L=3
GO TO 3161

3151 CONTINUE
DI=D2
W=U
Z=V

3155 CONTINUE
L=K+I

3161 CONTINUE
U=X(L)-X (K)
V=Y(L)-Y(K)
D2=U*U+V*V
IF ( D2.GT.CST ) GO TO 3171

3165 CONTINUE
L=L+I
IF ( L.LE.N ) GO TO 3161
N=K
GO TO 3251

3171 CONTINUE
IF ( L.EQ.(K+I) ) GO TO 3191
N=N- ( (L-1)-K)
KP1=K+I
I2=L-KP1
DO 3181 I=KP1,N
Ii=I2+I
SMox 121)x(I)=X(I1)

Y(I)=Y(I1)
3181 CONTINUE

L-KPI
3191 CONTINUE

T-V*W-U*Z
SN-(4. *T*T)/(D1*D2)
IF ( SN.GT.CST ) GO TO 3221

3201 CONTINUE
LlL+l
IF ( L.GT.N ) GO TO 3211
U=X (L)-X (K)
V-Y (L)-Y (K)
D2-U*U+V*V

F-18



IF ( D2.GT.CST ) GO TO 3191
GO TO 3201

3211 CONTINUE
X(K)=X(N)
Y(K)=Y(N)
N=K
GO TO 3251

3221 CONTINUE
IF ( L.EQ.(K+1)) GO TO 3241
12=L-l-K
N=N-12
LM2=L-2
DO 3231 I=K,N
I1=I2+I
X(I) =X(I1)
Y(I) =Y(I1)

3231 CONTINUE
W=X (K)-Y (K-I)
Z=Y (K)-Y (K-1)
D1=W*W+Z*Z
IF ( D1.GT.CST ) GO TO 3155
K=K-l
IF ( K.LT.2 ) GO TO 3041
W=X (K) -X (K-i)
Z=Y (K)-Y(K-1)
D1UW*W+Z*Z
L=K+I
GO TO 3165

3241 CONTINUE
K-K+1
IF ( K.LT.N ) GO TO 3151
GO TO 3255

3251 CONTINUE
U"X (N) -X (N-i)
V-Y (N)-Y (N-i)
D2uU*U+V*V
IF ( D2.LE.CST ) GO TO 3261

3255 CONTINUE
W-X(1)-X (N)Z-Y (1)-Y (N)

: Dl*W*W+Z*Z
IF ( DI.LE.CST ) GO TO 3261S~T-'V*W-UleZ

SNe (4. *T*T)/ (Dl*D2)
IF ( SN.GT.CST ) GO TO 3351

3261 CONTINUE
N N-1
1IF ( N.GT.2 ) GO TO 3251
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RETURN
3341 CONTINUE

N=2
2 RETURN

3351 CONTINUE
D2=DI
U=W
V=Z
W=X(2)-X(1)
Z=Y (2)-Y (1)
D1=W*W+Z*Z
T=V*W-U*Z
SN= (4. *T*T)/(D1*D2)
IF ( SN.GT.CST ) RETURN
L=3
GO TO 3115
END
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SUBROUTINE VALR-7

(FLOW CHART 4, page 44)

Subroutine VALR-7 Used to Compute p (8), where S has no SAR(s), (See page 3 1)

CALL: VALR-7 (x, y, M, p, 1OP, a, IND),*

where:

x is the input array of abscissas for S. Dimensioned at M + 1.

y is the input array of ordinates for S. Dimensioned at M + 1.

M is the number of input points for S. When M = 1, IBND over an angular region is com-
puted. Three input points in counterclockwise order are used to specify the region with
the vertex at (1).

p is the location where the function value for p(S) will be returned.t

IOP is set by the user to 1, 2, or 3 for approximately 3, 6, or 9-decimal-digit accuracy,
respectively, in p(S).

a is the location where the value of the function a(S) is returned. The absolute value of
a gives the area of S.

IND is an error indicator normally set to zero. If PAR(s) are detected by VALR-7, then
IND is set to two and the result for p(S) is most likely wrong, unless M = 1. See Flow
Chart 4-24, 20, 21, 22. VALR-7 should never be used alone if SAR(s) are a possibility,
unless M = 1. If M = 2 or M < 1, then IND = 3 and an EXIT is made. Such M are not
allowed.

This routine requires computation of erf (x) and erfc (x) which are defined on pages 5, 28 and
29. We have

ERF 1(x) = erf(x), ERFC 1 (0, x) = erfc (x),

where the subroutine listings for these functions are given on pages F- 12 to F- 15. They are identical
to the NSWC (DL) math library functions ERF and ERFC as of June 1980 whi(.h are based on the
reference below.

Cody, W. J., Rational Chebyshev Approxnimations fbr the Error Function, MNthematics of
Computation, v. 23 (1969), pp. 631-637.

*We use p, a, M here In place of P, A, N to avoid ambiguity with results in P-7, if SORT I is used witd VALR-7.

