
AD-AL02 386 TRW DEFENSE AND SPACE SYSTEMS GROUP
REDONDO BEACH CA

F/6 9/2
JOVIAL (J73) COMPILER VALIDATOR.(U)

JUN 81 R M HART. M S MCCLANAHAN F30602-79-C-0221
UNCLASSIFIED RAC-TR-81-128 MLm°hhIIIIEEEEEE, EEEEEE...EoE

mohEmhhEEmhhEE
mmmmEmmmm
mhmhhhEEmhEEEI

RADC-TR-8 1-128
Final Technical Report
June 1981

JOVIAL (J73) COMPILER VALIDATOR
C' TRW Defense & Space Systems Group

Ruth M. Hart
Marilyn S. McClanahan

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

A

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441

'E-
-JU

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (STIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-81-128 has been reviewed and is approved for publication.

APPROVED:

CLE ENT D. FALZARANO
ProJect Engineer

APPROVED:
4

JOHN J. MARCINIAK, Colonel, USAF
Chief, Information Sciences Division

FOR THE COI4MANDER: Z d

JOHN P. HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removea from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC.(ISI) Griffiss AFB NY 13441. This will assist .us in
maintaining a current mailing list.

Do ,not return this copy. Retain or destroy.

UNCLASSIFIED

REPOT DC~mNTATON AGEREAD INSTRUCTIONS
BEFORE COMPLETING FORM

2. GOVT ACCESSION No. 3. RECIPIENT'S CATALOG NUMBER

L ?JOVIAL 0J73) COMPILER V.ALIDATOR, Augto~hfco-tp~.

0. CNTRACT OR GRANT NUMDERfs)

Marilyn S./McClanahan / F00-9C02

9. ERFRMIG OGANZATON AMEANDAOOESS10. PROGRAM ELEMENT. PROJECT. TASK
PERFRMIG OGANZATON AMEANDADDESSA REA A WORK UNIT NUN""R

TRW Defense and Space Systems Group 63728F ,-.

One Space Park 230201(~J-
Redondo Beach CA 90278 ______________

11. CONTROLLING OFFICE NAME AND ADDRESS 1* . REPORT DATE

Rome Air Development Center (ISIS) ;JunaX*"1_
Griffiss AFB NY 13441 F102NME O AE

14. MONITORING AGENCY NAME 6 ADDRESS(it different from Controllind Officii) IS. SECURITY CLASS. (of this repsorf)

Same UNCLASSIFIED

IS. OECL ASS)FICATI ON/ DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Report)
N HDL

Approved for public release; distribution unlimited.

17. DISTRIBUTIOM STATEMENT (of the abstract entered in Block 20. If dif ferent from Report)

Same

10. SUPPLEMENTARY NOTES

RA.DC Project Engineer: Clement Falzarano (ISIS)

19. KEY WORDS (Cotitinue on reverse sid* it necessary and Identify by block number)

JOVIAL, JOVIAL (J73), MIL-STD-1589A, Compiler Testing, Compiler Valida-
tion, Validator, SEMANOL, SEMANOL (76), interpreter, Test Effectiveness
Measurement Facility, software measurement, software quality, test
effectiveness, computer programs, software.

20. ABSTRACT (Continue osn reverse side Ii necesemy arid identify by block nmrber)

_/is report describes the results of a project whose goal was to develop
a methodology for the systematic testing of compilers. Three major
products were developed: a compiler validator for the JOVIAL (J73) pro-
gramming language, a SEMANOL (76) specification of JOVIAL QJ73), and a
Test Effectiveness Measurement Facility. In addition, the SEMANOL (76)
Interpreter was modified to support this effort. The programming languag
JOVIAL 0J73) was extensively analyzed. Appendix A contains documentatio

DD ','0."MI 1473 EDITION OF 1 NOV1. 65 OBSOLETE UNCLASSIFIED (Cont 'd)

SECURITY CLASSIFICATION Of THIS PAGE (3fen Dots Entered)

. .

UNCLASSIFIED

SECUNITY CLASSIFICATION Or THIS PAGi(1IIU, Da gntetd)

Item 20 (Cont'd)

-of the SEMANOL specification, Appendix B contains a listing of the
SEMANOL specification, and Appendix C contains revised documentation
for the SEMANOL Interpreter. Additional details on the Validator and

the Test Effectiveness Measurement Facility can be found in their

respective Users Manuals.

/

j 4

UL'CLASS IF I ED

SZCUORITY CLASSIVICATIOU Of 1'" P IAG IE(n Date Enterd)

-... . .. %.* '

TABLE OF CONTENTS

Page

INTRODUCTION 1

ANALYSIS OF JOVIAL(J73) 4.....................4

TRW's Language Change Requests 5................
Summary 12

THE JOVIAL(J73) VALIDATOR 15

Philosophy 16
Organization 18
Contents 25
Testing 28

THE SEMANOL SPECIFICATION OF JOVIAL(J73) 29

An Introduction to SEMANOL(76) 30
Modifications to SEMANOL(76) 36

THE TEST EFFECTIVENESS MEASUREMENT FACILITY 38

Preparing the SEMANOL(76) Specification 40
Preparing the Test Cases 42
Adding Test Results to the Result Data Base 43
Inquiring About Test Results in the Result Data Base 44

SUMMARY 45

APPENDIX A: SEMANOL(76) SPECIFICATION OF JOVIAL(J73) 47
DOCUMENTATION

General Structure 47
Compilation Semantics 48
Lexical Transformation 49
Context-Free Parse 51
Constraint Enforcement 53
Scope of Names 55
Types 57
Representation of Values 61
Execution Semantics 65
Formula Evaluation 66
Data Storage 70
Program Flow of Control 74
Implementation Dependencies 84
Summary of Specification Effort 85

iii

.. ..L-, "... - " -:*' -iT. - - - .- L . ;,4...

INTRODUCTION

In 1976-1977, TRW performed a research study (Contract F30602-76-C-0255) for

Rome Air Development Center (RADC) on methods of Formal Compiler Testing. This

study investigated the nature of compiler testing, the potential advantages to

be realized through automation of the process, and the use of SEMANOL, TRW's

metalanguage for describing the syntax and semantics of programming languages,

as the basis for such automation. A design was produced for a semi-automatic

test generation system that could be implemented with some further research.

When the current project was first proposed in January, 1978, with the research

goal of developing a methodology for systematic testing of compilers, the

intent was to design a SEMANOL-based methodology for measuring the quality of a

validator and a method of using these measurements to guide validator improve-

ment; that is, it was envisioned as a logical counterpart to the prior project.

Test cases were to be generated during the course of the project, but they were

not expected to be important in and of themselves; rather, their importance was

as input to the proposed "Test Effectiveness Measurement Facility". In fact,

the possibility of using the automated test generation tools designed in the

previous contract to create the test cases was considered. JOVIAL(J73)

(actually J73/I) was proposed as the prototype language. In 1975, TRW had

produced a SEMANOL specification of this language for RADC (Contract

F30602-76-C-0238). This SEMANOL specification would have to be updated, as

both the SEMANOL and JOVIAL(J73/I) languages had since been modified (to

SEMANOL(76) and MIL-STD-1589, respectively), but these revisions were expected

to be minor.

By the time the contract for this project was actually awarded in August, 1979,

the circumstances had changed substantially. JOVIAL(J73/I) had been merged

with another dialect of JOVIAL, JOVIAL(J3B), to produce a new JOVIAL(J73),

defined in MIL-STD-1589A; although this new language retained its old name, it

was actually a very different language. This had two major implications for

the project. First, it meant that the original SEMANOL specification of

JOVIAL(J73) could no longer be used; instead, an entirely new specification

would have to be written. Secondly, the test cases themselves assumed a new

1J

importance; they could be used to test conformance of compilers for the new

language to MIL-STD-1589A. As a result, the development and use of the Test

Effectiveness Measurement Facility evolved naturally into a minor part of the

project, rather than its major focus.

A second change occurred shortly before the start of the project; namely, RADC

began charging for use of their H-6180 Multics computer. Up until this time,

unlimited Multics resources had always been available for TRW's SEMANOL

projects; for this project, on the other hand, only $50,000, with a maximum of

2900 blocks of file storage, could be allocated. These resources would not be

nearly sufficient to run the set of JOVIAL(J73) test cases through the SEMANOL

Interpreter, as had been planned; the SEMANOL Interpreter system is extremely

slow, and the output from the Interpreter is quite bulky. This presented

several problems. If the SEMANOL specification could not be used for debugging

the test set, another method had to be found. Since the JOVIAL(J73) JOCIT

compiler was scheduled for delivery about the time this project was to begin,

it was decided in contract negotiations that it, rather than the SEMANOL

specification, should be used to debug the Validator. The JOCIT compiler is

hosted on an IBM 360/370, and it would be run on a TRW computer; thus it made

little sense to develop the test cases at RADC, and then transport them to TRW.

In addition, if the entire test set could not be processed through the SEMANOL

specification, it would not be possible to determine its quality using the Test

Effectiveness Measurement Facility. Thus, the Measurement Facility took on an

even smaller role.

Thus, when the project began, its aims ad changed significantly. Although

the overall goal remained the same, that is, to develop a methodology for the

systematic testing of compilers, there was now considerably more interest in

the products (especially the Validator itself) and less interest in the

research. In approximate order of importance, the goals were now:

* To develop a well-designed set of JOVIAL(J73) programs
which would comprehensively test conformance of JOVIAL(J73)
compilers to MIL-STD-1589A;

* To write a SEMANOL specification of JOVIAL(J73);

2

* To develop a facility for measuring the quality of test sets
for any language, given the existence of a SEMANOL specifica-
tion for that language.

It should be noted that the connection between these three tasks had become

rather tenuous. Although the process of writing the SEMANOL specification

would suggest difficult areas of the language and thus possible tests, and

though the design of the Test Effectiveness Measurement Facility would place

constraints on the format of the SEMANOL specification, the three tasks had

become essentially independent.

The next section of this report describes the results of the comprehensive

analysis of JOVIAL(J73) that was performed as a prerequisite for writing both

the test cases and the SEMANOL specification. Subsequent sections describe

the Validator, the SEMANOL specification, and the Test Effectiveness Measure-

ment Facility. The final section summarizes the achievements of this project

and the problems that were encountered, and suggests directions for the future.

3

ANALYSIS OF JOVIAL(J73)

A detailed analysis of the JOVIAL(J73) language was undertaken prior to

construction of both the Validator test cases and the SEMANOL specification of

JOVIAL(J73). The major goal of this analysis was identification of potential

problem areas of the language - difficult-to-implement features as well as

ambiguities - which should be especially well-tested in a Validator. In

addition, in order to describe the semantics of a programming language in

SEMANOL, it is necessary to fully understand the semantics of that language.

Thus, a secondary goal of the analysis was to become JOVIAL(J73) "experts".

Although TRW was very familiar with JOVIAL(J73/I), having performed two prior

analyses of that language, there were many changes and several entirely new

features in the revised JOVIAL0J73) language. Furthermore, JOVIAL(J73) did

not go through a rigorous design phase, as did Ada. Rather, it was created in

a very short time frame, essentially as a merger of two existing dialects of

JOVIAL, J73/I and J3B. There was little time to determine how the two

languages interacted, and, in particular, whether there were areas of conflict.

Therefore, it was especially important to examine the new features of the

language, such as fixed point arithmetic, strong typing, and pointers.

During the course of this project, several project members have become very

active on the Language Issues Committee of the JOVIAL Users Group, and our

analysis has largely been performed in the context of that committee. TRW is

one of only three companies other than the major compiler developers to be

regularly represented on the Committee; our perspective, as language experts

who are not also compiler writers, is unique. Since August, 1979, the

Language Issues Committee has considered almost 200 Language Change Requests,

and has accepted nearly 100 LCRs. The relationship of this project to the

Committee's work has been mutually beneficial:

We were able to determine, by examining the early Language
Change Requests, which areas of JOVIAL(J73) were likely to
contain ambiguities and require changes; this information guided
our efforts both in writing test cases and developing a
SEMANOL specification.

4

e We were able to receive first-hand information from the language
designers on how certain ambiguities should be resolved.

e We have carefully scrutinized dll Language Change Requests

submitted to the Committee and have helped to decide whether
they should be approved. For example, many of the more recent

Language Change Requests have proposed major rewordings to
MIL-STD-1589A/B, which sometimes inadvertently change the
meaning of the standard; we have often been able to detect
such subtle shifts in meaning, and thus we have played an

important role in stabilizing the language.

Members of the project have themselves proposed 38 Language
Change Requests, of which some have been accepted, some have

been rejected for a variety of reasons, and many have not yet
been considered. Those which have been approved or which are

still pending are summarized later in this section.

TRW's Language Change Requests

The Language Change Requests (LCRs) that have been presented to the Language

Issues Committee of the JOVIAL Users Group by the members of this project are

summarized below. Some pointed out ambiguities in JOVIAL(J73) that needed to

be resolved before either a formal semantic specification could be written or

test cases generated for the pertinent sections of the language. Other LCRs

identified deficiencies in the language and proposed solutions; some of these

were rejected because they were not upward compatible with MIL-STD-1589A,

rather than because they lacked merit.

All of the Language Change Requests which have been adopted or are still

pending are described here, with the exception of four LCRs (TRW #1, T1W #10,

TRW #24, and TRW #36) which point out typos in MIL-STD-1589A or MIL-STD-1589B.

In addition, those which were superseded by other LCRs or which were dropped

for reasons of non-upward-compatibility are also included. For each LCR, the

following information is provided:

" Title and Number (TRW #, LCR # if assigned)

" Statement of Issue

" Proposed Resolution (summary)

" Status as of January, 1981

5

1. Semantics of Parallel Tables (TRW #2, LCR L140.1)

Issue: A prior change to MIL-STD-1589A (LCR L65.1) caused one
constraint to be redundant and created a new constraint
in a Semantics section of the standard.

Resolution: Delete the redundant constraint; move the new
constraint from Semantics to Constraints.

Status: The redundant constraint was retained; the other
constraint was moved; incorporated into MIL-STD-1589B.

2. Storage of Non-Tight Tables (TRW #3, LCR L141.1)

Issue: The meaning of the absence of a <structure-specifier> T
for a table is not sufficiently defined.

Resolution: Add a new semantics paragraph to Section 2.1.2.2
of MIL-STD-1589A.

Status: Approved, with slightly modified wording; incorporated
into MIL-STD-1589B.

3. Order of Expansion of Define Calls (TRW #4, LCR L142)

Issue: The order of expansion of define-calls is insufficiently
defined.

Resolution: Add text to the Semantics section of Section 2.4.1
of MIL-STD-1589A.

Status: Dropped; the issue raised is resolved by the approval
of LCR L18.3.

4. Filler Bits (TRW #5, LCR L143.1)

Issue: The definition of "filler bits" for bit and rep-
conversions is not complete or self-consistent.

Resolution: Add wording to Section 7.0 to clarify the meaning
of "filler bits".

Status: Deferred; however, the Language Control Facility agrees
that the proposed changes are an accurate re-phrasing
of the intent of ML-STD-1589A/B.

6

5. Declared vs. Implemented Sizes of Items (TRW #16, LCR L144.1)

Issue: The freedoms and constraints for implemented sizes of some
data items are not consistently delineated.

Resolution: Add notes to Sections 2.1.1, 2.1.2.3, and 2.1.2.4
to improve the clarity of MIL-STD-1589A/B.

Status: Deferred; with minor exceptions, the Language Control
Facility agrees that the proposed changes are accurate
clarifications of MIL-STD-1589A/B.

6. Compiler Obligations for Reordering and Sizing (TRW #7, LCR L145.1)

Issue: Compiler freedoms and constraints are inconsistently
described.

Resolution: Add text to Section 2.1, and modify Sections 2.1.2.3
and 9.11 to improve the clarity of MIL-STD-1589A/B.

Status: Deferred; however, the Language Control Facility agrees
that the proposed change is an improvement over the
existing text.

7. Storage of Character Items (TRW #9, LCR L147.1)

Issue: The storage of character items in tables is not
consistently constrained between ordinary dense tables
and specified tables.

Resolution: Change the semantics of ordinary dense tables to

agree with the semantics of specified tables in
that respect.

Status: Approved; incorporated into MIL-STD-1589B.

8. Item Positioning in Dense Tables (TRW #12, LCR L170.1)

Issue: Allocation of items in a dense table should be more
specifically defined, to prohibit certain inefficient
implementations and to provide meaning to otherwise
vacuous cases.

Resolution: Insert text in Section 2.1.2.3 of MIL-STD 1589 A/B
to insure left-justification of dense-packed items.

Status: Deferred.

7

9. Entry Positioning in Tight Tables (TRW #13, LCR 171.1)

Issue: The definition of tight structure does not adequately
prohibit certain inefficient implementations.

Resolution: Insert text in Section 2.1.2.2 of MIL-STD 1589A/B

to prohibit such inefficiencies.

Status: Deferred.

10. DEFINE List-Options (TRW #15)

Issue: The placement of the list options within DEFINE-
declarations is not sufficient to assure their intended
interpretation.

Resolution: Precede each option by an exclamation mark.

Status: Withdrawn before submission to the Language Issues
Committee; the issue raised is resolved by LCR L73.3.

11. DEFINEs, SKIPs, COPYs, and Equivalence of Upper/Lowercase Letters
(TRW #16, LCR L173.1)

Issue: Expansion of define-calls and text directives interacts

with equivalence of uppercase and lowercase letters.

Resolution: Replace text in Section 8.1 of MIL-STD 1589A/B.

Status: Concept approved; alternate wording adopted.

12. SKIP Directives (TRW #17, LCR L174.1)

Issue: The meanings of !SKIP, !BEGIN, and !END are not

well-defined.

Resolution: Replace text in Section 9.2.2 of MIL-STD 1589A/B.

Status: Concept approved; alternate wording adopted.

13. Items Right-Justified in Entries (TRW #18, LCR L175.1)

Issue: The intended meaning of entries being right-justified
needs to be defined.

Resolution: Add text to Section 2.1.2.2 of MIL-STD-1589A/B.

Status: Approved.

8

14. Sizes of BIT/BYTE Function Values (TRW #20, LCR L177)

Issue: Bit/character sizes of values returned by the intrinsic
BIT/BYTE functions in formulas are different from the
sizes of those functions in pseudovariables.

Resolution: Change the size returned by the BIT/BYTE functions
in formulas to the size returned by those functions

in pseudovariables.

