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1. INTRODUCTION

Computer networks are becoming increasingly widespread-, their use already permeates our everyday life.
As a consequence, their correct functioning becomes paramount. Given that computer networks are
extremely complex systems, the task of certifying that they behave properly is nontrivial.

This report presents an exercise in verifying that a particular algorithm to realize an important function in
computer networks, namely connection establishmen, does indeed behave properly. The methods discussed
are applicable for analyzing a wide range of other network functions as well.

The remainder of this section gives background material. Section 1.1 discusses the nature and need for
connection establishment in computer networks; Section 1.2 then presents a new language suitable for the
specification of protocols; and Section 1.3 describes a system in which properties of such specifications can be
proved.

Section 2 presents a specification of a connection protocol currently in use, given in the language
introduced earlier. Section 3 then discusses particular properties of this protocol and shows their verification.

1.1 Connection-Establishment Protocols

This section presents the motivation for connection-establishment protocols in general and for the three-
way handshake used in the ARPANET in particular.1  Consider a distributed system with several
interconnected nodes. The nodes are connected by an unreliable transmission medium in which messages
may be lost or duplicated, and each node has several processes. Imagine now that two processes wish to
communicate; a common method to overcome the possible loss of data is to attach a sequence number to each
data packet that flows, in either direction, between them. If the two nodes can agree on a starting number to
be used. again in each direction, then they will be able to detect packets arriving out of order or being
duplicated.

Suppose now that the system, when it is created, initializes the nodes to have agreed-upon sequence
numbers, thus allowing the data transfer to take place immediately. Unfortunately, such systems are
impractical, for a number of reasons.

First, since the system is intended to be distributed, a failure at one node would require the whole system to
be re-initialized. Second, although there is a potential for communication between any two processes in the
system, only a few pairs will actually be engaged in data exchange at any one time. Since the resources
needed to maintain communication between procmsses are quite significant, the nodes should be able to keep
these resources allocated only while the exchange is taking place, thus increasing their utilization.

tThe reader familiar with the three-way handshake may skip this section.



2 FORMAL SPECIFICATION AND VERIFICATION OF

These considerations lead to the notion of connecions: When two processes wish to communicate, the
corresponding nodes will cooperate among themselves to establish a common frame of reference, e.g.,

sequence numbers for data flowing in each direction, for the exchange of data: when the exchange is
complete, the connection is closed, freeing the resources for use by other processes. The period of time that a
particular connection is open between two processes, i.e., the period of time a particular frame of reference is

in effect. is called an incarnation of that connection.

It is clear that for the exchange of data to be successful, the two nodes must agree on the state of the

connection. A further problem is introduced by the fact that the transmission medium may delay or duplicate
packets that flow between the two nodes. Since connections can open and close, it is possible for packets from

old incarnations to be in the medium: when they are present, they should not be mistaken for packets

belonging to a newly opened connection.

Since packets may be lost. a positive-acknowledgment retransmission-on-timeout scheme is used. In other
words, the sender keeps a copy of each packet sent until the receiver acknowledges that the packet has been

received. If no acknowledgment arrives after some predefined amount of time, it is assumed that the packet
or its acknowledgment was lost and it is retransmitted. Acknowledgments themselves are not acknowledged.

It is important to note that if there is a positive probability (no matter how small) that a packet is lost, then
it is actually impossible to completely separate the connection-establishment from the data transfer itself. To

see why. consider the last (synchronization) packet exchanged during the connection establishment, each

node will consider the connection to be open upon sending and receiving this packet. It is clear that the node

receiving this packet can be sure that the other node has a compatible view of the connection. The sender,

however, cannot be so sure. given the possibility that this last packet may be lost; only when the first data

packet arrives (in the reverse direction) will it be sure that the other node actually received it. Therefore, the

sender node must maintain both the data exchange and the connection-establishment information for that

a' period of time. An equivalent problem is discussed in [2].

In many systems, connections are opened and closed quite frequently. Since the medium may duplicate

packets. it is possible for a connection-request packet from a previous incarnation to appear at one node at

such a time as to be mistaken for a current one, thereby initiating a connection with the wrong frame of

reference (see [151).

A problem still remains as to how to identify packets from previous incarnations as being old. The

sequence numbers chosen to establish the frame of reference of a new connection must prevent that.

Sunshine, in 115], discusses this issue in more detail.

A protocol has been proposed to handle the connection-establishment problems discussed so far. It is called

the three-way handshake [19. 151. The particular version used here is taken from TCP [121. the second-

generation transport-level protocol being used in the ARPA internet system.

• t" " 1.. 1 4 " II' - '" " " +- _.: -, --r j , . .



A CON NEC1ION-ESTABLISHMENT PROTOCOL 3

This protocol derives its name from the sequence of steps a node goes through in order to establish a

connection. Suppose that node A wishes to communicate with node B and that node A takes the initiative.
The two nodes then go through the following steps:

1. Node A sends node B a connection request, called SYN (for SYNchronize).

2. Node B receives the SYN packet. and responds with a SYN of its own together with an
acknowledgment, together called SYNACK (for SYNchronize and ACKnowledge).

3. Node A receives the SYNACK packet, verifies that the ACK portion does indeed acknowledge its
own previous SYN, and sends an ACK packet acknowledging node B's SYN. At this point, node
A considers the connection to be opened.

4. Node B receives the ACK packet, verifies that it does acknowledge its own previous SYN, and
then considers the connection to be opened.

There are two basic modes for opening a connection: an active mode, in which the issuing node takes the
initiative; and a passive mode, in which the issuing node merely listens for incoming connection requests, and

accepts the first to come in. The basic protocol described above can be modified to handle the case when both

nodes do an active open simultaneously.

If at any point an incorrect packet arrives, then a RST (reset) packet is sent back to abort the connection-

opening procedure.

Figure 1-1 contains a state-transition diagram taken from [121. It does not show transitions caused by RST

or incorrect packets.

1.2 Overview of SPEX

We present here an overview of a language, called S PEX, to be used for the specification of a distributed

system in general and computer networks in particular. This language will be used later to describe the three-
way handshake protocol. As will be evident from the details given below, the underlying model in SPEX is

that of a nondeterministic state-transition system, with some specialized features to facilitate protocol

specification. SPEX is discussed at greater length in [13].

tA A system is regarded as consisting of a set of interconnected Nodes. In the case of the example presented
here, a Node can be a Station or a Medium. The pattern of interactions of the nodes constitutes the layer's

definition. A particular pattern of behavior characterizes a node's type. A system may in general be composed

of several distinct types of nodes, each with its own behavior, and may have several instances of each type of

node as well.

Thus, in order to completely characterize a system, it is necessary to describe the behavior of each type of
node (given in the Node Behavior part of the specification), the set of instances of each node type and the way

'*!
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active OPEN

Create TCB

snd SYN

passive OPEN CLOSE

create TCB delete TCB

SLISTEN JCLOSE

rcv YN /delete TCB

rcv SYN

snd SKYNACK

SYN ~rcv SYN Y

snd ACK

-r. I STAB

Figure 1-1: Three-way handshake state-transition diagram

the instances are interconnected (given in the Topology part), and the desired properties of the interactions

between the instances (given in the Properties part). In addition, the specification of any data types used in

specifying a nodes behavior must be included.

A node is some entity that has some internal State Variables and some externally visible Interface
V ariables: these variables may be of arbitrarily complex data types (which may be defined using algebraic

a data type specification methods [9. 7, 8, 5].). A node reacts to a set of specified Events. When one such event
- occurs, some state variables and some interface variables may have their values changed.

State variables can be accessed only locally at each node. Interface variables, on the other hand, can be
accessed from the outside--this is how a node communicates with the outside world, i.e.. other nodes in the
same system or other systems using the system in which the node is defined. Accordingly, the interface
variables at each node are divided into two kinds: those that are exported to other systems, and those that are

I.,
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A CONNECTION-ESTABLJSHMENT PROTOCOL5

connected to other nodes in the same system. In addition, each interface variable may have a direction of data

flow associated with it, meaning that data in that variable flows into or out of a node: if no direction is

specified, data in that variable flows in both directions.

The actual behavior of a node is given by describing how a node reacts to the occurrence of certain

specified events. Each event known at a node has a precondition associated with it; this precondition is a
predicate involving state and interface variables at that node. As long as a precondition is true, its associated
event is said to be enabled, enabled events may fire at any time.

The node's behavior is given in terms of the new values of all its variables when each of the possible events
occurs. All changes for an event are considered to happen simultaneously, i.e.. the events are considered
atomic. This means that if any variable A' is used to compute the new value of some variable, the value used

in the computation is the value X had before the event happened. For brevity's sake, if a variable is not

mentioned on the left-hand side of any event-effects statement, then its value is not changed by the
occurrence of that event.

Since state variables are not visible externally, they can be regarded as history variables (IIIJ which

accumulate information about the computation.

Since interface variables are externally visible, it is possible for an event el at some node NI to change the
value of some interface variable at another node. say N2. In fact, el may actually enable some event at N2;
this is effectively how nodes exchange data and synchronize their activity.

The last item necessary to completely describe a node's behavior is its Initial State, specifying the values of
any variables at system-creation time. The most general way to specify the initial state is to give predicates
which must be true in the initial state,. it may not be necessary or even possible to give actual values to the

variables.

The overall system behavior specif ed is defined as the set of all valid sequences of events. A valid sequence

iformed by starting from an initial ';tate (i.e., a state satisfying the initial state predicates) and successively
firing enabled events, it may be of infinite length. If it is of finite length, then the final state arrived at by

I" executing the sequence has no enabled events.

