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SUMMARY

:-The performance of arrays of receivers can be improved by
optimisation of the weighting vectors used to form the
output beams.

Three optimisation criteria are considered: minimisation
of total output power, least mean square fit to a signal
vector, and maximisation of signal-to-noise ratio. For
practical purposes it is often necessary to apply some form
of constraint to the weighting vectors. The optimum
narrowband array weight vector is derived for each of the
three criteria when an arbitrary set of linear constraints
are imposed on the weight vector.

The equality of the derived weight vectors in most cases of

practical interest is proved.

Finally, some examples are considered which show how a number
of recently proposed weighting vectors can be derived as
special cases of the constrained solutions.
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1. INTRODUCTION

The choice of array shading weights modifies the performance of a delay and sum
beamformer. In conventional beamforming the choice of a set of weighting vectors
involves a tradeoff between the width of the main beam and the height of unwanted
sidelobes.

If the noise field is known 'a priori' the performance can be optimised in some
sense by a correct choice of the weighting vectors.

This choice of an optimum set of array shading weights has received considerable
attention(ref.l,2,3) and the weight vectors are often chosen to satisfy optimisa-
tion criteria such as:

(1) minimising the total output power, or

(2) a least mean square fit to the signal vector, or

(3) maximisation of the signal-to-noise ratio

In general a single point constraint of a fixed (non zero) response to signals
from the steered direction is incorporated and under this constraint the three
optimisation criteria result in the same weight vector(ref.1). This constraint
ensures that signal output power increases as the input signal-to-noise ratio
increases. A further extension has been to derive optimum weight vectors which
satisfy an arbitrary number of linear constraints(ref.2,3). An example of this
is the use of derivative constraints to maintain the main lobe response(ref.4) and
hence prevent cancellation of desired signals close to the steered direction.
The optimisation criterion used in these cases has been that of minimising the
total output power(ref.2,3) and maximising the signal-to-noise ratio(ref.4).

In this paper the optimum weight vectors for multiple linear constraints are
derived for the three different optimisation criteria discussed above. Under
some very mild restrict'ons on the choices of constraints, it is shown that all
three criteria result in the same weight vector for a given set of constraints.
The frequency domain formulation is used to show this but the results can easily
be extended into the time domain.

Some special examples are studied to show how the general. solutions reduce to a
number of processors that have appeared in the literature(ref.5,6,7). In
particular when the problem is overcorstrainec (ie the number of constraints is
greater than the number of receivers) then the optimum weight vectors reduce to
some quadratic estimators that have recently been derived in the literature
(ref.6,7). In these cases the optimum weighting vectors are independent of the
noise crosspower spectral matrix and are determined by the array geometry.

This work is part of a continuing R&D programme in signal processing for underwater
acoustics and has been carried out under tast DST 79/069.

2. DERIVATION

Let x = {xj be the vector of outputs of the K receivers at some frequency f and

be w = {wj} be the vector of receiver weights. The covariance matrix R (K x K)

is defined* by

The superscript H denotes the Hermition transpose of a matrix or vector.
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R <x">

In the absence of a signal the receiver noise outputs are denoted by n and the

noise covariance matrix is defined by

R =< nnH >
n

and

R = R + R.
S n

The following derivations have been formulated for the frequency domain but can
easily be extended to the time domain by a suitable redefinition of the matrices
and vectors.

Any set of L linear constraints on the weight vector w can be expressed as

MW = c (1)

where M is the L x K constraint matrix and c is the L x 1 vector of constraint
values.

2.1 Minimum power

This criterion chooses the weights, wi, such that the total output power ie

w Rw,

is minimised subject to the constraints (1) being satisfied.

Introducting the vector X of undefined Lagrangian multipliers the cost
function H(w) to be minimised is given by

H(w) = wH Rw - (Mw - c)HX - XH(Mw - c).

H
Differentiating the above equation with respect to w and equating the result

to zero*, the following equation is obtained:

Rw - Ax = 0.

(MP) i
Assuming IFr exists then the optimum weight vector, denoted as w is

given by

w (MP) I '' (2)

*It can readily be proved that differentiating with respect to w and w is

equivalent to differentiating with respect to the real and imaginery components

separately.
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Furthermore requiring that the constraint equation (1) is satisfied implies

that

(Mg'MH)X = c (3)

If M is of rank L (ie of full rank) then it follows that

X = (MgMHT).Ic

and hence

(MP) IMH (M -MHIc

which has been derived by a similar argument in reference 2. However, more
generally it follows that any solution to-equation (3) can be written in the
form

X = (M, 1MH)+c + (I _ (M, IMH)+ (Mg-W M))z

where z is an arbitrary vector, and A+ denotes the Moore-Penrose pseudoinverse

of A (see reference 8 or Appendix I for definition of A+).