Status: Rejected; although desirable, the change is not upward-
compatible. LCR L158.3, which has been approved by the
JOVIAL Users Group but not by the Language Control Board,

introduced the SUBSTR function to provide the desired
capability in an upward-compatible manner.

15. Other Ambiguous Status Constants (TRW #21, LCR L178.1)

Issue: Some of the contexts which obligate a compiler to implicitly
disambiguate a status-constant are not constrained to
ensure that this is possible.

Resolution: Add text to Sections 2.1.2.1 and 7.0 of aL-STD 1589A/B
to resolve the problem.

Status: Approved, with some minor wording changes.

16. No Truncation of Bit Formulas in While Clauses (TRW #22, LCR L179.1)

Issue: The <while-clause> of a WHILE <loop-statement> was
inadvertently omitted from LCR L83 (which prohibits
implicit conversion of <bit-formulas> to <boolean-formulas>
in <while-phrases>, <if-statements>, and <trace-controls>).

Resolution: Add text to Sections 4.2 and 5.2.2 of MIL-STD-1589A/B
to correct the situation.

Status: Approved by JOVIAL Users Group and Language Control
Facility; deferred by Language Control Board - although
an oversight, it is not upward-compatible.

17. Define-calls Produce Complete Symbols (TRW #25)

Issue: Section 2.4.1, constraint 3, of MIL-STD-1589B describes
how the compiler must recognize symbols (i.e., the end
of a substituted define string terminates any symbol),
rather than how program text is constrained.

Resolution: Replace the offending constraint and add new text
to the Semantics portion of Section 2.4.1, NIL-STD-1589B.

9

Status: Not yet considered.

18. Quotes in Actual-Define-Parameters (TRW #26)

Issue: When does an <actual-define-parameter> contain
enclosing quotes?

Resolution: Make the text in Section 2.4.1 of MIL-STD-1589B
more explicit.

Status: Not yet considered.

19. More on REF <statement-name> (TRW #27)

Issue: Correct an oversight to LCR L118.

Resolution: Add words to the constraint in Section 2.3 of

MIL-STD-1589B.

Status: Not yet considered.

20. Scope of Names (TRW #28)

Issue: Section 1.3 of MIL-STD-1589B does not provide a
sufficiently clear, complete, and consistent description
of the scopes of names in a JOVIAL(J73) program.

Resolution: Rewrite Section 1.3 of MIL-STD-1589B.

Status: Not yet considered.

21. Abort-Phrase Semantics (TRW #29)

Issue: Does an <abort-phrase> take effect at the beginning
of the execution of the <procedure-call-statement>
which contains it, or only at the beginning of the
execution of the body of the procedure being invoked?

Resolution: To be determined.

Status: Not yet considered.

22. Subscript-Index Type Constraints (TRW #30, LCR L194.1)

Issue: The type of a dimension is not well-defined and
subscript-index type constraints are too restrictive.

10

• %

Resolution: Add an exact definition of the type of a dimension,
and require indices to have implicitly-convertible types,
rather than equivalent types.

Status: Approved by JOVIAL Users Group; not yet considered by
Language Control Board.

23. Type-Equivalence of *-Dimension Tables (TRW #31)

Issue: Type-equivalence is not fully defined for *-dimension

tables.

Resolution: Add text to Section 7.0 of MIL-STD-1589B.

Status: Not yet considered.

24. Assigning to Substrings of Function Return-Values (TRW #32)

Issue: Assignments to a BIT or BYTE substring of a function
return-value (denoted by the <function-name>) are not
allowed in MIL-STD-1589B, but were allowed in MIL-STD-1589A.

Resolution: Change the wording of Sections 3.2 and 6.1 of
MIL-STD-1589B to permit this situation.

Status: Not yet considered.

25. Identity of Automatic Data Objects (TRW #35)

Issue: The current wording of Section 2.1.5, MIL-STD-1589B,
implies a particular implementation strategy.

Resolution: Rewrite Section 2.1.5 of MIL-STD-1589B to be
implementation-independent.

Status: Not yet considered.

26. Type of LOC (<block-dereference>) (TRW #34)

Issue: It is unclear whether LOC (<block-dereference>) is a
typed or untyped pointer; this was an oversight in LCR L95.

Resolution: The pointer should be typed.

Status: Not yet considered.

ii4

27. Status-Type Enumeration (TRW #35, LCR L193)

Issue: Status types cannot conveniently be used for loop
iterations in a well-structured programming style.

Resolution: Add an <until-phrase> analogous to a <while-phrase>,
but which tests the control-variable before
modifying it.

Status: Deferred.

28. Referencing Components of Nested Blocks (TRW #37)

Issue: It is not currently possible to reference components
of a nested block when both the outer and inner blocks
have named types.

Resolution: Add syntax to Section 6.3.1 of MIL-STD-1589B to
permit such references.

Status: Not yet considered.

29. Semantics of Table Assignment (TRW #38)

Issue: According to the semantics of MIL-STD-1589B, table
assignment cannot be implemented using reference
semantics in all cases.

Resolution: Do the existing compilers conform to these
semantics? If not, perhaps the semantics
should be changed.

Status: Not yet considered.

Summary

The main conclusion of our analysis is that JOVIAL(J73) is an extremely large

and complex language that is difficult to learn. This view is substantiated by

the fact that in the two years after the design of JOVIAL(J73) was completed,

over 200 Language Change Requests have been submitted to the Language Control

Facility, many by the compiler developers themselves. In addition, a large

proportion of the problems submitted to the compiler developers as compiler

errors turn out to be programmer errors instead.

12

There are many areas of JOVIAL(J73) in which users are likely to misinterpret

the semantics of the language. For example, the introduction of strong typing

into an already existing language prohibited many common programming constructs

such as those described below:

1. Because of the strong type-checking rules, and the fact that a

table-entry was always considered to be of type "table", it was

not possible, in MIL-STD-1589A, to use bodiless tables as arrays,

as was permitted in JOVIAL(J73/I). JOVIAL(J3B), which had strong

typing, also had an ARRAY data structure, but this construct was

not included in JOVIAL(J73) either. As a result, the only way to

use an array in JOVIAL(J73) was to declare a table with a single-

item body, a clumsy and unnatural solution.

EX : Given the table declaration

TABLE TT(10) S

one could not write

TT(3) = 1 ;

This severe problem has been corrected in MIL-STD-1589B.

2. Status types cannot conveniently be used in a well-structu -ed

programming style for loop iterations.

EX : Given the type declaration

TYPE st STATUS (V(STATl) , ... , V(STATN))

and the loop statement

FOR I : FIRST (st) THEN NEXT (Ii) WHILE (I<LAST(st));

loopbody;

Because the THEN-effect evaluates NEXT(I,l) and sets I

before the WHILE-effect checks for an exit condition,

when I-LAST(st), NEXT(I,l) returns an illegal value for

I, because it is outside the valid range of values for st.

Other areas with particularly complex semantics include table declarations,

scope rules, and COMPOOLs.

13

M-A

There are many areas of JOVIAL(J73) in which users are likely to misinterpret

the semantics of the language. For example, the introduction of strong typing

into an already existing language prohibited many common programming constructs

such as those described below:

1. Because of the strong type-checking rules, and the fact that a

table-entry was always considered to be of type "table", it was

not possible, in MIL-STD-1589A, to use bodiless tables as arrays,

as was permitted in JOVIAL(J73/I). JOVIAL(J3B), which had strong

typing, also had an ARRAY data structure, but this construct was

not included in JOVIAL(J73) either. As a result, the only way to

use an array in JOVIAL(J73) was to declare a table with a single-

item body, a clumsy and unnatural solution.

EX : Given the table declaration

TABLE TT(lO) S

one could not write

TT(3) - 1 ;

This severe problem has been corrected in MIL-STD-1589B.

2. Status types cannot conveniently be used in a well-structured

programming style for loop iterations.

EX Given the type declaration

TYPE st STATUS (V(STATl) , ... , V(STATN))

and the loop statement

FOR I : FIRST (st) THEN NEXT (Ii) WHILE (I<LAST(st));

loopbody;

Because the THEN-effect evaluates NEXT(I,l) and sets I

before the WHILE-effect checks for an exit condition,

when I-LAST(st), NEXT(I,l) returns an illegal value for

I, because it is outside the valid range of values for st.

Other areas with particularly complex semantics include table declarations,

scope rules, and COMPOOLs.

13

All of this means that the role of the Validator is extremely important.

Compiler writers, like other users, are likely to misinterpret the semantics

of the language and thus implement them erroneously, so it is essential that

the Validator test the semantics thoroughly. We estimate that a truly

comprehensive Validator would have to be in the neighborhood of 100,000 lines

long.

14

* ° , . .

THE JOVIAL(J73) COMPILER VALIDATOR

The acceptance and installation of compilers that perform poorly is common-

place. Because compilers are fundamental to the development of most software,

the effects of attempting to use an unsatisfactory compiler are widely

distributed. One reason for the existence of poor compilers is that the

collections of programs used for testing them are themselves inadequate.

There are several reasons for this:

1. Test set construction methods are not adequately systematic. In
general, the tests reflect an ad hoc analysis of the language,

the test designer's experience with other compilers (perhaps in
different circumstances), and the competence of the people writing
the test set.

2. Test set construction methods are not designed with reference to
measures of test effectiveness. The lack of measurable, clearly
defined objectives means that test construction is conducted in
a fuzzy manner without guidance as to what should be tested or
the degree of test thoroughness that ought to be sought.

3. The difficulty of constructing a good test set has usually been
underestimated. Not until the validator is actually constructed
do the intricacies of the language become apparent.

4. The necessity for constructing a good test set has usually been
underestimated. The customer is often so eager to accept a
compiler that, despite past experience, he assumes that it is
basically correct and that only a small amount of acceptance testing
is required. Hence, insufficient resources (time and money) are
allocated for the validation development.

TRW had originally planned to use the Test Effectiveness Measurement Facility

and a SEMANOL(76) specification of JOVIAL(J73) to guide construction of its

JOVIAL(J73) Validator. However, due to a number of circumstances detailed

elsewhere in this report, the Validator was constructed manually. Nevertheless,

because of a great deal of research into what constitutes a good validator

and a great deal of thought about organizational issues, we believe we have

developed a superior product.

The remainder of this section describes the philosophy behind the Validator,

its organization, its contents, and its status. Additional details on the

operation of the Validator can be found in the Test Set Users Manual.

15

-S. I A'

Philosophy

To avoid the pitfalls of prior validation efforts, it was deemed necessary

to develop some goals for the Validator. First, it was decided that the

Validator must have a uniform structure. Once this structure is developed,

additional tests can be added, as necessary, without disturbing the

established framework. The Validator also had to be flexible. This

flexibility has two forms. It had to be possible to run the entire Validator

or, alternatively, any subset of it. The structure adopted enables this

flexibility. In addition, the Validator had to be designed to run on many

computers; as a result, all machine parameters had to be identified. Our

Validator is highly parameterized to isolate these machine dependencies.

Unfortunately, flexibility and generality are always achieved at some cost -

in this case, ease of use. In particular, the Validator cannot simply be

run; rather, test suites must actually be constructed from the tests provided.

A second goal for the Validator was that it be highly informative. In

particular, test results should be easily analyzed by the user. To this end,

tests are self-checking wherever possible, results are concise and consistently

formatted, and the probable source of a test failure is usually apparent. In

order to provide these capabilities, a relatively complex output package had

to be developed. This package is approximately 1500 lines long, and contains

39 JOVIAL(J73) procedures as well as one FORTRAN routine. It uses many complex

features of the JOVIAL(J73) language and can be used as a benchmark test for

the compiler. It must be installed before any of the test cases can be

executed; however, all test cases can be compiled without it.

The Validator was constructed in the spirit of adversary conflict. That is,

tests were not constructed with the assumption that the compiler is correct,

but rather they were designed with the aim of discovering the flaws of the

compiler. One of the consequences of such an attitude is that tests can depend

on language features only to the extent they have been previously validated.

As a result, tests were constructed using a small subset of the language. Some

features in this subset are used for obvious reasons, while for others the just-

ification is not as clear. Many features in the latter category are used only

in a limited number of areas where their use was deemed essential. Except

for the output package, the Validator uses only the following features:

16

.. . . .L.A..: L. . . .l , ' , , . . .

1. Item Declarations;

2. Constant Item Declarations: to parameterize tests;

3. Integer Arithmetic;

4. Assignment;

5. IF Statements;

6. Relational Expressions;

7. Procedure Declarations and Calls;

8. COMPOOLs: to import the output package and parameterize tests;

9. DEFINEs: to enhance readability and parameterize tests;

10. Types: to parameterize tests;

11. LOC and Dereferencing: to look at machine representations of data,
check parameter passing mechanisms, provide an alternate path to
a variable;

12. BITSIZE, BYTESIZE, WORDSIZE, REP, Bit Conversions: to look at machine
representations of data.

Of these features, the only one used extensively that is not relatively simple

to implement is COMPOOL. Its use is justified for a number of reasons. First,

it is machine independent. Machine parameters and DEFINEs could alternatively

be imported using the !COPY directive, but its format is machine dependent;

thus, every test program would have to be modified when rehosting the

Validator. In addition, the traditional method of testing the COMPOOL feature

has been to ignore it (the original JOVIAL(J73/I) JCVS had no tests for

COMPOOL) or, at the very least, to vastly underestimate its testing require-

ments. This has caused severe problems, because COMPOOL is a very heavily

used feature, and one whose correct operation is basic to program execution.

Therefore, in this project, we took the opposite point of view; namely, that

it is essential to test COMPOOLs first. Furthermore, it makes sense to test

COMPOOLs in a production setting, such as the Validator itself, rather than

test isolated components, since it is precisely in the combination of features

that errors tend to occur. Thus, COMPOOLs have been made an inherent part of

the Validator; the Validator will not run unless COMPOOLs have been properly

implemented.

17

LJ~,.

After a careful analysis of JOVIAL(J73) and extensive research into validation

techniques, it became clear that it would not be possible to construct a

"complete" validator with the resources available. Furthermore, it was not

at all clear that, given the resources, one would want to construct such a

validator; it would be at least 100,000 lines long. Priorities thus had to

be adopted. It was decided that Validator coverage should be broad rather

than deep. That is, it was important that all features of the language be

covered to some degree, even though some areas could not be covered to the

desired depth. Beyond that, extra attention was given to some particularly

complex areas such as item declarations and table declarations, as well

as to areas whose semantics were particularly well-specitied, such as

statements and intrinsic function calls.

Organization

The Validator has five components:

* A compool, SYNTAX, which supports the notation of the Validator;

* Two compools, TARGET and FLAVOR, used to parameterize the Validator
for a particular compiler implementation;

* A machine independent output package which provides the Validator
with the report capabilities it requires;

0 A compool, MASTER, which insulates the Validator from local file

name conventions;

* Test cases.

The SYNTAX compool contains a standard set of DEFINE declarations to enhance

the readability of the Validator, as well as additional DEFINE declarations

which implement useful compile-time functions.

The Validator contains two implementation-dependent compools, TARGET and

FLAVOR. TARGET contains all the installation-dependent parameters which,

once set, are unlikely to change during the course of a validation. These

include the values of the set of JOVIAL(J73) implementation parameters, and

also a number of descriptors and formatting parameters required by the output

package. FLAVOR contains parameters which may be changed several times

during the course of a validation. These ensure that data items with

different sizes (and thus, presumably, different machine representations)

18

are used by the Validator.

The output package is written entirely in JOVIAL(J73) with the exception of

a single seven line FORTRAN subroutine. Installations which do not have a

FORTRAN compiler must recode this subroutine in some locally available

language. The output package provides character stream output for the data

types signed and unsigned integer, float, fixed, bit, and character. It also

allows conversion between a variety of data types, and performs a few minor

utility functions.

The compool MASTER consists of a single declaration for the define name

IMPORT'VALIDATOR'SUPPORT. The definition part consists of COMPOOL directives

to import the six support compools used by the Validator: SYNTAX, TARGET,

CHANGE, GLYPHS, USEFUL, and SCRIBE. If the Validator is to run on a machine

that does not accept file names in the above format, only MASTER needs to be

modified.

The major portion of the Validator is composed of JOVIAL(J73) test programs

arranged according to MIL-STD-1589A section number. Each section occupies a

separate file. Each test within a section is assigned a structural form, a

class, a time at which results are delivered, and a sequence number.

Every test has one of five structural forms: COMPOOL, PROCEDURE, PROGRAM,

ROUTINE, or MIXED. The first three forms are compool, procedure, and main

program modules, respectively, as defined in MIL-STD-1589A. Tests designated

as ROUTINEs are parameterless procedures which may be combined into procedure

or main program modules as the user sees fit. Tests of the form MIXED

will contain a variety of subunits; one such test might contain a compool

module, a main program module, and two procedure modules. It is the user's

responsibility to extract these subunits for submission to the compiler.

Tests also belong to one of five different classes: CONFORMANCE, DEVIANCE,

IMPLEMENTATION, QUALITY, and CAPACITY. CONFORMANCE tests are always legal

JOVIAL(J73) and should compile without error if the compiler is standard

conforming, although warnings may be issued by the compiler. These tests are

derived directly from MIL-STD-1589A and attempt to ensure that processors

provide the features mandated by the standard and behave as required. Tests

of class DEVIANCE are never legal JOVIAL(J73), but differ from it in some

19

subtle way. They serve to detect processors which fail to adhere to a

stipulated constraint of the language standard, incorporate some common error,

or fail to check or limit some JOVIAL(J73) feature appropriately. Tests in

this class verify that the compiler being tested rejects language which is

not legal JOVIAL(J73). The class IMPLEMENTATION explores those portions of

the language standard ahere implementers are permitted some freedom in

implementing a feature; in many cases MIL-STD-1589A flags these features with

the phrase "implementation-dependent." The class QUALITY consists of tests

which have as their only common feature that they explore in some sense the

quality of an implementation. These tests include benchmarks whose space and

execution time can be measured to estimate performance. Finally, the class

CAPACITY explores the compiler's ability to handle unusually large or deeply

nested constructions.

Each test is expected to deliver its results at a particular time. COMPILE

time tests are evaluated by examining the compiler listings. OBJECT time

tests are evaluated by examining the object code generated by the compilation

of the test. RUN time tests are evaluated by studying their behavior during

execution. Tests whose time is OUTPUT produce printed reports containing the

result of the test.