Once all node types have been specified. it is necessary to describe how the several nodes are connected.

This is achieved by allowing interface variables at each node to be connected to interface variables at other
nodes:, the intended semantics is that these are in fact shared variables between the corresponding nodes.

4 The Topology part then specifies how the interface variables of each ncde in the system (i.e., each instance

of each type of node) are connected to interface variables of the other nodes.

V7-,



6 FORMAL SPECIFICATION AND VERIFICATION OF

The Properties section states two kinds of properties of the protocol, Assumed and Asserted properties.

Asserted properties are those that must be proved true by the specifier and serve as an additional check of the

accuracy of the specification. In other words, proving these properties increases the confidence of the specifier

that the specification corresponds to her/his intuitive understanding of the system.

Assumed properties are used to define certain operations in a noncomputational fashion by giving input-

output relationships between arguments and returned values.

SPEXifications 2 can be conveniently translated into algebraic style data type specifications of the kind that

are supported by the Affirm system (see Section 1.3). This capability can be exploited to prove properties of

the protocol using analysis methods from the abstract data type specification domain or to perform a limited

form of symbolic execution of the specification, which helps in determining the accuracy of the specification.3

This translation is dicussed in detail in [131.

An over-iew of algebraic specification of data types and of Affirm is given in the next section.

1.3 Overview of Algebraic Specification of Data Types and of Affirm

The material presented in this section has been abridged from 14. 171.

Affirm [101 is an experimental system for the algebraic specification of and the verification of properties of

user-defined abstract data types. The heart of the system is a natural deduction theorem prover for the

interactive proof of these properties, which are stated in the predicate calculus extended wit. data types.

Programs. written in a variant of Pascal extended with user-defined abstract data types, may be verified using

the inductive assertion method [3]. Additional features include tools for the analysis of algebraic

specifications. a librar of useful data types, and user interface facilities. Experience with Affirm includes

extensive experimentation with data type specifications, verification of small programs. the specification and

partial proof of a large file-updating module, and the proof of high-level properties of security kernels.

The specification and theorem-proving portions of Affirm are relevant to the current discussion.

Like other specification and verification systems, Affirm follows its own particular theoretical and

programming paradigm--abstract data types specified algebraically and properties verified by rewriting rule

techniques. A brief description of the algebraic style of data type specifications and of the theorem-proving

portions of Affirm follows.

2".SPEX iication" will be used to mean SPEX specificauon,

I e whether the specification captures the designer's intuitive understanding of the system

0222.;N



A CONNECIION-ESTABLISIIMENT PROTOCOL 7

Following the algebraic style of data type specifications [9, 7, 8, 6, 5], a data type is specified by first
defining three sets of functions:

1. Consiruciors. These functions create values of the type. Their range is the data type being
specified. All values of the type can be described in terms of some functional composition of
these functions.

2. Extenders (or Modifiers). These functions also have the data type being specified as their range,
but in contrast to the constructors, they are not needed to express values of the data type--they are
derived operators. These functions can be defined in terms of the constructors.

3. Selectors. These functions yield values of types other than the one being specified. The general
term for these functions is selector, but functions yielding values of type Boolean are often termed
predicates. These functions are defined in terms of the parameters of the constructors

For example, the constructors of a queue are New Queue (the empty queue) and Add (appends an element
to a queue). Example extender functions are Remove (deletes the first element from a queue) and Append

(concatenates two queues). Observe that these extender functions can be defined in terms of the constructors
NewQueue and Add. Example selector functions are Front. #Elernents and in (a predicate). These are

definable in terms of the parameters to Add.

The effect of such a specification is to view values of the type in terms of the constructors which can build

them. Hence, al] selectors and extenders are defined in terms of these constructors. For example, the queue
of integers

(1,2, 3>

is represented (in infix form) as

((NewOueueOf Integer Add 1) Add 2) Add 3

The first part of a specification gives the signature of all operations, i.e., their domains and their ranges.
Figure 1-2 shows an example for the type QueueOflnteger.

Ideclare qq':OueueOf Integer;
declare i:lnteger;

interface NewOueueOflnteger, q Add i: OueueOflnteger;
interface Remove(q), Append(q,q') : QueueOf Integer;
interface #Elements(q), Front(q) :Integer;
interface i in q: Boolean;

Figure 1-2: Signature of type QueueOflnteger

The second part of a data type specification provides semantics for the operations whose domain and range

information was given in the first part. Extenders and selectors are defined by equational axioms of the form

4q
t;



8 FORMAL SPECIFICATION AND VERIFICATION OF

Ihs = =hs relating how each function behaves when applied to each of the constructors. Constructor

functions are treated as primitive, unspecified operations.

Examples of axioms taken from a specification of the type QueueOflnieger are given in Figure 1-3.

axioms
Remove(New~ueueOflInteger) = = NewOueueOfinteger.
Remove(q Add i) = = if q = NewOueueOf Integer

then q
else Remove(q) Add i,

#Elements(NewOueueOflnteger) = 0.
# Elements(q Add i) = = # Elements(q) + 1;

Append(q, NewOueueOInteger) = =q
Append(ql, q2 Add i) = = Append(ql, q2) Add i,

Figure 1-3: Some axioms for type QueueOflnieger

Data types in general have properties that the specifier may wish to prove. For example, "the number of

elements in the concatenation of two queues is the sum of the number of elements in each queue." Formally,

this property is stated as

# Elements(Append(q,q')) = #Elements(q) + # Elements(q')

Properties of a data type are proved using a method called structural induction [14. 7] which is based on the

notion that all values of the data type can be produced by repeated applications of the constructor functions.

To prove a property P of all elemei.s of a data type, it suffices to show that

1. It is true for the "base" cases--the constructors that produce values of the type without taking
values of the type as arguments (e.g., P(NewQueue)).

2. Assuming P is true for some value q. then it is also true for all values obtained by applying
constructors to q ( e.g., for all q.i P(q) implies P(q Add i)).

There is much more to specifying a data type specification than just giving a set of axioms. A good data

type specification should provide the desired set of operations. These operations should have the expected

(intuitive) properties. Tlhe axioms should also facilitate simple proofs. In other words, the type has an

associated iheory that expresses properties derived from the axioms. (Building these theories is a

mathematical art.) The main method of proof of such properties is induction, for which the schema part of a

type provides the proof structure.

Affirm is not exactly a proof checker, nor is it a proof finder. The responsibility for finding and executing

a proof strategy rests solely with the user. At each proof step, modifications are made to a system-maintained'Vl
*1



A CONNECTION-ESTABLISHMENT PROTOCOL 9

proof structure. Then the rewriting rules of the data types of the program, together with the rules of

propositional logic, are applied to simplify the proposition currently being worked upon. In general, the user

is attempting to reduce a formula to a set of subgoals so simple that their proofs are immediate, i.e., can be
obtained by the system without further direction. Some example commands for carrying out proofs and their

effects are:

try proposition Set up proposition as the current goal.

employ Induction(v)
Induction is a user-defined schema for the type of induction desired and v is the variable to
be induced upon. The proof structure is modified to show the various cases of the
induction.

applyb proposition Use proposition as a lemma in the proof (proposition must be proved or assumed
separately). A separate put command instantiates the variables in the lemma to the proper
values in the current goal.

suppose proposition
Break the current goal into two subgoals, one with the additional hypothesis proposition
and the other with -proposition.

split Break up the proposition at a designated spot into subgoals, e.g., the proposition H imp (C1
and C2) can be split into the two propositions H imp C1 and (H and C1) imp C2.

replace Replace subexpressions with other subexpressions according to designated equalities in the
current proposition.

invoke defn Invoke a definition defn that the user has made at some time.

The user can explore various avenues of proof until the proof is complete or until the conjecture is found to

£ be unprovable, at .vhichi point the proof of the corrected conjecture must be restarted or the bad proof steps

corrected.

Each theorem or intermediate proposition in Affirm is represented by a named node in a directed acyclic

graph called the proofforevt. The proof of a theorem comprises a tree, whose named arcs represent Affirm

commands and thus deductive steps. Affirm checks for circularity within the current tree.

An example of an Affirm proof is discussed in Section 3.

1.4 Relation to Other Work

There is a large body of work regarding techniques for specifying protocols. These include Petri nets (and

related graph models), formal languages, sequencing expressions, and (parallel) programming languages.

Much of this work is limited in expressive power, in the sense that specifications grow unproportionally large

Nr. . .
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as the complexity of the protocol being specified increases. Many also suffer from lack of a solid theory or of

automated tools for verification. Sunshine [16] provides a survey of this work.

Although the underlying model of SPEX is not new, it is believed to be the first language allowing the

formal specification of nondeterministic state transition systems in a modular, hierarchical fashion, and for

which semi-automated verification tools exist. An important advantage of the modularization and the

symbolic nature of the specification is that there is no combinatorial explosion when analyzing more complex

protocols. Schwabe [131 provides an example in which a complex protocol, involving an arbitrary number of

nodes, is specified and verified, but where the complexity of the proof is independent of the number of nodes.

P.

4
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2. SPECIFICATION OF THE THREE-WAY
HANDSHAKE IN SPEX

This section examines a SPEXification of the three-way handshake protocol described informally in

Section 1.1. Appendix I contains the actual text of the SPEXification.

First the state variables, interfaces, initial state, and events for one station are given, the main portion of the

specification shows the behavior of the station for each event. A small specification for the medium is also

given, stating that the medium is essentially a queue with an added LoseMessage event. In the sequel, a brief

explanation of the SPEX ification is given.

The three-way handshake protocol involves two nodes with identical behavior. The corresponding node

type is Station.

