
P AD-AI02 308 NAVAL POSTGRADUATE SCHOOL MONTEREY CA F/G 9/2

IMPLEMENTATIONOF PROCESS MANAGEMENT FOR A SECURE ARCHIVAL STOR-ECU

MAR R1 A R STRICKLIR
-ECU

UNCLASSIFIED N

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
IMPLEMENTATION OF PROCESS MANAGEMENT
FOR A SECURE ARCHIVAL STORAGE SYSTEM

ii by

Anthony Ross Strickler

March 1981

Thesis Advisor: R. R. Schell
4

Approved for public release; distribution unlimited

-J

S -own

Unclassified
SE9CURITY CLASSIFICATION OF 'TweS PA4Men~ Des Sweead

REPORT DOCUMTATION PAGE SWIM& DISTRCTINORM
0. RPORT MU111 12. GOVT ACCISSIN NO . RmCIPICNT'S CATAL.Oo HUMOER

Imlmntto of process 4ngmn 9 - -' Vfor a 5cr archival s nnagemn yMstem,,0. 9Phesis maage system4 . .. 19ERF1OMMINOG. UNE

7. AuTmN(e) 9. CONTRACT OR GANTHNqM11101(o) -

jAnthony Rossl IStrickler

9. PERFORMING ORGANIZATION NAME AND A0042R11SSI AROGAMWR UNM9PITOZECT NUESI

Naval Postgreduate School
Monterey, California 93940

1I. CONTROLLING OFFICE NAE AND ADDRESSI -M r l

Naval Postgraduate School MrkK
Monterey, California 93940 2 su7 R@ P~t

4MONITORING A09M a .Oe S W 911 Comm#1 Offl.) S11. SE1CURITY CLASS. (of wo ,leeyj

- --- ~Unclassified

IC)_I>~ IS. OECL SS4FIATION(OOWNGRAON

to. DIST1011UTION STATZM NT (edOf.8 1111u0410)

Approved for public release; distribution unlimited

17. DIST RIGUTION STATEMENUT (Of th0 e46610411111 tB.&*6 I ft :. Re

IS. SUPPRLEMENTARY NOTERS

IS. aKEy WORDS (Comseo vo oft It .eem dw IVE~ w eek uMwb)

ComDuter security, Process Management, Distributed operating
Systems, Traffic Controller process scheduling, event counts and
sequencers

r 2. ASTRACT (CR M1" ,.,ne M -11 11101 099 MI eeeMp d 0~#V I FW 14,111 111116)

his thesis presents an implementation of ' rocess management for
a security kernel based secure archival storage system (SASS).
The implementation is based on a family of secure, distributed,
multi-microprocessor operating systems designed to provide
multilevel internal security and controlled sharing of data among

54 authorized users. Process scheduling is effected by one half of
a two level Traffic Controller that binds processes to virtualized
processors. Inter

DoI'"1n sro r o si mS~

A" 3EIIO FIOSSSSLY Unclassified
S/N 8S62-016-60 1 gCUWTry CLASSIFCATION OF T "IS PAEa (W *.-.

Unclassified
a um"v eLae"W16&s.U" of. Von* .4OA t ""

lynchronization, mutual exclusion, and message passing amongprocese -are provided by utilization of eventcount and sequencer
primitives. The implementation structure is based upon levels of
abstraction and is loop free to permit future expansion to more
complex members to the design family. Implementation was
completed on the ADVANCED MICRO COMPUTERS Am 96/4116 AmZ8002
16 Bit MonoBoard Compute?~

Accessionl For

UI S r-7A&

By.--If-at n- - -

AvnijiblitY C000s

'Avnt rindoo

. pecivl

DO, jrin.1473Unclassified

S/J IN%-014-s.1 U@v.. 6b*UItA""e Orws awe na~ o""&m

~z.

Approved. for puclic reledse; clstritutlion unlimited.

Imulerrentatien o0? Pro-less '-ariaaerent
for a

Secure Arctiival Stora&-e Svqtem

Antflony 71. Strice1er
Captain, United States Armry

B.S., 'Jnited States v'iitary Acacerny, 1 ;?7_

Suornittea. in partiii fuifiiiment of' tfie
reqiuirerrenits f'or tne deeree of

Y~ASTE7. OF SCIENCE IN COMPUTTR SCIENCE

t'rom tne

NAVAL 'POSTGRADUJATE SCHHOOL
Marcfl 19S1

Autnrir

-. Ikproved by:

Ta~isAvscr

Secconrl 2=caer

Cirm "Wc' erof CmuteSciec

Lean. of Int'ormation ana Policzy Fclernce!

0,

ABSTRACT

Thtis tnesis presents ani irrjlerertation ot' procress

:ranaeerrent for i 5e, urity ice rnel I ased sacu re a r cn iv El

storaoe systrn (F ASS). The in, errelti or is base I cn a f zr- Iil

0 t secure, di 5tri b1.-ted, rulti-micrc o-a3bscr cierati1-,

systems desift'ned to provide multilevel internal security and

!ontrcllea snarin&g of data arrond- auttro ze users. Process

scneduiin;, is effected tY)re naif of a two level Trarfic

Controller tnat h Inds processes to virtuaiized iroc-ssers.

Inter-process corrmunication mecnanisns for 5yncnro,:1Zatior.,

r'utual exclusior, and r'essaee passing~ arncn prrr~sses are

provided ty utilization of evenrtclnt a.nA seqiercer

o ri ni t Iv es. Tte rplere n t at io n structure i s C a sPa ' o n

levels of abstraction and is Icop free to ppririt futbre

expansion to mo~re complex members o f t ne d e s t'a .7 11

Irplervpntati or was cornpletea on tne ADVANLD XICRU C^3ivPU T%

- 4 AM 96/4.11fi AmZF012 lit kit M1onioarI Computer.

T L 11 O 0 T lTS

.INTRCUCTION I

A. BAC KG TOTT.N r................. . 1 1

,. BAsIc CNCEFTS / rEFI.ITI S.

1. Process 1)

2. Inforrra tion Security 15

Segmentation .2

4. rrotection Dor ains 2

5. Abstraction 2

C . TE FIS S PUC 7TT... . . 2-_

E. %CURE AFCHIVAL STOAAGE SYSTFY DESIG' 2e

A. A SIC SASS OJT V!JW

. S UP 7 IS OR

. File Manager r

._ Inplit/Output .Prorces5 z*-
. GP

D. D IS Tz I UTE

1. Segent Manacaer

3. Non-Discreti'nriary Security -otule

4. Traffic Controil± r. j

5. Inner Traffic Controlier 43

o. Distrinutet "Pr-ry manai.er

5i

F. ~si~ ~.
I. Memory P'~a r o cess

G. S TJ_ .A V ..

G. TYMAP7 r

I l. IMPLF !NTATION ISSUES F

A. DATABAPE INITIAlIZATION 6

I. Irner Traff.ic Controller Iritiaiizaticr...."'

2. Traffic Centroiier Initialization tZ

3. Additional initialization qie=n ..

B EE5.T INTJFUP.TS .4

1. '.:.ysical Freerpt Handler o4

2. Virtual Preempt Hanaier tb

C. IDiL PROCESSES.................................71

rl. ADDITIONAL KEFNEL RIJINEMENTS 72

-. SUYYMAPY

IV. PFCCESS MANAGEMENT I!NTA'ICN................. 7

A. EV" T YI NAGE? MODU-.Z 7E

1. Support Proceaures 7q

2. Read

3. Ticicet I

. wait

5. Advance
TRAFFIC CONTROLLE.F ODF E

"1 TC GII F.I(.. 6-

2. TC AWAIT

f. TC ADVANCF Eb

AI

.. VirtuaiPreerpt_Fandler. ?1

5. R Peaining Proceaure. . .
.i

C. DISTRIBUTEI M3,, Y XAi 'A:GE', "OI............... Z?

1. "M ea Event ount 2

d. vance

' M Ticket 4

MM Allocate

E. EPER MODTJL . .SS

1. UserCGate Module d7

2. 7ernei Gate Keeper Mo4uile r

2. SU R ... lI l

V. CONCIUSICN

A. FOILOW+ ON WORK 101

A.?:NDIT -- VENT MANAGeR LISTINGS 1 V

APPENDIX Z--TFAFFIC CCNTRCL.EF LISTIGs 11t

APPENDIX C--DIS7?+IBUTEU 'ZEO: -1AjAGL'.R LISTINGS . .1 4

APPENDIX P--GATT KFEE-E LISTINGS !C?

- PF ENE IY E--ECUTSTRAP IOADEF 1 ISTIG 1-7

APPENDIT F--LIBRARY FL NCTICN !-I C

A'PEC'D17 G--IN,4E'c TEAFFIC CO.RCILEB LISTrINGS iir

LiT 'F RE" CS.. ?2.

INITIAL rISTRIEUTION LiST.............................. 2Z

7

i- --

:l ")# : I

IIST OF FI'"J:T s

1. SASS Systeri)

S. yster 3verview (Dual Hob-) Q

i~ nown Seerment Ta.tle KST)

4 o Active Proces Table(AFT'.......................o-

~.Virtual Processor Table k'VT),.....o.................

6. Extended Instruction Set.,.

7. iernel ratacaseso..........o....o......... -P

e.o Memvory "anap.ement tUni t (MXiJ) Irraize................

9. Initial Process St~ck................

102. Ir'pieren tat ion Modut.le t ructzre-.77

11 . Advance A1.,oritnmo............. o...o.............

12. Prozrarr 3ta tus Area..

A CKN 'V41 :" ~

Tn .is r'?searc1 is spcnscre r, ;i r t ty tna Cf f ce of

NiVal FESearcr ProjEcr. NI'MtEr %R 337-Otb, rnOnItorEa ty 'r .

Jcel. Trinlei

amn in-lebted to a :-urt-r of -,eop.le + or t A".e valuaole

sup~port tnet I nive re ce ivea i n t n is r"e 5i S ef fort . \y

tre s is a dv i 5or, Lt. C c 1. R o erer S c ne11. ro v 4 ae a v, ~e aILn 'f

Iknow1pd-e ird many nours cf ipatient co'1rslir.e. Tnis tn-sis

0,3 1l(n ot n a ve t e e ~r it 1e a it tc ,t S Cs 'n t .u 1a s ti C

'ui 11r,'e .

Ttianks ire also exten~ed to n'y re~cier, ?oesr ll

Ox, f or In is assistance ani~ -concorn. Tim Weil secj('ce

oreciolis titre in tne tinil Uia y ' i' t~e~ n> F CCb ,-fI,

irtro-luce me trn tne ZiioF- Deveiouemnetai 17y-tern rrcv-ii'-<

tfte proerarrnw environment t'or tnii - L i =enet -at Ion . r, a.

F, k er, B 3o t 'conneii, arnc '- iiiilamrs nrcvri~ea ecCeiieT

tek'-rid J'lass~~~ ~iiy i 9 ep i .;1 F7,e w i r t r ra -

nar-iware pr'ibie'ns tnat 1 enco 'nrereu in wnriini-w 4tn, F-n a

in3d unfarilijir systerr.

I !'a. y, specli tna'~rs and apprecidtion to to mi: *11fe

zrqndi , an-I Ty cr.iiaren, Cnristoror an4 "a r ic tcr t 1--i r

,, l1ndi I lv e, patience, arnd unIers tand ne. The E Vdi y

support -.'e waatever tne erneevor.

I. INTRODUCTION

This thesis addresses the implementation of process

management functions for the Secure Arcnival Storage System

or SASS. This system is designed to provide multilevel

secure access to Information stored for a network of

possibly dissimilar host computer systems and the controlled

sharin-a of data amonest authorized users Of the SASS.

Effective process management is essential to insure

efficient use and control of the system.

Among the major accomplishments of the work reported

here are the inclusion of provisions for efficient process

creation and management. These functions are provided

throueh the establishment of a system Traffic Controller and

the creation of a virtual interrupt structure. An effective

mechanism for inter-process communication and

synchronization is realized through an Event Manager that

mates use of uniquely identified segments supportediy

eventcount and sequencer primitives. A hardware controlled

two domain operational environment is created with the

necessary interfacing between domains provided by a software

"gate" mechanism. Additional support Is provided through

considerable wort in the area of database initialization and

a technique for limited dynamic memory allocation.

hIJ 10

LIi

i ?*

This implementation was completed on the commercial AMC

Ar96/4116 MonoBoard Computer witn a standard Multibus

interface.

A. BACKGROUND

The brief history of dieital computers has been

characterized by rapid advances in hardware technology and a

continual increase in the number and variety of its

applications. The advent of the microprocessor has enabled

virtually every level of our society to mare use of computer

resources. Today's "desk top microcomputers, costing less

than a thousand dollars, have more computinR power than the

"giant" computers of the early 1950's that cost hundreds of

times that amount.

These rapid advances in computer hardware technology

nave reversed the economics of the computer desitn

environment. While hardware costs nave decreased, tne

relative costs of the software required to effectively

utilize tnis hardware has steadily increased until it now

dominates the overall cost of a computer system. This

economic reversal requires that developed software be

logical, easy to read, relatively maintenance free, and easy

to debug. Unfortunately, microcomputer operating systems and

applications software tend to be highly specialized, thus

failinR to reasonably exploit the potential of tne

microprocessor.

ii

As the usaee of computers has expanded, expecially in

the area of sensitive information handling, the need for

information security has received treater recognition. Wnile

ad-hoc attempts nave been made to provide internal computer

security on lareer systems, the problem of information

security on microprocessors has been largely ignored to

date.

In an attempt to address tne above problems, O'Connell

and Richardson [1] outlined a hieh level desien for a

microprocessor based secure operating system. The goal of

this design was to provide information security, distributed

processing, multiple protection domains, configuration

independence, multiprocessinp, and multiprogramming. Since

all computer applications do not require such a broad and

general operating system, the design provided for a family

of operatine systems. This allows a member of the family to

incorporate only the subset of family functions needed for

its specific application, while providina for future

expansion. The SASS is a member of this operating system

family.

A brief history of prior work done on the SASS is now

provided. Parks [2] provided the design for the SASS

Supervisor. The actual implementation of the Supervisor

design has not been addressed to date. The initial design of

tne SASS Security Kernel was completed by Coleman (3j. The

works of O'Connell and Richardson [1], Parts [2], and

12

V 'r I ' , ! - -

Coleman [3] are available as a sinale publication from NTIS

and DDC in a report prepared by Schell and Cox (211. Further

refinements of the Kernel design and partial Kernel

implementation has been accomplished in three additional

thesis efforts. Moore and Gary [4] provided the detailed

design and partial implementation of the Memory Manager

module. Desion refinements for the Inner Traffic Controller

and Traffic Controller modules as well as implementation of

the Inner Traffic Controller was provided by Reitz (5].

Wells [61 provided implementation of the Segment Manager and

Non-Discretionary Security modules as well as partial

implementation of distributed Memory Manager functions.

These desiwn and implementation efforts provided the basis

for the work described here.

13. BASIC CONCEPTS/DEFINITIONS
This section provides at overview of several concepts

essential to the SASS design. Readers familiar with SASS or

with secure operating system principles may wisn to skip to

-, the next section.

1 . Process

The notion of a process has been viewed in many ways

in computer science literature. Orranicz 17] defines a

process as a set of related procedures and data undergoing

execution and manipulation, respectively, by one of possibly

several processors of a computer. Madnick and Donovan (8]

13

"l

view a process as the locus of points of a processor

executing a collection of programs. Reed (9] descrites a

process as the sequence of actions taken by some processor.

In other words, it is tne past, present, and future

history" of the states of the processor. In the SASS

design, a process is viewed as a logical entity entirely

characterized by an address space and an execution point. A

process' address space consists of the set of all memory

locations accessible by the process during its execution.

This may be viewed as a set of procedures and data related

to the process. The execution point is defined by the state

of the processor at any Riven instant of process execution.

As a logical entity, a process may have logical

attributes associated with it, sucn as a security access

class, a unique identifier, and an execution state. ThIs

j s notion of logical attributes should not be confused with the

more typical notion of physical attributes, such as location

in memory, page size, etc. In SASS, a process is Riven a

security access class, at the time of its creation, to

specify what authorization it possesses in terms of

information access (to be discussed in the next section). It

V is also given a unique identifier that provides for its

identification by the system and is utilized for interaction

arrone processes. A process may exist in one of three

execution states: 1) running, 2) ready, and 3) blocked. In

order to execute, a process must be mapped onto (bound to) a

t1 14

physical processor in the system. Such a process is said to

be in the "running" state. A process that is not mapped onto

a physical processor, but is otherwise ready to execute, is

in the "ready" state. A process in the "blocked" state is

waiting for some event to occur in the system and cannot

continue execution until the event occurs. At that time, the

process is placed into the ready state.

2. Information Security

There is an ever increasine demand for computer

systems that can provide controlled access to the data it

stores. In this thesis, "information security" is defined as

the process of controlling access to information based upon

proper authorization. The critical need for information

security should be clear. Banks and other commercial

enterprises risk the theft or loss of funds. Insurance and

credit companies are bound by law to protect the private or

otherwise personal information they maintain on their

customers. Universities and scientific institutions must

prevent the unauthorized use of their often over-burdened

systems. The Department of Defense and other government

agencies must face the very real possibility that classified

information is beine compromised or that weapon systems are

being tampered witn. In fact, security related problems can

be found at virtually every level of computer usage.

In the past, attempts nave been made to identify tne

security weakness of computer systems by trial and error and

15

Vl

then fix them. However, Schell [leJ has shown that security

cannot be "added on" to an existing system with any degree

of confidence that the resulting security system is

impregnable. Security must be explicitly designed into a

system from first principles. The iey to achieving provable

information security is realized in tne concept of the

security kernel." Scnell (ill provides a detailed

discussion of the use of tnis concept in the methodical

design of system security.

The security of computer systems processing

sensitive information can be achieved by two means: external

security controls and internal security controls. In the

first case, security is acnieved by encapsulating the

computer and all its trusted users within a single security

perimeter esablisned by physical means (e.g., armed guards,

fences, etc.) This means of security is often undesirable

due to its added cost of Implementation, tne innerent risk

of error-prone manual procedures, and the problem of

trustwortny but error-prone users. Also, since all security

controls are external to the computer system, the computer

is incapable of securely nandling data at differing security

levels or users with differing degrees of authorization.

j This restriction greatly limits tne utility of modern

computers. Internal security controls rely upon the computer

system to internally distinguish between multiple levels of

information classification and user autnorization. This Is

16

i " I I I" I I I I I - = " . .

clearly a more desirable and flexible approach to

information security. This does not mean, nowever, that

external security is not needed. The optimal approach would

be to utilize internal security controls to maintain

Information security and external security controls to

provide physical protection of our system against sabotage,

theft, or destruction. The primary concern of this thesis is

information security and will therefore center Its

discussion on the achievement of information security

throueh implementation of the security kernel concept.

One might argue that a "totally secure" computer

system Is one that allows no access to its classified or

otnerwise sensitive information. Such a system would not be

of much value to its users. Therefore, when we say that a

system provides information security, it is only secure witn

respect to some specific external security policy

established by laws, directives, or reaulations. There are

two distinct aspects of security policy: non-discretionary

and discretionary. Each user (suoject) of the system Is

given a label denoting what classification or level of

access the user is authorized. Likewise, all information or

segments (objects) within the system are labelled with their

classification or level of sensitivity. The

non-discretionary security mechanism is responsible for

comparine tle authorization of a subject wIth the

classification of an object and determining what access, if

17

any, should be granted. The DOD security classification

system provides an example o the non-discretionary security

policy and is the policy implemented in SASS. The

discretionary security policy is a refinement of the

non-discretionary policy. As suca, it adds a higher degree

of restriction by allowine a subject to smecify or restrict

who may nave access to nis flies. It must be emphasized tnat

the discretionary policy is contained within the

non-discretionary policy and in no way undermines or

substitutes for It. This prevents a subject from granting

access that would violate the non-discretionary policy. An

example of discretionary security is provided by tne DOD

fneed to know" policy. In SASS, the discretionary policy is

implemented witnin the supervisor [2J by means of an Access

Control List (ACL). There Is an ACL maintained for every

file in tne system, whlcn provides a list of all users

authorized access to that file. Every attempt by a user to

access a file is first checked against tne ACL and then

checked against the non-discretionary security policy. The

fleast" or "most restrictive" access found in tnese cnecks

is then granted to the user.

The relationship between the labels associated with

the subject's access class (sac) and tne object's access

class (oac) is defined by a lattice model of secure

information flow [12J as follows ("K denotes "no

relationship):

18

*1 V

1. sac oac, read and write access permitted

2. sac > oac, read access permitted

3. sac < oace, write access permitted

4. sac . oac, no access permitted

In order to understand dow these access levels are

determined, it is necessary to rain an awareness of and

consideration for several basic security properties.

The "Simple Security Property" deals with "read"

access. It states that a subject may nave read access only

to those object's whose classification is less than or equal

to the classification of tne subject. This prevents a

subject from reading any object possessing a classification

higher than his own.

The "Confinement Property" (also known as

*-_Droperty") governs "write" access. It states znat a user

may be granted write access only to those otJects whose

classification is creater than or equal to the

classification of the subject. This prevents a user from

writine information of a hither classification (e.a.,

Secret) into a file of a lower classification (e.g.,

Unclassified). It is noted that while this property allows a

user to write into a file possessing a classification higher

than his own, it does not allow him access to any of the

data in that file. The SASS design does not allow a user to

"write u " to higher classified files. Therefore, in SASS,

sac < oac denotes no access permitted.

19

The "Compatibility Property" deals with the creation

of objects in a hierarchical structure. In SASS, objects

(segments) are hierarcnlcally organized In a tree structure.

This structure consists of nodes witn a root node from which

the tree eminates. The Compatibility Property states that

the classification of objects must be non-decreasing as we

move down the hierarchical structure. Ttis prevents a parent

node from creatine a child node of a lower classification.

Several prerequisites must be met in order to insure

that the security kernel design provides a secure

environment. Firstly, every attempt to access data must

invoke the Kernel. In addition, the Kernel must be isolated

and tamperproof. Finally, tne Kernel design must be

verifiable. This Implies that tne mathematical model, upon

which the Kernel is based, must be proved secure and that

the Kernel is shown Is to correctly implement this model.

3. Segmentation

Segmentation is a key element of a security Kernel

based system. A segment can be defined as a logical croupini

of Information, such as a procedure, file or data area [8].

Therefore, we can redefine a process' address space as the

collection of all segments addressable by that process.

Segmentation is the technique applied to effect manatement

of tnose segments within an address space. In a segmented

environment, all references within an address space require

two components: 1) a segment specifier (rumber) and 2) the

location (offset) within the seement.

20

A segment may nave several logical and physical

attributes associated with it. The logical attributes may

include the segment's classification, size, or permissable

access (read, write, or execute). Tnese logical attributes

allow a segment to nicely fit the definition of an object

within the security kernel concept, and thus provide a means

for the enforcement of information security. A segment's

physical attributes include the current location of the

segment, whether or not the segment resides in main memory

or secondary storage, and where tne segment's attributes are

maintained by a segment descriptor. The seement descriptors

for eacn segment in a process' address space are contained

within a Descriptor Segment (viz., the MMU Image in SASS) to

facilitate the memory management of that address space.

Segmentation supports information sharing by

allowing a single segment to exist in tne address spaces of

multiple processes. This allows us to forego the maintenance

of multiple copies of the same segment and eliminates the

possibility of conflicting data. Controlled access to a

segment Is also enforced, since each process can nave

different attributes (read/write) specified in its segment

descriptor. In the implementation of SASS, any segment which

is shared, but has read only" access by every process

sharine It, is placed in the processor local memory

supporting each of these processes rather than in the global

memory. This implies the maintenance of multiple copies/of

21

some snared segments. It Is noted tnat tne problem of

"conflicting data" is avoided since this only applies to

read only segments. This apparent waste of memory and nonuse

of existing sharing facilities is Justified by a design

decision to provide maximum reduction of bus contention

among processors accessing global memory. This reduction in

bus contention is considered to be of more importance than

the saving of memory space provided by single copy sharing

of read only segments. This decision Is also well supported

by the occurrence of decreasing memory costs, which we nave

experienced in terms of high speed bus costs.

4. Protection Domains

The requirement for Isolating the Kernel from the

remainder of the system is achieved by dividing the address

space of each process into a set of hierarchical domains or

protection rings (13J. O'Connell and Ricnardson [i1 defined

three domains in the family of secure operating systems: the

user, the supervisor, and the kernel. Only two domains are

actually necessary in the SA6S design since it does not

provide extended user applications. The Kernel resides in

the inner or most privileged domain and has access to all

segments in an address space. System wide data bases are

also maintained within the Kernel domain to Insure their

accessibility is only tnrough the Kernel. Tne Supervisor

exists In the outer or least privileged domain where its

access to data or seements within an address space is

restricted.

22

While protection domains may be created through

either hardware or software mechanisms, a hardware

Implementation provides much greater efficiency. Current

microprocessor technology only provides for tne

Implementation of two domains. This two domain restriction

does not Support O'Connell and Richardson's complete family

design, but it Is sufficient to allow hardware

implementation of the ring structure required by the SASS

subset.

5.Abtato

Dijkstra (141 has shown tnat tne notion of

abstraction can be used to reduce the complexity of a

problem by applying a general solution to a number of

specific cases. A structure of Increasing -levels of

abstraction provides a powerful tool for tne design of

complex systems and generally leads to a better design with

treater clarity and fewer errors.

Eacn level of abstraction creates a virtual

hierarchical machine (81 waicn provides a set of "extended

instructions" to the system. A virtua'I qchine cannot mate

calls to another virtual macnine at a hieher level of

abstraction and In fact IS unaware of Its existence. Tnis

implies that a level of abstraction is independent of any

higher levels. This independence provides for a loop-free

desiRn. Additionally, a higher level may only mate use of

the resources of a lower level by applying the extended

instruction set of the lower level virtual machine.

23

Therefore, once a level of abstraction is created, any

nigher level is only interested in the extended instruction

set it provides and is not concerned with the details of its

implementation. In SASS, once a level of abstraction is

created for the physical resources of the system, these

resources become "virtualized" mating the nigner levels of

the design independent of the physical configuration of the

system.

C. THESIS STRUCTURE

This thesis describes the implementation of the process

management functions for the SASS. The design base for this

implementation evolved from the secure family of operatine

systems designed by O'Conneli and Richardson [1j. The

proerammint lanuaee utilized in this implementation was

PLZ/ASM assembly code (20J.

Chapter I provided an introduction to the Secure

Arcnival Storage System and a discussion of the basic

concepts which underlie a secure operating system

environment.

Chapter II will provide a discussion of tne SASS design.

An overview of the entire SASS system is presented alone

with more detailed description of the modules comprising

SASS and their associated databases.

Chapter III discusses the issues bearine on tils

implementation and the refinements made to previous SASS

related work. A discussion concernine the initialization of

04

24:

the databases utilized by tne current SASS demonstration Is

also presented.

Chapter IV presents the implementation of process

managemp-kt (viz., tne Traffic Controller, Event Manager,

Distributed Memory Manacer, and Gate Keeper stub modules). A

description of design and Implementation criteria, and

decisions made durinp implementation are also discussed in

this chapter.

Chapter V provides the conclusions reached, the status

of tne research, and recommendations relative to the

continuation and extension of this worK.

The appendices include tne PLZ/ASM code for tne modules

implemented and refined. The complete proeram listines for

tne Secure krcnival Storage System may be obtained from a

report prepared by Schell and Cox 122].

0 4
25

i\

N " 25

II. SECURE ARCHIVAL STORAGE SYSTEM DESIGN

This chapter provides an overview of the SASS in its

current design state. The intent of tnis summary is

threefold. First, it is intended to provide an overall

understanding of tne SASS itself. Secondly, it will provide

an interrelationship between the wort done in this thesis

and previous work performed on SASS. Lastly, it proviaes a

current base upon which further SASS development can occur.

A. BASIC SASS OVERVIEW

The purpose of the Secure Archival StoraRe System is to

provide a secure "data warehouse" or Information pool wnlicn

can be accessed and shared by a variable set of host

computer systems possessinR differinp security

classifications. The primary goals of the SASS design are to

provide information security and controlled sharine of data

among system users.

Figure 1 provides an example of a possible SASS usawe.

The system Is used exclusively for managing an archival

storage system and does not provide any programming services

to its users. Thus the users of the SASS may only create,

store, retrieve, or modify files within tte SASS. The host

computers are hardwired to the system via the I/0 ports of

the Z801 with each connection having a fixed security

26

Hosti Host,2 Host3 Host4

TI So C C U1o', e o, 0101 n 1
p Ic n1 C I

rI ft f It
S' et t it a
el t dl d! s
c 1 e •. es
r n n

cII et-st

ti

ea 1 I t

a
Il dl

~ j I

SASS
Supervisor

Kernel

.. Main Secondary
memo ry S to rare

I~~ - -__ - ---------------------

J Iure 1. SASS System

ii 27

Main Secodary!

classification. Each host must nave a separate connection

for eacn security level it wishes to work on (It is

important to note that Firure 1 only represents the looical

interfacing of the system. Specifically, the actual

connection with the host system must be interfaced with the

Kernel as the I/0 instructions for tne port are privileged).

In our example, Host #1 can create and modify only Top

Secret files, but it can read files w nicn are Top Secret,

Secret, Confidential, or Unclassified. LiKewise, Host #2 can

create or modify secret files, using Its secret connection

or confidential files, using its confidential connection.

Host #2 cannot create or modify Top Secret or 'nclassified

files.

In order to provide information security and controlled

sharing of files, the SASS operates in two domains: (i) the

Supervisor domain and (2) the Kernel domain. The SASS

achieves this desired environment through a distrltuted

operating, system design wnicn consists of two primary

4 modules: the Supervisor and the Security Kernel. Each host

system connected to the SASS has associated with it two

processes within the SASS which perform the data transfer

* and file management on behalf of that host. The nost

computer communicates directly with its own I/O process and

File Manager process within tne SASS.

We can use our notion of abstraction to present a system

overview of the SASS. The SASS consists of four primary

04
28

V.t

levels of abstraction:

Level 3-The Host Computer Systems

Level 2-The Supervisor

Level 1-The Security Kernel

Level O-The SASS Hardware

A pictorial representation of this abstract system overview

is presented In Figure 2. This representation is limited to

a dual nost system for clarity and space restrictions. Note

that the Gate Keeper module is In actuality tne logical

boundary between levels one and two and as sucn will be

described separately.

Level 3, the host computer systems, of SASS has already

been addressed. It should be noted that the SASS design

makes no assumptions about the host computer systems.

Therefore each host may be of a different type or size

(i.e.- micro, mini, or maxl-computer system). Furthermore,

the necessary physical security of tne host systems and

their respective data links with the SASS is assumed.

B. SUPERVISOR

Level 2 of the SASS system is composed of the Supervisor

domain. As already stated, the SASS consists of two domains.

The actual implementation of these domains was Preatly

simplified since the 7801 microprocessor provides two modes

of execution. The system mode, with which the Kernel was

implemented, provides access to all macnine instructiors and

29

71

H osti Hostz

Level 3 Host

Level 2 Supervisor

--- -. -- - 1 - - ,i - - - - -

File Iput/ Itnput/ I File
tputloutput2 f 1 Manager2

Level2 1- - - 1-- Supervisor
SGate Keeper ---- 2

Lee 1

Event ~ ,Non-Discretionary segment
lanawr SecrityManager

Manaeer Sacarit

I Inne- Non-Distributed
Traffic Memo ry
Controller M anarer

I ---------------- ----------

Level1
Level 0 Eardware

CPU MT Local Global i ,Secondary
---i --- IMemory IMemory Storage

I I II I------------------

Figure 2. System Overview (Dual Host)

3e

all segments within the system. The normal mode, with which

tne Supervisor was implemented, only provides access to a

limited subset of macline instructions and seements within

the system. Tnerefore, tne Supervisor operates in an outer

or less privileed domain than the Kernel.

The purpose of the Supervisor is to manage tne data linx

between the host computer systems and the SASS by means of

Input/Output control, and to create and manage the flie

hierarchy of each host within the SASS. These functions are

accomplished via an Input/Output (I/O) process and a File

Manazer (FM) process within the Supervisor. A separate FM

and I/O process are created and dedicated to eacn nost at

the time of system initialization.

1. File Manager Process

The FM process directs the interaction between the

host computer systems and the SASS. It interprets all

commands received from the Host computer and performs the

necessary action upon them throueh appropriate calls to the

Kernel. The primary functions of the FM process are tne

manaRement of the Host's virtual file system and the

enforcement of the discretionary security policy.

The virtual file system of the Host is viewed as a

nierarcny of files which are implemented in a tree

structure. The five basic actions which may be initiated

upon a file at this level are: 1) to create a file, 2) to

delete a file, 3) to read a file, 4) to store a file, and 5)

31

to modify a file. The FM process utilizes a FM Known Seement

Table (FMKST) as the primary database to aid in tnls

manaaement.

The FM process maintains an Access Control List

(ACL) through which it enforces the discretionary security

in SASS. The FM process initializes an ACL for every file in

its Host's file system. The ACL is merely a list of all

users tnat are authorized to access that file. The ACL is

checked upon every attempt to access a file to determine its

authorization. Tne user (nost computer) directs tne FM

process as to what entries or deletions snould be made in

the ACL, and as such, specifies who ne wishes to nave access

to his file. As noted earlier, discretionary security Is a

refinement to the Non-Discretionary Security Policy and

therefore can only be utilized to add further access

restrictions to those provided by the Non-Discretionary

Security. This prevents a user from granting access to a

file to someone who otnerwise would not be authorized

access.

2. Input/Output Process

The I/0 process is responsible for manaRinR the

input and output of all data between tne nost coiruter

systems and the SASS. The I/0 process is subservient to the

FM process and receives all of its commands from it. Data is

transferred between the SASS and Host Computer systems in

fixed size packets". These packets are broken up into three

32

basic types: 1) a synchronization packet, 2) a cormand

packet, and 3) a data packet. In order to insure reliable

transmission and receipt of packets between the Eost

computer and the SASS, there must exist a protocol between

them. Parks [2] provides a more detailed description of

these packets, and a possible multi-packet protocol.

C. GATE KEEPER

The primary objective of the gate keeper is to isolate

the Kernel and make it tamperproof. This cOal is

accomplished by reason of a software ring crossing mechanism

provided by the rate reeper. In terms of SASS, this notion

of ring-crossing" is merely the transition from tne

Supervisor domain to the Kernel domain. As noted earlier,

the gate keeper establishes the logical boundary between the

Supervisor and the Kernel, and as a matter of course, it

provides a single software entry point (enforced by

hardware) into the Kernel. Therefore, any call to the Kernel

must first pass through thie gate keeper.

The rate keeper acts as a trap handler. Once it is

invoked by a user (Supervisor) process, the hardware preempt

interrupts are masked, and the user process' realsters and

stack pointer are saved (within the kernel domain). It then

takes the arcurent list provided by the caller and validates

these passed parameters to insure their correctness. To aid

in the validation of these pararreters, the rate keeper

0.4 33

i:

utilizes the Parameter Table as a database. The Parameter

table contains all of the permitted functions provided by

the Kernel. These relate directly to the extended

instruction set (viz., Supervisor calls) provided by the

Kernel (these extended instructions will be described in the

next section). If an invalid call is encountered by the gate

keeper, an error code is returned, and the Kernel is not

Invoied. If a valid call is encountered by tne gate keeper,

the areuments and control are passed to the appropriate

Kernel module.

Once the Kernel has completed its action on the user

request, it passes the necessary parameters and control back

to the gate keeper. At this point, the gate keeper

determines if any software virtual preempt Interrupts nave

occurred. If they nave, then the virtual preempt handler is

invoked vice the Kernel beine exited (virtual interrupt

structure is discussed in chapter III). Correspondingly, if

a software virtual preempt has not occurred, then the return

arguments are passed to the user process. The user process'

reristers and stack pointer (viz., its execution point) are

restored and control returned to the Supervisor domain. A

detailed description of the Gate Keeper interface and

implementation is provided in chapter IV.

34

D. DISTRIBUTED KERNEL

Level 1 of our abstract view of SASS consists of two

components: the distributed Kernel and the non-distributed

Kernel. These two elements comprise the Security Kernel of

the SASS. The Security Kernel has two primary objectives: 1)

tne management of the system's nardware resources, and 2)

the enforcement of the non-discretionary security policy. It

executes in tne most privileged domain (viz., tne system

mode of the Z8001) and has access to all machine

instructions. The following section will provide a crief

description of the distributed Kernel, its components, and

the extended instruction set it provides. A discussion of

the non-distributed Kernel will be giver in the next

section.