In this case equation (2) becomes

(MP) = M g IWHM + MH (I (Mr1 MH) + (Mr M)) zw = - (MR- M. c + WM (- MW M)
0

which reduces to

(MP) = - 1 MH (MR MH)+c (4)

since (see Appendix I) the second term is equal to zero. The output power is
given by

w(MP) R w (MP) = CH (Mg IMH)+ MW' RRMH (Mg- IMH)+c

S c H(Mg, NH)+ Mg- I (MirI M) + c

= H (M +

by virtue of equations (I.1) (ie the definition of the Moore-Penrose
pseudoinverse). Note that both the expression for the optimum weighting

vector and the minimum output power cai. he derived directly from p.49 of
reference 9.
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2.2 Least mean square derivation

The error between some desired output, d, and the weighted receiver outputs
is given by

= d wH x

The mean square value of this error can be shown to be given by

H HHH<61> :d d - w < d x > - < xH d > w + wH Rw

A H H v - v Hw + w Rw (S)

where the covariance between d, the response due to a signal, and x, the
receiver outputs is simply the steering vector, v, if the signal and noise
are uncorrelated. Thus minimising equation (5) subject to the constraints
implies a cost function

H~) = H H H H HMw
H(w) = d d + wHRw - v w _ w y + (cH Fw) + H (c - NMw)

Differentiating with respect to wH and equating to zero implies that w (LMS)

is given by o

w (LMS)= i (Mx + v) (6)

Ensuring that w0 (LMS) satisfies the constraints implies that

(MgIMH) x = c - Mg-, v

and hence X is given by

X = (Mg-,MH)+ (c -M- v) + (I - (MIrIMH) + (Mg-1HH))z

where z is arbitrary.

Substituting for X in equation (6) it can be shown in a manner similar to
that used in Section 2.1 that

w (LM)H (Mg. MH)+c + g-TIv- a IMH (MgOMH)+ MrIvo

It can also be shown that the output power is given by

w (LMS) Rw (LMS) c H (Mr MH) c+  vH - vH K, di (M , IMH) + W vo 0
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2.3 Maximisation of beam signal to noise ratio

If the signal covariance matrix is defined by R then the beam SNR is given

by

H_ _

w R w
s

gw H R
n

Maximising the SNR subject to constraint (1) implies the cost function

H(w) wR s  + (H . XH(c
H

w R wn

H
Assuming R to be non-singular, differentiating H(w) with respect to w andn

equating the result to zero implies that

Pw (SNR) = f(w 0

where

P = Rn - R s/g0

and

f(w) (wH R n Rs

and

wH(SNR) R w (SNR)
o s 0

go = _
wH(SNR) R w (SNR)

o n o

By an analogous derivation to the previous sections it follows that

w(SNR) = p IMH (MPr MH) - c (7)
0

provided both P and Mir 1MH are non-singular.
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H:
Now since R is given by vv then it follows that

HVV "

n 9

and is non-singular unless go = v RnI v. (From p.29 of reference 9

H t"

P RnI (go - v H-n v)).

This special case corresponds to the single constraint of unity response in
the look direction and in this case w0 can be derived by the method in

reference 1, or by an application of the theorem on p.48 of reference 9.

Unfortunately equation (7) expresses wo(SNR) go
SNR)as a function of which in turn

is defined by w 0 In Appendix II this explicit dependance is removed and

w (SNR) is shown to be given by

w(SNR) ' M1 ( ) c + H ( MKn I MH )-  co n M-IN (RrnIV F R-MH(Mgn MH) - ' MR v)
n n n n n n n

c y
(8)

where

y = (MI MHT I MW' Iv

n n

As is also shown in Appendix II the optimum gain g0 is given by

H H
H cyycgo = g - Y  Mir IV +

v n cH (IRMIMH- Ic

where g is defined by

gv = V H n v

and, as discussed earlier (and in reference 1), g is the output SNR of an

optimum processor subject only to the single constraint of unity response in
the look direction. Furthermore if unity response in the look direction is
one of the L multiple constraints then it can readily be shown that

.. . . . . . . . . . ..L. ..a.. .. . . ..i .. . . . . . . io . . . .. . . . . -. . . ... . II l



-7 WSRL-0178-TR

c H (Mir NH c

3. RELATIONSHIPS BETWEEN THE PROCESSORS

All optimum weight vectors derived are of the form

g-IMH(MgI M) c +a(gSIV - I MH(M§SI MH MS- v)

where

(i) S = R and a = 0 for minimum power criterion,

(ii) S = R and c = 1 for least mean squares criterion, and

cH (M-1, H-icH(MRf M) lc

n
(iii) S = R and a = for maximum signal to noise ratio

n H
cy

criterion.

Now if it can be shown that

IV - fI MH(Mg- IM HT Mg- 1 v = 0 (9)

then it follows that all weight vectors are of the form

M H (MS M) Ic.