Each station needs the following state variables:

ISS is some constant to be used as Initial Send Sequence number.

Incarnation#In
is an incarnation identification for the packets coming in from the other node.

Incarnation#Out
is an incarnation identification for the packets leaving this node.

OldUnack
is the sequence number of the oldest sent packet which has not yet been acknowledged.

Seq# ToSend
is the sequence number that should be attached to the next data packet to be sent.

Seq# ToReceive
is the expected sequence number of the next packet coming in.

TimeoutBuffer
is a queue of packets containing copies of packets which have been sent but not yet acknowledged.4

The exported interface to using systems contains two variables:

Command
is a command buffer through which the user indicates what type of open request is desired.

4 Strictly speaking, TimeoutBuffer does not have to be a queue, but just a collection, of packets. Modeling it as a queue results in
simpler axioms in this situation.

-1 t nl n ' ~ I IT L I I t ' ; ' .- '-'- -' : .' , ,



12 FORMAL SPECIFICATION AND VERIFICATION OF

SiaieOf
is a variable that remembers the state of the station, i.e., somehow remembers the recent history of
messages that have been exchanged. Its value can be one of {Closed, Listen, SynSent, SynReceived,
Established).

Each station has two interface variables which are internal to the system, namely:

inPori
is a queue of incoming packets, with possible loss.

OutPort
is a queue of outgoing packets, with possible loss.

The initial state of each station requires that the State of the station be Closed, the TimeoutBuffer be empty
and the sequence numbers and incarnation number of incoming packets be zero.5

The events to which a station can react are:

ActiveOpen
which is caused when the user issues an active open command. This means that a connection request
will be sent to the other party.

PassiveOpen
which is caused when the user issues a passive open command. This means that the station will listen
for incoming connection requests and accept the first one that comes.

Timeout
which is caused when a timeout occurs, i.e., when a certain amount of time has elapsed without a packet
being acknowledged.

ReceiveRst
which is caused when a packet arrives whose control field is rst (reset). This is a control packet used to

indicate the discovery of an anomalous situation.

ReceiveAck
which is caused when an acknowledgment packet arrives.

ReceiveSyn
which is caused when a packet arrives whose control field is syn (synchronize). This is a connection
request.

ReceiveSynAck
which is caused when a packet which is both an acknowledgment and a connection request arrives.

5Zero is used as an arbiuy initial value.
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The node type representing the medium has only an interface variable, Buffer, which is a queue of packets.
There is only one event that can happen, LoseMessage, which models the medium being faulty. Note that the

transmit operation of the medium is modeled as an Add to the queue, and the receive operation is modeled as
a Remove from the queue, with the packet delivered obtained by Front of the queue (before the Remove).

The definition of the data type Packet can be found in Appendix II. A brief description is given here.

The fields of a packet are the following:

SeqNumber
is the sequence number of the packet.

Seq# Inc
is the incarnation number associated with the sequence number.

AckNumber
is the sequence number that the packet is acknowledging.

Ack, Inc

is the incarnation number of the acknowledgment field.

Cil is the control field of the packet.

As an illustration of the effects of an event, consider the ActiveOpen event (see page 26). Its precondition

states that it can fire only if the StateCf the node is Closed, and the user issued an active open command by
placing the value Active in the Command buffer. When this event fires, the effects specified state, for instance,
that a SYN packet is sent to the other side by appending it to the OutPort interface variable. It is also
specified that the StateOfstate variable becomes SynSent.

Finally, the Topology section states that there are two stations, Left and Right, connected by a medium in
each direction (i.e., OutPortC&Lef, Buffer@LeftToRight, and InPortCRight are all a single shared queue).

The Properties section states properties concerning the correct operation of the system that will be
discussed in Section 3.

The SPEXification given in Appendix I is a simplification of the one given in TCP [121. The main

differences are:

I TCP allows connections between arbitrary pairs of addresses within a large address space. As in
TCP, the SPEXification assumes this addressing function is performed by a higher (sub) level, so
that only fixed pair of nodes need be considered.

I TCP uses a sequence number and an initial send sequence number selection algorithm to handle
the problems of distinguishing incarnations. TCP sequence numbers correspond roughly to a
th ficrntos C
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concatenation of incarnation and sequence numbers in our specification. TCP sequence numbers
are of finite size, whereas they are of infinite size in the SPEXification.

The SPEXification concerns itself only with the connection-opening phase of the protocol; it does
not allow closing of the connection in the middle of an opening. Likewise, it does not allow data to
be sent while a connection is being opened.

, When a RST packet arrives at a node that is in SYNSENT state, the TCP remembers whether the
connection started via an active or via a passive open. If the open was passive, the station returns
to the LISTEN state rather than closing the connection. The SPEXification always closes the
connection after a reset. This modification does not affect the functional correctness of the
protocol, but makes the corresponding SPEX ification simpler.

For the purposes of verifying properties of the three-way handshake, the SPEXification has been manually

translated into an algebraic data type specification that can be understood by the Affirm system. Appendix II

contains the generated axioms and auxiliary data type definitions (e.g., Packet, QueueOfPacket) in Affirm

syntax.

I.

",
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3. VERIFICATION

3.1 Introduction

This section discusses the verification of properties concerning functional correctness and liveness. The
discussion is presented in terms of the algebraic style data type specification as understood by Affirm.

As was discussed in Section 1.1, the functional correctness of a connection protocol cannot be completely
separated from the succeeding data transfer phase. This introduces a problem as to the instant at which the
claim of functional correctness should be made. Ideally, functional correctness should state that

At the end of the connection phase, both stations are in the Established state and are
synchronized, which means that "old" data will not be accepted, but "new" data will be.

Therefore, it would be necessary to describe at least part of the data transfer protocol as well.

Because the data transfer has been omitted from the specification, a modified version of this property must

be used. The following sections describe this in more detail.

3.2 Functional Correctness

Consider now the functional correctness of the protocol, as stated above, but from only one node's point of
view 

6

(StateOf = Established)@ Right
imp Seq # ToReceive@ Left = Seq # ToSend@Right and

Incarnation # In@Left = Incarnation # Out@Right;

In English, this says that if the station on the Right side is in the Established state, then the connection is

synchronized for data flowing out of this node.

This property is proved to be invariant by inductive proof methods which are used for abstract data types
Work with this specification showed that this theorem was not strong enough to be used in an inductive proof,

for the following reason. Careful study of the protocol shows that it is possible for the above properties to
hold in the SynSent state also, when simultaneous active open commands are issued at both nodes, as follows:

one side may be in the SynSent state and may already have received an acknowledgment for its SYN packet;
this side would not enter the Established state until it receives the SYN packet from the other side. This
situation is characterized by the fact that OldUnack (the oldest unacknowledged sequence number) is not ISS
anymore. Since this side has received an acknowledgment for its SYN, it can be sure that the other side
knows its Seq #ToSend and its Incarnation # Out.

6The notation P@ n means Pis tobe evaluated in node n.
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Hence the statement of functional correctness must be strengthened (for one side only) as follows:

Theorem FC:

((StateOf= Established) or ((StateOf= SynSent) and OldUnack- = ISS) )@Right
imp

Seq #ToReceive@Left = Seq #ToSend@Right and
Incarnation # ln@Left = Incarnation # Out@Right:

This need to strengthen or generalize a theorem in order to prove its invariance is typical of inductive proof

methods used for abstract data types.

Notice that this strengthened statement implies the weaker one, so that proving the stronger one proves the

weaker one as well.

Figure 3-1 contains a proof tree for this theorem produced by the Affirm system; the lemmas and

definitions used are given in Figure 3-2 (these figures contain axioms and theorems stated using Affirm
syntax; the correspondence to SPEX syntax should be obvious). 7 The proof follows an inductive argument

over all possible events in the system. Broadly speaking, this can be expressed as the following: given a goal

state (e.g.. Established), examine how each event can move the system into that state (e.g., ReceiveAck event in
SynReceived state). In general, there are many states from which the system may move into the goal state.

Considering now each of those states. one uses the inductive hypothesis to try to prove the theorem.

After some examination of the proof tree, it is possible to see that most cases follow directly from the

inductive hypotheses; this can be seen in the proof tree by looking at the branches and noticing where only an

invoke IH command (possibly preceded or followed by some replaca cases and invoke commands) was given.

Now the cases are examined which do not follow directly from the inductive hypotheses, i.e., involve the

application of some lemmas.

Consider what happens when a ReceiveAck@Right occurs (--<1 ).8 The relevant case to consider has the

node at right in SynSent or in SynReceived, and the incoming acknowledgment has the current incarnation

number (since otherwise the packet would be discarded as old). In other words, the incarnation number in

the packet is equal to Incarnation#Out@Right. (See hypotheses of theorem AcksAndSyns in Fig. 3-2,

applied at ,-,-<2.) But if the incarnation number is current, then there must have been a SYN packet in the

past which this current packet acknowledges (see definition of HasSyn, invoked at 4-,-(3). Thus, the current

ACK carries the same incarnation number that the SYN carried, which means that the station at left has its

Incarnation#In set to the incarnation number of that SYN packet. Therefore, we can conclude that

I ncarnation # Out@Right = Incarnation # In@Left.