The distributed Kernel consists of those Kernel modules

whose seRments are contained (distributed) in the address

space of every user (Supervisor) process. Taus, in effect,

the distributed Kernel is shared by all user processes in

the SASS. Tne distributed Kernel is composed of the Segment

Manager, the Event Manaaer, the Non-Discretionary Security

Module, the Traffic Controller, tne Inner Traffic

Controller, and the Distributed Memory Manaeer Module. The

Segment Manager and the Event Manager are the only "user

visible" modules in the distributed Kernel. In other words,

the set of extended instructions available to user processes

Invoke either the Se, ment Manaeer or the Event Manawer.

35

1. Segment Manager

The objective of the Segment Manager is the

management of a process' segmented virtual storage. The

Segment Manager Is Invoked by calls from the Supervisor

domain via the gate keeper. Calls to tne Segment Manager are

made by means of six extended instructions provided by the

segment manager. These extended inszructions (viz., entry

points) are: 1) CREATE-SEGMENT, 2) DELETE-SEGMENT, 3)

MAKE-KNOWN, 4) TERMINATE, 5) SMSWAPIN, and) SMSWAPOUT.

The extended instructions CREATE-SEGMENT and DELETE-SEGMENT

add and remove segments from the SASS. MAKE KNOWN and

TERMINATE add and remove segments from the address space of

a process. Finally, SMSWAPIN and SMSWAPOUT move segments

from secondary storage to main storage and vice versa.

The primary database utilized by the Segment Manager

is the Known Segment Table (KST). A representation of the

structure of the KST is provided in firure 3. The KST is a

process local database that contains an entry for every

segment in the address space of that proCess. The KST is

Indexed by segment number with each record of the KST

containing descriptive information for a particular seement.

The KST provides a mapping mechanism by which the segment

number of a particular segment can be converted into a

unique nandle for use by tne Memory Manager. The Memory

Manager will be discussed in the next section.

36

;I I; I I I I I i • • . .

T' M Handle Size IAcess In Class Mentor Entry
Mode ICore Sem No Nuirber

I I----------- I I I I
I I I ~I I

I - II.

" Ie

I ------------

IFIigur Inw Se In Tal (I T

I I II I II 3

2. Event Manager

The purpose of the Event Manager is the management

oa event data which is associated with interprocess

communications witiin tne SASS. Tnis event data is

implemented by means of eventcounts (a synchronization

primitive discussed by Reed [15J). Tne Event Manager is

Involred, via the Gate Keeper, by user processes residine in

tne Supervisor domain. Tnere are two eventcounts associated

with every segment existing in the Supervisor domain. These

eventcounts (viz., Instance I and Instance 2) are maintained

in a database residing in the Memory Manazer. The Event

Manager provides its management functions tnrougn its

extended instruction set READ, TICKET, ADVANCE, and AWAIT,

and in conjunction with the extended instructions TCADVANCE

and TCAWAIT provided by the Traffic Controller (to te

discussed next). Tnese extended instructions are based on

the mechanlsm of eventcounts and sequencers [151. The Event

Manager verifies tae access permission of every interprocess

*communication request through the Non-Discretionary Security

Module. The extended instruction READ provides tne current

value of the eventcount requested by the caller. TICKET

provides a complete time ordering of possitly concurrent

events through the mecnanism of sequencers. The Event

Manager will be discussed in more detail in cnapter IV.

3. Non-Discretionary Security Module

The purpose of tae Non-Discretionary Security Vodule

(NDS) is the enforcement of the non-discretionary security

38

I'U

policy of the SASS. Wnile tne current implementation of SASS

represents the Department of Defense security policy, any

security policy which may be represented tnrougn a lattice

structure 112] may also be implemented. The NDS is invoied

via its extended instruction set: CLASSEQ and CLASSGE. The

NDS is passed two classifications which it compares and then

analyzes their relationship. CLASSEQ will return a true

value to the callinR procedure only if tne two

classifications passed were equal. The CLASSGE instruction

will return true if a Riven classification is analyzed to be

either greater than or equal to another given

classification. The NDS does not utilize a data base as it

works only with tne parameters it is passed.

4. Traffic Controller

The tasir of processor scneduling 15 performed ty the

traffic controller. Saltzer [16] defines traffic controller

as thne processor multiplexing and control communication

section of an operating system. Tne current SASS design

utilizes Reed's [9J notion of a two level traffic

controller, consisting of: 1) a Traffic Controller (TC) and

2) an Inner Traffic Controller (ITC).

The primary function of the Traffic Controller is

the schedulint (bindinR) of user processes onto virtual

processors. A virtual processor (VP) is an abstract data

structure that simulates a physical processor throurt the

preservation of an executing process' attributes (viz., the

39
0 4

M.M

execution point and address space). Multiple VP's may exist

for every physical processor in the system. Two VP's are

permanently bound to Kernel processes (viz., Memory Manager

and Idle) and as such are not in contention for process

scheduling. These processes and tneir corresponding virtual

processors are invisible to the TC. The remainine virtual

processors are either Idle or are temporarily bound to user

processes as scheduled by the TC. The database utilized by

the TC in process scheduling Is the Active Process Table

(APT). Fiwure 4 provides the structure of the APT.

The APT is a system-wide Kernel database containing

an entry for every user process in the system. Since the

current SASS design does not provide for dynamic process

creation/deletion, a user process is active for the life of

the system. Therefore, the size of tne APT Is fixed at the

time of system reneration. The APT is loaically composed of

three parts: 1) an APT header, 2) tne main body of tne APT,

and 3) a VP table. The APT header includes: 1) a Lock to

provide for a mutual exclusion mecnanism, 2) a Running List

Indexed by VP ID to identify the current process runnine on

each VP, 3) a ready List, wnicn points to the linked list of

processes which are ready for scnedullnR, and 4) a Blocked

List, which points to tte linked list of processes which are

in the blocked state awaitine the occurrence of some event.

A design decision was made to incorporate a single

list of blocked processes Instead of the more traditional

04

Lock

Running List APT Entry #1

VP ID---

1 --- APT
Ready List Head! APT Entry #1 FEADEFVPID

-- ------ -- AP

Blocked Lst Head

----APT Entry

. .. CPU.. . o.. ..---...---

[!Awaited Event!

t IIv ------- ------

AP 1DBR)Access Priority State Affi- VP!Handle 1LinkHandle Class Iniy I nstance

, i COUntl

"--------- - ---------------- I
~---APTEntry

. I . I-- I . . .

I-------------------------
.- - - - --------- -- I--- -- - -

1 1 1. I 1 -- -------------

FIRSTVP ,'TA BLE

I i IeII Ie e m I

Figure . Active Process Table (APT)

04rk~nlI~asIIiy IIIsac
I I II I II4I

notion of separate lists per eventcount because of its

simplicity and its ease of implementation. This decision

does not appreciably affect system performance or efficiency

as the "blocked" list will never be very long. The VP table

is indexed by logical CPU number and specifies the number of

VP's associated witn the logical CPU and its first VP in the

Running List. The Ioeical CPU number, obtained during system

Initialization, provides a simple means of uniquely

identifyine each physical CPU in the system. The main body

of the APT contains the user process data required for its

efficient control and scnedulint. NEXTAP provides the

linked list threading mechanism for process entries. The DBR

entry is a handle identifyine the process' Descriptor

Segment which is employed in process switching and memory

manarement. The ACCESS-CLASS entry provides every process

with a security label that is utilized by the Event Manager

and the Seament Manaker in the enforcement of tie

Non-Discretionary Security Policy. The PRIORITY and STATE

entries are the primary data used by the Traffic Controller

to effect process scheduling. AFFINITY identifies the

loeical CPU which is associated with the process. VP Ir is

utilized to identify the virtual processor that is currently

bound to the process. Finally, the EVENTCOUNT entries are

utilized by the TC to manage processes which are blocked and

awaltinp the occurrence of some event. FANrLE identifies ttie

segment associated with tne event, INSTANCE specifies the

I42

- .3-

event, and COUNT determines which occurrence of the event is

needed.

The Traffic Controller determines the scheduling

order by process priority. Every process is assigned a

priority at the time of its creation. Once scheduled, a

process will run on its VP until it eitner block{s itself or

it is preempted by a higher priority process. To insure that

the TC will always have a process available for scheduline,

there logically exists an 'idle" process for every VP

visible to the TC. These idle" processes exist at the

lowest process priority and, consequently, are scneduled

only if there exists to useful wort to be performed.

The Traffic Controller is invoked by the occurrence

of a virtual preempt interrupt or throueh its extended

Instruction set: ADVANCE, AWAIT, PROCESS CLASS, and

GETDERNUMBER. ADVANCE and AWAIT are used to implement the

IPC mechanism envoked by the Supervisor. PROCESS-CLASS and

GETDR-NUMBER are called by the Sezment Manaver to

ascertain the security label and DBR handle, respectively,

of a named process. A more de'.ailed discussion ot the TC is

provided in chapters III and IV.

5. Inner Traffic Controller

The Inner Traffic Controller is the second part of

our two-level traffic controller. Basically, the ITC

performs two functions. It multiplexes virtual processors

onto the actual physical processors, and it provides the

43

, ' : - ' i ; 1 I r ' . .- ,

primitives for wnicn inter-VP communication witnin the

Kernel is implemented. A design cnoice was made to provide

each physical processor in tne system witn a small fixed set
of virtual processors. Two of tnese VP's are permanently

bound to the Kernel processes. The Memory Manager is round
to the highest priority VP. Conversely, the Idle Process Is

bound to the lowest priority VP and, as a result, will only

be scheduled if there exists no useful work for the CPU to

perform. The primary database utilized by tne ITC is tne

Virtual Processor Table (VPT). Fieure 5 illustrates the VPT.

The VPT is a system wide Kernel database containing

entries for every CPU in the system. The VPT is lorically

composed of four parts: 1) a header, 2) a VP data table, 3)

a messaee table, and 4) an external VP list. The header

includes a LOCK (spin locic) that provides a mutual exclusion

mechanism tor table access, a RUNNING LIST (indexed by

logical CPU #) that Identifies the VP currently running on

the corresponding pnysical CPU, a READY LIST (Irdexed by

logical CPU #) wnicn ooints to the linied list of VP's wnicn

are in the "ready" state and awaiting sctieduling on t!at
CPU, and a FPEE LIST wnicn points to the linked list of

unused entries in the message table. The VP data table

contains tne descriptive data required ty the 1TC to

effectively manage the virtual processors. The DER entry

points witnin tne MMU Image to the descriptor segment for

the process currently running on tae VP. PRI (Priority),

'4 .44

I ,i| | I I I i I I

Lock
------- g

Runnine List VPT Entry #1
CP-o- I~**.**------------I

I ~II
CPu-No--I -II I I

I --- -- -

- - - - - - - - ----- -- --VPT
Ready_List VPT Entry #1 Header

I I
I ~~ --N --------- I. I

Free-List j
---------------------------- ----------

-I I

---- VP ID

NEXTI IEXTI
IREADYIDBR STATEIIDLEIVIRTUAL:PHYSICAL jPRIIVP !MSG
vP IFLAGIPREEMPTIPROCESSORI 1ID ILIST!

- -- 1 --- -- '-- I - - .
I V-------- >I I

... . . . II I I -- -

-- - -- - - -- -- No-----------

. I I.. . . .I I . .

--------------------- ----

I- I E T
4I NEXT rMSG SENDER MSG

--- --------------- IP

1Entryl I,
No ,

* I I IExternal

,-'---...... I VP
II I s

List
Messaee List

Figure 5. Virtual Processor Table (VPT)

45

I-J

STATE, IDLE-FLAG, and PREEMPT are the primary data used bY

tte ITC for VP scteduling. PREEMPT indicates whether cr not

a virtual preempt is pending for the VP. The IDLE-FLAG Is

set whenever the TC !ias bound an "idle" process to the VP.

Normally, a VP with the IDLE-FLAG set will not be scheduled

by the ITC as it has no useful work to perform. In fact,

sucn a VP will only be scneduled if tne PREEMPT flag is set.

This schedulinR will allow the VP to be eiven (bound) to

anotner process. PHYSICAL PROCESSOR contains an entry from

the Processor Data Serment (PRDS) that identifies the

physical processor tnat tne VP is executing on. E;TVPID is

the identifier by which the VP is known by the Traffic

Controller. A design choice was made to nave the EXTVPID

equate to an offset into the External VP List. The External

VP List specifies tne actual VP ID (viz., VPT entry number)

for each external VP identifier. This precluded the

necessity for run time calculation of offsets for the

p EXT VP ID. NEXT READ T VP provides the threading mechanism

for tne -Ready" linked list, and MSG LIST points to the

first entry in the Message Table containing a message for

that VP. Tne Message Table provides storage for the messages

generated in the course of Inter-Virtual Processor

communications. MSG contains the actual communication teiniz

* passed, while SENDER identifies the VP which initiated the

communication. NEXTMSG provides a tnreading mecnanism for

multiple messages pending for a single VP.

46

The ITC is invoked by means of its extended

instruction set: WAIT, SIGNAL, SWAPVDBR, IDLE, SETPPEEMPT,

and RUNNINGVP. WAIT and SIGNAL are the primitives employed

in Implementing the Inter-VP communication. SWAP VDBR. IDLE,

SET-PREEMPT, and RUNNINGVP are all invoked by tne Traffic

Controller. SWAPVDBR provides the means by whicn a user

process is temporarily bound to a virtual processor. IDLE

binds the "Idle" process to a VP (the implication of this

instruction will be discussed later). SET PREEMPT provides

the means of indicating that a virtual preempt interrupt is

pendine on a VP (specified by the T) by settine the PREEMPT

flag for that VP in the VPT. RUNNING VP provides the TC with

tte external VP ID of the virtual processor currently

running on the physical processor.

6. Distributed Memory Manaver

The Distributed Memory Manager provides an interface

structure between the Seement Manaeer and the Memory Manaer

Process. This interfacing is necessitated by the fact that

p the Memory Manawer Process does not reside in the

ristributed Kernel and consequently is not included in the

user process' address space. The prlmary functions performed

in tnis module are tne establishment of Inter-VP

Communication between the VP bound to its user process and

the VP permanently bound to the Memory Manager Process, the

manipulation of event data, and the dynamic allocation of

available memory. The Distributed Memory Manager Module is

,* 47

invoked by the Segment Manager through Its extended

instruction set: MMCREATEENTR Y, MMrELETEENTRY',

MMACTIVATE, MMDEACTIVATE, MMSWAPIN, and MMSWAP OUT.

These extended instructions are utilized on a one to one

basis by the extended instruction set of the Segment Manager

(e.g., SMSWAPIN utilizes (calls) MMSWAPIN). Wells 16J

provides a more detailed description of this portion of the

Distributed Memory Manager and the extended instruction set

associated with it.

The Distributed Memory Manaeer is also invoked

through its remaining extended instructions:

MMREADEVENTCOUNT, MMTICKET, MMADVANCE, and MMALLOCATE.

These Distributed Memory Manager functions will be discussed

in detail in chapter IV.

E. NON-DISTRIBUTED KERNEL

The Non-DistribUted Kernel is the second element

Aresiding in Level 1 of our abstract system view of the SASS.

The sole component of the Non-Distributed Kernel is the

Memory Manager Process.

1. Memory Manazer Process

Toe primary purpose of the Memory Manager Process is

the management of all memory resources within the SASS.

These Include tne local and global main memories, as well as

the hard-disk based secondary storage. A dedicated Memory

Manager Process exists for every CPU in the system. Eacn CPU

48

i'

possesses a local memory where process local seements and

snared, non-writeable segments are stored. Tnere Is also a

global memory, to which every CPU has access, where the

snared, writeable segments are stored. It is necessary to

store these shared, writeable segments in the rlobal memory

to ensure tnat a current copy exists for every access.

The Memory Manager Process is tasted by other

processes vitnin the Kernel domain (via Signal and Wait) to

perform memory management functions. These basic functions

Include the allocation/deallocation of local and global

memory and of secondary storage, and the transfer of

segments between tne local and global memory and between

secondary storage and the main memories. The extended

instruction set provided by the Memory Manager Process

includes: CREATE ENTRT, DELETE ENTRY, ACTIVATE, DEACTIVATE,

SWAP IN, and SWAP OUT. These instructions correspond one to

one with those of te Distributed Memory Manager Module. The

system wide data bases utilized by all Memory Manager

Processes are t.ie Global Active Segment Table (GAST), the

Alias Table, the Dist bit-Map, and tne Global Memory 1t

Map. The processor local databases used by each Memory

Manager Process are tne Local Active Segment Table (LAST),

and the Local Memory Bit Map. Gary and Moore [41 provide a

detailed description of tne Memory Manager, Its extended

instruction set, and its databases.

49

A summary of the extended instruction set created tY

the components of tne Security Kernel is Drovided by Figure

6. One mignt question the prudence of omittIn

PHTSPPEEMPTHANDLER and VIRTPREEMPTHANDIE? (viz., tfte

handler routines for pnysical and virtual interrupts' from

the extended instruction set as both of tnese interrupts tray

te raised (viz., initiated) from within tie Kernel. A

decision was made to not classify these handlers as

"extended instructions" since they are only executed as tie

result of a physical or virtual interrupt and as such cannot

oe directly invoked (viz., "called") by any module in the

system. A summary of the databases utilized ty Kernel

modules is presented in Fieure 7.

F. SYSTEM HARDWARE

Level 0 of the SASS consists of the system hardware.

This hardware includes: 1) the CPU, 2) the local memory, 3)

the lobal memory, 4) the secondary storape (viz. hard

disk), and 5) the I/O ports connecting tne Host computer

systems to the SASS. Since the SASS desian allows for a
multivrocessor environment, tnere may exist multiple CPU's

and local remories. The tareet machine selected for the

initial implementation of the system Is tne Zlilog Z820o

microprocessor [l171. The Z8001 is a reneral purpose lb-bit,

register oriented macnine that nas sixteen 16-bit general

purpose reristers. It can directly address SM bytes of

,i50

MODUL INSTRUCTION SET

Segment Manager CreateSeement* DeleteSe-vrrent*

Mare-Known* Terminate'

SM_Swap_In* SMSwapOut*

Event Manager Read* Ticket*

Advance* Await*

Non-Discretionary ClassEQ ClassGE
Security

Traffic Controller TCAdvance TCAwait

ProcessClass

Inner Traffic Signal Wait
Controller

SwapVDBR Idle

SetPreempt TestPreempt

Runni ngVP

Dlistributed MMCreate Entry MMDeleteEntry
Memory Manager

MMActivate MMDeactivate

MM Swap In MM Swap Out

Non-Distributed Create-Entry DeleteEntry
Memory Manaze r

Activate Deactivate

SwapIn Swap Out

P Denotes user visible instructions

FiRure 6. Extended Instruction Set

51

MODULE AABS

Gate Keeper Parameter Table

Sezment Manazer Known-Seent Table (KST)

Traffic Controller Active-Process Table (APT)

Inner Traffic Virtual Processor Table (VPT)
Controller

Memo ryMa nagemen tUn It Image
(MIMU)

Memory Manager Global ActiveSegment Table (G-AST)

Local ActiveS egmentTable (L AST)

Di sxBi tMap

Glooal-MemoryBi tMap

Local Memory_2ItMap

i

Figure 7. Kernel Databases

b2

jjj4j

memory, extensible to 4LM bytes. Tne Zb!i arcnitecture

supports memory segmentation and two-domain operations. The

memory se'.mentation capability is provided externally by tne

Zilog Z8e10 Memory Management Unit (1MU). The ZEk'lk-.MMU [IE]

provides manapement of the Z801 addressable memory, dynamic

spgment relocation, and memory protection. Memory segments

are variable in size from 256 bytes to 64j bytes and are

identified by a set of 54 Segment Descriptor Revisters,

wnicn supply the information needed to map logical memory

addresses to pnyscal memory addresses. Each of the b4

Descriptor Registers contains a 16-blt oase address field,

an 8-bit limit field, and an &-bit attribute field.

Unfortunately, tne Z800 nardware was not available for use

during system development. Therefore, all work to date has

been completed tnrougn utilization of tne Z8092

non-sermented version of the Z8000 microprocessor family

[171. Tne actual nardware used in tnis implementation is the

Advanced Micro Computers Am96/411b MonoBoard Computer [19J

containing the AmZ8002 sixteen bit non-segmented

microprocessor. This computer provides 32K bytes of on-toard

RAM, 81 bytes of PROM/ROM space, two RS232 serial I/O ports,

24 parallel I/O lines, and a standard INTEL Multibus

Interface. The general structure of tne design nas teen

preserved by simulation of the segmentation hardware in

software. Tnis software MMU Image (see Figure 8) is created

as a database within the Inner Traffic Controller.

53

9I

-. , -, - -r , .: - , -- :1 ' - 3"'"

DBR No ----- >

-- - - - - -- - --- -- - - - - - --

BaseAddr Limit Attributes

I I
! I

Segment . M

, I

N o -- - - - -I - - - - - -

-- - - - - - - - - - - - - - -

- - - - - - - -

-- - - - - -- - - -- - - - - -

-- - - - - -- -- -- ---------

-- - -- - -- - - - - - - - - -

I

(entries for one DBR #

46

Figure 8. Memory Management Unit (MMU) Imae

54

The MMU Image is a processor-local database indexed by

DERNo. Racn DBRNo represents one record witain the mfoU

Image. Eacn record is an exact software copy of tne Segment

Descriptor Register set in the narqware M'MU. Each element of

tlis software MIAU Image is in tne same form utilized ty tne

special I/O instructions to load the hardware MMU. Eac. DBR

record Is Indexed ty segment number (Serment No). Each

Se mentNo entry is composed of" three fields: Base Addr,

Limit, and Attributes. baseAdr is a 16-bit field wnica

contains the base address of the segment in physcal memory.

Limit Is an 8-bit field tnat specifies the number of

contiguous blocks of memory occupied by the segment.

Attributes Is an ?-bit field representing tne elnt flaws

which specify the segment's attributes (e.g., read",

*execute", "write", etc.).

G. SUMMARv

0 An extended overview of the current SASS desien has been

presented in this cnapter. The four major levels of

abstraction comprtsi-e the SASS system have been identitied

and the ma,,or components of each level nave been discussed.

The extended instruction set provided by the SAbS 1 ernel was

also defined. 'fitn this bacrgroun, tne actual details cf

this implementation will be described it chapters III and

IV.

4
'I

-i__

III. IMPLEMiNTATION ISSUES

Issues bearing on tne implementation of process

management and refinements made to existing modules are

presented in tnis chapter. Process management for the SASS

was provided through the implementation of the Traffic

Controller Module, the Event ManaRer Module. the ristributed

Memory Manager Module, and a Gate Keeper Stub (system trar'.

Additionally, since a demonstration/testbed was interral to

the testing and verification of the implementation, it was

necessary to complete other supportive tasKs. These

supportive taskcs included limited Kernel datatase

initialization, revised preempt interrupt handlinu

mechanisms, Idle process definition and structuire, and

additional refinements to existinR modules.

A. DATABASE INITIALIZATION

Previous wort on SASS has relied on statically built

databases, which proved to be sufficient for demonstration

of a single processor, single host supported system. In the

current demonstration, multiple hosts are simulated, and the

Kernel data structures have been refined to represent a

multiprocessor environment. Since a multiprocessor system

was unavailable at the time of tnis demonstration, several

runs were made and traced, using different logical CPU

'4 56

numbers, to snow the correctness of this structure. Due to

this multiprocessor representation and simulation of

multiple hosts, tne use of statically built Kernel datatates

was no loner convenient. Therefore, it became necessary to

provide initialization routines for tne dynamic creation of

those Kernel databases requirea for this implementation.

Wnile it was not tne intent of tnis effort to implement

system initialization, care was tak:en in the writing of

these initializine routines so that they migRh be utilized

in the system Intializatlon implementation with, nopefully,

minimal refinement. Database initialization was restricted

to tnose databases existing in the Inner Traffic Controller

and the Traffic Controller. Limited elements of the Known

Segment Table (KST) and Global Active Segment Table (GAST)

were also created for demonsCration purposes.

1. Inner Traffic Controller Initialization

A "Bootstrap Loader" Module, which lopically exists

at a higher level of abstraction witnin tne Kernel, was
9

created to initialize the databases of the Inner Traffic

Controller. Tnis initialization includes tne creation of: 1)

the Processor Data SeRment (PRDS), 2) an MMU Yap, 3) Kernel

domain stack segments for Kernel processes, 4) allocation

and updatine of MMU entries for Kernel processes, and 5)

Virtual Processor Table (VPT) entries.

The PRDS was loaded with constant values that

specify the pnysicai CPU ID, logical CPU ID, and numoer of

57
0 4

VP's allocated to the CPU. A design decision was made to

allocate locical CPU ID's in increments of two (beginnlne

with zero) so that they ccult be used to directly access

lists indexed by CPU number. The M.U map, constructed as a

byte" map, was created to specify allocated and free tMU

Imawe entries.

A separate procedure, CREATE STACK, was created to

establish the initial Kernel domain stacK conditions for

Kernel processes. A discussion and diaeram of tnese initial

stack conditions is presented in tne next section.

ALLOCATEMMU checks tne MMU Map and allocates tne next

availabe MMU entry to the process being created. Tte PRDS is

inserted in tne allocated -MU entry and the DIR number is

returned to the calling proceeure. Tne DBR number (nandle)

is merely the offset of tne DBR in the MMU Image. Sirce tne

ITC deals wit an address ratter ttan a handle, a orocedure,

GETDBR-ADDR, was created to convert tnis offset into a

pnysical address. UPDATEMMUIMAGE is the proceiure wnict

creates or modifies MMU Image entries. UPEATE_MmU IMAGE

accepts as arguments the DBR number, segment number, spgment

attributes, and segment limits. To facilitate process

switching and control, various process segmerts must possess

tne same seement number system wide. This Is accomplisted

durinR initialization tnrough the use of the

UPDATEMMUIMAGE procedure. In the ITC, these seerrents

include tne PPDS (segment number zero) and the Kernel stack

seirment (seement number one).

58

The final tasE required in ITC intialization is tne

creation of the VPT. The VPT header is initialized with the

"running" and ready" lists pointers set to a 'nil" state,

and th e "free" list pointer set to the first entry in the

message table. Virtual Processor entries are inserted in the

main body of the VPT by the UPDATEVPTASIE nrocedure.

Entries are first made for the VP's permanently bound to the

Memory Manager and Idle processes. Tne VP bound to the MM

process is given a priority of 2 (hizhest), and tne VP bound

to the Idle process is given a priority of 0 (lowest). The

External VP ID for both of tnese VP's is set to "nil" as

they are not visible to the Traffic Controller. The

remaining VP's allocated to tne CPU (viz., TC visible VP's)

are then entered in t.he VPT with a priority of 1

(intermediate), and tneir "idle" and "preempt" flags are

set. The preempt flag is set for ttese TC visible VP's to

insure proper scneduling by the Traffic Controller. Tne LBR

for these remaining VP's is initialized with the Idle
process DBR. A discussion of "idle" processes and VP's will

be provided later in this chapter. The External VP ID for

each TC visible VP is merely tne offset 3f tne next

available entry in tne EXTERNAL VP LIST. This External VP ID

is entered in the VPT, and tne corresponding V? ID (viz.,

VPT Entry #) is entered in the EXTERNAL VP LIST.

Once tnese VPT entries nave been made, it is

necessary to set the state of each VP to "ready" and thread

59

0.4

them (by priority) into tne appropriate ready list. A VPT

threading mec.anism was provided by Reitz [5J in procedure

MAKEREADY. Bowever, it was desired to nave a more general

threading mecnanism tnat could be used for otner lists.

Procedure lISTINSERT was created to provide tnis general

threadine mechanism. LISTINSERT is logically a "library"

function tnat exists at tne lowest level of abstraction in

the Kernel. This function tnreads an object into a list

(specified by the caller) in order of priority, and tnen

sets its state as specified by the calling parameters.

Once tne "Bootstrap Loader" has completed ITC

initialization, it passes control to tne ITC GETNORK

procedure to begin VP scneduling.

2. Traffic Controller Initialization

The initialization routines for tne TC Include

TC INIT, .CPEATEPROCESS, and CREATE KST. Tnese routines are

called from tne Memory Manager process. Tne MM process was

chosen to initiate these routines as it 1s bound to tne

nigheSt priority VP and will beein runninR immediately after

the Inner Traffic Controller is initialized. Procedure

MM ALLOCATE was written to allocate memory space for lata

structures during initialization (viz., Kernel staciks, user

stacks, and KST's). Memory space is allocated in blocxs of

i00 (hex) bytes. MMALLOCATE is merely a stub of the memory

allocatine procedure desitned by Moore and Gary 141.

60

" A I " 'I I ! I I " I I 1 " '--" . ""-,-, , -

It was necessary to pass long lists of arguments to

the TC for initialization purposes. To ail in this passine

of parameters, a data structure template was used. This

template was created by declarin thne parameters as a data

structure in both the sending and receiving procedures, and

then imaging this structure at absolute address zero. The

process' stack pointer was then aecremented ty tne size of

the parameter data structure, and the parameters were loaded

into tnis data structure indexed by tne stack pointer. This

template made it very easy to send and receive lone arRument

lists using the process' stack segment.

TC INIT initializes the APT header and virtual

interrupt vector (discussed later). Each element of the

running list is marred "Idle", the ready and blockced lists

are set to -nil", and the number of VP's and first VP for

each CPU are entered in the VP taole. The address of the

virtual preempt handler is then passed to the ITC procedure

CPS.ATEINT VEC for insertion in tne virtual interrupt

vector.

CREATE-PROCESS Intlalizes user processes and creates

entries in the APT. ALLOCATEMMU is called to acquire a DPR

number, and an APT entry is created witn tne process

descriptors (viz., parameters). The process is then declared

ready" and tnreaded into tne approclate ready list by

calling the threading function, LIST INSERT. A user stacic is

allocated and UPDATt MMU IMAGE is called to include the user

Ii

stack in the MMU as segment number tnree. The user stack

contains no information or user process initialization

parameters (viz., execution point and address space) as all

processes are initialized and begin execution from the

Kernel domain. Next, a Kernel domain stack is allocated and

included in the MMU Image. A design decision was made to

initialize tne Kernel stacts for user processes witn tne

same structure as the Kernel process' stacks. The rationale

for tnis decision is presented in tne next section. As a

result of this decision, it became possible to use the

CREATESTACK procedure in building Kernel domain stacks for

both Kernel and user prosesses. CREATE-STACK was tnerefore

used as a litrary function and placed in tne library module

with LIST-INSERT.

Finally, a Known Segment Table (EST) stut is created

to provide a means of demonstratlng the mechanism provided

by the eventcounts and sequencers for interprocess

communication (IPC) and mutual exclusion. Space for tne

process' KST is created by callinz MMALLOCATE. The EST Is

then included in the process' address space, as segment

number two, by UPDATE MMU IMAGE. Initial entries are made in

the Known Segment Table bY procedure CREATEKST. CREATE _ST

mazes an entry in the KST for the "root" and marKs the

remaining KST entries as "available." Tne Unique_ID portion

of the root's handle (viz., upper two words) is Initialized

as -1 (for convenience) and tne GAST entry numter portion

of the handle (viz., lowest word) is initialized with zero.

62

3. Additional Initialization Requirements

As already mentioned, tfte Memory Manager Process

prepares tne arrurrents utilized by TCINIT, CREATE_PRCCESS,

and CREATEKST for TC initialization and user process

creation. Additionally, the MM process creates a Global

Active Segment Table (G AST) stub utilized for demonstration

of event data manaeement. The GAST stub is declared in a

separate module (viz., the DEMO-DATABASE Module) with tne

format prescribed by Moore and Gary [4]. However, the only

fields initialized and utilized by tnis implementation are

UNIQUEID, SEOUENCER, INSTANCE 1, and INSTANCE 2. The

eventcounts and sequencer fields are initialized as zero

whenever an entry is created in the GAST. The UNI(QUEIr is

created Just to support this demonstration ana does not

reflect the seement's unique identifier as spenified by

Moore and Gary 14J. In tnis demonstration, UNIOUEID is

built with the parameters passed to MMACTIVATE. T e first

word in UNIQUE_ ID is tne GAST entry number of the segment's

parent, and the second word is the seement's entry number

into the alias table. The UNIQUEID to~etner witn tne offset

of the seRment's entry in the GAST comprise the segment

HANDLE maintained in tne [ST. Tne first entry in tne GAST

is reserved for the root, and is initialized with an

UnIqueID of minus one (-I). It snould be noted tnat any

call to MMACTIVATE for a seement already possessine an

entry in tne GAST will not effect any changes to tnat

63

entry. ThIs is to insure tnat a single G_AST entry exists

for every sepment as specifiea by M oore and Gary L4J.

B. PREEMPT INTERRUPTS

Various refinements were made in the handliniR of± ot

physical (hardware) and virtual (software) preempt

interrupts. A hardware preempt is a non-vectored interrupt

*tnat invokes the virtual processor scneduling mechanism

(viz., ITC GETWORK). A virtual preempt is a software

vectored interrupt that invokes the user process scheduling

mechanism (viz., TCGETWORK). This implementation provides

tne notion of a virtual interrupt that closely mirrors the

behavior of a hardware interrupt. In particular, there are

similar constructs for initialization of a nandler,

invokation of a handler, masking of interrupts, and return

from a handler. As with most hardware interrupts, a virtual

interrupt can occur only at the completion of execution for

an instruction, where each kernel entry and exit for a

process delimit a single "virtual instruction."

1. Physical Preempt Handler

The pnysical preempt handler resides in the virtual

processor manager (viz., Inner Traffic Controller). The

functions it perform are: 1) save the execution point, 2)

Invoke ITC GETWORK, 3) check for virtual preempt interrupts,

4) restore the execution point, and 5) return control "via

the IRET instruction. Reitz L51 included the hardware

64

preempt handler in ITC GETWORK by establishing two entry

points and two exit points, one for a regular call to

GETWORK and another for the preempt interrupt. He had a

separate procedure, TESTPREIMPT, ttat was used to ctecic for

the occurrence of virtual preempt interrupts. This structure

works nicely, but it requires some means of determining how

GETWOUK was invoied so that the proper exitine mechanism is

used. This was resolved by incorporating a preemrt interruDt

flaR in the status rewister block of every process' Kernel

domain stack segment. A design decision was made to

restructure the hardware preempt handler into a sinele and

separate procedure, PHTSPREEMPTHANDLER. This allowed ITC

GETWORK to have a sinele entry and exit point, and it did

away witn the necessity of maintaining a preempt interrupt

flar in the process stacks. PHYS PREEMPT 1ANDLE? was

constructed from the preempt nanding code in GETWORK ard

procedure TEST-PREEMPT. TESTPREEMPT was deleted from the

ITC as its functions were performed by FHTS_PREEMPT-HANDLER.

A furtner refinement was made to tfle hardware

preempt handler dealing with the metnod by which the virtual

preempt handler was invoked. Reitz [5J invoxed the virtual

preempt handler from TESTPREEMPT oy means of the "call"

instruction. Since the virtual preempt handler lowically

exists at a higher level of abstraction than the ITC, tnis

invocation violated our notion of only allowinR calls to

lower or equal abstraction levels. However, this deviation

6b

I,!

was necessitated by the absence of a virtual interru~t

structure. This problem was alleviated by creating a virtual

interrupt vector in the ITC tnat is used in the sare way as

the hardware interrupt vector. The virtual preempt was given

a virtual interrupt number (zero). The virtual interrupt

handler is then InvoKed by means of a "jump tnrough the

virtual interrupt vector for virtual interrupt nurber 0.

This invocation occurs in tne same manner that tie nandlers

for hardware interrupts are invoieO. The virtual interrupt

vector is created ty procedure CREATEINTViC.

CREATEINTVEC accepts as arguments a virtual interrupt

number and the address of the interrupt hanaler. The

creation of the virtual preempt entry in the virtual

interrupt vector is accomplished at the time of the Traffic

Controller initialization oy TCINIT.