Every file of tests, corresponding to one section of MIL-STD-1589A, is logically

subdivided into suites. A suite is a group of tests, each of which has the

same form, class, and result time. In theory, a file may contain up to 100

suites, since there are five possible forms, five distinct classes, and four

different result times, but in practice no file contains more than five.

Suites within a file are arranged in increasing order according to a three

key sort where the primary key is the form, the secondary key is the class,

and the tertiary key is the result time. The sort order is:

Form: COMPOOL <PROCEDURE <PROGRAM <ROUTINE <MIXED

Class: CONFORMANCE < DEVIANCE <IMPLEMENTATION <QUALITY <CAPACITY

Result: COMPILE <OBJECT <RUN <OUTPUT.

Within a suite, tests are further ordered by paragraph number within the

pertinent section of MIL-STD-1589A and within a paragraph, tests are ordered,

where possible, by sentence reference.

20

Each suite begins and ends with comments whose form is fixed and consistent

throughout the Validator. The suite header is composed from the section

number, form, class, and result, and has the following form:

%SECTION = section-number FORM = form CLASS = class RESULT =resultZ

where section-number is derived from MIL-STD-1589A, and form, class, and

result have values as given earlier. The suite trailer comment has the form

%END SECTION section-number%

For the convenience of those users who lack sophisticated text editing and

extraction tools, the suite header is also encoded as a fixed format comment

called a key. To build a key, each form, class, and result time is assigned

a numeric value. The forms COMPOOL, PROCEDURE, PROGRAM, ROUTINE, and MIXED

are assigned values 0 through 4, respectively, as are the classes CONFORMANCE,

DEVIANCE, IMPLEMENTATION, QUALITY, and CAPACITY. The result times COMPILE,

OBJECT, RUN and OUTPUT are assigned the values 0 through 3, respectively.

The key comment then has the form

%KEY section-number' sequence-number form' class' result'%

where section-number' is derived from section-number, sequence-number is a

three-digit number, and form', class', and result' are the numeric encodings

of form, class, and result, respectively. Keys which follow suite headers

always have the sequence-number 000.

CAPACITY tests are handled somewhat differently. Their bulk and the difficulty

of relating a given capacity test to a specific section of MIL-STD-1589A

require that each capacity test be placed in a separate file. For these

tests, each file contains precisely one suite and that suite contains only

one test. In addition, to remain consistent with the conventions of the

Validator, capacity tests are assigned the fictitious section number 99.0.

It is unlikely that this imaginary section number will conflict with later

versions of language standard, since MIL-STD-1589A contains only 9 chapters.

Each test within the Validator follows a consistent framework. Each test in

a section is assigned a three digit sequence number which is unique to

a section but not necessarily across sections. The first test in a section is

assigned the sequence number 001; succeeding tests are assigned sequence

21

numbers in increments of one. Note that the leading zeros are required.

Each test is bracketed by header and trailer comments whose form is fixed and

consistent throughout the Validator. A test header comment has the following

form:

%TEST = test-number FORM = form CLASS = class RESULT = result%

where test-number is composed of the section-number and sequence-number

separated by a dash, and form, class and result are as given for suite

header comments. The test trailer comment has the form

%END TEST test-number%

Like suite headers, test headers are followed by a key. Keys which follow

test headers contain the sequence number given in the test header.

Each test name is a uniform encoding of the test's section number, sequence-

number, form, class, and result time. The prefix of the test name is taken

from the form, as follows:

C denotes COMPOOL module

P denotes PROCEDURE module

M denotes MAIN PROGRAM module

R denotes ROUTINE.

Sub-component names for the form MIXED are generated in a test dependent

manner. The suffix of the test name is constructed from the test number, form,

class, and result by replacing "." with "P", "-" with "D" and appending the

numeric encodings of the test form, class, and result time. Note that test

names are unique across the validator, that is, no two tests ever have the

same name.

Immediately following the test header and key is an explanatory comment whose

arrangement depends on the class of the test. If the test is of class

CONFORMANCE, IMPLEMENTATION, or QUALITY, the remark will have three components:

a one sentence summary of the test, a detailed explanation of the precise

issue under test, and a list of references to MIL-STD-1589A, arranged in

increasing order in the obvious fashion. For tests of class DEVIANCE the

leading remark has only two components: an explanation of the precise issue

under test, and a list of references to MIL-STD-1589A. For CAPACITY tests

22

the leading remark only contains an explanation of the issue under test.

Tests whose result time is OUTPUT are terminated by a comment which outlines

the printer report the user can expect to see if the test executes successfully.

This comment has the form

%SAMPLE test-number

test dependent text

END SAMPLE test-number%

The internal test structure is dependent upon the test, class, and result time

of the test. In what follows, if a form, class, or result time is not

explicitly mentioned, then no standards apply.

If the form is PROCEDURE, PROGRAM, or ROUTINE, then all declarations at the

outermost level of scoping of the test are bracketed by declaration header

and trailer comments of the form

%DECLARATIONS test-number%

%END DECLARATIONS test-number%

These brackets are provided to allow the easy, semi-automatic construction

of a wide variety of compool tests.

If the class is DEVIANCE, then all illegal constructions are flagged with the

JOVIAL(J73) comment % ILLEGAL. %

If the test class is CONFORMANCE, DEVIANCE, IMPLEMENTATION, or QUALITY, and

the result time is RUN or OUTPUT, the test will have the general form

declarations

report headings

{ initialization}
subtest #1

{ initialization)
subtest #n

evaluation

report trailer

23

The report headings always begin with the comment

% REPORT HEADINGS. %

which is immediately followed by the JOVIAL(J73) statement

WRITES ('!NTEST = test-number CLASS = class RESULT = result !N');

(WRITES is a routine provided with the output package.) The report headings

will usually contain other test dependent calls to the output package as well.

Each test consists of one or more subtests and each subtest can be preceded

by an optional initialization section. Each initialization section begins

with the comment

% INITIALIZATION. %

and each subtest begins with the comment

% TEST number. %

where number is the ordinal number of the subtest. Each subtest usually

consists of only a few lines of code - few subsets are more than 10 lines long.

The evaluation portion of the test is always preceded by the comment

% EVALUATION. %

This component of the test determines the final outcome of the test based on

the results of the previous subtests.

The report trailer is always the single statement

WRITES('END test-number !N');

it is always the last executable statement of the test.

Many tests contain pre- or post-conditions encapsulated as comments in the form

% ASSERT ... condition text

Assertions are intended as guidelines for users modifying tests to suit local

installation-independent needs. Assertions are usually, but not always,

associated with DEFINE, CONSTANT, or TYPE declarations and state conditions

which must hold if the test is to run correctly.

24

Contents

The Validator contains approximately 50,000 lines of JOVIAL(J73) code, not

including capacity tests or the output package. Some tests exist for almost

all sections of MIL-STD-1589A, but some areas are covered to a much greater

degree than others. In particular, the Validator tests the following sections

especially well:

* 1.4 Implementation Parameters

* 2.1.1.1 - 2.1.1.7 Item Declarations

* 2.1.2.1 - 2.1.2.4 Table Declarations

* 4.1.1 - 4.1.9 Statements (except for ABORT)

* 6.3.1 - 6.3.9, 6.3.11 Function Calls (except for NWDSEN)

A few sections were not tested because their syntax is implementation-depdendent.

These include:

* 3.5 Machine-Specific Procedures and Functions

* 9.2.1 Copy Directive

* 9.3 Linkage Directive

* 9.8 Register Directive

In addition, the following sections were not tested at all because of time

constraints:

* 3.4 Inline procedures and functions

e 4.10 ABORT statement

* 6.3.10 NWDSEN function

* 8.5 Blanks

* 9.2.2 SKIP, BEGIN, END directives

* 9.4 TRACE directives

It should be noted that several other sections appear not to be tested (or

tested only superficially), but are actually implicitly tested in the test

cases for other sections. A list of these sections follows, together with

the section where they are actually tested:

25

e 1.2.2 Procedure modules (production tested in building test
suites)

* 1.2.3 Main program modules (production tested in building
test suites)

e 2.7 Null declarations (distributed)

* 4.5 Procedure call statements (3.1, 3.3)

e 5.4 Status formulas (2.1.1.6)

* 5.5 Pointer formulas (2.1.1.7)

e 5.6 Table formulas (2.1.2, 2.1.2.1, 2.1.2.2, 2.1.2.3, 2.1.2.4)

0 9.11 Allocation order directive (2.1.2.3)

Several other sections were not tested to the degree desired. These are

listed below, together with a description of the deficiency:

* 1.2.1 COMPOOL Modules
9.1 COMPOOL Directive

Although production tests for these sections are provided
via the output package, no tests of specific properties
are provided. Such tests would address such issues as
scoping, variable attributes, structures, presets,
REF/DEF, interaction with other directives, and the form
of the COMPOOL directive.

* 1.3 Scope of Names

The standard is quite vague on this subject and
additional testing would be desirable.

* 1.4 Implementation Parameters

Although, in general, this section is well-tested, it
would be desirable to provide deviance tests which input
a parameter of the wrong type to those parameters which
are actually functions.

* 2.2 Type Declarations

No tests exist for the LIKE option, or for matching of
table or block types.

* 2.5 External Declarations
2.5.1 DEF Specifications
2.5.2 REF Specifications

The tests required for these sections are similar to
those for COMPOOLs.

* 2.6 Overlay Declations

No tests exist for chained overlays, overlays within a
block, overlaying an object on itself, or bizarre overlay
constructs.

26

* 5.1.1 Integer Formulas

No tests exist for the MOD or ** operators.

* 5.1.2 Floating Formulas

No tests exist for the ** operator.

* 6.1 Variables

No tests exist for the BIT, BYTE, or REP pseudovariables,
for variable references inside blocks or tables, or for
pointer dereferences.

* 6.2 Named Conqtants

More tests uf the semantics of this section should be
written.

* 7.0 Type Matching and Conversions

No tests exist for table conversions, and few address
both compile-time and run-time conversions.

It would also be desirable to construct data-dependent tests for some sections,

as errors frequently appear only when features interact with one another.

For example, it would be useful to construct tables or overlays which contain

several different data types.

Fourteen capacity tests were constructed. These check all the capacity

requirements from the JOCIT/J73 Compilers Part I Product Specification except

that the compiler can efficiently translate:

* a program consisting of not less than 150,000 essential characters;

* a program generating as much as 256,000 words of machine code and data;

* a program referencing !COPY directives with at least 10 levels of
nesting;

* a procedure call with at least 20 parameters.

The Validator is weak in the testing of compiler error messages, in particular,

it contains virtually no tests which deliberately exercise context-free

syntax errors. It was originally planned that such tests be based on the

syntax errors discovered in the process of testing the Validator itself,

thereby rooting these tests in the beginning of a representative sample. This

process was, however, never implemented, because the Validator tests were

never actually compiled. Nevertheless, it should be noted that, with a few

exceptions, all constraints explicitly identified in MIL-STD-1589A have

been tested.

27

Although it may appear that a lot is missing from the Validator, it should

be emphasized that the Validator is already 50,000 lines long. If all the

"holes" that have been identified were filled, we estimate that the Validator

would be in the neighborhood of 100,000 lines long.

Testing

It was planned that the Validator test cases be debugged using a GFE JOVIAL(J73)

compiler. A subset compiler was to be delivered in October, 1979 and a

production-quality compiler in January, 1980. A JOVIAL(J73) compiler, was

in fact, delivered to TRW in February, 1980, and improved versions of that

compiler were delivered in March, April, July, September, and October, 1980,

as well as in January, 1981. None of these compilers is production-quality,

with the possible exception of the last; by the time it arrived, there was

virtually no time remaining in the contract for test case development. In

fact, only a few compools have been successfully compiled. Thus, although

the test cases have been proofread extensively, the Validator is, in no sense,

debugged.

28

_L ",, -- d . -, -:.--. ..,,,

THE SEMANOL SPECIFICATION OF JOVIAL(J73)

SEMANOL (an acronym for SEMANtics Oriented Language) is a unique TR4 system for

formally describing the syntax and semantics of contemporary programming

languages. A SEMANOL specification achieves a clarity and precision that prose

specifications lack; thus, compiler writers and other users should find the

SEMANOL interpretation helpful in understanding complex languages like

JOVIAL(J73).

A SEMANOL specification can play several roles in the testing process as well.

Most importantly, its use as a source document for test case derivation will

result in better quality tests being produced, because test case formulation

can be done more systematically than otherwise. The SEMANOL specification also

provides a means by which the test set can itself be tested; this is particu-

larly useful when no compilers for the language being tested yet exist. The

test programs can be processed by the SEMANOL Interpreter, under control of the

SEMANOL specification, and so can be validated against a uniformly understood

specification. Finally, the SEMANOL specification provides a basis upon which

objective measures of test set effectiveness can be computed. The quality of a

test set can then be measured relative to a given standard, for example in

terms of SEMANOL definitions exercised or execution paths taken through the

SEMANOL specification.

The SEMANOL specification of JOVIAL(J73) that was developed under this contract

was used primarily as a reference document. Despite its limited area of appli-

cation, the specification was extremely useful in identifying possible imple-

mentation models (both correct and incorrect), difficult-to-implement areas of

the JOVIAL(J73) language, and problems left unresolved by the less formal

language standard. For example, the design of the parse phase of the SEMANOL

specification required a detailed study of the semantics of DEFINE, which

revealed unexpected interactions with the equivalence of uppercase and lower-

case letters in program text. This suggested that the tests for a compiler's

implementation of DEFINE ought to include tests which exercise those inter-

actions.

29

It should be noted that the JOVIAL(J73) test cases developed in this contract

were not processed by the SEMANOL Interpreter. Likewise, they were not input

to the Measurement Facility. To have done so would have required enormous

computer resources (both time and space) which were not available to this

project. Nevertheless, there is no inherent reason that this could not be

done at some later time.

An introduction to the SEMANOL(76) metalanguage, the most recent dialect of

SEMANOL, is presented next, followed by a discussion of the changes to the

language made for this project. Complete documentation of the SEMANOL speci-

fication of JOVIAL(J73) itself appears in Appendix A of this report, while

documentation of the modified SEMANOL(76) Interpreter is contained in

Appendix C.

An Introduction To SEMANOL(76)

SEMANOL(76) is intended for use in describing (procedural) programing

languages. A specification written in the SEMANOL(76) metalanguage is meant

to provide an exact and complete definition of a programming language that is

comprehensible to a suitably trained reader. That is, SEMANOL(76) is designed

to supply people with a basis for communication about programming languages

that is more precise than commonly employed description methods. Additionally,

specifications written in SEMANOL(76) are executable.

The specification method adopted is algorithmic. This choice stems from a

feeling that the semantics of programming languages ought to be explained in

this way. That is, semantics are concerned with explaining how something

happens and not just in characterizing an input-output relationship. Certainly

this is the way in which designers, compiler writers, and application program-

mers generally view the semantics of a programming language. Having a direct

correspondence between the formal, operational, SEMANOL(76) expression of

language semantics and a reader's intuitive conception of a language yields

a specification method that can be easily understood. An algorithmic method

also permits language details, such as those specific to a given implementation,

to be described exactly when desired.

30

The SEMANOL(76) method considers a programming system, S, to be defined by

S (P, I, T, P) where

P = The set of programs which can be expressed in the programming system.

I = The set of input values.

T = The set of output traces. The trace is an ordered record of

significant actions (such as assignment) that are performed by the

program as it is executed; it is the visible manifestation of

performing the algorithm that is the operational SEMANOL(76)

specification of semantics. The trace is thus similar to a state

sequence.

= The semantic operator. This operator, given as P : P x I - T, is

considered to define the "meaning" of a program.

P, I, and T are each sets of strings which are specified by I, and whose

individual members will be denoted by the corresponding lower case letters

(i.e., p e P, i e I, t E T.). The effect of executing a given program, p, can

then be denoted in terms of the semantic operator by

'P(p,i) = t

Thus 0 specifies the trace produced by any program in the system when that

program is executed with any input value sequence. The SEMANOL(76) meta-

language is used for programming the semantic operator, thereby providing a

method for formal specification of a programming language. Since the

SEMANOL(76) metalanguage is itself a programming language, it also belongs to a

programming system. To differentiate between these two systems, we will use

the subscript j to identify elements of the programming system being defined by

a SEMANOL(76) program (e.g., JOVIAL(J73)) and the subscript s to identify

elements of the SEMANOL(76) system. The semantics of a JOVIAL(J73) program Pj,

are then expressed by

Dj(pj,ij) = tj

Note that, since JOVIAL(J73) has no facilities for input, i is always null.

The semantic operator for JOVIAL(J73), j, is expressed as a SEMANOL(76)

program, Ps' which in turn is interpreted by a semantic operator for the

SEMANOL(76) programming system, 0s.

31

j-/

Thus we have
(P , (pji j) = (pj ~ tj

and a formal definition of JOVIAL(J73) is provided by ps" The definition of

the SEMANOL(76) semantic operator, 4s, is given by the SEMANOL(76) Reference

Manual and has been implemented by the SEMANOL(76) Interpreter computer program.

This general view of language definition is shown graphically in Figure 1. As

shown there, these levels of semantic specification correspond to defining a

virtual machine for SEMANOL(76) and, based on that, one for JOVIAL(J73).

As observed, the SEMANOL(76) metalanguage is meant to describe semantic

operators. Consequently, it is a high level language designed for the specific

purpose of completely and exactly describing the syntax and semantics of proce-

dural programming languages. The metalanguage permits high-level expressive-

ness and makes no special effort to minimize the primitives available. It thus

contains some redundancy in its primitives and permits syntactic variations

where this can aid reader interpretation. Where possible, "conventional"

notation, as found in mathematical exposition and in other programming languages,

is employed so that a reader's intuition will generally lead to a correct inter-

pretation of SEMANOL(76) code. The semantics of execution are described by the

use of SEMANOL(76) in terms of parse trees and elements of the original source

program text, and so can be directly understood by the reader.

The SEMANOL(76) metalanguage has many features common to other programming

languages, such as imperative, conditional, and iteration control statements;

Boolean constants and functions; procedure definitions; recursion abilities; a

rich set of character string operators; and functional definitions that provide

case selection. However, its unique domain of application means that many of

its features are not so common. SEMANOL(76) provides facilities for defining a

context-free grammar, including a feature for context-sensitive specification

of where spaces may appear, and couples that with an operator for generating a

parse tree for a given string from that grammar. Various operators are then

available for use upon this parse tree, including a group for tree traversal.