7 Numbers on the left stould be ignored: the) result from bookkeeping in Affirm.

8 Indicators of the form -.-(nf are used to point to the corresponding places in the proof tree
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theorem Synchronized. StateOf(S.Right) - Established
or StateOf(S.Rght) SynSent and OldUnack(S.Right) - ISS(Right)

imp synchronized(S);
Synchronized uses EorSSimpEorSR%, SynchWoLorCorSS%, AcksAndSyns. FrontInQ%.
Seq#ToSendVals%. and Seq#ToReceiveValx.

proof tree:
68:! Synchronized

apply EorSSimpEorSR fproved by Schwab. using Affirm 120 on 4-Feb-81 in
transcript <SCHWABE Aifirmtranscript.3-FEB-81.2}

70: 64 put S"S

74: 56 employ Induction(S)
Empty:

Immediate
76: apr:

56 employ NormalForm(ii$)
78: ActiveOpen:

57 cases
80: 66 invoke I
82: 66 replace
84: 67 invoke synchronized I al
84: (proven!)
221: PassiveOpen:{Synchronized. apr:)

58 cases
223: 125 Invoke IN
225: 126 invoke synchronized I all i
225: (proven!)
227: LoseMessag e:{Synchronized, apr:)

59 invoke IN
229: 128 invoke synchronized I all I
233: (proven!)
231: Timeout:{Synchronized, apr:)

60 invoke IN
233: 130 invoke synchronized I all I
233: (proven!)
235: ReceiveRst:{Synchronized. apr:)

61 cases
237: 131 employ NormalForm(i )
239: Left:

132 invoke IN
241: 134 invoke synchronized all
241: (proven!)
243: Right:

133 invoke IN
253: 136 invoke synchronized I all
253:-> (proven!)
88: ReceiveAck:{Synchronized. apr:)

62 cases
90: 69 employ NormalForm(i')
92: Left:

70 invoke IN
94: 72 invoke synchronized I all
94: (proven!)
96: Right: 4<1

71 invoke I
98: 74 replace
105: 76 invoke synchronized I all
107: 76 apply AcksAndSyns o<2
109: 77 put pk a Front(Nedium(ss'. Left))

and Sass'
111: 78 apply FrontlnQ
113: 79 put Q - Medium(ss', Left)

A 116: 80 replace
121: 81 invoke PreCond I -4 : -3
123: 82 apply Seq ToSendVals 4
125: 83 put Sass'
127: 84 invoke IncomingAck#Valid i all I
129: 85 invoke HasSyn +<3
131: 86 replace
133: 87 apply Seq#ToReceiveVal 4-4-<5
135: 88 put Sass'
136: (proven!)

Figure 3-1: Proof tree for the functional correctness of the three-way handshake



18 FORMAL SPECIFICATION AND VERIFICATION OF

137: ReceiveSyn:{Synchronized, apr:)
63 cases

139: 90 invoke IH -4-<6
141: 91 replace
143: 92 invoke synchronized I all
145: 93 cases
150: 94 replace
161: 95 apply SynchNoLorCorSS 4<7
163: 97 put Sxss'
165: 98 replace

(proven!)
167: ReceiveSynAck:{Synchronized. apr:)

64 cases
169: 99 employ NormalForm(i')
171: Left:

100 invoke IH
173: 102 invoke synchronized I all
175: 103 cases
177: 104 replace
179: 105 apply SynchNoLorCorSS
181: 106 put Stss'
181: (proven!)
183: Right:{Synchronlzed, apr:. ReceiveSynAck:)

101 invoke IH
185: 108 invoke synchronized I all
187: 109 apply AcksAndSyns
189: 110 put S-ss"

and pk = Front(Medium(ss', Left))
191: 111 apply FrontInQ
193: 112 put Q = Medium(ss', Left)
195: 113 replace
199: 114 invoke IncomingAck#Valid I last I PreCond I 1
201: 115 replace
203: 116 invoke HasSyn
205: 117 invoke PreCond
207: 118 replace
209: 119 apply Seq#ToSendVals
211: 120 put Slss'
213: 121 replace
215: 122 apply Seq#ToReceiveVal
217: 123 put S-ss'
219: 124 replace

(proven!)

Figure 3-1: Proof tree (continued)

Il

4t



A CONNECTON-ESTABLISHMENT PROTOCOL 19

theorem Synchronized, StateOl(S, Right) = Established
or StateOI(S, Right) aSynSent

and OldUnack(S, Right) - = ISS(Right)
imp synchronized(S);

theorem AcksAndSyns pk in Medium(S, Left)
and StateOf (S, Left) - = Listen
and StateOl(S, Left) - = Closed
and Inc # ACk(pk) =Incarnation 0 Out(S, Right)
and (Control(pk) =ack) or (Control(pk) = synack)

imp HasSyn(S. pk);

theorem FrontlnO, 0- = New~ueuOf Packet imp Front(O) in 0;

theorem Seq 0 ToSend Vats. StateOf (S. Right) - = Closed
and State~l(S, Right) - = Listen

* imp Seq 9 ToSend(S, Right) = I + ISS(Right);

theorem Seq # ToReceiveVal, StateOf (S, Right) - =Closed
and StateOf (S, Right) - =Listen
and State~f (S. Left) =SynReceived

or StateOt(S, Left) =Established
and Incarnation 9 Out(S, Right) =Incarnation SIn(S. Left)

imp Seq # ToReceive(S, Left) = 1 + ISS(Right);

theorem EorSSimpEorSR, State~f (S, Right) = Established
or StateOf(S. Right) = SynSent

and OldUnack(S, Right) - =ISS(Right)
imp StateOf (S, Left) =Established

or StateOf (S, Left) SynReceived;

theorem SynchNoLorCorSS, StateOf (S. Right) = Established
or StateOl(S, Right) =SynSent

and Old~inack(S, Right) - = ISS(Right)
imp StateOf (S, Left) - = Listen

* and StateOl(S, Left) - = Closed
and StateOf (S, Left) - = SynSent;

define synchronized(S)
--CSeq 9 ToReceive(S, Left) = Seq # ToSend(S, Right)

and Incarnation # ln(S, Left) = Incarnation # Out(S, Right)),

HasSyn(S. pk)
-=some SS, SS', pk'

(SS join SS' = S
arnd pk in Medium(SS, Right)

46 ~and Inc # Seq(pk') = nc #Ack(pk)
and Inc # Seq(pc') = Incarnation 9 n(S, Left)
and if Control(pk) = synack

then Control(pk') =syn

else (Control(ok') syn or Control(pkC) = synack));

Figure 3-2: Theorems and definitions used in the proof of the three-way handshake
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For the sequence numbers to correspond, it suffices to see that, if the state of a node is not Listen or

Closed, then its Seq#ToSend is always equal to ISS + 1 (Seq#ToSend will not change until data is sent -- see
theorem Seq # ToSendVals, applied at -- <4), and that all SYN packets carry ISS as their sequence numbers.

Since the Seq#ToReceive is taken from the SYN packet, it must perforce be ISS+1 (see theorem

Seq#ToReceiveVals, applied at -- <5). Therefore Seq#ToReceive@Left = Seq#ToSend@RighL

The next relevant case is when a ReceiveSyn@Left occurs (--<6). This can be correct only if the node at

left is in either Listen or SynSent: all other cases either cause an error or ignore the packet. But a careful

examination of the state machine shows that it is not possible to have the station at one side in either Listen or

SynSent, and the other in either Established or in SynReceived with OldUnack ~ = ISS (theorem
SynchNoLorCorSS. applied at +..-<7). Therefore this situation really cannot occur.

The other relevant cases are when a ReceiveSynAck occurs at either node. If it happens at the node at right,

then the proof follows the same argument as the case for the ReceiveAck@Right. If it happens at the node at
left, then the proof follows the reasoning for the case ReceiveSyn@Left.

3.3 Liveness

Another useful property that this protocol possesses is Liveness, which states that either some event in the

system is enabled or the system is in its final state, Since open events are user generated, these events are

ignored, and we assume that the system starts in a state where neither side is in the Closed state and both sides
are not passively listening. In this case, it is expected that the correct protocol will complete the connection-
establishment and reach a final global state in which both sides have reached the Established state.

In order to prove such a property, however, it is necessary to prevent certain sequences from actually being

valid for the system. These are sequences composed entirely of LoseMessage or Timeout events. Such

sequences reflect fairness assumptions on the medium, as well as finite capacity. Thus, restrictions must be

made in the specification to insure the fairness of the medium. These restrictions are incorporated by

including a limit on the number of occurrences of the LoseMessage event, as well as on the size of the
medium.

Accordingly, the number of occurrences of the LoseMessage event is limited by having an extra auxiliary

counter such that LoseMessage can be enabled only when the counter is positive, and each time LoseMessage
fires it decreases the counter by one. It is set to some constant value each time a message or an

acknowledgment is received. This constant value must be finite, but can be arbitrarily large.

The capacity of the medium can be taken into consideration by augmenting the precondition of all events

that put something into the medium with a test to see if the length of the corresponding queue is less than a

certain constant, which again must be finite but arbitrarily large. This rules out behaviors in which a node

times out over and over, without anything else happening in the system.

t: r-



A CONNECTION-ESTABLISHMENT PROTOCOL 21

With these modifications introduced, an attempt was made to prove that this protocol is alive, i.e.. it

satisfies

Theorem Liveness:

For all Si

[-PreCond(SReceiveXX) and -PreCond(STimeout)
and -PreCond(S,LoseMessage) and StateOf- = Closed]@i
and -(StateOf@i = Listen and StateOf@OppositeSide(i) = Listen)

imp (StateOf= Establis' "d)@Left and (StateOf= Established)@a Right'

where XX= {Ack,Syn,SynAck,Rst}.

An inductive proof goes through for all cases except for ReceiveRst. After some investigation, it was found
that there is a scenario in which it is possible for the two nodes to end in the Closed state, which is a
contradiction of the theorem! Figure 3-3 shows this scenario (with SEQ treated as a single item representing
both the sequence number and the incarnation number).