2. Virtual Preempt Handler

Tte virtual Dreempt fandler (VIRT_ PREEMPT _HANDLER)

resides in the user process manager (viz., the Traffic

Controller). T.te functions performed by VIRT FRFEMPT FANDLER

are: 1) determine the VP ID of the virtual pro-essor beine

rreempted, 2) invoke the nrocess scneduling mecnanism (viz.,

TCGETWORK), and 3) return control via a virtual interrupt

return. The correct VP ID is obtained by calling RUNNINGVP

in the ITC. The Active Process Table is Then locKed, and tne

state of the process running on tnat VP is cnaneed to

ready. At this time, process scnedulinR is effected by

66

p

callin' TCGETWORK. Once process scnedulin is completed.

the APT Is unlocked and control is returned via a virtual

interrupt return. Tals virtual interrupt return is merely a

jump to the PREEMPT _ET label in tne hardware preerpt

nandler (Tnis jump emulates tne action of tne IRET

instruction for a hardware interrupt return). This latel is

the point at which the virtual preempt interrupts are

unmasked.

All Kernel processes are initialized to appear as

tnougn tney are returning from a nardware preempt interrupt.

All user processes initially appear to be returnine trom a

virtual preempt interrupt. Tnerefore, tne initial conditlons

of a process' Kernel domain stack is largely influenced Dy

tne stack manipulation of tne preempt nandiers. Figture 9

illustrates the initial Kernel domain staci structure for

all system processes.

The initial Kernel Flag Control Word (FCW) value Is

5U indicating non-segmented ode, system moae of

operation, non-vectored Interrupts rfasied. and vectored

interrupts enabled. The Current StacK Pointer value is set

to the first entry in the stack (viz., SP). The IRET Frare

is tne portion of tne Kernel stack affected by tne IRST

Instruction. The first element, Interrupt ID (set to "FiFF ')

is merely popped off of the stacK and discardea. The next

element, Initial FCW, is popped and placed in tne system

Flag Control Word. Initial FCW is set to "5&" for Kernel

'4

----------------------------- '/,--------------------------

Address!
Of 11 S ta cK

segm~ent! .grows.
tnis

--------------------------------------- way

SP~--)Preempt Retu~rn Point

Register 1
- - - - - - - - - - - -

Register 15
I ---------------- --------

Interrupt ID

'7 Initial FCW
Initial IC -- rr~

--- Current StacK Pointer!
I---------- --- -- -- -- -- -- -- ---

Kernel FCW

FiRure 9. Initial Process Stackc

6e

processes and "8w" (indicating normal moae witn all

interrupts enabled) for user processes. Tne final element of

tne IRET frame, Initial IC is popped off of the stacy ar d

placed in the program counter (PC) reeister. This value is

initialized as the entry address of tne process in question.

The register entries on the stacK represent tf'e

initial register contents for tne process at the beginnine

of its execution. Since tne Kernel processes (viz., mM and

Idle) do not require any specific initial register states,

their entries reflect the register contents at the time of

stack creation. Initial register conditions are used to

provide initial parameters required ty the user processes.

This will depend largely upon tne parameter passing

conventions of t-e implementation language. The means for

register initialization was provided through CREATEPRCCESS;

however, the only initial register condition used for the

user processes in this demonstration was rerister #13.

Register #13 was used to pass the user ID/Host number of tne

process created. This value is utilized by the user process

in activating the segment used for inter-process

communication between a Host's File manaRer and I/O

processes. Another logical parameter passed to tne user

processes is the root serment number. This did not require a

register for passing in the demonstration as it is known to

be the first entry in the [ST for all processes. The NSP

entry on tne stack represents the initial value of the

69

normal stack pointer. For user rrocesses, this value is

obtained wnen tne Supervisor domain stack for tnat process

is created. For Kernel processes, this value is set to

"FFFF since tney execute solely in tne Kernel domain and

nave no Superivsor domain stack. The Preempt Peturn Point

specifies tne address wnere control will be passed once tne

process' VP is scteduled ana tne "return" from ITC GETWORK

is executed. For Kernel processes, this is tne point witnin

tte hardware preempt nandier wtere the virtual processor

table is unlocked. For user processes, tnis is tne roirt

within the virtual preempt candler where tne Active Process

Table is unlocked.

It is important to note that if the APT was not

unlocked when a user process beaan its initial execution,

the system would become deadlocked and no further process

scnedulin , could occur. It should be further noted that the

initial stack conditions for user processes do not reflect a

v&lid history of execution. The norral history of a user

process returning from ITC GETWOPK after a virtual preempt

interrupt would reflect the passinr of control t. rouzh

SiAPVDSR ard TCGETWORK to the point in tne virtual preempt

handler wtere the APT is unlocked. Another "possible"

nistory could reflect the occurrence of a nardware preempt

interrupt at the point in the virtual preempt handler where

the APT is u.nlocked. Such a nistory would be de)Icted by

repldcing the current top of the stack with the return point

0,4 ?(A

into the hardware preempt handler (viz., at the point of

virtual preempt interrupt vinmasting) and an additional

hardware Dreempt interrupt frame wnose IC value in the IRET

frame is tne Doint in the virtual preempt nandler where tne

APT is unlock ed. The current Initial stark condition for

user processes was cnosen for its ease of unaerstanring and

its clear depiction of the fact t.at the structure of a

Kernel domain stack is the same for both Kernel and user

processes.

C. IDLE PROCESSES

In tne SASS cdesign, tnere logically exists a Kernel

domain "Idle" process for every pnysical processor in the

system and a Supervisor domain "Idle" process for every "TC

visible" virtual processor in the system. Tnese processes

are necessary to insure tnat both tne VP scheiuler (viz.,

ITC GETWORK) and the process scneauler (TOCGETWORK) will

always nave some object to scnedule, nence precluding any

CPU or VP from ever navine an undefined executlon Loint.

Since the Kernel domain Idle rrocess performs no useful

worK, it could be included within the ITC by means of an

infinite looping mechanism. The Kernel Idle process was

maintained separately, however, as it is hoped that future

wort on SASS will provide tnis Ille process witn some

constructive purpose (e.R., performinz ,raintenance

diagnostics).

71.

The Supervisor domain Idle processes (hereafter referred

to as TC Idle processes) are scheduled (bound) on VP's when

there are no user processes awaiting scneduling. Since a TC

Idle process performs no user constructive wort, we do not

want any VP executing a TC Idle process to be bourd to a

pnysical processor. In other words, a VP bound to a TC Idle

process assumes tfte lowest system Driority (represented by

the "idle flaR"). Therefore, any such VP will have its Idle

flap set and will not be scneduled unless it receives a

virtual preempt interrupt. Such an interrupt will allow the

TP to be recneduled cy tne Traffic Controller. It should te

obvious, at this point, tnat a TC Idle process will never

actually tepIn execution on a real processor. This krnowledpe

allowed a desizn decision to be made to only simulate the

existence of TC Idle processes. At the TC level, tlis was

accomplished by a constant value, IDLEPROC, tnat was used

as a process ID in tne APT runnine list, thus precluding the

necessity of any "Idle" entries in tne APT. At the ITC

level, any VP marked "Idle" (viz., the le flap, set) was

Riven the DER number (viz., address space) of' the Kernel

Idle process solely to provide the use of a Kernel domain

staci for reschedulinp- of the VP.

D. ADDITIONAL KERNEL FEFINEMENTS

In addition to those already discussed, several other

refinements to existing Kernel modiiles were effected in this

72

implementation. One of tnese refinements deals wit. tne way

virtual processors are identified by the Traffic Controller.

In the current irplementation, all TC visible virtual

processors are riven an External VP ID w.ich corresponds to

its entry number in an External VP list. This required a

modification to the ITC pro'!edure RUNNING VP. The benefits

derived from this rpfinement included the ability to

directl-r access the External VP ID in tne Virtual Processor

Table vice the requirement of a run time division to corpute

its value and the aoility to use the External VP ID as an

index into the TC running list.

Refinements were also made to the existine Merrory

manager, File manager, ana 10 process stuts used for

demonstration purposes. These refinements were larrely

associated with the eventcount and sequencer mecnanisms

utilized in this implementation. The current status of these

processes is provided in a report ty Schell and Cot [22J.

The remainin refinements deal largely with the MMU

Image. In Yoore and Gary's [J design, the MMIT Image was

manazed by the Memory Manawer proness. Tnis was lareely

tecause the Mr4T1 Image is a processor local database and

would seem well suited for management Cy the non-distributed

Kernel. In fact, the MMU Image is utilized mainly ty tne ITC

for the miltiplexine of process address spaces. Therefore,

in the current design, the MMi T "s are maintained y the

Inner Traffic Controller. however, the MMU header pro;osed

73

by Moore and Gary (viz.. the BLOCKS US ED and

MAXIMUMAVAILAPLE BLOCKS fields) was retained in the Memory

Manager a5 it is used strictly in the management of a

process' virtual core and is not associated with the

hardware MMU.

In Wells' design [6J, the Traffic Controller used the

linear ordertnR of tre DI-R entries in the MMU Iraze as the

D2R handle (viz., 1,2,3...). This required a run tire

division operation to compute the D.ER number, and 3 run time

multiplication operation, by MM_GETDPRVALUE, tc recorrrute

the rDR address for use by the ITC. In the "urrent desirn,

the offset of th"e DBR entry in ttp MMU Image (obtained at

the time of MMU allocation) is used as the D3R handle in the

Traffic Controller. Furthermore, SWAP V1;BR was refined to

accept a DB P handle rather than a DBF address to preclude

the necessity of the Traffic Controller having to deal with

MMU addresses. D1P addresses are nomputed only within the

ITC (vIz., by procedure GETl)F?_ADDR) bY adding the value of

the DER handle to the base address of the "MU imape. Since

DBR addresses are now used solely witinl tne ITC. procedure

Mm GET DMR VALUE was no loneer needed and was deleted from

the Memory Manager.

E. SUMMARY

The primary issues addressed in tnis thesis effort have

been presented in this chapter. Aside from the process

1*f 74

manapement functions, tnis description included a mecnanism

for limited Kernel aatabase Initialization, a revised

preempt interrupt nandiing mecnanism, tne creation of a

virtual interrupt structure, a definition of idle"

processes and tneir structure, and a discussion of tne minor

refinements effected in existing SASS modules. A detailed

descriDtion of tne im.lementation o± process manaement

functions for tne SASS is presented in tne next chapter.

75

75

IV. PROCESS MANAGEMENT IMPLEMENTATICN

The implementation of process management functions and a

gate keeper stub (system trap) is presented in tlis chapter.

The implementation is discussed in terms of the Event

Manager, Traffic Controller, Distributed Memory Manager,

User Gate, and Kernel Gate Keeper modules. A tlock diagram

depicting the structure and interrelationships of these

modules is presented in figure l. Support in developine the

Z80 machine code for tnis implementation was provided by a

Zilor MCZ Developmental System operatine under the PlO

operating system. The Developmental System provided disk

file manawement for a dual drive, nard sectored floppy disk,

a line oriented text editor, a PLZ/ASM assembler, a linker

and a loader that created an executaole image of earn Zeek&

load module. An upload/download capability with tte

4b. Am96/_116 MonoBoard computer was also provided. This

4" capability, along witn the general interfacing of the

Am96/4116 into the SASS system, was accomplished in a

concurrent thesis endeavor by Gary BaKer. Baker's work

relatine to hardware initialization in SASS, will te

published upon completion of nis tnesis work in June 1981.

76

--- --- I
Kernel Gate

Gate Keeper

Read Await Ticket Advance

Convert
_ad

I I Verify

Event Manazer--- ------- -----

TCAwait Process TCAdvance
Class - -- -

. .. . I I
--- -- -I---------------

mCGetwork - Virt Int
-- - - - - -Handler

Traffic Controller
IJ-----------------------------------It

MM Read Eventcount MM Ticket IMMAdvance

Distributed Memory Manager
--------------------- -----n --------------------------

Figure 10. Implementation Module Structure

77

A. EVENT MANAGER MODULE

The eventcount and sequencer primitives L151, wnict are

system-wide objects, collectively comprise the event data of

SASS. As mentioned earlier, tnis event data is tied directly

to system seements and is stored in the Global Active

Segment Table. Tr.ere are two eventcounts and one sequencer

for every sezment in the system. These objects are

identified to tne Kernel in user calls by specification of a

segment number. Once this seerrent number is identified by

the Kernel, tne segment's handle can be obtained from tne

process' Known Seement Table. The seerment handle identifies

the particular entry in tne G AST containing tne event data

desi red.

Tne Event Manager module manages tne event data within

tte system and provides the mecnanism for interprccess

communication between user processes. The Event Manarer

consists of six procedures. Four of these (Advance, Await,

Read., and Ticiret) represent tne four user extended

instructions provided by the Event ,Manager. The reraining

two procedures provide internal computational support to

include necessary security cnecking. Tfte Event Manager is

Invoked solely by user processes. via the Gate Keeper.

through utilization of the extended instruction set

provided. For every Event Manager extended instruction

invoked by a user process, the non-discretionary security is

verified by comparine the security access classification of

78

tne process invoiring tne Instruction witn tne classification

of the object (segment) teing accessed. Access to the user

process' Known Segment Table is required Dy tne module In

order to ascertain the segment handle and security class for

a eiven Segment number. The PLZ/ASM assembly lanzuage

listing for the Event Manager module is provided in Appendix

A. A more detailed discussion of the procedures comprisina

tne Event Manager follows.

1. Support Procedures

Tte procedures GETHANDLE and CONVERTANDVERIFY

provide internal support for tne Event Manager and are not

visible to tne user processes. Procedure CONVERTANDVEFIFY

is invoked by the four procedures representing tbe

instruction set of the Event Manazer. The input parameters

to CONvERT AND VERIFT are a segment number and a requested

mode of access (viz.. read or write). CONVERTANDVERIFY

returns a pointer to tne segment's handle and- a success

code. Procedure GET-HANDLE is invoked solely by

CONVERTANDVE.IFY. The input parameter to GETHANDLE Is the

seement number received as input by CONVERTANDVERIFY.

GET HANDLE returns a pointer to the segment's handle, a

pointer to tne segment's security classification, and a

success code. A discussion of tte functions provided by

these support procedures follows.

Procedure Gi;THANDLE translates tne segment number,

received as input, into a KST index number and verifies that

0.
79

tie resulting index number Is valid. Next the base address

of tne process' KST is obtained from proeedure

ITC_GET_SEG_PTR. The KST index number is tnen converted into

a KST offset value and added to the base address to obtain

the appropriate KST entry pointer for tne segment in

question. A verification is then made to insure that the

referenced serment is "known" to the process. If the segment

is not snown, an error messaRe is returned to

CONVERT AND VERIFY. Otnerwise, a pointer to the segment's

handle is obtained to identify the setrTent to the rmemory

manager. A pointer to tne segment's security class entry in

the KST is also returned for use in appropriate security

checics.

Procedure CONVERT AND VERIFT provides tte necessary

non-discretionary security verification for the extended

instruction set of the Event Manager. Procedure GET-HANDLE

is invoked for segment number verification and to o taln

pointers to the segment's handle and security class. If

GET-HANDLE returns with a successful verification, tne

process' security class Is compared to the segrent's

security class to verify thne mode of access requested. A

request for "write" access causes invocation of tne CLASS EQ

function in the Non-Discretionary Security Module to insure

that the security classification of the process is equal to

the classification of the eventcount or sequencer, which is

the same as tnat of the segment. Otnerwise, the CLASS GE

'54

II

function is called to verify that the process has read

access. If the appropriate security cneck is unsuccessful,

an error ccde is returned by CONVERTAND VERIFY. Otherwise,

tne segment handle is returned along witn a success coce of

"succeeded" indicatin tnat the user process possesses the

necessary security clearance to complete execution of the

extended Instructicn.

2. Read

Procedure READ ascertains the current value of a

user specified eventcount and returns its value to the

caller. The input parameters to READ are a segment number

and an instance (viz., an event number). CONVERT AND VERIFY

is invoked witn a read access request to obtain the

segment's handle and necessary verification. Read" access

is sufficient for tnis operation as it only requires

observation of tne current eventcount value and performs no

data modification. If verification is successful. procedure

MM READ EVENTCOTINT is called to obtain the eventcount value.

3. Ticket

Procedure TICKET returns the current sequencer value

tor the serment specified by the user. CONVkRTANVEP IIvFY is

called with a request for write access tc obtain

verification and the sewment handle. Write access is

required because once the sequencer value is read it must be

incremented in anticipation of the next ticket request. Cnce

verification is complete, MM_TICKET is invoed to obtain te

H

*,for,

sequencer value that is returned to the user ;rocess. It is

noted that every call to TICKET for a particular segment

number will return a unique and time ordered sequencer

value. This is because the sequencer value may only be read

within MMTICKET wnile the GAST is locked, thereby

preventing simultaneous read operatiors. Futnermore, once

the sequencer value is read it is incremented before tle

GAST is unlocked.

4. Await

Procedure AWAIT allows a user process to block

itself until some specified event has occurred. The

parameters to AWAIT include a segment number and instance,

which identify a particular event, and a user specified

value which identifies a particular occurrence of the event.

Verification of read access and a pointer to the segment's

handle is obtained from procedure CONVIRT AND VERIFY.

Procedure TCAWAIT is invoKed to effect tne actual waitlf.e

for the event occurrence. TC_.AWAIT will not return to AWAIT

until the requested event has occurred. It is ncted that

AWAIT mares no assumptions about the event value specified

:y the user. Therefore, the Kernel cannot guarantee that tne

event specified by the user will ever ocnur; this is the

responsibility of other cooperating user processes.

b. Ad fln

Procedure ADVANCE allows a user process to broadcast

"re occurrence of some event. This is accomplished by

92

incrementing tne value of tne eventcount associated witn the

event that has occurred. The parameters to ADVANCE include a

segment number and instance wnicn identify a particular

event. The calling process must nave write access to the

identified seerment as modification of the eventcount is

required. Verification of write access and a pointer to the

segment 's handle is obtained tnrouRn procedure

CONVERT ANDVERIFY. Procedure TCADVANCE Is invoked to

perform the actual broadcastinR of event occurrence.

B. TRAFFIC CONTROLLER MODULE

The primary functions of the Traffic Controller module

are user process scneduling and support of tne inter-process

communication mechanism. The Traffic 1ontroller is invoKed

by tne occurrence of a virtual preempt interrupt and ty tne

Event Manager and the Segment Manager trrougn tne extended

instruction set: TCAdvance. TCAwalt, Process Class, and

GetDBRN1iMBER. The Traffic Controller module is comprised

of nine procedures. Four of tnese procedures represent the

extended instruction set of the Traffic Controller. A

detailed discussion of six of tne proceaures contained in

the Traffic Controller module is presented below. The

remaining tnree procedures (viz., TC_INIT, CREATEPRCCESS,

and CPEATEKST) were described in chapter tnree. Tne PLZ/ASM

assembly language source code listings for tne Traffic

Controller module is provided in Appendix B.

1. TC Getwork

Procedure TCGETWORK provides tne mecnd.ism for user

process scheduline. The input parameters to TCC2!WORK are

the VP ID of tne virtual processor to wnIcn a roces'i will

he scheduled and the logical CPU number to wnhic the virtual

processor belongs. The determination of wnicn process to

schedule is made by a looping mectanism that finds the first

ready process on the ready list associated with tre

current logical CPU number. Processes appear in the ready

list by order of priority. This loopina mecnanism is

required as both "running" and "ready" processes are

maintained on the ready list. This ready list structure was

chosen to simplify the airoritnm provided in procedure

TCAdvance. If a ready process is found, its state is

cnanged to "running" and its process ID (viz., the APT entry

number) is inserted in the runnine list entry associated

with tne current virtual processor. Procedure IS'AP_V]BR is

then invoed in tne Inner Traffic Controller to effect the

actual process switcn. If a ready process was not found

(viz., the ready list was empty or comprised solely of

"running processes"), tnen tne running list entry associated

with the current virtual processor is marxed with the

constant IdleProc" and procedure 1DLE is Invoked in the

Inner Traffic Controller.

jJ4

2. TC Awai t

The primary function of TC AWAIT Is the

determination of whethe. some user specified event has

occurred. If tne event nas occured, control is returned to

tne caller. Otherwise, the process is bloc.ked and anctner

process Is scneduled. The input Darameters to TC AWAIT are a

pointer to a seement handle, an instance (event number), and

a user specified eventcount value. TCAWAIT Initially locks

the Active Process Table and obtains tne current value of

the eventcount in question by calling procedure

MM READ EVENTCOUNT. The determination of event occurrenca is

made by comparing tne user specified eventcount value with

the current eventcount. If the user value is less than or

equal to tne current eventcount, the awaited event has

occurred and control is returned to tne caller. Otherwise,

tne awaitea event nas not yet occurred and tne process must

be blocked.

If the process is to be blocKed, procedure

PUN NING VP is invoked to ascertain the VP ID of tnp virtual

processor bound to the process. The process' Ir (viz., APT

entry number) is then read from the running list. The input

parameters to TCAWAIT (viz., Handle. Instance, and Value)

are then stored in the Event Data portion of the process'

APT entry. The process is removed from its associated ready

list by redirecting the appropriate linking threads

(pointers). Once removed from tne ready list, tne process is

85

threaded into the blocked list and its state changed to

blocked" by invocation of the library function LISTINSERT.

Procedure TC GETWORK is then called to schedule another

process for the current virtual processor.

3. TC Advance

The primary purpose of TCADVANCP is the

broadcasting of sorme event occurrence. This entails

incremrentin& the eventcount associated with the event,

awakening all processes tnat are waiting for the event, and

insurinp proper scneduline order by Reneratine any necessary

virtual preempt interrupts. Tne nighn level design algoritnm

for TC ADVANCE is provided in rizure 11. The input

parameters to TCADVANCE are a pointer to a segment's nandle

and an instance (event number). Initially, TCADVANCE locks

tne APT to prevent tne possibility of a race condition. Tne

eventcount identified by the input parameters is then

incremented by calling MMADVANCE. MMADVANCE returns the

new value of the eventcount. Once the eventcount has been

advanced, TCADVANCE awakens all processes awaltirg tnis

event occurrence. This is accomplished by cneckine all

processes that are currently in tne blocked list. The

process' HANDLE and INSTANCE entries are compared with the

nandle and instance identifying the current event. If tney

are the same, tnen fne process is awaitinR some occurrence

of tne current event. In sucn a case, the process' VALUE

entry in the APT Is compared with the current value of the

0 jf 86

TCADANCE Procedure (HANDLE, INSTANCE)

Begin

I Get new eventcount
COUNT := MM ADVANCE (HANDLE, INSTANCE)

Call WAIT-LOCK (APT)

Waice up processes
PROCESS := BLOCKEDLISTHEAD

Do wnlie not end of BLOCKED LIST
If (?ROCESS.HANDLE = HANDLE) ani

(PROCESS.INSTANCE = INSTANCE) and
(PROCESS.COUNT <= COUNT)

Call LIST INSERT(READI LIST)
end Ifi

P'ROCESS := PROCESS.NEXT PROCESS
end do

Cneck all ready lists for preempts
LOGICAL CPU NO := 1

Do wnile LOGICALCPUNO <= #NR_ CPU
! Initialize preempt vector .
VPID := FIRST VP(LOGICALCPUNO)

Do for LUOP := 1 to NR VP(LOGICAL CPU NO
RUNNING LIST[VPIDI.PREEMPT := #TRUE

VP ID := VPID + 1
end do

' Find preerpt candidates
CANDIDATES := 0

PROCESS := READvLISTHEAD(LOGICALCPUNO)

Figure 11. TC&ADVANCE Algoritnm

87

VPID := FIRSTVP(LOGICALCPUNO)

Do (for CYCLE = 1 to NR VP(LOGICAL CPU NO) and
not end of READI LIST(LOGICALCPUNO)

If PROCESS = #RUNNING
then

TUNNINGLIST[VPIDJ.PREEMPT := #FALSE
else
CANDIDATES := CANDIDATES - 1

end If

VP ID := VP ID + 1
PROCESS := PROCESS.NEXT PROCESS

end do

Preempt appropriate candidates
V _ID := FIRSTVP(LOGICALCPUNO)

ro for CHECK := I to NR VP(LOGICAL CPU NON
If (RUNNINGLIST[VP_IDJ.PREEMPT - #T.RUE) and

(CANDIDATES > 0)
tnen
Call SET PREEMPT(VP ID)

CANDIDATES := CANDIDATES - 1
end if

vP ID := VP ID + 1
end do

IOGICALCPUNO := LOGICAICPUNO 1

end do

Call UNLOCK(APT)

Return

End TC ADVANCE

Figure 1i. TCADVANCE Algoritnm (Continued)

IIe

eventcount. If tne process' VALUE is less tnan or equal to

the current eventcount value, the awaited event nas occurred

and the process is removed from tne blocked list and

threaded into the appropriate ready list by the litrary

function LIST INSERT.

Once the blocked list has been checked, it is

necessary to reevaluate eacfh ready list to insure that the

nighest priority processes are running. It is relatively

simple to determine if a virtual preempt interrult is

necessary, however, it is considerably more difficult to

determine which virtual processor Should receive the virtual

preempt. To assist in tnis evaluation, a "count" variable

(number of preempts needed) is zeroed and a preempt vector

is created on the Kernel stack with an entry for every

virtual processor associated with the logical CPU being

evaluated. Initially, every entry in the preempt vector is

marked true Indicating that its associated virtual

processor is a candidate for preemption. Once the preempt

vector is initialized, the first n processes on the ready

list (where n equals the number of VP's associated with the

current logical CPU) are cnecked for a determination of

their state. If a process is found to be "runnine" then it

should not be preempted as processes appear in tne ready

list in order of priority. When a running process is found,

its associated entry in the preempt vector is marked

false." If a process is encountered in the "ready" state

89

&, 3

then it should be runnine and the "count" variatle is

incremented. When tne first -n" processes nave been cnecked

or when we reach the end of the current ready list

(wnicnever comes first), the entries in tne preempt vector

are popped from the stack. If an entry from the preempt

vector is found to be true", tlis indicates tnat its

associated virtual processor is a candidate for preemption

since it is either bound to a lower priority process, cr it

is "idle." In such a case, tne "count" variable is evaluated

to determine if the virtual processor associated witn the

vector entry snould be preempted. If tne count exceeds zero,

a virtual preempt interrupt is sent to the VP and the count

is decremented. Otherwise, no preempt is sent as tnere is no

higber priority process awaiting scneduling.

This preemption alporitnm is completed for every

ready list in the Active Process Table. Once all ready lists

nave been evaluated, tne APT Is unlocked and control is

returned to the caller. It is noted that it is not necessary

to Invoke TCGETWORK before exiting ADVANCE. If the current

VP requires rescheduling, it will have received a virtual

preempt interrupt from the preemption algorithm. If tnis has

occurred, tne VP will be rescneduled when its runnirg

process attempts to leave tne Kernel domain and the virtual

preempt interrupts are unmasked.

90

4. Virtual PreeMut Randler

VIRTUALPREEMPTHANDLEP. Is the interruDt nandler for

virtual preempt interrupts. The entry address of

VIRTUALPREEMPT HANDLER Is maintained in the virtual

interrupt vector located in tte Inner Traffic Controller.

Once invoked, tie handler iocks the Active Process Table and

determines which virtual processor is beine preempted by

calling RUNNINGVP. Tne process running on tne preempted VP

is then set to the "ready" state and TCGETWOR! is invoked

to reschedule tne virtual processor. When TCGETWORK returns

to VIRTUAL PREEMPTHANDLEP, the APT is unlocked and a

virtual interrupt return is executed. This return is simply

a jump to the point in the hardware preempt handler where

the virtual interrupts are unmasked. This effects a virtual

interrupt return instruction.

5. Remaining Procedures

The remaining two procedures in the Traffic

Controller module represent the extended instructions:

PROCESSCLASS and GETDBRNUMBER. Both procedures lock the

Active Process Table and call RUNNINGVP to determine whicP

virtual processor is executing the current rrocess. The

process ID (viz., APT entry Number) is then extracted from

the running list. PROCESS CLASS reads and returns the

current process- security access classification from tl.e

APT. GETDBRNUMBER reads and returns tne current process'

DER handle. It should be noted that in ceneril the DBR

91

. M E ."I

number provided by procedure GETDBRNUMBER is only valid

while the APT is locked. Particularly, in the current SASS

implementation, tne Segment Manager Invokes GETDBPNUMBER

and then passes the obtained DER number to the ristributed

Memory Manager for utilization at that level. In a more

general situation, the pro'cess associated witn the DER

number may nave been unloaded before the DBR number was

utilized, thus making it invalid. This problem does not

arise in SASS as all processes remain loaded for the life of

the system.

C. DISTRIBUTED MEMORY MANAGER MODULE

The Distributed Memory Manager module provides an

interface between tne Seement Manaeer and the Memory Manairer

process, manipulates event data In the Global Active Segment

Table (GAST), and dynamically allocates available merory. A

detailed description of tne Distributed Memory Manager

interface to the Memory ManaRer process was presented by

Wells [6]. The remaining extended instruction set is

discussed in detail below. The complete PLZ/ASM source

listings for the Distributed Memory Manager module is

provided in Appendix C.

1. MM Read Eventcount

MMREADEVYENTCOUNT is invoked by the Event Manager

and tne Traffic Controller to obtain tne current value of

the eventcount associated with a particular event. The Input

92

parameters to this procedure are a segment nandle pointer

and an instance (event Number), which together uniquely

identify'a particular event.

The GAST is locked and the entry offset of the

segment into the G AST is obtained from the seement's

handle. The instance parameter is then validated to

determine which eventcount is to be read. If an Invalid

instance is specified, control is returned to the caller

specifyinr an error condition. Otherwise, the current value

of the specified eventcount is read. The GAST is then

unlocked, and the current eventcount value is returned to

tne caller.

2. MM Advance

MMA.DVANCE is invoked by the Traffic Controller to

reflect the occurrence of some event. The input parameters

to MM ADVANCE are a pointer to a sezment's handle and a

particular instance (event number).

The Global Active Segment Table is loczed to prevent

a race condition, and the offset of the segment's entry into

the GAST is obtained from the setment handle. The Instance

parameter is then validated to determine wnich eventcount is

to be advanced. If an invalid instance is specified, an

error condition Is returned to the caller and no data

entries are affected. If the instance value is valid, the

appropriate eventcount is incremented, and its new value is

returned.

93

-i " - Il "' " " - - .. .- ... - "

3. MM Ticket

MM TICKET is invoked by the Event Manager to obtain

tne current value of the sequencer associated with a

specified segment. The input parameter to MMTICKET is a

pointer to a seament's handle.

Initially, MMTICKET locks tne Global Active Segmert

Table to prevent a race condition. Next the offset of the

segment's entry into the GAST is obtained from the segment

handle. The current value of the sequencer for the specified

segment is then read and saved as a return parameter to the

caller. The sequencer value Is then incremented in

anticipation of the next ticket request. Once this is

complete, the GAST Is unlocked and control is returned to

thne caller.

_. MM Allocate

-J The MMALLOCATE procedutre provided in this

implementation is a stub of tne MMALLOCATE described in the

Memory Manazer desien of Moore and Gary L41

The primary function of MMALLOCATE is tne aynamic

allocation of fixed size blocts of available memory space.

It is invored in the current Implementation by the

initialization routines in BOOTSTRAP-LOADER and TCINIT for

the allocation of memory space used in the creation of the

Kernel domain and Supervisor domain stack segments and the

creation of tne Known Segment Tables for user processes.

Dynamic reallocation of previously used memory space (viz.,

94

garbage collection) is not provided ty the M!lALLOCATE stub

in tnis implementation. All memory allocation reauired in

this implementation is for segments supporting system

processes that remain active, and thus allocated, for the

entire life of tne system. Memory is allocated in blocks of

256 (decimal) bytes of processor local memory (or-board

RAM). In this stub allocatable memory is declared at compile

time by a data structure (MEM POOL) that is accessible only

by MM ALLOCATE.

The input parameter to MMALLOCATE is the number of

blocks of requested memory. Tnis parameter is converted from

a block size to the actual number of bytes requested. This

computation is made simple since memory is allocated in

powers of two. The byte size is obtained by logically

snlftine left the input parameter eiItr times, where eilnt

4> is the power of two desired (viz., 256). Once tne size of

the reouested memory is computed, it is necessary to

determine tne starting address of the memory blocs(s) to te

allocated. To assist in this computation, a variable

(NEXT-BLOCK) Is used to keep track of the next available

block of memory in MEMPOOL. NEXT-BLOCK, which Is

initialized as zero, provides tne offset Into tne memory

being allocated. Once the starting address is ob'ained, the

pnysical size of the memory allocated is added to NEXTICCK

so nat the next request for memory allocation will tegin at

the next free byte of memory in MEY POOL. This new value of

95

'IMf

AD-AL02 308 NAVAL POSTGRADUATE SCHOOL MONTEREY CA F/S 9/2

IMPLEMENTAT ION OF PROCESS MANAGEMENT FOR A SECURE ARCHIVAL STOR--ETC(U)

MAR Al A R STRICKLER

UNCLASSIFIED N

Ehhhmmmhhhhln
mlooEEEmhommoEI

smmhhEmhhmhsh

NEXT-BLOCK is saved and tne starting address of the memory

for tlis request is returned to the caller.

D. GATE KEEPER MODULES

The SASS Gate Keeper provides the loRical boundary

between tne Supervisor and tne Kernel and isolates tne

Kernel from the system users, tnus makin, it tarrperproof.

This is accomplished by means of the hardware system/normal

mode and the software rine-crossine mechanism provided by

the Gate Keeper. Tne Gate Keeper is comprised of two

separate modules: i) the USER GATE module, and 2) tne

KERNEL GATE KEEPER module. These modules are disjoint, with

the USER-GATE module residing in the Supervisor domain and

the KERNEL GATEKEEPER module residing in tne Kernel domain.

It is important to note that the USERGATE is a separately

linked component in tne Supervisor domain and is not linked

to the Kernel. The only thing in common between these two

modules is a set of constants identifying tne valid extended

instruction set which the Kernel provides to the users.

The Gate Keeper modules presented in tnis Implenemtation

are only stubs as they do not provide all of the functions

required of the Gate Keeper. Rowever, the only task not

provided in this implementation is the validation of

parameters passed from the Supervisor to the Kernel. A

detailed description of this parameter validation design is

provided by Coleman [3]. In the process manawement

*4 96

demonstration, the Supervisor stubs are written in PLZ/ASM

with all parameters passed by CPU reeisters. A detailed

description of the Gate Keeper modules and the nature ef

their interfaces is presented below. The PLZ/ASM source

listings for the two Gate Keeper modules are provided in

Appendix D.

1. User Gate Module

The USERGATE module provides the interface

structure between the user processes in tne Supervisor

domain and the Kernel. The USER-GATE is comprised of ten

procedures (viz., entry points) tnat correlate on a one to

one basis witn the ten "user visible" extended instructions

(listed in fieure 6) provided by the Kernel. The only action

performed by each of these procedures is the execution of

the system call instruction (SC) with a constant value,

identifying the particular extended instruction invoked, as

the source operand.

Tne SC instruction is a system trap tnat forces tne

hardware into the system mode (Kernel domain) and loads

register 15 with tne system stac pointer (Kernel domain

stack). The current instruction counter value (IC) is pushed

onto the Kernel stack along with the current CPU flag

control word (FCW). In addition, the system trap instruction

is pushed onto tne Kernel stack with the upper byte

representine the SC instruction and the lower byte

representing the SC instruction's source operand (viz., tne

97

Kernel extended instruction code). Together, ttese

operations form an interrupt return (IRET) frame as

illustrated in figure 9. Once tnis is complete, tne YCW is

loaded with tne FCV value found in the System Call frame of

the Program Status Area (viz., tne hardware "interrupt

vector"). The structure of tne Program Status Area is

Illustrated in figure 12. The instruction counter is then

loaded with the address of the SC instruction trap handler.

This value is also located in the SC frame of the Program

Status Area.

2. Kernel Gate Keeper Module

The system trap handler for the System Call

instruction is the KERNN.'LGATIEKEPER. The address of the

KERNEL GATE KEEPER and the Kernel FCW value are placed in

the System Call frame of tne Program Status Area by the

BOOTSTRAP-LOADER modulE durin initialization. The

KERNEL GATE KEEPER fetches the extended instruction code

from the trap instruction entry in the I.RT frame on the

Kernel stack. This value is then decoded by a case"

statement to determine which extendeai instruction is to be

executed. If the extended instruction codp is valid, tMe

appropriate Kernel procedure Is invoked. Otnerwise, an error

0condition is set and no Kernel procedures are not invoked.