SEMANOL(76) deals with sequences and offers high-level iterators, including

existence tests, for use on these structures. Arithmetic is done on numeric

32

..

aNJHDVN (NLf)IVIAOf

THDVV (1O&JS

t4)-

333

strings and so has a significance that is independent of host machine factors;

the arithmetic specified for JOVIAL(J73) is controlled by the one doing the

specification in SEMANOL(76) and not dictated by the fact that the SEMANOL(76)

system is implemented on a HIS-6180 computer. Assignment and reference are

accomplished through use of a single level associative storage mechanism. An

effort has been made in designing the SEMANOL(76) metalanguage to provide these

features in a manner that would stress readability; it is a language where the

prospective reader's viewpoint has been a dominant influence.

Programs written in SEMANOL(76), such as the specification of JOVIAL(J73), can

then be processed by the SEMANOL(76) Interpreter. The SEMANOL(76) Interpreter

accepts a SEMANOL(76) specification of a programming language and uses that

input specification to realize the semantic effect of (i.e., to execute)

programs written in the language thus defined. By virtue of the Interpreter,

SEMANOL(76) specifications can themselves be tested and debugged. Furthermore,

an operational standard for the defined language is thus created.

The operation of the elements that constitute the SEMANOL(76) system is shown

in Figure 2. The broken line encloses the SEMANOL(76) Interpreter, which can

be seen to actually consist of two loosely connected programs identified as

the Translator and the Executer. The Translator accepts the SEMANOL(76)

program describing a programming language and converts it to SIL code. The SIL

code is an alphanumeric representation that is much more conveniently processed

than the original text. The SIL file is read by the Executer program, and the

SIL code is then used to control, or drive, the Executer program. The present

Interpreter is operational upon the HIS-6180 Multics System.

It is to be emphasized that this system is interpretive, and that neither the

defined language program, nor the SEMANOL(76) program describing the defined

language, are translated (i.e., compiled) to machine code. The JOVIAL(J73)

program text is interpretively "executed" by the SEMANOL(76) program describing

the JOVIAL(J73) language, while the SEMANOL(76) program text (i.e., the SIL

code) is, in turn, interpreted by the Executer program. This two-level

interpretation does mean that the execution time of test programs is slow. In

fact, the situation is acceptable only for very small test programs.

34

SEMANOL (76)
DESCRIPTION PROGRI IN
OF JOVIAL(J73) JOVIAL(J73)

TRANSLATOR SIL - EXECUTERFILEI

ERRORS IN ERRORS IN
SEMANOL (76) TRACE OUTPUT I NTERPRETATION
DESCRIPTION

Figure 2: SEIANOL(76) Interpreter Logic

35

Modifications to SEMANOL(76)

SEMANOL(73), the predecessor language to SEMANOL(76), had a construct,

#RESUME(;n), which allowed the semantics of preemptive evaluation to be conve-

niently modelled. This feature was used to specify the control semantics of

JOVIAL(J73/I) in the SEMANOL specification done for that language. #RESUME,

unfortunately, also had a number of disadvantages. The most serious of these

was that its semantics were extremely complicated and likely to be misunder-

stood, and were also likely to be incorrectly implemented. Since its use was

not deemed necessary in the SEMANOL specifications of Minimal BASIC, JOVIAL(J3),

and Ada, #RESUME was not included in SEMANOL(76).

Nevertheless, the eliminated function was deemed to simplify the specification

of JOVIAL(J73) control semantics, particularly ABORT statements and GOTO label

parameters. Without such a capability to preempt partial and pending

DF-evaluations, the SEMANOL specification would have two alternatives for the

treatment of abnormal terminations in JOVIAL(J73). It could guard the

contexts of all evaluations of the value-of DF to achieve the possible preemp-

tive effects of abnormal terminations of function calls. Alternatively, it

could designate each formula evaluation as an executable step and store

temporary values of formulas in a dynamic stack. Either of these alternatives

would complicate further the already complex evaluation semantics. Instead, a

new capability has been implemented which allows the SEMANOL specification of

JOVIALCJ73) to confine the description of abnormal routine termination to the

control-semantics definitions that are specifically concerned with such

termination. The remainder of this section describes the role of the new

keywords #TRY and #FAIL-WITH-VALUE in the evaluation of expressions; this

discussion also appears in the revised SEMANOL(76) Reference Manual produced

as an adjunct to this project.

In normal evaluation of a SEMANOL(76) expression, e, its subexpressions will

be evaluated, as will any semantic definitions invoked in those evaluations;

thus a long dynamic chain of (sub) evaluations may take place as part of

evaluating e. At any point in the chain of evaluations, some will have

completed, leaving pending results; others will remain to occur, and will use

those pending results. The evaluation of e itself will often be part of a

36

larger chain of evaluations contributing to the evaluation of some outer

expression. The evaluation of such an outer expression will begin before its

sub-evaluations begin, and end after they end.

SEMANOL permits incomplete evaluation of expressions, using the coordinated

notions of guards (indicated by the keyword #TRY) and failure-events (indicated

by the keyword #FAIL-WITH-VALUE). Complete evaluation of #TRY el consists of

(1) creation of a guard for el

(2) evaluation of el, and

(3) deletion of the guard for el.

The guard is used only to handle (or "field") failure-events which occur during

the evaluation of el. If all three steps are completed normally, the value of

the expression #TRY el is just the value of el and the execution/evaluation

process continues in normal sequence.

As part of the evaluation of el, evaluation of an expression IFAIL-WITH-VALUE

vl may occur; this results in a failure-event which is fielded by the most

recently created guard. If the failure-event is fielded by the guard for el,

then the evaluation of el is interrupted and fails to complete. All inter-

mediate evaluation results obtained to that point in the evaluation of el are

lost. (Assignments performed during the evaluation are not reversed, however,

and there may thus be a residual state change - a side effect.) At this point,

the evaluation of el is replaced by the evaluation of vi. When evaluation of

v1 is completed, evaluation continues at step (3), deletion of the guard for el.

It may happen that unfielded failure events occur in the evaluation of vl, thus

causing its evaluation to be replaced with that of, say, v2. Such replacement

may occur to an arbitrary depth. If there is no guard to field a failure-event,

evaluation terminates with value <error>.

37

I I

THE TEST EFFECTIVENESS MEASUREMENT FACILITY

The idea of measuring the quality of a compiler validation test set by

examining its coverage of a SEMANOL(76) specification of a programming

language was first studied several years ago while performing Contract

F30602-76-C-0255, described earlier. The premise is that, since a SEMANOL(76)

specification is itself a program, it is reasonable to consider applying the

same test effectiveness measures to it that are proposed for programs generally.

In particular, the idea of measuring test effectiveness in terms of coverage of

structural elements was evaluated in relation to SEMANOL(76).

For syntactic #DFs, each production could be considered a distinct structural

element; alternatively, each case of each production could be used as the basis

for measurement. Several options were studied for semantic definitions. One

method considered semantic #DFs and #PROC-DFs to be structural elements and

measured effectiveness in terms of element coverage. A refinement of this

method would use a finer definition of structural elements so that each case

of a semantic DF and each statement of a #PROC-DF would be defined as a

structural element. An even more sophisticated technique measures test

effectiveness by the proportion of control options taken at each branch point

by a given input set. These methods all appear to provide useful measures, of

increasing validity, of test effectiveness. They are easily understood,

because they are stated in terms of the SEMANOL(76) specification itself.

Furthermore, they can be effectively incorporated into iterative procedures for

constructing and refining validators that are guided by test effectiveness

results at each step.

During the design of the Test Effectiveness Measurement Facility (Measurement

Facility, for short) implemented in this contract, several desired attributes

were identified. First, it was to be based upon existing SEMANOL(76) tools,

that is, the Interpreter system. In addition, because the Measurement Facility

was no longer the primary focus of activity, it was important that it be kept

as simple as possible. Therefore, the decision was made to base coverage on

syntactic and semantic #DFs (and #PROC-DFs) rather than on a finer definition

of structural elements. Another goal was to minimize the required changes to

38

the SEMANOL(76) Interpreter. An advantage of the effectiveness measure chosen

is that it could be implemented without modifying the SEMANOL Intermediate

Language (SIL) code produced by the Translator. Instead, the output trace from

the Executer, augmented by the output from a parse tree tracer, is used as the

main interface between the Executer and the Measurement Facility; only a one-

line change to the Executer was required to effect this capability.

Despite the modest nature of the Measurement Facility, it has been designed in

such a way that it is easily extendable to more refined measures of test case

effectiveness, should that be desired. The major obstacle is associating a

name with a structural element that does not already have a name; this must be

done in the SIL code.

The Measurement Facility is not machine independent. It consists primarily of

a collection of Multics ecs, or execcom segments; these are essentially

parameterized command sequences. Six of these ecs are called directly by the

user; the remainder are called by other ecs. Two FORTRAN programs also are

included in the Measurement Facility; these, too, are called by ecs. The

Measurement Facility calls the SEMANOL Translator and Executer directly, of

course, and also relies on several utility procedures developed in prior

SEMANOL contracts.

The Test Effectiveness Measurement Facility has four major capabilities:

1. To prepare a SEMANOL(76) specification of a programming
language for processing;

2. To prepare a suite of test cases for processing;

3. To add test results to a data base;

4. To inquire about test results in a data base.

Each of these four capabilities is discussed below. Additional information

about the operation of the Test Effectiveness Measurement Facility can be

obtained from the Test Effectiveness Measurement Facility Users Manual.

39

I

Preparing the SEMANOL(76) Specification

The SEMANOL(76) specification must be modified before it can be used by the

Measurement Facility. In particular, a parse-tree tracer must be added and the

distinction between actions performed during compilation and those performed

during execution must be made explicit. These functions are performed by the

ec create spec archive. This ec has three inputs. The first is the SEMANOL(76)

specification itself. This file must have the name

semanol_program.obj ect-language

For example, for this project, it would have the name

semanolprogram.J 73

as does our SEMANOL specification. The specification must be informally

divided into a sequence of sections, each beginning with a header comment of

the form

"HEADER: <strl>,<str2>, <str3>, <str4>"

where <strl> is generally the language name, <str2> is the section name, and

<str3> and <str4> are other text strings irrelevant to the Measurement Facility.

In particular, the syntactic definitions must be preceded by a header comment

with <str2> = syntax.

The second input to create spec archive is a language-independent segment named

syntaxtrace.drivers. semanol

This file is a fragment of a SEMANOL(76) metaprogram provided with the Measure-

ment Facility on the Multics file system, which, in conjunction with the file

st.r.object-language.semanol (described below), enables the Measurement

Facility to traverse the parse tree of a test program.

The final input to create spec-archive is a language-dependent segment named

st. r.obj ect-language .semanol

where object-language is the same as for the SEMANOL specification. This file

must be provided by the user. It, too, is a fragment of SEMANOL(76) meta-

program code which, in conjunction with syntax__trace.drivers.semanol, enables

the Measurement Facility to traverse the parse tree of a test program. It

must have the following form:

#DECLARE-GLOBAL:

globall, ... , globaln #.

40

#SEMANTIC-DEFINITIONS:{#DF
#PROC-DFJ trace-program-tree => ...

#PROC-DF compilation ...

#PROC-DF execution ...

The SEMANOL(76) variables globall, ..., globaln are global variables declared

in the SEMANOL(76) metaprogram which are used in the semantic definitions

trace-program-tree, compilation, and execution.

The semantic definition trace-program-tree is always required. For each parse

tree, t, used to represent a test program, the definiens of trace-program-tree

must invoke the #DF trace-tree (which is contained in the file

syntaxtrace.drivers.semanol). For example, if the test program is represented

by a sequence of parse trees denoted by a global variable, say, seq-of-modules,

as in JOVIAL(J73), st.r.j73.semanol would contain:

#DECLARE-GLOBAL : seq-of-modules #.

#SEMANTIC-DEFINITIONS:

#PROC-DF trace-program-tree

#FOR-ALL i #IN seq-of-modules

#DO #COMPUTE! trace-tree (i) #.

The semantic definitions compilation and execution may be omitted if the

Control-Commands section of the SEMANOL(76) metaprogram has the form

#CONTROL-COMMANDS:

#COMPUTE! compilation

#COMPUTE! execution #.

Otherwise, the actions corresponding to compilation from the original Control-

Commands section must be incorporated into the #PROC-DF compilation. Likewise,

execution actions from the original Control-Commands section must be incorpo-

rated into the #PROC-DF execution. The Measurement Facility will then replace

the original Control-Commands section with one of the above form. Our SEMANOL

specification of JOVIAL(J73) is already in the preferred format.

41

After execution of the create spec-archive ec, a metaprogram archive will

exist, containing the following segments:

1. An ASCII segment containing a copy of the
original SEMANOL(76) specification.

2. An ASCII segment containing the SEMANOL Intermediate
Language (SIL) version of (1).

3. An ASCII segment containing an index which lists all
the SEMANOL(76) definition names used in (1).

4. An ASCII segment containing a fragment of SEMANOL(76) code
which enables syntax measurement capabilities in the Test
Effectiveness Measurement Facility. This segment contains
the revised Control-Commands section, the contents of the input
segments syntax trace.drivers.semanol and
st~r.object-language.semanol, and a new semantic
definition, type(t), which allows nodes on the parse

tree for a test program being measured to be listed.

5. An ASCII segment containing the SIL version of (1).

Preparing the Test Cases

Before a set of test cases can be input to the Measurement Facility, they must

be collected into a Multics archive. This is accomplished by executing the

archivetest__suite ec. This ec accepts a segment consisting of a sequence of

test cases, and separates the test cases into distinct segments contained in a

test suite archive. The test cases are required to be in the following format:

<begin-markerl>TEST-c FORM-8 CLASS-y RESULT-6 ,<end-marker>

<beg in-marker2 >ENDU , <end-marker>

where:

a is a test number of the form

<digits> {.digits}* -<3-digit sequence number>

8 is one of COMPOOL, PROCEDURE, PROGRAM, or MIXED

y is one of CONFORMANCE, DEVIANCE, IMPLEMENTATION,
QUALITY, OR CAPACITY

6 is one of COMPILE, OBJECT, RUN, or OUTPUT

42

<begin-marker>s and <end-marker> are chosen by the test set
developer, but are normally comment delimiters for the
language of the test set.

Any test data that is required for test execution must be in a similar format:

<begin-marker > DATA = a , <end-marker>

<begin-marker 2 > END,* <end-marker>

Note that the JOVIAL(J73) Validator Test cases conform to this format. Of

course, since JOVIAL(J73) has no facilities for input, the Validator has no

files of the second type.

After execution of the archive.test.suite ec, a test suite archive will exist,

containing one segment for each test case or data file. The test case names

are of the form a'. 8'.y'.6' where

a' = a, preceded by a 'p', with each period
in a replaced by a 'p', and the dash
replaced by a W.

EX: If a = 5.1.1-007, then
a' = p5plpldOO7

8' = first four letters of a

y' - first four letters of y

6' = first three letters of 6

Data segment names are of the form a' .data

It is possible to add test cases to an already existing test suite archive.

This function is performed by the augmentarchived testsuite ec.

This ec requires, as input, the file name of the archive and the name of the

file which contains the new test cases. The latter file must be in the format

described above. The ec prune archived test suite allows test cases to be

deleted from the archive. It requires the file name of the archive and the

name of a file which contains the names of the tests to be pruned.

Adding Test Results to the Result Data Base

After the metaprogram archive and test suite archive have been created, they

can be used to add test results to the result data base. This is done with the

43

monitor-tests ec. This ec inputs test programs (and, optionally, test data)

from a test suite archive to the SEMANOL(76) Interpreter using a specified

metaprogram archive. All of the test programs in the specified test suite

archive may be processed, or only a subset of these tests, called a Test

Interest Group (TIG).

After a test is executed by the SEMANOL(76) Interpreter, monitor-tests

processes the trace output. In particular, each time it encounters a call to

a semantic #DF or #PROC-DF or an instance of a syntax #DF on the parse-tree for

the program, it updates the result data base. A separate data base exists for

each metaprogram archive/test suite archive pair. Each may be thought of as a

matrix : each row represents the results of a particular test, and each column

corresponds to the name of a syntactic #DF or semantic #DF (or #PROC-DF) in the

SEMANOL specification. Each cell in the matrix records the number of times a

given #DF occurred during a particular test.

Inquiring About Test Results in the Result Data Base

The reporting aspect of the Test Effectiveness Measurement Facility is provided

by the ec inquire. Any submatrix of the result data base may be selected for

display. This is done by providing lists of those tests (rows) and #DFs

(columns) of interest. These lists are called Test Interest Groups (TIGs) and

Specification Interest Groups (SIGs), respectively. For each test in the TIG,

a list of all #DFs in the SIG is displayed, together with the number of times

each such #DF was exercised. In addition, a cumulative list, including results

for all tests in the TIG, is provided, together with a coverage percentage.

The coverage percentage is derived from the following formula:

coverage Z - # elements in SIG with non-zero bit frequency 100
elements in SIG

44

- -J -/i.. - : ..'. j_. . _

pop--- I

SUMMARY

This project was successful in developing a sound methodology for the systematic

testing of compilers. The organization that was chosen for the JOVIAL(J73)

Validator can be used in a Validator for any other programming language as well;

in addition, this organization was utilized by the Test Effectiveness Measure-

ment Facility. Likewise, the structure of the SEMANOL specification of

JOVIAL(J73) developed in this project was heavily influenced by the needs of the

Measurement Facility. Finally, the Measurement Facility that was developed can

be used with any SEMANOL specification and any test set (of the required

format).

This project also succeeded in producing an extensive Validator (i.e., 50,000

lines plus capacity tests) for JOVIAL(J73) compilers. This Validator tests

many portions of JOVIAL(J73) very well and yet, despite its size, the Validator

does not include adequate testing for other areas of the language; the 100,000

line Validator needed for truly thorough compiler testing was simply beyond the

scope of this contract. In addition, the Validator itself has not been de-

bugged. There are several reasons for this, which should be mentioned, for

they are common to validator development efforts. First, TRW underestimated

considerably the effort required to construct comprehensive tests of compilers

for a language as complex as JOVIAL(J73); we originally would have expected a

50,000 line Validator to be quite complete. On the other hand, in our zeal to

achieve "perfection," we sometimes found it difficult to maintain our perspec-

tive and engaged in "overkill," testing the same feature in many different,

but largely redundant ways. This restricted emphasis came at the expense of

coverage breadth. Finally, the Valiuator could not be suitably debugged

because no translator for JOVIAL(J73) was available. Although a compiler was

supposed to be provided for this project, the lack of a compiler is not an

unusual occurrence, since the validator for a language is often developed prior

to, or concurrently with, the first compilers for that language. The SEMANOL

Interpreter system can be useful here, for it performs the same functions as a

compiler, but it should be emphasized that confidence in the quality of a

validator cannot be established without the availability of a proven processor.