This situation is considered an error because old duplicate packets in the medium prevent a connection

from being established. Note that this is a liv eness error. not a safety error, since nothing bad happens, i.e., no
incorrect synchronization or data transfer takes place, but the intended progress does not occur.

6. Another situation in which there is no progress may occur because of the introduced protocol simplification

that a node always returns to Closed state when a RST packet arrives. Note that this is not the scenario

described above.

Interestingly, if data packets are allowed to be sent, this scenario can be continued in such a way that it
actually accepts data incorrectly. It is sufficient for the appropriate old data packets to arrive at Node A at the

*' point Node A entered the Established state and before any RST packets were sent by Node B; this is

*indicated in Figure 3-3. However, it should be noted that this situation depends on an extremely unlikely

timing of message exchanges, which is not expected to be of practical significance.

This incorrect data can be avoided with a small change in the protocol. Work is under way to verify that a

corrected version of the three-way handshake avoids it.

In [11, Berthomieu discusses the verification of other types of liveness properties in algebraically described

state transition systems.

1;i

f
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CLOSED CLOSED
act. Open <SEQ =200XCTL =SYN> ->

(delayed) <- (SEQ = 300XCTL = SYN> act. OPEN

SYNSENT SYNSENT
.rcv SYN

SYNSENT SYNRECEIVED
<- <SEQ=3O1XACK=2O1XCTL=ACK> snd A CK

rev ACK
SYNSENT SYNRECEIVED

W( - (SEQ = 1OO<CTL =SYN> old duplicate!!
rev SYN

ESTABLISHED SYNRECEIVED
snd A CK (SEQ = 21XACK=IOIXCTL =ACK> -> bad ACK!!

bad data might be accepted here
e.g., <- (SEQ = 11XDATA>

rev ACK
ESTABLISHED SYNRECEIVED

<- <SEQ=1O1XCTL=RST> snd RST
rev RST

CLOSED SYNRECEIVED
<- (SEQ =300XCTL = SYN> original delayed syn

1.-frev S YN
CLOSED SYNRECEIVED
snd RST (SEQ=OXACK=3OIXCTL=RST>->

rrv RST
discard- bad A CK#

rev ACK <- (SEQ = 31XACK = 21XCTL =ACK) snd ACK
*CLOSED SYNRECEIVED

snd RST <SEQ = 201XCTL = RST> -> rcv RST
CLOSED CLOSED

Figure 3-3: Example of a fiveness error in the three-way handshake
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4. CONCLUSIONS

This report has presented an exercise in the verification of properties of a connection-establishment
protocol. A specification language tailored to the need of communications protocols has been proposed, and
its relation to a semi-automated verification system discussed. This language was then used to specify a
connection protocol currently being used, and certain errors were uncovered using the verification system,
although the major portion of the protocol's operation was shown to be correct.

This work is part of an ongoing project to develop better protocol specification and analysis technhques,
further work is described in [13, 181. OUr preliminary experience indicates that the combination of state
transition and abstract data type specification methods being pursued provides a reasonably convenient and
powerful approach to these problems.
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1. SPEXIFICATION OF THE THREE-WAY
HANDSHAKE

Node(Station)[
State Variables

155, IInitial Send Sequence ,V
Incarnation # Inl, iIncarnation *0 ofincoming packets
Incarnation # Out, IIncarnation #' ot outgoing packets
OldUnack, IOldest unacknowledged Seq. 0

Seq # ToSend, ISeq .V to put in the next outgoing packet

Seq # ToReceive INext expected seq *

:Nat, INat stands for Natural

TimeoutBuffer: QueueOfPackets, Ibutter with packets sent and not acknowledged

I]
Interfaces

Exported::
Command : Command, IOne at (Active, Passive,.Null)
StateOf : SysState, IState ot this side of the connection

Internal::
InPort , Imsgs coming in
OutPort msgs going out

:QueueOfPackets;

Initial State

Incarnation # Out =Maxval(lnPort Append OutPort) andl Max vat produces a unique value
see Pro perties section

Incarnation # In = 0 and
Seq #ToSend = 0Oand
Seq # ToReceive = 0 and
StateOf = Closed and
OldUnack = 0,
TimeoutBuffer = New~ueueOfPackets;

Events
IEvents and their preconditions

ActiveOpen : PreCond is StateOf = Closed and Command =Active,
A PassiveOpen: PreCond is StateOf =Closed and Command = Passive,

Timeout: PreCond is TimeoutBuffer - . NewOueueOfPackets,
ReceiveRst: PreCond is InPort- =New~ueueOf Packets and Control(Front(lnPort)) =rst,
ReceiveAck: PreCond is InPort- =New~ueueOfPackets and Control(Front(lnPort)) =ack,
ReceiveSyn : PreCond is InPort- =New~ueueOf Packets and Control(Front(InPort)) =syn,
ReceiveSynAck: PreCond is

InPort- =New~ueueOfPackets and Control(Front(InPort)) . synack

EH3CWG PAGE R.AM-NorQ n!
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Behavior

I first we define some auxiliary predicates and

Itunctions to improve readability of the specification

define lncomingAck #Valid = =

( AckN umber(Front(In Port)) = + OldUnack) and
Ack # Ilnc(Front(ln Port)) = Incarnation # Out;

Acknowledgment for X has Ack X. 1

define IncomingSeq # Valid =

(SeqN umber(Front(in Port)) =Seq # ToReceive) and

Seq #nc(Front(nPort)) = Incarnation# In;

ActiveOpen::

Command +-Null,

Incarnation # Out 4- Maxval(lnPort Append OutPort),

OldUnack 4- ISS,

Seq # ToSend +- + ISS

StateOf 4- SynSent

TimeoutBuffer 4

New~ueueOfPackets Add pkt(ISS,Maxval(ln Port Append Outport),AnyNat,AnyNat,syn)

OutPort 4

Outport Add pkt(ISS,Maxval(InPort Append Outport),AnyNat,AnyNat,syn);

PassiveOpen::
Command+- Null,

t StateOf 4- Listen,

TimeoutBuffer - New~ueueOfPackets; -

ReceiveRst::
StateOf 4

if StateOf = SynSent and IncomingAck # Valid
then Closed
else if StateOf = Listen

then Listen
else if lncomingSeq# Valid

then Closed
else State~f,

14
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TimeoutButter
it Stateot = SynSent and incomingAck # Valid
then NewQueue~fPackets
else if lncomingSeq # Valid

then New~ueueOtPackets
else TimeoutBuffer,

InPort +-Remove(lnPort),

ReceiveAck::
O1lUnack

if StateOf = SynSent
then it IncomingAck # Valid

then + OldUnack
else OldUnack

else if StateOf = SynReceived
then if IncomingAck # Valid and IncomingSeq # Valid

then + O1lUnack
else O1lUnack

else OldUnack,

StateOf 4

if StateOf = SynReceived
then if IncomingAck # Valid and IncomingSeq # Valid

then Established
else SynReceived

else State~f,

TimeoutBuffer 4

it StateOf = Closed or StateOf =Listen

then NewQueue~fPackets
else if StateOf = SynReceived

then if lncomingAck #Valid and lncomingSeq #Valid
then DeletePacket(TimeoutButffer,Seq # ToSend)

jp else TimeoutBuffer
else if StateOf = SynSent

then if IncomingAck # Valid
then DeletePacket(TimeoutBuffer,Seq # ToSend)
else TimeoutBuffer

else TimeoutBuffer,

.4
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OutPort
If StateOf a Closed or StateOf a Listen

or ((StateOf = SynSent) and - IncomingAck # Valid)
then OutPort

Add pkt(AckNumber(Front(lnPort)),
Ack # lnc(Front(lnPort)),
AnyNat,AnyNat,
rst)

else if Stateaf = Syn Received
then If -IncomingSeq # Valid

then OutPort
Add pkt(Seq # ToSend,lIncarnation # Out,

Seq # ToReceive~lncarnation # In,
ack)

else if - IncomingAck #Valid
then OutPort

Add pIkt(AckNumber(Front(lnPort)),
Ack # lnc(Front(ln Port)),
AnyNat,AnyNat,
rst)

else OutPort
else OutPort,

InPort Remove(InPort);

RecelveSyn::
Incarnation#4 Out

If StateOf a Listen
then Maxval(InPort Append OutPort)
else Incarnation # Out,

Incarnation#4 In ~
* if ((StateOf = Listen) or StateOf =SynSent)

then Seq # lnc(Front(InPort))
else Incarnation 4#In,

OldUnack4
If StateOf = Listen
then ISS
else OldUnack,

Seq # ToSends
If StateOf = Listen
then + ISS
else Seq # ToSend,

Seq # ToReceive
If StateOf m Listen or StateOf =SynSent

then + SeqNumber(Front(lnPort))
else Seq # ToReceive,
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StateOf +
if StateOf = Listen
then SynReceived
else if StateOf = SynSent

then if Oldl-nack = 185
then SynReceived
else Established

else State~f,

TimeoutBuffer 4-
if StateOf = Listen
then New~ueueOfPackets

Add pkt(ISS,Maxval(lnPort Append OutPort),
+ SeqNumber(Front(InPort))
Seq # lnc(Front(lnPort)),

synack)
else if StateOf = Closed

then New~ueueOfPackets
else TimeoutBuffer,

OutPort 4
if StateOf = SynSent
then OutPort

Add pkt(Seq # ToSendIncarnation#4 Out,
+ SeqNumber(Front(lnPort))
,Seq # Inc(Front(lnPort)),
ack)

else if StateOf = SynReceived or StateOf =Established

then if IncomingSeq # Valid
then OutPort
else OutPort

* Add pkt(Seq # ToSend,
Incarnation # Out,
Seq # ToReceive,
Incarnation # In,
ack)

else if StateOf = Listen
then OutPort

Add pkt(ISSMaxval(lnPort Append OutPort),
+ Seq Number(Front(ln Port))
Seq # Inc(Front(InPort)),
synack)

else OutPort
Add pkt(O',lIncarnation # Out,

+ SeqNumber(Front(lnPort))
,Seq # Inc(Front(lnPort)),
rst),

InPort Remove(lnPort);
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ReceiveSynAck::
Incarnation # In +

if (StateOt = SynSent) and IncomingAck # Valid
then Seq # lnc(Front(InPort))
else Incarnation # In,