Once control returns to the KERNEl GATE KEEPER, the CPU

registers and normal stack pointer (NSP) value are pushed

onto the Kernel stack in preparation for return to the

98

A4

OF.FSET

Deserved !-H-Frames
4 1

Unimplemented
I Instruction

Trap
1 1- - - - - - - - --

Privileged
Instruction

Trap

- Kernel FCW !System
---- --- ---- --- -- --ca ll

Kernel Gate Keeper !Instruction
Add rebs

1 --- - - - - - - - -
Segmen-t
Trap

Non-Maskable
InterruDt

24----------------- - -I--!Haraware
- Kernel FCW !Preempt

PFYSPFEEMPT_ANr1.ER,' !(Nor.-
IAddress vectored

ZE -- ------- -- interrupt)
Vectored Int

*NOTE: Offsets represent Program Status Area structure
f'or non-seemented ZEU2 mi'-roprocessor.

- Figure 12. Program Status Area

Supervisor domain. It is noted that this operation would

normally occur immediately upon entry Into tne

KERNEL GATE KEEPER. In this implementation, nowever,

parameter validation is not accomplished and the CPU

registers are used to pass parameters to and from tte Kernel

only for use by the process manacement demonstration. In an

actual SASS environment, all parameters would be passed in a

separate argument list and tne CPU registers would a-pear

exactly the same upon leaving the Kernel as they did upon

enterine the Kernel. This is important to insure that no

data or information is leaked from the Kernel by means of

the CPU recisters.

Control Is returned to the Supervisor Dy means of the

return mechanism in the hardware preempt handler. This

mechanism Is utilized to preclude the necessity of building

a separate mechanism for the KERNELGATEKEEPER that would

actually perform the very same function. To accomplisn this,

the KERNELGATEKEEPER executes an unconditional jump to tte

PREEMPTRET label in PHYSPREEMPTHANDLER. Tnis jump" to

the hardware preempt handler represents a virtual IRET

instruction providing the same function as tne virtual

interrupt return described in the discussion of tne virtual

preempt handler. At this point, the virtual preempt

interrupts are unmasked, the normal stack pointer and CPU

registers are restored from the stack, and control is

returned to the Supervisor by execution of the IRET

instruction.

100

E. SUMMART

The implementation of process iranazement functions for

tne SASS has been presented in tnis chapter. The

implementation was discussed in terms of the Event Manager,

Traffic Controller, Distributed Memory Manager, and Gate

Keeper modules.

Chapter V will present tne conclusions drawn from tlis

work and suggestions for future work derived from this

thesis.

101

II

V, C(NCLUS ION

The implementation of process management for the

security Kernel of a secure archival storage system nas teen

presented. The process management functions presented

provide a logical and efficient means of process creation,

control, and scheduling. In addition, a simple but effective

mechanism for inter-process commurication, tased on the

eventcount and sequencer primitives, was created. Work was

also completed in the area of Kernel datatase initialization

and a Gate Keeper stub to allow for dual lomain operation.

The design for tnis implementation was based on the

Zilog Z8001 sixteen bit segmented microprocessor [171 used

in conjunction with the Zilog ZeelH Memory Management Unit

(181. The actual implementation of process management fcr

the SASS was conducted on the Advanced Micro Computers

Am 6/4116 MonoBoard Computer [191 featuring tae AmZS0e2

sixteen bit non-sermented microprocessor. Sementation

nardware was simulated by a software Memory Management T3nit

Image.

This implementation was effected specifically to su;port

the Secure Archival Storage System (SASS) [21J. However, tne

Implementation is based on a family of Operating Systems [1J

desiened with a primary zoal of providine multilevel

information security. The loop free modular design utilized

in this implementation easily facilitates any required

1 (

a- I = - °Ii .

expansion or modification for other family mremters. in

addition, tnis imDlementation fully supports a

multiprocessor design. Wnile tne process management

implementation appears to perform correctly, it has not been

subjected to a formal test pian. Sicn a test plan should be

developed and implemented before krernel verification is

begun.

A. FOLLOW ON WORK

There are several possitie areas in tne SASS design tnat

would be immediately suitable for continued research. In the

area of nardware, this includes, tne establisnment of a

multiprocessor environment, tardware Initialization, and

interfacine to tne host computers and secondary storage.

Further work in the Kernel includes tne actual

implementation of tfle memory manairer process, and the

refinement of tne Gate Keeper and Kernel intialization

structures. The implementation of tne Supervisor has not

teen addressed to date. Its areas of researcn inclde tne

implementation of the File Manaee r and Input/output

processes, and tne final design and implementation of tne

SASS-Hosts protocols.

Other areas that could also prove interesting in

relation to the SASS include the implementation of dynamic

memory management, the support of multilevel nosts, dynamic

process creation and deletion, and the provision of

constructive work to te performed by tile Idle process.
0,4

10~3

APPENDIX A - EVENT MANAGER LISTINGS

ZEOOOASM 2.02
LOC O"J CODE STMT SOURCE STATEMENT

$I1STON STT!

EVENT MGR MODULE

CONSTANT
'T JE := 1
FALSE :
READACCESS : 1
WRITE ACCESS :
SUCCEEDED := 2
SEGMENT NOT KNOWN := 2e
ACCESS CLASS NOT _t 33
ACCESS CLASS NOT GE := 41
KST SEG_ NO := 2
NR OF KSEGS := 10
MAX NO KST ENTRIES := 54
NOTKNOWN :% FF

TyPE
HARRAY ARRAY[3 WORD]

KST REC RECORD
[M HAN VLE H ARRAY

SIZE WORD
ACCESS MODE BYTE
IN CORE BYTE
CLASS LONG
M SEG NO SHORT INTEGER
ENTPY-NUMBFR SHORT INTEGER

A]

EXTERNAL

MM TICKET PROCEDURE
mM READ EVENTCOUNT PROCEDURE
TC ADVANCE PROCEDURE
TC AWAIT PROCEDURE
PROCESS CLASS PROCEDURE
CLASS EC PROCEDURE

*CLASS GE PROCEDURE
*ITC GET SEG-PTR PROCEDURE

104

I NTERNAL

$SECTION EM KST DCL
! NOTE: THI§. SECTION IS AN "OVERLAY"
OR FRAME USED TO DEFINE THE
FOPMAT OF THE KST. NO STORAGE IS
ASSIGNED BUT RATHER THE (ST IS
STORED IN A SEPARATELY OITAINED
AREA. (A SEGMENT SET ASIDE FOR IT)!

SABS 0
0000@ KST ARRAY[MAXNOKSTENTFIES KSTREC]

4h*4

GLOBAL

SSECTION -MGLBPROC

OOA READ PROCEDURE

* READS SPECIFIED EVENTCOUNT *
4 AND RITUPNS IT'S VALUE TO m
* THE CALLER

PARAMETERS:
' RI: SEGMENT #

'R2: INSTANCE

= RETURNS:
RO: SUCCESS CODE
RR4: EVENTCOUNT

ENTRv
! SAVE INSTANCE

OVO 93F2 PUSH @F15, R2

"PEAD" ACCESS REQUIRED
002 21e2 LD R2, #READACCESS

! GET SEG HANDLE & VERIFY ACCESS I
C0£b 5FOO CALL CONVERT .ND VER.IiT !R1:SEG #

R2:REQ. ACCESS
RETURNS:
R(:SUCCESS CODE
R1:HANDIE PTR!

OOOA OBOO CD R, #SUCCEEDED
IF EQ !ACCESS PERMITTED!

OOE 5EOE THEN !READ EVENTCOUNT!
0010 001C".C' !RESTORF INSTANCE!

0012 97F2 POP R?, PR15
0014 5F@0 CALL MMREAD EVENTCOJNT !Rl:HPT)

R2: INSTANCE
RETURNS:
Ro:SUCCESS CODE

RR4 :EV:NTCOUNT!
0018 5E08 ELSE !RESTORE SP!
001A 0 1E'
Oi1C 97F2 POP R2, @R15

FI
001E 9E08 RET
ofeu END READ

014m

p
V.

Mfe TICKET PRCCEDURE

RETURNS CURRENT VALUE OF
TICKET TO CALLhJR AND INCRFE-

* MENTS SEQUENCER FOR NEXT
* TICKET OPERATION

PARAMETERS:
Ri: SEGMENT #

RETURNS:
Re: SUCCESS CODE
RR4: TICKET VALUE

ENTRY
! GET SEG HANDLE & VERIFY ACCESS
! "WRITI" ACCESS REQUIRED

00 2102 LD R2, #WRITEACCESS

0024 5FO0 CAIL CONVERTANDVERIFY !RI:SEG #

R2:ACCESS RE(.

RETURNS:
Ro:SUCCESS CODE
R1:PANDIE PTR!

MfE c£e CP Re, #sSUCCEEDED
002A 0002

IF EQ !ACCESS PERMITTED!
OV2C 5EOE THEN ! GET TICKET
002E
O5Z' 5FO0 CALL MTICKET !Rl:EANDLE PT?

RETURNS:
RR4 :TICKET!

' RSTORE SUCCESS CODE
034 21wo LD Re, #SUCCEEDED
0036 0002

El
0038 9Ee8 RET
Of3A END TICKET

4 1 fe7'4t

pt
iiI

003A AWAIT PROCEDURE

* CURRENT EVENTCOUNT VALUE IS *
* COMPARED TO USER SPECIFIED *
* VALUE. If USER VALUE IS
* GREATER THAN CURRENT EVENT- *
* COUNT VALUE THEN PROCESS IS *

'°BLOCKED" UNTIL THE DESIRED *
EVENT OCCURS.

" PARAMETERS:
RI: SEGMENT #
RZ: INSTANCE (EVENT *)
RR4: SPECIFIED VALUE

* RETURNS:
* Ro: SUCCESS CODE *

ENTRY

! SAVE DESIRED EVENTCOUNT VALUE
03A 91F4 PUTSHL @P.15, RR4

1 SAVE INSTANCE
O3C 93F2 PUSF @R15, R2

READ" ACCESS REQUIRED
OOZE 2102 LD R2, #READACCESS
ae4ew 01

! GET SEG HANDLi & VERIFY ACCESS
0042 5FO0 CAIL CONVERT AND VERIFY !Ri:SEG #
1.(44 ulee

R2:ACCESS REQ
RETURNS:
RO:SUCCESS CODE

R1:HANrLi PTR!
0046 OBOO CP RO, #SUCCEEDED

IF EQ ! ACCESS PERMITTED
004A 5E@E THEN ! AWAIT EVENT OCCURRENCE !
004C 0e5A'

! RESTORE INSTANCE
004E 97F2 POP R2, @R15

! RESTORE SPECIFIED VALUE
evbo 95F4 POPL RR4, @RIO
052 5FOO CALL TCAWAIT !Rl:HANDLE PTR
0054 0 I00 '

R2: INSTANCE
RR4:VALUN

RETURNS:
RO:SUCCESS CODE!

108

0056 5EL ELSE !RFSTORE STACK!
OO5F8 005E'
OV5A 95F4 POPL RR4, @R15
Oe5C 97F2 POP R.2, HR15

FI
vobE 9EO8 RET

0060 tND AWAIT

109

0060 ADITANCE P.OCEDURE

* SIGNALS THE OCCURRENCE OF "

* SOME EVENT. EVENTCOUNT IS
4 INCREMENTED AND THE TRAFFIC

=

* CONTROLIER IS INVOKED TO
* AWAKEN ANT PPOCESS AWAITING
THE OCCURRENCE.

| PARAMETERS:
A Ri: SEGMENT #

R2: INSTANCE (EVENT #1
: RETURNS:
* R: SUCCESS CODE

ENTRY
! SAVE INSTANCE

0060 93F2 PUSH @R15, R2

! GET SEG HANDLE & VERIFY ACCESS

I "WRITE" ACCESS REQUIRED

0062 2102 LD R2, #WRITEACCESS

004 0000
O66 tFVO CALL CONVERTAND_VERIFI !RI:SEG #

0068 0000''
R2:ACCESS REG
RETURNS:
RV:SUCCESS CODE

RI:HANrLE PT?!

00SA OBOO CP Ro, #SUCCEEDED

eV6C e902
IF EQ I ACCESS PERMITTED

OftE 5EOE THEN ! ADVANCED EVENTCOUNT

007 V7C'
RESTORE INSTANCE

0072 97F2 POP R2, @RI5

0074 bF00 CALL TCADVANCE !R1:HANLIE PTR

R2: INSTANCE
RETURNS:
1W:SUCCESS CODE!

0078 5E08 ELSE !RESTORE STACK!
007A 007E
V V7C 97FZ POP R2, @Rl5

FI

007E 9E08 RET
aere END ADVANCE

110
),4I

INTERNAL
SSECTION EM INT PROC

0v £ CCNVERT AND VERIFY PROCEEURE

* CONVERTS SEGMENT NUM2ER TO KST INEEX*
* AND EXTVACTS SEGMENT'S HANDLE YROMf
* IST. IF SUCCESSFUL, THEN ACCESS
* CLASS OF SUBJECT IS CHECKED AGAINST
* ACCESS CLASS O' OBJECT TO INSURE
THAT ACCESS IS PERMITTED.

" PARAMETERS:
' Ri: SEGMENT NUMBER
" R2: ACCESS REQUESTED

" RETURNS:
RO: SUCCESS CODE
l RI: HANDLE POINTER

ENTRY
! SAVE REQUESTED ACCESS

0000 93F2 PUSH @R15, R2
I GET SEGMENT HANDLE

0002 5F00 CALL GET HANDLE IRI:SEG #
0004 0062,

RETURNS:
RO:SUCCESS CODrE
R4:HANDLE PTR
R5:CLASS PTR!

OkO6 OBOO CP RH, #SUCCEEDED
: '- 0008 0002

08 2 IF EO ! SEGMENT IS KNOWN

te0A 5EVE THEN I VERIFY ACCESS
WOOC 005E'

I SAVE HANDLE & CLASS PTR I
OOZE 91F4 PUSHL @R15, RR4

! GET SUBJECT'S SAC
0010 5F00 CALL PROCESS CLASS IRETURNS:
0012 ORR2:PROC CLASS!

I RETRIEVE SEG CLASS POINTER
e014 95FO POPL RRO, @R15

I GET SEGMENT'S CLASS I
001b 1414 LDL RR4, @RI

I RETRIEVE REQUESTED ACCESS
0018 97F1 POP R1, @R15

! SAVE HANDLE POINTER I
001A 93FO PUSH @R15, RO

I CHECK ACCESS CLEARANCE !

111

001C OB01 CP R1, #WRITE ACCESS
eO1E 00t0

IF EQ ! WRITE ACCESS REQUESTED
0020 5EOE THEN
F0C22 0040
0024 5F00 CALL CLASSEQ !RR2:PROCESS CLASS
0026 0000'

RR4:SEGMENT CLASS
RETURNS:
Ri: CONDITION CODE!

0028 OB01 CP RI, #FALSE
002A 0000

IF EQ !ACCESS NOT PERMITTED!
002C 5EOE THEN
0e2E 0038'
0030 2100 LD RO, #ACCESSCLASSNOTEQ
0032 0021
0034 5E08 ELSE !ACCESS PERMITTED!
0036 003C'
0038 2100 LD RO, #SUCCEEDED
ee3A 0002

FI
003C 5E08 ELSE ! READ ACCESS REQUESTED
003E 0058'
0040 5F00 CALL CLASSGE !RR2:PROCESS CLASS
0042 0000*

RR4:SEGMENT CLASS
RETURNS:
RI:CONDITION CODE!

0044 0801 CP RI, #FALSE
0046 0000

IF EQ !ACCESS NOT PERMITTED!
0048 5EOE THEN
004A 0054'
004C 2100 LD RV, #ACCESS CLASS NOT GE
004E 0029
0050 5E08 ELSE !ACCESS PERMITTED!
L052 (058'
0054 2100 LD RO, #SUCCEEDED
0056 0002

FI
FI

I RETRIEVE HANDLE POINTER
0058 97F1 POP RI, @R15
005A 5EO8 ELSE
005C 0060'

I RESTORE STACK I
0SE 9772 POP R2, @R15

FI

0060 9E08 RET
00b2 END CONVERTANDVERIFY

112

iJ

GET HANDLS PROCEDURE

* CONVERTS SEGMENT NUMBER TO
*ST INDEX AND DETERMINES IF *
* SEGMENT IS KNOWN. IF KNOWN *

POINTER TO SEGMENT HANDLE
AND POINTER TO SEGMENT CLASS*

* ARE RETURNED.

PARAMETERS:
RI: SEGMENT NUMBER

RETURNS:
RO: SUCCESS CODE
R4: HANDLE POINTER

• R5: CLASS POINTER

ENTRT
I CONVERT SEGMENT 0 TO KST INDEX #

0062 0301 SUB Rl, #NROFKSEGS
0064 000A

! VERIFY KST INDEX

0066 2100 LD RO, #SUCCEEDED
0068 0002
006A 0201 CP Ri, #0
006C 0000

IF LE IINDEX NEGATIVE!

ee6E 5EOA THEN
0070 007A"
0072 2100 LD RO, #SEGMENTNOTKNOWN
oe74 001C

t 0076 5E08 ELSE !INDEX POSITIVE!
0078 0086'
007A OB01 CP Ri, #MAXNOKSTENTRIES

" 007C 0036
IF G! 1EXCEEDS MAXIMUM INDEX!

E07E 5E02 THEN !INVALID INDEX!

0080 0086'
0082 2100 LD RO, #SEGMENTNOTKNOWN
0084 001C

Fl
Fl

0086 0BO0 CP RO, #SUCCEEDED

0088 0002
"* IF EO IINDEX VALID!

008A 5EeE THEN
008C 00BE"

! SAVE [ST INDEX I

008E 93F1 PUSH @R15. RI
GET KST ADDRESS t

4

113

0090 2101 LD Ri, #!STSEG-NO
e092 e002
0094 5F00 CALL ITC GET SEGPT"R !R1:KST-SEG NO
0096 0000*

RETURNS:
RO:KST ADWR

1 RETPIEVE IST INDEX #
0098 97F3 POP R3, @R15

CONVERT KST INDEX # TO [ST OFFSET
009A 1902 rMULT RR2, *SIZEOF [ST REC
0090 0010

!COMPUTE [ST ENTRY ADDRESS
009E 8103 ADD R3, RO

ISEE IF SEGMENT IS KNOWNI
OOAO 4D31 CP KST.M-SEGNO(R3), #NOTKNOWN
00A2 OOOE
00A4 00FF

IF EQ ISEGMENT NOT KNOWN!
00A6 5EOE THEN
00A8 0032'
OOAA 2100 LD RO, #SJEGMENT NOT KNOWN
OOAC 001C
00AE 5E08 ELSE ISEGMENT KNOWN!
0020 003E'
0032 2100 LD RO, #SUCCEEDED

0OB4 002 1GET HANDLE POINTER
0036 7634 LDA R4, IST.MM-HANDLE(R3)
0038 0000

I GET CLASS POINTERI
OOBA 7635 LDA R5. KST.CLASS(R3)
00.BC 000A

ilk.F 03E 9E08 RET
ofecoEND GET HANDLE

END EVENT MGR

411

APPENDIX B - TRAFFIC CONTROLLER LISTINGS

ZEOOOASM 2.02LOC OB: CODE STMT SOURCE STATEMENT

$LISTON STTT
TC MODULE

CONSTANT

~~ S!ST.tM PARAMETERS INRPROC 4
VPNR 2
NR CPU : 2'" NR KS T - b

' " SYSTEM CONSTANTS ,

READY := 1
BLOCKED := 2
IDLEPROC := 9DDDD
NIL := %FFFF
INVALID := %EEEEKERNEL STACK := 1
USER STACK := 3
KST SEG := 2
KS T-LIMIT := 1

!INDICATES LOWEST SYSTEM
-4 SECURITY CIASS!

SYSTEM LOW :=
STKOF7SET := FF
REMOVED := *ASCD
TR'E := 1
FALSE
SuCCEEDEr := 2

APPTR WORD
VP PTR WORD
ADPRESS WORD
H ARRAY ARRAY[J 4ORDJ

~115.. .' '''..4--, "g ' ; "l~ r n n i n , , l

m111

APTABLE RECORD
LNEXTAP AP PTR
DER WORD
SAC LONG
PRI INTEGER
STATE INTEGER
AFFINITY WORD
VP ID VP PTR
HANDLE H ARRAY
INSTANCE WORD
VALUE LONG
FILL_2 ARA![z WORD]

RUN ARRAY APRA!(VPNR AP PTRJ
RDY ARRAY ARRAIL[NR -CPU AP-PTRJ
AP -ATA ARRAY[NR-PROC APTABLIJ
nP DATA RECORD

[NR VP ARRAY NR CPU WORD]
FIRST ARRAY [NRCPU VPPTRI

i
KST REC RECORD
[MMHANDLE H ARRAY
SIZE WOPD
ACCESS BYTE
IN CORE BYTE
CLASS LONG
M SEG NO SHORTINTEGER
ENTRY-NUM SHORT-INTEGER

EXTERNAL
K LOCK PROCEDURE
K UNLOCK PROCEDURE
SET PREEMPT PRCCEDURE
SWAP VDbR PRCCEDURE
IDLE PROCEDURE
RUNNING VP PROCEDURE
CREATE iNT VEC PROCEDURE
LIST INSk;RT PPOCEDURE
ALLOCATEMMU PROCEDURE
MM ALLOCATE PROCEDURE
UPDATE MMU IMAGE PROCEDURE
CREATE STACK PROCEDURE
MM ADVANCE PROCEDURE
MM-READ EVENTCOUNT PROCEDURE
G AST LOCK WORD
PfEEMPTRET LA2EI

Ll

$SECTION TC DATA
INTERNAL

V00t APT RECORD
[LOCK WORD
RUNNING LIST RUN ARRAY
READY LIST RDYARRAY
BLOCKED LIST AP PTR
FILL_ LONG
VP VP DATA
FILL ARRAT[4 WORD]
AP APDATA

!THESE VARIABLES ARE USED DURING TC
INITIALIZATION TO $PECIFY AVAILABLE
ENTRIES IN TEE APT, AND ARE INITIAl-
IZED Bv TC INIT IN THIS IMPLEMENTATION!

00AO NEXT VP WORD
0OA2 APT-ENTRY WORD

SSECTION TC LOCAL
$ABS 0
!NOTE: USED AS OVERLAY ONLY!

0000 ARG LIST RECORD
[REG ARRAY(1 WORDJ
IC WORD
CPU ID WORD
SAC! LONG
PRIl WORD
SR STK WORD

TER STK WORD
KSTI LONG

SABS 0
!NOTE: USED AS STACK FRAME FOR
STORAGE OF TEVPORARY VARIABLES
FOR CREATEPROCESS.!

e go CREATE RECORD
[APG PTR WORD
DBR-NUM WORD
LIMITS WORD
SEG ADDR ADDRESS
NS P WORD

I

SABS 0
0000 HANDLE VAL RECORD

[HIGe LONG
LOW WOPD

117

!THE FOLLOWING DECLARATION IS UTILIZEE
AS A STACK FRAME FOR STORAGE OF
TEMPORART VADIABLES UTILIZED 27
TC ADVANCE AND TCAIAIT.!

SA2S e
OL70 TEMP RI;COPD

[HANDLEPTR WORD
EVENT NR WORD
EVENT VAL LONG
IDVP- WORD
CPU NUM WORD
HANDLE HIGH LONG
HANDLE-LOW WORDJ

$SECTION TC KST DCL
!NOTE: [ST DECLARATION IS USED IERE
TO SUPPORT KST INITIALIZATION FOR
THIS DEMONSTRATION ONLY. THIS
DECLARATION AND INITIALIZATION
SHOULD EXIST AT THE SEGMENT MANAGER
LEVEL AND THUS SHOULD BE REMOVED
UPON IMPLEMENTATION OF SYSTEM
INITIALIZATICN.!

$ABS 0
0000 KST ARRAY[NRKST KST_ ECJ

11

118

$SECTION TC INTPROC
0000 TCGETWORK PROCEDURE

* PROVIDES GENERAL MANAGE- *
* MENT OF USER PROCESSES BY *
EFFECTING PROCESS SCHEDU- v
LING ON VIRTUAL PROCESSORS*

PARAMETERS:
Ri: CURRENT VP ID
R3: LOGICAL CPU #

" LOCAL VARIABLES:
R2: NEXT READY PROCESS
R4: AP PTR

ENTRw

! FIND FIRST READY PROCESS
00 6132 ID R2, APT.READYLIST(R3)
002 006'

GET READ! AP:
DO -1WHILT NOT (END OF LIST OR READY)!

e004 0Be2 CP RZ, #NIL
0006 FFFF
0008 5EOE IF EQ !NO READY PROCESS! THEN
000 0010,
O0OC 5E08 EXIT FROM GETREADY AP
000E 0026,

Fi
0010 4D21 C? APT.AP.STATE(R2), #READY
0012 002A'
'14 oe01
0016 5EOE IF EQ !PROCESS READY! THEN
0018 001E"
eeIA 5E€8 EXIT FROM GETREAD!_AP
001C 0026"

FI
GET NEXT AP FROM LIST

001E 6124 LD R4, APT.AP.NEXTAP(R2)
0020 0020'
e022 A142 LD R2, R4
0024 E8EF OD
e026 0B02 CP R2,*NIL
ee28 FFF
002A 5EOE IF EQ ! IF NO PROCESSES READY I TEIN
002C 003C'

! LOAD IDLE PROCESS
002E 4D15 LD APT.RUNNINGLIST(Rl), #IDLEPROC
0030 0002'
Oe32 DDDD

119

Z0~34 5Fee CALL ID-F
0036 000
0038 5E08 ELSE
003A oe52 0

!LOAD FIRST READY AP

003C 6F12 LD AP"L.RUNNING LIST(R1), R2
3eU 0002'

0040 4D25 LD APT.AP.STATE(R2), #R!JNNING
0042 002A'

0046 6F21 Lfl APT.AP.VP-ID(R2)J, R!
0048 002V
Oe4A 6121 LD Rl, APT.AP.DBR(R2)
00C 0022'
004E 5F0O CALL SWAPVDBR !(Rl:DBR)!
ee50 000

FI
0052 9E08 RET
0054 END TCGETWORK

1 20

ee54 VIRTUAL PREEMPT HANDIER PROCEDURE

LOADS FIRST READ7 AP
IN RESPONSE TO PREEMPT

F INTERRUPT

ENTRY
!* CALL WAITLOCK (APT-.LOC.) "'
' RETURNS WHEN PROCESS HAS LOCKED APT !

e(b4 76e4 LDA R4, APT.LOCK
0056 000'
052 5FOO CALL X LOCK
OebA 0V0

GET RUNNING VP ID
005C 5F00 CALL RUNNING VP !RETURNS:
M~E eeeew

*R :VP ID
R3:C PUJ 0!

GET AP
0060 6112 ID R2, APT.RUNNING_IIST(R1)

0tb2 0002'

! IF NOT AN IDLE PROCESS, SET IT TO READY
0064 0202 CP R2, #IDLE PROC
0066 DDDD
Oe68 5E6 IF NE ! NOT IDLE I THEN
406A 0072"
006C 4D25 ID APT.AP.STATE(R2), RtEADT
Oe6E Oe2A'
0070 0001~FI

i ,.

- LOAD FIRST READY PROCESS
ee72 5F0e CALL TCGETWORK !R1:VPID
0 ~074 0000'

R3:CPU 9!

!NOTE: THIS IS THE INITIAL POINT OF
EXECUTIOI FOP USER PROCESSES.!

VIRT PREEMPT RETURN:
!**-CALL UNLOCK (APT-.LOCK) ,
: '" RETURNS WHEN PROCESS HAS UNLOCKEr APm T!
! AND ADVANCED ON THIS EVENT !

0076 7604 LDA R4, APT.LOCK
0078 0000'
007A 5FOO CALL KTUNLOCK

121

PERFORM A VIRTUAL INTERRUPT R.TURN
INOTE: THIS JUMP EFFECTS A VIRTUAL
IRET INSTRUCTION.!

007E 5E08 JP PREEMPT RET

e(?e2 END VIRTUAL PREEMPT HANDLER

4 122

GLOBAL
$SECTION TCGLBPROC

0000 TC INIT PROCEDURE

INITIALIZES APT HEADER
AND VIRTUAl INT VECTOR

PARAMETERS:
Ri: CPUID
R2: NR VP

ENTRT
NOTE: THE NEXT FOUR VALUES ARE
ONLY TO BE INITIALIZED ONCE.

0000 4D05 LD NEXTVP, #0
0002 OOAO'
e004 0000
0006 4D05 LD APT-ENTRY, 00
0008 00A2"

OA o0o00
000C 4D05 LD APT.BLOCKED LIST, ONIL
000E 000A"
evio PFF
0012 4D08 CLR APT.LOCK
0014 000

NOTE: THE FOTLOWING CODE IS INCLUDED
ONLT FOR SIMULATION OF A MULTIPROCESSOR
ENVIRONMENT. THIS IS TO INSURE THAT THE
READY LIST(S) AND VP DATA OF THE SIMULATED
CPU(S) APE PROPERLY INITIALIZED. IN AN
ACTUAL MUITIPROCESSOR ENVIRONMENT, THIS
BLOCK OF CODE SHOULD PE RE!OVEE.

0016 2104 LD R4, #0
evie 0000

001A 0B04 CP R4, #NRCPU*2
001C 0004

IF EQ !ALL LISTS INITIALIZED!
O1E 5EOE THEN EXIT
0020 0026"
ei22 5Ev8
0024 0036'

F I

123

! INITIALIZE READY LISTS AS EMPTY
e026 4D45 LD APT.READYIIST(R4), #NIL
0028 0006'
et2A FFFF

I INITIALLY MARK ALL LOGICAL CPU'S
AS HAVING 1 V?. THIS IS NECESSARY
TO INSURE TC ADVANCE WILL FUNCTION
PROPERLY, AS-IT EXPECTS EVERY CPU
TO HAVE AT LEAST 1 VP. !

V02C 4D45 LD APT.VP.NRVP(R4), #1
OOZE o010'
0030 0001
0032 A941 INC R4, *2
0034 E8F2 OD

END MULTIPROCESSOR SIMULATION COLE.

0036 6F12 LD APT.VP.NRVP(R1), R2
0038 0010'
M3A 6103 LD R3, NEXTVP
003C 00A0"
003E 6F13 LD APT.VP.FIRST(R1), R3
094e 0014'

RECOMPUTE NEXT VP VALUE FOR TC
INITIALIZATION OF NEXT LOGICAL
CPU. I

eO42 &125 LD R5, R2
0044 1904 mULT RR4, #2
0046 0002
ee4e 8153 ADD R3, R5
004A 6F03 ID NEXT_VP, R3
004C OOAO"

! INITIALIZE RUNNING LIST I
004E 6113 LD R3, APT.VP.FIRST(Fl)
0050 0014'

DO
0052 oB2 CP R2, 00
0054 0000
0056 5EOE IF EQ TEEN EXIT FI
0058 005E"
005A 5EOS
005C 006A"
Oe5E 4D35 LD APT.RUNNINGLIST(R3'. #IDLEPRCC
0060 0002'
0062 DDDD
e64 A931 INC R3, #2

0066 AB20 DEC R2, #1
oe0e E8F4 OD
Oe6A 4D15 LD APT.READTLIST(Rl), #NIL
006C 0006"
006E FFFF

124

0070 2101 LD Ri, #0
e072 OeeO

!ENTRY ADDRESS
0074 7602 LDA R2, VIRTUAL_ PREEMPT HANDLER
eV76 M~4'
Oe78 5FOO CALL CREATE INT VEC
007A 0000*'

!R1:VIRTUAL INTERRUPT
R2:INTERRUJPT HANDLER ADDRESS!

007C 9E08 ' ET
ee7E END TC INIT

MI

eflE CREATE PROCESS PROCEDURE

* CREATES USER PROCESS
* DATABASES AND APT

ENT.IES

* PARAMETERS:
* R14: ARGUMENT PTR

ENTRY
!NOTE: THIS PROCEDURE IS A STUB TO ALLOW
PROCESS INITIALIZATION FOR THIS
DE mONSTRATION.!
ESTABLISH STACK FRAME FOR LOCAL
VARIABLES. !

e7E 030F SUB R15, OSIZEOF CREATE
000 OO0A

STORE INPUT ARGUMENT POINTER !
082 6FFE ID CREATE.ARG-PTR(R15), R14.
0084 0000

LOCK APT I
eO86 760 LDA R4, APT.LOCK
0088 0000"
008A 5F00 CALL KLOCK

RETURNS WHEN APT IS LOCKED
CREATE MMU ENTRT FOR PROCESS

ee8E 5FO0 CALL ALLOCATEMMU !RETURNS:
0090 0000*

R : DBR #!
1 GET NEXT AVAILABLE ENTRY IN APT

0092 101 LD R1, APTENTRY
0094_ 00A2"

! COMPUTE APT OFFSET
0096 2102 LD R2, #SIZEOF APTABLE
0098 O20
009A 8112 ADD R2, RI

SAVE NEXT AVAILA.LE APT ENTRY
009C 6F02 LD APT ENTRT, R2
e09E eeA2'

! CREATE APT ENTRY FOR PROCESS
0'A0 4D15 LD APm.AP.NEXTAP(RI), #NIL
0eA2 0020'
00A4 FFFF
00A6 6F10 LD APT.AP.DBR(RI), Re
00A8 0022'

! GET PROCESS CLASS
0OAA 54E2 LDL RR2, ARG_LIST.SACI(PI4)
ZAC OelE
0OAE 5D12 LDL APT.AP.SAC(RI), RR2

1 26

GET PROCESS PRIORIT'
VeB2 61E2 LD R2, ABGLIST.PEI1('R14)
0034 0022
0eP6 6F12 LD APT.AP.PPI(P1), P2
OeB 0028'

!GET LOGICAL CPU #
OOBA 61E2 LD R2, APGLIST.CPU-ID(R14)
VeBC efiC
0OBE 6F12 LD APT.AP.AFFlNITT(Rl), R2
oOCe 002C,

!THREAD IN LIST AND MAKE READY!
0OC2 7623 LDA R3, APT.READY-LIST(R2)
0@C4 0006'
eec6 7604 LDA R4, APT.AP.NEXT-AP
OOCB 0020'
OOCA 7605 IDA R5, APT.AP.PRI
eeCC 0028'
0OCE 7606 LDA R6, APT.AP.STATE
OODO 002A'
eeD2 210'? LD R7, #READY
OOD4 0001
00D6 AD21 EX Ri, R2

! SAVE DPR #
O0D8 6FFO LD CREATE.D3RNUM(Rl5), RO
OODA 0002
OODC 5F00 CALL LIST INSERT
OODE 000

!R2: 03.1 ID
R3: LIST FEAD PTR
R4: NEXT 03N PTP
R5: PRIORITY PTR
R6: STATE PTR
R7: STATE!

I UNLOCK APTI
OVEO 7604 LDA R4, APT.LOCK
OOE2 0000'
0034 5F'00 CALL [-UNLOCK
0036 0000'

!CREATE USER STACK!
I RESTORE ARGUMENT POINTER

V038 61FE LD R14, CREATE.ARG-PTR(Rlb)
0OEA 0000
OOEC 61E3 LD R3, ARGLIST.tJSPSTK(R14)
0033 0024

! SAVE LIMITS
00P0 6FF3 LD CREATE.I.IMITS(R15), R3
eeF2 0004

127

00F4 5F00 CALL MMALLOCATE !R3: 4 OF BLOCKS
0076 00000

RETURNS.
R2: START ADrR!

!COMPUTE & SAVE NSP!
00F8 A128 LD R8, R2

I ESTABLISH INITIAL SP VAZUE
FOR USER STACK. !

00FA 0108 ADD R8, #STKOFFSET
oeFC evFF
OOFE 6FF8 LD CREATE.N_S_P(Rl5), R8
0100 0008

! RESTORE LIMITS I
0102 61F4 LD R4, CREATE.LIMITS(R15)
0104 ee04
0106 AB40 DEC R4 !SEG LIMITS!

! RESTORE DBR !
0108 61F0 LD RO, CREATE.DbRNUM(R15)
0OA 0002
oloC 2101 LD Ri, #USER STACK
01CE 0003
0110 2103 LD R3, #WRITE !ATTRIBUTE!
0112 0000
0114 5F00 CALL UPDATE MMUIMAGE
0116 0000

IRO: DBF
Rl: SEGMENT #
R2: SEG ADDRESS
R3: SEG ATTRIBUTES
R4: SEG LIMITS!