MThe IBND over S, p(S), will be psitrive ifS is PO and it will be negative IfS is NO.
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SUBROUTINE VALR7 ( X,Y,N,P,IOP,A,IND
DIMENSION RSQ(4)
DIMENSION X(1),Y(1),G(2),H(2)
DIMENSION E(5),E2(10),E3(15)
DIMENSION APH1(3),APH2(3),APH4(3),CST(3)
REAL L
DATA TWOPI/6.2831 85307 17958 /
DATA ALNPI/1.1447 29885 84940 /
DATA CI/.28209 47917 73877 /
DATA C2/.15915 49430 91895 /
DATA TAU/7.E-14 /

DATA ( E(I),I=I, 5) /
1 .885777518572895E+00 , -. 981151952778050E+00
2 .759305502082485E+00 , -. 353644980686977E+00 ,
3 .695232092435207E-01 /

DATA (E2(I),I=1, 10) /
1 .886226470016632E+00 , -. 999950714561036E+00
2 .885348820003892E+O0 , -. 660611239043357E+00
3 .421821197160099E+00 , -. 222898055667208E+00 ,
4 .905057384150449E-01 , -. 254906111884287E-01
5 .430895168984138E-02 -.. 323377239G93247E-03 /

DATA (E3(I),I=1, 15) /
1 .886226924931465E+00 , -. 999999899776252E+00
2 .886223733186722E+00 , -. 666626670510907E+00
3 .442851899328569E+00 , -. 265638206366025E+00
4 .145060043403014E+00 , -. 714909837799889E-01
5 .309199295521210E-01 , -. 112323532148441E-01
6 .324944543171185E-02 , -. 704260243309096E-03
7 .105787574480633E-03 , -. 971864864160461E-05
8 .408335517232165E-06 /

DATA ( APHI(I),=I,3 ) /
1 2.02E-7,2.08E-13,2.71E-19 /

DATA ( APH2(I),I=1,3 ) /
1 1.22E-2,1.23E-4,1.34E-6 /

DATA ( APH4(I),I=1,3 ) /
1 .6962E-1, .6990E-2, .7311E-3 /

DATA RTPII/.56418 95035 4776 /
DATA ( RSQ (I),I1-,3) /

1 6.0516,12.60605 ,19.201924 /
DATA ( CST(I),I=1,3 ) /

1 .5625E-4,.57E-7,.6512E-10 /
IF ( N.NE.2.AND.N.GE.1 ) GO TO 3061
IND=3
RETURN

3061 CONTINUEP-0.
IND=0
IF ( N.NE.1 ) GO TO 3071
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K=1

W=X (2) -X(1)
Z=Y (2) -Y(1)
U =X (3) -X (1)
V =Y (3) -Y (1)
PsI1=v*w-U~z
IF ( PSI1.GE.O. )GO TO 3081
p=-19
T1=W
W=U
U=Ti

Vl=z

Z=T1
GO TO 3081

3071 CONTINUE
CALL SMP7 (NA,AXY)
IF ( ABS(A ).LE.CST(IOP) )RETURN
K=l
W=X (1) -X(N)
Z=Y(1) -Y(N)
U =X(2)-X(1)
V =Y(2)-Y(1)
X (N+1) =X (1)

3081 CONTINUE
BGD1=$QRT( 2, *(W*W+Z*Z))
BGD2=SQRT C 29* (U*U+V*V))

3091 CONTINUE
L-0.
B-.5*(X(K) *X(1K)+Y(K)*Y(K))
IF ( B.GT.APH1(IOP) )GO TO 3111
CAPG=O.

3101 CONTINUE
TluV*W-U*Z
T2 =U*W+V*Z
PHIK=ATAN2 (Ti ,T2)
P1 =PHIK/TWOPI-CAPG
GO TO 3621

311CONTINUE
311G(1)im(W*X(K)+Z*Y(K) )/BGD1

G(2)-*(U*X (K) +V*Y (K) )/BGD2
H (1) a (-Y (K) *W+X (K) *Z) /BGD1
H (2) -(-Y (K) *U+X (KC) *V) /BGD2

SN,*(2. *(V*W-U*Z) )/ (BGDi*BGD2)
Xr ( ABB(SN).GT.CST(IOP) )GO TO 3241
CNmG (1) *G (2) +H (1) *ff (2)
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IF ( CN.LT.0. ) GO TO 3131
IF ( ABS(SN) .LE.TAU ) GO TO 3121
IF ( G(1).GE.0. ) GO TO 3121
GO TO 3241

3121 CONTINUE
P1=0.
GO TO 3621

3131 CONTINUE
IF (ABS(SN).LE.TAU ) IND=2
IF ( SN .LT.O. ) GO TO 3171
P1 =.5*ERFCI(0,H(2))
GO TO 3621

3171 CONTINUE
Pl =-.5*ERFC1(0,H(1))
GO TO 3621

3241 CONTINUE
IF ( B.LE.APH2(IOP) ) GO TO 3301
SN=B*SN
IF ( G(1).LT.0. ) GO TO 3261
IF ( G(2).GE.0. ) GO TO 3471
G(2)=-G(2)
H(2)=-H(2)
IF ( ABS(H(2)).LE.APH4(IOP) ) GO TO 3251
L=.5*ERFC1(0,-H(2))
GO TO 3461

3251 CONTINUE
L=. 5+RTPII*H (2)
GO TO 3461

3255 CONTINUE
L=. 5-RTPII*H (1)
GO TO 3461

3261 CONTINUE
G(1)=-G(l)
H(1) =-H(i)
IF ( G(2).LT.0. ) GO TO 3271
IF ( ABS(H(1)).LE.APH4(IOP) ) GO TO 3255
L=.5*ERFC1(0,Ti(1))
GO TO 3461