OldUnack
if StateOf = SynSent

then if lncomingAck# Valid
then + OldUnack
else OldUnack

else if StateOf = Syn Received or StateOf =Established

then if lncomingAck #Valid and IncomingSeq #Valid
then +Old Unack
else OldUnack

else OldUnack,

Seq # ToReceive 4

if StateOf = SynSent
then if IncomingAck# Valid

then +~ SeqNumber(Front(InPort))
else Seq #ToReceive

else Seq # ToReceive,

StateOf 4

if StateOf =SynSent and IncomingAck # Valid
then Established
else State~f,

TimeoutBuffer 4-

if StateOf = Closed or StateOf =Listen

* then New~ueueOtPackets
else if StateOf . SynSent

then If IncomingAck # Valid
then DeletePacket(TimeoutBuffer,OldUnack)
else NewOueueOfPackets

else TimeoutBuffer,
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OutPort
if StateOf =Closed or StateOf =Listen

then OutPort
Add pkt(AckNumber(Front(lnPort)),

Ack # lnc(Front(lnPort)),
AnyNat, AnyNat,
rst)

else it StateOf = SynSent
then if lncomingAck# Valid

then OutPort
Add pkt(Seq # ToSend,lncarnation # Out,

+ SeqNumber(Front(flPort)),
Seq # Inc(Front(lnPort)),
ack)

else OutPort
Add pkt(AckN umber(Front(flPort)),

Ack # lnc(Front(lnPort)),
AnyNat,AnyNat,
rst)

else if StateOf = Established
then if lncomingSeq #Valid

then OutPort
else OutPort

Add pkt(Seq # ToSend,
Incarnation # Out,
Seq # ToReceive,
Incarnation # In,
ack)

else if StateOt = SynReceived
then if '-lncomingSeq# Valid

then OutPort
Add pkt(Seq # ToSend,Incarnation # Out,

Seq # ToReceive,Incarnation # In,
ack)

else if -lIncomingAck # Valid
5w then OutPort
46 Add pkt(AckNumber(Front(lflPort)),

- Ack # lnc(Front(InPort)),
AnyNat,AnyNat,
rst)

else OutPort,

InPort -Remove(lnPort);

Timeout::
OutPort 4-OutPort Append TimeoutBuffer;

ANod# S1at0n "
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Node(Medium)f
State Va rlables[I No state variables I
Interfaces

Exported::
Buffer: OueueOfPacket;

Initial State
[ Buffer = NewueueOfPacket;]

Events[ LoseMessage: PreCond is Buffer - =NewOueueOfPacket;]

Behavior

LoseMessage::
Buffer +- Remove(Buf fer);

I Node Mediuml]

Topology
( There is a medium RightToLeft and a medium Left ToRight

There are two instances of node type Station: Left and Right

Instances::
RightToLeftLeftToRight: Medium,
Left,Right: Station;

Connections::
InPort@ Left,OutPort@ Right <-> Buffer@ RightToLeft,
OutPort@ Left,lInPort@ Right (-> Buffer@ LeftToRight;

47 - Properties

assume Maxval(Q),
torall pk(

pk in 0 imp (Maxval(Q) > Seq # lnc(pk) and Maxval(Q) > Ack # lnc(pk))

assert CorrectSynch,
((StateOf =Established) or StateOf = SynSent and OldUnack- =ISS)@Right imp
Seq # ToSend@Right - Seq # ToReceive@ Left and
Incarnation # Out@ Right = Incarnation # In@ Left,

assert Liveness,
For all i ican be one of (Leit.Right)
( ~PreCond(ReceiveAck) and -PreCond(ReceiveSyn) and
-PreCond(ReceiveSynAck) and -PreCond(ReceiveRst) and
-'PreCond(Timeout) and '-PreCond(LoseMessage) and StateOf- - Closed)@i
and - (StateOf @i = Listen and StateOf @OppositeSide(i) a Listen)
imp (StateOf =Established)@ Left and (StateOf =Established)@ Right;
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11. AXIOMS GENERATED FROM THE
SPEXIFICATION OF THE THREE-WAY
HANDSHAKE

The axioms that follow contain the translation of the S PEX ification of the three-way handshake given in
Appendix 1. The medium interface variables (InPori, OutPort and Buffer) have been collapsed into the
variable Medium. The precondition of event e is called PreCond(Se). The Command interface variable has

been eliminated, since it is not really necessary when analyzing the properties of the system specified.

11.1 Three-Way Handshake

type Three Way;
needs types Event.SequenceOfEvent.Packet,OueueOfPackets,SysState,Side;
declare Q,q,q':QueueOt Packets;
declare seq * ,seg # ,ack * ,snd # :Integer;
declare cl:ControlField;
declare SSSSS':Sequence~f Event;
declare pe:Event;
declare pk,pk':Packet;
declare i,iij:Side;

interface ISS(i):lnteger;

interlace
TimneoutBuffer(S,i),
Medium(Sji)

:OueueOf Packets;

interface
State~f(S,i)

:SysState;

interlace
Maxval(q),
incarnation * ln(S,i),
Incarnation *Out(Sje),
OldUnack(Sji),
Seq # ToSend(Si),
Seq * ToReceive(S,i)

4 Integer;

interface Ind uction(S):Boolean;

(auxiliary functions to help in the readability of the axioms)

interface PreCond(S,pe),
IncomingAck * Valid(Sji),
lncomingSeq # Valid(S,i)

define (auxiliary function definitions)

PreCond1(S,Actve~pen()) x State~f(Sji) Closed,

PreCond1(S,Pasaive~pen(i)) =sSlate~f(Sji) aClosed,

PreCond(STimeout(i)) = Timeout~uffer(S,i) - a NewOueueOf Packets,

PreCond(SLoseMessage(i)) au Msdium(SAi - z NewOueueOf Packets,

PreCond(SReceiveRst(i)) a a

4 (Medium(S,OppouitSdei)) ~zNewOueue~t Packets) and

41

*17
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Control(Front(Medium(S,OppositeSide(i)))) = rst,

PreCond(SReceiveAck(i)) = =
(Medium(SOppositeSide(i)) - = NewOueueOf Packets) and
Control(Front(Medium(S,OppositeSide(i)))) = ack.

PreCond(S.ReceiveSynQi)) = =
(Medium(S,OppositeSide(i)) - = NewOueueOtPackets) and
Control(Front(Medium(SOppositeSide(i)))) =syn,

PreCond(S.ReceiveSynAck(i)) = =I
(Medium(S.OppositeSide(i)) - = NewOueueOf Packets) and
Control(Front(Medium(S,OppositeSide(i)))) =synack,

lncomingAck#Valid(Si) =
(AckNumber(Front(Medium(SOppositeSide(i)))) = 1 +Ol1dUnack(Si)) and
Inc # Ack(Front(Medium(S,OppositeSide(i)))) = Incarnation #Out(Si),

lncomingSeq#*Valid(S,i) = =
(SeqNumber(Front(Medium(S,OppositeSide(i)))) = Seq #ToReceive(Si))
and Inc # Seq(Front(Medium(S,OppositeSide(i)))) zIncarnation # In(Sji);

axioms {Initial State)

Incarnation # Out(Empty,i) = Maxval(Medium(EmptyLeft) Append
Medium(Empty,Right)),

Incarnation # ln(Empty,i) ==0,

OidUnack(Empty,i) ==0,

Seq # ToSend(Empty,i) = 0,

Seq#*ToReceiwelEmpty,j) =0.

Medium(Empty.i) ==New~ueueOf Packets,

State~t(Emptyi) ==Closed,

TimeoutBuffer(Empty,i) = New~ueuef Packets;

axioms (Active Open)

Incarnation 0 Out(S apr ActiveOpen(i),j) =
if .= j and PreCond(S,ActiveOpen(i))
then Maxval(MVedium(S,Left) Append Medium(S.Right))
else Incarnation # Out(SJfl,

Incarnation * ln(S apr ActiveOpen(i),i) z IncarnationS #ln(Sj),

OldUnack(S apr Active~penii)
if i = j and PreCond(,ActiveOpen(i))
then ISS(i)
else OldUnack(S.i).

Seq # ToSend(S apr ActiveOpen(i).i)=
if i = and PreCond(S.ActiveOpen(i))
then I + ISS(i)
else Seq # roSend(Sj).

Seq # ToReceive(S apr ActiveOpenFi),) ==Seq #ToReceive(Sji).