!CREATt KERNEL STACKI
! RESTORE ARGUMENT POINTER I

0118 61FE ID RIS, CREATE.ARGPTR(R15)
OllA 0000
011C 61E3 LD R3, ARGLIST.KERSTK(Rl4)
11E 0026

0120 5F00 CALL MMALLOCATE !F3: # OF BLOCKS
0122 0000w

RETURNS
R2: START ADVR!

!MAKE MMU ENTRY!
! RESTORE DBR #

0124 61F0 LD RO, CREATE.DBRNU(R15)
0126 0002
0128 2101 LD Ri, #KERNEL STACK
012A 0001
012C A134 LD R4, R3
0121 AB40 DEC R4
0130 2103 LD R3, #WRITE
0132 0000

I SAVE START ADDRESS I

.2b

0134 bFF2 LD CREATE.SEGADDR(R15), R2
0136 0006
0138 5F00 CALL UPDATEMMUIMAGE
013A 0000*

!Re: DE2R
RI: SEGMENT #
R2: SEG ADDRESS
R3: SEG ATTRIBUTES
R4: SEG LIMITS!

!ESTABLISH ARGUMENTS!
! RESTORE ARGUMENT POINTER

013C 61FE LD R14, CREATE.ARGPTR(Rl5)
013E 0£00 ! RESTORE STACK ADDRESS !
0140 61E LD RI, CREATE.SEGADDR(Rl5)
0142 0006
0144 2103 LD R3, #USER FCI
0146 1800
0148 61E4 LD R4, AEG lIST.IC(R14)
014A 001A

! RESTORE INITIAL NSP !
014C 61F5 LD R5, CREATE.NSP(R15)
014E Oe08
0150 7606 LDA R6, VIRTPREEMPTRETURN
0152 0076'
0154 030F SUB R15, #8
0156 0008
0158 1CF9 IDM @R15, R3, #4
015A 0303

LOAD ARGUMENT POINTER FOR
CREATE STACK CALL

015C AFO LD RVT R15
015E 93FI PTYSH @R15, R1
01b0 AlEI LD R1, R14

LOAD INITIAL REGISTER VALUES TO
BE PASSED TO USER PROCESS kS
INITIAL PARAMETERS. I

0162 5C1l 1DM 32, ARGLIST.REG(Rl', #13
0164 020C
016 0000
0168 97F1 POP Ri, @R15
016A 5F00 CALL CREATE STACK
e1SC 0000*

!Ro: ARGUMENT PTR
P1: TOP OF STACK
R2-R14: INITIAL
REG STATES!

!NOTE: THE ABOVE INITIAL REG STATES
REPRESENT THE INITIAL PARAMETERS
(VIZ., REGISTER CONTENTS) TEAT A
USER PROCESS WILL RtCEIVE UPON

O4
129

Li
OEM-:

INITIAL EXECUTION.
016E oleF ADD Rib, #8 !OVERLAY PARAMETERS!
0170 0008

! ALLOCATE KST I
e172 2103 LD R6, #KSTLIMIT
0174 0001
017b 5F00 CALL MMALLOCATE !R3:# OF BLOCKS
0178 eoeo*

RETURNS
R2:START ADD?!

RESTORE DBR !
e1?A 61F0 LD RV, CREATE.DBR_NUY(Rl5)

* 017C 0002
SAVE KST ADDRESS I

-1?E 6FF2 ID CREATE.SEGADDR(R15). R2
0180 0006

!MAKE MMU ENTRY FOR KST SEG!
Z182 2101 LD Ri, #KST SEG
0184 0002
0186 2103 LD R3, #WRITE !ATTRIBUTE!
0188 00
018A 2104 LD R4, #KSTLIMIT-i
018C 0000
018F 5F£0 CALL UPDATEMMU IMAGE
0190 0000*

IRO: DBR #
RI: SEGMENT #
R2: SEG ADDRESS
R3: SEG ATTRIBUTES
R4: SEG LIMITS!

RESTORE KST ADDRESS
0192 61F2 ID R2, CREATE.SEGADDR(RI5)
0194 0006

! CREATE INITIAL KST STUB
0196 5F00 CALL CREATE KST !R2:KST ADDR!
0198 OIAO'

REMOVE TEMPORARY VARIAfLE
STACK FPAME. I

e19A oleF ADD R15, #SIZhOF CREATE
019C OOOA
019E 9E08 RET
OIAO END CREATE-PROCESS

130

01A0 CPEATE KST PROCEDURE

* CREATES KST STUB FOR
PROCESS MANAGEMENT

0 DEMO. INSERTS ROOT
* ENTRY IN KST. NOT

INTENDED TO BE FINAL
PRODUCT.

* PARAMETERS:
* R2: KST ADDRESS

ENTRY
!NOTE: THIS PROCEDURE IS A STUB USED
FOR INITIALIZATION IN THiS IMPLEMENTATION
ONLY. THE ACTUAL INITIALIZATION CODE
FOR THE KST WILL RESIDE AT THE SEGMENT
MANAGER LEVEL ONCE IMPIEMENTATICN O
SYSTEM INITIALIZATION IS EFFECTED.

CREATE ROOT ENTRY IN KST !
01AO 1406 LDL RR6, #-l !ROOT HANrLE!
01A2 FFFF
01A4 FFFF
01A6 5D26 LDL KST.MMHANDLE(R2), RR6
01AS 0000

!SET ROOT ENTRI u IN G AST
01AA 4r25 LD KST.MM_?ANDLE[2]TR2), ;V
OAC 0004
1AE evee

! SET ROOT CLASSIFICATICN
0130 1406 LDL RR6, #SYSTEM LOW

01B4 0000
01B6 5D26 LDL KST.CLASS(R2), RR6

!SET MENTOR SEG #!
OBA 4C25 LDB KST.M SEG NO(R2), #0
Z1BC 020E
O1BE 0000

!INITIALIZE FREE KST ENTRIES
FOR DkMO. NOT FULL KSTI

elCo 2101 LD Ri, #10
01C2 000A

DO
* 01C4 0B01 CP RI, #0

01C6 0000
01CE 5EOE IF EQ THEN EXIT FI
01CA OIDO'
01CC 5E08

4131

01CE 01DE'
OI1DO 0102 ADr R12, #SIZEOF KST-REC
OlD2 0010
03.D4 '±C25 LDB KST.MSEGNO(R2), #'sFF
VlD6 ME
OlDS FFFF
01DA A310 DEC Ri
O1DC EbF3 or
01DE 9EO8 'RET

OlEO END CREATE KST

132

ollo TC ADVANCE PROCEDURE

* EVENTCOUNT IS ADVANCED PY
INVOCATION OF MM ADVANCE.
PROCESSES THAT ARE AWAITING
THIS EVENT OCCURRENCE ARE
REMOVED FROM ThE BLOCKED LIST*

* AND MADE READY. THE READY
* LISTS ARE THEN CHECKED TO

INSURE PROPER SHEDULING IS
* EFFECTED. IF NECESSARY VIR-
* TUAL PREEMPTS ARE SENT TO ALL*
THOSE VPS BOUND TO LOWEP
PRIORITY PROCESSES.

PARAMETERS:
Ri: HANDLE POINTER

3 R2: INSTANCE (EVENT #)

* RETURNS:
* RO: SUCCESS CODE

ENTRY
EFTASLISH TEMPORART VARIABLE
STACK FRAME. !

OIEO e30F SUB R15. #SIZEOF TEMP
1E2 001Z

! SAVE INPUT ARGUMENTS
elE4 6FF1 LD TEMP.HANDLEPTR(R15', Ri
01E6 00
01E8 bFF2 LD TEMP.EVENTNR(R15), R2
elEA ee2

: LOCK APT
01EC 7604 LDA F4, APT.LOCK
£1EE

"1FO 5F0 CALL I LOCK
01F2 000

! RETURNS 4HEN APT IS LOCKED
! ANNOUNCE EVENT OCCURRENCE BY

INCREMENTING EVENTCOUNT IN G AST!
elF4 5FOO CALL MMADVANCE IR1:HANDLE PTR
071F6 ooe

R2: INSTANCE
RETURNS:
RV:SUCCESS CODE
RR2 :EVENTCOUNT!

elFb OBOO CP .:, #SUCCEEDED
01FA o000
I1FC 5EOE IF EQ THEN
01FE 0372'

133

'4 _

SAVE EVFNTCOUNT 1
0200 5DF2 LDL TEMP.EVENT VAL(R15), RR2
0202 0904

! RESTORE INSTANCE
0204 61F0 ID RO, TEMP.EVENTNR(Rlb)
0206 0002

! RESTORE HANDLE POINTER
0208 61FI ID R1, TEMP.HANDLEPTR(R1b)
020A 0000

! SAVE HANDLE
020C 5414 LDL RR4, FANDLEVAL.EIGH(RI)
020E 0000
0210 5DF4 LDL TEMP.HANDLEHIGH(R15), RR4
0212 000C
0214 6114 LD R4, HANDLE VAL.LOW(RI)
e216 @V04
0218 6FF4 LD TEMP.FANDLELOW(R15,, R4
021A 0010

AWAKEN ALL PROCESSES AWAITING
THIS EVENT OCCURRENCE !
GET FIRST BLOCKED PROCESS

021C 6101 LD RI, APT.BLOCKEDLIST
021E 000A'
0220 7b06 LDA Rb, APT.BLOCKED LIST
£'222 000A "

WAKE_UP:
DO

DETERMINE IF AT END OF bLOCKEr LIST
0224 OB01 CP R, #NIL

0226 FFFF
IF EQ I NO MORE BLOCKED PROCESSES

0228 5EOE THEN EXIT FROM WAKEUP
022A 0230'
022C 5EV8
022E 0224'

FI

! SAVE NEXT ITEM IN LIST
0230 6117 LD R7, APT.AP.NkEXTAP(Rl)
0232 0020'

DETERMINE IF PROCESS IS ASSOCIATED
VITH CURRENT HANDLE !

0234 54F4 LDL RR4, TEMP.HANDLE HIGH(R15)
e236 oveC
0238 5014 CPL RR4, APT.AP.HANDIE(R1)
023A 0030'

IF EQ !HIGH HANDLE VALUE MATCHES!
023C 5EOE THEN
023E 02A2'
0240 61F4 LD R4, TEMP.HANDLEIOW(R15)
0242 0010
0244 AB14 CP R4, APT.AP.HANDLE[2j (R1)

134

0246 0034'
IF EQ I HANDLE'S MATCH

0248 5EOE THEN ! CHECK FOR INSTANCE MATCH
024A 029C'
e24C 61F0 LD Re, TEMP.EVENT NR(Rb)
024E 0002
0250 4B10 CP RO, APT.AP.INSTANCE(RI)
£252 £036"

IF EQ ! INSTANCE MATCHES
0254 5EOE THEN !DETERMINE IF THIS IS THE
0256 e296'

OCCURRENCE THE PROCESS
WAITING FOR !

0258 54F2 LDL RR2, TEMP.EVENT VAL(R15)
025A 0004
025C 5012 CPL RR2, APT.AP.VALUE(Rl)025E 0038'

IF GE !AWAITED EVENT HAS OCCURRED!
0260 5EO1 THEN ! AWAKEN PROCESS
0262 0290'

! REMOVE FROM BLOCKED LIST
0264 2F67 LD @R6, R7

SAVE LOCAL VARIABLES
0266 91F6 PUSHL @R15, RR6

!SET LIST THREADING ARGUMeNtS!
0268 6112 LD R2, APT.AP.AFFINITY(R)
026A 0e2C'
026C 7623 LDA R3, APT.READYIIST(R2)
026E 0006'
0270 7604 LDA R4, APT.AP.NEXT AP
0272 0020'
0274 7605 LDA P5, APT.AP.PRI
0276 0028'
0278 7606 LDA R6, APT.AP.STATE
027A 002A'
027C 2107 LD R7, #READY
027E 0001
0280 A112 LD R2, i
0282 5F00 CALL LIST INSERT
0284 0000*

!R2: OBJ ID
R3: LIST HEAD PTR
P4: NEXT OB' PTR
P5: PRIORITY PTR
R6: STATE PTR
R7: STATE VALUE
RESTORE LOCAL VARIABLES

0286 95F6 POPL RR6. @R1S
0288 2103 LD R1, #REMOVED
028A AECD
£28C 5ER08 ELSE 1PROCESS STILL BLOCKED!

135

028E 0292'
0290 8DB8 CLR Rll

F! ! END VALUE CHECK
e292 5Ee8 ELSE !PROCESS STILL BLOCKEr!
0294 0298'
0296 8DB8 CLR Rll

FI ! END INSTANCE CHECK
0298 5EO8 ELSE !PROCESS STILL BLOCKED!
029A 029E'
029C 8BB CLR RII

Fl ! END HANDLE CHECK
029E 5E08 ELSE !PROCESS STILL BLOCKED!
02A0 e2A4'
02A2 8DB8 CLR Ril

FI ! END HIGH HANDLE CHECK
! RESET AP POINTER REGISTERS

02A4 00B CP R11, #REMOVED
02A6 ABCD

IF NE ! PROCESS IS STILL BLOCKED
02A8 5E06 THEN
02AA 02B0'
02AC 7616 LDA R6, APT.AP.NEXTAP(R1)
02AE 0020'

Fl

02BO A171 LD RI, R7
02B2 E8B8 OD

DETERMINE IF ANY VIRTUAL PREEMPT
INTERRUPTS ARE REQUIRED

0234 8D28 CLR R2
PREEMPT CHECK:
DO

02B6 0B02 CP R2, #NRCPU 2
02B8 0004
02BA 5EeE IF EQ !ALL READY LISTS CHECKED! THEN
02BC 02C2'
02BE 5E08 EXIT FROM PREEMPT-CHECK
02Ce e366' FI

! CREATE PREEMPT VECTOR FOR VP'S!
02C2 8D18 CLR RI

DO !FOR Rl=l TO NRVP'S!
02C4 A910 INC RI
e2C6 4221 CP RI, APT.VP.NRVP(R2)
02C8 0010'

IF GT ! PREEMPT VECTOR COMPLTFD
02CA 5E02 THEN EXIT
02CC 02D2'
02CE 5E08
02D0 02D8'

F!

02D2 ODF9 PUSH ORI5, #TRUE

136

0,

02D4 0001
02D6 EbF6 OD

! # TO PPEEMPT
02D8 8D38 CLR R3
e2DA 6124 LD R4, APT.VP.NRVP(R2)
02DC 0010'

* OY VP'S
GET FIRST READY PROCESS I

02DE 6121 LD RI, APT.READYLIST(R2)
02EO 0006"

CHECK RDY LIST:
DO
! SEE IF READY LIST IS EMPTY

e2E2 'B1 CP Ri, #NIL
02E4 FFFF

IF EQ ILIST IS SMPTY!
e2E6 5EeE THEN EXIT FROM CHECKRrYLIST
02E8 02EE'
02EA 5E08
OEC 9324'

FI
02EE 4D11 CP APT.AP.STATE(RI), #RUNNING
02FO e02A'
02F2 0000

IF EQ !PROCESS IS RUNNING!
e2F4 5EeE THEN !DON'T PREEMPT IT!
02F6 030C '
02F8 6115 LD R5, APT.AP.VP_ID(RI)
02FA ee2E"

!COMPUTE LOCATION IN PREEMPT VICTOP!
02FC 4325 SUB R5, APT.VP.FIRST(R2)
02FE 0 ft14L
0300 74F6 LEA R6, RIS(R5)
0302 0500
0304 0D65 LD @R6, #FALSE
0306 0000
030e8 5E 08 ELSE ! PREEMPT IT I
030A 030E'

030C A930 INC R3
FI

03eE AB4e DEC R4
0310 0B04 CP R4, #0
0312 0000

IF EQ !ALL VP'S VERIFIED!
0314 5EOE THEN
0316 031C'
e318 5Ee8 EXIT FROM CHECKRDYLIST
031A 0324'

F'
! GET NEXT AP IN READY LIST

031C 6119 LD Re, APT.AP.NEXTAP(Rl)

137

031E 0020
0320 A101 LD P., PA
e322 E-DF OD !END CHECK RDY LIST!

! SET NtCESSARY PREEMPTS
0324 6124 LD R4, APT.VP.NRVP(R2)
0326 0010"
0328 6121 LD Rl, APT.VP.FIRST(R?)
032A 0014'

S END PREEMPT:
DO

032C 97FO POP RO, @R15
! CHECK TEMPLATE 1

032E OPOO CP PO, #TRUE
0330 0001

IF EQ !CAN BE PREEMPTED!
0332 5E0E THEN
0364 0350"
0336 eB03 CP R3, #o
0338 0000

IF GT !PREEMPTS REQUIRED!
033A 5EV2 THEN !PREEMPT IT!
033C 0350"

!SAVE ARGUMENTS!
033E 93F1 PUSH @R1!. Ri
0340 91F2 PUSHL @R15, RR2
0342 93F4 PUS @PIS, R4
0344 5Fe0 CALL SET-PREEMPT
0346 0000*

!PI: VP ID!
RESTORE ARGUMENTS

0348 97F4 POP R4, @R15
034A 95F2 POPL RR2, 0915
A34C 97FI POP Ri, @R15
034E AB30 D EC R2

FI
FI

0350 A911 INC Ri, #2
0352 A240 DEC R4
V354 eBe4 CP R, s€
0 356 0000

IF EQ !STACK RESTORED!
0358 5EeE THEN
035A 0360'
035C 5E08 EXIT
e35E 0362'

" FI

0360 EEE5 OD !END SEND PREEMPT!
CHECK NEXT READY LIST I

0362 A921 INC R2, #2
0364 ESA8 OD IEND PREEMPT-CHECK!

138

Uri

UNLOCK APT
0366 7604 LDA R4, APT.LOCK
0368 0000'
e36A 5FOO CALL K UNLOCK
036C 0000*

IRESTOR~E SUCCESS CODE
e36E 210(LfD RO, #SUCCEErED
0370 0002 F

!RESTORE STACK
e372 01OF ArD R15, #SIZEQF TEMP
0374 0012
0376 9E08 RET
e378 END TC-ADVANCE

I.139

037S TC AWAIT PROCEDURE

* CHECKS USER SPECIFIED VALUE
* AGAINST CURRENT EVENTCOUNT
* VALUE. IF USER VALUE IS LESS "
* THAN OF EQUAL EVENTCOUNT THEN*
* CONTROL IS RETURNED TO USER.
* ELSE USER IS BLOCKED UNTIL
* EVENT OCCURRENCE.

" PARAMETErS:
" Ri: HANDLE POINTER
" R2: INSTANCE (EVENT &)

R * 4: SPECIFIEL VALUE

RETURNS:
9 00: SUCCESS CODE

EN TRY
ESTABLISH STACK FRAME FOR
TEMPORARY VARIABLES.

0378 030F SUB R15, #SIZtOF TEMP
037A 0012

! SAVE INPUT PARAMETERS
037C 61F1 LD TEMP.HANDLEPTR(RI5). Ri
037E 000
e380 6FF2 LD TEMP.EVENTNR(RlS), R2
0382 (L02
354 5DF4 LDL TE 'P.EVENT VAI(R15), RR4

V38 6 VC04
LOCK APT

0688 7b04 LDA R4, APT.LOCK
V~38A oceo'
038 C 5Fo CALL KLOCK
038E 000

! RETURNS 4HEN APT IS LOCKED
! GET CURRENT EVENTCOUNT

0690 5FO0 CALL MM READ EVENTCOUNT

!R1:HANDLE POINTER
R2: INSTANCE
RETURNS:
RO:SUCCESSCODE
RR4: EVENTCOUNT!

V.94 OBC CP Re, #SUCCEEDED
03 96 0002

069E 5EE IF EQ THEN
039A e44e'

DETERMINE IF REQUESTED EVENT
HAS OCCURRED I

140
0,4

039C 54F5 LDL RRb, TEMP.EVENT-VAL(R15)
039E eeO4

03AO 9046 - CPL RR6, RR4HANOOCRED

03AZ5Fe THE !1OCKPROCESS!

!IDENTIFv PROCESS
V-'A65MCALL RtNNIG-VP !RETURNS:

0~3A8 000
R1:Vp II)
R 3:CPU #

SAVE RETURN VARIABLES!
03AA 6FF1 LD TEMP.ID-VP(Rl5), Ri
03AC eOC
03AE 6173 LD TEM!P. CPU_ NUM (R1 5. R3
0r330 OOO
e 3B2 6118 LD Re, APT.RUNNING LIST(Ri
0334 Oge2'

I RESTORE REMAINING ARGUMENTS
0328 61F LD R2, EMP.EVENTNRR5J

03CA 51)84 LDL Ri ATAP.HANDLER8), R(R45

03CE 6114 LDL R4, HANDLE VAL.HIG(R)
e3Ce oIk'4
03C2 5D84 LDL APT.AP.HANDIE[(R8), RR4

3C682LD RA9T.A.NSTE-ACE(R)R

03DO 003b'
03~D2 b4F'6 LDL RR6. TFMP.E'VENT-VAI(R15)
03DA4 G0iO'4
035D6 5D86 LDL APT.AP.VALUE(Re), RRt

~38eV38'
!REMOVE PROCESS FROM READY LIST

03DA 6181 LD Ri, APT.AP.AFFINITY(RE)
e3DC OV2C'
03DE 6112k LD F2, APT.READY-LIST(Rl)
03E 00b

SEE IF PROCESS IS FIRST
ENTRY IN READY LISTI

03E2 8282 CP R.2, RE
IF EQ !INSERT NEW READY LIST H!Pir!

03E4 5EeE THEN
£3Eb 03WF4
e3E8 61E3 LD R3, APT.AP.NEXT-AP(RE)
03EA 00~20'

141

03EC 6F13 L" APT.READT LIST(RI), R3
(3EE 0006'
03FO 5Ee8 ELSE !rELETE FROM LIST BODI!
'3F2 040E"

DO
k'3F4 6123 ID R3, APT.AP.NEXT AP(R2)
Z3¥6 0020'
03F8 6B83 CP P3, R8

I EQ !FOUND ITEM IN LIST!
e3FA 5EOE THEN
O3FC 040A'
03FE 6183 LD R3, APT.AP.NEXT AP(RE)
0400 0020'
0402 6F23 LD APT.AP.NEXTAP(R2), R3
0404 Oe2e'
@406 5EV8 EXIT
0408 040E'

FI
e40A A132 LZ R2, R3
040C E8F3 O

FI
!THREAD PROCESS IN kLOCKEE LIST!

040E A182 LD R2, RS
0410 7b03 LDA R3, AkT.BLOCKED LIST
0412 OOA'
0414 7604 LDA R4, APT.AP.NEXTAP
0416 0020'
e418 7605 LDA RS, APT.AP.PRI
041A 00?8'
041C 760b LDA R6, APT.AP.STATE
e41E 0£2A'
0420 2107 LD R7, #BLOCKED
0422 0002A £424 5FVO CALL LISTINSERT !R2:OBJ ID
0426 0000*

R3:LIST HEAD PTR
R4:NEXT OBJ FTP
PRb:PRIORITY PTR

RE:STATE PTR
R7:STATE

GET CURRENT VP ID !
0428 61F1 LD Ri, TEMP.IDVP(R5)
042A 0008
V42C 61F3 LD R3, TEMP.CPU.NUM(R5)
042E OOOA

! SCHEDULE FIRST READY PROCESS I
02 e430 5FO0 CALL TC GETWORK !Rl:VP ID@4 52 0-
S0R3:CPU

P!
! UNLOCK APT !

@434 7604 LDA R4, APT.LOCK

0436 00W"
0438 5FOO CALL KUNLOCK
243A .e 2 RESTOFE SUCCESS CODE

043C 210 LD pe, #SUCCEEDED

43E MZ '
FIFI

! RESTORE STACK
0440 01OF ADD R15, OSIZEOF TEMP

Z444 9Ee8 RET

4:46 END TCAWAIT

t

p t43

V,46 PROCESS CLASS PROCEDURE

" READS SECURITY ACCESS
CLASS OF CURRENT PROCESS
IN APT. CALLED Bv SEG

" MGR AND EVENT MGR

LOCAL VARIABLES:
Ri: VP ID
v5: PROCESS ID

" RETURNS:
RR2: PROCESS SAC

; ENTRr
0446 7b04 LDA R4.APT.LOCK

044A 5FM CALL K LOCK IRA: APT.LOCK!
044C 000
0-4E 5FOO CALL RUNNING VP !RETUPNS:
ke4bO5 Oee

RI:VP ID

R3:CPUJ #!
0452 6115 LD R5,APT.RUNNING LIST(R1)
k 4-4 f e2"
0456 5452 IDL RR2,APT.AP.SAC(R5)
~45L 0024:

! UNLOCK APT!
045A 7604 IDA R4, APT.LOCK
045C 0e0'
V4bE 5FOO CALL K UNLOCK
0460 000
0462 9EV8 ?
C464 END PROCESSCLASS

144
J,

~464GET DBE NUMBER PROCErURE

*' OBTAINS DBR NUMBER F'ROM APT ~
* FOR ThE CURRENT PROCESS.
* CALLED Ev SEGMENT MANAGER 4

4LOCAL VARIA.ELES: 4

Fl P: VP ID
'~R5: PROCESS ID

4'RETURNS: 4

vi~.: DBP NUMBER 4

!NOTE: DPR # IS ONLY VALID WHILE PPROCEzS
IS LOADED. THIS IS NO PROBEM IN SASS
PS ALL PROCESSES RtMAIN LOADED. IN A
MORE GENERAL CASS, THE DBR 9 COULD ONLY
BE ASSUMED CORRECT WFIIE THE APT is icciED!

0~464 760~4 LDA R4,AP'r.LOCK
04bb OeO
V468 b~ CALL K LOCK IR4: APT.LOCK!
045A 000
046C 5FO0 CALL RUTNNING VP !RETLTJRNS:
046E evooP

Ri :VP-ID
R3:CPU a

V47V 6115 LD Rb,APT.RUNNING LIST(Rl)
0472 0002'
0474 b151. LD R1,APt.AP.I)BR(R5)
e> 476 ZeZ

UNLOCK APT
047? 7604 LDA R4, APT.LOCK
047A ooee
047C 5FO CALL K UNLOCK
0 47 E 00V
(6&L 9EL7 RET
0482 END GET D)BE NUMBER

END TC

145

APPENDIX C - DISTRI2UTED MEMORY MANAGER LISTINGS

ZE000ASM 2.02
LOC OBJ CODE 5TMT SOURCE STATEMENT

SLISTON STTY
DIST MM MODULE

CONSTANT

CPEATE CODE 50
DELETE-CODE - 51
ACTIVATECODE 52
DEACTIVATE CODE 53
SWAP IN CODi : 54
SWAPOUT CODE - 55
NR CPU := 2
NR-KST ENTRY 54
MAY_SE _S IZ: 12
MAYDBR NO 4
KST SEG NO - 2
NR OFKEGS := 1I?
BL5CK SIZE
MEM AVAIL := F
G AST LIMIT := 1
INSM ANCEl := .
INSTANCE2 := 2
INVALIDINSTANCE : 95
SUCCEEDED := 2

TYPE
H ARRAY ARRAY [3 WORD]
COM MSG ARRA' [15 BYTE]
ADDRESS WORD

G AST REC RECORD
TUNIO9E ID LONG
GLOBAL-ADDR ADDRESS
PLASTENO WORD
FLAG WOPD
PAR ASTE WORD
NRACTIVE WORD
NO ACT DEP BYTE
SIZE1 BYTE
PGTBJL ADDRESS
ALIAS TBL ADDRESS
SEQUENCER LONG
EVENT1 LONG
EVENT2 LONG

146

MM VPID WORD

SEGAPRAY ARRAY [MAXSEGSIZt BYTE]

$SECTION DMMDATA
GLOB AL

0000 MM CPTTTBL APRAY [NRCPU MMVP_ID]

SSECTION AVAIL MEM
INTERNAL

NOTE: MEM POOL IS LOCATED IN
CPU LOCAL MEMORY. !

MfeEMPOOL ARRAY [MEMAVAIL BYTEJ

GLOBAL
I NOTE: NEXT BLOCK IS USED IN THE MM ALLOCATE
STUB AS AN OFYSET POINTER INTO THE ILOCK
OF ALLOCATABLE MEMORY. IT IS INITIALIZED
IN BOOTSTRAP LOADER.

VFL NEXT BLOCK WORD
SSECTION MSGFRAMEDCL

INTERNAL
!NOTE: THESE RECORDS ARE "OVERLAYS" OR "FRAMES" USED
TO DEFINE MESSAGE FORMATS. NO MEMORY IS ALLOCATED
SABS 0

(CREATE-MSG RECORD [C?_CODE wORr
CE_MM HANDLE HARRAY
CE ENTRY NO SHORT INTEGER
CE FILL BITE
CE SIZE WOPE
CE CLASS LONG]

SABS 0
00 DEIETE MSG RECORD [DECODE WORD

DE MAM HANDLI H ARRAY
DE ENTRY NO SPORT INTEGER
DE'FILL APRAT[7 BTTE] JI

SABS e
o£o ACTIVATEMSG RECORD (ACTCODE wORE

A DBR NO WORr
A MMPANDLE H ARRAY
A ENTRY NO SHORT INTEGER
A SEGMENT NO SHORT INTEGER
A-FILL LONGF

147

A ' l I I " . . -- ,

W7 -- r _ .

DEACTIVATE- MSG RECORD LDEACTCODE WORD
D-DBR-NO 14OP. r
D-MMEANCLE H ARRAY
DEPILL ARAvfj5 WORE!]

SABS V
000 SiAP_ INMSG RECORD rsINCOVE WoRV

SI 1AI HANDLt H APPA!
SI D21l NO 4r
SI ACCESS AITF 2YT
SI FILLi FBYTE
SI FILL A R A 1 - RCDJ

SAbS 4?
000 SWAP OU -MSG RECORD [S OUT COD1Yj 14OR

SOV'MHANDLE H ARRAY
SO-FILL ARP.A!(3 WORDIJ

$AB-S fe?
reo RET SUC CODE RE~CORD [SUJC-COE.E BY TE

SC FILL APRA!CIt P'7EI

0,00 P ACTIVATE ARC RECORD [R-SUC CODL BVTE-6
R FILL T
R MM PANDLE~ H ARRAY
R CLJS S LONG

t? Z WORD
R-FILL1 wo~t'J

$ABE e-
0v1V. MM HANDLE RECORD

T1D LONG
0 ENTRV NO WOPI)

1 48

EXTERNAL

GQAST LOCK 'WORD

GAST ARRAY[G AST.LIMIT G AST RECJ

K-LOCK PROCEDURE

KUNLOCK PROCEDURE

GET-CPU-NO PROCEDURE

FIGNAL PROCEDURE

'01 T PROCEDURE

-- 4& 7-

GLOBAL

$SECTION D-MM-PROC

MM CREATE ENTRT PROCEDURE

* INTERFACE BETWEEN SEQ M1GR
* (CREATE SEQ PROCEDURE) AND
4 MMGR PROCESS (C?.EATE ENTRY
*PROCEDURE). ARRANGES AND
*PERFORMS IPC.

*REGISTER USE:
*PARAMETERS

.' RO:SUCCESS CODE (RET)
*R1:hTRt (INPUT)
*R2:ENTPY NO (INPUT)

4 R3:SIZE TINPUT)
*RR4:CLASS (INPUT)

* LOCAL USE
*Rb:Mm HANDLE ARRAY ENTR7
*R8KC6M MSG&UF
*R13:'COF MSGBUF

ENTRY
!USE STACK FOR MESSAGE!

OeO0 0350F SUB R15,#SIZEOF COM MSG
000 ok
004 A1FD LD R13,R15 ! COM-MSGBUF

!FILL COM MSGBUF (LOAD MESSAGE). CREATE MSQG
FRAME IS 2ASED AT ADDRESS ZERO. IT IS
OVERLAID ONTO COM MSG2UF FRAME ET INrEXING
EACH ENTRY (I.E. ADDING TO EACH ENTRY) THE
BASE ADDRESS OF COM-mSGiUF!

000 4DD5 LD CREATE MISG.C'R CODE(R13),#CREATE_ CODE

OVO 0032
oeoC 5116 LD Rb,Rl(#0) !INDEX TO MM HANDLI ENTRY!

001 6FD6 ID CREATE-MSG.CEMMHANDLE0j (P-i9),R6
V012 0902
0914 3116 LD Rb,Rl(#2)
0016 0002
0018 6FDb ID CREATE-MSG.CE-MMHANDLEI1I (Rl3),R6
O~lA OV0
0~01C 3116 LD Re5,Rl(#4)
001E 0004
OV'20 6FD6 ID CREATE MSG.CE 'MM HANDLE 1(R1 !.Rb
0022 000
oe24 6FD2 ID CREATE MSG.CE ENTRY NO(Rl1q).R2

1b(&

VV~2e brD4 LDL CREATE-MbG.CE CLASS(R13),R4
002A 000
90A2C 6FD35 LD CREATE MSG.CE SIZE(R1l5),R3
002E evo
0030 AD8 1I) Rb,R13
003 5FOI? CALL PEDFOPM IPC !Re: "COM-MSGBU!
ke34 fe1&C'

!RETRIEVE SUCCESS-CODE FROM RETUP.NED MESSAGE!
0036 8D08 CLR Ro
ze3 6V'D8 IDB RLV,RET-SUCCODE.SUC-CODE(Rl3)

003C 01OF ADD R15,#SIZEOF COM mSG~ !RESTORE STACK STATE!

004 9EO8 RET
0042 END MM CREATE ENTP!

4

151

0042 MM DELETE ENTRY PROCEDURE

*INTERFACE 2ETWEEN SEG MGR
*(DELETE SEG PRUCEDURE) AND

, MGR (DEILETE ENTRY PROCEDURE'.v
ARRANGES AND-PERFORMS IPC.

PEGISTER USE:
PARAMETERS
RO:SUCCESS COlERET)
Rl:EPTR(INPUT)
R2:ENTRY -NO(INPUT)
LOCAL USE
Rti:MM HANDLE ARRAY ENTRY
R13: CUMMSGBUF
R13: 'COM MSGBUF

ENTRY
!USE STACK FOR MiSSAGE!

0042 03OF SUB R15,#SIZEOF COM-MSG
OW44 ogle
0046 AIIFD LD R13.Rlb ! COM MSG1EUF

!FILL COM MSGBUF (LOAD MESSAGE). DELETE MSG FRAME
IS BASED AT ADDRESS ZERO. IT IS OVERLAID ONTO
COM MSGBUF FDAME BY INDEXING EACH ENTRY (I.E. ADD-
ING TO EACH ENTRY) TFE BASE ADDRESS OF COM MSGEUF1

Ve48 4DD5 LD DELETE-MSG.DECODE(Rl3'),#LELETE_ CODE
004A 00000
004C ok3
e04E 311E L R6,Rl(*i) .!INDEX TO MM HANDLE ENTRY!

0052 6FD6 ID DELETE MSG.DE MM HANDLE[?j (13) ,R6
co'b4 Vf02
0e056 3116 LD R6,Rl(#2)
0058 0002
Ve5A 6FD6 LD DELETE MSG.DE MM fANDLE1I(Rl35),R6
005C 004
005E 35116 LD Rb.Pl(#4)
~e6 OC4
0062 6FD6 LD DELETE MSG.DE MM HANDLE fI1 (R13),R6
~004 oef
V066 6FD2 LD DELETE MSG.DE ENTRYNO(Rl1'),R32
006 00
V~bA A1D8 LD R8.,Rl3
f.e6C 5FOO CALL PERFORM-IPC fRE: -COM-MSGIUFI
006E 018C,

!'RETPIEVE SUCCESS _CODEK FROM RETURNED MESSAGE!
907 SDee CLR Re
0072 6OD8 LDIB RL0,RETSUCCODE.SU CCODE(Rl3)
0074 000
ov76 elor ADD i1S,#SIZEOF COM MSG !RESTORE STACK STATE!
0078 0010
007A 9t~oe RET
007C END MM DELETE ENTRY

152

e07C MM ACTIVATE FRocEruRi

mINTERFACE BETWEEN SEG MGR 4
*(MAKE KNOWN PROCEDURE) AND 4

* MGR (ACTIVATE PROCEDURE). 4

*ARRANGES AND PERFORMS IPC.