3271 CONTINUE
G(2)--G(2)
11(2) =-H (2)
IF ( ABS(H(1)).LE.APH4(IOP) ) GO TO 3291
IF ( ABS(H(2)).LE.APH4(IOP) ) GO TO 3281
L". 5"(ERFC (0,H (I))-ERFCI (0,H (2)) )
GO TO 3471

3281 CONTINUE
L=RTPII*H(2)-.5*ERF1(H(I))
GO TO 3471
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3291 CONTINUE
IF ( ABS(H(2)).LE.APH4(IOP) )GO TO 3295
L=.5*ERF1(H(2) ) RTPII*H(1)
GO TO 3471

3295 CONTINUE

GO TO 3471
3301 CONTINUE

GO TO 3101
3461 CONTINUE

SN=-SN
*1 IF ( SN.LE.O. )GO TO 3471

L=L-1.
3471 CONTINUE

IF ( B.GE.RSQ(IOP) )GO TO 3501
CN=G (1) *G (2) +H (1) *H (2)
AJO=ATAN2 (SN,CN)
CAPE=AJ 0
CAPU=. 5*MJO
M=1
F=O.
AJ1=H(2)-H(l)
CIRCM=AJ1
IF (IOP.EQ.3 )GO TO 3681
IF CIOP.EQ.2 )GO TO 3701
SUM=E (M) *MJ1

3481 CONTINUE
1441+1
H (2) -H (2) *G (2)

F=F+B
CAPV= (F*CAPE+T) /M
SUt4-SU?4+E (M)*CAPV
IF( M .GE. 5 ) GO TO 3491
CAPE-C IRCM
C IRCM-CAPV
GO TO 3481

3491 CONTINUE
P1 *L+EXP(- (B+ALNPI) ) *(CAPH-SUZ4)
GO TO 3621

3501 CONTINUE
PlwL

3621 CONTINUE
4IF K.NE.N )GO TO 3651

IP N.NE.1 )GO TO 3631
PtmABS (P+ABS (P1))
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RETURN
3631 CONTINUE

P=PP1
IF ( A.LT.0. )GO TO 3641
p=p+1.
RETURN

3641 CONTINUE
p=p-1.
RETURN

3651 CONTINUE
K=K+1
W=U
Z=V
U=X (K+1) -X (K)
V=Y (K+l) -Y (K)
BGD1 =BGD2
BGD2=SQRT ( 2. *(U*U+V*v))
P=P-P1
GO TO 3091

3681 CONTINUE
SUM=E3(M)*AJ1

3691 CONTINUE
M=M+1
H (2) =H (2) *G (2)
H (1) =H (1) *G (1)
T=H(2)-H(1)
F=F+B
CAPV= (F*CAPE+T)/M
SUMaSUM+E3 (M)*CAPV
IF ( M.GE.15 )GO TO 3491
CAPE=CIRCM
CIRCM=CAPV
GO TO 3691

3701 CONTINUE
SUM=E2 (M) *AJ1

3711 CONTINUE

H(2)=H(2)*G(2)

.4 F=P+B
CAPVu (F*CAPE+T) /k
SUI4=SUM+E2 (M)*CAPV
IP ( M.GE.10 )GO TO 3491
CAPE=CIRCM
ClRCN~tCAPV
GO TO 3711
END
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MASTER SUBROUTINE P-7

(FLOW CHART 5, page A-I 7)

SUBROUTINE P-7 is Used for Computing P(I) or an Arbitrary Polygon H *

CALL: P-7 (x, y, N, P, ICV, IND, IOP, A),

where:

x is the array of abscissas of the numbered points of H1. x is dimensioned at N + I.

y is the array of ordinates of the numbered rvoints of 1. y is dimensioned at N + 1.

N is the number of points specifying H, except if N = I when the IBND over an angular
region is computed. Three input poin;; are needed, for N = 1, given in counterclock-
wise order, with the vertex at point one.

P is the location where the value of P(HI) is returned.

ICV must be specified as an integer by Lhe user according to the list below:

ICV = 0 H is simple or of S type with no. SAR(s) (pages 12, 31). VALR-7 used alone.

ICV 1 H is in (S}. SORT !H used with VALR-7.

ICV - 2 1 is in (Il). SORT I is used to search for duplicate points" of H in in-
creasing digital oruer from point (2) to point (N). H1 is numbered with the
a-option (see page 14), so H1 is decomposed into simple polygons, S1,
S2, .... S1 . SORT II is not needed. VALR-7 is used to find p(S1 ), which are
summed in SORT I to g've P(H).

ICV -2 H is in (11). SORT I is used to search for duplicate points of H1 in decreasing
digital order from point (N - 1) to point (1). H1 is numbered with the
o-option.

ICV) > 3 1! is in t11). SORT I is used to search for duplicate points in increasing
digit order ot the numoered points from point (2) to point (N). I1 is
n -ibered with the aJ-option (see page 24), so 11 is decomposed into S type
Olemetts . . •L These elements require SORT 11 to eliminate any SCP,
so that VALR.7 can 1e used on each 5' to obtain p(81), which are summed
in SORT i to give P(iI).