Expression (9) can be shown to be equal to zero provided one row of the
constraint matrix M is equal to (or a multiple of) vH.

This can be simply * proved by noting that M can always be rearranged such that
H.

v is in the first row. Thus by taking the first column of the equation

(MS I MH)i (M!; 1 MH) = I,

it follows that (MS I MHfI (MS Iv) =

0

0

*The author is indebted to Dr A.K. Steele who simplified an original proof of
this.
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Thus

S MH (KTMSMT' (KT'v) 9 'N 11
0

= 'lv.

Since v determines the look direction this amounts to fixing the response to a
known plane wave signal.

Thus provided the same constraint matrix M is used to estimate w (MP) and w (LMS)

and one row of this matrix is given by v then it follows that

(MP) (LMS)
0 0

Furthermore on substituting

H
R = R + vvn

in the equation

w (MP) ( NH -(Mr )- I c
o

and using Woodbury's Identity for (Rn + vv H)- 1 it follows that

w (Mp) = , MNH (Mir' MH) - 1c + a(Ir' MH (Mg-' )MH) Mg,'v - F'v)
o n n n n n n

where a is a constant, and so

w (MP g-,M WM)
o n n

w(SNR)= h(S
0

Thus provided the same constraints are imposed and a fixed look direction
constraint is imposed it follows that all these estimators are identical.
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4. EXAMPLES

In this section some examples of the processors subject to some obvious

physical constraints are given.

4.1 Unity (or fixed) response in the look direction

It can readily be shown that for a processor of the form If1 v the mean beam

power output decreases as the signal strength increases. This can be

avoided by imposing the constraint of a fixed response in the look direction,
ie

Hv w = 1
0

Thus

H
M = v

and

c= 1

Then

w 0(MP) IT -v(vHk_ v)-

(LMS)0W

since

R'v - R*1 MH (M-.MH)- M-v

= 'v _ Rv

= 0.

Note that P as defined in Section 2.3 is singular and hence

(SNR) = JIMH (MI MHTc

is ill-defined. However from reference 1* it follows that

*Note however that direct substitution in equation (8) gives the correct
solution in this case.
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w ( S N R ) I"*v

(vR " ' v).

4.2 Fixed response in the look direction and a null steered in a specified
direction

A particular processor that has received some attention(ref.5) maximises
the signal to noise ratio in a direction v while steering a fixed null in
another direction specified by u. If, as in the previous section a fixed
(say unity) response is imposed in the look direction then the constraint
matrix and vector are given by

vH

u

and

c 0

respectively.

From equation (4) it follows that

= ( 1 r v , R~ u ) 9 g, 
- ' l \

where

gv = vH Rv, gu = uH W'u,

and

g H g
guv = vu

Thus

(MP) _____ )___* o (R- IvR'u)gUw°(gug v -u ugVU
)

gvu gv 0

-- ... .... -- • -.. ...... ... .. ...... ..11 II 1111 1111 - .... .... J111 11 m .... --- | "



- 11 - WSRIL-0178-I'

=gu VV g gvu l u )

gugv guvgvu gu

which apart from the scaling factor is the null steering weight vector deria,
by Fenwick(ref.S).

Now

cH(Mir MH)1c = g (l,)ggu -gu) 1)
gugv - guvgvu gu g

= gu
gugv - guvgvu

Thus since

1

go = Hn(MfIZ'f c

it follows that

guvgvu

go =gv-
gu

which again agrees with the expression derived in reference S.

Also it can readily be verified that

1 'v - J1 H (Mg- MI M 'v = 0

thus demonstrating the general result proven in Section 3 that

w(MP) (LMS) = (SNR)

4.3 Fixed response in look direction and K-1 independent nulls

In this problem all the degrees of freedom are incorporated in the K x K
non-singular constraint matrix, M, where the columns of M are the phase vc, ct,
corresponding to the K directions.
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It then follows that

Wo(MP) = I1MH (Mg- MHy)-c

= W-MH (Mtl- RI c

= W"'c (10)

Now in references 6 and 7 some generalised linear processors have been derived
on the assumption that the incident distribution consists of N plane waves.
These estimators were derived on the basis of statistical considerations and
deconvolution of the array response respectively. Defining the K x N matrix
whose columns are the phase vectors corresponding to the N assumed directions
as V, then a general form(ref.6) for the weighting vector in the ith direction
is

w. 
+H

1 .-ith row (11)

In particular when N K and the directions are independent then

v-H 0

I row•( ) th

which as can readily be seen is a special case of equation (10). The fact that

H
c = (0, .0.). 1 .. , 0)

readily demonstrates the observation of reference 6 that for a given steer
direction this processor steers K-1 nulls in the other assumed plane wave
arrival directions.