4' REGISTER USE: 4

4PARAMETERS
*' Rl:D.tR NO(INPUT) 4
*' P2:HPTU(INPUT)
4'R3:ENTRY NO 4

4'R4:SEG.MENTNO 4

4' 12:RET HANDLE PTR 4

SLOCAL USIE
RE: COM MS~kUY
R13: COM MSGBUF4

SRETURNS: 4
4'Re:SUCCESS CODE 4

4' R2:CLASS 4

4'R4:SIZE 4

!USE STACK FOR MESSAGE!
W7C (03VF ST"D R15,#SIZEOF COM MSG
Z07E 0010
0080 A1FD LD R13,R15 ! COMMSGBUI

SAVE RETURN HANDLE POINTER
0082 Y3FC PUJSH @R15, R12

'FILL COM-MSG2UF (LOAD MESSAGE). ACTIVATE MSG FRAME
IS eASED AT ADDRESS ZERO. IT IS OVEELA1D ONTO

ING-TO EACH ENTRY) THE BASE ADDRESS OF COMMSGBUF!
eve ArDb ID ACTIVATE MSG. ACT lkcorE(R1.7 ,tACTI VATE CODE

MSP 00%S4
VbA 6FD1 LD ACTIVATEMSG.A-DPRNO(Rl15,R1
108C 000W2
OOEE 3126 LD Rti,R2(#e)
ve~ oc
0092 6 F fl6 Lr ACTI VATE MSG. AMMHANDLE [V (R lztR6
0094 O04
OV96 3126 LD R6,R2(#2)
0098 002
009A 6PDb ID ACTIVATE-MSG.A-MMHANDLEL](P13),R6
099C M6
Z09E 3126 LD R6,R?(#4)
OOA 0004
VO~A2 6Ffl6 LD ACTIVATE-MSG.A-MMEANDLEI2J (Ri3) Rbi

0.4

153

VVA4 eVV

eVAA 6EDC 1DMj ACTLIVATE MSG.A SEGMENT NO(Rl1.' 214
OO~AC OOOB
OVAE A1DE LD RE,P135
OVB 5FvIC CALL k'EFORM-IPC !(iw-KCOM MSG.BUE!
Of B 18C'

RESTORE RETURN HANDLE POlINTtR
OeB4 97FC POP R12, @Rlb

UPDATE MMHANDLE ENTRYT
003b 54D5 LDL RRb, H ACTIVATEARG."_ M ANBLE(RJ.)

OOJA 5DC6 LDL MM FANDLE.Ifl(R12), Rii6
L4(6BC 0(o
k1eME 61D6 LD Rb, ACIAEAGR'M HAND1Et2J (R13)

oW.Cz bFC6 ID MM HANDlE.ENTRT-NO(Rl2), RE
eVC4 0 e.V

!RETRIEVE OTHER RETURN ARGUMENTS!
0OC ED08 CLU RE
VVC8 ees 1DM8 RLV.R-ACTIVATE-ARG.R-SUCCODE(R3)
VOCA 000
OOCC 54D2 LDL RR2,R-ACTIVATtEARG.R-CLASS.(R13)
OeCE eZVS
OOD 61D4 LD R4,RACTlVATE-ARG.R-SIZE(P13)
O0D2 0OVC
OVD4 01OF ALD R15,#SIZEOF COM MSG ! SSTORE STACK STATE!
OOD6 001
OOD8 9E08 RET
VVDA END MM ACTIVATE

VA

154

eeDA MM DEACTIVATE FROCEruyFt

*INTERFACE BETWEEN SEG MGR
*(TERMINATE PRocErURE) AND
*MMGR (DEACTIVATE PROCEDURE).
4ARRANGES AND PERFORMS IPC.

* REGISTER USE:
* PARAMETERS
*Re: SUCCESS CODF(RET)3
*R1:bBR NO(INPUT) 4
RZ:HPTR(INPUT)

*LOCAL USE
* R6:MM HANDLE ARRAY ENTRY
* RE:KCOM MSGBUF
* R13:-C0M M'SGBUF

ENTRY
!USE STACK FOR MESSAGE!

OODA 030F SUB R15,#SIZEOF COM-MSG
OVDC 0010

CMMGUOVDE AlFD LD ?12A.Rlb COMGU

!FILL COM MSGBUi (LOAD MESSAGE). DiACTIVATE MSG FRAME
IS BASED AT ADDRESS ZERO. IT IS OVERLAID ONTO
0CMMSGBUF FRAME BY INrExING EACH ENTRY (I.E. ADD-
ING 0 EACH ENTRw) THE BASE ADDRESS OF COM-MSGEUF!

VVE 4DD5 LI? DEACTIVATE 'SG,.D.EACT CODE(R3'7',
001;2 000 ODEACTIVATE CODE

IOO5E4 005
VOE6 6FD1 LD DEACTIVATE MSG.D DBRNO(R1q.),R1

008 2
OOEA 3125 LD Rb,R2(40) !INDIX TO MM HANDLiE NTR7!
VeEC ee
OOEE 6FD6 LD DiACTIVATE-MSG.rDMMEANL[OJ(R13),R6
kOOFO Oe4
VkF2 3126 LD Rb,R2(#2)
0OF4 000
OeFb 6FD6 LI? DEACTIVATE MS.G.I)MM -HANDLtE1J(Rl3),R6
We 090
00FA 3126 LD R6,P2(#4)
OOFC 0004
VVFE 6FD6 Lr DiACTIVATE-MSG.D-MMhANDLEL2]' RI51),Rb
10 000

0102 AiDE LD RE,R13
104 5Ft CALL PERFORM IPC !R8: COM MSGiUF!

0106 018C'

155

!PETRIEVE SUCCESS-CODE FROM RETURNED MESSAGE!

010A 601D8 LDB RL0,PET-SUC CODE.SUC COW~P131

L'IVE O1eF AD R15,#SIZEOF COM MSOC !RESTORE STACK STATE!

le 1 9 Y Oa PET
V,114 END MM DEACTIVATE

156

e11 MM S4AP IN PROCEDURE

*INTNRFACt BETWEEN SNG VGR (SM
mSdAP IN PROCEDURE) AND MMGR
*(SWAP_ IN PROCEDURE). ARRANGES
*AND PIRFOP.MS IPC.

*REGISTER USt:
*PAP.AMETEPS

R0:SUCCFSS CODE(RET)
Rl :LBhNOCINPUT)

R3:ACCES S (INPUT)
*LOCAL USE
* 6:MM HANDLE ARRAY ENTRY
vR8: -CdM MSGBUF
*R13: COFMSGBUF

ENTRY
!USE STACK FOR MESSAGE!

0114 03OF SUB R15,#SIZEOF COM-MSG

0118 AlFD LD R13,R15 !COMMSGBUF

!FILL COM McGBUF (LOAD MESSAGE). SWAPIN _MSG FRAME

IS BASED AT ADDUISS ZERO. IT IS OVERLAID ONTO

CQM~mSGBUF FR.AME BY INDEXING EACH ENTRY (I.E. ADD-

ING TO EACH ENT.vv) TFE BASE ADDRESS 0OF COM MSGBUF!

011A 4DD5 ID bAP-IN MlSG .S IN-CODE(R1Z),#SWAP_IN _CODE

oliC 00@00
011E 0036
0120 3126 LD Rb,P.2(#@) IINDEX TO MM HANDLE ENTRY!

o122 oeoo
0124 6FD6 LD SWAP IN MSG .SIMM.HANDLEteJ(Rl13),R6
0126 0002
0128 3126 LD bz#2
V12A 0002
012C 6FD6 ID SWAPINMSG.SIMMF.ANrLE[lJ(Rl13",Rb
012E 0004
V130 3126 ID R6,R2(#A)
0132 0004
034 6FD6 LD SWAP IN MSG.SIMMHANDLEL2I (Rl'-),-Rb
0136 00(e6
0138 6Fr1 ID SWAP INSG.SIDBR..NO(Rl3).Rl
013A 000e
013C 6FDB LDB SWAP INMSG.SI.ACCESS..AUTH(R1.5).RL3
013E OOOA
0140 A1D8 LD ReR13
0142 5M@ CALL kERFORM-IPC !R&: _COMMSGBUF'
0144 018C'

1 5'

PRITRIEVE SUCCESe COJJE FROM RETURNED MESSAGE!
0146 ED08 CLR U~
0148 6OD8 1DB RL0,RETSJC-CODE.SUC-CDE(Rl3)

e14C 016?F ADD R15,#SIZEOF COM-MSG !R.ESTORE STACK STATE!

0150 9E08 RET
ielb2 END MM SWAP IN

158

0152 MM SWVAP OUT PROCErURh

* INTERFACE BETWEEN SEG MGR (SM
*SWAP OUT PROCEDU~tRE) AND MMGR
(SWAF .OUT PROCEDURE). ARRANGES
*AND PIRFORMS IPC.

* REGIISTER USE:
*PARAMETERS
*RO:SUCCESS .CODE(RET)
3;R1:DBR NO(INPUT)
*R2:HPTR(INPUT)

*LOCAL USE
MRb:MM fiANDLE ARRAY ENTRY
*R8: -C6M MSGBUf
*P13:(COFMSGBUF

ENTRY
!USE STACK FOR MESSAGE!

0152 030F SUB R15,#SIZEOF COM-MSG
0154 ce10
0156 AlFD ID R13,R15 I COMI'SG2UF

!FILL COM -MSGBUF (LOAD MESSAGE). SWAPOUTMSG FRAME
IS BASED AT ADDRESS ZERO. IT IS OVERLAIL ONTO
COMMSGBUF FPAME BY INDEXING EACH ENTRY (I.E. ADD-
ING TO EACH FNTRf) THE BASE ADDRESS OF CCM MSGEUF!

0158 4DD5 LD SWAP OUT MSG.S OUTCODE(Rl1), #SWAP OUT COrE
015A Oe00
k15C e037
015E 3126 11) R6,R2(#O) IINDEX TO MMHANDIl. ENTRY!

2~0160 0000
0162 6FD6 LI) SWAP OUT MSG .SO MM HiANDLE.0](R14-),Rb
0164 0004
Olbo 3126 LD Rb.Rz(#2)
0168 2(e02
016A 6FD6 LI) SWAP OTTMSG.SO MMHFANELE(1J (R13),R6
016C 0006
016E 3126 LD R6,R2(#4)
0170 0004
0172 6FD6 LD SWAP OUT MSG.SO MM HANDLEI2I (R13),R6
e174 0008
0176 6FD1 LD SWAP OUTMSG.SO-DRN(RZ5),R1
0178 0002
017A A1D8 LI) Rb,R13
017C 51Y00 CALL PERFORM IPC !RS: _COMMSG2UF!
017E 018C'

159

!R~'TRIEVE SUCCE~SS-CODE FROM RETURNED '!SSAGE!
0180 BDO8 CUR Ro
0182 6OD8 LDR RLV,RET-SUC-CODE.SUC-CODE(RL5 x

018b 01OF ADD R15,#SIZEOF COM-mSG !R.ESTORE STACK STATE!
0188 0@10
e18A 9E RE
018C END MM SWAP OTT

160

Q8 PEPFORM IPC PROCEruRk

4SERVICE ROUTINE TO ARRANGE AND

* PERFORM IPO 'iITF TER MFM MGR PROC

* REGISTER USE:
*PARAMETERS
*R8: COM -MSG(INPUT)

* LOCAL USE
*R1,R2: WORK REGS 49
*R4: -G AST LOCK
4R13: -COM MSGEUF

EN TR'
018C 9Z5FD PUSH cR15,R13 KCOM MSG.EUF!
01BE 5FOV CALL GET CPU NO !RET-RI:CPU NO!
0190 0000'
0192 A112 LD R2,RI
V 194 6121 L1D R1,MMCPU TL(R2) !MM VP IDN
0196 0000'
019e ?504 LDA R4,GAST LOCK
019A 0000*
019C SFO0 CALL KJOCK
019E 0000*

CMM'BF01A0 5Y00 CALL SIGNAL !Rl:MMVPJID,REKCMMSBF
01A2 0000*
01A4 97FD POP R13,RR15 -

V1Ab A1D8 LD RE R13 ICOM-MSGBUF!
01A8 9Z5FD PUSH @R1S,Rl3
01AA 5F00 CALL WAIT !RE:"COM MSGBUF!
VlAC 0000'
01AE 7504 LDA R4,G ASTJLOC&
0120 e000'
0122 5FZO CALL K UNLOCK
0134 0000'

p01B6 97FD POP R13,@R15
v1.be 9~e0 RET
01BA END PERFORM IPC

013A MM ALLOCATE PROCEDURE

ALLOCATES BLOCKS OF CPU*
'LOCAL MEMORY. SACH
* BLOCK CONTAINS L56
* BYTES OF MEMORY.

v PARAMETERS:
* R3: # OF BLOCKS

RETURNS:
RZ: STARTING ADDR

* LOCAL:
* 4: BLOCK POINTER

ENTRf
! NOTE: THIS PROCEDURE IS ONLY A STUB
OF THE ORIGINALY DESIGNED MEMORY

ALLOCATING MECHANISM. IT IS "SED

BT THE PROCESS MANAGEMENT DEMUISTRATION
TO ALLOCATE CPU LOCAL MEMO! FOR ALL
MEMORY ALLOCATION REQUIREMENTS. IN AN
ACTUAL SASS ENVIRONMENT, THIS WOULD
BE BETTER SERVED TO HAVE SEPARATE
ALLOCATION PROCEDURES FOR KERNEL AND

SUPERVISOR NEEDS. (E.G., KSRNELALLOCATE
AND SUPERVISOR ALLOCATE). I

! COMPUTE SIZE OF MEMORY REQUESTED

015A B331 SLL F3, #BLOCKSIZE
01BC 008

COMPUTE OFFSET OF MEMORY THAT IS
TO BE ALLOCATED !

,1BE 6104 LD R4, NEXT BLOCK !OFFSET!

01C2 7642 LDA R?, MEMPOOL(R4) !START ALDR!

01C4 OP00
VlC6 8134 ADD R4, R3 !UPDATE OFFSET!

, UPDATE OFFSET IN SECTION OF AVAILABLE
MEMORY TO INDICATE THAT CURRENTLY
REQUESTED MEMORY IS NOW ALLOCATED

OIC8 6F04 LD NEXT-BLOCK, R4 !SAVE OFFSET!
;Ol CA 0F0 O" E

01CC 9E8 RT

01CE END MMALLOCATE

P162

elCE MM TICKET PROCEDURE

4 RETURNS CURRENT VALUE OF
* SEGMENT SEQUENCER AND
* INCREMENTS SEQUENCER VALUE*
* FOR NEXT TICKET OPERATION

* PARAMETERS:
* Ri: SEG HANDLE PTR
* RETURNS:

RR4: TICKET VALUE
* LOCAL VARIABLES:
* RR6: SEQUENCER VALUE
* R8: G AST ENTRY #

ENTRY
! SAVE HANDLE PTR

01CE 93F1 PUSH @R15, R1
LOCK GAST

01DO 7604 LDA R4:, G_ASTLOCK
01D2 0000*
e1D4 5FOO CALL K LOCK
01D6 0000*

I RESTORE HANDLE PTR !
elDB 97F1 POP Ri, @RI5

! GET GAST ENTRY #
ODA 6118 LD R9, MMHANDLE.ENTRTNO(RI)
eiDC C0 4

! GET TICKET VALUE
ODE 54E6 LDL PR6, G AST.SEQUENCER(R)

SET RETURN REGISTER VALUE
01E2 9464 LDL RR4, RR6

!ADVANCE SEQUENCER FOR NEXT
TICKET OPERATION!

0IE4 1606 ADDL RR6, #1
e1E6 00I
01E8 0001

SAVE NEW SEQUENCER VALUE IN G AST
0IEA 5D86 I.DL GAST.SEQUENCER(RE), RR6
OlEC 0014*

! UNLOCK G AST
I SAVE RETURN VALUES

OlEE 91F4 PUSEL @R15, RRA
A 01F 7604 LDA R4, G AST LOCK

e172 eveo*
* 01F4 !F00 CALL K UNLOCK

01F6 0000*
! RETRIEVE RETURN VALUES

01F8 95F4 POPL RR4, @R15
01FA 9E08 RET
O1FC END MMTICKET

163

01FC MM READ EVENTCOUNT PROCEDURE

m READS CURRENT VALUE OF THE
* EVENTCOUNT SPECIFIED BY THE *
* USER.

* PARAMETERS:
* Ri: SIG HANDLE PTR
3 R2: INSTANCE (EVENT #)

RETURNS:
4 RR4: EVENTCOUNT VALUE

" LOCAL VARIABLES:
4 RR6: SECUENCER VALUE
" R8: G AST ENTRr #

ENTRY
I SAVE INPUT PARAMETERS I

01FC 93FI PUSH @R15, Ri
01FE 93F2 PUSH @R15, R2

! LOCK GAST I
0200 7604 LDA R4, GAST LOCK
0202 0000*
0204 5FOO CALL I LOCK
0206 0000*

I RESTORE INPUT PARAMETERS I
0208 97F2 POP R2, @R15
020A 97FI POP Ri, @R15

I GET G AST ENTRY #
ez2C 6118 LD R9, MMHANDLE.ENTRYNO(Rl)
020E 0004

I READ EVENTCOUNT I
CHECK WHICH EVENT #

iIF R2
0210 0B02 CASE #INSTANCE1 THEN
0212 eOO1
0214 5E0E
0216 0224'
0218 54e4 LDL RR4, G AST.EVENT1(RS
021A 0018*
021C 2100 LD Ro, #SUCCEEDED
021E e0e2
0220 5E08 CASE #INSTANCE2 THEN
0222 023C'
0224 022
0226 0002
0228 5EOE
022A 0238'
022C 5484 LDL RR4, GAST.EVENT2(RE)

V164

022E 001C*
0230 2100 LD Re, #SUCCEEDED
0232 0002
0234 5EO8 ELSE !INVALID INPUT!
0236 023C'
0238 2100 LD R, #INVALIDINSTANCE
023A 005F

FI
I NOTE: NO VALUE IS RETURNED IF
USER SPECIFIED INVALID EVENT #!
SAVE RETURN VALUES I

023C 9174 PUSEL @Rib, RR4
UNLOCK G AST I

023E 7b04 LDA R4, 4_ASTLOCK
e240 0000*
0242 5F70 CALL IUNLOCK
0244 0000"

I RESTORE RETURN VALUES
0246 95F4 POPI RR4, @R15
0248 9E08 RET
024A END MMREADEVENTCOUNT

0.4
165

I-,

024A MM ADVANCE PROCEDURE

* DETERMINES G AST OFFSET FROM
* SEGMENT HANDLE AND INCREMENTS
* THE INSTANCE(EVENT #) SPECIFIED
* BY THE CALLER. THIS IN EFFECT *

4 ANNOUNCES THE OCCURRENCE OF THE *
* EVENT. THE NEW VALUE CF THE
* EVENTCOUNT IS RETURNED TO THE
* CALLER.

* PARAMETERS:
* Pl: HANDLE POINTER
* R2: INSTANCE (EVENT #)

w RETURNS:
RR2: NEW EVENTCOUNT VALUE

ENTRT
I SAVE INPUT PARAMETERS I

024A 93F1 PUSH @R15, R1
024C 93F2 PUSH @R15, R2

I LOCK G AST 1
024E 7604 LDA R4, G_ASTLOCK
0250 0000*
0252 5F00 CALL I-LOCK
0254 o0eee

I RESTORE INPUT PARAMETERS I
0256 97F2 POP R2, OR15
e258 91FI POP RI, @R15

GET GAST OFFSET
025A 6114 LD R4, MMHANDLE.ENTRT NO(R1)
025C 00e4

DETERMINE INSTANCE
IF RZ

'zbE 0B02 CASE OINSTANCE1 THEN
0260 0001
0262 5EOE
0264 027C'
0266 5442 LDL RR2, GAST.EVENT1(R4)
02b8 0018*
026A 1602 ADDL RR2, #1
026C 0000
026E 0001

I SAVE NEW EVENTCOUNT
0270 5D42 LDL GAST.EVENT1(R4), RR2
0272 0018w
0274 2100 LD RV, #SUCCEEDED
0276 0002
0278 5E08 CASE #INSTANCE2 THEN

166

02?A 029E'
027C 0M2
027E 0002
0280 5ROE
0282 029A'
0284 5442 LDL RR2, GAST.EVENT2(R4)
0286 001C*
0288 16f2 ADDL RR2, #1

028A 0000
028C 0001

I SAVE NEWI EVENTCOUNT
028E 5D42 LDL GAST.EVENT2(R4), RR2

0290 001Cm
0292 2100 LD RO, #SUCCEEDED
0294 0002
0296 5E08 ELSE !INVALID INPUT!
e298 029E'
029A 2100 LD Ro, #INVALIDINSTANCE
029C 005F

FI
NOTE: AN INVALID INSTANCE VALUE

WILL NOT AFFECT EVENT DATA
I UNLOCK GAST

029E 7604 LDA R4, GASTLOCK
OZAO 0000*
02A2 5F0 CALL KUNLOCK

02A4 0000w
02A6 9E08 PET
02A8 END MM ADVANCE

END DIST TM

04

167

APPENDIX D - GATE KEEPER LISTINGS

Z5800ASM 2.02
LOC OBJ CODE STM T SOURCE STATEMENT

KERNELGATE KEEPER MO]tUrE

$LISTON $TTT

CONSTANT
ADVANCE CALL 1
AWAIT CALL := 2
CREAT_ SEG CALL :3 [5
DELETE SEGCALL :A 4
MAKE KNOWN CALL. : 5
READ-CALL :, t5

SMSWAP INCALL :7 7
FM SWAP OUT CALL 8
TERMINATE CWIL :9 9
TICKET CALL := I
W-RITE CALL := i
WRITELN CALL :- 12
CRLFCALL := 13
Wl, ITE := 0FC8 !PRINT CHAP!
WRITELN := %FC9 !PRINT ,MSG!
CRIF := *FD4 !CAR RZET/1LNE MD!
MON ITOR := IAgo2
REGISTERBLOCK := 32
TRAP CODE OFFSET 36
,IN 1 ALIDKERNELENTRY :-- IA

GLOBAL
GATEEEP ERENTRY LAkiEL

EXTERNAL
4 ADVANCE PRCCEDURE

AWAIT PROCEDURE
CREATZE SEG PROCEDURE
DELETES EG PROCEDURE
MAKE KNOWN PROCEDURE
'READ PROCEDURE
SM SWAP IN PROCEDURE
SM-SWAP-OUT PROCEDURE
TEiMtNATL PROCEDURE
TICKET P1OCEDURE
KERPNE L ElI T LABEL

INTERNAL
$SECTION KERNEL GATEPROC

(lkl GATEKEkPER_'!AIN PROCEDURE

ENTRY

GATE KEEPER ENTRY:
! 9AVE REUISTERS

0000 030F SUB R1S, #REGISTZRBLOCK
0002 0020
evz4 1cFg LDM @R15, R , #16
0006 010F

! SAVE NSP
V'eO8 93F2 PUSH @R15, R2
OOOA 7D27 LDCTL R2, NSP

RESTORE INPUT REGISTERS
0eCC 2DF2 EX R2, @Rib

I SAE REGISTER 2
OOOE 93F2 PUSH @R15, R?

! GET SYSTEM TRAP CODE
0010 31F2 LD R2, R15(sTRAP-CODs_OYFSET)
0012 0024

REMOVE SYSTEM CALL IPtNTIFIER FROM
SYSTEM TRAP INSTRUCTICN

0014 8C28 CIRB RH2
! NOTE: TFIS LEAVES ThE USER VISIBLE
EXTENDED INSTRUCTION NUMBER IN R2

! DECODE AND EXECUTE EXTENDED INSTRUCTION
IF R2

NOTE: THE INITIAL VALUE FOR REGISTER 2
JILL BE RESTORED WHEN THE APPROPRIATE
CONDITION IS FOUND

0-16 eBez CASE #ADVANCE CALL THEN
0080001

OO1A 5EOE
e~1C 0028 -

O1E 97F2 POP P2, @R15
0020 5F00 CALL ADVANCE
0022 00001p

* 0024 5EOS CASE #AWAITCALL THEN
0026 01OC'
0028 0202
002A 0002
002C 5EOE
092F Oe3A'
0030 97F2 POP R2, -R15
0032 5F00 CALL AWAIT
e034 0900w
0036 5E08 CASE #CREATESEGCALL TEEN
e038 olC "
003A 0e2
003C 0003
003E 5EOE
,aOv 004c

V042 9'?F2 POP R2, @Rln
0~044 5FOO CALL CPEATZ SEG
0046s oo(Ao
U048 5E08 CASE #DFLZTF :G CALL ThEN
004A 010C'
0oi4C 0202
eV4E 0e04

050 50E
0052 005V'
vvb4 912 POP R? (PRlh
0056 5F00 CALL DELITE SEG
0058 oeoo*
U5A 5EO08 CASE #MAKE KN0WN CALL ThEN
005C 010C'- -

005E OB02
eg6e 0kV05
0062 5EOE
0064 0070'
eO66 97F2 POP R2. @R15
0068 5F00 CALL MAKE-KNOWN
006A 0000*
oe6C bEes CASE #READ-CALL THEN
006E oloc'
0070 OP02
0072 U006
0074 5E0E
0076 0082'
U078 97F2 POP R2, CdRlb
007A 5F00 CALL READ
oe7C oooox
LO7E 5EVE CASE OSMSWAP INCALL THEN
0080 fel.oc
0082 0302
0084 eee7
0086 5EOF

*-008e8e4

OVBA 97F2 POP R2, @R1b
008C 5FO0 CALL SM SWAP IN
008! 00000
U090 5E08 CASE #SM SWAPOUT CALL THEN
0092 01OC'
0094 0P02
OV96 0008
0098 5EOE
Oe9A 0OA6'
eZ9C 97F2 POP a2. @Rib
009E 5F00 CALL SM-SWAP OUT
OOAO 0000*
OVA2 5EO8 CASE #TERMINATE-CALL THEN
0OA4 oloc'
OOAb 0202

P~4 17(e

OLAA 5EOE
0(AC 0eB8"
VeAE 97FZ POP R21 @Rib~
oop 5FOO CALL T.SRMINATE
0032 0poom
0OB4 bF08 CASE #TICKET CALL TFN

00B6 oloc,

VklA eOOA
OOBC 5EOE
OOBE OOCA -

VWC 97Y2 POP RZ, c9Rlb
olC 2 5FOO CALL TICKET
0OC4 000
OVC6 5E08 CASE #WRITE CALL THEN

OOCA 0202

OOCE 5EOE
OODO ODC'
09~D2 97F2 POP R2, @R1b
OOD4 5FOO CALL WRITE
0OD6 OFC8
ME 5F08 CASE #WRITELN CALL TH~EN
00DA 01OC'
OODC OB02
OODE OOVC

0OE2 OOEE'
OeE4 977F2 POP R2, @oR15
M~6 A5Foo CALL WRITELN
O0E8 OFC&O
OOfrEA 5Ee8 CASE &CRLF CALL TH~EN

OOEE 0B2

0OF?2 ;5E
00F4 0100,
00F6 97?F2 POP P2, @R15
e0.F8 5FO0 CALL CRLF
OOYA OFD4
oeFC 5EO8 ELSE !INVALID KERNEL INVOCATION!
00FE oo

!RETUN TO MONITOR!
!NOTE: TH16 RETURN TO MONITOR Is
FOR STUB USE ONLY. AN INVALIL
KERNEL INVOCATION WOULD NORMALLv
RhTUFN TO USER.

010,0 7601 LDA Pl,
0102 0100,

171

014 2100 LD a0, *INVALIDKERNELENT .Y
0106 OBAD
0108 5FO0 CALL YONITOR
101A A9e2

Fi
! FA7E REGISTERS ON KERNEL STACK! SAVE R1 !

010C 93FI PUSH @R15, R1
GET ALDRESS OF REGISTER BLOCK

010E 34FI IDA Rl, R15(#4)
0110 0004

I SAVE REGISTERS IN REGISTER BLOCK
ON KERNEL STACK. I

V112 IC19 IDM @21, RI, #16
0114 01OF

! RESTOPE Ri BUT MAINTAIN ADDRESS
OF REGISTER LOCK

0116 2DF1 EX RI, OR15
! SAVE Ri ON STACK

0118 33Fl LD R15(44), Rl
O1A 0004

! RESTORE REGISTER BLOCK ADrESS
011C 97F1 POP Ri, @R1b

! SAVE VALID EXIT SP VALUE
OL1E 33F1 LD R15(#l), .i
0120 V91E

EXIT KERNEL BY MEANS OF HARD4ARE
PREEMPT HANDLER I

0122 5E0L JP KERNELEXIT

0124 0000*
012b END GATE KEEPER MAIN

END KERNEL GATE -KEEPER

il.

172

zEc0ooASM 2. 2
LOC OB: CODE STMT SOURCE STATYENT

USER GATE MODULE

SLISTON STTY

CONSTANT
ADVANCE CALL := 1
AWAIT CALL :
CREATE SEG CALL 3
DELETES EG CALL '4-
MAKE KNOWN-CALL := b
PAD CALL := 6
SM SWAP IN CALL := 7
SM-SWAP-OUTCALL
TlmINATE CALL := 9
TICKET CALL := 1
WRITE ALL 11
WRITELN CALL := 12
CRLFCALL := 13

GLOBAL
$SECTION USzIRGATEPROC

0000 ADVANCE PROCEDURE

4?PARAMETERS:

RI:SEGtENT
R2:INSTANCE (ENTRY4)*

RETUJRNS:
Re:SUCCESS CODE

ENTRY

0 7Fel SC *ADVANCE CALL
02 9EO8 RET

0004 END ADVANCE

e£e& AWAIT PROCEDURE

PARAMETERS:
Rl:SEGMENT #
P2:INSTANCE
RR4:SPECIFIED VALUE '

RETURNS:
PO:SUCCESS CODE

ENTRY

17

0004 7FLA2 sc #AWAIT-CALL
000b 9E08 RET

oves END AWAIT

CA0 6 CREATE SEG PROCEDURE

PARAMETERS:
Rl:MENTOR-SEG NO
R2:ENTR!-NO
R3:SIZE
RR4:CLASS

RETURNS:
RO:SUCCESS CODE

ENTRY
000 ?F03 Sc #CREATE SEQ -CALL
OOOA 9EO8 RET

ociecEND CREATE SEQ

00CDELETE SEG PROCEDURE

PARAMETERS:
Pl:MENTOR SEQ NO
RZ:ENTRY NO

SRETURNS:
3RO:SUCCESS CODE

ENTRY
000C 7FO4 sc #DELETE SEG CALL
evvE 9Eeb RET

oelo END DELETE-SEG

Ab 00MAKE KNOWN PROCEDURE

~PARAMETERS:
Rl:MENTOR SEQ NO
R2:ENTRY iO
R3:ACCESS DESIRED

RETURNS:
4RO:St1CCESS CODE
R1:SEGMENT#
R2:ACCESS ALLOWED

ENTRY
e01 7FO5 SC #MAKE KNOWN CALL
0012 9E08 PET
0014 END MAKE TNOWN

174

ezl4 READ PROCEDURE

PARAMETERS:
R1:SEGMENT
12:INSTANCE

RETTURNS: A
3x PLA:SUCCESS CODE

RR4 :EVENTCOUNT

0014 7F~b c.C P FAI DC AL L
gk1 Foe RET

0018END R.EAD

0018 SM SWAP IN PROCEDURE

~PARAMETERS:
Ri: SEGM EN" #

*RETTJRNS:
4R0:SUCCESS CODE

ENTRY
001 ?F07 5C #SM-SWAP-INCAL
001A 9EV8 PET
zo1C END SM SWAP-IN

vocSM SWAP OUT PROCEDURE

P AR AMET ERS:
SR1:SEGMENT #

* RETURNS:
1 4 00:SUCCESS CODE

A, ENTRY
001C 7F08 cc SMSWAP OUT CALL
Vv1E 9EZL PET

1020 END SM SWAP OUT

000TERMINATE PROCEDURE

*PARAMETERS:
* 1:SEGMENT At

*RETITRNS:
*PcO:SUCCESS "ODJE

ENTRY
002 7FO9 sc #TERMINATE-CALL

175

0022 9E09 PET
0024:END TERMINATE

Z/4TICKET PROCEDURE

4PARAMi;TERS:3

Rl P:SEGMENT ~ 4

4'RETURNS: 4

4'RO:SUCCESS CODE 4

;9 RR4:TICKET VALUE

ENTRY
002 7FOA sc PTICKET CALL
eO26 gEe8 RET
0028 IND TICKET

00N RITE PROCEDURE
ENTRY

002 7FOB sc #WRITE-CALL
eO2A 9EOE REOr
ofec kND WRITE

002C WRITELN PROCEDURE
ENTRY

Z 7FOC sc #WRITELN CALL
002E 9FOS RET
0e5o END WRITELN

V3eCRLF PR~OCEDURE

0030 7FOD SC NCRLF CALL
?V3 9EVS RETr

0034 END ORLY

176

APPENDIX E - BOOTSTRAP-LOADER LISTINGS

Z8000ASM 2.02

LOC OBJ CODE STMT SOURCE STATEMENT

BOOTSTRAPLOADiR MODULE

SLISTON STTY
CONSTANT

! ****** = SYST;M PARAMETF'RS
NRCPU :=2
NRyP := NE CPU*4

NP AVAIL VP := NR CPUv2
MAX DBR NR := 10-
STACKSEG
STACK SEG SIZE := 100
STACK-BLOK := STACKSEGSIZE/2£t

! * * OFFSETS IN STAC& SEG * -v I
STACK BASE := STACK SEG SIZI-%I10
STATUS REG BLOCK:= STACK-SEG-SIZE-tlV
INTERRUPTFRAME := STACKBASE-4
INTERRUPT-REG := IhTERRUPT FRAME-34
NS P := INTERRUPT RIG-2
F_CW := STACKSEGSIZE-%E

! " SYSTEM CONSTANTS !
ON := %FFFF
OFF := 0
READY := 1
NIL := %FFFF
INVALID := %EEEE
KERNEL FCW := , 5fl0
AVAILABLE := 0
ALLOCATED := FyF
SCOFFSET := 12

TVPE

MESSAGE ARRAY t1b BYTE]
ADDRESS WORD
MM VP ID WORD
VP INDEX INTEGER
MS6 INDEX INTEGER

~17?

I l , . --- ., " -- • " ;2 ." _ ----. i- -

MSG TABLE RECORD
L MSG MESSAGE
SENDER VP INDEX
NEXT MSG MSG INJhX
FILLER ARRAY Lb. WORD]

j

VP TABLE RECORD
[DBR ADDRESS
PRI 'ORD
STATE WORD
IDLE FLAG 4ORD
PREERPT WORD
PRTS PROCESSOR YORD
NEXT READYVP VP INDEX
MSG LIST MSG INDEX
GEXT ID WORD

FILIER_1 ARRAY (7, WORDJEJ
EXTERNAL

GET DBR ADDR PROCEDURE
CREATESTACK PROCEDURE
LIST INSERT PROCEDURE
ALLOUATEJMMU PROCEDURE
UPDATE MMUIMAGE PROCEDURE
MM ALLOCATE PROCEDURE
MM-ENTRY LABEL
IDLE ENTRY LABEL
PREEMPT PET LABEL
BOOTSTRAP ENTRY LABEL
GATE LEEPER ENTRY LABEL
NEXT BLOCK WORD
MMCPUTPL ARRAY[NRCPU Ml_VP_IDJ

VPT RECORD
[LOCK WORD
RUNNING LIST ARRAYLNRCPU WORD,
READY LIST ARRAf[NRCPU 4OF.f]
FREE LIST MSG INDZX
VIRT INTVEC ARRAi[1, ADDRESS]
FILLER2 WORD
VP ARRAY [NR VP, VPTABLEJ
MSGQ ARRAY [NRVP, MSGTABLEJ

178

'1111'4 P

EXTVPLIST ARRA! [NRAVAIL VP WORD]
NEXT AVAILMMU ARRAY tMAXDBR-NR EYTFJ

PRDS RECORD
jPHYS CPU ID WORD
LOG CPU JD INTEGER
VP R WORD
IDLEVP VP INDEX]

INTERNAL
$SECTION LOADER-DATA

! NOTE: ThESE DECLARATIONS ,ILL NOT WORK
IN A TRUE MULTIPROCESSOR iNVIRONMENT AS
THET ARE SUBJECT TO A "CALL." THEY MUST
BE DECLARED AS A SHARED GLOBAL DATABASE
WITH "RACE" PROTECTION (E.G., LOCK).

0 NEXT AVAIL VP INTEGER
0002 NEXT-EXTVP INTEGER

179

SSECTICN LOADER INT
INTERNAL

0000 BOOTSTRAP PROCEDURE

* CREATES KERNEL PROCESSES AND
4 INITIALIZES KERNEL DATABASES.
* INCLUDES INITIALIZATION OF
* VITUAI PROCESSOR TABLE,

EXTERNAL VP LIST, AND MMU
IMAGES. ALLOCATES M!'U IMAGE
kND CREATES KERNEL DOMAIN
STACK FOR KERNEL PROCESSES.