ICV < 0 This has the same function as ICV 3, except that SORT I searches for
0-2 duplicate points of 11 in decreasing digital order of the numbered points

starting at point (N - 1) and finishing at point (1).

"See footnote I1 page I for definition of an arbitrary polygon.
"*Dupeicate points arc not to be confused with SIW(s), see paMe 43 and A-8.
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Generally ICV = 3 is preferable to ICV = 2 and ICV = -3 is preferable to ICV = -2,
because the computing time may be less since often fewer angular regions of HI will
need processing.

IND is an error indicator. It is normally set at zero. However, if VALR-7 is used alone
(ICV = 0) on a polygon containing PAR(s), then IND is set to two and, unless N = 1,
the result for P is probably wrong. This will never occur if SORT III or SORT I and
SORT II are used to eliminate SAR(s) before using VALR-7, provided II is in {S1.
If N is not set to one or greater than two, as an integer, then IND is set to three with
direct exit from VALR-7. Such N are not allowed.

lOP is an accuracy parameter. It is set by the user to 1, 2, or 3 for approximately 3, 6, or
9-decimal digits of accuracy in P(II).

A is the location where A(H) is returned. IAI gives the area of II. (See Appendix D,
also (46).)
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SUBROUTINE P7 ( X,Y,NBP,ICV,INDIOP,A )
DIMENSION X (i) ,Y (1)
IF ( NB.NE.2.AND.NB.GE.1 ) GO TO 3031
IND=3
RETURN

3031 CONTINUE
N=NB
IF (N .EQ.1) GO TO 3041
IF ( ICV .EQ.0 ) GO TO 3041
IF ( ICV.EQ.1 ) GO TO 3061
CALL SORT! ( X,Y,N,PICV,IND,IOP,A )
RETURN

3041 CONTINUE
CALL VALR7 ( X,Y,N,PIOP,AIND )
RETURN

3061 CONTINUE
CALL SORT3 ( XYN )
IF ( N .GT.2) GO TO 3071
A=0.
IND=0
P=o0.
RETURN

3071 CONTINUE
CALL VALR7 ( X,Y,NP,IOP,A,IND )
RETURN
END
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SUBROUTINE SORT I (See Appendix A)

(FLOW CHART 6, page A-18)

Subroutine SORT I Used to Decompose Hl Into S or S Type Elements

CALL: SORT I (x, y, N, P, ICV, IND, IOP, A),

where:

x is the array of abscissas of the numbered points specifying the polygon, HI. x is dimen-
sioned at N + 1.

y is the anray of ordinates of the numbered points specifying the polygon, IH. y is dimen-
sioned at N + 1.

N is the number of points numbered on the polygon.

P is the location where P(HI) is returned.

ICV is a user specified integer according to the listing below:

ICV = 2 for a polygonal element of the class (HI (see page 1). SORT I searches for
duplicate points of 11 in increasing digital order from point (2) to point (N).
H1 is specified by numbering points of H1 according to the c-option. (See
page 14.) Ii is decomposed into S, .... S3. VALR-7 is called to compute
p(Si). These quantities are summed to give P(H).

ICV -2 for a polygonal element of (1H). SORT I searches for duplicate points of 11
in decreasing digital order from point (N - 1) to point (1). II is numbered
according to the o-option.

ICV 3 for a polygonal element of (H1). SORT I proceeds in the same way as for
ICV = 2, except that n is numbered according to the P-option rather than
the ot-option (see page 24). The 0-option numbering requires that SORT I1
be u&cd to eliminate SCIP in any of the S elements obtained from the
decomposition of 11 by SORT I (see Fllow Chart 6. page 'k-18). 11 is de-
composad after using SORT I! into S' .... S). VALR-7 is called to conm-
pute each p(Si). The p(S1 ) are summed to give P(0I).

ICV < 0 for a polygonal element of (II). SORT I proceeds in the same way as for
S-2 ICV = -2 except that II is numbered according to the 13-option rather than

the ct-option. The 13-option numbering requires that SORT I1 be used to
eliminate SCP in any of the elenients obtained from the decomposition
of ii by SORT 1.

If N does not differ using the or or 0-option, then ICV t2 is preferable to ICV * ±2. How-
ever, if N is reduced by using the 13-option, then lCV # ±2 is preferable since fewer calls to VALR-7
will be needed.
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SUBROUTINE SORT I (Continued)

IND is an error indicator. Normally it is set to zero. If a 7r-angular region, PAR, is detected

by VALR-7, IND is set to two, and p(S) is very likely wrong, unless N = 1; consequently
also P(IH) will be wrong. The routine P-7 is designed, if properly used, so that this
cannot happen under the a-option, nor can it occur under the j-option since SORT II
removes SCP before a call is made to VALR-7 (see Flow Chart 6). If N 0 1 or is not
greater than two, as an integer, IND is set to three and an exit is made. Such values
of N are not allowed.

IOP is set by the user to 1, 2, or 3 to obtain approximately 3, 6, or 9-decimal-digit accuracy,
respectively, for P(fl).