4.4 Overconstrained case

The matrix M in this case is L x K and L>K. To obtain consistent solutions
the rank of M must be less than or equal to K. If M is chosen to be of full
rank then

nd (Mene '

and hence
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M+M = (MM) = I

The I. x L matrix MR-1 IM is singular and so the Moore-Penrose pseudoinverm
must be used. Thus

w0(NIP) =-f I M (irZ I M) 11+C

However from Appendix I it follows that

MH + +H11 +(Mir' '1 ~= M

Thus

(MP) i+ +w MP MH M+H RM+c
0

+

=M c

H
As in the previous section the choice of M=V and cH (0 .... I ... ,

reduces this estimator to the Least Mean Square estimator derived in
reference 6 and to a special case of the estimator derived in reference 7
by an iterative deconvolution of the array response.

5. SUMMARY

The problem of constrained optimisation for three different criteria ie Minimn'.
Power, Least Mean Squares and Maximum Signal to Noise ratio has been solved und,
some very general conditions.

In all cases of practical interest and provided identical constraints arc
impobed, the three processors have been shown to be identical.

A number of examples which demonstrate this equivalence have also been given.
Furthermore these examples show how a number of well known processors are al
special cases of the constrained optimum processors. In particular if the
weight vectors are critically or over constrained then weight vectors reduce to
the ideal deconvolving weights which have been derived recently.

This paper, in common with previous work has assumed that the covariance matrix
is non-singular. This is not always necessary and further work is proceeding
to derive similar expressions which do not require non-singularity of the
covariance matrix.
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APPINDIX I

APPLICATION OF THE MOORE-PENROSE PSEUDOINVERSE

1.1 Let G be any L x K matrix then the Moore-Penrose pseudoinverse G
defined by the following equations:

GG+G = G,

G+GG
+  = G+

and (GG+)H = GG+

(G+G) H  = G+G

Define the vector u by

u = r I MH (1 - (M'INMH)+ (Mg"IMH))z

where z is any arbitrary vector and R is a K x K positive definite mavti:.,

and M is any L x K matrix. Denoting (MW IMH) by A it follows that

u Ru = z (I-A +A) H MW1 R9- H (I - A+A)z

= H (I-A +A) H A(I-A+A) z

= 0 .

Thus since R is positive definite it follows that

u = 0

(Note this also follows directly from a lemma on p.22 of reference 10).

1.2 If M is of full column (ie L > K) rank it follows that

M+M = MHM+ I

and also defining

S= M+H RM+
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ii. follows that

A M+H MH M (1.2)AA == £u.I(I1.2)

and

AA = MM4+ +I

Thus

and

(AA)H = AA

Also

MAA M RM+ iM
+

and similarly

AAA = A

Hence A is A the Moore Penrose pseudoinverse of A where A = MRIMH. (In
this case it can readily be proved by direct substitution of equation (1.2)
that

MH (I - A+A) z = 0

and hence u = 0).
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APPENDIX II

CONSTRAINED MAXIMUM SNR PROCESSOR

Since P is defined by

P R - R /g
n  /

where

w R wo s
go H

w R wo n o

it follows that

w Pw 0
0 0

Since w0 is given by

o0 w 0 " (Mir M11- Ic

this then implies that

cH (MI TM)Ic = 0. (11.1

If R is equal to vvH then by Woodbury's identity it follows that

SH

K + m- vv .
Fr __ n n n

a

where

a =g 0 -gv (1.2)

and

H I
2V V

V fn
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Furthermore it holds that

(Mir -'MH (M I ir - -T
y H

n

where

y = (MIMH )- I MIZIv
nI n

and

13 H~ IM (Mg* M)- M9- v +a.
n n n

Thus equation (II.1) becomes

H H
C yy C

CH (Mg- I )- I
n (vHg-INMH (Mgn IMH)- Mg-V + a)

Thus

H H
C yy c

V H i H M H (Mg-n MH)
-  Mr I v.

c cH(MnI MH) -1c n n n

Rearranging equation (11.2) and substituting the above expression for a gives

H II
c yy c

go = gv Hn1 (M n1 'I W'V + (11.3)V n n n H ( M , M H ) 7 ' c

Hence

wo - 'MH(Mfr'IMH)- Ic

n n yy

- n + av R MH [(Mg nMHY)1 -
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where f can be shown to be given by

H Hc yy c

H HMt (Mir y a (~1Hc H(MR* I WMHT I cn
n

Thus

w = RIMH (Mg-r cIH L-c - 1 fHy - c (ytt(Mg-n IM 1)y _ -) v
n n n nn3a

= (Mg-, MH)- c + y IIc (an IV - g MIn (MI-n Mig)I v)

c(H (MfrI MHM)- MC= - "(Mg- I -Y c + n' V - I, M"(Mg , -I I- w,-).
n H n

cy
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