45

One additional problem arose in trying to coordinate the Validator, the

SEMANOL specification, and the Measurement Facility. The SEMANOL specifica-

tion and the Measurement Facility were developed on the iltics computer at

RADC. Originally, it had been planned to debug the test cases using the

SEMANOL specification; then they too would have been developed on Hiltics.

Instead, because of insufficient Multics resources, it was decided to debug

the test cases using the JOCIT compiler. This compiler is hosted on an

IBM 370; the only such machine available at TRW is a batch computer, not suit-

able for software development. Therefore, the test cases were developed on

still another computer (actually two others, a Cyber system and a VAX 11-780).

The logistics of using so many different computers sometimes became over-

whelming, and emphasizes the desirability of doing software development and

testing on the same computer, one that is a "friendly" host. (Some of the

problems of the JOCIT compiler have been attributed to a similar situation).

There are several different future directions for this work. The Validator

should be debugged, and it can also be enhanced to test lightly covered

portions of the JOVIAL(J73) language more carefully. The SEMANOL specification

of JOVIAL(J73) can undergo more thorough testing as well. Both can be upgraded

to reflect MIL-STD-1589B, the current language standard for JOVIAL(J73). The

Test Effectiveness Measurement Facility can be used to evaluate the Validator's

quality with respect to the SEMANOL specification of JOVIAL(J73); this, however,

would require enormous machine resources unless the speed of the SEMANOL

Interpreter were greatly improved. The results of such an evaluation could

then be used to enhance the Validator further. Finally, the Measurement

Facility can be refined further to use a finer definition of structural element.

46

APPENDIX A

SEMANOL SPECIFICATION OF JOVIAL(J73)
DOCUMENTATION

This Appendix provides a high-level description of a specification of the

JOVIAL(J73) programming language using SEMANOL(76) augmented by the TRY and

FAIL-WITH-VALUE operators described earlier in this document and in the Revised

SEMANOL(76) Reference Manual. Appendix B contains the text of this Specifica-

tion; because SEMANOL is a very high level programming language, the Specifi-

cation serves as its own detailed documentation.

Throughout Appendix A, SEMANOL code will be presented in a slightly modified

notation for greater human readability.

" Keywords appear in upper case, without their distinguishing
initial sharp-character #

" Names of semantic definitions (DFs), parameters, global
variables and local iteration dummy variables appear in
lower case.

" Brackets ($... $) used for DF references in suffix notation,
as in ($ arguments $) df-name, appear as

General Structure

The Specification requires that GIVEN-PROGRAM contain exactly those modules

which comprise a single J73 program, since the SEMANOL Interpreter does not

generate object code and cannot preserve parse trees between executions. Each

module must be followed by a backslash-character N., and cannot contain any

backslashes; any text following the last backslash in GIVEN-PROGRAM is avail-

able for substitution by !COPY directives, and is otherwise ignored.

The top-level structure of the J73 Specification is defined by its Control-

Commands section.

CONTROL-COMMANDS:

COMPUTE! compilation

COMPUTE! execution

COMPUTE! STOP

47

The distinction between compilation semantics and execution semantics is

mandated by the J73 concepts of separate compilation, values known at

compile-time, and compile-time versus run-time error detection.

Compilation Semantics

The DF compilation and its subordinate DFs specify the compile-time processing

for each module of a J73 program. This processing includes lexical analysis,

parsing, and enforcement of constraints on individual modules.

PROC-DF compilation

BEGIN

COMPUTE! init-program-compilat ion

WHILE some-module-is-uncompiled DO

COMPUTE! TRY compile-module C text-of-next-module)

RETURN-WITH-VALUE! NIL

END.

PROC-DF compile-module (text)

BEGIN

COMPUTE! init-module-comp ilat ion

ASSIGN-VALUE! module-tree -

CONTEXT-FREE-PARSE-TREE

(lexically-transformed (text), <module>)

IF [module-tree] is-uniquely-parsed THEN

IF [module-tree] satisfies-module-constraints THEN

COMPUTE! accept-module (module-tree)

RETURN-WITH-VALUE 1 NIL

END.

Sinit-program-compilation constructs values for the Specification
global variables used during compilation, including "immutable"
constants, implementation-defining constants, program-property
constants, and initial values for compilation variables.

" some-module-is-uncompiled returns TRUE until all modules have
been extracted from GIVEN-PROGRAM.

" text-of-next-module extracts the module from GIVEN-PROGRAM.

48

Sinit-module-compilation constructs global-variable initial values
that must be renewed at the beginning of each module's separate
compilation.

* lexically-transformed transforms the extracted module text into
a lexically-equivalent canonical form, described in Lexical
Transformation below.

" CONTEXT-FREE-PARSE-TREE (a SEMANOL operator) constructs a parse
tree for the transformed module text according to the syntactic
rules in the Context-Free-Syntax section of the Specification,
described in Context-Free Parse below; is-uniquely-parsed confirms
that the text was parseable as a J73 module.

* satisfies-module-constraints confirms that the parsed text
conforms to all compile-time constraints on single modules,
described in Constraint Enforcement below.

" accept-module adds the parsed and validated module to the
global sequence variable seq-of-modules.

Each invocation of compile-module corresponds to the extraction, compilation

and possible acceptance of a single module. To reject a module at any stage

of compilation, the Specification invokes the DF compile-error, which prints

an error message and evaluates a FAIL-WITH-VALUE expression to suppress the

remaining compilation activities for that module. Since each invocation of

compile-module is guarded in a TRY expression, the rejection of one module

does not block the compilation of any further modules in the program.

Lexical Transformation

The DF lexically-transformed and its subordinates implement lexical analysis of

a J73 program by transforming the text of a module into equivalent text in

which all lexically-equivalent symbols have an identical canonical form. The

particular transformations performed are listed below.

* A gap (blanks and/or newlines) between symbols is
condensed to a single blank or newline character.

* A comment is replaced by a blank.

* A lower case letter is replaced by the corresponding
upper case letter, except when it occurs in a
character-literal or (prior to expansions of
define-calls) a define-string or actual-define-parameter.

49

" A !COPY directive is replaced by text following the last
backslash in GIVEN-PROGRAM; the exact replacement text is

determined by the DF impl-copy-text reflecting implementation
dependency.

" !SKIP, !BEGIN and !END directives cause suppression of text
prior to parse and constraint enforcement, and are removed.

" Listing directives are replaced by a blank. (The Specification
does not produce a paged source listing.)

" Define-calls are expanded;
define-declarations are collected, applied, and replaced
by blanks.

The use of scoped define-names for textual substitution in J73 assumes that

the lexer and parser are operating as coroutines. The SEMANOL Parser, however,

is a fully-encapsulated operator which is applied to a complete string. An

exact model of J73 defines in SEMANOL would thus require reparsing a module

after each define-call expansion therein, which would be prohibitively

expensive. The current implementation correctly models define-semantics for

all cases where the proper declaration of a define-call name is the textually-

nearest declaration of that name preceding the define-call. Compool-

importation of define-declarations is simulated by collecting all define-

declarations into the global variable seg-of-define-decls, which is not reset

between modules; redeclaration of a name deletes any existing declaration for

it from this sequence.

Illegal recursion of define-calls is detected by maintaining in the global

variable seq-of-active-define-names a list of those defines with expanded text

currently being scanned. Each expanded define-string ends with a marker

end-symbol (a backslash); when this mark is scanned, the last element in

seq-of-active-define-names is deleted. If the define-name in a new call is

already listed, an error is detected.

The overall structure of this lexical transformation is shown in the DF

lexically-transformed below.

50

PROC-DF lexically-transformed (text)

BEGIN

ASSIGN-VALUE! module-text text

ASSIGN-VALUE! scan-index 1

WHILE scan-index <= LENGTH(module-text) DO

COMPUTE! transform-text-for-symbol

(symboll-in(unscanned-text))

RETURN-WITH-VALUE! module-text

END.

The text of a single module extracted from GIVEN-PROGRAM is placed in the

global variable module-text, for a single left-to-right scan. The DF

symboll-in finds the next symbol being scanned. The DF transform-text-for-symbol

then determines whether this next symbol is in canonical form; is so, the scan

continues with the text following this symbol; if not, the canonical form of

the symbol is substituted, and the scan is repeated on the substituted text.

Context-Free Parse

The parsing phase and later phases of module compilation semantics expect that

the text submitted to the Parser has been passed through lexically-transformed.

The SEMANOL syntax for a J73 module generally follows the structure of the

syntax in MIL-STD 1589A; in some areas, however, the Standard's grammar is

overloaded in order to simplify structure, represent contextual constraints, or

increase readability. The SEMANOL grammar must diverge in such areas, in order

to provide unambiguous parsing of all legal programs. For example, the SEMANOL

grammar contains only one derivation for each kind of arithmetic expression,

distinguished by the arithmetic operator; the type class of the result is

explicit in the Standard's grammar, but is generally dependent on the type

class of the operands, which may be item names or function calls whose type

classes are contextually determined.

Syntactic analysis of a J73 program must resolve the classical problem of the

ambiguity of the optional ELSE within an IF statement:

51

IF a THEN

IF b THEN s

ELSE t

Is t performed when (NOT a) or when (a AND NOT b)?

The Standard uses a prose description to match the ELSE with the innermost

unmatched IF; in this case, (a AND NOT b). The SEMANOL grammar disamnbiguates

such statements formally, by dividing all statements into two classes, open and

closed. Open statements end in a THEN clause with no matching ELSE; all other

statements are closed, and the conditional-statement in a closed IF statement

is forced to be a closed statement.

Another possible ambiguity is introduced by a program-body or subroutine-body

other than a single statement, which is parsed

... [<declaration> ...] <statement> ..

Between the constructs which are definitely declarations and those which are

definitely statements, there may be one or more constructs that are null

"istatements" (textually identical to null "declarations"), or compound

structures containing only nulls and other such compound structures, without

labels that would identify them as definite statements. The Standard's grammar

* and text do not disambiguate the syntax of programs containing such body

fragments, since such null constructs have no semantic significance and thus

introduce no semantic ambiguity. The SEMANOL Parser has no foreknowledge of

such convergence of meanings, and cannot tolerate such ambiguities; therefore,

the Specification syntax for J73 body constructs has been "biased" to begin the

* sequence of statements only with a construct that is clearly a statement rather

than a declaration. The opposite bias would not work, since each body is

required to conitain at least one nonnull statement, but is not required to

contain any nonnull declarations. The body is then parsed

... [<declaration> ... I <definite-statement> [<statement> .. .

where a label or a non-null non-compound component statement is sufficient to

identify a definite-statement.

The Specification syntax contains some special syntactic classes that always

produce the NIL string of terminals; these classes are used to insert marker

nodes into parse trees for simplified specification of flow-of-control

52

semantics. Such classes include end-body, end-conditional-statement,

end-if-statement end-while-statement, end-for-statement, end-case, and

end-case-statement. Their significance will be described in Program Flow

of Control.

Constraint Enforcement

The constraints on J73 programs can be divided into five major groups, corre-

sponding to the phases of compilation and execution in which they can be

detected. Each section of the Specification incorporates the enforcement of

certain constraints appropriate to that section. Because effort has been

concentrated on executing correct programs rather than on tejecting incorrect

programs, not all J73 constraints are enforced by the current Specification;

however, the predicates necessary to specify full enforcement are provided.

Full enforcement of module constraints alone for a complexly-scoped language

such as J73 is expected to use more than 25% of the total processing time

required by a representative test set.

Constraints such as the prohibition on recursive define-calls are enforceable

during lexical analysis. In the Specification, violations of such constraints

are detected in lexically-transformed, which then invokes compile-error to

print a diagnostic message and FAIL-WITH-VALUE out of the compilation of the

current module.

Constraints like the disambiguations of IF-ELSE and of null declaration-

statements, described in Context-Free Parse above, are enforceable as

context-free syntax rules. In the Specification, such constraints are

represented in the CONTEXT-FREE-SYNTAX section used by the

CONTEXT-FREE-PARSE-TREE operator to parse a module. Violation of these

constraints causes the parsing operator to return the value UNDEFINED;

is-uniquely-parsed then invokes compile-error to print a 'module unparseable'

diagnostic message and FAIL-WITH-VALUE out of further compilation of the

module.

53

Other constraints enforceable within a single module, such as the requirement

that a name can only be used within the scope of a unique declaration of that

name, are also part of compilation semantics. In the Specification, such

constraints are enforced by the DF satisfies-module-constraints, which consists

of the evaluation of a series of module properties, as seen below.

DF satisfies-module-constraints (mt) "mt EQ module-tree"

=> all-names-are-declared (mt) &

all-formulas-have-unique-types (mt) &

all-ct-formulas-have-ct-values (mt) &

all-ct-values-are-valid (mt)

The evaluation of each property includes invocation of compile-error whenever

a constraint violation is detected. The list of properties currently enforced

by the Specification does not cover all constraints required by J73 at the

module level, but does ensure that the program has a sound basic structure;

enforcement of the remaining constraints can be accomplished by uncomplicated

extension of the current Specification. (The type equivalence and type

compatibility relationships are defined in the current Specification and

discussed below in Types, although they are not yet used in constraint

enforcement.)

The enforcement of module constraints includes the critical "first references"

for most syntactic-component DFs (DFs identified in the DECLARE-SYNTACTIC-

COMPONENT section of the Specification as constant properties of nodes in

program parse trees). The first reference to such a DF for a given node-

argument evaluates the DF-body with that argument, and then tags the node with

the result; all further references to that DF with the same argument will pick

up this saved value, without re-evaluating the DF-body. The syntactic

component ct-value is used to achieve the J73 concept of a "value known at

compile-time", as described in Formula Evaluation below. Various other

syntactic components optimize the derivation of constant properties of program

parts, as discussed in Scope of Names and in Types below.

54

JLb

Constraints such as the need for exactly one main-program-module in a program

cannot be enforced during separate compilation of each module; they must be

enforced during linkage of a collection of modules into a program. In the

Specification, these constraints are enforced by the DF program-satisfies-

constraints, which consists of the evaluation of a series of program

properties, as seen below.

DF program-satisfies-constraints

=> TRUE IFF

all-modules-were-successfully-compiled &

exactly-one-main-program-module-was-compiled &

no-external-name-was-multiply-defined

The evaluation of each prcperty includes invocation of link-error whenever a

constraint violation is detected, to produce a diagnostic message and suppress

execution of the erroneous program.

Constraints such as range restrictions on non-compile-time values can only be

enforced "dynamically", during program execution. In the Specification, these

constraints are enforced within the definitions of evaluation, storage and

control semantics. When a violation is detected, fatal-error is invoked to

print a diagnostic message and terminate execution.

Scope of Names

J73 provides a complex mechanism for associating names with textual entities in

a program, including the concepts of system-defined names (implementation

parameters and machine-specific subroutines), external names for objects defined

in one module and used in another, importation of declarations of names from

compools, and nesting of name scopes. The Specification implements these

concepts in terms of the DFs declaring-occurrence-of, scope-of, and

scoped-name-of.

Nodes of the syntactic class <name> , of any of the classes which produce

<name> directly (e.g. <program-name> , <type-name>), are considered name-

nodes; they satisfy the predicate [n]is-a-name. The declaring-occurrence-of

any name-node is a name-node yielding the same textual name, occurring in a

55

declaration which determines the nature of the named entity and the scope of

the name. Every declaring-occurrence name-node is a member of one of the

distinguished syntactic classes:

item-name
table-name
block-name
constant-item-name
constant-table-name
type-name
statement-name
label-name
subroutine-name
compool-name
program-name
control-letter
system-scope (for system-defined names).

The scope-of a name-node is a node identifying a scope, and is a member of one

of the syntactic classes:

system-scope (for system-defined names)
module (for the compool scope in compilation of a module)
module-scope (for the module as a scope)

program-body
subroutine-definition
subroutine-declaration
(open/closed) for-statement (for loop-control-letters)

Finally, the scoped-name-of a name-node constructs a SEMANOL string value

unique to the textual object named by the node. In general this string

consists of the scoped-name-of (the scope-object enclosing the declaration of

the named object), concatenated with a colon and the textual name of the object.

" scoped-name-of (the system-scope) is the NIL string.

" scoped-name-of (the nth module in the program)
is ':MOD,n', which is unique since MOD is a reserved word
in J73.

" scoped-name-of (the program-body) is ':PROGRAM'.

" scoped-name-of (any external name) is
':DEF:text-of-name', so that all DEFed and REFed declarations

of a name refer to the same object.

56

Li

During execution, the Specification will need to be able to map back from

scoped-names to their defining occurrences; therefore, during program linkage,

the defining-occurrence node for each scoped-name is stored in the SEMANOL

LV-space as the LATEST-VALUE of the scoped-name string. (Most declaring

occurrences, except REFed declarations and formal-parameters of subroutine

declarations, are defining occurrences.)

The current Specification accurately models all aspects of J73 scopes, except

the implicit importation of certain names due to explicit importation of other

names (e.g. importation of a type-name when importing an item-name declared

with that named type). No inherent difficulty prevents the extension of the

Specification to model these omitted aspects of importation.

Types

J73 is a "strongly typed" programming language, in that every name or expres-

sion in a J73 program has a definite nature (a type class and set of attributes),

which restricts the operations and contexts in which it can appear, and which

can only be overruled by explicit redefinition of this nature to another

specific nature (explicit conversion). This nature is determined by rules

which combine component types according to the form of the expression.

The concept of type is so pervasive in J73 that the Specification DF type-of

constructs SEMANOL sequence-value representations of the type of each name or

expression or item-description, where the concept has been extended to include

procedure types (including parameter lists and subroutine attributes), and

type-representations themselves as named types. The various possible forms of

type representations are listed below, with the corresponding attribute names.

In the Specification, the DFs which decompose such representations to retrieve

attribute values are named by (attr-name)-of-type(type-rep).