A is the location where the A-function value for II is returned. The area of II is given
by [A! (see StMP 7, pages 9, F-37).
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SUBROUTINE SORT1 ( X,YN,PICV,INDIOP,A
DIMENSION X(1) ,Y(1)
DATA CST/5.E-14 /
P=0.
A=O.
IC=IABS (ICV)
IF ( ABS(X (N )-X (1)).GT.CST) GO TO 2311
IF ( ABS(Y (N )-Y (1)).GT.CST) GO TO 2311
GO TO 2321

2311 CONTINUE
N=N+I

2321 CONTINUE
X(N)=X(1)
Y(N)=Y(l)
JIST=2
I1=2

2331 CONTINUE
IF ( ICV.GT.0 ) GO TO 2361
NUMPI =N+I
DO 2351 JI=J1ST,N
J =NUMPI-JI
JpI=J+I
DO 2341 K=JP1,N
IF ( ABS(X (J )-X (K )).GT.CST ) GO TO 2341
IF ( ABS(Y (J )-Y (K )).GT.CST ) GO TO 2341
IST=J
IEN=K
J1ST=N-K+I
IF ( K.EQN ) J1ST=2
LST= IST+1
GO TO 2531

2341 CONTINUE
2351 CONTINUE
2361 CONTINUE

DO 2521 I=II,N
IMI=I-1

DO 2511 KI=1,IM1
K)I-K1
IF ( ABS(X (I )-X (K )).GT.CST ) GO TO 2511
IF ( ABS(Y (I )-Y (K )).GT.CST ) GO TO 2511
IST=KIEN=I

LST= IST
IF ( K.NE.1 ) GO TO 2531
Ilv2
LST=LST+1
GO TO 2531
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2511 CONTINUE
2521 CONTINUE
2531 CONTINUE

NUM1=IEN-IST
NSAV=NUM1
IF ( NUM1.LE.2 ) GO TO 2575
IF ( IC.EQ.2 ) GO TO 2565
CALL SORT2 ( X (IST),Y (IST),NUM1
IF ( NUMI.LT.3 ) GO TO 2575

2565 CONTINUE
CALL VALR7 ( X(IST),Y(IST),NUMI,SMP,IOP,SMA,IND
IF ( IND.EQ.2 ) RETURN
A=A+SMA
P=P+SMP
X (IST) =X (IEN)
Y (IST) =Y(IEN)

2575 CONTINUE
IF ( IEN.NE.N ) 0O TO 2577
IF ( IST.EQ.1 ) RVEURN
X (IST) =XýN)

Y (IST) =Y (N)
N=IST
GO TO 2331

2577 CONTINUE
N=N-NSAV
DO 2581 LmLST,N
K-r +NSAVi X (L) oXU

Y(L) MY (K)
2581 CONTINUE

GO TO 2331
2END
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SUBROUTINE SORT I1 (See Appendix A)

(FLOW CHART 7, page A- 19)

Subroutine SORT II Used to Eliminate Successive Colinear Points in

CALL: SORT II (x, y, M),

where:

x is the array of abscissas of the numbered points of the polygon S. The array is dimensioned
at M. Upon return to the calling program SORT 1, the array of abscissas will be reduced
by the number of points deleted, because of SCP. The x array is compacted or closed up.

y is the array of ordinates of the numbered points of the polygon S. The array is dimen-
sioned at M. Upon return to the calling program SORT I, the array of ordinates will be
reduced by the number of points deleted, because of SCP. The reduced y atray is

compacted or dosed up.

M is the number of points of the polygon S that are numbered. Upon return to the calling
program, SORT I. M will be reduced by the number of successinie cotincar points that
were elbiinated.
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SUBROUTINE SORT2 ( X,YjN
DIMENSION X (1) 1,Y(1)
DATA CST/4.9E-27/
K=l
L=2
U=X (1) -X(N)
V=Y (1)-Y (N)

301D2=U*U+V*V
301CONTINUE

W=X(L)-X(1)
Z=Y(L)-Y(1)
Dl=W*W+Z*Z
T=V*W-U* Z
SN= (4. *T*T)/ (D1*D2)
IF ( SN.GT.CST )GO TO 3071
L=L+ 1
IF ( L.LT.N )GO TO 3051.
N=2
RETURN4

3071 CONTINUE
K=2
i.F ( L.NE.2 )GO TO 3081
L=3
GO TO 311.1

3081 CONTINUE
LM2 =L- 2
ii=N- (LM2)
DO 3091 I=.1#N
£1 LM2 +-
X(I) =X(i1)
Y(I) =Y(I1)

:3091 CONTINUE
3101 CONTINUE

LnK+1
W=X (K) -X (K-1)
Z =Y (K) -Y (K-i1)
D1=W*W+Z*Z

3111 CONTINUE
U=X(L)-X(K)
V=Y (L) -Y (K)
D2 =U*U+V*V
T=V*W-U*Z
SN- (4. *T*T)/ (Dl*D2)
IF ( SN.GT.PCST )GO-TO 3121
L=L+1
IF ( L.LE.N )GO TO 3111