State~f(IS apr ActiveOpen(i),j)==
if i 2 i and PreCond(S.ActiveOpen(i))
then SynSent
else Stateaf(S.
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TimeoutBuffler(S apr ActiveOpen(i),j)--
it i = Iand PreCond(S,ActiveOpen(i))
then New~ueueOf Packets

Add pkt(ISS(i),Maxval(Medium(S,Left) Append Medium(S,Right)),
AnyNatAnyNat.syn)

else TimeoutBuff er(S,j),

Kedium(S apr ActiveOpen(i),j) =
if i = iand PreCond(S,ACtiveOpen(i))
then Medium(Sja)

Add pkt(lSS(i),Maxval(Med iu m(SLeft) Append edium(S,Right)),
AnyNat,AnyNat,syn)

eI~ge Medium(S,j);.

axioms {PassiveOpen)

incarnation # Out(S apr PassiveOpen(i),j) ==incarnation # Out(S~j),

Incarnation # ln(S apr PassiveOpen(i),j) ==Incarnation # In(Sj),

OidUnack(S apr PassiveOpen(i),j) = OdUnack(Sj),

Seq # ToSend(S apr PassiveOpen(i),j) = = Seq # ToSend(S,j),

Seq # ToReceive(S apr PassiveOpen(i),j) ==Sel # ToReceive(Sij),

State~l(S apr PassiveOpen(i),j) = =
it i = jand PreCond(SPassiveOpen(i))
then Listen
else StateOf(M.

TimeoutButfer(S apr PassiveOpen6j).i) ==New~ueueOtPackets,

Medium(S apr PassiveOpen(j),i) ==Medium(S.i);

axioms {ReceiveRst)

Incarnation#* Out(S apr ReceiveRst(i).j) ==Incarnation#* Out(S,j),

Incarnation # ln(S apr ReceiveRst(i) 1 ) ==Incarnation # In(S~j),

OldUnack(S apr ReceiveRst(i),j) = OdUnack(S,j),

Seq * ToSend(S apr ReceiveRst(i),j) ==Seq # ToSend(Sj).

Seq # ToReceive(S apr ReceiveRst(i).j) ==Seq # ToReceive(SI).

State~l(S apr ReceiveRSt(i).j) =i if i = j and PreCond(S.ReceiveRst(i)) then
df StateOf (Si) =SynSent and lncomingAck #Valid(Si)
then Closed
else if State~f(S,i) = Listen

then Listen
else af IncomingSeq # Valid(S,i)

then Closed
else State~f (Si)

else StateOI(Sj).

TimeoutBuffer(S apr ReceiveRst(i),j)
IfI i =and PreCond(S,Receivepst(i)) then
if StateOI(S,i) = SynSent and lncomingAck Valid(S,i)
then NewOueueOf Packets
else if lncomingSeq * Valid(S,i)

then New~ueueOf Packets
else TirmeoutBuffer(Si)

else Timeout~uffer(Sj),

Medium(S apr ReceiveRst(i),j) x a
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then Medium(S,i)
else id PreCond(S,ReceiveRst(i)) and j =OppositeSide(i)

thoen Remove(Medium(S,j))
else Medium(S,j);

axioms {ReceiveAck)

Incarnation # Out(S apr ReceiveAck(i),j) ==Incarnation # Out(S,j),

Incarnation # ln(S apr ReceiveAck(i),j) ==Incarnation *ln(S,j),

Oldljnack(S apr ReceiveAck(i),j)=
if i = jand PreCond(S,ReceiveAck(i))
then if StateOf (S,i) = SynSent

then if lncomingAck#Valid(S,i)
then 1 + Old Unack(S,i)
else OldUnack(S,i)

else if StateOf (S,i) =SynReceived
then if IncomingAck # Valid(S,i) and tncomingSeq # Valid(S,i)

,7 then 1 + OldUnack(Sji)
else OkiUnack(S,i)

else OldUnack(S,i)
else OldUnack(Sj),

Seq * ToSend(S apr ReceiveAck(i),j) ==Seq * ToSend(S,j),

Seq # ToReceive(S apr ReceiveAck(i),j) = Seq # ToReceive(S,j),

StateOf (S apr ReceiveAck(i),j) =

if i = i and PreCond(S,ReceiveAck(i))
then if StateOf (Sji) = SynReceived

then if lncomingAck*#Valid(S,i) and lncoming,%q# Valid(Si)
then Established
else SynReceived

else State~f(S,i)
else State~f(Sj),

* TimeoutBuffer(S apr ReceiveAck(i),j)
a'. if i = j and PreCond(S,ReceiveAck(i))

then if StateOf (Sji) = Closed or StateOf (Si) = Listen
then NewOueueOf Packets
else df StateOf(S,i) = SynReceived

then if lncomingAck#Valid(S,i) and lnccmingSeq#Valid(S,i)
then DeletePacket(TrmeoutBuffer(S,i),Seq # ToSend(S,i))
else TimeoutBuffer(S,i)

else if State~t(S,i) = SynSent
;pthen Rf AckNumber(Front(Medium(S,OppositeSide(i)))) = 1I+ OidUnack(Si)

then DeletePacket(TimeoutBuffer(Si).Seq 9 ToSend(S,i))
else TimeoutBuffer(S,i)

4 else TimeoutBufter(S,i)
else TimeoutBuffer(SjI),

Medium(S apr ReceiveAck(i),j) =

if PreCond(S.ReceiveAck(i)) then
ifi=I
then if StateOf (SJi) = Closed or StateOf (Si) =Listen

or ((State~f(S,i) = SynSent) and -IncomingAck * Valid(S,))
then Medium(S,i)

Add pkt(AckNumber(Front(Medium(S,OppositeSide(i)))),
Inc * Ack(Front(Medium(S.OppositeSide~i)))).
AnyNatAnyNat,
rst)

else if State~f(S,i) = SynReceived
then if - IncomingSeq # Valid(S,i)

then Medium(Sjl)
Add plct(Seq # ToSend(S,i),

Incarnation # Out(S,i),
Seq # ToReceive(S,I),
IncarnationS 9 n(S,i),
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ack)
else if -lncomingAck#Valid(S,i) then

And pktAckront(dinm(SOedite(S.Opei)))) ei))

Idd #kAckrn(mber(Fofl(Medpoitem(SPOitCSde()))
AnyNat,AnyNat,
rst)
else Medium(Si)

else Medium(Sji)
else itf OppositeSide(i)

then Remove(Medium(Sj))
else Medium(S~J)

ellse Medium(S,i);

axcioms {ReceiveSyn)

Incarnation# Out(S apr ReceiveSyn(i),i)=
if i = j and PreCond(SReceiveSyn(i)) then
if State~f (Si) = Listen
then Maxval(Medium(S,Left) Append Medium(SRight))
else Incarnation # Out(S,i)

else Incarnation # Out(Sj).

Incarnation # ln(S apr ReceiveSyn(i),i)=
if i = j and PreCond(S,ReceiveSyn(i)) then
if ((State~f (Si) = Listen) or State~t (Si) = SynSent)
then Inc # Seq(Front(Medium(S,OppositeSide(i))))
else Incarnation # ln(Sji)

else Incarnation# ln(S,fl,

Old Unack(S apr PeceiveSyn(i),j)=
if i = i and PreCond(S.ReceiveSyn(i)) then
it StateOt(Sji) = Listen
then ISS(i)
else Old Unack(S.i)

else Old Unack(S,j),

4 Seq # ToSend(S apr ReceiveSyn(i).j) =

.4 if i and PreCond(S.ReceiveSyn(i)) then
it StateOl (Si) = Listen
then 1 + ISS(i)
else Seq # ToSend(Sj)

else Seq # ToSend(Sj),

Seq * ToReceive(S apr ReceiveSyn(i),i)==
3b. if i = and PreCond(S,ReceiveSyn(i))

then ii StateOf(Sji) = Listen or StateOf(Sji) =SynSent

then 1 + SeqNumber(Front(Mediunl(S,OppositeSide(i))))
else Seq 0 To~Receive(S, i)

else Seq # ToReceive(S,

StateOf (S apr ReceiveSyn(i),i) =

if i = I and PreCond(S.ReceiveSyfl(i))
then if State~f(Si) LiUsten

then SynReceived
else if StateOf(SJi) a SynSent

then id OldUnack(S.i) = ISS(i)
then SynReceived
else Established

else State~f (Si)
else StateOf(Sj),

TimeoutBuff er(S apr ReceiveSyn(i),I)
0it = jand PreCond(S.FleceiveSyfl(i))
then if StateOf(S.i) = Listen

then NewOueueOt Packets
Add pkt(ISS(i),Maxval(Medium(S.Lett) Append Medium(S.Right)),

1 + SeqNumber(Front(Medium(S,OppositeSide(i))))
Ii Inc 0 Seq(Froflt(Medium(SOppositeSide(i)))).

synack)
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else if StateOf(Sji) = Closed
then New~ueueOl Packets
else TimeoutBufler(S,i)

else TimeoulBuffer(Sj),

Medium(S apr ReceiveSyn(i),j)=
if PreCond(SReceiveSyn(i)) then
dii
then if StateOf(Sji) = SynSent

then Medium(S,i)
Add pkt(Seq #ToSend(S~i).lncarnation *Out(S,i).