57

- h= . . f"r-"

Item types:

class: 'S' or 'U' (integer)
size: INTEGER
rounding: 'R' or 'T' or NIL(default)

class: 'F' (floating-point)
precision: INTEGER
rounding: 'R' or 'T' or NIL(default)

class: 'A' (fixed-point)
scale: INTEGER
fraction: INTEGER
rounding: 'R' or 'T' or NIL(default)

class: 'B' (bit)
size: INTEGER

class: 'C' (character)
size: INTEGER

class: 'P (pointer)
basis-type: type-name node or UNDEFINED

class: 'STATUS'
size: INTEGER

has-default-reps: BOOLEAN (TRUE if no specified-sublist in status-list)
seq-of-status-values: SEQUENCE-OF text-of(status-constants)
seq-of-status-reps: SEQUENCE-OF INTEGER

Table types:

class: 'TABLE'
is-ordered: BOOLEAN (TRUE if order-directive present)
seq-of-table-components: SEQUENCE-OF
%component-node, packing % for an ordinary entry, or
%component-node, starting-bit, starting-word % for a specified entry

(component-node is
<table-item-name> where present,
<item-type-description> in bodiless tables;

packing is 'D' or 'M' or 'N';
starting-bit and starting-word are INTEGER)

table-structure: 'PARALLEL' or 'T' or 'Tn' or NIL (default serial)
(n in 'Tn' is INTEGER)

seq-of-dimensions: SEQUENCE-OF <dimension>
words-per-entry: NIL for an ordinary table, or

'V' or 'W' or 'Wn' for a specified table

58

Block types:

class: 'BLOCK'
is-ordered: BOOLEAN (TRUE if order-directive present)
seq-of-block-components: SEQUENCE-OF declaring-occurrence-of(components)

(excludes components of components)
seq-of-block-overlays: SEQUENCE-OF <overlay-declaration>

Named types:

class: 'TYPE'
named-type: SEQUENCE (representation of a type)

Subroutine types:

class: 'PROC'
return-type: SEQUENCE

(representation of a type for functions, or NILSEQ for procedures)
seq-of-input-parms: SEQUENCE-OF declaring-occurrence-of(input-parameters)
seq-of-output-parms: SEQUENCE-OF declaring-occurrence-of(output-parameters)
multiplicity: 'REC' or 'RENT' or NIL
is-pure: BOOLEAN (TRUE if reducible-directive is present)

J73 defines a few special kinds of expressions whose types are determined by

the contexts in which they occur.

" A real-literal takes the fixed or floating type
determined by its context, if there is one;
otherwise it takes the default floating type.

" A status-constant belonging to more than one
visible status type takes the type determined
by its context, if there is one;
otherwise it is illegally ambiguous.

" A pointer-literal NULL in an assignment context
must take the named basis-type attribute of
this context, if there is one (since an untyped
pointer must be explicitly converted before being
assigned to a typed pointer);
otherwise it is an untyped pointer.

59

The Specification handles all of these aspects using the DF context-type,

which for a given expression node contains any definite type inherited from

the context of the expression, and otherwise is UNDEFINED.

* context-type(an operand of a binary
relational or arithmetic operation) =

type-of(the other operand)
if the other operand has a type determined independent of its context.

* context-type(an assignment or preset formula)
type-of(the object being given a value).

* context-type(an actual parameter) =
type-of(the corresponding formal parameter).

e context-type(a loop initial value) =

type-of(the loop control-item)
if the loop is controlled by a named variable
rather than a control-letter.

* context-type(a value being explicitly converted) =

the result type of the conversion.

* context-type(a table subscript index) =

the type of the corresponding dimension.

e context-type(a dimension bound) =

type-of(the other bound of the dimension)
if the other bound has a type determined
independent of its context.

* context-type(a case-index) =

type-of(the case-selector of the case-statement)
if the case-selector has a type determined
independent of its context.

60

Representation of Values

Unlike many other HOLs, J73 incorporates some definite ideas about how data

values are stored and represented. Representations are constrained by the

assumption that storage of data values is organized in fixed-length bit strings

called words, which are identified by ordered addresses that can be mapped to

a subset of the integers. One effect of this assumption is that every value is

represented by a bit string; thus, each item type has at least one attribute

specifying the number of bits required to represent values in that type (or for

character data, the number of k-bit bytes). Explicit conversions are defined

between bit types and nonbit types, which rely on the underlying bit string

representations of all values. Data of one type caa be stored in a variable of

that type, and this storage can then be addressed under an "alias" as a

variable of another type. Although programs using such effects are in general

"unsafe", a J73 program may use these effects in safe ways which should yield

the same result for all J73 implementations.

The SEMANOL machine does not itself conform to J73's architectural assumptions.

The elements of its storage model have no intrinsic order; its address space

is its text string domain rather than only its integer strings; and its storage

elements can contain values from its sequence and parse-tree node domains, as

well as strings of any length. Its machine operations are generally defined in

terms of operands from these varied domains, rather than assuming a common

underlying bit string representation. Thus, in order to accurately interpret

all J73 programs using the SEMANOL machine, some intermediate levels of

machine-architecture must be modelled. These levels should include an

"implementation"-dependent mapping between the SEMANOL representations of J73

bit string values and the SEMANOL representations of all other J73 data values;

and an "implementation"-dependent method of allocating storage to data vari-

ables, where the storage is modelled by using the SEMANOL representations of

J73 bit strings (of a single length for a given "implementation") as the

LATEST-VALUEs for SEMANOL representations of J73 pointer values.

The J73 features whose semantics rely on such architectural assumptions are

primarily those which provide ways for a J73 program to retrieve or modify a

value assuming a type for the value which differs from the type under which the

61

______________|

value was originally stored. These features include:

" overlay-declarations -- directly associate multiple
names with the same area of storage, or control relative
positioning to justify later pointer manipulations.

" specified tables -- may overlap table-items within an
entry, or variable-length entries within a table, or
may control relative positioning within a table or entry.

" REP pseudovariables -- store any bitstring as the bit
pattern representation of the value of the variable, even
if the bitstring cannot be interpreted as a valid value
of the type of the variable.

" NEXT of a pointer -- generate a pointer of the same type
as the argument by integer-address displacement from the
argument pointer; the result may be a typed pointer that
could be dereferenced to designate an object of the basis
type, even if no such object is located at the given
displacement.

" conversions from nonpointer types to pointer types --

may be dereferenced to designate an object not of the
assumed type.

" coercion of a pointer to a typed pointer -- may be
dereferenced to designate an object not of the assumed type.

Specification of the full semantics of such features represents an order of

magnitude increase in the complexity of the Specification, and was therefore

beyond the level of effort available in the current prnject. In order that

the Specification might be of use for the Measurement Facility, it was con-

sidered preferable to develop a Specification which could execute programs

using the "safe" features of J73, rather than to produce only a design for a

complete Specification. The "unsafe" features are included in the Specifica-

tion grammar, and to some extent in the compilation of each module, so that

coverage of these features by test sets can be partially assessed.

The result of this decision is that the current Specification contains a

limited model of storage and data representation in which the choices for data

representation are tailored to the SEMANOL machine as both host and target

machine for a "canonical" implementation of J73. The data representations for

values of the various type classes are described below.

62

Numeric values are represented by SEMANOL strings which look like the literals

for the corresponding type classes. A subgroup of "canonical" representations

is also defined for each of these type classes, and the Specification expects

that representations returned by the DF value will have this canonical form.

" Integer values are represented by strings of the
SEMANOL domain INTEGER; the canonical form has no
leading zeros and no positive sign.

" Floating-point values are represented by strings
with the form of a J73 real-literal; the canonical
form has no decimal point, and its mantissa and
exponent contain no positive sign and no leading
or trailing zeros.

" Fixed-point values are represented by strings with
the form of a J73 real-literal; like floating-point
values, the canonical form contains no positive sign
and no leading or trailing zeros, but unlike floating-
point, the canonical form eliminates the exponent
rather than the decimal point.

Character values are represented by SEMANOL strings, where the LENGTH of the

representation equals the character-size of the value. This means that the

representation of a character-literal excludes the delimiters and doubling of

delimiter-like characters that are present in the literal-form.

Bit values are represented by strings of the SEMANOL domain BITSTRING contain-

ing the s-me number of bits as specified by the bit-size of the value. This -

means that the representation of a bit-literal expands the bead-string for any

bead-size greater than 1, and that the representations of boolean-literals are

the representations of the equivalent bit-literals.

Status values are represented by the representations of their corresponding

integer "representational values", as defined by J73. This choice of

representations (rather than the texts of status-constants, for example) is

"1safe", since J73 constraints ensure that the type of a status value is always

known wherever the value is accessible; and this choice best reflects the

Standard's definition of all status relationships in terms of the relationships

between their representational values. Certain relationships appear to be

defined by the Standard in terms of the textual order of status-constants in

63

their status-list, including bounds of a status dimension and NEXT functions

for a status argument; however, constraints restrict these cases to status

types with default representations, for which textual order is equivalent to

the integer order of the representational values.

Pointer values are represented by SEMANOL strings corresponding to "addresses"

in the SEMANOL machine's associative store (the LV-space). The string 'NULL'

represents the value of the pointer-literal NULL, and is rejected as an

inaccessible address by the value-storage and value-retrieval DFs put-value

and get-value (described in Data Storage below). Otherwise, a pointer to a

data object is represented by the "standard-name" string unique to that data

object, whose construction is described in Data Storage below.

Table values are represented in storage as the collection of their table-item

components. The value of a table formula, appearing in table assignments, is

represented by the standard-name unique to the table or table-entry object

designated by the formula. Table assignment is thus implemented by reference

semantics, in that the evaluation of a table expression returns a pointer to

the table, rather than an aggregate value containing the values of all

components of the table. The Standard specifies value semantics for all

assignments; this departure in the Specification avoids the complication of

constructing representations of aggregate val es, and is correct for all table

assignments except those of the form

@ (ptr'function (arguments)) = table'expr

or

table-name (index'function (arguments)) = table'expr

where the evaluation of ptr'function or index'function alters the value stored

at the address of the table'expr object.

Block values are not represented directly, since J73 never introduces block

values independent of the block objects which have those values; thus block

parameters are adequately represented by their standard-name addresses.

64

Execution Semantics

The DF execution and its subordinate DFs specify the non-compile-time process-

ing for a J73 program as a whole. This processing includes linkage of a

collection of modules into a program, loading the program for execution, and

interpreting the program by "invoking" the program body as a routine from the

"System".

PROC-DF execution

BEGIN

IF TRY program-satisfies-constraints THEN

COMPUTE! accept-program

IF NOT execution-suppressed THEN

COMPUTE! invoke-program

RETURN-WITH-VALUE! NIL

END

The DF program-satisfies-constraints enforces linkage constraints. If the

program is accepted, then it is "linked" in accept-program through the

LV-space: each defining-occurrence of a name is saved as the LATEST-VALUE of

the scoped-name string unique to that definition; thus, during program

execution, the DFs using a given scoped-name can "look up" the meaning of

that name. The global variable execution-suppressed is FALSE if and only if

all modules of the program were successfully compiled and the program as a

whole satisfies all linkage constraints; otherwise interpretation of the

program is blocked.

The DF invoke-program constructs values for Specification global variables used

during execution, creates the system environment from which the program will be

invoked, "loads" the J73 program by assigning initial values to all preset data

objects, invokes the program-body as a routine from the system environment, and

reports the completion (or termination with possible stop-value) of the

program.

The detailed semantics of program execution are discussed below, in Formula

Evaluation, Data Storage, and Program Flow of Control.

65

Formula Evaluation

The DF value and its subordinate DFs specify the semantics of formula

evaluation. The result constructed by value for a given formula is a value-

representation in the canonical form for the type class of that formula, as

described in Representation of Values above.

DF value (expr)

=> ct-value(expr) IF [expr]is-ct-value

=> new-value(expr) OTHERWISE

DF ct-value (expr)

=> new-value(expr)

The DF new-value constructs the current value of a formula. The predicate

is-ct-value identifies J73 formulas which produce constant "values known at

compile time"; ct-value is declared as a syntactic component, so the new-value

of each such formula is constructed only once, is saved on the parse-tree node

for that formula, and is used in all further references to the value of that

formula.

An important general-purpose DF used in evaluations is value-conformed-to-type,

which takes a value and an expected result type, verifies that the value is a

member of the type, and converts the value to its canonical representation for

that type. This representation may be an approximation of the value, due to

loss of precision specified by the type; if the type does not contain even an

approximation of the value, a fatal-error is detected. This DF is also used

to verify the legality of values in contexts involving implicit conversion,

such as assignments and presets.

Evaluation of integer, bit and character literals cannot use the DF

value-conformed-to-type to check that the literal represents a valid value of

the formula type, because the size-attribute of such a formula is determined

by its value, rather than the value being constrained by a type. Instead, the

value is confirmed to have a size no greater than that of the largest legal

literal of its type class. Real-literals, pointer-literals, and status-

constants, on the other hand, have types determined by their contexts, as

discussed in Types; thus a real-literal can be filtered through

66

value-conformed-to-type safely.

The evaluation of each arithmetic operation is subdivided first according to

the type class of the result (integer, fixed or floating), and then according

to whether the implementation being modelled is the "canonical" implementation

for the SEMANOL machine itself. Other implementation models are expected to

differ in their representations of data values; such representations and the

arithmetic on these representations must be defined when alternate implementa-

tion models are incorporated into the Specification. The result of each

arithmetic operation is submitted to the DF value-conformed-to-type, along with

the specified result type, to yield the canonical representation of a value in

the result type.

The evaluation of the logical-continuation operations reflects the Standard's

requirement to determine the result size based on the sizes of all N operands

in the expression; thus, evaluation of an N-operand continuation is not

equivalent to successive evaluation of binary logical operations. For example,

IB'0' EQV IB'l' EQV IB'II' has value IB'l0'; also

IB'00' EQV 1B'01' EQV IB'11' has value IB'l0'; but

IB'O' EQV lB'l') EQV 1B'11' has value 1B'00'.

As a special case, short-circuit evaluation applies only when all N operands

are boolean values; if the above examples were ANDs instead of EQVs, short-

circuit evaluation could apply only to the evaluation of the parenthesized

subexpression in the last example.

The relational operations, like arithmetic, depend on the forms of value

representations, and are therefore subdivided first by the result type class,

and then by the implementation being modelled. Only the "canonical"-

implementation operations are defined in the current Specification. In these

operations, character comparisons are based on the order of single characters

in the global variable impl-collating-sequence. Pointer comparisons are based

on three assumptions:

67 A
.j

* static data precedes automatic data;

" automatic data of a given invocation precedes automatic
data of all later invocations;

" pointers to data allocated in the same invocation are ordered
according to character-comparison of their standard-name
representations.

The LOC intrinsic function is implemented as the standard-name identifying the

argument object; and is thus limited only by the Specification's ability to

construct such an identification for the object. The NEXT function is fully

implemented for status arguments; however, because the NEXT function for

pointer arguments is so heavily dependent on detailed modelling of an

implementation's storage allocation methods, this function currently returns

the NULL pointer value (to block dereferencing of a possibly-meaningless typed

pointer). The Specification could be extended to return meaningful pointers

where this function is being used "safely", as in stepping through the entries

of a table; but this extension proved to be beyond the level of effort avail-

able for the current project.

The SHIFTL and SHIFTR functions, the ABS and SGN functions, and the FIRST and

LAST functions are fully implemented. The LBOUND and UBOUND functions are

fully implemented, including the non-compile-time aspects associated with -

dimension formal-parameter tables. The NWDSEN function is completely defined

in terms of the BITSIZE of the table entry. BYTESIZE and WORDSIZE are also

fully defined in terms of BITSIZE.

BITSIZE of an item or item type is fully defined, including the distinction

between signed and unsigned integer representations of status types. BITSIZE

of a table or table type distinguishes between tight entries, other specified

entries, and other ordinary entries. Because a fully detailed storage model

was classed as beyond the available level of effort, certain special constraints

on alignment of table components for byte and word boundaries are not considered

in constructing BITSIZE.

68

The BIT and BYTE functions are fully implemented as decompositions of the

values of their primary bit-formula or character-formula arguments. Since the

current Specification does not consider "filler bits" and other differences

between logical and physical representations of data, the REP function is

implemented using a bit-type-conversion.

The Specification fully implements explicit conversions between two types of

the same type class, except for those pointer conversions that assume the

colocation of non-equivalent objects (such conversions provide a form of

"aliasing" dependent on a detailed storage and value-representation model).

All explicit conversions between two numeric types are also fully implemented,

since these associations of numeric values in different classes are essentially

independent of particular representations. The remaining J73 explicit conver-

sions make some assumption of either an underlying bit-string representation of

all data values, or a correlation between pointer values and integers. Since

these assumptions are not supported in the current Specification, the remaining

item-type conversions have been defined to return values of the proper result

type, regardless of the value being converted as follows:

* conversions to numeric types return zero;

* conversions to bit types return the bit-value FALSE

padded to the proper length;

e conversions to character types return a string
of blank characters of the proper length;

9 conversions to pointer types return the
pointer value NULL;

* conversions to status types return the
value of FIRST for that status type.

Conversion of a bit value to a table value is UNDEFINED in the current
Specif ication.

69

The remaining kinds of J73 formulas have all been parsed as <named-reference>,

since their exact natures depend on the declaration of names appearing in the

formulas. Such a formula may be:

e an implementation parameter, whose value is defined
by a correspondingly-named DF in the Implementation
Dependency section of the Specification;

e a call to a user-defined or machine-specific function,
whose semantic significance is given by the DF invoke-function
described in Program Flow of Control;

0 an actual-parameter that is to be bound by reference

(a block or table data object, or a label or subroutine
name that must identify the dynamic environment of routine
invocations as well as the textual object being named); or

e a loop-control-letter or named-variable, whose current
value is retrieved by

get-value(standard-name(named-reference))

(get-value and standard-name are described in Data Storage).

Data Storage

As discussed in Representation of Values, the SEMANOL machine architecture does

not conform to J73's assumptions about the organization of storage of data

values. The current Specification implements a relatively abstract storage

model appropriate to the SEMANOL machine organization and to the level of effort

available in the current project. This model is adequate for most "safe"

programs (programs that do not depend on a particular implementation).

A defining-occurrence of a data-name identifies a distinct "textual data

object". If a textual object has STATIC allocation, exactly one instance of

this object will exist throughout execution of the J73 program. If a textual

object has automatic allocation, then each time the subroutine enclosing the

defining-occurrence is invoked, a new instance of this object will be allocated

storage; this new instance exists only until the invocation is completed or

terminated.