ENTRT
! INITIALIZE PRDS AND MMU POINTER
! NOTE: THE FOLLOWING CONSTANTS ARE
ONLY TO BE INITIALIZED ONCE. THIS
WILL OCCUR DURING SYSTEM INITIALIZATICN!

em 4e5 LD PRDS.PHYS CPU IL, #'tvFFFY
000~2 0000*
0004 FFFF

NOTE: LOGICAL CPU NUMBERS ARE ASSIGNED
IN INCREMENTS OF 2 TO FACILITATE INDEXING
(OFFSETS) INTO LISTS SUBSCRIPTED Bv
LOGICAL CPU NUMBER. !

0006 4DO5 ID PRDS.LOGCPUID, #2
0008 0002*
00A 0002

SPECIFY NUMBER OF VIRTUAL PAOCESSORS
ASSOCIATED °dITH PHYSICAL CPU.

.0(C 4D05 ID PRDS.VP NR, #2
e E 0004 *

S0012 4DO8 CLR NEXT BLOCK
A TA14 000P

00e16 4De8 CLR NEXT_ AVAIL VP-' 0018 0000-

001A 4D08 CLR NEXT EXT VP

! ESTABLISH GATE KEEPER AS SYSTEM CALL
TRAP HANDLEP !

! GET BASE OF PROGRAM STATUS AREA
0I1E 7D15 LDCTL RI, PSAP

A

! ADD SYSTEM CALL OFFSET TO PSA BASE ADDR
0020 0101 ADD RI, #SCOFFSET
0022 000C

! STORE KERNEL FCW IN PSA I
0024 D1I5 LD @Pl, #KERNELFCW
00216 5000

, 180

,""'4 " " ' - ' '- I. . I " -"" : ' . , . .. :

STORE ADDRESS 0? GAt KEEPER IN POGRAM
STATUS AREA AS SYSTEV TRAP HANDIER !

0028 A911 INC Ri, #2
002A ODi5 LD qR, #GATEKEEPERENTRX
002C 0000*
002E 8D18 CIp Ri 1 NI'TAVAILMMU INCEX !

I INITIALIZE ALL MMU IMAGES AS AVAIlAbLE
SET MMUMAP:

DO
003e 4C15 LDi NEXTAVAIL MMU(RI), #AVAILAiLE
0032 0000w
0034 000
Z936 A91e INC R1, #1

! CHECK FOR END OF TABLE !
0038 OB01 CP R1, #MAX DBR-NR

/ Q03A 000A
003C 5EOE IF EQ THEN EXIT PROM SET MMU MAP EI
003E 0044'
Ze4g 5E08
0042 0046'
0044 E8F5 OD

! CREATE MEMORY MANAGER PROCESS
0046 2103 LD R3, #STACKBIIOCK
0048 0001

I ALLOCATE AND INITIALIZE KERNEL
DOMAIN STACA SEGMENT I

004A 5F00 CALL MM ALLOCATE R3: # OF BLCCKS
" 004C 00004-

RETURNS
°- R2: START ArDR!

004E A121 LI) RI, R!
0050 2103 LD R3, #KERNEL FCW
oe52 5eoo
0054 7604 LDA R4, MM ENTRY

-4 0056 0000*
0058 61e5 LD RS 'FFYF INSPI
005A FFEF
005C 7606 LDA R5, PREEMPTRET
005t Oteo'*
0060 93F1 PUSH @R15, R1 !SAVE STACK ADrR!
0062 030F SUB RI5, #8
Oe64 0e08
0066 1CF9 LDM @R15, R3, #4
0068 0303
006A AlFO LD RO, R15

NOTk: ARGLIST FOR CREATE STACK INCIUDES
KERNEL TCW, INITIAL IC, NSP, AND INITIAL

181

RETURN POINT.
0ObC 5F00 CALL CREATE STACK I (RO: ARGUMENT PTR
ev6E evo

R: TOP OF STACK
R2-R14: INITIAL
REG.STATES

0070 ' eiF ADD Rlb, 08 !OVERLAY ARGUMENTS!
0072 0008

! ALLOCATE MMU IMAGE
U74 5FOO CALL ALLOZATEMMU !RETURNS:
0076 0000*

(R0: L BR)
I0078 21e1 LD Ri, #STACKSEG ! SEGMENT NO.
007A 0001
007C 97F2 POP R2, @R15 !GET STACK ADDR!
eV7E 21e3 LD R3, #0 I WRITE ATT3IPUTE
0080 0000

SPECIF NUMBER OF BLOCKS. COUNT STARTS
FROM ZERO. (I.E.,i BLOCK=0, 2=1, ETC.)!

Z082 2104 LD R4, #STACKbiOCK-i
0084 0000 !SAVE DEP. #
0086 93FO PUSH @R15, RO

I CREATE MMU ENTRY FOR MM STACK SEGMENT
0088 5F00 CALL UPDATE MMU IMAGE !(30: DER #

008A OeeO
Ri: SEGMENT
RZ: SEG ADDRESS
R4: SEG ATTRIUTESR4: SEG LIMITS)!

I RESTORE DBR # S
eo8C 97FO POP RO, @Rlb

! GET ADDRESS OF MMU IMAGE
008E 5F00 CALL GET DBRADDR ! (Ro: DER #)

RETURNS:
(NI: DEE ADDRESS)

PREPARE VP TABLE ENTRIES FCR MM
0092 21e2 LD R2, #2 ! PRIORITY
0094 0002
0096 2105 LD R5, #OFF ! PREEMPT
OV98 0000
009A 2106 LD R6, #OFF ! KERNEL PROCESS
009C 0000

UPDATE VPT I
009E 5FO0 CALL PDATE_7PTABLE !(Rl: LER
OeAO 0lCA'

RZ: PRIORITY
,4

182

Rb: PREEMPT FLAG
R6: EXT VP FLAG)
RETURNS:
R9: VPID

! INITIALIZE MM CPU TBL IN DISTRIlUTED MEMORY
MANAGER WITH VP ID OF MM PROCESS

! GET LOGICAL CPU # !
0OA2 61OA LD R10, PRDS.LOG CPU ID
eeA4 0&e02*
00A6 6FA9 LD MM CPUTBL(Rio), R9
0OA8 0000m

CREATE IDLE PROCESS
O0AA 2103 LD R3, #STACK_BIOCK
OOAC OeOI
?0AE 5F70 CALL MMALLOCATE !R3: # OF BLOCKS
0030 0000'

RETURNS
R2: START ADDR!

OVS2 A121 LD Ri, R2
0OB4 2103 ID R3, #KERNELFCW
00B6 5000
02B8 7604 LDA R4, IDLEENTMR
eOBA 0000*
00BC 2105 LD R5, #%FFFF INSP!
eVBE FFFF
00C0 7606 LDA R6, PREEMPTRET
0OC2 0000*
OVC4 93F1 PUSH @R15, Ri !SAVE STACK ADDR!
0OC6 030F SUB R15, #8
00C8 0008
VeCA 1CF9 LDM @R15, R3, #4
00CC 0303
OOCE AlFO LD RO, RI5

' INITIALIZE IDLE STACK VALUES
00D0 5F0 CALL CREATE STACK ! (RO: ARGUMENT PTP
0eD2 0V00*

Ri: TOP Of STACK
R2-R14: INITIAL
REG. STATES

OOD4 010F ADD R15, #8 !OVERLAY ARGUMENTS!
00D6 0008

ALLOCATE MMU IMAGE FOR IDLE PROCESS I
OOD8 5F00 CALL ALLOCATE MMU ! RETURNS RO:DBR #
OODA 0000*

PREPARE IDLE PROCESS wMU ENTRIES
OODC 2101 LD R1, #STACKSEG ! SEG #
O0DE 0001
00EO 97F2 POP R2, @RIb UGET STACK ADDR!

183

M0E2 2103 LD R3, #0 ' RITE ATTRIBUTE
00E4 0o0
OE6 2104 LD R4, #STACKBLOCK-1 ! BLOCK LIMITS
00E8 0000

! SAVE DBR #
OeEA 93F0 PUSH @R15, Re

! CREATE MMU IMAGE ENTRv !
OOEC 5F00 CALL UPDATE MMU IMAGE !(RI: SEGMENT *
MOE eeee*

R2: SEG ADDRESS
93: SJG ATTRIBUTES
R4: SEG LIMITS!P.ESTORE DBR #!

OOFO 97F0 POP RO, @R15

GET MMU ADDRESS

00F2 5F00 CALL GETDBRADDR (RO: EPP #)
0OF4 0000*

RETURNS
(RI: D2R ADDRESS)

PREPARE VPT ENTRIES FOR IDLE PROCESS I
OF6 2102 LD R2, #0 I PRIORITY
00F8 0000
eOFA 2105 LD R5, #OFF ! PREEMPT
?VFC Ogeg
OOFE 2106 LD R6, #OFF ! KERNEL PROC '
0100 oeoo

! CREATE VPT ENTRIES
0102 5FO0 CALL UPDATE VPTABLi !(RI: EBR
0104 01CA'

R2: PRIORITY
R4: IrLE FLAG
RS: PRiEMPT
R6: EXT VP FLAGI
RETURNS•
R9: VP ID

ENTER VP ID OF IDLE PROCESS IN PRDS
0106 6F09 LD PRDS.IDLE VP, P9
0108 o006w

! INITIALIZE IDLE VP'S I
010A 2102 LD R2, #1 ! PRIORITY
oloC 0001
eIVE 2105 LD Rb, #ON ! PREEMPT
0110 FFFF
0112 2106 LD R6, #ON INON-KERNEL PROC!
e114 FFFF
0116 6100 LD RO, PRDS.VP NR
0118 0004I

IINITIALIZE V? VALUES

DO
011A 5F00 '4ALL UPDATEVP-TABLE !(RI: LBR
0lC 01CA'

RZ: PRIORITY
R4: IrLE FLAG
R5: PREEMPT
R6: EXT VP FLAG)
RETURNS:

RY: VP ID
O11E ABMO DEC RO, #1
0120 oBoo CP HO, #0
0122 0000
0124 5EeE IF EQ !ALL VP'S INITIALIZED! TEEN
0126 012C"
0128 5E08 EXIT
012A 012E'

Fi
012C E8F6 OD

! INITILfZE VPT HEADER!
! GET LOGICAL CPU NUMBER

012E 6102 LD R2, PDS.LOG CPUID
0130 0002w
0132 4D05 LD VPT.LOCK, oOFF
0134 0000%
0136 0000
e138 4D25 LD VPT.RUNNINGLIST(R2), #NIL
013A 0002*
013C FFFF
013E 4D25 LD VPT.READY LIST(R21, #NIL
02.40 0006*
0142 FFFF
0144 4D08 CLR VPT.FREELIST !HEAD OF MSG LISTI
0146 @OOA*

!THREAD VP'S BY PRIORITY AND SET STATES TO READY
0148 8D28 CLR R2 !START WITH VP #1!

THREAD:
DO

014A 610D LD R13, PRDS.LOGCPUID
014C 0002*
014E 7bD3 LDA R3,VPT.READY LIST(Rl3)
0150 0006*
0152 7604 LDA R4,VPT.VP.NEXTREADTVP
0154 001C*
e156 76e5 LDA R5,VPT.VP.PRI
0158 0012*
015A 7606 LDA R6,VPT.VP.STATE
015C 014*
01SE 2107 LD R7,#READY

18b

0160 0001
SAVE OBJ ID !

e162 93F2 PUSH @R15, R2
0164 5[00 CALL LIST-INSERT !R?: OBJ ID
0166 0000m

R3: LIST HEAD PTR ADDR
R4: NEXI 0OJ PTR
R5: PRIORIT PTR
36: STATE PTR
R7: STATE-

RESTORS O-BJ ID
0168 97F2 POP R2, @R15
e16A 102 ADD R2, #SIZEOF VPTAhLE
016C 0020
016E 0E02 CP P2, #(NRVP (SIZEOF VPTABLLE))
0170 0100
0172 5E0E IF IQ THEN EXIT FRCM THREAD EI
0174 017A'
0176 5EO8
0179 017C'
017A EEE7 OD

! INITIALIZE VP MESSAGE LIST
! NOTE: ONLY THE THREAD FOR THE MESSAGE

LIST NEED BE CREATED AS ALL 'ESSAGES
ARE INITIALLY AVAILABI.E FOR USE. THE
INITIAL MESSAGE VALUES WERE CREATED
FOR CLARITY ONLY TO SHOW THAT THE
MESSAGES HAVE AO USABLE INITIAL VALUE!

017C 9DIS CLP RI

MSGLSTINIT:
! NOTE: R1 REPRESENTS CURRENT ENTRY IN
MSG LIST, R2 REPRESENTS CURRENT POSITION
IN MSG LIST ENTRY, AND R3 REPRESENTS
NEXT ENTRY IN MSG LIST. !

DO
017E A112 LD R2, R1
0180 A123 LD R3, R2
01b2 0103 ADD R3. #SIZEOF M4ESSAGE
0184 0010 FILLMSG:

DO
0186 4D25 LD VPT.MSGQ.MSG(R2), #INVALID
0188 o110w
018A EEEE
018C A921 INC R2, #2
018E 8B32 CP R2, R3
0190 5EOE IF EQ THEN EXIT FROM FILL-MSG FI
e192 019e'
0194 5E08

186

0~198 ESFb OD
elgA 4D15 LD VPT.MSG Q.SENDER(R1). #NIL
019C 0120*'
019E FFFF
01A A112 LD RZ, Ri
071A2 0~101 ADD Ri, #rSIZEOF POSG TAb T

01A4 0020
elA5 OB91 C? Ri, #SIZEOF MSG TA.BLF*NR VP
01AS 010

IF EQ
0e1AA 5E0E THEFN
01AC 012C'
01AE 4DZ5 LD V.DT.MSGQ.NEXTP_'SG(R2), UNI

e iB2 FFFF
0134 5E08 EXIT FROM MSG-LS TINIT
01B6 01CZ'
v~ibe 5Eee ELSiE
(diBA 01CkO'
013C 6F21 LD VPT.MSG-Q.Ni;XTMSG(R~e), Rl
k01SE 0122*

FI
01CO EeDE OD

IGET LOGICAL CPU # FOR USE
BT ITC GETWORK.

01C2 610D LD R13, PRDS.LOG CPU ID
elC4 e(0e2*

!BOOTSTRAP COMPLETE
! START ST!STErM EXECUTION AT PREEMPT ENTRv
POINT IN ITC GETtORK PROCKfURE

01C6 5EO8 J? BOOTSTRAP-ENTRY
01C8 oeo
01CA END BOOTSTRAP

le7

01CA UPDATE VP TABLE PROCEDURE

INITIALIZES 7PT ENTRIES

REGISTER USE:
PARAMETERS:
Ri: DBR ADDRESS
R2: PRIORITY
R5: PREEMPT FLAG
Rb: EXTERNAL VP FLAG

RETURNS:
R9: ASSIGNED VP ID
LOCAL VARIABLES:
P?: LOGICAL CPU #
R8: EXT VP LIST OFFSET
Rg: VPT OFFSET

ENTRY
! GET OFFSET IN VPT FOR NEXT ENTR

V1CA 61V9 LD R9, NEXT_AVAILVP
01CC 0000,
OCE 6F91 LD VPT.VP.DBR(RY), Ri
elvD eeIe*
OID2 6F92 LD VPT.VP.PRI(RY), R2
01D4 0012;
VlD6 6F96 LD VPT.VP.IDLE FLAG(R9), Rb
01D8 0016*
01DA bF95 LD VPT.VP.PREEMPT(R9), R5
. 1DC 0018*
01DE 6107 LD R?, PRDS.LOGCPU_ID
01E0 0002*
01E2 6F97 LD VPT.VP.PHYl PRCCESSOR(RY), R7
01E4 001A'
01E6 4D95 LD VPT.VP.NEXT READTVP(R9), #NIL
VIE8 eklC*
01EA FFFF
01EC 4D95 LD VPT.VP.MSG LIST(R9), #NIl
01EE eOlE*
01FO FFFF

CHECK EXTERNAL VP FLAG I
01Fz OB6 CP R6, #ON
0IF4 FFFF

IF EO !EXTERNAL VP!
01F6 bEOE THEN ! VP IS TC VISIBLE
01F8 0210'
OIFA 6108 LD R8, NEXT EXT VP

! INSERT ENTRY IN EXTERNAL VP LIST
OFE 6F89 LD EXTVP LIST(Re). R9

n' f

0200 0000*'
0202 6F98 LD VPT.VP.EXTID(R9), RL
0204 0020*
020b A981 INC R8, #2
0208 6F08 LD NEXT EXTVP, R8020A 0002'

020C 5E08 ELSE IVP BOUND TO KEPNEL PROCESS!
2em L,216'

0210 4D05 LD VPT.VP.EXTID, #NIL
0212 00201A
0214 FFFF

Fi
0216 A19A LD Rio, P9
0218 O1A ADD R10, *SIZEOF VPTABLE
021A eO2O
021C 6FOA LD NEXT AVAIL VP, Rio
@21E 0000'
022e 9EV8 RET
0222 END UPDAT VP TABLE

END BOOTSTRAPLOADER

189

APPENDIX~ F - LIBRARY FU1NCTIlON IISIINGS

ZEOOOASM1 2.0-L
LOC OB.: MOE STM~T SOURCE STATEMENT

LIBRART FTJNCTION MODULE~

SLISTON $TT!

CONS TANT
KFJPNELFCW :=500
STACK SEG SIZE :tl e
STACK BASE : STACK SEG SIZi.-%10
STATUS REG BLOCK:= SThCK SRG SIZE,--tle
INTERRffPT FRAME :=STACK PASE-4
INTERRUPT-REG :=INTSRRUPT FRAM -34
N SP :-INTERP.UPT-RPG-2

NIL- := FFFF

190

$SECTION LIBPROC
GLOBAL

0001 lIST INSERT PROCEDURE

INSERTS OBJECTS INTO A LIST '
BY ORDER OF PRIORITY AND SETS
ITS STATE

REGISTER USE:
PARAMETERS:
R2: OBJECT ID

" R3: READ OFLISTPTR ADPR
* R4: NEXT OBJ PTR ADDR

R5: PRIORITY PTR ADDR
" R6: STATEPTR. ADDE

R7: OBJECT STATE
LOCAL VARIABLES:
RE: HEAD OF LIST PT
R9: NEXT OBJ PT?
R10: CURRENT-OBJ PRIORITY

* RII: NEXT_ObJ PRIORITY

ENTRY
GET FIRST OBJECT IN LIST

0000 2138 LD R8, (@a3
0002 OB08 CP RE, &NIL
OeO4 FFFF
0006 5EOE IF EQ !LIST IS EMPTY! TEEN
0008 0018'

PLACE OBJ AT HEAD OF LIST
OOOA 2F32 LD @R3, P2
00C 7449 LDA R9, R4(R2)
ee0E 0200
0010 0D95 LD @R9, ONII
0012 FFFF
0014 5E08 ELSE
0016 005A'"

! COMPARE OBJ PHI WITH LIST HEAr PRI

V018 715A LD RIe, Rb(R2) !OBJ PRI!
001A 0200
001C 715B LD R11, R5(v8) !HEAD PRI!
001E 0800
0020 8BBA CP RIO, RIl
0022 5Ee2 IF GT !OBJ PRI>HEAD PRI! THEN
eV24 O3e'
0026 2F32 LD @R3, R2 !PUT AT FRONT!
0028 7342 LD R4(R2), R8
ee2A e2ev
002C 5E08 ELSE I INSERT IN BODY CF LIST

p 191.

r AD-A1 .3..8 NAVAL POSTGRADUATE SCHOOL MONTEREY CA FIG 9/2

IMPLEMENTATION OF PROCESS MANAGEMENT FOR A SECURE ARCHIVAL STOR--ETC(U)

MAR Al A R STRICKLER

UNCLASSIFIED N

002E 005A"

SEARCH LIST:
D0-

0030 0308 CP RS, tNIL
0032 FFFF
V034 bEkE IF EQ !END OF LIST! TEEN
0036 003C'
0038 5EO8 EXIT FROM SEARCH LIST
eV3A 00b2' Fl

003C 715B LD R1I, R5(RS) !GET NEXT PRI!
003E oeoo
Oe4O 8BBA CP RI, R11
0042 5E02 IF GT !CURRENT PRINNEXT PRI! THEN
0044 004A'
e046 5F08 EXIT FROM SEARCH-LIST
0048 0052'

FI

! GET NEXT OBJ
004A A189 LD R9, RE
004C 7148 LD RE, R4(Rg)
004E 0900
e£bo EEEF OD ! END SEARCH-LIST

INSERT IN LIST
0052 7348 LD R4(R2), RE
0054 e2Oe
0056 7342 LD R4(R9), R?
0058 0900

FI
Fl

' SET OBJECT'S STATE
005A 7367 LD Rb(R2). 37
@V5C 0200
005E 9E@8 RET
00bO END LIST INSERT

192

0060 CREATE STACK PROCEDURE

* INITIALIZES KERNEL STACK
SEGMENT FOR PROCESSES

REGISTER USE:
4'PARAMETERS: 4

A TR R: ARGUMENT POINTER 4'
4' (INCLUDES:FCW,IC,NSP, AND 4

4 RETURN POINT. SEE LOCAL
4 VARIABLES BELOW.)
' Ri: TOP OF STACK 4
4 ' R2-?14: INITIAL REGISTER
4' STATES. (NOTE: IN DEMO, NO*
4' SPECIFIC INITIAL REGISTER *
4 VALUES ARE SET, EXCEPT R13*

(USER ID) FOR USER PRO-
4' CESSES.)4

4 LOCAL VARIABLES
4 (FROM ARGUMENT6 STORED ON
4 ' STACK.) 4'
4' R3: FCW 4'
4 R4: PROCESS ENTRY POINT(IC)*
4' R5: NSP '

4'Rb: PREEMPT RETURN POINT

'7 ENTRYT
o.b0 93F0 PUSH @Rib, RO !SAVE ARGUMENT PTP!
ee62 ADFe EX RV, R15 !SAVE SP!
0064 341F LDA RIb, RI(#INTERRUPTREG)
0066 OOCA
" 6e 1CF9 LDM @Rib, RI, 016 IINITIAL REG. VALUES!
006A 010F

! NOTE: ONLT REGISTERS RZ-R14 AT CONTAIN
INITIALIZATION VALUES

006C AIF ID R15, RO !RESTORE SP!
006E 97F0 POP RO. @R15 !RESTORE ARGUMENT PTR!
e07@ AlFE LD R14, RI5 !SAVE CALLER RETURN POINT!
0072 A10F LD R15, RO !GET ARGUMENT PTR!
0074 ICF1 LDM R43, (aR15, #4 [LOAD ARGUMENTS!
0976 0323
0078 341F LDA Rib, Rl(#INTERRUPTFIAME)
00A OOEC
e07C 1CF9 LDM @Rlb, R3, #2 I]IT IPET FRAME!
007E 0301
0080 341F LDA RI, RI(#N_S_P)
oe~z eoce
0084 2FF5 LD OR15, R5 !SET NSP!
0086 030F SUB R15, #2

193

008 0002
0V8A 2FF6 ID @~R15, R6 IPREEMPT RET POINT!
008C 3418 LDA R93, R1(STACK-BASE)
098E OOFO

!INITIALIZE STATUS REGISTE? BLOCK
009 2100 LD P0, #KERNiEL FCm
0092 500
0094 1CE9 LDM1 MAE, R15. 02 !SAVE SP A.FC4
@096 O01
0098 AlEF LD R15, R14 !R""STORE RETURN POINT!1
Ze9A 9EH8 RET
009C END C~tATS-STkLCK

END LIBRARY-FUNCTION

APPENDIX G - INNER TRAFFIC CONTOLLER LISTINGS

ZbOZASM Z.V2

LOC OBJ CODE STMT SOURCE STATEMENT

INNER TRAFFICCONTROL MODULE

$LISTON $TTY

!"1. GETWORK:
A. NORMAL ENTRY DOES NOT SAVE REGISTERS.

THIS IS A FUNCTION OF THz GATEKiEPER).
B. R14 IS AN INPUT PARAMETER TO GETWORK THAT
SIMULATES INFO THAT WILL EVENTUALLY BE ON
THE MMU HARDWARE. THIS REGISTI.R MUST BE
ESTABLISHED AS A DBR BY ANY PROCEDURE
INVOKING GETWCRK.

C. THE PREEMPT INTERRUPT ENTR Y HANDLER LOES
NOT USE THE GATEKEEPER AND MUST PERYORM
FUNCTIONS NORMALLY ACCOMPLISHED BY IT
PRIOR TO NORMAL ENTRY AND EXIT.

(SAVE/RESTORE: REGS, NSF; UNLOCK VPT, TEST INT)

2. GENERAL:
A. ALL VIOLATIONS OF VIRTUAL MACHINE INSTRUCTIONS

APE CONSIDERED ERROR CONDITIONS ANL 4ILL RETURN
SYSTEM TO THE MONITOR WITH AN ERROR CODE IN Re
AND THE PC VALUE IN RI.

B. ITC PROCEDURES CALLING GETWORK PASS DR
(REGISTER R14) AND LOGICAL CPU NUVEE
(REGISTER R13) AS INPUT PARAMETERS.
(INCLUDES: SIGNAL. WAIT, SWAP VDZP.
PHYSPREEMPTHANDLER, AND IDrE).

CONSTANT
! ERROR CODES

UL := ! UNAUTFORIZEr LOCK
MLEM :I ! MESSAGE LIST EMPT'
MLER 2 ! MESSAGE LIST ERRCn I
RLE := 3 ! READY LIST EMPTY !
MLO : 4 ! MZSSAGE LIST OVERFLOW
SNA := 5 ! SWAP NOT ALLOWED
VIE := 6 VP INDEX ERROR
MU : 7 ! MMU UNAVAILABLE

! " SYSTEM PARAMETERS
NRSDR : 64 ILONG WORDS!
NR CPU :2 2
NR-VP := NRCFU*4
NRAVAILVP := NRCPU*2

195

MAX DBP NR :1 0f !PER CPU!
STACK SEG :- 1

PRDS SEG :=e
STACKSEGSIZ : V1 f

! OFFSETS IN STACK 5kG S
STACK BASE := STACK SEGSIZE-%If
STATUS REGBLOCK:= STACKSEGSIZk-%IV
INTERRUPT FRAME := STACK BASE-4
INTERRUPT-REG := INTERRUPT FRAMI-34
N_SP := INTERRUPT REG-2
F_CW "= STACKSEGSIZk-lt

ON := %FFFF
OFF 0

RUNNING :=
READY .' 1
WAITING : 2
NIL := %FIFF
INVALID := EEE
MONITOR := XA9 ! HBUG ENTRY
KERNEL FCW := %500
AVAILABLE := (
ALLOCATED := ;FF

TYPE
MESSAGE ARRAf 116 IfTE]
ADDRESS WORD
VP INDEX INTEGER
MSG INDEX INTEGER

SEG DESC REG RECORD
L
1ASE ADDRESS
ATTRIBUTES BYTE
LIMITS BYTE

mMU ARRA~fNRSDR SEGDESCREGJ

MSG TABLE RECORD
[MSG MESSACE
SENDER VP INDEX
NEXT-MSG .S _INDEX
FILLER ARRAY [6, 4ORrJ

196

VP TABLE RECORD
[DkR ADDRESS

PRI WORD
STATE YlORD
IDLE FLAG NORD
PRXEMPT WORD
PHIS PROCESSOR AORD
NEXT READYVP VPINDEX
mSG LIST MSG INDZX
EXT ID WORD
FILLERI ARRAY L?, WOREj

EXTERNAL
LISTINSERT PROCEDURE

GLOBAL

OOTSTRAPENTRY LABEL

$SECTION ITCDATA

0000 VPT RECORD
[LOCK WORD
RUNNING LIST ARRAY[NRCPU WORD]
READ! LIST ARRAY[NR CPU WORD]
FREE LIST MSG INDEX
VIRTINTVEC ARRAY[1, ADrRESS]
FILLER 2 WORD
VP ARRAY [NRVP, VP TABLE]
MSGO ARRAY [NR VP. MSGTAklEJ

0210 EXTVPLIST ARRAILNRAVAIL-VP WORD]

$SECTION MMUDATA

0000 MMU IMAGE RECORD

MMUSTRUCTURE ARRAY[MAXDbRNR MUJ

fAoo NEXT AVAIL MMU ARRAYrMAXDBkNR BYTE]
OA0A PRDS RECORD

[PHYS CPU ID WORD
LOGtPUTL INTEGER
VP NR WORD
IDLEVP VPINDEXJ

~197I

I.L

$SECTION ITC INT PROC
INTERNAL

0000 GETWORI PROCEDURE

* SWAPS VIRTUAL PROCESSORS

ON PHYSICAL PROCESSOR.

PARAMETERS:
m R13: LOGICAL CPU #
REGISTER USE:

* STATUS REGISTERS
R1A: DBR (SIMULATION)
RIb: STACK POINTER
LOCAL VARIABLES:
RI: READX VP (NEW)
R2: CURRENT VP (OLD)
R3: FLAG CONTROL WORD
R4: STACK SEG BASE ADDR
Rb: STATU3 REG BLOCK ADDR
R6: NORMAL STACK POINTER

ENTR!

! GET STACK BASE 1
0000 31E4 LD R4, RI4(#STACKSEG*4)

0004 3445 LDA R5, R4(OSTATUSREG_£LOCK)
0006 0FOF

! * * SAVE SP !
0008 2F5F LD ?R5. R15

! * * SAVE FCW * m !
OeOA 7D32 LDCTL R3, FCW
OeOC 3343 LD R4(#F_C_W), R3
oe0E 0eF2

BOOTSTRAP _NTY: ! GLOBAL IAbEL
! GET READY VP LIST !

0010 61D1 LD RI, VPT.READYLIST(R13)
' € 12 ££e6"

SELECT VP:
DO I-UNTIL ELGIBLE READ! VP FOUND I

OC14 4D11 CP VPT.VP.IDLEFLAG(F1),-#ON
0016 0016"
0018 FFFF
001A 5EOE IF EC I VP IS IDLE I THEN
001C 0030'
001E 4Dll CP VPT.VP.PREEMPT(RI), VON

ze ees' 18"

0022 FFFF
0024 5EBE IF EQ I PREEMPT INTEPRUPT IS ON I THEN

196

0025 002C'
e2e 5~e EXIT FROM SELECTVP
002A 003C'

Fi
OV2C 5E0 ELSE ! VP NOT IDLE
@02E 0034'
Z000 5E08 EXIT FROM SELECT VP
Oe32 Ok3C'

FI
I GET NEXT READ! VP

C034 6113 LD F3, VPT.VP.NEXT READY VP(R1i
0036 001C'
•038 A151 LD Ri, R3
VV3A E8EC OD

NOTE: TH.L READY LIST WILL NEV 1P BE EMPTv SINCE
THE IDLE VP, WHICH IS THE LOWEST PRI VP,
WILL NEVER BE REMOVED FROm THE LIST.

IT WILL RUN ONLY IF ALL OTHEP REA.V VP'S ARE
IDLING OR IF THERE ARE NO OTHIP VP'S ON
THI READ! LIST. ONCE SCHEDULEr, IT
#ILL RUN UNTIL RECEIVING A HDWE INTERRUpT.

NOTE: R14 IS USED AS D2R HERE. 4HEN MMU
IS AVAILABLE THIS SEP.IES O SAVE AND LOAD
INSTRITCTIONS WILL BE REPLACED BY SPECIAL I/0
INSTRUCTIONS TO THE MfoMU.

PLACE NEW VP IN RUNNING STATE
003C 4D15 LD VPT.VP.STATE(R1), #RUNNING
003E 00~14 -

e42 6FD1 LD VPT.?UNNINGLIST(Rl3), RI
0044 0002'

! '; SWAP DBP 's'
e046 611E LD R14. VPT.VP.DBR(RI)
048 0010'

I LOAD NEW VP SP
ee4A 31E4 LD R4, R14(VSTACiSEG*4)
004C 0004
0%4E 3445 LDA PS, R4(*STATUSREG BLOCK)
oeb eg~e
0052 215F LD RIS, cRR5

! * 9 LOAD NEW FCW '

L'e04 3143 LD F3. P4(#FCW)
0056 0@F2
0e5e 7D3A LDCTL FCW, R3
eVbA 9Ee8 RET
fr5C END GETWORK

199

ii

fe5C ENTER MSG LIST PROCEDURE

INSERTS POINTER TO MESSAGE
FROM CURRENT VP TO SIGNALED VP*
IN FIYO MSGLIST

REGISTER USE:
PA AM ETERS :R8(R9):MSG (INPUT)

Rl: SIGNALED_VP (INPUT)
P13: LOGICAL CPU NUMB ER
LOCAL VARIABLES:

R2: CURENT VP
R3: FIRST FREE MSG
R4: NEXT FREE MSG
R5: NE7T-Q MSG
R6: PRESENT QMSG

ENTRY
005C 61D2 LD R2, VPT.RUNNING LIST(R13)
005E 0002'

! GET FIRST MSG FROM FREE-LIST
0060 6103 LD R3, VPT.FPEE LISTo0b2 OOOA"

I ~ DEBUG
0064 0203 CP R3, #NIL
006b FFFF
OV68 5EeE IF EQ THEN
006A 0073,
006C 7601 IDA R1, S
006E 006C'
0070 210o LD RO, #M LO! MESSAGE LIST OVEBYLOW
0072 0004
,C74 5FOO CALL MONITOR

U. 0076 A900
FI

END DEBUG

0078 6134 LD R4, VPT.MSG Q.NEXT MSG(R3)
00'7A 0122
0?7C bF04 ID VPT.FREELIST, R4
eeE 00OA

! INSERT MESSAGE LIST INFORMATICN
0080 763A LDA R1O,VPT.MSG O.MSG(I3)
(e o8 2 o11e-
0084 2107 LD R?,#SIZEOF MESSAGE
0086 0010

ega BA8l LDIRB @Rjkc,oR8,R7
008A 07AO

200I!9

@08C F32 LD VPT.MSGO.SENDER(R3), R2
008E @120"

! INSERT M SG IN MSG LIST
0090 6115 LD RS, VPT.VP.MSGLIST(R1)
0092 001E

OV94 B05 C? R5, #NIL
0096 FFFF
0098 5EOE IF EQ ! MSG LIST IS EMPTY ! THEN
009A 09A4'

! INSERT MSG AT TOP OF LIST
009C 6F13 ID VP..VP.MSG LIST(P1), R3
0£9E @01!"

OOAO 5E08 ELSE ! INSERT MSG IN LIST
00A2 OOBC'

MS G__SEARCH:
DO W WHILE NOT END 01 LIST

0OA4 OB05 CP R5, #NIL
eOA6 FFFF
0OA8 5EOE IF EQ ! END OF LIST ' THEN
OOAA OOBO'
eOAC 5Ee8 EXIT FROM MSGCSEARCH
OOAE 00B8'

Ft

GET NEXT LINK!
0@BO A156 LD R6, R5
00B2 6165 LD RS, VPT.MSG _.NEXT _SG(R6)
e0bL4 e122'
00B6 E8F6 OD

! INSERT MSG IN LIST
,eB8 6F63 ID VPT.MSG -Q.NEXT MSG(R6), Rr

00.A 0122"
:" FI

0VBC 6F35 LD VPT.MbGQ.NEXTMSGkR3), ?t
,02E 0122'
o-C0 9E08 PET
00C2 END ENTERMSG LIST

z

t'

ZC2 GET FIRST MSG PROCEDURE
-- w

v REMOVES MSG FROM mSG LIST
* AND PLACES ON FREE LIST.