1 + SeqNumber(Front(Medium(S.OppositeSide(i))))
,lnc # Seq(Front(Medium(S,OppositeSide(i)))),
ack)

else df StateOt (S.i) = SynReceived or StateOf (Sji) = Established
then if lncomingSeq # Valid(S,i)

then Medium(S,i)
U. else Medium(SJ)

Add pkt(Seq # ToSend(Si),lncarnation #Out(Sji),
Seq # ToReceive(S~i).lncarnation # ln(S,i),
ack)

else if StateOf (S,i) = Listen
then Medium(Sji)

Add pkt(ISS(i),Maxval(Medium(S.Left) Append
Medium(S,Right)),

1 + SeqNumber(Front(Medium(S,OppositeSide(i))))
,Inc # Seq(Front(Medium(S,OppositeSide(i)))).
synack)

else Medium(S~i)
Add pkt(D.MaxvaI(Medium(S,Lett) Append

Medium(SRight)),
I +i SeqNumber(Front(Medium(SOpposdteSd(O))).
Inc # Seq(Front(Medium(S,OppositeSide(i)))),
rst)

else ft = OppositeSide(i)
then Remove(Medium{S,j))
else Medium(S@j

else Medium(S,i);.

axioms {ReceiveSynAck)

Incarnation 0 Out(S apr ReceiveSynAck(i).j) = Incarnation # Out(Sj),

Incarnation S ln(S apr ReceiveSynAcc(i),j)=
if i i and PreCond(S.ReceivaSynAck(i)) then
df (StateOf (S.i) z SynSent) and IncomingAck * Valid(S,i)
then Inc#S Seq(Front(Medium(S,OppositeSide(i))))
else Incarnation * ln(S,i)

else Incarnation# In(S,j),

Seq * ToSend(S apr ReceiveSynAck(i).i) = Seq # ToSend(Sj),

4 ~OldUnack(S apr ReceiveSynAck(i).j) =

I It i = i and PreCond(S,ReceiveSynAck(i))
then it StateOt(S,i) = SynSent

then IN IncomingAcli * Valid(S,i)
then 1 + OldUnack(Si)
else OldUnack(SJe)

else if StateOI(Sji) aSynReceived or State~l(Sji) z Established
then if IncomingACk S Valid(S.i) and IncomingSeq # Valid(S,i)

then 1 + OldUnack(Si)
else OldUnack(S,i)

else OldUnack(SJi)
else OldUnack(Sj),

Sect #ToReceive(S apr ReceiveSyn Ack(li) =

if i z j and PreCond(SReceiveSynAck(i))
then it StateOf (S,i) aSynSent

Ii then If IncomingAck *Valid(S,i)
5 then 1 + SeqNumber(Front(Medium(S,OppositeSide(i))))

else Seq * ToReceive(S,i)
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else Seq # ToReceive(Si)
else Seq # ToReceive(S.i).

StateOf(S apr ReceiveSynAck(i),j) =

dif = i and PreCond(S.ReceiveSynAck(i))
then if StateOl(Si) = SynSent and IncomingAck # Valid(S.i)

then Established
eise State~f(S,i)

else StateOf (Sj),

TimeoutButfer(S apr ReceiveSynAck(i),j)
if i = i and PreCond(S.ReceiveSynAck(i))
then ill StateOt(S,i) = Closed or StateOf (S.i) = Listen

then NewQueueOf Packets
else it StateOf (Si) = SynSent

then it lncomingAck#Valid(S,i)
then DeletePacket(TimeoutBuffter (Si).OIdUnack(Sji))
else NewOueueOf Packets

else TimeoutBuffer(Si)
else TimeoutBuffer(S.j),

Medium(S apr ReceiveSynAck(i),j)=
if PreCond(S.ReceiveSynAck(i)) then
dfi=j
then it StateOf (S,i) = Closed or StateOf (S,i) =Listen

then Medium(S.i)
Add pkt(AckNumber(Front(Medium(SOppositeSide(i)))),

Inc * Ack(Front(Medium(S.OppositeSide(i)))),
AnyNatAnyNat,
rst)

else if StateOl (Sji) = SynSent
then if IncomingAck #Valid(Si)

then Medium(Sji)
Add pkt(Seq # ToSend(S,i), Incarnation # Cut(Sji),

1 + SeqNumber(ront(Medium(SOppostteSide(i))))
Inc # Seq(Front(Medium(SOpposrfeSide(qlfl),
ack)

else Medium(Si)
Add pkt(AckNumber(Front(Medium(S.OppositeSide(i)))),

Inc # Ack(Front(Medium(S.OppositeSde(i)))),
AnyNatAnyNat,

J rst)
N else if StateOf(S.i) = Established

then if IncomingSeq # Valid(S,i)
then Medium(S,i)
else Medium(Si)

b Add pkt(Seq * ToSend(S.i),
P Incarnation # Out(Sji),

Seq # ToReceive(S,i),
Incarnation # In(S~i),
ack)

else if StateOf(SJi) = SynReceived
then if - IncomingSeq V Valid(S.i)

then Medium(S,i)
vo Add pkt(Seq # ToSend(SJ),

Incarnation # Out(S.').
Seq It ToReceive(Si),
Incarnation # ln(S.i),
ack)

else if -IncomingAck * Valid(S,i) then
Medium(S,i)

Add pkt(AckNumber(Front(Medium(SOppositeSide(i)))).
Inc * Ack(Front(Medium(S.OppositeSide(i)))),
AnyNatAnyNat,
rst)

else Med ium(S,i)
else Medium(Si)

else it I OppositeSide(i)
then Remove(Medium(S,j))
else Medium(S4g

.4 else Medium(Sj);
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axioms (Timeouti

Incarnation # Out(S apr Timeout(i),j) = Incarnation # Out(S,j),

Incarnation # ln(S apr Timeout(i),j) =Incarnation # In(S,j),

OfdUnack(S apr Timeout(i),j) = = OldUnack(Sj).

Seq # ToSend(S apr Timeout(i),j) = = Seq # ToSend(Sj),

Seq * ToReceive(S apr Timeout(i),j) = = Seq # ToReceive(Sj),

StateO'(S apr Timeout(i),j) = StateOf(Sj).

Medium(S apr Timeout(i),j)=
if i = and PreCond(S,Timeout(i))
then Append(Medium(S,i),TimeoutBuffer(S,i))
else Medium(S,j),

TimeoutBuffer(S apr Timeout(i),j) =Timeout~uffer(S,j);

axioms {LoseMessage)

Incarnation # Out(S apr LoseMessage(i),j) = Incarnation# Out(Sj),

Incarnation # In(S apr LoseMessage(i),j) ==Incarnation # In(S,j),

OldUnack(S apr LoseMessage(i),j) = = OldUnack(Sj),

Seq # ToSend(S apr LoseMessage(i),i) = = Seq # ToSend(Sji),

Seq # ToReceive(S apr LoseMessage(i),j) = = Seq # ToReceive(S,j),

StateOf(S apr LoseMessage(i),j) = =StateOf (Sj),

Med ium(S apr LoseMessage(i),j) =
if i = j and PreCond(S,LoseMessage(i))
then Remove(Medium(S,i))
else Medium(S,j).

TimeoutBuffer(S apr LoseMessage(i),j) ==Timeout~uffer(S,j);

end;

to , 11.2 Auxiliary Data Type Definitions

type Packet;

needs types Integer, ControlField;

declare dummy, pk: Packet;
declare seq#, ack#1,inc * , inc * : Integer;
declare cf: ControlField;

interface pkt(seq *. inc * 5 ack S. inc *a, cf): Packet;

interfaces SeqNumber(pk), AckNumber(pk), Inc *Seq(pk), Inc#Ack(pk): Integer;

interface Control(pk): ControllField;



A CON NECiTION-ESTABLISHMENT PROTOCOL 41

axiom dummy= p
==((SeqNumber(dummy) z SeqNumber(pk)) and AckNumber(dummy

AckNumber(pk)
and Control(dummy) = Control(pk)
and Inc * Ack(dummy) =Inc # Ack(pk)
and Inc #Seq(dummy) = nc #Seq(pk));

axiom SeqNumber(pkt(seq #inc &s, ack0, inc 0a, cf)) = = seq 0;

axiom AckNumber(pkt(se #. inc # s, ack #, inc # a, cf)) = = ack #;I

axiom Inc #Seq(pkt(seq#,inc #s. ack#,inc #a, cf)) = = inc #s;

axiom Inc #Ack(pkt(seq, inc # a ack, inc #a, cf)) = -. inc #a;

axiom Control(pIt(seq #,inc # , ack#, inc #a, cf)) == ci;

end {Packet);
type QueueOf Packet;

needs type Packet

declare dummy. q, qi1. q2, qq: OueueOf Packet;
declare i, i. I , ii: Packet;

interf aces
NewOueueOf Packet. q Add i, Remove(q).
Append(qI, Q2). que(i): OueueOfPacket;

infix Add;

interf aces
Front(q). Back(q): Packet;

interfaces
NormalForm(q). lnduction(q), i in q: Boolean;

41. infix in;

axioms dummy=dummy ==TRUE,
* q Add i = New~ueueOf Packet = = FALSE,

New~ueueOlPacket = q Add i = = FALSE,
q1 Add ill =Q Add i2 = ((qi = q2) and (ili2))

Remove(NewQ~jeueOt Packet) = NewOtjeueOlPacket,
Remove(q Add i) = = if q = NewOueueOf Packet

then q
else Remove(q) Add i,

4 Append(q, NewOueueOl Packet) = = Add. i
Appen~q, 1 Ad it) Append(q, q1)Adi,

quefi) ==NewOueueOlPacket Add i.

Front(q Add i) . z if q = New~ueueOf Packet
then i
else Front(q),

Back(q Add I) = =

in NewOueueOf Packet =sFALSE,
i n (q Add if) 2 = (i in q or (i = it));

rulelemma
Append(NewOueueOfPacket, q) x q;

schemas NormalForm(q) z z cases(Prop(NewOueueOfPacket),
all qq, ii (Prop(qq Add ii))).

If .
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Induction(q) =CaSeS(Prop(NewOueueOfPacket).

all qq, hi (IH(qq) imp Prop(qq Add ii)));

end {QueueOf Packet)
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