X(K)=X(N)
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N=K
GO TO 3151

3121 CONTINUE
IF ( L.iEQ.(K+I) ) GO TO 3171
LM2=L-2
13=LM2- (K-I)
N=N-13
DO 3131 I=K,N
I1=I3+I
X(I) =X(Ii)
Y(I) =Y(I1)

3131 CONTINUE
K=K+1
IF ( K.LT.N ) GO TO 3101

3151 CONTINUE
U=X (N) -X (N-i)
V=Y (N) -Y (N-I)
D2=U*U+V*V

3161 CONTINUE
W=X (1)-X (N)
Z=Y (!)-Y (N)
DI=W*W+Z*Z
T=V*W-U*Z
SN-(4.*T*T)/(DI*D2)
IF ( SN.LE.CST ) GO TO 3165
RETURN

3165 CONTINUE
N=N-.
RETURN

3171 CONTINUE
K=K+1
IF ( K.GE.N) GO TO 3161
DImD2
W=U
Z=V
L=K+I
GO TO 3111
END
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SUBROUTINE SMP-7

(No flow chart given)

SMP-7 is Used to Compute the a-Function*

CALL: SMP-7 (M, a, x, y)t,

where:

M is the number of input points specifying the polygon.

a is the location to which the a-function is returned.

x is the array of input abscissas. Dimensioned at M.

y is the array of input ordinates. Dimensioned at M.

(See Appendix D for value of a in the wz-plane.)

"Tie expcession used to compute the a.function is given by

a - xi(yifl Yi--). YO YN, YN÷1 Yl (SeeAppendix D)
"- I

(The area of the input polygon ib given by I al.)
tM, a are used hi place of N, A to avoid confusion with the latter quantities In P.7 when it calls SORT 1, and

SORT I in turn calls VALR.7. See Flow Cuarts 5 and 6, pages (A.-1, 18).
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SUBROUTINE SMP7 (NBIANSIX,Y
DIMENSION X (1) ,Y(1)
IF ( NB.GT.3 )GO TO 3151

RETURN4
3151 CONTINUE

NBM1=NB-1
ANS=X(.i)*(Y(2)-Y(NB) )+X(NB)*(Y(1)-Y(NBM1))
DO 3161 I=2,NBM1

13161 CONTINUE
ANS=.5*ANS
RETURN
END
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APPENDIX G

TRIANGLE CHECKOUT PROGRAM WITH DREZNER.

(No Flow Chart)
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SUBROUTINE DZ

TRIANGLE CHECKOUT PROGRAM with DREZNER (See page 47)

CALL: DZ (x, y, N, P, A),

where:

x is the array of abscissas of the points specifying polygon H. x is dimensioned at N.

y is the array of ordinates of the points specifying H. y is dimensioned at N.

N is the number of points specifying H.

P is the location where P(H) is returned.

A is the location where A(rH) is returned.

This subroutine decomposes Hl into N -2 triangles Aj with the vertices given by (1), (j),
(j + 1), j = 2, ... , N - 1. P(Aj) is computed by DZ - 1 and A(Aj) by SMP-7; the results are summedP- P(Aj), A (n)= yN A (Aj).
in DZ, i.e., P(1l) = -- A

This routine requires computation of erf (x) and erfc (x) which are defined on pages 5, 28 and
29. We have

ERF1(x) = erf (x), ERFC 1 (0, x) erfc (x),

were the subroutine listings for these functions are given on pages F- 12 to F- 15. They are identical
to the NSWC (DL) math library functions ERF and ERFC as of June 1980 which are based on the
7-eference below.

Cody, W.J., Rational Chebyshe, Approximatiomy for the Error Function, Mathelaitica of

Computation, v. 23 (1969), pp. 631-637.
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SUBROUTINE DZ (X,YN,ANS,A ,IOP)
DIMENSION X(1),y(1) ,U(4) ,V(4)
A=0.
ANS=O.

4IF ( N.NE.1) GO TO 3031
CALL DZ1 ( X,Y,N,ANSIOP,A)
RETURN

3031 CONTINUE
IF ( N.LT.3 )RETURN

¶ L=3
U(1)=X(1)
U (2) =X (2)
U (3)=X (3)
V(1)=Y(1)

fl~V (2) =Y (2)
V(3)=Y(3)

3041 CONTINUE
CALL DZ1 (U#V,3rANS1*IOP#Al
Au=A+A1
ANS=ANS+ANS 1

A3061 CONTINUE
L-L+1
IF ( LIGT.N )RETURN
U(2)rnU(3)
V(2)-V(3)
U(%3) uX(L)
V(3)aY(L)
GO TO-3041
END
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SUBROUTINE DZ-I

Computes P(Aj) for DZ

CALL: DZ-l (x, y, N, P, lOP, A)*,

where:

x is the array of abscissas of the points specifying a simple polygon S.

y is the array of ordinates of the points specifying a simple polygon S. x and y are dimen-
sioned at N + 1.

N is the number of points specifying S.

lOP is specified by the user.

lop = I for 3-decimal-digit accuracy for P(S).

lOP 2 for 6-decimal-digit accuracy for P(S).

lOP = 3 for 9-decimal-digit accuracy for P(S).

P, A are the locations where the values of P(S) and A(S) are returned, respectively.

For each angular region a of S specified by R, O1, 02, DZ-l computes tile corresponding
Drezner arguments ni, k, p as indicated in 12, Eq. 601. Subroutine PLAN uses Drezner's algorithm
to determine which equatioli of [ t I is used to find P(a). Functions EQ 7, EQ 8, EQ 9 and EQ 1 I of
PLAN compute P(a) using equations 7, 8. 9, and 11, respectively, of (t). Subroutine BPHI uses
equation 5 of it) to compute P(a).