70

~4. -~..A

Each allocated instance of each textual data object in a J73 program is

designated by a "standard name" unique to that instance of that object, con-

structed by the DF standard-name at each dynamically-interpreted reference to

that object. Each standard name is built up from the scoped-name unique to a

given independent textual data object (an object that is not a component of

any other data object). A "dynamic prefix", consisting of a canonical integer

followed by a hyphen, identifies the particular routine invocation for which

this independent data object was allocated ('0-' is the prefix for static data

objects). A component object is identified by adding a "component selector",

consisting of a dot-qualification suffix added to the standard-name of the

aggregate object containing the component. The nth table-item in a table entry,

or the nth component of a block, uses the suffix '.n-l'. Each entry of a table

object uses a normalized form of its subscript, replacing each subscript-index

by a canonical integer representing the offset of this index value from the

lower-bound of the dimension. As an example, consider the code fragment below.

START PROGRAM PP; BEGIN ...

PROC QQ; BEGIN

BLOCK BB; BEGIN

TABLE TT (0:2, 1:3, LAST(STAT'TYPE)) ; BEGIN

ITEM WW S ;

ITEM XX S ; ...END ... END

XX(0, 1, FIRST(STAT'TYPE)) = ... ; END ... END TERM

During a single invocation of QQ that is the fifth routine invocation in

program execution, the standard name of the variable being assigned a value is

'5-:PROGRAM:QQ:BB.0.(0,0,0).l'.

'5-' denotes the invocation of QQ as the fifth routine invocation;

':PROGRAM:QQ:BB' is the scoped name denoting the independent block BB
declared in QQ;

'.0' selects the first component of BB (which is the table TT);

'.(0,0,0)' selects the first entry of TT ; and

'.1' selects the second table-item in this entry.

71

Component and entry selectors are normalized because table types are

equivalent when they have the same structure, even if component names are not

identical, and when they have the same number of index values in each dimen-

sion, even if the dimension bounds are not the same and even if one table has

a status dimension where the other has an integer dimension. Thus the normal-

ization of component selectors simplifies table assignment and reference binding

of table parameters. Most compilers perform analogous processing for component

objects, computing an offset from the aggregate address to compute a component

address; the difference is that the compiler then adds the offset to the

integer aggregate address, while the Specification concatenates the offset onto

the SEMANOL string aggregate address.

The standard name of an item data object identifies a single storage element

in the SEMANOL machine LV-space; the LATEST-VALUE of this standard name yields

the representation of the current value of the item. The item may be an

independent object, or a table-item component of a table, or an item component

of a block. The current value of a block or table object is the collection of

the current values of its component objects.

The creation of static data objects at the start of program execution is

implemented by the DF create-preset-data. Uninitialized objects need not be

explicitly created, since the Specification detects a "dangling pointer"

(an attempt to access a nonexistent data object) by checking the dynamic prefix

in the object's standard name against a list of current invocations, rather

than by detecting some distinguished value in unallocated storage.

The DF get-value implements the semantics of retrieving the current value of a

data object. It takes a standard name as the designation of the object,

verifies that this object currently exists, and returns the current value of

this object filtered through value-conformed-to-type to protect against the

use of aliases of different types for the same storage. Existing objects which

have not yet been given a definite value have the SEMANOL value UNDEFINED;

attempts to retrieve the value of such an object will invoke fatal-error.

72

L 1

The DF put-value implements the semantics of giving a value to a data object.

It takes a standard name designating the object and a representation of a

value, verifies that this object currently exists, and stores the value

representation as the current value of the object. Values are filtered

through value-conformed-to-type to ensure that the type of a stored value

agrees with the type of the variable in which it was stored; this provides for

the implicit type conversions specified for J73 assignment semantics (including

presets and item parameters).

Assignment to a table object is implemented by component-wise assignments to

its table-items. Assignment to a BIT or BYTE pseudovariable is implemented by

retrieving the current value of the entire variable to be modified, reconstruct-

ing this value around the modified substring value, and assigning the result to

the entire variable. Assignment to a REP pseudovariable is implemented by

substitution of SEMANOL underlying string representations, rather than by

substitution of J73's assumed underlying bit representations.

The LATEST-VALUE of the standard name of a formal parameter bound by reference

contains the standard name of the corresponding actual parameter for the

particular routine invocation (containing this instance of the formal parameter)

in question. get-value and put-value are each responsible for implementing

reference binding for these parameters; when they are given the standard name

designating a reference parameter, they look up the standard name of the

corresponding actual parameter, tracing back through a possible chain of

parameter associations to find the standard name designating the actual object

to be referenced; they then perform the value retrieval or assignment on that

actual object.

73

PormFoofControl ____a euneo

The Specification describes the semantics of flow of control within a J73

proraminterms of certain basic concepts: the routine, the executable step,

andth lousof control. A routine is either a user-defined procedure or

funcion orthe program body (which can be considered as a subroutine invoked

by te "yste").The body of each routine is interpreted a euneo

ectane steps, which are parse-tree nodes corresponding to statements or to]

crancontrol-points within statements. Execution of the body of a routine

consists of the successive application of the effect of each executable step

in this sequence, starting with the first step in the body, where the effect

of a step may change the value of one or more program variables, cause the

invocation of another routine, or redirect the flow of control within the

current invocation so that the next step executed is not the natural textual

successor of the current step.

A locus of control has two parts: a sequence representing an environment.,

which identifies the invocations whose allocated data objects are directly

visible by name at this point in execution, and an executable step, which must

be an element in the body of the "current" invocation (the last invocation

identified in the environment). Each new invocation is identified by a unique

canonical integer, which represents the invocation in environments, and which

serves as the distinguishing dynamic prefix in the standard names for automatic

data allocated in the invocation. Each environment is constructed with

invocation numbers parallel to the concatenation of scopes in scoped-names,

simplifying the determination of dynamic prefixes for data references.

The specification of flow-of-control semantics has been divided into two major

levels: the routine-invocation level, involving changes to cur-env (the

environment part of the current locus of control), and the executable-step

level, involving changes to cur-step (the executable-step part of the current

locus).

74

Routine-level semantics includes parameter bindings and either normal

completion (by RETURN') or abnormal termination (by STOP, ABORT or nonlocal

GOTO) of invocations, as well as the actual invocation of the program-body or

a subroutine. It is specified by three major DFs:

" invoke-program invokes the program-body as a routine called from
the "system" environment, with no actual parameters and with the
system locus of control as the implied destination for any ABORT
in the program-body;

" invoke-procedure invokes a user-defined procedure due to the
execution of a procedure-call statement, after first selecting
and evaluating the actual parameters for this call, and supplying
either the ABORT-destination specified in the procedure-call
statement or the destination inherited from the invocation con-
taining this statement;

" invoke-function similarly invokes a user-defined function during
the evaluation of a function-call expression, after selecting and
evaluating the actual parameters, and supplying the ABORT-
destination inherited from the invocation calling the function;
after normal completion of the function, invoke-function
retrieves the result value of the call and returns it to the
evaluation-semantics DF value-of-function-call.

The selection and evaluation of an actual parameter yields a sequence value in

one of the following forms.

" An item input actual parameter (bound by value) consists of

(1) the NIL string in lieu of the object's standard-name designation,
which has no significance for value parameters, and

(2) the representation of the current value of the object.

" An item output actual parameter (bound by value-result) consists of

(I) the standard name designating the actual-parameter object,

to allow assignment of result value on completion of the
new invocation, and

(2) the representation of the current value of the object.

" A block or table actual parameter (bound by reference) consists of

(1) the standard name designating the actual-parameter object, and

(2) the NIL string in lieu of the object's current value, which has
no significance for reference parameters.

75

" A label actual parameter consists of

(1) the current environment, which would be the destination environment

for a GOTO to the formal-parameter label name, and

(2) the defining-occurrence of the actual label.

" A subroutine actual parameter consists of

(I) the nonlocal environment for an invocation of the
formal-parameter subroutine name, and

(2) the first executable-step node in the body of the
actual subroutine.

The representations for subroutine and label parameters reflect the fact that

in J73 such parameters have "deep binding"; they carry a particular environment

to be recovered when the formal parameter is used, rather than simply

identifying a textual entity whose most recently created instance is to be

used. The ABORT-destination has a similar deep binding, and is constructed

and used as if it were a special label parameter.

The general semantics of routine invocation is specified by the DF

invoke-routine, which is called by each of the three invocation DFs named above.

PROC-DF invoke-routine (calling-locus, called-locus,
arguments, abort-dest)

BEGIN

COMPUTE! set-current-locus-to([called-locus]with-new-invocation)

COMPUTE! set-cur-abort-dest(abort-dest)

COMPUTE! set-formal-parameters-from(arguments,
seq-of-formal-parameters-in(called-routine(called-locus)))

COMPUTE! execute-invoked-body(cur-locus)

COMPUTE! set-result-arguments-from(arguments,
seq-of-formal-parameters-in(called-routine(called-locus)))

IF [called-routine(called-locus)]is-a-function THEN

ASSIGN-VALUE! function-return-value =

LATEST-VALUE(function-return-value-name)

COMPUTE! deallocate-cur-invocation(void-locus)

COMPUTE! set-current-locus-to(calling-locus)

RETURN-WITH-VALUE! NIL

END.

76

The DF with-new-invocation uses the nonlocal environment supplied in called-

locus, and adds a unique integer for the new invocation; this cannot be done

until after the selection and evaluation of actual parameters to the invocation,

which could include function calls invoking other routines. Similarly, the

specified abort-destination for the new invocation does not apply to function

calls in the actual parameters.

The DFs whose invocations follow execute-invoked-body within invoke-routine

represent the effect of normal completion of the routine body upon execution

of an explicit or implicit RETURN statement; when abnormal termination of the

routine occurs, execute-invoked-body for the routine is set aside by the

effect of the SEMANOL operator FAIL-WITH-VALUE (as described below), and these

normal-completion effects are not performed. The DF deallocate-cur-invocation

removes the current invocation's number from the list of invocations with

existing automatic data, as part of the mechanism for detecting dangling

pointers.

PROC-DF execute-invoked-body (called-locus)

BEGIN

WHILE [cur-step]is-not-a-return-step DO

COMPUTE! field-routine-termination-in-destination-env
(TRY execute-steps-in-cur-routine, called-locus)

RETURN-WITH-VALUE! NIL

END.

PROC-DF execute-steps-in-cur-routine

BEGIN

WHILE [cur-step]is-not-a-terminator-step DO

COMPUTE! effect-of-step(cur-step)

RETURN-WITH-VALUE! terminator-destination

77

DF field-routine-termination-in-destination-env(dest-locus,called-locus)

=> normal-return IF dest-locus EQS void-locus

=> continue-at-destination-locus(dest-locus)
IF env-of-locus(dest-locus) EQS env-of-locus(called-locus)

=> finish-program-execution IF called-locus EQS program-called-locus

=> FAIL-WITH-VALUE deallocate-cur-invocation(dest-locus) OTHERWISE

A return-step is either a RETURN statement or a syntactic marker <end-body>

placed at the end of each routine body, causing an implicit RETURN.

A terminator-step is either a return-step, an ABORT statement (causing return

of control to the explicit or inherited ABORT-destination for the current

invocation), a STOP statement (causing abnormal termination of the program

with a possible integer value returned to the system), or a GOTO statement.

whose destination-name is a formal-parameter label (causing abnormal termination

of the current invocation and the effect of executing a GOTO to the actual-

parameter label in the calling invocation). The effects of non-terminator

steps are described later in this section.

During normal execution, execute-steps-in-cur-routine repeatedly determines

the effect of the current executable step (identified in the global variable

cur-step); this effect includes changing cur-step to indicate the next step

to be executed, usually the next step in textual order in the sequence of

steps for the current routine body. This repetition continues until cur-step

indicates a terminator-step, whose effect will change cur-env by ending the

current invocation. The locus of control to result from this change (the

"destination locus") is constructed by terminator-destination; it becomes the

value of execute-steps-in-cur-routine, and thus becomes the dest-locus argument

of field-routine-termination-in-destination-env for the current invocation.

This last DF may evaluate FAIL-WITH-VALUE to terminate the current invocation,

passing the destination locus back as the preemptive value of

execute-steps-in-cur-routine for the calling invocation; thus this "fielding DF"

both generates and interprets all preemptive values used in specifying J73

control semantics.

78

" When dest-locus is the void-locus indicating a normal return from

the current routine, the fielding DF has a NIL effect and returns
to the remainder of invoke-routine, which assigns result-parameter
values, saves any return value for a function, and deallocates the
automatic data of the completed invocation.

* When dest-locus contains the environment of a prior routine invocation,
the current invocation's instance of the fielding DF uses
FAIL-WITH-VALUE to preempt the current invocation and supply

dest-locus to the caller's instance of the fielding DF.

" When dest-locus contains the environment of the current invocation,
the fielding DF resets the current locus to this destination and

calls execute-steps-in-cur-routine to continue this invocation from
the new cur-step.

" When dest-locus is the system-locus indicating abnormal program

termination, the program-body's instance of the fielding DF must reset

the current locus to the program-completion locus, using the

normal-return mechanism to return to the "system", since there is no

active "TRY execute-steps-in-cur-routine" to field a FAIL-WITH-VALUE

at the system level; terminator-destination has already given a value
to a distinguished program-value variable, to indicate abnormal

termination and a possible STOP value.

As an example of this mechanism, consider the code

START PROGRAM PP; BEGIN

QQ ABORT LL; unexecuted text ; LL: continuation text ...

PROC QQ; BEGIN

RR; unexecuted text ; ...

PROC RR; BEGIN

ABORT; unexecuted text ; ... END END END TERM

In this J73 program, the program-body calls QQ with an abort-phrase;

QQ's call to RR inherits LL as an abort-destination; and the ABORT statement

in RR returns control to the label LL in the program-body. The history of

pertinent DF-calls in the Specification's interpretation of this program

is given below. (Environments and steps are represented symbolically for

greater clarity in this discussion.)

79

.. ..j .. . 11 l b . . . a . .

1. execute-invoked-body for invocation #1 (system calls the program-body)
calls execute-steps-in-cur-routine for program-body steps,
which calls invoke-procedure for the call to QQ,
passing the abort destination C #1, LL I t the invocation of QQ.

2. execute-invoked-body for invocation #2 (program-body calls QQ)

calls execute-steps-in-cur-routine for steps in QQ,
which calls invoke-procedure for the call to RR,
passing the abort destination [#1, LL] to the invocation of RR.

3. execute-invoked-body for invocation #3 (QQ calls RR)
calls execute-steps-in-cur-routine for steps in RR,
which returns the inherited abort destination [#1, LL I
as the value of terminator-destination, which becomes dest-locus for
field-routine-termination-in-destination-env within execute-invoked-body #3.

4. This fielding DF for invocation #3 finds that its current environment #3
is not the destination environment #1,
so it uses FAIL-WITH-VALUE to preempt further execution in invocation #3,
and to replace the evaluation of execute-steps-in-cur-routine #2
with the destination locus, which becomes the dest-locus argument to
the fielding DF for invocation #2.

5. The fielding DF for invocation #2 similarly finds that its current
environment #2 is not the destination environment #1,

so it uses FAIL-WITH-VALUE to preempt further execution in invocation #2,
and to replace the evaluation of execute-steps-in-cur-routine #1
with the destination locus, which becomes the dest-locus argument to
the fielding DF for invocation #1.

6. The fielding DF for invocation #1 finds that its current environment is
the destination environment #1, so it resets the current locus to
environment #1 and step LL in the program-body, and
execute-invoked-body #1 again calls execute-steps-in-cur-routine to
continue execution from the label LL.

The semantics of statements that do not terminate the current routine

invocation is specified by the DF effect-of-step. Part of the effect of each

executable step is to update the global variable cur-step which identifies the

next step to be executed. The steps below whose names have the form end-...

are syntactic marker nodes that produce the NIL string of terminal characters

in the Specification syntax for J73, and simplify the description of

effect-of-step.

80

The effect of an assignment statement is

* first, to evaluate the constituent formula to get the
representation of the value being assigned;

" then, for each variable, to determine the standard name
designating that variable object and to use put-value to
assign the value to that variable; and

" finally, to advance cur-step to the next step in the
current routine body (the textual successor of the
assignment statement).

The effect of a GOTO statement (whose destination-name is not a formal

parameter) is to set cur-step to the defining-occurrence of its

destination name. A label defining-occurrence is considered an executable

step in order to simplify the description of effect-of-step; its effect is

the trivial one of advancing cur-step to its textual successor step.

The effect of a procedure-call statement is described by invoke-procedure

for user-defined procedures being invoked, or by specific implementation-

dependent DFs for any machine-specific procedures. cur-step is set to its

textual successor step upon normal return from the procedure-call;

abnormal termination of the procedure-call preempts this effect.

The description of IF-statement effects utilizes the syntactic markers

end-conditional-statement and end-if-statement, placed as shown below.

if-statement =: if-clause statement end-conditional-statement

[ELSE statement] end-if-statement

The effect of an if-clause is to advance cur-step either to its own textual

successor if its boolean-formula evaluates to TRUE, or to the successor of the

corresponding end-conditional-statement step (thus executing any ELSE) otherwise.

The effect of an end-conditional-statement step is to advance cur-step to the

successor of the corresponding end-if-statement step (thus skipping any ELSE).

The effect of an end-if-statement step is to advance cur-step to its textual

successor.

81

The description of WHILE-statement effects utilizes the marker

end-while-statement, placed as shown below.

while-statement =: while-clause statement end-while-statement

The effect of a while-clause is to advance cur-step either to its own textual

successor if its boolean-formula evaluates to TRUE, or to the successor of

the corresponding end-while-statement otherwise.

The effect of an end-while-statement is to set cur-step to the

corresponding while-clause.

The description of FOR-statement effects utilizes the marker

end-for-statement, placed as shown below.

for-statement =: for-clause statement end-for-statement

for-clause FOR control-item : control-clause

control-clause initial-value [while-phrase and/or

by-or-then-phrase]

The effect of a for-clause is to assign the specified initial value to the

control-item (using put-value), and then to advance cur-step to its textual

successor.

The effect of a while-phrase is to advance cur-step to its textual successor

if its boolean-formula evaluates to TRUE, or to deactivate the letter

control-item (by giving it the value UNDEFINED) and advance cur-step to

the successor of the corresponding end-for-statement otherwise.