RETURNS SENrER'S MSG ANL
VP ID

*REGISTER USE:
PARAMETERS:

* RH(R9): MSG POINTER (INPUT)
4 R13: LOGICAL CPU NUMBER (INPUT)*
* Ri: SENDER VP (RETURNED)

LOCAL VARIABLtS
R2: CURRENT VP
R3: FIRST MSG
R4: NEXT MSG
R5: NEXT FREE MSG
R6: PRESENT FREE MSG

EN TRv
OeC2 61D2 LD R2, VPT.RUNNINGLIST(R3
0OC4 002,

! REMOVE FIRST MSG FROM MSG LIST
OC6 6123 ID R3, VPT.VP.MSG IIST(RZ)
0C8 001E,

! DEBUG 4
e"CA OB03 CP R3, #NIL
, CC FFFF
,OCE 5E0E IF EQ THEN
O DO MDE'

iD2 2100 LD RO. #M_ IEM !MSG LIST FMPTY
OOD4 0001
" D6 7601 LDA RI, $
t D OD6'
OODA 5FO0 CALL MONITOR
VODC A9ge

FI
! * * -; ND PEBUG *

OODE 6134 LD R4, VPT.MSGQ.NEXTMSG(RZ;
OVEO 0122'
OOE2 6F24 LD VPT.VP.MSGLST(R2), R4
OeE4 001E'

I INSERT MESSAGE IN FREE-LIST
OOE6 6105 LD R5, VPT.FREELIST
00E8 OOOA'
OVEA 0205 CP R5, #NIL
OOEC FFFF
00EE 5EoE IF EQ ! FPEE LIST IS EMPTT ! THEN

con eiee,

202
** 1 -" I t "1 rI I I "1 I I " .. . - " :'T

INSLRT AT TOP OF LIST
00F2 bFV3 LD VPT.FREE LIST, R6
0OF4 00W
@0OF6 4D35 LD VPT.MSGQ.NtXT_'SG(R3), #NIL
0OF8 0122'
00FA FFFF
@OFC 5E08 ELSE ! INSIERT IN LIST
OOFE 011C'

FREE C SEARCH:
DO

0100 0205 CP P5, #NIL
0102 FFFF
@104 5EOE IF EQ ! END OF LIST ' THEN
0106 oloc"

e108 5E08 EXIT FROM FREE_ _SEARCH
010A 0114' FI

I GET NFXT MSG
010C A156 LD R6, Rb
010E 6165 LD R5, VPT.M SG Q.NEXT_MSG(R6)
0110 0122'
e112 EEF6 OD

INSERT IN LIST I
0114 6F63 LD VPT.MSG_Q.NEXTMSG(R6), R3
0116 e122"
@118 6F35 LD VPT.MSG Q.NzXTMSG(R3), Rb
O1A 0122'

FI
GET MESSAGE INFORMATION:
(RETURNS RI: SENDING VP)

oliC 6131 LD RI, VPT.MSG Q.SENLER(R3)
0lE 0120'
@120 7b3A LDA R10,VPT.m SG O.MSG(R3)
0122 0110'-
0124 2107 LD P7,#SIZEOF MESSAGE
0126 0010
0128 BAA1 LDIRB qRedR1o,R7
@12A 0780
012C 9E08 PET
LP12E END GETFIRSTMSG

INNER TRAFFIC CONTROL ENTRY POINTS

NOTE: ALL INTERRUPTS MUST BE MASKEr WPENEVER
THE VPT IS LOCKED. THIS IS TO PREVENT AN
EMBRACE FROM OCCURRING SHOULD AN INTER.UPT
OCCUR WHILE THE VPT IS LOCKED.

GLOBAL
$SECTION ITC GLP PROC

PREEMPTRET LAkEL
KERNEL EXIT LABEL
CREATE-INT VEC PROCEDURE

* CREATES ENTRY IN VIHTUAL INT-*
* ERRUPT VECTOR WITH ADDVESS
* OF THE VIRTUAL INTERRUPT FAN-*
* DLE.

PARAMETERS:
I: VIRTUAL INTERRUPT #

* R2: INTERRUPT HANDLER ADDR

ENTRT
COMPUTE OFFSET IN VIRTUAL
INTERRUPT VECTOR

0000 i900 MULT RRO, #SIZEOF ADDRESS
002 002

SAVE ADDRESS OF VIRTUAL INTERRUPT
HANDLER IN INTERRUPT VECTOR

00 BF12 LD VPT.VIRT INT VEC(R1), P?
000b 000C,
oce 9E08 RET
0OA END CREATEINTVEC

,11a

2 "4

uA GET DBR ArDR PROCEDIRE

* CALCULATES DER ADDRESS FROM -
* DBR NUMBER

* REGISTER USE:
* PARAMETERS:

4'RETURNS:
' R i: EBR ADDRESS 4

ENTRv
GET hASE ADDRESS OF MMU IMAGE

O@OA 76 1 LDA RI, MMUIMAGE
0~00C .oe0'

I ADD DRR HANDLE (OFFSETI TO MMU BASE
ADDBESS TO OBTAI4 DER ArDESS i

eOOE 8101 ADD Ri, Ro
£eoe 9Ee8 RET
0012 END GET_DBRADDR

2e5

0012 ALLOCATE MMU PROCEDURE

* ALLOCATES NEXT AVAILABLE MMU *
* IMAGE AND CREATES PRDS ENTRY

* REGISTER USE:
RETURNS:

o LOCAL VARIABLES:
~ R1: SEGMENT #
SR2: PRDS ADDRESS

R3: PRDS ATTRIBUTES
SR4: PRDS LIMITS

ENTRT
! GET NEXT AVAILABLE DBR #

0012 8DO8 CLF RO
0014 8D18 CLR R1

NOTE: THE FOLLOWING IS A SAFE SEQUENCE
AS NZXT AVAIL mMU AND MMU ARE CPU LOCAL!

GET DBR:
DO

0016 4C11 CPB NEXTAVAILMMU(RI), #AVAILABIE
00'18 0A00 -

IF EQ !MMU ENTRY IS AVAILAILE!
001C 5EOE THEN
091E 002E'
0020 4C15 LDB NEXTAVAILtMU(RI), #ALLOCATED
0022 0A0'
OZ24 FFFF
0026 5E08 EXIT FROM GET DER
0028 004A'
OVZA 5E08 ELSE !CURRENT ENTRY IS ALLOCATED!
002C 0048"
092E A910 INC Ri, #1
0030 0100 ADD RO, #SIZEOF 'IMU
0032 0100

! * 0 q DEBUG m I
Ve34 oBel CP R1, #MAXDBRNR
0036 000A.
0038 5E0E IF EQ THEN
03A O4"
003C 2100 LD RO, #M U !MMU UNAVAILAtlE!

006E 0007
VV40 7601 LDA RI, S
0042 0040'
0044 5FO0 CALL MONITOR
0046 k900 F

! END DEBUG

L!

".4.. r 1 7i

ODFI

004A 210 L RI, XPRDS SEG ! SEGMkNT NO.

Ve4E 7602 LrA R2, PRDS ! PRDS ADDR
0050~ OAOA'

0052 2103 ED R3, #1 ! READ ATTR

e056 2104 ED R4, #((SIZEOF PRDS)-1 V25k
me5 0000

PRDS LIMITS

OOSA I CREATE PRDS ENTRY IN MMU IMAGE
05 F CALL UPDATE MMU IMAGE !(RI: SEGMENT

oobc moR2: SEG ADDRzSS
R3: ATTRIBUTES
R4: SEQ lImITS)!

005E 9EO8 RET
0060 END ALLOCATE MMU

207

065 UPDATE MMU IMAGE PROCEDURE

CREATES SEGMENT DESCRIPTOR
* ENTRY IN MMU IMAGE

* REGISTER USE:
PARAMETERS:
RO: DER #
Ri: SEGMENT #
R2: SEGMENT ADDRESS
R3: SEGMENT ATTRIBUTES
R4: SEGMENT LIMITS
LOCAL VARIABLtS:
RI: MMU BASE ADDRESS
R13: OFFSET VARIABLE

ENTRY
O60 210A LD R10, #MMUIMAGE I MMU BASE ALDRESS
0062 0000'

i4 810A ADD R1e, RO
0966 210D ID R13, #SIZEOF SEG DESCREG
~008 0004
006A 991C MULT RRIZ, R1 I COMPUTE SEG DESC OFFSET'
9e6C 81DA ADD RI, R13 !ADD OFFSET TO BASE ADDRESS!

INSERT DESCRIPTOR DATA
0O6E 2FA2 LD CaRl0, R2
e070 A9AI INC Ril, #2
0072 ODA8 CLR @R10
0074 2EAC LDB @R10, RL4
e076 A9A0 INC Rio, #1
0078 20AC IDB RL4, @Rio
007A OAOB CPB RL6, #'(2)io0oi00 I EXECUJTE
007C IF
007E 5E09 IF EQ TEEN
Oe8o Oel-A'
OV82 060C AND3 RL4, # (Z)I111 ! EXECUTE mA K
0084 F7F7
0066 5E08 ELSE0088 008E"

008A 060C ANDB RL4, #%(2)11i1i10 I READ MASK
008C FEFE

008E 84BC ORB RL4, RL3
0090 2EAC LDB ORI0, RL4
C092 9Ee8 RET
0094 END UPDATEMMUI MAGE

CrWA It~T PROCEDURE

* tNTVA KERNEL STNC/COM PRIMATIVE ~
* INVOKID BY KERNEL PROCESbES

PAPAMETEPS
Re(R~o): MSG POINTER (INPUT)
'01: SENDINGVP (RETURN)

GLOBAL VARIABLES
R14: LBR. (?ARAM TO GETWORfl
LOCAL VARIABLES
R2: CURRENT VP (RUNNING'i

*R3: NEXT READY VP
SR4: LOCK ADDRES
R13: LOGICAL CPU NUMBER 4

ENTRY
!MASK INTEPP.UPTS I

oe94 ?Coi DI VI
!LOCK VPT

OV96 7604 iDA R4, VPT.LOCK

09A 5FO0 CALL SPIN-LOCK !(R4:-VPT.LOCI)
009C 072821,

!NOTE: RETURNS WHEN VPT IS LOCKEr Ef THIS VP
!GET CPU NUMBER!

009E 5FO0 CALL GET CPTI*NO !PETURNS:

~ ezc~' l:CPU
R2#VP'S!

?VeA2 AliD LD R13, Ri

eOA4 61D2 LD R2, VPT. ITNNING LIST(R13)
0OA6 0002
OVA 6123 Lr R3, VPT.VP.NFXT READY VF(R2N
OOAA 001tC'

OOAC 4D21 CP VPT.V?.MSG-LIST(R2), #NIL
OOAE ealE'

SFFF
0OB2 5EOE I? EQ CURRENT VP'S mSG LIST IS EMPTY I T!FEN
oeB4 eeEA'

REMOVE CURRENT VP FROM READY LIST
! mv *DEBUG 4

0OB6 eM ~ CP R3, #NIIL
00B8 FFFF
OOBA 5!E IF EQ THEN

* eBC eeCA'
00E20 LD Ro, #RLE IREAtY LIST !MPTYI

nuC ?6el LDA Rl,

.109

e0cC6 5C2 CALL NIONITO.

0OCe A900 E

I END DEUG "

OOCA bFD3 LD VPT.READY LIST(R13',, R3

OOCE 4D25, LD VPmT.VP.NEXT READYVP(R2), PNIL

FOD2 FETE

PUT IT IN WAITING STATE-
OOD4 4D25 ID VPT.VP.STATE(32)9 0WAITING
eeD6 e14'
OOD8 002

SET DER
MDA 612E LD R14 , VPT.VP.rER(R2)
OODC 0010 -

! SCHEDTTIE FIRST ELGIBL4 REArv VP
OODE 93F8 PUSH @RlbRd

!SAVE LOGICAL CPU #
OOEO 93FD PUSH LORlb, R135
eVE2 5M~ CALL GETWOPK !R1-'A:CPU
0OE4 0000w

RESTORE CPU #1:DR

OOE6 97FD POP R13, OR1
OvEa 9?F8 POP RS,(@Rl5

F'
!GET FIRST "'SG ON CURRENT VP'S MSG LIST

OOEA 5FO@ CALL GET FIRST MSG !COPIES MS" IN t'SG AR.PAv"

R13: LOGICAL CPU
!RETURNS RlDShNLER VP

UNLOCK VPT
OOEE 4DO8 CIR VPT.LOCK
om~ 0Ve0'

!UNMASK VECTORED INTERRUPTS
0OF2 7CO5 El vi

RETURN: Rl:SENDER-VP
?eF4 9EVE PET
0OF6 END WAIT

2 k

0 0 F6 SIGNAL PROCEDURE

4 INTRA KEPNEL STNC /COM PRIMATIV_
' INVOKED PY KERNEL PROCESSES

REGISTER USE: "
* PARAMETERS:

V8(R9): MSG POINTER (INPUT)
4' Ri: SIGNALED VPID (INPUT)
GLOBAL VARIAELES

4' R13: CPU # (PARAM TO GETWORK)
4' R14: DBR (PARAM TO GETWORK)
4'LOCAL VARIAN>1ES: 4

4' RI: SIGNALED VP 4'

RZ: CURRENT VP
-4 R4: VPT.LOCK ADDRESS

ENTRY
! SAVE VP ID

OOY6 93FI PUSH @P15, Ri
! MASK INTERRUPTS

0OF8 ?C01 DI VI
! LOCK VPT !

OOFA 7504 LDA R4, VT.LOCK
ooFC eovoe
OOFE 5F00 CALL SPINLOCK ! (R4: VPT.LOCK'
0100 0282"

!NOTE: RETURNS WHEN VPT IS LOCKED BY THIS VP.
' GET LOGICAL CPU !

0102 5F00 CALL GETCPUNO !RETURNS:

RI:CPU
R2:u VP'S!

0106 A1ID LD R13. Rl
! RESTORE VP ID

0108 97FI POP Ri, @R15

PLACE MSG IN SIGNALED VP'S MSG LIST'
010A 5FO0 CALL ENTEP MSG LIST !(Ri:MSG POINTER
oI.C 005C- RI:SIGNALEL VP

R15:LOGICAL CPU #'

010E 4D11 CP VPT.VP.STATE(RI), ,WAITING
0110 0014'
01.12 0002
0114 5EOE IF EQ I SIGNALEDVP IS WAITING I THEN
V116 014e'

WAKE IT UP AND mAKE IT READY
0118 A112 LD R2, Ri
llA 76D3 LDA R3. VPT.READYLIST(RI3)

211

... IIhiI IaI I I " F " : - . .

oliC 0006'
11E 7604 LDA R4, VPT.VP.NEXT READXVP

012Z 0e1C'
0122 7605 LDA RS, VPT.VP.?RI
0124 0012'
V126 7606 LDA Rb, VYT.VP.STATE
0128 0014'
012A 2107 LD F7, #READT
012C okel

! SAVE LOGICAL CPU ,
@12E 93FD PUSh CR15, R15
e130 5Fe0 CALL LIST INSERT !Re: O J ID
0132 0000w ISR

R3: LIST PTR ALD
R4: NEXT OBJ PTR
R5: PRIORITY-_? P
RE: STATE PTR
R: STATERESTORE LOGICAL CPU !

0134 97FD POP R13, OR15
PUT CURRENT VP IN READV STATE

9136 61D2 LD R2, VPT.RUNNINGIIST(R13'
0138 0002'
013A 4D25 LD VPT.VP.STATE(RZ), #RWADT
013C ek'14'
013E 001

! SET D-R I
C140 612E LD R14, VPT.VP.DBR(RZ
0142 0010'

I SCHEDULE FIRST ELGIBLE READ! Vp
0144 5eo CALL GETWORK !Rl3:1OGICkL CPU
0146 0000"

-14:DBR
FI

.

UNLOCK VPT
0148 4DO8 CLR VPT.LOCK
0144 0000'

! UNMASK VECTORED INTERRUPTS
014C 7C05 EI VI

e14E 9E@E RET
010b END SIGNAL

212-21

(150 SET PREEMPT PROCEDURE

SETS PREEMPT INTERRUPT ON*
TAVGET VP. CALLED B! TC

* ADVANCE.

N, PEGISTER USE:
PARAMxTERS:

* i:TARGET VP_1D (INPUT)
* LOCAL VARIABLES
* Ri: VP INDEX

NOTE: DESIGNED AS SAFE SEQUENCE SC VFT NEED
NOT BE LOCKED. !

I CONVERT VP ID TO VP INDEX
eine 6112 LD R2 EXTVPfIST(Rl)
0152 0210'

ST'JPN ON TGT VP PREEMPT FLAG
01.' 4D25 LD VPT.VP.PREFMPT(R2). #ON
0156 0018"
0158 FFFF

IF TARGET VP NOT ICCAL
NOT BOUND TO TFIS CPU

lIE, IF <<CPU SEG>>CPU ID<>VFT.VP.PHYS Cptr(RI)j
THEN SEND HAREWARE PREEtMPT INTERRUPT TOV" PT.P T(Rl) . '

015A 9E02 RET
.15C ENr SETPREEMPT

-213

j I.. - "1 " I I Ii

015C IrLE PROCEDURE

* LOADS IDLE DBR ON
* CURRENT VP. CALLED BY

TC GETWODK.

REGISTER USE
V GLOBAL VARIABLE
SR13: LCG CPU #

' 14: DBR
LOCAL VARIABLES:
Q2: CURRENT VP
R 3: TEMP VAR

~ R4: VPT.LOCK ADDR '
~ R5: TEM.P

ENTWR'
! GET LOGICAL CPU #

015C 5FO CALL GETCPUNO !RETURNS:

! LOAD IDLE DBR ON CURRENT VP
0174 6103 LD R3, PRDS.IDLEVP
0176 OAI1 "

017? 6135 LD RS, VPT.VP.DBR(R3)
17A 0010

017C 6F25 LD VPT.VP.DBR(R2), P5
017E 0010'

TURN ON CURJRENT VP'S IDLE FLAG
0180 4D25 LD VPT.VP.IDLE FLAC(R2), &ON
L,182 ef16" -
0184 FFFF

SET VP TO READY STATE
0186 4D25 LD VPT.VP.STATE(R2', #REAC!
0188 014'
01EA 0201

SCHEDULE FIRST ELIGIBLE READY VP
018C 5FOO CALL GETWORK !R13:IOGICAL CPU #
018E 000"

R14:DPR

UNLOCK VPT
0i9 4D08 CLR VPT.LOCK

I UNMASK VECTORED INTERRUPTS
0194 7C05 EI VI

e196 E£ RET
1 e END IDLE

214

f1Y8 SWAP 7DER PROCEDJRE

* LOADS NFW LVbR ON
CURRENT VP. CALLED BY
TC GETWORK.

R REGISTER USE
PARAMETERS

~ Ri: NEW DeR (INPUT) '

SGL-OAL ViRIABLES
'; R13: LOGICAL CPU #

SR14: D3R
LOCAL VARIABLt;S

' R2: CURRENT VP
R4: VPT.LOCK ADDR

ENTRY
I SAVE NEW D.BR

0198 93F1 PTJSH PR15, Ri
I MASK INTERRUPTS

019A 7Cei DI Vi
! LOCK VPT

019C 7604 LDA R4:, VPT.LOCK
z1YE eve
11A0 5FO0 CALL SPIN-LOCK ! (R4:"VPT.LOCK)'
01A2 0282'

! NOTE: RETURNS WHEN VPT IS LOCKED BY THIS VP.!
! GET CPU #

FIA% 5EOO CALL GET CU NO !RETURNS:
ieA6 02C8'

RI : CPT7
P2:* VP'S.,

V1A8 A1iD IT Ri3, Ri
! 'ET CURRENT VP

VlAA 61D2 LD R2, VPT.RUNNING LIST(R.ql)
VAC ! = DEBUG I
0'IAE 4D21 CP VPT.VP.MSG LIST(R2,, VNIL

01B2 FFFF
IB4 5EO6 IF NE ! MSG WAITING ! THEN
oi6 eIC4'
3138 2100 LD RV. #SNA I S4AP NCT ALICW F!
01lBA 0OV5
e'IBC 76e1 LDA RI, $!PC!
01BE 01BC"
01CO 5F0V CALL MONITOR
VIC2 A9eV

Fi

! END DEBUG '
SET VBR

215

! ESTORil NEW DER
VliCe 97?FO PC!, Rv. r@R15
01CA tF?1 CALL GET lLBP ADDE H: B.R

RhETURNS

LOAD NEW, DBP ON C'JRRENT VP
ViCE ISF21 LD VPT.VP.DBR(R2), Ri
OIDO 0010'

TURN CFI IDIE FLAG
V1D2 4-D25 IL VPT.VP.IDJE FIAG(R21, #OFF
OI1)4 0016,

!SET VP TO READYT STATE
01DE 41 25 ID VPT.V?.STATE(R2), stREAIC!
OIDA 0 el4
OIDC 000

SCFEDULE FIiST' FLGIP1E READY VP
elDE bF~e CALL GET'iORK !R13:IOGICAL CPU

RJ.4:1)BR

UNLOCK VPT
11A;2 4DOS 01? VPT.LOCK
VlZE4 Vee'

~iE 7C5 !UNMASK VECTORED 1NT-;RRUPTS

0 1E8? gEee FET
ZlEA ENT SiAP VL'ER

ielEA ?YS PREFt"?T HANDIER FRUCIX15?E

F' ADDWARE PREEMPT lNTlk;PRUPT .

W ANLDLER. ALSO TESTS FCR
71' T'JAI PRJ EPT INTS"FRUPT
FLAG AND INV%^KiS INTERRUPT
FANDL~JE IF FLAG IS SET.

;v IN7(lE1L TIPON EVi'FT EXIT Y'FOI ,
K ERN EL. KSRNEL FCW MASK5

SNVI INTERRUPTS TO PREVEN1
.5S MULTAN-43US PREEMIPT INTiRR.

REG IS TER t
LOCAL 'VARIAi±LES
91: PREEMPT I NT FLAG
1?2~: CTURkNT VD'

~GLOBAL VARIAiLES)
R13:LUGICAL CPU -

14 J?

ENTRY

!~ 7$ P' SIMPT HANI)Lj?

ISAVE ALL REGISTERS
01EA 3OF SIT F R15, #32

V41EC 00?

!SAVE NORM1AL. STACY PCINT~kR (NS?)
VIF2 ?rl67 IDCTL R61 INJ5P
0IF14 9 -' I~T S. r-45 R6

GET CPU I
I1F6 5yeo CALL. GET CPU NO 'RETURNS:

0u 2C8,
Ri: CPU
R2:st VP 'S!

01YA All.I LD R131 R1
! "ASK INTERRUPTS

01FC 7C0'1 LDI VI
!LOCK VPT

e2.FE 7 6 4 LDIL R, k VPT.LQCK

0~20O2 5FO CALL SPIN LUCK
0204 0282'

!RETURNS WHEEN VPT IS LOCKED!
!SET LV8R !

0206 b1D2 LD R2, VPT.RUNANING-LIST(RI-3t)

217

V20'A 612E LD R14, VT.VP.DER(R2)
e20C 010'

! PUT CURRENT kROCESS IN READY ST!'T
C'?eE 4D25 ED VPT.VP.STATE(RZ), #HEArY
0210 0014"

0214 bFv CALL GETICRK !RI6:LOG CFU =
0216 0000,

PREEMPT
RET:

! UNLOCK VPT
021L4 4DO H VPm.LOCK
u IA 0vo",

! UNMASK VECTORED INTERRUPTS
021C 7CO5 El VI

KERNEL EXIT:

' UNMASK VIRTUAI PREEMPTS
NOTz: SAFE SEQUENCE AND LOES NOT PEQUIRE

VPT TJ BE LOCKED.

GET CURFENTVP !
021E 610D LD R13, PRDS.IOGCPU_ I)
0220 OAOC "

L2-22 61D? LD R2, VPT.RUNNING LIST(R1'
02?4 0002'

TEST PREEMPT INTERRUPT FLAG
VL126 4DDl CP VPT.VP.PREEMPT(R2", OON
0228 018,
022A FFFF
V2C 5EVE IF EQ PREEMkT FLAG IS ON THEN

' RESET PREEMfT FLAG
C/230 4D25 ID VPT.VP.PREEMPT(R2), vOFF
0232 018'

SI MULATE VIRTUAL PRE± PT INTERRUPT
0 ?36 21k01 ED Ri, &V

L/z3A 63112 LD R2, VPT.VIRT-INT-VC(Rl)

023E 1E29 JP cl 2
!NOTE: THIS JUMP TO TRAFFIC CONTROL

IS ISED ONLY IN THE CASE OF A PREEMPT INTERRU-PT.
AND SIMULATES A HARDWARE INTERRUPT. .

! END VIRTUAL PREEMPT FANtLIR '

?418FII
Zl4

NOTE: SINCE A HiD'E INTERRUPT DOES NOT EXIT
THPOUGF THE GATE, THOSE FU'NCTIONS PBFOVIDED

BY A GATE EXIT TO MANLIE PREiMPTS MUST EE
PROVIDED ftit ALSO.

R ESTORE NS?
Z24 97Fb POP Rb, @~R15
0242 7DbF LDCTL NSY, Rb

! .'ESTORE ALL REGSTERSI

0~24t 010
024 01OF ADD p 15, & 3;
V24A MV

EXECUTE HARDWARE INTERRUPT RETURN
024C 7P00 IRET"

024E END PSYS-PIEEMPTEFANrlEP

-~ 219

fe24E RUNNING nP PROCEDIIRE

* CALLED 2Y TRAFFIC CONTROL.
ETURNS 7P ID. RtSULT IS VALID
* ONLI WHILE-APT IS LOCKED.

REGISTER USE
' PARAMETERS

'~Rl: EXT VP IL (RETURNED)
R3: LOG CPU f (RETURNED)
LOCAL VARIABLES

R2: VF INDEX

" MASK INTERRUPTS
-24E 7Co1 DI VI

LOCK VPT
i25e 7604 LDA R4, VPT.LOCK
0252 %0000
0254 5FOe CALL SPIN LOCK ! (R4:'VPT.LOCK)
v'2b6 e282"

NOTE: RETURNS WHEN VPT IS tOCKr bY THIS VP
! GtT LOGICAL CPU # !

05E 5FeV CALL GETCPUNO !RETURNS:
025A 02Ck'

R1: CPU
R2:# VP'S!

025C A113 LD R3, R1
025E b132 LD R2, VPT.RUNNING LIST(R3)
V26 OV2'

I CONVIRT VP INDEX TO VP ID
0262 6121 D ,1' VPT.VP.EXT ID(R2)
(e264 ?c'

' DEPUG 4t

025b i C? RI, #NIL
V26a FFFF
026A 5EOE IF FQ ! KERNEL PROC ! TFEN
02bC 027A'
?26E 2100 LD Ro, #V_IE V VP INDEX ERROR

0270 0006
0272 701 LDA RI, S
0274 0272"
0276 5F0 CALL MONITOR
027E A900

FI
! * * END DEBUG I

I UNLOCK VPT
027A 4D e CLR VPT.LOCK
e27C ft e"

! UNMASK VECTCRED INTERRUPTS :
027E 7C05 El VI
02ev 9Eze RET
V 28 2 hEND RUNNING_.P

220

£282 SPIN LOCK PROCEDUPE

* USLS SPIN LOCK MiCh.
* LOCLS UNLOCKID DATA '

STRUCTURE (POINTED TO
* BY INPUT PARAMETER).

*REGISTER USE

* PARAMFTERS
* _ P: LOCK ADDR (INPUT)4'

ENTRY
NOTE: SINCE ONL' ONE PROCESSOR CURRENTLT

IN SISTEM, LOCK NOT NECESbARY. '
*'4'4 DEPUG 4 '4

0282 @D41 CP @R4, &OFF
V284 oevo
0286 5E06 iF N, ! NOT UNLOCKED I TEEN
0288 0296"
028A 2le LD Re, #UL ! UNAUTHORIZED LOCK
028C 0000
02SE 7bl1 LDA RI, S
V29e 02EE'
@292 51'00 CALL MONITOR
V294 A90@

Fi
! ' END DEBUG 4 4'

TEST LOCK:
! DO WHILE STRUCTURE LOCKED

0296 OD46 TS T @R4
0298 E5FE JP MI, TESTLOCK

!~ NOTE SEE PLZ/ASM UANAL
FOR RESTRICTIONS ON
USE OF TSET. 4 !

029A 9E@E RET

V29C END SPIN IOCK

221I

?'29C ITC GET SEC PT"R PRocErURi

*G'YTS BASE ADDRESS OF SEGrVENT
*INDICATEr.

*REGISTER USE:
* Re:SkG BASE ADrRESS(RET)
*R1:SEG NP (INPUT)
R2:RUNNING VP (LOCAL)

*R3:DERVALUE (LOCAL)
* 4:7FT.LOCK

RlO5:LCGICAL CiU

ENTP.T
!SAVE SEGMENT #

0t29C 93F1 PITrS @Rlb, Rl
!MASK INTERRUPTS

029E 7C01 DI Vi
LOCK VPT

02AO 7604 IDA P4,VPT.LOCK
0~2A2 Oee'
02A4 5M~ CALL SPIN-LOCK !R4:KVPT.LOCK!
02A6 0292'-

IG91" CP91a
e2A8 5Fei CALL GFT CPU NO !RETURNS:
0O2AA 02CS'

Rl: CPU
R2:# VP'S!

02AC A11D Lr P13, Ri
RESTORE SEGMENT

02AE 97F1 POP Ri, OR15
02BO 61D2 ID t2,VPT.UNNINGIISTR13
02B2 ovoz'
(224 6123 Lr R3,VPT.VP.DBR(R2)
0236 S00(0'

UNLOCK VPT
E228 4rL~ CLR VPT.LOCK
02BA OeOO'

7 NMASK VECTORED INTERRUPTS
SA 23C 7C~b El Vi

02BE 1990 M!JLT RO#
02C 0004
0?2C2 713Q5 LD Re,R3(Rl)
0i2C4 010

02C6 9EO8 RET
02CLIEND ITC GET SEQ PTR

02CE GET CPU NO PO ,OCEDUPE

* FIND CURRENT CPU 140
* ALLED 57 DIST MMGR
* AND MM

*RETURNS
*RP: CPU NO
* 2: # OF VP'S

ENTRY
02C8 6101i ID Rt, PRDS.IOGCPU-ID
V2CA 0A@'C'
02CC 6102 ir R2, PPD6.VP-NR
02CE OAO~E'
02D 9EV8 PET
VZ'D2 END GET CPU NO

02D2 K LOCK PROCEDURE

SSTU. FOR 4AIT LOCK ~

'R4:"LOCK (I.NPJT)

ENTRY
02D2 5700 CALL SPIN-LOCK

* V2D4 fe2LA2'
02D6 9E0'9 BET
02D8 END K LOCK

V21)b K UNLOCK PROCEDURHE

SSTUB FOIR WAIT UJNLOCK

VR4: LOCK (INPUT)

ENTRY
02D8 OD48 CLP @P4
0 2DA 9E08 RET
fe2DC END K UNLOCK

END INNil - TRAFFIC CONTROL

223

LIST OF REFERNCks

1. O'Corneli, J. S., an! Picnarisor, L. .,Listriurec
Se u-re Desion for a M~tir~oesrcprt
Sytm MS TnesiS, Naval Postiravate Scrool.
June 79

2. Paris, F. :., Tne resien of a Secu~re File Storae
svstpim, VS Tnesis, Naval '00steraquate 7c7ccl.
Leeerr'ber 1979.

J.Colerran, A. R., Security iernei Desiogn for a
Mio~rc~ssr~Bas~., ultilevel. Arcnival Storage

Sytr tS Tnesi5, Naval Post avraliia te Se.'tool.
:~P!Ierber 1979.

4.Moore. ?. F. and. ,ary, A. V., Trie Design anct Ir'plerran'tior
of tne Memor~r MAanajger ft)r a Se-Irre Arcnivel sto r~e
Fvstem, m~S mtesis, Navai Postgraduate Scrnocl.
June 194-k.

R.Peitz, q. L., An Imnolemen~tatior of Multirro *arinr an
DrocePss Maraggement tor a Security rernlel i<peratir.g
s-Ystem, PAS Trnesis, Naval Postgraduate Scncol.
Jure 19F(6.

6. W~ells, :- T., Imleirentation of Seegment M!anaerer~t for
a Secure Arctiva1 -toreee 5svtem, MS Tnesis. Naval
Posteraduate School, Septemrber 19&e..

7. 0'ganic',FJ, The ".ultics System: An Exam~ination)t*
Its Structurp,, "IT Press, 1972.

-. Madr I ck , S . E a a E 0 Lo , V * al nerati".p ,crte-s.

9. Raed, P. D.. Froc Pssor Yultinlexin.- In a layered
CDeritini- Syistem, 'IS Tnesis, massacnusetts
Inszitutp of Tecnnoloevy, M!IT LCS/T?-157. 197u-

Feel of' trie Flectronic Air Force?, Air 1Tnivqrs1TY

I!. Setell, Lt.Col. R. R., "Security Kernels: k MIetnoical
Desia'n of' Systemn Security, USE Teoni-ai Fa-,,ers
(Sprir.i Contference, 1j4 7 9). n. 2~-~,varc, =.47q.

224

12. Dennirg, ,, E. , "A Lattice "odel n±' S,:cure Irf crm~tior

Fl1ow - Cormnicatiofls of t.ne ACY, v. 19,
.26-242, May 197t.

15. Schroeder, '. D., "A Iharlware krcnitecture t'cr

Im-p Iement In F Pro~tect Ion R I r~s . Com.1ni catI or s0o

tn; C",v. 15, ro. 35, .. 157-172. Y'ar-!: 197%.

i4. rilirstra, F. W'., "The Fumb~le Prorrammrer." Corrnica'icflb
of tne ACM!, v. 1.5, no. 1V, D.~~e. C-tccer 19??7.

lb. r eed, P. t.. and K1a'.odia. R. K., "Syncznrorization .Vltr

Eve-nrouflt5 and Seqliencer- . ro-mu icatior o tnae

16. Saitzer. . Traffic Corntr',i in a utmeed

Comnouter System", Pn.D. Ttesis, Massaciusetts
Institute or. Teihnology. l 4eti.

1iC-. ZiloF', Inc.. ZLe1? "MTY7 emory- maneier-e-it T~

?re ir',inary 'Prol.ucT Specitic-ation, c~

19. A:vancea Mi1cro Cor-uters. AMY6/41l1f Amz !~ it-lit
? r.oa rr C ornut er, UJs e r's w anua, i

' . Ziior, Ince., Z :VVV PLZ/A.QM AS~e~rtly anquape Eoorari.

21. StneIJ.T!., . ard Cox, i- A., Se -ure Ar ,tlvii tcrae
S :s t em, Part I - :esi,?". Naval Fostraci~ate Scn~,:

i. Sc!tell, F. P.. and '-cC, T.. A.. Sec':,re Arcfliv!~. Storai'e

System. Pa.-t II - Se4 ent arA Process vaa-ent
1!rOn!rptt1Oul Navil iC~tpri!UatC SilnCCl.

225

INITIAL £1STFI3UTIC% LIST

.Y . Co. i

1. Epf!r.o rocumentatron. Center
ATTN :rDC-TC
Careron Station
klxancria, "Irgirl-d 22314

2. Litrary, Code 0142
Naval Po-tcraduate Scnool
menterey, Callrorria 9394 0

3. raDartrent Chairman, Code !2
Departmert o:" Comnute- Science
Naval Postgraduate Scrool
vonterey, California 934

4. LTCOL Po~ar R. Scnell, Cide 52Sj
Departrent of Corrputer Science
Naval Postgraduate Scrhool
monteray, California 9 4

b. Lyle A. CoT, Jr., Coie bC1 4
Department of Computer Science
Naval Postgraduate Sc.ccl
Mcn:erey. California 9 94 V

e. Jiel rimtlo, Code 221
Cfice of Naval ?esear^t

i'0 North Wuincy
Arlington, virgiria 22217

7. re-art,-ent Cnairrran
Department of Computer Scie e
United States Military Acalemy
West Point, New YorK 1iJY6

_. INTEL Cornoration
Attn: Mr. ?.obert Cnhlds
"ail Coae: SC 4-49V
3065 Powers Avenue
Santa Clara, Calilornia 95V51

9. :onn P.I. Wooawa'd
The L1MTRE Corporation
P.O. Box 2k
2eaord, vassacnusetts 1?

Attu: ':r. Donald G-aubatz
143 Oaln Street
Y1 3i-2/241
"'aynard , v assaciusetts j1'?4

i.J~e 7rr'an
Universitv of' Scuttwestern £cuisiana
P.O. kor &43Z5
Lafayette, tou,.iana 7Z5e4

12. LCEIR Gary laicer, Ccle -171
rezartrnt of* Coruter "Acnzooey
Naval Posteraduatp Fc!noo!

>~o~trv, Cailfrornia c4

Wayrestoro. M'ississippi 3 36 "7

14. ICFP Artniory 1). Striccuer
ioute #1;-
'ie st Sniplev Fer7r'r 9.3ac

Ki-NsctTnese 1 it