*D'Z-I cintputes P(S) by DWezne,'s procedure which is desctibed In 121.
*tZ. Di•m.;, u"UvioH of the &iate Normd Inetelr. Mahemm sof Comouabion. v. 32 (1978). pp. 277-279.
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SUBROUTINE DZ1 (XIY,N,ANS,IOP,A)
DIMENSION X(1) ,Y(1) ,H(2) ,APH1(3)
DATA ( APH1(I),I=1,3 ) /
12.02E-7,2.08E-13,2.72E-19/
DATA RT2 / 1.4142 13562 3731/
DATA TWOPI/6.2831 85307 17958/
K=1
ANS=0.
IF ( N.NE.1 )GO TO 3071
W=X(2)-X(1)
Z=Y(2)-Y(1)
U=X(3)-X(1)
V=Y(3)-Y(1)
PSI1=(V*W-U*Z)
IF ( PSI1.GE.0. )GO TO 3081
ANS=+1.
Ti =W

W=U

Tl=V
v=z

GO TO 3081
3071 CONTINUE

X (N+i)zX (1)
Y (N+1)mY (1)
CALL St4P7 ( NA,X,Y
IF ( ABS(A).LE.0.6512E-1O RETURN
W=X(1)-X(N)
Z=Y(l)-Y(N)
U=X(2)-X(1)

3081 CONTINUE
BGD1.SORT(2.* (W*W+Z*Z))
BG02-SQRT(2.*(U*U+V*V))

3151 CONTINUE
Ba.5*(X(K)*X(K)+Y(K) 'Y(K))
IF ( B.GT.APH1(IOP) )GO TO 3155
TleV*W-U*Z
T2-U*W+V*Z
PHIKeATAN2(TltT2
At4Sl*PHIK/TWOPI
GO TO 3211

3155 CONTINUE
RTh=(2. * (W*V-U*Z) )/(BGD1*BGD2)
H (1) tz(-Y (K) 'W+X (K) *Z) /BGD1
H(2)f-(-Y(K)*U+X(K)*V)/BGD2
SGNF1.
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IF (RTR.GE.O. )GO TO 3161
RTR=-R.TR
SGN=-1.

H(1)=H(2)
H(2)=Tl

3161 CONTINUE
AM =-RT2*H(2)
AK =RT2*H(1)
RHO= (-2. *(W*U+V*Z) )/ (BGD1*BGD2)
IF (ABS(RHO).LT.(1.-l.E-13) )GO TO 3181
IF (RHO.LT.O. )GO TO 3171
Tl=AM
IF ( AK.LE.AM )Tl=AK
T2 =-T1/RT2
ANSl=.5*BRC1(O,T2)
GO TO 3191

3171 CONTINUE
ANS1=O.
IF ( AK.LE.-AM )GO TO 3191
Tl=-AK/RT2
T2=AM/RT2
ANS1=. 5* (ERFC1 (O.Tl) -ERFC1 (OT2))
GO TO 3191

3181 CONTINUE
CALL PLAN ( AM #AK #RHO #ANSltIOPtRTR)

3191. CONTINUE
ANS1=SGN*ANS1

3211 CONTINUE
IF (K.NE.N )GO TO 3651
IF (N.NE.1 )GO TO 36331
ANS-ABS (ANS-ABS (ANS1))
RETURN

3631 CONTINUE
ANS~aANS-ANS I
IF ( A.LT.O. )GO TO 3641
ANS=ANS+1.
RETURN

3641 CONTINUE
ANS-ANS- 1.
RETURN

3651 CONTINUB
K=K+l
KPX=K+l
"-=U

U-X (KP1) -X (K)
VrY (KP1) -Y (K)
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BGD1=BGD2
BGD2=SQRT (2. *(U*U+V*V))
ANS=ANS-ANSI
GO TO 3151
END
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SUBROUTINE PLAN ( H,AK,RANSIOP ,RTR )
ANS=O.
IF ((H*AK*R).GT.0.) GO TO 3155
IF ( H.GT.O. ) GO TO 2031
IF ( AK.GT.O. ) GO TO 2021
IF ( R.GT.O. ) GO TO 2011
ANS=BPHI(HAKR,IOP,RTR )
RETURN

2011 CONTINUE
IF ( AXK.NE0. ) GO TO 2061
GO TO 2023

2021 CONTINUE
IF ( R.LT.O. ) GO TO 2041

2023 CONTINUE
ANS=EQ9(HAK,R,IOP,RTR )
RETURN

2031 CONTINUE
IF ( AK.EQ.0. ) GO TO 2051

2035 CONTINUE
IF ( AK.LT0. ) GO TO 2061

2041 CONTINUE
ANS=EQ7(H,AKR, IOPRTR
RETURN

2051 CONTINUE
IF ( R.GT0. ) GO TO 2061
GO TO 2041

2061 CONTINUE
ANSoEQ8(H,AK,R,IOP,RTR )
RETURN

3155 CONTINUE
ANS-EQ11(HAKR,IOPRTR )
RETURN
END
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FUNCTION EQ7 (H,AKR,IOP,RTR
DATA RT2/1.4142 13562 3731/
T=-H/RT2
Tl=-AK/RT2
EQ7=BPHI(-H,-AK,R,IOP,RTR
1+.5*(ERFC1(O,T)+ERFC1(G,T1))~j
RETURN
END