The effect of an end-for-statement is to modify the current value of the

loop control-item according to any by-phrase or then-phrase for the loop,

and then to set cur-step to the textual successor of the corresponding

for-clause.

Note that the sequence of executable steps in a body is constructed by a

prefix tree walk of the parse tree for the body, so any constituent step

within a step is a successor of that enclosing step. Thus the textual

successor of a for-clause is the while-phrase, if any, in the for-clause,

and is otherwise the statement to be iterated.

82

The effect of an EXIT statement is to advance cur-step to the textual

successor of the end-for-statement or end-while-statement corresponding to

the loop being exited, after deactivating any letter control-item for

that loop.

The description of CASE-statement effects utilizes the markers end-case

and end-case-statement, placed as shown below.

case-statement CASE case-selector ; BEGIN case-body

labels] END end-case-statement

case-body [(DEFAULT) : statement opt-fallthru

case-alternative ...

case-alternative : case-indices) statement opt-fallthru

opt-fallthru FALLTHRU or

end-case

The effect of a case-statement is to evaluate the case-selector formula

and then to advance cur-step to the first step following the case selected

by this value.

The effect of an end-case step is to advance cur-step to the textual

successor of the corresponding end-case-statement.

The effect of an end-case-statement is to advance cur-step to its

textual successor.

83

Implementation Dependencies

A distinct section of the Specification collects the DFs which attempt to

encapsulate to some extent the various differences between implementations

of J73. These DFs represent the following implementation-specific semantics.

" values of implementation parameters

(current values are arbitrary but form a

consistent set of parameter values)

" interpretation of :COPY directives to retrieve
the text to be substituted

" choice of whether to implement lower-case letters

" interpretation of compool-file-name in .COMPOOL directives

to identify a compool module

" default method of truncation of numeric values to

a given precision

" character-set accepted, with collating sequence

" order of evaluation of actual parameters

" machine-specific procedures and functions provided by a system
(currently limited to a set of names recognized as output

procedures used by the Validator)

" forms of representation of values of a given type,

especially numeric types, with definitions of J73 operations

in terms of such representations

(limitations of the current value representations are

discussed in Representation of Values)

84

Summary of Specification Effort

Development of the SEMANOL Specification of JOVIAL(J73) was based on a careful

analysis of MIL-STD-1589A as the definition of the J73 language; this analysis

is described elsewhere in this report. Effort was then expended to design,

develop and partially debug the Specification.

Design goals for the Specification included the usual goals common to most

SEMANOL Specifications; the Specification should be readable, executable,

complete, traceable to the MIL-STD definition, and protected against interpre-

tation of illegal "programs" in the language being specified, to the extent

feasible with the level of effort available. In addition, because the purpose

of the Specification in this project was to partition the J73 language for the

Measurement Facility's use, the project context determined certain other goals

for the Specification design:

" separate syntactic DFs for grammatically-separable
concepts

" separate semantic DFs for distinct concepts having
similar syntax

" separate DFs for distinct variants of a construct in
a given context using that construct, where feasible
(for example, distinguishing the effect of a true from
a false boolean-formula in an IF statement)

" use of DF names that are highly descriptive of DF meanings

" separation of compilation semantics from execution
semantics, to allow for compile-only tests

" emphasis on producing a fairly-complete executable
Specification (for a subset of "safe" J73 programs),
rather than an unexecutable design for a complete
Specification or an incomplete Specification that
rejects all illegal "programs".

An example of how the separation goals affected the Specification design is

the division of the effect of an IF statement into the two DFs

effect-of-true-if-clause and effect-of-false-if-clause, even though these two

DFs are so simple that they would be clearly readable as cases of a single

DF effect-of-if-clause.

85

~ ~-~i

The emphasis on producing an executable Specification rather than a complete

design was important, since the complexity of the J73 language precluded

development of a complete executable Specification with the level of effort

available. In order to support the Measurement Facility, the lexical analysis

and context-free grammar accept all legal J73 programs, so that syntactic

coverage can be assessed. Separation of distinct concepts is further achieved

by allowing compile-time semantic DFs to distinguish concepts that run-time

semantic DFs treat identically in the implemented models. For example, the

implemented storage model is not sufficiently detailed to represent the exact

semantics of the various kinds of specified tables; all are generally treated

as if they were ordinary tables. Construction of the type of a specified

table, however, differentiates these kinds of tables; thus, with the current

Specification coverage can be assessed to the level of these different kinds

of tables, although not to the level of assignment to each kind of table or

parameter associations for each kind of table.

The Specification was then implemented according to its design, using the

SEMANOL(76) metalanguage including the TRY and FAIL-WITH-VALUE operators.

The J73 concepts whose detailed semantics are not precisely described by the

current Specification are listed below.

1. The scope of a define-name is not correctly determined
when the proper declaration of the name is not the textually

most-recent declaration of that name.

Correction of omission 1 would require prohibitively-large computational-time

resources using the encapsulated SEMANOL Parser, and is not recommended.

2. Explicit importation of a compool-declared-name does not cause
the implicit importation of any other names.

3. Preset values in blocks and tables are not implemented.

4. LIKE options in table types are not implemented.

5. Defining-occurrences and declaring-occurrences of block

instantiations may not be correctly linked.

6. Table assignment is implemented by reference semantics,
and is thus incorrect when selection of a target table
variable contains a function-call altering the stored
value of the table-object in the assignment formula.

86

F
7. TRACE directives are not implemented.

8. Various constraints on legal J73 programs are not enforced.

(See Constraint Enforcement).

Concepts 2. through 8. were omitted in order to scope the Specification task

according to the level of effort available; these particular concepts were

chosen for omission in the semantic description because they are not part of

the Validator's set of critical J73 features used to test other features.

Their correct implementation would require additional time but would not make

the Specification significantly more complex. The current Specification

supports some coverage assessment for all but concept 2.

9. Some directives have no particular significance for the
canonical form of the SEMANOL Specification, and are ignored

in the semantic descriptions; they are distinguished
syntactically (thus allowing assessment of coverage for
these directives). These directives include

" LINKAGE, since the Specification does not represent
specific linkage conventions, J73 or otherwise;

" IINTERFERENCE, since the Specification does not
perform any of the potentially-dangerous optimizations
to be inhibited by this directive;

" listing directives, since the Specification does not

produce a paged source listing due to resource requirements;

" register directives, since the Specification does not
utilize registers;

" expression evaluation order directives, since the
Specification does not deviate from left-to-right
evaluation of expressions;

" INITIALIZE!, since the meaning of "all zero bits" as a
value representation for nonbit-type values is not
defined in the Specification.

10. No invertible relationship between integers and the pointer
addresses for storage of data variables and compiled code is
defined; conversions between pointers and integers are
implemented by constant DFs, and pointer conversions and the
NEXT function for pointers always yield the undereferenceable

value NULL.

87

11. No invertible relationship between bitstring values and the
underlying representations of all data values is defined;
conversions between bit and nonbit types are Implemented by
constant DFs, and the REP pseudovariable is implemented
using SEMANOL character-string underlying representations of
values.

12. BITSIZE, and by derivation therefrom, BYTESIZE, WORDSIZE, and
NWDSEN, of tight tables and packed tables containing filler
bits, and of blocks containing such tables, do not reflect
alignment restrictions for table components relative to word
boundaries and byte boundaries; the Specification does not
support all details of J73's view of storage as words con-
sisting of fixed-length bitstrings.

13. Construction and use of aliases for data storage is not
supported, including overlay-declarations, relative
positioning of component objects in blocks and tables,
REP pseudovariables storing values not of an expected type,
NEXT for pointers (see 10. above), and dereference of a typed
pointer converted from an integer (see 10. above) or from a
differently-typed pointer.

Concepts 10. through 13. were omitted because they represent a very

significant part of the complexity of a complete Specification of J73, and

are not part of the Validator's set of critical features. Their correct

implementation would require additional time and would impact a significant

portion of the current Specification. Their correct implementation was well

beyond the level of effort available. The current Specification supports some

coverage assessment for these concepts.

Finally, the developed Specification was partially tested and debugged.

The Specification now is translated by the SEMANOL Interpreter without error,

and correctly executes a small collection of ad-hoc test programs (i.e. these

programs were not taken from the Validator developed for this project). A

few corrections to the Specification text given in Appendix B were identified

during testing, and are given below. The results of the test programs for

the Specification (with these corrections as incremental changes) follow the

correction text.

88

Specification of JOVIAL(J73) SEMANOL Project
Incremental Changes Corrections

"The following are replacements for D~s in Appendix B.
These corrections were included in the Specification used to
execute the tests reported in Appendix A."

#SEMANTIC-DEFINITIONS:

#DF is-an-expr (n)

'I{ n #IS #NODE }1"

=> #TRUE #Fil n #IS (formula> #lU <relation> #lU
(relative>;

=> #TRUIE #Fil n #ITS <term> #lU <factor> #lU (primary>;

=> #TRUE #Fil parent(n) #IS (primary> #lU <literal>
#lU <intrinsic-function> #U <pseudovariable>;

=> #TRUE #Fil n #lIS <loop-control-letter> #lU
<dereference>;

=> #TRUE #Fil n #IS <ct-formula> #lU <pointer-formula>;

=> #TRUE #Fil n #ITS <status-list-index> #lU

<item-preset-value>;

=> #iTRUE #Fil n #IS <lower-bound> #lU <upper-bound>;

=> #TRUE #Fil n #ITS <entry-size> #lU <overlay-address>;

=> #TRUE #Fil n #lIS <constant-index> #lU
(repetition-count>;

=> #TRUE #Fil n #IS <boolean-formula> #lU
<case-selector-formula>;

=> #TRUE #Fil n #IS <case-lower-bound> #lU
<case-upper-bound>;

=> #iTRUE #Fil n #IS <input-argument> flU
<output-argument>;

=> #TRUE #Fil n #lIS <variable>;

89

Specification of JOVIAL(J73) SEMANOL Project

Incremental Changes Corrections

=> #FALSE #OTHERWISE #.

#DF field-routine-termination-in-destination-env
(dest-locus, called-locus)

=> normal-return #IF dest-locus #EQS void-locus;

=> continue-at-destination-locus(dest-locus)
#IF env-of-locus(dest-locus) #EQS

env-of-locus(called-locus);

=> finish-program-execution
#IF env-of-locus(dest-locus) #EQS

env-of-locus(system-locus);

=> #FAIL-WITH-VALUE
deallocate-cur-invocation (dest-locus)

#OTHERWISE #.

#DF seq-of-steps-in (b)

=> #SUBSEQUENCE-OF-ELEMENTS s 1IN
(#SEQUENCE-OF <end-body> #U
<assignment-statement> #U <exit-statement>
#U <stop-statement> #U <abort-statement>
#U <goto-statement> #U

<procedure-call-statement> #U
<case-statement> #U <end-case> #U

<end-case-statement> #U
<for-clause> #U <while-phrase> #U

<end-for-statement> #U
<while-clause> #U <end-while-statement> #U

<if-clause> #U
<end-conditional-statement> #U

<end-if-statement> #U
<label-name> #IN b)

#SUCH-THAT(body-of(s) #EQN body-of(b)) #.

#DF body-of (s)

=> child(#SEG 7 #OF parent(s)) #IF s #IS

90

AD-AL02 386 TRW DEFENSE AND SPACE SYSTEMS GROUP REDONDO BEACH CA F/6 9/2
JOVIAL 1.J73) COMPILER VALIDATOR(U)
JUN 81 R M HART, M S MCCLANAHAN F30602-79-C-0221

UNCLASSIFIED RAOC-TR-81-128 NL

2

U-----7

Specification of JOVIAL(JY3) SEMANOL Project
Incremental Changes Corrections

<subroutine-name>;

=s #IF s #IS (body>;

=> (hild(s) #IF s #IS (program-body> #U
(subroutine-body>;

=> #LAST n #IN (4SEQUENCE-OF-ANCESTORS-OF s)
#SUCH-THAT (n #1S <body>)#QN4ERWISE #.

91

The test results reported herein were obtained
as absentee Multics jobs under the following top ec

& abs test.absin February 1981 McClanahan
& execute a J73 test program as an absentee process
& &1 = test program in j73testl981.archive
&command line off
ready_of?
string "U-"&1 "- -"

ac x j73test1981 &1
pr &1 1 200
string "1 - - . end of text "
semanol sil.j73
load isil.j73
bron execution
string "- - - " compilation " . -

readyon ;run &1
ready off
string " - - . execution "
ready on;continue
ready_off
calst
dl &1

The following are test results showing correct interpretation
of J73 ad-hoc test programs (not tests from the Validator
developed for this projet) by the SEMANOL Specification of
JOVIAL(J73). They include sequence-values printed to check
the dynamic history of routine invocations and completions.

test.exec.1
start program pp ; stop ; term
\ 1.2.3 minimal j73 program

should compile, link and execute without error;
terminate program with value not determined

- - - - end of text- - - -
scomp called
scomp returns
scomp called
scomp returns
scomp called
scomp returns
scomp called
scomp returns
scomp called
scomp returns
scomp called
scomp returns

STOP

92

STOP

STOP

- - - - compilation - - - -

Revised text of module 1:
START PROGRAM PP ; STOP ; TERM

End revised module text

successful compilation of module 1
break at execution
in #CONTROL at location 9 : level 1

STOP
r 1901 367.643 116.4~30 658

- - - - execution - - - -

program accepted

initial-program-locus:
seq-dump:\
seq-dump:\ 0 \ :end-seq-dump, node:35 \:end-seq-dump

program-called-locus:
seq-dump:\
seq-dump:\ 0, 1 \ :end-seq-dump, node:35 \ :end-seq-dump

program-completion-locus:
seq-dump:\
seq-dump:\ 0 \ :end-seq-dump, node:4I2 \:end-seq-dump

dest-locus FOR field-term ...
seq-dump:\
seq-dump:\ 0 \ :end-seq-dump, node:1 \:end-seq-dump

called-locus FOR field-term ...
seq-dump:\
seq-dump:\ 0, 1 \ :end-seq-dump, node:35 \ :end-seq-dump

program-execution-terminated-with-value:NOT DETERMINED.
mstop called
in #CONTROL at location 11 :level 1

STOP
r 1901 5.04I7 1.116 4I

93

test.exec.2
StarT program Pp; if tRuE ; WHILE false; STOP 1 ;TERm
\ 1.2.3 main-program-module

4.2 while statement (no iteration)
4.3 if statement (then-branch)

8.1 equivalent cases of letters
should compile, link and execute without error;
complete program normally

- - - - end of text - - - -
scomp called
scomp returns
scomp called
scomp returns
scomp called
scomp returns
scomp called
scomp returns
scomp called
scomp returns
scomp called
scomp returns

STOP

STOP
- - - - compilation - - - -

Revised text of module 1:
START PROGRAM PP; IF TRUE ; WHILE FALSE; STOP 1 ;TERM

End revised module text

successful compilation of module I
break at execution
in #CONTROL at location 9 level 1

STOP

r 1843 413.279 98.152 1658

- - - - execution - - - -

program accepted

initial-program-locus:
seq-dump:\
seq-dump:\ 0 \ :end-seq-dump, node:35 \ :end-seq-dump

program-called-locus:
seq-dump:\
seq-dump:\ 0, 1 \ :end-seq-dump, node:35 \ :end-seq-dump

program-completion-locus:

94

--- owd

seq-dump:\
seq-dump:\ 0 \ :end-seq-dump, node:112 \ :end-seq-dump

dest-locus FOR field-term...
seq-dump:\
seq-dump:\ \ :end-seq-dump, node:1 \ :end-seq-dump

called-locus FOR field-term...
seq-dump:\
seq-dump:\ 0, 1 \ :end-seq-d mp, node:35 \ :end-seq-dump

program-execution-completed.
mstop called
in #CONTROL at location 11 level I

STOP
r 1843 13.885 1.100 23

-= ===test.exec.3
start program pp ; begin

case 1B'1' ; begin
(true): ; (false) : stop ; end end term

\ 4.4 case statement (no default)
should compile, link, execute without error
complete program normally

- - - - end of text - - - -
scomp called
scomp returns
scomp called
scomp returns
scomp called
scomp returns
scomp called
scomp returns
scomp called
scomp returns
scomp called
scomp returns

STOP

STOP

STOP
- - - - compilation - - - -

Revised text of module 1:
START PROGRAM PP ; BEGIN
CASE 1B'1' ; BEGIN

95

(TRUE): ; (FALSE) STOP ; END END TERM

End revised module text

successful compilation of module 1
break at execution
in #CONTROL at location 9 : level 1

STOP

r 2108 445 .3 41 141.702 1080

- - - - execution - - - -

program accepted

initial-program-locus:
seq-dump:\
seq-dump:\ 0 \ :end-seq-dump, node:47 \ :end-seq-dump

program-called-locus:
seq-dump:\
seq-dump:\ 0, 1 \ :end-seq-dump, node:47 \ :end-seq-dump

program-completion-locus:
seq-dump:\
seq-dump:\ 0 \ :end-seq-dump, node:187 \ :end-seq-dump

dest-locus FOR field-term...
seq-dump:\
seq-dump:\ \ :end-seq-dump, node:1 \ :end-seq-dump

called-locus FOR field-term...
seq-dump:\
seq-dump:\ 0, 1 \ :end-seq-dump, node:47 \ :end-seq-dump

program-execution-completed.
mstop called
in #CONTROL at location 11 : level 1

STOP
r 2108 17.154 0.102 12

96

MISSION
Of

Rowe Air Devetoypmeint CenterI
RADC ptaml and execwteh 4ekh.d, devetopment, teAt and
Aetected aquiaition pxogxani6 inl 6uppot~t oj Commeand, Cont-tot
Conunc~ationa and Intettienwe (C31) ac~v.Wea. Techica
and enginee~ing sppo~t w~thin autaA 06 techniWa. compe.ten~ce
" PAi0vided .to ESD Pxog.'am O6jZce (POa6) and otheA' ESPetenients. The pi,wipat technicat nisA,6on a~eaA aAe
comm1Wunia..uofl, etect~~omagnetie g Zdance and cont~ot, .6uA-
ve~Ztnce oj guowtd and aet.6wpace objto.-t, intet~gence data

ionoapheALc~ putpagation, 6otid ate uencue, micAowave
phy,6.&A and electwnZe 4utabiW-ty, maintainabZ.Uity and
cornpatibi1Zitg.

I