FUNCTION EQ8 (H,AKR,IOP,RTR)
DATA RT2/1.4142 13562 3731/
T .-AK/RT2
EQ8=-BPHI (-HAK,..R,IOF,RITR)4.5*ERPC1(OT)
RETURN
END

FUNCTION 609 (FI.AKR,IOPoRTII
DATA RT2/1.4142 13562 3731/
Tce-H/W~r2

RE'rUk
END

G '4
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FUNCTION EQ11(H,AX,RIOPRTR)
DATA RT2/1.4142 13562 3731/
CST=SQRT(H*H-2. *R*H*AK+AJ(*Aj
Ti R*H-AK

T2=SIGN (C1,H)
T1=(T1*T2) /CST
T4=1.
T3 =H*AK
T5=SIGN (T4 ,T3)
TDEL=(1.- T5)*.25
T3=R*AK-H

T2=S IGN (C 1, AR)
T3=(T3*T2) /CST
RTR1= (RTR*ABS (H) )/CST
RTR3= (RTR*ABS (AK) )/CST
IF ( .GT.0. )GO TO 2031
IF (T1.GT.0. )GO TO 2023
T4zuBPHI (H,0. ,T1.IOP,RTR1)
GO TO 2051

2023 CONTINUE
T4=EQ9(H,0. ,T1,IOPRTR1)1~ GO TO 2051

2031 CONTINUE
IF ( T1lAT.O. )GO TO 2041
T4=.5-BPHI(-H,0.#-T1,IOP,WPPJ.
GO TO 2051

2041 CONTINUE
Cl-,-H/RT2

2051. CONTINUE
IF (AK.GT.0. )GO TO 3031
IF (T3.GT0.O) GO TO 3023
T6ftBPHI (AK ,0. T3, IOP,RTR3)
GO TO 3051

3023 CONTINUE
§ T6-EQ-9(AK,0..,T3,IOP,,RTR3)

GO TO 3051
3031 CONTINUE

IF ( T3.LT.O. )GO TO 3041
T6ft.5-BPHIl(-AK#0.*-T3,IOP,RTR3
GO TO 3051

3041 CONTINUE
C1--AK/RT2
T6=BPIII(-AK#0.,T3#IOPPRTR3 )-.b5*EP1(C1)

3051 CONTINUE
E0!1=T4+,T6-TDEL
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RETURN
END
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FUNCTION BPHI ( H,AK,R ,IOP,RTR )
DIMENSION A(21),X(21),LLO(6),LHI(6)
DIMENSION EPS1(11i)
DIMENSION EPS3 (11)
DATA ( A(I),I=1,8 ) /

1 4.4602 97704 66658E-1, 3.9646 82669 98335E-1,
2 4.3728 88798 77644E-2, 2.4840 61520 28443E-1,
3 3.9233 10666 52399E-1, 2.1141 81930 76057E-1,
4 3.3246 66035 13439E-2, 8.2485 33445 15628E-4 /

DATA ( X(I),I=I,8 ) /
1 1.9055 41497 98192E-I, 8.4825 18675 44577E-1,
2 1.7997 76578 41573E+0, 1.0024 21519 68216E-1,
3 4.8281 39660 46201E-I, 1.0609 49821 52572E+0,
4 1.7797 29418 52026E+0, 2.6697 60356 08766E+0 /

DATA ( A(I),I=9,16 ) /
1 1.3410 91884 53360E-1, 2.6833 07544 72640E-1,
2 2.7595 33979 88422E-1, 1.5744 82826 18790E-1,
3 4.4814 10991 74625E-2, 5.3679 35756 02526E-3,
4 2.0206 36491 32407E-4, 1.1925 96926 59532E-6 /

DATA ( X(IW,I=9,16 ) /
1 5.2?78 64393 18514E-2, 2.6739 83721 67767E-1,
2 6.1630 28841 82402 E-1, 1.0642 46312 11623E+0,
3 1.5888 55862 27006E+0, 2.1839 21153 09586E+0,
4 2.8631 33883 70808E+0, 3.6860 07162 72440E+0 /

DATA ( EPS1(I),I=I,3 ) /-8.,-12.,-20. /
DATA PI / 3.1415 92653 58979 /
DATA ( LLO(I),I=1,3 ) / 1,4,9 /
DATA ( LitI(I),I=I,3 ) / 3,8,16 /
DATA RT2 / 1.4142 13562 3731/
DATA ( EPS3(I),IX=,3 ) / 2.E-5,2.E-7,2.E-10 /
ILO=LLO (IOP)
IHI=LHI (IOP)
EPS=Epsl (IOp)
CST= T2*RTR
BPHI-0.
HI-H/CST
AKI=AK/CST'i SUM=~0
DO 3361 I-ILOIHI
SUM1-0.
DO 3351 J=ILOIHI
TI=Hl* (2.*X (1)-HI) +AKI* (2.*X (J)-AKI)

1 +2.*R* (X (I)-H1) * (X (J)-AKi)
IF ( TI.LT.EPS ) GO TO 3351
S'IMI-SUMI+EXP(TI) *A(J)

3351 CO4TINUE
SUM=SUM+A (I) *SUM1

3361 CONTINUE
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BPHI= (SUM*RTR)/PI
RETURN
END
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